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Preface to the Second Edition

After the release of the First Edition, many responses have returned to the
author about this book. Many people kindly reported errors and corrections to me.
One of the reasons for the release of the Second Edition was such an accumulation of
errors found in the First Edition. Another reason was the new trend of atmospheric
general circulation modeling which appeared almost at the same time as the release
of the First Edition in 2004. A massive parallel vector supercomputer called ”the
Earth Simulator” (ES) was launched in 2002 at the Japan Agency for Marine-
Earth Science and Technology (JAMSTEC), and the author became involved in a
new modeling project toward efficient use of ES. Instead of the hydrostatic spectral
general circulation model, we have developed a nonhydrostatic icosahedral-grid
general circulation model, called NICAM, and ran very high resolution simulations
with horizontal mesh spacing around 3.5 km at the highest covering the global
domain quasi-uniformly. Chapters 24-26 are new and devoted to introducing the
background and the detailed numerical techniques of NICAM, as one example of
global nonhydrostatic modeling. In recent years, many modeling groups in the world
have become interested in and actually developed global nonhydrostatic models
with various choices of numerical architectures. This textbook cannot cover all the
aspects of the various numerical techniques, but concentrates only on giving an
example of the existing model. This area has been very active in recent years, and
new papers are constantly being published. Readers should regard Chapters 24—26
as a pioneering example of this new research area.

Particular thanks are given to: Prof. Noriyuki Nishi and Dr. Atsushi Hamada,
who gave feedbacks after carefully reading the book at the Climate Physics Lab-
oratory at Kyoto University; Dr. Nagio Hirata, who organized an atmospheric
modeling seminar at the Center for Climate System Research, the University of
Tokyo; Prof. Hiroshi L. Tanaka, who also took part in a book-reading seminar at
the University of Tsukuba, and Dr. Chihiro Kodama at JAMSTEC. The figure on
the cover page was produced by the Earth Simulator Center of JAMSTEC using a
land image provided by NASA.

Masaki Satoh
January 2013
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Preface to the First Edition

This book describes the fundamentals of atmospheric dynamics, the theories
behind atmospheric circulation structures, and modeling of the general circulation
and its applications. It consists of three parts: I, I, and III. Part I summarizes the
principle ideas of atmospheric dynamics. Part IT describes the theories of atmos-
pheric structures from various perspectives. Part III describes basic concepts for
making a general circulation model of the atmosphere and its applications to the
study of atmospheric structures.

Part I deals with the fundamentals of atmospheric dynamics, such as equation
sets, approximations of equation sets, basic balances of the atmosphere, waves,
and instability. These topics are already fully discussed in standard textbooks on
dynamic meteorology. Thus, summaries of these important topics are presented
in this part complete with the necessary principles and basics to derive each of
the equations. It also describes elemental topics on physical processes, such as the
moisture, radiation, and turbulent processes that are required for understanding
atmospheric structures.

The main part of this book is Part I which describes the various perspec-
tives of atmospheric structures. It discusses how the general circulation of the
atmosphere is maintained and how the circulation depends on external parameters.
Atmospheric structures are examined by means of global-averaged properties, hor-
izontal one-dimensional structures, vertical one-dimensional structures, meridional
two-dimensional structures, and horizontal two-dimensional or spherical structures.
Their roles in moist circulations are also examined. In this book the author tries to
focus on more basic subjects that can be confirmed by readers from first principles
or well-defined assumptions, rather than describing many observational facts or
various applications. Of course, more advanced theories are developed to describe
the properties of the general circulation of the atmosphere. The author wishes
to present one of the frameworks for understanding the general circulation of the
atmosphere. The subjects in Part I and II cannot be clearly divided; some of the
chapters in Part IT are closely related to those in Part I (e.g., Chapters 7 and 18,
Chapters 9 and 15, and Chapters 10 and 14).

Part IIT describes a method for construction of a general circulation model. This
part focuses on the spectral model that is the most standard dynamical framework
of the general circulation model of the atmosphere. Equation sets, numerical dis-
cretization in the spherical domain and in the vertical direction, and time integra-
tion schemes are described. Some applications of general circulation models are
also presented. This part has a slightly different character from that of Parts I and
II, since it describes numerical techniques and discretization. The author believes
that an understanding of atmospheric dynamics and atmospheric structures is a
prerequisite for the development of a general circulation model and that the use of
general circulation models is a prerequisite for the study of the general circulation
of the atmosphere. As Chapter 20 highlights, there are ongoing efforts to come
up with new types of atmospheric general circulation models and to bring about
improvements in existing models. If one aims to develop an atmospheric general

xvi
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circulation model, one needs to verify the performance of the model by using the
well-known characteristics of atmospheric dynamics. Results obtained using atmos-
pheric general circulation models should be validated with those reached theoreti-
cally. In addition to this, through numerical experiments with general circulation
models, one may gain further insights into understanding the atmospheric general
circulation structures examined in Part II. In the author’s view, after reading this
book students who want to study atmospheric dynamics should have the ability to
construct a general circulation model by means of their own programming, though
various atmospheric general circulation models are available. It is hoped that they
will be able to study the properties of the atmosphere using a numerical model
whose details and limitations are thoroughly familiar to themselves. The three-
part structure of this book is intended to bring this about.

General circulation models are nowadays used in various fields, such as weather
forecasting, climate prediction, and environmental estimations. Recently, despite
the urgent social needs relating to global warming, understanding the general circu-
lation of the atmosphere is still not fully established. This is because consideration
needs to be given to the more complicated climate system: the atmosphere, ocean,
land, ice, chemical compositions, and biosphere. Since incorporation of many com-
plicated parts are required for applications to the real climate or environmental
systems, it is very difficult for beginners to understand the roles played by the
dynamics of the atmosphere, even when they are the central part of the models.
On understanding the contents of this book, the reader should have a good idea
of the dynamical reasons for the response of general circulation to external distur-
bances like CO5 increase and ozone depletion.

This book is designed for the reader to reach the entrance level for a graduate
course in Atmospheric Science and Environmental Science. It is particularly rec-
ommended for researchers of mathematical physics, such as fluid dynamics, chaos,
fractals, and nonlinear physics. One of the approaches to dynamical meteorology
involves laboratory experiments (e.g., using a rotating annulus). In such labora-
tory experiments, the general characteristics of rotating stratified fluids are explored
using a wider range of parameters than those used for the real atmosphere. Under-
standing the general characteristics of fluid motions provides us with comprehensive
insight into the behaviors of the real atmosphere. Today, general circulation models
can be used just like the rotating annulus in laboratories. Of course, numerical er-
rors or the use of experimental laws that cannot be derived from the first principles
of physical laws (e.g., eddy viscosity) are inevitable, so that the results of gen-
eral circulation models cannot be regarded as objects of mathematical physics in
a pure sense. However, if one views atmospheric motions as one of the realiza-
tions of rotating stratified fluids, there exist many unsolved problems that demand
mathematical and physical treatment. If those mathematical physicists who are
not familiar with dynamic meteorology are interested in general circulation models
because of reading this book and if they can easily use them at their work stations,
there will be much valuable feedback to our field of atmospheric science. This is
my hope in writing this book.

Most of this book is based on seminar notes that were made when the author
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joined a series of seminars held at the Meteorological Research Laboratory, De-
partment of Geophysics, University of Tokyo. Parts I, II, and III, respectively,
correspond to the master seminar (M-seminar), the atmospheric structure semi-
nar, and the atmospheric general circulation model seminar. The M-seminar was a
unique seminar for the education of graduate students and covered important topics
of meteorology; that is, waves, instability, moist dynamics, radiation, turbulence,
and statistic analysis were studied in each term with six to eight weeks devoted
to each topic. Among them, the topics of waves, instability, and moist dynamics
constitute the main contribution of Part I. Radiation and turbulence are briefly
touched on at the end of this part (in Chapters 10 and 11, respectively).

Part II is devoted to the study of atmospheric structures. Besides the notes from
the atmospheric structure seminar, this part is also based on the author’s research
into atmospheric general circulation. In this part, physical mechanisms rather
than observational facts are mainly described for the purpose of understanding
atmospheric general circulation. The author adopted this strategy because useful
textbooks on observations of the general circulation, such as Peixoto and Oort (see
Chapter 13), are widely available. In addition, digitally tabulated meteorological
data are nowadays easily accessible through the World Wide Web such that one
can access observational data (Kalnay et al.; see Appendix A3). In this sense, the
book is not intended to be self-contained; readers are advised to check observational
evidence by means of available textbooks or digital data.

Part III describes the theoretical basis of the atmospheric general circulation
model (AGCM). The description is based on the dynamical core of the spectral
model which was developed at the University of Tokyo by the late Dr. Numaguti
during the 1990s. The author studied with Dr. Numaguti at the University of
Tokyo and made description notes of the dynamics of the AGCM. Part III mainly
follows the author’s personal seminar notes. This AGCM was further developed
at the Center for Climate System Research (CCSR), University of Tokyo, and the
National Institute of Environmental Studies (NIES) and is called the CCSR/NIES
AGCM. The manual of CCSR/NIES AGCM is also referred to in Part III. The
CCSR/NIES AGCM was then introduced to the Earth Simulator Center and was
improved in terms of computer performance for it to be run on the Earth Simulator;
the model is called the AFES (AGCM for the Earth Simulator). The dynamical core
of the original AGCM has been further developed by the GFD-DENNOU Club and
is available online at http://www.gfd-dennou.org. The work of the GFD-DENNOU
Club is very useful, and the products of the GFD seminars archived at this web
site can be found in Part I.

The author was taken aback when he was asked to write a book by the pub-
lisher, especially as many good textbooks on dynamic meteorology have already
been written by established researchers such as Holton, Pedlosky, Gill, Andrew et
al., Lindzen, Salmon, and Salby. As far as atmospheric modeling is concerned, this
subject warrants a book on its own; in fact, there are already useful textbooks
such as Haltiner and Williams, Durran, and Krishnamurti et al. (see Chapter
20). It is not the author’s intention to write a book that is in competition with
theirs. However, the author learned a great deal from the above systematic semi-


http://www.gfd-dennou.org

Preface to the First Edition xix

nars and considers that such material will be useful to those students interested in
becoming researchers on the atmosphere. The seminar notes were compiled from
reviews of many standard papers, textbooks, and some original works from our
group. Through the seminars, differences between the nomenclatures have been
standardized and errors in the original works amended.

The author is grateful to the following for reading the draft manuscripts: Yoshi-
Yuki Hayashi, Masaki Ishiwatari, Keita Iga, Masatsugu Odaka, Keiichi Ishioka,
Wataru Ohfuchi, Yoshihisa Matsuda, Masahiro Takagi, Yuuji Kitamura, Yosuke
Kosaka, and group members on turbulence at the University of Tokyo and collab-
orators of the GFD-DENNOU Club. The author also thanks Hirofumi Tomita and
Koji Goto for preparing some figures in Chapter 24, including the one on the front
cover that was made with the Earth Simulator. The numerical calculations of the
author’s research cited in this book were done using the HITACH SR8000 at the
University of Tokyo under the cooperative research efforts of the Center for Climate
System Research, University of Tokyo, the NEC SX5 at the National Institute of
Environmental Studies, the parallel computers at the High-Tech Research Center
for the Saitama Institute of Technology, and the NEC SX5 and the Compaq cluster
system at Frontier Research System for Global Change.

Masaki Satoh
April 2004
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In this Part I, the basic mathematical and physical ideas are summarized. These
materials are required for studying the atmospheric general circulation in the fol-
lowing two parts. The first half of this part describes the basic properties of dry
air, and the latter half is devoted to those of moist air and physical processes.

In Chapter 1 the thermodynamic properties and the basic equations for dry air
are described. Since these equations are the same as those used for fluid dynamics,
they are too generous to describe specific atmospheric motions. In general, we
introduce various kinds of approximations and assumptions under the basic balances
realized in the atmosphere. Thus, we consider the balances of atmospheric motions
and their stabilities in Chapter 2, and various forms of approximated equation sets
are introduced based on the basic balances in Chapter 3. These equation sets are
used in the following chapters.

The concepts of waves and instabilities are most essential for the description
of atmospheric motions. The basic theories and properties of waves seen in the
atmosphere are summarized in Chapter 4, and those of instabilities are summa-
rized in Chapter 5. As applications of waves, forced motions (i.e., the atmospheric
responses to forcing) are described in Chapter 6. Chapter 7 relates the disturbance
fields and mean fields and offers new equation sets suitable for the description of
disturbance fields and their effect on mean fields. The equation sets introduced in
this chapter play important roles in meridional circulations of the atmosphere.

In Chapters 8 and 9, the thermodynamics properties and the basic equations
of moist air are summarized. These correspond to Chapter 1 for dry air. Stud-
ies of moist circulations, which are given in Chapter 15 in Part II, are based on
the concepts of these two chapters. We briefly summarize the radiation process
in Chapter 10, and the turbulent process in Chapter 11. These are required to
construct physical models used for atmospheric general circulation models, and are
basic conceptual notions to study the structure of atmospheric general circulations.



Basic equations

Many characteristics of atmospheric general circulation, particularly mid-latitude
circulation, are described by the equations for dry air, where air that contains no
water vapor is referred to as dry air. This chapter summarizes the basic physical
properties of dry air. Most of the contents in this chapter are general character-
istics of fluid dynamics, and are not necessarily specific to atmospheric motions.
However, the basic equations described in this chapter are frequently invoked for
consideration of atmospheric circulations, and are used in the following chapters.

We focus on expressions and manipulations of basic equations for practical use,
rather than explaining the elemental principles of thermodynamics, fluid mechanics,
or vector analysis. Readers can find more appropriate textbooks for these elements.
It is hoped that practical learning of the equations in this chapter will lead to
applications of these equations to many atmospheric fields.

We start from the thermodynamic relations of dry air in general forms. Next, the
governing equations of dry air are presented. The equations of mass, momentum,
and energy conservation are formulated in the conservative form. Other useful re-
lations, such as the equations of angular momentum and vorticity, are also derived.
As a supplement to this chapter, the general formulas used in the transformation
of the coordinate system and basic equations in various coordinate systems are
summarized in an appendix to this book: Appendix Al.

1.1 Dry air

1.1.1 Equation of state and thermodynamic variables

In general, air can be regarded as an ideal gas for practical use in meteorology.
Deviation from the ideal gas is almost negligible not only in the Earth’s atmosphere
but also in the atmospheres of other planets. On the assumption of the ideal
gas, however, theoretically different quantities sometimes degenerate into a similar
quantity, which may cause confusion. Thus, we first derive the basic relations of dry
air without using the assumptions of an ideal gas in order to clarify what quantities

M. Satoh, Atmospheric Circulation Dynamics and General Circulation Models, 4
Springer Praxis Books, DOI 10.1007/978-3-642-13574-3 1, © Springer-Verlag Berlin Heidelberg 2014
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are related to each other.

Throughout this book, the atmosphere is regarded as a fluid in which temp-
erature and other thermodynamic quantities are defined at any point. This means
that the fluid is in local thermodynamic equilibrium. If a fluid is composed of one
component and is in thermodynamic equilibrium, the thermodynamic state of the
fluid is determined by the values of temperature T' [K| and pressure p [Pa]. The
volume of the fluid in a given mass is determined by the equation of state which
relates the volume to temperature and pressure. Let v [m? kg~!] denote the volume
per unit mass of a fluid (i.e., the specific volume). The equation of state is formally
written as

v = vp,T). (1.1.1)
The density p [kg m~3] is an inverse of the specific volume p = 1/v. Any thermo-
dynamic variables can be expressed by p and T using the equation of state v(p, T)
and the specific heat at constant pressure C). In this section, we first derive expres-
sions of the thermodynamic variables in the case of a general form of the equation
of state. Note that, even when the fluid consists of multiple components, it can be
regarded as one component system if each component is well mixed and has a fixed
composition in the fluid. A more general formulation of the multiple component
system will be described in Chapter 8.

Let v and s denote internal energy and entropy per unit mass, respectively.
Following the first and second laws of thermodynamics, the changes in v and s in
a quasi-static process are related as

du = Tds— pdv. (1.1.2)

Enthalpy h, Helmholtz’s free energy f, and Gibbs’ free energy g per unit mass are
respectively defined by

h = u+puv, (1.1.3)
f = u—"Ts, (1.1.4)
g = h—Ts = u+pv—"Ts. (1.1.5)
From these definitions and (1.1.2), the changes in these energies are expressed as
dh = Tds+ vdp, (1.1.6)
df = —sdT — pdv, (1.1.7)
dg = —sdT + vdp. (1.1.8)

Thus we have

ou ou

(Y~ () - 119
Oh Oh
() < () - a110
of
(o

>v - (gq]j)T = - (1.1.11)
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) ()
= —s, = v, (1.1.12)
<8T » op )

from which we obtain the Mazwell relations:
—1
_(aa,:;J - (;ﬁ)v - —(35})87 (1.1.13)
27 N —1
(aiei;) - (§Z>p = (3?)8, (1.1.14)
_aa;gu - (gZ>T - (g;];)v’ (1.1.15)
2
_88Tgp - (ZDT - _<§;>p- (1.1.16)

The specific heat at constant volume C, [J kg=! K~1] and the specific heat at
constant pressure C, [J kg=! K~!] per unit mass are defined by

0s Cy
= 1.1.1
(GT)U i (1.1.17)
0s Cp
(aT) = (1.1.18)
P
Using (1.1.2) and (1.1.6) and the above definitions, specific heats are related as
ou
- 0, 1.1.19
(or), L
oh
_ 1.1.20
(or) = o (1.1.20)

Generally, these specific heats are thermodynamic variables that depend on temp-
erature and pressure. The value of C, at any thermodynamic state can be deter-
mined if its dependency on T at any pressure pg is known. Using (1.1.18) and
(1.1.16), we have the relation:

ProcC
Co(p.T) = %@mm+/< p>dﬂ
Po a T

0%v
<8T2> dy’, (1.1.21)
p/

which expresses the dependency of C), on p and T with the equation of state (1.1.1).

Expressions of the other thermodynamic variables can be determined if the
equation of state and the specific heat at constant pressure are known. First, the
change in entropy is given by

0s 0s C ov
= T = Pqar-— 1.1.22

= Cplpo, T) *T/p

Po
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where (1.1.16) and (1.1.18) are used. In a similar way, the changes in internal
energy and enthalpy are expressed respectively as

ov ov ov
Cpp<aT)p T(@T),J*p(ap)T

v B ol 0 (v
UT(aT)p dp = CudT—T L?T (T)] dp,

P

(1.1.24)

where (1.1.2), (1.1.6), and (1.1.22) are used. Letting so and hg denote entropy and

enthalpy at a specified temperature Ty and pressure pg, respectively, we have the
following expressions:

du dT — dp, (1.1.23)

dh = C,dT +

T
_ Cp(p07T/) ’ P ov(p',T) ’
s(p,T) = 50+/T o dT /,, o dp', (1.1.25)
0 0 P
T Pro (o,T)
_ ! ! 2 1) /
h(p,T) = ho+/To Cp(p(),T)dT T /po |:8T < 7 )]pdp7
(1.1.26)
ulp,T) = h(p,T)—po(p,T). (1.1.27)

Using (1.1.23) and (1.1.19), the specific heat at constant volume C,, can be expressed
with the equation of state and C); that is,

Cp-Cy = p(S%) : (1.1.28)
p

We conclude this section by introducing other useful quantities and relations.
The ezpansion coefficient is defined by

1 ( ov ) 1 ( Op )
a = = - . (1.1.29)
v \oT v p \oT v
Using «, the change in entropy (1.1.22) is rewritten as
C @
ds = PdT— " dp. 1.1.30
s T W ( )

Using (1.1.14), the change in entropy is also rewritten in terms of the changes in
pressure and density as

B 0s 0s 1 [(0p ap B
= (8p)vdp+(5v)pdv o (3T)s[(8p>sdp dp}

C 1
= papT (Cdedp>, (1.1.31)

where we define

op
2 . .1.32
c, = < )s, (1.1.32)
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cs is the speed of sound, as can be found in Section 4.2. It is convenient to define

s v
- <8T> _ _(ap)T G, _ ar (1133
ap ), (57), ¢ =

where 74 is interpreted as the dry adiabatic lapse rate with respect to pressure
(Section 2.1).

=

1.1.2 Thermodynamic variables of the ideal gas

Now that general expressions of the thermodynamic variables are derived, we in-
troduce the equation of state for an ideal gas. Based on the Boyle-Charles law, the
equation of state for an ideal gas is written as
R*T
vl = , (1.1.34)
p

where v!

[m? mol~!] denotes the volume of the ideal gas per one mole and R* =
8.3144 J mol~! K~! is the universal gas constant. Letting m [kg mol~!] denote the
molecular weight of the ideal gas, the specific volume, that is the volume per unit
mass, is written as
I *
v = Vo= BT (1.1.35)
m mp
Eq. (1.1.34) expresses the equation of state of any kind of ideal gas. It is also
applicable to a mixture of ideal gases. According to the assumption of the ideal
gas, the volume of a mixture is given by the sum of the volumes of individual gases
when each gas is in the state of having the same temperature and pressure. Letting
ny [mol kg=!] denote the mole number per unit mass of the k-th component, we
can express the specific volume of the mixed gas as

R*T
v o= anvl = an . (1.1.36)
k k p
Note that we have the relation

anmk = qu = 1, (1.1.37)
k k

where my, is the molecular weight of the k-th component and
qr = nEpmg (1.1.38)

is the mass concentration of the k-th component. The atmosphere of the Earth is
generally described by the equation of state for an ideal gas as long as the release
of latent heat is regarded as the external heating. The most variable component
of the Earth’s atmosphere is water vapor. All the other major components of the
atmosphere have almost uniform concentrations. Thus, it is convenient to define
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dry air as the mixture of gases in the atmosphere except water vapor. The mean
molecular weight of dry air m, [kg mol~!] is given by

1
mg = 1.1.39
5 e (1.1.39)
where the subscript k denotes each component of dry air. The equation of state for
dry air is written as

RqT

v = 7 1.1.40
. (1.1.40)
or
p = pR4T, (1.1.41)
where
R, = % - > niR* (1.1.42)
d = my g k 1.

is the gas constant for dry air: Ry = 287.04 J kg=! K~1.

It is easy to see that the internal energy and the enthalpy of ideal gas depend
only on temperature. Actually, substituting the equation of state (1.1.40) into
(1.1.23) and (1.1.24), respectively, we express their dependences on pressure as

ou B ov ov o Ry R T

(8p>T - T<3T>p p(8p>T = Ty P =0
(1.1.43)

oh B o] 0 (v B

<8P>T S L’9T (T)L ) (1.1.44)

In practice, we can assume that the specific heat is constant irrespective of temp-
erature in the atmosphere. In this case, (1.1.28) becomes

C,—C, = Ru, (1.1.45)

that is, C, is also constant. In this case, integrating (1.1.19) and (1.1.20) over
temperature gives

w= CT, h=C,T, (1.1.46)

where we have assumed that the internal energy at T'= 0 K is zero. We often use
the ratio of the two specific heats v and the ratio of the gas constant to the specific
heat at constant pressure k:

= K = = 1-71 (1.1.47)

From (1.1.29) and (1.1.40), the expansion coefficient of the ideal gas is simply
expressed as

_ b 1.1.48
a - ( )
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Substituting (1.1.40) into (1.1.22), we have the change in entropy as

dT dp
ds = C, T — Ry b (1.1.49)
Hence, entropy can be expressed as
s = CpInT — Rglnp + so, (1.1.50)

where sg is an arbitrary constant. In atmospheric dynamics, the potential tempera-
ture is frequently used in place of entropy. The potential temperature 0 is related
to entropy as

s = Cplné. (1.1.51)

If we set so = Rglnpg in (1.1.50), we obtain

0 = T(p(’)n, (1.1.52)

p

where pg is a reference pressure at which potential temperature becomes equal to
temperature. Normally, po = 1,000 hPa is used.

The adiabatic process often appears in atmospheric motions. In the adiabatic
process, the change in thermodynamic variables occurs at constant entropy. Using
(1.1.13)—(1.1.16), we can derive the change in specific volume with respect to temp-
erature and pressure at constant entropy, respectively, as

av) (o7) B Cuv Co
= —_ s v = —_ = — = - 5 (11.53)
<3T s (6)7 (35) R4T p
Js
<8U) _ (Bp)v _ (giv“)s _ Cov (1'1'54)
o), Gy (32) Cop

from which the changes in density are given by

ap B 1 p

. o
dp p

2 = ( ) — 1.1.56
o). 7, ( )

where ¢, is the speed of sound defined by (1.1.32). The dry adiabatic lapse rate vq4,
(1.1.33), is expressed as

oT 1
= = . 1.1.

Using (1.1.31) with (1.1.48), the change in entropy is written as

1
ds = Cr ( 2dp—dp>, (1.1.58)
P c

S
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or the change in the potential temperature is
P 1
do = dp — dp. 1.1.59
0 2= dp ( )

Using (1.1.56), in the adiabatic process ds = df = 0, pressure and density are

related as
I; = const. (1.1.60)
p

1.2 Conservation laws and basic equations

Now we turn to the formulation of the governing equations of a fluid. Fluid motions
are described by the conservation laws of mass, momentum, and energy. We first
describe the conservation forms of each equation and then rewrite them in various
forms.

1.2.1 Conservation law and conservation of mass

Let us consider a domain which has a volume V' and is surrounded by a surface
S. This domain is fixed with respect to space. Let A denote an arbitrary physical
quantity per unit volume. The conservation law states that the change in A is
given by the sum of fluxes which go through the surface S and the source within
the domain V. Hence, the balance equation for A is written as

CZ/AdV - f/FndS+/a[A}dV, (1.2.1)

where F,, is an outward normal component of a flux density F' of A on the surface
S, and o[A4] is a source of A per unit volume and unit time (Fig. 1.1).

Since the domain V' can be arbitrarily chosen, it can be fixed in space indepen-
dent of time. Using Gauss’s law

/FndS = /V~FdV, (1.2.2)

the differential expression of (1.2.1) can be given by

gtA+v-F = oAl (1.2.3)

Let us divide the flux density F' into two parts:
F = Av+F, (1.2.4)

where the first term on the right-hand side is the advective part and the second
term is the rest of the flux, such as the contribution of diffusion. Substitution of
this into (1.2.3) yields

9 )
A+ (At F) = oldl (1.2.5)
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FIGURE 1.1: A control volume V with the surface S. The outward normal component of the flux
F at one side of V is F),.

Letting a quantity per unit mass a be A = pa, we rewrite (1.2.5) as

0

0 (p0) +V - (pav + ') = olpa). (1.2.6)
The conservation of mass is given by setting A = p and a = 1. In this case,

F = pv, olp] = 0,

where the latter means there is no source nor sink of mass (i.e, the conservation
of mass). Substituting these equations into (1.2.3), we obtain the conservation of
mass, or the continuity equation as

dp
. — 1.2.
V() = 0, (12.7)
or
dp
. = 1.2.
gt +pV-v 0, (1.2.8)
where
d 0
& = ot +v-V (1.2.9)

is the material derivative.
Using the conservation of mass, the time dependence of an arbitrary quantity a
is written as

da 0
_ . . 1.2.1
o2 = 0 () V- (pav) (1.2.10)
Using this, the balance equation (1.2.6) is rewritten as
d
pd? +V-F = ofpdl. (1.2.11)

If there is no source nor sink of a, o[pa] = 0, and there is no flux other than the
advective part, F' = 0, (1.2.11) becomes

da
dt

This means that a conserves along fluid motion.

= 0.
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1.2.2 Conservation of momentum

Let the velocity of the fluid be v and its components in the Cartesian coordinates
be v; (i = 1, 2, 3). The balance equation for momentum is given by setting A = pv;
and appropriate expressions for the flux and source terms. A general form for the
flux of momentum is given by a tensor

I = pvw; — o, (1.2.12)

which is called the momentum fluz density tensor: pv;v; is the advective part, and
0;; is the stress tensor. The source term of momentum is given as

olpvi] = —pgi, (1.2.13)

where g; is the i-th component of an external force g. As the external force, we
only consider a potential force that is derived from a potential ®:

g = Vo. (1.2.14)

Thus, the balance equation for momentum is expressed as

o o
gplPvi) + o Ty = —pgi, (1.2.15)
J

which is called the conservation of momentum or the equations of motion. If the
external force g; vanishes, a domain integral of momentum pv; is conserved.
The stress tensor o;; is expressed as
oij = —pdij + 0, (1.2.16)
where —pd;; is the pressure tensor and U;j is the viscous stress tensor.! From the
requirement of symmetry, it can be shown that the viscous stress tensor must take
the form

61)2' 61}- 2
o = (axj T amz A v> +C0i; V- v, (1.2.17)

where 1 and ( are the coefficients of viscosity. The coefficients of viscosity are
thermodynamic variables and as such are functions of pressure and temperature in
general. As can be shown by (1.2.52), because of the requirement that entropy must
increase the coefficients of viscosity are non-negative.* Substituting (1.2.16) and

Téij is the unit tensor or Kronecker’s delta, defined by
_ 1, 1=47,
0y = { 0, i3

‘We also use abbreviated expressions; the differential along the i-th direction 94 s written as A,

ox;
and Einstein’s summation convention is used where the summation from 1 to 3 for the suffix is
implied if a suffix is repeated in a term. Hence, for instance, v; ; = Zi_l 8:’ =V-wv.
= i

fThe symmetry U;j = U;.Z. is derived from the conservation of angular momentum. See Section
1.3.1.
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1.2.17) into I1;; and using (1.2.14), we can rewrite the conservation of momentum
J
(1.2.15) as

B ) , 0P
) 2y - g = — 1.2.1
e (pvi) + oz, (pvlv] + pdij 0”) p@xi ) ( 8)
or
dv 1
_ o _vs 1.2.1
0 pr Vo + f, (1.2.19)

where f is the frictional force, whose components are defined by

10

fi = p o, O (1.2.20)
J

In the case that the coefficients of viscosity are constant, substitution of (1.2.17)
yields

1 1
f o= "Vt (C + n> V(V - v). (1.2.21)
p p 3
Thus, in the special case when the fluid is non-divergent V-v = 0, (1.2.19) reduces
to

dv 1
= — Vp-—Vd+ V2 1.2.22
gt P P vV:uv, ( )
where
n
L = 1.2.23
=, ( )

is the kinematic viscosity. This form of the equations of motion is called the Navier-
Stokes equation.

We then derive the momentum equation in a rotating frame. We define the
angular velocity of the rotating frame by €2, which is constant irrespective of time.
We also designate a quantity in the inertial frame by a subscript a and that in the
rotating frame by a subscript r. A time derivative of a vector A is transformed as

dA dA
() = () vaca a2

If a position vector x is substituted into A, we have

dx dx
() = () vnea a2

v, = v, +Qxuw, (1.2.26)

that is,
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where v, is velocity in the inertial frame and v, is velocity in the rotating frame.
In the same way, transformation of the time derivative of v, (i.e., the acceleration
vector) is

(d;ta)a = (dCZT>T+29><U,.+Q><(Q><w)
_ (ch;) 120 x v, -V (292)(2) , (1.2.27)
where '
X = z- (5”92')” (1.2.28)

is the distance to the axis of rotation. The second and third terms on the right-hand
side of (1.2.27) are the inertial forces; —2Qxwv,. is the Coriolis force and —Qx (Qxx)
is the centrifugal force, which is the gradient of the centrifugal potential energy
—30%X?. Substituting (1.2.27) into (1.2.19), we have the momentum equation in
the rotating frame as

dv, 1
U Lo xw, = — Vp—Vo, + f, (1.2.29)
dt p
where
1
o, = <I>—2QQX2 (1.2.30)

is the geopotential or the gravitational potential energy, defined as the sum of
potential energy for the attractive force and centrifugal potential energy. The equa-
tion of motion in the rotating frame (1.2.29) is formally the same as the equation of
motion in the inertial frame (1.2.19) except for the Coriolis force if vq is replaced
by v, and @ is replaced by ®,.. Hereafter, the subscript r for the quantities of the
rotating frame is arbitrarily omitted.

1.2.3 Conservation of energy

The conservation of energy is expressed as the balance equation for total energy.
For application to the atmosphere, total energy per unit volume pet®t can be defined
as the sum of kinetic energy épvQ, potential energy p® (or p®, in the case of the
rotating frame), and internal energy pu, where w is the specific internal energy per
unit mass:

1
petot = 2pv2 + p® + pu. (1.2.31)
The conservation of total energy is described by
olpe] = 0, (1.2.32)

that is, there is no source of total energy. Thus, the balance equation for total
energy is expressed as

aat(petOt)+V~Fewt = 0, (1.2.33)
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where F¢°" designates the flux density vector of total energy. The expression of
F“°" can be determined by the balance equations for each component of total
energy e'°t.

First, the balance equation for kinetic energy is given by an inner product of
v and the equation of momentum (1.2.19), or (1.2.29) in the case of the rotating
frame:

d v?

0

Oij
Ox;j

This can be rewritten in flux form as

O (1 N, O ({1 e Ny
ot \ 2" ox; \\2F¥ TP) T out

= pV.v—e—pv- -V, (1.2.35)
where
0
e = oy . i, (1.2.36)

which can be rewritten by using (1.2.17), as

1 <8vi 8vj
+ _

9 2
- 6i;V - )2, 1.2.
€ N on; T ows 3 iV v) +¢(V-v) (1.2.37)

€ is the dissipation of kinetic energy and is called the dissipation rate. Since the
coefficients n and ¢ are non-negative, ¢ is also non-negative. The right-hand side of
(1.2.35) is the source term of kinetic energy |3 pv?].

Second, the balance equation for potential energy is rather trivial. Since & is
independent of time %‘f =0, we have

dd
= -Vo 1.2.
P pv -V, (1.2.38)
the flux form of which is given by
o(p®
(gt ) +V-(pv®) = pv-VO. (1.2.39)

The right-hand side is the source term of potential energy o[p®]. This term is the
work done by gravity.

Finally, the balance equation for internal energy can be given as follows. The
source term of internal energy o[pu] must be specified from the requirement of the
conservation of total energy (1.2.32):

olpe’] = o prﬂ +o[p®] + o[pu] = 0. (1.2.40)

Thus, using (1.2.35) and (1.2.39), we have
olpuyl = —pV-v+e. (1.2.41)
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The balance equation for internal energy is, therefore, written as
d(pu)

ot
where F°"¢ is the flux density vector of internal energy other than the advection

term of internal energy. F“"“ may be called the heat fluz for simplicity. Using the
continuity equation (1.2.7), (1.2.42) is rewritten in the advective form as

du dvg
= —V . Fere 1.2.4
p (dt +p at ) e-V , ( 3)

+V-(puv+ F"°) = —pV-v+e, (1.2.42)

where vs = 1/p is the specific volume.
For dry air, in general, the heat flux F"° is the sum of energy fluxes due to the
radiation and conduction of heat:

Fene  — F'r‘ad + ‘Fther’m7 (1244)
where F™% is the radiative flux and F'*"™ is the flux due to conduction of heat

or the thermal diffusion flux. According to Fourier’s law, the thermal diffusion flux
is proportional to the gradient of temperature,

Ftherm  — g0 VT, (1.2.45)

where k7 is thermal conductivity. Thermal diffusivity or thermometric conductivity
KT

kE = , (1.2.46)
pCyp

is also used instead of kp. In general, kK is positive because of the second law
of thermodynamics (the principle of the increase of entropy), as will be shown by
(1.2.52). The thermal diffusion flux in a dry atmosphere is referred to as sensible
heat flux.

The explicit form of the balance equation for total energy is given by the sum
of (1.2.35), (1.2.38), and (1.2.42) as

13} v?
P
USR]
1)2 / ene
+V.-qpv 5 +®+u)+pv—vjo,; + F = 0. (1.2.47)
The advective form of total energy is also given as
d U2 / ene

P\ g TO+u)+V-(pv—voy + F7) = 0. (1.2.48)

From the comparison between (1.2.47) and (1.2.33), we have the expression of total
energy flux F*°! as

Fetot

2
pv (1)2 +<I>—|—u> + pv —vjo;; + F° (1.2.49)

2
= pv (”2 + a) —wjo; + F, (1.2.50)
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where o is called the static energy or dry static energy, defined by

o = u+t’+d = h+o (1.2.51)
p

h is specific enthalpy per unit mass.

1.2.4 Entropy balance

We describe here the balance of entropy. If local thermodynamic equilibrium is
satisfied, we have from the thermodynamic relation (1.1.2)

ds du dug
rds _ 1.2.52
dt at "Par ( )
where s is the specific entropy per unit mass. Using (1.2.43), we obtain
d
pTdf = - V.F™e (1.2.53)

This is the equation for the production of entropy. The right-hand side of this
equation expresses diabatic change. Thus, if we define diabatic heating as

1
= e—V . F), 1.2.54
Q= ) (12:54)

the change in entropy is expressed as

ds  CpQ

1.2.55
dt T ( )

In the case of the ideal gas, (1.2.55) is rewritten by using the potential temperature
(1.1.52) as

do 0
_ 1.2.56
o= 0 (1.2:56)
which is the equation of potential temperature.
Let us consider the second law of thermodynamics or the principle of the increase
of entropy. The equation of entropy (1.2.53) can be rewritten as

ds ¢ 7 V. F°
Pae = 1 T
£ 1 FCTLC
- Fee . YT — V- . 1.2.57
T + T2 v v T ( )

The first and second terms on the right-hand side represent the production of
entropy, and the third term is the convergence of entropy flux density. Then, the
change in entropy is partitioned as

ds dis  dgs

= 1.2.
dt dt + dt’ (1.2.58)
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where
diS 9 1
= F°. VT 1.2.59
dt pT * pT? ’ ( )
des 1 Fene
= — V- . 1.2.60
dt p T ( )

d;s/dt is the production of entropy due to internal entropy, and d.s/dt is the change
due to the convergence of entropy flux. The second law of thermodynamics requires
the inequality
dis
dt
The expressions of € and F° in (1.2.59) must satisfy this requirement.

The dissipation rate ¢ is given by (1.2.36). The expression of ¢ is determined so
as not to be negative. From the symmetry of the indices, the viscous stress tensor
is expressed as (1.2.17). As a result, € has the form (1.2.37). From the requirement
€ > 0, the coefficients of viscosity must be positive: 7 > 0 and ¢ > 0.

As for the second term on the right-hand side of (1.2.59), the heat flux F*"° has
contributions from radiative flux and thermal diffusion flux as given by (1.2.44).
The term involving thermal diffusion flux can be rewritten as

1
T

where (1.2.45) is used. Since this must be non-negative, it is concluded that the
thermal conductivity k7 must not be negative. On the other hand, the term in-
volving radiative flux F"** does not satisfy the inequality (1.2.61), in general. This
comes from the fact that local thermodynamic equilibrium is not generally satisfied
for the photon gas in the atmosphere.

> 0. (1.2.61)

2Fthe7'm VT = ;7; ‘VT'|27 (1262)

1.2.5 Enthalpy balance and Bernoulli’s theorem

From the transformation between enthalpy and kinetic energy, we obtain Bernoulli’s
theorem. Using (1.1.3), the change in enthalpy h is expressed as

dh du  d(pvs) du dvs dp
= = s . 1.2.63
dt a at “Pa TV ar (1.2.63)
Thus, substituting (1.2.43) into this, we obtain the equation of enthalpy
dh dp
= — V. F°. 1.2.64
Pt di +e-V (1.2.64)
Adding this to the equation of kinetic energy (1.2.34), we obtain
d [v? Op 0
h| = —pv-VOo L) — V- e, 1.2.65
ra (5 +1) = v ) () (1.2.65)

Furthermore, summing up this equation and the equation of potential energy (1.2.38),
we obtain a generalized form of Bernoulli’s equation

dp

ot (1.2.66)

d [v? a
- ') — V. Fene
P at ( 2 +0> Ox; (710 =¥ ’
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where o is the static energy defined by (1.2.51). We can also obtain this expression
by adding gf to both sides of (1.2.47). If the pressure change is negligible (gt =0),
and there is no dissipation (o}; = 0) and no heat flux (V- F**“ = 0), (1.2.66)
becomes

d 2
o (”2 +a> _— (1.2.67)

That is, the sum of kinetic energy and static energy is conserved along fluid motion.
In the case of a steady flow, the sum of kinetic energy and static energy is constant
along streamlines:

2 2

v p
, TO ) +u+p+ const (1.2.68)

In a special case under the condition of no gravity and uniform temperature, the
sum of kinetic energy and p/p is constant:

) er = const., (1.2.69)

which is a familiar form of Bernoulli’s theorem. If v?/2 < o is satisfied, (1.2.67) is
approximated by
do
dt
It can be said that static energy is approximately conserved if kinetic energy is

comparatively smaller than static energy. In such a system, static energy o behaves
as a conservative quantity like entropy or potential temperature.

= 0. (1.2.70)

1.3 Angular momentum, vorticity, and divergence

Various equations can be derived from the equation of motion. In the first place,
we obtain the conservation of angular momentum. Second, the circulation theorem
is derived through the balance of momentum of forces along the boundary of a
finite domain. In the limit of an infinitesimal domain, the circulation theorem
reduces to vorticity equations. Third, the equation of potential vorticity is derived
from vorticity equations and the equation of a scalar quantity, such as potential
temperature. Under an appropriate condition, potential vorticity is a materially
conserved quantity. At the end of this section, the divergence equation is introduced
as a pair of vorticity equations.

1.3.1 Conservation of angular momentum
The angular momentum per unit mass is defined by
Il = xxw, (1.3.1)

where x is a position vector. The origin of the position vector is arbitrarily fixed.
In the case of the Earth, it is convenient to define the origin at the center of the
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Earth. The i-th component of angular momentum is denoted by I; = 5Z-jkxjvk.f
Each component of the equation of motion (1.2.18) is written as

dvi

Py 905 — pYi (1.3.2)

where 0y = —pdij + 0};, g = 0;®, and 9; = 9/0x;. From the outer product of
the position vector  and the above equation, we obtain the equation of angular
momentum

dl;
pg = Oileirzion) = peijn;ge (1.3.3)
or
dl; ,
p dt = *€ijkmjakp + al(€ijk:rj0kl) — PEijkTjJk- (1.3.4)

In the above derivation, we have assumed that the stress tensor is symmetric:
oij = 054 Eq. (1.3.3) can be rewritten in flux form, that is the conservation of
angular momentum

0
ot (pll) + 81(,0[2-1}1 - 5ijkxj0kl) = —pPEijkx;jJk- (135)

Remember that angular momentum is a vector quantity. If the forcing term does
not exist on the right-hand side and the stress flux at the boundary is identically
zero, the domain integral of angular momentum is conserved. In the case of the
Earth, the gravity force has only a radial component in the approximate sense and
the contribution of the right-hand side vanishes. Thus, the three components of
angular momentum are conserved if stress flux at the boundary does not exist.

For application to the Earth’s atmosphere, in practice, only the component
parallel to the rotation axis is important for angular momentum. We define the
axial component of angular momentum as [,, where z is the coordinate along the
rotation axis in the direction toward the north pole. Using the spherical coordinates
(X, ¢, 1), where A is longitude, ¢ is latitude, and r is the distance from the center
of the Earth, we have

Tz—:,‘jk is the antisymmetric tensor, defined by
(1,2,3) or (2,3,1) or (3,

1’ (i7j7 k) (3 I )
Eijk = -1, (Zvjvk) (37271) or (27173) or (17 s )
0, the other combinations of (4, j, k).

A vector product is expressed as (A x B); = €, A;jBy. We also have the following useful relation:
€ijk€itm =  0j10km — 8jmOki,

from which we have generally [A x (B x C)]; = A;B;C; — A;B;C;.

¥This comes from the requirement that the contribution of spin angular momentum of fluid
particles is negligible and that entropy must increase in the viscosity fluid (de Groot and Mazur,
1984). Expression of the viscous stress tensor (1.2.17) is a result of this requirement.
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FIGURE 1.2: Explanation of angular momentum. Left: v is the velocity vector, « is the position

vector, and l is the angular momentum vector. Right: [. is the axial component of angular

momentum, vy is the longitudinal component of velocity, r is radius, ¢ is latitude, and  is
angular velocity.

I, = zvy—yvy, = rcosp(vy+ Qrcosy). (1.3.6)

vy is the longitudinal component of velocity. Figure 1.2 shows the relation between
the angular momentum vector I and its axial component [,. The corresponding
expression of the conservation of angular momentum in these coordinates is given
in Section Al.5.

1.3.2 The circulation theorem

Integration of the equation of motion along a closed curve gives the circulation
theorem. Circulation can be related to vorticity. We use both the velocity in
the inertial frame v, and that in the rotating frame v, to explain the circulation
theorem. We refer to a quantity in the inertial frame with a subscript a and that
in the rotating frame with r. We take an arbitrarily closed domain A on a material
surface and define a closed circuit C' of the domain A. Circulation in the inertial
frame is defined by

r, = ]{ v, - dx. (1.3.7)
C
According to Stokes’ theorem, circulation can be rewritten as
r. = /wa ‘ndA, (1.3.8)
A

where m is a vector normal to the surface A and vorticity

we = Vxou, (1.3.9)
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isintroduced. In particular, vorticity in the inertial frame is called absolute vorticity.
Since A and C are a material surface and a material curve, respectively, both the
shapes of A and C change with time as fluid moves.

The time derivative of circulation is calculated as

dr, d d d
P dt/va~dw = /dtva-dzc+/va-dtdw

d d
/dtva~dm+/va cdv, = /dtva ~dx. (1.3.10)

Substituting the equation of motion (1.2.19) into jtva, we have the equation of
circulation

dr,
= —j{ vp-dw-‘rj{ £ dx, (1.3.11)
c P c

dt

which is referred to as the circulation theorem.
In a similar way, we define circulation and vorticity in the rotating frame by

r. = f v, -dr = / w, - ndA, (1.3.12)
c A
w, = VX, (1.3.13)

Vorticity in the rotating frame w, is called relative vorticity. Relative vorticity is
related to absolute vorticity as

we = Vxwv, = Vx(v,+Qxx)
= Vxv,+VXx(Qxz) = w,+20 (1.3.14)

Then, the relation between circulation in the inertial frame I';, and circulation in
the rotating frame I',. is given as

r, = FT+/2Q~ndA. (1.3.15)
A

The first term on the right-hand side of the equation of circulation (1.3.11) is
called the baroclinic term. It is rewritten as

—j{Vp-da: - —/VXVp-ndA
c P A P

- /V’”;vp-ndA. (1.3.16)
A P

If the fluid is barotropic (i.e., the density of fluid p is a function of pressure p)

p = plp), (1.3.17)

then Vp x Vp = 0 is satisfied and the baroclinic term does not contribute to the
change in circulation. On the other hand, if p does not solely depend on p, the
fluid is called baroclinic; a fluid that is not barotropic is baroclinic. In this case,
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FIGURE 1.3: The baroclinic term and the direction of the pressure gradient.

since Vp x Vp # 0, the baroclinic term is not zero in general. Nevertheless, we can
always eliminate the baroclinic term by taking the surface A parallel to Vp x Vp.
For example, if a thermodynamic variable ¥ = ¥(p, p) is chosen, since

VU(p,p) = a@: Vp+ aaij, (1.3.18)
then VWV is normal to Vp x Vp. Therefore, if A is defined on a surface of a constant
U, the contribution of the baroclinic term becomes zero. (See also the section on
potential vorticity: Section 1.3.4.)

Let us consider the roles of the terms of the circulation theorem using the
circulation along C' shown in Fig. 1.3. The baroclinic term is defined by the line
integral of the pressure gradient along C. Since density p is larger in the region
A than in region B, the magnitude of the pressure gradient |Vp/p| is larger in B
than A. Thus, the baroclinic term increases circulation toward the anti-clockwise
direction. The second term on the right-hand side of (1.3.11) is the dissipation term
due to friction. This term does not necessarily weaken circulation in general.

1.3.3 Vorticity equations

The circulation theorem is given by integration of the equation of motion along a
closed curve. In this subsection, vorticity equations are derived as a derivative form
of the circulation theorem. We start from the equation of motion in a tensor form,
(1.3.2); that is

P (681: + vjajvi> = ajaij — p0;P. (1.3.19)

We use the following identity to rewrite the advection term

2
v
EijkWjVE = Eijk(&‘jlmalvm)vk = Ujaj’ui—ai2, (1.3.20)
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where vorticity is written as w; = ;5,0;vk; that is
02
v-Vv = wxv+V2. (1.3.21)

The right-hand side is sometimes called the vector invariant form of the advection
term. Using the identity (1.3.20), the equation of motion (1.3.19) is rewritten as

dv; 1 ’
812 = —EijkW;Vk + paj(jij —0; <(P + '112 > s (1322)
or
2
g;’ _ —wxv—vpp—V(q)—i—l;)-f-ﬁ (1.3.23)

where f is the frictional force defined by (1.2.20).
To derive vorticity equations, we calculate €;;,0;(1.3.22),. We immediately
obtain

Oow
ot

This is the flux form of vorticity equations. Using the identity

i 1
+0; (wivj — WV — Eijk 8lakl> = 0. (1.3.24)
p

8j (win - wjvi) = vjajwi + wiajvj - wjajvi,

we obtain the advective form of vorticity equations:

dw; 1

(;: = Wjajvi — wiajvj + 6ijk6j <p310'kl> R (1325)
or

dw 1

P w~vaw(V~v)pr X Vp+V x f. (1.3.26)

Eq. (1.3.26) represents vorticity equations in an inertial frame. Vorticity in
(1.3.26) is interpreted as absolute vorticity w,. Vorticity equations in the rotating
frame are directly derived from (1.3.26). Using (1.2.24) and substituting (1.2.26)
and (1.3.14) into (1.3.26), we have

dw,

P (wr +29) - Vv, — (wr +29)(V - v,)

1
VX Vp+Vxf. (1.3.27)

By comparison with the circulation theorem (1.3.11), vorticity equations (1.3.26)
formally have additional terms:

w-Vv—-—w(V- o). (1.3.28)

Let us consider the meanings of these terms by decomposing their components
into Cartesian coordinates. We take the z-direction as the direction parallel to
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FIGURE 1.4: Schematic figures of the tilting term (left) and the stretching term (right). w is
vorticity and w is velocity. Vorticity w changes as the arrow with the dotted line by shear (left)
or convergence (right).

the vector w. Letting ¢, 7, and k be unit vectors of the z-, y-, and z-directions,
respectively, we rewrite (1.3.28) as

o, . .
Wy (ut +vj +wk) — wk(V - v)
z
ou dv ou  Ov
= w,_, +Jjw, —kw + . 1.3.29
9 1%z (ax 3y> ( )
The first two terms on the right-hand side generate vorticity components perpen-
dicular to w. These are called tilting terms. For example, if the velocity u has
a shear in the z-direction, the vorticity vector is tilted in the z-direction and the
x-component of vorticity is generated. The third term on the right of (1.3.29)
is related to the change in the component of the w’s own direction. If there is
convergence in a plane perpendicular to the vector w, the vorticity increases (Fig.
1.4). This term is referred to as the stretching term.

1.3.4 Potential vorticity

In the circulation theorem (1.3.11), the baroclinic term can be eliminated by ap-
propriately choosing the integral path. Similarly, a particular direction of vorticity
has a special change in vorticity equations. To show it in a general form, we use
an arbitrary scalar field W(x,t). Let us consider a vorticity component perpendic-
ular to a surface of ¥ = const. The inner product of flux form vorticity equations
(1.3.24) and 0;¥ gives

6%—

o |

1
+ 6]- <wwj — WV — €ijkpaldkl):| = 0. (1330)

The left-hand side can be rewritten as

0

0

“i gy
1
—wﬂ]jajai\lf — 8i\I/ . w]ﬁjvi — 61- |:\I’Eijkaj (p@lakl>}
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L4
0 wiai\ll)—&—aj(wi@i\lﬁvj) —81( d )

= o it
—0; |:\Ij<€7;jk-aj <[1)310kl)] . (1.3.31)
Thus, we obtain the following conservation equation
gt (pII) + 0; {PHW - C(l;wz — Weijk0; <[1)310kz)] = 0, (1.3.32)
where
o= ¢ ‘pw’ (1.3.33)

is called potential vorticity. Note that the dimension of potential vorticity depends
on the choice of scalar U. The flux term of (1.3.32) involving the stress tensor o
has different forms such as

1 1
0; |:—\If€ijkaj (paga'kg)] = V. |:\IJ (Vp x Vp -V X f>:| , (1.3.34)
1 1
(814\11)5%8]4 (—pala'kg> = VU. (Vp X Vp —V x f> s (1.3.35)
1 1
02- <€ijk6j\l’ . paldkl) = V. |:V\I’ X <pr+ f>:| . (1336)
Thus, the advective form of the equation of potential vorticity is written as
dIl dv 1
P dt = 0 |:dt w; + \If&jkaj (paldkl>:| s (1.3.37)
or
dIl dv 1
= . - VU — . 1.3.
P gt det v <Vp><Vp fo> (1.3.38)

If one chooses a thermodynamic variable as scalar ¥ such that
o= W), (1.3.39)

then V¥ becomes normal to V(1/p) x Vp because of (1.3.18). Furthermore, if we
assume

dw

= 1.3.4
it 0, (1.3.40)
F =0 (1.3.41)

the right-hand side of (1.3.38) vanishes. In this case, potential vorticity is materially
conserved
dIl

= 0. 1.3.42
5t (1.3.42)
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If potential temperature (or entropy) is chosen as ¥, (1.3.39) and (1.3.40) are
satisfied under the adiabatic condition. In the case of ¥ = 6 (potential temperature)

-Vé
p = @V (1.3.43)
p
is called Ertel’s potential vorticity. The expressions of (1.3.32) and (1.3.38) become
) .
(pP) + V - (pPU —fw — 0V x f) _— (1.3.44)
ot
dpP 1 -1
= w-VO+ VO-Vxf. (1.3.45)
dt p p
From (1.2.56), the change in potential temperature is given by
: 0
6 = 1.3.46
‘. (1.3.16)

where @ is the diabatic term. We note that Ertel’s potential vorticity in the rotating
frame is expressed as

P = (wr+2pn).w)’ (1.3.47)

where relative vorticity is used in (1.3.43). Potential vorticity plays an important
role as a Lagrangian conservative quantity in both meteorology and oceanography.
The equation of potential vorticity can be derived in a different way that is also
instructive. For instance, Pedlosky (1987) derives the conservation of potential
vorticity (1.3.42) from the circulation theorem (1.3.11) as a special case. The
mathematical basis of potential vorticity is given by Hamiltonian fluid dynamics
(Shepherd, 1990; Salmon, 1998). It can also be shown that the conservation of
potential vorticity (1.3.38) is derived from the advective form of vorticity equations
(1.3.26). Combining (1.3.26) with the continuity equation (1.2.7), we have

d w w VpxVp 1
= -Vou + + Vxf. 1.3.48
dt p P p? P ( )
The inner product of this with the gradient of a scalar ¥ yields
d (w d (w wd
VU | = VU. V. 1.3.49
dt(p > dt(p>+pdt ( )
Since
d Vp xV A\VA'
vo. 9 _ V\I/-(w-Vv>+V\I/~ PEYP LYY vy,
dt p p p p
(1.3.50)
wd w_d w
VU = VAR -Vov | - VU. (1.3.51)
p dt p dt p
Then, we have the equation of potential vorticity
dIl w _dv VpxVp VU
= -V Vv . -V 1.3.52
it > Var t BT x f, ( )

which is equivalent to (1.3.38).



Sec. 1.3] Angular momentum, vorticity, and divergence 29

1.3.5 Divergence equation

In Section 1.3.3 vorticity equations are derived by applying the rotation operator
to the equation of motion. As a counterpart to vorticity equations, the divergence
equation can be derived by applying the divergence operator to the equation of
motion. The divergence of velocity is defined as

Applying the divergence operator to the equation of motion (1.3.22) yields
oD 1 v?
ot = —8i(5ijkwjvk) + 0; (pajaij) — 812 (‘b + 9 ) . (1354)
The first term on the right-hand side is rewritten as
8i(€ijkwjvk) = —wf— + &ijk (é%wj)vk
7(4)]24 — (aiaﬂ}k)vk + (akaﬂ}i)vk
= —|wP-v-Vv+v-VD. (1.3.55)

Hence, we have the divergence equation as

dD

2
= w2+u-v2u—v2(” +<I>)—V~(Vp)+V~f. (1.3.56)
dt 2 P

The divergence equation in the rotating frame is also derived from the equation
of motion in the rotating frame (1.2.29). Since divergence in the rotating frame is
equal to divergence in the inertial frame D, we can show in the same way as the
derivation of (1.3.56) that

dv, dD 2

2 2 2Ur
. = —|w,|? = v, - - . 1.3.
\Y gt dt |w,|* — v, - Vv, + V 9 (1.3.57)

We also have
V- 22 xv,) = -2 w,. (1.3.58)
Thus, the divergence equation in the rotating frame is written as

dD

2
gt = (wr + QQ) cw, + v, VQ’UT. V2 (UT. n <I>T->

2
V. (Vpp) V-t (1.3.59)

The divergence equation (1.3.59) is a prognostic equation for the divergence of
the three-dimensional velocity field. In practice, this form of the equation is rarely
used. Instead, an equation for the horizontal divergence of two-dimensional velocity
is usually used for the governing equations of atmospheric general circulation models
(see Chapter 20). Nevertheless, we should point out the relevance of the three-
dimensional divergence equation to the sound wave.
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Let us consider perturbations from the state at rest (v = 0) and linearize
(1.3.56). We neglect the gravitational potential ® and assume that basic states of
the density and pressure are constant p = pg and p = pg. By dividing density and
pressure into constant basic state portions and perturbation portions, p’ = p — pg
and p' = p — pg, respectively, we have the linearized perturbation equation for
divergence as

oD 1
= — V. 1.3.60
Y VP ( )
Linearizing the continuity equation (1.2.7), divergence is related as
10
D = -9 (1.3.61)
po Ot
Substituting this into (1.3.60), we obtain
32/7/
= V¥ 1.3.62
12 p ( )
If the flow is adiabatic, the perturbation of pressure is written as
dp
/ / 2/
= = , 1.3.63
Vo= (on) 0 = (13.63)

where ¢, is the speed of sound defined by (1.1.32). Thus, by eliminating p’ and
assuming c2 to be constant, we finally have
82]?/
ot?
This is a wave equation describing the propagation of sound waves. We will explain
the characteristics of the sound wave in Section 4.2.

Generally, flow fields v are expressed by using velocity potential x and stream-
function vector v as

23y (1.3.64)

v = Vx—Vxa. (1.3.65)

x and v are also called the scalar potential and vector potential, respectively. In
this case, the vorticity vector and divergence are respectively expressed as

w = Vxv = —VxVxy = —V(V-9)+ Vi, (1.3.66)
D = V.v = V. (1.3.67)

The velocity potential and streamfunction vector are not uniquely determined from
the velocity field. The velocity field is not affected by the transformation ' =
X +V x a and 19’ = 1 + Vb where a is an arbitrary vector and b is an arbitrary
scalar. Thus, the streamfunction vector can always be chosen such that V -4 = 0,
and then w = V2. In the special case for an irrotational field with w = 0,
the velocity is simply expressed as v = Vy, and thus described by the divergence
equation for D.
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In practice, the combination of the vorticity equation and the divergence equa-
tion is used to describe two-dimensional horizontal flow fields. In Section 3.4, the
vorticity equation and the divergence equation for the shallow-water model are in-
troduced to describe two-dimensional flow fields. In Chapter 17, spherical motions
on Earth are studied using the equations of the shallow-water model. The equation
set of general circulation models is summarized in Chapter 20. Since (for spec-
trum models) the streamfunction and the velocity potential are easily calculable
from vorticity and divergence, respectively, the vorticity and divergence equations
are generally used as the prognostic equations of this type of general circulation
models.
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Basic balances and stability

Large-scale motions of the atmosphere can be viewed in a balanced state in an
approximate sense. The primary balances of the atmosphere are hydrostatic balance
and geostrophic balance. In this chapter the basic properties of these balances are
summarized and their stabilities examined.

First, hydrostatic balance and its various expressions are described in Section
2.1. In a strict sense, hydrostatic balance is a dynamic balance between the pressure
gradient force and the gravitational force without any motion. In this section,
approximation of the geopotential is introduced. If viewed in a rotating frame,
the effect of a component of a rigid body rotation is counted as a potential force
due to the centrifugal potential and can be included as part of the geopotential.
Then, in Section 2.2, geostrophic balance and thermal wind balance are described.
Geostrophic balance is defined as a static balance with wind fields in the rotating
frame. Thermal wind balance is the corresponding balance of vorticity. In the
following two sections, the stability of these balanced states is examined. The
stability of hydrostatic balance is studied using the parcel method in Section 2.3.
The stability of thermal wind balance is argued in Section 2.4 on the assumption
that the perturbation has a two-dimensional axisymmetric flow. In the last section
(Section 2.5), balances and stabilities in a more simplified system (i.e., a constant
rotating plane (f-plane)), are summarized.

These balances are fundamental in all respects both for atmospheric structure
and atmospheric modeling. Statistically averaged states or the meridional structure
of the atmosphere are thought to be hydrostatically and geostrophically balanced
(Chapters 14, 16, and 18). To derive the various approximate equations in the next
chapter, balanced states are regarded as the zero-th order approximation or the
reference fields. In Chapters 4 and 5, perturbations to balanced states are examined:
waves and instability. Although stability of the atmosphere is considered both in
the present chapter and in Chapter 5, the present chapter is devoted to studying
the conditions of stability for balanced states, while in Chapter 5 the structures of
unstable waves are particularly considered.

M. Satoh, Atmospheric Circulation Dynamics and General Circulation Models, 32
Springer Praxis Books, DOI 10.1007/978-3-642-13574-3_2, © Springer-Verlag Berlin Heidelberg 2014
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2.1 Hydrostatic balance

We start from the equation of motion in the rotating frame (1.2.29) to consider the
basic balance of the atmosphere:!

d 1

U120 xy = — Vp-Vo+f. (2.1.1)
dt p

If the atmosphere is at rest with v = 0, the first and second terms on the right-hand

side are balanced:

1
0 = - Vp-Ve. (2.1.2)

That is, the gravity force is balanced by the pressure gradient force. This balance
is called the hydrostatic balance. Let us define the z-coordinate parallel to V® with
%CZI’ > 0 and let the unit vector in the z-direction be denoted by k. A constant z
surface coincides with the surface ® = const. Using the acceleration due to gravity
g defined by

oo

= 2.1.3
g 9 (2.1.3)
hydrostatic balance reads
10p
0 = - - 2.1.4
poz 9 (2.1.4)

In this state, the pressure p is uniform on the surface z = const. Hydrostatic
balance is approximately satisfied for large-scale fields, even when the atmosphere
has non-zero velocity. The condition when hydrostatic balance is satisfied will be
considered in Section 3.2, where quasi-geostrophic approximation is introduced.

In general, the z-coordinate thus defined is not a straight line, since the distri-
bution of @ is not spherically symmetric about the center of the Earth. However,
the deviation of ® from its spherically symmetric state is usually neglected. In this
case, the z-coordinate coincides with the radial direction. The potential ® is the
sum of the potential energy for the attractive force ®, and the centrifugal potential
energy given by (1.2.30): ® = &, + ®.. For the Earth, these potential energies are
expressed as

D,

11
GM(R— T)7 (2.1.5)
o, = —292)(2, (2.1.6)

where G is the gravitational constant, M is the mass of the Earth, R is the mean
radius of the Earth, and X = rcosy is the distance from the rotation axis: G =
6.673 x 107! m?® kg=! 572, M = 5.9736 x 10%* kg, R = 6371 km. Figure 2.1

TThe subscript r for the values in the rotating frame is omitted in this chapter.
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FIGURE 2.1: Distributions of gravitational potential energy (solid), centrifugal potential energy
(dashed), and potential energy for the attractive force (dotted). The ordinate and the abscissa
are in units of the Earth’s radius R. The equator corresponds to y = 0. The contour interval
is 0.1GM/R, and the contours inside the Earth are omitted. The cross is the point where the
acceleration due to gravity is zero in the rotating frame with the rotation rate Q.

shows the distributions of potential energies around the Earth. There is a special
point on the plane intersecting the equator at the radius

GM 1/3
r = R, = ( 02 ) ~ 4.224 x 107 m, (2.1.7)
where no gravity force works if an object rotates at the same rate as the Earth’s
rotation 2. At the equator on the Earth’s surface, in contrast, the ratio between

acceleration due to the centrifugal force and that due to the attractive force is given
by

02 3
GM/};B? - (5) ~ 0.00343 (2.1.8)

(i.e., the contribution of the centrifugal force is small). From this fact, it is generally
assumed for the study of atmospheric dynamics that gravitational potential energy
is spherically symmetric.

The sea surface on the Earth agrees with an iso-surface of potential energy ®,
which is called the geoid. From (2.1.8), we can assume that the geoid of the Earth
is an exact sphere with a constant radius R. The distance from the center of the
Earth r is written as

r = R4z (2.1.9)

where z is the height from the ocean surface (i.e., the geoid given by a constant
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surface of ®). In addition, the atmosphere can be assumed to be thin; that is,
z

R

In this case, the acceleration due to gravity is assumed to be constant; from (2.1.5),
the approximated value is given as

< 1. (2.1.10)

GM _
9 = g ® 9.82 m s~ 2, (2.1.11)
and the gravitational potential is given by
o = gz (2.1.12)

Hereafter, we use this approximation for the geopotential.
The scale height of pressure is defined as

1op\ ! R,T
H = (- = 2.1.1
» < paz) PR (2.1.13)

where hydrostatic balance and the equation of state p = pRyT (1.1.41) are used. If
the profile of temperature T'(z) is given, the distribution of pressure is expressed as

p(z) = psexp (—/O Pfé)) = peexp (-/0 Rd;(z) dz), (2.1.14)

where p; is the surface pressure. If temperature 7' is uniform, pressure is given as
— —z/H
p=pse .
Now, let us derive different expressions for hydrostatic balance. Using the
thermodynamic relation (1.1.6)

1
dh = Tds+ dp, (2.1.15)
p

hydrostatic balance (2.1.2) can be expressed as
0 = TVs—Vo, (2.1.16)

where ¢ = h + ® is the static energy introduced by (1.2.51).T Eq. (2.1.16) implies
that static energy is uniform if the atmosphere is isentropic and in hydrostatic
balance. Using (2.1.12) and enthalpy h = C,T for an ideal gas with constant
specific heat, static energy is written as

o = CT+gz (2.1.17)
From (2.1.16), we have
Os do orT
T = = . 2.1.1
0z 0z Cp 0z tg ( 8

TIn the literature, o is referred to as the Montgomery function. The pressure gradient term in
the entropy or potential temperature coordinate is expressed by the gradient of the Montgomery
function. The symbol ¥ or M is used to denote the Montgomery function in general. See Section
3.3.5.
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From this, if the atmosphere is particularly isentropic, the gradient of temperature
is given by
oT g
= - = Ty 2.1.19
0z c, ¢ ( )
where I'y = ¢g/C), is called the dry adiabatic lapse rate.
Hydrostatic balance is also rewritten by using the potential temperature (1.1.52)
for an ideal gas with constant specific heat. We use the Ezner function m, defined
by

p\" T
= C = C 2.1.20
™ P <p0> Py ( )
where k = Ry/C),. Since 7 = h, we have
1
dp = 0Odr = dh—wdf. (2.1.21)
P
Hence, hydrostatic balance (2.1.2) can be rewritten as
0 = —0Vri—-V® = 7Vh-—-Vo. (2.1.22)
From this, the vertical gradient of potential temperature is related as
00 100 0 (0T g
= = . 2.1.23
0z ™0z T (82 * Cp> ( )

2.2 Geostrophic balance and thermal wind balance

Let us assume that the effect of rotation is large in the equation of motion (2.1.1)
and that the Coriolis term in the second term on the left-hand side is balanced by
the first and second terms on the right-hand side:

20 x v = —ll)Vp — Vo, (2.2.1)
which is called the geostrophic balance. Applying the rotation operator to this gives

0 = 2Q-Vvo-2Q(V-v)— V; x Vp. (2.2.2)
In the case that the flow is non-divergent V - v = 0, (2.2.2) reduces to

0 = 29-Vv-— V; x Vp, (2.2.3)

which is called the thermal wind balance.
Eq. (2.2.2) can also be given from the balance of the vorticity equation in the
rotating frame. In (1.3.27)

dw,

g = (@ t29) Vo - (0, +20)(V - v)

1
=V XV VxS, (2.2.4)
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the balance between the underlined three terms corresponds to (2.2.2). These terms
are the tilting term, the stretching term, and the baroclinic term, respectively. In
particular, (2.2.3) means the balance between the tilting term and the baroclinic
term, which is shown in Fig. 2.2. From (2.1.15) and (2.1.21), the baroclinic term is
rewritten as

1
B = —-Vx Vpp = —Vp x Vp
= Vx(IVs) = VIxVs
= —-Vx(#Vr) = —-VOxVnr. (2.2.5)

A state in which the baroclinic term B vanishes is called barotropic (i.e., iso-
surfaces of density are parallel to iso-surfaces of pressure such that density is a
function of pressure: p = p(p)). In this case, (2.2.2) becomes

0 = 2Q-Vov-—-2Q(V-v). (2.2.6)

Using a Cartesian coordinate by setting the z-axis in the direction of the vector €2,
each component of (2.2.6) is written as

Ou Ov ou  Ov
<8z782’(8m+8y)> = 0,0,0)

In particular, in the case of non-divergent V - v = 0, we obtain

ov Ju Ov Jw
oz <8z’8z’ 82) =0 (227)

(i.e., velocity does not change in the direction of the rotation vector). This is an
expression of the Taylor-Proudman theorem.

Here, we use scale analysis to consider the conditions under which the underlined
terms in the vorticity equation (2.2.4) dominate the other terms. Let U, L, and 7

oA

-

)
P @ »

circulation of baroclinic term circulation of tilting term

FIGURE 2.2: Thermal wind balance. Circulation of the baroclinic term is balanced by circulation
of the tilting term.
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be typical scales of velocity, length, and time, respectively. We define the Rossby
number €, the time Rossby number e, and the Fkman number E by

U

&= op (2.2.8)
1

= 2.2.

er 207’ (2.2.9)
v

E = L2’ (2.2.10)

where v is the kinematic viscosity and €2 is the angular velocity of rotation. Ratios
between the magnitudes of various terms in (2.2.4) can be expressed by using the
above non-dimensional numbers. Using these numbers, the underlined terms in
(2.2.4) are larger than the other terms if the following conditions are satisfied:

1. The relative vorticity w, is smaller than 22

|| U

N L.
20| 20r, ~ ¢ €

2. The time derivative on the left-hand side is smaller than the tilting term on
the right-hand side

(5 +v-V)w, N max (U/7L,U?/L?)

1202 - Vo ~ 20U/ L
L ( ) < 1
= max = max .
200 201 WA
3. The friction term is negligible when compared with the tilting term. From
(1.2.21)
|V x f] vU/L3 v
R = = F 1.
20 - Vol 20U/ L 2012 <

Now, for application to the real atmosphere, we express geostrophic balance
(2.2.1) in spherical coordinates (A, p,7), where A is longitude, ¢ is latitude, and
r is the distance from the center of the Earth. The velocity vector is denoted by
v = (u,v,w) and the angular velocity vector by

Q = (0,Qcos¢p,Nsingp), (2.2.11)

and assume that @ is spherically symmetric: ® = ®(r). Then, (2.2.1) is written as
1 Jdp

—2Qsinpv +2Qcospw = " prcosp N (2.2.12)
1

20sinpu = *prgi’ (2.2.13)
1

C20cospu = — P4y (2.2.14)

por '
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From (A1.5.2) in the appendix, the non-divergent condition in spherical coordinates
is expressed as

1 Jdu 1 0 10
Vv = ‘w) = 0. 2.2.15
Y rcosap@)\+rcosap8<p(coswv>+r28r(r w) ( )
Applying the rotation operator to (2.2.12)—(2.2.14) and using the non-divergent
condition, we have an expression for thermal wind balance (2.2.3) using spherical
coordinates:’

_QQCTOSL‘OZZ: — QQsinapgq:
—1 ~1
- (e o
729(;08“0 (g; +w> - 2Qsingag:
~1 —1
- _rcisga (agr gi a aap)\ gf) ’ (22.17)
729(;08%0 (gz v) —2Qsing0681:
—1 —1
T2 ctsap (ag)\ gﬁ B aapgo gi) ' (2.2.18)

Let us introduce a few more assumptions to help us describe the real atmosphere.
Since the depth of the atmosphere is very thin, we replace the variable r by z where
r = R+ z and R is the mean radius of the Earth and assume z <« R. The non-
divergent condition is approximated to

1 Ou 1 0 ow

= 0. 2.2.1
Rcosp OA +Rcosg03g0(coswv>+ 0z 0 ( %)

Let the horizontal and vertical scales of motion be L and H, respectively, the scale
of the horizontal velocity u and v be U, and the scale of the vertical velocity w be
W. From (2.2.19), we have

W H

Vv =

R~ . 2.2.20
7 I ( )
Hence, if the aspect ratio § is small enough such that
H
o6 = I < 1, (2.2.21)

the term involving w in (2.2.12) can be neglected. In this case, (2.2.12) and (2.2.13)
become

1 op 1 Jp
_ - _ = — 2.2.22
Jv pRcosp ON’ fu pR Oy’ ( )

TWe should compare (2.2.16)—(2.2.18) with the right-hand side of (A1.5.11). Since there are

. . . . d
metric terms associated with a change in the bases, we should note dd‘f (d;’? s :t“" s d(;f )
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where
f = 2Qsing (2.2.23)

is the Coriolis parameter. The velocity components v and v in geostrophic balance
are called geostrophic winds or geostrophic flows. Furthermore, if QU/g < 1 is
satisfied, the balance in the vertical component (2.2.14) is reduced to hydrostatic
balance (2.1.4). In this case, the right-hand side of (2.2.16), for instance, can be
rewritten as

0p~1op B op~top (8/)1) Op

dyp 0z dz Oy dp » 0z
_ g(@lnp) _ g(@lnT) ’ (2.2.24)
9 /, 9/,
where we used the equation of state p = pRyT and the general formula:
0A0B 0AOB _ 0(AB) _ (0A\ 0B _  (0A\ 0B
oy 9z 0z oy  OAy,z)  \Oy )z oz 0z ) 5 0y
0B\ O0A 0B\ O0A
= — = . 2.2.2
(or), o0 = (52), o0 (22:29)
Thus, we can rewrite thermal wind balance (2.2.16) and (2.2.17) as
ou g (O0InT
— = 2.2.2
I R( o ) (2.2.26)
ov g olnT
— = - . 2.2.2
f@z Rcosgp < oA )p ( 7

These equations imply that if temperature has a gradient on a constant pressure
surface (isobaric surface), the horizontal velocity component normal to the temp-
erature gradient has a shear in the vertical direction. This is the original idea
behind the name of the thermal wind.

2.3 Stability of hydrostatic balance

In the scaling argument, the atmospheric vertical structure is approximately in
hydrostatic balance and the horizontal velocity field is approximately in geostrophic
balance with the pressure field. These balanced states become unstable when a cer-
tain condition is satisfied. This and the next sections are devoted to consideration
of the stability of the basic balances of the atmosphere. The following three meth-
ods are mainly used to consider the stability of a balanced state: the parcel method,
the linear stability analysis, and the calculus of variation. Here we use the parcel
method to derive a criterion of the stability of hydrostatic balance. In the next
section, the stability of geostrophic balance will be considered in a more general
method of the calculus of variation. Linear stability analysis will be used to examine
the structure of unstable waves in Chapter 4.
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Let us first consider a basic state in hydrostatic balance and its stability. The
relation between the density p and pressure p of a fluid in hydrostatic balance is
expressed by (2.1.4). Criterion of the stability of a fluid in balanced state can be
derived by considering forces acting on a fluid parcel. Suppose that a fluid parcel
undergoes a small displacement in one direction without disturbing the environ-
ment. The basic state is regarded as being unstable if the parcel’s displacement is
accelerated. On the other hand, the basic state is thought to be stable if the forces
acting on the parcel tend to return it to the original position. The resulting forces
on the parcel come from the deviation in hydrostatic balance. The pressure and
density of the parcel are denoted by p and p, respectively, and we define deviations
from those of the environment as p’ = p—p and p’ = p— p, respectively. Multiplying
the equation of motion (2.1.1) by p and subtracting the hydrostatic balance (2.1.4),
we obtain

_dv

Pt
In general, therefore, the sum of the Coriolis force, the pressure gradient force, the
buoyancy force, and the frictional force determines the direction of displacement
of the fluid. We neglect the effects of rotation and friction for simplicity for the
following stability analysis with the parcel method.

In hydrostatic balance, both pressure p and density p depend only on height z
if ® is a function of z. Let a fluid parcel at height z be slowly moved with a small
interval ¢ in the vertical direction without exchange of heat with the environment.
During the movement, the pressure of the parcel is kept the same as that of the
environment: p’ = 0. After the movement, only the buoyancy force —p’g is acting
on the parcel. If this buoyancy force acts toward the original position, the parcel
will return to the original level. In this case, the environment is said to be stably
stratified. Thus, the stability condition is expressed as

pPC > 0. (2.3.2)

For instance, in the case that a fluid parcel undergoes an upward displacement
and the density of the parcel becomes heavier than that of the environment, the
buoyancy acting on the parcel is downwards. If we express density as a function
of pressure p and entropy s such that p = p(p, s), we can expand the deviation of
density as

po= plz+¢) —pz+0)
p(B(z + (), 5(z + () — p(p(z + ¢),s5(z + ()
= p(p(z +¢),s(2)) — p(p(z + (), s(z + ()

- ap\ OJs
= - <88>p B ¢, (2.3.3)

where the displacement ¢ is assumed to be small and 3(z + ¢) = s(z) since the
parcel motion is adiabatic. Then, we can rewrite the condition (2.3.2) as

op\ O0Os ,
<65)paz< < 0. (2.3.4)

= 202 xv—-Vp —p'VP+pf. (2.3.1)
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‘We note

ap) <8T> <ap> g
(65 » 9s ), \oT ], Cp

where the definitions of the specific heat at constant pressure (1.1.18) and the
expansion coefficient (1.1.29) are used. In general, the expansion coeflicient is
positive: a > 0. From (2.3.4) and (2.3.5), therefore, the stability condition reads

0s
0z

(i.e., the basic state is stable if the entropy of the environment increases with height
z). This condition can be written using the potential temperature (1.1.51) as

00
0z

We should note that the above condition cannot be directly applicable if the
composition of a fluid is inhomogeneous. Suppose that the density of a fluid is
expressed as p = p(p, s, q), where ¢ is the mass concentration of an inhomogeneous
component of the fluid. ¢ is defined as the ratio of the mass of this component
to the total mass of a fluid parcel. If the concentration in the environment varies
with height z, the dependency of density on concentration modifies the stability
condition. If a fluid parcel is not mixed with the environment and its composition
does not change during its displacement, the stability condition is written as

p'¢ = [plp(z +¢);s(2),4(2)) = p(p(z + €), s(2 + (), a(z + ()] €
op ds op dq
B [(83)1)& 0z + (aq)p,s 0z

This means that, even when the entropy of the environment increases with height,
the balanced state could be unstable if the concentration ¢ increases with height

on the condition (gg) > 0.
p S

Next, we study the motions of a fluid parcel based on the assumptions used for
the parcel method. If just the buoyancy force acts on the fluid parcel, the vertical
component of the equation of motion is expressed as

_d*¢

> 0 (2.3.6)

> 0. (2.3.7)

¢ > o (2.3.8)

Py = P9 (2.3.9)
where w = ‘;g is used. Expanding p’ by ¢ as (2.3.3) and using (2.3.5), we obtain
d2
dtg = —NZ, (2.3.10)
where
T
Nz = 9910s (2.3.11)

Cp 0z
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N is called the buoyancy frequency, or the Brunt-Vdisdla frequency. The stability
condition (2.3.6) is expressed as N? > 0. In this case, the buoyancy force acts
on the parcel as a restoring force, so that the parcel oscillates with frequency N.
If N2 < 0, on the other hand, the buoyancy force amplifies the displacement of
the parcel (i.e., the stratification is unstable). If N? = 0, the parcel undergoes no
further displacement. This state is called neutral.

The Brunt-Viisala frequency can be written in various forms. Using the thermo-
dynamic formula, we have

gaoTl

Jds 8TJr Jds dp
Cp or ), oz Op )0z

oT T
= go (32 +% ) . (2.3.12)
p

N? =

In the case of the ideal gas, since « = 1/T, we have

ds g 00 g (0T g
N2 = 9 - - . 2.3.1
C, - 002 T(az +cp> (2:3.13)

Using (1.1.58), it is also written as

dp 1 0p g ¢
p(az c?@z) H, &’ (2:3.14)
where
_ 19p\ ™"
Hy = (= o (2.3.15)

is the scale height of density and ¢ is the speed of sound defined by (1.1.32).

2.4 Stability of axisymmetric flows'

In this section, we consider the stability of the thermal wind field. In particular,
we assume that the flow is zonally axisymmetric about a rotation axis and that
the structure of the perturbation is also axisymmetric. The cylindrical coordinates
(r, p, z) are used, where r is the distance from the rotation axis, ¢ is the azimuthal
coordinate, and z is the axial coordinate (Fig. 2.3). The flow is assumed to be
frictionless and adiabatic. Using (A1.4.7) in the appendix, the equations for the

TThe calculus of variation in this section follows Charney (1973).
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Sy =%

FIGURE 2.3: The cylindrical coordinates and an axisymmetric flow.

axisymmetric flows with respect to the inertial frame are written as

2
ddz;,. a Uf - _;gf - {;(fv (2.4.1)
e 1o 1 "
PRI (2.4.3)
(cizf - r 71«887« (ror) + ,lﬂaa(p% + aazvz , (2.4.4)
(cizj =0 (2.4.5)

where vy, v, and v, are the velocity components in the 7-, ¢-, and z-directions, re-
spectively, and s is entropy per unit mass. ® is gravitational potential in the inertial
frame and does not contain centrifugal potential. By omitting the p-dependence,
the time derivative is written as

jt = aat + v, 667’ + v, aaz (2.4.6)
It is convenient to define the angular momentum

I = w,r, (2.4.7)
and a two-dimensional vector in the meridional section (r, z) as

Uy = (vp,02). (2.4.8)

Let us first define the total energy of the system. Using (2.4.1)—(2.4.5) and the
thermodynamic relation (1.2.52), we write the conservation of total energy (1.2.48)
as

d (1,
o) - _v. 2.4.
P (21: +u+ > V - pv, (2.4.9)
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where u is internal energy. Kinetic energy is expressed using the angular momentum
(2.4.7) as

2
;1;2 =, (v 02 +02) = ;vfn + QZTQ = ;vfn +1%x,  (2.4.10)
where
. 2.4.11
X = 272 : ( sk )

We then integrate the conservation of total energy (2.4.9) in the whole domain.
Using Gauss’s law and assuming that the normal components of the velocity at the
boundaries of the domain are zero, we have

d
i@t (Km+K,+U+G) = 0, (2.4.12)
where
L oo, 2 L s
K, = 2p(v,. +v)dV = oPUm dv, (2.4.13)
— Lo 2 2
K, = 5PV av = Py av = plex dV, (2.4.14)
U = /pu dv, (2.4.15)
G = /pq) dv. (2.4.16)
Thus, we have
EFE = Kn+K,+U+G=K,+J = const, (2.4.17)
where
J = Ko+U+G = /p(12x+u+<1>) dv (2.4.18)

is further introduced.
In the following discussion, we consider perturbations axisymmetric about the
z-coordinate. (2.4.1)—(2.4.4) are rewritten as

dl
= 0 2.4.19
’ -0 (2419)
dvoy,
let YPRVY = — Vp— Vo, (2.4.20)
dp 10 0
- § ne 2.4.21
dt p{r@r(m)+8zv ( )
where
dv., dv, duv,
= 2.4.22
dt ( dt ’ dt ) ’ ( )

o 0
vV = (ar’az)' (2.4.23)
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Since (2.4.22) does not include metric terms, it is different from the time derivative
of the three-dimensional vector given by (A1.4.5).

Let us assume that the basic state has a steady zonal flow with no meridional
flow: v,, = 0. From (2.4.20), the basic state satisfies

’Vy = f;foVQ (2.4.24)

which corresponds to geostrophic balance. In this case, however, the Coriolis force
does not appear since it is viewed from the inertial frame. This states the balance
between centrifugal force, the pressure gradient force, and gravity, and is called the
cyclostrophic balance. Applying the rotation operator to this, we have the thermal
wind balance as

VI?xVy = v; x (=Vp). (2.4.25)
(2.4.24) and (2.4.25) are explicitly written as

_Z _ _;gi’ - 5;3 (2.4.26)

0 = —;gf - gj (2.4.27)

A S o

The quantities of this basic field will be referred to using a subscript 0.

We add an axisymmetric perturbation to the basic state to study the stability
of the basic field. The conservation of energy is used to examine whether the
perturbation grows or not. We assume that the perturbation is expressed by a
small displacement represented by a vector ér = (0r,6z)." Corresponding to the
initial displacement, the density p, the pressure p, and the angular momentum [
have perturbations, as have all kinds of energies K,, K,,, U, and G. Here, the
first-order change of an individual quantity is denoted by 4, and the second-order
change by §2. For example, the energy (2.4.18) is expanded as

dJ 1d?J

J—Jy = dt
0 at g g

1
= §J+ 262J + O(dt?). (2.4.29)

dt* + 0(dt?)

From the conservation of energy (2.4.17), we have
E-J = K, > 0 (2.4.30)

The total energy F is constant regardless of the evolution of the perturbation. Since
K,, = 0 at the equilibrium state, J takes the maximum value at the equilibrium
state. Hence, the first variation must satisfy

§J = 0. (2.4.31)

fSince the perturbation is axisymmetric, it is more like a fluid ring than a fluid parcel.
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If the inequality
27 < 0 (2.4.32)

is satisfied, the perturbation is amplified. This is the unstable condition of the basic
state.

Let the difference between values at two different points be denoted by d, and
a material change of the perturbation by ¢. Using the displacement vector dr, we
have

ox = dx = Vx-or, (2.4.33)
0 = d® = Vo-ir. (2.4.34)

On the other hand, from (2.4.19) and (2.4.5), we have

5l = 0, (2.4.35)
5s = 0. (2.4.36)
From the continuity equation (2.4.21), we have
op = —pV-or = —pD, (2.4.37)
where
D = V.ir. (2.4.38)
Thus, we obtain
1 op D
g 2.4.39
p p? p ( )
su = Lop+Tss = -FID (2.4.40)
2 ’ A
p p
0 0
op = P op + D) s = sp = —c2pD. (2.4.41)
op/ 9s ),

Using these relations and 6(pdV') = 0, the first variation in J, (2.4.18), is expressed
as

0J

/ [6(1°X) + 6u + 6@] pdV
= /(lQVX-érpV~5r+V<I>«5r)pdV
P
1
= / (F’vx + pr+ v<1>) - drpdV, (2.4.42)

where dr = 0 is assumed at the boundaries when integrating by parts. From
the constraint §J = 0, (2.4.31), at the equilibrium state, the relation (2.4.24) is
recovered (i.e., the geostrophic balance).
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The second variation in J can be calculated as
52 5(6.7)

_ / [z%(vx or) 46 <[1)Vp - 5r> LSV 57’)} pdV
_ / (z?vx + ;Ver V<I>) - %rpdV

+/ [ZQV((SX) +0 (;w) + V(5‘I‘)} -orpdV
- /[ZQV(VX-JT)+IZVP

+ ;V(fcng) +V(V®- 57’)} - 6rpdV
— /v A[pl*(Vx - 67) + p(V® - 67) — pc2D] 67} dV
7/ (ZQVX + VO + ;Vp) -8rDpdV

- / {[V(pl?) 6] (Vx-or)+ (Vp-or)(VP - br)
— pc2D? —2D(Vp-6r)}dV

- /{[v(pﬂ).(sr] (Vx-or) = (Vp-or)(VE - or) — 21 (Vp-or)?

1
T2, (0p — dp)z} v, (2.4.43)
where dp = Vp - r and the relation
1 1
CQP((Sp —dp)* = pciD*+ , (Vp-or)’+2DVp-or, (2.4.44)

is used. This term vanishes because of the assumption of the parcel method where
the pressure of the fluid parcel is always the same as that of the environment. Thus,
using (2.4.24), the terms within the last integral of (2.4.43) are rewritten as

1
2, (VP or)?

= —p(VI*-6r)(Vy-dr)— (Vp-or) [(I°Vx + V@) - or)]

1

B 2p (Vp- 5T)2

— [V(pl?) - or] (Vx - 67) = (Vp-6r) (VD - 67) —

1 1
= —p(VI*-0r)(Vx - or) + p(Vp -or) |(Vp — 2 Vp) - or)
o

= —p(VI?-6r)(Vyx - or) —
Cp

(Vs-dr)(Vp - dr), (2.4.45)
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where we have used

1 T
Vp— ,Vp = =07 vs, (2.4.46)
c Cp

S

which is given from (1.1.31). In the case of the ideal gas, since
Vs = VIné, (2.4.47)
the second variation in J is expressed as

1
§2J = / [(vz2 -0r)(=Vx - or) + (VInb - or) (— Vp- 51«)} pdV.

p
(2.4.48)
If 62J < 0, (2.4.32), is satisfied, the perturbation is amplified. Thus, the necessary
and sufficient condition for the instability of the basic state is that the contents
of the square brackets in (2.4.48) be negative for at least one direction of Jr. On
the other hand, the basic state is stable if the contents of the square brackets in

(2.4.48) are positive for any dr at any position.
The terms within the square brackets of (2.4.48) are written as

1
sriMor = (VI2-6r)(=Vyx-6r)+ (VIng - ér) (pr . 61’) (2.4.49)
= M11(5T2 + MQQ(SZQ + (M12 + M21>(5T52:, (2450)

where 67T is the transpose of the displacement vector and M is a two-by-two
matrix, defined by

13[27181n03p 7161n93p
M— My M2 N\ _ | v30r p Or Or p Or 0Oz
o Mgl M22 o 1 8[2 _ 10In6 8;0 _ 10In6 8p
9z p 0z Or p 0z 0z

(2.4.51)

We can show that the matrix M is symmetric, since

71611196]3 101> 10mm60op

Moy — Moy = -
2 2t p Or 0z 130z p 0z Or

= 1V1n9><Vp7Vl2><VX
)
1
= Vp x Vp—VI? x Vy =0,

where (2.4.25), (2.4.46), and (2.4.47) are used. The basic state is stable if
srMsr > 0 (2.4.52)
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is satisfied for any dr. This condition is satisfied if the following two inequalities
hold:

det M = M1 Moy — MioMyy > 07 (2453)
TraceM = M3+ Msy > 0. (2.4.54)

On the other hand, The basic state is unstable if
det M >0 and TraceM <0

are satisfied. If det M < 0, the basic state is conditionally unstable. Using (2.4.51),
we have

det M = (VI*xVIng)- {(—Vx) X (IVp>}
P
B 1109p (81281119 3[281110)

3 pdz \Or 9z 0z or
21 9@ (0100 Ol 96
30 0z (81" 0z 0z 31") ’ (24.55)

1
TraceM = VlQ-(—Vx)+Vln9~<—pr>

2000  1000p 1 000p
r39r  p0dror pldz 0z’

where (2.4.27) is used. The inequality (2.4.53) is related to the sign of potential
vorticity. Using the potential temperature 6, the potential vorticity of axisymmetric
flow can be expressed as

(2.4.56)

1 1 00 00
P = Vo = - . . 2.4.57
pw \Y ) (w 9 +w 62) ( )
Since the two components of vorticity are given by
10v, 0v, 10l
. = - = - , 2.4.58
v r dy 0z r Oz ( )
10(v,r) 10w, 101
= —_ = 2.4.
vz r  or r 0y ror’ (2.4.59)
potential vorticity is expressed as
1 /0lo6 0l 06
P = — . 2.4.60
pr (8r 0z 0z 87“) ( )
Therefore, the inequality (2.4.53) is equivalent to
oo
Pl > 0. 2.4.61
95 ( )

If the atmospheric circulation is completely zonally symmetric about the rotation
axis and has no meridional motion, the stability condition is simply P > 0 in the
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northern hemisphere and P < 0 in the southern hemisphere. This is because, if
we take the z-axis in the direction of the rotation vector, we have laaf > 0 in
the northern hemisphere and lg‘f < 0 in the southern hemisphere. The potential
vorticity (2.4.60) is rewritten by using (2.2.25) as

1 /ol\ 06
P = . 2.4.62
pr <6r > g 0% ( )
Hence, the condition (2.4.61) becomes
0P I (ol 000%
Pl = . 2.4.
0z pr (87")9 0z 0z 0 (24.63)

If both § and ® increase with z (as in the northern hemisphere), (2.4.63) is reduced

to
l ot _ ! or > 0 (2.4.64)
o), — 2\or)/, ' o
That is, the basic state is stable if the angular momentum increases as the distance
from the rotation axis becomes larger on an isentropic surface.
Since the special case P = 0 is not included in the above condition, we need
to consider it separately. We particularly examine the case where the angular
momentum of the basic state is uniform [ = const. A static state with no motion

is an example of this case. The geostrophic balance (2.4.24) simply becomes the
hydrostatic balance

1
0 = fpr -V, (2.4.65)
where
2 12 'U?D
b, = d-] = & — = & — 2.4.66
X 92 P ( )

is the geopotential. In this case, p, p, and € are constant on the surfaces of constant
®,. If we define ¢ as a length measured along the direction of V&, and define
g = %? > 0 such that

0P,
Vo, = V(¢ = gV, (2.4.67)
a¢
we can write (2.4.49) as
T 990 o
or-Mér = (VInb-or)(VP,-or) = 0 oC 0C”. (2.4.68)
Therefore, the stability condition of the basic state (2.4.52) becomes
0
0 > 0. (2.4.69)

a¢
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This condition is the same as (2.3.6) in Section 2.3.
In the case P = 0, on the other hand, if the potential temperature of the basic
state is uniform 6 = const., (2.4.49) becomes

2l 01

T _ 2 _ ) _ 2
or-Mér = (VI*-or)(—Vyx-dr) 3 9y ore. (2.4.70)
Thus, the basic state is stable if
ol 1012
= . 2.4.71
lar 2 Or >0 (2.4.71)

This stability condition is for angular momentum on the surface perpendicular
to the rotating axis. This implies that the flow is stable if angular momentum
increases with r. Contrary to this, perturbations to the zonal flow amplify if angular
momentum decreases with r; this is called the inertial instability. Let u denote
a relative azimuthal velocity in the rotating frame with the angular velocity 2.
Angular momentum is written as [ = ur + Qr?. Then inequality (2.4.71) becomes

10
Q 20 . 2.4.72
(u+ Qr) [r aT(ur) + } > 0 (2.4.72)
Using (2.4.59), this is rewritten as a condition for vorticity
lw, > 0 (2.4.73)

(i.e., the flow is stable if vorticity has the same sign as angular momentum).

2.5 Balances and stability of parallel flows on the f-plane

A rotating system whose vertical component of the rotation vector is regarded
as constant is called an f-plane. Precise definition of the f-plane depends on
how the orientation of the vertical direction of the system varies. In the case of
the atmosphere on Earth, the f-plane may be defined as a plane tangential to a
geopotential surface. In such a case, the f-plane approximation is applicable only
in a local region where the curvature of the Earth is negligible. (See the 8-plane in
Section 3.2.2.) In this subsection, we examine the stability of parallel flows on the
f-plane using the stability condition of axisymmetric flows.

In the last part of the previous section, stability was considered on a plane
perpendicular to the rotation axis. The f-plane is different from such a plane,
since the f-plane is introduced as a plane tangential to a geopotential surface. If
the change in geopotential is negligible over the range considered in the system,
however, the stability condition of axisymmetric flows can be used to study that of
a parallel flow on the f-plane.

Let us consider a region where the distance from the rotating axis is large
enough. We consider a system in a rotating frame whose angular velocity is €2 and
set the Coriolis parameter f = 2. We define R as a typical distance from the
rotating axis, and define a local coordinate y by y = R — r, where r is the distance
from the rotating axis. The absolute azimuthal velocity is written as

v = u-+Qr, (2.5.1)
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where u is the relative velocity. The geopotential is written as

Q2 2
o, = o-— ;, (2.5.2)

where the second term on the right-hand side is the centrifugal potential energy.
In this rotating frame, (2.4.26) becomes
u? 10p 09,
fu—' = por " o (2.5.3)
We need to assume that the radial component of the gradient of ®, and the metric
term u? /r are negligible to obtain the geostrophic balance on the f-plane. To satisfy
these requirements, we need 4g/f? > R > u/f where g = ‘g‘f > 0. One might
think that this condition is rarely satisfied; the first inequality is not important,
however, if one considers a plane tangential to a surface of constant ®, instead of
a plane normal to the rotation axis. In any case, it is possible to relate a parallel
flow on the f-plane to an axisymmetric flow.
The geostrophic balance and the hydrostatic balance on the f-plane are written
as

10p 10p
_ _ _ 2.5.4
fu oy’ poz 9 (2.5.4)
Using (2.2.24), the thermal wind balance is written as
f8u _ Op~'op B Op~' Op B dlnp _ OlnT
0z Oy 0z 0z oy dy » N g dy v
g (00

_ . 2.5.5
0 (524),, (2:5.5)

In a rotating frame with angular velocity €2, angular momentum is originally
given by

I = r(u+Qr). (2.5.6)
Under the condition y < R, angular momentum can be approximated to
I = (R=y)AR-y)+ul
- R{[lJr (%)2] O (1f é)quQ}
~ R(RQ+u— fy). (2.5.7)
Thus, a quantity
L = u—fy (2.5.8)

can be used as an angular momentum in the f-plane. This is validated if L < R}
is satisfied. The dimension of L is different from that of angular momentum by
length R. The corresponding potential vorticity is

1 /0L00 OLOO 1 |0L (00 oL 00
P (st ) - plaz <6y>p(ay)paz]’ (259)
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which is similar to (2.4.60). Using (2.3.13), (2.5.5), and (2.5.8), we have the follow-

ing expression

re -0 e ()

0
= U N2|fQ—-RiY - <8“) , (2.5.10)
rg o),
where Ri is the Richardson number defined by
N2
Ri = g (2.5.11)
ou
( 0z )
The stability condition (2.4.63) is
I[P > 0. (2.5.12)

Since [ has the same sign as Q or f, we have from (2.5.10)
2 | 2 1 ou
N%|f*(1-Ri )—f( ) > 0. (2.5.13)
%),

In the case that N2 > 0 and (g;) is negligible, the stability condition is reduced
p

to the condition of the Richardson number:

Ri > 1. (2.5.14)
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Approximations of equations

In this chapter, we describe various approximations of the governing equations
of the atmosphere. Although the governing equations are shown in a general form
in Chapter 1, they are not appropriate for describing particular motions on spatial
or time scales; suitable approximations to the spatial or time scales of motions need
to be considered. Approximate forms of the governing equations are constructed
based on the fundamental balances of the atmosphere considered in Chapter 2 (i.e.,
hydrostatic balance and geostrophic balance).

First, in Sections 3.1 and 3.2, according to the time scales of motions, two types
of approximations are explained: the Boussinesq approximation and the quasi-
geostrophic approximation. Next, primitive equations are introduced as the gov-
erning equations for global motions on the Earth in Section 3.3. The equation set
considered here uses the approximation based on the difference between the spatial
scales of horizontal and vertical motions. Primitive equations in various vertical co-
ordinates are also summarized. At the end of this chapter, shallow-water equations
are described in Section 3.4.

The approximations to the equations are related to the waves that will be cat-
egorized in Chapter 4. The Boussinesq approximation is applicable to the motions
in which time scales of gravity waves are relevant. Boussinesq equations describe
the relatively slower motions related to gravity waves and do not contain sound
waves. The quasi-geostrophic approximation is appropriate to much slower motions
in which only the time variations of geostrophic winds are relevant. We consider
under what conditions these approximations are applicable. Primitive equations
comprise the equation set employed in numerical models without simplification or
approximation. In general, however, based on the assumption of hydrostatic bal-
ance, by primitive equations we particularly mean hydrostatic primitive equations.
By transforming the vertical coordinate using the hydrostatic balance, we have
various expressions for primitive equations.

The approximate equations introduced in this chapter will be fully used in
the theoretical consideration of atmospheric dynamics in the following chapters.

M. Satoh, Atmospheric Circulation Dynamics and General Circulation Models, 55
Springer Praxis Books, DOI 10.1007/978-3-642-13574-3_3, © Springer-Verlag Berlin Heidelberg 2014
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Waves (Chapter 4) and instabilities (Chapter 5) in the atmosphere are based on
the approximate equations suitable for respective motions. Atmospheric general
circulation models in Part III will be formulated based on primitive equations. The
shallow-water equations model is a first step toward the construction of atmospheric
general circulation models.

3.1 Boussinesq approximation

The Boussinesq approrimation is used when one is interested in convective motions
or gravity waves that originate from buoyancy forces and that are slower than
sound waves. The Boussinesq approximation is based on the incompressible ap-
proximation, since sound waves are derived from the compressibility of fluids. In
the Boussinesq approximation, the difference in density is considered in order to
take account of the effect of buoyancy or gravity waves. The properties of gravity
waves and sound waves will be discussed in Chapter 4.

It is relatively troublesome to clarify the situations to which the Boussinesq ap-
proximation is applicable. Ogura and Phillips (1962) tried to derive the Boussinesq
approximation of the ideal gas using scale analysis. In this section, following the
concept of Ogura and Phillips, we introduce the various steps of the Boussinesq
approximation used in meteorology, though we do not intend to describe details of
the derivations.

We consider a deviation field from a basic state at rest. Variables in the basic
state are denoted by a subscript s, and those of the deviation field are denoted by
a prime:

A = A+ A

By setting the basic state velocity vs = 0 in the equation of motion, we obtain the
hydrostatic balance in the basic state as (2.1.2):

1
0 = — Vp,—Vo. (3.1.1)

Using this equation, the sum of the pressure gradient force and gravity is rewritten
as

1 1
- Vp—-V® = — (Vps+Vp)—-Vd
p p
1 /
= — vy -"vo, (3.1.2)
p p

where the second term on the right-hand side represents buoyancy. Using (2.1.22),
the hydrostatic balance and its departure, (3.1.1) and (3.1.2), are rewritten in terms
of potential temperature 6 and the Exner function 7 as

0 = —6.Vr, — V9, (3.1.3)

/
—9Vr —V® = —6Vr + g V. (3.1.4)
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In the Boussinesq approximation, density or potential temperature in the equation
of motion is treated as constant except for the buoyancy term; the deviation of
density or potential temperature, p’ or ', appears only in the buoyancy term and
p or 0 in the other terms are replaced by constants py or 6y. In the continuity
equation, however, we have different degrees of approximation depending on the
treatment of density. By omitting the time derivative of density in the continuity
equation, we obtain the equation of the non-divergence condition:

V-(pv) = 0. (3.1.5)

We have two categories of the Boussinesq approximation for this equation; one is
given by replacing density p by the basic state density ps(z) and the other is given
by replacing p by a constant pg.

According to Ogura and Phillips (1962), the equation set of the Boussinesq
approximation can be derived under the following conditions: (i) the variation of
potential temperature is small, (ii) the speed of sound is faster than a typical scale of
the velocity of fluids and a typical scale of phase speed, and (iii) the vertical scale of
motions is smaller than the scale height of the atmosphere. The first category of the
Boussinesq approximation, which is often used for the description of atmospheric
convection, is given under the conditions (i) and (ii):

dv , 0
o = VRt Vet (3.1.6)
V. (psv) = O, (3.1.7)
do 0
= . 1.
dt % (3.1.8)

The above equations are called quasi-Boussinesq equations or anelastic equations,
since sound waves are not included in this system. If condition (iii) is also imposed
in addition to (i) and (ii), the equation set of the Boussinesq approximation in the
usual context is given as

dv 1 o

- — w-"vou+r, 3.1.9
@t W f (3.1.9)
Vv = 0, (3.1.10)
dT

= 111
U Q, (3.1.11)

which we call Boussinesq equations. Since the depth of the atmosphere is shallow,
temperature 7" is used in the thermodynamic equation (3.1.11) instead of potential
temperature.
In the case that the speed of sound c; approaches infinity, the thermodynamic
relation (1.1.31) or (1.1.59) becomes
poa poal’
dp ~ — ds = - do 3.1.12
p c, o g ( )
where density is assumed to be constant py and the expansion coefficient of the ideal
gas is a = T~! from (1.1.29). Under condition (iii), since the effect of pressure is
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negligible in the potential temperature, we have an approximation

dp =~ _pOZTde ~  —apdl. (3.1.13)
Under this condition, (3.1.11) becomes equivalent to (3.1.8). In this case, the
density variation is approximated as

p = poll —a(T —To), (3.1.14)

where Tj is a reference value of temperature. Using the deviation of temperature
T =T — Ty, the Boussinesq equations (3.1.9)—(3.1.11) are rewritten as

d 1
Yo~ W +al'VE A f, (3.1.15)
dt Po
V-v = 0, (3.1.16)
a1’
= Q. 3.1.17
dt © (3.1.17)
In the case that the coefficient of viscosity is constant, the frictional force (1.2.21)

is written as
f = vViv, (3.1.18)

where v is kinematic viscosity. If thermal diffusion alone contributes to heat flux,
(1.2.45) and (1.2.54) give

1
0, 6+ Y V) = pg +EVAT,  (3.1.19)
P p

where thermal conductivity k7 is assumed to be constant. k is thermal diffusivity
defined by (1.2.46). The dissipation rate due to the friction ¢ is, from (1.2.37),

1 (v v\°
= . 1.2
c 277 <8m] + 8371) (3 0)

€ is sometimes omitted in Boussinesq equations.
Hence, as the most familiar form, the Boussinesq equations in Cartesian co-
ordinates are given by

(jlltt _ _plo aal;/ + V2, (3.1.21)
ccllqtj _ _plo a@];’ + V20, (3.1.22)
gz . g;} . ?;: - (3.1.24)
d;;’ — W27 (3.1.25)

We have assumed that the geopotential is written as ® = gz.



Sec. 3.2] Quasi-geostrophic approximation 59

3.2 Quasi-geostrophic approximation

3.2.1 Scaling

The evolution of geostrophic winds is described by a set of equations called quasi-
geostrophic equations, which are given by the quasi-geostrophic approximation.
We introduce the quasi-geostrophic approximation using the spherical coordinates
(A, ¢, z) where X is longitude, ¢ is latitude, and z is height with z = r — R with
R being the radius of the Earth. Let us define a basic state which is at rest in
hydrostatic balance. The potential temperature of the basic state is denoted by 6y
and the Brunt-Viisala frequency by
2 g des
N* = 0. dz (3.2.1)
We use scale analysis to derive conditions when the quasi-geostrophic approx-
imation is valid. We designate the horizontal scale of motion by L, the vertical
scale by H, the time scale by 7, the horizontal and vertical velocity scales by U
and W, the typical value of potential temperature by ©, and that of the Brunt-
Viiséla frequency by N. In order to derive the quasi-geostrophic approximation,
we need assumptions for the Boussinesq approximation (3.1.6)—(3.1.8). In addition,
we require the following assumptions:

5 = Iz < 1, (3.2.2)
max(er,e) = max(2é7,2gL> < 1, (3.2.3)
S = (é\é}é)Q > O(de), (3.2.4)
F = (2;2}?2 < 0(1), (3.2.5)

where we call § the aspect ratio, € the Rossby number, er the time Rossby number,
S the stability parameter, and F' the rotation Froude number. We further restrict
consideration to motions in the mid-latitudes: sing ~ 1 and cos¢ =~ 1.

In order to obtain the relation between the magnitudes of variables in the
geostrophic field, we assume that deviation from the basic hydrostatic balance is in
the generalized geostrophic balance, (2.2.12)—(2.2.14). If the Boussinesq approxi-
mation is applicable, using the expression for hydrostatic balance (3.1.4), these are
rewritten as

0 /
—20sinpv +2Qcospw = fRC;)W?;;, (3.2.6)
0o O’
2Qsinpu = —gal, (3.2.7)
/ 0/
C20cospu = —0,07 4 (3.2.8)

0z 0,7
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where 6 is a reference potential temperature and the prime ’ is omitted for velocity

fields, since the velocity of the basic state is zero: u = v/, v = v/, and w = w’. From

(3.2.7), the typical scale of the deviation of the Exner function 7’ is estimated as

. 20UL
~ o

Substituting this into the balance in (3.2.8), we have the ratio between each term
of (3.2.8) as

™ (3.2.9)

o’ 0
-2Q = -
cospu 0o 92 + 0097
2QU AO
20 :
U 5 o 9

where the typical value of ' is estimated as A©. Under the requirement § < 1,
(3.2.2), the Coriolis term (the left-hand side) is much smaller than the pressure
gradient force (the first term on the right-hand side). Thus, we also have the
hydrostatic balance for the deviation field:

on' ¢
0 = -0 . 3.2.10
0 4, + 909 ( )
From this, the magnitude of the deviation of potential temperature is given by
2Q
0 ~ AO = ve = ¢FO. (3.2.11)
og
If we assume adiabatic motion in the equation of energy:
do’ 00,
= 0. 2.12
i +w 95 0 (3 )
This gives the scale of vertical velocity as
1 AG UeFO oe
w o~ W = o6, = [ o0, = SU, (3.2.13)
Oz 0z

where the time scale is estimated as 7 ~ L/U. Since de/S < 1 from (3.2.4),
vertical velocity W is smaller than that of horizontal velocity U. Therefore, (3.2.6)
is approximated as
90 87'('/
Rcosp ON

That is, the deviation field satisfies the geostrophic balance of horizontal winds
given by (3.2.7) and (3.2.14).

—2Qsinpv (3.2.14)

3.2.2 Synoptic-scale quasi-geostrophic equations
Quasi-geostrophic equations have different forms depending on the horizontal scales
of motions. First, we consider the case when the horizontal scale of motions is much
smaller than the radius of the Earth:

L

r = 06 < 1 (3.2.15)
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The horizontal length of this scale is in the range of O(1,000 km) for the case of
the atmospheric motions of the Earth; it is called the synoptic scale. We expand
each variable in a series of the Rossby number . According to the assumptions on
the scaling (3.2.2)—(3.2.5), we will see that leading order terms are reduced to the
geostrophic balance and evolution equations of the deviation field are given from
the following terms. We expand

u — u(o) + Eu(l) + SRR v — 'U(O) + E/u(l) + s,
w = w(o) + gw(l) + s 71'/ = 71'(0) + 671—(1) + BN
9 = 00 Lo L. .. ,

and also expand latitude ¢ about a reference latitude p(©) with the definitions
z = ARcos®), y = R(p— ap(o)).

Using y, the Coriolis parameter is expanded as

f = 2Qsinp = QQsin¢(0)+29zcosgp(0)+~~
— f(o) +Py+ -, (3.2.16)
where
0 20
f(o) = 2Qsin ap(0)7 8 = 3; = R cos <p(0).

If just the leading term of the Coriolis parameter is used, it is called the f-plane
approximation in which the Coriolis parameter is constant. If we take second-order
terms, the Coriolis parameter linearly depends on y. Such an approximation is
called the S-plane approzimation.

From leading order O(g’) terms, the equations of motion are written as
geostrophic and hydrostatic balances, (3.2.7), (3.2.14), and (3.2.10):

(0)

_FO,0 — 0" (3.2.17)
or
(0)

70,0 — 9T (3.2.18)
oy

or® g
I _ 2.1
0 0o o2 + 009 (3 9)

It can be found from (3.2.17) and (3.2.18) that horizontal wind components are
non-divergent

ou®  9v®
+

= 0. 2.2
. By 0 (3.2.20)

From this with the continuity equation (3.1.7), we obtain

10

oy = . 2.21
psaz(psw) 0 (3.2.21)
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Then, if we impose an appropriate boundary condition, we obtain
w® = 0. (3.2.22)

Eq. (3.2.21) implies W < 6U. In order to satisfy (3.2.13), therefore, S > ¢ is
required; that is

S > 0(1). (3.2.23)

The equations of first-order O(e!) terms in the Rossby number expansion are
written as follows

agf) + u© ag:) + 00 3;(0) — O, _ gyy® = g, ag;1>7 (3.2.94)

82;0) +u© 85;0) + 0 3§;o) T FOuM 4 Byu©® = _g, 8;;1)7 (3.2.25)

0= *%ag;) - 09(:)9’ (3.2.26)

8;;” * 0;;1) e aaz (psw) = 0, (3.2.27)
The vorticity equation is derived from (3.2.24) and (3.2.25) as

82(:) +u® ag;m +0© ag;) + B®

_f (8;;1) . ag;1)> | 230

where

@ = oo (3.2.30)

ox ox

is the vorticity. Combining the vorticity equation (3.2.29) with the continuity equa-
tion (3.2.27), we have

d©® 10

b €048y = f(o)p‘az(psw(”), (3.2.31)
where

d® 5,
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From the thermodynamic equation (3.2.28) and (3.2.17)—(3.2.19), we have

10 19 [ ps d®
®y — _ s (0)
ps Oz (psw™) ps 0z (869; dt o
_ _d(o) 10 [ ps b )| _ 1 [(0u® 90 N v 90
dt | ps 0z \ 9P 89\ 0z O 0z 0Oy

0
_ 7d() 10 Ps §(©) '
dt | ps 0z %ZS

Using this equation and (3.2.31), we obtain the quasi-geostrophic potential vorticity
equation:

a® II 0 3.2.32
L, = 0 (32:32)
where 11, is the quasi-geostrophic potential vorticity defined by
_ oo 9 s g0 L o
I, = ¢V+f 0 + Y+ By (3.2.33)
ps 0z \ 9
2 2 0)2
_ 0o 0 . 0 NON 10 psf( )2 9 -(0)
fO [\ 022 Oy? ps 0z N2 0z
+f(0) + ﬁy7 (3234)

where N2 = ¢/0y(00,/0%) is redefined here.
Since the geostrophic winds u(?) and v(®) are non-divergent (3.2.20), the stream-
function v can be introduced as

o1 o1
0 - _ 0 —
u oy’ v P (3.2.35)
From comparison between (3.2.17), (3.2.18) and (3.2.35), we have
(0) ) o
o _ f g0 _ _ %o 9
T 5 ¥ PR (3.2.36)
Eq. (3.2.32) can be written by using ¢ as
d©® o oY o 0y o o? 0?
H, = _9¥ + v + Y
dt ot Oy dx  Ox dy oxr2  0y?
19 FO2 9 ©)
s - B 2.
+ps 9% <p N2 9 1/1) +f Jrﬁy} 0 (3.2.37)

where from (3.2.34)

o o 19 [ fO25 o
o = ( - Y )¢+ ps 0z (ps N2 821/1) + Y+ By, (3.2.38)
0

d® 3.2.39
it~ ot oyoxr  owoy (3.2.39)
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The thermodynamic equation (3.2.28) is also expressed by ¢ using (3.2.36) as

0 2
d9 oy N o)

= 0. 2.4
gt 9= fo 0 (3.2.40)

3.2.3 Planetary-scale quasi-geostrophic equations

We have different types of quasi-geostrophic equations, if the horizontal scale is
comparable with the radius of the Earth:

L

R = 0(&Y). (3.2.41)

These types of equations are used for the description of large-scale motions, such as
oceanic circulations. (In the oceanic case, however, the thermodynamic equation
takes a different form from that shown below.) In this case, quasi-geostrophic
equations are given by

90 671'(0)

—20sinpv® = — 3.2.42
Sy Rcosp 0N’ ( )
0 (0)
20sinpu® = — Roa;p , (3.2.43)
o g0
0= —6 gz g O (3.2.44)
1 ou® 1 0 10
) 0y _
Rcosp 0N +Rcos<p8cp(cos<pv )—~_/)é 8z(p6w ) 0, (3.2.45)
(0) ©  5e© 40 9p(0) ‘
09 w90 v oo %% _ (3.2.46)

ot +Rcos<p o\ + R Oy tw 0z

Substituting the geostrophic flows u(*) and v(®) from (3.2.42) and (3.2.43) into the
continuity equation (3.2.45), we have

10 0o or©
0 = < (0)y _
pe 02 P T 90 megn? 0
10 cos
= @) — ©, 3.2.47
ps 0z (psw™) Rsing&v ( )

It can be seen that this equation corresponds to the vorticity equation of this
approximation. From this, we get the scaling of vertical motion: W = §U. Hence,
from (3.2.13), we obtain

S > 0(). (3.2.48)

The corresponding potential vorticity equation becomes

40
g 0o = 0, (3.2.49)
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where
. 10 [ ps
I, = 2Qsingexp lps 55 (%9; 9(@)] ’ (3.2.50)
d© B v 9 2@ 9
= 3.2.51
dt 8t+Rcos<p8)\+ R 0y ( )

that is, potential vorticity is expressed only by thermal stratification. The contri-
bution of relative vorticity is smaller than that of thermal stratification.

3.3 Primitive equations

3.3.1 The equations in spherical coordinates

Primitive equations are the basic equations for the atmosphere or the ocean and are
employed in numerical models without any approximations. In practice, however,
the set of equations based on the shallow-atmosphere approximation and hydro-
static balance are called primitive equations. To derive the normally used form of
primitive equations, we start with the equations in latitude-longitude spherical co-
ordinates in a rotating frame. The equations in spherical coordinates are described
in Appendix A1.5. Here, we introduce the effect of rotation into these equations.
Letting (u, v, w) be the zonal, north-south, and vertical winds, respectively, we write
the equations of motion, mass, and entropy in spherical coordinates in a rotating
frame as

d
- uvtangaf ue —2Qcosp-w+ 2Qsinp - v
r

dt r
1 0Op 1 00

— — 3.1
prcosp ON  rcosp ON MEAS (3.3.1)

Ccll: _ 71;2 tan o — U;U —2Qsiny -u— plr gf; — igi + fos (3.3.2)

cilztu _ u2jv2+2ﬁcosw-u;gfaa;pg+fr, (3.3.3)

c;ll,: = =P Tciw g;f + ml)w ai (vecosp) + :2 aar(wﬂ) 7 (3.3.4)

(ciz; - C;Q’ (3.3.5)
where the material derivative is given by

C;Zt B gt + cmsapaa)\ + :a?p + waar (3.3.6)

and (fx, fe, f>) is the frictional force. In the thermodynamic equation (3.3.5), s is
entropy and @ is the diabatic term. Using potential temperature, it is expressed as

de 0

= @ (3.3.7)
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This expression remains unchanged in the following argument.

We approximate the above equations because the atmosphere is very thin in
depth in comparison with its horizontal dimensions. As described in Section 2.1,
under the condition » = R+ z and z/R < 1, the geopotential can be given by
® = gz as in (2.1.12). Accordingly, the radius r in equations (3.3.1) to (3.3.5) is
replaced by the constant R. In this system, we need to change the definition of
angular momentum as

I = wuRcosp+ QR?cos? p. (3.3.8)

The first line of the equation of w, (3.3.1), corresponds to the time derivative of
angular momentum. To be consistent with (3.3.8), therefore, the two terms pro-
portional to w in (3.3.1) should be omitted. In a similar way, the term proportional
to w in the equation of v, (3.3.2), is also omitted. By conserving kinetic energy
é(u2 +v%+w?), we need to drop the corresponding terms in the equations of w: the
first and second terms on the right-hand side of (3.3.3). Furthermore, in the conti-
nuity equation, w/R is negligible in comparison to ‘?;Z”. Thus, Egs. (3.3.1)—(3.3.4)
are approximated as

C(li? - lgtan@+msin<ﬁ~v—pRsowngrfh (3.3.9)

CZ = —ﬁ tan g — 2Qsin g - u — le gf; + 1, (3.3.10)

CZfU - —;Zf—ﬁfm (3.3.11)

ilzf - Rcisapgz+Rciwaa(p(vcow)+aaf : (3.3.12)
where

;lt - aat * Rczsg; 8a>\ * ;)zaa@ +waaz_ (3.3.13)

At this point, the approximation used to derive this equation set is called the
traditional approzimation.’

We further assume hydrostatic balance (2.1.4) in the equation of vertical motion
(3.3.11). Generally, hydrostatic balance is thought to be applicable when the hori-
zontal scale of motion L is larger than the vertical scale H; that is

H

6= <1 (3.3.14)

where § is called the aspect ratio.t Assuming hydrostatic balance with the tradi-

TWe have introduced the traditional approximation using the assumption lz% < 1 and the
consistency of the definition of angular momentum. Note that neglect of terms proportional to
2Q cos ¢ is not justified by the assumption 7 < 1. See Veronis (1968).

tPrecisely, in order to use the hydrostatic balance, one needs to examine the conditions under
which the other terms in (3.3.11) are negligible. One of the conditions is that the ratio of the

angular velocity €2 to the Brunt-Vaiisala frequency N is small. See Phillips (1968).
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tional approximation, we obtain

C(ZL = lgtamp—l—%lsinap-v— pRclosapgf—i—f)” (3.3.15)
fl: = —lg tan o — 2Qsinp - u — legZ: + fos (3.3.16)

0 = —;gf _yg, (3.3.17)
(cilito -7 Rci)scp g; + Rci)sgo aaga (veosip) + aale (3:3.18)

These equations together with (3.3.5) or (3.3.7) are called primitive equations, or
hydrostatic primitive equations. Since vertical velocity w is not a predictable vari-
able in primitive equations, it should be calculated using a diagnostic formula.

3.3.2 Transformation of the vertical coordinate

When the atmosphere is in hydrostatic balance, the governing equations can be
written in a simplified form by transforming the vertical coordinate from the height
z to an appropriate function of z. In the following subsections, we first derive
the governing equations of the atmosphere in a generalized vertical coordinate ¢
and, then, as examples of the vertical coordinate, we list equations in pressure
p-coordinates, o-coordinates (where o = p/ps is pressure divided by the surface
pressure py), and potential temperature 6-coordinates.

We consider the primitive equations in the Cartesian coordinates, which are
given from (3.3.15)—(3.3.18) and (3.3.5), by dropping the metric terms and setting
dx = Rcospd)\, dy = Rdp, and f = 2Qsinp as

dp 0
o T V.- (pvm)+ s (pw) = 0, (3.3.19)
d 1
:Z)tH +fkxvg = —szp —-V. 2+ fy, (3.3.20)
10p 09
0 = - - 3.3.21
pOz 0z’ ( )
ds CpQ
= .3.22
dt T’ (3.3.22)

where V, is the gradient on a constant z-surface, k is a unit vector in the vertical
direction, and f is the Coriolis parameter. In (3.3.20), since ® depends only on
z, we generally have V,® = 0. We keep this term, however, since expressions of
the pressure gradient force in different coordinates can be understood through this
term.

As a vertical coordinate, we use a variable ¢ that monotonically changes in the
vertical direction. ¢ can be related to z by the function

C = C(x,y,z,t), (3323)
where ( is a monotonic function with respect to z. It is convenient to define density
in (-coordinates. Let dm be mass in a column that has a height interval dz with
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unit area. We may write
dm = pdz = pedC, (3.3.24)

where p¢ is regarded as density in (-coordinates. Using the hydrostatic balance
(3.3.21), density is expressed as
0z 10p

pe = p - _ , (3.3.25)
‘ a¢ g 9¢
where g = %‘f.
Relations between derivatives on the z-surface and those on the (-surface
are expressed as follows. Any variable A can be expressed in two coordinates:
A(x,y, z,t) or A(z,y,(,t), These two functions are related as

Alz,y,z,t) = Az,y,((z,y,2,1),1). (3.3.26)

The partial derivatives of A with respect to x are related as

0A 0A 0A [0¢
= 3.2
<8$>Z (m)ﬁag‘ (ax)z’ (3.3.27)
0A 0A 0A [0z
(835)( B (8$>Z+ 0z <8m)<' (3:3.28)
Similar relations hold for the derivatives with respect to y and ¢t. Using
0z 0z (0C
- — 3.3.29
(0), = o (6). 19:3:29

and (3.3.27), we have
0z (0A _ 0z [0A\ [0z 0A
aC GIZ_GC &L’C 3IC8C
0 [0z 0 0z
Oz (aCA)‘g N ¢ [(ax)gA
which are rewritten using (3.3.25) and (3.3.29) as

pc (OAN  _ 9 (¢ 9 [(OC\ pc
p<3$)z a 0$(pA)‘<+8C Kam)sz} (3.331)

If we write A = pa where a is a specific value of A per unit volume, we have the
transformation of the flux-form equation of a:

, (3.3.30)

pc |0 9
) L‘% (pa) + V= - (pvra) + o (pwa)}

0 o .
= 5 (pca) + Ve (pevma) + ac (peCa), (3.3.32)
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where V¢ is the gradient on a constant (-surface and the time derivative of the
vertical coordinate ( is related to w as

dz 0z .0z
w = i - (at)<+vH~V<z+Ca<, (3.3.33)
. d¢ a¢ a¢
¢ = a (at)z+UH VZCeraz (3.3.34)

é is regarded as the vertical velocity in (-coordinates. Using this relation, the
Lagrangian derivative of a is written as

da da L RV da
dt o) TUHI VAT,

a
C.

Now we can write the governing equations in (-coordinates. We transform
equations (3.3.19)—(3.3.22) using the above relations. First, the equation of entropy
(3.3.22) is unchanged except for the Lagrangian derivative given by (3.3.35) with
a = s. Using (3.3.32), the continuity equation (3.3.19) is written in (-coordinates
as

(3.3.35)

da .0
- <at>c+vH'v<a+<a

8p< 0 .
. = 0 3.3.36
g T Ve (pcvn) + ac (pc€) ; ( )
or
dp¢ aC\
o T (vc vty =0 (3.3.37)
Next, the equation of motion (3.3.20) becomes in (-coordinates
d 1
ZthH Ik = = Vep—Veb+ fy, (3.3.38)

where the pressure gradient force is transformed using (3.3.27) with A = p and
the hydrostatic balance (3.3.21). Multiplying this equation by p¢, we obtain the
conservation of momentum in flux form:

0 .
(pcvm) + Ve (pcvnvm) (pcCom) + pcfk X vy

L9
ot a¢

0
= —V¢ (p/fp) + ac (pVez) +pcf (3.3.39)

where the pressure gradient force on the right-hand side is transformed using
(3.3.30) or (3.3.31). This form is useful if one takes an average along the z-direction
on a particular (-surface, for instance. If the (-surface does not intersect with the
ground, the average along the z-direction of the first term on the right-hand side
vanishes so that only the second term remains as the pressure gradient force. This
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contribution exists unless the (-surface is horizontally flat V2 # 0; this term is
called the form drag.

For later use, we give various expressions of the pressure gradient force. Using
(2.1.22), we can rewrite

1 1
*pvzp -V, = - vap —Ve® = 7V —-VU, (3.3.40)

where W is the Montgomery function or the static energy, 7 is the Exner function.f
In particular, substituting ( = z, ( = p, ( = 0, and ( = 0, we obtain expressions of
the pressure gradient force in the respective coordinates:

1
—pvzp = —V,® = —RTIV,lnp,—Ve® = —V,0. (3.3.41)

3.3.3 Pressure coordinates

Using pressure as a vertical coordinate, ( = p, we write the equations in pressure
coordinates or isobaric coordinates. From (3.3.25), the density in this coordinate is
pp = —1/g = const. Thus, using (3.3.38), (3.3.21), and (3.3.36), we obtain

dv

dtH +fkxvg = =V, 0+ fy, (3.3.42)
O
0 = -, — 3.3.43
op ( )
dw
Vo vty = 0 (3.3.44)

where o = 1/p is the specific volume.? We define pressure velocity as

dp
_ dp 3.3.45
w & ( )
From (3.3.33), the relation between w and w is given by
dz 0z 0z
= = . . 3.3.46
v dt (6t>p+UH Viz ey, ( )
Using the thermodynamic relation (1.1.6), we have
ds dh
T = - 3.4
@t PR (3.3.47)
then we have from (3.3.22),
dh
g4 = we + CoQ. (3.3.48)

fIn (2.1.22), we have used the symbol o for static energy. However, since we use the definition
o = p/ps here, a different symbol ¥ is used to represent the Montgomery function. In some
literature, the Montgomery function is denoted by the symbol M.

fIn Chapter 2, the specific volume is denoted by the symbol vs, while « is used to denote the
expansion coefficient.
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For the ideal gas with a constant specific heat, since h = C,,T', we have an expression
for the equation of temperature:

dT KTw
= . 3.3.49
U , 1@ (3.3.49)

From the above equations, the transformations of energy are expressed as fol-
lows. By summing up the inner product of vy with (3.3.42) and (3.3.43) multiplied
by w, we have the equation of kinetic energy

d v? 0P
gt 2H = va~Vp<I>fwap7wo¢+vH~fH
= -V, (vg®)-— aap(w@)—wa+’vH~fH. (3.3.50)

Adding this equation to (3.3.48), we obtain the conservation of total energy in
pressure coordinates as

d 2 0
(UH —‘rh) = —Vp'(’UHq>>—

o op (W®) + vy - fu+CoQ. (3.3.51)

This form of the conservation of energy is different from the conservation of total
energy given by (1.2.47). The total energy per unit mass is defined as v?/2 +® +u
in general, whereas the total energy in pressure coordinates shown above is defined
as v%;/2+ h. First, there is no contribution from vertical velocity to total energy in
pressure coordinates, since hydrostatic balance is assumed in primitive equations.
Although the two energies are still different other than their vertical velocity, it will
be shown in Section 12.1.3 that a vertical integral of the total energy in pressure
coordinates is equivalent to that of the total energy in z-coordinates.

Pressure coordinates have the following characteristics. Among their advan-
tages: the continuity equation is a simple form as given by (3.3.44); it is a pseudo
non-divergent-form equation; it is easy to relate quantities in pressure coordinates
with those obtained from observations, since the altitudes of observation points
of radiosondes are reported by their pressure values; in general, the inclinations
of constant pressure surfaces are small, so that the physical position of constant
pressure surfaces are close to constant z-surfaces; and the mass between two con-
stant pressure surfaces remains the same (pressure coordinates can be viewed as
mass coordinates). Among their disadvantages, constant pressure surfaces (isobaric
surfaces) may intersect with the ground at the lower boundary of the atmosphere.

3.3.4 Sigma coordinates

To overcome the disadvantage of pressure coordinates (i.e., isobaric surfaces may
intersect with the ground), one can choose terrain-following coordinates in which
the ground surface agrees with a constant coordinate surface. Using the surface
pressure ps, one can achieve this by choosing the vertical coordinate as

o = 7. (3.3.52)

Ps
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In this case, 0 = 1 at the ground level and ¢ = 0 at the top of the atmosphere.
These are called o-coordinates (or sigma coordinates). The definition of o can be
more generalized; any function o = o(p) with o = 1 at the lower boundary can be
used as a vertical coordinate. Here, we concentrate on the simplest case (3.3.52).
From (3.3.25), the density in o-coordinates is defined by
0z Ps
. = = - 3.3.53

p ? 9o g ( )
Using (3.3.37), (3.3.38), (3.3.41), and (3.3.53), the primitive equations in o-coordinates
are written as

dv

dtH +fkxvyg = —Vo®— RV, Inp,+ fg, (3.3.54)
0%  R,T
0 = 3.3.55
Jdo + o’ ( )
dlnps lo)ed
g = Vevn— (3.3.56)

A diagnostic equation for vertical velocity & (or sigma wvelocity) is given from
(3.3.56); integration from o = 1 to o of (3.3.56) gives

o1 < o o .
(0 —1)9 " — 7/ vH'VglndeJf/ Vo vpdo—6, (3.3.57)
while integration from o =1 to 0 = 0 gives
o1 < 0 0
;tp = / vy - Vo Inp, do +/ Vo vy do. (3.3.58)
1 1

By eliminating the time derivative of In ps from these two equations, we obtain the
expression of the vertical velocity as

0 o
o = [(1—0)/ VU~de0—/ VU-deU}
1 1

0 o
+ [(1 —0)/ vy da—/ dea} - Ve Inps. (3.3.59)
1 1
We also have
. d (p W dInps
o= . <ps> = o (3.3.60)

Using this and (3.3.56), therefore, the equation of temperature (3.3.49) is written
as

dT 6 0o
= KT — — Vs v . 3.3.61
dt (O’ do 7 H) +Q ( )

While an advantage of o-coordinates is that the ground surface always corre-
sponds to the coordinate surface 0 = 1 so that constant o-surfaces never inter-
sect with the ground, o-surfaces may be distorted in the area of steep topography
irrespective of atmospheric structure.
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3.3.5 Isentropic coordinates

If the atmosphere is statically stable, the potential temperature monotonically in-
creases with height as shown in (2.3.7). In this case, the potential temperature
0 can be used as a vertical coordinate. For large-scale motions where the hydro-
static approximation is valid such that primitive equations are applicable, vertical
structure is thought to be statically stable in general. Thus, potential temperature
coordinates (f-coordinates), or isentropic coordinates, can be used to describe the
motions. The density in f-coordinates is defined by'

716p

From (3.3.37), (3.3.38), (3.3.41), (3.3.40), and (3.3.22), the equations in #-coordinates

are written as

d
Ok kX vy = =Vl fy, (3.3.63)
o
o = ™ (3.3.64)
dpe o, .
o Ve (pevr)+ o (peb) = 0, (3.3.65)
6 = Q, (3.3.66)

where 7 is the Exner function (2.1.20), and the diabatic term in (3.3.66) is expressed
as
0 7T

0= 10 = /0o (3.3.67)
P

The flux-form equation of motion is given by multiplying pp by (3.3.63) and
using (3.3.39)

o .
+ 20 (poOvm) + pofk x vy

P
= -V (”p%) + 5y (PV02) + pof i (3.3.68)

0
Y (povm) + Vo - (ppvuvm)

If use is made of an alternative flux form of the pressure gradient force (3.5.2) in
the appendix of this chapter (Section 3.5) with (3.3.64), the momentum equation
is rewritten as

0 o .
o (Povm) + Vo (povivn) + o, (pebvr) + pofk x v
1 K 10
= ng(; (ﬁ+ 1p7r> + 400 (pVo¥) + pof - (3.3.69)

TIn the literature, the symbol o is frequently used to represent the density in isentropic co-
ordinates instead of pg.
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The potential vorticity equation in isentropic coordinates has various useful
forms. Using (3.3.62) under hydrostatic balance, potential vorticity (1.3.33) is
rewritten as

P = lwaoVG = ! (waH~VH9+waZao)
p P 0z
1 00 00 Wab
=, (—wan - Voz + waz) 9, = = JWag o oy (3.3.70)

where w, is the absolute vorticity vector in the hydrostatic balance, and wgg is
absolute vorticity evaluated on isentropic surfaces. w,, and w,g are the vertical
component and the horizontal two-dimensional vector of absolute vorticity, respec-
tively; that is

(av Ou Ov  Ou
W, =

_82’7 82’7 8I - ay +f> = (waH,waz). (3371)

Denoting the relative vorticity evaluated on isentropic surfaces by wy and using
(3.3.28), we have

ov ou
Wep = Wp+ = - +
0 o+ f <8m > , <3y)9 !
B 3v78u+f+8v 0z 76u 0z
- Ox Oy 0z \oz ), 0z \0y/,
= Wgr — WeH - Voz. (3.3.72)

The equation of potential vorticity in isentropic coordinates can be derived in
the following manner. Starting with the vector-invariant form of the advection term

2
vy - Vovg = wok xvyg+ V9v5[7 (3.3.73)

which is similar to that given by (1.3.21), we can rewrite the equation of motion
(3.3.63) as

ovy vy vy
ot +Ve( 9 + U | + weok X vy + 0 0 = fu- (3.3.74)

By applying rotation operator (k- Vgx) to this equation, we obtain the flux-form
vorticity equation

0w,
gte 4 Vo (wapvm + T4+ ) = 0, (3.3.75)
where
- Ov -0u
J; = (089’ 989,()), (3.3.76)

Jro= (=fy [z, 0). (3.3.77)
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Using the expression of P (3.3.70), Eq. (3.3.75) immediately yields the flux-form
potential vorticity equation as

aat (poP)+ Vo - (pgPvoy + Jy+ Jf) = 0. (3.3.78)
It can be seen from (3.3.76) and (3.3.77) that a vertical component of the flux in
(3.3.78) does not exist. That is, the component of the potential vorticity flux in the
cross isentropic direction is identically zero, if the atmosphere is in hydrostatic bal-
ance. This is a general characteristic of potential vorticity in isentropic coordinates,
and it always holds even if frictional or diabatic terms exist.

Eq. (3.3.75) gives the advective-form vorticity equation, as

d

diwae +wewVe -vg = —Vpg- (Jé + Jf), (3.3.79)
where

dy 9

P ot + vy - V. (3.3.80)

The continuity equation (3.3.65) is also rewritten as

dg 0

gt po+poVe - vy ~ 90 (pe?). (3.3.81)

Eliminating Vy - vy from (3.3.79) and (3.3.81), and using the expression of P
(3.3.70), we have a change in potential vorticity on the isentropic surface:

P 0
pe 00

de

Ut (pe0). (3.3.82)

1
P = — Vo (Jy+J5)+
p09(9 f)

Eq. (3.3.82) is further rewritten in three-dimensional advective form, as
P 90 1 [000u 90 0v

P — k- . 3.3.83

dt 20 " py (ayaa ox 00 vfo) (3:3.83)

Isentropic coordinates have a distinct advantage. That is, isentropic surfaces
represent nearly material surfaces; an air parcel stays on an isentropic surface under
the adiabatic condition @ = 0. In this case, since vertical velocity is 6 = 0 from
(3.3.66), the air parcel does not exit from the original isentropic surface. This means
that the motions of the air parcel are two dimensional on the isentropic surface. One
of the disadvantages of isentropic coordinates is that isentropic surfaces generally
intersect with the ground. In mid-latitudes, in particular, #-surfaces have a large
inclination to z-surfaces. As a result, the divergence Vy-v g or the rotation k-Vy x
vy on the f-surface may be very different from those on the z-surface. Another
disadvantage is that ambiguity in the definition of isentropic surfaces arises when
stratification gets close to neutral. In addition, calculations on isentropic surfaces
are more or less complicated compared with other coordinates.
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3.4 Shallow-water equations

In this final section of this chapter, we describe shallow-water equations. Shallow-
water equations can be viewed as mathematical models of horizontal motions of
the atmosphere in which the air has almost vertically uniform motions. Originally,
shallow-water equations were used to describe motions in a shallow fluid layer,
in particular for the elevation of the fluid surface. We introduce shallow-water
equations in this original context.

Let us consider a fluid on a horizontally uniform bottom. We define the height
of the fluid surface as 17 and introduce ® = gn. Shallow-water equations are given
by

D
DtUH+kaUH = —gVun+ fu, (3.4.1)
0

where vy = (u,v) is the two-dimensional velocity vector, Vg is the horizontal
gradient operator, fj is two-dimensional forcing, and

D 0
_ v 3.4.3
Dt gt TVEVH (8:4:3)
Multiplying (3.4.1) by vy and (3.4.2) by ¢, and summing up the two, we obtain

the energy equation of shallow-water equations:

Do i) yv, . (@ ) = f (3.4.4)
Dt 9 H Vy = Vg H- 4.

Vorticity and divergence equations are frequently used for shallow-water equa-
tions. The relative vorticity and divergence of shallow water are defined, respec-
tively, as

w = ’“‘VHX”H:g;*gzv (3.4.5)
0 0

§ = Vg -wvg= aera;' (3.4.6)

Using the identity
2

vy -Vygoyg = wkva+VHU;, (3.4.7)
we can rewrite (3.4.1) as

) 2

gtH = —(w+flkxvyg —Vpg ((I)+U5[> + fu (3.4.8)

Applying rotation and divergence operators to this equation gives the vorticity and
divergence equations, respectively:

0

3(; = Vg -(w+flog+k-Vugx fy, (3.4.9)
06 9 vy

o k-Vgx(w+ flog —Vy [P+ 9 +Vu-fy- (3.4.10)
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Using the absolute vorticity w, = w + f, (3.4.9) and (3.4.2) are rewritten as

Dw,
YO o Wbtk Vi X f, (3.4.11)
Dt
Dn
= —nd. 3.4.12
Dt U ( )
The above two equations are combined to make the potential vorticity equation:
DII k-
_ kVaxtu (3.4.13)
Dt n
where
mo— Y - vt/ (3.4.14)
n n

is potential vorticity. This has a different dimension from that of (1.3.43).

In special cases, atmospheric motions can be described by shallow-water equa-
tions. First, shallow-water equations are analogous to primitive equations in isen-
tropic coordinates, Second, a two-layer model of atmospheric motions is described
by shallow-water equations. Third, when atmospheric motions in hydrostatic bal-
ance are linearized, the equations for horizontal motion are equivalent to linearized
shallow-water equations. The third property will be examined in Section 4.7.1.

In this section, we only show how the equations in isentropic coordinates are
related to shallow-water equations. Under adiabatic conditions, the equations in
isentropic coordinates (3.3.63)—(3.3.65) are written as

d
di'vH tfkxvy = —VoU+ fy, (3.4.15)

0

8/;6 + Vo - (pevE) = 0, (3.4.16)

where we have used the fact that d/dt is equal to dy /dt under the adiabatic condition
0 = 0 since
d . d .
s = §t+vH-vg+0§9 = d‘t’+0§9. (3.4.17)
The two equations (3.4.15) and (3.4.16) are equivalent to the shallow-water
equations, (3.4.1) and (3.4.2), if we can assume that ¥ is proportional to py such
that W is identical to ®. In general, however, such a simple proportional relation
between ¥ and py does not exist. We nevertheless can relate them in the following
manner (Held and Phillip, 1990). Let us consider a layer between two isentropic
surfaces, and assume that velocities are vertically uniform in this layer. Let the
differences of potential temperature, pressure, and 7 at the two isentropic surfaces
be denoted by Af, Ap, and A, respectively. From (3.3.62) and (3.3.64), we have

VoU =~ AOVym, (3.4.18)

1 1d
o~ — Ap ~ — Pan (3.4.19)
g gdm
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where Vgm and 37’: take representative values in this layer. If the change in 7 on
upper isentropic surfaces, say, is negligible compared with that on lower isentropic

surfaces, and the change in 97 is small within the layer, (3.4.15) and (3.4.16) become

(3.4.1) and (3.4.2) with the relation
d = AOAT. (3.4.20)

If there is a vertical velocity 6, the contribution of this term is added to (3.4.16).
Correspondingly, a source or sink term () is added to the right-hand side of (3.4.2).

3.5 Appendix: Derivation of a generalized pressure gradient

We derive a generalized form of the pressure gradient in (3.3.69) in this appendix.
In the case that g is constant, the flux form of the pressure gradient force in (3.3.39)
is written using (3.3.25) as

oe ) Lo (pVe®).  (3.5.1)

P 9 1
_W(pp)*fxw“) - gvf(acp T gac

In order to generalize this expression, we define a function H = Z({)P(p), which
satisfies in general

0 0 0 ,
ac (pVeH) = ac (pZV:P) = ac (pZP'V¢p)

P P
- aag (ZV< / pIP'(m)dpl) _ V<aa< (Z / p1P’(p1)dp1>.

On the other hand, we have

oOH B , ,0p
Vg(a<p> = VC(ZPerZPan)

a P
Ve (Z’Pp+ Zac / plP’(m)dpl)

V¢ [Z' (pP— /pplP’(m)dpl) + aag (Z/pplP’(m)dmﬂ :

Thus, (3.5.1) can be written as

1 0P 10
*gVC < > + (pVCP)

ac?) T gac
P
= —;Vc {§<(¢+H)p—z’ <pP—/ plP'(pl)dmﬂ
10

+ga< [pVC((I)JrH)] .
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Noting that enthalpy is written as h = 07, we can set Z =0, P = 7(p), and H = h
with ® + H = W. In this case, we have

P P
Z' <pP/ p1P’(p1)dp1) = pﬂ*/ 17’ (p1)dp:

K 1
k1?7 T T
where k = Rq/Cp. We therefore have an alternative flux form of the pressure
gradient force:

1 oD 10
*gvc <a<p> + 3 0C (PV¢®)

= prm—

1 ov s 10
= -, % Kc% - Hl)p} e VD). (3.5.2)
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Waves

Constituting the basis of atmospheric dynamics, the fundamental properties of
waves are described in this chapter. Waves are themselves important atmospheric
motions and play roles in transporting energy, momentum, and tracers. Waves also
have remote effects through their propagations. In this chapter, to begin with, we
briefly review wave theory. Then, the governing equations of the atmosphere are
linearized under various conditions including sound waves, gravity waves, inertial
waves, Rossby waves, spherical waves, and equatorial waves. The structures and
propagations of these waves are explained using the linear system. We mainly
consider cases when the basic properties are spatially uniform. Wave propagations
in an inhomogeneous flow will not be described in this chapter, although they are
important and have interesting behaviors.

The concept of wave propagation is also very important for the construction
of numerical models. Mathematically, waves can be defined as neutral eigenmodes
of linearized governing equations. In contrast, instability (discussed in Chapter 5)
can be viewed as unstable eigenmodes. The role of wave transport is considered in
Chapter 7. If diabatic or mechanical forcing is applied to the atmosphere, waves are
excited at the forced region. This kind of circulation is called a forced motion, and is
discussed in Chapter 6. Forced motions statistically establish the equilibrium states
of the atmosphere through the propagation of excited waves by being balanced by
the dissipation process in the atmosphere. If the forcing is steady, a statistically
steady circulation is realized as a result. Some aspects of atmospheric general
circulation can be viewed as this type of forced motion.

4.1 Wave theory

In general, partial differential equations can be solved by using a systematic method
called wave theory. With this method, an approximate solution of partial differen-
tial equations is given in the form of a sinusoidal wavetrain. We consider a general
method of solving linear partial differential equations in this section.

M. Satoh, Atmospheric Circulation Dynamics and General Circulation Models, 80
Springer Praxis Books, DOI 10.1007/978-3-642-13574-3_4, © Springer-Verlag Berlin Heidelberg 2014
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We consider a single linear partial differential equation or a set of linear partial
differential equations. Letting L be a linear operator, we write a linear partial
differential equation as

Lig(z,t) = o, (4.1.1)
where ¢(x, t) is a solution to the equation. We assume a wavy form of the solution
d(x,t) = A, t)e? TN, (4.1.2)

where 6 is called the phase and A is the amplitude. In order that ¢ is wavy, the
amplitude A must be a slowly changing function of  and ¢ compared with . Under
this condition, ¢ almost keeps the same value when the phase 6 is increased by 27;
this implies that ¢ is approximately periodic.

Wave number and frequency are defined by the derivatives of the phase with
respect to space and time, respectively

k = V0, w = — Zf (4.1.3)

k and w are normally slowly changing functions with respect to @ and ¢t. When
they are not, the wave number and the frequency defined above change rapidly such
that they lose their wave characteristics. From (4.1.3), we have

ok

ot
which represents the conservation of wave numbers. The wave number per unit
length is given by k; /2w for each of the directions z; (i = 1, 2, and 3) and that per
unit time is given by w/2w, respectively. Their inverses are the wavelength and the
period:

+Vw = 0, (4.1.4)

2 2
P— kj, for i=1,2,3; T = ; (4.1.5)
The surface with constant phase 8 = const. is called the phase surface. The phase
surface is normal to the direction of k, and its propagation speed in the direction
of k is
w
- Y 4.1.6
Cp ‘k)| ( )
which is called the phase speed. Phase speed with its normal direction to the phase
surface, cpk/|k|, is called the phase velocity. The propagation speed of the phase
surface in any direction can also be defined; phase speeds in the z;-direction are
given by
w .
Cpi = , for i=1,2,3. (4.1.7)
ki
It should be noted that 01271 + 01272 + 01273 # 0127, but c;f + c;22 + c;32 =c, 2 in general.
The left panel of Fig. 4.1 shows the relation between phase speed and the phase
lines in two-dimensional space.
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X2 kz

O=const.

c Q=const.
P2 4

Cpi

Xy ki

FI1GURE 4.1: (Left) Schematic relation between the phase speed ¢, and phase lines § = const. The
inclined solid lines are constant phase lines and k is the wave number vector and is normal to a
phase line. ¢p1 and cp2 are phase speeds in the directions of x1 and x2, respectively, and satisfy
1/0‘2271 + 1/0‘2272 = 1/c%. (Right) Schematic relation between the group velocity ¢g and the phase
relation  in the wave number space. The solid curves are constant lines of frequency €2 = const.

and are normal to the group velocity cg. k is the wave number vector. c41 and cg2 are components

of the group velocity in the directions of x1 and x2, respectively, and satisfy 031 + 032 = cg°.

Substituting (4.1.2) into (4.1.1), and neglecting small terms such as the deriva-
tives of A, k, and w, we obtain a relation between k and w in the form

w = Qk;z,t), (4.1.8)

which is called the dispersion relation. We can see by substituting (4.1.3) into
(4.1.8) that the dispersion relation is a partial differential equation of phase 6.
Once the dispersion relation is given, the equations for changes in wave number
and frequency can be constructed. Substituting (4.1.8) into (4.1.4), we obtain

ok
ot +c¢cy-VE = —VQk;z,t), (4.1.9)
where
S Q(k; x, 1) (4.1.10)
C = ok s, t), 1.
which is called group velocity. In the same way, since
Ow ok 0Q 09 1219/
= . = —c,- 4.1.11
o ot ok ot oVt o (4.1.11)
we have
Ow 0
ot +c¢g-Vw = 8tQ(k’w’t)' (4.1.12)

If the signs of the wave number and the frequency are reversed, w — —w and
k — —k, the dispersion relation remains the same. Then, we can restrict the range
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of frequency as w > 0 without loss of generality. The right panel of Fig. 4.1 shows
the schematic relation between group velocity and the dispersion relation in the
wave number space. Group velocity is normal to the constant line of frequency §2 =
const. in this space.

The dispersion relation is more systematically derived using the WKBJ
(Wentzel-Kramer-Brillouin-Jeffreys) method, by which we also obtain the equation
for amplitude A. The WKBJ method can be used under the condition that the
change in A is slower than that in phase 6. Introducing a small parameter ¢ < 1,
we write

X = e, T = et, (4.1.13)

and

Oz t) — 9()§’T>. (4.1.14)

The wave number and frequency, (4.1.3), are written as

00 00
k = = - . 4.1.1
ox'  “ or (4.1.15)
The phase 0 is a rapidly changing function of & and ¢, while the amplitude, the
wave number, and the frequency are slowly changing functions of X and 7. Thus,
© defined above becomes a slowly changing function of X and T'.
We express the linear partial differential equation (4.1.1) in the form,
g o0 0 0
(2,7, 7%, 7zt 1) = 0, 4.1.16
where L is a polynomial of g)t’ 32,1, 3‘22, and 3‘23, the coefficients of which may
depend on « and t. We expand ¢ and L by a series of € as

dlxt) = Y A(X,T)e (4.1.17)
n=0

L = ) &Ly (4.1.18)
n=0

The operator L, is a polynomial whose coefficients are the O(e™) terms of L.
Substituting (4.1.17) and (4.1.18) into (4.1.16), and using (4.1.13), the phase ©
and the amplitude Ag can be expressed as functions of X and 7.

The phase O is determined by the dispersion relation. Substituting (4.1.15) into
the O(e”) terms of (4.1.16) and dividing by Ag, we obtain the dispersion relation:

Lo(—iw,ik17ik2,ik3> = 0. (4.1.19)

If (4.1.15) is substituted into this equation, this can be viewed as a partial differ-
ential equation for ©.
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The equation for the amplitude Ay can be given by the next order equation
of the series, if the operator L is well behaved (i.e., self-adjoint). Writing out the
O(g') terms of (4.1.16) and using (4.1.19), we obtain after a lengthy calculation:

o
op AT Vx(egA) = 0. (4.1.20)

_(9 a8 @
where Vx = (5%, o, ox, ) and

OLg (—iw,iky,iks, ik
A = OLo(iwikyiks,iks) o (4.1.21)
Ow
is called the wave action. This equation means that the wave action is transported
with the group velocity c¢g. The change in the amplitude A is described by the

equation of the wave action.

4.2 Sound waves

In the following sections, we examine wave properties based mainly on the dis-
persion equations. We consider a frictionless and adiabatic system and use the
governing equations for stratified dry air in the rotating frame:

dp

. = 4.2.1
g TPV 0, (4.2.1)

dv 1
2Q = - - Vo 4.2.2
dt * xv pvP \ ’ ( )

ds

= 0. 4.2.3
it (4.2.3)

These are the equation of density p, velocity v, and entropy s, respectively. We
will successively investigate various types of waves by introducing approximations
to these equations.

First, in this section, we consider sound waves in the system without gravity or
rotation. By setting € =0 and ® =0 in (4.2.1)—(4.2.3), we have

dp
. = 0 4.2.4
g TPV 7 (4.2.4)
dv 1
= — 4.2.5
Ut an (4.2.5)
ds
= 0. 4.2.6
gt (4.2.6)

We consider perturbations from a basic state that is at rest with uniform pressure
p and entropy s. Density p and temperature T are also uniform in the basic state.
Let overbar () denote a quantity of the basic state and prime (') denote that of
perturbation, such that

/

p=p+p, p=ptp, v =1\
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Substituting these decompositions into (4.2.4)—(4.2.6), and omitting the nonlinear
terms, we have the linearized equations for the perturbation field:

/

dp

v =0 4.2.7
ot +pV-v , ( )
o’ 1
= -V 4.2.8
5¢ )V (4.2.8)
s’
= 0. 4.2.9
Using (1.1.58), (4.2.9) becomes
op’ 5 0p
= y 4.2.1
ot “ ot (42.10)
where ¢; is the speed of sound defined by (1.1.56); for dry air it is expressed as
0
2 = ( p) - P = sRyT. (4.2.11)
op) P

Eqgs. (4.2.7), (4.2.8), and (4.2.10) provide five prognostic equations for five
variables (p',p’,u,v,w). If five independent initial values are given, therefore, a
solution can be completely determined. This implies that the dispersion relation
has five solutions for frequency. To obtain the dispersion relation, let us decompose
the variables into Fourier components. Substituting

(00 V) = (b o) BT (4.2.12)

into the above equations where k = (k,l, m), we obtain the coefficient matrix for
(p: p, p0) as

—w 0 ik il m p 0

ic2w —iw 0 0 0 D 0
0 itk —iw 0 0 pu = 0 (4.2.13)

0 il 0 —iw O po 0

0 m 0 0 —iw pw 0
We obtain the dispersion relation by setting the determinant of this matrix to zero:
Ww? - 2k*) = 0. (4.2.14)

This equation has two kinds of solutions:

w2 _ C?kQ — 07 (4215)
W o= 0. (4.2.16)

The former corresponds to the sound wave mode, or sound waves, whereas the
latter corresponds to the wvortical mode. Eqs. (4.2.7), (4.2.10), and (4.2.8) can be
combined to a single equation for pressure:

a2p/

o2 -2V = 0. (4.2.17)
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The dispersion relation of sound wave mode (4.2.15) is readily seen from this equa-
tion. Eq. (4.2.17) means that a disturbance propagates at the speed of sound c;.
On the other hand, rotation of (4.2.8) yields

gt(qu’) = 0. (4.2.18)

This gives either VX v/ =0 or w = 0. If V x v/ = 0, we obtain w # 0, which
corresponds to sound wave mode. In the case w = 0, on the other hand, vorticity is
constant: V x v’ = const. This is why the solution for w = 0 is called the vortical
mode.

For the frequency w > 0, the dispersion relation (4.2.15) reduces to

w = ¢kl (4.2.19)

The phase speed in the direction of k becomes

w

¢ = = cs, (4.2.20)
L1
and the group velocity is
Ow k
= = C5, . 4.2.21
T ok T “k (4.2.21)

The magnitude of group velocity is the same as the phase speed c¢s and is indepen-
dent of wave number. This means that the sound waves are not dispersive.

The structure of sound waves is described by phase relations. Phase relations
are determined by substituting (4.2.12) into (4.2.10) and (4.2.8),

p = c2p, (4.2.22)
k kc?

b= o p o= O (4.2.23)
wp wp

The direction of fluid velocity is parallel to that of group velocity. Thus, we can
see that sound waves have no vorticity. Figure 4.2 shows the structure of a sound
wave propagating toward the right-hand side.

—— - —— -
P+ P — P P —
P+ p— p p —
—— - —— -

—— = propagation of a sound wave

FIGURE 4.2: Structure of a sound wave in a one-dimensional tube. Relations between pressure
p, density p, and velocity (arrows) for the sound wave propagating toward the right-hand side.
Nodal points are indicated by dashed lines.
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4.3 Gravity waves

4.3.1 Dispersion relation

We next examine waves in a fluid with gravity and no rotation. In this case, the
governing equations (4.2.1)—(4.2.3) become

dp

v o= 0 4.3.1
g TPV ; (4.3.1)
dv 1
- — g3 4.3.2
i pr 9%, (4.3.2)
ds
= 0 4.3.3
dt ’ (4.3.3)

where 2 is the unit vector in the vertical direction and g is the acceleration due to
gravity. We consider a basic state that has no motion and satisfies the hydrostatic
balance:

10
0 P (4.3.4)
p Oz
The linearized equations for the perturbations from the basic state are given by
op' ,0p /
. =0 4.3.5
ot +w 9s +pV-v ) ( )
ov’ 1 g
= — Vp - 2 4.3.6
5 SV = 9% (4.3.6)
s’ ,0s
= 0. 4.3.7
ot tw 0z ( )

The equation of entropy (4.3.7) is rewritten by using (1.1.58) as
10p 0p N? |
_ = 0 4.3.8
2ot 0ot * g Y ’ ( )
where N is the Brunt-Viiséla frequency defined by (2.3.11):
0 0 0 10
N29(p> _— g(pr). (4.3.9)
p \ 0s » 0z p\0z 20z
Here, to simplify the coefficients of the perturbation equations, we transform
the variables of the perturbation field as

1 1

~ / ~ / ~ /
p= ,p0, D= 0, v = pv (4.3.10)
vp vp v
Substituting these relations into (4.3.5), (4.3.6), and (4.3.8), we have
0p . 1
SV — v = 0 4.3.11
ot +V-o 2pr , ( )
0v 1
= —-Vp pZ — P2 4.3.12
Bt VP oy PE 9%, (4.3.12)
5 5 2N2
0 _ 200  aNTp (4.3.13)

o o g
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where H,, is the scale height of density, defined by (2.3.15). From (4.3.4) and (4.3.9),
H, is related to the Brunt-Véiséld frequency as shown by (2.3.14).

If we assume that all the coefficients of (4.3.11)—(4.3.13) are constant, we obtain
the dispersion relation. In the case of an ideal gas, this assumption is equivalent to
the isothermal basic state. Letting the temperature of the basic state be T = Ty,
we have

¢ = YRy = ~gH, (4.3.14)
R4T,
H, = "% — @ (4.3.15)
g
2
9 9 kg
N? = - = 4.3.16
H, ¢ H’ ( )
where v = ¢,/c¢y, kK = Rg/cp, and
10p\ " RyT,
H = <_ p) = P - fdbo (4.3.17)
p Oz Py g

is the scale height of pressure.
Substituting the Fourier components

(.5:0) = (p,p0) e F®) (4.3.18)
into (4.3.11)—(4.3.13), we obtain the coefficient matrix for (p,p, v):

—iw 0 ik il im - 3;1/7 5 0
iw  —iw 0 0 o P 0
0 ik —iw 0 0 U = 0
0 il 0 —iw 0 v 0
g im—yy 00 —iw w 0

(4.3.19)

By setting the determinant of this matrix to zero and using (4.3.16), we obtain
1
4 212 2, 2a121.2 _
w [w —c (k: + 4 3> w?+ N k’H} = 0, (4.3.20)

where kg = (k? + 12)'/2. This relation has five solutions for w: w = 0 and four
square roots of

w? o= 5 (k2+ ! ) + \/Cg (k2 + ! )2 — ¢2N2k? (4.3.21)
2 4H? 4 4H?2 A
_ a (k2+ ! )(u:A%), (4.3.22)
2 4H?
where
4N?k2,

(4.3.23)
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This equation expresses the dispersion relations of two types of waves. In the case
of no gravity, g — 0 (i.e., N> — 0 and H, — c0), one of the dispersion relations
approaches w? = c?kQ, which agrees with the dispersion relation of sound waves,
or sound wave mode, (4.2.15). The other approaches w? = 0 as g — 0. It is called
gravity wave mode and expresses the dispersion relation of gravity waves. The
remaining solution w = 0 is vortical mode. In general, the horizontal vorticity of
vortical mode stays constant irrespective of time.

The vertical wave number m can either be a real or imaginary number. The
vertical structure of waves depends on the sign of m?. The solutions with m? > 0
are called internal waves, whereas those with m? < 0 are called external waves. The
vertical structure of internal waves is sinusoidal, whereas that of external waves is
exponential, and the amplitude increases or decreases with height. This means
that appropriate upper or lower boundary conditions are required for the external
waves to be the solutions. Specifically, the gravity waves for m? > 0 and m? < 0
are called internal gravity waves and external gravity waves, respectively. Internal
sound waves and external sound waves are also defined for sound wave mode with
m? > 0 and m? < 0, respectively.

If k* > 4N?/c2, A given by (4.3.23) approaches one. In this limit, the square
of the frequency of internal sound waves ws approaches

1
2 2 (1.2
= k 4.3.24
wS CS ( + 4H§> I ( )
while the square of the frequency of internal gravity waves w, approaches
N2k?2
wy =, B (4.3.25)
k*+, H2

It can be shown from (4.3.22) that the frequency of internal sound waves is always
higher than that of internal gravity waves:

2

2 Cs 2 2
wi > 4H§ > N° > wy, (4.3.26)
since we have ¢ /4H,N? = ~/4k > 1 using (4.3.14)(4.3.16).
The inside of the square in (4.3.21) is rewritten as
ct N2\? N2
D = (k?{+m2+y2 2) +47, (m*+ 07|, (4.3.27)
where
1 g 1/g N? 2—v g
= - = — = 4.3.28
Y 2H, + c2 2 (cg g 2y RyTy’ ( )
which is positive in general. In the special case with
1 N?
m?* = -1 = + (4.3.29)

- 2 27
4H; ¢}
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the frequencies are given by

w? = Ak, (4.3.30)
w? = N2 (4.3.31)

The former is equivalent to the dispersion relation of sound wave mode with no
gravity. The waves corresponding to this mode are called Lamb waves. Since
m? = —v? < 0, Lamb waves are the external waves. The second solution (4.3.31)
expresses oscillation by buoyancy. The frequency of Lamb waves (4.3.30) is equal
to buoyancy frequency (4.3.31) at k%, = N?/c2. In this case, since D = 0, sound
wave mode agrees with gravity wave mode. Lamb waves have the characteristics of
gravity waves if k% < N?/c2, while they have the characteristics of sound waves if
k% > N?/c2.

Let us nondimensionalize the dispersion relation (4.3.20) by setting
ki = csky /N, m* = ¢sm/N, w* =w/N, and 6 = ¢;/2H,N. The nondimensional

dispersion relation is written as
Wt — (B mP2 w4k = 0. (4.3.32)

Figure 4.3 shows the dispersion relation for § = \/7/4x = 1.107. (a) is the relation
between k3, and w* for various values of m* and (b) is the relation between m* and
w* for various values of k};. In (a), the sloping dashed-dotted line represents Lamb
waves with m*2 = 1 — §2. The frequency of gravity wave mode is always w* < 1
and w* — 1 as kj; — oo. (c¢) and (d) show the relations between kj; and m* for
sound wave mode and gravity wave mode, respectively.

4.3.2 Gravity waves in the hydrostatic Boussinesq approximation

To investigate the characteristics of gravity waves, we consider systems that do not
contain sound waves. The following two kinds of approximations are introduced.
First is the system in hydrostatic balance in the vertical direction. In this case, the
vertical component of (4.3.6) is replaced by

ap’ /
= — — . 4.3.
0 9., P9 (4.3.33)

The dispersion relation is given from the horizontal components of (4.3.6), (4.3.5),
and (4.3.8) in the same way as in the previous subsection. Since the time derivative
does not exist in (4.3.33), the dispersion relation becomes a cubic polynomial of w.
It does not contain sound wave mode except for Lamb waves in compressible mode.
Solutions for the frequency of the dispersion relation have gravity wave mode and
vortical mode with w = 0. The dispersion relation of gravity waves is given by

N2k2
W2 = ) "o (4.3.34)
m Jr4H§
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FIGURE 4.3: The dispersion relations of sound waves and gravity waves for the isothermal atmos-

phere for § = \/'7/4/'{ = 1.107. (a) shows contours of m*? = n/2 (n is an integer) as a function of

k%, and w*. The dashed-dotted line represents Lamb waves. (b) shows the contours of k}‘_f =n/2

as a function of m* and w*. (c) represents the contours of w* = n/10 as a function of k}; and m*

for sound waves. (d) is the same as (c) but for gravity waves. In (a) and (b), positive values are

shown by solid curves, negative values by dotted curves, and zero by dashed curves. In (c) and
(d), only positive values of w* are shown.

Second, we consider the Boussinesq system which is anelastic and does not
contain sound waves. With the Boussinesq approximation, change in density is
neglected except for the buoyancy term. The equations for perturbation fields are
written as

Vv = 0, (4.3.35)
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al 1 /

a’; - _pvp'_’; 9%, (4.3.36)
9y N?
ai - =0 (4.3.37)

where p is constant. Eq. (4.3.37) is derived from the equation of temperature
(3.1.17) and the relation between density and temperature (3.1.14) and N? =
ga %z/. The dispersion relation is again a cubic polynomial of w. In particular,
the dispersion relation of gravity waves is given by
N2k2
o= N (4.3.38)
This is formally derived from (4.3.20) with the limit ¢? — oo and H, — oo.

4.3.3 Group velocity and phase speed

The group velocity of gravity waves is given by differentiating the dispersion relation
(4.3.20) with respect to k, [, and m. Using (4.3.22), we obtain the group velocity
as

Ow - k N2—w? . (N? — w?)k? e
Cogx = = 2 = Cpx 2
ook WK Tt (k)
(4.3.39)
Ow _ g wmued oy e (4.3.40)
Cor = = = Cpa . 3.
’ om k* + 4135 K 4135

cgy is also given by replacing k with [ in ¢g,. Phase speeds in the z- and z-directions
are respectively given by

w Cs , 1 \1+A4:2
. = - k , 4.3.41
» k k\/( +4Hg> 2 (4.341)
L w s 1 \1+4:
R (AL 3.

For sound wave mode, we generally have cg;cp, > 0 and cgsc,, > 0, since w? >
cf/lep2 > N?. For gravity wave mode, on the other hand, we have cgycp, > 0 and
Cg2Cpz < 0, since w? < N?. This means that the vertical direction of group velocity
is opposite to that of phase velocity.

Using the Boussinesq approximation, the dispersion relation of gravity waves
becomes w = Nky/|k| from (4.3.38). Group velocity is given by

_ kE N? — w? _ Nkm? _ I N2 —w? _ Nim?
T w2 T kP T 0 k2 kalkP
Nk
g = — o = T UHT (4.3.43)

K’ [k[?
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These correspond to the limit ¢2 — oo and H, — oo in (4.3.39) and (4.3.40). In
this case, we have

cg -k = cogpk+cgyl+cgo.m = 0 (4.3.44)

(i.e., the direction of the group velocity of gravity waves is perpendicular to the
direction of phase velocity). Phase speeds are given by

w NkH c w NkH c w NkH

Cpx = = s = = R z = = .

P k k|k| Py ! I|k| P m m|k|
(4.3.45)

In the case when phase velocity is parallel to the xz plane and the vertical wave
number is large (i.e., m? > k% and [ = 0), group velocity and phase speeds are
simply given by

Cgx = Cpg = o Cgz = —Cpz = — 2 (4.3.46)

These expressions are useful for schematic illustration of the propagation of gravity
waves (see Fig. 4.4).

4.3.4 The structure of gravity waves

To obtain the structure of gravity waves, we consider the phase relations of variables
by expressing i, 0, w, and p in terms of p. From the horizontal components of the
equation of motion (4.3.12), we have

oa  _op 06 9

ot ox’ ot Oy

Differentiating (4.3.11) and (4.3.13) with respect to time, and using (4.3.11)—(4.3.13),
we have the following two relations between w and p:

9 (9 . 2 02 19\ .
ot (83 - V> w = <8m2 + ayQ - Cz 8t2> b, (4348)

02 5\ - o (0 N
(8t2+N)w = 5, (az+l/)p. (4.3.49)

Eliminating w from (4.3.48) and (4.3.49), we obtain the equation for p as

o2 2 1o\ o[ )
Kaﬁ +N2) <3x2 Toge T e 8t2> o (322 _”2)] p =20

(4.3.50)

(4.3.47)

We can see that the dispersion relation (4.3.20) is given by substituting the sinu-
soidal form (4.3.18) into this equation. Next, we have a relation between p and p
using (4.3.12) and (4.3.11) and eliminating «, ¥, and w:

o (o 1 _ L (o 1N
oz " \o:  2m,)?|" ox2 " a2 " \oz  2m,) |V

(4.3.51)
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We also have another relation between p and p using (4.3.13) and (4.3.12) and
eliminating w:

0? 5\ - 10> N2?2/0 1 3
(8t2+N>p - [cgat2_ g (32_2Hp>}p' (4.3:52)

Substituting (4.3.18) into (4.3.47), (4.3.48), (4.3.49), (4.3.51), and (4.3.52), we
have phase relations:

wi = kp, wh = Ip, (4.3.53)
1
wm+iv)w = (w? — k3D, (4.3.54)
CS
(W =N = w(m —iv)p, (4.3.55)
. . 2
2 . ¢ N 2 t .
_ - 4.3.
{w Z(m+2Hp>g]p kH+(m+2Hp> 117, (4.8.56)
@-nNp = “erai(me LYY 5 @asy
w p 2 w i|lm oM, p p. 3.

k l
“ = p o= P, (4.3.58)
w w
1 w? — 32k% w(m —iv)
b= Shp = j 4.3.59
v cgw(m—i—iy)p w2— N2 P ( )
S\ 2 . 2872
() aeeled) A
po= Clp = p- 3.
wai(erQ}{p)g e w? — N?

The spatial structure of the perturbations (p’,p’, v/, v, w’) can be constructed from
(4.3.10) with (4.3.18). For w = 0, we have p = w = 0. This is a vortical mode
with horizontal motions. For w? = N2, we have p = & = © = 0 and m = —iv: the
wave is external. For Lamb waves, in particular, we can see that vertical motion is
always zero @ = 0 by substituting w? = c;k% (4.3.30) into (4.3.59).

The phase relations for waves in the Boussinesq system are given by ¢? — oo
and H, — 0o in (4.3.53)-(4.3.57) and neglecting w? on the left-hand side of (4.3.56):

k l
i1 = i b = P, (4.3.61)

w w

k:%l wm

b= - A D 4.3.62
W om? 2 N b (4.3.62)
. k2 p . mN? p
po= i g - L2 N2 . (4.3.63)

Figure 4.4 shows the phase relations of a gravity wave in the xz section for [ = 0,
k > 0, and m < 0. Note w < N in this case. Figure 4.5 also shows the relation
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between the direction of group velocity and the phase line for four gravity waves
generated from a point source. The phase lines are parallel to the directions of group
velocities and their vertical propagations are opposite to those of group velocities.

Cg

phase propagation

FIGURE 4.4: Structure of a gravity wave for [ = 0, &k > 0, and m < 0 in the xz section. The
directions of group velocity ¢4 and phase propagation are indicated by arrows in the upperright
of the figure. Bold arrows indicate the directions of fluid motions.

%
x o
source Cg k
&\%
FIGURE 4.5: The relation between the wave number vectors of gravity waves and group velocities
in the height-horizontal two-dimensional section. The symbols A, B, C, and D denote four prop-

agating waves generated from the wave source designated by the cross. Arrows with k indicate
wave number vectors and open arrows with ¢4 are group velocities.

™
g
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4.4 Inertial waves

Waves also occur in fluids in the rotating frame without gravity, in which the
Coriolis force works as a restoring force. The governing equations are given from
(4.2.1)—(4.2.3) by setting ® = 0 as

dp

vo= 4.4.1
g TPV 0, (4.4.1)

dv 1
2Q = - 4.4.2
a TRV VP (44.2)

ds

= 0. 4.4.3
i (4.4.3)

We can set the angular

density and pressure: p

velocity @ = (0,0, f/2) without loss of generality. We
assume that the basic state is at rest relative to the rotating frame and has uniform

= const.

perturbation field are written as

and p = const.

Linearized equations for the

%’;l+pV~v’ _— (4.4.4)
aaz'ifv, - ;g];', (4.4.5)
%Z/+fu’ - —;ZZ/, (4.4.6)

aalj - ;?fj, (4.4.7)

613861:—83/: = 0. (4.4.8)

Assuming that the variables (p’, p’,u',v’, w") have the sinusoidal form proportional
to eflkrtlytmz=—wt) 49 (4.2.12), we have the coefficient matrix as

—iw 0 ik il m p 0

ic2w —iw 0 0 0 D 0
0 ik —iw —f 0 Pl = 0 (4.4.9)
0 il f —iw 0 po 0
0 m 0 0 —iw pw 0

The dispersion relation is given by setting the determinant of this matrix to zero:
ww? = (k> + )W’ + 2 fPm?] = 0. (4.4.10)

This is analogous to the dispersion relation in a stratified fluid without rotation
(4.3.20). Eq. (4.4.10) has two categories of solutions for w? other than vortical
mode w = 0. The solution for the larger w? corresponds to sound waves affected
by rotation. The solution for the smaller w? is a new category of waves where the
Coriolis force works as a restoring force. They are called inertial waves.
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The similar dispersion relation can be derived in the case of incompressible
fluids. Linearized equations of the incompressible fluids in the rotating frame are
written as

Vo o= 0, (4.4.11)
ou , 10p

—f = - 4.4.12

g 1Y b ox ( )
o’ 18y

31; +fu = _paZ’ (4.4.13)
/ /

aalt" - 71%0’ (4.4.14)
p 0z

op'
= 0. 44.1
5t 0 (4.4.15)

Substituting the sinusoidal form into these equations, we obtain the dispersion
relation by w = 0 and
2,2
2 [ m
This corresponds to the limit ¢2 — oo in (4.4.10).
We can rewrite the dispersion relation of inertial waves (4.4.10) in non-dimensional
form by setting kj; = cskp/f, m* =csm/f, and w* = w/f as

wr— (kB +mP? D0+ m™? = 0. (4.4.17)

Figs. 4.6 (a) and (b) display contours of m* as a function of k}; and w* and those
of k3§ as a function of m* and w*. (c) and (d) show the relations between kj; and
m* for sound wave mode and inertial wave mode, respectively. These figures are
very similar to Fig. 4.3 for gravity waves if the 2- and z-axes are exchanged.

4.5 Inertio-gravity waves

4.5.1 Dispersion relation

In a rotating system with stratification, both gravity waves and inertial waves exist
in the perturbation fields. In general, the direction of the rotating axis is different
from that of acceleration due to gravity. In such a case, we can consider shear flows
in geostrophic balance as a steady state. As was described in Section 2.4, such a
steady state may be unstable to perturbations and various types of unstable waves
will develop. Here, we do not consider the general perturbation fields in shear
flows. We simply examine the effect of rotation on gravity waves in a stratified
fluid. We assume that the direction of the rotation axis is parallel to that of gravity
and the basic state has no motion. First, we will derive the dispersion relation
in a compressible stratified fluid in the rotating frame. Next, we will see how the
dispersion relation is modified in the Boussinesq approximation.
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FIGURE 4.6: The dispersion relation of sound waves and inertial waves for a fluid with no gravity.

(a) Contours of m*2 =n/2 (n is integer) as a function of k¥, and w*. (b) Contours of k}? = n/2

as a function of m* and w*. (c) Contours of w* = n/10 as a function of k}, and m* for sound

wave mode. (d) The same as (c) but for inertial wave mode. In (a) and (b), positive values are

shown by solid curves, negative values by dotted curves, and zero by dashed curves. In (¢) and
(d), only positive values of w* are shown.

The governing equations in the rotating frame with gravity are given by (4.2.1)—
(4.2.3). As in the previous section, we set the rotation angular vector as @ =
(0,0, f/2) and the acceleration vector of gravity as V® = (0,0, g): both vectors
are parallel. In the same way as in Section 4.3.1, the basic state is at rest with
respect to the rotating frame and is in hydrostatic balance (4.3.4). The linearized
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equations for the perturbation field are written as

801: + ' gg +pV-v' = 0, (4.5.1)
681;’ — = ;g’;, (4.5.2)

aaq;/ + = —;861;/7 (4.5.3)

355/ - ;?fj - ’:g, (4.5.4)

clg 65';/ - a{;’ + J\: o' = 0. (4.5.5)

Substituting (4.3.10) into this equation set, we obtain

Zf +V b 2;1,3@ —_— (4.5.6)
g? —f5 = fgf, (4.5.7)

g? +fa = —gf, (4.5.8)

R S

gf - gf + CE;VQII) _— (4.5.10)

We assume that the basic state is isothermal such that all the coefficients are
constant. Let us seek solutions proportional to cilk-T—wt) o (4.3.18). In this case,
the coefficient matrix is given by

—iw 0 ik il im— .,k

W3\ [P 0

ic2w —iw 0 0 CSéV D 0
0 ik —iw  —f 0 (L = 0
0 il f —iw 0 0 0
g m — 211{‘) 0 0 —iw w 0

(4.5.11)

Setting the determinant of this matrix to zero, we obtain the dispersion relation:

1 f2
4 2 (1.2 2
w{w cs(k: +4Hg+c§>w

1
+ 2 {N%i, + f? (m2 + 4H2>H = 0. (4.5.12)
P

In the special case with no rotation f = 0, this relation reduces to (4.3.20). The
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solutions to (4.5.12) are vortical mode w = 0 and

2
2 _ 5 2
w® = (k +4H2 )
, 1 f2\? 1
+ s k2 — 2 | N2k2 2 2
ﬁ( +4H3+c§> { ntl (mUHzﬂ
(4.5.13)
I (1+A2) (4.5.14)
2 4H? 2 ’ -
where
N2k2 +f2 m +
A= 1- [ ( 4H2)]. (4.5.15)

2
Cg (k2 + 4}15 + Cg)
The solution for the larger w? corresponds to sound wave mode and the solution
for the smaller w? corresponds to gravity wave mode. In the latter case, gravity
waves are affected by rotation; they are called inertio-gravity waves.

The relation between the frequencies of the two modes in the case of N2 < f2
is given as follows. Let w, denote the frequency of sound wave mode and wy denote
that of inertio-gravity wave mode. In the limit of k* — 0 in (4.5.14), we have

2

2 Cs
4.5.1
w; - 4Hg’ (4.5.16)
wg — f27 (4.5.17)
whereas, in the limit of k% — oo, we have

w? = A+ ! + r ~ AAk? (4.5.18)

s s 4HZ =~ 2 s e
w; — ~ N-. (4.5.19)

k + 4H§ + c2

For internal waves with m? > 0, it can be found from (4.5.14) that

2
2 “ S N2 > W2 > f2 (4.5.20)

2
“s 2 = Y =

(i.e., the frequency of sound wave mode is always larger than that of gravity wave
mode for internal waves).
The inside of the square of (4.5.13) is rewritten as
N2 _ fz 2
(k?{—&—mz—&—yz— 2 ) +4(N? = A (m?* + %) |,

S

Cy
4

4
D =

(4.5.21)
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where v is given by (4.3.28). In the special case of m? = —v2, the solutions are
w? = ek + f3 (4.5.22)
w? = N2 (4.5.23)

The former corresponds to Lamb waves affected by rotation. These waves are
external waves and their vertical structure is the same as that of Lamb waves
without rotation. In particular, in the case of k% = (N2 — f2)/c2, we have D = 0;
sound wave mode degenerates to gravity wave mode.

The dispersion relation (4.5.12) can be rewritten by nondimensionalizing with
ky = csku /N, m* = csm/N, w* =w/N, § = ¢;/2H,N, and € = f/N as

W (kA m? 4+ Dtk +2m 6% = 0. (4.5.24)

Figure 4.7 shows this nondimensionalized dispersion relation in the case ¢ = 0.3
and 6 = 1.107. In (a), Lamb waves are shown by the dashed-dotted contour, which
is designated by m*? = 1 — §? starting from w* = ¢ at k37 = 0. The contours in
(c) and (d) are the dispersion relations of sound waves and inertio-gravity waves;
these are very similar to those of the no-rotation field shown in Fig. 4.3 (¢) and (d),
respectively. This is because the effect of rotation is not important in this case for
e=0.3.

4.5.2 Inertio-gravity waves in the hydrostatic Boussinesq
approximation

As in Section 4.3.2, we examine how the disturbance of inertio-gravity waves is
modified in hydrostatic balance and in the Boussinesq approximation. First, we
assume the perturbation field is in hydrostatic balance; using (4.3.33) in place of
(4.5.4) in the equation set (4.5.1)—(4.5.5), we derive the dispersion relation as

w { (m2 + 4[1{2> w2 — |:N2kl2q + f2 <m2 4 4;12):| } = 0. (4.5.25)
p p

Thus, the dispersion relation of inertio-gravity waves is given by

N2k2
w? = a2 (4.5.26)
m®+ g
B
Second, if the Boussinesq approximation is introduced, we only have a solu-
tion for inertio-gravity waves; sound waves are not included in the system. By
introducing Coriolis forces into (4.3.35)—(4.3.37), we have the linearized Boussinesq

equations in the rotating frame as

vV-v = 0, (4.5.27)

/ 1 /
861; R o= - gp’ (4.5.28)

p Oz

ov’ ;o 10p
o tIU = oy’ (4.5.29)
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ow’ 1op p
= — — 4.5.30
5 b Y ( )
a / N2
P = o 45.31
p

ot g

FIGURE 4.7: The dispersion relation of inertio-gravity waves and sound waves for the isothermal

atmosphere in the rotating frame for ¢ = 0.3 and § = 1.107. (a) Contours of m*? = n/2 (n is

an integer) as a function of k3; and w*. (b) Contours of k37 = n/2 as a function of m* and w*.

(c) Contours of w* = n/10 as a function of k}; and m* for sound wave mode. (d) The same as

(c) but for inertio-gravity wave mode. In (a) and (b), positive values are shown by solid curves,

negative values by dotted curves, and zero by dashed curves. In (c) and (d), only positive values
of w* are shown.
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Substituting the sinusoidal form into these equations, we obtain the dispersion
relation as

w [k*w? — (N3 + f2m?)] = o. (4.5.32)

Sound waves are not included due to the Boussinesq approximation. Only vortical
mode w = 0 and inertio-gravity wave mode exist. Formally, we may derive (4.5.32)
from (4.5.12) by taking the limits ¢2 — oo and H, — oco. The dispersion relation
of inertio-gravity waves is
N2]€2 2,,2
W= it frme (4.5.33)
k

From this, we generally have N2 > w? > f2.

4.5.3 Group velocity and phase speed

Differentiating the dispersion relation (4.5.12) with respect to k and m, we have
group velocity in the horizontal and vertical directions:

Ow ¥k‘ N2—w2 A_l
Ca; = = 2 2
’ Ok wk2+41§g+{-g
k2 N2_ 2
= Fop g oy o AT (4.5.34)
Wk +4H§+c§
a 2 f2
Cor = woo_ :thWIfszi;
om WE At g e
2 2 _ g2 )
= dep Y e, (4.5.35)

Z 2 72 1 f?
w k + +
4H? c2

where A is given by (4.5.15). Note that ¢p, = w/k and ¢,, = w/m are the phase
speeds. The lower signs of these equations represent the group velocity of inertio-
gravity waves. In the case f2 < w? < N2, in particular, we have cgzcp, > 0 and
€g2Cp> < 0. The latter means that the direction of the vertical component of group
velocity is opposite to that of phase velocity.

Group velocity in the Boussinesq approximation is given in the limits ¢ — oo
and H, — oo of the above equations. Using A = 1 and (4.5.33) in this case, group
velocity is written as

o kN?—w? (N? — f3)km? (4.5.36)
9T Ty k2 - (NQk%I+f2m2)1/2\k|37 RiR
. _ _mw2*f2 _ _ (N2*f2)mk?-1 (4537)
9z w k2 (NQk%I+f2m2)1/2\k|3' e

To this approximation, we have ¢g - k = 0; the direction of group velocity is per-
pendicular to that of phase velocity, similar to (4.3.44). Phase speeds are written
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as
w (NQIC%_I 4 f2m2)1/2
. = - 7 4.5.38
w (NQI{?%I + f2m2)1/2
.= - , 4.5.39

In the case when f < N and the vertical wave number is much larger than the
horizontal wave number m? > qu, we have approximation expressions

= Nk = N 4.5.40
T T m(NER2 4 )iz T PTN2ER 4 (4.5.40)
N2k? N2k?
Cgz = — = —Cp: , (4.5.41)
mQ(NQkQ +f2m2)1/2 N2k2+f2m2

where we have assumed that the direction of phase velocity is parallel to the xz
plane, [ = 0, for simplicity. These expressions are frequently used for illustration of
inertio-gravity waves.

4.5.4 Structure of inertio-gravity waves

The structure of inertio-gravity waves is given in a similar way to that in Section
4.3.4. First, we express 4, v, w, and p in terms of p. From the horizontal components
of the equations of momentum, (4.5.7) and (4.5.8), we have

0? . g 0 0\ .
(atQ + f2> u - (612 Ot + f6y> b, (4542)

0? . a 0 0\ .
(8152 +f2> b o= — (8y ot~ f@x) p- (4.5.43)

Eliminating p from (4.5.6) and (4.5.10), and eliminating @ and o using (4.5.42) and
(4.5.43), we have the relation between w and p as

2\ (0N _ 0(O 0 1
ot 9z T oot \ox2 Tayr e )P

(4.5.44)

Eliminating p from (4.5.9) and (4.5.10) gives another relation between w and p as

2\ ) )

which is the same as (4.3.49). We obtain a single equation for p by eliminating @
from (4.5.44) and (4.5.45):

0 0? 5 o? 0?2 10* f?
ot {(3152 R ) <8x2 + o2 2otz c§>

+ (aa; + f2> (aa; — Vz)} p = 0. (4.5.46)
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We can derive the dispersion relation (4.5.12) by substituting the sinusoidal form
into this equation.

The relation between p and p can be derived from (4.5.6), (4.5.42), (4.5.43), and
(4.5.9) by eliminating @, ¥, and w:

# L[ L0 1Y ]
o2 oz " \ox  2m,)7?|"

9 (8 9 02 N\ [0 1\?

— p. 4.5.47
ot (ax2 * ay2> * (8t2 +f > (az 2Hp> P (4:5.47)
We also have another relation between p and p by eliminating w from (4.5.9) and
(4.5.10):

0? 2\ -~ 102 N2?2/90 1 _
<6t2 +N >p = |:C§ PP J (32 — 2Hp>:| D, (4.5.48)

which is the same as (4.3.52).
Substituting the sinusoidal form (4.3.18) into (4.5.42), (4.5.43), (4.5.44), (4.5.45),
(4.5.47), and (4.5.48), we have phase relations between the variables:

(W= f)a = (kw+ifl)p, (W = A0 = (lw—ifk)p, (4.5.49)
(W? = A (m+iv)n = 012w(w2 — k% — )P, (4.5.50)
(W =N = w(m —iv)p, (4.5.51)

(w? - f2) [w2—z‘(m+ 2;1,3)9} p

— lw%f{ + (W? = f?) <m + 2;{0)21 p,  (45.52)

1 i c2N?
2 NP 2, - ” .
(W*=N*p = > {w +z<m+ 2Hp> g }p. (4.5.53)
In the case w # f and w # N, we can solve them in terms of p:
R kw+ifl . R lw—1ifk .
w2—f2p’ vo= w2—f2p7
R 1 w? — Ak - 2 w(m —iv)
w o = w . \pP = D,
27 (w2 = fA)(m+iv) w? — N2

Wk + (w? — f?) (m+ zép)2 )
(w2 — f?) [uﬂ —1 (er QIzp)g]p

Pt i (m g, ) 7
- & e 5 (4.5.56)
The structure of the perturbation field (p’,p’,u’,v’,w") can be constructed using
these expressions with (4.3.16) and (4.3.10).

(4.5.54)

(4.5.55)
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We obtain phase relations in the Boussinesq approximation by taking the limits
¢ — oo and H, — 0o in (4.5.49)(4.5.53), and neglecting w? in the brackets [ ] of

S

the left-hand side of (4.5.52):

N kw+ifl . lw—1ifk .

u = w2 — f2 p, voo= w? — f2 b, (4557)
wk? wm

vo= - p = D 4.5.58

W 2 — f2ym? 2 neb (4.5.58)

R ‘w2k2 + w2*f2 m2ﬁ ) mN2 ]3

po= i M 2(_ ) ) = 0, (4.5.59)
(W= f2)m g w?—N?g

Figure 4.8(a) illustrates the structure of an inertio-gravity wave in the special case
for [ = 0; in this case, the velocity components reduce to

kw L fk B wk?
w2 — fzp’ vo= sz _ f2p7 - (w2 _ fz)mp'
(4.5.60)

ﬂ:

Figure 4.8(b) shows a time change in the horizontal velocity vector at point P shown
in (a). It is called a hodograph. This shows an anticyclonic change of the velocity
vector for the northern hemisphere f > 0. We have w = f cos ¢, where ¢ is the
inclination of the phase line.

() (b)

Ce f

phase propagation

FIGURE 4.8: (a) Structure of an inertio-gravity wave for [ = 0, k > 0, and m < 0 in the zz
section for f < w < N, where w = fcos¢. The directions of group velocity and phase velocity
are shown by arrows in the upper right of the figure. Solid arrows indicate the directions of fluid
motions. Fluid motions in the y-direction are shown at the center of the dotted lines. (b) A
hodograph showing the anticyclonic cycle of the velocity vector on a horizontal plane through
which an inertial gravity wave passes at P as shown in (a). Note this figure is the case for f > 0.
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4.6 Rossby waves

In general, the linearized equations of fluids about a certain basic state have five
independent solutions. This means that the dispersion relation can be solved for
five frequencies. In particular, in the case of a basic state of no motion we have a
solution with w = 0, in which vorticity remains constant irrespective of time. It
is appropriately called wvortical mode. If the basic state has a nonuniform vorticity
field, on the other hand, vortical mode becomes propagating wave mode. Such
waves are called Rossby waves.

First, we characterize Rossby waves in a general form. Rossby waves can be
viewed as the propagation of disturbances of potential vorticity. Potential vorticity
is conserved under adiabatic and frictionless conditions:

dP
dt

The general form of the equation of potential vorticity is considered in Section 1.3.4
(see (1.3.42)). Let us consider a steady basic state in which potential vorticity P
and velocity v satisfy

v-VP = 0. (4.6.2)

) (4.6.1)

From (4.6.1) and (4.6.2), thus, we have the linearized equation of the perturbation
of potential vorticity as

(aat—I—v-V) P +v'-VP = 0, (4.6.3)

where P’ = P— P and v = v—w. In general, the perturbation of potential vorticity
P’ is expressed by the perturbation of velocity v’ and that of other conservative
quantities, such as potential temperature. In the following arguments, we assume
that P’ can be expressed only by v’:

P = C{v'}. (4.6.4)

In this case, the two equations (4.6.3) and (4.6.4) can be solved for the two unknown
variables P’ and v’. Substituting the sinusoidal form into these equations, we will
obtain a single solution of the frequency w.

If the gradient of P is zero, (4.6.3) becomes

o .
<at+v~V)P = 0. (4.6.5)

The solution is given by P’ = const. along the basic flow v. This corresponds
to vortical mode. If P has a nonzero gradient, vortical mode becomes a solution
of propagating waves. For instance, let us consider the case in which P has a
gradient in the y-direction (latitude) with 8 = dP/dy. The velocity field is given
by v = (u, 0,0) such that (4.6.2) is satisfied. Letting v’ = (u/,v’,0), we write (4.6.3)
as

(gt + uaax) P +p = 0. (4.6.6)
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In the following subsections, we use this form of the linearized equation of potential
vorticity.

As two special cases for (4.6.4), we consider two-dimensional nondivergent equa-
tions and the three-dimensional quasi-geostrophic equations. Two-dimensional
nondivergent equations provide a simple example of Rossby waves. Using three-
dimensional quasi-geostrophic equations, the propagation of Rossby waves in a
stratified fluid can be examined. In both cases, we introduce the (-plane approz-
imation on which the Coriolis parameter varies in the y-direction. In particular,
when the basic state is at rest, the gradient of P is equal to the change in Coriolis
parameter, [3.

4.6.1 Two-dimensional Rossby waves

Two-dimensional nondivergent equations (or barotropic equations) are written as
follows:

du 1 9p
_ - _ 4.6.

P 2o O (4.6.7)
dv 1 0p

= - 4.6.
i + fu oo Dy’ (4.6.8)
du  Ov

= 4.6.
O + ay 0, (4.6.9)

where pg is constant and f is the Coriolis parameter in the S-plane approximation,
given by

I = Jfo+ By, (4.6.10)
and the Lagrangian derivative is given by
d 0 0 0
= . 4.6.11
dt 6t+u3x+vay (4.6.11)

From (4.6.7) and (4.6.8), the vorticity equation, or the conservation of absolute
vorticity, is given by

d(¢+ f)
= 4.6.12
- 0 (46.12)
where vorticity is defined as
dv  Ou
= — . 4.6.13

If we consider the dispersion of Rossby waves, the conservation of absolute vorticity
(4.6.12) in two-dimensional nondivergent equations plays the same role as the con-
servation of potential vorticity (4.6.1).7

fTwo-dimensional nondivergent equations are equivalent to three-dimensional nondivergent
equations with no vertical velocity w = 0. In this case, the vertical coordinate z is a conserved
quantity since ‘éf = w = 0. Therefore, if one chooses ¥ = ppz in the definition of potential
vorticity (1.3.33), potential vorticity is identical to absolute vorticity.
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When there is no basic zonal wind, linearized equations are written as

ou 1 Jp
- = - 4.6.14

o 1Y 9o 0 ( )
v 1 0p

= — . 4.6.15
g T 20 Oy ( )

The corresponding linearized vorticity equation is

a¢

= 0. 4.6.1
ot + pBv 0 (4.6.16)

From this, we see that vorticity may not be steady due to the S-effect. Owing to
the nondivergent condition (4.6.9), we can introduce the streamfunction :

oY oY
- _ = . 4.6.1
u oy’ v O (4.6.17)
Thus, vorticity is expressed as
0? o?
= 4.6.1
¢ = (gt o) b (1.6.18)
and the vorticity equation (4.6.16) is written as
a9 (02 0? 0
= 0. 4.6.1
L’% (3x2+3y2>+ﬁ3x]w 0 (4.6.19)

Substituting a sinusoidal solution
) o= dpeilbrtlymet) (4.6.20)

we obtain the dispersion relation:

kg
= - . 4.6.21
“ k2 + 12 (4.6.21)
The types of waves described by this dispersion relation are called Rossby waves, or
nondivergent Rossby waves. Phase speeds in the x- and y-directions are expressed
as
w 1] w Bk
. = = — = = — . 4.6.22
P =g K242 T 1(k2 + 12) (4.6.22)
Since cp; < 0, nondivergent Rossby waves always propagate westward. Group
velocity is given by
Ow B(k* —1?) 0w 208kl

N A T (4.6.23)

TIn Section 17.3.3, we will consider the propagation of Rossby waves under the condition that
the basic wind u has nonzero shear.
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Introducing the length scale of a Rossby wave L, we obtain the nondimensional
dispersion relation from (4.6.21) with k* = kL, I* =L, and w* = w/(L:

* k*
w = — k*Q + l*2 , (46.24)
which is rewritten as
2
1 1
k* 2 = . 4.6.25
( * 2w*> + 4uw*2? ( )

Figure 4.9 shows this relationship. The contours of constant w*? are circles with
radius 1/2w* at the center (—1/2w*,0). Every circle passes through the origin (0, 0).
Figure 4.10 shows the relation between group velocity and phase lines. Although
the direction of group velocity is outward from the wave source, all phase speeds
have a westward component.

We now consider the structure of Rossby waves. Using (4.6.17) and (4.6.18),
we express the variables in terms of the streamfunction ¢. Substituting (u,v,() =
eilkztly=wt) (5 () into these equations, we have the phase relationships as

a = —ily, b = ik, (4.6.26)

¢ — (K2 + 12)3. (4.6.27)

Let us define the geostrophic pressure p, that is in geostrophic balance with the
velocity components:
1 Opg 1 Opg

—fov = — Do Oz fou = — oo Oy (4.6.28)

As shown below, we may have a different choice of geostrophic balance. However,
we will obtain an approximate pressure field here. Substituting py, = eilketly—wt)
XPg gives

Py = fopor). (4.6.29)

The relation between group velocity and the directions of propagation of a Rossby
wave is shown in Fig. 4.11. Geostrophic pressure is also shown here.

In this case, total pressure p is different from geostrophic pressure py. Actually,
p must satisfy the divergence equation, which is given from (4.6.14) and (4.6.15) as

1 [0? 92

—fC+pPu = — + . 4.6.30
FC+ 8 o o) (1.6.30)
Precisely, p is not a simple sinusoidal form since f depends on y. If we assume that
f is constant fj in this equation, we obtain an approximate solution of pressure in
the form p = e!FHy=wt)5 where

6l

K242 poth. (4.6.31)

R . Bl 3 L
p = (fo-HkQJrl2 poY = pgti



Sec. 4.6] Rossby waves 111

FIGURE 4.9: The dispersion relation of Rossby waves in two-dimensional non-convergence equa-
tions. (a) shows the contours of [*2 as a function of k* and w*. (b) shows the contours of w* as
a function of k* and [*. The contour interval is 0.5. Positive values are shown by solid curves,
negative values by dotted curves, and contours of zero value by dashed curves. The dashed-dotted

curves in (a) are positions where g;’* = 0 is satisfied.

B C

FIGURE 4.10: The relation between the wave number vectors of Rossby waves and the group

velocities in two-dimensional nondivergent equations. The symbols A, B, and C denote three

propagating waves in three directions relative to the wave source denoted by the cross. The

diagram shown at the left bottom represents the contour of constant w as a function of k£ and .
Bold arrows are wave number vectors and open arrows are group velocities.
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Ce

phase propagation

FIGURE 4.11: Structure of a two-dimensional nondivergent Rossby wave for k < 0 and [ < 0. The
direction of group velocity is shown by the arrow with ¢4. The direction of phase velocity is the
same as the wave number vector k.

The second term on the right-hand side is regarded as an ageostrophic component
of pressure, which will be denoted by p,.

Generally, geostrophic balance is not uniquely determined. The geostrophically
balanced state between ug, vy, and p, is arbitrarily chosen; the only requirement is
that ageostrophic components u, = u — ug4, v4 = v — vy, and p, = p — py, must be
smaller than geostrophic components. In the above derivation, the geostrophic pres-
sure p, is directly defined from the velocity field v and v; in this case, ageostrophic
winds are identically zero: u, = v, = 0. In contrast, we may define geostrophic
winds, ug and vg, from the pressure p such that p, = 0.

The general form of geostrophic balance is written as

B 1 Opy
—fovg = "o Oz (4.6.32)
— 1 Opg
foug = o Oy (4.6.33)
bg = fopo¢g7 (4634)
_ Ovg Ouy o? 0?
G = oxr oy (8x2 + Oy Vo (4.6.35)

where 14 and (; denote the streamfunction and vorticity of the geostrophic field,
respectively. If ageostrophic components are smaller than the geostrophic compo-
nents and Sy is smaller than fo, (4.6.14) and (4.6.15) become

au o 1 apa

atg — fova — ﬂyvg = 0 or (4636)
8vg _ 1 apa
ot + foua + Byuy, = T (4.6.37)

These should be compared with (3.2.24) and (3.2.25) of quasi-geostrophic equations
(Section 3.2.2). For this approximation, the vorticity equation is written in the same
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form as (4.6.16):

a¢,

atg + ﬂvg = 0. (4.6.38)
From this, the dispersion relation of Rossby waves can be given in the same way as
(4.6.21).

When the geostrophic pressure p, is defined from the velocity field by choosing
ug = u and v, = v, py becomes different from the pressure p as shown by (4.6.31).
Instead, in the case that p, = p and p, = 0, the velocity field becomes different
from geostrophic winds. Substituting p, = 0 in (4.6.36) and (4.6.37), ageostrophic
components are expressed as

1 O0vg 7 By 1 0%, By O,
e foot ~ " T T feotor T gy oy (4.6.:39)
1 OJug _ By L 1 327/15; B By 01y
S for £ T T ooy fo ox (4.6.40)

It can be shown from these equations that ageostrophic winds are also nondivergent;
this is a peculiar characteristic of two-dimensional nondivergent equations.

4.6.2 Rossby waves in a stratified fluid

‘We next consider Rossby waves in a three-dimensional fluid. Unlike two-dimensional
nondivergent equations, velocity components in a three-dimensional fluid are not
expressed by a streamfunction, since there exists divergence or
convergence in general. In the quasi-geostrophic equation system, however, the
zero-th order velocity in Rossby number expansion is a geostrophic wind, so that
the streamfunction can be introduced. Rossby waves are clearly defined using the
streamfunction.

Let us consider linear equations for a perturbation field from the basic state
at rest. Quasi-geostrophic equations are given by (3.2.24)—(3.2.28), and the corre-
sponding potential vorticity equation is given by (3.2.32). Here, the Coriolis pa-
rameter is denoted by f = fo + By. From (3.2.38), the quasi-geostrophic potential
vorticity of the basic state and that of perturbation are written respectively as

0 = fotBy (4.6.41)
0? 0? 10 fO2 9
I = s . 4.6.42
<8m2+8y2>w+psaz ('D N2 8zw> ( )
From (3.2.32), the linearized potential vorticity equation becomes
0 0
T % = o 4.6.43
o U oy (4.643)

The geostrophic velocity components u(?) and v(°) can be expressed by the stream-
function :

NOR— W0 — 9V (4.6.44)
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Using the above relations, (4.6.43) can be written as a single equation for ¢:

0 0? 0? 10 2o 0
N = 0. 4.6.45
ot [(8x2+3y2>w+p582 (p N282w>}+681’w ( )
For simplicity, we consider the case when p; and N? are constant. Substituting
11[} _ Jjei(szrlermszt) (4646)

in (4.6.45), we obtain the dispersion relation of divergent Rossby waves:

wk + 1+ *mH) + 8k = 0, (4.6.47)
where
fo
= . 4.6.4
€ N (4.6.48)

Thus, the frequency of a Rossby wave is given by

Bk
W= e o (4.6.49)

the phase speeds are

w B
= = = ) 4.6.50
@ k k2 412 4+ e2m?2 ( )
w Bk
- - = 4.6.51
Py l 1(K2 + 12 + €2m2)’ (4.6:51)
w Ok
= = - = ) 4.6.52
Cp m m(k? + 12 + &2m?) ( )
and the group velocity is
0 2k k2 12 _ e2m2
Cp = o= - wrh oo S (4.6.53)
ok k2 + 12 + e2m2 (k2 + 12 + £2m2)2
Ow 2w 28kl
- - = = 4.6.54
Cov ol k2 + 12 + e2m? (k2 + 12 + £2m?2)2’ ( )
Ow 2e2mw 26e%km
z = = - = . 4.6.55
Cqg om k2 412 4+ e2m?2 (k2 + 2 +€2m2)2 ( )

Let L be the horizontal length scale of a Rossby wave. Setting k* = kL, [* = [L,
and m* = mL, we rewrite the dispersion relation in nondimensional form

* k*
w = — ]{;*2 + l*2 + ng*Q 5 (4656)

which can be rewritten as

1\? 1
k* "2 = —2m*2, 4.6.57
( * 2w*> * 4*2 sm ( )
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This indicates that contours of w*? are circles with their center at (—1/2w*,0) and
radius /1/4w*2 — e2m*2. Figure 4.12 shows the dispersion relation in the case
em™ = 0.3.

The structure of a divergent Rossby wave can be expressed by using the stream-
function . From (3.2.30), (3.2.36), and (3.2.40), we obtain

0? 0?
©  _
¢ (e * o)
o _ Jo g _ _ 0o, 0
™ 00’(/}7 g fO azi/%
2
W _ _ 9 949 _ _So 0
v N26, ot N2 groz""
Substituting the sinusoidal form
(@, 0@, w®@, 00 7O 4O (O = (@,0,4d,0,7,, el " HvTm),
into the above relations, we obtain
@ = —idd b= kg, &= 109,
o
2 2, 12\, A b, - . Jo »
¢ = -+, 0= —im fop, @ = —wm,
g N

The structure of a Rossby wave given by the above phase relations for the case
k< 0,1<0,and m < 0 is shown in Fig. 4.13 ((a) shows the phase relation in the
horizontal plane, while (b) shows that in the vertical section).
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FIGURE 4.12: The dispersion relation of a Rossby wave in a three-dimensional stratified fluid. (a)
Contours of 1*2 as a function of k* and w*. (b) Contours of w* as a function of k* and I*. The
contour interval is 0.5. Positive values are drawn by solid curves, negative values by dotted curves,
and the contours of zero value by dashed curves. The dashed-dotted curves are positions where

"
g:’* = 0 is satisfied.
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(a) (b)

k<0, 1<0, m<0 k<0, 1<0, m<0

V- — A T—
\U+ T+ U\@ Y+ T+ v_u+\\.c+
A\ m— . v v A\ — v+ < ¢ v

\ 0+ - ot
: w+ S

Vot v @ Y U §+\\ TW+

\ 06— /\ — 0—
e a e
. '

6+ b4 \ 0+
w+ Ce T w+ Ce
X

FIGURE 4.13: Structure of a Rossby wave in quasi-geostrophic equations for £ < 0, [ < 0, and
m < 0. (a) The structure in the zy section, and (b) the structure in the xzz section.

4.6.3 Propagation of Rossby waves

The mechanism of propagation of Rossby waves can be interpreted using the
schematic figure depicted in Fig. 4.14. The right-hand side of the figure is the
profile of the potential vorticity (PV) of the basic field; the value of PV increases
from the bottom toward the top of the figure. Imagine a streamline depicted by
a wavy curve; the positive vortices with clockwise flow are located at the ridges
of the wave, while the negative vortices with counterclockwise flow are located at
the troughs of the wave. In this case, a secondary flow is induced in the direction
depicted by the filled and open arrows between the ridges and the troughs. If the
induced flow is in the same direction as the gradient of PV (upward), the smaller
PV is advected from the lower side. On the other hand, if the induced flow is in
the opposite direction to the gradient of PV (downward), the larger PV is advected
from the upper side. As a result, the phase of vorticity propagates to the left side
(westward), and the wavy streamline also propagates westward.

PV

OO

FIGURE 4.14: Schematic figure of propagation of a Rossby wave. The right-hand side is a distri-

bution of the basic PV, the wavy curve is a streamline, + and — are the signs of vortices, and

the filled and open arrows indicate induced secondary flows by the vortices. The wave propagates
westward (left) by the secondary flows. (Courtesy of Dr. Takayabu.)




Sec. 4.6] Rossby waves 117

Let the gradient of the basic state PV be denoted by P,, where the y-axis
is taken in the direction of the gradient of PV. (The y-axis is regarded as the
northward direction.) A perturbation of PV induced by a displacement 7 in the
y-direction is given by

If the effect of stratification is negligible, the change in PV is expressed by the
change in relative vorticity (. In this case, northward velocity induced by the
perturbation of vorticity is given by

% (A~ Py, (4.6.59)

%

where A is the wavelength. During the time interval v’/7n, the wave propagates
westward at a distance of one wavelength \; then the phase speed is given by

/
c o~ = ~ = Py (4.6.60)
n
This corresponds to the phase speed of a two-dimensional nondivergent Rossby
wave ¢p, in (4.6.22), if P, is replaced by 3.

The mechanism of meridional and vertical propagations of Rossby waves can
also be inferred from Fig. 4.14. This is schematically shown in Fig. 4.15. As in
Fig. 4.14, we assume that P increases with y. At first, a packet of Rossby waves is
confined to region A and no disturbances exist in region B that is adjacent to A.
Secondary flows induced by Rossby waves propagating westward in region A have a
meridional extension A in the y-direction and have a vertical depth H = (f/N)X in
the z-direction. As a result, wavy disturbances are generated in region B. In turn,

phase lines

yorz

PV B

FIGURE 4.15: Schematic figure of latitudinal and vertical propagations of Rossby waves. Region

B is located in either a northern or upper adjacent region to A. When a Rossby wave propagates

from region A to region B, the secondary flows in A induce displacements in B and the phase lines
are tilted to the west.
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the waves in B also induce secondary flows in A, which reduces the amplitude
of the displacements in A. Thus, the wave packet propagates from the original
region to adjacent regions in both y- and z-directions. In Fig. 4.15, since the
wave propagates westward, the phase lines are tilted westward in the upward and
northward directions.

4.7 Waves on a sphere

Linearized primitive equations can be divided into equations of horizontal and verti-
cal structures. Disturbances in horizontal directions are described by shallow-water
equations. The vertical structure equation determines the vertical profiles of the
disturbance if upper and lower boundary conditions are prescribed. In this section,
we first derive a general form of the governing equations of waves by linearizing
primitive equations on a sphere. Then, we discuss approximate forms in the mid-
and low latitudes.

4.7.1 Shallow-water equations and the equation of vertical structure

We consider primitive equations on a sphere (3.3.15)—(3.3.18) and (3.3.5). Lin-
earized equations about a state at rest are written as

ap +w,@p n 1 ow L 1 9 (v cos ) + ow'| 0
ot 8z P Rcosp ON  Rcosyp dp v 0z -
(4.7.1)
ou’ , 1 1 9y
— = — 4.7.2
ot Jv p Rcosp ON’ (472)
ov’ , 110p
= - 4.7.
ot + fu DR Op’ (4.7.3)
1 apl pl
0 = - — 4.7.4
po: Y (4.7.4)
1 9y’ ap) N?
_ = 4.7.
2 ot ot + g pw' =0, (4.7.5)

where the Coriolis parameter is defined as f = 2{2sin ¢ and the linearized equation
of entropy (4.3.8) is used. Substituting from (4.3.10) into the above equations yields

9p 1 oi 19 a1\ .
ot + Recos o A + Rcos@@(p(vcosgo) + (82 — QHP> w = 0, (4.7.6)
ot o 1 0p

ot fo = 7Rcos<p o\’ (4.7.7)
0 _ 10p

ot e = ROy’ (4.7.8)
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) 1\ . .
0 = —(62—2Hp)p—pg, (4.7.9)

Lap_9p  N?

2ot ot g
Eliminating p from (4.7.6), (4.7.9), and (4.7.10), we have the following two equa-
tions:

= 0. (4.7.10)

o (0 _ 2~
ot (82 +u>p+N w = 0, (4.7.11)
10p 1 du 1 9

. 0 .
c2 ot * R cosp OA * Rcosy Op (9 cos o) + (32 a V) @ =0 (4T
where (4.3.16) and (4.3.28) are used. If ¢4 is independent of height (i.e., in the case
of the isothermal atmosphere), (4.7.7), (4.7.8), and (4.7.12) have solutions in which
@, U, and p are all proportional to a single function of z. In addition, from (4.7.9),
p and p are proportional to the same function of z, y, and ¢. Thus, these variables
can be expressed in the following forms:

ﬁ(m,y,z,t) = -73 'Y, ) (Z>7 ﬁ(x,y7z7t) = ]3(.%‘7y,t>Z(Z>7
a(z,y,z,t) = a(z,y,t)P(z), o(x,y,z,t) = o(x,y,t)P(z),
w(z,y,z,t) = w(x,y, )W (z). (4.7.13)

This kind of expression is not available when ¢; depends on height (i.e., the basic
state temperature is not uniform). If ¢, is formally regarded as constant, or at the
limit of nondivergence ¢; — oo, we can similarly separate the variables.

Substituting (4.7.13) into (4.7.11) and (4.7.12) and separating the variables, we
obtain

1op ) d N
1 ey(4)] - a i
C1[10p L N
b |20t Rcosp O\ Rcosp dp veosy
1 /d
= p (dz - V> W = 027 (4715)

where C] and Cy are constants. Without loss of generality, we can choose
Cl = gh, 02 = 1. (4716)

Here, h is a constant whose dimension is length or height. Note that h can be either
positive or negative. Thus, we obtain the equations for vertical structure:

d N2
(dz +u) P = - W, (4.7.17)

(dci - u> W = P (4.7.18)
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These equations are rewritten as the equations for P and W:

2 N
— P = 4.7.1
(d22+gh u> 0, (4.7.19)
2 N
— W = 0. 4.7.20
<dz2 Tgn ) (4.7.20)

We obtain an infinite set of eigenvalues ng ; and the eigenfunctions W if appropriate

boundary conditions are given to W. In the case of the atmosphere, the boundary
conditions can be given as’

W o= o0, at 2 =0, (4.7.21)
|W] is finite, as z — 00. (4.7.22)

If v is constant, a solution that satisfies the boundary conditions is given by
W(z) = Wysinmz, (4.7.23)
where W, is constant and m is a real number. In this case, we have from (4.7.20)

N2
h = . 4.7.24
9 m2+u2 ( 7 )

Substituting (4.7.23) into (4.7.18), we obtain the structure of pressure as
P(z) = Wy(mcosmz—vsinmz). (4.7.25)

In a similar way, we obtain the vertical structure of density from (4.7.9)
1/d 1
Z = - - P
(2) g (dz 2H p>

Wo 2 14 . 1
— — . 4.7.2
J [(m 2Hp>smmz m(V—I—QHp)cosmz} (4.7.26)

The equations for horizontal structure, on the other hand, are given from (4.7.7),
(4.7.8), (4.7.14), and (4.7.15):

g?*fﬁ B *Rciwgi’ (4.7.27)
gjﬂca - *;zgg’ (4.7.28)
<01§+glh> gf Rciscpngchiwaw(ﬁcow) = 0, (4.7.29)

g]; = oh, (4.7.30)

TThe condition (4.7.22) is a little too restrictive. Since w oc v/pW and p — 0 as z — oo, W
need not remain finite in order for w to be finite. In the special case that @w = 0, no boundary
condition is required for W. In this case, we have h — oo and P = Pye™¥* from (4.7.17).
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where (4.7.16) is used. Substituting (4.7.24) and (4.3.29) into the coefficients of p
in (4.7.29), we obtain

1 11 1/, 1
= = . 4.7.31

gH 2" gh N2 (m + 4H3) (4.7.31)
We have defined a new constant H on the left-hand side. Linearized shallow-water
equations on the sphere can be derived from (4.7.27), (4.7.28), and (4.7.29) with
the further definition of n by

po= gn (4.7.32)
If we omit the symbol ~, we finally have the following set of equations:

ou g On

ot o= " Rcosgp 0N (4.7.33)
g; b = _19%227 (4.7.34)
g? = Rclosgo ZZ + Rcisap 8?,0 (veos)| (4.7.35)
g’z — hw (4.7.36)

These are equivalent to linearized shallow-water equations. Solutions to these equa-
tions are considered in the next subsection.

4.7.2 Spherical waves

Linearized shallow-water equations (4.7.33)—(4.7.35) have solutions for spherical
waves. Using p = sin g, we can rewrite the equations as

ou g an

o V= TRY1— 2 0N (4.7.37)
g: tfu= _g\/lR_ o 227 (4.7.38)
Z;] - R\/ll_ 2 gz + leau (v\/l —/P)} : (4.7.39)
From (4.7.37) and (4.7.38), we obtain
(g; + f2) u o = _R\/lg, 2 {ai; +20u(1 — “2)3(1] n, (4.7.40)
(g; + f2> vo= 7R\/1g— 2 {(1 - ”2)8227: - 2Q“aaA] n. (4.7.41)

Since the coeflicients of these equations depend on the latitudinal coordinate u, we
cannot assume a simple sinusoidal solution in the latitudinal direction. To obtain
functions on pu, we seek a solution in the form

(wyo,m) = (@), B(u), () €A-2070), (4.7.42)
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Frequency is written as w = 2Q0o and the Coriolis parameter is written as f = 2Qu.
Thus, (4.7.40) and (4.7.41) can be solved for @ and ¢ as

5 1 1 g o d |

- 1 4.7.4
= e et o uti=i) ) | (47.43)
- 1 1 g oy d _

S - . 4.7.44
0] 2002 — 112 R\ /1 — 12 [U( N)du-ﬁ-/w}?? ( )

Substituting (4.7.42) into (4.7.39) and substituting (4.7.43) and (4.7.44) into the
result, we obtain the Laplace tidal equation:

d (1—u2 d 1 242
I B _s(o u)+0 veba = o,
dp \o? —p?dp) o?—p* | o(o®+p?)  1—p?
(4.7.45)
where

402 R?
= 4.7.4

gH (4.7.46)

is called the Lamb parameter.

The Laplace tidal equation (4.7.45) is not easy to solve in this form. We derive
the equations of vorticity and divergence to obtain the solutions for spherical waves.
Let us define the streamfunction ¥ and the velocity potential ® so as to satisfy

1 09 10V
= - 4.7.4
“ Rcosp O\ R Op’ (4.7.47)
100 1 ov

= . 4.7.4
R8@+Rcos<p8)\ (4.7.48)

Vorticity and divergence are written as

1 ov 0 2
_ B _ o 474
C R cos 90 |:6A 890 (u COS (p):| VI’I ? ( 7 9)
1 ou 0
§ = = Vio 4.7,
Reos [8)\ + aclo(vcoscp)} Vi, (4.7.50)
where
1 1%} 0 1 07
y o= : 4.751
Vi R2cos g {&p (COSSO&,O) + COS 8)\2} (4.751)

The shallow-water equations (4.7.33), (4.7.34), and (4.7.39) are rewritten as the
following set of equations of vorticity, divergence, and vertical displacement:

a¢

202
ot +2Qsinp § + R COSPU = 0, (4.7.52)
96 ) 2Q
o~ 2Qsine ¢ + R COSPU = —gVim, (4.7.53)
an

o FHO = 0. (4.7.54)
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These are expressed by using ® and ¥ as

0_, 200 . cosp 0
U +2Q 7 d = 4.7,
<8th+R28)\> + (SlnngH+ R2 &p) 0, (4.7.55)
0o 200 . 9 cosp 0 9
<atVH+R28)\><I>2Q (smchH+ R? 0y v = —gVyn,
(4.7.56)
0
o+ HVED = 0. (4.7.57)
We then seek a solution in the form
(W,0,m) = (), B(1), (1)) €270, (4.7.58)
Substituting this into (4.7.55)—(4.7.57) and eliminating 7, we obtain
(oV% — 8)i¥ — (uV% + D)® = 0, (4.7.59)
4% B B
(Ni} — s+ Z;’) d— (uV3i + D)iv = 0, (4.7.60)
where
d d s?
7 o= 1—p? - 4.7.61
d
D = (1-up%, . 4.7.62
=) g, (4.7.62)

Here, we expand ® and ¥ in a series as

oo

ZASPS U = > iByPi(n), (4.7.63)

n=s

where P? is the normalized associated Legendre function, defined by (21.2.16).T We
use the following recurrence relation

pPy = e, 1Py +ePr g, (4.7.64)
where
s n? — 52
ey = \/4712 1 (4.7.65)

Substituting (4.7.63) into (4.7.59) and (4.7.60) and using (4.7.64), we obtain the
relations between the coefficients AJ and B} as
LnBy + Gn-145_1 +ppt1dy . = 0, (4.7.66)
KnA% 4+ qna B,y +pn1Bryy = 0, (4.7.67)

TCharacteristics of the associated Legendre functions are summarized in more detail in Section
21.8.
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where for n > s

s n(n+1) s
K. = _ L. —
" JJrn(n—&—l) o’ " JJrn(n—&—l)’
n+1 . no
DPn = n 67“ qn = n+1€n+1’

and ¢, =0 forn=s—1.
Egs. (4.7.66) and (4.7.67) can be divided into two groups:

1
(UI +C - szm> Xom = 0, (4.7.68)
g

1
1 - asym Xasm == 5 4.7.
<0 +C = Jusy > Y 0 (4.7.69)

where I is the identity matrix, and

— s s t
Xsym - ( Bs+lvAs+23Bs+3"")7

Xasym = ( N A§+17 5+27A§+3’.”)t’
. (s+i—1)(s+1), for i=odd,
symyii = ()’ for i = even,
; o (s+i—1)(s+1), for i = even,
asym,it = O7 for 1= 0dd7
s f
or =
(s+i—1)(s+1i)’ g
s+i+1 | .
Cij = s+i Estls for i+1=j,
s+i—1 ; '
L e for iml=j
elsewhere.

)

The subscript sym represents symmetric mode about the equator, whereas the
subscript asym represents antisymmetric mode. Jgypm, and Jusym are diagonal ma-
trices, and C' is a tri-diagonal matrix. Eqs. (4.7.68) and (4.7.69) are regarded as
characteristic equations for the eigenvalue o for a given constant n = 1/e0 and can
be solved numerically.

Figure 4.16 shows the dependency of frequency o on ¢ for s = 1. Eastward
waves 0 > 0 and westward waves 0 < 0 are shown for both cases of ¢ > 0 and
€ < 0. For € > 0, the eastward waves are gravity waves, and the westward waves
are either gravity waves or Rossby waves. We can see intermediate waves between
Rossby and gravity waves; these are called Kelvin waves and mized Rossby-gravity
waves. Figure 4.17 particularly shows the dependence on zonal wave number for
e = 10.

In the special case, ¢ — 0, we have an approximation:

0 =

1 ) 1
1 C - J ~ Cii — Jii s 4.7.70
o= g = I (orcu- ) (4.7.70)
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FIGURE 4.16: Examples of the eigenvalues of spherical waves for s = 1. The abscissa is 1/\/|z-:\
and the ordinate is the frequency o; upper left: eastward waves for € > 0; upper right: westward
waves for € > 0; lower left: eastward waves for ¢ < 0; and lower right: westward waves for € < 0.

where J represents either Jgym, or Josym. For the nonzero component of J;; (the odd
1 for symmetric mode, and the even i for antisymmetric mode), letting n = s+i—1,
we obtain

s n(n+1)
_ = 0. 4.7.71
ot n(n+ 1) eo ( )
From this, we obtain frequency in the case of € > 0 as
. - s n 52 +n(n+1) - i\/n(n+1)’
2n(n+1) dn?(n + 1)2 € €
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oil | T T L I
-10 -5 0 5 10

N

FIGURE 4.17: Dependence of frequency o on zonal wave number s of equatorial waves for € = 10.
The abscissa is the zonal wave number s and the ordinate is frequency o. Note that for o < 0 signs
of s and o are converted. The dotted line denoted by KW represents Kelvin waves and that with
MRGW the mixed Rossby-gravity waves. GW represents gravity waves and RW Rossby waves.

or
1)gh
w = 200 =~ i\/"("g Jah. (4.7.73)
The corresponding eigenfunctions are ¥ = 0 and
D = AP3(p)ellsA 200t (4.7.74)

where A is constant. This mode corresponds to gravity waves of spherical shallow
water with depth h in a nonrotating system. The positive and negative signs of
the frequency correspond to eastward- and westward-propagating gravity waves,
respectively.

On the other hand, corresponding to the zero components of J;; in (4.7.70), we
obtain

- _ 4.7.75
o s 1) (4.7.75)
or
2Q
wo= 20 = — 7. (4.7.76)
nn+1)
The eigenfunctions are & = 0 and
U = BP:(u)e'sA =200, (4.7.77)

where B is constant. This mode has just a vorticity component with no divergence;
it corresponds to westward propagating Rossby waves. Specifically, in the case of
n=s=11in (4.7.76), we have w = —Q). This wave rotates with angular velocity 2
in the direction opposite to the rotation of the frame (i.e., this wave is stationary
with respect to the inertial frame).
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4.7.3 Equatorial waves

In this subsection, we derive the approximate forms of spherical waves in equatorial
latitudes. In particular, we will investigate how Rossby waves (Section 4.6.1) and
gravity waves (Section 4.6.2) are related to these approximations. We assume that
lol < 1, and write x = R\, y = Ry, 3 = 2Q/R, and [ = 2Qsinp ~ 2Qp = [y.
Then, using cos ¢ ~ 1, (4.7.33)—(4.7.35) are approximated to

g? o = —ggz, (4.7.78)
g: tfu = —92;77 (4.7.79)
g’z - -H (g;‘ + g;) . (4.7.80)
Eliminating u or v from (4.7.78) and (4.7.79) yields
<§; + f2) u = —g <8226t + faay) n, (4.7.81)
(g; + f2> v o= —g <a§2t - faax) n. (4.7.82)

Subtracting a derivative of (4.7.79) with respect to x and a derivative of (4.7.78)
with respect to y, and substituting the two into (4.7.80), we obtain

0
Py (C — én) +pv = 0, (4.7.83)
where ( is the vorticity:
ov  Ou
¢ = or  ay’ (4.7.84)

Note that (4.7.83) is also given from the equation of potential vorticity.
Eliminating u from (4.7.80) and (4.7.83) yields

0 02 0 ) 62 82 o
ot (8y8t f@x) no= —H L?t (8332 + ay2> +ﬁ@x] v. (4.7.85)

Eliminating 7 from (4.7.82) and (4.7.85), we obtain a partial differential equation
for v as

0 0? 9 o [ 0? 0? 5 Ov
ot [(at2+f>v—c (ax2+ay2>v]—cﬁax = 0, (4.7.86)

where ¢ = gH. Since the coefficients depend on y through f, we can assume the
solution for v in the form

v o= B(y)etkr—wt) (4.7.87)
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Substituting this into (4.7.86) gives
d2 2 k 2
{ +(°J kQﬁ)f}ﬂ _— (4.7.88)

dy? c2 w c2

Substituting f = Py and introducing the nondimensional variables y* = \/ B/cy,
w* =w/\/cB, and k* = \/c/Bk, (4.7.88) is rewritten as

& + [ w*? — k*2 i 21D 0 (4.7.89)
w* e — — — v = 0. 7.
_dy*Q w* Y
This has the form of the Weber equation:
[ d? 1 22
e + (n+ 97 4 ﬂ w = 0. (4.7.90)

It is known that this equation has a solution that is finite at infinity for nonnegative
integer n,

w = Du(2) = e % Hy(2), (4.7.91)

where D,,(z) are parabolic functions and H,(z) are Hermitian polynomials. The
same Hermitian polynomials are expressed as Ho(z) = 1, H1(z) = z, Ha(z) = 22—1,
and H3(z) = 2% — 3z. Therefore, the solution to (4.7.89) can be written in the form

v = wvgD, <\/26y> = ygexp </6’y2> H, <\/2/By> , (4.7.92)
c 2c c

where
1( v o K
- 22 N A7,
n 2(w o ) (4.7.93)
that is,
2 k
(w) 2P 00 o n=01,2,---. (4.7.94)
C w C

Figure 4.18 shows the relation between wave number k* and frequency w* for each
n.

The waves for n > 1 are categorized into either Rossby waves or gravity waves.
The wave n = 0 has characteristics of both and is called a mixed Rossby-gravity
wave.” This figure also shows Kelvin waves for n = —1, which will be described
later.

We can easily determine the structures of 7 and w by introducing new variables
q and r, defined by

q = u—i—gn, ro= —u+g77. (4.7.95)
c c

tIn the literature, the term mixed-Rossby wave is only given to westward-propagating waves
of mode n = 0. See Fig. 4.19.
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n=1 (GW)

n=—1 (KW)

=0 (MRGW)
n=1 (RW)

0 Loan=8 s . -
-4 -2 0 2 4

s

(O]
N
LN s B e s B Bt B S S B

FIGURE 4.18: Dispersion relation for equatorial waves. The abscissa is k* and the ordinate is w*.
The dotted lines with KW represent Kelvin waves, those with MRGW represent mixed Rossby-
gravity waves, GW represents gravity waves and RW Rossby waves.

From (4.7.78) and (4.7.80), we have

0 0 Ov
“fo = 0 4.7.96
(675 +03I>Q+cay Jv ’ ( )
0 0 Ov
_ = 0. 4.7.97
(315 C@x>r+cay T ( )
Let us assume that the variables have the following form:
(wmyq,r) = (@(y),i(y), d(y), 7(y)) e *o0. (4.7.98)
Substituting this into (4.7.96) and (4.7.97), we have
. ic d G\ .
_ _ A7,
i= - (dy Cy)u (4.7.99)
ic d Ié]
ro= — v. 4.7.1
& erCk(dy—&-cy)v (4.7.100)

Using (4.7.92) and the recursive relation of the parabolic functions

d z d z
D, = nD,_ — D, = —D 4.7.101
(dZ + 2) n nip—1, (dZ 2) n n+1, ( 7.10 )
we obtain
2 2
d = ivo \/ ﬁC Dn+1 (\/ ﬁy) , (47102)
w—ck c

Po= fwowﬂﬂcc nDp_1 <\/2fy> . (4.7.103)
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Therefore, we have

N
u =
2
) Be 1 20 n 203
- wo\/ 2 [w—canH <\/ c y) + w+can71 <\/ c y)] ’
(4.7.104)
. cq+rT
n = g 2
. ¢ [|Pc 1 20 n 20
- wog\/ 2 L}—ckan+1 <\/ c y) B w—&-ckan*l <\/ c y)] '
(4.7.105)

The case n = 0 is the exception, since 7 = 0 from (4.7.100) and (4.7.101). From
(4.7.94), the dispersion relation for n = 0 is given by

w8 (4.7.106)
C w

where we have used the relation w + ck # 0 (see Eq. (4.7.115)). The structure of
this type of wave is given by

= v9Dy <\/2fy> = vgexp (—g‘f) , (4.7.107)

g a . By By . wy? By?
o = o kexp - = v . exp | — .

c w—c 2c 2¢c
(4.7.108)

[SH

<

Il
3

Il

This corresponds to mixed Rossby-gravity waves. Figure 4.19 shows the structures
of an eastward-propagating wave (k > 0) and an westward-propagating wave (k <
0). The westward-propagating wave has a geostrophic character at higher latitudes,
while the eastward-propagating wave is more like a gravity wave.

Eq. (4.7.86) also has a solution v = 0, but the dispersion relation in this case
cannot be given from (4.7.86). To obtain the dispersion relation, we set v = 0 in
the original equations (4.7.78)—(4.7.80),

ou an

o = Yop (4.7.109)

fu = —ggz, (4.7.110)

gZ = —ng, (4.7.111)
which gives an equation for 7 as

Pn_ 200 _ (4.7.112)

ot? 02
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Substitution from (4.7.98) yields
w?—c%k* = 0. (4.7.113)
From (4.7.109) and (4.7.110), latitudinal structure is described by

1d7 k
by kO, (4.7.114)
n dy w

From this, n remains finite as |y| — oo in the case of w > 0; that is,

w = ck. (4.7.115)
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FIGURE 4.19: Horizontal structure of a Kelvin wave (top), a westward-propagating mixed Rossby-

gravity wave (bottom left), and an eastward-propagating mixed Rossby-gravity wave (bottom

right). Contours represent surface height (solid: positive; dotted: negative) and vectors show
horizontal velocity with appropriate scales.
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The structure of this type of wave is given by

2
n = 1oexp (—ﬁi ) ; (4.7.116)
2
a = noi exp (—éyc ) , (4.7.117)
i o= 0, (4.7.118)
and is depicted as Fig. 4.19. We note that solution (4.7.115) is included in (4.7.93)
with n = —1. This corresponds to the Kelvin wave.
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Instability

Various types of unstable disturbances are examined in this chapter. We discuss
the motions and structures of unstable disturbances superimposed on a balanced
state of the atmosphere. These are in contrast to the neutral disturbances con-
sidered in the previous chapter. We examined the condition for the instability of
balanced states of atmospheric motions in Chapter 2, in which the main interest
revolved around the characteristics of balanced states. In this chapter, however, we
mainly consider the properties of unstable disturbances. The structures of unstable
disturbances will be investigated using linear stability analysis in this chapter.

First, we briefly introduce the concept of linear stability analysis. Then, we
subsequently use it to consider various instabilities related to atmospheric motions.
The main subjects are convective instability, inertial instability, barotropic insta-
bility, and baroclinic instability. Specifically, Rayleigh-Bénard convection is a basic
tool for understanding convective motions in the atmosphere. Inertial instability
can be described by a formulation similar to that of convective instability. Both
barotropic and baroclinic instabilities are commonly described as shear instability
problems. In particular, baroclinic instability is set up as the Eady problem and
the Charney problem, both of which are fundamental frameworks for midlatitude
circulations, which will be considered in Chapter 18.

5.1 Linear stability analysis

We generally obtain linear equations by linearizing the governing equations of fluids
around a specified basic state. We symbolically write linear equations as (4.1.1),
where ¢ is a set of variables describing the perturbations. We then assume a
sinusoidal form of the solution to linear equations:

B, t) = ¢peiFT—wn, (5.1.1)

where w is a frequency and k is a wave number vector. w can be a complex number
in this case. Substituting this form into linear equations, we obtain the dispersion

M. Satoh, Atmospheric Circulation Dynamics and General Circulation Models, 133
Springer Praxis Books, DOI 10.1007/978-3-642-13574-3_5, © Springer-Verlag Berlin Heidelberg 2014
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relation between w and k as
Qw,k) = 0. (5.1.2)

In Chapter 4, we examined the cases in which w is real such that waves do not grow
or decay. In general, however, w is not necessarily a real number as a solution of
the dispersion relation. When w is complex, w is written with real and imaginary
parts as

W o= wrtiw;. (5.1.3)

Thus, (5.1.1) is rewritten as

oz, t) = qboei(k'w*“’rt)e“’it. (5.1.4)
In the case that

wi > 0, (5.1.5)

the amplitude of the disturbance increases exponentially. w; is called the growth
rate.

The basic state is regarded as unstable if there is a solution with w; > 0 for
any wave number k in the dispersion relation (5.1.2). In contrast, the basic state
is stable if w; < 0 for all wave numbers. Solutions to linear equations with w; > 0,
w; < 0, and w; = 0 are called unstable, stable, and neutral solutions.

Let us consider the case when the dispersion relation (5.1.2) depends on an
external parameter R. It may be probable that stable solutions exist for a certain
range of R and that unstable solutions appear if R exceeds a critical value R.. In
such a case, if a value of R varies from the stable range to the unstable range,
a marginally unstable wave that is close to the neutral solution emerges first just
above the critical value R.. Generally, the wave numbers of the neutral solutions
are related to R as

wi(R,k) = 0. (5.1.6)
We assume that this can be solved as
R = R(k). (5.1.7)

Neutral solutions exist only in the unstable range of R. If the basic state is unstable
in the range R > R, (5.1.7) has a real solution of k in the range R > R.. The
critical wave number k. is given as a solution to

OR
ok

and the critical value of R is given as R. = R(k.).

Even in the case of the unstable range R > R, we cannot ascertain which kind
of wave number emerges as an unstable wave just from linear stability analysis.
Since we generally consider nonlinear fluid systems, the neglected terms in linear

(ke) = 0, (5.1.8)
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equations become important if the amplitude of disturbances grows. However,
one may extend application of linear stability analysis to the nonlinear regime.
According to linear analysis, the unstable mode that has the fastest growth rate
grows most rapidly. Such an unstable mode is called the most unstable mode.
If initial small disturbances have various wave numbers, the most unstable mode
overcomes the other modes. The wave number of the most unstable mode is a
function of R and is given as a solution to

3wi
ok

Stability analysis may be extended to include the effects of nonlinear terms.
However, we do not describe nonlinear stability analysis in this chapter. When
we try to explain phenomena in the real atmosphere in terms of instability, it
is important that we define appropriately the basic state and a set of external
parameters R.

(R,k) = 0. (5.1.9)

5.2 Convective instability

If a fluid parcel is heated within the gravitational field, the density becomes lighter
and the heated parcel rises through buoyancy. Similarly, if the fluid is stratified
such that density decreases with height, a fluid parcel will get more buoyancy when
it is displaced upward, and the upward motion will be accelerated. This argument
can be more accurately described by the parcel method in Section 2.3. The stability
condition is given by (2.3.6):

0s
0z

(i.e., the fluid is stable if entropy increases with height). This condition is derived
on the assumptions of the parcel method that the pressure of the fluid parcel is
kept the same as that of the environment, and the effects of friction and diffusion
are negligible. In more general cases where the effects of friction and diffusion
exist, however, the fluid parcel loses its heat by thermal diffusion, and its upward
motion will be suppressed by friction. In such cases, the simple parcel method
is not applicable for explanation of the stability condition of the fluid. Instead,
we use linear stability analysis to discuss the stability condition by calculating the
eigenvalues of the linearized governing equations of perturbation fields.

In this section, we concentrate on the Boussinesq fluid to consider convective
instability. We begin with convection in a nonrotating frame. Next, we examine
convection in a rotating frame (i.e., on the f-plane). The equations of the Boussi-
nesq fluid on the f-plane are given by adding the Coriolis forces to (3.1.21)—(3.1.25)
as

> 0 (5.2.1)

du 1 dp 9
— = - 2.2
gt S 20 O +vV-u, (5.2.2)
dv 1 dp 9
= — 2.
di + fu poay+uv v, (5.2.3)
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dw 1 dp 9
= - T 2.4
dt 00 0 + agT + vV-ow, (5.2.4)
ou Ov Ow
= 0 5.2.5
Ox * Oy * 0z ’ ( )
dT 5
= T. 2.
gt kV (5.2.6)

Here, the acceleration due to gravity g, the coefficient of viscosity v, and the ex-
pansion coefficient o are all constant. The temperature T is a deviation from the
constant Tj. Since the density of the Boussinesq fluid depends only on temperature,
the stability condition (5.2.1) is written as

oT
0z

If the effects of viscosity and thermal diffusion exist, however, it will be shown
that the fluid is stable unless the lapse rate of temperature exceeds a critical value.
We will see that the critical value becomes larger when the effect of rotation is
introduced, thus the convection is further suppressed in a rotating frame.

> 0. (5.2.7)

5.2.1 Rayleigh-Bénard convection

First, we consider convective instability in a nonrotating frame with f = 0. The
convection in the Boussinesq fluid without rotation is called Rayleigh-Bénard con-
vection, or Bénard convection. Let us consider convective instability in the following
situation: a fluid is placed between rigid horizontal plates at z = 0 and H. The
fluid spans infinite horizontal dimensions. The temperatures at the top and bot-
tom boundaries are kept fixed with T' =T, at z = 0 and T = T, at z = H.
The temperature at the top boundary is lower than that at the bottom boundary:
AT =T, — T, > 0. As for the boundary conditions of the velocity, we assume free
slip conditions at z =0, H:

ou ov
0, = o, = 0 (5.2.8)
w = 0. (5.2.9)

This assumption is introduced only to simplify stability analysis. From the view-
point of practical application, the rigid lid condition,

u=v =w =0, (5.2.10)

is more appropriate, though the calculation becomes a little complicated.

We consider a steady basic state at rest. Let overline () denote a variable of
the basic state. From (5.2.6), the temperature profile of the basic state is vertically
linear. Thus, the basic state is given by

u = v = w = 0, (5.2.11)
= T,+(Ty—-T,) . = T,-Tz (5.2.12)
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where
dT T, — Ty AT
r = - = = . 5.2.13
dz H H ( )
The pressure of the basic state must satisfy
1 0p
0 = - T. 5.2.14
oz T ( )

The perturbation of temperature 7" and that of pressure p’ is defined as T' =
T+T" and p = p+p'. For the velocity components, we have v’ = u, v' = v, w' = w.
The linearized equations of the perturbation field are given from (3.1.21)—(3.1.25)
with f =0 as

861;/ = —plo g’; + vV, (5.2.15)
a(,;/ = —plo %’; UV, (5.2.16)
855/ = —plo gi/ +agT’ +vViuw/, (5.2.17)
ZZ/ + %7;/ + a(,;;/ ) (5.2.18)
a;;/ ~-Tw' = kVT'. (5.2.19)
We can rewrite (5.2.15), (5.2.16), and (5.2.17) using (5.2.19) to eliminate 7" as
(6875 - yv2> u = —plo g’;, (5.2.20)
<§t - uv2> v o= 7/)10 %’;, (5.2.21)
() (3o o] = (2w

(5.2.22)

Applying the divergence operator to these equations and using (5.2.18), we obtain
a single equation for p':

9 2 9 2\ o2 0 0 /
_ _ — aql = 0.
Kat KV > (8t vV )V ag <8m2 + 12 P 0

(5.2.23)

Now, let us put vertical boundary conditions aside for a while and assume that
the domain is not bounded in the vertical direction. In such a case, p’ may be
written in the form

p/ _ poei(kx+ly+mszt)' (5224)



138 Instability [Ch. 5

Substituting this into (5.2.23), we obtain the dispersion relation as
(—iw + kk?)(—iw + vE*)k* — agTk, = 0, (5.2.25)

where klgq = k2412 and k* = k2 + 12 + m2. In particular, in the case that k = 0,
v =0, and —T' > 0, we have the frequency of neutral waves: w? = ag|T'|k% /k>.
This dispersion relation corresponds to that of gravity waves (4.3.38), since the
Brunt-Vaiséla frequency is given by N = \/ ag|T|.

Eq. (5.2.25) is solved for w as

1 1 k21"
w = —1 {2(/{+y)k2 + |:4(/€+y)2k;4 — /{yk4+o¢gl—‘ kg:| } . (5.2.26)
This equation has an unstable solution with w; > 0 if the inequality,

k,Q
—kvk* + agl k:g > 0, (5.2.27)

is satisfied. Here, we define the Rayleigh number by
agTH*  agATH?

Ra = = (5.2.28)
KU KU
Then, the inequality (5.2.27) is rewritten as
e
Ra > , H (5.2.29)
Kt

Here, since we are assuming that the vertical domain is unbounded, H is an appro-
priately defined height scale. If we specify a vertical wave number m, we find that
the right-hand side of (5.2.29) takes the smallest value at

9 m

kg = : (5.2.30)
2
In this case, the Rayleigh number is
2
Rapmin(m) = 47m4H4, (5.2.31)

which can be called the critical Rayleigh number. If the domain is not bounded
vertically, m can take any small number. As m becomes smaller, Ra,,;, becomes
smaller. This means that the fluid tends to be more unstable as the vertical scale
of a perturbation is deeper. From this argument, however, we do not have any
information on the relation between the horizontal wave numbers k and [ in the -
and y-directions, respectively; we only know the magnitude of k.

Let us go back to the original boundary conditions, in which the fluid is confined
between two walls at z = 0 and H. The vertical structure of perturbations depends
on the boundary conditions, so that we seek a solution of p’ in the form

/

po= pla)elthrrimen, (5.2.32)
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Substituting this into (5.2.23) we get
d2 2 . d2 2 . d2 2
s (i) ] (e o) + ] (2 -4)
+ agrk%,}ﬁ - 0. (5.2.33)

In particular, in the case of the neutral wave w = 0, the above equation becomes

2 L\ k2,
[(dZQ_kH> +RCLH4

Substituting (5.2.8), (5.2.9), and 77 = 0 into (5.2.15)—(5.2.19), we obtain the
boundary condition for p as

p = 0. (5.2.34)

dp d3p d®p

= = = .. =0 tz=0, H. 5.2.35
dz dz3 dzb b e ( )
This equation has a solution in the form
p(z) = pocosmz, (5.2.36)
2 1
m = ”:I o012 (5.2.37)

which is written as a linear combination of (5.2.24). Thus, from (5.2.29), the relation
between the Rayleigh number and the wave number of neutral solutions is given by
k‘2 2\3
Ra = Bt mO g (5.2.38)
ke

For a fixed vertical wave number m, Ra takes its minimum value (5.2.31) at (5.2.30).
From (5.2.37), m takes the smallest value m = n/H at n = 0. In this case, the
Rayleigh number and the wave number are given as

27 ,

Ra, = J7= 657.51, (5.2.39)
m 2.22

ke = = . 5.2.40

H V2H H ( )

Ra. is called the critical Rayleigh number, and kp. is called the critical wave
number. The neutral curve is shown in Fig. 5.1.

Next, let us consider the structure of unstable waves. The growth rate is defined
by

o = —iw = w;—iw. (5.2.41)

A wave is unstable if the real part of o is positive (i.e., w; > 0). From (5.2.26) and
(5.2.27), w, becomes zero if w; is positive. That is, an unstable wave satisfies

o = w. (5.2.42)
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FIGURE 5.1: The neutral curve of convective instability. The abscissa is k}; = kg H and the
ordinate is Ra. The Rayleigh number takes the minimum value Rac at k}j; = kpy.H.

From (5.2.32) and (5.2.36), p’ is expressed as
P = pocosmz e!FrHY) ot (5.2.43)

From (5.2.20)—(5.2.22), and (5.2.19), the other variables are expressed as follows:

k D .
o= -, PO osmz eilhrtin) oot (5.2.44)
vk® + o po
A .
Vo= =i, PO cosmz eilhrtin) oot (5.2.45)
vk® + o po
/ k%—] ﬁo . i(kz+ly) ot
w o o= - 5 sinmz e v et (5.2.46)
m(vk* + o) po
2 ~
T = — Wi pol sinmz e!ketiy) got
m(vk® 4 o) (kk® + o) po
= —iTysinmz e ke+ly) got, (5.2.47)

where k* = k%, +m?, m is given by (5.2.37), and Ty is the amplitude of perturbation
of temperature. Figure 5.2 shows the phase relationship of an unstable wave.

Vertical transports are second-order quantities. For instance, the horizontal
average of vertical heat flux is given by

(kk* 4 0)T¢
2r

where Re(A) represents the real part of A. For the critical mode in which ¢ = 0
and k? = 3m?/2 = 372/2H?, heat transport is

Re(w')Re(T") sin? mz et (5.2.48)

37r2/1T02 . 9 HTOQ .9
Re(w)Re(T") = gppe SmE = 7'4FH2 sin” mz. (5.2.49)
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v 0.5

FIGURE 5.2: Phase relationship of an unstable wave of convective instability in the xz section
with [ =0 and n = 0 (i.e., m = w/H) in the vertical. Solid curves are contours of temperature or
vertical velocity, and dotted curves are those of lateral velocity.

The ratio of total heat flux to heat flux due to thermal conductivity is called the
Nusselt number. Since the horizontal average of conductive heat flux is sI', the
Nusselt number for the critical mode is

’ ’ 72

Ny = e >R§£T )l 7.4;}'{2 sin2mz + 1. (5.2.50)
The amplitude Ty is an infinitesimal quantity on the basis of linear theory. Even
in the case of a nonlinear regime, the amplitude of temperature is bounded by half
of the temperature difference between the top and bottom boundaries. Therefore,
the amplitude of temperature is in the range Ty <TH /2. If we give the maximum
bound of the temperature Ty = T'H/2, the Nusselt number estimated by (5.2.50)
takes the maximum value 2.85.

If the Rayleigh number is in the unstable range above the critical value, unstable
waves will develop and fluid motion will have a finite amplitude. After a long time,
the fluid may be either steady or unsteady; the final state may depend on the
Rayleigh number and the initial state of the disturbance. For instance, at slightly
larger Rayleigh numbers than the critical value, it is expected that convective cells
will be finite and steady. Nonlinear analysis is required to obtain its amplitude and
the preferable horizontal scale. We do not intend here to describe the characteristics
of the nonlinear range of convective instability. We only mention the dependence
of the Nusselt number on the Rayleigh number based on dimensional analysis.

When convection is fully developed in the nonlinear regime, we assume that the
local Rayleigh number defined in the thermal boundary layer is equal to the critical
Rayleigh number. In this case, the temperature difference in the thermal boundary
layer is AT/2, since the temperature in the inner region is homogeneously mixed.
Letting the thickness of the thermal boundary layer be d1, we express the critical
Rayleigh number as

agATs,
260

Ra. = (5.2.51)

From the definition of the Rayleigh number Ra, (5.2.28), the thickness of the ther-
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mal boundary layer is given by

5T Ra 7;’
0= (2Rac) : (5.2.52)

In the statistically steady state, the horizontal average of the vertical heat flux is
constant irrespective of height. In particular, the horizontal average of the conduc-
tive heat flux in the boundary layer is equal to that of the total heat flux. Therefore,
the Nusselt number is given by

KAT /267 H 1/ Ra \?* ,
" KAT/H 267 2 (2Rac> has (5:2.53)

(i.e., the Nusselt number is proportional to the Rayleigh number to the one-third
power). This is sometimes called the one-third power law.

5.2.2 Convective instability in a rotating frame

We next consider the effects of rotation on convective motion. The discussion
of this section follows Chandrasekhar (1961), who fully discussed convection in a
rotating frame. The rotation axis is assumed to agree with the direction of gravity
and the boundary conditions are the same as in the previous section. The basic
state in the previous section is also a steady basic solution in the rotating frame.
Linearized equations around the basic state are given by adding the Coriolis terms
to (5.2.15)—(5.2.19):

i /
a(;; Cf o= 1 gp + UV, (5.2.54)
po 0T
!/ 1 /
861; +fu = - Zp + vV, (5.2.55)
po Ay
/ 1 /
681;’ = ?3]; +agT’ + vV, (5.2.56)
ou'  ov  ouw
= .2.
oe T oy T o 0, (5.2.57)
!
aa:: ~Tw' = &kVT. (5.2.58)

The vorticity equation is given by subtracting the y-derivative of (5.2.54) from
the z-derivative of (5.2.55), and the divergence equation is given by adding the
x-derivative of (5.2.54) and the y-derivative of (5.2.55). Eliminating p’ from the
divergence equation and (5.2.56), we obtain the relation between w’, ¢’, and T”,

where (' = %’;/ — %’;/ is the perturbation vorticity. Hence, with the vorticity equation
and (5.2.58), we have three equations for w’, ¢/, and T":
0 0
vV (- =0 5.2.59
(5 -72)¢~fgu’ = o (5.259)

a 2 2./ 3 / 2 / _
(815 VV)Vw—&—faZC agVyT = 0, (5.2.60)
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(6875 — W2> T —Tw = 0, (5.2.61)

where V% = 68;2 + 6(?;2 is the horizontal Laplacian. Eliminating 7”7 and ¢ from
these three equations, we have a single equation for w’:

0 o\ (0 o2 vt 0 o2\ w2
(atyv> <ath>VwagF at*l/v Viyw

+f? ( 0 WQ) a w = 0. (5.2.62)
ot 022
We assume a solution that satisfies the boundary conditions in the form,
w' = b sinmze’krHly—wt) (5.2.63)
m = (2”;1)ﬂ, n=01,2,---. (5.2.64)

Substituting this into (5.2.62) yields

(—iw + vk*)? (—iw + kk?)k? — agl(—iw + vk*)k%,
+f2(—iw+ kk*)m? = 0. (5.2.65)

Eq. (5.2.65) is a cubic polynomial for w that has three solutions for w. In the special
case that Kk = 0, v = 0, and —I" > 0, a neutral wave exists; Eq. (5.2.65) reduces
to the dispersion relation of the inertio-gravity wave (4.5.32) with N = \/aT'|T.
In the case that f = 0, on the other hand, (5.2.65) reduces to the equation for the
irrotational system (5.2.25).

If f = 0, the unstable regime starts from the neutral state where both w; = 0
and w, = 0 are satisfied. In the case that f # 0, however, the starting point of
instability w; = 0 does not necessarily mean w,. = 0. If w, = 0 at the neutral state
w; = 0, it is called the exchange of stability. On the other hand, if w, # 0 at w; = 0,
the propagating wave is unstable. In this case, the system is said to be overstable.
It is also called the oscillating instability. Here, we will obtain solutions only for
w, = w; = 0. The oscillating instability can be similarly examined by setting w; = 0
under the condition w, # 0. Details of the oscillating instability are described in
Chandrasekhar (1961).

In order to obtain the neutral solution with w, = w; = 0, we substitute w = 0
into (5.2.65):

2

r
9 K+ m? = 0. (5.2.66)

K® —
VK
Setting kj; = kg H and m*™ = mH, we have the non-dimensional equation as
(k3 +m*)® — RakF +Tam™ = 0, (5.2.67)

where

_ e
Ta = 7, . (5.2.68)
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is called the Taylor number. The Rayleigh number Ra is already given by (5.2.28).
Let us obtain the critical Rayleigh number, which is the minimum of Ra that
satisfies (5.2.67) under the condition that the Taylor number Ta is kept constant.
First, seek the minimum value of Ra by varying k37 and keeping m* constant.
Differentiating (5.2.67) with respect to k%7 and setting %% = 0, we have

k2 —

3k +m™)? —Ra = 0. (5.2.69)

Eliminating Ra from this and (5.2.67), we obtain
3 1

k3 + 2771*%}?}1 — 2(Ta +m*)ym*? = 0. (5.2.70)

If we introduce
ki? T
X = "M coshg = 142 0, (5.2.71)
m m
Eq. (5.2.70) is written as
3,342 1

X+ 2X - 4(cosh</>+ 1) = 0. (5.2.72)

It is known that this equation has a solution in the form
¢ 1
X = h  — . 5.2.73
cosh o — ( )
From this, it can be shown that the Rayleigh number takes the minimum value if
1
ki = (cosh ¢ _ > m*? (5.2.74)
3 2
is satisfied; from (5.2.69), the minimum value is given as
*2 *22 d) 1 ? *4
Ra = 3(kjf +m*™)° = 3|cosh 3 + o) ™ (5.2.75)

Ra takes the smallest value if m*? is the smallest at n = 0 in (5.2.37) (i.e., m*? = ).
Thus, the critical Rayleigh number is given by

4 ¢ 1)
Ra, = 3m cosh3+2 , (5.2.76)
where
T
coshg = 142 7 (5.2.77)
m

and the critical wave number is

1 2
kg = (cosh(g—?) mH. (5.2.78)
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If Ta — 0, then ¢ — 0 and (5.2.76) approaches (5.2.39) (i.e., the critical Rayleigh
number in a nonrotating system). In contrast, if Ta — oo, then e? — 4Ta/w* and

2 1
2T 3 2T 6
Ra, = 3(”26‘) C ky = (772@) . (5.2.79)

The fact that the critical Rayleigh number increases with rotation rate indicates
that the convection is stabilized by the effect of rotation. At the same time, the
horizontal wave number of the neutral wave increases and the horizontal scale of
convection becomes smaller as the rotation rate increases.

5.3 Inertial instability

In this section, the stability of a zonal flow U in the f-plane is considered. The basic
flow U is a function of y and satisfies geostrophic balance with the basic pressure
field P as

1 0P
fu = - . (5.3.1)
po 0y
For simplicity, we assume U, = const., which is consistent with the condition that
the frictional force of the z-component is zero. Angular momentum in the f-plane
is given by (2.5.8):

L = U-fy. (5.3.2)

We assume that the temperature is uniform and no heating or cooling is given;
this means that we do not need to consider the effect of buoyancy. We write
perturbations of zonal wind and pressure as v’ and p’, respectively. The linearized
equations of (5.2.2)—(5.2.5) become

<§t + U(,i) u Ly = fplo gi/ VR, (5.3.3)
(gt + Uai) VA ful = ’plo %’; + UV, (5.3.4)
<§t + U§x> w = —plo gil + UV, (5.3.5)
831;/ + {;Z/ + %lz/ - 0, (5.3.6)

where L, = U, — f.

Egs. (5.3.3)—(5.3.6) have solutions that depend on the z-direction. However,
here we only consider symmetric disturbances (i.e., perturbations that are uniform
in the z-direction and have a sinusoidal structure in the y- and z-directions). The
governing equations for perturbations are

ou’

5t + Lo = vV, (5.3.7)
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ov’ ;o 1 0p 5,
o + fu = o Oy + vV, (5.3.8)
ow' 1 0p' 9
ot T T pyo: + vV, (5.3.9)
v ow
=0 5.3.10
ay * oz ’ (5:8.10)

2 2 . . . . .
where V2 = 8‘1 » + 8‘92 .. From these equations, a single equation for p’ is derived as

2 2
(a —yv2> V2 - fL 0

e ¥ 5,2 p = 0. (5.3.11)

Assuming that p’ has a sinusoidal form as (5.2.24), we obtain the dispersion relation.
In particular, the neutral mode with w = 0 satisfies

fLy _ (12+m2)3

2 2 (5.3.12)

1% m

This describes the relation between I, m, and the parameter fL,/v?. Eq. (5.3.12) is
analogous to (5.2.38) for convective instability. Letting the fluid width be D in the
y-direction and applying the slip condition at lateral boundaries, we obtain critical
values as

fL,D* 27
Ta. = 52 = 47r4, (5.3.13)
me = . (5.3.14)

V2D

The nondimensional parameter fL,D*/v? corresponds to the Taylor number. If
the Taylor number is slightly larger than the critical value T'a., only a disturbance
with wave number m. in the z-direction grows.

The above-mentioned instability is categorized into the inertial instability de-
rived by the parcel method in Sections 2.4 and 2.5. At that time, we obtain the
necessary condition for instability in the case of nonfriction as

fLy = fU,—-f) > 0, (5.3.15)

as seen from (2.5.13). If there is an effect of friction, on the other hand, the
inequality (5.3.15) is not a sufficient condition for instability. Instability occurs
only if the Taylor number exceeds the critical value (5.3.13).

In reality, inertial instability occurs near the upper troposphere close to the
equator. Near the equator, since f becomes smaller, the condition (5.3.15) may be
satisfied if horizontal shear exists (Held and Hou, 1980; Hayashi et al., 2002).

5.4 Barotropic instability

We may further consider the gravitational effect on the stability of a shear flow. In
this case, the temperature of the basic state is assumed to be in thermal balance with
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the shear. In such a system, there are unstable perturbations that are uniform in the
a-direction; this is called symmetric instability (see Section 2.4). On the other hand,
there is also an unstable perturbation that is inhomogeneous in the x-direction; this
is called shear instability. Barotropic instability is a special case of shear instability
where the basic flow U depends only on y. If U depends on z, there is another type
of shear instability called baroclinic instability. We will examine these two kinds of
shear instability in this and the next sections, respectively.

5.4.1 Formulation

First, we consider the stability of a two-dimensional parallel flow. We assume
that the flow is confined in a channel with 0 < y < L and that the basic flow is
expressed as u = U(y)." The flow is barotropic in the sense that it is uniform in
the z-direction. Note that, in general, the basic flow with arbitrary shear U(y) is
not a steady solution to the governing equations if friction exists. We also assume
that perturbation is uniform in the z-direction (i.e., barotropic). Setting w’ = 0 in
(5.3.3)—(5.3.6), we obtain linearized equations for the perturbation as

0 0 10
(675 + U@x) u + (U, — f)v) = e 65 + V2, (5.4.1)
1
(gt + U@i) o+ ful = o gg + vV, (5.4.2)
ou' o
(,;; + 81; _— (5.4.3)

Here, we generalize the Coriolis parameter as f = fy + By by introducing the
B-effect. From (5.4.1)—(5.4.3), we obtain the vorticity equation as
0 0 oy’
U, |V -, = vVVY, 5.4.4
(5t ) T2+ 0-U) ) = vo*v% (5.4
where v’ is the streamfunction, which is related to the velocity components and
vorticity ¢’ as

/ /
u = faazi, o= 38153’ (5.4.5)
o' ou
¢ = oe " By V3 (5.4.6)

We assume that the perturbation is periodic in the z-direction and specify the
lateral boundary conditions as 1" = 0 at y = 0 and L; this is equivalent to the
conditions that v' = 0 at the boundaries and the domain integral of v’ is zero. Since
the coefficients of (5.4.4) do not depend on z, we can assume that the solution has
a sinusoidal form in the z-direction. Assuming exponential dependence in time, we
write the streamfunction as

w/ — ¢(y>ei(kx—wt) _ ¢(y)6ik($_0t)7 (5.4.7)

In this section, the symbol L represents the width of the channel, while L was used for angular
momentum in the previous section.
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where ¢ is a complex phase speed defined as ¢ = ¢, 4+ i¢;. The boundary condition
is 9 =0 at y = 0 and L. For unstable waves with ¢; > 0, we can rewrite (5.4.4) as

) v [ & 2
U-— —k? -, = — k? 5.4.8
w-o(fe-ro)+@-twe = (0 -#) o Gay
which is called the Orr-Sommerfeld equation. In particular, in the limit of no
friction, v — 0, this equation is reduced to the Rayleigh equation:

d%¢
(U -0 (dy2 — k2¢> +(B—=Uy)p = 0. (5.4.9)
We consider the basic characteristics of unstable waves in shear flows using the

Rayleigh equation.

5.4.2 Integral theorems

The necessary condition for the instability of a shear flow can be given from an
integral form of the Rayleigh equation. Multiplying ¢* by (5.4.9), integrating in
the region 0 <y < L by part, and using the boundary condition we obtain

I
0 dy
The imaginary part of the integral is written as

s Lﬁ_Uyy
“Jo U =cf?

2
~U
+ K2 [of* — ﬁU o |</>|2> dy = 0. (5.4.10)

lp|>dy = 0. (5.4.11)

Thus, in order for the basic flow to be unstable with ¢; > 0, the following integral
must vanish:

Lﬂiny

i |U_C|2|¢|2dy = 0. (5.4.12)

To satisfy this constraint, the sign of § — Uy, must change at least once in the
domain. It can be written as a gradient of the zonal-mean absolute vorticity (,:

e
dy

Thus, the necessary condition for the instability of a basic flow is that the absolute
vorticity of the zonal flow has an extremum within the domain. This constraint is
called Kuo’s theorem. In particular for the case § = 0, the necessary condition for
instability reads that there is at least one point at which U,, = 0 is satisfied (i.e.,
the basic flow is unstable if U has an inflection point). This is called Rayleigh’s
theorem.

The real part of (5.4.10) is written as

I

d d

2

-,
+k2|¢|2(Ucr)|ﬂU_Cy|g|¢|2> dy = 0. (5.4.14)
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Thus, we have
L L
B - Uyy 2 / ‘ do
U—-cr olI°dy =
fy e e o \lay

Let us assume that U is monotonic within the domain 0 < y < L and that absolute
vorticity takes its extreme at y = ys (0 < ys < L):

2
+k:2|¢|2> dy > 0. (5.4.15)

dCa
d (yS) = B- Uyy(ys) = 0 (5.4.16)
Y
Multiplying ¢, — U(ys) to (5.4.12) and adding the result with (5.4.15), we have
L 2
dCa 9|
U—-Ul(ys d 0. 5.4.17
| w-venyr N > (5.4.17)

From the condition (5.4.16) and the monotonicity of U, the sign of (U — U (ys)) ‘ffy“
does not change within the range 0 < y < L. Therefore, from (5.4.17), we obtain
the necessary condition for instability as
d
U-U)™ = o (5.4.18)
dy
In the case of § = 0, this condition reads that the absolute vorticity (, takes its
minimum at ys if U is an increasing function, or (, takes its maximum at ys if U
is a decreasing function. This is called Fjgrtoft’s theorem.
Next, we consider the bounds of the phase speed of unstable waves. Letting

o = (U-0)9, (5.4.19)
we rewrite (5.4.9) as
d*® dd
- 2 — KU -c)®+p2 = 0. 4.2
(U —-c¢) a2 + 20, dy (U —-c)®+ 0 0 (5.4.20)

Multiplying (U — ¢)®* and integrating within the domain 0 < y < L, we have

Fu-o((

For the unstable waves ¢; > 0, the imaginary part of this equation becomes

[

If 3 = 0, the left-hand side of (5.4.22) must vanish for instability (i.e., U — ¢,
must change its sign at least once within the domain). Thus, letting the minimum
and the maximum of U be U,,;,, and U, 4., respectively, we have the bounds for ¢,
as

2 L
+k2|<132> dy = 5/ (U — ¢)|®]* dy. (5.4.21)
0

2 ﬁ L
+k2<1>|2> dy = 2/ |®|? dy. (5.4.22)
0

Unin < ¢ < Upmaz. (5.4.23)
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This means that the phase speed of unstable waves is within the range of basic
zonal velocity.
If B # 0, by expanding

4w TIY
o = . 4.
E Ajsin e (5.4.24)
Jj=1
we have
dd T . Y
dy ~ L ]:i_:l Aggcos 77 (5.4.25)
L 2 2 0 2 % 2 L
dd 7 m T
dy = A% > A2 = / ®|? dy.
Pl ar = 502 = 55l = 7 [ ek
0 Jj=1 Jj=1 0
(5.4.26)

From (5.4.22), we write the phase speed as
% S Raf?) dy 1
L B 164 f—1 |<I)|2 dy

0 (las|? 202 2 (0 (lae|? 2182 '
I ‘dy‘ + k2@ ) dy Ir ‘dy‘ + E2|®? | dy

d®
dy

Cr -

(5.4.27)
Using (5.4.26), we have
B
2(7. +k2)
Although the bounds for ¢, depend on k, the basic flow can be unstable if ¢, is
smaller than U,,;, in the case of g # 0.

Unmin — < ¢ < Unas (5.4.28)

5.4.3 Instability of the flow U= tanh y

As an example of barotropic instability, we consider the stability of such a flow on
the f-plane (8 = 0) that

U(y) = tanhy, (5.4.29)
with —oo < y < oco. In this case,

U, = —C¢ = sech’y, (5.4.30)

Uyy = —le; = —2sech’y tanhy, (5.4.31)

where ( is the vorticity of the basic state. This flow has an inflection point at y = 0
and satisfies the necessary condition for instability stated by Fjgrtoft’s theorem.
The equation for perturbation is given by the Rayleigh equation (5.4.9) with 8 = 0:

d2
(U -c¢) (dyf — k2¢> Uy = 0. (5.4.32)
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FIGURE 5.3: The phase speed and growth rate of barotropic instability for the basic flow U =
tanhy. (Left) Relation between the wave number k and the imaginary part of the phase speed c¢;.
(Right) Relation between the wave number k and the growth rate kc;.

First, we seek a solution to a neutral wave whose phase speed is zero. Setting
¢ =01in (5.4.32) and substituting (5.4.29) and (5.4.31), we have

d’¢ 2 2
a2 (k* —2sech®y)p = 0. (5.4.33)

This equation has two independent solutions as

¢1 = kcoshky — sinhky tanhy, (5.4.34)
¢o = ksinhky — coshky tanhy, (5.4.35)

where ¢; is symmetric about y = 0, and ¢ is antisymmetric about y = 0. If we
assume that the solution is finite as y — +o00, we must choose k = 1; that is,

¢1 = sechy (5.4.36)

and ¢2 =0.

In general cases with ¢ # 0, (5.4.32) can be solved with numerical methods
(e.g., Michalke, 1968; Tanaka, 1975). Figure 5.3 shows the dependence of ¢; and
the growth rate kc; on wave number. The growth rate takes the maximum value
0.190 at k = 0.446. Figure 5.4 shows structures of the streamfunction and vorticity
for the neutral wave (5.4.36) and Fig. 5.5 those for the most unstable wave.

5.4.4 Interpretation of barotropic instability

Barotropic instability can be viewed as the interaction between Rossby waves. If
absolute vorticity has a gradient, there exist Rossby waves whose propagation de-
pends on the direction of the gradient. Let us assume that basic flow U is a
monotonically increasing function of y and Fjgrtoft’s theorem is applicable. In this
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-2

FIGURE 5.4: Structures of a neutral wave for the flow U = tanhy. (Left) streamfunction and
(right) vorticity. The maximum value is 1 and the contour interval is 0.1. Positive values are
represented by solid lines and negative values by dotted lines.

FIGURE 5.5: Same as Fig. 5.4 but for the most unstable wave k = 0.446.

case, the zonal-mean absolute vorticity (, takes its minimum at some point y = y,
with U > U(ys), %@; >0iny > ys, and U < Ulys), ‘fgj < 0iny < ys. In this case,
the phase speed of Rossby waves is westward (the negative z-direction) in y > ys
and is eastward (the positive a-direction) in y < ys. Thus, the directions of Rossby
wave propagation in the two sides of ys are opposite and the two Rossby waves can
be in such a phase relationship that they are reinforced by each other. Therefore,
it can be said that the basic flow is unstable.

Figure 5.6 schematically shows the phase relation of two Rossby waves in the
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FIGURE 5.6: Schematic figure of the interaction between Rossby waves for barotropic instability.

The profiles of absolute vorticity (or potential vorticity; PV) and zonal velocity U are shown at

the right; PV is minimum at the center ys. In y > ys, Rossby waves propagate toward the left

(westward), whereas, in y < ys, Rossby waves propagate toward the right (eastward). The basic

flow is unstable if the two waves are in phase relation such that the vorticity of each Rossby wave
is intensified by the y-component of velocity associated with the other Rossby wave.

case of unstable waves. In order for the necessary condition for instability to be
satisfied, the gradient of basic state absolute vorticity should be opposite in two
adjacent regions. In the two regions, Rossby waves propagate toward opposite
directions. If the phase relation is preferable, the two Rossby waves are amplified.

In the case of an unstable wave in the flow U = tanh y in the previous subsection,
the phase lines of the streamfunction are inclined westward so that u/v’ < 0 as
shown in Fig. 5.5. Since U, > 0, energy is converted from the basic flow to the
perturbation (i.e., the perturbation is amplified).! In contrast, the perturbation
will decay if the phase lines are inclined to the opposite direction and w/v’ > 0. In
this case, energy is converted from the perturbation to the basic flow. The center
of positive vorticity in y > 0 is located at almost the same z-coordinate as the
maximum of the southward component of velocity —v associated with the vorticity
iny < 0. Iny > 0, since the gradient of basic vorticity is positive, a relatively
larger vorticity is advected by the southward flow v < 0. Thus, the perturbation
of positive vorticity in y > 0 grows. This applies to both the positive and negative
vorticities in y > 0 and y < 0. Therefore, the wave fields in y > 0 and y < 0 are
mutually intensified.

5.5 Baroclinic instability

While barotropic instability occurs in the case when the basic flow has lateral
shear, the baroclinic instability considered in this section occurs in the case when
the basic flow has vertical shear. We consider two typical problems of baroclinic
instability: the Fady problem and the Charney problem. The Eady problem is the
baroclinic instability in the system on a uniform rotating frame (the f-plane) with

TEnergy conversions of barotropic and baroclinic instabilities will be described in Section 5.5.3.
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rigid top and bottom boundaries. The Charney problem, in contrast, is that on a
B-plane with a rigid bottom boundary and a continuously infinite upper boundary.
After examination of unstable solutions, the thermal and momentum transports
associated with baroclinic instability and secondary circulation are considered in
the framework of the Eady problem. At the end of the section, baroclinic instability
is interpreted based on the integral theorem and interaction between Rossby waves.

5.5.1 Eady problem

5.5.1.1 Formulation

We consider the stability of a zonal flow in a channel with 0 < y < L and 0 <
z < H on the f-plane. Periodicity is assumed in the z-direction, and the channel
is surrounded by rigid walls at y = 0, L and z = 0, H. The basic flow has linear
zonal shear in the z-direction with no meridional flow.

The Eady problem is formulated with the quasi-geostrophic equations of the
Boussinesq fluid. First, we write down the quasi-geostrophic equations with no
friction and no diabatic heating on the f-plane. Following Section 3.2, we use
potential temperature 6 instead of temperature T for the Boussinesq fluid. The
quasi-geostrophic vorticity equation is given by

(gt+ug-vH>H = 0, (5.5.1)

where II is the quasi-geostrophic potential vorticity:

1 82 82 f2 82
= f (81:2 + Oy + N2 322> Y. (5.5.2)

The streamfunction 1 is related to the geostrophic winds ug = (ug,vy), vorticity
¢, potential temperature 6, and pressure p as

1w 10y

ug = F oy’ vg = For’ (5.5.3)
v, du, (P

¢ = or oy (8$2+8y2 ¥, (5.5.4)
_wow

0 = go.0 P~ pot)- (5.5.5)

In these equations, 6 and p are deviations from the basic fields 05 and ps. The basic
profile of potential temperature is written as

N2,
Z.

0s(z) = 65(0)+ p

(5.5.6)

The equations of geostrophic winds, hydrostatic balance, potential temperature,
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and the continuity equation are given by

0
<8t +’u,g~VH> ug = fua, (5.5.7)

0
gy Tue Vu vy = —fua, (5.5.8)

B 10p 0
0 = = ot (5.5.9)
d N2§
<8t+ug-vH)e+ . ‘w o= 0, (5.5.10)
Oug  Ovg  Ow

e Toy T, = O (5.5.11)

where u,, v, are the ageostrophic components of the winds. The vorticity equation
is

0 P
(at +ug-VH)c—faf _— (5.5.12)

The boundary conditions are vy = 0 at y =0, L, and w = 0 at z = 0, H. From
(5.5.10) and (5.5.5), the condition w = 0 is expressed using the streamfunction as

0 0
. = 0. 5.1
(atJrug VH) 821/1 0 (5.5.13)
Let us consider uniform shear flow as the basic state:
ug = U(z) = Az, vy = 0. (5.5.14)
In this case, the other variables are written as
Y
v = —f/ ugdy = — fAyz, (5.5.15)
0
nm = f (5.5.16)
0o 0 0
p = N _ _J O Ay. (5.5.17)
g 0z g

Let the perturbation of the streamfunction be 1’. The linearized equation of the
quasi-geostrophic potential vorticity for perturbation is written as

9 o\ [a> & 2o
(at +Azam> (ax‘z o2 T N2 azz)w = 0. (5.5.18)

The boundary conditions are given as

o o' oy B
oo Mo = 0, at z=0, (5.5.19)
0 o\ oy’ oy B
<at +AHam) o, —AL = 0, at z=1I, (5.5.20)
/
oy = 0, at y=0,L. (5.5.21)

ox
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From (5.5.21), we particularly specify
W = 0, at y=0,L. (5.5.22)

We assume the following sinusoidal form of the solution that satisfies the boundary
condition:

¢ = Y(z)sinly e’ *TO = y(2)sinly P, (5.5.23)
where
| = T for n=1,2--, (5.5.24)

and ¢ = w/k is a complex phase speed. Substituting (5.5.23) into the linearized
equations (5.5.18), (5.5.19), and (5.5.20), we obtain

(Az —¢) (j; - Aﬂ) Y = 0, (5.5.25)
c‘jlf +AY = 0, at z2=0, (5.5.26)
(c—AH) ‘Cl;f +AYp = 0, at z=H, (5.5.27)
where
u? = ]J\Z(k? +1?). (5.5.28)

The following two types of solutions satisfy (5.5.25). The first type of solution has
no singularity, satisfying

d? 9\ ~
<dz2 — i >1/J = 0. (5.5.29)
The second type of solution has singularity at z. and satisfies
d? 9\ ~
<d22 — > o= Ad(z — z.), (5.5.30)
where 6(z) is Dirac’s delta function,
P X 0 < 2 < H, (5.5.31)
and A is constant. In this case, the phase speed c is a real value in the range
0 < ¢ < AH. (5.5.32)

In the following two subsections we will obtain each type of solution.

fDirac’s delta function §(z) satisfies the following relations:

5(z) = {07 for jigz 1 §(z)dz = 1.

00, for
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5.5.1.2 Nonsingular solutions
First, as a nonsingular solution to (5.5.29), we can set the following form
Y(z) = de"*+be ™ = acoshpz+ bsinhpuz, (5.5.33)

where a and b, or a’ and V', are constants determined from the boundary conditions.
Substituting (5.5.33) into (5.5.26) and (5.5.27), we have the relations

cb+Aa = 0, (5.5.34)
(¢ — AH)p(asinh pH 4 b cosh pH)
+A(acoshpuH + bsinhpH) = 0. (5.5.35)

A solution with (a,b) # (0,0) exists if the determinant of the coefficient matrix of
a and b is equal to zero. Thus, the phase speed c is given by solution of

A2H 2
2 —cAH + cothud -, = 0. (5.5.36)
[ [
From this, we obtain
1
AH AH 2 wH 2 wH\ 12
= + 1- th 1-— tanh . D.
c 0 ) [( L coth”, ) < L anh”, )] (5.5.37)

To examine the properties of solutions, we introduce a constant . that satisfies

tha.
OMiTe (5.5.38)

Te
(i.e., z. = 1.1997), and a parameter

2, 2.3994

. = — 5.5.39
I e e ( )

From (5.5.37), we can see that ¢ is real if y1 > p., whereas ¢ has an imaginary part
if 0 < p < pie. Thus, using (5.5.28), the basic state is unstable if

N
T f(k2+12)% < e (5.5.40)
or
N r NH
L = 5.5.41
~ " fe 2.3994 f ( )

where (5.5.24) is used. This means that the basic state is unstable only in the
case that the channel width is sufficiently large. The largest wave number of the
unstable wave is

2o, w2 3
ke — <N2“°‘_L2 . (5.5.42)
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If the wavelength is shorter than 27 /k., perturbations do not grow. This limitation
to the wavelength is called Eady’s shortwave cutoff. In the case u < ., the growth
rate of the instability is given from (5.5.37) as

w; = ]{ICi

AH P uH P ANE
- k th " —1) (1— ° tanh . 5.5.43
2 [(MH g ) ( pH 2 )] ( )

Figure 5.7 displays the dependence of phase speed on wave number. The dis-
persion relation (5.5.37) is nondimensionalized with p* = uH and ¢* = ¢/AH as

1
11 2 * 2 “\ 12
= _+_[(1- “coth” ) (1- 7 tann” . (5.5.44)
2 2 w* 2 w* 2

The figure shows the imaginary part and the real part of phase speed where ¢* =
cr+ic;. We have ¢* = %ii%l/g in the limit p* — 0, whereas we have ¢* =0, 1 in the
limit p4* — oo. Figure 5.8 shows the dependence of growth rate on wave number.
Using k* = (NH/f)k, I* = (NH/f)l, p* = pH, ¢* = ¢/AH, and w* = (N/fA)w,
the expression of the growth rate (5.5.43) is rewritten as

1
v o= ke = el Zeom® —1) (1 tam® )|
2 w* 2 u* 2

(5.5.45)

where p*? = k*2 + [*2, The maximum value of the growth rate is given as w;, =
0.3098 at k* =1.606 and [* = 0.

Now, we examine the structure of unstable waves. From (5.5.34), we can set
(a,b) = to(1, —A/pc). Then, (5.5.33) becomes

5 = v (coshuzA

sinh uz) . (5.5.46)
pe

0.0 L I I I I I 1 05 3 I I I I

FIGURE 5.7: The dependence of phase speed on wave number p* for Eady solutions. Left: the

real part cy; right: the imaginary part c.
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ok

k*

FIGURE 5.8: The dependence of growth rate w? on wave numbers k* and [* for Eady solutions.
The contour interval of w is 0.05.

For an unstable wave with u < pu., substituting this equation into (5.5.23), we
obtain for the real part

A A .
Y = oRe {(cosh nz — C|T 2 sinh pz + i C|Z 2 sinh pz) e”“(mcrt)}
ple ple
x sin ly eFeit

= W(2)sinly cos[k(z — ¢ t) + a(z)] eFi. (5.5.47)

Here, ¥(z) is the amplitude and «(z) is the phase, given as

1

cr A 2 22 :
U(z) = o (cosh,uz— ! 25inhuz> + 4sinh2 pz| ,  (5.5.48)
el 1?c|
Ac; sinh
a(z) = tan”! cisi R (5.5.49)

plc|? cosh pz — Ae, sinh pz”

The direction of the phase line can be found from the sign of da/dz; if we write
(5.5.49) as tan v = Y/ X, we have

d XY — X'V 2 Ac
¢ _ Yo e (5.5.50)
dz X2 4Y? U(2)2 |cf?

Thus, we have ‘;? > 0 for unstable waves ¢; > 0. In this case, phase lines incline
toward the negative x-direction (westward) with height. On the other hand, for
neutral waves with ¢; = 0, the phase is independent of height.

The other variables can be expressed with respect to 1 from (5.5.3)~(5.5.5) and
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(5.5.10) as
I~ (e
u, = —fw(z) cos ly eF@=ct),
o= zkli(z) sin [y ek@=ct)
g - f y 9
9/ _ 90 d'(/J(Z) sin ly eik}(l‘—ct)7
g dz
P = pot(z)sinly e*meh),
k da - _
w = iy (c—Az) ﬁiz) + AY(2) | sinly eF@=e), (5.5.51)

For unstable waves (u < ) the real part of these equations is given as

u, = - JZE‘I’(Z) cosly coslk(z — cnt) + a(z)] e*eit,

vy = — fc\ll(z) sinly sinfk(z — ¢,t) + a(z)] et

0 = 9;\1’9(2) sinly cos[k(z — crt) + ag(z)] eFeit,

P = po¥(z)sinly cos[k(x — c,t) + a(z)] e*it,

w o= = /\;2 W (2)sinly sin[k(z — cpt) + aw(2)] e,

where (Uy, ) and (¥, arpy) are the amplitude and phase of the following functions,
respectively,

Yo(z) = o <u sinh puz — Trr; cosh uz + Z|CZ|/: cosh uz) ,
c c
. Az A2 . A2z
Yw(z) = o {cr [(u L M M|C|2> sinh pz + ]2 Coshuz}

. A2 . A2z
+ic; || p+ sinhpz — = coshpuz| .
plel el

Figure 5.9 shows the vertical profiles of the amplitude of the most unstable
wave. The amplitudes of 1)’ and ¢’ take a maximum value at the top and bottom
boundaries, while the maximum of the amplitude of w’ occurs at the middle layer.
Figure 5.10 shows the zonal-height section of the structure of an unstable wave
at the middle of the channel y = L/2. The phase lines of ¢ and w are inclined
westward with height, while those of 6 are inclined eastward with height. At the
middle layer, the phases of w’, ¢, and v; agree with each other. These figures are for
the parameter NH/fL = 0.3. In this case, the growth rate is maximum at the wave
numbers k* = kL = 4.98 and [* = [L = w. The phase speed is ¢; = ¢,/AH = 0.5
and ¢f = ¢;/AH = 0.172, and the growth rate is w} = k*c} = 0.858.
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Amplitude

FIGURE 5.9: Vertical profiles of the amplitudes of the most unstable wave for NH/fL = 0.3. The

solid curve is the amplitude of ¥, the dashed curve is that of potential temperature ¥y, and the

dotted curve is that of vertical velocity ¥,,. The scales of these amplitudes are appropriately
normalized.

1.0

v 0.5

0.0 s i
0. . ~v1.0

FIGURE 5.10: Zonal-height cross section of the most unstable wave at the middle of the channel

y = L/2. The solid curves depict the streamfunction 1. The thick solid curves are phase lines of

the maximum and minimum values of 1. The dashed, dotted, and dashed-dotted curves are those

of 0, w, and vy, respectively. The parameters are the same as in Fig. 5.9. The wavelength in the
z-direction is 27 /k* = 1.26.

At the end of this section, we consider transport due to unstable waves. The
product of two complex values A and B is denoted by Re(A)Re(B), where ()
denotes the average over phase X. If A = |A|e™X and B = |B|e(X+) are given,
we have the formula

1 1
Re(A)Re(B) = 2R6(AB*) = 2|A\|B|cosa. (5.5.52)

Substituting (5.5.51) into this, we obtain the transports of various quantities. First,
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the meridional transports of momentum and heat are given by

1 kil -
2Re(u’v'*) = o Re(i|)|?) cosly sinly e it =0, (5.5.53)
1 1 % o kaO -”dQL* 2 2kc;t
2Re(v0 ) = 2nge X g, |5 lye
]CCZAG c:
— ¢g4gflc|g(lfcos2ly) ket (5.5.54)

It is clear that there exists no meridional momentum transport due to the Eady
baroclinic wave. Note that we have used the following relation with (5.5.50) to
derive the heat transport (5.5.54):

- dy* e d —i da o Aci o
= weir . T (wemiy| = “Yg2 = :
Re (zw I > Re [z e dz( e )} Iy |c|2w0

Since ‘flg‘ > 0 for ¢; > 0, heat transport is positive: v/6’ > 0. It can be seen that
heat transport is vertically constant.
Second, the vertical transport of momentum and heat are given by

1 kl o] -
2Re(u’w'*) = o Re {z [(c* —Az) j; + Ay* 1/)}
X sinly cosly e
kle; |1 A2 A
_ 2 ( 2 . s
= 2 f N2 {QH (M + |C|2> sinh 2uz — ]2 cosh 2z

2kc;t

+(¢cr — Az) sin 20y e2keit)
|f?
1 ko, d 7% 5 d 7 ‘
2Re(9’w’*) = 29]\(;2 Re {—i [(C* —Az) di + Ay df } sin? [y e2keit

kboc; A2 crA
2 MV0Gq 2 .12 r A
= g 4gN? [ <u + |c|2) sinh” pz + ]2 smh?uz}

x (1 — cos 2ly) e?Feit,

If these are averaged over the channel width in y, the domain-averaged vertical mo-
mentum transport becomes zero, momentum transport becomes zero, while domain-
averaged vertical heat transport is upward for unstable waves (¢; > 0).

5.5.1.3 Singular solutions

Returning to (5.5.30), we consider singular solutions whose phase speed is a real
value in the range (5.5.32):

¢c = Az, (0<z.<H), (5.5.55)
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The solution to (5.5.30) can be written in the form

(z) = ajcoshpz+bysinhpz, (0<z< z), (5.5.56)
Y(z) = agcoshpz+bysinhpz, (2. <z < H). (5.5.57)

From the boundary conditions at z = 0 and H, (5.5.26) and (5.5.27), we have the
relations between the coefficients:

Aai +cuby = 0, (5.5.58)
[(c — AH)psinh pH + A cosh pH] as
+[(c— AH)pcoshuH + Asinh pH]by = 0. (5.5.59)
Thus, the solution can be written as
(z) = Ci(pzecoshpz — sinh puz)
= ChU(2), ((0<z<z), (5.5.60)

i) = C (ze — H)pcosh pH + sinh pH
- (ze — H)psinh pH + cosh unH
CoV(z), (ze<z<H), (5.5.61)

cosh piz — sinh pz

where C'y and C5 are new coefficients. If we assume that both the streamfunction
and its first derivative with respect to height (i.e., the potential temperature) are
continuous at z = z., we also have

P(ze +0) = P(ze—0), (5.5.62)
i d _
o (2¢+0) — o (2. —0) = A (5.5.63)
where A is the coefficient defined in (5.5.30). From these relations, we obtain
V(ze)
cC; = A 5.5.64
b7 AUe) - UGV o200
Cy = A Ulz) (5.5.65)

U'(20)V (2e) = U(2e)V' (2¢)
We can express the denominator as
U'(2e)V(2e) = U(ze)V'(2c)

3 .
w° sinh uH c+ c_
c c 3 5.5.66
(2 — H)psinh pH + cosh uH (Z A ) (z A ) ( )

where ¢y and c_ are two phase speeds of the nonsingular solution given by (5.5.37).

5.5.1.4 Edge waves

There exist neutral waves in a basic shear flow. Neutral waves are most clearly
formulated under the top boundary condition given by

Y —0, as z — 00, (5.5.67)
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instead of the rigid boundary (5.5.27). The solutions to (5.5.25) under the lower
boundary condition (5.5.26) and the upper boundary condition (5.5.67) are given
by

U(z) = We M, (5.5.68)
with the phase speed
A
c = N (5.5.69)

Since c¢ is real, this wave is neutral. This kind of neutral wave is called the edge
wave. Frequency is given by

w = ke = FA = A K , (5.5.70)
[ N VE2 412
where (5.5.28) is used. The edge wave has a vertical scale of p~!. It is trapped
near the lower boundary and propagates eastward. If the top boundary condition is
rigid, similar neutral waves are trapped near the upper boundary. These edge waves
play a central role if baroclinic instability is viewed as the interaction between two
waves (see Section 5.5.5).

5.5.1.5 Secondary circulation

A zonal-mean meridional circulation is associated with Eady unstable waves. We
define the zonal mean by () to derive meridional circulation. First, from (5.5.3),
the zonal-mean geostrophic component is
109
vy = =0 5.5.71

(i.e., the meridional circulation of the geostrophic component is identically zero).
As for the ageostrophic component, to the first-order approximation of linear theory
the zonal average of (5.5.52) gives

w = 0 (5.5.72)

(i.e., the meridional circulation of the linear part of the ageostrophic component
is also identically zero). Thus, we need to consider the nonlinear ageostrophic
component to obtain the meridional circulation. Here, we take the second-order
nonlinearity of the perturbation that is given by linear theory. In this sense, merid-
ional circulation given by the following procedure is called secondary circulation.

The equations of zonal velocity and temperature can be divided into linear
and nonlinear parts. Substituting the basic field (5.5.14) and (5.5.17) into (5.5.7),
(5.5.10), we have the equations for the perturbation

0 0
(875 + AZ@x) ug— fra = —ug-Vaug, (5.5.73)

o) a0\ oy oy’ s oY’
(aﬁAZax) 9% +A6x +Nw = —ug-Vyg 9 - (5.5.74)
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We expand perturbation in a series as
Y = e 2@ 4 (5.5.75)

where ¢ is the magnitude of the perturbation and satisfies ¢ < 1. To the first order
O(gl), we obtain a set of linear equations: ¥ is the linear solution that is already
given by (5.5.47). Next, second-order O(g?) zonally averaged equations are given
by

(’ft u? = o = —u,® . vgult. (5.5.76)
gt agf) 4 N® = M.V, 3?;1). (5.5.77)
The right-hand sides are rewritten as
—uy® V) = vy (ugu)ug)) S {fyu§1>v§1>, (5.5.78)
—ug (D) Hagin = _;’yng ag;). (5.5.79)

The zonal mean of the continuity equation (5.5.11) is

ow®  aw®
+

= 0. 5.5.80
dy 0z ( )
Thus, we can define the meridional streamfunction y as
@ _ _9x (2 = X 5.5.81
Vg 92 w oy’ (5.5.81)
Since the boundary conditions are given as
w? = 0, at z=0,H, (5.5.82)
v?® = 0, at y=0,0L, (5.5.83)
we can set xy = 0 at the boundaries. Now, using
109®
2 = _ 5.5.84
u by (55.84)

we can eliminate the time derivatives in (5.5.76) and (5.5.77), so that we obtain an
equation for the meridional streamfunction y as

2 o foo mo 19 oy
<8y2 T e 822) X T TN 8y82u9 YT N2 Oy? Y gy (5:5.85)
where (5.5.81) is used. Substituting the linear solutions (5.5.53), (5.5.54)
uMoft = o, (5.5.86)
moyW o kel 2keit
vy, = (A 4F|e]? (1 —cos2ly) e (5.5.87)
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into the right-hand side of (5.5.85), we obtain

82 f2 82
<8y2 + N2 822> X = DBecos2ly, (5.5.88)
where
E2A ¢
B = —? ' eheit 5.
Vo SN2 [cf2 © (5.5.89)
Now, let us seek a solution to (5.5.88) in the form
X = xu(z)cos2ly + xa(y, 2), (5.5.90)
where y1 and o respectively satisfy
f2 d2 9
N2 d22 X1 — 4l X1 = B7 (5591)
82 f2 82
= 0. .5.92
<8y2+N2822)X2 0 (5.5.92)
The boundary conditions at z = 0, H are given as x1 = x2 = 0. First, we have
B coshnH —1 |
X1 = = (1 — coshnz + sinh smhnz) , (5.5.93)
where
2IN
n o= . 5.5.94
f ( )
Then, to satisfy the boundary condition y = 0 at y = 0, L, we have
~. B n>H? 1 — cosmm
X2 = Z 972 2 Fr2 2.2
= 212 mm(n>H? + m?m?) cosh(vim L/2)
L
x cosh vy, (y - 2) sin (MW;) , (5.5.95)
where
v o= T 19, (5.5.96)
m = NH ) — 4 . s
From (5.5.81), therefore, secondary circulation is given as
B hnH —1
N 4;27 (_ sinhnz + Cozinz o cosh nz> cos 2ly

B & *H 1 —cos
A, i
21? £= n?H? + m?m? cosh(v L/2)

L
x cosh vy, (y - 2> oS (mﬁ;) , (5.5.97)
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R ‘ L ‘
0.5 1.0
y
FIGURE 5.11: Distribution of the secondary circulation x of the Eady solution in meridional cross
section. Both the abscissa y and the ordinate z are normalized to 1. The contour interval is
25 m2 s~1. Dotted curves are negative values (indirect circulation) and solid values are positive
values (direct circulation).

coshnH — 1
sinhnH
N B & Umn? H? 1 — cosmm

212 mm(n2H? 4+ m27?) cosh(v,, L/2)

m=1

w® = = <1 — coshnz + sinh 172> sin 2[y

% sinh vy, (y . g) sin (mw;) . (5.5.98)

Figure 5.11 shows an example of secondary circulation. The values of the parameters
are L = 4,000 km, H = 10 km, U =50 m s}, A=U/H=5x10"3s"1, N =
1072 571 f = 2Qsin30° = 727 x 105 s, ¢; =¢, = U, k =1 = f/U, and
YPoe?Feit = U2, In this case, B = —1.542x 107 % s ' and = 2.16 x 10~* m~!. The
maximum value of the streamfunction of meridional circulation is 249.7 m? s~!.
This figure shows that secondary circulation is y < 0 in the middle of a channel
(i.e., meridional flow is poleward in the lower layer while it is equatorward in the
upper layer). This kind of circulation is called indirect circulation. The secondary
circulation of baroclinic instability is characterized by indirect circulation. There
are also two cells with x > 0 in both sides of indirect circulation. The meridional
circulation x > 0 is called direct circulation. These direct circulations are associated
with the normal mode of baroclinic instability.

This three-cell structure is seemingly similar to that of meridional circulations
observed in the real atmosphere. The nonlinearity of angular momentum transport
is important in fact, such that the dynamics of the three-cell structure in Fig. 5.11
are very different from those of the real atmosphere.

5.5.2 Charney problem

We next consider the second type of baroclinic instability, called the Charney prob-
lem. This type of baroclinic instability occurs on the [-plane between a rigid
boundary at the bottom and an infinite upper boundary. In this section, we briefly
summarize the properties of the solutions following Pedlosky (1987).

The Charney problem is formulated with quasi-geostrophic equations on the
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[-plane in a stratified atmosphere. Under adiabatic and frictionless conditions the
quasi-geostrophic potential vorticity equation is given by

(3875 +u9'vH>H =5 (5.5.99)
where
1[0 0% 10 2 8y
= fo [3I2 * y? * ps 0z (psNg 32)} + fo+ By (5.5.100)

is quasi-geostrophic potential vorticity. Here, ps and N2 are functions of altitude
z. The thermodynamic equation is given by

9 O
. N, = 0. .5.101
(at+u9 VH> 8z+ Sw 0 (5.5.101)
From the geostrophic balance, we have
10v 10v
- _ = .5.102
Ug fay7 Ug faﬁl:’ (55 O)
Os0 OV , 1

= = . . .1

0 g 02 m Cposoz/} (5.5.103)

0 is the deviation of potential temperature from the basic state potential tempera-
ture #s, which is also a function of z, and 65 is the vertical average of 5. We
assume that the basic state has constant temperature T'(z) = 650 and has linear
shear. Thus, we have

z

ps = pso€e H, (5.5.104)
g do, g° 2
N2 = = = N 5.5.105
s 950 dz Cposo ’ ( )
R0
H = %0 (5.5.106)
g

where H is scale height. Eqgs. (5.5.14), (5.5.15), and (5.5.17) in the Eady model
are also used in this case:

ug = Uz) = Az (5.5.107)
vg = 0, (5.5.108)
Yy
v o= of [udy = fage (5.5.109)
0
0 = 980 81/} _ _ f0980 Ay (55110)
g 0z g

Substituting (5.5.104), (5.5.105), and (5.5.109) into (5.5.100), we obtain the basic
state quasi-geostrophic potential vorticity as

H_11a( 2 09

fi A
T fops 02 \P*N2 82

gt fo+ By,  (5.5.111)

>+fo+ﬁy =
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and the meridional gradient of potential vorticity as

oo fé A B h
I, = oy~ NH +8 = [Bl1+ ok (5.5.112)
where h is a typical vertical scale defined by
Af3
h = . .5.11
AN? (5.5.113)

The strength of shear and static stability greatly affect the value of h. A typical
value for A = 3 x 1073 m s7% and N2 = 107 s72 with fo = 2Qsin(45°) s~! and
B =2Qcos(45°)/R s~ m~! gives h = 2.5 km. In the case of H = 8 km, this also
gives h/H = 0.3.

Let us define perturbation of the streamfunction by ¢’. The linearized equations
of potential vorticity and potential temperature are given by

0 O (O RO f 1L ov
ot ? oz ox? Oy? N2 922 N2H 0z
oY’
Hly 5., 0, (5.5.114)
0 0\ oy oy’ 9 B
<8t +A28m> 92 —Aax +Nw = 0. (5.5.115)
The boundary conditions are given by
o oY’ oy B
PN - A o = 0, at z=0, (5.5.116)
pslY? — 0, as z— oo, (5.5.117)
oY’
= t y=0,L. b1
P 0, at y=0, (5.5.118)

The boundary condition in the limit z — oo comes from the constraint that the
energy is finite.t As a solution that satisfies the conditions at y = 0, L, we assume
the modal solution (5.5.23). Substituting (5.5.23) into (5.5.114), (5.5.116), and
(5.5.117), we have

2y 109y N? N2 _ .

K+ + ,, M = 0, (5.5.120)

A PR 2

and the boundary conditions

d -
cdw—l—/\w = 0, at 2z =0, (5.5.121)
2

e" A2 — 0, as z— oo (5.5.122)

fThe boundary condition (5.5.117) can be written using perturbation velocity as

1
2

The energetics of baroclinic instability are described in Section 5.5.3.

ps(u;2 +v;2) — 0, as z — oo. (5.5.119)
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Eq. (5.5.120) can be rewritten as

2y 109 @ 2\
— — = 5.12
dz? H8z+(z—zc H)%// 0, (5:5.123)
where
N2
pro= L, (K +17), (5.5.124)
0
N2TL, 1 1
a = = ) (5.5.125)
AN H h
c
. = . 5.5.126
z A ( )

At the height z., the phase speed ¢ becomes equal to the zonal wind of the basic
state; z. is called the steering level. Now, setting

P(z) = e VETE) (2 — 2)B(2 — ze), (5.5.127)

with parameters

§ = (1+4u2H2)5, (5.5.128)
_ 1 2772\ 2 I P
vo= {(1+4u H?)? - 1} = -, (5.5.129)

we can rewrite (5.5.123), (5.5.121), (5.5.122) as

d*® dd
2 — —1-r)® = . D.1
T +(2—-12) I (1—=r) 0 (5.5.130)
dd §-1
— P = = .0.131
xg (dz 0% ) 0, at x =, (5.5.131)
|®|?e™" — 0, as x— oo, (5.5.132)
where
144
ro= 5 h (5.5.133)
z—z
= °5 .5.134
x P (5.5.134)
z
= = = - "°. 5.1
xo z(z=0) ™ (5.5.135)

Tt is known that the function ®(z) can be expressed by confluent hypergeometric
functions:

— axi(l—r2;z), for r=n,
P(x) = { coxa2(l —r, 2;x), for r#n, (5.5.136)
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where n =1, 2, ---, and
. T(a+n)
2; = " 5.5.137
e %) T;) T(a)(n + 1)tn!" ( )
1 1 & T(a+n)
27) =
xz(a, 2:7) a—lirngOF(a)(nJrl)!n!
x[Inz + ¢p(a+n) —d(1+n) — d(2 + n)]z". (5.5.138)
I'(x) is called the Gamma function, which satisfies
T(z+1) = al'(). (5.5.139)
In particular, I'(n) = (n — 1)! for integer n. Using the Gamma function, we have
d
o(x) = . logT(a), (5.5.140)
n—1 1
p(n+a) = ;OaMn + ¢(a). (5.5.141)
In the case r = n, since ®(x) is a polynomial with degree n — 1 as given

by (5.5.137), we have n solutions for z from the boundary condition (5.5.131).
Corresponding phase velocities ¢ can be calculated from (5.5.144). It can be shown
that all phase speeds ¢ are real with ¢ < 0. This means that there is no unstable
wave for positive integer r. In the case r # n, substituting the solution of ®
given by (5.5.138) into the boundary condition (5.5.131), we obtain a number of
phase velocities ¢. In general, there exists a complex solution among them (i.e.,
an unstable wave). From further investigation, the properties of the solution are
summarized as follows: If 0 < r < 1, only one unstable solution exists. If r = n
(n=1,2,---), only n neutral solutions exist. If n < r < n+ 1, n neutral solutions
and one unstable solution exist.

The typical parameters of unstable waves are given as follows. For given r and
h, the horizontal scale is given from (5.5.124) and (5.5.133) by

2 1+ H/h)?
B2 — o ( 1. 5.5.142
* AN2H? r2 ( )
From (5.5.129), the vertical scale is given by
1 /1+H/h
= —1 5.5.143
Y 2H ( r > ’ ( )

The value of zp can be determined from the boundary condition (5.5.131). From
this, the dispersion relation between phase speed ¢ and wave numbers k£ and [ are
related to zg. In particular, if r is an integer, c¢ is real and given by

AH
c = - o . (5.5.144)

[1 + 4%?(% - 12)H2] :
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This implies that ¢ < 0.

Figure 5.12 shows the dependence of xg on r given by the boundary condition
(5.5.131) for specified values of §: § — oo and 6 = 2. Both cases indicate that g = 0
for any positive integer » = n. Figs. 5.13 and 5.14 show the dependences of phase
speed and growth rate on wave numbers. Here, we define the nondimensional phase
speed by ¢* = ¢/AH, nondimensional wave numbers by k* = kHN/ fo, I*HN/ fo,
and pu* = pH, and the nondimensional growth rate by w* = k*¢* = wN/(Afo).
Figure 5.13 is the relation between the total wave number p* and the phase speed
c*. Figure 5.14 is the growth rate w* as a function of the wave number k* for [* = 0,
and Fig. 5.15 shows the dependence of the growth rate w} on k* and H/h. In the

-2.0 T T -4 T
15 B 3L
5 1 s |
g , g r
~ ~
©1.0 E s -2t
s | ] g L
N
£ 7 1 <
05 NN . -1
L/ [ VRN y
0.0k a = 0
0 1 2 3 0 1 2 3
r

FIGURE 5.12: The dependence of zg on r for (left) § — oo and (right) 6 = 2. The solid

curve is
the real part Re xg, and the dashed curve is the imaginary part I'm xq.

1.0

q 0.4

0.0 L B LSS

FIGURE 5.13: The relation between phase speed c¢* and total wave number p* for H/h = 0 and
1. The solid curve is the real part cy, and the dashed curve is the imaginary part c;.
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case of H/h = 0, growth rates are always positive for all wave numbers: w; > 0.
In the case of H/h > 0, in turn, there exists a neutral mode w} =0 at r =1 (i.e.,
from (5.5.133) and (5.5.128)),

g = \/(1+ﬁ;/h)2*1. (5.5.145)

For H/h = 1, we have pf = 0.866. The wave that grows largest exists at the wave
number in the region p* > p* (le., 0 <r < 1).

Figure 5.16 shows the structure of most unstable waves in the zonal and height
cross section for H/h = 0 and 1. The amplitude of the streamfunction becomes
larger as height lowers, and becomes smaller in upper layers, which is different from
the Eady problem. Near the surface, the warmest air is found at the front of a low-
level cyclone, while the coldest air is found at the front of a low-level anticyclone.
This means that heat is transported poleward. The magnitude of heat transport is

1.0 : : : : : : 1.0

*

, O
, O

0.5+ B

o
(073

0.0

k*

FIGURE 5.14: The relation between growth rate w* and zonal wave number k* for H/h = 0 and
1. The solid curve is the real part wy, and the dashed curve is the imaginary part w;.

FIGURE 5.15: The dependence of growth rate w; on zonal wave number k* and the parameter
H/h for I* = 0. The counter interval is 0.02 for thin curves and 0.1 for thick curves. The dotted
curves correspond to r = 1 and 2 where the growth rate is zero.
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FIGURE 5.16: Structure of the most unstable waves of the Charney problem for H/h = 0 (top)
and 1 (bottom). The streamfunction 1’ (solid) and the potential temperature ¢’ (dotted) in the
zonal and height section are shown; the contour interval is onefifth of the maximum amplitude of
each quantity. The zero values are denoted by the dashed and dotted-dashed curves, respectively.
L/H denotes the centers of low/high pressures; N/S denotes the maxima of northerly/southerly
winds; W/C denotes the warmest/coldest positions of the perturbations of potential temperature.
The steering level z; is also shown by a tick on the right ordinate. The growth rate and zonal
wave number are w? = 0.302, k* = 0.625 for H/h = 0, and w} = 0.322, k* = 1.416 for H/h = 1.

also larger near the surface.

5.5.3 Energetics

We have examined the disturbances of baroclinic instability based on the Eady
problem and the Charney problem. The energetics of baroclinic instability can be
studied in the same framework as that of barotropic instability. We now consider
the energetics of shear instability in general for a basic flow on the B-plane. We
assume that zonal velocity has an arbitrary distribution u(y,z). The linearized
quasi-geostrophic potential vorticity equation for the perturbation field is given by
(5.5.114):

0 0 1 aw/
I +1I - 5.14
(815 +“ax> + Y fo Ox 0, (5.5.146)
where
1 [0%y 0% 1 0 £2 94
"= Jo [&v? - dy? * ps 0z (PSNOQ 02 )} (5.5.147)
_ Pu 10 2 0u
M= 07 g = 00 (ps N? az> : (5.5.148)

We assume that the flow is confined in the region with 0 < z < H and 0 < y < L.
From (5.5.115), the boundary condition at z = 0, H is given by

0 0\ oY Oudy
— = 0. .5.14
(815 +u3x> 0z 0z Ox 0 (5:5.149)
The meridional boundary condition is v = 0 at y = 0, L. From this and using

(5.5.7), we obtain,

B, o\ oy
(at+“ax> o = (5.5.150)
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Multiplying ps¥’ by (5.5.146) and averaging over the z-direction, we have the zonal-
mean energy equation:

o [ps [(0w\* | (0w\® | f2 (0w’
8t{2 [(8%) +<8y) +N2(8z>
o o ayow
Y lp” <8t+u8m) 8y]
o 2 (o oa\ow
+3z PsN2¢ .<6t +u8m) 62]

Au A A’ 12 Ou oy o’
ps@y Ox Oy PsN2 9z 0z 82

(5.5.151)

Integrating in the yz cross section, and using the boundary conditions (5.5.149)
and (5.5.150), we have

dE 1 (22 duoy oy f2 Ou 0 O
= Ds + Ps o dydz
dt fsJo Jo Oy dx Oy N2 0z 0x 0z

L H 2
= / / (psg;ju’v’ + ps L 3uU/0/) dy dz, (5.5.152)
o Jo

(90f0N28Z
where
e N N T A IO VA
E = s 0 dz d

fg/o/o {2 (8m>+(8y> +]\72<8z) =4y
L H 2 2

— Ps 2 2 9 o dz d 1
/o /o 5 (u +UE 9(2)> zdy (5.5.153)

is total energy. In the case with an infinite upper boundary, the domain of the
above integral is taken from the ground to H = co. Eq. (5.5.152) states that, in the
case that gg =0 and g; > 0, the disturbance will grow if /v’ < 0; this is the case
for barotropic instability. On the other hand, in the case that g; =0 and gg > 0,

the disturbance will grow if v/6” > 0; this is the case for baroclinic instability. In

general cases when both g“ and gg are different from zero, the stability of the flow

depends on the structure of the disturbance.
5.5.4 Necessary condition for instability
5.5.4.1 Energy equation

The energy equation can be used to discuss the necessary condition for shear in-
stability. We assume that the perturbation has a sinusoidal form in the quasi-
geostrophic potential vorticity equation (5.5.146),

W= ply,2)e*Emen, (5.5.154)
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where ¢ is a complex phase speed
c = ¢ +ic. (5.5.155)
Substituting (5.5.154) into (5.5.147), we rewrite (5.5.146) as

2 2
(u — ¢) k2¢+ 0 ¢ s T pl‘ aaz (pS]{;JQ gfﬂ +1,0 = O. (5.5.156)

The boundary conditions (5.5.149) and (5.5.150) become

(u — c)gf - gZ(b — 0, at 2=0,H, (5.5.157)

¢ = 0, at y=0,L. (5.5.158)

Multiplying ps¢*/(u — ¢) by (5.5.156) and integrating in the yz cross section using
the above boundary conditions, (5.5.157) and (5.5.158), we obtain the energy equa-

tion as
) dz dy

/ / s <k2|¢|2 ’

L 2 2 H 2
12 o> ou]” / / [
- . L 7 5.1
/0 [p N2u—c0z |, dy + o Jo Pow—c ydzdy (5.5.159)

which corresponds to (5.5.152).
Let us consider the real and imaginary parts of this equation to consider the
condition for instability. Using
1 1

y—e = ]2 (u—cr +ic), (5.5.160)

we obtain the imaginary part of (5.5.159) as

L 2 2 H L H 2
fo lel* ou / / 9|
— & s d s 11 d d
{/ e e, o [ e e
= 0. (5.5.161)

In order to have an unstable wave with ¢; > 0, we need the inside of the brace in
the above equation to vanish. Thus, replacing

[l

5.162
e (5.5.162)

P:psl

we can rewrite the condition as

0 = /OL [P]‘(ia} dy +/ / PIL, dz dy (5.5.163)

Jog 39} / /
— [ p dy + PIL, d= dy, 5.5.164
/0 [ N20y 0y |, o Jo v ( )
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where we have used the thermal wind balance relation

0 00
v _9 9 (5.5.165)
0z to.fo Oy
This gives the necessary condition for instability. In order to satisfy this condition,
the signs of the three quantities,

001 00 d (5.5.166)
ay 2=0 ay z=H
or
B - 0, (5.5.167)
0z, 0z|,_y

must not be identical.

In particular, let us examine the case when g;‘ = 0: pure baroclinic instability.
First, we assume that there is no meridional gradient of potential temperature at
the top and bottom boundaries. In this situation, (5.5.164) becomes

L H
/ / Pll,dzdy = 0. (5.5.168)
o Jo
In order to satisfy this equation, it is required that the sign of
10 fé ou
I, = - s 5.1

must change at some z; this statement corresponds to Kuo’s or Rayleigh’s theorem
for barotropic instability.

Second, if we assume that there is no meridional gradient of potential vorticity
within the inner domain, IT, = 0, (5.5.164) becomes

B H
fog 00
P dy = 5.1
/o [ N26y 0y |, Y 0 (5:5.170)

(i.e., the instability depends on the meridional gradient of potential temperature at
the top and bottom boundaries). The Eady problem is categorized into this case.
Third, if we assume that the upper boundary condition plays no role in (5.5.164)

(i.e., gg = 0 at z = H, or the upper domain is infinite as z — o0), the necessary
condition becomes

“[p fog 09 L
P d +/ / Pll,dzdy = 0. 5.5.171
[ N2eoayL_o VR Sy Sy P (G5.17)

The Charney problem is categorized into this case. From this, it can be seen that
if there is a meridional gradient of potential temperature at the lower boundary,
the basic flow is not unstable as long as potential vorticity is constant in the inner
domain. This is the case of the modified Eady problem without the upper boundary.
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Next, returning to (5.5.159), let us consider the real part of the energy equation

//ps<k2|¢|2 ‘ 0 )dzdy
- fo au L H
_ /O [pNQ( Cr)azh dy+/0 /O P(u— ¢)L, dz dy.

(5.5.172)

In order to consider the conditions for instability, we use (5.5.163) which is satisfied
if the perturbation is unstable. Introducing an arbitrary constant cy, multiplying
(5.5.163) by (¢o — ¢r), and summing up the result with (5.5.172) we have a relation

//ps<k2|¢|2 ‘ 0 )dzdy
8 L H
/0 []‘COQP(uCO)a:}O dy+/0 /0 P(U7CQ)Hdedy.

(5.5.173)

The left-hand side is positive for unstable waves. In the special case that ‘9“ =0

and the top and bottom boundary conditions are negligible, IT,, = 0 holds at some
altitude z according to (5.5.168). We set ¢y equal to the wind speed at this height:
co = u(zc) = us where II,(z.) = 0. The positive condition of the second term on
the right-hand side of (5.5.173) is written as

H
/ P(u—us)Il,dz > 0. (5.5.174)
0
In particular, if 3 = 0 and p,, N2 are constant, it is rewritten as

A 0?u
P(u— us)a ,dz < 0. (5.5.175)
0 z

This means that the absolute value of |g§| is maximum at the inflection point of
u: this corresponds to Fjgrtoft’s theorem of barotropic instability.

5.5.4.2 Potential vorticity flux

The above necessary condition for instability (5.5.163) is also derived from the
relation of potential vorticity flux. The zonal average of quasi-geostrophic potential
vorticity flux is written as

pe OV [ORY 0P 10 [ f3 0w
f¢ ox [ﬁxz + 0y? +p882 ( N2 0z ﬂ
9 ([ ps OV OY’ 9 [ ps OY Oy

(fg o a;,)*a <N2 o az)

Tl =

= —aay (psu'v’) + aaz (ps Gf(])\?z v’9’> . (5.5.176)
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Using v = 0 at y = 0 and L, the domain integral of the above equation is written

as
Lot o fog "
W' dz d —/ [ v’@’] dy = 0. 5.5.177
/O/Op v= )P N ; y ( )

Now, we can show how (5.5.161) can be derived from this. The quasi-geostrophic
potential vorticity equation and the boundary conditions at z = 0 and H are given
as (5.5.146)—(5.5.149)

0 0
I ', = 5.1
<6t+u6x) +v'Tl, 0, (5.5.178)
aJrua 0 +v0, = 0, at 2=0, H (5.5.179)
ot oz v 7 o
Introducing meridional displacement 1 by
0 0 ,
= 5.1
<at+“ax)" v, (5.5.180)
we rewrite (5.5.178) as
0 0 0 0
n = - -11,. 5.5.181
(at +“ax) (at +“ax>” v ( )
Thus, the perturbation of potential vorticity is expressed as
T = —yl, (5.5.182)
Using this and (5.5.180), we obtain
o n?
m = — 1L,. 0.1
v ( ot b ) ; (5.5.183)
At the boundaries z = 0 and H, (5.5.179) is also rewritten as
0 o ,, 0 0
= — . .5.184
<6t+u6m)0 <8t+u6m)n 0y, (5.5.184)
which gives
0 = —nb,. (5.5.185)
Using this and (5.5.180), we also have
0 172 9()f() 0 772 ou
9 = — 0, = . 5.5.186
v <8t P > v= g \at2 ] o ( )

Substituting (5.5.183) and (5.5.186) into (5.5.177) yields

H
Lot o Lo (o) ou
/0 /O Ps (at 2 Hdedy+/o Ponal\ore ) g.| W =0

0
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For the sinusoidal perturbation (5.5.154), the displacement is written from (5.5.180)
as

n = Re ¢ gik(o—et), (5.5.188)
u—c

Then, we have

O keloP ape
ot 2 |u — c|? '

Substituting this into (5.5.187), we obtain an identical equation to (5.5.161).

The relation (5.5.176) is derived from quasi-geostrophic potential vorticity flux
and always holds for both stable and unstable waves. This relation is equivalent
to (5.5.187) which is expressed using the amplitude n. Furthermore, (5.5.161) can
be derived if the sinusoidal form is assumed to be 7. These relations imply that
quasi-geostrophic potential vorticity flux grows with time for unstable waves.

(5.5.189)

5.5.4.3 Extension of potential vorticity

The above relation is compactly rewritten by extending quasi-geostrophic potential
vorticity using potential temperature at the top and bottom boundaries:

mo— 4 109 0[6(z — 0) — 6(z — H + 0)], (5.5.190)
Ao N2
where d(z) is Dirac’s delta function. In this equation, it is assumed that the contri-
butions of potential temperature are confined to just above the bottom boundary
z = 40 and to just below the top boundary z = H — 0 in the inner domain. In
this case, (5.5.178) and (5.5.179) are combined to the equation of extended quasi-
geostrophic potential vorticity:

9 ON s | e
<8t+u8x)n LT, = 0, (5.5.191)
where
= 1+ 1% 050z — 0) - (= — H+0)), (5.5.192)
G0N
ol fog
y oy y + 0, N2 0y [(5(2 0) (5(2 + 0)] (5 5 93)

In this case, the integral of the quasi-geostrophic potential vorticity flux, (5.5.177),
is written as

L H
/ / psV'I* dzdy = 0. (5.5.194)
o Jo

This indicates that we can introduce the contribution of potential temperature at
the boundaries to quasi-geostrophic potential vorticity in the inner region. Although
potential temperature has a gradient at the boundaries in general, this effect can
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be included in quasi-geostrophic potential vorticity, and thus potential temperature
can be thought to be constant at the boundaries. Figure 5.17 schematically shows
this situation where potential temperature surfaces are sharply bent so as to be
parallel to the boundaries.

By rewriting IT*/ using the displacement 7 analogous to (5.5.182), we obtain the
necessary condition for instability ¢; > 0 using (5.5.183) and (5.5.189):

L H
/ / PII*,dzdy = O, (5.5.195)
0 0

where P is defined by (5.5.162) and always positive. This condition does not con-
tain the contribution of the boundaries and is formally similar to (5.5.168). This
indicates that it is necessary for instability that the sign of IT*, changes within the
inner domain. In the case of the Eady problem, we have IT*;, < 0 at z = +0 and
IT*, > 0 at z = H — 0. In the case of the Charney problem, we have II*, < 0 at
z=+0and IT*, > 0 in z > 0 (see Fig. 5.18).

<

y y

FIGURE 5.17: The contours of potential temperature in meridional cross section near the bottom
boundary (left) and those of potential temperature used for extended quasi-geostrophic potential
vorticity IT* (right).

Z
/ 0,<0
. >0 B>0 T, >0
I, <0 IT, <0
0,<0 / / 0,<0 / /
y

Eady Charney

y

y

FIGURE 5.18: Interpretation of the Eady and Charney problems by extended quasi-geostrophic
potential vorticity II*. The meridional gradients of IT* are opposite between the lower and upper
layers.
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5.5.5 Interpretation of baroclinic instability

Analogous to the interpretation of barotropic instability described in Section 5.4.4,
baroclinic instability can also be interpreted from the interaction of Rossby waves.
Baroclinic instability occurs if the meridional gradients of potential vorticity of the
basic state are opposite in the upper and lower layers. In this case, Rossby waves
propagate in opposite x-directions in each layer, and they can be in such a phase
relation that each wave amplifies the amplitude of the other wave. As depicted in
Fig. 5.19, such a phase relation is realized if the phase line inclines westward with
height.

In the case of the Eady problem (the middle panel of Fig. 5.18), edge waves
at the boundaries play the roles of Rossby waves. If the basic field has westerly
shear in a confined region with top and bottom boundaries, the lower edge wave
propagates eastward along the lower boundary and the upper edge wave propagates
westward along the upper boundary. Since zonal winds are westward in the upper
layers, these two waves have a phase relation with no relative motion. In such a
phase-locked situation, the poleward flow associated with the lower edge wave is
located at about the same longitude of the trough of the upper edge wave and the
equatorward flow is located at about the same longitude of the ridge of the upper
edge wave. The poleward/equatorward flow in the upper layer also corresponds to
the ridge/trough in the lower layer. Thus, each wave amplifies the amplitude of the
counterpart wave, and the amplitude of the two waves grows as a whole.

Eady’s shortwave cutoff is estimated by this interaction of Rossby waves. If the
wavelength of the edge wave is given by L, the vertical scale is given by (f/N)L.
If the distance between the top and bottom boundaries H is smaller than (f/N)L,
the two waves interact with each other

f

H <

L. (5.5.196)

PV

PV

FIGURE 5.19: Schematic figure of the interaction of Rossby waves for interpretation of baroclinic

instability. The vertical profiles of potential vorticity (PV) and zonal velocity U are shown at

the right; PV is minimum at the middle zs. The Rossby wave propagates westward in the upper

layer z > zs, while it propagates eastward in the lower layer z < zs. The basic flow is unstable

if the upper and lower waves are in such a phase relation that each vorticity is amplified by the
meridional flow of the other wave.



References and suggested reading 183

Thus, instability occurs if the wavelength is long enough that

L > NH. (5.5.197)
f
This condition corresponds to (5.5.40).

In the case of the Charney problem (the right panel of Fig. 5.18), Rossby waves
in the free atmosphere interact with the edge wave at the lower boundary. In the
free atmosphere, the Rossby wave propagates westward due to the (-effect, while
the edge wave is trapped near the lower boundary and propagates eastward. The
structure of the unstable wave of the Charney problem is characterized by the phase
relations of the two waves where each wave amplifies the amplitude of the other
wave.
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Forced motions

In this chapter, thermally and mechanically forced motions of the atmosphere or
the ocean are examined. The underlying concepts are propagation of disturbances
generated by forcing and their adjustment process. These are discussed using the
knowledge of waves described in Chapter 4. We begin with geostrophic adjustment
as an initial value problem. Although it is not categorized as a forced motion,
it gives a key notion for understanding the relation between the propagation of
inertial gravity waves and the adjustment process, through which geostrophic winds
are established. We subsequently describe thermal responses on the f- and (-
planes. The response to thermal and mechanical forcing of axisymmetric flows is
also described. At the end of this chapter, we consider the effects of frictional
forcing on circulation and explain Ekman transport.

6.1 Geostrophic adjustment

If a fluid in the rotating frame is disturbed, a part of the disturbance propagates in
the form of waves and the other part remains as geostrophic motions at the location
where the disturbance is applied. The process involved when geostrophic balance
is established is called geostrophic adjustment.

We use linearized shallow-water equations to illustrate geostrophic adjustment.
Linearizing (3.4.1) and (3.4.2) around a basic state of no motion with depth H, we
obtain

ou on

ot fv = 99y (6.1.1)
ov an
= - 1.2
g T U 95, (6.1.2)
on du  Ov B
o TH <8m + ay> =0 (6.1.3)

in which friction terms are neglected. The corresponding linearized potential vorticity

M. Satoh, Atmospheric Circulation Dynamics and General Circulation Models, 185
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equation is given by

o1 [0v Ou n
_ — = 0 6.1.4
ot {H (ax Jy / H )] ’ ( )
from which it is found that perturbation potential vorticity,
v  Ju 7
o _ _ 6.1.5
q or ~ oy f o (6.1.5)

is constant irrespective of time.
If we assume that the flow field approaches a steady state as t — oo, the final
state is described by (6.1.1)—(6.1.3) by omitting the tendency terms:

—92;77 fu = —gan u 0v_y (6.1.6)

—fv = oy’ ox = Oy

(i.e., geostrophic balance is expected as the steady final state). In this case, per-
turbation potential vorticity is written as

;g (P P\ ,m g (0 Pn
7 = f(8x2+8y2 T = lowe o2 a2) (6.1.7)

where

N (6.1.8)

f
is called the Rossby radius of deformation.

Let us consider evolutions of the shallow-water system giving a perturbation in
the region 0 < x < L at the initial state t = 0. We consider two types of initial
states: a perturbation is given to either surface height field or velocity field. First,
we assume u = v = 0 and a perturbation of the surface height given by

— 07 (l’ < 0, L < I)7
= { n, (0<az<L). (6.1.9)
In this case, potential vorticity is given by
’ 07 (I’ < 0, L < I)7
E B N (S 2! (6.1.10)

If we assume that the flow field approaches a steady state in the limit t — oo, the
surface height has a steady profile at the final state. Since potential vorticity is
constant irrespective of time, we find from (6.1.4) that the surface height at the
final state satisfies

6277 n { 0, (x<07L<l')7

111
ox?2 N2 (6 )

e O<w<i),
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Assuming that n and g;’ are continuous at = 0, L, and n — 0 as |z| — oo, we
obtain the steady solution as

o (lfefi)ei, (x <0),
2\ ]

n o= - (e et 0<e<), (6.1.12)
7720 (ei—l)e_i, (x > L).

The corresponding velocity field v is given from (6.1.6) and « = 0. The maximum

surface height occurs at x = g :

0 ::1m(1—67$>. (6.1.13)

This implies that surface height gets very small if L > A. On the other hand,
initial surface elevation almost disappears if L < A. This is the case when rotation
is small. Figure 6.1 shows the profiles of n for A/L = 0.1, 1/3, and 1.

Second, we consider a perturbation of the initial velocity field. At ¢t = 0, we
assume u = 7 = 0 and

_ 0, (r<0,L<u),
B { v, (0 <z <L) (6.1.14)
Potential vorticity is given by
r 07 (I<O,L<x)7
T {WW@)dem (0<z<L), (6.1.15)

where §(x) is the delta function. If we assume a steady solution in the limit ¢ — oo,
the surface height at the final state satisfies

8% 0 0, (x <0,L<x),
02 a2 = ) TG @ -1), 0<z<L) (6.1.16)
g
15
1.0
=05F
0.0F
05t ‘ ‘
-2 0 2
X

FIGURE 6.1: The profiles of surface height n at the final state due to geostrophic adjustment. The
initial perturbation of surface height is n =1in 0 <z <1 (L = 1) (dotted line). Solid: A = 0.1;
dashed: X\ = 1/3; and dashed-dotted: A = 1.
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There are discontinuities in gg atz=0,Lby +7/ ;’”. Thus, the solution is given by

H o
2U>(: (efi —1)eA7 (x <0),
o z—L =
= — <zx< .
7 2)\(6A ex), 0<z<L), (6.1.17)
Vo L _z
91N (eA —1)6 A, (x> L).

In this case, v is discontinuous at = 0, L, but n is continuous and u = 0. Surface
height takes the maximum and minimum values at z = 0 and L, respectively. In
particular, surface height at x = L is

n = gvaO (1767§). (6.1.18)
Thus, n > 0 is always satisfied. If L > A, surface height is close to zero everywhere.
Figure 6.2 shows steady solutions of  for A/L = 0.1, 1/3, and 1.

The profiles of the steady solution (6.1.18) are different from those for the case
when the perturbation of surface height is given initially. In the case L > A, the
change in surface height is very small in (6.1.13), while surface height becomes very
flat in (6.1.18). This difference comes from perturbations in potential vorticity. If
a perturbation of surface height is given initially, potential vorticity ¢’ has nonzero
values in the range 0 < x < L, whereas if a perturbation of momentum is given
initially, ¢’ is different from zero only at the edges x = 0 and L. The effect of the
perturbation of potential vorticity on surface height 7 is confined in the horizontal
distance about .

As an extreme case, if a constant momentum vg is given in the whole region,
q' is everywhere zero. This implies that no change in surface height occurs at the
final solution. In this case, however, (6.1.1) and (6.1.2) are written as

ou 0
0

L~ fv =0, :+fu =0, (6.1.19)

0

1.0

0.5F
0.0

—05[

-1.0k

FIGURE 6.2: Same as Fig. 6.1 but initial perturbation is given to momentum.
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from which a single equation for v is given as

0%v

ot?
(i.e., v has an oscillatory motion with frequency f; this is an inertial oscillation and
no steady solution exists). In general, waves are generated by an initial perturbation
as a restoring process. If a perturbation is given in a limited region initially, waves
propagate to remote regions and only geostrophic motions remain near the region
where the perturbation is given initially.

The energy change due to geostrophic adjustment can be estimated as follows.
The energy equation is constructed from (6.1.1)—(6.1.3) as a second-order equation

— % (6.1.20)

o ( w02\ 9 P
ot (92 L > = 9 {ax(unﬂay(vn) : (6.1.21)

Integrating this in the entire domain and assuming that no flux exists at nfinite
boundaries, we obtain the conservation of energy as

2 2 2
gt/<g772 +H" ;” ) dedy = 0. (6.1.22)

Let us consider the energy change between the initial state ¢ = 0 and the final state
t — oo for the case when a perturbation is given only to surface height initially. The
initial surface height is (6.1.9), and the final state is given by the steady geostrophic
solution (6.1.12). We define total energy by

oo 2 2 2
E = / (9172 +H" ;” > da, (6.1.23)

where, since all the quantities are uniform in the y-direction, integration is taken
only in the x-direction here. At ¢ = 0, the initial energy is given by

L ,'72 772
E = / gV de=gL . (6.1.24)
0 2 2

On the other hand, as ¢ — oo, using (6.1.1), (6.1.11), and (6.1.12), the energy at

the final state is
00 2 2 ) 2 2 2
n v ne  gA® [ 0n
E = H —
[ enty)a = [ ()] e
_ /Oo P g"O/L dx
2T o Mgy 2 Jy
2 A
- gL’72° {1L(1ei)} (6.1.25)

Hence, there exists a difference in energies between the initial state and the steady
state in geostrophic balance. The difference is given by

g

2
AE = g)\n; (1—e*§). (6.1.26)
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Thus, it contradicts the conservation of energy (6.1.22). It can be proved that this
contradiction comes from the assumption that a steady geostrophic state is the final
solution. We need to take account of the nongeostrophic component even in the
limit ¢ — oo. This is a part of propagating inertial gravity waves.

Similarly, if a perturbation of momentum is given initially as (6.1.14), the energy
at t = 0 is expressed by

1}2
E = LHQO, (6.1.27)

whereas the energy in the limit ¢ — oo is
1}(2) _ L
E = A (176 A). (6.1.28)

Thus, in this case, again, there is a difference between initial energy and final steady
energy. In particular, as A becomes smaller, the final energy of the part made up
by steady geostrophic balance becomes smaller.

6.2 Forced motions on the f-plane

In the following sections, we consider forced motions in the atmosphere or fluids.
First, let us examine thermally forced motions on the f-plane. We particularly
consider large-scale motions in hydrostatic balance; in this case, horizontal structure
and vertical structure can be separately considered as described in Section 4.7.1.
The separation of variables is also applicable if there is a forcing in the system.
Introducing the Boussinesq approximation to (4.7.6)—(4.7.10) and neglecting metric
terms on the f-plane, we obtain the basic equations:

g? —fo = —plo gi, (6.2.1)

g: +fu = —plo 25, (6.2.2)

0 = —gf—pg, (6.2.3)

gg + g;) + ZIZU = 0, (6.2.4)
gf—]\;w - —apQ. (6.2.5)

Note that the forcing term is given as the right-hand side of (6.2.5), using (3.1.12)
for the Boussinesq approximation. In the following arguments, we assume that the
buoyancy frequency N? is constant for simplicity. Each of the variables u, v, w, p,
and p is expressed as a product of a function of (z,y,t) and a function of z. The
former describes the horizontal structure, while the latter is the vertical structure.
The vertical profiles of w, p, and p are denoted by W, Z, and P, respectively. If
W is set proportional to a sine function as (4.7.23), Z and P are expressed using



Sec. 6.2] Forced motions on the f-plane 191

(4.7.25) and (4.7.26) as follows:

W(z) = Wysinmz, (6.2.6)
P(z) = Wymcosmz,
2
Z(z) = _Wom sinmz. (6.2.8)
g

In addition, we also expand the thermal forcing @ by sine waves proportional to
W and Z in the vertical direction:

aji)/,[;gQ(m, y,z,t) = / Q(m; x,y, t) Wy sinmz dm. (6.2.9)
0

Thus, similar to (4.7.33)—(4.7.35), we obtain shallow-water equations for the hori-

zontal structure:

ou B on
o fo 99y (6.2.10)

v an
= - 211
g TIu 95, (6.2.11)

on du  Ov

H = - 2,12
o+ <6x * 6y> @ (6 )

where the symbol ~ is omitted from the variables of horizontal structure, and we
define H and ¢ by

N2
A = gH = . (6.2.13)

One may note that the thermal forcing @) corresponds to the source/sink of mass
in shallow-water equations. Eliminating v and v from (6.2.10)—(6.2.12), we obtain
a single equation for 7 as

o [ 02 o? o2 52
ot {5752 = (3x2 + ayz)] no=- (atg + f2> Q. (6.2.14)

To consider thermal response in shallow-water equations, we further assume
that motions are uniform in the y-direction. Letting 7 denote the time scale of
motion, we can characterize forced motions by the relative magnitude between 7
and f~!. In the case 7 < f~1, (6.2.14) is approximated to

02 02 9
(6752 -2 3x2) n = _8tQ’ (6.2.15)

while in the case 7 >> f~1, on the other hand, (6.2.14) becomes

0 o?
o (f2 _ 023m2) n = —f2Q. (6.2.16)



192 Forced motions [Ch. 6

The corresponding equations for 7 <« f~! are

ou an
= - 2.1
ot 9. (6.2.17)
on ou
H = —Q. 2.1
ot M ox @ (6.2.18)

The set of these equations describes the propagation of pure gravity waves. On the
other hand, the equations for 7> f~! are

_ 0
—fuo= -9, (6.2.19)
ov
o TTw =0, (6.2.20)
on ou
o THy, = @ (6.2.21)

In this case, velocity v always satisfies geostrophic balance.
We apply a thermal forcing at point £ = 0 and time ¢t = 0 to the initial state at
rest. This type of forcing is expressed by a function

Q(m;z,t) = Qo(m)é(x)H(t), (6.2.22)

where §(z) is the delta function and H(¢) is the step function: H(t) =0 for t < 0
and H(t) =1for t > 0. If 7 < f~!, it can be shown that the solution to (6.2.15)
is given by

Qo

=, [ sgn(z + ct) —sgn(x — ct)], (6.2.23)
B Qo 1 1
U= 0l sgn(x) 9 sgn(x + ct) 9 sgn(x — ct) |, (6.2.24)

where sgn(z) = [H(z) — H(—2)]/2: sgn(x) = 1 for x > 0 and sgn(x) = —1 for
x < 0. If 7>> f~1, on the other hand, the solution to (6.2.16) is given by

__JQo 1y
n o= = tee (), (6.2.25)
u —J;Cjzoge_ﬁlxl sgn(x) tH(t), (6.2.26)
v J;Cjzo ge_i"“" sgn(x) tH(t), (6.2.27)

where A = ¢/ f is the Rossby radius of deformation.

Examples of forced motions are shown in Figs. 6.3 and 6.4. In these cases, we
apply a point mass sink at the origin gy > 0. In the case 7 < f~!, the forced
motions are driven in the region that expands in time at speed of c¢. Velocity u is
convergent toward the mass sink and its amplitude is constant irrespective of time.
In the case of 7> f~!, on the other hand, the responses of n and v to the forcing
are confined only in the range with the Rossby radius of deformation A\ from the
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mass sink. In this region, 17 and v grow in proportion to time, while the distribution
of u is invariant.

Thermal response in the hydrostatic atmosphere is expressed as the products
of solutions to shallow-water equations and vertical structure. In the case that
the vertical domain is limited by rigid boundaries at z = 0, 1, the function sin7z
satisfies this boundary condition for w. In this case, the corresponding vertical
profile of u is given by cos7z. If we write a solution to shallow-water equations as
@, solutions to (6.2.1)—(6.2.5) are expressed as u = @ cos wz. In addition, if motions
are uniform in the y-direction, the streamfunction 1) can be defined in the xz section

such that u = gf and w = fg;[_’. The two panels in Fig. 6.5 show streamfunctions

n
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FIGURE 6.3: Forced motions in shallow-water equations for 7 < f~1. The distributions of (left)

surface height 7 and (right) velocity u at ¢ = 1 (solid curve), ¢t = 2 (dashed curve), and ¢t = 3

(dotted-dashed curve). The abscissa is /¢, and the ordinates are (left) n/(Qo/2c) and (right)
u/(Qog/2¢?).
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FIGURE 6.4: Forced motions in shallow-water equations for 7 > f~! and A = ¢/f = 1/3. The

distributions of (top left) surface height 7, (top right) lateral velocity u, and (bottom) normal

velocity v at ¢ = 1 (solid), t = 2 (dashed), and t = 3 (dotted-dashed). The ordinates are

n/(fQo/2¢), u/(Qog/2c?), and v/(fQog/2c?), respectively. The abscissa is /) with A = ¢/f =
1/3.
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FIGURE 6.5: Distributions of the streamfunctions of forced motions for (left) 7 < f~! and (right)
7> f~1. These figures correspond to t = 3 of Figs. 6.3 and 6.4, respectively. Thermal forcing
has a maximum at x =0, z = 0.5.

at t = 3 for the cases of Figs. 6.3 and 6.4, respectively. In particular, the two
distributions of horizontal velocity u along z = 0 in Fig. 6.5 agree with those shown
in Figs. 6.3 and 6.4, respectively.

As shown in Fig. 6.5, the streamfunction in the xz section expands with time
in the case 7 < f~'. On the other hand, in the case 7 > f~!, the extent of the
streamfunction is confined within the distance of the Rossby radius of deformation
A. However, its strength increases with time. In order to keep the strength of the
streamfunction constant, we need additional damping to the equations of velocity
and mass. Giving the damping terms proportional to velocity or mass in (6.2.10)—
(6.2.12), we obtain balance in the steady state:

an

su—fv = 99,7 (6.2.28)
sv+ fu = —gg;], (6.2.29)
ou Ov
/ H = — 2.
surti(preor) = @ (6.2.30)

where s and s’ are coefficients of the damping term. Assuming uniformity in the
y-direction, we combine these equations to
2

{S/(Sz + £ 75628352

}n = (5 + /)@ (6.2.31)

If forcing is given by @ = Qod(z), the solution to this equation is expressed as

n = —(s"+ f)Qoexp (—\/8/(82 ) |x|> : (6.2.32)

sc?

Therefore, the extent of the forced motions is given by

sc?
L = \/S’(SQ—i—fQ)' (6.2.33)

In the limit ' — 0 or s — 0 under f = 0, we have L — co. As shown in Fig. 6.3,
the region of thermally forced motions expands infinitely if s — 0 and f = 0. In
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the case s’ = 0, the amplitude of 1 grows infinitely, since the response of surface
height 1 cannot be balanced by Q.

6.3 Axisymmetric flows'

We have seen in previous sections that the geostrophic balance (6.2.19) holds if
7> f~! in hydrostatic equations or in shallow-water equations. In that case, v
or p grows linearly with time, whereas the strength of the streamfunction in the
vertical section remains the same. In this section, we generalize this situation to
thermally or mechanically forced axisymmetric flows.

We use the symbols introduced in Section 2.4 for the equations of axisymmetric
flows. We further introduce the Boussinesq approximation and assume that the

geopotential @ is a function of z. Acceleration due to gravity is gf = g. We
express changes in angular momentum and entropy as
dl
u = Fe (6.3.1)
ds C,Q
P ; , (6.3.2)

where F, is a forcing term and @) is a diabatic term. Using (3.1.12) for the Boussi-
nesq approximation, (6.3.2) is reduced to

dp

P —poaQ. (6.3.3)

Neglecting density variation in the continuity equation (2.4.21), we have

10 0

: = 0. 3.4
rar(rv7)+6zvz 0 (6.3.4)
From this, the streamfunction ¥ can be introduced as
0 0
U, = af ) T, = — a’f . (635>

Balances in the r- and z-directions, (2.4.26) and (2.4.27), are rewritten as

12 1 dp
— = - 6.3.6
3 20 O (6.3.6)
10p
0o = - —g. 6.3.7
poe Y (6.3.7)
Hence, the thermal wind balance is written as
1 912 g Op
= - . 6.3.8
3 0z po Or ( )

TThis section follows Eliassen (1951).



196 Forced motions [Ch. 6

The angular momentum equation (6.3.1) and the density equation (6.3.3) be-
come

ol? ol? al?

Iy + v, o + v, 9, = 20rF,, (6.3.9)
ap ap ap
gt Tlrg, TVzg, = —P00Q. (6.3.10)

Eliminating time derivatives from (6.3.9) and (6.3.10) using (6.3.8), we obtain the
equation for :

P Y 0 P oY oFE OF
B = 311
ar<a+ a>+a(a+ca> or T o, (631
where
B g Op g 9p 1 012
A= - por 0z’ B = por Or rt 9z’
1 012 21
c= % E=-aQ F=_F, (6.3.12)

Eq. (6.3.11) is an elliptic equation if the inequality,

Apdl?  9dpal?
D = Ac-B> = - Y - 0 6.3.13
pord <az or  Or 0z ’ ( )
is satisfied. We note here that, using d” = —% in (2.4.55), the condition for the
stability (2.4.53) is rewritten as
g (0pdl*2 09pol?
detM = - - 0. 6.3.14
¢ por3 <8z or  Or 0z ( )

Therefore, if axisymmetric flow is stable, the response to thermal or mechanical
forcing is described by an elliptic equation. If forcing is localized, the induced flows
are confined to a limited region.

If A, B, and C are constants, it can be shown that the solution to (6.3.11) is
given by

OE OF
P(r,z) = /G’(r, 23705 20) + dro dzo, (6.3.15)
8r0 82:0 (r0,20)
where G represents the Green function, given by
1
G(T727TOaZO) - 21D
x In [C(r —r9)*> = 2B(r —ro)(z — 20) + A(z — 20)*] * . (6.3.16)
If just the heat source F exists and F' = 0, the solution becomes
OF
P(r,z) = /G(r, 2570, 20) (67“07 20) drg dzg
To

_ ,/aG(T’;;TO’ZO)E(ro,Zo)dTo dzo. (6.3.17)
0
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In addition, if E is a point source localized at (7o, 29) and normalized as [ Edrdz =
1, we have

I,Z)(’I",Z) _ 78G(T32;T07ZO)

a’/'o
1 — 7o) — B(z —
Clr =ro) = Bz —z) . (6.3.18)
27D C(r —rg)2 —2B(r —ro)(z — 20) + A(z — 20)?
Thus, configuration of the streamlines is given by
C(r—710)* =2B(r —ro)(z — 20) + A(z — 20)*
—a[C(r—r9) — B(z—20)] = 0, (6.3.19)

where « is constant. This equation indicates that streamlines consist of ellipses
that cross the point (rg, zp). The direction of flow at this point is, from (6.3.12),

dz C %l2 dz
— = -0 = (6.3.20)
dr (ro,20) B %lz dr l

(i.e., the direction of flow is tangential to the contour of angular momentum; a
point heat source drives circulation along the contour of angular momentum near
the heat source). The left panel of Fig. 6.6 schematically shows this case.

On the other hand, if only a localized torque F exists at (rg, z9) and E = 0, the
streamlines are also ellipses. The contours of v are described by

C(r —70)* =2B(r —ro)(z — 20) + A(z — 20)*
Az - 20)~ Br—10)] = 0. (0:3.21)

\""--.__P=const.

FIGURE 6.6: Response of streamlines to a point source of (left) heat and (right) angular momentum

in axisymmetric flow. The point source is applied at (7o, z0) denoted by the thick cross. Contours

of angular momentum are denoted by ! = const. (solid), and those of density or entropy by p =
const. (dashed). The ellipses are streamlines.
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where v is constant. The inclination of the streamfunction near the torque is
9p

dz B or dz
p— p— _— T pr— 6.3.22)
P (
dr (r0,70) A azp dr .

(i.e., the direction of flow is tangential to the contour of the density (entropy) at
the point where the torque is applied). The right panel of Fig. 6.6 schematically
shows this case.

6.4 Forced motions on the $-plane

We consider the thermally forced motions of the geostrophic regime on the g-plane
using shallow-water equations. In the case of f = fy + [y, the vorticity equation is
given from (6.2.10)—(6.2.12) as

a¢
ot
where ( = g;’ — gZ and D = g; + g;’. Using this equation and (6.2.12), the

potential vorticity equation is written as

9 f f
o (c— H") o = Q. (6.4.2)

Assuming that geostrophic balance holds between u, v, and 7 for simplicity, we
rewrite the potential vorticity equation as
o (02 02 0 Q
— )2 = 6.4.3
ot <8m2+8y2 )Mﬂaa:” A2’ (643)
where A = gH/ f is the Rossby radius of deformation. Assuming that 7 is propor-

tional to exp(ily) and introducing a damping term with a coefficient s, we obtain
the equation for a steady solution as

<d2 +/Bd 12,\2>n _ @ (6.4.4)

dz? ' sdx sA2°

Let us consider the response to a point source at x = 0. If the response of 1 has
the form e~ I*l, we have solutions of v as

+Bv+fD = 0, (6.4.1)

vy = b + g +124+ X2 for >0 (6.4.5)
2s 452 ’ ’
B B2 _
veo= =, + 1s2 +124+ X2 for x<0. (6.4.6)

This means that the response reaches farther on the negative side x < 0 than on
the positive side z > 0. In particular, in the inviscid limit s — 0, we have vy — oc.

In the special case of a steady solution in the potential vorticity equation (6.4.2),
we have a balance

g = 1

Q- (6.4.7)
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FIGURE 6.7: Schematic figure of thermally forced motions on the midlatitude 3-plane. The shaded

circle is the heating region. If the circulation is steady, the response in the heating region is v > 0,

whereas that of the outer region is v = 0. The influence of heating spreads only on the western
side.

This indicates that a poleward flow v > 0 exists in the heating region @ > 0,
whereas no meridional flow v = 0 exists if there is no heating. Thus, the response
to heating spreads only in the z-direction and its meridional width is confined to
that of heating. The thermal response spreads in the negative xz-direction, since the
group velocity of Rossby waves is westward as shown below: the dispersion relation
of Rossby waves is given by (4.6.21). Since w = 0 for steady motion, we have k = 0.
From (4.6.23), therefore, the group velocity is
Ow

o = o = —B <0, (6.4.8)

Figure 6.7 shows a schematic response to heating on the g-plane.

6.5 Forced motions on the equatorial -plane

As the heating region gets closer to the equator, the balance in (6.4.7) breaks
down in the limit f — 0. This implies that the geostrophic balance used in the
previous section becomes inappropriate and that gravity waves show important roles
in the equatorial region. We use the shallow-water equations on the equatorial -
plane to consider the thermal response in the equatorial region, which is given by
substituting f = By into (6.2.28)—(6.2.30). We simply consider the case when the
damping coefficients of heat and momentum are equal: s’ = s. Thus, the balance
equations in the equatorial 8-plane are written as

on

su—Pyv = 9 9y (6.5.1)
sv+ PByu = —ggz, (6.5.2)
ou  Ov
H — — . .
sn+ <8x+8y> Q (6.5.3)

Introducing the variables ¢ and r as defined by (4.7.95), we rewrite the above
equations as

0 0
(s—l—cax)q—l—(cay—ﬁy)v = —ZQ, (6.5.4)
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0 0
(s—l—cax)r—i- (Cay +6y>v = —iQ, (6.5.5)
o g = 0 6.5.6
<cay+ﬂy>q+<cayﬂy>r+sv = 0. (6.5.6)

Let us expand these variables with the parabolic functions (4.7.91); for instance,

gx,y) = > qulx)Dn (\/iﬂy) : (6.5.7)
n=0

We also expand 7, v, and @ in a similar way. Using the recursive relations (4.7.101),
we have a set of equations:

d
(s te ) o = -0, (6.5.8)
dx c
d g
s+ Cpp ) dnt1 — \/2ﬂcvn = - ch+17 for n >0, (6.5.9)
d
<5 —c > Thn_1 + \/2507111” = ngn,l, for n>1, (6.5.10)
dx c
s
1 = 0 6.5.11
(n+1L)q + \/Qﬁcvo ) ( )
(n+1)gnt1 — -1+ \/;ﬁcvn = 0, for n>1. (6.5.12)

Specifically, we consider heating that is symmetric about the equator:

Q = Qo™ Dy <\/2fy> = Qoe™* exp ( ﬂy2> . (6.5.13)

2c

From the symmetry, we promptly obtain g1 = vy = 0. It can be found that there
are two types of solutions, which are respectively expressed by ¢o and (g2, 70,v1).
First, go is determined by (6.5.8):

1 g
= - . 6.5.14
9 s+ ikc CQO ( )

This solution corresponds to the response due to the Kelvin wave. The response
emerges on the eastern side of heating, and the length scale of the response is ¢/s.
Next, (6.5.9), (6.5.10), and (6.5.12) give

1 g

- _ 6.5.15
7 (3+¢€)s —ike CQO7 ( )
where
52 4 k22
= . 5.1
25¢ (6.5.16)

The solution (6.5.15) corresponds to the response due to the Rossby wave. The
response emerges on the western side of heating. If the wavelength is long enough
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and the damping small enough such that € < 1, then the scale of the response is
¢/3s, which is onethird of the length scale of the Kelvin response. For the Kelvin
response, the structure of velocity and surface height is written as

9. @ By B
u= = exp< 20), v = 0, (6.5.17)
and, for the Rossby response,
a2 [26 , s(s + ikc) By?
_ s _ 51
U 2{03/ 3 98¢ exp oe | (6.5.18)
‘k 2
v = q25+Z Cyexp (ﬁy ), (6.5.19)
c 2c
g g [20 , s(s +ikc) By?
= 1 — . 5.2
" 2 {c vt 20¢ P 2¢ (6:5.20)

The above shallow-water model corresponds to the lower layer of stratified fluids.
If we introduce vertical structure, we obtain three-dimensional circulation. Let the
depth of the atmosphere be H and the vertical structure of vertical velocity be
proportional to sin(rz/H). From the nondivergent condition, the amplitude of the
vertical velocity w is given by

w = —H (gz + g;) = s+Q, (6.5.21)
where (6.5.3) is used.

Figure 6.8 shows an example of thermal response to longitudinally cyclic heating
in the case of the longwave limit € < 1. The center of the forcing is located at x = 0.
The Kelvin response is seen along the equator y = 0 on the eastern side of the center
of heating. On the western side, the Rossby response is seen with the maximum in
surface height around y = 2. There is a confluent wind along the equator near
the heating region, which diverges in the meridional direction. The maximum of
upward motion is located at the convergent area of horizontal winds at the equator
(i.e., the position of maximum heating).

6.6 Ekman transport

As an example of the response to mechanical forcing, we consider Ekman transport.
This can be illustrated using shallow-water equations. By introducing the source
terms of momentum (F, F,), linearized shallow-water equations are given as

ou B on
o —Jv = =g, +Fs, (6.6.1)
ov on
o T = g+ (6.6.2)

o g (a" + a”) - 0. (6.6.3)
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FIGURE 6.8: Forced motions on the equatorial -plane. (Top) The contour represents n; positive
values are shown by solid curves and negative values by dashed curves. The arrows are velocity
vectors. (Bottom) The contour represents vertical velocity w. Positive values correspond to
upward motions and negative values correspond to downward motions. The gray scale is . The
parameters are s/\/Qﬁc = 0.1, ky/c¢/28 = 0.27, and ¢ < 1. The maximum in the heat sink
is located at = 0, and heating has a profile with @ = Qg cos kz Do(y*). The ordinates are

normalized as z* = x\/Zﬂ/c and y* = y\/Qﬁ/C.

These are combined with the vorticity and potential vorticity equation as

¢ _ 0F, OF,
gt TAVHID = o oy’ (6.6.4)
) f _ OF, OF.
ot << H”) th = o 9y (6.6.5)

We consider a frictional force as a momentum source that works in the opposite
direction to the velocity of a fluid. In this case, we may set the frictional force to
F, = —ku and F, = —kv, where k is a coeflicient. The vorticity equation (6.6.4)
becomes

a¢

ot +pv+ fD = —k(. (6.6.6)
In a special case of a steady vorticity field on the f-plane with 8 = 0, we have
fD = —k (6.6.7)

(i.e., the flow is convergent where vorticity is positive). This characteristic is called
Ekman convergence. Although vorticity is steady in this case, height 7 is not steady
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since the flow is convergent. In the region of cyclonic vorticity (¢ > 0), mass tends
to be transported toward the center of the cyclone because of convergent flow, thus
the pressure of the cyclone increases. For instance, if the field is uniform in the
x-direction, (6.6.1) becomes

fv = ku. (6.6.8)

Meridional flow is poleward v > 0 in the region of eastward flow u > 0 and is
equatorward v < 0 in the region of westward flow u < 0. Since g” < 0 corresponds
to zonal flow v > 0 in the geostrophic balance, the pressure gradient tends to be
reduced by these meridional flows. This kind of flow orthogonal to geostrophic flow
is called Ekman transport.

In the case 8 # 0, there is a solution where potential vorticity is time indepen-
dent. By omitting the tendency term in (6.6.5), we obtain

dF, OF,
pv = 3xy_ oy’ (6.6.9)

which is called the Sverdrup balance. This balance is used to explain the planetary-
scale circulation of the ocean. The ocean current is partly driven by wind stress
exerted by atmospheric surface wind. If the surface wind is uniform in the a-
direction U(y), and wind stress is approximately given by F, = aU, the Sverdrup
balance of the ocean current is given by

Bv = —a . (6.6.10)

In an approximate sense, atmospheric surface winds are easterly in low latitudes
U < 0 and westerly in the mid- and higher latitudes U > 0, so that we generally

have %ij > 0 in the northern hemisphere. Thus, the ocean current is everywhere

equatorward v < 0 from (6.6.10). To compensate for this equatorward current, the
counter poleward current is driven in the confined western boundary of the ocean.
This is the western boundary current. Figure 6.9 is a schematic distribution of
the planetary-scale ocean current and the profile of wind stress. If zonal wind in
the atmosphere has a latitudinal profile U = —Upcos7y (0 < y < 1), meridional
flow in the ocean is v = Up(an/B) sin 7y from the Sverdrup balance (6.6.10). The
streamfunction is calculated as ¢p = Up(ar/B)sinmy - (¢ — 1) using the boundary
condition ¢ = 0 at the eastern end = 1. Thus, ¥ # 0 at the western end z = 0;
this implies a poleward returning flow within a very thin western boundary layer
in the ocean.

Returning to geostrophic flow on the f-plane, we examine the height dependence
of the flow near the surface modified by friction in the surface boundary layer. Let us
consider a horizontally uniform flow over a flat surface. Here, we use incompressible
equations with constant density p and a diffusion-type friction:
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FIGURE 6.9: Schematic distribution of the ocean current: the Sverdrup balance and the western

boundary current. Left: contours of the streamfunction and direction of flow; right: meridional

distribution of surface winds in the atmosphere (wind stress). The poleward returning flow is
confined near the western boundary layer.

ou _10p

o — v = » 0 +vV3u, (6.6.11)
g: +fu = —igz + V2, (6.6.12)
*gfﬂ)g S (6.6.13)
g;ﬂg; = o (6.6.14)

We assume steady and uniform flow in the z- and y-directions and no vertical
velocity: w = 0. The boundary conditions are v = v = 0 at z = 0 and u = ug,
v =0 as z — oo, where u, is the geostrophic wind that satisfies

190p

U — .

f g p ay

Since the horizontal gradient of p is independent of z, we obtain relations for the
ageostrophic components of horizontal winds as

(6.6.15)

0%u, 0%v,
_fva = Vv 922 5 fua = Vv 922 5 (6616)
where u, = u — u4 and v, = v. These two equations are combined to
v
2 _ 20
ffva = v 924 - (6.6.17)

We obtain a general solution to this as

ve = Ciexp [\/;V(l—i-i)z + Cyexp [\/2";(1—2')2«]

+C3exp [\/2];(1 +i)z

+ Cyexp [\/2];(1 - Z)Z] , (6.6.18)
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where we assume f > 0. From the boundary conditions, we have ug + 1, = v =0
at z = 0, and u, = v, = 0 as z — oo. Thus, we obtain the vertical profiles of
ageostrophic components:

o () (1) oo
Uy exp (\/2fyz> sin (\/2fyz> . (6.6.20)

From this solution, the height scale of the effect of friction is estimated as

Vq

2v
d = . (6.6.21)
f
The directions of velocity change spirally as depicted in Fig. 6.10; this is called the
Ekman spiral. In the case ug > 0, meridional flow is almost poleward: v, > 0.
Integrating v, in the z-direction, we have the total transport:

o d
/ Vo dz = _Ug. (6.6.22)
O 2

This is the Fkman transport, which corresponds to (6.6.8) in the case of shallow-
water equations.
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FIGURE 6.10: Ekman spiral: the dependence of (uq,vq) on height for ug = 1 and vy = 0. Flows
at height z/d = 1, 2, 3, 4, and 5 are marked.
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Eddy transport

To study transport in the atmosphere, we normally use temporally and spatially
averaged quantities associated with waves or disturbances. For instance, meridional
transports of the general circulation of the atmosphere are described with the zonal
average along a latitudinal circle. In general, the characteristics of mean transport
depend on the averaging procedure. A spatial mean along one direction is called
the Fulerian mean, while a mean over a set of fluid parcels is called the Lagrangian
mean. For purely wavy oscillating disturbances, for instance, the positive and
negative phases are canceled out to zero by the Eulerian mean regardless of its
amplitude. For the Lagrangian mean, however, the mean position of fluid parcels
generally has a motion, and net transport of energy or momentum occurs if the
amplitude is finite. This concept is connected to formulation of the generalized
Lagrangian mean.

We first define the generalized Lagrangian mean in this chapter and explain its
relation to the Eulerian mean. Some examples are shown to distinguish the two
mean transports. Then, a diffusion coefficient tensor is introduced to formulate
the residual mean and transformed Eulerian mean equations. At the end of this
chapter, we describe the relation between eddy transport and transport in isentropic
coordinates.

The topics of the present chapter are closely related to the meridional transport
of the general circulation of the atmosphere. In particular, both the Eulerian and
Lagrangian mean are used to study mean transport in the midlatitudes in Chapter
18.

7.1 Transport due to finite amplitude waves

7.1.1 Generalized Lagrangian mean

We introduce the concept of the generalized Lagrangian mean to consider transport
due to finite amplitude waves. Let a velocity vector at position x and time ¢ be
denoted by wu(x,t). To simplify the argument, we use Cartesian coordinates with

M. Satoh, Atmospheric Circulation Dynamics and General Circulation Models, 207
Springer Praxis Books, DOI 10.1007/978-3-642-13574-3 7, © Springer-Verlag Berlin Heidelberg 2014
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FIGURE 7.1: Schematic figure for explanation of the GLM velocity. The GLM velocity u” is given
by the velocity of the mass center of the curve C, and is equal to the average motion of fluid
parcels composing the rod R initially.

x = (21,72, 73), and consider the average along the xj-axis.” The Fulerian mean
is defined by

L
u(x,t) = Lh_)n;<> 21L [L u(x,t) dr;. (7.1.1)
We imply u(x,t) = u(xa, x3,t) since the left-hand side is independent of x;.

In contrast, the generalized Lagrangian mean (GLM) is introduced as follows.
Let us consider fluid parcels located along a rod Ry parallel to the x1-axis at ¢t = tp.
We assume that this rod moves to a curve C at time ¢. Figure 7.1 schematically
represents this situation; the parcel at the point Py at t = tg moves to the point P
at t on the curve C. Let the mass center of the curve C move with velocity v. If v
is known, the point Pg is defined for each point Py on the rod Ry as

— t
P()PR == / v dt. (7.1.2)
to
Let the position vector at the point Pr be  and define
—
§ = PrP. (7.1.3)

From the definition of the mass center of the curve C, we have

&(x,t) = 0. (7.1.4)
Since the position vector at the point P is x + &(x,t), the velocity of P, denoted
by ué, is given by

W@ t) = u@t@on) = @)

0
v+ (8t +v-v> ¢. (7.1.5)

THere we assumed that (1,2, 3) are components of Cartesian coordinates. A similar formu-
lation is possible for the spherical coordinate (A, ¢, 7). By taking x1 as the longitude A, we obtain
the average along the zonal direction in the meridional cross section.
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Let us define
ul(x,t) = (8 —|—v~V) £, (7.1.6)
ot
then we have from (7.1.4)
ul(x,t) = 0. (7.1.7)
We define the GLM velocity u” as the Eulerian average of ut:
ul(x,t) = uf(x,t) = wu(x+&(x,t),t) = v (7.1.8)

(i.e., the GLM velocity is the velocity of the mass center (Fig. 7.1)). We also define
the Stokes correction as

u’ = ul—u, (7.1.9)

and the deviation from the Eulerian mean, or the Eulerian perturbation velocity,
as

v = u-—u. (7.1.10)

The following relations are satisfied if the amplitude of disturbance is small
enough (i.e., the amplitude |u/| is smaller than the mean flow |ul: |u'| < |ul).
Letting a denote the magnitude of the wave amplitude, we have & = O(a) and

- wi(x +&t) = wi(z,t)+§; fjgl a +0(a®), (7.1.11)
v ! ’ ]3 2 Oz;0xy ’ o
L ) o fjfl a2ui 3
up = u(x+E€t) = u,—&—fja 2 0,0 + O(a”). (7.1.12)
Therefore,
R L 5Jfl 0 3 2
i = Ui — = = , 1.1
u u fj 833] 2 O;0m + O(a”) O(a®) (7.1.13)
b = df —wt = +§Ja "+ 0(d?). (7.1.14)

Eq. (7.1.13) defines the Stokes correction for waves. The magnitude of the Stokes
correction is a second-order quantity of a.

7.1.2 Examples of finite amplitude waves

7.1.2.1 Square wave

In this section, we show some examples of finite amplitude waves to get a better
understanding of the GLM and the Stokes correction. First, we consider the square
wave illustrated in Fig. 7.2; this is a longitudinal wave, in which the motion of fluid
particles is parallel to the direction of wave propagation. The amplitude of velocity
is denoted by ug and the wavelength by A\. The wave propagates toward the
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FIGURE 7.2: A square wave. (a) and (b) show velocity viewed from the stationary frame, and (c)
shows velocity viewed from the moving frame with the speed of the wave c. In this moving frame,
the wave is stationary. X =z — ct and ug < c.

positive x-direction at phase speed c. Figure 7.2 shows the longitudinal velocity
of fluid particles; (a) and (b) show the velocity viewed from the stationary frame,
whereas (c) is that viewed from the moving frame at speed c¢. In this moving frame,
the wave is stationary. We define the coordinate in the moving frame as X =z —ct
and assume that ug < c.

The Eulerian mean velocity is given by averaging the velocity in the stationary
frame in the z-direction. It is simply given as

v = 0. (7.1.15)
The Eulerian period of the wave is given by
A
Tp = . (7.1.16)
¢

On the other hand, by considering the time required for a fluid particle to move
from X =0 to X = —\ as shown in Fig. 7.2(c), we obtain the Lagrangian period
T;, as
A2 A2 Ac
T, = / + / = 9 9 > TE. (7117)
c— U ¢+ Ug e — ug

Thus, the Lagrangian period is longer than the Eulerian period. If viewed from the
stationary frame, the displacement of a particle during the Lagrangian period T,
is

d = =A+cdp = C(TLfTE) > 0 (7.1.18)
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t=t,
A C B
0 7 X
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FIGURE 7.3: The motions of fluid particles (dashed lines) and those of the mass center (dotted
lines) viewed from the moving frame at speed ¢ for the square wave between time ¢ to t1 + 7.

(i.e., the displacement is positive). Hence, we obtain the Lagrangian mean velocity
(L) b
u y

d T
L) — _ _ 1=
u T c(l TL) > 0. (7.1.19)

Velocity u(™) is the Lagrangian velocity averaged for one period of a fluid particle
and is identical to the GLM velocity of all fluid particles. As shown below, this
relation can be understood using Fig. 7.3. If viewed from the moving frame at speed
¢, it takes one period T, for a fluid particle to move one wavelength. The fluids in
the segment AB of Fig. 7.3 move to the segment A’B’ after the period Ty,. Thus,
the mean velocity of the mass center of the fluids in AB is —\/T, = —cTr/TL.
This velocity is the GLM velocity, u”, if viewed from the stationary frame, and is
identical to the Lagrangian mean velocity u(™) of a fluid particle, (7.1.19). This
relation remains the same if the region for averaging is extended from the segment
AB to a wider range. Thus, we obtain

ul = ), (7.1.20)

Here, it should be recalled that the square wave is a one-dimensional divergent
flow; we must be careful about calculation of the position of the mass center. To
obtain the position of the mass center of AB, we note the difference of density
between segments AC and C'B. Denoting the ratio of the density of AB to that of
CB by a: (1 —a), we have the relation

A

alug—c)+ (1 —a)(—up —c) = 7, (7.1.21)
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since the fluid velocity in the segment AC is ugp — ¢ and that in the segment CB is

—ug — c¢. From this equation, the ratio of the density is given by
1

a = 2(1+i°). (7.1.22)

The mass center of AB is the interior division point by (1 —a) : a between the half
points of AC' and CB; therefore, it is located at Aug/4c to the left of C.

7.1.2.2 Sinusoidal wave

The second example is the finite amplitude sinusoidal wave shown in Fig. 7.4. It is
a one-dimensional longitudinal wave with amplitude uo and wavelength A = 27 /k.
The velocity of a fluid particle is given by

u = wugcosk(x — ct). (7.1.23)
If viewed from the moving frame at speed ¢, the velocity of a fluid particle is
X = u—c = wugcosk(z—ct)—c. (7.1.24)
The Eulerian period is Ty = A/c¢, whereas the Lagrangian period is
Tk
A
dX , (ug < ¢,
T, = / - Koo — ) V1 (/o (W0 <) 71 .95)
o ¢c—ugcosk(x—c . (uo > ©),
(@) (b)
" >
c
MO—C
- = A A2 A
0 x 0 X
—MO—C
—u,
(©
-
0 M2 A X
u;—c -
—MO—C

FIGURE 7.4: A sinusoidal wave. (a) Velocity viewed from the stationary frame. The sinusoidal

wave has wavelength A and phase speed c. (b) and (c¢) Velocity viewed from the moving frame

at speed c: for the case (b) ug < c and (c) up > c¢. Here, X =z — ct. In (b), fluid particles are
trapped at the position designated by the circle.
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(i.e., there are two cases: the finite period and the infinite period). The generalized
Lagrangian mean velocity is respectively given by

ub A+l c(l—\/l—(u /¢)?), (ug <c)
- - = { 5 0 (ug > 0) (7.1.26)

If the wave amplitude is large, ug > ¢, fluid particles are trapped by the wave and
carried as the wave propagates as shown in Fig. 7.4(b).

In the case of an infinitesimally small amplitude (¢ = up/c < 1), the GLM
velocity (7.1.26) is approximated to

2 2
0= () = o 7.1.27
u 96 5\ . (e9). (7.1.27)
Although the Eulerian mean is u = 0, the Lagrangian velocity is different from zero
to a second-order approximation in the amplitude. The difference between Eulerian
velocity and Lagrangian velocity is the Stokes correction. Using (7.1.6), (7.1.13),
and (7.1.14), we obtain

o0& ou’
l ! S
= = = . 1.2
u u 9t u 13 O (7.1.28)
Therefore, we also have
€ = —Zz sin k(z — ct), (7.1.29)
u$ = " sin k(x — ct) - kugsink(z —ct) = G (7.1.30)
kc 0 2¢’ o

Thus, the Stokes correction is equal to the GLM velocity given by (7.1.27).

7.1.2.3 Two-dimensional nondivergent wave

As the third example, we consider waves in a two-dimensional nondivergent fluid.
We can define the streamfunction of wave motion that has phase speed ¢ by

U = Uz -—cty). (7.1.31)

In the moving coordinates (X,Y) = (x — ct, y), the streamfunction and velocity are
written as

d = U(X,Y)+cY, (7.1.32)
X = -0y =-Uy(X,Y)-g (7.1.33)
Y = Oy =Ux(X,Y). (7.1.34)

Since @ is stationary, fluid particles on a contour of ® remain on the same contour.
Let a contour of ® be denoted by Y = Y (X). If this contour passes through a point
(X0, Y0), the function Y = Y (X) can be given by solving

DX, Y (X)) = ®(Xo,Yp). (7.1.35)
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Note that Y (X) may be a multivalued function. If ® is periodic with wavelength
A, the Lagrangian period and the GLM velocity are expressed in terms of Y (X) as

- dx
T, = /O oy (X, V(X)) (7.1.36)
Wb o= c(1—§j>7 (7.1.37)

where Ty = A/c is the Eulerian period.
As an example, we consider

U = 1;0 cos k(xz — ct) cos ky, (7.1.38)

where we assume |y| < A/4 where A = 27/k. The streamfunction in the moving
frame at speed c is

o = 1;: cos kX coskY + cY. (7.1.39)

Figure 7.5 shows the distribution of this streamfunction. Figure 7.5(b) is the case
for ug > ¢, where closed contours exist near y = A/4. In this case, fluid particles are
trapped on the closed contours and propagate with the wave. Therefore, these fluid
particles have a positive Lagrangian velocity. Figure 7.5(c) is the case for ug < c.
In this case, no closed contour exists such that all the particles are left behind the
wave.

In the neighborhood of y = A/4, in particular, we have approximations as

A
U = l;: cosk(z —ct) - k (y - 4> , (7.1.40)
u = —U, =uygcosk(z —ct). (7.1.41)

This distribution has a positive Lagrangian velocity as shown by the previous ex-
ample, (7.1.27). In the neighborhood of y = 0, on the other hand, we have

Uuo ]{32 2
o = kcost~ 1- 2Y +cY. (7.1.42)

By setting ®(Xo, Yy) = 0, we can approximately solve it for Y with Y2 < 1:

Y =~ 7ZZCOSICX. (7.1.43)

Thus, velocity is given by

2
= —-¥, = u20 cosk(x —ct) - ky =~ — ;O cos® k(z —ct) < 0.
c
(7.1.44)
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FIGURE 7.5: Waves in a two-dimensional nondivergent fluid. (a) Streamfunctions of a vorticity-
like wave propagating at speed ¢ (solid) and mean velocity with ¢ (dashed) in the case k = 27 and
up = 1. (b) and (c) are streamfunctions viewed from a moving frame at speed ¢ for (b) ¢ = 0.5
(up > ¢) and (c) ¢ = 2.0 (ug < c), respectively. In (b), the fluid particles in the hatched region
are trapped by the wave. In (c), all the fluid particles are left behind the wave. Contour intervals
are arbitrarily chosen.
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Hence, from (7.1.36) and (7.1.37), the GLM velocity is given as

ul = cll—\/w(uco)Q] < 0 (7.1.45)

(i.e., fluid particles propagate in the opposite direction to wave propagation
irrespective of wave speed). This means that fluid particles on the contours near
y = 0 are not carried by the wave. This comes from the fact that the contours are
not closed in this vicinity.

7.2 Diffusion in the meridional section

7.2.1 Governing equations and the Eulerian mean

In the following sections, we consider the zonally averaged transport of materials
in the meridional cross section for the case when the amplitude of disturbances is
sufficiently small. To clarify the argument, we concentrate on primitive equations in
the Boussinesq approximations and in hydrostatic balance given by (3.1.6)—(3.1.8):

ot Tlon Ty TWa, ~ IV = Uy, +Cu (7.2.1)
?9: Hng J”’g; J””gz tfu = *(’sg; + Gy, (7.2.2)
0 = *95?)2+ig, (7.2.3)

?93 +“gz *”gz *“’?9(3 = Q (7.2.4)
Veu = 0, (7.2.5)

where f = fo + By is the Coriolis parameter, G, and G, are frictional forces, and
Q is heating. Potential temperature is written as © = 0, + 0, where 0, is the basic
state potential temperature and 6 is the perturbation. The Exner function is also
partitioned as II = 75 + 7, where 7, is the basic state and 7 is the perturbation. In
the continuity equation, we neglect the variation of density based on the Boussinesq
approximation.

First, we consider the Eulerian mean along the z-direction of (7.2.1)—(7.2.5).
Denoting the zonal mean of a quantity A by A, and the departure from it by
A’ = A — A, we have the following set of equations for the Eulerian mean:

ou ou ou ou'v' ouw
_ = — — 2.
ot —H)(@y f>+waz ay 92 + G, (7.2.6)
v v ov o 0v?2  Ovw
- 9,0 OV L G, 7.2.7
ot Tlay TV, TIY oy "oy " 0. TG0 (127
0 = 0,970, (7.2.8)
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00 00 00 00w 90"’
_ _ 2.
ot —H]ay +waz dy 0z +@ (7.2.9)
ov Ow
= 0. 7.2.10
oy oz (7:2.10)

We consider a state of no meridional motion as a stationary reference state. Neg-
lecting all the second-order terms A’B’, the frictions G, Gy, and the heating @) we
have the balance equations for steady zonal flow:

fu = —952777 (7.2.11)
y
0 0

0 = 79382+9’g, (7.2.12)

and v = w = 0. From (7.2.11) and (7.2.12), the thermal wind balance is given by

ou g 00
= - . 2.1
f@z 0s Oy (7.2.13)

Hereafter, the variables of this stationary state will be denoted by a subscript 0
(e.g., ug)-

We consider a disturbance as the departure from the steady state and assume
that its magnitude is given by O(a). If the amplitude of the disturbance is small
enough, it can be shown that the departure of the zonal-mean zonal wind v from
the steady state is O(a?). Thus, v and w are also O(a?), and the advective term of
v, vg;’ + wg;’, is O(a%).

7.2.2 Tracer transport

We then consider tracer transport in the meridional cross section associated with
eddy disturbances. Let a change of mass concentration of a tracer ¢ be written as

dq

= .2.14
v o= s (72.14)

where S is a source term (or a sink term if S < 0). To consider the meridional
transport of ¢, we take the Eulerian mean of (7.2.14); the zonal-mean equation of
q is given as

Jq dqq duiq
: _ oy 2.1
ot " o, oz, T (7.2.15)

in which the summation convention is used for repeated indices of i. From the

difference between (7.2.15) and (7.2.14), the change in the eddy component of ¢ is
given by

Dq/ + /aqO

_ / 2
Dt Fligy = S0 (7.2.16)
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where
D
Dt = o ~+ ug P (7.2.17)
0 o 0 0 oy D 9
ot + “Zaxi = o + Uo +0(a”) = Dt + O(a”). (7.2.18)

We will investigate the basic characteristics of the eddy flux uf¢’ in (7.2.15). To
find the direction of the eddy flux w}¢’, we multiply ¢’ by (7.2.16) and average in
the z-direction. Thus, we have

aq ) q/2
g0 = ¢S - : 7.2.19
ud gy q 5t 9 ( )
In the case of no eddy source S’ = 0, this becomes
aqo 0 q/2
I - _ = _ g 7.2.20
il 61:1 ot 2 o ( )

If the disturbance is a neutral wave, the right-hand side is identically zero: o, = 0.
In this case, the direction of the flux ulq’ is perpendicular to the gradient of the
basic state gzi’ . If the wave is growing o, > 0, the direction of the flux uq’ is down-
gradient of g,. If the wave is decaying o, < 0, on the other hand, the direction
of the flux u}q’ is up-gradient. These relations between the gradient of ¢, and the
eddy flux u}q’ are depicted in Fig. 7.6.

The relation between the eddy flux u’¢’ and the gradient of ¢ is expressed by
using the parcel displacement of the disturbance. From (7.1.6), the displacement
vector &; is defined as

0 0
(at +uj 3x_> & = u (7.2.21)
J

largeq

smallq

FIGURE 7.6: Relations between the eddy flux u/q’ and the gradient of the basic state Vg,. (Left)
The case of a neutral wave oy = 0; the directions of the two vectors are perpendicular. (Right)

The case of a growing wave o; > 0; the flux /¢’ has an up-gradient component of Vq.
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Using (7.1.12)—(7.1.14), this can be written as

0 ou;
s A A 2
P (uj +uf) o, & uf + & o, + O(a?). (7.2.22)

Since uf = O(a?) and u; = ud;, +O(a?), the relation between the eddy component

of velocity u' = (v/,v’,w’) and the displacement vector & = (1, (,§) is given as

Dn

= = 2.2
Dt U+C8y +€8z e (7.2.23)
De
pr =V = (7.2.24)
b,
pp =W o= v (7.2.25)

We also define a quantity s which satisfies

Ds

b = S (7.2.26)

where S’ is the source term for the eddy component. Since (7.2.16) is written as

Dq' D¢\ 9q Ds
= 7.2.27
Dt+<Dt>3xi Dt’ ( )
thus we have
dq
! 0
= =¢ . 7.2.28
q $i gy, T ( )
Multiplying w; by this and averaging in the z-direction, we obtain
dq

This relates the eddy flux w}q¢’ to the gradient of the basic state g,. The tensor
ul&; is regarded as a generalized diffusion coefficient and is called the diffusion
tensor. Here, subscripts ¢ and j are used for representing the y- and z-components,
respectively.

To investigate the roles of eddy on transport, we divide the diffusion tensor u}¢;
into symmetric and antisymmetric parts:

u;gj = Kij + Lij7 (7230)
where
_ 1 / / _ 0 fifj
Ky = (uifj +uj§1) = 5 9 (7.2.31)

1
L = (u;fj - u}&) ; (7.2.32)
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or
9¢ 0
h= IR (7.2.33)
0¢ 0¢&
)
= 0 5 (V'€ —w'C)
b= ( — (e —w'¢) 70 ) (7.2.34)

K is a symmetric tensor and L is an antisymmetric tensor. Substituting (7.2.30)
into (7.2.29), we rewrite (7.2.15) as

éq 66]0 ¢ 66]0
— U — (K. L. / 7.9.
It U; 9 ; 9 ; |: ( ij 1_7) 9 S + u; s + 5 ( 35)

_ ) aLij 8q0 1o} Haqo _ 0 ’
(ul—&— oz, ) oz, + oz, (K” oz + (S oz, uls ). (7.2.36)

The first term on the right-hand side of (7.2.36) plays the role of advective
transport, and %ﬁ"_" is regarded as additional advection due to an eddy. This can
J

be related to the Stokes correction. From (7.1.13) for ¢ = y and z, we have

S a’ll,/

u = ¢ ﬁx; +0(a®). (7.2.37)
Using the continuity equation (7.2.5), we have
Dt \ Oz; ox; \ Dt dx; Ox  Ox; Oz Ox
0 , Oug Oug 0 &
— g . . — = . .2.
ox; (ul +5 ox; 6”) Ox; Ox 0 (7.2.38)
Thus, if gfz = 0 is satisfied at any initial time ¢t = ¢y, we always have
0&
= 0. 7.2.39
From (7.2.37) and (7.2.39), the Stokes correction is rewritten as
o&;u
S J %
5 — . 7.2.40
= (7.2.40)

From (7.2.30), therefore, we have the relation:

.2.41
8xj ¢ 8xj (7 )

This implies that the additional advection due to an eddy consists of two parts. The
first is the Stokes correction, which is the effect of the finite amplitude of the eddy.
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The second is an apparent advection which arises when an eddy grows or decays
inhomogeneously. Adding mean advection u; to the above relation, we rewrite total
advective velocity in the first term on the right-hand side of (7.2.36) as

OLy; 0K,

g, 2.42
aij amj (7 )

u; + = uZL +
In the case of a neutral wave, we have K;; = 0 so that (7.2.42) reduces to the GLM
velocity uF. If the wave amplitude changes inhomogeneously, on the other hand,
an apparent advection associated with K;; occurs.

The second term on the right-hand side of (7.2.36) is regarded as diffusion in-
duced by the growth or decay of disturbances. For a neutral wave, the contribution
of this term vanishes since K = 0 from (7.2.31). The role of this diffusion term can
be examined using (7.2.35) with no source term S = s = 0:

9q dqp , 0 dqq
ot Yo T og, |F0 T Lu) g, (7.2.43)
Multiplying ¢ and averaging in the whole domain, we have

9 (¢*) 0 94,

= Koot Lo
at 2 ©om; | Kot L) g,

9qy 9qq 2
- (K. .2.44
< Y Ox; Ox; +0(a%), Y )

where (A) represents the domain average of A. In the case Ky, > 0, K., > 0, and
Ky, K., > K2,, the right-hand side is always positive for any distribution of .

yz)
These inequalities hold if the diffusion tensor is isotropic. In this case, we have
d(q”)
< 0. 7.2.45
hy ( )

Since we have assumed that (¢) is conservative, the tendency of the variance of ¢
becomes

§t<q2—<q>2> = gt(<q2>—<q>2) = a;? < 0. (7.2.46)

This indicates that ¢ tends to be homogenized in the region considered. In particu-
lar, the tracer spreads in the whole region even though the amplitude of disturbance
is statistically steady.

7.3 Residual circulation

It has been found from (7.2.29) that the eddy flux u}q’ receives additional advection
from tracer ¢q. As seen in (7.2.42), the sum of advection due to an eddy and
Eulerian mean velocity is the GLM velocity in the case K = 0. This indicates that
Eulerian mean transport contains a spurious transport induced by an eddy. Thus,
the transport due to an eddy can be interpreted as a correction to the Eulerian
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mean. The residual circulation described below is given by a systematic procedure
to remove the spurious transport induced by an eddy from Eulerian mean transport.

Transport due to an eddy comes from a component of u}g’ tangential to isolines
of qy. To extract this component of ulq’, we introduce two unit vectors, n, t, which
are normal and tangential to isolines of g, respectively:

qU 8‘10
Jo. +k
n o— Yo _ 7 (7.3.1)
|VCI0| |VCI0|
k@qo JBqU
t = ixn = ‘9|qu| o= (7.3.2)

1, 7, and k are the unit vectors in the z-, y-, and z-directions, respectively. These
are rewritten in the tensor form as
dqq s 94q,
ox; Lij ox
’[’Li = * 5 tl = — B (733)
|V‘10| |V‘10|

where €1;; is the antisymmetric tensor. Using these vectors, we write eddy flux as

dqq 9qq
ulg' = ulg'ngn, +ulg'tity = x + Yeri; ) (7.3.4)
g 7 ox; Jax]
where
. ! q/ gzo _ U/q/%f;o + w/q/%fio (7 ; 5)
|qu|2 |V(10|2 7
5 = e1ijuLq’ 3;{0 v q’aq" w q’aq" (7.3.6)
B IVgol? B IVqol? . o
Substitution of (7.3.4) into (7.2.15) yields
dq 9qy 0 aQo 0qq
= U - 7, S
ot o 0wy \ Vo T Vg, ) T
o\ 9qy 0 aqo
= - i i, S
(u Elij Ox;j ) 0x; 6:1:1- XB:L"Z +
dq, 0 9q,
= —u; - S 7.3.7
b 8mi 8371- <X8xi + ’ ( )
where
. oY
U = Ui~ Eugj oz’ (7.3.8)
that is
0 1o}
vt = v — v w* = w4+ 1/’ (7.3.9)
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The scalar v plays the role of a meridional streamfunction whose associated flow is
induced by an eddy. The flow u; is called residual circulation, defined as a residual
by subtracting the flow associated with ¥ from Eulerian mean circulation. The
scalar x is, on the other hand, a coefficient for the meridional diffusive transport of
a tracer due to an eddy.

By comparison between (7.3.4) and (7.2.29), we can relate x and @ to the
diffusion tensors K and L using the displacement vector &;. Substituting (7.2.19)
into (7.3.5), we have

1 0 q/2 ,
- - s, 7.3.10
X Voo ? ( o o T4 ( )
or substituting (7.2.29) into (7.3.5) and using (7.2.30), we obtain
uls  0qq
= —Kinin; '
X jNing + IVqq|? 0x;
0 1 ubs n;
— ;)2 % 7.3.11
o 2]+ 10 S

If there is no source or sink of the tracer, S’ =0, s = 0, we have

1 9 q? o [1
= — = _Ki‘ in; = — i i2 . 7.3.12
Thus, we obtain y = 0 in the special case that the amplitude of an eddy is steady.
We also have x < 0 if the eddy is growing and x > 0 if the eddy is decaying. This
indicates that the tracer is diffusive if x < 0, while it tends to concentrate in a
smaller region if y > 0.

The expression of ¢ can be given by substituting (7.2.29) into (7.3.6):
Py
Y = —e1;(Ka + La)mn; + 14j uls n;
Vol
uls t;
= Kymti—Log— =
o Vol

_ 0 [;(f{m)(ﬁiti)} — L2 —

/
u; s t;

: (7.3.13
Vgl )

ot

where we have used the relations Ly = €14La3, t; = €151, and €151 = 5. In
the case s = 0, we have

¢ = Kilnlti _L23 — aat B(fl’nl)(fltl)} —L23. (7314)

In addition, if the amplitude of an eddy is steady or the displacement of an eddy
is either normal or parallel to isolines of g, we have

W = —Los, (7.3.15)
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or
Lij = —eujv. (7.3.16)

Total advective transport including the effect of an eddy is expressed by the first
term on the right-hand side of (7.2.36). Using (7.3.8) and (7.3.13), we can rewrite
total advection as

OLy; oY 0Ly 9
. = uf e — ey I
u; + o, ul + &1 i 0, + oz, uf + e 0 (1 + Las)
= e O (Kt — S owst, ). (7.3.17)
P Oy Vol

By comparing this with (7.2.42), we can relate residual circulation to GLM circu-
lation as

0K,j 0 €
* L 1 1kl ’
o= uy — — €14f Kingty — t ). 7.3.18
u; u; oz, 51]83@ ( KLTULE V4o Uy S l) ( )
In particular, in the case s = 0 and K = 0, we have

ufi = ul. (7.3.19)

This means that residual circulation is equal to GLM circulation if the tracer is
conservative and the disturbance is neutral.

7.4 Transformed Eulerian mean equations

7.4.1 Generalized transformed Eulerian mean equations

We can obtain a set of zonal-mean equations using residual circulation from the
equation set given by (7.2.1)—(7.2.5). Residual circulation can be defined by using
any tracer constituent g. Here, we choose potential temperature © as a tracer g
for residual circulation. In this case, the equation for © is given by (7.2.4). From
(7.3.5) and (7.3.6), we have expressions for y and 1 as

191 0©¢ 101 0©0
v'0 oy + w'é 9

= , 7.4.1
X V0,2 (7.4.1)
v’ 000 __ w/9/3®o
) = BTV 00 o (7.4.2)
0

where ©¢ = 0, + 0 is the potential temperature of the time mean field. Residual
circulation is given by substituting (7.4.2) into (7.3.9).

Using residual circulation, the zonal-mean equations (7.2.6)—(7.2.10) are rewritten
as
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ot oy T o, V- F+ Gy, (7.4.3)
v or  ov'?  ov'w 4
o TTU = —Osay oy T 0s + Gy + O(a"),
(7.4.4)
or 0
0 = byl + 0 (7.4.5)
o0 .00 L0090
9t +v oy +w 9 = V- (xV6y) + Q, (7.4.6)
ov*  ow*
oyt =0 (7.4.7)
where
= u-— fy, (7.4.8)
0 oM 3] oM
. - _ Iy _ 1oy
V-F oy (uv P 95 ) s (uw + ay >, (7.4.9)
oM oM
— —aylay/ —alapy! —
F = <O, u'v +waz, w'w U}ay)' (7.4.10)

F is called the generalized Eliassen-Palm fluz. The zonal-mean equations using

residual circulation (7.4.3)—(7.4.7) are called Transformed Eulerian Mean equations

(hereafter, TEM equations). From (7.4.7), residual circulation can be written by

using a meridional streamfunction ¢* as
oY* oY*

= = = . 7.4.11

v 5,0 W ay ( )

Subtracting (7.2.6)—(7.2.10) from (7.2.1)—(7.2.5) and neglecting second-order
terms, we obtain the linearized perturbation equations:

Du’ M M /
W OM L OM g 0T (7.4.12)

Dt dy 0z oz

D ! !
Dz; b = _es‘g; +G, (7.4.13)

on’ 0
0 = -0, 87; 49 (7.4.14)
Dy 90 00

Dt —I-U’ay +w' 8, = Q. (7.4.15)
V-u = 0. (7.4.16)

Making use of these equations and the equations of displacements, (7.2.23)—(7.2.25)
as shown in Section 7.6, we obtain divergence of the Eliassen-Palm flux, which is
the right-hand side of (7.4.3):
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V-F =

1 OEG!
8(Gz+ G, 0 a<0,+ga§h
dy v

n~,
Oy +81:Gz+3x s Ox

0 ) hiy, oM
- 1] Km mt k Ki'
axi{[“J( hmt k+|V®O|>+ J] axj}

,6 9 ! 877 I _ 8( /
ot [axi&“+ax(“ T+ g0

oM g 00\ o¢
+(f82 +958y>8x

where we introduce h which satisfies Dh/Dt = @'. This is a generalized form
of the Eliassen-Palm relation. The last term on the right-hand side of (7.4.17) is
deviation from thermal wind balance, which is O(a?) because of (7.2.13). In the
case of the nondiffusive (G}, = 0, G, = 0), diabatic (h = 0), and steady (gt =0)
condition, (7.4.17) becomes zero for this approximation. This means that there is
no acceleration in zonal-mean zonal wind u due to eddy flux. This statement is
referred to as the nonacceleration theorem.

Under the condition where the nonacceleration theorem is satisfied, (7.4.3)—
(7.4.7) become

G, (7.4.17)

o TV gy TV, = Co (7.4.18)
fu = —ng;, (7.4.19)

0 = —esg: + ig, (7.4.20)

gf + " gz + w” aaf = Q, (7.4.21)
aaq;* aai* = 0. (7.4.22)

We also have (v*,w*) = (vF, wl) from (7.3.19).
If residual circulation is defined by using potential temperature, the equation
for other tracers is written as
dq dq 0 ;L dq
* = — q — e1i4 S. 7.4.23
815 + UZ 81:1 8137, (ulq e ]waxj + ( )
If the eddy component of the tracer is conservative S’ = 0 and its amplitude is
steady, the first term on the right-hand side vanishes. Thus, the equation of the
tracer simplifies to
dq dq dq
* * = 5. 7.4.24
ot TV oy T 02 (7.4.24)
If @ is independent of S, residual circulation can be viewed as thermally driven
circulation by Q: (v*,w*) are calculated from (7.4.18)—(7.4.22) by giving the distri-
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bution of Q. Substituting this circulation into (7.4.24) and giving an appropriate
source term S, we obtain the change in q.

7.4.2 Quasi-geostrophic TEM equations

Residual circulation has a simplified form for quasi-geostrophic approximation.
To derive the equation set for this approximation, we use the following quasi-
geostrophic equations:

(gt + oy 381' + v, aay) Uy — fra = —0, ‘Za + Gy, (7.4.25)
(8815 + ugaax + vgaay) vg + fuq = —95867;'1 + Gy, (7.4.26)

0 = -0, a;; + Z‘: : (7.4.27)

<§t + ug ;x + vgaay) 0y + wa a;; = Q, (7.4.28)
Veoug = 0, (7.4.29)

where subscript g denotes the zero-th order quantities of the Rossby number expan-
sion, while subscript a denotes first-order quantities. The zero-th order quantities
satisfy geostrophic balance as

0y Omy 0s Omy 04 0y 07y
_ _ _ . 4.
YT T hay T feort 0, g o (7.4.50)

Quasi-geostrophic potential vorticity is given by

05 32 62 f2 32
Foo= 77 Jo (81:2 * oy? * Z\;)2 822) o a3y

and its evolution equation is given by

0 0 0
<8t + ug O + vy 8y) P, = S, (7.4.32)

where S can be written by using the frictional terms G, G, and the diabatic term
Q. We use the (-plane approximation f = fy + Sy and N is the Brunt-Véisila
frequency.

Using vy = 0, the Eulerian mean equations of (7.4.25)—(7.4.29) are given as

aalig —fra = — 8ay vl + G, (7.4.33)
fua = — 9 V2 — B I + Gy, (7.4.34)

oy 9 oy
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or, 0,
= _ - .4.
0 O o o0 (7.4.35)
00, a0, a .,
5t + wq 5, = ayngngQ, (7.4.36)
ov, Ow,
= 0. 4.
Ay + 92 0 (7.4.37)

From (7.4.32), the zonal-mean quasi-geostrophic potential vorticity equation is

P,
83159 = _8ay v;Pé -5, (7.4.38)
where
0 [ 02 fg 0?
P, = f+ s (3y2 + N2 822> Tg. (7.4.39)

As can be seen from (7.4.36), eddy heat flux has only the horizontal component
for quasi-geostrophic approximation. In this case, the appropriate choice of residual
circulation is

9 [ vgty 9 [ vgty
V¥ = vy — , w' = wy + , 7.4.40
(% o\ % o
in which the streamfunction is defined as
v 6!
v o= 7. (7.4.41)
0z

Thus, we obtain the transformed Eulerian mean equations:

88119 —fv* = V-F+G,, (7.4.42)
fu, = —95887;“7 (7.4.43)

0 = 708%7;“+ng, (7.4.44)
aai“rw*%is = Q, (7.4.45)
a(,;;*+aaf ) (7.4.46)

We have assumed geostrophic balance in (7.4.43) by neglecting the O(a?) terms.
In (7.4.42), F is the quasi-geostrophic Eliassen-Palm fluz, given by

v 6!
F = 0, —upvy, fo agesg . (7.4.47)

0z
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Divergence of the Eliassen-Palm flux is written as

/9!
UQQQ

0 0
V-F = —ayu;v;—k 92 (fo 26, > . (7.4.48)
0z

In the general form, divergence of the Eliassen-Palm flux is more complicated as
shown by (7.4.17). For quasi-geostrophic approximation, however, V - F' has a sim-
plified form and can be related to transport of quasi-geostrophic potential vorticity,
as shown below. Subtracting (7.4.38) from (7.4.32) gives the perturbation equation
of quasi-geostrophic potential vorticity,

OP! OP! 0P,

g g 1 0Lg / 2
+u +v = S +0(a”), 7.4.49

at g ay g ay ( ) ( )

where

0, (0* 0* f2 o2
P, = i <0x2 + Dy? + 322> . (7.4.50)

Hence, we have

92 omy (92 0% f3 02
v Pl = 9( 0 )

/

£2 0 \oa2 " ay2 " N20z2) "0
a a AU
= g% g, (fo ng> = V-F. (7.4.51)
Oz

If the [-effect is nonzero with 881;9 # 0, multiplying P, by (7.4.49), averaging in the

zonal direction, and dividing by 8059 we obtain

o (1P o .
ot \ 2 0p, = Py +FPS = —V-F+ PS5, (7.4.52)
dy

This equation is formally written as

0A
ot = -V-.-F+ PéS’7 (7.4.53)
where
1 P
A 2 6P, (7.4.54)
dy

is called wave activity. Eq. (7.4.52), or (7.4.53), is called the Eliassen-Palm relation.
If wave activity is time independent and there is no dissipation, the divergence of
the Eliassen-Palm flux is equal to zero. In this case, according to (7.4.42), there
exists no acceleration of the zonal wind due to eddy flux. This is the original form
of the nonacceleration theorem for quasi-geostrophic approximation.
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Using (7.4.42)—(7.4.46), we have the equation for the streamfunction of residual
circulation ¢*. From (7.4.46), we can define ¢* by

o* o*
* = — * = .4.
v P w dy (7.4.55)

and similarly the streamfunction of the Eulerian mean ¥ g by

_ g OYp

a — 5 a — . 4.
) 95 w oy (7.4.56)
From (7.4.41) and (7.4.40), we have a relation
vl 0!
Vo= Y- = Yp— g7 (7.4.57)
0z

The equations of u, and ¥* are given from (7.4.42)—(7.4.45) by replacing f with f
and assuming 6, and N? are constant. That is,

(az N az>aug _ ;9;2(V.F+Gx)_ 9 (fo EJQ)’

0y?  N20z22) 0ot 0z %(’ZS oy
(7.4.58)
0 fg *N . a [ fo 1 0Q
(8y2+N2322>w S0 [NQ <V.F+GI)}+%‘QZS dy -
(7.4.59)

Eq. (7.4.59) determines the residual circulation t*.

7.5 Eulerian mean equations in isentropic coordinates

Eulerian mean equations in isentropic coordinates have many similarities to the
generalized transformed Eulerian mean equations that are described in Section
7.4.1. To show the relation, we use equations in the isentropic coordinates in
hydrostatic balance on the f-plane. The flux-form momentum equation in the
a-direction, (3.3.69), the advective-form momentum equation in the y-direction,
(3.3.63), hydrostatic balance (3.3.64), the continuity equation (3.3.65), and the
equation of potential temperature (3.3.66) are written as

o, 0 o
(pou) + O (pou~) + oy (pouv) + 50 (poub) — fpov

ot
0 K 0 (pov
= Ton (H 1”) * o0 (g ax> + oG, (7.5.1)
dv ov
o I = =, O (7.5.2)
ov = (7.5.3)

00
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dpe | O d a, .
g T gy Po0) + oy (pov) + o (po0) = 0, (7.5.4)
0 = Q. (7.5.5)

The derivatives with respect to ¢, z, and y are taken along isentropic surfaces.

We define the zonal average of a quantity A along an isentrope by A, and the
deviation from it by A’. We also define the mass-weighted zonal average by A*7
and the deviation from it by 121; that is,

*

A" = ., A =4-4" (7.5.6)

Thus, we have

peA = ppA+phA = ppA”, (7.5.7)
. LAY

A = A+% . (7.5.8)
0

If the isentropes intersect with the ground, we assume py = 0 in the region where
the potential temperature is lower than the potential temperature at the ground.
Using (7.5.7), the zonal average of the continuity equation (7.5.4) becomes

dpg 0 o 0 SN
ot T ay(p@v )+ 80(p00 ) = 0. (7.5.9)

The zonal average of the zonal momentum equation (7.5.1) becomes

0 0 0 .
Py (pou) + oy (pouv) + Py (pout)) — fpgv
0 (pov
= 5 (g 81‘) + poGo. (7.5.10)

Using (7.5.7) and (7.5.9) and dividing by pg, the momentum equation is rewritten
as
ou LOM o OM 10
+ v + 0

1 *
- ' . F . 5.11
5t dy 50 pgatUmU)+fp9Ve o +G (7.5.11)

where M = u — fy is angular momentum and

0 o (pov .
Vo-Fy = 7ay (pgv)’u’ + o0 <Z O — (pg@)’u’) R (7.5.12)
/ ’ .
Fy, = (O, —(pov)'u’, I;a;; - (pg@)’u’). (7.5.13)

We should point out the similarity between (7.5.11) and the momentum equation
of the transformed Eulerian mean equation (7.4.3). Eq. (7.5.13) corresponds to the
Eliassen-Palm flux (7.4.10).
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The zonal averages of (7.5.2), (7.5.3), and (7.5.5) are written as
ov dv

fut 'y, = ~g 0w (7.5.14)
v
889 = (7.5.15)
i = g (7.5.16)

Eq. (7.5.14) reduces to geostrophic balance if the right-hand side is negligible. For
statistically steady states, the meridional streamfunction 1y can be defined from
(7.5.9) as

* _ aw@ aw@

pov* = 90 pe = oy (7.5.17)

In this case, the momentum balance (7.5.11) is written as

—aalg“’ %]\; + a;;’ aajg Vo-Fo+ peGy (7.5.18)
If Q" is specified, the vertical velocity 0 is calculated from (7.5.16), and hence vy
is determined from (7.5.17) using appropriate boundary conditions. If the Eliassen-
Palm flux (7.5.13) is known from the properties of disturbances, the distribution of
angular momentum M is calculable from (7.5.18).

A useful relation between the Eliassen-Palm flux and potential vorticity can
be driven in isentropic coordinates. The zonal average of the zonal momentum
equation in the form of (3.3.74) gives

ou -0u
o VWag + 939 = G, (7.5.19)

where wgg is absolute vorticity; the friction term is denoted by G, in this section.
Absolute vorticity is expressed as
ov  Ou

Waep = o _8y+f = poP, (7520)

where P is potential vorticity given by (3.3.70). Using (7.5.6), we have

vwes = vpgP = ppvP = pg(v*P*+@]5) = v*wg + e P
oM o
= —* y + po0P . (7.5.21)
Therefore, (7.5.19) becomes
du LM M S a1 oM
* 6 — gD — pgb G., 7.5.22
ge TV ay 0 5 pov po (pe 89) + ( )

From comparison between (7.5.11) and (7.5.22), we have a relation:
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*

o 0 ~/ 1 oM
2~ _ . . Y Nall 2
po°0P = Vg -Fy 9t (pyu’) + pyGh + po 9(p9 50 ) . (7.5.23)

This corresponds to (7.4.51) in the case of quasi-geostrophic equations, but in the
isentropic case it is no longer a simple relation between potential vorticity flux and
the Eliassen-Palm flux.

7.6 Appendix: Derivation of the generalized Eliassen-Palm relation

We derive the generalized Eliassen-Palm relation (7.4.17) in this appendix. Substi-
tuting (7.3.13) into the generalized Eliassen-Palm flux (7.4.10) gives

M
F;, = 7u’u;+€1ij1/12x‘
wy hty | OM
= —wul +e1ij | —(Kpm + Lim)nmty + "
A o
oM oM
= —u/u; — Ly oz, _Elij(Kk:mnmtk —‘r'H) 8.7;]‘. (7.6.1)

We have used potential temperature O for the definition of ¥ (see Section 7.3) and
introduced h and H by

Dh _ o _ uy hty '
Dt ’ VO
First, we use (7.4.12):
D/ , OM on’
4 = —0 G.
Dt R Ox; ox O
Multiplying &; by this and taking the zonal average using the relation,
Dvw  0&u/ o
Spe T oo M
we have
o&u’ ol , OM an’
—u'u; + S = =0 Gl 7.6.2
gr TSy, Sigw T (7.6.2)
Next, noting that
wup = uu, (i=y,z2),
§u; = Kij+ Lj = Kij — Lij,
on’ o€
o
Ox &i ™ ox’
we rewrite (7.6.2) as
o&u/! .l oM o0&
—wul + (Kyj — Ly = O, .Gl
ot w4 ]>0xj W@x+§ *
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Thus, (7.6.1) becomes

oc  dg oM
F = 0> — — K
' O e ot 9z,

oM
+&G, — Elij(Kkmnmtk + H) . (7.6.3)
813]'
Finally, from the zonal average of the inner product of (7.4.12), (7.4.13), and

(7.4.14) with g”, gg, and , we have a relation:

o (06 _an, ac,, 9 g
s o ( 31’) = 029 T O g,

9 [on ac OM g 00\ a¢
ot [a (wl = O + }* (f 0: T, ay> 02" (7.64)

In this derivation, we have used the following relations:

0
ul+£’b ! = u,
%

0+@39 = n
Du/ oM Du!

D
! _ _ r_ I
pr T dx; Dt fv Dt(u 1O,

on (Du'  OM o [0 ou . OM
82(5§+%3%> - { Ww—fo]+f24+f e
a¢ (D' AN a¢ ou’
am(D +f”) ) <8m > o
¢ g 0§ .00 g 3§h9

0’ = - -
ox 0O 8xc

and, since 85 =0,
o om0 8@
oxr dx;  Owm; 837
Using (7.6.3) and (7.6.4), therefore, we have

oF, 0 [og oM . oM
|: ot + Kz] a Ele + €1ij (Kk:mnmtk: + H) an :|

on o, ag
M RPN L

oM g 00\ 0¢
i (f 0= "o, ay> 02"
From this, it is easy to derive (7.4.17).

g 8[377

ol =0+ oo
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Thermodynamics of moist air

Up to now, we have described the dynamics of a dry atmosphere, which is a
gas with well-mixed components but without water vapor. In this and the next
chapters, we will explain the basic properties and the governing equations of moist
air. Moist air is a mixture of dry air and water in which water experiences phase
changes between vapor, liquid water, and ice. Interactions between the various
phases of water play fundamental roles in mesoscale moist circulation (i.e., 1-10
km horizontal scale convection). In this book, however, we are mainly concerned
with the large-scale dynamics of the atmosphere, which can be described using a
simplified formulation of moist thermodynamics. We mainly consider a mixture
of vapor and liquid water and assume that the two phases are in phase equilib-
rium. The ice phase and interactions between different phases will not be explicitly
considered.

In this chapter, we describe the thermodynamic properties of moist air. First,
we derive the thermodynamic expressions of moist air in a general form. Then, we
simplify the thermodynamic expressions of moist air and introduce the assumptions
of ideal gas heat and constant specific heat. In addition, with the further assumption
that the water content is low in air, we introduce the thermodynamic expressions
of moist air conventionally used in the literature.

8.1 Formulation

8.1.1 Definition of moist air

When we consider hydrological circulation in the atmosphere, the atmosphere
should be viewed as a moist atmosphere. The moist atmosphere consists of moist
air, which includes the various phases of water substance. Note that moist air
is not a pure gas, since water substance experiences phase changes between gas,
liquid, and solid phases (i.e., vapor, water, and ice). In the framework of thermo-
dynamic equilibrium, the water phase solely depends on the thermodynamic state
(i.e., temperature and pressure). In reality, however, water may be supersaturated

M. Satoh, Atmospheric Circulation Dynamics and General Circulation Models, 236
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or supercooled, so that different phases of water may exist in the same thermo-
dynamic state. Thus, it is complicated to determine the exact composition of each
water phase. For simplicity, we do not consider such supersaturation and super-
cooling in the formulation of moist thermodynamics in this chapter; these effects
are secondary to understanding the large-scale motions of the atmosphere.

When moist air does not include a liquid or ice phase, the air is a pure gas and
behaves like dry air. Since the composition of vapor is generally inhomogeneous
in a moist atmosphere, vapor has a diffusive process. Energy transport is also
associated with the diffusion of vapor. When moist air contains a liquid or ice
phase, the governing equations of a moist atmosphere become very complicated
because it becomes a multiphase flow. Water substance exists in the atmosphere
in the form of liquid or ice particles. In conventional terminology, if liquid particles
move with the gas part of the air, they are called cloud particles, whereas if they
have relative motions to the gas, they are called raindrops. Similar categories are
used for ice particles, but they are categorized as snow, graupel, or hail according
to their sizes. Strictly, we must consider the surface processes of individual liquid or
ice particles and the collision processes between the particles. In practice, however,
if we are interested in the mean properties of a sufficiently large volume of air, the
interactions between different phases need to be formulated for the collection of a
large number of liquid or ice particles in the gas.

The volume of moist air to be considered depends on many factors. In numerical
models, moist air is treated differently according to the resolvable scale used. For
example, the horizontal resolutions of large-scale circulations used in general cir-
culation models are normally more than 100 km. If one explicitly calculates cloud
motions by using cumulus-resolving models, it is thought that the horizontal res-
olution should be less than a few kilometers. If the inner motions of clouds are
considered, air parcels with a diameter of about 100 m would be required. In fact,
moist air can have different phases and must be very inhomogeneous in the 100 m
to 100 km scale.

In the following formulation, we neglect all the inhomogeneity of moist air and
consider thermodynamic state variables by assuming that moist air is described as
a local thermodynamic state of a homogeneously mixed fluid.

8.1.2 Basic thermodynamic equations

We assume that moist air has the following thermodynamic properties. For sim-
plicity, we only consider the gas and liquid phases of water, but not the ice phase.

(1) The gas component consists of dry air and vapor and is the ideal gas.
(2) The gas component is in phase equilibrium with the liquid component.

(3) The volume of the liquid component is negligible compared with the fractional
volume of vapor.

(4) The entropy of moist air is the sum of the entropy of the gas component
and that of the liquid component. This implies that the entropy of mixing
between the gas and liquid particles is negligible.
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(5) Liquid particles consist of a single component (i.e., water), and the gas phase
is insoluble in liquid particles.

The assumptions of the ideal gas (1) and neglect of the volume of the liquid com-
ponent (3) are normally introduced. However, in extreme situations, such as in the
initial evolution of the proto-atmosphere, these assumptions break down (e.g., Abe
and Matsui, 1988). In this chapter, we first derive general expressions without these
two assumptions. Later, we introduce them to obtain the familiar relationship used
for the present atmosphere.

In general, the expressions of thermodynamic variables can be derived if the
specific heat at constant pressure and the equation of state are known. The def-
inition of moist air enables us to construct the specific heat at constant pressure
and the equation of state for the moist air from those of each component. We use
subscript k for either the gas or the liquid part, g for the gas part, and c for the
liquid part of moist air. Among the gas components, subscript d is used for dry
air and v is used for vapor. Although dry air consists of many gas components, we
do not distinguish them in this chapter. We designate the molar specific heat at
constant pressure and the molar specific volume of the k-th component by ¢, and
vg, respectively.t The equation of state for the k-th component is generally written
in the form

v = ur(p,T). (8.1.1)

In particular, the equation of state for gas components is given by that of the ideal
gas:

v = , (8.1.2)

where R* is the universal gas constant. The equation of state for the ideal gas has
the same function for any gas components. Although the liquid part has its own
equation of state, we do not specify a specific form of the equation here; we simply
use the general expression (8.1.1). According to the above assumption (3), the
equation of state for the liquid component does not make any contribution to the
moist air in the actual atmosphere. Specific heats generally depend on both pressure
and temperature. However, if the dependence of specific heats on temperature at
arbitrary pressure pg is known, all the expressions of thermodynamic variables can
be determined.

In moist air, water substance can be in gas phase (vapor) or liquid phase (water).
If the air parcel is not saturated, all the water in the air parcel is in the form of
vapor. If saturated, on the other hand, both vapor and water are contained in the
air parcel. In this case, liquid water is airborne as cloud particles. We use quantities
per unit mole for the thermodynamic formulations in this section. The number of
moles of the k-th component per unit mass of air, or molar concentration, is denoted

tIn this section, subscripts k, g, d, v, and ¢ are used for the quantities per unit mole of each
component. Quantities per unit mass of moist air are denoted by symbols without subscripts.
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by ni.T The gas phase is the sum of dry air and vapor, and water substance is the
sum of vapor and cloud particles; that is,

Ng = Mg+ Ny, Ny = Ny + Ne. (8.1.3)

Let v denote the specific volume of moist air. Density is given by p = 1/v. The
internal energy and the entropy per unit mass of moist air are denoted by u and
s, respectively. We assume that the specific volume, the internal energy, and the
entropy of moist air are given by the sum of those of gas and cloud particles:

V= NgUg + Neley, U = Nglg + Nelle, S = NgSg + NeSe, (8.1.4)

where vy and v, are molar volumes, u4 and u. are molar internal energies, and s, and
s are the molar entropies of gas and liquid components, respectively. Assumption
(4) is used for the expression of entropy. Enthalpy h, Helmholtz’s free energy f,
and Gibbs free energy g are defined by

h = u+pv, (8.1.5)
f = u-"Ts, (8.1.6)
g = h—Ts = u+pv—Ts. (8.1.7)

These are also quantities per unit mass. The specific heat of moist air at constant
pressure per unit mass C, is defined by the derivative of entropy with respect to
temperature:

0s e
<8T>p = 7 (8.1.8)

which is the same relation as (1.1.18). Hence, from (8.1.5)—(8.1.8), specific heat,
enthalpy, and free energies are given by the sum of those of gas and cloud particles:

Cp = ngtpg+ncCpe, h = nghg+nche, (8.1.9)
fo= ngfotncfe, g = nggg+ncge. (8.1.10)

In the following arguments, we calculate the thermodynamic variables of gas and
cloud components respectively and obtain the thermodynamic expressions of moist
air as a mixture of multiphase fluids using the above formulas. The gas component
is regarded as a mixture of dry air and vapor. Then, we first obtain the thermo-
dynamic functions of a single component of gas and next consider the effect of
mixing to obtain the thermodynamic functions of the gas component of moist air.

We summarize useful thermodynamic relations in the rest of this subsection. If
the thermodynamic state of moist air changes but keeps thermodynamic equilib-
rium, the first law of thermodynamics is written by

du = Tds—pdv—&—Zukdnk, (8.1.11)
k

TIn the next section, we will use the mass concentration of the k-th component ¢; which is
defined as the mass of the k-th component per unit mass of air. Molar concentration is related as
nE = qrMmyg, where my is molecular weight.
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where puy is the molar chemical potential of the k-th component. Using this equa-
tion, the total derivatives of thermodynamic energies are expressed as

dh = Tds+vdp+ Y pdng, (8.1.12)
k

af = —SdT—pdv—&—Zukdnk, (8.1.13)
k

dg = —sdT +vdp+ > purdng. (8.1.14)
k

From these equations, the partial derivatives of thermodynamic functions can be
related to quantities of state as (1.1.9)—(1.1.12). In particular, the partial derivatives
with respect to the molar concentration of each component are given as

( ou > B ( Oh >
Oni $,0,M0 12k Ini 8,0, M0, 14k
= (af> = (89> = (8.1.15)
ony, T,v,np 1k Ini T,p,ni 1k

0s . ok
<8nk> = - (8.1.16)
U,V N 1A

The Maxwell relations are given by

85) (81}) (83) (81))
- — , = . (8.1.17)
(3}7 Ty oT o ov o oT .
Jds B dp Jds _ v
<6U>Tn B <6T>vn 7 <ap>vn B <8T>sn 7 (8118)
Nk Nk Nk Nk

which corresponds to (1.1.13)—(1.1.16).

8.1.3 Thermodynamic functions of a single component

We first obtain expressions for the thermodynamic functions of a single component
k using the equation of state vy (p,T) and the specific heat at constant pressure
cpk(po, T') at a specified pressure pg. Thermodynamic functions are expressed by
pressure p, temperature T', and these two functions. As in Chapter 1, molar specific
heat cpr, entropy si, enthalpy hy, and the internal energy uy, of a single component
are given by (1.1.21), (1.1.25), (1.1.26), and (1.1.27). Similarly, (8.1.7) also holds
for each component gi. Thus,

P /o
eok(p, T) = Cpk(pO7T)+/ (5;’“) dp
T

DPo

P (9% (p', T
= Cpk(pO7T)_T/ ( gg{g )> dp/, (8.1.19)
Po p’
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hk(p7 T)

T
ho + / Cpk (p(), T/)dT/

To

_7? /p {;T (”’“(];’T))] ' (8.1.20)
up(p, T) = hk(p;;*pvk(p,T) !

T
= ho+/ Cpk(po, T")dT"
To

_T? /pf {a(?r <”’“(1';’T))L/ dp' — pur(p, T), (8.1.21)

T / /
cpk(po, T) ., /p <6vk(p,T)) ,
sp(p,T) = s +/ P dr’ — dp’,  (8.1.22
k(. T) T - oT . o )

hi(p,T) — Ty,

r T
— h07T50+/ cp(po, T') (IT’>dT/

To

gk (p, T)
P

Jr/ vi(p', T)dp'. (8.1.23)
Po

where the entropy and enthalpy at (po,To) are denoted by sg and hg, respectively.
For an ideal gas, substituting the equation of state (8.1.2) into vy, gives

Cpk(paT) = Cpk(pOaT)a (8124)
T
W T) = hot [ el (8.1.25)
T
’ T
up(p,T) = hi—pop = h0+/ cpi(po, T")dT" — R*T, (8.1.26)
To
T /
T
se(p,T) = 50+/ C”’“(poj Jar —rw (8.1.27)
To T Po
gk(p,T) = hi—Tsi
T T »
= hO—T50+/ epi(po, T') (1 /)dT’JrR*Tln .
To T Po
(8.1.28)

8.1.4 Mixing of ideal gases

Next we consider the mixing of dry air and vapor as ideal gases. Subscript j denotes
each component of gas and subscript g denotes the mixed gas.” Since any kind of
ideal gas has the same specific volume v;, we can define the universal specific volume

TSubscript k is used for any phase of components, while j is used only for the gas phase.
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vl of ideal gas as

R*T
v;(p,T) = v(p,T) = : (8.1.29)
p
In (8.1.24)—(8.1.28), we change the independent variables from pressure and temp-
erature (p, T) to volume and temperature (v, T') in order to consider the mixing
of gases. Let the values at pressure pg be denoted by superscript 0. The above
equations are written as

cpj(vIvT) = ng(T)v hj(UIvT) = h(])'(T)7 uj(UIvT) = u(])'(T)7
(8.1.30)
s, T) = s‘;(T)+R*1nZg, (8.1.31)
j
g;(W",T) = ¢)YT)-R'Tln U, (8.1.32)
J

where ¢ (T) = ¢p;(po, T') and

T
h(T) = ho+/ ) (T)dT", (8.1.33)
T
’ T
uW(T) = h)(T)-RT = h0+/ ey (T")dT" — R*T, (8.1.34)
To
T CO-(T/)
0 —
$)(T) = 50+/T0 WT, dT’, (8.1.35)
9;(T) = h(T)—Ts(T)
T T
— ho—TsoJr/ i (T") (1 T/)dT’. (8.1.36)
To

Then, we mix the ideal gases. The thermodynamic states before mixing, denoted
by prime ’, are simply given by the sum of thermodynamic expressions of each gas,
(8.1.30)—(8.1.32), times each molar concentration:

ngcpg vy, T Zn] m ), nghy ! (vg, T Zn]
ngul(vg, T Zn] (8.1.37)
ngsy(vg, T Zn] s; )+R*anln zf), (8.1.38)
j J
nggl(vg, T Zn]g] R*TZn] In " ’, (8.1.39)

where v; = vy = v!; subscripts j and ¢ are recovered for later convenience.
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During the mixing process, the volume occupied by gas j is changed from n;v;
(= njvl) to ngv, (= ngv!). After mixing, the above thermodynamic variables
become

NgCpg(vg, T E :nj pj ), nghg(vg, T E n]

ngug(vy, T Zn] (8.1.40)
ngsy(vg,T) = ans] +R*Z n;1 ngv-‘_’, (8.1.41)
nggqe(vg, T) = Zn]g] R*TZnJln g. (8.1.42)

Yj

Hence, the differences between variables before and after mixing are given by

ngAcpg = 0, ngAhy = 0, ngAu, = 0, (8.1.43)

nAs, = —R*Y n;n’7, (8.1.44)
; g

nglAg, = R*Tananj = —ngTAs,. (8.1.45)
; g

Since these differences are independent of volume and are functions only of temp-
erature T, (8.1.40)—(8.1.42) can be rewritten with respect to pressure. Therefore,
we obtain expressions for the thermodynamic variables of mixed gas:

nngg(p7T) = n.l] pg p7 Zn] p]
nghg(p7T) = n.l]hg p7T - Zn]h] T
J

ngug(p,T) = nguy(p,T) =" njul(T), (8.1.46)
ngsq(p,T) = ng,s;(p,T)JrngAsg

= Z”a / R ") (8.1.47)

nng

ngge(p, T) = nggg(p7T) —ngTAs,

— Z < ((T)+ R*T'In ngpo), (8.1.48)

J
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which are written as
ngcpg(p, T Z njcpj, Nghyg Z”y 7
ngug(p, T’ Z n;u;, (8.1.49)

ngsg(p,T ansjv nggg p7 ang] (8150)
J

Since specific heat, enthalpy, and internal energy, given by (8.1. 46) are independent

of pressure p, we have ¢,; = ¢p;(T), hyj = h);(T), and u,; = u)(T). Entropy and
the Gibbs free energy of the j-th component are defined by

n;p Pj
si(pj,T) = sU(T)—R*In 7" = $%T)—R*In"", 8.1.51
i (03 T) (1) ngpo (1) o ( )
9i(ps,T) = (T +RTi P = T+ BT, (8.1.52)

ngpo Po
where
ny

- 8.1.53
Py ngp ( )

is the partial pressure of the j-the component.

8.1.5 Thermodynamic variables of liquid phase

To derive the thermodynamic variables of cloud particles, we consider a fluid with
a single-component with two phases: vapor and liquid water. The thermodynamic
variables of such a pure substance are denoted by superscript * to distinguish them
from other components. The equation of state of the gas phase (vapor) is that for
the ideal gas:

vi = : (8.1.54)

while the equation of state of the liquid phase is given as a general expression:

vy = ui(p,T). (8.1.55)
We assume that the volume of liquid phase is negligible:

vy > vl (8.1.56)

This corresponds to assumption (3) described in Section 8.1.1.

We define the saturation vapor pressure at temperature T by p*(T'). In the case
of liquid-vapor equilibrium, the chemical potential of vapor is equal to that of the
liquid phase:

pe(™,T) = pwy(p",T). (8.1.57)
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If a slightly different state (p* + dp*, T + dT') is also in phase equilibrium, we have

pe(p* +dp*, T+dT) = upi(p*+dp*, T +dT). (8.1.58)
The differences between (8.1.58) and (8.1.57) are written as
o o o’ o’
v dp* v dl' = © dp* ¢ dr. (8.1.59
(ap*>T P *(a:r)p* (ap* L or ) AT (B159)
Making use of (1.1.12), we obtain
vndp* — sidT = wvidp® — sidT, (8.1.60)
that is,
dp* sk — sk
= v ‘. 8.1.61
dT v — vk ( )

The latent heat [ per unit mole is defined by

s_go_ b 8.1.62
Sy — Sn T ( )
Thus, (8.1.61) is rewritten as
dp* l
_ . 8.1.63
dT T (vi — v¥) ( )

This is the Clausius-Clapeyron equation. Using the equation of state of the ideal
gas (8.1.54) and neglecting the volume of the liquid phase v} > v}, the Clausius-
Clapeyron equation becomes
dp* lp*
= . 8.1.64
dr R*T? ( )
If I(T) is known, the function p*(T') is calculated using this equation.

The thermodynamic variables of condensable gas are expressed as follows. Now
we are considering a single component system with a condensable gas, the chemical
potential p* of which is equal to g in (8.1.23). Using (8.1.14), the chemical potential
at (p,T) is expressed as

P
W) = WD)+ [ oy
.
P
= uii(sz)—/ (vy —vz)dp'. (8.1.65)
.

From (1.1.12), entropy is expressed as

Sc(p7T) = - (a?) = Sv(p7T> + aT/ (vv - 1jc)dp/
p

*

. dp* , ., . Provy  ovl
si(p,T) — T (vh —vl)p- +/ <3T — 8T) dp’. (8.1.66)
P
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Note that (8.1.61) is directly given from this equation by setting p = p*. Next,
enthalpy and internal energy are given by

hi(p,T) = pi(p,T)+Tsi(p,T)
P
- R T) - / (v, — %) dp’
p

dp*, ., . Provy  ovl
-T I (v —v)p + T/p* <8T 8T) dp’, (8.1.67)
he(p, T) = poc(p, T)
p

— wi(p,T) +p(or — o) — / (vF —v?)dp’
p

5

g +T/p ) dp' (8.1.68)
dT’U U p ) 8T D - N

From (1.1.18), specific heat is given by

ue(p,T)

o = 1(50) = ey, [T

CpePs - ar ), — polPs or? [, .\ T Ve
. d?p* . . dp* (0v; Ov}
o T)+ T | = jpo (0 =00 =2 1 (aT - 8T>p*

dp*\? (Ov:  Ovr P2 9N
_ v c + v c dp .
dT Op o ), o \OT? 077
(8.1.69)

Up to now, no assumptions have been made about the equation of state for gas
and liquid phases. Using the equation of state for the ideal gas for v} (8.1.54) and
neglecting the volume of the liquid phase v}, (8.1.66)—(8.1.69) become

. . R*T2 d2p* R*T dp* R*TQ dp* 2
Cpc(p7T) = Cpg(T)_ -2 T e ( ) 7

p*  dT? p* dT D dr

(8.1.70)

he(p.T) = h(T)~ T (8.1.71)
R*T? dp*

wip,T) = () + T =" iy (8.1.72)

s5(p,T) = s°T)—-R*'In" — , 8.1.73

(».7) (T) vo  p* dT ( )

wpT) = p(T)+ R T’ . (8.1.74)

Po

Variables with superscript 0 are given by (8.1.33)—(8.1.36). These expressions are
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rewritten with latent heat ! using (8.1.64):

cpe(T) = Cp”(T>_dT’ (8.1.75)

hA(T) = hT) -1, (8.1.76)

ui(T) = u%T)+ R*T —1, (8.1.77)

S(T) = soT)-Rm? ~ ! (8.1.78)
Po

STy = u;jO(T)—s—R*Tlniz. (8.1.79)

We can see that the above expressions are independent of pressure p. Eq. (8.1.75)
is called Kirchhoff’s equation. Furthermore, using (8.1.33)—(8.1.36), these are also
rewritten with specific heats as

T
he(T) = hv0+/ (1T 1
To
T
= hvo+/ o (T")dT", (8.1.80)
To
T
W(T) = ho + / O(T)dT + ROT — 1
To
T
- th/ GA(T")dT' + R*T, (8.1.81)
To
TC*O( /) p* l
se(T) = sy Jr/ Y dl" = R*In~ -
(T) oF T
T c*(? T/
= sv0+/ p°(, >dT’, (8.1.82)
7, T
4 0 T p*
(T) = hyo — TSy Jr/ (T’ (1 >dT’+R*T1n
9:(T) 0 0 - p( ) T "
T 0 T
= th*TSvoﬁ*/T (1) (1 T/)dT’. (8.1.83)
0

8.1.6 Thermodynamic variables of moist air

The thermodynamic variables of moist air are written as the sum of those of gas and
liquid phases: specific heat and enthalpy by (8.1.9); entropy and internal energy
by (8.1.4). If the mixture of dry air and vapor is ideal gas, its thermodynamic
expressions are given by the sum of the corresponding variables of dry air and
vapor as (8.1.46)—(8.1.47). Thus, the thermodynamic expressions for moist air are
given by

Cp = ngcpg+ NypCpy +NcCpe, b = nghg + nyhy + nche,

U = Ngug + Nyly + Nele, S = NgSq + NySy + NeSe. (8.1.84)
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The variables of the liquid phase are given by (8.1.70)—(8.1.74), or by (8.1.75)—
(8.1.79) if latent heat [ is used.
When gas and liquid phases are in phase equilibrium, we get

Ag(p7 T7 nv7ng) = MC(p7 T) _M’U(p7 T7 nv7ng) = 07 (8185)

where, from (8.1.52) and (8.1.74),

(0 Tonuyng) = WOT)+ R*TIn "7, (8.1.86)
NgPo
pe(p,T) = uZiO(THR*Tlnz. (8.1.87)
0

Hence, the condition for phase equilibrium is given by
p* = p (8.1.88)

The right-hand side is the partial pressure of vapor. Using ngy = nq + n,, we also
have

n, = p ng. (8.1.89)

p—p*

In the case of phase equilibrium, substituting (8.1.46)—(8.1.47) and (8.1.75)—
(8.1.77) into (8.1.84) and using (8.1.88), we have

dl
Cp, = ndcgd(T) + nvcgv (T) + ne <c;2(T) - dT>
dl

= nalpq(T) + nucy, (T) — ne IT (8.1.90)
h = nghg(T) + nuh)(T) + ne(hy(T) = 1)

= nghQ(T) + n,h%(T) — n.l, (8.1.91)
u = nqu(T)+n,ud(T) +n.(ud(T) + R*T - 1)

= ngu)(T) + nypul(T) + n(R*T —1). (8.1.92)
s = ng <53(T) — R*ln " ) + Ny (sg(T) —R*ln P )

NgPo NgPo

p* 1
+ne 52 T)—R'In" — >
< @) po T

w1, TP ar D7 !
= ng (sg(T) —R'In ngp()) + Ny (SS(T) —R'In p0> =Ty
(8.1.93)

These thermodynamic variables are measured from the base values ¢, (T), s9(T),
hO(T), and u?(T). We may use different bases for the thermodynamic variables of

the liquid phase. Since the variables of the liquid phase are independent of vapor
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pressure, we can write them as

dl
Cyp = machul) (1) + )+ e (7)

dl
— ndcgd(T) + anOC(T) + Ny .

ho = nghy(T) + ny(h(T) + 1) + nhO(T)

= ngh(T) + nuh2(T) + nyl, (8.1.95)
u = ngu(T) +n,(ud(T) = R*T 4+ 1) + n.ud(T)

= nqu(T) + nu,ud(T) + ny(l — R*T), (8.1.96)

(8.1.94)

s = ng (sg(T) —R"In dp) + Ny <52(T) + ;) +neso(T),

NgPo

l
= ng (sg(T) —R*ln P > +nys2(T) + M s (8.1.97)

NgPo

where ¢ (T), h)(T), u(T), and s_(T') are given by (8.1.75), (8.1.80), (8.1.81), and
(8.1. 82) respectively.

For general use in meteorology, further assumptions are introduced to the above
expressions. We derive approximate expressions in Section 8.2. But before doing

so, we obtain the adiabat of moist air in the next subsection.

8.1.7 Moist adiabat

The adiabat, or the adiabatic lapse rate, is the temperature change experienced by
an air parcel in an isentropic process. In the case of moist air, temperature change
in saturated air is different from that of unsaturated air because latent heat release
is associated. Precisely, the adiabat also depends on the amount of water vapor. We
present a general formula of the adiabat of moist air in this subsection. In Section
8.2.4, we derive the approximate expression of the moist adiabat conventionally
used in meteorology.

If the amount of vapor contained in a moist air parcel is sufficient, vapor is
condensed and latent heat is released as the air parcel ascends. If the air parcel
does not exchange any heat with the environment during this ascent, the air parcel
undergoes an adiabatic process. The temperature change in the adiabatic process
of moist air is smaller than that of dry air due to latent heat release. The rate of
the moist adiabatic temperature change is called the moist adiabatic lapse rate. In
the real atmosphere, some condensates fall out as precipitation, while others remain
as cloud particles and move with the air. Although the ratio between precipitable
water and cloud particles depends on circumstances, we may consider two extreme
cases. The first is the case when no precipitation occurs, while the second is the
case when no cloud particles remain. In the first case, the total amount of water
substance is conserved by moist air. In the second case, all the condensates are
removed from the moist air. These two extremes are called the reversible moist
adiabat and the pseudo-moist adiabat, respectively. They are collectively called the
moist adiabat.
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We examine changes in thermodynamic variables in the moist adiabat under
two conditions: (1) entropy is constant and (2) the gas and liquid phases are in
equilibrium. In particular, the dependences of temperature and humidity on pres-
sure are derived in general forms. The rate of temperature change with pressure has
an equivalent meaning to the rate of temperature change with altitude if pressure
is related to height through hydrostatic balance.

First, we consider the reversible moist adiabat where all the water substance in
an air parcel remains with the air parcel. The condition that the components of
dry air and water substance are conserved is written as

dng = 0, dny = d(n,+n.) = 0. (8.1.98)

The adiabatic condition and phase equilibrium are written as

0 = ds = ngSpdT +ngSpdp + Spdny, (8.1.99)
1
0 = dAg = GrdT +Gpdp+ " Gpdny, (8.1.100)
g
where the following symbols are defined:
1 [ 0s 1 (0s
= = .1.101
ST ng <8T>p7n7 Sp ng (ap)p’n7 (8 O )
S, = ( 0 ) - < Os ) , (8.1.102)
Iy p,T\na,nc e p,T\ng,ny
0Ag 0Ag
Gr = ( ) , G, = ( ) , (8.1.103)
or ), . o ) pn
A
G, = n, <aa g> . (8.1.104)
Ty p,T\ng,ne

Thus, the dependences of temperature and vapor content on pressure are written
as

aT SnGp - SpG’n
= 1.1
(ap ) S1G — SuGr (8.1.105)
anv SpGT — STGp
— . 8.1.106
( ap ) "5 G — S,Gr ( )

On the assumptions that the gas phase is the ideal gas and that the volume
of the liquid phase is negligibly small, the entropy of moist air per unit mass is
expressed using (8.1.84), (8.1.51), and (8.1.73) as

S = MNgS8d + NySy + NeSe

ng (sg(T) —R*In "% > + 1y <52(T) —R*ln P >
N gPo NgPo

po p* dT )’

+n,. (s:‘)(T) — R*In (8.1.107)



Sec. 8.1] Formulation 251

From (8.1.85), (8.1.86), and (8.1.87), the condition of phase equilibrium is written
as
Ag(p, Tonasny) = pe—po = RTIY —RTIm ™7 = 0. (8.1.108)
Po NgPo
Making use of (8.1.107) and (8.1.108), we have expressions for (8.1.101)—(8.1.104)
as

1

Sy = ngT(ndcdernvcpernccpc), (8.1.109)
R* l

_ — - b 111

Sp P S, Gr 7 (8 0)
R*T

G, = -7, G, = —-RrT" (8.1.111)

p Ny

Thus, substituting (8.1.109)—(8.1.111) into (8.1.105) gives the moist adiabatic lapse
rate or the reversible moist adiabatic lapse rate:

RI ng R2T
~ _ (3T) - - T nj P
m = — n 2
dp / — R+ nlg (NaCpd + NuCpy + NeCpe) — (%)
14 ™ L
= dng nvcpv—&-nccpzld T 12 nyng? (8.1.112)
Ma 1+ N4Cpd cpaR*T? n?
where 74 is the dry adiabatic lapse rate defined by (1.1.57), or
R*T
Yo = . (8.1.113)
CpdP

Similarly, change in the molar concentration of vapor is given by substituting
(8.1.109)—(8.1.111) into (8.1.106):

Ny Cpy+MNeCpe ngl
anv o ngnd 1 + NdCpd + ndcpdT (8 1 114)
op Py 14 Meeretretpe L B el o
s NdCpd cpaR*T? ng

In this equation, the value of n, is given by solving (8.1.108) or (8.1.89).

Next, we consider the other extreme case of the moist process, the pseudo-moist
adiabat, in which all the liquid particles are completely removed from an air parcel
when condensation occurs; this is a very simple model of the precipitation process
in a moist atmosphere. The dependences of temperature and moisture on pressure
are given by substituting n. = 0 into (8.1.105) and (8.1.106):

T S,Gp— S G
0 = P (8.1.115)
8p s/ Sé]ﬂGn - SnGT
0Ny SI/,GT — S}Gp
= 111
( o ) "9 51.G — SuGir’ (8.1.116)



252 Thermodynamics of moist air [Ch. 8

where subscript s’ represents the pseudo-moist adiabat process. Sp and S, are
given from (8.1.101) with n, = 0:

1
Sk = wCpv ), S =5 = - . 8.1.117
T ngT(nded + MuCpy) p p P ( )

Thus, from (8.1.115), the pseudo-moist adiabat is given by

N = <a > = e T (8.1.118)
p s/ d + NdCpd + cde*T2 ni

If Ag > 0 is satisfied, moist air is undersaturated. The adiabatic lapse rate of
unsaturated air is given by

oT S,
- - 8.1.119
! < Op > St ( )
Substituting (8.1.117) into S, and Sy yields
R*T 1 1
= ET e L (8.1.120)
NdCpd + Ny Cpy ng 1+ NdCpd pcp

where the equation of state p~! = n,R*T/p and that of specific heat C}, = ngcpq +
NyCpy are used. When there is no humidity, this lapse rate reduces to the dry
adiabat 4, (8.1.113).

8.2 Expressions of thermodynamic variables

8.2.1 Constants

Here, we derive the conventionally used expressions of the thermodynamic variables
of moist air by introducing an additional assumption that specific heat is indepen-
dent of temperature. First, we summarize the values of thermodynamic constants.
The molecular weights of dry air and water are respectively given by

mg = 28.966 x 1072 kg mol~!,
my = 18.0160 x 1073 kg mol~!.

The universal gas constant is R* = 8.31436 J mol~! K~'. The gas constant for dry
air Ry and that for vapor R, are respectively defined as

R*

Ry = = 287.04 Jkg ' K, (8.2.1)
mq
= R* -1 —1
R, = = = 46150 Jkg™' K™%, (8.2.2)

The ratio of the two gas constants is denoted by

om Ry
= = = 0.62197. 8.2.3
€ m R, (8.2.3)
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We express thermodynamic variables using those values at a temperature of 0°C
(i.e., at Tp = 273.15 K). Specific heats generally depend on temperature and their
numerical values are given as a table (List, 1951; Iribarne and Godson, 1981). We
use the following representative values for the specific heats at constant pressure of
dry air, vapor, and liquid water per unit mass (Appendix A2):

TR
Cpa = 2d = 10046 Jkg ! K1,
Cpy = 4R, = 1846 Jkg ! K7}
Cpe = 4218 Jkg ! KL

We assume that these specific heats are constant irrespective of temperature. Spe-
cific heats per unit mass are related to those per unit mole as c,q = Cpama,
cpy = CpuyMy, and cpe = Cpemyy. Specific heats at the constant volume of dry
air and vapor are given by

Cva = Cpa— Ry, (8.2.4)
Cpy = Cpy— R, (8.2.5)

Specific heats at the constant volume of liquid water are the same as C.. Similarly,
the specific heat of condensed water is

Cpi = 2106 Jkg ' K1,

We get the thermodynamic expressions for ice by replacing C. by Cp; in the fol-
lowing formulas.

Latent heat per unit mass L and the saturation vapor pressure p* are related
to specific heats C,, and Cj. through Kirchhoff’s equation and the Clapeyron-
Clausius equation. Latent heat and the saturation vapor pressure at temperature
0°C are given by

Ly = 2501x10° Jkg 1,
py = 6.1078 x 10° Pa.
Kirchhoff’s equation (8.1.75) is
dL
Cpo = Cpe = AT’ (8.2.6)

where the latent heat per unit mole [ = Lm,, is used. Thus, the temperature
dependence of latent heat is given by

L = Lo+ (Cp —Cpe)(T—Tp) = Loo+ (Cpo — Cpe)T, (8.2.7)
where
Loy = Lo-— (va — Cpc)TO (828)

is constant and is thought to be the latent heat at 0 K. From the Clapeyron-Clausius
equation (8.1.64), the temperature dependence of the saturation vapor pressure is
written as

1 dp* L

dr = R (8.2.9)
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FIGURE 8.1: Temperature dependence of the saturation vapor pressure by the Goff-Gratch formula
(left), and differences from that given by the Goff-Gratch formula (right); solid (8.2.10), dashed
(8.2.11), and dotted (8.2.13).

Substituting (8.2.7) to this and integrating with respect to temperature, we obtain

Cpuv—Chpe
TN\ R Loo /1 1
(T) = pg — . 8.2.10
I B A G| (5.2.10)
This is approximated to the first order of temperature as
Lo (1 1
(T) = pg — . 8.2.11
r@ = sew | (5 )] (s2.11)

A more accurate function of the saturation vapor pressure is given by the Goff-
Gratch formula (List, 1951):
K

l0gyo Z* = —7.90208(t"! — 1) — 5.02808 log; ¢

S

—1.3816 x 107 7[10'1:3441=0) _ 1]
481328 x 1073[10~319149( " =1) _ 1), (8.2.12)

where t = T/T,, Ts = 373.16 K is the steampoint temperature, and p¥ = 101324.6
Pa is the standard pressure. The following simplified formula (Teten’s formula) is
also frequently used:
p*(T) A(T - To)
lo = 7 8.2.13
€10 Py T—Ty+B ( )
where A = 7.5 and B = 237.3 on liquid water and A = 9.5 and B = 265.5 on ice.
Figure 8.1 shows the dependence of the saturation vapor pressure on temperature,
p*(T). The above three formulas are compared in this figure.

8.2.2 Mass concentrations and saturation condition

There are several ways to express the mass of dry air and that of water substance. It
is straightforward to use the molar mizing ratio r, which is the number of moles of
water substance per unit mole of dry air. Any thermodynamic variable of moist air
f is expressed in terms of pressure p, temperature 7', and the mixing ratio r, such
that f = f(T,p,r). On the other hand, one can use the mass of water substance
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per unit mass of moist air (i.e, the mixture of dry air and water substance including
liquid water). Let the mass of dry air and that of water substance per unit mass
of moist air, or mass concentration, be denoted by g4 and q,,, respectively; and the
mass of vapor and liquid water per unit mass of moist air by ¢, and g., respectively.
@y is called specific humidity, which will be simply referred to as q.

The molar mixing ratio of water substance is defined by
ro= (8.2.14)
ng

The mass concentrations of dry air and water substance are written as

qd = Mamd, (Qus Qs @c) = (Magy My M )My (8.2.15)
which satisfies

49a+qw = q+q+qg = L (8.2.16)

From (8.2.15), and (8.2.16), using (8.2.3), the mass concentrations are related to
the molar mixing ratio as

1 er
- . = . 8.2.17
94 1+er’ ¢ 1+er ( )

or 1 is expressed by qy:

—1 Yw
r = ¢ . (8.2.18)
1- qu

Expression of the specific humidity of saturated air is different from that of
unsaturated air. We use n) to express the molar concentration of vapor corre-
sponding to the saturation vapor pressure of moist air at pressure p, temperature
T, and mixing ratio 7. From (8.1.89), the saturation molar mixing ratio is defined

by

. _ n, _ pi(T)
r(p,T) = ng T p—p(T) (8.2.19)

Using this quantity, then, we can judge whether moist air with mixing ratio r is
saturated or not. In the case r < r*, the air is unsaturated with

er
v = 3 c — O, 8.2.20
1 14er ¢ ( )

while in the case r > r*, the air is saturated with

er* e(r—r")
v = , . = . 8.2.21
a4 1+er 4 1+er ( )

From (8.2.17) and (8.2.19), the condition of saturation is rewritten in terms of the
mass concentration:
er*(p,T) ep*(T)

w = ¢@T) = Lt er(pT) = p(1—e)pHT) (8.2.22)
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FIGURE 8.2: Dependence of saturated specific humidity ¢* on pressure and temperature. The
ordinate is pressure, which is positive downward, and the abscissa is temperature. The contour
interval of solid lines is 0.01 kg kg~!, and that of dashed lines is 0.001 kg kg—1.

q¢*(p,T) may be called saturation specific humidity. Note that, even if the air is
saturated, ¢* is generally different from the specific humidity ¢, of saturated moist
air since the air may have liquid water. Only in the case » = r*, ¢, is equal to ¢*.
Figure 8.2 shows the dependence of ¢* on pressure and temperature.

8.2.3 Thermodynamic functions

Let us express the thermodynamic functions of moist air with pressure p, temp-
erature 7', and mass concentrations qg, ¢,, and g.. Note that in this section, the
quantities per unit mole used in Section 8.1 will be denoted by (7) to distinguish
them from those per unit mass. For instance, the entropy of dry air per unit mass
is sq while that per unit mole is §4; these are related as 5§45 = sqmg.

First, the equation of state for the ideal gas is expressed as

P (na+ny)pR*T = (qaRa + quRy)pT = pa + po, (8.2.23)

where pg and p, are the partial pressures of dry air and vapor, respectively:

Nd qd
= = 5 8.2.24
bd nd+nvp qd+5*1qvp ( )
-1
Lz € Qv
= = . 8.2.25
P g+ ny’ qd+5*1qvp ( )

From (8.1.84), specific heat, enthalpy, internal energy, and entropy are given by

Cp = qaCpa + qCpv + ¢cCpe, (8.2.26)
h = qiha + quhy + qche, (8.2.27)
U = qdUd T Gully T ele, (8.2.28)
S5 = qd5d + quSv T geSc, (8.2.29)



Sec. 8.2] Expressions of thermodynamic variables 257

where the quantities of each component are given from (8.1.94)-(8.1.97) as

hg = deT7 h, = Cch+L = CPUT+L00,

he = CpT, (8.2.30)
Uqg = CvdT7 Uy = C’UUT + L~ RUT = C’UUT + L007
ue = CpcT, (8.2.31)
T DPd T DPov LO
— Cpyln . — Ryl y = Cpuln . —Ry1 ,
o pdnTo ano7 B b nTo nP3+TO
T
Se = Cheln . 8.2.32
P TO ( )

We have chosen the temperature 0 K as the origin of energy and the temperature
Ty as the origin of entropy. Definitions of the entropy and energy of vapor are based
on those of liquid water. The above expressions are satisfied even when vapor is
supersaturated. The entropy, enthalpy, and internal energy of saturated vapor, s},
hy, and u}, are given by

. L (8.2.33)
Sy — Se . 2.
Ry —h. = L, (8.2.34)
uy—u. = L—R,T. (8.2.35)
The density of moist air is written from (8.2.23) as
1 p 1 p
- = , 8.2.36
qa +e gy RaT 1+ (et = 1)qu — ge RaT ( )
which is rewritten as
p
= 8.2.37
p RJT,’ ( )
where T, is called the virtual temperature:
Tv = (Qd+€_IQU)T = [1+(5_1 - 1)(111 _QC]T
= (14 0.608q, — ¢.)T, (8.2.38)

where € = 0.622 is used. The virtual temperature is used as a proxy for density
(see Section 9.3).
Using (8.2.27), (8.2.30), and (8.2.8), enthalpy is written as

h = QdcpdT + Qv(vaT + LOO) + QCCch
= (¢iCpa + quCpc)T + quL. (8.2.39)
From (8.2.29), (8.2.32), and (8.2.9), entropy is given as
T Pd> ( T Du Lo)
s = Chqln — RgIn +qu | CpoIn - R,In"_ +
Qd ( P T “po 4 P ps  To
T
+QCC])C In T

T Pd L DPv
= wCpe 1 - 1 ) ) vl . 2.4
(qaCpa + q Cp)nTO Rg npo+qT @R no (8.2.40)
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If we use further approximations ¢, Cpe < Cpq and gq = 1, L = Ly, enthalpy is

reduced to
h = CpdT + Logy. (8.2.41)

This expression is conventionally used in meteorology for simplicity. Using the
saturation condition p, = p* and pg = p, entropy is approximated to

T p Log,
= 1 — 1
S CpqIn T, Ry npo + T
0 Loqy Oe
= 1 = | .2.42
Cpaln 7 + T CpaIn T, (8 )

where 6 is the potential temperature and 6. is called the equivalent potential temp-
erature: these two are defined by

Rq

CP
o — T(p0> ‘, (8.2.43)
P
LOQ'U
0, = 0 . 8.2.44
o (deT> (8244

The adiabatic condition of saturated moist air is approximately expressed as 6. =
const. Similar to the virtual temperature (8.2.38), virtual potential temperature can
be introduced by

Rq

CP
O, = (ga+e'q)0 = 1+E—1Dg—ql0 = T, <72)> ° (8.2.45)

Virtual potential temperature is used for consideration of the buoyancy effect of
moist air.

8.2.4 Moist adiabat

In Section 8.1.7, we derived a general form of moist adiabat. Here, we write the
approximate expressions of the moist adiabat conventionally used in meteorology.
Eq. (8.1.112) can be rewritten by using the actual mixing ratio r = n,/nq and the
saturation mixing ratio r* = n,/n4 as

x 1
14r RT

Tyt (r—1")Cpe 2 % *
1+ epa + deR*T2T (1+r )

Y = va(l+7%) . (8.2.46)

Normally, we neglect the contribution of liquid water and assume that the contri-
bution of vapor is small to obtain an approximate form of moist adiabat. Assuming
r=r7r* < 1in (8.2.46), we have an expression

1+ RiTr

‘L Lo (8.2.47)
1o (14, e ) 7

Tm = 7
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FIGURE 8.3: The ratio of the moist adiabat to the dry adiabat. The moist adiabat is calculated
using the approximate formula (8.2.49). The contour interval of solid lines is 0.1.

In this approximation, the pseudo-moist adiabat agrees with the moist adiabat.
Since the second term in the parentheses in the denominator is estimated as
12 eL?
= ~ 98,
vaR*T2 vaRdT2

where T = 273 K is used, then the first term (i.e., 1) in the parentheses in the
denominator of (8.2.47) can be neglected. If the temperature dependence of latent
heat is neglected such that [ is replaced by a constant [y, and the specific humidity
is approximated as ¢, = er/(1 4 er) = er, we have

L
L+ gopr 14+ 2%
LT O P R O (8.2.48)
1 + deR*TQT 1 + deRdTZ
Furthermore, if we use an approximation ¢, ~ ep*(T")/p, we obtain
Ym R Y4 s2dLg Z*(T) . (8.2.49)

+ CpaRaT? p

The right-hand side is a function of (p, T'). Figure 8.3 shows the ratio of ~,, to v4
using this expression.
From the approximate form of entropy (8.2.42), the condition that the equivalent
potential temperature is constant (df. = 0) is written as
Cp Ry Lo Loqy

ds = 27— ap+ Ydg, — s

dr. 2.
. ) . (8.2.50)

Under the conditions ds = 0 and ¢, ~ ep*/p, using (8.2.9), the moist adiabat is
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rewritten as
1 + Logqy
4 L (8.2.51)
v
1+ (Rq,oT B 1) C;]dT
We obtain the same expression as (8.2.48) by assuming RLv"T > 1 in the parentheses
in the denominator of (8.2.51).

Up to now, we have described changes in the thermodynamic state of an air par-
cel under the adiabatic process. These thermodynamic changes can be used as ver-
tical distributions of thermodynamic functions if the atmosphere has an isentropic
vertical structure. In this case, the atmosphere is neutrally stable as described in
Section 2.3.

In the case that the atmosphere is stratified isentropically and that the total
amount of water is uniform with phase equilibrium, infinitesimal difference between
the thermodynamic quantities at two adjacent levels is written as

Tm =7

ds = 0, dng = 0, dny,+ne.) = 0, py = fe- (8.2.52)
Using the thermodynamic relation and the hydrostatic balance
1
dh = Tds+ pderZukdnk, (8.2.53)
k
1
0 = — dp—do, (8.2.54)
p
and (8.2.52), we have
do = dh+®) = 0, (8.2.55)
where
c = h+®, (8.2.56)

is static energy; (8.2.55) means that static energy is uniform in a saturated homo-
geneously mixed isentropic atmosphere. Using the expression of enthalpy (8.2.41)
and geopotential ® = gz, static energy is written as

o = CpaT'+ Logy+92z = 04+ Logy, (8.2.57)
oq = CpiT + gz, (8.2.58)

o4 is called dry static energy, and (8.2.57) is specifically called moist static energy.
The temperature lapse rate is given by

oT oT op

If the air is unsaturated, from (8.1.120), the lapse rate becomes that of the dry
adiabat:

oT

g
2.
02 o (8.2.60)
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where C), is the specific heat of moist air and has contributions of specific heat of
water substance.
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Basic equations of moist air

Following the description of the thermodynamic variables of moist air in the
previous chapter, the governing equations of a moist atmosphere are derived in
this chapter. The same assumptions as in Section 8.1.1 for moist air are used here
(i.e., air parcels in moist air consist of dry air, vapor, and cloud particles). In the
auxiliary section 9.2, processes with rain particles are added as an example of a
cloud microphysics scheme. Such kinds of schemes are used in Chapter 26.

The governing equations of dry air are described in Chapter 1. The present
chapter is its counterpart for moist air. Moist air is described by the conservation
laws of mass quantities, momentum, and energy, similar to dry air. In the case
of moist air, since vapor is variable, the mass conservations of various components
must be considered. This introduces the diffusion of mass. Energy transport is
also associated with diffusion. The form of the equations of motion is, however,
unchanged if we assume that all the constituents of water substance including the
liquid phase have no motions relative the air. In this chapter, only the diffusion
of vapor is considered, though the treatment of diffusion is generally applicable to
other incondensable gases such as ozone.

It is necessary to use the equations of a moist atmosphere to study atmospheric
general circulation. In practice, however, the equations of a dry atmosphere can
be used to study large-scale circulations if the moist effect is introduced only as
diabatic heating due to latent heat release. In the final section, the equations
of a moist atmosphere are approximated for conventional use; we will have two
equivalent equation sets (i.e., dry equations with latent heat release and moist
equations). In Chapters 12 and 15, for instance, we will use these two equation sets
for consideration of the energetics and circulation of a moist atmosphere.

9.1 Conservation of mass variables

We assume as in the previous chapter that air parcels consist of dry air, vapor,
and cloud particles, and that vapor and cloud particles are in phase equilibrium

M. Satoh, Atmospheric Circulation Dynamics and General Circulation Models, 262
Springer Praxis Books, DOI 10.1007/978-3-642-13574-3_9, © Springer-Verlag Berlin Heidelberg 2014
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if the liquid phase exists. Dry air is composed of well-mixed ideal gases and is
denoted by subscript d. Vapor and cloud particles are denoted by subscripts v
and c¢, respectively. The gas component of moist air is a mixture of dry air and
vapor and is denoted by subscript g. Subscript k is used for general components
irrespective of phases and components. The liquid phase that has relative motions
with respect to the gas phase is regarded as rain. However, we do not consider any
motions of rain in this chapter except for the next section.

Let mass per unit volume, or density, of dry air, vapor, and cloud particles be
denoted by pg, p, and p., respectively, and the velocity of the center of mass of
each component by vg, v,, and v, respectively. The conservation of mass of the
k-th component is generally written as

pk
ot

where S[pg] is a source term of the k-th component. Specifically, conservations of
the mass of dry air, vapor, and cloud particles are respectively written as

+V-prvr = Slpkl, (9.1.1)

)

a’;d+vpdvd —_— (9.1.2)
dpv

Pv 4V peve = S|pul, (9.1.3)
ot

0pe

apt +V.pow. = Spd, (9.1.4)

where the source (sink) of vapor is equal to the sink (source) of cloud particles in
this assumption:

Slpu] + Slpe] = 0.

(In general, S[p,] + S[pc] # 0 if the rain category is considered as in the next
section.) If vapor is condensed to cloud particles, S[p,] is negative; if cloud particles
evaporate, S[p,] is positive. The total mass per unit volume, or density of moist
air, p, and velocity of the center of total mass, or barycentric velocity, v are defined
as

po= Y Pk = Patpetope (9.1.5)
k
pv = Zpkvk = PaVd + PuVy + Py . (9.1.6)
k
Therefore, the sum of (9.1.2)—(9.1.4) gives the conservation of total mass:
gf +V.pv = 0. (9.1.7)

This is the familiar form of the continuity equation.
Using molecular weight my, [kg mol™!], density pj [kg m~3] is related to molar
concentration ny [mol kg=!] and mass concentration ¢ [kg kg™!] as

’]

Pk = PQr = pnEmp, Qg = npmp. (9.1.8)
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These quantities are expressed by the molar mixing ratio of total water r using
(8.2.17)—(8.2.20). From (9.1.5), we have

ZQk = anmk = 1, (9.1.9)
k k

which is already given as (8.2.16). Let us define the difference of the velocities of
each center of mass from the barycentric velocity of moist air by

Ak = Vi — . (9110)

In the case of a gas component, this difference is due to diffusion. In the case
of cloud particles, however, there is no diffusion in general, but we may have a
difference of velocity due to gravity or inertia. Thus, from (9.1.6), we may write

o= > pr(v+Ag), (9.1.11)
k
and, from (9.1.5),
> pkAr = 0. (9.1.12)
k
If we define
ik = PkAlm (9.1.13)

we also have
i = 0. (9.1.14)
k

In the case of a gas component, ;. is called the density of diffusion flux. Using iy,
(9.1.1) is rewritten as

Iprk
ot

The equation of mass concentration g is given by substituting pi (9.1.8) into
(9.1.15) as

+V-(prv+ir) = Slpkl (9.1.15)

0 .
(gf’“) + V- (pgrv+ix) = Slpxl- (9.1.16)
This is rewritten in advective form by using the equation of mass (9.1.7) as
d .
o dqtk —V ik + Slpil, (9.1.17)
that is, for each component,
dqq .
- _Vv. 9.1.18
P gt V 4, ( )
dg .
p ;t = —V-i,+Slpy, (9.1.19)
dqec .
p dci = Vi + S[pd). (9.1.20)
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Change in the mass of total water substance is given by the sum of (9.1.19) and
(9.1.20):

d(qv + qec
p( )

. = —V-(iy+i) = V-ig (9.1.21)

In the case ¢, = 0, cloud particles completely follow the motion of the gas
component, while in the case 2. # 0, cloud particles have velocity relative to the
gas component. In the latter case, liquid water can be called rain and ¢. corresponds
to precipitation flux. For simplicity, we only consider the case 2. = 0.

9.2 Rain process

Cloud microphysics processes including the motions of rain and ice particles and
their interaction with other hydrometeors have important roles in mesoscale moist
circulation. Nowadays, a global nonhydrostatic model with an explicit cloud micro-
physics scheme can be used to study atmospheric general circulation by resolving
the multiscale structure of convective systems from meso- to large-scale circulations
(see Chapter 26). In this section, as an example of a cloud microphysics scheme, a
warm rain bulk scheme by Kessler (1969) is described to show how the rain process
is included, in particular. This scheme is very simple but most fundamental for
mesoscale study. Further complications of cloud microphysics schemes including
ice phase or particle size information can be extended. Only mass conversion is de-
scribed here. The equation set of the treatment of the rain process can be found in
Ooyama (2001), for instance. The whole set of equations with precipitation water
categories is also summarized in Chapter 26.

Formulation of the warm rain process by Kessler (1969) introduces the mass
concentraion of rain particles ¢, [kg kg™! ] in addition to those of water vapor ¢,
and cloud particles g.. The horizontal motion of rain particles is assumed to be
that of the air, and the relative velocity of rain with respect to the air V' exists only
in the vertical direction. V..., is negative if the relative velocity is downward. The
equations of water vapor ¢,, cloud particles q., and rain g, are given as follows:

dqy

1Y dqt = _SUQC + Sevap = S[pv}v (921)
dqc

1% dqt = Sv?c - 5027' = S[pc]v (922)
dqy 0 0 .

14 dt 5927 Sevap + 92 (PQTme) S[PT] + 92 Urz, (9 3)

where Syo. is the condensation of water vapor to cloud, Sco. is the generation of
rain from cloud, and Se,q)p is the evaporation of rain to water vapor. In this case,

Slpo] + Slpe] + Slpr] = 0

holds. Only the relative motion of rain is considered as i,, = pq,V,qin, and the
contribution of diffusion is omitted in this section.
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In general, the condensation S,9. is diagnostically obtained using the saturation
condition (saturation adjustment). The generation of rain from cloud is decomposed
from autoconversion Sg.t, and accretion Sgeer:

SCQT = Sauto + Saccr- (924)
In Kessler’s formula, the generation of rain by autoconversion is given by

Sauto
P

where k1 = 1073 57! and ¢, = 0.5 X 10_3/p is the threshold value of cloud water.
In this formula, rain particles are generated by autoconversion first if cloud water
is larger than the threshold value q.9. Accretion is given by

SU.CC’I”
p

= k‘l(qc - q00)7 (925)

7
8

= K qc(pgr)sn, (9.2.6)

where 7 is the density factor

1/2
k

n = <”°> ~ exp< Z) (9.2.7)
p 2

with pg being the density at z = 0 and k = 10~* m~!. If the air is under unsaturated
conditions, the evaporation of rain is given by

Sevap
1%

= Ks(g) — q0)(pa) ™, (9.2.8)

where ¢} is the saturation mass concentration of vapor. The rainfall speed is given
by

erain = —K4(PQ7-);‘777 (929)

The above coefficients are given in the MKS unit as follows:

Ky = kEN§ = 220095 &k = 0.203501,

7
K = kNG = 00484794 ks = 1.72011x 107,
Ki = kNg® = 121115 ki = 90.8236,

where Ny = 10”7 m~* is the intercept parameter of raindrops, defined by the Mar-
shall and Palmer (1948) distribution, N = Nyexp(—AD), where N is the total
number of particles in unit volume, D is diameter, A is a slope parameter, and
FE =1 is capture efficiency. Since p is defined as total density with the sum of dry
air and all the water categories including rain, p changes if rainfall exists in (9.2.3),
that is

dqy 0
Apr = P<dt> = g, (ParVeain)- (9.2.10)
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To take account of the effects of cloud condensate nuclei (CCN), the formula of
Berry (1968) is sometimes used for autoconversion of rain generation:

b —1
Sauto = b1pg} <1+ 2) , (9.2.11)
p

c

where by = 50.0 and bs = 0.366. Grabowski (1998) extends this by introducing
the concentration of cloud particles Ny and the relative dispersion of cloud droplet
population Dy,

0.036]\@)1 9.2.12)

Dg3p
where 1 = 103pq.. The following values are suggested: Ny = 50 cm ™3 and Dy =
0.366 for maritime clouds and Ny = 2000 cm™3 and Dy = 0.146 for continental
clouds. For a wide range of conditions, relative dispersion is fitted to the function
Na

2000°

Other formula are used for the autoconversion rate, the study of which is an active
area of research into the aerosol indirect effect on clouds (Suzuki et al., 2011).

Sauto = 1.67 x 1072 (5 +

Dy = 0.146 — 5.964 x 10~ In (9.2.13)

9.3 Conservation of momentum

The momentum equation of moist air is apparently the same as that of dry air as
long as liquid water moves with the gas component. The equation of motion is
written as
dﬂi 8aij
= — pYi, 9.3.1
Py o, P9 (9.3.1)
where subscript 7 denotes the i-th component of the Cartesian coordinate, o;; is
the stress tensor given by the sum of pressure tensor —pd;; and the residual ol’-j:

oij = —pdij +0j;. (9.3.2)

In the case of moist air including cloud particles, al’-j can be different from the
viscous stress tensor used for dry air, (1.2.17), since cloud particles may have con-
tributions to spin angular momentum (see arguments in Section 1.3.1). In practice,
however, no special treatment of the stress tensor is introduced for moist air and the
expression of the stress tensor for dry air is used. The external force g; is derived
only from a gravitational potential field ® as

oo

i = . 9.3.3
9 oz, (9-3.3)
Eq. (9.3.1) can be rewritten for the flux-form conservation of momentum as

0 0 0P

atpv + amj (p’U U] +p J Uz]) pal’] ( )
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which is the same as (1.2.18).

We can introduce a buoyancy force as the sum of the pressure gradient force and
the gravity force. First, we need to define an arbitrary static state in hydrostatic
balance:

Ops
0 = — 7 —p.a, 9.3.5
. P9 (9.3.5)

K2

where ps and ps are the pressure and density of a reference state. Introducing
perturbations from the reference state as p = ps + p’ and p = ps + p/, we rewrite

the equation of motion as
dv; 10p / 100,
i . _tOp P gi 7 (9.3.6)
dt pox; p p Ox;

The second term on the right-hand side is the buoyancy term. Using (8.2.37) under
the condition p & ps, the buoyancy term is approximately rewritten as

o' T;
g =~ i 9.3.7
)9 7.9 (9.3.7)

where T, is the virtual temperature of the reference state and T}, is deviation from
it. Thus, the virtual temperature plays the role of buoyancy when the effect of
water is included. Since from (8.2.38)

T, = (1+0.608¢, —q.)T, (9.3.8)

it can be seen that air is more buoyant as vapor g, is more abundant. On the other
hand, air is less buoyant as cloud particles g. are more abundant; this is called the
loading effect.

If one considers rainwater as having a relative velocity with respect to the gas
component, the motion of rainwater must be included in the equation set. However,
the precise form of the equation of rainwater is very complicated since the motion of
rainwater depends on the size of its droplets. In practice, many assumptions have
been introduced to treat the bulk motion of rainwater. In the numerical modeling
of mesoscale convection, for instance, one may assume that some rainwater has
a singular relative vertical velocity that is generally given by terminal velocity,
while having the same horizontal velocity as the gas component. Ooyama (2001)
formulates the conservative equation set of moist air which includes the relative
motions of rainwater.

9.4 Conservation of energy and entropy

The conservation equation of the energy of moist air is the same as that of dry
air, (1.2.42), if the internal energies of vapor and liquid water are included in the
internal energy of moist air. Let u denote the internal energy of moist air per unit
mass. We obtain the equation of internal energy as

d(pu)

ot + V- (puv+ F"°) = —pV-v+e, (9.4.1)
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where ¢ is the dissipation rate and F"¢ is energy flux, but excluding advective flux.
In practice, F°"¢ consists of the energy flux due to local gradients of thermodynamic
variables F*"™™ and radiative flux F"%%:

Fere FTad + Ftherm. (942)

Using the equation of internal energy (9.4.1) and the continuity equation (9.1.7),
we have

du dvg
= -V -F° 9.4.3
p ( et ) . , (9.4.3)
where vs = 1/p is the specific volume. Using the thermodynamic relation,
du = Tds— pdvs + Z prdng, (9.4.4)
k
we obtain
ds dny
T — e_V.Fene. 4.
ACHED RS IR 945)

Since p, = u. is satisfied based on the assumption that vapor and cloud particles
are in phase equilibrium, using ny = q/my and (9.1.18)—(9.1.20), we have

dny, 7 .
= — V1. 9.4.6
ORI S 049
k k
Using (9.1.14), the right-hand side can be written as
S e = (“d“”)v.id. (9.4.7)
- my mq My
So we can rewrite (9.4.5) by using (9.4.6) as
ds Lk .
T = . -V . Fe, 4.
T, Zk:mkv i, +e—V (9.4.8)
Substituting (9.4.2) into F°"°, we have
ds rad therm Hk . ; Mk
T — e_V.FY_vy.|F — — . .
p di e—V \% ( ;mkzk ;zk mG
(9.4.9)

This is further rewritten as
ds 1 Uk . 1 . js
_ _ Ftherm _ . VT _ A v
I G W) R SRR

1 i L . e V.Frd
. v Ftherm _ - 9.4.10

T T
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If there are no cloud particles, the first and the second terms on the right-hand
side represent the production of entropy due to thermal and material diffusions,
respectively. These terms must be positive according to the second law of thermo-
dynamics. The third term represents the transport of entropy. The fourth term is
the production of entropy due to dissipation and is positive. The entropy change
due to radiation is represented by the last term, whose sign is not definite.

9.5 Transport process

For a pure gas without cloud particles, the requirement that the production of
entropy due to thermal and material diffusions must be positive in (9.4.10) deter-
mines the expressions of fluxes due to thermal and material diffusions (Landau and
Lifshitz, 1987). These fluxes can be written in the form

i

e —ap Vg — Bk VT, (9.5.1)
2
Ftherm _ Z i mkk = - Z/BkTv“k — ’}/VT, (952)
k k

where ay, Ok, 7, and § are the coefficients of transport. Eliminating Vg from
(9.5.1) and (9.5.2) and letting the coefficient of VT in F*""™ he denoted by —kr,
we obtain

2
Ky = ’ny?;T. (9.5.3)
k

Thus, the first and the second terms on the right-hand side of (9.4.10) are written
as

1 P . 1 , Hi
_ Ftherm _ VT — .
(£ =S ) T S

k| VT|? 1 i
= . 954
T2 + zk: o T mz ( )

From this, we have the requirements that k7 > 0 and aj > 0.
In (9.5.1), using

auk) <3uk) <3uk>
v = Vp + VT + Vn;, (9.5.5
i < dp Tong P or P 21: Iy p,T b :

the diffusion flux 2, is expressed as

k k
i = —pDg {qur BEwT + PR (9.5.6)

T P } ’

where Dy, is called the diffusion coefficient, and kr and k,; are nondimensional



Sec. 9.5] Transport process 271

coefficients. These coefficients satisfy the following relations:

0
D, = (a“’“> , (9.5.7)
P "k /) prT
kK (5/%)
pDy = Qg + O, (958)
T or ), ..
k 0
pDy PP = ak( ’“‘k> . (9.5.9)
P o )1,

In particular, we can see that diffusion coefficients are always positive. kr ;D) and
kp. i Dy, are called the thermal diffusion coefficient and the barodiffusion coefficient,
respectively. These two coefficients imply that material diffusion exists if there
is a gradient of temperature or pressure. In the limits of a small or large mass
concentration, however, these terms should vanish. In the case of ¢, < 1 and
qq ~ 1, therefore, we may set

’l:k == —pDquk. (9510)

As for the thermal diffusion flux F'*"™  eliminating Vyy, from (9.5.1) and
(9.5.2) and using (9.5.7) and (9.5.8), we obtain

Fther’rn _ Z kT,k (aﬂk> -7 (aﬂk) + 1 (23 . KZTVT.
A 8nk Tp oT P,k mig
(9.5.11)
From (1.1.12) and (1.1.5), we generally have
0
=T Hie +pr = —Tsp+ pr = hg, (9.5.12)
or ), ..
Thus, (9.5.11) is rewritten as
: k 0 h
Ftherm  — Z [ Tk ( “’“) + i — ke VT (9.5.13)
L mp 8nk Tp my
In the case of ¢, < 1 and gq = 1, we may set kr, = 0 as in (9.5.10); thus we have
hi
Fiherm i — ke VT 9.5.14
; my F YD ( )

where hy,/my, is the enthalpy per unit mass of the k-th component.

The relative velocity of the mass center of cloud particles 2. cannot be written in
the form of diffusion flux. The expression of i, depends on the definitions of cloud
particles. Cloud particles have a size distribution in a fluid parcel, and individual
cloud particles have their own falling speed depending on their size due to gravity
and drag forces from environmental air. 2. is given as the sum of the falling speeds of
all the cloud particles. In the case 2. # 0, there is a contribution to the transport of
energy from the motion of cloud particles. In a formal expression, the contribution
of cloud particles, designated by subscript ¢, is added to the sum of the first term
on the right-hand side of (9.5.14).
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9.6 Approximate equations of moist air

The governing equations of moist air are made suitably approximate for applica-
tion to the situations considered. For large-scale dynamics or general circulation
modeling, one may use a simplified approximation in which vapor does not appear
in the energy budget as long as phase change does not occur. The energy budget is
formulated in the form of change in dry enthalpy, and the moist effect is introduced
only when phase change occurs. The effects of the mass of water substance are also
taken into account in the buoyancy term in the equation of vertical motion.

In this subsection, the mass concentration of vapor is denoted by ¢ instead of
v, diffusion flux by ¢ instead of %,, and the condensation term by S, instead of
S[pv]. The equation of vapor (9.1.19) is written as

dq
P at

When latent heat is large enough, the enthalpy of cloud particles is negligible com-
pared with that of vapor. For simplicity, we also write specific heat at the constant
pressure of dry air as C), instead of Cpq, and latent heat as L instead of Ly. The
enthalpies of these components are approximated as
h h h
¢ —qcr, V=1L ° =0 (9.6.2)

mq My My

= —V.i+5, (9.6.1)

The enthalpy per unit mass of moist air is given by
h = Cy,T+ Lg, (9.6.3)

which is equivalent to (8.2.41). This indicates that we implicitly assume ¢4 ~ 1 and
q < 1. To be consistent with this approximation, we assume that dry air does not
diffuse; that is, ¢4 is neglected in the equation of thermal diffusion flux (9.5.14),
which is rewritten as

Fiherm  — 4 — g VT = F'" 4 F5" (9.6.4)
where we have defined

F" = gV, (9.6.5)
F" = Li=—pLk,Vg, (9.6.6)

in which k4 is the diffusion coefficient of vapor, F*" is called the sensible heat fluz,
and F' is called the latent heat fluz. From (9.4.3), the equation of enthalpy is
derived as

dh d
P = df e V. Fred vy . ptherm, (9.6.7)

This can be rewritten as

d d
py (CoT+La) = df te—V-F“_V.(Li+ F"), (9.6.8)
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Multiplying L by (9.6.1) and substituting it into the above equation, we obtain
d d
p oy (CoT) = df te—V-F_v.Fh_ LS, (9.6.9)

where —LS, is the release of the latent heat of vapor. Let us write the diabatic
terms as

LS
Qm = — 1 (9.6.10
pCyp )
1
Qu = e— V. (Frod 4 st 9.6.11
= e ) (9.6.11)
Qq is the diabatic term of dry air defined by (1.2.54). Then, (9.6.9) is rewritten as
d dp dp
T) = m) = . .6.12
pdt (CpT) dt + pCp(Qa + Qm) dt + pCpQ (9.6.12)

Thus, the equation of the energy of moist air is simply given by adding latent heat
release (),, to diabatic heating in the equation of dry air. In this case, the total
diabatic term is written as

Q = Qi+Qm = ! [e = V- (F™ 4+ F") — LS,]. (9.6.13)
pCyp

Mass exchange between the air and the ground surface takes place by means of
evaporation and precipitation. Evaporation is upward diffusion flux at the surface,
while precipitation is the downward flux of raindrops at the surface. If we assume
that all condensed water falls out from the atmosphere, precipitation is given by
the vertical integral of the phase transform from vapor to cloud particles; this
assumption is used when the pseudo-moist adiabatic process is considered. In this

case, evaporation and precipitation are given, respectively, as

E, = (9.6.14)

iZ(ZO)a
_/ S, dz. (9.6.15)

Evaporation E, is the mass inflow per unit area from the surface to the atmosphere,
while precipitation P, is the mass outflow per unit area from the atmosphere to
the ground. In this expression, the contribution of cloud particles is neglected;
it is assumed that all condensed water falls out to the surface as soon as vapor
is converted to the liquid phase. Note that this is a highly idealistic assumption
since the effects of the re-evaporation of raindrops is important in reality. A more
precise approach is given by using the equations of cloud particles and raindrops
with the transformation terms from cloud particles to raindrops. The downward
flux of raindrops at the surface corresponds to precipitation.

The equation of moist internal energy uw = h — p/p is given from the equation
of moist enthalpy (9.6.7). Adding the equation of moist internal energy to the
equations of kinetic energy and potential energy, we obtain the equation of the
total energy of moist air. Formally, the equation of moist internal energy is the

P,
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same as (1.2.43), and the equation of total energy is the same as (1.2.47). In the
moist case, the energy flux is given by

Fene — Frad+Ftherm _ Frad+Fsh +Flh. (9616)

Using this with (1.2.49), the equation of total energy (1.2.47) can be converted to

(2 o)

2
+v.{pv <”2 +a>ujo;j+F7‘“d+Fsh+Flh} = 0, (9.6.17)

where o0 = h + ® is the moist static energy defined by (8.2.56).
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10

Radiation process

The theoretical bases of the physical processes for atmospheric modeling are de-
scribed in this and the next chapters. Generally, the moist process, the radiation
process, and the turbulent process are considered as the major physical processes
for atmospheric modeling. These processes have their own deep and detailed the-
oretical backgrounds. In this book, however, from the viewpoint of atmospheric
modeling of large-scale dynamics, we only describe the minimum theoretical re-
quirements for these processes. First, the theory of the radiation process is briefly
described in this chapter. The turbulent process will be described in the next
chapter. Although formulation of the moist process is given in the previous two
chapters, it will be further explained in Chapter 15, where the roles of moist circu-
lations on atmospheric structure are considered. We will calculate the radiative flux
for the one-dimensional vertical model of the atmosphere in Chapter 14 using the
formulation described in this chapter. However, we only use a simplified radiation
process (i.e., a gray radiation model) to study the basic properties of atmospheric
structure. The detailed calculation procedure and its application to realistic cases
are not touched on in this book.

10.1 Blackbody radiation

Radiation inside a constant temperature enclosure in thermodynamic equilibrium
with matter is called blackbody radiation. The state of blackbody radiation is de-
scribed by the statistical equilibrium of photon gas. The statistical state of photon
gas (hereafter referred to as light for simplicity) is specified by temperature 7" and
frequency v. Frequency v is related to angular frequency w, wave number k, and
wavelength A as
27mc

w = ¢ck = 2mv = N (10.1.1)
where c is the speed of light. If light is in statistical equilibrium at temperature
T, the distribution of the energy density of light per unit volume is given by Bose
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statistics:

h 3
g, - ST v, (10.1.2)

3
& ekBT — 1

where h is the Planck constant and kg is the Boltzmann constant (see Appendix
A2). The energy flux of blackbody radiation is isotropic. The energy flux per unit
solid angle within the frequency range dv is given by

2 3
Bydv - Cam, - M v (10.1.3)

hv

2
47 C ekBT — 1

where B, is called the Planck function. It is related to the energy flux per unit
wavelength By as B,dv = Bxd\. Then, since v = ¢/, we have

2hc? d\
Badh = O . (10.1.4)
)\5 k lfl:"k
ekBT> — 1]
It can be found that B, is maximum at the frequency

kpT

v, = 2.82144 L= 5.87896 x 10'°T, (10.1.5)
while B) is maximum at the wavelength
1 he 2.89776 x 1073
N, = — 10.1.6
4.9651 kT T ( )

(i.e., the wavelength of maximum radiation intensity for a blackbody is inversely
proportional to temperature). This relation is called Wien’s displacement law.

By integrating (10.1.3) over all wave numbers, we obtain the energy flux per
unit solid angle of blackbody radiation as

e 2h [ Vidv 2k T [ 23dw
B(T) = / Bydv = 2 / hv = 382 / x
0 & Jo ersT _1 h3c? J, e*—1
- 9B (10.1.7)
™

where op is the Stefan-Boltzmann constant:

4
215k
15¢2h3
Using this constant, we can express energy flux per unit area on a plane radiated
by a blackbody with temperature 7" as

oB = 5.6704x107% Wm=2 K™% (10.1.8)

/2
F(T) = /O B(T)2mcosCsin¢d¢ = 7nB(T) = opT*  (10.1.9)

where ( is the angle between the direction of radiative flux and the direction normal
to the plane.
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FIGURE 10.1: Schematic relation of the spectra of solar radiation (solid) and terrestrial radiation

(dash) as functions of wavelength X. Solar radiation is for the blackbody temperature at 5778 K,

while terrestrial radiation is for 255 K. Radiations are normalized by respective maximum inten-
sities.

10.2 Solar radiation and planetary radiation
The total radiative flux of the Sun is Lo = 3.846 x 10?¢ W. The corresponding
blackbody temperature is

Lo \*
T, = = 5778 K 10.2.1
© (47TR%UB> ’ ( )

where Ry = 6.960 x 10® m is the radius of the Sun. T} is thought to be the
representative temperature of the outermost surface of the Sun, and is called the
effective temperature of the Sun (see Section 12.1.1). From Wien’s displacement
law, (10.1.6), the wavelength of maximum energy flux is about 0.50 um. On the
other hand, if one assumes the representative effective temperature of the Earth to
be 255 K as described in Section 12.1.1, the wavelength of the maximum energy
flux for the Earth is about 11.36 um. The relation between the radiation spectra
of the Sun and the Earth is shown in Fig. 10.1. Since the two spectra have little
overlap in the wavelength, the two radiative fluxes are almost separable. Radiation
from the Earth is called planetary radiation. It is also called infrared radiation or

longwave radiation.

10.3 Absorption bands

A portion of solar radiative flux is absorbed or scattered in the atmosphere, and the
remainder reaches the ground. As for radiative flux radiated from the terrestrial
surface, some is also absorbed or scattered in the atmosphere, and the remainder
goes out to space. The atmosphere itself also radiates in all directions according to
its local temperature. The characteristics of absorption and scattering of solar and
terrestrial radiation are summarized in Figs. 10.2 and 10.3. Absorption depends on
the types of gas in the atmosphere. Each gas has its own characteristic absorbing
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FIGURE 10.2: The absorption and scattering of solar radiation. The upper curve is solar radiation
at the top of the atmosphere, and the lower curve is that at the surface for a solar zenith angle
of 60° in a clear sky atmosphere. Absorption and scattering regions are denoted in the figure.
Reprinted from Liou (2002) by permission of Elsevier (copyright, 2003).
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FIGURE 10.3: The absorption of terrestrial radiation. The upper curve is blackbody radiation at
the surface. The lower curve is longwave radiation at the top of the atmosphere for a globally
cloudy condition. Major absorption gases are denoted in the figure. After Kiehl and Trenberth
(1997). (c)American Meteorological Society. Used with permission.
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bands depending on the wavelength of light. Scattering in the atmosphere also
depends on the wavelength of light. As solar radiation penetrates through the
atmosphere, the dependence on wavelength deviates from that of the Planck func-
tion. Terrestrial radiation likewise deviates in its dependence on wavelength from
that of the Planck function, especially at the top of the atmosphere.

As shown in Figs. 10.2 and 10.3, the absorbing bands of solar radiation and ter-
restrial radiation are summarized as follows. Among the atmospheric gases, HyO,
COs, Og, O3, N, and N5 have contributions from the absorption of solar radiation.
In the ultraviolet radiation spectrum where the wavelength is smaller than 0.3 pm,
O3, O2, Ny, O, and N have absorption bands. In the near-infrared radiation spec-
trum where the wavelength is about 0.74-3 um, HoO, COs9, and O3 have absorption
bands; among them HsO has the largest contribution. The central wavelengths of
the main absorption bands in the visible and the near-infrared radiation spectrum
are 0.94, 1.1, 1.38, 1.87, 2.7, 3.2, and 6.3 pm for H,O, 1.4, 1.6, 2.0, 2.7, and 4.3 pym
for CO3, and 0.7 pm for Os.

For the absorption of terrestrial radiation in which the wavelength is longer than
5 pm, Ho O, CO4, and Oz have primary contributions. The main absorption band of
COy is the vibration-rotation band centered at 15 pm. H2O has a broad absorption
band longer than 12 pm due to the rotation spectrum. The main absorption band
of Og is the vibration-rotation spectrum centered at 9.6 pm.

10.4 Radiative transfer equation

If the absorption and scattering properties of gases and their distributions are
known together with appropriate boundary conditions, one can calculate the energy
flux and diabatic heating due to radiation in the atmosphere. In the following
two sections, we formulate the radiative transfer equation for calculation of the
absorption and scattering of radiation.

The energy flux due to radiation per unit area per unit solid angle is called
radiance, which is a function of spatial coordinates, direction, and frequency. The
radiance at a point P in the direction of s with frequency v is the radiative energy
flux on a plane normal to the direction s per unit time, unit solid angle, and unit
frequency; it is written as I, (P, s). Hereafter, the symbol P is omitted from the
arguments. Radiance per unit frequency integrated over solid angles is denoted by
I,,, radiance per unit solid angle integrated over frequency is denoted by I(s), and
radiance integrated over solid angles o and frequency is denoted by I; we then have
the relations:

/ I,(s) do, (10.4.1)
I(s) = / I,(s) dv, (10.4.2)
/

/I,,(s) dv do. (10.4.3)
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In general, the change in radiance at a distance ds is given by
dI,(s) = —kypil,(8)ds+ j,pids, (10.4.4)

where k,, is called the extinction coefficient per unit mass, j, is called the emission
coefficient per unit mass, and p; is the density of absorbing quantities. The first
term on the right-hand side of (10.4.4) is the decay of radiance due to the extinction
of radiation. The extinction coefficient &, is written as the sum of the absorption
coefficient k% and the scattering coefficient kf as

k, = k*+k5. (10.4.5)

The emission coefficient j, is also written as the sum of the emission of absorption
j% and the emission of scattering j; as

joo= i (10.4.6)

Generally, both k, and j, depend on direction s. Dividing (10.4.4) by ds, or
—kypids, we have the radiative transfer equation:

dl, .
d(s) = —kypil,(8) + jupi, (10.4.7)
s
or
1 dI,(s)
— = Iy — Jy s 1 .4.
o (5) ~ Ju(s) (10.45)
where
Jv
J, 10.4.9
“ (1049)

is called the source function.
Let us first find a solution to the radiative transfer equation for the case when
no source function exists: .J, = 0. In this case, (10.4.8) becomes

1 dI,(s)

- = L(s) 10.4.1
Kops  ds (s) (10.4.10)

Integrating from s = 0 to s, we have
I,(s;s) = 1,(0,8)exp (—/ kypids>
0

= 1,(0,8)e ™) = 1,0,8)7,(0,s), (10.4.11)

where we have introduced

T.(s0,8) = /kl,pids, (10.4.12)
50

T.(s0,8) = exp (/ kl,pids> = e Tv(s0:9) (10.4.13)
50
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7, is called the optical path and 7, is called the transmission function. As the
absorption coefficient is larger or the absorbing quantity is more abundant such
that the optical path is longer, the intensity of radiative flux at the destination
becomes exponentially weaker. This dependence is called Beer-Bouguer-Lambert’s
law.

Next, we consider the case when the source function is given by blackbody
radiation in thermodynamic equilibrium. If there is no scattering, the ratio of
emitting radiation to absorbing radiation by the medium is independent of the
properties of medium or the direction of radiation. In this case, the source function
is given by

J, = B,(T). (10.4.14)

B, is the Planck function, (10.1.3). This is called Kirchhoff’s law. For application
to atmospheric radiation, the air is not in thermodynamic equilibrium since the
temperature is not uniform. For almost every region except for the higher atmos-
phere, however, it can be said that the air is locally in thermodynamic equilibrium
and that the source function is expressed by using a local temperature T. Such a
case is called local thermodynamic equilibrium (LTE) under which Kirchoff’s law
is applicable. In a nonscattering atmosphere with LTE, substituting (10.4.14) into
(10.4.8), we obtain the radiative transfer equation as

’kjpi df”éj’ ) _ I(s:8) — B(T(s)). (10.4.15)
This equation can be rewritten by using the optical path 7,(s’, s). Since 7, is zero
at s, and dr, = —k,p;ds, we have

d

dr, [L(rv;8)e”™] = —B,(T(r,))e ™. (10.4.16)

Integrating this relation from s’ = 0 to s, or from 7, = 7,,(0, s) to 7, (s, s)(= 0), we
have the intensity,

7,(0,s)
L(s;s) = I(0;s)e=™© & / B (T(r,))e~™dr,. (10.4.17)
0

This equation implies that radiation at the destination point s is determined by two
factors: the first is the exponentially decreasing term due to absorption within the
path, and the second is the gain due to the emission from the medium in the path.
If the second term on the right-hand side is negligible, Beer-Bouguer-Lambert’s law
(10.4.11) is recovered.

As a third example of the radiative transfer equation, we consider the case where
the scattering of radiation exists; the source function can be written as

1 e +S
Ju(s) = i (o +4»)
1

k. (sz"(T)+k3/fu(8')P(svs')ii>. (10.4.18)
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P(s,s') is called the phase function, or the scattering probability distribution func-
tion, which represents the ratio of scattering radiation in the direction s to incident
radiation from the direction s’. It is normalized as

do’
P ! = 1. 10.4.1
[Py (10.4.19)
We also define the albedo for single scattering by
- kS
o= (10.4.20)

In particular, for the source function of solar radiation, we have from (10.4.18) with
B,(T) = 0 since the emission in the atmosphere is negligible,
J,(s) = Z" /Iy(s’)P(s, s')do'. (10.4.21)
m
The phase function P(s,s’) is expressed in terms of angles (6, ¢) where 6 is
the angle between s and s’, and ¢ is the azimuthal angle of s measured from an
arbitrary base direction. It is further rewritten as P(u, ) with 4 = cosf. In
the case when the phase function has no dependence on azimuthal direction ¢,
the function P(u) completely determines the properties of scattering. The phase
function of Rayleigh scattering is an example, which is given by

Pu) = i(l—&—/ﬁ). (10.4.22)

The molecular scattering of solar radiation in the atmosphere is described by
Rayleigh scattering.

10.5 Infrared radiation in a plane-parallel atmosphere

We consider the radiative transfer of a plane-parallel atmosphere in which the abun-
dances of absorbing quantities p; and absorption coefficients k, are functions only
of height z. The top of the atmosphere is designated by z = co where the pressure
is defined as p = 0. In this case, it is convenient to use radiative depth as a vertical
coordinate, which is defined as

T(z) = / kypidz. (10.5.1)

Radiative depth is the radiative path measured from the top of the atmosphere
z = oo down to height z. Although physical quantities are functions only of z,
radiation depends on its direction in addition to z. Let us introduce the polar
coordinates at each altitude. We define a unit vector in the direction of radiation
by s, the zenith angle by 0, and the azimuthal angle by . Radiative intensity
I,(s; s) is written as I,,(7u; i1, ), where u = cosf. The radiative transfer equation
(10.4.8) is written as

al,(Tu; i,
. ( )

= L(r;p,p)— Jo. 10.5.2
dr. (w51, 0) = J (10.5.2)
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In order to consider radiation in the infrared spectrum region, we assume that
the atmosphere has no scattering of radiation and is in local thermodynamic equi-
librium. We also assume that radiative properties are independent of the azimuthal
angle . Substituting (10.4.14) in (10.5.2), we have

dl,(1y;
p "C(h"’u) = L(r;p) — Bu(T (7). (10.5.3)
Integrating (10.5.3) from the bottom of the atmosphere to arbitrary depth 7, we
obtain the upward radiative intensity. In a similar manner, integrating from the
top of the atmosphere to 7,,, we obtain the downward radiative intensity. The two
intensities are given respectively as

Tv,s —Tv

L(p) = BuT)e
Tv,s t—r, dt
+/ B,(t)e” = , for O0<p<1, (10.5.4)
i H
! v _t-m dt
L(m,p) = - B,(t)e” = , for —1<pu<0, (10.5.5)
0 H

where 7, 5 is the total radiative depth from the top of the atmosphere to the bottom
of the atmosphere. As for boundary conditions, we have assumed that the ground
surface radiates as a blackbody with temperature Ts: I (7,5, 1) = B,(Ts). We
also assumed that there is no incidence of infrared radiation from the top of the
atmosphere: I1(0, 1) = 0.

Total radiance is given by the integral over frequency v using (10.5.4) and
(10.5.5). However, since the absorption coefficient k, generally has a strong de-
pendence on v, it is not easy to calculate the integration of radiance over v. Thus,
various approximations are used for integration in practice. In general, average
transmittance, or transmission function, over a frequency range Av is introduced:

1 I7u (u) =7 (w')]
Ta,(u,u'; = - Iz dv. 10.5.6
st = 5 [ v (10.5.6)

The subscript Av denotes the average from v to v + Av. Here, u is an arbitrary
vertical coordinate independent of frequency v. For instance, the mass integral

u = / pidz, (10.5.7)

may be used. Choice of the width of the frequency range Avr depends on the
purpose; if Av represents the width of an absorption line, the averaging method is
called “line by line”; if a group of adjacent absorbing bands is considered, Av is
called the “narrow band”; and if all the frequency region is considered as one band,
it is called the “broad band”. In the following argument, we assume that B, is
smooth enough over the bandwidth Av. In this case, the averages of (10.5.4) and
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(10.5.5) over Av respectively give

Igy(u, ,LL) = Bl/ (Ts)TAu(u57 Uu; /’L)
e dTa, (', u;
+/ B, (u') A Elu’ Y 'u>du’7 for 0<pu<1, (10.5.8)
u U
“ dTa, (W, u; —
Ik (up) = / B, )" (Zu’,” Wi, for —1<p<0, (1059)
0

where us corresponds to the value at the ground surface.
Next, we take integration over the direction of propagation of light. Integrations
over the upper and lower hemispheres give

2w pm/2
ng(u) = / / Ia,(u; 8) cosOsin® df dy
o Jo
1
= 27r/ Ino (u; p)pedp. (10.5.10)
0
2m ™
Fiy(u) = —/ / In,(u;8)cosOsinddf de
0 w/2

-1
= 27r/ Iny (us; ) pedp, (10.5.11)
0

where the signs of Fgu and Fiy are chosen such that they are positive. These are
called upward and downward radiative flux density. Substituting from (10.5.8) and
(10.5.9), we obtain the total radiative flux density as

Fay(u) = FA,(u) = F3,(u)
g dTd, (v’
= WBV(TS)TKV(US,U) Jr/ wB,(u) Aé(lf ) du’
Ug u
v dTi (u,u)
— B, (W) AT ! 10.5.12
| By a, (10.5.12)
where we have defined the transmission function of an air column as
1
TAfy(uau/) = 2/ ﬂTAV(uvul;ﬂ)d:U‘
0
1 L —m )
= - 2ududy. 10.5.1
AV/AV/OB " udpdy (10.5.13)
Note that ’TAfV =1 at u = u’. We rewrite (10.5.12) by integrating by parts as
Ug d By !
FAIJ(U) = / (ﬂ- (u >> TAfV(u,’U,/> du’
0 dul

+ (7B, (T,) = 7B, (us)] TX, (us, )
+7B,(0) TL (u,0). (10.5.14)



286 Radiation process [Ch. 10

The first term on the right-hand side is a contribution from the inner range of
an air column. The second term arises if surface temperature is different from
temperature at the bottom of the atmosphere. The third term is a contribution
from the top of the atmosphere. Although surface temperature equals temperature
at the bottom of the atmosphere in a physical sense, we will consider the case when
these two temperatures are different; if just the radiation process determines the
thermal equilibrium of the atmosphere, the two contributions must be differently
treated (see Section 14.3.1). The sum of radiative flux densities Fa,Av over each
of bands Av is total radiative flux density. This is upward radiative flux per unit
area on an arbitrary horizontal plane.

10.6 Gray radiation

As a first step to understanding the property of radiation, the assumption of gray
radiation is introduced, where the absorbing coefficients k¢ are assumed to be inde-
pendent of frequency v. Since the absorption coefficients of atmospheric gases have
a strong dependence on v, the assumption of gray radiation does not quantitatively
describe real atmospheric radiation. Nevertheless, many of the basic properties of
radiation can be learned from gray radiation since the simplicity of the radiative
transfer equation enables us to theoretically analyze solutions. In practice, only a
part of planetary radiation is considered to be gray. To a similar level of approxima-
tion, it is further assumed that solar radiation is not absorbed in the atmosphere
and directly reaches the surface where it is reflected or absorbed. Under these
assumptions, we can construct a simple model of atmospheric radiation to study
the vertical structure of the atmosphere (see Chapter 14).

We simply designate the optical depth as 7 by omitting the subscript v for gray
radiation. Upward and downward radiative fluxes can be given by multiplying p
by (10.5.3) and integrating over p:

27Td65-/0 L(r,ppdp = FJ(r) = nB,(T(r)), (10.6.1)
27TddT /07 L(r,p)p dp = Fj(r) — 7B, (T(7)). (10.6.2)

Various approximations can be introduced for integration over u. The simplest
assumption is that the intensity I, (7, ) is isotropic; in this case, we trivially have
Fl(r) = Fl(r) = 7I,(r) and no net radiative flux. The next approximation
might be to take account of the asymmetry between the upward and downward
directions of I, (7, 1) and to assume that intensity is isotropic in the upper and
lower hemispheres. Then, under the assumption that I, (7, 1) is independent of p
in each hemisphere, we may express

El(r) = wL(r,p=1), (10.6.3)
Fi(r) = nL(r,p=-1), (10.6.4)
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! ) o 2 .
2r | L(rppdp = o L(mp=1) = F(7), (10.6.5)
0
1 9 9
27r/ L(r,wpldy = — ;L,(T,[L =-1)= —3FI}(T). (10.6.6)
0

Thus, integrating (10.6.1) and (10.6.2) over the frequency v yields

;C”z; T(T) — Fl'(r) — 7B(T(1)), (10.6.7)
Hr
—gdih( ) FY(r) —7B(T(1)), (10.6.8)
where
Fl(r) = / T E(Mdy, FNr) = / TR ) v, (10.6.9)
0 0
mB(T) = /OO 7B, dv = opT*. (10.6.10)
0

In a similar way to the previous section, we can obtain the radiative flux density
by integrating (10.6.7) and (10.6.8) along the optical depth. For simplicity, we define
7 = (3/2)7. Using the boundary conditions F! = 7B(T,) = ogT at the surface
and F! = 0 at the top of the atmosphere, integrations give

Ts* de w1k
WB(TS)Tf(T;—T*)—/ LI =T

- dr*’

B

RN

2
I

dr*',  (10.6.11)

5

T f * k)
Fir) = / BT T g (10.6.12)
0

Here, the transmission function is given by
TIr =) = e (7)), (10.6.13)

Similar to (10.5.14), net radiative flux is given by the partial integral of the differ-
ence between (10.6.11) and (10.6.12):

F(r) = F'(r)=F47)
T dﬂ-B(T*/) * * *
= /0 g T (| = 7%|) dr*’

+ [ B(T,) — 7B(})] T/ (rF —7*) + 7B(0) T/ (7).  (10.6.14)

This expression is suitable for discretization of the numerical calculations of radiative
flux.

In Section 14.3.1, we will calculate some atmospheric vertical structures using
the radiative transfer equations of gray radiation, (10.6.7) and (10.6.8).
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10.7 Radiative transfer equation of solar radiation

Calculations of the flux of solar radiation require distinction between direct rad-
iation from the sun and radiation scattered by the atmosphere. The source function
of the scattering part of solar radiation is given by (10.4.21):

&'}V 27 1
L) = 477/0 /1Iu(u’ycp')P(u,w;u',w’)du’dw'- (10.7.1)

Designating the incident angles of solar radiation as (ug, ), we express the inci-
dent radiative intensity of solar radiation at the top of the atmosphere as

I@V(O; Hy 90) = F@ny(ﬂ - H@)fy(%@ - 90@), (1072)

where Fy,, is the radiative flux density of solar radiation at the top of the atmos-
phere. In the atmosphere, there is no emission of radiative flux in the frequency
range of solar radiation. Neglecting scattered radiation in the direction of incident
solar radiation, we have an expression for direct solar radiation using Beer-Bouguer-
Lambert’s law, (10.4.11). Let the optical depth from the top of the atmosphere be
denoted by 7. We have

Iou(Tim0) = foud(p — pe)d(e — ve), (10.7.3)

where

.

f@,, = F@VZ,(O, 7') = F@Vei ro (1074)

The intensity of solar radiation at the optical depth 7 is described by the radiative
transfer equation (10.5.2). We separate direct radiation fz, and the single scat-
tering of solar radiation from further multiple-scattering radiations; radiation scat-
tered by the atmosphere more than once is called diffuse radiation. Under these
assumptions, the radiative transfer equation (10.5.2) becomest

al,(7;p, @
’ ( )

= Il/ 5 My
dr (Ts 1)

~ 27 1
Oy
4 / /Iu(T;u’,w’)P(u,s&;u’w')du’dw'
™ Jo -1

Z;P(u, i ho, o) fou- (10.7.5)
The last term on the right-hand side is the contribution from the single scattering
of direct solar radiation at depth 7. Total solar radiative flux is given by the sum
of I,(m; 1, ") and the direct radiation (10.7.3).

In the case of a plane-parallel atmosphere, the radiative flux density of solar
radiation can be calculated by the following procedure. We need to integrate ra-
diance over each of the upper and lower hemispheres. Since (10.7.5) depends on

tStrictly, this equation is given by averaging over the frequency region Av. Optical depth is
the mean depth over frequency Av.
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angles p and ¢, integration with respect to directions is not straightforward. Here,
we introduce an approximation to help us derive the differential equations of total
radiative intensity and upward and downward radiative fluxes. First, integrating
(10.7.5) over all directions gives
d
dr
where (10.4.19) is used and

27
/ / v(T3 s p)dpdp =
27
// (T3 1, o) pdpdp

(see (10.5.10) and (10.5.11)). Next, multiplying (10.7.5) by p and integrating over
directions, we obtain

F, (1) = 4r(1—@,), (1) — &u fou, (10.7.6)

\
.
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~
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(10.7.7)
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(10.7.8)

d 2m ~ ~
dr / / Lt )pldude = (1 —0y9) F,(1) — Gugpe fou, (10.7.9)
0o J-1
where g is called the asymmetric factor, given by
1 I
g = [P0 = | [ Ploudn (10.7.10)
™ 2/,

In this equation, we assume that the phase function P(0,0; u, ) is independent of
v and write it as P(u) = P(0,0; i, ¢). We have g = 0 if the scattering is isotropic,
and g = 1 if just forward scattering exists. In addition, we generally have

1
; /1 P30, pdp = g’ (10.7.11)
In the case of Rayleigh scattering, forward scattering ;1 > 0 and backward scattering
1 < 0 equally contribute so that ¢ = 0. In the case of Mie scattering, which
describes scattering by a charged spherical particle, the contribution of forward
scattering is larger than that of backward scattering such that g > 0. At the limit
of an infinitesimal particle, Mie scattering agrees with Rayleigh scattering.

In order to obtain the radiative flux density F,(7), we again assume that
I,(7; p, ) is isotropic in each of the upper and lower hemispheres on the left-hand
side of (10.7.9). In this case,

/27r [1IV(T;M7W)M2dud¢ _ 2; I (= 1)+ I(r; 0 = —1)]
N 4:?[”(7)' (10.7.12)
Using this to eliminate I,,(7) in (10.7.6) and (10.7.9), we obtain
dd; Fy(r) = 3(1—-a&)1—&ug)F, (1) — @ufoull +3(1 —@)gpual.

(10.7.13)



290 Radiation process [Ch. 10

The net radiative flux density F, (7) is given by the solution to this equation. Since
direct solar radiation is not included in F,(7), the total radiative flux of solar
radiation is given by the sum of F,(7) and

27 1
| [ resmmemdnde = fono. (10.7.14)

Differential equations for upward and downward radiative intensity can also be
constructed as follows. If the dependence on ¢ is neglected for simplicity, (10.7.5)
can be rewritten as

d[,,(T;/L) Wy ! / ’ ’
- IV 5 - IV 5 P )
or (13 1) 2/_1 (731" ) P (1, 1" )dpe
Wy
- P u- 10.7.15
A (1, po) fo ( )

Multiplying this equation by g and integrating over each of the upper and lower
hemispheres, we respectively obtain

27rd/ll(r' yu2d
ar [, Wi dp

1 1
= FJ(T)*WV/ / L (3 )P, p Yyt dp
0 —1

~ 1
Wy
— f@u/O P(p, po)pdp, (10.7.16)

d

-1
-2 I, (T; w)d
[

—1 1
= Fui(T)—W@u/ / L(7; 1) P, ) pdps dp
0 —1

~ -1
Wy
=y o / P(p, po) pdyps. (10.7.17)
0
These equations might be rewritten into various expressions if we make assumptions
about the dependence on directions. For instance, if intensities are isotropic in each

of the upper and lower hemispheres, these are rewritten as
2d

L Pl = Fl) -, - BF()
—~Q,BF (1) — @2” (1+8)fou, (10.7.18)
2 d )
Sy D = RO -a-pRe)
—&,BF) (1) — “2 (1—5)fon. (10.7.19)

The sum of the two equations corresponds to (10.7.6) except for the factor 2/3 on the
left-hand side. It can be shown that § = (1 — ¢)/2 and S = gue from appropriate
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treatment of the scattering probability distribution function (Liou, 1992, section
3.3). In this case, (10.7.9) is given by the difference between (10.7.18) and (10.7.19).

We may have a more intuitive expression for solar flux by incorporating direct
solar radiation into diffuse radiation. The following derivation contrasts with the
one above in which direct and single-scattering radiation are distinguished from
diffuse radiation. If direct solar radiation is treated as diffuse radiation, we rewrite

(10.7.13) as
- F (1) = o’F(7) (10.7.20)
dr? ’
where o? = 3(1 — ,)(1 — @,g). If intensity is isotropic, (10.7.9) can be written as
SRR = (-2 R, (10.7.21)
The top and bottom boundary conditions are given by
FH0) = Fopo, Fl(r) =0, (10.7.22)
where 7, is total optical depth. The solution to (10.7.20) is written as
F,(r) = FJ-F, = Ce™® +De "), (10.7.23)

where C' and D are constant. Substituting this into (10.7.21) and integrating over
T yields

El(T)+ Fi(1) = 2?; (1—ayg) [fcefﬂ” + De*“(fsfﬂ] . (10.7.24)
Therefore, we have expressions for upward and downward fluxes as

El(r) = aCe T 4 be=(m77), (10.7.25)

El(r) = bCe T 4 ae= (=), (10.7.26)
where

a = ; 1-— 2?;(1 &),,g)] , b = ; {1 + 2?;(1 (Z)yg)} . (10.7.27)

Using the boundary conditions (10.7.22), the coefficients in (10.7.25) and (10.7.26)
are given by

ae*&’rs

b
C = F@[L@, D = — F@,U,@. (10728)

b2 _ a2e—2(”s b2 _ a26—2(x7'5

From the above solution for solar radiation, we can calculate planetary albedo.
The ratio of reflected solar radiation at the top of the atmosphere to incident solar
radiation is denoted by planetary albedo A, while the ratio of solar radiation that
reaches the surface to incident solar radiation is denoted by transmissivity 7. These
are expressed as

F(0) 1 — e 207

A= F(0) = B preran; (10.7.29)
F‘l s —QTs

N B S (10.7.30)

Fl} (0) 1 — BQe—2a7’,S ?
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where

—31 -,
B = ¢ = g( “v9) (10.7.31)
b a+5(1-aug)

We have A — B and 7 — 0 as the total optical depth becomes thicker 75 — oc.

References and suggested reading

Goody and Yung (1989) and Liou (1992) are standard textbooks on the rad-
iation process. Important topics such as the details of absorption coefficients and
band structures, the exact treatment of radiative transfer equations, and multiple
scattering of solar radiation, which are not described in this book, can be found
in these books. Goody (1995) summarizes the basics of the radiation process.
Houghton (2002) gives not only elementary but also fundamental descriptions of
the radiation process. The gray radiation in Section 10.6 and diffuse radiation in
Section 10.7 follows Houghton (2002).

Goody, R., 1995: Principles of Atmospheric Physics and Chemistry. Oxford Uni-
versity Press, New York, 324 pp.

Goody, R. and Yung, Y., 1989: Atmospheric Radiation, 2nd ed. Oxford University
Press, New York, 528 pp.

Houghton, J. T., 2002: The Physics of Atmospheres, 3rd ed. Cambridge University
Press, Cambridge, UK, 320 pp.

Kiehl, J. T. and Trenberth, K. E., 1997: Earth’s annual global mean energy budget.
Bull. Am. Meteorol. Soc., 78, 197-208.

Liou, K.N., 1992: Radiation and Cloud Processes in the Atmosphere. Oxford
University Press, New York, 487 pp.

Liou, K.N., 2002: An Introduction to Atmospheric Radiation, 2nd ed., Interna-
tional Geophysics Series, No. 83. Academic Press, New York, 487 pp.



11

Turbulence

Two aspects of the turbulence process in the atmosphere are described in this
chapter. First, the statistical properties of turbulence are explained using similar-
ity theory. In particular, the roles of turbulence in the general circulation of the
atmosphere are briefly introduced. Similarity theory will be applied to describe
global-scale turbulent motion of the atmosphere in Section 12.4. The statistical
properties of turbulence are used for the choice of numerical diffusion of the atmos-
pheric general circulation models (Chapter 27). Second, we describe turbulence in
the mixed layer and the boundary layer of the atmosphere. We introduce turbulence
models that are used to describe the subgrid-scale motions of numerical models. Ac-
cording to this second aspect, turbulence models in the mixed and boundary layers
are viewed as one of the physical processes of atmospheric numerical models.

11.1 Similarity theory

11.1.1 Three-dimensional turbulence

Turbulence is a fluid state that has temporary and spatial irregular motion. If
one wants to describe larger scale fluid motion than the inner structure of turbu-
lence itself, one needs to model the statistical properties of turbulence. In general,
large-scale motion, or the environmental field of turbulence, does not possess both
statistically isotropic and steady properties. The environmental field cannot be
steady if energy is not supplied to the field, since turbulence loses its kinematic
energy due to friction. Only if energy is supplied from the environment is the
turbulent field kept statistically steady. In such a case, however, inhomogeneity
which depends on external forcing is introduced to the field (i.e., the turbulence
loses isotropy). This means that there does not exist homogeneous isotropic tur-
bulence in statistical equilibrium as a whole. In sufficiently small-scale turbulence
relative to the scale of external energy inputs, however, turbulence can be assumed
to be statistically isotropic and homogeneous. Such a state is called local statistical
equilibrium. The kinetic energy of turbulence is supplied from the environment in

M. Satoh, Atmospheric Circulation Dynamics and General Circulation Models, 293
Springer Praxis Books, DOI 10.1007/978-3-642-13574-3 11, © Springer-Verlag Berlin Heidelberg 2014
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a large-scale range, transferred to a middle-scale range in turbulence, and dissi-
pated into heat due to friction in a sufficiently small-scale range. In local statistical
equilibrium, energy supply, transfer, and dissipation are balanced by each other.

The local statistical equilibrium of turbulence can be described by character-
istic variables which are related together by similarity theory. Kolmogorov’s first
hypothesis states that the statistical equilibrium of turbulence is spatially uniform
and steady in the larger wave number range such that it only depends on two
parameters: the dissipation rate of energy e and the viscous coefficient v. From
isotropy, the turbulent kinetic energy spectrum F(k) can be defined, where k is the
magnitude of a wave number vector. E(k) is related to the volume average of the
kinetic energy of turbulence by

11,
V/z'v av = /O E(k) dk, (11.1.1)

where V is the volume of the domain considered. The physical dimensions of these
variables are given respectively as

2 2 3
=20 W=7, W= [EE = 1

where the symbol [ ] denotes the dimension of the quantity inside the brackets,
L is the dimension of length, and T is that of time. According to Kolmogorov’s
first hypothesis, the energy spectrum E(k) can be expressed by ¢ and v. From
dimensional analysis, since

3

W= [ehi], Ee) = [

we may write

Ekk) = 51V3f<klj;>7 (11.1.2)

where f(z) is an appropriate function of z = k/kg4, and

ke = (5)‘1‘ (11.1.3)

U3
is called the Kolmogorov wave number.

Kolmogorov’s second hypothesis states that there is a spatial-scale range in a
statistical equilibrium state of turbulence where the effect of viscosity is negligible;
this scale is larger than the scale at which viscosity effectively works and is smaller
than that of energy input. The wave number range between the scale of energy
input and scale of viscous dissipation is called the inertial subrange. In the inertial
subrange, energy input from smaller scale wave numbers is balanced by energy
transfer to higher wave numbers. Under this hypothesis, E(k) becomes independent
of v in the inertial subrange. We therefore have f v=i from (11.1.2) and then

f(kd> x (kd> = yoienk i, (11.1.4)

o
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FIGURE 11.1: Schematic figure of the energy spectrum of three-dimensional turbulence. The

energy spectrum of the inertial subrange follows Kolmogorov’s spectrum (i.e., the five-thirds power

law). ke is the wave number at which energy is input, and kg is the wave number at which
dissipation effectively works (i.e., Kolmogorov wave number).

Thus, we obtain
E(k) = Asbk™3, (11.1.5)

where A is a universal constant, which has a value in the range 1.3—1.7 according
to experimental surveys. This means that the energy spectrum is proportional to
the —5/3-rd power of the wave number. This relation is referred to as the five-
thirds power law. This dependence on wave number is a peculiar characteristic of
three-dimensional turbulence.

Dissipation due to viscosity comes to dominate at the wave number ky. Let ke
denote the wave number corresponding to the spatial scale of energy input. Inertial
subrange exists if

1 4
Re = °, = (d) > 1 (11.1.6)
vke ke

is satisfied, where Re is the Reynolds number. Figure 11.1 shows the schematic
energy spectrum of three-dimensional turbulence. Energy input occurs at larger
scales than the inertial subrange and energy is transferred to smaller scales: k >
ke. At a sufficiently large wave number (k > kq), the effect of viscosity becomes
significant such that kinetic energy is dissipated into heat.

11.1.2 Two-dimensional turbulence

Next, let us consider the statistical equilibrium state of two-dimensional turbulence
using similarity theory. The difference between two- and three-dimensional turbu-
lence is that the enstrophy is conserved in the limit of small viscosity in the case of
two-dimensional turbulence.
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For a non-divergent two-dimensional fluid, the vorticity equation is written as

Dw
D " vWiw, (11.1.7)
where w is vorticity and
D 13 d 0
= 11.1.
Dt or T "or TVay (11.1.8)
02 0?

L= . 11.1.

Vi 0x2 + Oy? ( 9)

Vorticity w is expressed by the streamfunction ¥ as
w = —-Viy. (11.1.10)

Multiplying (11.1.7) by % or V%1 and averaging the products over the whole
domain S, we obtain the following two equations:

dE
= =20 11.1.11
dt Vis ( )
dQ
= —-2uP 11.1.12
dt vE ( )
where 1
. 2
E = 25/(VH¢) ds, (11.1.13)
_ 1 2
Q = 25//w ds, (11.1.14)
P = 25/(VHw) ds. (11.1.15)

FE is total kinetic energy, or simply called energy. € is called enstrophy, and P is
palinstrophy. In the inviscid case, v = 0, both energy and enstrophy are conserved.

In the case of infinitesimal nonzero viscosity with v — 0 and v # 0, it can be
shown that energy is still conserved but that enstrophy is not. Actually, enstrophy
is finite since Q(¢) < ©(0) from (11.1.12) if » > 0. From (11.1.11), therefore, we
have 4€ — 0 as v — 0 (i.e., energy is conserved). On the other hand, from (11.1.7),

dt
the change in palinstrophy P is written as

dP 1 Ouj Ow Ow v 2w \°
= — dsS — ds. 11.1.16

As v — 0, the second term on the right-hand side approaches zero, while the first
term does not necessarily vanish. Instead, P might diverge to infinity as v — 0. If
we define the dissipation rate of enstrophy by

dS

= -y = 2UP, (11.1.17)

there is a possibility that n # 0 as v — 0.
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The energy spectrum of two-dimensional turbulence is different from that of
three-dimensional turbulence. To see this, we study the time dependence of the
energy spectrum for the case v = 0 in the first step. We define the kinetic energy
spectrum density F(k) and the enstrophy spectrum density Q(k) for the wave num-
ber k (k = |k|) so as to satisfy

/ E(k Q = /OOOQ(k:)dk. (11.1.18)

It can be shown from (11.1.13) and (11.1.14) by decomposing into Fourier compo-
nents that the two spectrum densities are related as

Qk) = KE(k). (11.1.19)
Let AE(k) denote the difference of the energy spectrum density from its initial

value, and AQ(k) denote that of the enstrophy spectrum density. The conservation
of energy and enstrophy is given by

/OOAE(k)dk = 0, (11.1.20)
0

/OOAQ(k)dk = /OOkQAE(k)dk = 0. (11.1.21)
0 0

These equations describe conservation for fully interactive cases between all the
wave numbers.

For illustrative purpose, we consider the interaction of three components of
waves that are in statistical equilibrium. The wave number vectors of three waves
are denoted by ki, ks, and ks. If these three waves interact, the wave numbers
must satisfy the relation:

kyi+ks+ks = O. (11.1.22)

We assume that the magnitudes of wave numbers k1, ko, and k3 are in the order k; <
ko < ks. In this case, the equations of the conservation of energy and enstrophy
are written respectively as

AE(k) + AE(k2) + AE(k3) = 0, (11.1.23)
kZAE (ki) + k3AE (ko) + k3AE(k3) = 0. (11.1.24)

Energy changes in the ki- and ks-components are solved in terms of the energy
change in the ko-component as

k2 — k3
g AB(k). AB(k) =

k3 — k2
L AE(ks).

AE(ky) = “ i

(11.1.25)

This implies that both the energies of k- and k3-components increase as the energy
of the ks-component decreases: AE (ko) < 0. The ratio of energy increases is given
by

AE(k1) ki — k3

= . 11.1.26
AB(ky) ~ K-k (11.1.26)
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In general, this ratio may be either greater or smaller than one. It is known,
however, that the following inequality holds in many actually interacting cases:
AB(k,) oy AUk RIAE(R) (11.1.27)
AB(ks) AQ(ks) — KZAE(ks)
If energy is injected to the ke-component, more of it is transferred to the smaller
wave number ki-component than the larger wave number ks-component. In con-
trast, more enstrophy is transferred to the larger wave number ks-component than
the smaller wave number kj-component. This implies that energy is transferred
toward larger scales in two-dimensional turbulence. This situation is opposite to
three-dimensional turbulence, where injected energy is transferred toward smaller
scales and, as a result, is converted to heat due to molecular viscosity. The energy
transfer toward larger scales in two-dimensional turbulence is called the inverse
energy cascade.

The local equilibrium theory of two-dimensional turbulence in the case of v # 0
can be constructed based on the above consideration. Different similarity theories
of the energy spectrum are established for smaller and larger scale regimes relative
to the scale of energy input. In the larger scale regime, an inverse energy cascade
occurs. In this regime, if we assume that E(k) can be expressed by wave number
k and energy production rate e, the energy spectrum is formulated as the same
similarity theory of three-dimensional isotropic turbulence. From (11.1.5), we may
have

E(k) = Ciesk™3, (11.1.28)

where C is constant. In contrast, in the smaller scale regime, the dissipation of
enstrophy occurs where the dominant parameters are v and 1. From dimensional
analysis,

L? 1
[V] = T? [T]] = T3v
then we have
103 k
E(k) = néviF : (11.1.29)
kq
kg = nov 2. (11.1.30)

As in the case of three-dimensional turbulence, we may assume the existence of an
inertial subrange that is independent of viscosity. In this case, it may be referred
to as the enstrophy inertial subrange. Thus, we obtain

k EN\? -
F — —ap2 k=3 11.1.31
(kd) x (m) e, (11.131)

and the energy spectrum is given by

E(k) = Consk 3, (11.1.32)
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FIGURE 11.2: Schematic energy spectrum of two-dimensional turbulence. The energy spectrum is
3
proportional to £~ 5 in the range k < k., where kot represents the scale of energy input, and is

proportional to k~3 in the range k > ke.

where Cj is a universal constant. From (11.1.19), the enstrophy spectrum Q(k) is
also given by

Qk) = Consk™". (11.1.33)

Figure 11.2 schematically shows the energy spectrum of two-dimensional turbu-
lence. Energy is cascaded to the larger scale relative to the scale of the energy input
k., whereas enstrophy is cascaded to the smaller scale. Precisely, the assumption of
local equilibrium might no longer be valid in the energy inertial subrange k < k. of
two-dimensional turbulence. This is because the homogeneity of the turbulence is
not satisfied since energy is injected at a spatial scale comparable with turbulence.
If energy input occurs at random, however, homogeneity can again be assumed in
the range with the spatial scale much larger than k2! and much smaller than the
domain length of the system. The upward energy cascade will continue until the
scale of the turbulent eddy becomes the domain size. It is thought that the spec-
trum of two-dimensional turbulence in the enstrophy inertial subrange corresponds
to the energy spectrum observed in the large-scale motion of the atmosphere (see
Sections 17.4.2 and 24.2).

11.1.3 Tracer spectrum

Returning back to three-dimensional flow, we consider in this section the spectrum
of a tracer which is passively advected by turbulent flow and is also subjected to
molecular diffusion. Here, we assume that the tracer does not exert forces on the
flow; in this case the tracer is called a passive tracer. The mass concentration
of a minor quantity can be thought of as such a passive tracer under particular
conditions. Suppose that the evolution of the tracer concentration 6 is governed by
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the following advection-diffusion equation:

06

at“"w = kV?0, (11.1.34)

where k is the diffusion coefficient. Let ( ) denote the domain average, and 8’ = 6—0
denote the deviation of the tracer from its average. We assume that the domain-
averaged tracer 6 is conserved. Multiplying this equation by 6, and averaging over
the whole domain, we have

89/2

- 7\2
o 26(V0')2. (11.1.35)

In order to consider the wave number dependence of the spectrum of 6’2, we intro-
duce the spectrum density I'(k) that satisfies

02 = /0 (k) dk. (11.1.36)

It is thought that the tracer spectrum is described by the following two groups of
parameters. The first group comprises the parameters of the turbulence of the flow:
the dissipation rate of energy ¢ and the viscous coefficient v. The second group
comprises the parameters that appear in the equation of the tracer: the diffusion
coefficient x and the dissipation rate of the tracer:

X = 2x(VO)2 (11.1.37)

The typical wave number at which the diffusion of the tracer becomes important
may depend on the relative magnitude of v and x. In the case x > v, the effect of
diffusion becomes greater if the wave number is larger than

1
kot = (;3) 't (11.1.38)
This wave number is derived from dimensional analysis in the same way that the
Kolmogorov wave number kg in (11.1.3) is derived.

In the case v > k, on the other hand, the main process of turbulence governing
the spectrum of the tracer is different between the wave number ranges k < kg
and k> ky. In the range k < kg, there exists the inertial subrange of turbulence;
advection due to turbulence is important while diffusion is almost negligible. In
the range k > kg4, the turbulence of the flow is suppressed by viscosity and the flow
field is characterized by a deformation field." Since v > &, the effect of diffusion
is important at wave numbers sufficiently larger than k;. Thus, there is another
inertial subrange of the tracer spectrum in k < k4 which has a different spectrum
slope from that of the inertial subrange of energy.

tThe deformation field is determined by the symmetric part of the deformation tensor g:J .

i i i3 : ou Owv du ov
For two-dimensional flow, it is characterized by 3", 9y and Oy + 90
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FIGURE 11.3: The schematic distribution of the tracer spectrum in the case v > k. The spec-

3
trum is proportional to £~ 5 in a smaller wave number range than kg, whereas the spectrum is
proportional to k~1 in the range between kg and k.

Since the transfer of the tracer in wave number space is constant as given by ¥,
the dominant parameters of the tracer spectrum in the range k < kg4 are x, €, and
k. Dimensional analysis gives

T(k) o xe 3k™s. (11.1.39)

This has a wave number dependence similar to (11.1.5): the five-thirds power law.
In contrast, the strain rate of the flow in the region k > k; is estimated as

Oul o (E)é = (11.1.40)
o |~ \w = 7 o
Thus, the effect of diffusion becomes dominant in a wave number range larger than

ke = (7)% - (5 )‘11. (11.1.41)

K VK2

The tracer spectrum in the range kg > k > k, is determined by ¥, x, and . From
dimensional analysis, we may have

I'(k) = xnév‘gg(:) (11.1.42)

where g is an arbitrary function. In order for I" to be independent of , we need to
have g(n) o n=!. Therefore, we obtain the spectrum of the other type of inertial
subrange of the tracer as

L(k) o xy 'kt (11.1.43)
(i.e., the spectrum is proportional to the inverse of the wave number). This is

called the Batchelor spectrum. An example of the spectrum of tracer variance is
schematically shown in Fig. 11.3.
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11.2 Turbulence models

In the rest of this chapter, the turbulence models used for numerical models of
atmospheric flows are described. Since the resolutions of numerical models of
the atmosphere are generally insufficient to resolve all turbulent flows, smaller
scale flows than the resolvable scale of numerical models must be modeled or
parameterized to be incorporated into numerical models. Usually, such flows in
the unresolvable scale are regarded as turbulence, and are modeled by introducing
appropriate closures. We first overview the general theory of turbulence models
used in fluid dynamics. We next describe the Mellor and Yamada model, which
consists of a hierarchy of the different complexity of turbulent closures. In the next
section, we further consider the turbulence models of planetary boundary layers.

11.2.1 Basic equations

In order to numerically consider the evolutions of flows whose spatial scale is larger
than turbulence, we need to use filtered equations that are appropriately averaged
for the description of mean flows. Let the spatial resolution of a numerical model
be denoted by L. If L is within the inertial subrange defined in Section 11.1.1,
we can assume that unresolvable flows smaller than L, or subgrid-scale flows, are
described by the statistical equilibrium of turbulence. Such a numerical treatment
of subgrid-scale flows is called the large-eddy simulation (LES). For atmospheric
flows, in general, it is thought that LES can be applicable if L is about 10 m to 100
m. Thus, LES is only used for simulations of very small-scale flows such as in the
boundary layer.

On the other hand, L is about a few kilometers for cloud-resolving models, about
10 km for mesoscale models, and about 100 km for general circulation models.
There is no statistical theory for subgrid-scale flows of such large-scale models
L =~ 100 km. In these cases, the equations for mean flows are generally based on
the statistical average of quantities; the statistical average is defined as an average
over a number of experiments under specific conditions. This kind of average is
called the ensemble mean. In the following argument, we mainly explain filtered
equations that are based on the ensemble mean. The ensemble mean of a quantity
A is denoted by A, and the deviation from the average by A’: A=A+ A’.

We use the following set of basic equations in the Boussinesq approximation:

0

o= 0, 11.2.1
3@- Y ( )
du; 1 0p ~
dt] + gjk‘lfkul 7p aq:] —+ ozgjﬁv —+ sz’ll,j, (1122)
d9 ,
= 0. 11.2.
dt kV ( 3)

v is the viscous coefficient, & is the thermal diffusivity, g; is the vector component
of gravity g = (0,0, g), and f; is that of the Coriolis force. ¢;x; is the antisym-
metric tensor. The density p is constant and the buoyancy term is approximated
as fagjév using the thermal expansion coefficient a. 0, is the deviation of vir-
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tual potential temperature from its reference value in hydrostatic balance. Virtual
potential temperature is defined by (8.2.45), which is the potential temperature
with the buoyancy effect of vapor. The equation of vapor or any other tracer is also
governed by equations similar to (11.2.3).

Let the average of velocity components be U; = u;, that of pressure be P = p,
that of potential temperature be ©® = 6, that of the deviation of virtual potential

temperature be O, = 6,. We obtain filtered equations by

0
. = 11.2.4
oz, Ui 0, ( )
DU, o . 10P )
) - _ ) — ; 11.2.
[ &k kUi O (ujuf) p o, + ag;0,, (11.2.5)
Do o, .
_ . 11.2.
Dt oy (440 (11.2.6)

where g ;= 68t + Uy aik , and it is assumed that viscous terms and thermal diffusion
terms are negligible in filtered equations.

The equations for the average field (11.2.4)—(11.2.6) have the terms of second-
order quantities: uﬁcu;- and u¢’. In particular, —p u%u; is called the Reynolds
stress. In order to predict mean field quantities using the above equations, we
need to have expressions for these second-order terms. The prognostic equations
of second-order quantities can be derived from (11.2.1)-(11.2.3). The equation of
momentum flux is given by the average of (11.2.2); x uj + (11.2.2); x u;, where
(11.2.2); denotes the i-th component of Eq. (11.2.2). The equation of heat flux is
given by the average of (11.2.3) x u + (11.2.2); x ¢, and the equation of the
square of potential temperature disturbance by the average of (11.2.3) x 6"

D
Dtu;u;- + aik (u;u;u; — V@ik u;u;) + fr (6jklugu; + €iklugu9>
_ 7 ou), . ou; _ 9, oul, O o u’.an o u’.an
P aij aftl aftk al’k k Zal’k k Jamk
10 10
+a(g;0,u; + gifhu}) — p o, pul — ) 8mip/u;’ (11.2.7)
D , o) o o0’
'0/ / /'9/ o 0/ J /
Dtuj + oxy, (ukuj v oxy, o oxy,
ou; p o0
= —du -0, .7+ + ag,0 0
L T k oz p Ox; 97
ou’; g’ 1 0
- I — freimultd — "0 11.2.8
(k+v) Oy Dy frejriuy p axjp ) ( )
D 0 0 00 00’ 00’
0’2 rerz — 0’2 = -2 -2 .
Dt + oxy, (uk H@xk ) Yk oxy, H@xk oxy,

(11.2.9)
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The above second-order equations contain third-order quantities such as u;u;ﬂ’ .
Therefore, we need to have the expression of third-order quantities to solve these
equations. However, the temporal change of third-order quantities contains further
higher order quantities and we cannot close the equations. To close the equations,
therefore, we need assumptions in which higher order quantities are expressed by
lower or same-order quantities. This kind of assumption is called the closure of
turbulence.

11.2.2 Eddy diffusion coefficients and turbulence models
In order to close the turbulence model, we relate second-order quantities u;u; and

w0’ to the gradient of mean field values from the analogy of molecular diffusion:

ou; ~ 0U; 2
., = —-K ! J i 11.2.1
(0 M (3xj + o1, ) 36z]k7 ( 0)
00
0 = —-K 11.2.11
Uy H@xi’ ( )

where k = w}2/2 is turbulent kinetic energy. Ky and K are called the eddy viscous
coefficient and the eddy diffusion coefficient, respectively. The former is also called
the eddy diffusion coefficient, for simplicity. These coefficients are not necessarily
constants and even their signs are not definite. They may not be scalars and can
be tensors. These expressions are convenient, however, since we can calculate the
evolutions of the basic field if we know the values of Kj; and Kp experimentally
or theoretically.

Turbulence models are categorized by the closure assumptions used for expres-
sions for eddy diffusion coefficients. The simplest one is that in which no prognostic
equation is used for the evaluation of subgrid values, and is called a zero-equation
model. Let [ be a characteristic length scale of turbulence, and V' be a characteristic
velocity scale of turbulence. Dimensional analysis gives

Ky = V. (11.2.12)

In the case of mixing length theory, V is estimated from shear multiplied by the mix-
ing length [ (see (11.3.3)), or the free fall velocity given by buoyancy (see (14.4.4)).
In particular, if the eddy viscous coefficient is related to shear,

10U,  0U;\?
+

2 aaﬁj 8371-

it is called the Smagorinsky model, where Cy is a constant. If the eddy viscous

coefficient is related to turbulent kinetic energy k, we may have from dimensional
analysis

1
2

Ky = (Csl)? , (11.2.13)

Ky = Cplk?, (11.2.14)

where C}, is a constant. The turbulence model is closed if the values of k and [ are
determined prognostically or diagnostically from mean field values. We may use
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the dissipation rate ¢ instead of [ for closure. From dimensional analysis, we can
write the dissipation rate using a constant C, as

ks
e = ol (11.2.15)
Then, (11.2.14) can be rewritten as
k2
Ku = Cu_, (11.2.16)

where (') is a constant.

If (11.2.14) or (11.2.16) is used to determine the eddy coefficient, we need to
evaluate the turbulent kinetic energy k by introducing further closure assumptions.
Here, we derive the prognostic equation of turbulent kinetic energy to obtain k.f
First, we assume that the effects of buoyancy and the Coriolis force are negligible,
for simplicity. From (11.2.7), by omitting the buoyancy term and the Coriolis terms,
and contracting for indices ¢ and j, the equation of turbulent kinetic energy can be
derived as

D o (1 Y %k
ko= P—e— Ll ' , 11.2.17
b = oy (ormss 4 7t +v 0, 217
where
P, = fu;u;,ggf, (11.2.18)
J
ol O
e = ”ag;ag;' (11.2.19)

P, is an energy source term of turbulence due to the shear of the mean field.
Substituting (11.2.10) into (11.2.18) gives

Ku (an an>2

P, =
o \oz; * ox

(11.2.20)
from which we have Ps > 0 as long as K > 0 (i.e., the shear of the mean field
produces turbulent kinetic energy). Here, we regard the third and following terms
on the right-hand side of (11.2.17) as the diffusion of turbulent kinetic energy, and
assume that the diffusion flux is written as

! ok Ky 0k

1 D
1o 0,7 / —
Uy Uy U + U; =V =

11.2.21
2 p z; or Oxj’ ( )

where oy, is an appropriate dimensionless constant. Thus, (11.2.17) can be written
as

D
Dt

TNote that k& may be determined by a diagnostic method as will be described in Section 11.3.4.2.

k = Dy+P.—c, (11.2.22)
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where

D = (KM ak) (11.2.23)

Ox; \ o Oz

is the divergence of the diffusion flux of turbulent kinetic energy. If the characteristic
length scale of turbulence [ is given by a diagnostic method or by an external
parameter instead of using a prognostic equation, the dissipation rate € can be
determined from the relation (11.2.15) for a suitable coefficient C.. Thus, subgrid-
scale turbulence is solved using a single prognostic equation for &k by (11.2.22). The
turbulence model with this approach is called a one-equation model.

Thus far, the prognostic equation of k£ is formulated for neutral stratification,
and does not provide the expression for thermal flux. The turbulence model must
be extended to include the effect of stratification for application to the atmosphere.
In the case that a production term due to buoyancy exists, the change in turbulent
kinetic energy (11.2.22) is rewritten as

D
k = D P, + P, — ¢, 11.2.24
Dt Kkt s+ 1y —¢ ( )
where
P, = aguw'd, (11.2.25)

is the production rate of turbulent kinetic energy due to buoyancy. The flux
Richardson number Ry is introduced as the ratio between Py and P:

 agw'l;, P,
Ry = W U P (11.2.26)
177 Oz

In order for the source term to be positive, it requires that P; + P, > 0. Since
Py > 0 in general, this implies that Ry < 1. The Richardson number R; is related
to the flux Richardson number as

90
ag'y Ky
R = : - Ry, 11.2.27
1 (BU,; aU,-)2 Ky ( )
2 BIJ‘ ox;

where the eddy diffusion models (11.2.10) and (11.2.11) are used. The flux Richard-

son number plays the central role among the parameters in the turbulence model
of the atmosphere. The turbulent Prandtl number P, is also defined by

Ky

P = . 11.2.28

’ Ku ( )

If the value of P, is given using another closure assumption, the eddy diffusion

coefficient K can be calculated.

The coefficients that appear in the above formula must be determined from

comparison with results from laboratory experiments, observations, or numerical

simulations. If the grid interval of numerical models Az is within the range of the
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inertial subrange, the above filtering procedure can be interpreted as a spatial mean
and the turbulence model is used for the LES turbulence model. In this case, [ is set
equal to Az. In particular, the Smagorinsky model (11.2.13), which was originally
proposed for use in a large-scale atmospheric model, is nowadays widely used as a
representative model of the LES turbulence models. As an LES model, Cy = 0.2
is usually used. For the coefficients in (11.2.14) and (11.2.15) in the one-equation
model, Moeng and Wyngaard (1988) propose values C, = 0.1 and C. = 0.93 from
their spectrum analysis, following the original work by Deardorff (1980). In order
to determine the thermal eddy diffusion coefficient, the turbulent Prandtl number
P, in (11.2.28) must be specified. As a simple treatment, a constant P, = 1/3 is
used, for example (Deardorff, 1972).

In the one-equation model, the length scale [ is given by a diagnostic method
or by an external parameter. As an extension to the one-equation model, another
category of the turbulence model called a two-equation model uses an additional
prognostic equation. The k- model is classified as a two-equation model; the k-&
model internally determines [ using two prognostic equations for k and ¢, instead of
specifying the value of [. By introducing several closure assumptions, the prognostic
equation of € is given as

D €
DtE = D.+ k(C,ﬂPs — 0525)7 (11.2.29)
where C.1 and C.y are newly introduced constants and
0 KM Oe
D. = ) 11.2.30
: O0x; < Oe 8xj) ( )

For the k-e model, momentum flux is given by (11.2.10) and the velocity components
of the mean field are determined from (11.2.5). Although the k-e model is rarely
used in the meteorological context, various values are proposed for the constants for
application in engineering. An example is given by Launder and Spalding (1970):
(Cwry0k,0c,Ce1,Ce2) = (0.09,1.0,1.3,1.44,1.92), and its atmospheric application
is discussed by Detering and Etling (1985).

11.2.3 The Mellor and Yamada model

Next, we turn to describe the turbulence models proposed by Mellor and Yamada
(1982) for non-neutrally stratified fluids. The Mellor and Yamada model consists of
a hierarchy of turbulence closure models, which depend on the number of prognostic
equations of second-order quantities of subgrid variables such as (11.2.7)—(11.2.9).
These are called Level 4, Level 3, Level 2; and Level 2 models depending on the
approximations.

11.2.3.1 The Level 4 model

The most general Mellor and Yamada model is the Level 4 model. In this model,
the following closures are assumed for second-order quantities. From the symmetry
of the Reynolds stress tensor, the source terms in the momentum flux equation
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(11.2.7) are given as

! oul o/, 0is oU; oU;
I; (81:2 + 3x]> = —?31 (u;u; _ 31 q2> +Ch¢? (8%‘ + 3x]> ,
J ? 7 i
2v v 8u; = 2¢° 0ii
83% 8a:k 3 A1 R

where ¢ = u/?(= 2k), [; and A; are constants that have a dimension of length, and
(' is a nondimensional constant. In the latter equation, the molecular dissipation
of momentum is assumed to be isotropic. The source terms of the heat flux equation
(11.2.8) and those of the square of potential temperature perturbation (11.2.9) are
similarly given by

p 00’ q , 00" 90" q
= — 9 2 = 2 9’2
p Ox; 3, oy omy Ay
oul 00’
‘ = 0
(H v 8xk azlik ’

",

where l; and A are length scales. For the closures of third-order quantities uj uju’,

u;ugﬂ’ , and u}.0"2, the following forms are assumed:

3 0 0 0
Yy . _ / /' / /'
wpuul = 5quq <8mk u;u; + oz, ufuy, + s u]uk> ,
0 0
w0 = —1qSue (axj ulf + oz, u&@’) ,
u, 0’2 = —lqSy 0 6'2.
k 8xj

We also assume that the correlation between pressure and velocity or potential
temperature is small:

pu; = po =0,

and that the terms including v or k in the fluxes on the left-hand side are negligible.
Substituting these expressions into (11.2.7)—(11.2.9), we obtain

D 0 [3 0 0 0
Dtuéu} ~ ou [SZqu <8mk u;u; + O wuy, + oz, u;u;ﬂ

J
q 1ot 5ij 2 2 oU; an 2 q3
= _— . . — p— 51.
<u1u] 3 a ) +Clq (837] + 8371- 3A1 J
1o J 1ot oU;

. —usu =+
18xk k ]axk

— fic (s + eapauins;) (11.2.31)

a(g,0ul; —&-gﬂ{)u;)
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D 10’ a a 10’ a iy
Dtuje al’k |:lqsu9 (0% uke + aftk uje
90 ,oU; g

= —u;.u;c Oy — 0'uy, - — 31, ué@ + ag]ﬂ;@’ — fki:'jklugel, (11.2.32)
D 0 0
0’2 — lgS 02
Dt oxy, [q "axj }
00 q
= —2u b -2 702, 11.2.
uj, Oz, Ay ( 33)

If the turbulence equations for vapor ¢, are similarly constructed, we obtain 15
equations for second-order quantities. The Level 4 model of turbulence closures is
composed of the set of these equations.

11.2.3.2 The Level 3 model

Although the equations of the Level 4 model, (11.2.31)—(11.2.33), can be solved
in principle, these equations are quite complicated. For practical use, further ap-
proximations are introduced to simplify the model. Separating the isotropic and
anisotropic components of the Reynolds stress tensor, we have

5is
u, = ( 3] +aij) 2. (11.2.34)

2 .
i), we may assume a < 1, in

general. Then, we expand the equations by a and neglect the O(a?) and higher
order terms. In particular, only temporal changes in ¢?> and 6’2 remain as the
derivatives with respect to time, and the remaining prognostic equations reduce to
diagnostic ones. Thus, the equations of the Level 3 model are given as follows:

If the order of anisotropy is denoted by a? = O(a

D 0 0
th2 ~ dan [quqaxk qZ} = 2(Ps+ P —¢), (11.2.35)
D 0 0 00 q
02 — lgS 02 = —=2u) 0 -2 70?2 11.2.36
Dt Oy, [q * O, } R YT P ( )
and
dij o 3l ou; ou; 2
u;u; -3 - q {u;u; Oxy, +u;€u;. Oxy, * 36ijps
oU; U,
2 i J
—-Cuq (amj + 3%) — a(g;0;u; + gi0;,u])
2 1o,/ 1o,/
+35iij + fx (Ejkgului + Eikluluj) , (11.2.37)
3l 00 oU;
Gy = - q2 {u;u;“(')mk 0 8%;: +O‘gﬂ'9w/+fk5jklugel]’

(11.2.38)
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where
oU;
o= R = agu, (11.2.39)
@
= . 11.2.40
€ Al ( )

P, and P, are the production terms of kinetic energy due to shear and buoyancy,
respectively. From (11.2.35), turbulent kinetic energy cannot be maintained unless
Ps + P, > 0 is satisfied. The Level 3 model consists of four prognostic equations if
the equation for vapor ¢/2 and that for covariance 6'¢/, are added.

11.2.3.3 The Level 2; model and the Level 2 model

For the next approximation to the Level 2; model, we neglect the time derivative
and the diffusion term on the left-hand side of (11.2.36) to obtain the following
diagnostic equation:
A 00
02 = —Pule . (11.2.41)
q Oy,
Thus, only the equation for turbulent kinetic energy ¢? remains as the prognostic
equation.
Furthermore, for the Level 2 model, all the time derivatives and the diffusion
terms are neglected. Therefore, (11.2.35) becomes

P,+P = e (11.2.42)

These Mellor and Yamada models are rewritten in more concrete forms in the
modeling of turbulence in the boundary layer. The boundary layer approximation
of Mellor and Yamada models will be described in the subsequent section.

11.3 Boundary layer

11.3.1 Structure of the planetary boundary layer

The atmospheric layer near the Earth’s surface is called the planetary boundary
layer. The planetary boundary layer has the following layered structure. Just
above the surface up to a few millimeters is called the viscous layer, where the
effects of molecular viscosity and diffusion are predominant. The height of the top
of this layer zq is called the roughness length. Above the viscous layer is the surface
layer, in which each of the fluxes is regarded to be constant. The depth of this layer
is about 30-100 m. The surface layer is also referred to as the constant flux layer.
If there exists the effect of the Coriolis force on the direction of winds, another layer
named the Ekman layer emerges above the surface layer (see Section 6.6). In the
case of unstable stratification, on the other hand, turbulent motions mix entropy
and humidity vertically and make them vertically uniform. This layer is called the
mized layer, which is located above the surface layer. The height of the top of the
Ekman layer or the mixed layer is about 500 m to 1 km.
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The above classification of the boundary layer is applicable to a very idealistic
situation. In reality, the boundary layer is very complicated depending on surface
condition and temporal variation. In some cases, the effects of forests and buildings
are taken into account as the effective roughness length in the order of 100 m. In
this section, we do not touch upon such a complicated surface condition, and only
describe the formulation of turbulent fluxes above a flat surface.

11.3.2 Surface layer

In the surface layer, each of the vertical fluxes is independent of height by definition.
In the case of neutral buoyancy, the vertical profiles of velocity, temperature, and
vapor can be given based on the mizing length theory. For simplicity, we assume
that mean flow is in the z-direction. Let the length scale of turbulence near the
surface be denoted by [. According to the mixing length theory, [ is set equal to the
vertical distance of displacement of an air parcel in the turbulence, or the mizing
length. In this case, the deviation of a physical quantity s is given by
, Js

§ o= =l (11.3.1)

where gzs < 0 is assumed. Thus, the vertical flux of s is estimated as

s
0z’
where w’ is a turbulent component of vertical velocity. If we take the horizontal
wind component u’ as a quantity s’ and assume the eddy is isotropic, we have

(11.3.2)

sw = =l

0
W o~ || ~ 1‘3“. (11.3.3)
z
Then, we have
ou| 0
. a: a:' (11.3.4)

In the surface layer, the momentum flux pu/w’ is vertically uniform and equal to
stress at the surface 79. We can define a friction velocity u. by

W o= —ww = °. (11.3.5)

Uy is constant irrespective of height within the surface layer. We assume that the
mixing length near the surface [ is proportional to height from the surface:

I = kz (11.3.6)

)

where k is called the von Kdrmdn constant. Substituting (11.3.5) and (11.3.6) into
(11.3.4), we obtain
ou Us

0 = b (11.3.7)
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Integrating this over height, we obtain the logarithmic velocity law:
Ue , 2
u o= In o (11.3.8)
The constant zg is chosen such that u = 0 at z = zy. zo corresponds to the
roughness length, which is the transition level to the viscous layer underneath. It is
found by comparison with observation using the logarithmic velocity law in which
the von Kdrmén constant is given as k = 0.40. From (11.3.4) and (11.3.7), eddy

viscosity in the neutral case K3, is expressed as

ou
0z

We also have the vertical profiles of temperature and vapor in the case of the
neutral stratification. Let Fro denote the sensible heat flux at the surface and Fy
vapor flux (evaporation) at the surface. In the surface layer, both heat and vapor
fluxes are constant irrespective of height and equal to Fig, Fyo, respectively. Then,
we define the characteristic scales of the deviations of potential temperature 0, and
vapor ¢., which respectively satisfy

F
u by = —wl = -— HO, UsQe = —w'q =
pCyp
In the neutral case, constants similar to the von Kdrmén constant in (11.3.7) can
be introduced for temperature and vapor profiles. Using the two constants k' and
k", we obtain the temperature and vapor profiles
00 0 0
= - % (11.3.11)
0z k'z 0z K"z
Thus, we have

0, z q+ z
0—0, = 1 , —q. = 1 7 11.3.12
Y n<ZOH> ¢—ds = H(ZOq> ( )

where the roughness length for heat zor and that for vapor zpq are defined. The
eddy diffusion coefficients of heat and vapor Ky, K  are therefore given by

Ky = K zu,, Ky = K'zu.. (11.3.13)

Ky = 17 = kzu,. (11.3.9)

F,
-7 (11.3.10)

These coefficients are for the neutral case and are used for reference to more general
cases of stratification.

11.3.3 Bulk method

We next formulate vertical fluxes between the surface and any level in the surface
layer in more general stratified cases. Let z; denote an arbitrary level in the surface
layer, and w1, 01, and ¢; denote the horizontal velocity vector, potential tempera-
ture, and vapor at the level z1, respectively. In the case of neutral stratification,
from (11.3.5) and (11.3.8), momentum stress is written as

k2 9

v o= pui = p S UT- (11.3.14)
(lnzé)
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We extend this formula to more general cases for non-neutral stratification as
0 = pCpul, (11.3.15)

where the drag coefficient Cp is introduced. Decomposing the above equation into
each horizontal direction and extending it to heat and vapor fluxes, we have

Tz0 = pC’D\u1|u1, TyO = pCD"u,1|U1, (11316)
Fpo = pCpCrlui|(0s —01),  Fpo = pCylual(qs—q,),  (11.3.17)

where 65 and 6, are potential temperatures at the height zoy and z1, respectively.
Similarly, ¢; and ¢; are specific humidities at height 2o, and z1, respectively. Cy is
called the Stanton number and Cjy is the Dalton number. The coefficients Cp, Cp,
and C; are nondimensional, and are referred to as bulk coefficients. Letting C7,
CY, and Cf denote the bulk coefficients for neutral stratification, we have

. k2 . Kk’ . kk"
CD == 2 CH - ln 21 ln 21 0 Cq - ln 21 21 " (11318)
(111 1 ) 20 ZOH 20 Z0q
20

In the case of neutral stratification, (11.3.7) and (11.3.11) hold. These formulas
are generalized to non-neutral cases using nondimensional vertical profile functions
as

o (1) = om on (D) =0 00 @) = 4o

which are called universal functions. These are functions of nondimensional height
¢ = z/L, where the length scale L is called the Monin-Obukhov length defined by

u2

L = o 11.3.20
kgab, ( )

Using (11.3.19), (11.3.5), and (11.3.10), we also have

. (11.3.19)

Lo FwwRtevwsn e (11.3.21)
dm gaw'd’ om Ry

Ry is the flux Richardson number given by (11.2.26). Monin-Obukhov’s similarity
theory states that turbulence in the surface layer is characterized by the single
parameter L, and the vertical profiles of momentum, temperature, and humidity
are expressed by the universal functions ¢as, ¢p, and ¢4, respectively. In the
neutral case, we have ¢pr = 1, ¢ = k/k', and ¢, = k/k”, and L is independent
of height in the surface layer. Using the universal functions, (11.3.9) and (11.3.13),
the eddy diffusion coefficients are expressed by

KM_uz_K}\Z KH_u*G*_kK;I Uuqe K K§
- Ou ’ - = L ) a— 9 1 :
PO ¥ 00 K om ol K" ¢q

(11.3.22)
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From (11.3.15), (11.3.5), (11.3.17), and (11.3.10), the bulk coefficients are
expressed as

2 2
Us k
Cp = — 11.3.23
b (|u1|> FJ%I7 ( )
0. Use k2
Oy = = , 11.3.24
T e -0l T FuFa (11.3.24)
Qe Us k2
c - 7 11.3.25
a qp — qy |ui] Fy Fy ( )
where
! Y k /21 O|ul u |
M (zo’ L> 0 2 i Us S, 02 i Uy
1 k [* 00 0, — 0,
FH<21,21> - Py, = / 0, = ph-0
zom L P 0s ).y, 0 0.
F <Zl Zl> _ /Z1 qudz _ k /Z1 aqdz _ k‘]liqs'
"\ 20, L 20q 2 @ Sz, 02 G+

The functions Fys, Fr, and Fy can be calculated from universal functions. The
universal functions ¢us, ¢m, and ¢, can be determined from field experiments or
by formulas (given in (11.3.69) and (11.3.70)). If we know ¢ar, ¢u, and ¢4 and the
roughness lengths zo, zox, and zgq, the functions Fis, Fiy, and Fj can be calculated,
thus we obtain bulk coefficients as functions of z; and L. We may use the bulk
Richardson number at height z; instead of L. The bulk Richardson number is
defined by
ga(01 —0s)z 21 Fg

Rip 2 L onF?, (11.3.26)
In this case, the bulk coefficients are expressed as functions of z1/2zp and R;g. See
also (11.3.50) and (11.3.21).

11.3.4 Boundary layer models

The Mellor and Yamada model described in Section 11.2.3 is modified for the bound-
ary layer model when anisotropy between the horizontal and vertical directions near
the surface is introduced. We describe the Level 2; and Level 2 models by intro-
ducing the boundary layer approximation in this section.

11.3.4.1 The boundary layer Level 2% model

If one makes the boundary layer approximation, one can assume that the mean field
is in hydrostatic balance and that the derivatives of the mean field with respect to
space except for z are negligible. Coriolis terms are also neglected in the equations
of subgrid quantities. By inserting U = (U,V,W) and g = (0,0,¢) in (11.2.5)-
(11.2.6), we rewrite the prognostic equations of the mean field in the hydrostatic
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approximation as

a I !
DtUJr@z(uw)

D a., . .,
Dtv+8z(vw)

0

D
Dt@

Boundary layer 315

10P

= 7[3)% + £V, (11.3.27)
10P

- _ _ 11.3.2
oy I (11.3.28)
10P ~

= _paaz + ag®,, (11.3.29)
0

— -5 (w'6"). (11.3.30)
z

Using the boundary layer approximation, (11.2.35), (11.2.37), and (11.2.38) are

explicitly rewritten as

D,
= 2(Ps+ P, — 11.3.31
th l:lqsqaz :| ( s + b E)v ( 3.3 )
ww' = [ — C1q?) 8U + agu’t%] , (11.3.32)
q 0z
vw = 3h { —C1¢%) 3V Jrozgv’%} , (11.3.33)
q 0z
e
w2 = {2u w %U + 20w g‘zf + 4Pb} , (11.3.34)
3y [ 00 oU
17— —u'w’ —w'o’ 11.3.
u ¢ | uw' =Wl } , (11.3.35)
3l [ 00 ov
17— v —w'e 11.3.36
v . | vw' g —w'l ] , ( )
wl = 3l —u/Qa@ + ag@’@i)} , (11.3.37)
q | 0z
g2 = D299 (11.3.38)
q 0z
where
P, = fu’w’aU — v’w’av, P, = agwb, (11.3.39)
z 0z
e
= . 11.3.4
€ A (11.3.40)
In (11.3.31), S, = 0.2 is normally used.
Now, we assume that each vertical flux is expressed as follows:
oU ov
hwo o= —K o o= —K 11.3.41
ww Mg VW Moy (11.3.41)
o = 5,09 (11.3.42)

0z
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where the eddy diffusion coefficients Kj; and Ky are written by using nondimen-
sional parameters Sy, and Sp, respectively, as

K]y[ == qu]w, KH == quH- (11343)

Furthermore, we introduce nondimensional parameters that depend on the gradient
of the mean field:

2 [/oUN?  [ov?
Gy = 2 (az> + <az) , (11.3.44)
2 00,
— 11.3.4
Gy q2ag 55 (11.3.45)

and assume that all the length scales are proportional to a single length parameter
l as

(117A17l27A2) = (A17Bl7A27BQ) X l (11346)

Substituting the above equations into (11.3.32)—(11.3.40), and using 6 ~ 0,, we
obtain

Sjw(l + GA%G]W — 9A1A2G'H) — SH(12A%GH + 9A1A2GH)

= Ai(1-3C), (11.3.47)
SA1(6A1A2GM) + SH(I — 3A45BsGH — 12A1A2GH)
= A,. (11.3.48)

The above two equations determine Sy, and Spg. If we know the values of the mean
field U, V, ©, and the turbulent kinetic energy ¢?, Gar and G are determined from
(11.3.44) and (11.3.45), where ¢? is given by the prognostic equation (11.3.31). If
Sny and Sy are solved from (11.3.47) and (11.3.48), the eddy coefficients Ky, Ky
are given from (11.3.43). Thus, vertical fluxes can be calculated using (11.3.41)—
(11.3.42).1

Now that (11.3.39) can be rewritten in the forms

¢’ 7
Py = ZSMGM7 b, = ZSHGH7 (11.3.49)

let us define the Richardson number R; and the flux Richardson number R; by

00
g Gu
R = o - _ i (11.3.50)
( Oz ) + ( 0z ) M
gawlgl P, SuGH
R = = = - . 11.3.51
f ww' Y 4 v 8V P, SuGum ( )

It is known that the boundary layer Level 2% model is markedly abnormal for growing turbu-
lence. Some modification is needed for practical application as proposed by Helfand and Labraga
(1988), for example.
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In order to maintain turbulent kinetic energy, we need Ps + P, > 0 (i.e., Ry < 1).
We also have

Ps + Pb
€
Eliminating G in (11.3.47) and (11.3.48) with the use of (11.3.52), we obtain

Sy(1 —9A1A:Gy) — Sg(18A2 +9A,A5)Gy

= Bl(SMGM—‘rSHGH). (11.3.52)

6A, P, + B,
= A;(1- — 11.3.
1 < 3C, B, - > , ( 3 53)
SH[l — (3A2B2 + 18A1A2)GH]
6A1 Ps + Pb
= Ay |1-— . 11.3.54
2 ( B, e > ( )

These forms of simultaneous equations are used in the subsequent model.

11.3.4.2 The boundary layer Level 2 model

In the Level 2 model, all the derivatives with respect to time and diffusion terms
in the equations of second-order quantities are neglected. Since the left-hand side
of (11.3.31) becomes zero, we have from (11.3.52)

Ps + Pb

1 = . = Bi1(SuGum + SuGpr). (11.3.55)

Then, using (11.3.51), we obtain

1
SuGug = - (11.3.56)
Bi(1—-R;1)
By introducing
1 24, By + 644
= - = 11.3.57
Y1 3 B1 ) Y2 B1 ) ( )

we can solve (11.3.53) and (11.3.54) for Sy and Sy, using (11.3.56) as
o — Ry S B1— B2Ry

Sy = 7 - 7 11.3.58
. 1 — Ry SH B3 — BaRy ( )
where
o = 34, ay = 3Ax(n1+72),
B = AiBi(m —C1), [ = Ai[Bi(yn —C1)+64; + 345,
Bz = ABim, Bs = Ap[Bi(m +72) — 3A4].

If the values of the mean field U, V', and © are known, the Richardson number R;
is calculated from (11.3.50). From (11.3.50), (11.3.51), and (11.3.58), the relation
between R; and Ry is given by

Sk B3 —BuRy R,

Ry = R;

o= (11.3.59)
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Thus, we obtain the flux Richardson number by

Ry = 2;2 B1+ PaRi — \/(/31 + B4R;)? — 4/6’2/6’3]%1} , (11.3.60)

which is one of the solutions to (11.3.59) that satisfies Ry = 0 at R; = 0. Therefore,
we obtain Sy and Sy from (11.3.58). Next, from (11.3.49) and (11.3.44), we have

U\’ (v ?

0z 0z
Using (11.3.40), (11.3.55), (11.3.51), and (11.3.61), the turbulent kinetic energy ¢*
is given by

3

P, = qlS]MGM = 1gSy . (11.3.61)

P = Alz = Bll(l—Rf)is
oUN*  [oVvY?
= Bil*(1 — Ry)Su <az> + (az> . (11.3.62)

Hence, from (11.3.43), we have the eddy diffusion coefficients by

= et (0) 4 () (1565

Kn = Mg, = zQS},\/<8U>2+ <av>2’ (11.3.64)

Su 0z 0z

where

S, = Bf(1—Rp)S%, Sy = Bi(1—Rp)ES2SH. (11.3.65)

Mellor and Yamada propose the following values for the coefficients in (11.3.46):
(A1, By, A3, By, C1) = (0.92,16.6,0.74,10.1, 0.08).
In this case, we have
(a1, 0, b1, B2, 03, 04) = (0.49,2.58,2.18,9.30,2.73,12.2).

The length scale [ of the boundary layer model may be given by the following
formula:

kz

I !
Okz 11y

(11.3.66)
where [y is an appropriate length and k is the von Kdrman constant: k = 0.40. [
represents the length scale of turbulence. [ is proportional to z when z is small,
and converges to [y for a sufficiently large z. [y is sometimes simply specified as a
constant value, say lp &~ 200 m. Eq. (11.3.66) is the more accurate form of (11.3.6)
that is used for derivation of the logarithmic law.
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Figure 11.4 shows the relation between R; and R given by (11.3.60). We can
see Ry < (3/04 = 0.223 for R; > 0. Figure 11.5 shows the relation between Sy,
S and Ry given by (11.3.58), and the relation between S}, S, and R given by
(11.3.65).

Results from the Level 2 model can be compared with Monin-Obukhov’s simi-
larity theory described in Section 11.3.3. For simplicity, we set V' = 0. The friction
velocity u, is calculated from (11.3.5), (11.3.41), and (11.3.43) using the expression
for ¢ (11.3.62), and the deviation of potential temperature 6, is from (11.3.10),
(11.3.42), and (11.3.43):

2 aU > LU
Usx = |u’w’| = (quM 92 > = [Bl(l — Rf)S]?Q]‘ll 55 (11367)
’0/11}/‘ B quH a@ . " ) a@
b = we  u, 0z [B1(1 — Ry)Sg/Sm] Lo, (11.3.68)

Thus, by assuming [ = kz for near-surface flows, the universal functions (11.3.19)
are given as

kz oU

om(Q) = o = [Bi(1 — Ry)S3,) 1, (11.3.69)
ou(() = gfg(j = [Bi(1—Ry)Sk/Sul ™4, (11.3.70)

where, from (11.3.21),
z

¢ = ; = ouly (11.3.71)

Figure 11.6 shows the profiles of ¢y and ¢z with respect to ¢ obtained with the
above formulas. As Ry = ay/as — 0.19, ¢u, ¢, and ¢ asymptotically approach
infinity. In the neutral case Ry = 0, ¢ = [B1 (B1a1/ﬁ3)3]_1/4 = 1.0 is satisfied.
It has been shown that the above profiles are comparable with observational data
(Mellor and Yamada 1982).
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FIGURE 11.4: Relation between the Richardson number R; and the flux Richardson number Rjy.
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FIGURE 11.5: Relations between the flux Richardson number Ry and the parameters Sy and Spy
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FIGURE 11.6: Profiles of the universal functions ¢j; and ¢ with respect to the nondimensional
height ¢ obtained with the Mellor-Yamada Level 2 model.
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In this second part, the basic mechanisms maintaining atmospheric structure
are described from various perspectives. The structure of atmospheric general cir-
culation is discussed based on the governing dynamics of atmospheric general circu-
lation. We consider how atmospheric structure is realized in terms of the latitudinal
one-dimensional structure, the vertical one-dimensional structure, the meridional
two-dimensional structure, and spherical motions.

In Chapter 12, the energy balance of the entire earth is considered. Following
on from this, the energy budget in the latitudinal direction is discussed in Chapter
13, while the vertical structure of the atmosphere is described in Chapter 14.

The atmospheric vertical structure is controlled by moist processes. In Chap-
ter 15, we consider moist convection and its role in the vertical structure of the
atmosphere. Large-scale circulations in tropical atmosphere can be viewed as moist
convective motions. In Chapter 16, as a representative of such moist large-scale cir-
culations in low latitudes, we consider Walker circulation and Hadley circulation.

In Chapter 17, the spherical motions on the earth are discussed based on the
concepts of wave propagation and the angular momentum budget. In Chapter 18,
midlatitude circulations are considered in terms of meridional circulations. Finally,
global-scale mixing motions are reviewed in Chapter 19.



12

Global energy budget

To characterize the global atmosphere, globally averaged quantities of the whole
atmosphere can be used. Corresponding to the governing equations of the atmos-
phere (i.e, the conservations of mass, momentum, and energy), we obtain the global
budgets of conserved quantities: mass, angular momentum, and energy.

The global budget of the atmospheric mass plays an important role in the evo-
lution of the atmosphere on the time scale of the Earth’s history. The change in the
total mass of the atmosphere occurs through mass exchange with the solid Earth or
the ocean at the lowest boundary, or with outer space at the uppermost boundary.
On a daily scale, evaporation and precipitation of water at the surface contributes
to fluctuation of the total mass of the atmosphere.

The global budget of the total angular momentum of the atmosphere can be
given from the global integral of the conservation of angular momentum of the
atmosphere around the rotation axis of the Earth. Atmospheric total angular mo-
mentum changes through the exchange of angular momentum with the ground sur-
face at the lowest boundary. In the case of the Earth, in particular, the exchange
of angular momentum with the ground has a characteristic latitudinal distribution.
This implies that the global angular momentum budget is closely related to the
meridional circulation of the atmosphere. Thus, the angular momentum budget
will be discussed in Chapters 16 and 18.

In this chapter, we concentrate on the energy budget of the global atmosphere.
We review the energy budget of the global atmosphere and explain its theoretical
basis. In particular, we show global views of energy budget, energy transformation,
and thermal efficiency.

12.1 Energy budget

12.1.1 Effective temperature and global radiative equilibrium

Change in the total energy of the Earth (i.e, the atmosphere-ocean-solid Earth
system) is determined by energy exchange with outer space at the top of the

M. Satoh, Atmospheric Circulation Dynamics and General Circulation Models, 326
Springer Praxis Books, DOI 10.1007/978-3-642-13574-3 12, © Springer-Verlag Berlin Heidelberg 2014
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atmosphere. In practice, energy exchange between the Earth and outer space takes
place in the form of radiation. The energy inflow from outer space to the Earth
is in the form of solar radiation, and the energy outflow from the Earth to outer
space is in the form of planetary radiation, which is called longwave radiation. The
heat source within the solid Earth is negligible compared with these radiative fluxes
if the atmosphere-ocean energy budget is considered. Let the total energy of the
Earth be denoted by E'!, the total inflow of solar radiation by F*" (isr = incom-
ing shortwave radiation; hereafter referred to as ISR), and the total emission of
longwave radiation by F°" (olr = outgoing longwave radiation; hereafter referred
to as OLR). The equation of the total energy budget is given as

dEtot
dt

where the unit of F*" and F°" is W, and that of E*? is J. In general, since ISR
and OLR depend on location, they are referred to as a quantity per unit area with
unit of W m~2. However, we use a quantity integrated over the globe to examine
the global energy budget in this section (see Section 12.1.2).

We mainly consider the balance of energy over a long time average that statis-
tically could be considered an equilibrium state represented as an annual average,
for instance. In this case, the seasonal change of radiative fluxes will be eliminated,
and then the time derivative on the left-hand side can be neglected:

— s 7folr’ (1211)

0 = Fir— Folr, (12.1.2)

Solar radiation per unit area normal to the direction to the Sun at the orbit of the
Earth is called the solar constant F©. It is inversely proportional to the square of
the distance between the Earth and the Sun. If we assume that the atmosphere
is bounded by a sphere with radius R, total solar radiation radiated to the Earth
Fol is written as

Fl = F9.rR? (12.1.3)

where mR? is the area of the cross section of the Earth. Generally, some solar
radiation radiated to the Earth is reflected back to outer space at the atmosphere
or at the ground. The ratio of reflected radiation to total solar flux is called the
planetary albedo A, which is related as

Fisr = (1 - A)F. (12.1.4)

If all the atmosphere is regarded as a blackbody with temperature T,, planetary
radiation emitted to outer space F°" is given by the product of blackbody radiation
opT? and the area of the surface of the Earth:

Folr = opTh 4nR?, (12.1.5)

where op is the Stefan-Boltzmann constant (10.1.8). If the outgoing longwave
radiation F°" is known, on the other hand, the temperature 7, defined by (12.1.5)
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is called the effective temperature. Substitution of (12.1.4) and (12.1.5) into (12.1.2)
yields the equation of energy balance:

opT!-4tR* = (1—A) F®.7R% (12.1.6)
Thus, effective temperature is expressed in terms of the solar constant and albedo
as
1
(1—A)F@7+
T. = . 12.1.7
R (12.1.7)

The typical value of the effective temperature of the Earth is T, = 254.9 K for F© =
1367.7 W m~2 and A = 0.3. This temperature value is considerably lower than the
mean surface temperature of the Earth, about 288 K. In general, effective tempera-
ture T, is different from surface temperature. The difference can be explained by
taking account of the vertical structure of the atmosphere (see Chapter 14). The
difference between T, and surface temperature is caused by the greenhouse effect.

In general, the outward planetary radiation at the top of the atmosphere F°"
depends on the vertical profiles of atmospheric temperature and absorbing quan-
tities. For illustrative purposes, let us simply assume that F° is determined by
a representative value of atmospheric temperature [T'], which is chosen as a global
mean of surface temperature or averaged temperature over the whole atmosphere.
As a simplest form of the relation between F°" and [T], we use a linear function
as

j:'olr
47 R?

where Fy and B are empirically determined constants and Ty is a reference temp-
erature (e.g., Tp = 273.15 K). The effects of vertical distributions of temperature
and absorbing quantities are represented by these constants. If the mean tempera-
ture [T] is close to the effective temperature T,, we obtain the values of Fy and B
by linearizing (12.1.5) about Tp. Using [T] = Tp + AT, we have

= Fy+B(T)-Ty). (12.1.8)

op[T]* = op(To+AT) =~ opTy+ 40T AT. (12.1.9)
Thus, in this case, we have

Fy = opTy = 3157 Wm™2, (12.1.10)

B = 40Ty = 46 Wm 2 KL (12.1.11)

In practice, however, since [T] is different from T, empirically determined values
of Fy and B are used to estimate F°". For instance, Crowley and North (1991)
use Fy = 210 Wm~2 and B = 2.1 W m~2 K~ for their energy budget analysis.
Making use of (12.1.8), we rewrite the equation of the energy balance (12.1.6) as

FO

4
This linearized equation will be used in the following theoretical analysis of the
energy budget.

Fo+B(T)-Ty) = (1-A4) (12.1.12)
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Let us introduce climate sensitivity, which is a measure of the sensitivity of
the atmospheric mean state to changes in external parameters. For example, if
we choose solar radiation F'© as an external parameter, climate sensitivity can be
defined by

F® d[T)]
= 12.1.13
which represents the change in mean temperature [T] for a given change in the ex-
ternal parameter F'©. Using the equation of energy balance (12.1.12) and assuming
that Fy, B, and A are constant, we estimate climate sensitivity with respect to
solar radiation as
1— A)F® T
g = ( ) - 9Bl (12.1.14)
4BI[T] B[T]
where the effective temperature (12.1.7) is used. In the case of Ty = T, = [T,
we have 3 = 0.25 if we use a theoretical value (12.1.11). If we instead use a more
realistic value B = 2.1 W m~2 K~!, we obtain 8 = 0.40.

12.1.2 Energy conversion

The total energy of the atmosphere consists of kinetic energy, potential energy,
and internal energy. The balance of each energy is given by (1.2.35), (1.2.39), and
(1.2.42), respectively, and the conservation of total energy is given by (1.2.47).
These equations are rewritten in advective form as

v —a(v'—a’v‘)—&-Vv— v VO —¢ (12.1.15)
Pa 2 T Ty M T OUITR ’ 7 h
dd
0.V 12.1.16
P g pv -V, ( )
d
pd;‘ — _V.F“°_pV.v+e, (12.1.17)
d (v? 0
Py (2 +u+<1>) = o (pvj —vioy; + Fy) (12.1.18)

where o;; is the viscous stress tensor, ¢ is the dissipation rate, and F“*“ is the

heat flux given by the sum of the radiative flux F™*® and the thermal diffusion flux
Ftherm:

Fere  — FTad + Ftherm' (12119)

If the effect of the hydrological cycle is considered, the transport of internal energy
contains a contribution from the transport of water vapor. In this case, the heat
flux in (12.1.19) is further divided as

Ftherm — FSh + Flh. (12120)

F'™ is called the latent heat flux due to water vapor, and the thermal diffusion
flux F*" is called the sensible heat flux. The energy budget in the case that the
hydrological cycle exists will be further considered in Section 12.2.
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The energy budget of the whole atmosphere can be given by integrating (12.1.15)—
(12.1.18) over the whole domain of the atmosphere D. Let S denote the boundaries
of the atmosphere (i.e., the top and bottom boundaries, Sy and Sp, respectively).
The top boundary St is set at a sufficiently high altitude, and the bottom boundary
Sp is the ground surface of the solid Earth or the sea surface. The integrals of the
equations of kinetic energy, potential energy, internal energy, and total energy are
respectively written as

d
WK = Bs+W-Ce-D, (12.1.21)
;:G - (12.1.22)
;I — F_wW+D, (12.1.23)
c;iEtOt — Byt 7, (12.1.24)
where
02
KE/de‘/, GE/p@dV, ]'E/pudv7
D D D
2
Ftot  — /p(v2 +u+<I>> dV =K+ 1+G. (12.1.25)
D

K, G, I, and E*! are the domain integrals of kinetic energy, potential energy,
internal energy, and total energy of the atmosphere, respectively.” In (12.1.21)-
(12.1.24), the source and sink terms and the transformation terms of the energies
are given by

w = /10V-vdV7 Cq = /,o'U~V<I>dV7 D = /st,
D D D

(12.1.26)

F o= 7/ V. FUeqy = f/Fe”“ndS, (12.1.27)

D S
_ 9 ' _ /

Bs = /Daxj (pv] vlaij) dV = /SB(pU n Uijvm])d&

(12.1.28)

where n denotes the outward unit vector normal to the boundaries; n is upward
at the top boundary St, and is approximately downward at the bottom boundary
Sp. These transformations of energies are schematically shown in Fig. 12.1.

THereafter, Ett is the total energy of the atmosphere, while, in (12.1.1), E®°! represents that
of the total Earth system.
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F

FIGURE 12.1: The transformations of energies. K, G, and I are the domain integrals of kinetic
energy, potential energy, and internal energy, respectively. The symbols Bg, Cg, W, D, and F
are energy transformation terms.

Over a long time average, the time derivatives on the left-hand side of (12.1.21)-
(12.1.24) become negligible. In this case, we have the following balances:

Bs+W—-Cs—D = 0, (12.1.29)
Cc = 0, (12.1.30)

F-W+D = 0, (12.1.31)

Bs + F 0. (12.1.32)

The exchange of energy between the atmosphere and the outside of the atmosphere
is in the form of Bg and F. The term Bg exists only when the wind velocity of the
atmosphere at the boundaries is nonzero (i.e., the interface between the atmosphere
and the ocean generally has motion, which might have a contribution to Bg). We
neglect this term, however, by assuming that this contribution is small. Then, we
have the following balances of energy transformation:

F o= o, (12.1.33)
W = D. (12.1.34)

The latter is an important consequence of the kinetic energy budget, and is the
balance between the generation term of kinetic energy ¥V and the dissipation term
D. W can also be interpreted as follows. Using hydrostatic pressure ps and density
ps which satisfies

0 = —Vps—psVO, (12.1.35)

and p' = p — ps, p' = p — ps, the sum of the two source terms of kinetic energy is
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rewritten from (12.1.26) as

W—-Cq = /(pV-'vfpvqu))dV
D

f/ v-(Vp+p-VP) dV:f/ v (Vp' 4+ p'V®) dV
D D

/
—/ U.Vp'dV—/ p(—pwg> av, (12.1.36)
D D p

where ® = gz is used. Although the choice of hydrostatic state is not unique, the
second term on the right is regarded as the work done by the buoyancy force, and
the first term is generally small.T Over a long time average, making use of (12.1.30),
we have

/
W o~ 7/ p(pwg> dv. (12.1.37)
D p

This means that W is interpreted as the work done by the buoyancy force in the
whole domain. It may be noted that, since the potential energy G is statistically
constant in an equilibrium state, the work done by the buoyancy force has no
contribution to the budget of potential energy.

Flux F gets contributions from radiation, sensible heat, and latent heat fluxes
as given by (12.1.19) and (12.1.20). Sensible and latent heat fluxes exist only at
the bottom boundary of the atmosphere Sg. As for radiative flux, we decompose
it into solar flux and planetary flux according to its wavelength:

Frad _ F7‘adl+F7'ads' (12138)

Fr ig the radiative flux of the longer wavelength region, corresponding to plan-
etary radiation, and F"%% is that of the shorter wavelength region, corresponding
to solar radiation. We furthermore distinguish the contributions of each flux at the
top and bottom boundaries:

fgadl = _ / FTadl n dS’ fgads = — / F7‘ads n dS,
Sp Sp

]:;adl = Fradl -n ds’7 ]:;ﬂds = Frads ‘n dS,

St St
j:'therm = Ftherm n dS7
SB
and
F = 7‘7:'%(1(18 . f%adl + fgads + fgadl + jjtherm' (12139)

Here, the fluxes at the top of the atmosphere St and the bottom of the atmosphere
Sp are designated by subscripts T' and B, respectively. Note that in this convention,

TFor geostrophic components, vy ~Vp’g = 0 is satisfied. For turbulent motion, we also use the
similar assumption (11.2.31).
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each of the integrated fluxes on the boundaries is positive if it is upward. The two
fluxes at the top boundary, f%“ds and .7-';‘“”7 are related to net incoming solar flux
Fs" and the infrared flux emitted from the atmosphere F°", respectively:

f;adl _ f0l7'7 (12140)
fr}ads — 7fisr _ 7(1714)_7:'501’ (12141)

where (12.1.4) is used. The flux defined by (12.1.39) is the sum of incoming energy
fluxes to the atmosphere at the top and bottom boundaries. These fluxes are also
grouped into contributions at each of the top and bottom boundaries as

Fr o= Fp+Fpd, (12.1.42)
]:B _ ]:gads 4 ]:gadl 4 ‘7_~the7'm7 (12143)
F = —FpiFg (12.1.44)

In general, heat transfer from the Earth’s interior at the ground is negligible for the
atmospheric energy budget. In the case of a long time average where the tendency
of total energy is negligible, we have

Fr = Fg = 0 (12.1.45)

(i.e., no net flux exists at both the top and bottom boundaries). This relation
corresponds to (12.1.2).

The observed annual global mean energy budget is shown in Fig. 12.2 after Kiehl
and Trenberth (1997). The values are shown by energy fluxes per unit area. Under
the assumption that the depth of the atmosphere is sufficiently shallow compared
with the radius of the Earth, let S denote the surface area of the Earth:

S = / s = / dS = 47R% (12.1.46)
ST SB

The values of the terms in the energy balance (12.1.39) are estimated as

~Fp S = Frh)S = 342—107 = 235 Wm?,

Frads/S = 168 W m~2,
f]gadl/s = 390—-324 = 66 W m 2,
]_—tBher’m/S = 78424 = 102 W m~2.

Each of the upward and downward radiative fluxes plays important roles in the
global budget. This will be discussed in Chapter 14. It is also important to under-
stand the relative magnitude of fluxes. Planetary albedo is the ratio of upward
solar flux to downward solar flux at the top of the atmosphere, and is estimated as
A =107/342 = 31%. Thermal flux at the surface F""™ is composed of sensible
and latent heat fluxes at the surface, which will be described in Section 12.2.
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FIGURE 12.2: Annual and global mean energy balance. Energy fluxes per unit area are shown
with unit W m~2. After Kiehl and Trenberth (1997). (c)American Meteorological Society. Used
with permission.

12.1.3 Total potential energy

The sum of internal energy and potential energy is called total potential energy.
The term, total potential energy, is in contrast to available potential energy which
is defined in the next section. The global integral of total potential energy is defined
as

P = I+G = /p(u+<I>)dV. (12.1.47)
D

In the case that the atmosphere is in hydrostatic balance, we can derive some useful
relations on the total potential energy of an air column per unit square. We use
the hydrostatic balance
dp
0 = ¥ _ 12.1.48
5, ~ P9 ( )
Dividing (12.1.25) by the area of the Earth’s surface S = 47 R?, we obtain the
energies of an air column as

K 2 Po 22 dp
Ko = = dz = s
l S /zo Pa® /0 2.9
I Po g Po ]
Icol = = / u pa Gcol = ¢ = / ¢ pa
N 0 g N 0 g

Etot Po 2 d
Ezg; = S = / (1}2 +u+ (I)> gp = col + Icol + G0017 (12149)
0
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where zq is the height of the Earth’s surface and pg is the surface pressure. Note that
the right-hand side of these equations represents horizontally averaged quantities;
we omit the symbol for the horizontal average ( ).

A simple relation holds between potential energy and internal energy under
hydrostatic balance. Multiplying (12.1.48) by z and integrating the product over
an air column, we have

0 = f/ zapdz—/ pgzdz
zZ0 az zZ0
= pozo+/ pdz—/ pzgdz, (12.1.50)
zZ0 zZ0

where we use p — 0 as z — oo at the top boundary. This relation is a special case
of the wvirial theorem.” In particular, in the case zg = 0 and g = const. such that
® = gz, we obtain?

Geol = / pgzdz = / pdz. (12.1.51)
0 0
Thus, the total potential energy of a unit column is
o o Po dp
Pcol = Icol + Gcol = / (,Du + p)dZ = / ,thz = / h 5
0 0 0 g
(12.1.52)

where h = u + p/p is enthalpy.? Total potential energy is determined as a thermo-
dynamic quantity and does not depend on fluid motions. In particular, in the case
of hydrostatic balance, total potential energy is uniquely determined by tempera-
ture distribution on isobaric surfaces. For the ideal gas with constant specific heats,
we have

Po d
Pt = / CpTgp. (12.1.53)
0

In this case, we have simple relations

Geol _ [)p0 Rdep/g _ Ry Geol _ Ry Ieol o Cy

- _ v — =, 12.1.54
Icol fé?o Cdep/g Cv Pcol Cp Pcol Cp ( )

Using potential temperature 6 in (1.1.52), total potential energy is further rewritten

TThere are several expressions of the virial theorem in fluid dynamics. See Chandrasekhar
(1961) and Lebovitz (1961). In Salmon (1988), the virial theorem is derived from the Lagrangian
expression. Derivations of the virial theorem in macroscopic representation of a system of particles
can be found in Landau and Lifshitz (1996) and Chandrasekhar (1958).

¥The following expressions can be generalized for the case zg > 0 by using the notation p = 0
and p = po for z < zp.

8Tt should be noted that total potential energy equals the vertical integral of enthalpy only
when the acceleration of gravity g is constant.
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as
Po Hd 1 C 1 oo
Por = / Cp9< p) P = p . (epn-i-l go+/ p”+1d0>
0 Doo g 1+K 9 phy o
1 1 o0
= ] / prHae, (12.1.55)
1+x g p5o Jo

where Kk = Rq/Cp and poo = 1,000 hPa. In this expression, we formally specify
p = po for 6 < Oy, where p is the surface pressure.

The energy budget in the global domain is written as the exchange between
total potential energy and kinetic energy. From (12.1.21)—(12.1.23), we have

d

p K= w-p-ca (12.1.56)
ZP = F-W+D+Cq. (12.1.57)

Here we have neglected the contributions of Bg. Based on the exchange between
the global integral of enthalpy and that of kinetic energy, we have different forms of
the transformation from total potential energy to kinetic energy W — Cq as shown
below. From (1.2.34), the equation of kinetic energy is given as

d v? 9

Pgpog = ~V Vp—pv-VP + 0z 0}V — €. (12.1.58)

The sum of the first and the second terms on the right-hand side is rewritten as

d 0 d® 00
()

—v-Vp—pv -V

dt ' ot dt ot
_ _cép_p(dq) L )
t dt ot
= —w-—p [VH - (Qvm) + aap(@w)} , (12.1.59)

where w = dp/dt and the symbol |, denotes a derivative along a constant p-surface.
From (1.2.64), the equation of enthalpy is given by

dh

Py = wHe—V-F" (12.1.60)
Using v = 0 at the boundary, the global integrals of (12.1.58) and (12.1.60) give

ZK = C—D+Bp, (12.1.61)

C‘;Ih = F-C+D, (12.1.62)
and the sum of the two is written as

d (K+1,) = F+Bp, (12.1.63)

dt
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where
oo Po dp
I, = phdV = phdzdS = h " dS, (12.1.64)
D SB Z0 Sp JO g
[e'e) Po
C = f/de = —/ / wdzdS = 7/ / wadpds,
D SB zZ0 SB 0 g
(12.1.65)
0
Bp = —/p[VH~(<I>vH)+ (@w)] dV
D dp
Po 0 dp
= — Vg (dvg) + @w} ds
L[ |va wom+ 5 @)
= */ W],—p, 20dS, (12.1.66)
SB

and a = 1/p is the specific volume. In (12.1.66), we have assumed that vy = 0
at the surface and g is constant. These equations are also given directly from the
global integral of the energy equations in isobaric coordinates, (3.3.48), (3.3.50),
and (3.3.51). By comparing (12.1.56) with (12.1.61), we generally have

W-—-Cq = C+Bp. (12.1.67)

This is just the global integral of (12.1.59). In particular, in the case of zy = 0, we
have Bp = 0 and the global integral of enthalpy agrees with total potential energy:
I, = P. We also have W — Cg = C in this case. Over a long time average, Cg = 0
from (12.1.30). Thus, using (12.1.34), we obtain

W — D — C (12.1.68)

In Fig. 12.3, the latitudinal distributions of column-integrated energies are
compared; these values are calculated for a typical atmospheric state. As shown

w

T
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Ieol

>
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—_
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Energy [10° J m™2]
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FIGURE 12.3: Latitudinal distributions of the various energies of an air column per unit square.

I.op: internal energy, G.o: potential energy, K ,: kinetic energy, P.,: enthalpy, and P,y s:

enthalpy of a reference state used to calculate available potential energy (see Fig. 12.4). The
values of kinetic energy are multiplied by 100.

é
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by (12.1.54), simple relations Geor/Icoi = Ra/Cy ~ 0.4 and Ioo;/Peot = C, /Cp = 0.7
hold. It can be found that the domain integral of kinetic energy of the atmosphere
is much smaller than that of total potential energy. Using a typical velocity scale
V ~ 10 m s~ !, average temperature T ~ 250 K, and the specific heat at constant
pressure Cp, ~ 1,000 J kg=! K™, the ratio of the two energies can be estimated as

Kcol ~ V2 - 1

~ ~ . 12.1.69
P c,T 2,500 ( )

12.1.4 Available potential energy

As shown in Fig. 12.3, total potential energy is a thousand times larger than kinetic
energy; thus, direct comparison of the two energies is not appropriate for the energy
budget of the atmosphere. This fact motivates us to define the available part of total
potential energy that can be converted to kinetic energy so that we can consider the
kinetic energy budget. Such a part of potential energy is called available potential
energy.t The following characteristics are required for available potential energy.

- The sum of available potential energy and kinetic energy is conserved under
adiabatic motion.

Available potential energy is determined solely by the distribution of mass.

Available potential energy is zero if stratification is horizontally uniform.

- Available potential energy is always positive unless stratification is horizon-
tally uniform.

To fulfill the above requirements, available potential energy can be defined as the
difference between the total potential energy of the atmospheric state to be consid-
ered and that of a suitably chosen reference state. Here, the choice of reference state
introduces arbitrariness, so that available potential energy is not uniquely defined.
In general, not all the available potential energy thus defined can be convertible
into kinetic energy.

As areference state, one can choose a state with adiabatic redistribution of mass;
all the air parcels of a given state are kinematically redistributed to a horizontally
uniform state by keeping their potential temperature. A typical example of the
distributions of potential temperature of the two states is shown in Fig. 12.4. We
can show that the average pressure over an isentropic surface p() does not change
under adiabatic redistribution, where p(6) is defined as

o) = fp(w;‘;,ﬁ)ds.

xp, is the horizontal projection of a position vector, and dS that of an area element.
In this expression, we formally assume that p(xp,0) is set to the surface pressure

(12.1.70)

f Available potential energy is formulated by Lorenz (1955). There are different ways to define
available potential energy. A unified view of available potential energy is presented by Shepherd
(1993).
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FIGURE 12.4: Meridional distribution of annually averaged potential temperature and its reference
state given by adiabatic redistribution. The difference in total energy between the two states is
available potential energy. The contour interval is 5 K.

po below the ground (i.e., in the region where € is smaller than the surface value

o). Integrating the conservation of mass in isentropic coordinates (3.3.65) along
an isentropic surface and integrating in the vertical direction, we have

jt // po(xn,0)do' dS + /pg(ach,a’) 0ds
0
Using (12.1.70) and (3.3.62), we have

// po(xn,0)d0'dS = —;/ds-p(ﬁ). (12.1.72)

For the adiabatic motion 6 = 0, therefore, (12.1.71) becomes

oo

= 0. (12.1.71)
6

pd) = 0. (12.1.73)

Now we add subscript s to the quantities of the reference state. The pressure
distribution of the reference state is denoted by ps(0) = p(f). Available potential
energy is defined as

A = P-P, (12.1.74)
and available potential energy per unit air column is
Acol = Pcol - Pcol,s- (12175)
Since from (12.1.55)
1 C, 1 o
Peols = i / p e, (12.1.76)
1+x g pGy
we obtain
1 C, 1 o
At = " / (et = p+1) ap. (12.1.77)
1+x g pgo
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It can be shown that this quantity is positive if the difference between pressure
p and p is small enough. Letting the average potential temperature on a pressure
surface be denoted by 6 = 6(p) and deviations from the reference state by p’ = p—p
and 0/ = 0 — 0, we have

-1

dp o
- 0 = 0. 12.1.
v~ ( dp) (12.1.78)

Therefore, available potential energy is approximated as
2
K Cyp i /Oopnﬂ <P'> do
2.9 Pbo Jo p
-1

kCp 1 /po 1 ( d0>
. Pt | — dp. 12.1.79
2 9 pGo Jo dp ( )

Acol

Q

Q

Since the atmosphere is stably stratified with — gﬁ > (0 in general, available potential
energy takes a positive value.

If the reference state is independent of time, the tendency of available potential
energy equals that of total potential energy. Using (12.1.67) under the condition
Bp =0 and (12.1.74), Egs. (12.1.56) and (12.1.57) become

d

th = F-W+D+Cs = F-C+D, (12.1.80)
d
dt(K A) = F. (12.1.81)

If 7 = 0, the sum of kinetic energy and available potential energy is conserved.

It should be remarked that all available potential energy is not necessarily avail-
able. Recall the conservation of angular momentum, another conserved quantity in
the system: it is not always possible to transform a given atmospheric state to the
reference state by adiabatic redistribution without friction. In this case, one may
consider a zonally uniform axisymmetric state in geostrophic balance as a reference
state. However, such a state is not uniquely determined.

12.2 Energy budget of a moist atmosphere

The energy budget of a moist atmosphere is formulated in two different ways. The
first is by using the thermodynamic quantities of a dry atmosphere. In this case,
the dry enthalpy C,T is used. When water vapor is condensed, a dry atmosphere
gains its energy due to the latent heat release of water vapor. The other method is
by using the thermodynamic quantities of a moist atmosphere, in which enthalpy
is represented by C,T + Lg. A moist atmosphere gains its energy in the form of
latent heat when water vapor is supplied by evaporation at the ground surface.
Let us formulate the global budget of a moist atmosphere using the above two
methods. Integrating the water vapor equation (9.6.1) over the whole domain gives

d
gyl = &P (12.2.1)
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where
I, = /pqu, £ = f/ i-ndS, P, = —/ SqdV. (12.2.2)
D Se D

&, is total evaporation from the surface, and P, is total precipitation. The contri-
bution of the diffusion of water vapor % is considered only at the bottom boundary
Sp (its contribution at the top boundary St is thus neglected).

Rewriting the energy equation of a moist atmosphere (9.6.9) in the same form
as (12.1.60) with h = C,T, we obtain

d
pdth = w+e—-V-F" - LS, (12.2.3)
The global integral of this equation gives
d
wln = F-C+D+LP,. (12.2.4)

By comparison with (12.1.62), latent heat release LP, is added on the right-hand
side. This equation is the budget of dry enthalpy in a moist atmosphere.
Next, from the sum of (12.2.4) and (12.2.1) multiplied by L, we obtain
d
dt
I + LI, is the global integral of moist enthalpy h,, = C,T + Lg. Eq. (12.2.5)
corresponds to the global integral of (9.6.8). L&, is the supply of latent heat from
the surface due to evaporation, and is expressed as

(In+LI,) = F-C+D+LE,. (12.2.5)

Fr = g, = — | F".ndsS = —L/ i-ndS. (12.2.6)
SB SB

The energy budget of a moist atmosphere is formally given by replacing F by
F 4 LP, in the energy budget of the dry atmosphere described in Section 12.1.2.
In particular, the conservation of total energy (12.1.24) becomes
dEtot
dt
Over a long time average, therefore, the energy balance is given by
F+LP, = —Fp® — Fpedt 4 Fpeds 4 Fedt 4 72+ LP, = 0,
(12.2.8)

where (12.1.39) is used and surface stress is neglected: Bg = 0. Since F'" = LP,,
the energy balance is also written as

—Fpde — Pt 4 Fpd 4 4 F4 F = 0. (12.2.9)

According to Fig. 12.2, the observational values of sensible and latent heat fluxes
and latent heat release are

FrS = 24 Wm™2,
LP,/S=F"/S = 78 Wm2

The ratio of sensible heat flux to latent heat flux is called the Bowen ratio, and is
estimated as b = 24/78 = 0.3 for the global value.

= Bs+F+LP,. (12.2.7)
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12.3 Entropy budget and thermal efficiency

We can obtain a constraint on heating in the atmosphere by using the balance
of entropy over a long-time-averaged state (i.e., a statistical equilibrium state).
Quantities over a long time average are denoted by [ ] in this section. In order to
generalize the thermal balance for both cases (i.e., dry and moist atmospheres),
we include latent heat release in the diabatic term. Integrating the diabatic term
(9.6.13) gives

/pC'deV = /sdvf/(V~F”’d+V~FSh)dV—/LSqu
D D D D
= D+F+LP,. (12.3.1)

We have [F + LP,] = 0 from (12.2.8). Since the dissipation term is always positive
D > 0, we obtain

{ / C,Q dV} — D] >0 (12.3.2)
D
Letting diabatic terms other than the dissipation term be denoted by
1 5
Q. = — V- Frlyv.F"+LS) = Q- , 12.3.3
pcp ( q) pcp ( )
we have
{ / pCyQn dv} — [F+LP] = o0 (12.3.4)
D

To illustrate the role of the entropy budget, here we divide the whole atmosphere
into two domains: one where @, is positive and the other where @, is negative; the
former domain is denoted by Dy and the latter by D_. From the energy balance
(12.3.4), the total integral of heating over the domain D is equal to that of cooling
over the domain D_:

AR (123.5)
where
[Fi] = / pCpQyn dV >0, (12.3.6)
Dy
[F_] = —/ pCpQn dV > 0. (12.3.7)
D_

Now let us consider the balance of entropy. In the case of a moist atmosphere,
the equation of entropy (1.2.53) is written as

ds B CpQ - CpQn
Py = P p T ptPop

e V- (F™+F") LS,

12.3.
T T T (12.3.8)
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Integrating over the whole atmosphere gives

d C,Q € C,Q
av = P2av = av PEm V. (12.3.9
U /D ps /D P /D 7 dV /D P ( )
Since the left-hand side vanishes over a long time average, we obtain
C
U p »Q dV] = 0, (12.3.10)
p T
or
9 C Qn
d = - Pt a 12.3.11
o] = =[] >0 @210

where its sign is determined from ¢ > 0.
At this point, let us introduce thermal efficiency. We need to define the average
temperatures in the heating region D4 and the cooling region D_ respectively by

= (L]

- VD+ pC;Q" av| - [;H’ (12.3.12)
Tl, - VD pC;Q" av / /leCandV

S V pC;Q" av| - [fl_]. (12.3.13)

In addition, we define an average temperature Tp over the whole domain as a
weighted mean by the dissipation rate:

R R

Using these temperatures, (12.3.11) is written as

o] F] P
T, = Ti + (12.3.15)

Thus, from (12.3.5), we have an expression,

b _ (T =T)Tp AT, (12.3.16)
7] T.T. (1)
where AT =Ty —T_ and (T) = T.T_/Tp. AT is the temperature difference
between the heating and cooling regions, and (T') is another average temperature
of the atmosphere. Eq. (12.3.16) can be viewed as a definition of thermal effi-
ciency; [F4] is the heating source due to the convergence of thermal flux given to
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the atmosphere and [D] is equal to work done by the atmosphere [W], as seen in
(12.1.34). Eq. (12.3.16) states that the ratio of the work done by the atmosphere
to total energy input is given by the ratio of temperature difference between the
heating and cooling regions to average temperature.

We can obtain a different type of constraint on heating using the equation
of potential temperature instead of that of entropy. The equation of potential
temperature (1.2.56) is rewritten as

d0 Po "
- . 12.3.1
P gt p(p) Q (12.3.17)

Integrating this over the whole atmosphere gives

d Po "
gdvV = / ( ) v 12.3.18
i /Dp N Q ( )

Since the left-hand side becomes zero over a long time average, we obtain
0 = [/ pQ dv} . (12.3.19)
D P

Thus, since € > 0, we have another relation of the heating source:

VD C:p"”" dv} - _[/nglf dV} > 0 (12.3.20)

We now consider the theorem of entropy production. The equation of entropy
(12.3.8) is rewritten as

ds € P Frod hool F" LS
_ Frod . _ . Fsh. — . — q .
Pt T Vp=Veoop F Ve=Vopr T op
(12.3.21)

Integrating this over the whole domain gives

d B € 1 ud Frod
dt/Dpst = /DTdV+/DT2F ~VTdV/S . -ndS

1 . / Fh / LS,
+ Fh.vTav — -ndS — dav.
/D 12 S T D T

(12.3.22)

The first term on the right-hand side is entropy increase due to dissipation, and
the second and fourth terms are the change in entropy due to thermal flux. The
third and fifth terms are the inflows and outflows of entropy. The sixth term is the
entropy production rate associated with latent heat release. The above equation is
written in similar form to (1.2.58):

ds d;S  d.S

= 12.3.2
dt dt + dt’ (12.3.23)



Sec. 12.3] Entropy budget and thermal efficiency 345

where
S = /pst, (12.3.24)
D
dls 13 1 rad 1 sh
= 1% F .- vTdV F7" .- NVTdV
0 = L [ pErvrave [t
LS,
_ dV. 12.3.25
| prav (12.3.25)
deS Frad Fsh
= — -ndS — -ndS. 12.3.2
- /S . s /S . nads (12.3.26)

d.S/dt is entropy change due to entropy flux at the boundaries of the atmosphere,
and is given by two terms: radiative flux and sensible heat flux. d;S/dt is the rate
of increase of entropy due to each process; the first term is the effect of dissipation
and is always positive. The third term is the rate of increase due to sensible heat
flux and is also always positive as shown by (1.2.62). In general, the fourth term
is also positive since we generally have the convergence of water vapor S, < 0.
This is the rate of increase due to the diffusion of water vapor. The second term
is the change in entropy due to radiative flux, but it does not have a definite sign,
in general. When there is no contribution from radiative flux, the production of
entropy within the atmosphere must be positive or equal to zero:

d;S

gt > 0 (without radiative flux). (12.3.27)

Neglecting the left-hand side of (12.3.23) over a long time average, we obtain the
balance of entropy:

_ [des } _ {dis ] > 0, (without radiative flux). (12.3.28)
dt dt

This means that the total outflow of entropy through the boundaries of the atmos-

phere is larger than the total inflow of entropy through the boundaries, since the

entropy production rate is always positive within the atmosphere if the contribution

of radiative flux is negligible.

The gross entropy production rate of the atmosphere is estimated by assuming
that the whole atmosphere is in thermal equilibrium. In this case, the production
rate of entropy within the atmosphere is simply given by the radiation budget at
the top of the atmosphere. The energy inflow to the atmosphere is by solar flux
at the top of the atmosphere: F*" = 7R? - (1 — A)F®, which is the same amount
of energy flux emitted from the atmosphere to outer space. The production of
entropy within the atmosphere is given by the difference between the inward and
outward entropy fluxes at the top of the atmosphere. Therefore, the production
rate of entropy is given as

a T T

diS Folr Fisr 2 11
' - = -(1—AF® - 12.3.2
7= (g0 ). (2320)
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where T, is the effective temperature of the atmosphere and Tj, is the surface temp-
erature of the Sun. Using (1 — A)F® /4 = ogT? given by (12.1.7), the production
rate of entropy per unit area is

1 d;S 5 T,
wnpe g = 08T (1—T®>. (12.3.30)

In the case T, = 255 K and T, = 5760 K, the production rate of entropy per unit
area is about 0.90 W m~2 K1

12.4 Similarity theory of general circulation

The characteristics of atmospheric general circulation is governed by a set of exter-
nal parameters. Several nondimensional numbers can be constructed from external
parameters. Golitsyn (1970) applied the concept of similarity theory to the general
circulations of planetary atmospheres; if the values of nondimensional numbers are
equal, atmospheric general circulations are in the same category. In this section,
we introduce the nondimensional numbers used by Golitsyn, and describe some of
the characteristics of general circulation inferred from similarity theory.

We restrict our consideration to an atmosphere in which the air consists of an
ideal gas with constant specific heat and in which the acceleration due to gravity
is constant. In this case, we assume that atmospheric circulations are governed by
the following external parameters:

Fy  [Wm™? : average solar radiation per unit area
M [kg m™? : mass of an air column per unit area
Cp, [Jkg™' K71] : specific heat at constant pressure

R [m] : planetary radius

Qs : angular velocity of rotation

g [ms™?] : acceleration due to gravity

Using the solar constant F'® and the planetary albedo A, solar radiation is given
by

FO

F, = (1-A) 4 (12.4.1)
Under hydrostatic balance, the mass of an air column is given by
M = ! / dV = (12.4.2)
- 47TR2 D P = Dsg; ok

where pg is average surface pressure. We then construct nondimensional numbers
from the above six parameters. Although there are four basic physical dimensions,
[kg], [m], [s], and [K], we use the Stefan-Boltzmann constant op [W m=2 K~4]
to eliminate the unit [K]. With this conversion rule, two parameters, C, and op,

appear in the form of C’p/a}g/ * [kg='/* m? s75/4] in nondimensional parameters.
Thus, we have three independent nondimensional numbers from the six external
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parameters. Golitsyn (1970) chose the following three numbers:

B FS R

I,y = , (12.4.3)
02/2 M
1/8 —1/8
on Fs
IIg = BCI/Q QR, (12.4.4)
p
C,Fa* 1
I = pes , 12.4.5
g9 013/4 gR ( )

which are thought to characterize M, €0, and g, respectively. If any of these non-
dimensional numbers is much larger or much smaller than one, we assume that
atmospheric circulations do not depend on that number. This is the assumption of
self-similarity.

The meaning of these nondimensional parameters can be given as follows. With
the definition of the effective temperature Fs = opT., we have

Cc, FMt
p1/4 = C,T., (12.4.6)
Op
so that
Qa Qa
My = = —1)/2 12.4.7
Q (CpTe)l/Q (7 ) Cs b ( )
T, T H
m, = @ _ o Ry H (12.4.8)
gR vy—1 gR vy—1R
where
R4T. C
cs = (YRaT)Y?, H = "¢ 4 = C”. (12.4.9)
g v

¢s is the speed of sound and H is the scale height of the atmosphere. From these
expressions, Ilg corresponds to the rotational Mach number, and Il, is the aspect
ratio of the atmosphere. In general, the aspect ratio of the atmosphere is very
small, II; < 1. From the assumption of self-similarity, therefore, we conclude that
atmospheric circulations are independent of II, (i.e., atmospheric circulations are
insensitive to g).

Next, we have

Fsa R R
Oy = s — — —1)/2 12.4.10
M (CpTe)g/QM (CpTe>1/27'R (’Y ) CsTR7 ( )
where
MC,T,
TR = gp (12.4.11)

is the radiative relaxation time of the atmosphere. This means the time required
for the atmosphere to be heated up to temperature T.. R/cs is the characteristic
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time of sound waves. Thus, II;; is given by the ratio of radiation time to time of
sound waves.

The aim of similarity theory is to express the characteristic quantities of atmos-
pheric circulations in terms of nondimensional parameters. Here, we particularly
consider the expressions of the energy budget. In the first case, we assume that 2
is small enough and g large enough such that

Iy, <« 1, In, < 1.

This implies that the quantities of atmospheric circulations are independent of Il
and II, and can be expressed by the four parameters: Fy, M, Cp/U}B/Zl, and R.
From these parameters, we can construct only one quantity that has the unit of

energy [J]:

1/8

B = B FISRS. (12.4.12)
o
p

Note that this is independent of M. Using this quantity, total potential energy is
expressed as

Ey, = 4rR*MC,T. = 4rll,} E*. (12.4.13)
We express the total kinetic energy of the atmosphere Ej, by using a factor B as
E, = BE". (12.4.14)
The ratio of kinetic energy to total potential energy is given by
Ey, Bl
= . 12.4.15
Eh 4 ( )

The problem is: Which parameter does B depend on?

We cannot proceed further with just the estimations of similarity theory. We
need to ascertain the structure of atmospheric general circulations to estimate
kinetic energy. According to Golitsyn, we can make the following assumptions
about the energy budget. First, the convergence of latitudinal energy flux is bal-
anced by the emission of planetary radiation:

1
R

where U is a characteristic velocity scale, and AT is a characteristic temperature
difference. Second, the atmosphere is assumed to be turbulent such that U is related
to the dissipation rate € as

U ~ (eL)Y/3, (12.4.17)

MC,UAT =~ F,, (12.4.16)

where L is a characteristic length scale of atmospheric motion. Using thermal
efficiency, AT is related to € as

€ AT
= = k 12.4.1
7 Fu/M T, ( 8)
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where T is the characteristic temperature of the heating region and 7 is the thermal
efficiency. k is the ratio of n to maximum thermal efficiency AT/T,, and may
be called the effective thermal efficiency. We hereafter assume T} =~ T,. From
(12.4.16), (12.4.17), and (12.4.18), we have the relations:

9/16 1/2 1/4
AT = k1/4f]11/160§’/4 <ﬁ> (f) , (12.4.19)
e = K/ R ( o )1/2 (R)1/4 (12.4.20)
03/4 M3 L ’
v k1/40_]13/16Fs7/16 <R>1/2 <R)—1/4 (12.4 21)
oL M L ' '

Thus, kinetic energy is given by
2 —-1/2
Ey = 47rR2MU2 = 2rkl/? (]Z) E*. (12.4.22)

Note that this quantity is also independent of the mass M. From (12.4.15),
(12.4.14), and (12.4.18), we also have

—1/2

B = 27rk:1/2(R> / (12.4.23)

_ | , A.
B, Bl kY2 (RN V2

= = i 12.4.24
B, Ar 2 \L M ( )

1/4

n o= k¥4 (f) 2, (12.4.25)

The length scale L might have different dependences according to rotation rate; we
assume that

E, for Ilp <1,
o ¢?2H’ for Tlg > 1, (12.4.26)
where H is the scale height given by (12.4.9). Thus, we have
R L, L for IIg <1,
L <vi 1) g, for Ilo>1. (12.4.27)

We summarize the values of Iz, Ilg, and I, of the planetary atmospheres of
the solar system in Tables 12.1 and 12.2. For application of the above discussion
to real planetary atmospheres, we must note that we do not know the values of
U, AT, L, and k in (12.4.16), (12.4.17), and (12.4.18). We nevertheless think that
the above crude estimations are useful to clarify the relations between the various
quantities that characterize atmospheric general circulations.
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T. ps=Myg Cp 5y R 2w/ g
K [Pl ke K fn  [day]  [m s
Venus 215 9 x 10° 850 1.31 6,052 243.01 8.93
Earth 255 10° 1,000 1.40 6,378 0.9973  9.81
Mars 202 7 x 10? 850 1.31 3,397 1.0260  3.73
Jupiter 130 (7 x 10%) 13,000 142 71,398 0414  23.3
Saturn 80 (10°) 13,000 1.42 60,000 0.444 9.32
Uranus 57 (10°) 13,000 1.42 25400 0.649 8.73
Neptune 45  (10°) 13,000 142 24300 0.768  11.7

TABLE 12.1: The external parameters of planetary atmospheres. Note that the values of surface
pressure ps in parentheses are not definite since the atmosphere is very deep.

1gY; I, 1,
Venus 9.3 x 107% 0.004 3.4 x 1073
Earth 1.2 x 1072 092 4.1 x 1073
Mars 24 x 1072 058 1.4 x 1072
Jupiter 1.8 x 107* 9.6 1.0 x 1073
Saturn 1.2 x 1075 9.6 1.9 x 1073
Uranus 2.1 x 1076 33 2.1 x 1073
Neptune 1.5 x 1076 3.0 5 x 1074

TABLE 12.2: The nondimensional numbers of planetary atmospheres.
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13

Latitudinal energy balance

Following on from the global energy balance described in the previous chapter,
latitudinal energy balance is considered here. The energy balance of a zonally and
vertically averaged atmosphere is described using the latitude-dependent energy
balance model. The pole-to-equator temperature difference is evaluated with the
energy balance model in which meridional heat transport is modeled using a diffu-
sion coefficient. The latitudinal profiles of radiative fluxes and their balance are also
described using the energy balance model. Furthermore, the possibility of multiple
equilibrium states is investigated using the relation between solar flux and albedo.
In the final section, a constraint on the latitudinal distribution of water vapor is
argued using the balance of the latitudinal transport of water vapor.

13.1 Energy balance model

One can study the gross properties of temperature distribution, such as pole-to-
equator temperature difference, using a model in which only the energy balance in
the latitudinal direction is considered. This type of model is called an energy balance
model or EBM. EBM relates energy fluxes to a temperature that is defined at each
latitude as a zonal mean using a differential equation with respect to latitude.

As shown below, EBM is thought to be based on the balance of total potential
energy. If a representative temperature of an air column is related to its total
potential energy, one obtains the latitudinal distribution of temperature from the
balance of total potential energy. Total potential energy is given by the sum of
internal energy u and potential energy ®, and is generally much larger than kinetic
energy. This implies that the contribution of kinetic energy is negligible to the
first approximation when the temperature structure is considered using the energy
balance.

First, we formulate the energy balance of a dry atmosphere. Neglecting kinetic
energy and the contribution of viscous stress to total energy balance (1.2.47), we

M. Satoh, Atmospheric Circulation Dynamics and General Circulation Models, 353
Springer Praxis Books, DOI 10.1007/978-3-642-13574-3 13, © Springer-Verlag Berlin Heidelberg 2014
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have

gt [p(u+ @)+ V- (pvo+ F") = 0, (13.1.1)

where o = h+® is static energy. Rewriting this equation using spherical coordinates
with longitude A, latitude ¢, and altitude z and integrating in the zonal and vertical
directions, we obtain the energy budget in the latitudinal direction. Here, the zonal
average and the vertical integral are denoted by

27
x = 1 X d), (13.1.2)
2 0
1 o) 2m o)
(X) = / Xdrdz = / X dz. (13.1.3)
2m Jo Jo 0

We generally have (12.1.52), which states that total potential energy is equal to the
integral of enthalpy:

(plu+ @)y = (ph). (13.1.4)

Although heat flux has three components F'“ = (Fy, F,, F.), we neglect the
latitudinal flux F, in favor of advective flux in the latitudinal direction. In this

case, the zonally averaged and vertically integrated energy balance equation is given
from (13.1.1) as

0 1

Y (ph) + (cosp (pvo)) + For — Fop = 0. (13.1.5)

Rcosp 0y
where F,r and F,p are the vertical energy flux at the top and bottom of the
atmosphere, respectively. Vertical advection is neglected at the top and bottom of
the atmosphere.

Enthalpy is expressed as h = CpT" where C), is the specific heat at constant pres-
sure and assumed to be constant. Then we can define the zonal-mean temperature
in a latitude belt as

7 (pCpT) (pCpT)

T(p,t) = wey T (13.1.6)

where

C = (pC,) = Cp];) = C,M (13.1.7)

is the zonal average of the heat capacity of an air column per unit area, pg is surface
pressure, and M = po/g is the mass of an air column. We assume that C' is constant
for simplicity, though C' is generally a function of time and latitude since surface
pressure is variable. For the Earth’s atmosphere, we have a typical value C ~ 107
JK ! m~2.

TWith a given topography, we set X = 0 in the region z < zg, where zg is the height of the
surface.
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In a similar way to (12.1.42) and (12.1.43), vertical energy flux is divided
into contributions from shortwave radiation, longwave radiation, and sensible heat
fluxes:

F.p = Fpodl 4 Frods (13.1.8)
FzB — Fgadl+F§ads+Fsh’ (1319)

where %" is the sensible heat flux between the ground surface and the atmosphere.
Note that latent heat flux is ignored at this moment since a dry atmosphere is
assumed. Substituting these expressions into (13.1.5), we have the temperature
equation as

0 - 1 0
c_T
ot * Rcosp Oy (cos @ {pva))
+(F:Fadl+F17:ads) _ (Flgadl +ngds+Fsh) = 0. (13110)

The terms on the left-hand side are the tendency term, the convergence of hori-
zontal advection, and energy fluxes at the top and the bottom of the atmosphere,
respectively. If we know the appropriate forms of energy fluxes, we obtain the
equation for the latitudinal distribution of temperature.

Over a long time average, the tendency term is negligible. The global average of
vertical energy flux at the bottom of the atmosphere becomes zero if the heat source
within the solid earth is negligible. However, its latitudinal values are different from
zero if there is latitudinal energy transport in the ocean below the atmosphere. Let
Catm denote the energy convergence of the atmosphere and Cleeqn that of the
ocean. In a statistical equilibrium state, we have the balance

qu;adl +F77;ads — Cat’m +Cocean7 (13.1.11)
Fgadl + Fgads + Fsh = Cocearu (13112)
where
1
Ciutm _ 13.1.13
. Reosp d (cos p (pvo)) ( )

is the convergence of latitudinal energy transport in the atmosphere.

13.2 Latitudinal distribution of radiative balance

According to (13.1.11), the energy budget at the top of the atmosphere is expressed
by the balance between the radiative fluxes F729¢ and Fr24. The former is expressed
as

Frods = —(1— A) Fsl, (13.2.1)

where F*°' is the incident solar radiation flux per unit area at the top of the
atmosphere and A is the zonal-mean albedo.t The global integral of F*° is equal

TIn fact, A is the effective zonal-mean albedo, and is given by a function of latitude and time:
Alp,t) = A, @, ) Fs0L (X, p, 1) [ Fol(p, t).
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to (12.1.3). Dividing the global integral of F**! by S = 47 R?  we obtain

1/F”lds 1/gF‘l( ) d 7 (13.2.2)
= 50 cos = . L.
s/, 2] pleospdp ="

Let us introduce the latitudinal distribution function of solar radiation f(y) and
write

FO
Feolle) =, o), (13.2.3)
where f is normalized as
1 2
2/ flp)cospdp = 1. (13.2.4)
-3
For instance, at the equinox condition, the distribution function is given by
4
flg) = Cos p, (13.2.5)
7r
or at the annually averaged condition, it is approximated as
Flo) = 1—cPy(p)=1- ;(3 sin2 p — 1), (13.2.6)
where
1
Py(p) = 2(3 sin?p — 1) (13.2.7)

is a second-order Legendre function. An empirical value is given to the constant c,
such as 0.477 (North, 1975). Solar radiation actually has large seasonal variation.
The left panel of Fig. 13.1 shows the seasonal variation of the latitudinal profiles of
solar radiation at the top of the atmosphere.

Using f(¢) with (13.2.1) and (13.2.3), the latitudinal distribution of net solar
radiation at the top of the atmosphere is expressed as

FO

F%ads — _(1 _A) A

f (). (13.2.8)

Outgoing longwave radiation at the top of the atmosphere F%“dl is determined by
the vertical distributions of temperature and absorbing quantities in an air column
(see Chapters 10 and 14). The right panel of Fig. 13.1 also shows the observed
seasonal variation of the latitudinal profiles of outgoing longwave radiation. Here,
we assume a simplified form of this dependence as

F%adl = Fy+ B(j“ — TO)a (1329)

where T is the zonal-mean temperature at each latitude given by (13.1.6). A sim-
ilar relationship is also introduced for the global budget (12.1.8). The latitudinal
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outgoing longwave radiation (OLR) for the period between 1979 and 1994. The contour interval
is 10 W m~2. OLR is obtained from satellite data (Gruber and Krueger, 1984).

distribution of the effective temperature T, on the other hand, can be defined from
F:Fadl by

Frodt = gpTi(p). (13.2.10)

In general, T, is different from the average temperature of an air column T. The
difference is derived from the greenhouse effect.
The global radiation balance is given by the latitudinal average of (13.1.11):

1
2

1
2

2

B B
/ ] Fi(;adl COSQOd(P + / i F,Z";ads Coswdgp = 07 (13211)
which corresponds to (12.1.2) or (12.1.45). Substituting (13.2.8) and (13.2.9) into
this equation yields

~ FO
Fo+B(T)=To) = (1-[A)", (13.2.12)

where [T] is the global-mean temperature and [A] is the global-mean albedo (see
(12.1.12)), defined by

. T e

0 = | / Teospdp,  [A] = / A(9) f(@) cospdip. (13.2.13)
From the radiation balance (13.2.12), therefore, the global-mean temperature is
expressed as

- Iy F©

7] = To— 3 +0-[A), (13.2.14)
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Figure 13.2 shows the annually averaged latitudinal profiles of net incoming solar
radiation F7¢4s (ISR) and outgoing longwave radiation Fr¢¥ (OLR) at the top of
the atmosphere. The abscissa shows the sine of latitude. Since the energy balance
is approximately established, the areas enclosed by the two curves are almost equal.
Figure 13.3 shows northward energy transport in the atmosphere and the ocean.
At a latitude about 35°, the energy transport of the atmosphere-ocean system is
maximum for the annual mean. This indicates that Freds = Fred holds at this
latitude.
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FIGURE 13.2: Annually averaged latitudinal profiles of net incoming solar radiation (ISR: solid

curve) and outgoing longwave radiation (OLR: dashed curve) at the top of the atmosphere. The

unit of the ordinate is W m~2. The abscissa is the sine of latitude. NCEP/NCAR reanalysis data
is used (see Appendix A3).
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FIGURE 13.3: Latitudinal distribution of annual-mean northward energy transport for the atmos-
phere (F4), the ocean Fp, and the coupled atmosphere-ocean system F4 + Fo. The unit is 101°
W. After Oort and Peixoto (1983) by permission of Elsevier (copyright, 2003). Analyses by Oort
and Vonder Haar (1976) and Trenberth (1979) are indicated by the symbols x and o, respectively.
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13.3 Latitudinal temperature difference

If there is no latitudinal energy transport in the atmosphere and ocean system, the
right-hand side of (13.1.11) is equal to zero. In this case, atmospheric temperature
is completely determined by local net solar radiation, and the latitudinal difference
of temperature in the atmosphere solely depends on that of the corresponding
solar radiation. Here, we define latitudinal temperature difference as the difference
in temperature between the equator and the pole, AT. If the atmosphere and
ocean system has latitudinal energy transport, on the other hand, AT is reduced
compared with the case of no energy transport. Thus, AT is maximum if no energy
transport occurs in the atmosphere and ocean system. In this section, we investigate
the relation between latitudinal temperature difference AT and latitudinal energy
transport by assuming that the albedo A is constant irrespective of latitude. In
particular, we introduce the diffusion model to EBM in which energy transport is
proportional to the latitudinal temperature gradient.

First, if there is no latitudinal energy transport, the radiation balance at each
latitude is given by setting the right-hand side of (13.1.11) to zero:

Frad 4 frads  — (13.3.1)
Using (13.2.1), (13.2.3), and the effective temperature (13.2.10), we have
4 Fe
opTe(p) = (A-4) flo). (13.3.2)

Thus, the difference in effective temperature between the equator and the pole is
expressed by

AT, = T.0)-T.(})

<f<0>if(;r)‘l‘>[Te] = Afi-[T, (13.3.3)

where [T,] is the global-mean effective temperature defined by (12.1.7). The temp-
erature difference is maximized if the equinox distribution function (13.2.4) is used
for f(¢). In this case, the factor in (13.3.3) is given by AfY/4 = (4/7)1/4 = 1.06. If
the annually averaged condition (13.2.6) is used for f(p) with ¢ = 0.477, we have
AfY% = (3¢/2)Y/* = 0.920. That is, the maximum difference in effective tempera-
ture in the case of no latitudinal energy transport is almost comparable with the
magnitude of the global-mean effective temperature: AT, ~ [T,].

When a linear formula (13.2.9) is used for the relation between Fr* and zonal-
mean temperature T, the radiation balance (13.3.1) is written as

~ F©
Fo+B(T(p)~To) = (1-4)  f(o). (13.3.4)
In this case, latitudinal temperature distribution is given by
- Fo F©
T = Tp— 1-A
() 0 g TU=4) 5 [0

= [T1+(f(¢) = 1) ATmae = Tr(p), (13.3.5)
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where [T is the global-mean temperature defined by (13.2.14) and

(1-AF©
AT e = ~ 114.0K. 13.3.6
AB ( )
TR(cp) is determined only by the radiation process and can be viewed as the radiative
equilibrium temperature of the energy balance model. Thus, latitudinal tempera-
ture difference is given by
m

ar = (1) -1(;

For the equinox condition (13.2.4), we have Af = 4 /7 = 1.27, while for the annually
averaged condition (13.2.6), we have Af = 3¢/2 = 0.716. From this, the upper
bound of latitudinal temperature difference is comparable with AT, .. when the
linear formula is used.

Second, we consider the case when the atmosphere and ocean system has lati-
tudinal energy transport. If we assume that the circulation of the atmosphere and
ocean system is driven by latitudinal temperature difference, latitudinal energy
transport becomes larger as AT becomes larger. This expectation motivates us to
introduce a diffusion-type parameterization in which latitudinal energy transport
is proportional to latitudinal temperature difference in order to reconcile energy
balance (13.1.11) with (13.1.13). Using a diffusion coefficient D, we assume that
latitudinal energy transport is proportional to the gradient of temperature as

)) ATmaw = Af ATy (13.3.7)

DT
vo) = — . 13.3.8
(o) = o (13.33)
Alternatively, extending this type of diffusion flux to the latitudinal energy trans-
port of the atmosphere and ocean system, we can set total energy convergence on
the right-hand side of (13.1.11) as

1 9 DoT
X = . 13.3.
Catm + Cocean R cos o a(p <COS %2 R a(p) ( 3.3 9)

The value of the diffusion coefficient D is determined such that the resultant lati-
tudinal temperature difference gets close to that of the real atmosphere. Using this
with (13.2.8), (13.2.9), and (13.3.5), the energy balance (13.1.11) is rewritten as

. 19 DoT
B(T-T = . 13.3.1
( ) Rcosyp 0y (COS@R 8g0> (13:3.10)

If B and D are constant and f(y) is expressed by the Legendre function as (13.2.6),
we can analytically solve this equation for latitudinal distribution T'(¢). In general,
an n-th order Legendre function P, satisfies’

1o OPe)\ _
cos ¢ Dy <C°W Dy > = —n(n+1)P(p). (13.3.11)

TThe characteristics of Legendre functions are summarized in Section 21.8.
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Then, from (13.2.6), (13.3.5), and (13.3.10), we have

- - B
T = [T]- AT oz P . 13.3.12
In this case, latitudinal temperature difference is expressed as
3c B
AT AT oz 13.3.1
2 B+6D/R? (13.3.13)

This means that latitudinal temperature difference becomes smaller as the diffusion
coefficient D becomes larger; AT is equal to the maximum value (13.3.7) in the
case D = 0, while it becomes zero as D — oo.

Let us examine the meaning of the diffusion coefficient D by comparing it with
the energy transport of Golitsyn’s model given by (12.4.16). We estimate the energy
transport of the atmosphere in (13.3.8) as

(pvoy =~ CV'T' =~ C,MUAT, (13.3.14)

where C is defined by (13.1.7), M is the mass of an air column, and v = v — v,
T' = T — T are deviations from the zonal-mean latitudinal velocity and tempera-
ture, respectively. The magnitude of v’ is estimated as the velocity scale U, and
that of T” is tentatively estimated as latitudinal temperature difference AT. In
general, however, T” is much smaller than AT in the Earth’s atmosphere, so that
the difference between T” and AT will cause an error. From (13.1.13) and (13.3.14),
we have

1 1
Catm g (cosp (pvo)) = RMCPUAT. (13.3.15)

~ Rcosp dp
On the other hand, the radiation balance at the top of the atmosphere is estimated
as

FOo
4

where Fy is defined by (12.4.1). In order to obtain the energy balance of Golitsyn’s
model (12.4.16), we need to assume f =~ 1 and neglect the contributions of long-
wave radiation and oceanic transport Coeean. Using these assumptions, (13.3.9) is
reduced to

1
R

which is equivalent to (12.4.16). The right-hand side of this equation was originally
the difference between solar radiation and planetary radiation, and oceanic energy
transport is added to the left-hand side. Thus, it is thought that this equation gives
the upper limit of the latitudinal energy transport of the atmosphere.

If energy transport is expressed as a diffusion-type formula (13.3.8), we have

|F:Fadl+F17:ads| < |F:Fads‘ ~ (17A) f(SD) = st(g0)7 (13316)

MC,UAT =~ F,, (13.3.17)

Cotm = AT, (13.3.18)



362 Latitudinal energy balance [Ch. 13

where oceanic energy transport is neglected once again. By comparison with
(13.3.15), the diffusion coefficient is estimated as

D ~ RMGC,U. (13.3.19)

This shows that D becomes larger as the atmospheric mass M becomes larger. This
in turn suggests that latitudinal temperature difference becomes smaller. We cannot
reach any conclusion based just on this estimation, however, since the dependence
of U is not known.

Returning back to (13.1.10) where the tendency term remains, we rewrite it
using (13.3.10) as

9 - 1 . 1 1 8 o -
T = - T-T T 13.3.2
ot TR( R) + Tp cos O (COSSO&,O )7 (13.3.20)

C R2C
TR = ™ = 5 (13.3.21)
These are called the radiation relaxation time and the diffusion time, respectively.

Using (13.3.19) and C' =~ M C,, we obtain

R
U
This means that the diffusion time is the advection time required to travel the

latitudinal distance R at velocity U. From the ratio between the two time scales,
a nondimensional number can be defined as

TR D
o= 0 = mp (13.3.23)
As § gets larger, the atmospheric temperature becomes more homogenized, while
as 0 gets smaller, the atmospheric temperature becomes ever closer to the radiative
equilibrium temperature. According to North et al. (1981), a realistic temperature
difference can be obtained at 6 = 0.31. Figure 13.4 shows temperature distributions
for three values of 4.

™ (13.3.22)

13.4 Ice albedo feedback

If albedo depends on temperature, there may exist multiple equilibrium states of
the atmosphere for a given solar flux. Let us first consider this situation with glob-
ally averaged states. We assume that albedo abruptly increases when temperature
becomes colder than freezing point T3,

~ { Ay, for [T >1T;,

~ 13.4.1
A, for [T) < T3, (13.4.1)

where Ay < A;. Typical values are Ay = 0.3 and A; = 0.62 (North et al., 1981).
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FIGURE 13.4: Latitudinal distribution of temperature using an energy balance model. Solid line:

0 = 0 (radiative equilibrium temperature), dashed line: § = 0.31, and dotted line: § = 2. The

Earth condition is 6 = 0.31. The other parameters are [T] = 287.1 K, ATmar = 114.0 K, and
c=0.477.

From (13.2.14), radiative equilibrium temperature is given by

. R RO

T = Ty— 1-A([T . 13.4.2
] = To- 0 - AT (13.4.2)
The relation between F® and [T] is shown in Fig. 13.5, where the abscissa denotes
the ratio of solar radiation to its present value FéD and T; = —10 °C is used. If

solar radiation is within the range

Fo + B(T; — Tp) o 4FO+B(T1‘_TO)

4
1- Ay 1- A,

(13.4.3)

there are two solutions for [T] in (13.4.2). For example, in the case T; = —10 °C
and Fy = 210 W m~2, two equilibrium states exist in the range of solar radiation
between 1,080 and 1,989 W m~2. The present value of solar radiation FOG is included
in this range. If solar radiation decreases from a state with no ice, the global-mean
temperature becomes colder (following the solid line in Fig. 13.5). When solar
radiation becomes smaller than 1,080 W m~2, temperature abruptly changes to a
state on the dashed line. In contrast, if solar radiation increases from the state in
which all the globe is frozen, the temperature rises following the dashed line in Fig.
13.5. At the present value of solar radiation, the temperature is still as cold as —40
°C (i.e., the Earth is frozen). If solar radiation exceeds the value 1989 W m~2, the
temperature abruptly rises from the state on the dashed line to that on the solid
line.

Next, we consider ice albedo feedback by allowing latitudinal dependence using
the energy balance model with diffusion-type energy transport. For simplicity, we
assume that all conditions are symmetric about the equator and consider only the
northern hemisphere. The albedo at each latitude has the same dependence on
local temperature as (13.4.1). If solar radiation is sufficiently small, the Earth’s
surface is everywhere frozen, whereas if solar radiation is sufficiently large, all the
Earth’s surface is free from ice. In the intermediate case, there is a state in which
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FIGURE 13.5: Ice albedo feedback. The solid line is the equilibrium state for [T] > T;, and the

dashed line is that for [T] < T;. The abscissa is the ratio of solar radiation to its present value
FQ/FO@ where F0® = 1,367.7 W m~2, and the ordinate is the global-mean temperature in degrees
Celsius [°C]. The dotted line is the freezing point and T; = —10 °C is specified.

the polar region is frozen and the equatorial region has no ice. The boundary
between the frozen region and the ice-free region is referred to as the ice line. What
we want to know is the location of the ice line for a given amount of solar radiation.
To investigate this problem, we try to find the relation between solar radiation and
the latitudinal temperature profile assuming that the ice line is located at latitude
;. In this case, from (13.4.1), the albedo is given as

LN Ay, for ¢ < ;,
Alpspi) = { Al for o> o (13.4.4)
The energy balance (13.3.10) is written as
- £, FO 1 9 o -
T-T — (1= A(p; o5 = 6 T),
ot~ (=Alwiw)) 5 f(@) cos 9 (cow&p )
(13.4.5)

where 0 is the nondimensional diffusion coefficient defined by (13.3.23). We expand
the temperature using Legendre functions:

T = ) taPulp) (13.4.6)

where t,’s are expansion coefficients. Since T is symmetric about p = 0, the
summation is taken only for even numbers of n. P, satisfies the orthogonality

1

Onm, 13.4.
2n+1 (3 7)

/O Po(0)Pr(p) cospdp =
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where d,,, equals one only when n = m and is zero otherwise. P, also satisfies
(13.3.11). From (13.4.5), therefore, we have

F, F©

= Ty— 13.4.
to 0= 5t ,p % (13.4.8)
F© a
t, = " , = > 9, 13.4.9
4B n(n+1)5+1 or n=even > ( )
where
1
a = ) [ (1= Algio)) £0) Pali) cosipd (13.4.10)
0

In particular, we have ag = 1 — [A], where [A] is given by (13.2.13). Thus, the
temperature distribution is given by
~ Fo F® Qp,

T(p) = To— , +

Po(). 13.4.11
B 4B S n(n+ 1) +1 n(%) (13.4.11)

If the temperature at the ice line is equal to T}, the relation between solar radiation
and the latitude of the ice line is given by

an

n+1)5+1Pn(%)> . (13.4.12)

Of(ip. — -
F (901) - 4[F0 + B(Tl TO)] (zn: TL(
The left panel of Fig. 13.6 shows this relation for the value § = 0.25. The global-
mean temperature, on the other hand, is simply given by (13.2.14); this relation is
shown in the right panel of Fig. 13.6, in which the globally frozen condition and
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FIGURE 13.6: Ice albedo feedback using an energy balance model with diffusion-type energy
transport. The left panel shows the relation between solar radiation FQ/FOQ (FéD = 1,367.7T W
m~2) (abscissa) and latitude of the ice line (ordinate). The right panel shows the relation between
solar radiation (abscissa) and global-mean temperature (ordinate). The parameter values are
T;=-10°C, Fp =210 Wm™2, B=21Wm~2°C~!, 4y = 0.3, 4; = 0.62, and § = 0.25.
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the globally ice-free condition are shown by the same lines as in Fig. 13.5. The curve
connecting these two lines corresponds to states in which the ice line exists. For the
value of this parameter, there are three equilibrium solutions that are close to the
present value of solar radiation. Among the multiple solutions, the intermediate
solution for the ice line is thought to be stable and realizable. The stability of the
solution provided by EBM is discussed in the review by Crowley and North (1991).

13.5 Water budget

In this final section on latitudinal balance, we continue to consider the transport of
water vapor in a moist atmosphere, in which the phase change of water is included.
The equation of water vapor (9.6.1) is written using spherical coordinates as

1

* Reosp dp [cos ¢ (pvg + )]

NN
ot Rcosp OA pUaTT A

0 .
+az(pwq+zz) = -5 (13.5.1)

where the diffusion flux vector is denoted by @ = (i, i,%.). Integrating this equa-
tion in the zonal and vertical directions, and neglecting the latitudinal component
of diffusion ¢, and the vertical component of the flux at the top of the atmosphere,
we obtain the latitudinally one-dimensional water balance equation as

0 1

- E,—P. 13.5.2
ot <pq)+RCOS¢&p (cos ¢ (pvq)) w— P, (13.5.2)

where F, is evaporation from the ground surface to the atmosphere and P, is
precipitation, defined by
E, = i.(20), (13.5.3)
P. = —(S), (13.5.4)

where zg is the height of the surface. Over a long time average of (13.5.2), the
global integral of the evaporation of water vapor is equal to that of precipitation:

E] = [B] (13.5.5)

We can formulate an energy balance model of a moist atmosphere using the
water budget. The zonal and vertical average of the energy equation of a moist
atmosphere (9.6.12) gives

0 -~ 1 0
c_ T
ot + Rcosp Oy (cos o {pva))
— 7(F77;adl +F77;ads) + (Féadl +F§ads +F8h) +LPT’ (1356)

where we have used the same approximation as in Section 13.1 and the relation

(pCpQm) = —L(Sq) = LP, (13.5.7)
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which is given from (9.6.10) and (13.5.4). An alternative form of the energy bal-
ance model is given by using moist enthalpy. Summing up (13.5.6) and (13.5.2)
multiplied by L, we obtain

0 0
T+ L L
o PCT + Q)>+Rcowa¢ (cos ¢ (pv(o + Lq)))
— _(qu;adl_;'_F%ads)+(F§adl+F§ads+Fsh>+LEv7 (1358)

where C,T 4 Lq is moist enthalpy and o + Lq is moist static energy. This equation
corresponds to the zonal and vertical average of (9.6.8).

The first form of the energy balance model (13.5.6) can be written using diffusion-
type energy transport and the assumptions that are used to derive (13.3.20) as

0 ~ 1 -~ - 1 1 0 0 - ~
T = -— T—-T, T 13.5.
ot TR( R>+TD cos p Jy (COS(pago > +@m (13.5.9)
where
A (PCpQm) LP,
Qm = = 13.5.10
(pCp) c ( )

is latent heat release. It is essential to know the latitudinal distribution of Q,, or
P, to use the above energy balance model. This is determined through the water
budget (13.5.2). The latitudinal distribution of evaporation and precipitation is to
be solved if the latitudinal transport of water (pvq) is given. In the real atmosphere,
water vapor is more abundant in the lower layer where temperature is warmer and
the direction of the latitudinal transport of water vapor is greatly dependent on
that of the meridional wind in the lower layer. In particular, {(pvq) is equatorward
in low latitudes because of the equatorward flow of Hadley circulation (see Chapter
16). The atmospheric structure in the tropics can be examined by taking account of
the lateral water transport associated with the overturning of atmospheric flows. "

As stated above, the diffusion-type model used for temperature (13.3.8) is not
a good approximation for water vapor. Nevertheless, a rough idea of the effect of
water vapor transport can be captured by assuming water vapor transport occurs
in diffusion-type formulas; we assume

19
- _D i 13.5.11
(pvq) 1R 9,0 (13.5.11)

where Dy is a diffusion coefficient of water vapor. In this case, a long time average
of the balance of (13.5.2) becomes

1

10
— - D q = FE,—P,.. 13.5.12
Rcosy g (COS@ qRacpq) Y " (13.5.12)

TThis argument is closely related to that of the low-latitude circulations described in Chap-
ter 16. See Satoh (1994) for Hadley circulation and Bretherton and Sobel (2002) for Walker
circulation, for example.
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In general, evaporation from the surface is proportional to the difference between
water vapor at the surface and that of the lowest layer of the atmosphere (see
Section 11.3.3). Precisely, we need to take account of the difference between the
temperature of the atmosphere and surface temperature. We simplify the formula
of evaporation as

E, = K(g:—q¢) =~ K(1—r)g(T) (13.5.13)

where K is a coefficient of evaporation, r is a characteristic value of the relative
humidity of the atmospheric boundary layer, g5 is the saturation water vapor con-
tent at the surface, and q*(T) is the saturation water vapor content at temperature
T. Temperature must be obtained by simultaneously solving the equation of water
balance and the equation of temperature (13.5.9). Here, in order to understand
the qualitative characteristics of water vapor transport, we furthermore assume
that temperature and water vapor are given independently. Since temperature is
warmer in lower latitudes, water vapor is more abundant in lower latitudes in a
global sense. This dependence is modeled as

q*(T) = qo— @2P2(singp), (13.5.14)
where qp and ¢y are appropriate constants. Global-mean evaporation is given by
K(1—r7)go from (13.5.13). Thus, from (13.5.12), precipitation is given by

P, = K(l—-17)q — [Ku —r)— Dg} q2P>(sin ). (13.5.15)

R
This shows that the coefficient of P, of precipitation is smaller than that of evapo-
ration in the case D, > 0. This means that precipitation is larger than evaporation
in higher latitudes. Therefore, the atmosphere has a net poleward transport of
water vapor. If the Earth was covered by land and no sea, and if precipitated water
did not flow out on the land, the diffusion process of water vapor would result in
the concentration of water vapor in the polar region. This process may be applied
to Mars, where ice is observed only in the polar region.
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Vertical structure

In this chapter, the vertically one-dimensional structure of the atmosphere is
investigated based on energy budget analysis in the vertical direction. The vertical
thermal structure of the atmosphere is studied by introducing two key concepts:
radiative equilibrium and radiative-convective equilibrium. First, as an introduc-
tion to the concept of radiative equilibrium, the greenhouse effect is described using
a one-layer glass model. Next, the thermal structure in radiative equilibrium is
calculated using a simplified radiation scheme. Then, the discussion on radiative-
convective equilibrium follows where the thermal structures of the troposphere and
stratosphere are described with the definition of the tropopause. Finally, radiative-
convective equilibrium in the case of a moist atmosphere is argued for.

The radiative process plays a fundamental role in determination of the vertical
thermal structure of the atmosphere. In this chapter, the gray radiation model
described in Section 10.6 is used to show how the radiative process determines
thermal structure. The thermal structure constrained solely by the radiative process
is called radiative equilibrium. It will be found that a state in radiative equilibrium
is in general statically unstable. As studied in Chapter 2, convective motion will
occur in such a statically unstable atmosphere.

If convection occurs, both the radiative process and the convective process in-
teract to establish a new thermal state, called radiative-convective equilibrium. In a
dry atmosphere, convection will be in a form similar to turbulence in the boundary
layer, described in Section 11.3 using different types of turbulence models. In this
chapter, instead of using complex turbulence models, convective flux is estimated
using the mixing length theory, which is the simplest type of turbulence model.
It will be shown that the resultant thermal structure due to convective motion is
close to the dry adiabat. This result implies that the effect of convection on thermal
structure is equivalent to that of convective adjustment.

In the case of a moist atmosphere, since the latent heat release of water vapor
is associated, convective motion is much more complicated. In the next chapter,
the basic properties of moist convection will be described; it will be shown that,

M. Satoh, Atmospheric Circulation Dynamics and General Circulation Models, 370
Springer Praxis Books, DOI 10.1007/978-3-642-13574-3_14, © Springer-Verlag Berlin Heidelberg 2014



Sec. 14.1] Vertically one-dimensional energy balance 371

even when moist convection occurs, the thermal structure of radiative-convective
equilibrium can be determined by convective adjustment using the moist adiabat.

14.1 Vertically one-dimensional energy balance

In order to examine the vertical structure of the atmosphere, we begin by consider-
ing the vertical energy balance of a dry atmosphere. The equation of total energy
is approximated as (13.1.1) by neglecting the contributions of kinetic energy and
fluxes due to viscous stress. The horizontal average of (13.1.1) gives

0 0
P (Fconv Frad Fsh) = 0, 14.1.1
o Pt )+ + + ( )
where
FCO’VlU — pw0.7 (14.12)

is convective energy flux and o is static energy. The overline ( ) is used to denote
either the global average or zonal average on a horizontal surface. The global
average of a quantity X is defined by

1 1 5 2m
X = /XdS = / X cospdAdy, (14.1.3)
S S 4 _72r 0

and the zonal average is defined by (13.1.2). Eq. (14.1.1) can also be regarded as a
zonal-mean equation in the special case when latitudinal energy flux is assumed to
be neglected. By omitting the tendency term in (14.1.1) for a long time average,
the energy balance is written as

aa (Fconv+Frad+Fsh) — 0’ (1414)
z

from which we obtain
Feonv . frad 4 psh —  Fene  —  const. (14.1.5)

In general, sensible heat flux F's" is largest near the surface, and is almost negligible
outside the boundary layer.” In the free atmosphere, the sum of the convective flux
Feonv and the radiative flux Fred is constant irrespective of height. This state of the
energy balance is called radiative-convective equilibrium. Furthermore, in the case
when there is no contribution from convective flux F¢°"v, the equilibrium state
is called radiative equilibrium. In reality, convective flux is not at all negligible
when compared with radiative flux particularly in the layer close to the surface.
The concept of radiative equilibrium is useful, however, since it provides a first
approximation to the thermal structure of the atmosphere.

fIn this formulation, it is physically obvious that Fs? defines the heat flux due to molecular
thermal diffusion within a thin layer just above the surface, since turbulent motion in the boundary
layer cannot be distinguishable from convective motion in the free atmosphere, in principle.
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In general, it will be found that the thermal structure in radiative equilibrium
is statically unstable in the lowest layers of the atmosphere. This suggests that
convective flux is required in the lower layers of the atmosphere, and thus that the
atmospheric structure is described by radiative-convective equilibrium. In this case,
the balance of radiative flux still holds at a sufficiently high altitude. The lower
layer in radiative-convective equilibrium is called the troposphere and the upper
layer in radiative equilibrium is called the stratosphere. The boundary between the
two layers is called the tropopause.

Figure 14.1 shows the temperature profile of a standard atmosphere that is in a
mean state in the midlatitudes together with the profile of pressure.” The left panel
is the temperature structure, which indicates the atmospheric layered structure. In
the stratosphere, temperature increases with height and the temperature maximum
is located at around the altitude 50 km. This level is the top of the stratosphere
and is called the stratopause. The region above the stratopause up to about 80 km
is called the mesosphere, in which temperature decreases with height. Above the
mesosphere is the thermosphere. In this book, the middle and upper atmosphere
above the stratosphere is not further described.

According to the pressure distribution in Fig. 14.1, the pressure at the tropopause
level (11 km) is about 200 hPa, which is one-fifth of surface pressure. This means
that about 80% of atmospheric mass is contained in the troposphere. The latitu-
dinal dependency of the tropopause will be further described in Section 18.2.3.
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FIGURE 14.1: Temperature and pressure profiles of the standard atmosphere and the regions of
the atmospheric layers (from the U.S. Standard Atmosphere, 1976).

TThe U.S. standard atmosphere is defined as follows (The U.S. Standard Atmosphere, 1976):
with a sea level temperature 288.15 K and sea level pressure 101325 Pa, the lapse rate of temp-
erature 9 is given at seven atmospheric layers. The lapse rate is —6.5 K km~! between sea level
and 11 km, 0.0 K km~! between 11 km and 20 km, 1.0 K km~—! between 20 km and 32 km, 2.8 K
km~—! between 32 km and 47 km, 0.0 K km~! between 47 km and 51 km, —2.8 K km~! between
51 km and 71 km, and —2.0 K km~! between 71 km and 84.852 km.
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14.2 Greenhouse effect

The effective temperature introduced in Section 12.1.1 is different from surface
temperature. The difference between effective temperature and surface temperature
is caused by the greenhouse effect. The simplest model to illustrate the greenhouse
effect is a one-layer glass model in which the atmosphere is represented as a sheet
of glass. Only radiative transport is allowed as energy transport in this model.
Glass is transparent to solar radiation, while it is completely opaque to planetary
radiation. Glass is a blackbody and emits blackbody radiation in both upward and
downward directions depending on the temperature of the glass. Here, we consider
the radiation balance in a unit square of the surface (Fig. 14.2), assuming that the
global atmosphere is horizontally uniform.

In equilibrium state, total radiative flux is zero (i.e., solar radiation is balanced
by planetary radiation). Solar radiation is assumed to pass through the glass and
be absorbed or reflected at the ground surface. The ratio of this reflected portion
to incident solar radiation is the planetary albedo A. Let the temperature at the
ground surface be Ty, and that of the glass T.. Since outward radiation from the
glass corresponds to outgoing planetary radiation at the top of the atmosphere, T,
is equivalent to the effective temperature (12.1.7). Glass emits longwave radiation
ogT? in both upward and downward directions. The ground surface, on the other
hand, emits upward longwave radiation o7, which is completely absorbed by
the glass surface. The radiation balance at the top of the atmosphere is given by
dividing (12.1.6) by S = 4w R?:

) ©
FisT _ FOZT _ (1 _ A) 4 _ O-BT64 — 07 (1421)
Fs AFS GB Te4
A A
T.

L Ll S

FIGURE 14.2: Radiation balance of a one-layer glass model. The white rectangle is the glass which

represents the atmosphere, and the lower shaded area is the ground. The temperature of the

glass is Te, and that of the ground is Ts; both emit blackbody radiation of the corresponding
temperature. Solar radiation is F'* = F© /4 and A is planetary albedo.
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where
o Fisr F©
F¥r = = (1-A4 14.2.2
47 R? ( ) 4”7 ( )
folr
Folr = = opT: 14.2.
4T R? 9Ble ( 3)
The radiation balance at the glass and the ground surface is respectively given by
opTd — 20T+ = 0, (14.2.4)
FO
(=4, + opTd —opTd = 0. (14.2.5)
Thus, we obtain from (14.2.1) and (14.2.4) or (14.2.5),
1
(1-—A)F@7+
T. = , 14.2.6
R (14.2.6)
1 1— A) FO74
T, = 24T, = [( ) } . (14.2.7)
20’3

In the case T, = 254.9 K, we have T, = 303.1 K (i.e., surface temperature is
warmer than effective temperature). This warming effect on surface temperature
due to the existence of the atmosphere, in this case represented by the glass, is
called the greemhouse effect. This difference comes from the asymmetric property
of atmospheric radiation, where the atmosphere is relatively transparent to solar
radiation and opaque to planetary radiation. As shown below, the greenhouse
effect depends on the distributions of absorbing gases and convective motions in
the atmosphere.

The above argument is based on the assumption that the whole atmosphere
is regarded as one sheet of glass. This argument can be extensible to multiple
sheets of glass; it can be shown that if the number of sheets of glass is increased,
the equilibrium surface temperature increases. In the next section, we further
investigate the greenhouse effect by using the radiation model that considers the
vertical structure of the atmosphere, and show that total optical depth corresponds
to the number of sheets of the glass model.

14.3 Radiative equilibrium

14.3.1 Gray radiative equilibrium

In order to study the greenhouse effect using more realistic processes, we use the
radiative transfer equation to obtain the relation between radiative flux and the ver-
tical structure of temperature. We consider the vertically one-dimensional radiative
equilibrium in which atmospheric temperature is a function of altitude z, and energy
transfer is only in the form of radiative flux. We assume the gray atmosphere which
enables analytic discussion of the radiative property. In a state of radiative equi-
librium, the conservation of energy (14.1.4) is written as

aaFmd = 0, (14.3.1)
z
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where FTed is horizontal mean upward radiative flux.

Consistent with the assumption used for the glass model, solar radiation (1— A)
x F'© /4 is absorbed at the ground without being absorbed in the atmosphere. As for
planetary radiation, the upward and downward fluxes satisfy (10.6.7) and (10.6.8),
respectively:

;dfz;_(T) = F'(r) - nB(7), (14.3.2)
2dFY(r)
3 4 = FYr)—7B(1), (14.3.3)

where 7B = opT*. These fluxes are functions of the optical depth 7, which is
zero at the top of the atmosphere and 75 at the ground. The net radiative flux of
planetary radiation is given by

F(r) = F'(r)—Fr). (14.3.4)
The boundary conditions for (14.3.2) and (14.3.3) are given such that downward
planetary radiative flux is zero at the top of the atmosphere:

FY0) = o, (14.3.5)
and that upward flux at the ground is

F'(r,) = =B(r,) = opT?, (14.3.6)

where T is surface temperature. Total radiative flux is given by the sum of solar
radiation and planetary radiation. If solar radiation is not absorbed or reflected
within the atmosphere, total radiative flux is written as

FO
Frod = —(1-4)", +F. (14.3.7)

If this flux satisfies the equilibrium condition (14.3.1), the atmosphere is in a state
of radiative equilibrium. In this case, F'"%4 is independent of height. In particular,
if there is no heat source in the atmosphere and solid Earth system, F7e¢ = () must
be satisfied. Therefore, the equilibrium condition reads

FOo
4
The solution to (14.3.2) and (14.3.3) can be easily found using the sum and the
difference of the two equations:

F = (1-4) (14.3.8)

2

3 dd (F1—-FY = F'4+F!'—27B, (14.3.9)
-

2

3ddT (F1+FY = FI-F. (14.3.10)

In the radiative equilibrium state, the left-hand side of (14.3.9) must vanish, then
we have

F'+F' = 27B. (14.3.11)
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Substituting this into (14.3.10) and using (14.3.4), we obtain
47 dB

Fl-Fl = F 14.3.12
3 dr ( )
Integrating this along the optical path, we have
3
B = F C 14.3.13
4 ETHC ( )

where C' is an integral constant. Substituting (14.3.13) into (14.3.11) by using
(14.3.4) yields

1 F 1 F
Fl = BFr+4zC)+ ., F' = @Fr+4zC)— .  (143.14)

From the boundary condition (14.3.5), the integral constant is given as C' = F/2.
Thus, (14.3.14) reduces to

F /3 F 3
T L
F ; <27+2>, F ST (14.3.15)
and (14.3.13) becomes
F /3
"B o= <27+1>. (14.3.16)

Vertical profiles of these radiative fluxes are shown in Fig. 14.3. All these fluxes
linearly depend on optical thickness 7. The vertical profile of temperature is also
given by a function of optical depth 7. Substituting 7B = ogT* (10.6.10) into
(14.3.16), and using (14.3.8) and the effective temperature (14.2.6), we obtain the

F2 F

[down

Optital depth
T

opTo* opTs*
Energy flux
FIGURE 14.3: The vertical profiles of radiative fluxes in radiative equilibrium of the gray atmos-
phere; F“P and Fd°w™ are the upward and downward longwave radiative fluxes, respectively. =B

is equal to ogT*. The vertical ordinate is optical depth. Total optical depth 75 = 2 is used for
this figure.
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temperature distribution with respect to optical thickness 7

o - [ Gl - [ G

_ B (g’TH)]iTe. (14.3.17)

From this, we can see that temperature at the altitude 7 = 2/3 is equal to effective
temperature: T = T,. The temperature at the bottom of the atmosphere at 7 = 7
is

ro = [ ()] 1429

This is different from surface temperature, which is given from (14.3.6) and (14.3.15):

T, = [F (;’TS+2>F. (14.3.19)

203

This means that temperature has a gap between the ground surface and the bottom
of the atmosphere. This unrealistic result is derived from the assumption that no
energy flux other than radiative flux is allowed as energy transport. If thermal
diffusion is allowed to occur, the temperature gap disappears.

We need to specify the vertical distributions of absorbing constituents to obtain
the dependence of temperature on height z. Here, for illustrative purposes, we ass-
ume that only one component of the absorbing constituents contributes to radiative
flux. Let ¢; denote the mass concentration of absorbing constituents and assume
that its vertical profile is expressed as the following function of pressure p:

4 = Qio(p) ) (14.3.20)
Ps

where « is constant. If the atmosphere is isothermal, this relation is written as

qi = ioexp (—;)7 (14.3.21)

where h is the scale height of mass concentration ¢;, which is relatable to the
pressure scale height H as h = H/«a. Substituting p; = pg; in (10.5.1) and using
hydrostatic balance, we express optical depth as

T o= / kpgidz = / kPQio(p) dz
z z DPs

k ; a+1
- GO ekl (p) , (14.3.22)
(o +1)gpg Ps
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FIGURE 14.4: The vertical profiles of temperature in radiative equilibrium of the gray atmosphere.

The vertical ordinate is pressure. F' = 239.3 [W m~2] is used. The left panel is for 7s = 2 with

a = 10 (solid), a = 5 (dashed), and a = 1 (dotted). The right panel is for « = 5 with 74 = 1
(solid), 75 = 2 (dashed), and 75 = 5 (dotted).

where total optical depth is given as

kgio  ps

T = (@+1) g° (14.3.23)
The vertical distribution of temperature is given from the relation between
(14.3.17) and (14.3.22). Examples of temperature profiles are shown in Fig. 14.4
for some values of a and 75. For application to the real atmosphere, it is thought
that g; represents water vapor as the most important absorbing constituent. Using
typical values of the scale height of specific humidity h = 2 km and of the pressure
scale height H = 8 km, we have o = 4. Instead of using (14.3.23), however, the
value of 75 should be chosen so that the resultant temperature is close to a real-
istic value. Based on the temperature profile of radiative-convective equilibrium

described later, the typical value of total optical depth is estimated as 75 = 4.

14.3.2 Static stability of gray radiative equilibrium

Whether the state in radiative equilibrium is realized depends on the static stability
of the thermal structure. In general, the temperature of gray radiative equilibrium
decreases with height. According to Fig. 14.4, as a becomes larger, the lapse rate of
the temperature ‘g in the lower layer of the atmosphere becomes larger. The lapse

rate of gray radiative equilibrium can be calculated from (14.3.17) and (14.3.22)
dT F\* 1/(3 i 3dr
= : T+1
dp 20 4\ 2 2 dp

3 3
nr +1
= ,27 (a+ DT _ 2" (o )7 (14.3.24)
Sr+l Ap 5T+ 1 4pRy
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where the equation of state p = pR4T is used. The dry adiabatic lapse rate of the
ideal gas is given by (1.1.57):

oT 1
= ) 14.3.25

The atmosphere is statically stable if the lapse rate is smaller than that of the dry
adiabat. Thus, the condition for stability is given by comparison between (14.3.24)
and (14.3.25); the stability condition of radiative equilibrium is given by

dT | (0T 5t (a+1)0,
= <1 14.3.26
dp/(@p)s ;’T+1 4R, ( )

Since “;’T/ (“;’7' + 1) < 1, the radiative equilibrium of the gray atmosphere is every-
where stable if

a < 441 (14.3.27)

is satisfied. This stability criterion is written as a < 1/7 = 0.14 for the case
Cp/Rq = 7/2. If this condition is not satisfied, there exists an unstable layer below
the height where the optical depth is given by

2 [(a+1)C, -t
oo 3{ i 1] _ (14.3.28)

For example, for the values a = 4, 75 = 4, and Cp /Ry = 7/2, the top of the unstable
layer is given by 7 = 0.20 or p = 550 Pa.

Even when the structure of radiative equilibrium is stable, surface temperature
is generally warmer than the temperature at the bottom of the atmosphere, as can
be seen from the difference between (14.3.18) and (14.3.19). This indicates that
if thermal diffusion is allowed between the surface and the atmosphere, the lowest
layer of the atmosphere has a large temperature lapse rate and is thought to be
statically unstable. Thus, radiative equilibrium is not realizable in fact; instead, we
need to consider a different equilibrium state that considers the effect of convection
(i.e., radiative-convective equilibrium).

14.3.3 Approximations of radiative transfer

If radiative equilibrium breaks down, the convergence of radiative flux deviates from
zero. In this case, the radiative transfer equations (14.3.2) and (14.3.3) are to be
solved to obtain the heating rate due to radiation. Under certain circumstances,
however, the heating rate due to radiation can be given by following approximate
calculation methods.

If the total optical depth of the atmosphere is sufficiently thin, the magnitude of
radiative flux at a given height is not affected by the surrounding temperature field
and is determined by direct interaction with outer space. In this case, the heating
rate is a function of the local value of temperature. From (14.3.4), (14.3.7), and
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(14.3.9), the convergence of radiative flux with respect to optical thickness is given
as

72d
3dr

Since from (10.5.1)

Frad  — 7(FT + Fl _ 27TB) (14329)

dr = —kpgdz, (14.3.30)

the convergence of radiative flux is expressed as

d
e = g,{pqi (F1 + F' —21B). (14.3.31)
z

If optical depth 7 is thin, we may have approximations F! <« F! and FT ~ const.
In this case, F! is determined by surface temperature Ty:

F' = opT% (14.3.32)

Expanding B with respect to T around the radiative equilibrium temperature
Tr(2), we have

T-Tr\"
2B = 205T% = 2UBT§ (1 + R)
Tr
T-T
~ 20T} (1 +4 R) . (14.3.33)
Tr
Thus, (14.3.31) is approximated as
d 3 T —Tg
—  Frad = i T — 90T (144
ds o Pl [UB s —20plp |1+ T
T-T.
= —pC, , (14.3.34)
TR
where
T+ 6T C,
T. = °° i = e 14.3.35
873 T 12kqi0pT} ( )

T, is equilibrium temperature, and 7 is radiative relaxation time. Note that T is
different from the radiative equilibrium temperature Tr and that 75 is slightly dif-
ferent from (12.4.11) and (13.3.21). For the above approximations, the convergence
of radiative flux (14.3.34) is in the form of radiative relaxation. This form of rad-
iation is called Newtonian cooling. Although these assumptions are not always
applicable to the real atmosphere, Newtonian cooling is frequently used to repre-
sent the radiative effect for the theoretical consideration of atmospheric structure.
In these cases, the profile of the equilibrium temperature T, is arbitrarily given
depending on taking account of many factors other than those in (14.3.35).
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In the other extreme case that optical depth is sufficiently thick, radiative flux
is determined only by the surrounding temperature profiles. To zero-th order ap-
proximation, photons and the air are in local thermal equilibrium:

F' ~ F!' =~ =B. (14.3.36)
To the next order of approximation, from (14.3.2) and (14.3.3), we have
2dF" 2 d(wB)
Fl = B =~ B 14.3.37
3 dr T 3 dr +ms, ( )
2dF! 2d(mB)
Fl = - B ~ - B. 14.3.38
3 dr o 3 dr o ( )
From the difference between the two equations and using (14.3.30), we obtain
4 d(wB) 4 d
F = F'-F! - _ T4
3 dr 3Kkpq; dz (05T")
16051 dT
- _9B . (14.3.39)
3kpq; dz

This indicates that radiative flux is in a diffusive form that is proportional to
the local gradient of temperature. This kind of approximation is called diffusion
approximation and is applicable to the interior of stars.

14.4 Radiative-convective equilibrium

The radiative equilibrium temperature profile is generally statically unstable as
seen in Section 14.3.2. The lapse rate of temperature in radiative equilibrium is
larger than that of the dry adiabat in the lower layer of the atmosphere for plausible
values of optical parameters. Thus, convection will occur in unstable layers, so that
a new equilibrium state is established instead of radiative equilibrium. To obtain
the resultant new equilibrium, one needs to consider the effect of convection on the
temperature profile in addition to the effect of radiation.

If convective and radiative fluxes co-exist in the free atmosphere, the energy
balance over a long time average is expressed from (14.1.4) as:

0
0z

If there is no heat source within the Earth, net flux must vanish:

(Fconv + FT'CLd) = 0. (14.4.1)

Fconv+FT'ad = 0. (14.4.2)

In general, in the framework of a vertically one-dimensional structure, one needs
to introduce a convective model to obtain an expression for convective flux Feonv,
since convection is inherently two- or three-dimensional. There are basically two
types of convective models: the first is to directly give the expression of Fconv
and the second is to assume the resultant temperature profile. An example of the
former method is the mizing length theory, while one for the latter is convective
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adjustment. These were originally based on convection in a dry atmosphere. One
needs to model a moist circulation that includes the phase changes of water to
apply to the real atmosphere. The modeling of moist convection will be considered
in Chapter 15. Here, we will explain the above two methods for a dry atmosphere.

14.4.1 Mixing length theory

The mixing length theory is based on the assumptions that air parcels associated
with convection can be distinguished from the environmental field, and that con-
vective energy flux is estimated as the vertical transport of heat by individual air
parcels. The buoyancy force drives air parcels vertically up or down to a distance
[ at which they are mixed with the environment. In the general formulation of the
mixing length theory, convective flux is written as

00
0z

where K™ is the eddy diffusion coefficient and @ is potential temperature. From
dimensional analysis, the eddy diffusion coefficient K“°"¥ can be set to a product of
length scale | and velocity scale V: K™ =V (see (11.2.12)). The length scale [
is thought to be a typical height scale of convection and corresponds to the typical
scale of an air parcel. [ is called the mizing length.

The choice of mixing length | depends on many factors. In the boundary layer
near the ground, for instance, the mixing length is generally given proportional to
2.1 In a deep atmosphere, on the other hand, there is no typical length scale other
than the pressure scale height H = C,T'/g, so that [ is usually set to H. As for
the velocity scale, we assume that the magnitude of vertical velocity is given by the
buoyancy force

0\
Vo= (10 g> , (14.4.4)

[Freconv  — ,pCpKC‘”W (1443)

where ¢’ is the deviation of potential temperature from the environmental field
possessed by an air parcel. Assuming that the vertical motion of the air parcel is
adiabatic, we can relate the deviation of potential temperature to the gradient of
potential temperature in the environment, as shown in Fig. 14.5:

a0
ro— 14.4.
) Lo (14.4.5)

where positive deviation 8’ > 0 (i.e., positive buoyancy) is realized only in the case
gz < 0. Thus, we obtain the eddy diffusion coefficient:

, 90\
K™ = [V = [2 (zaz> . (14.4.6)

tIn the theory of the boundary layer, the mixing length is proportional to the height z as given
by (11.3.6).
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1KY

Temperature Potential temperature

F1GURE 14.5: The thermodynamic paths of air parcels for the mixing length theory. Left: relation

between temperature of the environment and that of upward and downward-moving air parcels.

Right: relation between potential temperature or entropy of the environment and that of air

parcels. Dotted lines are environmental states, and solid arrows are the paths of air parcels. Air
parcels are mixed with environmental air after vertical displacement [.

The above formula can be rewritten using temperature. Using hydrostatic bal-
ance and the equation of state of the ideal gas, we generally have

100 16T7Rd16p 10T  Rapg
00z T Oz Cypdz T30z Cpp
1 /0T
= Tql. 14.4.7
T (az * d) ( )
Therefore, (14.4.3) and (14.4.6) are written as
2 oT 3
Feonv — (7)) |- r 14.4.
(1) |- (50 +19)] 1449
, T
— 7pCchonv/ (gz + Fd) 5 (1449)
aT :
Kconv/ — l/2 79 1“ 1441
1) o

where I’ = 1(6/T)*/*. We may think of I’ as the usual mixing length by ignoring
the difference in the factor.

The diffusion coefficient is positive K™ > 0 if stratification is unstable. This
means that convective flux exists only in the unstable layer if the mixing length
theory is applied. We refer to this unstable layer as the convective layer. Even if
convection motion occurs, stratification is still unstable; the convective flux of the
mixing length theory does not completely eliminate unstable stratification of the
convective layer. In general, however, as will soon be shown, the convective layer is
marginally unstable and very close to neutral. From the balance of the energy flux
in the equilibrium state (14.4.2) and convective flux (14.4.8), the ratio of the lapse
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rate to the dry adiabat is estimated as

— (57 + 1) Frad,[C,T
- . 14.4.11
Ly pg*l? ( )

In the case of radiative equilibrium, F7ed is everywhere equal to zero. Within
the convective layer, however, its value is unknown in advance. Here, we use a
representative value of incident solar radiation Frad ~ 300 W m~2 to estimate the
above ratio. Using C), = 10 J kg™! K™, T~ 300 K, g ~ 10 m s7%, and [ =~ 8 km,
Eq. (14.4.11) is about 1072, Thus, the difference of the lapse rate from that of the
dry adiabat is very small if the mixing length theory is applicable.

Now, we may relate the above ratio to the non-dimensional parameters of Golit-
syn’s model introduced in Section 12.4. Using F¢ ~ F,, T ~ T,, l ~ C,T./g, and
pl =~ M.y (horizontally averaged mass of an air column per unit area),’

() o m N L (o
Iy \/CpTeMcolg C;/2Mcolg

= (T TLy)5. (14.4.12)

Since Il <« 1 and II; < 1 in most planets, the lapse rate in the convective layer
of radiative-convective equilibrium is close to neutral. Gierasch and Goody (1968)
applied the mixing length theory to the atmosphere of Mars. Matsuda and Matsuno
(1978) discussed the radiative-convective equilibrium of the atmosphere of Venus
using mixing length theory. They found that the lapse rate of the convective layer
is close to that of the dry adiabat.

In the boundary layer, the mixing length [ is thought to be proportional to
the distance from the surface and is shorter than the mixing length in the free
atmosphere used above. So, we can estimate the typical height at which the lapse
rate is appreciably different from that of the dry adiabat. Assuming that the ratio
(14.4.11) equals one at height [ = z,,, we obtain

Frad \/CpT
| = , = . (14.4.13)
PY

For the same parameters used above, we have z,, ~ 40 m. This leads us to believe
that the lapse rate of radiative-convective equilibrium is different from that of the
dry adiabat between the surface and the height z,,. Letting 0,,, denote the potential
temperature at z,,, and 65 the surface value of potential temperature, we express
convective flux as

Jconv
Feconv  — _pcp (Qm — 95) (14414)

Zm

TIn this section, the mass of an air column is denoted by M,.;. In Section 12.4, it is simply
denoted by M, but M denotes mass flux here.
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Introducing a typical velocity scale u, which is driven by buoyancy in the boundary
layer, we can estimate the diffusion coefficient using (14.4.4)—(14.4.6) as

1
KCO’VI’U g 60 2
~ — m . 14.4.15
. < ) 8z) Zm X U ( )
Therefore, we can express convective flux in the boundary layer as
Feorv = pCLCpus(0s — 0p). (14.4.16)

In this form, the coefficient Cp is called the bulk coefficient. The value Cpus is
typically 0.01 m s~ L.f

14.4.2 Convective adjustment

We have found, based on an evaluation using the mixing length theory, that the
lapse rate in the convective layer in radiative-convective equilibrium is very close
to that of the dry adiabat I'y. This suggests that the temperature structure of
radiative-convective equilibrium can be determined by setting the lapse rate of
the convective layer to I'gy without the explicit expression of convective flux. This
method is called convective adjustment.

In the case of the gray radiation model, the temperature structure of radiative
equilibrium is statically unstable in the layer close to the surface if absorbing con-
stituents are more abundant in the lower layer; the layer is unstable below the level
where the optical depth is equal to (14.3.28). The convective layer of radiative-
convective equilibrium, therefore, exists at least between the surface and the level
given by (14.3.28). Because of the energy balance and the requirement for conti-
nuity of temperature, the top level of the convective layer is located at a higher
level than this. The atmospheric structure of radiative-convective equilibrium can
be divided into the convective layer and the layer above the convective layer. The
convective layer corresponds to the troposphere, the top level of the convective layer
is the tropopause, and the layer above the tropopause is the stratosphere. In the
stratosphere, only radiative flux exists as the energy transport; thus the strato-
sphere is in radiative equilibrium. The schematic relation between the temperature
structure of radiative-convective equilibrium and that of radiative equilibrium is
displayed in Fig. 14.6. It should be noted that the stratosphere is actually defined
as a layer in which temperature increases with height as shown in Fig. 14.1. In the
case of the gray radiation model, the stratosphere is simply defined as a layer in
radiative equilibrium. Since absorption by ozone is not considered in this case, the
temperature in the stratosphere approaches a constant value with height.

The convective adjustment method determines the temperature structure in the
convective layer using the externally specified lapse rate of temperature. In the case
of a dry atmosphere, the mixing length theory suggests that the lapse rate in the
convective layer is very close to that of the dry adiabat I'y. Although the lapse rate

If this form is used in the momentum equation, Cp is called the aerodynamic drag coefficient
and ux is called the friction velocity. This corresponds to Cp of (11.3.17) in Section 11.3.3. Lateral
velocity at the lowest layer |up| is used in Section 11.3.3. Here we use the turbulent velocity ux
which is driven by the convection itself.
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FIGURE 14.6: Schematic temperature profiles of radiative equilibrium and radiative-convective

equilibrium with convective adjustment. If the gray radiation model is used with the same optical

parameters, the temperature profile in the stratosphere of radiative-convective equilibrium agrees
with that of radiative equilibrium.

near the surface is larger than I'y, the difference is appreciable only in the very thin
layer below z,, (14.4.13). Thus, in the layer below z,,, we represent the sum of
thermal diffusive flux and turbulent flux due to small convective eddies as sensible
heat flux from the surface to the atmosphere. We assume the formula (14.4.16) for
sensible heat flux.

In the equilibrium state, the sum of convective flux, radiative flux, and sensible
heat flux is constant irrespective of height as shown by (14.1.5). On the assumption
described above, sensible heat flux F's" exists only in the layer just above the surface.
On the other hand, convective flux F'¢°"? becomes zero at the surface, and radiative
flux continuously varies near the surface. Thus, if we neglect the structure within
the surface layer, we may set the boundary condition of convective flux at the
surface as

Fconv(o) = [sh — pCpCDU*(Ts — TO)7 (14417)

where (14.4.16) is used and the depth of the boundary layer is neglected: the surface
temperature T and the temperature at the bottom of the atmosphere T, are used
instead of potential temperature. The temperature gap between the surface and the
atmosphere depends on the magnitude of the coefficient Cpu,. In the limit Cpu, —
00, for instance, the temperature gap approaches zero and FT(O) =7B(0) = opT2.
The profiles of radiative flux and convective flux in the limit Cpu, — oo
are schematically shown in Fig. 14.7. The tropopause height is denoted by z”.
Radiative flux consists of the net solar radiation flux F'7e4s and the infrared plane-
tary radiation F7edl, Throughout all the layer in radiative-convective equilibrium,
energy flux satisfies the relation Feonv 4 Frads 4 fradl — (). We assume that solar
radiation is not absorbed in the atmosphere and is given by Frads = (1 — A)F® /4.
Convective flux Feonv is different from zero within the troposphere (i.e., between
the surface and the tropopause, where the tropopause height is denoted by 27).



Sec. 14.4] Radiative-convective equilibrium 387

Fr ads Z Fradl Fdown B F“P

T FCOl’lV z T

0 o 0 c, Ts4

FIGURE 14.7: Schematic profiles of radiative flux and convective flux in radiative-convective equi-

librium in the case of Cpusx — oco. zT is the tropopause. F7%%5 is solar radiative flux, Fred jg

planetary radiative flux, F¢°"? is convective flux, and F*" is sensible heat flux from the surface.

Fradl js equal to the difference between the upward planetary radiative flux F*P and the down-

ward planetary radiative flux F%°%" 1B is equal to ogT%. The dotted lines show the profiles in
radiative equilibrium.

At the surface, convective flux is equal to F's". Longwave radiation is given by
Fred — T Floand is equal to —Frads — F'sh at the surface. FT% increases with
height from the surface to 27, and is equal to —Freds above 27 In the stratosphere
above 2T, the variations of the fluxes, F'T, F'*, and 7B, follow those of radiative
equilibrium shown in Fig. 14.3. In the troposphere below 27, F'! is larger than that
of radiative equilibrium, and F is smaller than that of radiative equilibrium. Since
surface temperature and the temperature at the bottom of atmosphere is assumed
to be equal, F1 = 7B is satisfied at the surface.

The vertical temperature profiles for the case when a more realistic radiative
process is used are shown in the left panel of Fig. 14.8 (Manabe and Strickler 1964).
This shows the vertical temperature profiles in radiative equilibrium, radiative-
convective equilibrium with dry adiabatic adjustment, and that with a critical lapse
rate of 6.5 K km~!, which represents the average lapse rate in midlatitudes. The
tropopause gets higher and the surface temperature gets lower as the critical lapse
rate becomes smaller (i.e., upward convective energy flux is larger in the case with
the dry adiabat (about 10 K km~!) than in the case with the lapse rate 6.5 K
km~!). Different from the temperature profiles with the gray radiation model in
Fig. 14.6, the temperature profiles in the stratosphere differ between pure radiative
equilibrium and radiative-convective equilibrium. The right panel of Fig. 14.8 shows
the vertical distributions of the heating rate due to radiation for each component
of gases. In the troposphere, the cooling effect of water vapor on longwave rad-
iation is most important; net cooling amounts to about 1.5 K day~! through the
troposphere. In the stratosphere, solar heating due to Oz is balanced by longwave
cooling due to COs.
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FIGURE 14.8: Vertical distributions of the temperature and heating rate in radiative equilibrium
and in radiative-convective equilibrium. Left: temperature distributions of radiative equilib-
rium (dashed), radiative-convective equilibrium with a dry adiabatic lapse rate (dotted), and
radiative-convective equilibrium with a critical lapse rate of 6.5 K km™! (solid). Right: the rate
of temperature change due to radiation for radiative-convective equilibrium. Heating rates due
to gas components, CO2, H2O, and Os, for longwave radiation (L) and shortwave radiation (S)
are shown. After Manabe and Strickler (1964). (c)American Meteorological Society. Used with
permission.

14.5 Radiative-convective equilibrium in a moist atmosphere

14.5.1 Energy balance

The vertical one-dimensional energy balance of a moist atmosphere is given by the
horizontal and time average of the equation of total moist energy (9.6.17):

5 (Fconv 4 frad 4 psh Flh) = 0, (14.5.1)
z

where F'" is latent heat flux due to the diffusion of water vapor. In this case, the
convective energy flux F°°™" is given by (14.1.2)

Fer = pwo = pw(oa+Lg) = pw(CyT+gz+Lg),  (145.2)

where ¢ is moist static energy and o4 is the dry static energy. If the contributions
of thermal diffusion and the diffusion of water vapor are confined in a thin layer

very close to the surface, the energy balance in the free atmosphere can be written
as

o (FCO””+Fmd) _— (14.5.3)

In this form, the energy balance of a moist atmosphere is apparently the same as
that of a dry atmosphere; the difference is hidden in convective flux, which has a
contribution of latent heat flux in the case of a moist atmosphere.

To consider the vertical one-dimensional balance of a moist atmosphere, we need
to add the equation of water vapor. The balance of water vapor is given by the
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horizontal and time average of (9.6.1):

0 .

92 (pwq+zz) = =5, (14.5.4)
where S, is the source term of water vapor and i is the vertical component of the
diffusion of water vapor. At the surface, this flux is equal to evaporation from the
surface; we assume that it is given by a bulk formula similar to that of sensible heat
flux (14.4.17):

pwq(0) = E, = pCpus(gs — qo), (14.5.5)

where ¢, is specific humidity at the surface, and qg is that at the bottom of the
atmosphere. We have assumed that coefficient Cp is the same as that of ther-
mal diffusion (14.4.17) for simplicity.” We further assume that diffusive flux i, is
smaller than convective flux pwq in the free atmosphere. Neglecting the thickness
of the boundary layer, we can equate the boundary value of pwq at the bottom of
the atmosphere to (14.5.5). Thus, at the bottom of the atmosphere, the value of
convective flux (14.5.2) is given by the sum of sensible heat flux and latent heat
flux from the surface and is given by the following bulk formula:

Feonw(0) = Fsh 4 Flh = Fsh 4+ LE, = pCyCpus(cs —0o),  (14.5.6)

where o0, = C,Ts + Lqs and o9 = CpTo + Lqo.

We may have an alternative form of the energy balance of a moist atmosphere;
the effect of the latent heat release of water vapor can be interpreted as the heating
of the dry atmosphere. In this case, multiplying L by (14.5.4) and subtracting it
from (14.5.1), we obtain

0
o (Fgonv 4 Frad + Fsh) — pCpQ'rru (1457)

where @, is heating due to latent heat release, given by (9.6.10). Fj°"" is the
convective energy flux of a dry atmosphere, given by (14.1.2). If diffusive fluxes are
negligible outside the boundary layer, the energy balance in the free atmosphere is
written as

0 . .
5 (Fd" +Fmd) = pCyQum. (14.5.8)

This is the balance between latent heat release and the divergence of radiative and
convective fluxes.

14.5.2 Convective adjustment

One needs to take account of the transport of water vapor to obtain the convective
flux of the radiative-convective equilibrium of a moist atmosphere. However, if we
assume that moist air parcels retain constant moist entropy during their motion, the

TThe two bulk coefficients are generally different. In Chapter 11, the bulk formulas of energy
and water vapor fluxes (11.3.17) have different coefficients as denoted by Cy and Cy, respectively.
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mixing length theory that was used for a dry atmosphere can be utilized to obtain
the temperature structure of a moist atmosphere without explicitly considering the
transport of water vapor. In this case, strictly speaking, we need to assume that
an equal amount of water is contained in all the air parcels and, if water vapor is
condensed, that the condensed water is held in the air parcels without precipitating
as rain. According to the mixing length theory on these assumptions, the tempera-
ture structure in the convective layer almost becomes neutral as described in Section
14.4.1. Specifically, in this case, it is neutral in a saturated moist atmosphere and
the lapse rate should be close to the moist adiabat that is given in Sections 8.1.7
or 8.2.4. An approximate equation of the moist adiabat (8.2.49) is convenient for
the qualitative discussion here. The moist adiabatic lapse rate of temperature per
unit height is given by

RsT  p
y W (14.5.9)
L+ CiRdT2 g p

T,, = T

which is a function of T' and p, and I'q = g/C). In fact, this is the pseudo-moist
adiabat. In general, we have |I',| < |T4| (i-e., the lapse rate in the convective
layer of a moist atmosphere is smaller than that of a dry atmosphere). This means
that the tropopause height of a moist atmosphere is in general higher than that
in a dry atmosphere if other conditions including radiative property are the same.
Figure 14.9 shows the relation between the dry adiabat and the moist adiabat.
As temperature increases, the difference between the moist adiabat and the dry
adiabat becomes larger, while the two lapse rates get closer as temperature gets
colder or altitude gets higher.

In reality, precipitation occurs with moist convection, and air parcels in a moist

Pressu&e [hPa]
o
o

10005 v N N N N A
200 250 300

Temperature [K]

FIGURE 14.9: Temperature profiles according to the dry adiabat (dotted), the pseudo-moist adi-
abat (solid), and the saturated moist adiabat (dashed) whose water content is conserved as the
saturation value at the surface.
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atmosphere have different water content. This means that the assumption used
for the mixing length theory is not appropriate for a moist atmosphere, and that
the theoretical basis for use of the moist adiabat as the lapse rate of convective
adjustment is lost. In addition, moist convection has a very complicated structure
if precipitation is associated. For numerical simulations of the global-scale circu-
lation, for instance, the statistical models of the effect of cumulus convection are
introduced. In the next chapter, the vertical one-dimensional structure of a moist
atmosphere will be considered using a schematic model of moist convection which
consists of an upward motion region and a downward motion region. According to
such a simplified model, it will be found that the lapse rate of the moist convective
layer is close to the moist adiabat even if precipitation is associated.

14.6 Runaway greenhouse effect

In the case of a moist atmosphere, if incident solar radiation is larger than some
critical value, there is a regime in which no liquid phase is allowed at the surface.
This kind of regime is caused by the runaway greenhouse effect, which is qualita-
tively explained as follows. Suppose that solar radiation is increased. In this case,
the surface temperature given in the solution to radiative-convective equilibrium
becomes warmer. If water vapor is just saturated at the ground, the atmosphere
contains more water vapor and thus the total optical depth of the atmosphere
becomes more opaque. If the atmosphere becomes more opaque, in turn, the sur-
face temperature becomes warmer because of the greenhouse effect, and then the
atmosphere contains more water vapor. This positive feedback will continue until
all liquid water (i.e., the oceans) evaporates. In the very early stages of Earth’s
history, some modeling studies show that the Earth could have been in a state in
which all oceans evaporated (Kasting, 1989; Abe and Matsui, 1988).

It is found that positive feedback for a runaway greenhouse effect works only if
incident solar radiation is larger than some critical value. This critical point can
be estimated by the following procedure. To simplify the argument, we assume
that only water vapor contributes to radiation and that water vapor has a constant
absorbing coefficient k& which is independent of wavelength (gray radiation). Total
optical depth is given by (10.5.1):

z P
T = /kpqdz = /kqdp. (14.6.1)
0

o g

We assume that specific humidity ¢ is constant in the stratosphere irrespective
of height and that it is saturated at the tropopause. Letting Tp and pr denote
temperature and pressure at the tropopause, respectively, we have specific humidity
at the tropopause given by

“(T
ar = 5p1(7 r). (14.6.2)
T
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Thus, the optical depth at the tropopause is given by (14.6.1) using (8.2.11):

pr p*(Tr) kepg Lo /(1 1
= k = k = — . 14.6.3
T ar’ = PR P ( )

If the stratosphere is in radiative equilibrium with the gray atmosphere, we have
a relation between the optical depth and temperature in the stratosphere using
(14.3.16) and 7B = opT*:

4 O’BT4 1
= — 14.6.4
v 3( ! 2)7 (14.6.9)

where F' is net incident solar flux given by (14.3.8). Therefore, water vapor at the
tropopause can be in a saturated state if (14.6.3) has a solution to (14.6.4) (i.e.,
the runaway greenhouse effect does not occur). Figure 14.10 shows three profiles of
gray radiative equilibrium and the tropopause temperature given by (14.6.3). For
the smallest value of F' = 240 W m~2, Eq. (14.6.3) has two solutions to (14.6.4).
The upper point is regarded as the tropopause. For the largest value of F' = 320
W m~2, on the other hand, no solution exists. This means that, if solar radiation
is large enough, there is no solution for radiative-convective equilibrium in which
the air is saturated at the tropopause. This mechanism of the runaway greenhouse
effect was found by Komabayashi (1968) and Ingersoll (1969), and the critical value
of solar radiation is called the Komabayashi-Ingersoll limit (Nakajima et al., 1992).
Figure 14.11 shows the relationship between temperature and pressure for different
values of sea surface temperature (Nakajima et al., 1992). This calculation is done
using simplified gray radiation. As sea surface temperature
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FIGURE 14.10: Relation between temperature and optical depth for the runaway greenhouse effect.

The solid curves are the temperature structure of gray radiative equilibrium for solar radiation

F = 240, 280, and 320 W m~2, while the dotted curves relate the optical depth at the tropopause

to the tropopause temperature under the saturation condition (14.6.3). In the case of F = 240

W m~2, the tropopause can be saturated, while there is no solution to a saturated tropopause in
the case of F' =320 W m~2.
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FIGURE 14.11: Relation between temperature and pressure for various sea surface temperatures.
After Nakajima et al. (1992). (c)American Meteorological Society. Used with permission.

temperature increases, the total mass of the atmosphere increases due to the in-
creased abundance of water. At a sea surface temperature of 450 K, atmospheric
mass is 10 times larger than the present value.
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Moist convection

In the previous chapter, we examined the vertical structure of the atmosphere
based on the balance between energy transports due to radiation and convection. If
convective motion is described by the mixing length theory, the effect of convection
is almost equivalent to adjusting the temperature profile to an adiabatic profile. As
for a moist atmosphere, convective motion has asymmetry between upward motion
and downward motion because latent heat release is associated with upward motion.
Since such asymmetry is generally not taken into account for the mixing length
theory, we must reconsider the effect of moist convection on the temperature profile
in a moist atmosphere. This leads to the construction of a cumulus model that is
based on the characteristic motion of moist convection in nature (i.e., cumulus
convection).

In this chapter, to consider the vertical structure of a moist atmosphere, we
examine the fundamental characteristics of moist circulation that is observed as
cumulus convection in the tropics. Using a simplified cumulus model, we present
a schematic view of the thermodynamic structure that is associated with moist
circulation. We will find that the horizontal mean temperature profile of a moist
atmosphere that has asymmetry between upward motion and downward motion is
also close to the moist adiabat.

In a moist atmosphere, the condensation of water vapor occurs in the layer
above a particular level, called the cloud base or the lifting condensation level.
Thus, the troposphere of a moist atmosphere is further divided into two layers:
the upper layer is associated with water vapor condensation and is characterized
by moist convection, and the lower layer is free from water vapor condensation
and is characterized by dry convection. The latter is called the mixed layer and
plays fundamental roles in the transport of heat and water vapor from the surface
to the atmosphere. We examine the properties of the mixed layer in vertical,
one-dimensional, statistical equilibrium states using the above simplified cumulus
model. The concept of this chapter is related to the cumulus parameterization used

M. Satoh, Atmospheric Circulation Dynamics and General Circulation Models, 395
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for general circulation models. We will briefly describe a mass flux scheme that is
a representative cumulus parameterization.

15.1 Circulation structures of convection

The vertical structure of the Earth’s atmosphere is maintained by moist circulation,
particularly in the tropics. We need to analyze the structure of this moist circu-
lation to understand the vertical profiles of temperature and water vapor in the
tropics. Moist circulation in the tropics is viewed as the convection associated with
hydrological circulation. Moist convection is quite different from more fundamental
forms of convection, such as Bénard convection and that in a dry atmosphere. We
begin by comparing moist convection with dry convection and Bénard convection.

The energy balance of an equilibrium state of a moist atmosphere is written
as the balance between convective flux and radiative flux as shown by (14.5.3); in
this equation, the latent heat of water vapor is included in moist enthalpy. In a
radiative-convective equilibrium state, heating due to convection occurs in the form
of supply of latent and sensible heat fluxes from the surface and cooling due to rad-
iation that occurs in the free atmosphere (i.e., the troposphere). In the same way,
we can consider convection in a dry atmosphere without the hydrological cycle. If
a dry atmosphere is heated from the surface and cooled in the free atmosphere, dry
convection will occur in the free atmosphere and the radiative-convective equilib-
rium of the dry atmosphere will be established as described in Section 14.4. We
furthermore consider convection in the Boussinesq fluid. This is known as Bénard
convection, which is theoretically described in Section 5.2.1. The theory underlying
Bénard convection can be formulated as a fluid surrounded by rigid walls at the top
and bottom of the fluid. The fluid is heated from the bottom boundary and cooled
at the top boundary. Unlike the atmosphere, the Boussinesq fluid has a very narrow
depth such that the difference between temperature and potential temperature is
negligible.

We examine the temperature structures of the three types of convection by in-
troducing a simplified convective model; we assume that the convections have a
steady cycle, that upward and downward motion regions are clearly distinguished,
and that the exchange between upward and downward motion regions is negligible
except for the top and bottom boundary layers. These assumptions are oversim-
plified for quantitative discussion of the effect of convection. Nevertheless, such a
conceptual model is still useful because it provides constraints for possible temp-
erature profiles.

First, we consider the temperature structure of Bénard convection, which is
schematically shown in Fig. 15.1. Temperatures at the bottom and top boundaries
are specified as T7 and T, respectively. We can assume that the temperatures in
upward and downward motion regions are vertically uniform and given by 77 and
Ty, respectively. In this case, the vertical profile of the horizontal mean temperature
follows the dotted curve in the right panel of Fig. 15.1. In the middle of the convec-
tive layer, horizontal mean temperature is the average between the top and bottom
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FIGURE 15.1: Schematic temperature structure and circulation structure of Bénard convection. T}

and 75 are temperatures at the bottom and top boundaries, respectively. F' is heat flux from the

surface and M is the mass flux of the circulation. The dotted line in the right panel is horizontal
mean temperature.

boundaries, (T} + T»)/2. We also assume that there are thin boundary layers near
the top and bottom boundaries, within which temperature abruptly changes from
mean values to T3 or T5.

Horizontal mean upward heat transport F' is independent of height in the equi-
librium state. Convective mass flux per unit area M is defined as mass transport
in either the upward motion region or the downward motion region. In the steady
state, M is equal in both regions. It is also assumed that M is independent of height
except for the thin boundary layers. Using a constant density py of the Boussinesq
fluid, mass flux is related to upward velocity w" and downward velocity wy as

u d

Mo et et (15.1.1)

Po 2 2
The factor 1/2 comes from the assumption that the upward motion region occupies
the same areal fraction as that of the downward motion region. Convective heat
flux is also expressed by

u d
F o= o = Tt My (15.1.2)
2 Po

where the overline denotes the horizontal average. In principle, convective motion
is driven by the buoyancy force. Thus, we assume that vertical velocity is bounded
by the work done by the buoyancy force along the fluid depth H:

wt o= —wl = A\/QHTAT, (15.1.3)
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where AT =Ty — T, T = (T1 + 1) /2, and A is a coefficient which may depend on
viscosity, and will be smaller than one. In this case, heat transport is expressed as

H
F = A\/gT AT, (15.1.4)

Coefficient A is included as an unknown factor in this equation. In Chapter 5,
we estimated the heat transport associated with the Rayleigh-Taylor instability by
(5.2.53). By equating the Nusselt number Nu = FH/kKAT to experimental values
(see (5.2.53)), we may be able to estimate coefficient A.

Second, let us examine radiative-convective equilibrium in a dry atmosphere. It
should be noted, however, that the dry radiative-convective equilibrium that was
considered in Section 14.4 does not exist in the real atmosphere of the Earth in the
pure sense, although dry convection itself is observed in the planetary boundary
layer and in the mixed layer. The concept of a dry radiative-convective equilibrium
may be, nevertheless, applicable to the atmospheres of Venus or Mars, and is a step
toward understanding moist radiative-convective equilibrium. We consider an ide-
alistic situation where a dry atmosphere exists over a horizontally uniform landmass
that has constant temperature.t In this case, we assume that a troposphere has
formed above the land; in the troposphere, the atmosphere is cooled by radiation
and its cooling is balanced by heat transport from the surface through dry convec-
tion. The top of the layer is the tropopause. The upper part above the tropopause
is in radiative equilibrium. The troposphere is occupied by dry convection, and the
atmosphere is as a whole in dry radiative-convective equilibrium.

In order to clarify the argument, we assume that convective motion in the tro-
posphere has a steady cellular circulation. Dry convection differs from Bénard
convection in that the upper rigid boundary does not exist in the case of dry
convection and that cooling occurs throughout the troposphere due to radiation in-
stead of thermal diffusion near the top boundary in the case of Bénard convection.
In addition, the atmosphere is sufficiently deep such that adiabatic temperature
decreases with height owing to the pressure effect. A schematic structure of con-
vective circulation and temperature profiles is shown in Fig. 15.2. Since cooling
is not confined in the thin layer near the upper boundary, streamlines are not
concentrated near the tropopause. The atmospheric temperature near the ground
is heated up close to the ground temperature Ts. Air parcels are always cooled
by radiation above the lower boundary layer both in the upward and downward
motion regions. Thus, the lapse rate in the upward motion region is steeper than
that of the dry adiabat, while that in the downward motion region is more stable
than that of the dry adiabat. If the temperature change is symmetric between
the upward and downward motion regions and deviations of the lapse rates from
the dry adiabat are the same magnitude in the two regions, the horizontally av-
eraged temperature over the upward and downward motion regions is close to that of

TThis situation can be created in numerical models (e.g., Nakajima and Matsuno, 1988 and
Pauluis and Held, 2002).
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FIGURE 15.2: The same as Fig. 15.1 but for dry convection. @ is radiative cooling and M is the
mass flux of circulation. The dotted line in the right panel is horizontal mean temperature which
is close to that of the dry adiabat.

the dry adiabat. As a result, average temperature in the convective layer will be
close to the dry adiabatic temperature structure as shown in Fig. 15.2 (right).

In the case of dry convection, deviations of the lapse rate from the dry adiabat
in the upward and downward motion regions are affected by radiative cooling and
the ratio of upward velocity to downward velocity. If the radiative cooling rate is
denoted by @ [K s~!] and the vertical velocity of the upward or downward motion
is denoted by w [m s~!], the difference between the realized lapse rate and the dry
adiabat is given by AI' = Q/w [K m™!]. In a similar way to (15.1.4), if we assume
that the energy gained by the buoyancy force is transformed to kinetic energy, we
can estimate vertical velocity,

w = A\/QHTAT, (15.1.5)

where AT is the temperature difference between the upward and downward motion
regions, H is the depth of the troposphere, and A is an appropriate coefficient
satisfying A < 1. Since the convective energy flux is equal to the radiative cooling
rate

wAT = QH, (15.1.6)
thus we obtain
1
TQ*H\ 3
AT = <A29> , (15.1.7)

and the difference of the lapse rate between the upward and downward motion
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regions

T 2 é
AT = g - (A29QH2> . (15.1.8)

For the values T = 300 K, Q = 2 K day~', H = 8 km, and A = 1, we obtain a
very small difference AT = 0.05 K and AT’ = 0.006 K km~!'. Thus, the lapse rate
of the dry convective region is close to that of the dry adiabat; this result is similar
to the temperature difference estimated by the mixing length theory (14.4.11).

In the third case, we consider the characteristics of moist convection. Here,
we introduce the following simplifications to clarify its differences from Bénard
convection or from dry convection. By neglecting the mixed layer, the convective
region is assumed to be just above the surface up to the tropopause and is divided
into upward and downward motion regions. (The structure of the mixed layer will
be considered in Section 15.4.) Latent heat release of water vapor occurs only in
the upward motion region, and the upward motion region is everywhere saturated;
thus the upward motion region is thought to be the cloud region. There is no latent
heat release or absorption in the downward motion region.

On the above assumptions, we can find that moist convection has an asymmetry
between upward and downward motion regions because of latent heat release; this
characteristic is different from dry convection. If upward motion is sufficiently fast,
the temperature in the upward motion region is close to the moist adiabat since
the cooling due to radiation is small. If downward motion is sufficiently fast, on
the other hand, the temperature in the downward motion region becomes closer to
the dry adiabat. In Fig. 15.3, the dry adiabat of the downward motion region thus
obtained is indicated by the dotted line, which starts from the top of the convective

0
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FIGURE 15.3: The same as Fig. 15.1 but for moist convection. @ is the radiative cooling rate and
the hatched region is the cloud region. The dotted line is the dry adiabat and the temperature
profile of the upward motion region is given by the moist adiabat.
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layer. If the temperature profile of the downward motion region follows such a
dry adiabatic profile, however, the temperature in the downward motion region is
warmer than that of the upward motion region so that air parcels in the upward
motion region cannot gain buoyancy. We conclude from this consideration that
downward motion must be slow enough to be cooled by radiation; the temperature
in the downward motion region must be colder than the moist adiabatic temperature
in the upward motion region (i.e., upward velocity must be faster than downward
velocity). This also indicates that the area of the upward motion region is smaller
than that of the downward motion region.

In reality, in the tropics the temperature difference between the upward motion
region inside cumulus clouds and the downward motion region in the environment
of cumulus is very small, so that the horizontal mean temperature profile is almost
prescribed by the moist adiabat of the upward branch of cumulus convection par-
ticularly in low latitudes. In Section 15.3, we further examine the thermodynamic
structure of moist circulation in more detail.

15.2 Static stability of a moist atmosphere

15.2.1 Conditional instability

Before examination of the circulation structure of moist convection, we review the
static stability of a moist atmosphere. The parcel method is used to consider the
static stability of a moist atmosphere. As described in Section 2.3, the parcel
method is based on the following assumptions; an air parcel ascends or descends
without exchanging heat and moisture with its environment and keeps its entropy
and water vapor component at the same values as those of the originating level. It is
also assumed that the air parcel does not affect the stratification of the environment
and that its pressure is always the same as that of the environment. If displacement
of the air parcel is infinitesimal, the stability criterion is given by the moist adiabat
for a saturated air parcel, while it is given by the dry adiabat for an unsaturated
air parcel. Here, we use the lapse rate of temperature with respect to pressure
~v = dT'/dp; the following argument still holds for the lapse rate with respect to
height I' = —dT'/dz. The lapse rate of the dry adiabat is denoted by 74, and that
of the moist adiabat is denoted by ~,,. Precisely, 74 depends on water vapor, but
we use an approximate value 1/pCpq as given by (1.1.57), for simplicity. 7., is a
function of temperature, pressure, and water vapor, and is approximately given
by (8.2.49). Let 7 denote the lapse rate of the environment. If 7 is larger than
4, the atmospheric state is absolutely unstable; in this case, the atmosphere is
always statically unstable regardless of whether the air parcel is saturated or not.
Contrary to this, if 7 is smaller than -,,, the atmospheric state is absolutely stable;
the atmosphere is always statically stable regardless of whether the air parcel is
saturated or not. In the intermediate case when ~ is between ~4 and 7,,, the
atmospheric state is conditionally unstable. That is, the static stability of the
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FIGURE 15.4: The stability criterion of a moist atmosphere showing the relation between temp-
erature structure and stability in the temperature-pressure diagram. The hatched region between
the dry adiabat 4 and the moist adiabat -y, is conditionally unstable.

atmosphere is categorized as

>y absolutely unstable, (15.2.1)
Y <YV <Yg ¢ conditionally unstable, (15.2.2)
Y < Ym Ot absolutely stable, (15.2.3)

as shown in Fig. 15.4. If stratification is conditionally unstable, actual stability
depends on whether the air parcel is saturated or not. If the air parcel is not
saturated, stratification is stable for an infinitesimal displacement. If the air parcel
is saturated, on the other hand, it is unstable for an infinitesimal displacement.
Even if the air parcel is not saturated initially, however, it can be unstable for a
finite displacement. During ascending motion, the temperature of the air parcel
follows the dry adiabat up to the saturation level and becomes colder than the
environment. Above the saturation level, however, it follows the most adiabat.
Furthermore, if the air parcel ascends, it becomes warmer than the environment; in
the end, the air parcel gains buoyancy and its upward motion is accelerated. This
case is schematically shown later in Fig. 15.5.

15.2.2 Convective available potential energy: CAPE

The stability of a finite displacement of an air parcel in a conditional unstable
environment can be formulated by the buoyancy experienced by the air parcel as it
is lifted upward. Let us consider an air parcel which is displaced upward from level
zp. The air parcel is assumed to be unsaturated initially but contains a moderate
amount of water vapor. No heat or moisture exchange is allowed between the air
parcel and the environment, and its pressure is always the same as that of the
environment during its ascent. If the density of the air parcel is smaller than that
of the environment, it gains positive buoyancy, while if its density is greater, it
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gains negative buoyancy. The buoyancy of the air parcel is written as

B = -0y (15.2.4)
p

where p, and p are the densities of the air parcel and the environment, respectively.
In the case that the environment is conditionally unstable and the air parcel is not
saturated at the starting level, the buoyancy of the air parcel is negative as long as
the upward displacement of the air parcel is small enough. If the air parcel is lifted
upward continuously, it becomes saturated and follows the moist adiabat. The level
where the air parcel begins to be saturated is called the lifting condensation level,
which is denoted by zrcp. If the air parcel is lifted further, the temperature of the
air parcel becomes warmer than that of the environment, and it gains buoyancy.
This height is called the level of free convection and is denoted by zppc. Since the
lapse rate of the environment generally tends to be smaller at higher levels near the
tropopause and temperature increases with height in the stratosphere, the buoyancy
of the air parcel becomes smaller and eventually reaches zero at a sufficiently high
level. The level where buoyancy vanishes is denoted by zp. Generally, an integral
of buoyancy between the starting level zp and zp is called convective available
potential energy (CAPE). CAPE W is given by

zr 27 N
/ Bd: = 7/ Pe =Py dz, (15.2.5)
zZB ZB p

w

or

PB _
W= 7/ PrPap, (15.2.6)
pT p
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ol buoyancy

T ——»

FIGURE 15.5: Finite displacement of an air parcel in a conditionally unstable environment. The

thick solid curve is the temperature change of the air parcel, and the thin curve is environmental

temperature. Buoyancy in the hatched region is used to calculate CAPE. If the effect of water
vapor is neglected, warmer temperature means increased buoyancy.
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where hydrostatic balance in the environment is used and pressures at the levels
zp and zp are denoted by pp and pr, respectively. The relation between the
temperature change of the air parcel and buoyancy is depicted in Fig. 15.5.

If the air parcel is lifted upward and becomes buoyant in a conditionally unstable
atmosphere, the buoyancy force works on the air parcel; the work applied to the air
parcel per unit mass is given by CAPE. Assuming that all the work is converted to
kinetic energy, we can estimate the possible vertical velocity of the air parcel as

Wz = V2W. (15.2.7)

In reality, of course, all the CAPE is not convertible to kinetic energy due to dissi-
pative processes. This estimation only gives the maximum of the upward velocity
of an air parcel lifted upward in a given state of the atmosphere.

CAPE is not solely determined by the thermal structure of the environment,
but it also depends on the originating level of an air parcel and the processes the air
parcel experiences along its displacement. The buoyancy of an air parcel depends
on how the water content of the air parcel changes. Two extreme cases are the moist
adiabatic process in which all the water content is conserved and the pseudo-moist
adiabatic process in which water falls as precipitation if it exceeds the saturation
vapor pressure. For the former case, the air parcel keeps its moist entropy and mass
concentration of water during its ascent. In particular, the sum of all the water
substance (i.e., vapor and liquid water or ice) does not change even after the air
parcel is saturated.

15.2.3 Saturation condition in the direction of vertical motion

In the Earth’s atmosphere, an air parcel can be saturated only if it is displaced in
the upward direction and cannot be saturated if it is displaced in the downward
direction. As shown below, this relation may be different for other types of gas com-
ponents. Here, we examine the saturation condition of an air parcel for adiabatic
displacement in the vertical direction.

In general, an air parcel can be saturated either when temperature decreases
or when pressure increases, as can be seen from the equation of saturation-specific
humidity (8.2.22). If the effect of temperature is dominant, the air parcel becomes
saturated when it is displaced upward, while if the effect of pressure is dominant,
it becomes saturated when it is displaced downward. The relation between the
pressure and temperature of the air parcel for adiabatic motion is given by the
adiabat (14.5.9). We consider the adiabatic process in the case when water vapor
content is sufficiently small. Under this condition, the lapse rate is close to the dry
adiabat:

o _ 1 Cuap (15.2.8)
dT Yd RdT
Since the partial pressure of water vapor is given from (8.2.25), it is approximated
as

Dy = ~\.D = € ap (15.2.9)
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Since the specific humidity of the air parcel ¢ is conserved until it is saturated,
change in the partial pressure of water vapor is given by an equation similar to
(15.2.8):
dpy depv
= . 15.2.10
drT R,T ( )
At saturation point, partial pressure is equal to the saturation pressure of water
vapor: p, = p*. The saturation pressure is given by the Clapeyron-Clausius equa-
tion (8.1.64) as
dp* eLp*
= . 15.2.11
dr RyT? ( )
By comparing the change in saturation condition and the adiabat near the
saturation point of the air parcel, we can judge whether the air parcel is saturated
during upward displacement or during downward displacement. At the saturation
point p, = p*, we have

dp*
dT el (

= . 15.2.12)
ya CpaT

If this ratio is greater than one, the air parcel is saturated if it is displaced upward,
while if this ratio is smaller than one, the air parcel is saturated if it is displaced
downward. These relations are schematically shown in Fig. 15.6. In the case of the
Earth’s atmosphere, since

el
CpaT
for T = 300K, then the air parcel can be saturated only if it is displaced upward, in

general. This ratio, however, may be smaller than one if thermodynamic variables
are different.

~ 5.2,

Saturated

Dry adiabat

Dry adiabat P

Saturated

T — T —

FIGURE 15.6: Relation between the saturation condition and the dry adiabat. Left: the air
parcel is saturated in its upward displacement. Right: the air parcel is saturated in its downward
displacement. The left panel corresponds to the case of the Earth’s atmosphere.
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15.3 Circulation structure of moist convection

15.3.1 Thermal structure

Let us now consider the circulation structure of moist convection in more detail,
following the schematic model shown in Fig. 15.3. Here, we assume that moist
circulation is modeled like Fig. 15.7 (Satoh and Hayashi, 1992), in which circulation
is steady and the convective layer, or the troposphere, is divided into two regions:
the upward motion region corresponding to the interior of cumulus clouds and the
downward motion region to the environment of cumulus. At a first consideration,
mass exchange between the upward and downward motion regions is allowed only
in the top and bottom boundary layers. Although boundary layers are required at
the top and bottom of the convective layer, these inner structures are not explicitly
treated. We assume that the fractional area of the upward motion region f is
smaller than that of the downward motion region:

;o< L (15.3.1)

The following simplifications are introduced to the equations of mass, energy
(static energy), and water vapor within the respective regions. The mass flux M,
of the circulation associated with cumulus convection is defined by

M. = f[fp'(z)w"(2), (15.3.2)

where w" and p* are vertical velocity and density in the upward motion region. In
this simple model, no mass exchange is allowed between the upward and downward
motion regions, and the mass flux M, is constant irrespective of height:

M, = const. (15.3.3)

Mass exchange occurs only at the top and bottom boundary layers as shown in Fig.
15.7. In the steady state, since the horizontally averaged mass flux pw is zero, the
magnitude of mass flux in the downward motion region is equal to (15.3.2):

M, = —(1-£f)pl2)w(z). (15.3.4)

Using these relations for M., we can express the vertical flux of ¢, which is a
physical quantity per unit mass, as

pwp(z) = fp(2)w(2)¢"(2) + (1 = [)p(z)w’(2)¢% ()
= M]¢"(z) — ¢(2)]. (15.3.5)
The upward motion region is assumed to be the pseudo-moist adiabat; water
vapor is assumed to be saturated everywhere in the upward motion region and

condensed water to immediately fall to the ground. In contrast, water vapor is
conserved during downward motion

q"(z) = q(p(2),T"(2)), (15.3.6)
¢ = const, (15.3.7)
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FIGURE 15.7: Schematic figure of a simple model of moist convection. f is the fractional area of
the upward motion region, and zr is tropopause height.

where ¢ is specific humidity, ¢*(p, T') is the saturation-specific humidity at pressure
p and temperature T, given by (8.2.22). At the tropopause, both specific humidities
in the upward and downward motion regions are equal and, thus, ¢¢ is given by the
tropopause value in the upward motion region:

@ = q"“(27). (15.3.8)

In the upward motion region, the effect of radiative cooling is neglected and
motion is assumed to be adiabatic. Then, from (8.2.17), moist static energy o is
constant irrespective of height in the upward motion region:

o = CyT%=z)+ Lg“(#)+ gz = const. (15.3.9)

In the downward motion region, however, moist static energy changes due to
radiative cooling. Thus, it can be written as

ol(z) = CTUz)+ Lg% + g=. (15.3.10)
The vertical energy flux associated with moist convection F°°™ = pwo is given by
(15.3.5):

F(z) = pwo(z) = M.Jo" —o%(2)]. (15.3.11)

The solution to radiative-convective equilibrium in a moist atmosphere is given
by the balance between radiative flux and convective flux as shown by (14.5.3). In
the equilibrium state, we assume that there is no net energy flux at the surface.
In this case, vertical energy flux is everywhere zero irrespective of height: in the
troposphere (0 < z < z7),

Frad(z) 4 Feomv(z) = 0, (15.3.12)
and in the stratosphere (z > z7),

Frod(z) = 0 (15.3.13)
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(i.e., the stratosphere is in radiative equilibrium). At the tropopause, in particular,
convective energy flux vanishes:

Feo™(zp) = 0. (15.3.14)

Using this and (15.3.11), or (15.3.8)—(15.3.10), we obtain
ot = o%zr), (15.3.15)
T(2r) = T%zr). (15.3.16)

Temperatures in the upward and downward motion regions take the same value
at the tropopause. As shown below, however, at the bottom of the two regions
(z =0), the two temperatures are generally different.

Balance in the radiative-equilibrium state is rewritten using radiative cooling
Q7 and convective heating Q°°™, which are respectively defined as

Qrad(z) _ iFrad(Z)7 (15.3.17)
Qconv(z) — _ddz Fconv(z) _ CpMC |:ddZ Td(Z) + C’gp:| , (15318)

where (15.3.11) and (15.3.10) are used. The equation of balance (14.5.3) is rewritten
as

d

QT-ad(z) — CpMc |:dz

Tz) + 7 } . (15.3.19)
Cp

This means that adiabatic warming in the environment of the cumulus region is

balanced by radiative cooling Q"¢ in radiative-convective equilibrium.

In the above simple model, one needs to externally specify the value of mass
flux M. to obtain an equilibrium solution. An additional equation such as the
balance of kinetic energy is required to determine a unique solution, which will
be explained in the next subsection. Here, we show possible solutions by giving
parametric values to mass flux. We use the gray radiation model with no scattering
with Fy = 350 W/m?, 77 = 2.0, and « = 1.0 in (14.3.22), and surface temperature
is simply given by T, = T%(0). Figure 15.8 shows temperatures and lapse rates
in radiative-convective equilibrium solutions for M, = 1.7, 2.6, 4.0, and 6.5 x1073
kg m~2 s~!. Values in the upward motion region are indicated by dashed curves
and those in the downward motion region by solid curves. As M. becomes larger,
the temperature in the downward motion region becomes warmer. In particular,
the temperature in the downward motion region is everywhere warmer than that in
the upward motion region (i.e., T" < Td); at the largest value M, = 6.5 x1073 kg
m~2 s~ This implies that buoyancy in the upward motion region is everywhere
negative if the contribution of water vapor to buoyancy is negligible. This means
that solutions for such large values of M, are inappropriate for radiative-convective
equilibrium states. As for smaller values of M., the temperature in the upward
motion region becomes warmer and is thought to be realizable. Just below the
tropopause, however, temperature in the upward motion region is in general colder
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FIGURE 15.8: Vertical profiles of temperatures (left) and lapse rates fiz (right) of radiative-

convective equilibrium using the simple cumulus model. Solid curves are those of the horizontal

average (downward motion region in the case of the troposphere), and dashed curves are those of

upward motion regions. The values of mass flux are M. = 1.7, 2.6, 4.0, and 6.5 x10~3 kg m—2
s~! (from Satoh and Hayashi, 1992).

compared with temperature in the downward motion region. This characteristic
is also unfavorable for the buoyancy of air parcels in the upward motion region.
The constraint that mass flux be constant with height and time is the origin of this
unrealistic characteristic, which will be described after considering determination
of the value of M, in the next subsection.

The vertical profiles of temperature of radiative-convective equilibrium using
the cumulus model shown in Fig. 15.8 are further examined using change in the
thermodynamic quantities of an air parcel associated with moist circulation. Figure
15.9 shows the vertical profiles of temperature 7', specific humidity ¢, and moist
static energy o in the case of M, = 2.9 x 1072 kg m~2 s~!. In Fig. 15.9, the
direction of circulation is designated by arrows.

The circulation of an air parcel along the path of convective motion is described
by the simple model of moist convection shown in Fig. 15.7. During upward motion
(Fig. 15.9, A — B), the air parcel is always saturated by releasing latent heat.
Its upward velocity is so fast that cooling due to radiation is negligible. Thus,
moist static energy o is conserved; temperature T" changes according to the moist
adiabat; and humidity ¢* is always at the saturated value. During downward motion
(Fig. 15.9, B — C), on the other hand, there is no release or absorption of latent
heat. Downward velocity is slow enough that it is cooled by radiation. Thus, static
energy o decreases as the air parcel goes down; temperature 7% changes according
to the lapse rate which is smaller than that of the dry adiabat (Fig. 15.9, B — D),
while humidity ¢% is conserved. When the air parcel enters the mixed layer, sensible
and latent heat fluxes are supplied from the surface (Fig. 15.9, C — A). Thus, in the
mixed layer, temperature changes from 7¢(0) to T%(0), specific humidity changes
from ¢? to ¢“(0), and moist static energy changes from 0%(0) to o%. Then, the
state of the air parcel returns to its initial state.
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FIGURE 15.9: Changes in temperature T' (top left), specific humidity ¢ (top right), and moist
static energy h (bottom) along the circulation path of moist convection in the case of M. = 2.9
x 1073 kg m~2 s~1. Solid curves are the horizontal average (downward motion regions in the
troposphere), and dashed curves are profiles of upward motion regions. Dotted curves are the
change in boundary layer. Symbols A and C are at the lowest level of the upward motion region
and the downward motion region, respectively, and B is the tropopause. The arrows show the
direction of circulation. Dashed-dotted curves (B — D) represent the dry adiabat, and E is the
height at which the air parcel loses its buoyancy in the upward motion region (from Satoh and
Hayashi, 1992).

The lapse rate in the upward motion region is equal to the moist adiabat, while
the lapse rate in the downward motion region depends on the profiles of radiative
cooling, and on the magnitude of the mass flux M.. As M, is larger and thus
vertical velocity w? is larger (see (15.3.4)), the time required for the air parcel to
travel from the tropopause to the surface (the advective time) becomes shorter,
and the temperature change due to radiative cooling becomes smaller. In this case,
therefore, the lapse rate in the downward motion region becomes closer to that of
the dry adiabat. As M, becomes smaller, advective time becomes larger and the
temperature change due to radiation becomes larger. Thus, the lapse rate becomes
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larger when compared with that of the dry adiabat.

Near the tropopause, the lapse rate in the downward motion region is about 10
K km~! irrespective of M,. Since radiative cooling is small near the tropopause,
the lapse rate is close to that of the dry adiabat as shown by (15.3.19). Since
the lapse rate in the upward motion region matches that of the moist adiabat, the
temperature in the upward motion region is generally lower than the temperature
in the downward motion region just below the tropopause.

The profiles of specific humidity are given by (15.3.6) and (15.3.7) for upward
and downward motion regions, respectively. Specific humidity in the downward
motion region thus obtained has the observed characteristic that it rapidly decreases
just above the mixed layer, but its value is much smaller than observed. Over a
statistically long time average, in general, specific humidity gradually increases with
height, and the sharp decrease at the top of the mixed layer becomes obscure. The
actual increase in specific humidity in the downward motion region is due to water
supply by shallow convection.

15.3.2 Mass flux

Mass flux M., is related to various balance equations. First, we derive relations to
satisfy the requirement of energy and water vapor fluxes at the ground. Let sensible
heat flux at the surface be denoted by F*", and evaporation at the surface by E,,.
The relation of energy flux (14.5.6) is expressed as

Mc" —c%(0)] = F"+LE,, (15.3.20)
and the relation of water vapor flux (14.5.5) is expressed as
M[q"(0) — ¢% = E,. (15.3.21)
Using (15.3.20) and (15.3.21), we obtain the following three relations for M.:
Fs" 4+ LE,
M. = 15.3.22
ou — O-d(o) ( )
Fsh
_ 15.3.23
C,[T(0) - T4(0) 15:323)
E,
= . 15.3.24
q*(0) — ¢* ( )

Up to this point, only the balances of static energy and water vapor are used; we
have not introduced any assumptions additional to those in the previous subsection.
To obtain an appropriate value for M., we need an additional requirement for
buoyancy; for this purpose, we can use the balance of kinetic energy which contains
the condition of buoyancy. In this simple model where M., is independent of height,
the balance of the kinetic energy of the air column per unit area is given as

MW —-D = 0, (15.3.25)

where M. W is the production rate of kinetic energy and D is the dissipation rate
per unit column. W is the total work done by buoyancy, or CAPE defined by
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(15.2.5), and is given in this case by

_ TR [T TN -Te)
W = /0 2(2) gdz =~ /0 T4(2) gdz. (15.3.26)

Here, just for simplicity, we have neglected the contribution of water vapor to
buoyancy, and thus the difference of densities between the upward and downward
motion regions, p* and p?, are approximated by the temperature difference between
the two regions. Since the dissipation rate D is always positive, the necessary
condition is W > 0 in order for the solution to be appropriate (i.e., the work
done by buoyancy must be positive). If D is expressed by the quantities used in
this model based on appropriate closure assumptions, (15.3.25) gives an additional
relation between M, and W. It is difficult, however, to quantify all the dissipation
processes within the troposphere; a precise expression for D is unknown in such a
simple framework as the cumulus model. Observationally, the mass flux associated
with the environment of cumulus is about 3 x1073 kg m~2 s~!, and the temperature
difference between the cloud region and the environment is about AT ~ 3 K, so we
may estimate it as W ~ (AT/T)gzr ~ 10® J kg=!. Thus, from the product of the
two, we may have D ~ 30 W m~2. According to the above model for M, = 3 x 1073
kg m~2 s~!, we also have W = 500 W m~2, which is close to the value estimated
from observation.

The work W given by (15.2.5) is also a simplified form of the so-called cloud
work function. Arakawa and Schubert (1974), whose parameterization is used in
general circulation models, employ the assumption of quasi-equilibrium

aw

— 15.3.27
dt , ( )

to obtain the vertical distribution of M,.. In radiative-convective equilibrium prob-
lems, however, since the cloud work function is statistically time independent, the
assumption of quasi-equilibrium does not give any constraint for determination of
M.,.

In any case, if we obtain the value of the dissipation rate D, a unique equilibrium
solution to the radiative-convective equilibrium can be determined using (15.3.25).
Here, we give a crude estimation of D from scaling analysis. Using a representative
velocity scale of turbulence v’ and its length scale [, the dissipation rate of kinetic
energy in turbulence per unit mass is estimated as v"3/I. Thus, the dissipation rate
per unit column may be written as

AT 13
D = / P dz (15.3.28)
0

If we assume that the dissipation of kinetic energy occurs mainly in the upward
motion region and approximate v’ = w", D is expressed by M, using (15.3.2):

T wh(z)3 =T dz
D = / (= dz = MS/ : 15.3.29
o p“(2) Ju 0 pru(Z)Qlu ( )
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where [* is the length scale of turbulence in clouds. We define a coefficient C' whose
dimension is kg m~3 by

B zZT dz —-1/2 N \/lu
“ = </0 fzp“(z)Ql“) AR AURYINE (15.3.30)

where (p) is the vertically averaged density. From (15.3.25) and (15.3.29), we have

M. = CVW. (15.3.31)

Using the values f ~ |w?/w"| ~ 1073, 27 ~ 10* m, I* ~ 10® m and (p) ~ 0.5
kg/m?, we may have a typical value C' ~ 10~* kg/m?3. Eq. (15.3.31) can be used
as an additional equation for determination of a unique solution.

15.3.3 Implications for improved cumulus models

The simple cumulus model introduced in Fig. 15.7 is a highly idealistic model of
the cumulus convection observed in reality. It is intended for the steady state
for consideration of radiative-convective equilibrium. The results from the simple
cumulus model have the following problems: First, buoyancy near the tropopause
is negative. Second, near the top of the mixed layer, temperature in the downward
motion region is colder than that of the upward motion region; this is contradicted
by the view that the top of the mixed layer is capped by an inversion layer. Third,
the temperature difference between upward and downward motion regions is as
much as 10 K, which is much larger than observation (less than about 3 K). These
problems come about because of defects in the simple cumulus model. However,
this information contains insights into what should be added to the simple model
to get more realistic results.

One cause of the above problems is the assumption that M, is set constant
irrespective of height. In reality, M, has vertical dependence since individual clouds
entrain environmental air. Clouds have time dependence and horizontal structure,
which are also attributable to the vertical profile of mass flux. In reality, the
environmental air of cumulus is cooled by radiation, and stratification has both
temporal and horizontal variation. The top level of cumulus is determined by the
condition that the buoyancy of air parcels in cumulus vanishes with instantaneous
stratification. Buoyancy drives convective mass flux in the cumulus and then the
downward motion is associated in the environment. Such a downdraft is generated
below the top level of cumulus, and brings adiabatic warming in the environment.
In general, convective mass flux increases with height due to entrainment of en-
vironmental air. Even if convective mass flux is assumed to be constant in each
cumulus cloud, the vertical profile of M, is generated if all the convective mass
flux associated with each cumulus cloud is averaged in time and domain. These
collective effects explain the vertical profile of M, at the equilibrium state. In such
a view (i.e., with time and horizontal variation), the apparent contradiction that
buoyancy is negative just below the tropopause will be resolved in the time and
domain-averaged equilibrium state and the temperature difference between upward
and downward motion regions will be much reduced. As a result, temperature in
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the downward motion region will be much closer to that of the moist adiabat of the
upward motion region. It is expected that the distribution of M, is sensitive to the
cooling profile of radiation.

The lack of an inversion layer just above the mixed layer, or the boundary layer
in the simple model, will not be resolved in the framework of a one-dimensional
horizontal uniform perspective, even though time dependence is taken into consid-
eration. This is because air parcels in the mixed layer cannot have buoyancy if it
is capped by an inversion layer. The co-existence of the mixed layer capped by the
inversion layer and tall cumulonimbus clouds rooted in the mixed layer is hardly
realized under conditions of a horizontally uniform boundary. Thus, it is naturally
thought that the inversion layer occurs under horizontally inhomogeneous condi-
tions. For instance, if the surface temperature has large-scale variation, cumulus
activity is enhanced at the warm surface temperature region, while only shallow
cumulus clouds are generated at the cold region, which is capped by downward
motion in the free atmosphere.

The cumulus model considered in this section has been deliberately simplified
to ease investigation of the relation between atmospheric vertical structure and
cumulus convection. Many more elements must be introduced to achieve realistic
circulation. In particular, appropriate evaluation of the statistical effects of cu-
mulus convection is required for general circulation models, in which the effects of
many cumulus clouds must be considered within a region whose domain size is ap-
proximately 100 km. For example, the cumulus scheme proposed by Arakawa and
Schubert (1974) is nowadays frequently used in many general circulation models.
In Arakawa and Schubert, instead of a single type of cumulus convection, a spec-
trum of cumulus clouds with various size distributions is assumed. Each cumulus
cloud entrains environmental air during its ascent; the entrainment determines the
mixing of the cloud parcel and then the top level of the clouds. It is thought that
the size distribution of a cumulus cloud is determined when buoyancy W (i.e., the
cloud work function) is in quasi-equilibrium. A similar condition is given by Eq.
(15.3.19) for radiative-convective equilibrium experiments. Further improvements
have been added for cumulus parameterization, such as introduction of the effects
of downdraft due to rain and the effects of ice. A prognostic method for mass flux
is also sought.

15.4 Mixed layer

In the simple cumulus model depicted in Fig. 15.7, we assumed that the entire
troposphere is occupied by the upward motion region and the downward motion
region, and that only a thin boundary layer is allowed between the surface and the
atmosphere. In the real tropics, the cloud base is located at about a 1 km height in
general, and water vapor condensation does not occur below the cloud base. Such
a layer between the cloud base and the surface boundary layer is called the mized
layer. The boundary layer has a typical thickness of a few tens of meters and has
a large gradient of temperature and water vapor. In the mixed layer, entropy and
specific humidity are well homogenized in the vertical direction due to convective
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mixing. Above the cloud base, a shallow cumulus layer is sometimes observed,
called the trade wind cumulus. The trade wind cumulus can be viewed as a visible
part of the mixed layer where condensation and evaporation of water vapor occurs.
In general, however, the upper boundary of the mixed layer is defined as the cloud
base either of shallow cumulus clouds or tall cumulonimbus clouds. The height at
the cloud base corresponds to the lifting condensation level (LCL), where air parcels
lifted upward in the mixed layer begin to condense.

In order to consider the energy and water budgets in the mixed layer, we modify
the simple cumulus model in the previous section by adding a mixed layer below
the upward and downward motion regions of cumulus as shown in Fig. 15.10. The
cloud base agrees with the top of the mixed layer and its height is denoted by zj,.
In the mixed layer, static energy and specific humidity are assumed to be constant
irrespective of height; they are denoted by oj; and ¢as, respectively. In this case,
the temperature profile in the mixed layer follows the dry adiabat. We also assume
that physical quantities in the mixed layer at z;; are continuously connected to
those of the upward motion region:

o = “(zm), avu = q¢“(zm)- (15.4.1)

The energy flux and water vapor flux from the surface, F** and E,, are given by
the bulk formulas (14.4.17), (14.5.6):

Fh = poCpu.Cp(Ts — Ty) = MyCp(Ts — Tp), (15.4.2)
E, = poCpui(gs —qm) = Mp(gs —qm). (15.4.3)

Here, we simply assume that the bulk coefficients for heat and water vapor take
the same value Cpv*, and define

Mb = poCDU*. (1544)

Typically, M =~ 0.01 kg m~2 s~!. Ty and poy are temperature and density at the
bottom of the atmosphere (i.e., at the top of the boundary layer), respectively. At
the surface, we assume that water vapor is saturated:

s = ¢ (s Ts). (15.4.5)
From (15.4.2) and (15.4.3), we have
Fh 4+ LE, = My(os—on). (15.4.6)

On the other hand, water vapor flux and convective energy flux at the top of the
mixed layer zp; are written as

pwq(zar) = Mclg"(zm) —q%] = Melanr —q%), (15.4.7)
Feonv(zy) = Mlo%(zy) — 0% (zm)] = Moy —o%(za)]. (15.4.8)
The supply of water vapor from the surface to the mixed layer is equal to the up-

ward transport of water vapor through the cloud base height z,;. Note that we ne-
glect the lateral transport of water vapor or the evaporation of rain within the mixed
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FIGURE 15.10: A simple cumulus model with the mixed layer (upper left), and the structures of

temperature (upper right), specific humidity (lower left), and moist static energy (lower right).

zr is the tropopause height and zp; is the height of the mixed layer. The convective layer

zpm < z < zp is composed of upward and downward motions, in which mass flux is denoted by

M. In the mixed layer 0 < z < zjs, sensible heat flux S}, and evaporation F, are supplied from
the surface, and energy and water are exchanged with the convective layer through M.

layer in this simple model. Thus, the budget of water vapor in the mixed layer is
written as

E, = pwq(zy). (15.4.9)
From (15.4.3) and (15.4.7), specific humidity in the mixed layer is expressed as

_ Mygs +Mega M,
qm Mb+Mc Mb +MCQs7

where g4 < qpr and M. < M, is used in this approximation. We have M./M; ~

(15.4.10)
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0.3 for typical values M, ~ 0.003 kg m~2 s~ and M; ~ 0.01 kg m—2 s~!. If the
temperature at the bottom of atmosphere is given by the surface temperature, g; =
q*(ps, To) represents specific humidity at the bottom of the atmosphere. Therefore,
the ratio qps/qs corresponds to relative humidity at the bottom of the atmosphere,
and is written as

qm My

r o MM (15.4.11)
For M./M; = 0.3, we have an estimation of relative humidity at the bottom of the
atmosphere as 7 = 80%. Since specific humidity ¢ is constant irrespective of height
in the mixed layer, relative humidity increases with height up to 100% at the top

of the mixed layer (i.e., the lifting condensation level).
In a similar way, we consider the energy budget in the mixed layer. Total energy
fluxes at the surface, the top of the mixed layer, and the tropopause are written as

Frad(0) + F*" + LE, = 0, (15.4.12)
Frad(ZM) +Fconv(ZM) — O7 (15413)
Frad(zp) = 0. (15.4.14)

Using (15.4.8), the energy balance in the mixed layer and that in the convective
layer are written respectively as

Fh L LE, — Moy — 0%(2p)] = Frad(zy) — Fred(0) = Ry,
(15.4.15)
Moy — 0% (zp)] = Fred(zp) — Fred(zy) = Re, (15.4.16)

where Rj; and R¢ are divergences of the energy flux due to radiation in the mixed
layer and the convective layer, respectively. They correspond to the vertical in-
tegrals of radiative cooling in respective layers. Using (15.4.9) and (15.4.7) to
eliminate the contribution of water vapor, we obtain the equations of the energy
balance as

Fsh — M.C,[Tar(2ar) — T 201)] R, (15.4.17)
LE, + M.Cy[Tr(20r) — TU20)] = Re. (15.4.18)

In reality, the temperature difference between the upward and downward motion
regions is very small. If we equate the temperature in the upward motion region to
that in the downward motion region at the cloud base, and set Tas(zas) = T%(2ar),
we obtain F*" = Ry; and LE, = Rc. On this assumption, the Bowen ratio, which
is defined as the ratio of sensible heat flux to latent heat flux, is written as

Fsh RM
b = = . if Ty(zm) = T zwm). 15.4.19
LE, Re M (2m) (2m) ( )
This relation is derived by Sarachik (1978) and implies that the portion of sen-
sible heat supply from the surface is exactly cooled by radiation. However, the
temperature difference between the upward and downward motion regions becomes
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relatively large if the simple steady cumulus model is used, as shown in Fig. 15.10.
The estimation of (15.4.19) does not generally hold.
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Low-latitude circulations

The low-latitude circulations of the atmosphere are associated with hydrological
circulations, and the large-scale circulations in low latitudes can be characterized
by organized moist convection. In low latitudes, convection occurs in the form
of moist convection associated with latent heat release. If the surface boundary
has a laterally inhomogeneous condition with a horizontal scale of the order of
several thousands of kilometers, moist convection is organized to have a large-scale
circulation structure that has a specified horizontal scale. Examples of large-scale
circulations in low latitudes are Walker circulation and Hadley circulation. Walker
circulation is viewed as a large-scale circulation forced by longitudinal forcing along
the equator, while Hadley circulation is viewed as that forced by latitudinal forcing
between the equator and higher latitudes. These are in principle two-dimensional
structures in a horizontal-vertical section, where the horizontal direction can be
either latitudinal or longitudinal. In reality, however, the observed circulation is
not at all two-dimensional. Figure 16.1 shows the horizontal distribution of vertical
velocity at the middle level (500 hPa). The data source is the same as shown in
Appendix A3. Upward motions are seen in low latitudes in every season, though
they are not horizontally uniform. The actual distribution of upward and downward
motions has such a three-dimensional structure.

In this chapter, bearing in mind that circulation has a complicated structure
in the real atmosphere, we consider the general properties of the two-dimensional
cellular structures of steady large-scale circulations as representative circulations in
low latitudes. We begin with large-scale circulation in a nonrotating frame, which
is thought to correspond to Walker circulation. Next, in order to investigate the
dynamics of Hadley circulation, we move on to large-scale circulation in a uniformly
rotating frame (f-plane), and, finally, the zonally symmetric large-scale circulation
of a sphere.

The dynamics of Hadley circulation are directly related to understanding the
zonally averaged meridional structure of the atmosphere. Hadley circulation pre-
vails from the tropics to the midlatitudes, and has a zonally uniform meridional

M. Satoh, Atmospheric Circulation Dynamics and General Circulation Models, 420
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FIGURE 16.1: Horizontal distribution of the vertical velocity w at height 500 hPa. Monthly mean

of January (top) and July (bottom). The contour interval is 0.02 Pa s ™!, and the contour interval

with thick curves is 0.04 Pa s~1. Solid: negative values (upward motion), dashed: positive values
(downward motion), and dotted: zero.

cellular structure with the upward branch in the tropics and the downward branch
in the subtropics. Hadley circulation is not only a representative structure of the
meridional field in lower latitudes but also plays a key role in the interaction with
midlatitude circulation. Meridional circulation primarily consists of the Hadley cell
and the Ferrel cell, which will be considered in Chapter 17.

16.1 Dynamics of Walker circulation

16.1.1 Large-scale circulation as organized moist convection

Figure 16.2 shows the longitudinal-vertical section of the vertical velocity along the
equator, which is analyzed from observed data and corresponds to Fig. 16.1. In
the equatorial Pacific, upward motions are located around the longitudes 90-120E,
while downward motions are located around the longitudes 90-120W. The upward
motion region resides in the warmer sea surface temperature region. Such an east-
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velocity w along the equator.

o

west circulation on the equator is referred to as Walker circulation. An aspect of the
dynamics of the Walker circulation is described by the thermally forced problem on
the equator given in Section 6.5. Since diabatic heating due to latent heat release
is associated with the upward motion regions, the Kelvin wave response prevails
along the equator eastward of the heating region. Although the equatorial Kelvin
wave response in the zonal-height section is regarded as Walker circulation, the
argument of Section 6.5 is based on linear theory and simplified damping effects are
introduced. In this section, by introducing a more realistic hydrological process,
the dynamics of Walker circulation are considered by viewing it as a circulation
driven by a horizontal temperature gradient.

If a vertically one-dimensional radiative equilibrium state is calculated at each
latitude using the local condition of solar radiation and distributions of absorbing
quantities including water vapor, the temperature structure of radiative equilibrium
is generally statically unstable at any latitude. This implies that the radiative effect
always has a tendency to generate convectively unstable states in the atmosphere.
In reality, however, local convection does not necessarily occur in all places, since
active and suppressed convective regions are distributed due to the lateral advection
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associated with large-scale circulations. Here, local convection in the case of a moist
atmosphere is in the form of cumulus convection whose lateral scale is of the order
a few kilometers. In general, large-scale circulation appears as a result of horizontal
filtering with an appropriate length scale which covers both active and suppressed
convective regions. Although the averaging scale is not always clearly defined, it
is much larger than individual cumulus scales. More active cumulus convection
corresponds to the region of the upward branch of large-scale circulation, whereas
the suppressed convective region corresponds to the region of the downward branch.

If external forcing, such as surface temperature, has inhomogeneity, large-scale
circulation will be organized in the horizontal scale of the applied forcing. If external
forcing is horizontally uniform, on the other hand, the typical horizontal scale
cannot be defined in advance. Nevertheless, it may be expected that interactions
between individual cumulus clouds will drive the organized circulation of cumulus
convection to form large-scale circulation.

As the simplest framework, let us first consider moist convection on a uniform
surface temperature in a nonrotating frame. Such moist convection can be com-
pared with Bénard convection in a Boussinesq fluid or with dry convection described
in Section 15.1. In reality, cumulus convection predominates in lowlatitudes where
surface temperature is relatively uniform and the effect of rotation is small. In
these regions, however, cumulus convection is very variable and does not have a
cellular structure like Bénard convection. It is difficult to make a theory on moist
convection on a uniform surface temperature in a nonrotating frame. Figure 16.3
shows a numerical example of moist convection in such a situation. Because of
interaction in the precipitating process, each convective plume has a finite lifetime
and is very variable.

We may think of moist convection on a uniform surface temperature in a rotating
frame in a similar way. Although we can undertake theoretical analysis in the case
of the Boussinesq fluid as described in Section 5.2.2, moist convection in the real
atmosphere does not have such an organized structure. Instead, organization of
the cloud clusters associated with easterly waves or tropical cyclones might be
considered as large-scale structures of moist convection in a rotating frame.

Height = 50 m

(4] 128 256 384 512 640 768 896 1024

FIGURE 16.3: Distributions of potential temperature deviation and specific humidity for a three-
dimensional numerical simulation of radiative-convective equilibrium at a height of 50 m. Gray
scales range from —1.0 K to 1.0 K for potential temperature and from 12 to 18 g kg~! for specific
humidity. After Tompkins (2001). (c)American Meteorological Society. Used with permission.
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Second, let us consider moist convection on a differentially distributed surface
temperature. We may say that Walker circulation and Hadley circulation are large-
scale circulations forced by variation in surface temperature on the scale of a few
thousand kilometers. For instance, a horizontally forced circulation in a nonro-
tating frame has a structure similar to Walker circulation, which is thought to be
forced by longitudinal surface temperature variation near the equator. In contrast,
the latitudinal difference in surface temperature can force meridional cellular circu-
lation, which corresponds to Hadley circulation. Hadley circulation is affected by
the rotation of the Earth, and is viewed as a horizontally forced circulation in the
rotating frame, as will be studied in Section 16.2.

16.1.2 Large-scale circulation in a nonrotating frame

If the boundary conditions are horizontally uniform, there is no reason for the
upward motion of moist convection to be located at a specific position. If the
surface temperature has large-scale variation, on the other hand, the upward motion
region tends to concentrate in the warmer surface temperature region and moist
convection is suppressed in the colder region. In this case, large-scale circulation
will be driven so as to have a horizontal scale comparable to that of the specified
surface temperature variation. Such a large-scale circulation in a nonrotating frame
can be viewed as a model of Walker circulation.

The organization of large-scale circulation is demonstrated using a horizontal-
height two-dimensional numerical model. We consider a domain with horizontal
length L and assume that the surface temperature difference in L is given by ATs.
We take 10,000 km as a typical length of L in the case of Walker circulation. We
show below numerical examples of large-scale circulations in the domain L = 10,000
km with AT, = 0, 0.5, and 1 K. The numerical model is a primitive equation model
in hydrostatic balance. A uniform cooling rate —2 K day~! is given below the level
o = 0.1, where o denotes a vertical coordinate defined as pressure divided by surface
pressure (o-coordinates; see Section 3.3.2). For comparison, experiments are carried
out both for a moist atmosphere and a dry atmosphere. We use a relatively coarse
resolution with grid interval 100 km, so that individual clouds cannot be resolved
in the model. Thus, two methods of convective scheme are used: First, the effect of
local moist convection is parameterized by moist adiabatic adjustment at each grid
point. Second, no parameterization except for an explicit large-scale circulation
is used. Figure 16.4 shows the time sequences of the distribution of precipitation
for a moist atmosphere with moist convective adjustment. The precipitating area
corresponds to the upward motion region. It is shown that precipitation is more
concentrated on the warmer side as AT, becomes larger.

Although the above model is very simple and idealized, we can argue some of the
properties of tropical circulations. Despite the concentration of precipitation, the
temperature in the free atmosphere is horizontally homogenized except for the lower
boundary layer. The difference of temperature in the free atmosphere is rapidly
smoothed out due to the propagation of gravity waves. As a result, a stable layer is
established near the surface as ATy becomes larger since the surface temperature
is colder than the free atmosphere above. At the top of the boundary layer, water
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FIGURE 16.4: Time sequences of the distribution of precipitation for the horizontal surface temp-

erature difference ATs = 0, 0.5, and 1 K in a two-dimensional model, showing the concentration of

precipitation in the warmer region of the surface temperature. The surface temperature is warmer
on the left-hand side of each panel.

vapor is saturated and stratiform clouds prevail in the uppermost layer of the stable
layer. This saturated layer is thought to correspond to the trade cumulus.

In the two-dimensional time mean field, the following streamfunction can be
defined:

oo D 1
v = / pvdz = /vdp = ps/vda, (16.1.1)
z 0 g 9 Jo

where hydrostatic balance is used. The dimension of the streamfunction is in
kg s~! m~'. Except for the lower boundary layer, the vertical temperature struc-
ture is almost the same as that of the upward branch of large-scale circulation, and
its lapse rate is described by the moist adiabatic lapse rate I';,,. Using the differ-
ence between the lapse rates of the dry adiabat and the moist adiabat I'y — I';,, ~
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2 K km~!, and the radiative cooling rate Q"*?/C,p = 2 K day™! in (15.3.19),
downward mass flux in the clear region on the colder side of temperature is given
by

Qrad
M = . 16.1.2
Cp(T'a —T'm) ( )
The strength of the streamfunction is maximized if the upward motion of large-scale
circulation is concentrated in a small area at the warmest surface temperature:
QL 5
1\ = ML = ~ 1x10° kgs ' m™h 16.1.3
max Cp(Fd _ Fm) g ( )
Figure 16.5 shows the dependence of the maximum values of the streamfunction on
horizontal surface temperature difference. As the temperature difference increases,
the streamfunction consists of a single cell covering the whole domain. In the case of
a moist atmosphere, the maximum value of the streamfunction is very close to this
uppermost value at a temperature difference of 2 K. In the case of a dry atmosphere,
however, the maximum value of the streamfunction is much smaller than that of
the moist case, though it becomes stronger as the temperature difference becomes
larger. Note that even when the temperature difference is close to zero, convective
motions result in smaller scale cells; this is why the streamfunction has a finite
value at AT, = 0.

16.2 Dynamics of Hadley circulation

Circulations of the atmosphere over low and midlatitudes are characterized by a
relatively zonally symmetric meridional circulation called Hadley circulation. In
practice, Hadley circulation is defined as the zonal average of meridional flows.
Hadley circulation can be viewed as a large-scale meridional circulation driven by
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the underlying meridional surface temperature difference. Because of the rotation of
the Earth, angular momentum transport is associated with meridional circulation.
The seasonal change in the distribution of the zonal-mean mass streamfunction is
shown in Fig. A3.2.

In this section, we consider the dynamics of Hadley circulation by regarding
Hadley circulation as a large-scale convective cell in a rotating frame. As a slightly
different model of Hadley circulation, we also examine the dynamical balances of
Hadley circulation as a radiatively driven circulation.

16.2.1 Cyclostrophic balance

In a rotating frame, lateral temperature difference does not necessarily drive merid-
ional circulation as shown in Fig. 16.5, since there may be a state in the thermal
wind balance with the prescribed surface temperature gradient. If the surface temp-
erature has a meridional gradient, we can assume there exists a basic state that has
a thermal wind balanced by the surface temperature gradient and has no meridional
flow. The thermal structure in this case is given by the local radiative-convective
equilibrium at each latitude. If the latitudinal distribution of solar radiation is
specified using a latitudinal distribution function f(p) as in (13.2.3), for instance,
a local radiative-convective equilibrium state can be determined by a vertically
one-dimensional model at each latitude. The thermal structure of this atmospheric
state is completely determined by the latitudinal distribution of the surface temp-
erature and the vertical profiles of temperature. This thermal structure without a
meridional flow can be thought of as the basic state for Hadley circulation. In this
case, the energy balance at the surface can be arbitrarily constrained. One may
assume a swamp boundary condition, under which no heat capacity is allowed at
the ground. Instead of this, one may externally specify a distribution of surface
temperature. Although the energy budget in the atmosphere will not be closed
if surface temperature is prescribed, residual energy at the surface is regarded as
energy transport in the ocean.

Here, we simply specify the distribution of surface temperature to find the dis-
tribution of zonal winds that are in thermal wind balance with surface temperature.
Since rotation becomes zero near the equator, we need to consider the variation of
the Coriolis parameter (i.e., we assume cyclostrophic balance instead of thermal
wind balance in a uniform rotation). As a basic state, both profiles of the tropo-
sphere and stratosphere can be determined by radiative-convective equilibrium at
each latitude. In the case of a moist atmosphere, temperature profiles in radiative-
convective equilibrium are approximately given by the moist adiabat, starting with
surface temperature. Since the moist adiabat depends on temperature and pres-
sure, the lapse rate changes in the vertical and horizontal directions. For simplicity,
however, we neglect variation of the lapse rate and assume that it is given by a con-
stant I'. Surface temperature is denoted by T, and the temperature gap between
the surface and the atmosphere is neglected. We further assume that tropopause
height Hr is externally specified as a constant value irrespective of latitude. The
exact distribution of tropopause height could be determined if a realistic radiation
model is used to calculate radiative-convective equilibrium; but we do not take this
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approach.
First, we consider the case where surface temperature distribution is given by

To(p) = Tp— ATssin? . (16.2.1)

Using the Boussinesq approximation, the meridional structure of potential temp-
erature is given by

0(p,2) = Ts(p)+ (T —Ty)z =Tr — ATysin? ¢ + 7z, (16.2.2)

where I'y = ¢g/C), and v = T'—T'; is the vertical lapse rate for potential temperature.

Cyclostrophic balance with this thermal structure is written in spherical coordinates
T

as

tawqﬁ) _ 91 (16.2.3)

P
205 - .
az< smeut g 0o R O

We can solve it for zonal velocity u by substituting (16.2.2) into this equation and
using the boundary condition u =0 at z = 0:

29 ATy
u = QRcosyp <\/1 + QQQQOOZ - 1) . (16.2.4)

This atmospheric structure in cyclostrophic balance cannot be realized in fact.
Angular momentum corresponding to (16.2.4) is given by

2gAT;

I = wuRcosyp+ QR?cos? p = QR cos® cp\/l + 02420, z.

(16.2.5)
From this, [ takes the maximum value at the uppermost layer of the equator ¢ = 0.
This value is larger than values at the surface; [ takes the maximum value QR? at the
equator and the minimum value zero at the poles (at z = 0). If a small diffusion in
angular momentum is introduced to this cyclostrophic balance state, all the values
of angular momentum in the atmosphere must lie within the range between the
maximum and minimum values at the surface. This means that angular momentum
distribution (16.2.5) is physically impossible (i.e., a state with cyclostrophic balance
cannot be realized if diffusive transport is introduced and, therefore, meridional

circulation must occur). This statement is referred to as Hide’s theorem (Hide,
1969).

16.2.2 Large-scale circulation in a rotating system

From the above consideration, we conclude that meridional flow must occur in the
low latitudes of the atmosphere (i.e., Hadley circulation inevitably exists). Hadley
circulation can be viewed as a large-scale circulation driven by a surface temperature
gradient in a rotating system. Thus, we first consider a simple case in a uniformly
rotating frame in order to clarify the dynamics of Hadley circulation.

fCyclostrophic balance is introduced as (2.4.24). Eq. (16.2.3) is the corresponding thermal
wind balance in a rotating frame.
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Let us consider two-dimensional meridional circulation on the f-plane in a lim-
ited domain. We assume that surface temperature has a difference AT, in the
domain length L and that moist convection occurs mainly in the small concen-
trated region on the warmer side and is suppressed in the rest of the domain. In
this case, it is expected that large-scale circulation occurs with a horizontal length
L, which is the same length scale as the surface temperature gradient, if no rotation
is applied. The moist convective region corresponds to the upward motion region
of large-scale circulation, while the suppressed region corresponds to the downward
motion region. Large-scale circulation has a two-dimensional steady flow in a sta-
tistical sense and is characterized as overturning circulation in a vertical-horizontal
section.

Since overturning circulation is affected by rotation, zonal flow, which has a
component normal to the meridional section, has a distribution affected by the
Coriolis force. This can be described by angular momentum conservation. If friction
is negligible in the free atmosphere, angular momentum is conserved along the
lateral flow in the upper layer. We define the origin of the y-axis at the most
concentrated region of the upward motion, and take the y-axis in the direction of
the flow in the upper layer. The velocity component in this direction is denoted by
v. The z-axis is perpendicular to circulation, and the velocity component in the
z-direction is denoted by u. Angular momentum conservation reads

u—fy = 0. (16.2.6)

In the lower layer, angular momentum is not conserved due to frictional force in
the boundary layer. We assume that u is zero at z = 0 as a first approximation.
In the lateral flow region in the upper layer, temperature is rapidly homogenized.
In contrast to a nonrotating system in which temperature is horizontally homoge-
nized, the thermal wind balance gives a constraint on temperature in the case of a
rotating system; the horizontal temperature gradient is related to the vertical shear
of velocity:
ou g 00
= - , 16.2.7

f 0z 0o Oy ( )
where 6 is potential temperature and 6 is a typical value of potential temperature.
Thermal wind balance at the middle level is approximately written as

u g a0
- — , 16.2.8

where H is the vertical depth of circulation and 0 is the vertical average of potential
temperature. Using (16.2.6) and (16.2.8), we can estimate the difference of potential
temperature
f200 yz
20H" "’
which is the difference from the vertical average of potential temperature in the
upward motion region #(0). If the distance from the origin of the y-axis is large

A) = (16.2.9)
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enough such that

A > ]Z_iATS, (16.2.10)
then the vertical average of potential temperature becomes lower than surface temp-
erature and it becomes convectively unstable. This implies that the horizontal ex-
tent of large-scale circulation cannot reach such a region. Therefore, the horizontal
length of large-scale circulation is given by

2gH AT,

Ymax = fge() L’ (16211)
which is given from (16.2.9) and (16.2.10). This is a typical length scale of large-
scale convection in the f-plane. Figure 16.6 is a schematic diagram of the relation
between surface temperature and potential temperature in the middle layer of the
atmosphere. This relation determines the horizontal length of large-scale circula-
tion in the f-plane. We have vy, =~ 130 km for the parameters of midlatitude
values: H = 10 km, f = Q (Q is the angular velocity of the Earth), 6, = 300
K, and AT,/L = 10 K/10,000 km. It does not seem, however, that such a two-
dimensional steady circulation with this horizontal length exists in the real atmos-
phere. Although squall lines or spiral bands of cyclones have a two-dimensional
structure, their structures are more complicated than the steady circulation con-
sidered here. The above estimation should be regarded as no more than an intro-
duction to Hadley circulation, which now follows.

As the above overturning flow gets closer to the equator and the Coriolis param-
eter f becomes smaller, horizontal length increases. Horizontal length is infinite at

Cell scale
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=V =

max

y

FIGURE 16.6: Horizontal scale of large-scale circulation in the f-plane, and the relation between

surface temperature Ts and potential temperature in the middle of the atmosphere §. L is the

horizontal scale of the variation of surface temperature and ymaqz is the maximum lateral length
of overturning circulation.
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the equator. This means that we must take into account latitudinal variation of
f to obtain a finite horizontal scale. The horizontal scale of Hadley circulation is
given in this situation. We also need to take into account spherical geometry using
cyclostrophic balance instead of thermal wind balance.

Let us consider Hadley circulation symmetric about the equator on the same
latitudinal distribution of surface temperature as (16.2.1). In this case, since surface
temperature has a maximum at the equator, we assume that the upward motion of
Hadley circulation is concentrated at the equator. Angular momentum conservation
along the upper layer flow is written as

uRcosp+ QR*cos® p = QR?, (16.2.12)

where R is the radius of the Earth. From this, the zonal wind distribution in the

upper layer is given by

QRsin® ¢
cosp

u = uUpm =

(16.2.13)

The vertical average of potential temperature is assumed to be in cyclostrophic
balance with this zonal wind profile:
Ou  tanp Ou? g1 a0
22 sin + = - . 16.2.14
Yoz R 0z 0o R O¢ ( )
We can estimate the difference between zonal velocities at the levels z = 0 and H
from the above equation. By neglecting zonal velocity near the surface, we obtain
the cyclostrophic relation with respect to the zonal velocity at H as

tanyp o\ g 106
R"Y) = TeRop

Substituting (16.2.13) into this, and integrating with respect to latitude, we obtain

1
" <QQ sin pu + (16.2.15)

the difference between the vertically averaged potential temperature 6 and the
equatorial value as

Ad O2R? sin®

_ v (16.2.16)

fo gH 2cos? ¢
Large-scale circulation extends as long as the vertically averaged potential tempera-
ture is larger than surface temperature. The latitude where the two temperatures
agree is the horizontal extent of Hadley circulation (Fig. 16.7). Thus, the latitudinal
width of Hadley circulation ¢ is given by

2gH AT, >
T (Q2R2 90> . (16.2.17)

We have g &~ 17° in the case AT,/0p = 0.1. This width is relatively smaller
than the width of Hadley circulation in the real atmosphere (~ 30°), but is a first

approximation to reality. The difference is partly derived from the strong constraint
of angular momentum conservation (16.2.12).
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FIGURE 16.7: Latitudinal extent of Hadley circulation as a relation between surface temperature

Ts and potential temperature in the middle level of the atmosphere 6. The latitudinal width of
Hadley circulation is denoted by .

The strength of Hadley circulation can be estimated by assuming that upward
motion is concentrated in a small region near the equator and downward motion is
uniform in the rest of the Hadley circulation region. The meridional mass stream-
function of Hadley circulation is defined by

oo P d
v = 27TRCOS(,D/ pvdz = 277Rcoscp/ v p7 (16.2.18)
z 0

g

where () denotes the zonal average; in this case it is not important since we are con-
sidering an axisymmetric circulation. In the Hadley circulation region, meridional
flow is poleward v > 0 in the upper half-layer of the troposphere and is equator-
ward v < 0 in the lower half-layer (the sign is for the northern hemisphere). The
altitude of the boundary of the two layers is denoted by zg, which is assumed to
be independent of latitude. At each latitude, the streamfunction takes a maximum
value Wy (@) at height zy. Using mass continuity in a steady state

! ( )+ 0 0 (16.2.19)
COS ppv wo = 2.
Rcosp Oy P 82" ’
we have an expression
oo YH
Up(p) = 2R cos<p/ pvdz = 27TR2/ pwcospdp.  (16.2.20)
ZH %)

Assuming that the downward mass flux of Hadley circulation M = pw is given as a
constant value by (16.1.3), and the outermost contour of the mass streamfunction
is closed at the latitude g, we have

V() = 2nR*M(singpy — sing). (16.2.21)

From this, we see that the mass streamfunction takes the largest value at the
equator, 2rR?>M sin ;. We may obtain the upward mass flux of Hadley circulation
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by dividing total mass flux by an area of the upward motion region. However, we
have assumed that the upward motion region is concentrated in a small equatorial
band. In reality, the upward motion region is broader by as much as 10 degrees
in latitude. The upward motion region of Hadley circulation corresponds to the
Intertropical Convergence Zone (ITCZ). It is a fundamental and unresolved problem
of large-scale circulation to theoretically determine the width of the ITCZ.

Figure 16.8 compares the meridional streamfunctions obtained by a set of
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FIGURE 16.8: Comparison of the streamfunctions given by a general circulation model. Left: a

two-dimensional axisymmetric model; right: a three-dimensional model. From the top to the

bottom, the figures correspond to the case when the rotation rate Q/Q¢ = 0, 1/3, 1, and 3,

respectively. The unit is 10'° kg m~! and the contour interval is 5 x 1010 kg m~! for 2/Qp = 0,
and 2 x 1010 kg m~! otherwise. After Satoh et al. (1995).
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idealistic numerical experiments. These show the dependence on rotation rates for
the two-dimensional axisymmetric model and for a three-dimensional model (Satoh
et al., 1995). Both cases are calculated using a general circulation model that
includes a hydrological cycle over an ocean surface with a latitudinal sea surface
temperature distribution (16.2.1). (These are part of the so-called aquaplanet exp-
eriment; see Section 24.3.) Rotation rates are changed as Q/Qy = 0, 1/3, 1, and
3, where )y is the terrestrial rotation rate. In the case of no rotation (Q2/Qy =
0), streamfunctions are almost the same between the two-dimensional model and a
three-dimensional model and they cover the entire hemisphere. In the case of slow
rotation with /9y = 1/3, the shape of the streamfunctions of Hadley circulation
is very similar between the two models, and the streamfunctions reach about lati-
tude 45° from the equator. As the rotation rate is faster than the terrestrial case
with Q/Q¢ = 1, the width of the Hadley circulation of the two-dimensional model
becomes smaller than that of the three-dimensional model. This result implies that
the above theory is more applicable as the rotation rate is slower than the terrestrial
case.

16.2.3 The Held and Hou model

In the previous section, we obtained the width and intensity of Hadley circulation
by assuming that Hadley circulation is an axisymmetric large-scale circulation in a
moist atmosphere. Held and Hou (1980), in contrast, consider Hadley circulation
as a circulation driven by diabatic forcing due to Newtonian radiation. Although
the model of Held and Hou is formulated without explicitly considering the effect
of latent heat release, it is useful for understanding the basic balance of Hadley
circulation.

The diabatic heating of Newtonian radiation is given proportional to the dif-
ference between temperature and its reference value. In general, the profile of the
reference temperature is arbitrarily specified. Using potential temperature, the
reference profile of the Held and Hou model is given by

bule) = 1= saurate)+ov (1 )]
= 0 [1 ~ Ay (sin2<p - ;) + Ay (; - ;)} , (16.2.22)

where Ay and Ay represent the ratios of the deviations of potential temperature
in latitudinal and vertical directions from the basic value 6y, respectively. The
latitudinal profile is based on that of solar heating (13.2.6). In the vertical direction,
we set Ay > 0, so that Newtonian radiation tends to stabilize stratification. At
each latitude, this profile is regarded as a radiative-convective equilibrium state
without a large-scale circulation (i.e., a balanced state between convection and
radiation at each local latitude). The interpretation of this reference state is not
straightforward, however, since Hadley circulation suppresses local convection in the
downward motion region. Local radiative-convective equilibrium has no counterpart
in the real atmosphere. We should proceed to the following consideration with this
reservation. Note that radiative equilibrium generally has unstable stratification in
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lower layers as seen in Chapter 14. Thus, the reference state with Ay > 0 cannot
be regarded as a radiative equilibrium state instead of a radiative-convective one.

Using Newtonian-type diabatic heating, the equation of potential temperature
in a zonally symmetric two-dimensional system is expressed as

00 1 0 0 60— 0,
0 0) = -— 16.2.2
or Rcosgo&p(v cos o) + 8z(w ) ’ (16.2.23)

TR
where 7 is the damping time of radiation. We integrate this equation over the
whole domain of Hadley circulation between z = 0 and z = H in the vertical
direction and ¢ = 0 and ¢ = g in the latitudinal direction. Integration on the
left-hand side becomes zero under a steady state, since no normal flux is allowed at
the boundary of Hadley circulation. Therefore, the domain-averaged heat balance
is expressed as

PH $H
/ Ocospdp = / 0. cos pdp, (16.2.24)
0 0

where 6 is the vertical average of potential temperature, and 0. is that of the ref-
erence value. If the reference profile of potential temperature is given by (16.2.22),
we obtain

_ i _ . 2.
e H 0 e 0 H|S 2 3

We assume that potential temperature is equal to the reference value at the bound-
ary of Hadley circulation: 6(pg) = 0c(¢p). The zonal wind in the upper layer
has the same profile as (16.2.13) which is derived from the conservation of angu-
lar momentum. Temperature distribution is constrained by cyclostrophic balance
(16.2.14). Thus, the latitudinal difference of the vertically averaged potential temp-
erature is the same as (16.2.16):

) ) 22 4

0(0) — 6(p) _ °R® sin"p . (16.2.26)

fo gH 2cos? ¢

Egs. (16.2.24), (16.2.25), and (16.2.26) determine the latitudinal distribution of
potential temperature, which is depicted in Fig. 16.9. The width of Hadley circu-
lation is determined by the constraint that the two areas enclosed by the curves 0
and 6, must be equal due to the energy balance in the Newtonian radiation model.
This method to ascertain the width of Hadley circulation is called the equal area
method. A similar method for the balance of energy was considered with the energy
budget model (EBM) in Chapter 13 (see Fig. 13.4). In the case of the EBM, the
balance between solar and planetary radiations was considered. In the present
case, however, such a relation for radiation is not directly introduced. Substituting
(16.2.25) and (16.2.26) into (16.2.24) and integrating over the domain of Hadley
circulation, we obtain the equation for the width of Hadley circulation. Introducing
wr = sin g, we have a relation for the Hadley width:

1 15 1 14 pm
ARy — D3, —  "H_ — 1 =0 16.2.27
R = ny = M e (0 S 22
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FIGURE 16.9: Latitudinal extent of Hadley circulation in the Newtonian radiation model, and

the relation between the reference potential temperature 6 and the vertically averaged potential

temperature 6. The areas enclosed by the two curves are equal. The width of Hadley circulation
is given by the latitude ¢p.

where
RH = AH7 (16.2.28)

is a parameter related to latitudinal temperature difference.
If the width g is small enough that siny ~ ¢ and cosp ~ 1, Eqs. (16.2.25)
and (16.2.26) are written as
o) _ 00 @R, e _ 0.0)
= — = - A . 16.2.29
90 90 2gH v 90 90 ne ( )
Substituting these equations into (16.2.24) with cosp =~ 1, the width of Hadley
circulation is given by

5 gH 2 5_)\2
YH = (392R2AH> = (3RH) . (16230)

This equation corresponds to (16.2.17) in the case of a moist atmosphere.

In this model, latitudinal energy transport exists only in the region between the
equator and the latitude ¢z where meridional circulation exists. Energy transport
is calculated by the vertical average of the potential temperature equation (16.2.23),
which is written as

00 19 I 0— 0.
0d = — . 16.2.31
ot + Rcosp 0y <COS<'0H/O Y Z) TR (16.2.31)

This corresponds to (13.3.20) of the EBM. Assuming a steady balanced state and
integrating with respect to latitude, we obtain latitudinal energy transport as
$0—0

1 = RH e
vldz = — cos @ dp. (16.2.32)
H Jy cosy Jg TR
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In the case of Ry < 1, in particular, substitution of (16.2.29) yields
1
1 ® HRAp ° °
/v@dz: 5(5> s ‘”2<¢)+(‘0> .
00 0 18 3 TR PH $H YH

(16.2.33)
Latitudinal transport becomes zero at ¢ = 0 and g, and takes its maximum
value at ¢ = g /+/5. From comparison of (16.2.31) and (13.3.20) of the EBM, 0,
corresponds to solar flux TR, while 6 corresponds to planetary flux T. In reality,
solar flux is almost equal to planetary flux at about 45° (Fig. 13.1). As for the Held
and Hou model, however, since no heat transport is allowed on the poleward side
of Hadley circulation, the curve of 0. crosses that of 6 within the region of Hadley
circulation (Fig. 16.9). In this case, energy transport is maximized within Hadley
circulation; this characteristic is unrealistic. One should be careful if the Held and
Hou model is used for the interpretation of energy transport.

In the case of the Held and Hou model, the distribution of mass flux can be
determined from the constraint of the energy balance. It is assumed that latitudinal
flow is concentrated within the thin bottom and upper boundary layers, and that
basic stratification does not change from that of the reference state. In this case,
energy transport is written as

1 H
0 / vddz = VAy, (16.2.34)
o

where V is latitudinal mass flux, and is given from the continuity equation as
H/2 H
V = f/ vdz = / vdz. (16.2.35)
0 H/2

Thus, from (16.2.33), we have

5 (5\2 HRAy 2 [ ¢ <<p)3 ((p>5
Vip) = R? —2 + . (16.2.36
(¥) 18 (3> TRAy T H LDH on on ( )

Angular momentum transport is similarly calculated. The zonally averaged
momentum equation is written as

ou 1 0 0 0Ty

2 = —
ot —+ Reos? o D (uv cos® @) + 92 (wu) + fo = o (16.2.37)

where 7, is vertical momentum flux due to friction, and lateral diffusive flux is
neglected. The vertical average of the above equation in the steady state is written

as

1 1 [ .

RCOS%:@ (H/ wv dz cos? ga) = =) (16.2.38)
0
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where 7,,(0) is diffusion flux at the surface. Note that the contribution of the
Coriolis parameter vanishes because of (16.2.35). Diffusion flux is proportional to
the magnitude of the zonal wind near the surface with an opposite sign:

7:(0) = —=Cu(0). (16.2.39)

If the sign of 7,,(0) is known, the direction of the surface wind can be determined.
A characteristic behavior of 7,,(0) can be seen by assuming that zonal wind is given
by the angular momentum conserving flow (16.2.13) in the upper layer and that the
zonal wind near the surface is almost negligible compared with that in the upper
layer. Consistent with the previous assumption, we assume that meridional flow is
also concentrated in layers near both the surface and tropopause. In the case of
Ry < 1, relative angular momentum transport is written as

1/H d - up V
H o uv az = H
25 QOR2A 2 3 >
_ Hpa ¥ 902<90)+(90) _
54 TRAYV YH | PH ©YH YH

From (16.2.38) and (16.2.39), diffusive flux is given as

77—1’(0) = CU(Z = Oa 90)
25QRHAy [w 10(<p>3 7(<p>5]
= — Ry — + )

18 7TrAV or 3 \pH 3 \pH
where cos ¢ &~ 1 is used. This flux changes sign at ¢ = \/3/7<pH. Thus, flow in the
lowest layer is easterly on the equatorial side of Hadley circulation, and westerly
on the polar side. This distribution is not similar to that which is characteristic of
the real atmosphere; in the real atmosphere, the lower flow is everywhere easterly
in the Hadley circulation region.

The Held and Hou model has the following difficulties if it is applied to the real
atmosphere. First, the model is based on the assumption that the profile of the
upper zonal wind is determined by conservation of angular momentum. In reality,
the zonal wind is smaller than that determined by angular momentum conservation.
This fact suggests the necessity for consideration of momentum transport due to
asymmetric components.

Second, it is unclear what constitutes the counterpart of the reference potential
temperature of Newtonian radiation in the real atmosphere. As already described,
the reference potential temperature is defined as the radiative-convective equilib-
rium state in the case when Hadley circulation does not exist. If Hadley circulation
exists, the radiative-convective equilibrium state does not have any meaning, and
radiation cannot be modeled by Newtonian radiation with such a reference temp-
erature. It may be true that the width of Hadley circulation is determined if
the latitudinal profile of the vertically averaged reference potential temperature is
related to that of solar radiation. However, it is difficult to assume that radiative-
convective equilibrium has a stably stratified vertical profile. For a more realistic
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application, it is simpler to use the condition that surface temperature is prescribed
rather than that the profile of solar radiation is given. In this case, the width of
Hadley circulation is determined by the diagram depicted in Fig. 16.7. It is not
necessary, however, to assume that the latitudinal profile of surface temperature
is sin? ¢ (i.e., similar to that of solar radiation). A more realistic profile of sur-
face temperature can be given to consider that which is characteristic of Hadley
circulation.

In the Held and Hou model, the width of Hadley circulation is determined by
the constraint that the energy budget is closed within the Hadley circulation region.
The equal area method as shown in Fig. 16.9 determines the width; the integral of
the difference between potential temperature and its reference temperature should
be zero. In the energy budget of the real atmosphere, however, solar radiation
is larger than planetary radiation equatorward of 45°, and planetary radiation is
larger than solar radiation poleward of 45° (i.e., energy transport extends from the
equator to the pole) so that the energy budget is not closed if the global atmosphere
is not considered. In the Hadley circulation region, energy inflow is positive, and
its inflow is balanced by energy outflow from the Hadley circulation region to mid
and high latitudes. Energy transport to the midlatitudes is needed for constraint
on the energy budget.
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Circulations on a sphere

In this chapter, some characteristics of circulations on a sphere, particularly the
latitudinal distribution of zonal-mean angular momentum, are considered using a
one-layer model on a sphere. Midlatitude circulations on the scale of extratropical
cyclones are almost geostrophic and nondivergent and their motions are almost
isentropic. As shown in Section 3.4, shallow-water equations can be used to describe
the motion along isentropic surfaces. Thus, isentropic motions in the midlatitudes
can be studied using shallow-water equations or barotropic equations.

Low-latitude circulations can also be examined by using shallow-water equa-
tions, where they are characterized by divergent motions associated with latent
heat release. Roughly speaking, the direction of meridional flow in the upper layer
is opposite to that in the lower layer in low latitudes (i.e., the flow is baroclinic). If
such divergent or convergent motions exist, each layer is relatable to the shallow-
water system.

In the first section, we formulate divergent shallow-water equations on a sphere
in general form. It will be shown that the same method for studying the characteris-
tics of Hadley circulation described in Section 16.2 is applicable to the shallow-water
system. Then, Hadley circulation is formulated in a one-layer model and its role in
angular momentum transport is examined. Next, the propagation of Rossby waves
is considered using the nondivergent barotropic system, based on the assumption
that Rossby waves are excited in the region of baroclinic instability. This is an
aspect of the interaction between low and midlatitude circulations through the
angular momentum budget. We will not explicitly consider the source of Rossby
waves in this chapter; it will be studied in the next chapter. In the last section,
the energy spectrum and meridional scale of jet streams are examined in terms of
two-dimensional turbulence.

The one-layer model on a sphere is a basis for general circulation modeling. A
method for numerical discretization on a sphere will be described in Chapter 21.
Characteristic flows of shallow-water or nondivergent systems on a sphere can be
used for testing the validation of general circulation models (see Chapter 27).

M. Satoh, Atmospheric Circulation Dynamics and General Circulation Models, 441
Springer Praxis Books, DOI 10.1007/978-3-642-13574-3_17, © Springer-Verlag Berlin Heidelberg 2014
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17.1 Shallow-water equations on a sphere

First, we present various forms of shallow-water equations on a sphere. Let u
denote the longitudinal velocity component, v the latitudinal velocity component,
and 7 the surface height of shallow-water. Shallow-water equations on a sphere are
generally given as

ou u OJu v Oou wvtangp . g On
- -2Q = F
ot +Rcosg03>\+R8<p R vsme Rcoscpa/\+ A
(17.1.1)
ov v Qv  wvov ultangp g On
2Qu si = - F,
6t+Rcos<p3)\+R3<p+ R +eftusing R3<p+ e
(17.1.2)
0 1 0 1
! (un) (neosg) = Q, (17.1.3)

ot +RCOS(,D@)\ +Rcoscp&p

where R is the radius of the Earth, (Fy, F,) is an external force, and @ is a source
term of mass. These terms will be given with appropriate assumptions (see Section
17.2). Here, we assume conservation of mass: @ = 0.

The vector-invariant form of shallow-water equations is given from (17.1.1) and
(17.1.2) using vorticity ¢ as

ou . 1 0 u? + v?

o = (¢ +2Qsinp)v — Rcos O (gn—i— 9 ) + F, (17.1.4)
0 1 0 2 2

3: = —(¢C+2Qsinp)u — ROy (gn—i— “ —;U > + F,. (17.1.5)

Vorticity ¢ and divergence ¢ are given by

1 v 1 9d(ucosyp) 9
_ ~ _ 17.1.
¢ Reoswon ~ Reosy oo VaY, (17.1.6)
5 L 0w 1 d(vcosp) V2, (17.1.7)

Rcosp O\  Rcosyp  Oy¢

where 1 is the streamfunction, y is the velocity potential, and V% is the Laplacian
on a sphere, expressed as

1 02 1 9 9
2 = ) 17.1.8
Vi R? cos? p ON? + R2 cos ¢ ¢ (COS <p3<p ﬂ ( )
1 and x are related to the horizontal components of velocity as

1 0 1 0y
= - 17.1.
R8<p+Rcos<p8)\’ (17.1.9)

1 o0y 10x
= . 17.1.1
v Rcosp OX + ROy (17.1.10)
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The vorticity equation and the divergence equation can be directly derived from
the equations of motion (17.1.4) and (17.1.5):

gf = - Rcis ” a@)\ (¢ + 2Qsing)u + F,]
_Rci)sapaago {[(¢ +2Qsinp)v + F\]cos ¢}, (17.1.11)
gf = Rci)sgo 68)\ [(¢ +2Qsinp)v + F)]
_ Rci)scp 3?0 {l(¢+2Qsinp)u+ F ] cosp}
V2, (gn L ;L ”2) _ (17.1.12)
These are flux-form equations. Advective-form equations are given by
gf + Rcl(;sapgi ;gi + 293;)8@1} +(C+2Qsinp)d = Fr,
(17.1.13)
gf - Rchgo a@)\ (¢ +2Qsingp) + Ilflaago (¢ + 2Qsinp)
— (¢ +29Qsinp)¢ + V3 (gn v ;r ”2) = Fj,

(17.1.14)

where F; and F;s are the dissipation terms of vorticity and divergence, respectively,
given by

1 OF 1L 9(Fcosyp)

o . 17.1.1
¢ Rcosp ON  Rcosy dp 7 e
po_ 1 OB 1 O(Fycose) (17.1.16)

Rcosy O Rcosy dp

If the frictional force is expressed as the convergence of the viscous stress tensor
on a sphere with a constant viscous coefficient v, it can be written in the following
form (see the appendix to this chapter, Section 17.5):

2 2sing Ov U
Fy = \%: - - 17.1.17
A VK H+R2>u R? cos? p OA R2C082<p:|7 ( )

2 2sing Ju v
F, = \Y% - . 17.1.18
v VK H+R2>U R2 cos? p OA R2C082<p] ( )

In this case, the following relations can be derived:
2
_ 2

e = v (VH+ R2> ¢ (17.1.19)

2
Fs = v (Vi, + R2> 5. (17.1.20)
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It is convenient to use absolute vorticity {, and potential vorticity ¢, which are
defined by

Ca

Ca = C + 2Qsin p, qg=". (17.1.21)
n
From (17.1.13), the equation of absolute vorticity is written as
dCa
W0 = Fp 17.1.22
PR ¢ ( )
where
d 0 u 0 v 0
= . 17.1.23
dt 8t+Rcos<p8)\ +R&p ( )
Using @ = 0, the equation of mass (17.1.3) is rewritten as
dn
6 = 0. 17.1.24
g ( )
Thus, the equation of potential vorticity is given by
dq FC
= . 17.1.25
it ; ( )

Multiplying this equation by 7 and using (17.1.15), we obtain the flux-form equation
of potential vorticity as

1 0 1 0
- F F = 0.
ot (na) + Rcosy 0N (nqu o)+ Rcosy dp [(nqv + F) cos ] 0
(17.1.26)

This is the conservative form of potential vorticity. Since ng = (,, this equation
can be viewed as the flux-form equation of absolute vorticity.

We next introduce relative angular momentum ! and absolute angular momen-
tum [, by

I = uRcosp, lo = uRcosp+ QR?cos? p. (17.1.27)

Multiplying the zonal component of the equation of motion (17.1.1) by cosy, we
obtain the conservation of angular momentum:

dl d 0
gt = &t (u cos (p) —2Qusinpcospy = — }9261\7 + cosp F\. (17.1.28)

Multiplying this equation by n and using (17.1.3), we obtain the flux-form equation
of angular momentum:

+ R clos o a@)\ [nu(u + QR cos ) cos ¢]

gt(nucosw)
1
+Rcoscp8<p

g on

T ROA 2

[nv(u + Q cos ) cos? ]

+ cos pnFy. (17.1.29)
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With the aid of (17.1.4), this equation is further rewritten using vorticity as

0815 (ucosp) = (C+2Qsinp)vcosy
1 0 2 2
T ROA (977+ B ;—U > +cosp Fly. (17.1.30)

From the equations of angular momentum (17.1.29) and (17.1.30), the zonally
averaged budget of angular momentum is written, respectively, as

1

ot (nucos ) + Reosp 0y (nuw cos? ¢ + v cos® @) = cospnFy

(17.1.31)
0
ot (ucosp) — (uucosp = cosp F) (17.1.32)
where the zonal average of a quantity A is defined as
1 2m
A = / AdA. (17.1.33)
2m Jo
If the dissipation term is written as (17.1.17), we can express the frictional term as
1 0 0 U
F = 3 , 17.1.34
oS PEA V]*Pcosap&p {COS Sa&p <cos<p>} ( )

where (17.5.1) from the appendix is used. In this form, u/(Rcosp) is relative
angular velocity. If angular velocity is constant over a sphere, there is no loss of
angular momentum due to the frictional force. This is consistent with the fact that
a fluid is in steady state if circulation is rigid body rotation.

17.2 The Hadley cell model

Motion in the upper layer of Hadley circulation can be modeled by shallow-water
equations on a sphere. We consider the zonally symmetric flow of the shallow-water
model. Neglecting longitudinal dependence in (17.1.4), (17.1.5), and (17.1.3), we
have the shallow-water equations for zonal symmetric flow:

ou

o = (C+2Qsinp)v + Fy, (17.2.1)
v 10 u? 4 v?

= - 202 si - F 17.2.2
ot (C+2Q2sinp)u ROy (gn + 9 ) + Py, ( )
on 1 0

= — . 17.2.3
ot Rcosgp@cp(vnms‘p)—i—Q ( )

From (17.1.6), vorticity in zonal symmetric flow is reduced to
1

¢ = ucosp) (17.2.4)

7Rcos<p dp
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If we assume that the source or sink terms of momentum are given by diffusion-
type equations (17.1.17) and (17.1.18), the frictional forces in zonal symmetric flow
become (see (17.5.1))

1 0 0 u
F\ = X 17.2.
A VRQCOSQ@&,O {COS w&p (COS(,D):|7 (17:2.5)

1 0 0 v
F, = X : 17.2.
? VRQCOSQ@&,O {COS w&p (coscp)} (17:2.6)

From (17.2.5), momentum transport due to the frictional force occurs when angular
velocity w = u/(Rcos ) has latitudinal variation. Only for flow with rigid body
rotation, does the frictional force vanish. We may use another type of the source
or sink of momentum given by Rayleigh friction:

F\ = —kpu, (17.2.7)
F, = —krmv, (17.2.8)

where ks 1s constant.
For zonal symmetric flow, the conservation of angular momentum is given by
neglecting longitudinal dependence in (17.1.28):

d
dt(ucos<p+QRCOSQ<p) = cosp F\. (17.2.9)

Total angular momentum integrated over the whole domain on a sphere is conserved
if the frictional force is given by the diffusion-type equation (17.2.5), since the
latitudinal integral [ cosqdyp - F) cos ¢ vanishes. In the case of Rayleigh friction
(17.2.7), however, total angular momentum is not conserved since the integral of
F) cos ¢ does not generally vanish. In this case, since the integral of F) cos is
proportional to that of relative angular momentum w cos ¢, the frictional force has
the effect of reducing zonal motion relative to the Earth’s rotation. It can be
thought that this type of frictional force expresses the bulk effect of momentum
transport between the ground and the atmosphere.

In order to consider Hadley circulation using the shallow-water model, we ass-
ume that the mass sink term has a distribution similar to that of the potential
temperature (16.2.22) used in the Held and Hou model described in Section 16.2.3;
surface height 7 is relaxed to the following latitudinal reference profile 7,:

Q = —rr(n—1e), (17.2.10)
Ne = Mo (1—§AHP2(<p)> = [1—AH (sin%p—;)}, (17.2.11)

where k7 is the inverse of relaxation time, 79 is the reference surface height, and
Ay is the typical scale of latitudinal variation of 7.

Once the relaxation-type mass source is given as (17.2.10), the balance of the
steady state is described as

0 = (¢C+20singp)v+ Fy, (17.2.12)

_ 10 2407
—(¢ + 2Qsin p)u — ROy (gn+ “ 5 ! > + F,, (17.2.13)

0
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1 0
0 = — - —n). 17.2.14
Reosy g (v cosp) = kr(n =) ( )
From (17.2.14), if there is no meridional flow v = 0, the water depth is equal to
the relaxation profile: 7 = 7. In this case, since F,, = 0 according to (17.2.6) or
(17.2.8), (17.2.13) is rewritten as

g One

% +20si = - . 17.2.15

Rtancpu + s R 0p ( )
Substituting (17.2.11) into 7., we can solve it for u as
2gA A

u = QRcosy <\/1 + QQQR’; - 1) ~ gQ}? cos ¢, (17.2.16)

where gglf}; < 1 is used. This profile of v has a maximum at the equator ¢ = 0.

Next, we assume that v # 0 from the equator to the latitude ¢ 7 when meridional
flow exists. If the friction term is negligible F = 0, (17.2.12) is reduced to

C+2Qsinp = 0 (17.2.17)

(i.e., absolute vorticity is zero). It is thought that this zero-vorticity region cor-
responds to the latitudinal extent of the Hadley cell in the shallow-water system.
The similar argument given in Section 16.2.3 is applicable to various quantities in
the region of Hadley circulation. Using (17.2.4), Eq. (17.2.17) can be rewritten as

1 0
" Reosp do (ucosp + QRcos? p) = 0. (17.2.18)

Thus, the absolute angular momentum [, given by (17.1.27) is constant. If we
assume that u = 0 at the equator ¢ = 0, the zonal wind profile is given by

.2
uw = QR Y (17.2.19)
cos ¢
If we neglect v in (17.2.13), the profile of 7 is given by
u? O?R? sin' ¢
= 0) — = 0) — 17.2.20
7 1(0) % 1(0) 2 cos? ( )

where 1(0) is water depth at the equator. Since water depth n must be continuous,
1n = 1. is required at the polar boundary of the Hadley cell ¢ = pg. The width of
the Hadley cell ¢ can be given by the mass balance (17.2.14). Multiplying cos ¢
by (17.2.14), and integrating from ¢ = 0 to ¢, we have

YH PH
/ necospdp = / e COS @ dip. (17.2.21)
0 0

This equation is equivalent to (16.2.27) if one notes the definitions py = sinpy
and Ry = gnoAy/Q?R2. In particular, for the case oy < 1, the Hadley width is
approximated as @g = (5Rp/3)'/2, which is the same as (16.2.30).
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In the case of Rayleigh friction, (17.2.7) is used for the friction term. We use
the following set of equations, which are approximations of (17.2.12)—(17.2.14):

0 = (¢C+290sinp)v — Ky, (17.2.22)
0 = —((—i-QQsingo)u—]l:iaaw (gn—&—u;> — KM

—  20sing — tig;pu? - }q%gz — kv, (17.2.23)
0 = _R:(())scp ﬁaga (vecosp) — kr(n —ne). (17.2.24)

Following Held and Phillips (1990), we solve the above equations using the following
parameters: gny = 102 m? s72, Ay = 20, ﬁ;l = 10 days, Q = 27 day~ !, and
R = 6.37 x 10* m. Solutions to the above equation set for various values of the
coefficient ks are shown in Fig. 17.1. The coefficients of Rayleigh friction are given
as nfwl = 40, 20, 10, 5 days, and kp; = 0. At the limit of no friction xy; — 0,
which is denoted by NF, the Hadley cell is extended to the latitude py = 21.4°. As
shown by (17.2.18) and (17.2.17), within the Hadley cell region |p| < ¢pr, absolute
angular momentum is constant and absolute vorticity is zero. As kjs becomes
larger (stronger friction), the meridional wind becomes stronger and the Hadley
cell width becomes wider. In this case, however, the polar boundary of the Hadley
cell becomes less clear.

Let us introduce diffusion-type friction in addition to Rayleigh friction. Let
us add (17.2.5) and (17.2.6) to the right-hand sides of (17.2.22) and (17.2.23),
respectively. The distribution of zonal winds is shown in Fig. 17.2 for the diffusion
coefficients ¥ = 0, 1 x 10°, 2 x 10°, and 4 x 10° m? s~!. It can be seen that the
zonal wind is westerly at the equator; the role of latitudinal diffusion which brings
the equatorial westerly is called the Gierasch effect, which is a possible mechanism
to explain the super-rotation of Venus’s atmosphere. The balance of zonal wind at
the equator is written as

1 0 3 0 u
. 17.2.2
R2 cos? p Oy [COS 90890 (coscp)} (17.2.25)

From this, we can see that u becomes stronger as kj; becomes smaller. If shallow-
water equations are used as a model for two layers with opposite meridional flows,
the supply of angular momentum from the lower layer is parameterized as Rayleigh
friction. The larger ks corresponds to larger momentum transport from the lower
layer to the upper layer.

Observed zonal wind profiles in the upper layer (200 hPa) are shown in Fig. 17.3.
Actually, equatorial winds are almost always easterly in every season, particularly
in boreal summer. The profile of zonal winds almost follows that of the angular
momentum conserving flow RQsin? ¢ in low latitudes.

0 = —kpu+v
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FIGURE 17.1: From top to bottom: latitudinal distributions of (a) zonal wind u [m], (b) meridional
wind v [m], (c) surface height ¢ = gn [m? s~!], and (d) absolute vorticity ¢ [s~!] given by an
axisymmetric shallow-water model using Rayleigh friction: n&l = 40 days (solid), 20 days (dash),
10 days (dash-dot), and 5 days (dot). NF is the profile for k3 = 0 and RE is the relaxation

profile.



450 Circulations on a sphere [Ch. 17

‘ — ‘ ‘ ‘ —
60 - NF ——O0m?s -

el Y A I T 10° m%s .
L r RE 1
2401‘”‘*» AT T 2x 105 m?/s
x| / 4x105m%s -
2017 a

0 i ! L | L L | L L | L L | L ]

0 20 40 60 80
Latitude

FIGURE 17.2: Dependence of zonal wind on the diffusion coefficient v given by an axisymmetric

shallow-water model with diffusion-type friction: v = 0 (solid), 1 x 10® (dash), 2 x 10° (dash-

dot), and 4 x 10° (dot). The coefficient of Rayleigh friction is nx/ll = 40 days. NF is the profile
for kps = 0 and RE is the relaxation profile.
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FIGURE 17.3: Observed latitudinal profiles of zonal winds at 200 hPa. Solid curve: January;
dashed curve: July. The dotted curve is the zonal wind for the angular momentum conserving
flow uang = RQ sin? ¢. See Appendix A3 for data source.

17.3 Midlatitude circulations

Since geostrophic motions prevail in midlatitudes, some characteristics of midlati-
tude circulations are described by a nondivergent one-layer model or a barotropic
model. In this section, we begin by summarizing barotropic equations including
several forms of angular momentum equations. In the following subsections, the
propagation of Rossby waves is considered in our discussion of zonal wind distribu-
tion in terms of wave and mean flow interactions.
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17.3.1 Momentum balance of barotropic flow

In a nondivergent system, divergence defined by (17.1.7) equals zero:

1 du 1 9J(vecosy)
6 = = 0. 17.3.1
Rcosgp@)\+Rcosg0 Oy ( )
In this case, the velocity potential x can be set as a constant from (17.1.7). Thus,
from (17.1.9) and (17.1.10), velocity components are expressed using the stream-
function:

199 I
= - = . 17.3.2
“ ROy’ ! Rcosp OA ( )
The relation between vorticity and the streamfunction is given by (17.1.6):
1 0 1 0
¢ = v (weose) gz, (17.3.3)

Rcosp OA _Rcoscp Op
and the vorticity equation (17.1.13) is written as

a¢ u 0C v o¢  2Qcos ¢,

= Fg. 17.3.4
ot +Rcosap@)\ R Oy R < ( )
This equation can be rewritten using the streamfunction as
1 2 1 2 2Q
O 92— 0y OV 0y OV | 200 _ o
ot R2cosp dp O\ R2cosp N Oy R2 O\

(17.3.5)

The dissipation term F¢ is expressed as (17.1.19), for instance.
Under nondivergent conditions, the flux form of the angular momentum equa-
tion (17.1.29) becomes'

1 9
Q
Py (ucosg) + Recos o 92 [u(u 4+ QR cos @) cos ¢
+ L9 [v(u+ Qcosp)cosp] = — g 0n +cosp Fy. (17.3.6)
Rcosp dp v A= RO o e

Since v = 0, the zonal average of the angular momentum equation is reduced to

19
(uvcos® p) = cosp Fh. (17.3.7)

(ucosp) + Rcosp dy

ot

An alternative form of conservation of angular momentum is given using vorticity
as (17.1.32), which becomes

0
at(ucosgo)—(vcosgo = cosy F). (17.3.8)

1 plays the role of pressure in barotropic equations. Even if divergence 8§ equals zero, 7 is not
constant.
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At this point, it should be noted that, from comparison of (17.3.7) and (17.3.8), we
obtain

1

Rcoswaw(uvcoszw) = —(vcosp. (17.3.9)

This relation is called Taylor’s identity, and corresponds to Eq. (5.5.176) of the
quasi-geostrophic equations.
From (17.3.4), the equation of absolute vorticity {, = ¢ + 2Qsin ¢ is written as

dCa

- F. 17.3.10
& ¢ ( )

In particular, in the case that F = 0, (, is conservative in the Lagrangian sense.
Multiplying the above equation by (,, we obtain the conservation of absolute en-
strophy (2 /2:

d ¢

- (,F- 17.3.11
dt 2 Calic (17.3.11)

From this, the equation of enstrophy ¢2/2 (i.e., the square of relative vorticity) is
written as

0 (2 w0 v 0 ® 2Qcosy
+ v

= Calt. 17.3.12
ot 2 Rcosp 0N 2 ROy 2 R ¢ CaFe (17.3.12)

From the corresponding flux-form equation, the zonal average of the enstrophy
equation is given by

9 ¢ 10 (v 2Q cos
= F. 17.3.1
ot 2 + Rcosp Oy < 2 COS(p) + R vC Calre (17.3.13)

Using this equation and angular momentum conservation (17.3.8) to eliminate the
term v(, we obtain

o U COS Y + ke + 1 o R we? Cos
ot PT9202 ) T Reospayp 20 2 “PF
R
= cosp F)\ + QQCGFC. (17.3.14)

This is the equation of pseudo-momentum of the barotropic system. It is found
that the domain integral of the pseudo-momentum,

R ¢?

A =
U COoS Y + 20 2

(17.3.15)

conserves if the dissipation terms F and F¢ are negligible.
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17.3.2 'Weak nonlinear theory of Rossby waves

Propagation of midlatitude disturbances in the nondivergent system of a sphere
can be described by the theory of Rossby waves. Let us consider the characteristics
of propagation of Rossby waves and the roles of Rossby waves in the momentum
balance of midlatitude circulations in the following subsections.

Let us divide the flow field into a zonally uniform basic field ug(y) and the
deviation from it. Expanding the deviation field into a series of the amplitude of
the disturbance, we obtain

u = ug+u +u® ... (17.3.16)

v 0@ 4 (17.3.17)

where (") denotes deviation from the zonal mean ( ). We assume that the amplitude

of the disturbance is much smaller than that of the basic field, such that, for

instance, u'/up = O(¢) and u® /up = O(¢?) where ¢ < 1. Note that, since u is

timedependent, u(t) is not equal to the basic field upg, but its difference is second
order. Similarly, vorticity and divergence are expanded as

¢ = G+ (17.3.18)

Y = w8+w/+w(2)+... . (17.3.19)

The first-order terms of the vorticity equation (17.3.4) are collected as

a¢’ u  O¢ Al ’
= F 17.3.2
Ot~ Rcosp OA + v ¢ (17.3.20)

where 3 is a generalized [ effect expressed by

3 2Qcosep 1 09Cp  2Qcosyp 1 9 1 0 (s cos )
= = — u .
R R Op R R2 9y |cosy Op B oSy
(17.3.21)
Multiplying (17.3.20) by ¢’ gives
o 12 o 12 R
¢ ¢ ¢ +pu'¢" = (FL (17.3.22)

ot 2 Rcosp OX 2

Here, the third term on the left-hand side is written by using the nondivergent
condition (17.3.1)

T A W N D
v = Rcosg O 9 Reos? o 9 (u'v" cos® ). (17.3.23)
Therefore, we have
2 1 2 a2 12 A
ot 2 Rcosp OX \ 2 2 Rcos? o dp
= (I (17.3.24)

(u'v' cos? )
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In the case /3’ # 0, this becomes

13} co§¢C’2 N 1 9 coigog’qurcos(pv’zfu’z
ot 6 2 Rcosp OA 6 2 2
1 0
“Reose a(p(u’v’coszga) = CO;“DCFC', (17.3.25)
or
0A cos
-F = T ('F! 17.3.26
or T VA 5 ¢t (17.3.26)
where
2
A = CO;“DCQ, (17.3.27)
1
F = (Au+2COSLp(U/2—u,2), coswu’v’). (17.3.28)

In the case [/ =0 in (17.3.26), A is conservative in the flux-form sense.
Next, let us consider the second-order balance of the zonal-mean equation of
angular momentum conservation. From (17.3.8), we have

0
5t (u@ cosp) — (V' cosp = cosch>(\2). (17.3.29)

The zonal average of the equation of enstrophy (17.3.22) is given by
0 (2
ot 2
Using (17.3.29) and (17.3.30) to eliminate v/¢’, we obtain

+pu¢ = (R (17.3.30)

o 12
ot (u@) cos p + CO;'O <2 ) = cos<pF>(\2) + CO;(’O C/FC/‘ (17.3.31)
Here, we define
12
A = 0w (17.3.32)
B 2

The quantity —A is called pseudo-angular momentum and (17.3.31) is called the
conservation of pseudo-angular momentum. This equation is similar to the exact
equation of the nonlinear system (17.3.14). If there is no basic zonal flow ug = 0,
since 3 = 20 cos ¢/R from (17.3.21), this equation agrees with the exact solution
up to second-order terms.

In the case that frictional forces vanish Fy = Fr = 0, (17.3.31) can be solved as

u@cosp+ A = const. (17.3.33)
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(i.e., the quantity on the left-hand side is constant irrespective of time). As an
example, we consider the case when a disturbance of vorticity is given around some
latitude initially under the constraint u(2) = 0. Pseudo-angular momentum at the
initial state is denoted by Ay (> 0). After sufficient time has passed, the disturbance
will propagate to remote latitudes, and pseudo-angular momentum A will tend to
zero around the latitude where the initial disturbance is given. Thus, from the
conservation of pseudo-angular momentum (17.3.33), we have

Ay = uPcose. (17.3.34)
This means that the westerly u(2) > 0 is induced at initially disturbed latitudes.

17.3.3 Propagation of Rossby waves: WKBJ theory

Let us formulate the propagation of Rossby waves on a sphere using the WKBJ
theory (see Chapter 4). Using (17.3.2) and (17.3.3), the linearized vorticity equation
(17.3.20) is expressed with the streamfunction :

d s u 9, g oy
= 0. 17.3.
8th¢+Rcos<p8)\vH¢+Rcosapa)\ 0 (17.3.35)

Here, we assumed no dissipation FC/ = 0. Introducing a phase function © and a
small parameter ¢, we expand the streamfunction v as

Vo= S dalpat)e (17.3.36)

n=0
where the wave numbers (k,1) and the frequency w are defined by
100 p = 1 1 0e _ 1100

e ot’ ~ e£Rcosp 0N’ " eROp’
Substituting (17.3.36) into the vorticity equation (17.3.35), we write down the equa-

tions for each order of e. From the O(g”) equation, we obtain the dispersion rela-
tion'

(17.3.37)

w =

P = (w—uk)(K*+1*)+k3 = 0. (17.3.39)

This corresponds to the dispersion relation of Rossby waves on a (-plane. It can
be solved for w:

L
w = uk-— o = Qk, ;). (17.3.40)
T Actually, the O(e°) equation is slightly different from (17.3.39), and given by
(& — uk) (k»Q SNC ita;“"l) YkE = o (17.3.38)

To derive the precise dispersion relation, we need to use Mercator coordinates (z,y):

Rdy

dr = Rd, dy = .
cos ¢
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From this, group velocity is expressed as

Iy B(k2 —12) )
= = k2 —
O T ok T prpp T Ut
o0 20kl 20 &2
C = = = .
9%# ol (k2 + 12)2 kg
where
. Bk
YT TR24pe

12)

[Ch. 17
~2

“ (17.3.41)
pk?

(17.3.42)

(17.3.43)

is called intrinsic frequency, or Doppler-shifted frequency. Using (17.3.37), the con-

servations of wave numbers are given as

O(k cos p) 1 0w o 1 0w
ot T RN ot " ROy’
d(kcosp) 0l
Op oN

(17.3.44)

(17.3.45)

If we regard the dispersion relation as a function w = Q(k cos ,[; A, ¢, t), its deriva-
tives with respect to A, ¢, and t are given, respectively, as

Ow  O(kcosp) 00 . ol oy 99
oA OXx  O(kcosp)  OX Ol OA
_ cgx O(kcosy) . O(kcosp) 00
~ cosp  OA 9 o\’
ow d(kcosp) 00 . ol 90 N oY)
Op Op  O(kcosp) Odp Ol Op
_ e Ol te al N o0
cosp N 0o Oy’
Ow  O(kcosp) 00 ol 90 N oY)
ot ot O(kcosyp) Ot Ol ot
cgn Ow  cgp 0w 0N

" RcospdN R 9o @ Ot

(17.3.46)

(17.3.47)

(17.3.48)

Since 2 is independent of A and ¢ due to (17.3.40). From (17.3.44), the following

equations of wave numbers are obtained:

O(k cos ) cgr  O(kcosy) 4 Cov O(k cos @)
ot Rcosyp o)) R dp

ol n cgn Ol cgp Ol

Ot Rcosp O\ R Oy

ow n cgn Ow  cgp Ow

Ot  Rcosyp O\ R Oy

0, (17.3.49)
169

- 17.3.
Rop (17.3.50)

0. (17.3.51)

The path of a wave packet moving with group velocity (cgx,cq,) is called a ray.
Egs. (17.3.49) and (17.3.51) state that kcos ¢ and w are conserved along rays. In
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contrast, the meridional wave number [ is not conserved along rays. From (17.3.40),
[ is given by

Bk

Cw—uk

12 k2, (17.3.52)

from which we find that [ changes with latitude ¢ since u is a function of ¢.
Next, the O(el) terms of the vorticity equation (17.3.35) give
OPOYyy OP 1 0vYy OP 1 0y

PA; —
" 0w 9t " 9k Reosp ON | 9L R Op

+D’(/}0 = 07

where
1 i P Ik ) 9?P 0l N ?P 1 Ok
2 Owdk Ot Owdl Ot~ Ok? Rcosp OA
5 2P 1 ol N 9?P 1 9(lcosy)
OkOl Rcosp ON  OI2 Rcosp  dy
ok ol w—3uk Jk 2ul Ol w—uk d(lcosy)
ot 6t+ Rcosp 6)\+Rcosg03)\ +Rcosgp dp
(17.3.54)

Using P = 0 and (17.3.45) to rewrite (17.3.53), and multiplying the result by
— (k% +12)/ B cos ¢, we obtain the equation of amplitude:
¥

+

0A 1 0 1 9
= 17.3.
ot R cos ¢ OA (car ) + Rcos p dp (cos pcgpA) 0, (17.3.55)
where
2 | 72)2 2
a = (O st (17.3.56)

20
is pseudo-angular momentum, (17.3.32). Eq. (17.3.55) states that A is conserved
along rays.
The kinetic energy of the disturbance E is expressed by

2 /2 2
g oo WEY _ [Vavl (17.3.57)
2 2
Using the WKBJ approximation, averaging over the phase gives
1 2
(E) = / Edo
2T 0
1 2m k2 12 2
— / (2 4+ )2 costds — — & TE)0 (17.3.58)
2m Jo 2

where 0 = ©/e. Thus, from (17.3.43) and (17.3.56), pseudo-angular momentum is
expressed as

A:

k? . (17.3.59)
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Substituting (17.3.59) into (17.3.55), and using the conservation of the wave number
kcosp, (17.3.49), we obtain the conservation of the wave action of Rossby waves
on the sphere:

0 (E) N 1 0 (E) N 1 0 (E)\ 0
Ot &  Rcosp O\ KL Rcosp dp OSPCae -
(17.3.60)

17.3.4 Latitudinal propagation of Rossby waves

We next consider the latitudinal propagation of Rossby waves based on the equation
of the latitudinal wave number; (17.3.52) is rewritten as

? = k2-k (17.3.61)
where k = k cos ©», I =lcos o, and
- 3k 20 (20 1 1
Boo - 15} o costy cosp 0 0 (weos)| ),
w — ik u—c R R29p |cosp dp
(17.3.62)
in which u = cchp’ B = BCOS ¢, and ¢ = w/k is the phase speed in the A-direction.

From (17.3.61), we have
I = i\/ic% — k2. (17.3.63)

Since k is conserved along rays due to (17.3.49), we can fix the value of k to consider
the propagation of a wave packet. Thus, if the meridional distribution of zonal winds
u is given, the characteristics of wave propagation are described by the distribution
of ks. The regions where the wave packet can propagate are the latitudinal belts
satisfying 12 > 0. This means k, > k from (17.3.61). The latitude where [2 = 0 is
satisfied is called the turning latitude, and the latitude where [2 = o is satisfied
is called the critical latitude. In general, we have ks — 0 in the limit @ — &7, s0
that 12 < 0 near the poles. Thus, the turning latitude [=0 always exists and the
wave packet does not reach the poles.

For stationary waves with ¢ = 0, we have u = B /k2. Thus, the two components
of group velocity (17.3.41) and (17.3.42) are written as

23k? 23kl
Cgn = COSQ 24 ) Cgp = COSQ 54 . (17.3.64)

This means that (c,y, ¢g,) is parallel to the wave number vector (k,1). If we define
the angle between the wave number vector and the A-direction by «, we have

kscosaa = k = const. (17.3.65)

Thus, cos @ becomes smaller in the region of larger ks, whereas cos o becomes larger
in the region of smaller ks. In the stationary case ¢ = 0, « is equal to the direction

of group velocity. In this case, ks plays the role of reflectivity.
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As an illustrative example of the notions introduced above, Fig. 17.4 shows
reflectivity ks R when there exists a distribution of zonal winds with two jet streams
around 30° and 60°:

u = 35sin®(wp) + 10sin?(7p®) — 5(1 — p?)?, (17.3.66)

where p = sing. Reflectivity ks becomes larger if the latitude becomes closer to
the maximum of the jet steams, and also becomes larger near the equator. For a
specified value of the wave number kR = 1,2, .-, the wave can propagate only in
the region ks > k. It can be seen that 123 is negative on the polar side of latitude
73.3° and the equatorial side of latitude 9.9°; wave packets with any wave number k
cannot enter these latitude belts. The wave number kR = 3 is shown by the dotted
line in Fig. 17.4 (b). A wave with kR = 3 can propagate only in the region where
the curve of kR is larger than the dotted line. There are two wave propagation
regions; one is latitudes lower than about 45° and the other is around 60°. Since
there are two turning latitudes at both the equatorial and the polar side of the wave
propagation region around 60°, Rossby waves are trapped in this latitude belt if
a Rossby wave packet exists around 60°. This kind of wave propagation region is
called wave duct.

Wave packets of stationary waves ¢ = 0 do not propagate into the region of an
easterly u < 0. The critical latitude is the latitude where the zonal wind vanishes
u = 0. In the wave propagation region between the critical latitude and the turning
latitude, all the wave packets eventually propagate toward the critical latitude since
those wave packets propagating toward the turning latitude turn back toward the
critical latitude. As shown below, it takes an infinite amount of time for wave
packets to reach the critical latitude. Thus, we may say that all wave packets are
absorbed into the background field near the critical latitude.

8ol 80~ 7

60—

Latitude
Latitude

40

20

u [m/s] Reflectivity ksR

FIGURE 17.4: Distributions of zonal winds u (left), and reflectivity ksR (right). The dotted line

is the wave number IESR = 3. The dashed lines are ~boundalries between the region where ks is
positive and that where kg is negative.
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Let us consider a wave packet that is stationary and has zonally uniform prop-
erties in the equation of amplitude (17.3.55); thus we have

cospcgpA = const. (17.3.67)
Using (17.3.42), (17.3.56), and k = const., we obtain

~_1

o o Iz (17.3.68)

Therefore, amplitude becomes smaller near the critical latitude where [ approaches
infinity, while amplitude tends to infinity near the turning latitude where [ ap-
proaches zero. Letting y = y. denote the critical latitude, we generally have

u—c X Y= Ye. (17.3.69)
In this case, near the critical latitude, from (17.3.61) and (17.3.42),

Lo (y—ye) ™2, cgpox 730 (y — ye)?. (17.3.70)
Thus, we have
d
/ S VR R s (17.3.71)
Cgep

(i.e., it takes an infinite amount of time for a wave packet to reach the critical
latitude).

It can be shown, however, that the WKBJ approximation breaks down near the
critical latitude. The change in amplitude 9 in the latitudinal direction is, from
(17.3.68) and (17.3.70),

Yo o (Y —ye)t. (17.3.72)

From this, the ratio between the scale of change in amplitude and wavelength is
given by

1 dio

I dy

This ratio becomes infinite as y — y.. Since this means that the amplitude oscillates

very rapidly in one wavelength, the WKBJ approximation breaks down near the
critical latitude.

o (y—ye) 2. (17.3.73)

17.3.5 Angular momentum change

Let us evaluate angular momentum change when Rossby waves propagate in the
meridional direction using the linearized vorticity equation (17.3.20). Following
Held and Hoskins (1985), we take an example in which the basic state of zonal
winds u and the disturbance of initial vorticity are given as

u = Asin {3;(1+sin<p)}+Bcoszg0, (17.3.74)

- <“"Af°>21 : (17.3.75)

Y

>

S
I

C cos cos(MN) exp
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where A=18ms ', B=14ms™ ', C =50 x 107°s7!, ¢ = 45°, Ap = 10°, and
M = 6. The vorticity equation is given from (17.3.20) in the form:
a¢’ u ¢ Al 2 4
= V%4, 17.3.76
ot Jchosap@)\ + v VG ( )
Here, B is defined by (17.3.21). A diffusion-type dissipation term is assumed; how-
ever, following Held and Hoskins (1985), the second term in (17.1.19) is omitted.
The change in zonal winds can be given by time integration of (17.3.31). It can
be thought that pseudo-angular momentum associated with the initial vorticity dis-
turbance A will be dissipated in a sufficiently large ¢, where A is given by (17.3.32).
From (17.3.31), we have the change in zonal winds as

¢
u@(t) —u® (O)} cosp = A(t=0)+ VCESLP / (V4L dt,  (17.3.77)
0
(2)

where the term F\™ is neglected. In general, we have A(t = 0) > 0 at the region
where the initial disturbance is given. If A becomes smaller as the disturbance
evolves and propagates, the change in zonal winds is given by (17.3.34). Therefore,
westerlies are induced as the initial disturbance decays, if the contribution of the
dissipation term is negligible. An example of such a change in zonal winds is given
by Fig. 17.5. This figure shows the change in pseudo-angular momentum A and

total change in zonal winds lim;_ ., u(?)(¢) cos ¢ for v = 10* m? s=1.

17.3.6 Barotropic instability

The possible distributions of zonal winds can be constrained under the condition
that zonal winds are stable in terms of barotropic instability. Let the latitudinal
distribution of zonal winds be u(y). From (17.1.21) and (17.1.6), the absolute
angular momentum is written as

1 9J(ucosyp)

Ca = + 2Qsin . (17.3.78)

Rcosyp  Oyp
If the gradient of absolute vorticity does not change sign, zonal flow is barotropically
stable. In addition, inertial instability does not occur if {, > 0 for ¢ > 0 and (, < 0
for ¢ < 0. Thus, in order for the basic field to be stable, the condition,

96a = - 0 L dlucosy) +2Qcosp > 0, (17.3.79)

dp Jdp |Rcosp  Op
must be satisfied. If u does not satisfy this condition (i.e., if absolute vorticity
decreases poleward in some region), the flow is unstable and disturbances will de-
velop; then, the arrangement of zonal winds will occur so as to satisfy the condition
(17.3.79). As a result, the resultant distribution of zonal winds is marginally stable
or neutral for barotropic instability. In this case, the neutral state is given by
a constant profile of absolute vorticity in the latitudinal direction. This type of
neutralization is called barotropic adjustment, similar to convective adjustment, or
baroclinic adjustment, which will be described in Section 18.2.2.
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FIGURE 17.5: Left: change in pseudo-angular momentum A. The contour interval is 0.25 m s~ .

Right: total change in zonal winds. Solid: v = 10* m? s~!, and dashed: v = 10° m? s~ 1.
Reprinted from Held and Hoskins (1985) by permission of Elsevier (copyright, 2003).

As an example, we consider the case in which barotropic adjustment occurs
in the latitude band ¢1 < ¢ < ¢2. We refer to zonal wind distribution after
the adjustment as uq.q;, and that of absolute vorticity as (,q;. For a barotropic
adjustment state, we have

0<adj

= 0. 17.3.
b 0 (17.3.80)

It is required that zonal winds be continuous at the two latitudes ¢1 and s,
Uqqj = u, while vorticity does not need to be continuous. From (17.3.78) and
Caqj = const., the zonal wind distribution is expressed as

UggjcOSp = —CaaqiRsing + QRsin® ¢ + C, (17.3.81)
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where C is constant. Using zonal winds at latitudes 1 and @2, u1 = u(p1),
uz = u(p2), the adjusted vorticity and zonal winds are given, respectively, by
U1 COS P1 — Usg COS P2
B R(sin p; — sin 9)
U1 €os 1 (8in ¢ — sin p2) — ug cos wa (sin 1 — sin )
B sin 1 — sin s
+QR(sin ¢ — sin g2)(sin ¢ — sin ¢2), (17.3.82)

Cadj + Q(sin ¢y + sin pa),

Uadj COS P =

and

U1 COS Y1 SIN Y2 — Ug COS Y2 SiN Y . .
¢ = - . . + QR sin @1 sin @s.
sin ] — sin o

Since angular momentum is conserved during the adjustment process, we have

P2 P2

/ ucospdp = / Uqd; COS @ dp. (17.3.83)

Y1 1

From (17.3.82) and (17.3.83), we obtain the relation between @2 and ¢;. The set

of latitudes 7 and ys cannot uniquely be determined from this procedure alone.
Figure 17.6 shows an example of the zonal wind distribution that is barotrop-

ically unstable. The basic distribution of zonal winds is specified as a jet stream

type:
u = wugsin®(rsin? ), (17.3.84)

where ug = 50 m s~!. Zonal winds have a maximum at ¢ = 45°. At ¢ = 57.8°, the
absolute vorticity (, becomes maximum, and the gradient of angular momentum
changes its sign. Thus, the region near the jet maximum is unstable in terms of
barotropic instability. After the disturbance has fully developed, zonal winds will
be close to (17.3.81) near the adjusted region. The latitudinal width of the distur-
bances due to barotropic instability is extended until any local unstable profiles are
dissolved. The figure shows the distributions of zonal wind and absolute vorticity
after adjustment by the dashed-dotted curves where the adjusted region is between
47.4° and 82.8°.

17.4 Turbulence on a sphere

17.4.1 Turbulence on a -plane

The midlatitude jet stream of the atmosphere sometimes emerges as a multiple-
jet structure. Such a multiple-jet structure is familiar in the Jovian atmosphere.
The theory of two-dimensional turbulence on a sphere gives an explanation for a
multiple-jet structure. Before describing two-dimensional turbulence on a sphere,
we overview two-dimensional turbulence on a -plane. We have already considered
the two-dimensional turbulence without the effect of rotation in Section 11.1.2; the
energy cascade and energy spectrum on two-dimensional turbulence are derived
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FIGURE 17.6: Latitudinal distributions of (a) zonal winds u, (b) absolute vorticity (q, and (c)

gradient of absolute vorticity d(q/d(sin ). In (b), the dashed curve is relative vorticity and the

dotted curve is the Coriolis component. In (c), the dashed curve is relative vorticity, and the

dotted line is the -term. In (a) and (b), dashed-dotted curves express profiles in the adjustment
region.

from similarity theory. Turbulence on a §-plane can be considered as an extension
of two-dimensional turbulence.
The vorticity equation on a (-plane is given by

0, ) o
o VIV + 50 =0, (17.4.1)

x
where v is the streamfunction and J is the Jacobian defined by
0AO0B 0AJB
J(A,B) = — . 17.4.2
(4, B) Ox Oy Oy Ox ( )

The second term on the left-hand side of (17.4.1) is the nonlinear term, and the
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third term is the S-effect. In order to examine the possible statistical equilibrium
states of the system described by (17.4.1), we start from the following two extreme
regimes.

(I) If the nonlinear term is larger than the S-effect, we can omit the S-term in
(17.4.1) to obtain

gtv2w+J(w,V2z/}) = 0. (17.4.3)

Thus, the argument of two-dimensional turbulence in Section 11.1.2 is applicable
to the statistical equilibrium of this system. In this case, energy is transferred
to smaller wave number regions and an upward energy cascade occurs. Note that
(17.4.3) is satisfied in the case on an f-plane (i.e., turbulence in the rotating frame).
On an f-plane, it is thought that the upward cascade occurs in scales that are
smaller than the Rossby radius of deformation.

(IT) In contrast, if the S-term is larger than the nonlinear term, neglecting the
nonlinear term in (17.4.1) gives

9 o oy
o VB, =0 (17.4.4)

x
This is a linear equation and can be described by superpositions of linear Rossby
waves. In this case, if a basic solution is written as

v = Ypexpli(k-x —wt), (17.4.5)
the dispersion relation is given by
Bk
- _ 17.4.6
w ‘k‘g i ( )

where k = (ks, ky). If motions are described by such a linear equation, no energy
transfer occurs between different wave numbers and an energy cascade does not
occur.

As shown above, it can be expected that the cascades of energy and enstrophy
are different between regimes (I) and (IT). This means that it is important to know
whether the flow field of a given system described by (17.4.1) is closer to (I) or (II).
To characterize the flow field, we introduce a parameter that represents the ratio
of the nonlinear term to the [-term:

nonlinear term U
€ = = , 17.4.7
6 term BL2 ( )
where U is a characteristic scale of mean velocity and L is a characteristic horizontal
scale of motion. U can be defined by the square of mean kinematic energy, and L

is the inverse of the average wave number weighted by the energy spectrum E(k):

o _ 1 [|VyP
vt o= / , ds. (17.4.8)
1  [kE(K)dk
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where S is the area of the system. In the case of ¢ > 1, the flow field is closer
to regime (I), whereas in the case of ¢ < 1, the flow field is essentially linear and
closer to regime (IT). If total energy is conserved, U is independent of time and is
determined by the initial value. Therefore, the parameter € changes with the value
of L.

Based on the fact that turbulence on a (-plane has two extreme characteristic
regimes described by (I) and (II), the following picture of time evolution can be
shown:

1. First, initial energy is given as ¢ > 1.

2. Based on the two-dimensional turbulence of regime (I), an upward cascade of
energy occurs.

3. The typical length scale L becomes larger and (k) becomes smaller.
4. Then, € also becomes smaller.

5. If € is small enough such that ¢ ~ 1, Rossby waves emerge as described by

(11).

According to the above scenario, two-dimensional turbulence on a (-plane experi-
ences a transition from (I) to (II).

As the flow field evolves from (I) to (II), it is expected that the time scale of
the upward cascade of energy becomes slower. Typical time scale of regime (I) is
given by

T ~ . (17.4.10)

This indicates that as L becomes larger due to the energy cascade, time scale T'
becomes larger. Although the time scale of regime (II) is constrained by the dis-
persion relation of Rossby waves (17.4.6), its value cannot be determined solely by
the dispersion relation. For instance, if the upward cascade of energy continues and
keeps isotropy at k; = ky, w would get larger because of (17.4.6). It is known, how-
ever, that w becomes even smaller in regime (II) according to the weakly nonlinear
theory whose details we do not describe here (Rhines, 1975). Because of the dis-
persion relation, if w becomes smaller, the zonal wave number k, becomes smaller
compared with k,,, which brings anisotropy to the turbulence. In regime (II), there-
fore, turbulence is no longer isotropic and a zonal flow emerges. The characteristic
length of the width of zonal winds is given by setting ¢ = 1 in (17.4.7); thus

U
L = \/5’ (17.4.11)

This length is called the Rhines scale. Based on numerical calculations of dissipative
turbulence on a (-plane, Rhines (1975) demonstrates the above scenario.
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The Rhines scale is different from the Rossby radius of deformation, which is
the natural horizontal length of a rotating fluid. The Rossby radius of deformation
is given by

Lp = (17.4.12)

where c¢ is the speed of a gravity wave and f is the Coriolis parameter. In a
stratified fluid, the speed of a gravity wave is given by ¢ = NH where H is the
depth of atmosphere and NN is the buoyancy frequency. In a shallow-water system,
it is given by ¢ = \/gH. The typical horizontal scale of turbulence on a (3-plane
corresponds to the latitudinal length scale of zonal winds (i.e., the width of the
jet), when zonal winds have a band structure. The width of the jet can be closer
to either the Rhines scale or the Rossby length in extreme cases.

17.4.2 Two-dimensional turbulence on a sphere

Arguments similar to turbulence on a (-plane can be applicable to fluid motions
on a sphere. From (17.3.4), the vorticity equation on a sphere is written as

¢ 1 29 0y 2\
ot Tl WOF g gy = u(V%,Jr R2> ¢, (17.4.13)

where R is the radius of the sphere and the dissipation term on the right-hand side
is assumed to be the N-th power of the Laplacian of vorticity instead of (17.1.19).
Such a high power of N with N > 2 is required for numerical calculations. The
Jacobian on a sphere is written as
0A0OB 0AOB
J(A,B) = — . 17.4.14

( ) OX Do Op OA ( )
The equation system described by (17.4.13) has conservative quantities; total energy,
total enstrophy, and angular momentum are respectively defined by

1 1

B = 2/\U\2 s = 2/IVIM2 ds, (17.4.15)
1 2 1 9 12

Q = L [ld7ds = [V ds, (17.4.16)

A = /ucoswd& (17.4.17)

where only those parts that are relative to rigid body rotation €2 are considered.
Expanding the streamfunction using spherical harmonics gives

P t) = Y > Yr()P (sing)e™, (17.4.18)

where ;" are amplitudes of the streamfunction with zonal wave number m and
latitudinal wave number n — m, and P}" are the associated Legendre functions.



468 Circulations on a sphere [Ch. 17

Integrating the energy (17.4.15) by part, we obtain

1 9 .
EM) = /W pdS = 2R2 ;Jm;n n(n+ 1)) (17.4.19)
From this, the energy spectrum defined as a function of total wave number n is
given by

E(n,t) — (Zg 1) Z s ()] (17.4.20)

The observed power spectra obtained from aircraft data are shown in Fig. 17.7.
This shows the relations between power spectra density and horizontal wavelength
for zonal wind, meridional wind, and potential temperature. Between about the
1,000 km to 3,000 km wavelength, all spectra have a slope near —3. This implies an
enstrophy cascade from longer to shorter scales of the two-dimensional turbulence
described in Section 11.1.2. The spectra have a different slope regime (—5/3) at

shorter wavelengths below about 400 km.
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FIGURE 17.7: Variance power spectra of wind and potential temperature near the tropopause from

aircraft data. The spectra for meridional wind and potential temperature are shifted to the 10!

and 102 shorter scales on the right. After Nastrom and Gage (1985). (c)American Meteorological
Society. Used with permission.
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Yoden and Yamada (1993) calculated dissipative turbulence on a sphere. Figure
17.8 shows the results of their calculations on the energy spectrum. Time is non-
dimensionalized by T'= R/U where U is the average velocity defined by the square
of kinetic energy. Numerical dissipation is given by (17.4.13) with N = 2 and the
dissipation coefficient is set to ¥ = 1076, The figure shows the ensemble average of
48 cases. When the rotation velocity 2 is equal to zero, the energy spectrum has
a dependence n =% for n > 10 and n=3 for n < 10. As Q becomes larger, the wave

Energy

Time = 5.0

Energy

i

L
10!
Total wave number

10!

Total wave number

FIGURE 17.8: Energy spectrum of two-dimensional turbulence on a sphere. Left: without rotation
2 = 0. Right: dependence on the rotation velocity 2. The ensemble average of 48 cases is shown.
After Yoden and Yamada (1993). (c)American Meteorological Society. Used with permission.
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FIGURE 17.9: Zonal-mean angular momentum w cos ¢ of two-dimensional turbulence on a sphere.
Left: 48 cases for 2 = 100 at t = 5. Right: dependence on Q at ¢ = 5. The ensemble average

is defined as a result of averaging 48 cases.

After Yoden and Yamada (1993).

Meteorological Society. Used with permission.
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(a) 0/9,=0.00 (b) 0/0,=0.25

FIGURE 17.10: Streamfunctions for the two-dimensional turbulence experiment on a sphere at
1,000 Jovian days. The contour interval is 2.5 x 10% m? s~!. Negative values are dotted. After
Nozawa and Yoden (1997) by permission of the American Institute of Physics.

number of the maximum energy spectrum 7n,,,, becomes larger. This suggests
that the upward energy cascade is suppressed in the smaller scale. Wave numbers
larger than n,,., have a dependence as n~%. Figure 17.9 shows snapshots of the
latitudinal distributions of the zonal-mean angular momentum for different cases
and their ensemble averages for different rotation rates. The multiple-jet structure
appears in these snapshot figures. It is interesting that zonal winds are easterly in
high latitudes when there are large rotation rates.

It is argued that the above theory for two-dimensional turbulence on a sphere
can be used to explain the jet structure of the Jovian atmosphere. Such numerical
experiments were conducted by Williams (1978) and were revisited by Nozawa and
Yoden (1997). Figure 17.10 shows streamfunctions on a sphere with dependence
on the rotation rate. The Jovian case is /2y = 1. As the rotation rate increases,
the zonal band structure becomes dominant.

17.5 Appendix: Expressions of friction terms on a sphere

The Laplacian of a vector quantity v = (vx,vy,v,) is expressed as (A1.5.5) in
Appendix Al. Let us substitute v = (u,v,0) and assume that the horizontal com-
ponents u and v are proportional to the radius r to help us consider the Laplacian
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on a sphere. We have, for instance, for u,
- LR 9 (oY, 10 (50
u = T U
r2cos2 o N2 r2cosp dp So&p r2 Or or

1 o N 1 90 9] N 2
= cos )
r2cos2 p N2 r2cosp dy So&p T et

By replacing r by R, we obtain

2
A similar expression also holds for v. Thus, from (A1.5.5), we have
2 2sinp  Jv U
2, _ 2 _ _
Ve = ((VH+R2>U R?cos?p OX  R2cos?p’
2 v 2sinp  Ou
\% —
( H+R2)v 1%200524,0+R2cos2<pa)\7
2 Ou 2 O(vcosyp)
R2cosp N R2cosp Oy '

In particular, using the expression for divergence ¢ in (17.1.7), we can find (V?v), =
—24. The following relation also holds if u is independent of A:

v2 4 2 " u B 1 0 cos® 0 U
R R2cos?¢  RZcos?p dyp 903@ cosp )|’
This transformation corresponds to that of the frictional forces in spherical co-

ordinates given by (A1.5.9). If we assume that the velocity components are uniform
in the A-direction and o}, is negligible in these equations, we obtain

1 1 0 9 v(_, u
o= pRcosQ<p&p(COS PoNe) = p(vHU_RQCOSQLp '

Here, the symbol of the dissipation coeflicient is written as v instead of n and
the zonal winds are represented by u instead of vy. If the dependence of velocity
components on A is negligible, the stress tensor is given from (A1.5.8) as

, cosp 0 U
o = v .
re R 9p \cosp

If we express the dissipation term using vorticity and divergence, we obtain
(17.1.19) and (17.1.20). These relations can be easily derived if a three-dimensional
vector form is used. That is, since we generally have

VZA = V(V-A) -V xVxA,
then

VxVn = -VxVxVxv = —-VxVxw = Viw, (175.1)
V- Vv V-V(V-v) = V2. (17.5.2)
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Note here that u and v are proportional to the radius r» whereas w and ¢ are
independent of r, when mapping onto a two-dimensional spherical surface. As for
vorticity, since from (A1.5.3),

w = (wxwe,wr)
2v 2u
- ( Ra R aC) 9

the radial component of the Laplacian of the vorticity vector gives (17.1.19) using
(17.5.1). For divergence, since

v 2u I v 1 O(ucosy)
R’ R’ Rcospd\ Rcosp  Op

10 25
V-V = Vg (Vv)g+ 28y [r*(V?0),] = Vg-(Vv)u— 2
we obtain using (17.5.2) and V2§ = V%6
2
V- (Vo) = (V%,+ R2> 5, (17.5.3)

from which we have (17.1.20).
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Midlatitude circulations

Some properties of midlatitude circulation are described in this chapter by com-
paring zonally averaged meridional circulations using various averaging methods to
study angular momentum and energy budgets. In particular, baroclinic waves and
their associated meridional circulations are examined.

In general, Eulerian mean circulation associated with baroclinic waves is indi-
rect where its direction is opposite to that of Hadley circulation. Such an indirect
circulation in midlatitudes is called the Ferrel cell. The Ferrel cell plays an impor-
tant role in the global angular momentum budget. On the other hand, if circulation
is zonally averaged on isentropic surfaces, a hemispheric one-cellular direct circu-
lation emerges with no indirect circulation. Hemispheric circulation in isentropic
coordinates is relevant to heat transport. It is also related to material transport,
which will be described in Chapter 19.

The statistical equilibrium states of baroclinic waves are also discussed. The
dynamics of tropopause height and static stability in midlatitudes are closely related
to the statistics of baroclinic waves. The chapter concludes with a description of
the typical life cycle of extratropical cyclones caused by baroclinic instability.

18.1 Meridional circulation

18.1.1 FEulerian mean circulation

We start with zonally averaged circulation using pressure coordinates. In order to
describe midlatitude circulation in particular, we use the quasi-geostrophic equa-
tions on a sphere. Zonal-mean quasi-geostrophic equations in spherical and pressure
coordinates are given by

TThe equation set in pressure coordinates (3.3.42)—(3.3.44) is rewritten as the correspond-
ing set in quasi-geostrophic approximations (7.4.25)—(7.4.29) using spherical coordinate equations
(3.3.15)—(3.3.18).

M. Satoh, Atmospheric Circulation Dynamics and General Circulation Models, 474
Springer Praxis Books, DOI 10.1007/978-3-642-13574-3_18, © Springer-Verlag Berlin Heidelberg 2014
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0 1 0
6? + Reos? 0 (cos? pu'v’) — fv = —G, (18.1.1)
ou R, 00
— = 0 18.1.2
o 0 (1512
1 0 ow
= 18.1.
Rcosgoaga(vcosw—i— op 0, (18.1.3)
a0 1 9 o 2
9t + Reosp 0 (cos pv'0") + wap = Q. (18.1.4)

Eq. (18.1.1) is the momentum equation in the longitudinal direction, (18.1.2) is
thermal wind balance, (18.1.3) is the continuity equation, and (18.1.4) is the equa-
tion of potential temperature. () denotes the zonal average on isobaric surfaces
and (") denotes the deviation from zonal average. The diabatic heating Q and the
coefficient R, are defined by

Q = Q(po) . R, = Rd(p) _ fa <p°>w, (18.1.5)
p » \po po \p

where @ is the original diabatic term, x = Rq/Cp, and v = C,/C,. The ther-
mal wind balance (18.1.2) is given from the hydrostatic balance (3.3.43) using the
specific volume o = R,0. The frictional forcing G, is given by

10T or,
G, = ) 8,: = a;“"7 (18.1.6)
where 7, is the stress tensor and 7,, = —g7,. We assume that the contributions

from topographic torque are included in G, (Peixoto and Oort, 1992 ).
From the continuity equation (18.1.3), the meridional streamfunction ¥ can be
defined as
g ov g ov

= — . 18.1.7
27 Rcosp Op’ “ 27 R2 cos p Op ( )

Assuming ¥ = 0 at the top of the atmosphere p = 0, we integrate the first equation
of (18.1.7) vertically to obtain

P
v = 27chosg0/ o (18.1.8)
0 g

Over a long time average, in particular, vertical velocity is w = 0 at the surface
p = ps. Thus, the total vertical integral gives ¥(ps) = 0.
We consider a long time averaged state such that tendency terms can be

neglected (i.e., a statistical equilibrium state). In this case, the angular momentum
balance is given from (18.1.1) as

1
Rcos%p@aap (cos? puv’) — fv = —Gq, (18.1.9)
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in which the latitudinal transport of relative angular momentum is expressed as
u'v’. Here, we define a streamfunction of the transport of zonal-mean relative
angular momentum by

2 .2 v dp
Vong = 2mR*cos cp/ u'v’ . (18.1.10)
0 g
Integrating (18.1.9) from the top of the atmosphere to a pressure level p yields
0 2R3
a(plllang — R%*cospf¥U = — Wg cos® Ty (18.1.11)

Generally, frictional force in the atmosphere has an appreciable value only in the
lower boundary layer. Thus, the angular momentum balance in the free atmosphere
is expressed by neglecting the right-hand side of (18.1.11) as

0

g Yans(P) = REcosfU(p) = 0. (18.1.12)

In the upper layer of the troposphere, in general, angular momentum is transported
from lower latitudes to midlatitudes, so that angular momentum transport u/v’ is
convergent in midlatitudes while it is divergent in lower latitudes. In this situation,
we have fU(p) < 0 in midlatitudes from (18.1.12). This means that equatorward
mass transport exists in the upper layer of midlatitudes. This kind of zonal-mean
circulation is called indirect circulation, or the Ferrel cell, and is a general charac-
teristic of midlatitude circulation.
If we extend the integration of (18.1.11) to the surface p = ps, we obtain

0
e

where ¥(ps) = 0 and the bulk method

Wang(ps) = —2mR’cos® pCu(ps), (18.1.13)

97pe = Cu(ps), (18.1.14)

is used following (16.2.39). C is a constant. In midlatitudes, since the left-hand
side of (18.1.13) is positive in general, surface winds are westerly (i.e., surface winds
in latitudes where indirect circulation resides must be westerly). This situation is
schematically depicted in the left panel of Fig. 18.1.

From (18.1.4), thermal balance over a long time average is represented by

! 8(cos<pv’9’)+w80 = 0. (18.1.15)

Rcosy dp dp

The second term on the left-hand side is the adiabatic heating or cooling due to

vertical winds. Stratification is stable in midlatitudes, gf; < 0, in general. Since

the equator side of the indirect circulation region has downward motions w > 0
and the polar side of the indirect circulation region has upward motions w < 0,
adiabatic warming occurs in the equator side and adiabatic cooling occurs in the
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Westerly

Equator Pole Equator Pole

F1GURE 18.1: Schematic relations between the indirect cell and angular momentum transport or

heat transport. Left: direction of the Ferrel cell and angular momentum transport. Right: heat

flux due to the Ferrel cell. The symbol + represents the convergence of heat flux or angular
momentum flux, and the symbol — represents divergence.

polar side of indirect circulation. If the diabatic term on the right-hand side is
negligible, the eddy heat flux v/’ must be poleward in midlatitudes to balance the
adiabatic heating term; thus heat flux is divergent in the equator side and conver-
gent in the polar side. This type of heat flux is characteristic of baroclinic waves.
Although the diabatic effects due to radiative cooling and latent heat release are
important, these effects are not so strong as to overcome the direction of the eddy
heat flux. This relation between heat flux and indirect circulation is schematically
shown in the right panel of Fig. 18.1.

Figure 18.2 shows the observational meridional distributions of the mass stream-
function ¥, the eddy momentum transport u/v’, and the eddy heat transport v'T".
The schematic relations shown in Fig. 18.1 can be confirmed from the three panels
of this figure. In general, eddy momentum transport becomes greater in upper
layers, while eddy heat transport becomes greater in the lower layers.

18.1.2 Angular momentum balance between the Hadley cell and the
Ferrel cell

We next consider the angular momentum transport between the Hadley cell in low
latitudes and the Ferrel cell in midlatitudes. Meridional circulations over low and
midlatitudes are related through the angular momentum budget. We use prim-
itive equations on a sphere to consider Hadley circulation, instead of the quasi-
geostrophic equations used in the previous section. The equation for zonal-mean
zonal winds in pressure coordinates on a sphere is written as

ou 1 0

3}
— 2Qsi = —G,. (18.1.1
Y + Reos? o 9y (uw) sinpw G,. (18.1.16)

2
(cos apuv) + op

From this, using angular momentum [ = uRcosy + QR?cos? ¢, we obtain the
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between 1985 and 1994 based on the same source as Appendix A3.

equation of angular momentum in flux form as

ol 1

ot + Rcosp dy (cos<plv) +

0
ap (lw+ Recospy) = 0, (18.1.17)
where (18.1.6) and (18.1.3) are used. Thus, angular momentum transport across a
latitudinal belt ¢ is given by

dp

, P dp
~ 2mRcos”p wo —,  (18.1.18)
g 0 9

Ds
Fong(p) = 277Rcos<p/ lv
0

whose approximation is based on the assumption that net mass latitudinal transport
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is zero over a long time average. This means that net angular momentum transport
is expressed by the transport of relative angular momentum, defined by uR cos ¢. In
this case, the streamfunction of zonal-mean angular momentum flux can be defined
by

2 2 P dp
Uang(p,p) = 2ma“cos”¢ [ w . (18.1.19)
0
Thus, Fyng and Vg, are related as
Fang(9) = Wang(9,ps)- (18.1.20)

This indicates that the surface value of W4 is equal to total angular momentum
transport across the latitude belt .

Although the above relation is a general form of angular momentum transport
irrespective of latitude, the corresponding formula in midlatitudes becomes a sim-
pler relation if quasi-geostrophic approximation is used. The equation of zonal
winds in quasi-geostrophic approximation is described by (18.1.1), which is given
by neglecting vertical advection in the primitive equation system (18.1.16) and all
momentum transport except for the eddy component. Using (18.1.3), we rewrite
(18.1.1) in the following form for angular momentum conservation:

0l 1

ot + Recos o 0o (Rcos2<pu’v’ + QR? cos3<pv)
0
+a (QR2 cos® pw + Rcosaprw) = 0. (18.1.21)
p

According to this approximation, the vertical transport of angular momentum is
mainly explained by zonal-mean advection w of the rigid body component [y =
QR? cos? ¢ in the free atmosphere. In this case, the lateral transport of angular
momentum is expressed by (18.1.10).

Figure 18.3 shows the mass streamfunction and zonal-mean zonal winds, and
Fig. 18.4 shows the streamfunction of the relative component of angular momentum
flux. As shown in Fig. 18.3, the boundary between the Hadley and Ferrel cells is
located at a latitude where zonal-mean zonal winds are zero at the surface. Since the
low-level winds of Hadley circulation are easterly, angular momentum is supplied
from the surface to the atmosphere in the Hadley circulation region. Angular
momentum is transported upward within the Hadley cell, and transported to the
Ferrel cell by the eddy component u/v’. The fact that the contour of the mass
streamfunction is almost vertical at the boundary between the two cells indicates
that the zonal-mean component of lateral transport uv is small at the boundary.
The exchange of angular momentum between the two cells occurs mainly in the
upper layer of the troposphere between 200 hPa and 500 hPa (Fig. 18.4). Within
the Ferrel cell, eddy components have net downward angular momentum transport.
This has a tendency to reduce westerly shear and maintains surface westerlies. At
the surface in midlatitudes, angular momentum is transferred from the atmosphere
to the surface.
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The statistically balanced state of angular momentum transport shown in Fig.
18.4 is modeled as Fig. 18.5, in which only angular momentum transport between
four regions in the meridional section are considered. Regions A and B are in the
Hadley cell, while the regions C and D are in the Ferrel cell. Regions A and D
are in the boundary layers where the vertical turbulent diffusion of momentum is
dominant. Regions B and C are in the free atmosphere, where vertical diffusion is
negligible. The latitude of the boundary between AB and CD is denoted by ¢y,
and the polar boundary of CD is denoted by @gr. The pressure level between the
layers AD and BC is denoted by pp, and that of the top level of BC is denoted
by pr. The level pys corresponds to the top of the mixing layer, and the level pp
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FIGURE 18.5: Schematic model of angular momentum transport between the Hadley and Ferrel
cells. See text for symbols.

corresponds to the tropopause. Although there is a distinct difference between the
tropopause in low latitudes and that in midlatitudes in reality, we neglect the dif-
ference in this model by assuming that latitudinal variation of the tropopause does
not play a significant role in the angular momentum budget. We also assume that
the lateral transport of angular momentum across the latitude ¢y occurs only in
the free atmosphere at the boundary between B and C and that angular momen-
tum transport between A and D is negligible. According to Fig. 18.4, this can be
satisfied if pys is taken as about 800 hPa. We further assume that there is no lateral
transport at the polar boundary of CD nor at the equatorial boundary of AB, and
neglect transport due to seasonal change or exchange between the stratosphere and
the troposphere. The surface is denoted by G, and angular momentum transport
from G to A is denoted by F4. In a similar way, transport from A to B, B to C, C
to D, and D to G is denoted by Fap, Fpc, Fop, and Fpg, respectively. Angular
momentum balance can be written as

Fy = Fga = Fap = Fpe = Fep = Fpe. (18.1.22)

In the respective regions, the main contribution from transport is the stress flux 7,
in Faa and Fpg, vertical momentum advection lw in Fap and Fop, and lateral
transport (v in Fpc.

18.1.3 Transformed Eulerian mean circulation

In the heat balance of Eulerian mean formulation (18.1.15), the eddy component v’

and vertical transport by zonal-mean circulation wgﬁ are the main terms. In this

formulation, however, the relation between these two main terms and the diabatic
term Q is not clear. If Transformed Eulerian Mean (TEM) equations are used, the
relation between the diabatic term and meridional circulation is more direct. TEM
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equations in the quasi-geostrophic approximation are derived in Section 7.4.2. Here,
we use the TEM equations in pressure coordinates on a sphere in a similar way to
Section 18.1.1. Using (18.1.1)—(18.1.4), TEM equations in the quasi-geostrophic
approximation on a sphere are written as

ou 1

— ot = -G, V.F, 18.1.23
ot Jv + Rcosyp ( )
Jdu R, 00
— = 0 18.1.24
Fon="w o = o (15.1.24)
1 0 ow*
* = 0 18.1.25
Reos 0 (v*cosp) + oy ; ( )
00 a0
* = . 18.1.26
o T op Q ( )
The vector F is the Eliassen-Palm flux (EP flux), which satisfies
1 0 OF,
-F = F, P 18.1.27
v Reose iy Foeond) + 7 (15.1.27)
F, = —Rcospu'v, (18.1.28)
/9/
F, = chosgavaa . (18.1.29)
op
v* and w* are called the residual circulation defined by
o [ v 1 d [ v cosyp
. - 18.1.30
v v op \ a0 |’ ¥ Wt Rcosyp Oy a6 ( )
op op

As can be seen from (18.1.25), the residual circulation is nondivergent, so that the
streamfunction ¥* can be introduced as

ov* ov*

o= 9 ;o owt = =Y . (18.1.31)
2rRcosp Op 2mR2cosp Dy

The value of U* can be calculated from the vertical integral of v* by setting ¥* to

zero at the top of the atmosphere. Using (18.1.30) and (18.1.8), the streamfunction

of the residual circulation U* is related to the Eulerian mean streamfunction ¥ as

P d
v = 27choscp/ T
0

86
g g o

2 o
_ 2mRcospu (18.1.32)

Figure 18.6 shows the meridional distribution of the annual-mean residual circu-
lation calculated using (18.1.32). This figure also shows the meridional distribution
of potential temperature. In a statistically steady state, as seen from (18.1.26),
diabatic heating Q is balanced by the vertical advection of potential temperature
due to the residual circulation. In this sense, residual circulation can be viewed as
thermal
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FIGURE 18.6: Meridional distributions of the mass streamfunction of the residual circulation

U*. The contour interval of the streamfunction is 1010 kg s~!: solid curves represent positive

values, dashed curves negative values, and dashed-dotted curves zero. The zonal-mean potential
temperature is also shown by dashed curves with a contour interval of 20 K. (The 300 K-contour
is solid.) Data are from the annual average of 1993 based on the same source as Appendix A3.

circulation. Since the troposphere is stably stratified in general with ge < 0,
the direction of w can be determined if the distribution of Q is specified in the
meridional section. In the troposphere, the diabatic term is negative @ < 0 due to
radiative cooling except for the tropics and the lower layers of the baroclinic zone
in midlatitudes. In the tropics, we have Q > 0 because of latent heat release and
Q > 0 in midlatitudes because of latent heat release due to precipitation associated
with extratropical baroclinic waves. Except for these regions in the tropics and
midlatitudes, the diabatic term is negative so that residual circulation is downward
w* > 0 over wide areas.

18.1.4 Isentropic mean circulation

Equations averaged along isentropic surfaces are analogous to TEM equations, as
described in Section 7.5. Isentropic mean meridional circulation can also be viewed
as thermal circulation, similarly to TEM circulation. From (3.3.63)—(3.3.66), the
hydrostatic equations in isentropic coordinates on a sphere are written as

du o 1 oM

‘ B - 18.1.
g~ ptane—fu Reos A + Gy, (18.1.33)
dv | u? 10M
a T ptmetfu = —pg, TG (18.1.34)
oM C,T
- - 18.1.
0 a0 o (18.1.35)
0) =
Ot  Rcosp O\ (pou) + Rcos p (pov cos p) + 90 (pot) 0,
(18.1.36)
b= Q (18.1.37)

In this section, M represents the Montgomery function, or static energy. Partial
derivatives with respect to time, latitude, and longitude are taken along isentropic
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surfaces. To consider the zonal average of the above equations, we define the zonal
mean along isentropic surfaces by A, and introduce the following notations:

. A
A = A-4 A= P (18.1.38)
Po
from which we have
peA = ppA+ phAl = pgA”. (18.1.39)

First, using (18.1.39), the zonal average of the continuity equation (18.1.36)
becomes

0pe 1 0 ) %
* 0 = 0. 18.1.40
9t RCOW&p(pov cosg) + o (ped) ( )
We assume that pg = 0 below the surface of the ground if isentropic surfaces

intersect with the ground.
Second, by using the vector-invariant form (3.3.74), the zonal average of the
momentum equation (18.1.33) becomes

ou ou
o 59 O (18.1.41)

Here, absolute vorticity wqe is written as

1 0v 109(ucosyp)
o = - = P, 18.1.42
Wa? RcospdX R Oy I pe ( )

—Vwgg = —0

where P is potential vorticity. Thus, (18.1.41) is rewritten as

ou - 0u
= P-0
ot Pt o0
We should note that the right-hand side is equal to the zonal average of the lati-
tudinal flux of PV that appeared in (3.3.78), the zonal average of which is written
as

+ Gy (18.1.43)

* 1

-0
at(ng )+ Reosp g (pgvP—Haa +GA> = 0. (18.1.44)

Making use of expression (3.3.69), we can write the equation of momentum (18.1.33)
in flux form by multiplying by pe:
1

2
+ Rcos? ¢ dp (pguv cos )

0 1 5
ot (pou) + Rcos? p 0N (porr”)

9 .
+ g (Poud) = fpov

R T A S S VA
~ gRcosp 0N \ k+ 17T gR cos p 00 P o oA
(18.1.45)
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The zonal average of this becomes

d 1 , o
g) —
g (Pow) + Reos? 0 0 (Pouvcos™ ) + o, (poud) — frov
1 9 [ 0M
= . 18.1.4
gRcosp 00 <p oA ) + oG (18.1.46)

This equation can be rewritten in a form analogous to the TEM equation (18.1.23):

ou " 1 0 Sk Ou
ot o [Rcosgaago(ucos<p>_f]+9 00 —Gx
19, 1
= - - F 18.1.47
o at(p0u>+ ,DQRCOSQDVQ 0 ( )
where
1 0 0
-Fyg = F F 18.1.4
Ve o Rcosyp <6gp 0.0 cos<p> + 00 9,65 (18.1.48)
Fy, = —Rcosp(pgv), (18.1.49)
1 M’ .
Iyeg = gp’aa)\ — Rcos p(pet)'u'. (18.1.50)

In the case of statistically steady states, (18.1.40) becomes nondivergent, such
that the meridional mass streamfunction Wy can be introduced to satisfy

1 0Wy
= = 18.1.51
po 2nRcosp 90’ (18.1.51)
. 1 ov
pef = f (18.1.52)

2nR2cosp Op

From (18.1.51), the streamfunction is given by
Uy = QWRcosap/ pe V™ do, (18.1.53)
0

where we set the streamfunction at the top of the atmosphere § = oo to zero. In
the case that the isentropic surface intersects with the ground, we assume py = 0 in
the region where 0 is lower than the potential temperature at the ground. A typical
distribution of the mass streamfunction in isentropic coordinates is depicted in Fig.
18.7. The dashed curve is the zonal-mean potential temperature at the surface.
Above this curve, the streamlines are down-gradient of the isentropes except for the
equatorial region, while, below the curve, the streamlines are equatorward and up-
gradient of the isentropes. This indicates that diabatic heating affects the equatorial
region and the surface boundary layer.
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FIGURE 18.7: Meridional distribution of the streamfunction of zonal-mean mass flux in isentropic

coordinates. The unit is 10° kg s~!. The data are based on results from a general circula-

tion model. After Held and Schneider (1999). (c)American Meteorological Society. Used with
permission.

In isentropic coordinates, zonal-mean mass transport just above the ground is
related to heat flux. To show this, we estimate mass transport below a specified
isentropic surface near the ground. We take 05 as the value of potential temperature,
the surface of which lies just above the ground and does not intersect the ground.
The potential temperature at the ground is denoted by 6. The corresponding
pressure on the isentropic surface 6; and that on the ground are denoted by p; and
ps, respectively. Mass transport between the ground and the surface 05 is given as

0r 01 I
10 P d s —
/ povdd = f/ Poas = / o P = P
0B 05 g a0 Ps g g

~ ps(0 — 0y), (18.1.54)

where v is the average of the meridional wind in the boundary layer between 6;
and 6, and py is assumed to be constant in the layer. If v is approximated by
the geostrophic component 74, we have v, = 0. By neglecting the longitudinal
dependence of pys, we obtain the zonal average of the above equation as

0r
/ pov dd =~ pes0(0r —0s) = — posv,0L. (18.1.55)
OB
This indicates that mass flux in the boundary layer is equatorward if heat flux is
poleward 0,0, > 0 near the ground.” This status is schematically shown in Fig.
18.8.

A similar relation holds near the tropopause. Here, we define the tropopause
as a surface with constant potential vorticity.! We assume that the tropopause

TThe signs are for the northern hemisphere throughout this section.
fThe tropopause is defined in Chapter 14. We will investigate various perspectives of the
tropopause in Section 18.2.3.



Sec. 18.1] Meridional circulation 487

FIGURE 18.8: Relation between mass transport and heat transport near the ground. The vertical
axis is potential temperature and the shaded region is the ground. The air is warmer where the
topography of the ground is convex (W), and colder where concave (C). The direction shown by
©® is poleward, and the opposite direction shown by ® is equatorward. In this case, zonal-mean
heat transport is poleward, while zonal-mean mass transport is equatorward near the ground.

is confined between two isentropic surfaces 6_ and 64 (60— < 04) and denote the
potential temperature at the tropopause by 7. The density above the tropopause
(in the stratosphere) is denoted by pgpy, and that below the tropopause (in the
troposphere) by pg_. Since stratification in the stratosphere is more stable than
that in the troposphere, we generally have pg+ < pg—. Mass transport in the layer
between the isentropic surfaces 6_ and 6, is approximately given by

o o or
/ pgvdf = / pov db +/ pov db
O

po+0(04+ — O01) + po—0(0p — 6_). (18.1.56)

Q

Thus, the zonally averaged mass transport near the tropopause is written as

0+
/ pov dd) = pei0(0 —Or)+ pe-0(0r —0-) = (po— — po+)0y07.

(18.1.57)

In general, heat flux is poleward near the tropopause in the midlatitude baroclinic
zone as shown in Fig. 18.2. In this case, since 946/, > 0 and pg— — pp+ > 0, mass
transport near the tropopause is poleward. Figure 18.9 shows this kind of situation.

Mass transport in the middle level of the troposphere is relatable to the angular
momentum balance (18.1.43). In statistical steady states, we have

-Ou
P = 0_ —Gi. 18.1.58
pov g9 ~ O ( )
Since Gy is negligible in the free atmosphere and vertical advection is also negligible
under geostrophic approximation, the right-hand side generally vanishes in this
balance; thus we have

povP = 0. (18.1.59)
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A 0.

FIGURE 18.9: The same as Fig. 18.8 but for the relation between mass transport and heat transport
near the tropopause. Since density in the stratosphere is smaller than in the troposphere in general,
mass transport is poleward if heat transport is poleward near the tropopause.

Using the definition

A = A-A", (18.1.60)
we obtain
povP = peuP’ = py v P’ + ,0917]5*
= Vwas+pedP ~ U+ pgiP . (18.1.61)
Thus, (18.1.59) is reduced to
vt o= J;f@f?*. (18.1.62)

In general, we can assume that the direction of eddy transport of PV along isen-
tropic surfaces in the free atmosphere is opposite to the gradient of zonal-mean PV

¥
contours. This implies 9P < 0 since PV increases with latitude. Thus, we have
v* > 0 (i.e., meridional circulation is poleward in the free atmosphere).

The above description is only for zonally averaged circulation. The motions
of individual air parcels are different from mean circulation. We will discuss the
Lagrangian perspective in Chapter 19.

18.2 Meridional thermal structure

18.2.1 Stability of a zonal symmetric state

In Chapter 16, we examined the conditions needed for Hadley circulation to exist
by giving a simplified thermal structure (16.2.2). The discussion was based on
axisymmetric circulation where eddies in mid and high latitudes are prohibited. In
this section, we investigate the stability of the thermal structure in the extratropics
under the same thermal conditions.

We consider the quasi-Boussinesq system in which the meridional potential
temperature profile is given by (16.2.2). It is a hypothetical state where radiative-
convective equilibrium is satisfied at each latitude and no meridional circulation
exists. The zonal wind profile balanced by this potential temperature field com-
prises the cyclostrophic winds given by (16.2.3). Here, for simplicity, we assume
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that this balanced state comprises geostrophic winds instead of cyclostrophic winds,
g 100

Substituting the potential temperature profile (16.2.2) into § on the right-hand side
of (18.2.1), we obtain

20 sinapgu = (18.2.1)
z

ou gAT,
9, = QRHOCOSQD' (18.2.2)

This zonal wind profile has constant shear. We consider the stability of the above
state based on the necessary conditions for baroclinic instability, which are given
by (5.5.163).

Using (5.5.148), the gradient of quasi-geostrophic potential vorticity is written
as

u 1 0 2 Ou
Im, = — — s
Y f Oy?  ps 0z (p NQGZ)
%u  f 0
= — sS), 18.2.3
B oy T . 0 (psS) ( )
where
f Ou a0 00
S = - = 18.2.4
N2 9z Jy 0z ( )
represents the inclination of an isentropic surface, f = 2Qsing is the Coriolis
parameter with y = Ry, and 8 = Qcos p/R. We assume that density is given by
z
Ps = poexp (—H) , (18.2.5)

where H is the scale height of density. Using the potential temperature profile
(16.2.2) and the thermal wind profile (18.2.1), the potential vorticity gradient is
given by

B 1 f20u AT,
I, = ﬂJrHNQaz = ﬂ(1+ v H sin ga), (18.2.6)

where (18.2.2) is used. v represents the vertical gradient of potential temperature
that is used in (16.2.2); vH is the difference in potential temperature between
the ground and the tropopause at height H. In general, the inequality 4ATs > vH
holds, such that we have II,, > 0 in the inner region of the atmosphere. On the other
hand, we generally have g’z‘ > 0 near the ground z = 0. Under these conditions,
(5.5.163) can be satisfied for a suitable choice of disturbance P, such that the
necessary condition for instability is satisfied. Thus, this basic state is unstable
with respect to baroclinic instability.

In this case, the Richardson number of the potential temperature field (16.2.2)

is given by

Ri — N2 o QQRQQO’Y 1 - 1 QQRQ ’}/Heo (18 9 7)
T (gu)Q  gAT? cos?¢p  cos2p gH ATZ' -
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Using representative values of the atmosphere, Q2R?/gH ~ 2.2 and yH0o/AT? ~
12, we generally have Ri > 1.

18.2.2 Baroclinic adjustment

As shown above, the local radiative-convective equilibrium state, represented by
the thermal profile (16.2.2) and the thermal wind balance (18.2.2), is unstable for
baroclinic instability, and thus does not exist as a statistical equilibrium state. In
the extratropics of the real atmosphere, therefore, eddies due to baroclinic instabil-
ity persistently evolve such that the meridional thermal structure becomes different
from that assumed in the basic state. The question is then what is the meridional
structure of temperature and other quantities in the new statistical equilibrium
state.

There are a few but no satisfactory theories that explain the meridional struc-
ture of the statistical equilibrium state in which nonlinear baroclinic waves are
fully developed. Among them, the theory called baroclinic adjustment is frequently
invoked, though it is not well understood how much it describes the meridional
structure of the atmosphere. Since the basic field given by local radiative-convective
equilibrium satisfies the necessary conditions for baroclinic instability, nonaxisym-
metric baroclinic eddies evolve in the real atmosphere. The statistical equilibrium
state as a result of baroclinic instability is different from the basic field. Baro-
clinic adjustment hypothesizes that the statistical equilibrium state is maintained
in a marginally unstable state for the necessary conditions of baroclinic instabil-
ity. This idea is similar to convective adjustment in Section 14.4.2 or barotropic
adjustment in Section 17.3.6. The convective adjustment method assumes that
convective instability occurs in a statically unstable layer and that the resulting
stratification of the layer becomes vertically isentropic. The barotropic adjustment
method in turn assumes that the resultant absolute vorticity field is horizontally
uniform. In the case of baroclinic adjustment, baroclinic instability occurs when
both surface temperature and potential vorticity in the free atmosphere have lati-
tudinal gradients. The adjusted state is given as the one in which these gradients
are eliminated by eddies.

Baroclinic adjustment assumes homogeneity of potential vorticity in the free
atmosphere. Baroclinic waves are basically adiabatic, such that air parcels move
along isentropic surfaces. Thus, it is thought that baroclinic waves homogenize
the potential vorticity on each isentropic surface. From this view, the resultant
field of baroclinic equilibration is described by uniform potential vorticity on isen-
tropic surfaces. This speculation implies that baroclinic adjustment corresponds to
barotropic adjustment on each isentropic surface. Sun and Lindzen (1994) intro-
duced such a homogenization mechanism to consider the meridional structure of
the atmosphere. Mixing on isentropic surfaces and its relation to the tropopause
will be further discussed in Chapter 19.

Here, we consider an example of baroclinic adjustment using the quasi-
geostrophic approximation from the previous subsection. We consider the case
when the latitudinal dependence of u is negligible in the equation of IL,, (18.2.3).
The necessary conditions for instability no longer hold if we specify a state in which
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S(0) = 0 and II,, does not change its sign in the free atmosphere. We assume that
the equilibrium state of baroclinic adjustment is given by a state where these two
conditions hold. It will be found, however, that the equilibrium state is not uniquely
determined. In order to obtain the thermal structure of the equilibrium state, we
introduce a parameter z4 and assume that the stability parameter S(z) changes
between the ground z = 0 and z4. The equilibrium state is given by the state that
satisfies

S(0) = 0; and II, = 0, for 0<z< za. (18.2.8)

In the upper layer, z > z4, the equilibrium state remains the same as the basic
state. Setting (18.2.3) to zero and neglecting the latitudinal gradient of u, we obtain
a solution for S which satisfies the above constraints as

Saz) = SA(O)eFZI—&-ﬁf (L—ef), (18.2.9)

where S4 is the stability parameter S after baroclinic adjustment. Letting Sg
denote the stability parameter of the basic state, since Ss(z4) = So(z4), we can
express height as

1 _ fs/gng)
za = Hln [ L 15a00) ] (18.2.10)
BH

Substituting S4(0) = 0 and assuming that Sy is constant in the basic state, we
obtain

za = Hln (1— j;i;) = Hln (1—}—?[), (18.2.11)
where
fSo
h = — 18.2.12
3 ( )

is a parameter that characterizes the baroclinic instability of the Charney problem
(5.5.113). This parameter is rewritten as
0T
o= 19T (18.2.13)
By Oy
where (18.2.4) and the potential temperature distribution of the basic field (16.2.2)
are used.

Although the distribution of S, is given by (18.2.9), the distribution of potential
temperature is not uniquely determined since S 4 contains both the vertical gradient
and the latitudinal gradient of potential temperature. The latter is related to the
vertical shear of zonal winds through the thermal wind balance. If just the vertical
shear is variable and the stability parameter N2 is constant, the zonal wind profile
at the baroclinically adjusted state in the layer z < z4 is given by

BHN? 2 ou

u(z) = [z—za—H(en —1)] + s

£ (za—H),  (18.2.14)

0
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g: o represents constant vertical shear in the basic state. On the other hand,

if just the vertical gradient of potential temperature is variable and the zonal wind
is prescribed, the Brunt-Vaiséla frequency of a baroclinically adjusted state is given
by

where

2
9 ] ou 1
Nz) = = e ei (18.2.15)

This has a singularity since N?> — oo as z — 0. In reality, both vertical shear and
stratification will be changed by baroclinic instability, such that the profiles of the
zonal wind and potential temperature become different from those of the initial
state.

The zonal velocity profiles for the baroclinic adjustment model with constant
N? and the profiles of N? for the baroclinic adjustment model with constant shear
are shown in Fig. 18.10. The dotted line is the profile in the basic state, which
is assumed to have linear shear and constant static stability. The solid curve is
the vertical profile after baroclinic adjustment. At the adjusted state with the N?
constant model, vertical shear vanishes at the ground, while it approaches that of
the basic state at z4. For the constant shear model, N? diverges toward infinity
near the ground. In this calculation, typical values at latitude 30° are used: h = 8.0
kmand 24 =5.6kmfor f =7.27x10°s71, 3=198x10"" s ! m~!, N =0.01
s~1, and ‘gg o =30x 1073 s~

18.2.3 Tropopause height

Tropopause height is a representative index of the thermal structure of the atmos-
phere. The tropopause is clearly defined by the vertically one-dimensional radiative-
convective equilibrium model, where the boundary between the stratosphere and
the troposphere is called the tropopause. In this model, the stratosphere is the layer
where only the radiative process contributes, while the tropopause is the layer where
radiative and convective processes determine the temperature structure. Thus, the
two layers are clearly defined in this model. In reality, however, it is difficult to
identify the region where the convective process is active, so that this definition of
the tropopause is not usable in practice.

z [km]

ZA

Il
0.5 & 1.0
u [m/s] N2y 1O

o
[S)

FIGURE 18.10: Vertical profiles of zonal winds (left) and the square of the Brunt-Viiséila frequency
(right) before/after baroclinic adjustment. Dotted: basic state; solid: the state after baroclinic
adjustment.
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In general, two kinds of definitions based on thermal and dynamical properties
are used to identify the tropopause. The thermal definition uses the lapse rate
of temperature; the thermal tropopause is defined as the lowest level at which
the lapse rate becomes less than 2 K km~!, provided that the average lapse rate
between this level and all higher levels within 2 km does not exceed 2 K km~!.
Although the thermal tropopause is simply defined by the temperature structure, it
is not a material surface. In contrast, the surface of a particular value of potential
vorticity is used to define the dynamical tropopause. For instance, the surface
of potential vorticity at 2 PVU (PVU = 107% m? K s=! kg™!) is used as the
tropopause. Values around 2-4 PVU are used depending on the purpose. Since
potential vorticity is conserved along a fluid motion if motions are adiabatic and
frictionless, air in the dynamical tropopause stays at the same surface under such
conditions; thus, the dynamical tropopause is thought of as a material surface.
The dynamical tropopause is not used in lower latitudes, however, since potential
vorticity approaches zero near the equator.

Figure 18.11 shows the meridional distribution of the lapse rate of temperature.
The meridional distribution of potential vorticity will be shown in Fig. 19.1. For
both the thermal and dynamical tropopause, the tropopause is located at distinctly
different altitudes between the tropics and the extratropics. From this, it is thought
that tropopause height is constrained by different mechanisms in the two latitudi-
nal regions. In the framework of one-dimensional radiative-convective equilibrium
with convective adjustment, the temperature structure is determined if the lapse
rate in the troposphere is specified. In this case, the tropopause is defined as the
top of the adjusted layer. Making use of this idea and noticing the relationship be-
tween tropopause height and lapse rate, we will have a constraint on the latitudinal
variation of tropopause height.

In low latitudes, vertical stratification is maintained by the moist process (i.e.,
cumulus convection in the Intertropical Convergence Zone (ITCZ) and Hadley

Height [km]

Latitude

180 220 260 300

FIGURE 18.11: Meridional distribution of the lapse rate of temperature. The solid and dashed
curves are the lapse rate with a contour interval of 2 K km~—!. In particular, the solid curve is a
contour of —2 K km~?! and corresponds to the tropopause except for that in lower layers near the
Arctic where a stable layer prevails. The shaded scale represents temperature distribution. The
lapse rate is calculated from the monthly mean temperature distribution in January 1993.
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circulation region). This means that the lapse rate I is determined by the moist adi-
abat, I' =T, in the whole low-latitudinal region covered by Hadley circulation. As
latitude becomes higher and surface temperature becomes lower, tropopause height
gradually becomes lower until the extratropics where tropopause height is abruptly
changed. In mid and high latitudes, the moist process is no longer dominant, so
that the lapse rate is different from the moist adiabat.

In order to depict how tropopause height is determined in the extratropics,
we introduce the simple model presented by Held (1982). As investigated in the
previous subsections, we assume that baroclinic adjustment determines a statistical
equilibrium state as a result of baroclinic instability in midlatitudes. The uppermost
level z4 of baroclinic adjustment is given by (18.2.10) or (18.2.11). We assume that
this height corresponds to tropopause height Hp in the extratropics. Substituting
(18.2.13) into (18.2.11) gives

[ T

8L —T) 9y | (18.2.16)

h
Hy = Hln(l—l—H) = Hln{l—

in which it is assumed that the lapse rate I' remains unchanged from that of the
basic state. If surface temperature T is specified, this equation gives the relation
between lapse rate I' and tropopause height Hr.

One additional constraint is required to determine tropopause height. The
radiative condition can be used for this purpose (i.e., radiative equilibrium holds
in the stratosphere above the tropopause). To see how the tropopause is deter-
mined, we use the gray radiation model and assume that the atmosphere consists
of the stratosphere in radiative equilibrium and the troposphere whose lapse rate of
temperature is constant I'. What we need to know is the dependence of tropopause
height Hr on surface temperature Ts and lapse rate I'. We specify the vertical
distribution of the optical depth of the gray atmosphere by a function 7(z). In the
stratosphere, from (14.3.2) and (14.3.3), upward radiation flux F! and downward
radiation flux F'! satisfy

72dFl
3 dr

2dF"

= F' - 7B
3 dr i

= Fl — 7B, (18.2.17)

where 7B = ogT*. When net incident solar radiation flux F is given, we can use
(14.3.15) and (14.3.16) to solve the functions of radiative fluxes on optical depth 7:

F (3 F 3 F (3
FT = 2 Fl="". B = 1. 18.2.1
5 (2T+ ), g 9T T ) (27'+ > (18.2.18)

Thus, the temperature profile in the stratosphere is

T() = [253 (gT(z)H)r, for = > Hy. (18.2.19)

In particular, the temperature at the tropopause is given by substituting z = Hrp.
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Therefore, the temperature profile in the troposphere is

1

(2T(HT) + 1)} C4D(Hp-2), for » > Hy.
(18.2.20)

F
208

T(z) = {

For simplicity, the ground temperature is assumed to be equal to that of the lowest
level of the atmosphere: T = T(0). If we integrate F' in (18.2.17) from the bottom
to top of the atmosphere using the temperature profiles (18.2.19) and (18.2.20), we
will have outward longwave radiative flux at the top of the atmosphere Fradl. At
the equilibrium state, this flux must be equal to net incident solar radiation F'. This
constraint is what we call the radiation condition. The equilibrium solution can
be found by changing Hp if ' is given as a known parameter. Thus, the relation
between tropopause height and lapse rate is written in the form

Hr = H() = H(;F{r}), (18.2.21)

where H on the right-hand side indicates that tropopause height depends on solar
radiation F' and the vertical distribution of 7 together with the lapse rate I". The
surface temperature is given by (18.2.20) as

1

2

T, = T(0) = [ F (3T(HT) + 1)} +THy, (18.2.22)
203 2

which is a function of T" using (18.2.21).

One may consider the condition that T is externally specified instead of de-
pending on solar flux F'. Under such a condition, F' must be determined so as to
satisfy (18.2.21) and (18.2.22). In general, this solar flux is different from actual
solar flux. In such a case, one should regard this difference as contributing to heat
transport and the tendency toward heat capacity in the ocean.

Figure 18.12 shows an example of the dependence of tropopause height on lapse
rate for a fixed solar radiation condition (Held 1982). The radiation calculation
is based on the gray radiation model. The radiation constraint given by (18.2.21)
is denoted by R(I'). The figure shows another constraint on tropopause height
given by baroclinic adjustment. Tropopause height is the depth at which baroclinic
adjustment occurs and is given by (18.2.16) with Dy;;p = Hp. The latitudinal
temperature gradient 637; is fixed at those values which yield h/H = 1 and 2 when
I' = 6.5 K km~!. The scale height is set equal to H = 7.5 km. This result indicates
that tropopause height is expected to be in the range around Hp = 9-10 km,
though the results depend on many parameters.

18.3 Life cycle experiments of extratropical cyclones

Midlatitude circulation involves the evolution of extratropical cyclones. The de-
velopment of extratropical cyclones is explained by the linear baroclinic insta-
bility theory described in Section 5.5. The whole process of this development,
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FIGURE 18.12: Tropopause height given by the radiation constraint is shown by a solid curve with

R(T"). The abscissa is the lapse rate T' [K km~!]. The dotted curves Djsrp represent tropopause

height given by the dynamical constraint in midlatitudes. The upper curve is for h/H = 2 and

the lower curve is for h/H = 1. After Held (1982). (c)American Meteorological Society. Used
with permission.

involving nonlinear processes and successive decay of extratropical cyclones, is
known as the life cycle of extratropical cyclones. In this section, the life cycle of
extratropical cyclones is described based on experiments using a general circulation
model.

Let us imagine how atmospheric circulation would evolve if it started in a state of
local radiative-convective equilibrium at each latitude. It is thought that both sym-
metric meridional circulation and asymmetric disturbance would grow; the former
is Hadley circulation in low latitudes, and the latter is baroclinic instability in mid
and high latitudes. When these circulations are fully developed, the atmosphere
will achieve another statistical equilibrium state of general circulation. Circulations
in the mid and high latitudes of such an equilibrium state cannot be described only
by the linear growth of baroclinic instability. The statistical equilibrium state is
a long time average of a balanced state between external forcing and the dissi-
pation processes after baroclinic instability has developed. Baroclinic adjustment
explained in Section 18.2.2 is a possible approach to understanding statistical equi-
librium in the extratropics. However, the theory of baroclinic adjustment is not
definitive, since the equilibrium state is not uniquely determined. As another ap-
proach, one can consider the time evolution of baroclinic instability from its initial
development to the fully matured stage. Some of the characteristics of the extra-
tropical atmospheric structure can be gained by following the whole life cycle of
extratropical cyclones (i.e., linear growth of baroclinic instability, nonlinear satura-
tion of cyclones, and their decay). This kind of approach is called the problem with
the life cycle of extratropical cyclones. It is an initial value problem that concerns
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how disturbances evolve for a given specific initial state. In general, however, it is
not clear how the statistical equilibrium state of the atmosphere is related to the
evolution of the atmospheric field as an initial value problem. The life cycle prob-
lem of extratropical cyclones is nevertheless very informative, since the dynamics
of extratropical cyclones can be described in terms of the atmospheric mean field.

Various initial states can be chosen for the life cycle problem. As mentioned
above, one can use a locally radiative-convective equilibrium state with zonal winds
in the thermal wind balance. Alternatively, zonally uniform state with a symmetric
Hadley circulation can be used as an initial state. Generally, to investigate the ef-
fects of baroclinic instability on the atmospheric mean field, one uses initial states
with no meridional flow, giving a concentrated jet in the upper layer of the subtrop-
ics instead of Hadley circulation. The top panels of Fig. 18.13 are two examples
of initial states; these show the meridional distributions of the zonal winds and
potential temperature. In Fig. 18.13 (a), surface wind is set to zero and surface
pressure is uniform, initially. In Fig. 18.13 (b), in contrast, it has a surface wind
variation (i.e., a barotropic component). If we add random disturbance to these
initial states, the most unstable baroclinic wave will emerge. The bottom figures of
Fig. 18.13 are the meridional distributions of zonal-mean zonal winds and potential
temperature at 7 days after the initial states. As shown below, disturbances with
zonal wave number seven are predominant at this time.

The above two examples are frequently referred to as the two most characteristic
life cycles of extratropical cyclones. Thorncroft et al. (1993) symbolically referred
to the life cycle experiment in Fig. 18.13 (a), (c¢) as LC! and that of Fig. 18.13 (b),
(d) as LC2. Figure 18.14 shows the time evolution of surface pressure of LC1, while
Fig. 18.15 shows that of LC2. In both cases, disturbances with zonal wave number
7 are predominant. As extratropical cyclones develop, the centers of low-pressure
move poleward, and thus a low pressure belt is formed in higher latitudes at the
final stage. On the other hand, when the barotropic component is added as in LC2,
vortices remain for a long time after the development of extratropical cyclones,

The life cycle of an LC1-type extratropical cyclone experiences the following
stages: At the linearly developing stage, the disturbances in extratropical cyclones
concentrate in the lower layer. Then, this is followed by upward propagation of
these disturbances. After that, the cyclones enter into the decaying stage associated
with Rossby wave radiation from upper vortices and the convergence of angular
momentum in the upper layer. At lower latitudes, in contrast, Rossby waves that
propagate from midlatitudes are absorbed.

The above mentioned stages of the life cycle are schematically shown by Eliassen-
Palm flux (EP flux) analysis. We introduced the expressions of EP flux in the
spherical coordinates as (18.1.27)—(18.1.29). Here, for simplicity, we use Cartesian
coordinates without any metric terms. The linearized equation of quasi-geostrophic
potential vorticity is written as

= —u_ —v_". (18.3.1)
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FIGURE 18.13: Meridional structures of zonal winds and potential temperature of the initial state

for the life cycle experiment (a), (b) and that at day 7 (c), (d). (c) corresponds to the initial state

with no surface winds (a), and (d) corresponds to the initial state with the barotropic component

(d). The contour intervals are 5 m s~ and 5 K for zonal winds and potential temperature,

respectively. The zonal wind surface with 0 m s~! is shown as a dotted curve. The potential

vorticity surface with PV = 2 PVU is given as solid curves. After Thorncroft et al. (1993) by
permission of the Q. J. Roy. Meteorol. Soc.

Multiplying by ¢’, averaging over the longitude, and dividing the result by
0q /0y, we obtain

0A
o = —v¢ = -—-V-F, (18.3.2)
where
1¢? 1 .0
A = 2%q = 277/28;’ F = (—u’v’, ]J\;})QU’Q’>. (18.3.3)
9y

A is wave activity, ' = —q'/(9q/0y) is displacement in the latitudinal direction,
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FIGURE 18.14: Time evolution of surface pressure for the life cycle experiment LC1 between days

4 and 9. The contour interval is 4 hPa with the 1,000 hPa contour dotted. The outermost circle is

the latitudinal circle at 20°, and lines of constant latitude and longitude are drawn every 20 and

30 degrees, respectively. After Thorncroft et al. (1993) by permission of the Q. J. Roy. Meteorol.
Soc.
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FIGURE 18.15: The same as Fig. 18.14 but for the life cycle experiment of LC2. After Thorncroft
et al. (1993) by permission of the Q. J. Roy. Meteorol. Soc.
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and F' is the EP flux vector (or EP flux). If the notion of group velocity is applicable
and only a single wave packet with group velocity C exists, the EP flux is related
as F = CyA. When the sign of dq/0y is positive and wave activity propagates
into the region where the EP flux is convergent, the potential vorticity flux v’¢’ is
negative according to (18.3.2) (i.e., the potential vorticity flux is in the opposite
direction to the gradient of potential vorticity). Variance in potential vorticity ¢’
increases and the displacement of air parcels also increases.! When there is no
dissipation and all wave activities vanish from the region considered, the signs of
the above quantities are reversed. The equation of zonal-mean potential vorticity
is given by
g? - - aay Ve (18.3.4)

The equation of potential temperature is also given by (18.3.1) and (18.3.4) by
replacing ¢ and ¢’ by 6 and €', respectively.t The above equations give a complete
set of equations for the evolution of disturbances and the zonal-mean field.

Evolution of the EP flux F' at three different stages of the life cycle LC1 is shown
in Fig. 18.16. In the first stage, F' is almost vertical and confined to lower layers.
As growth in the lower layer is saturated, flux in the middle layer of the troposphere
becomes larger and a strong convergent area exists at the upper troposphere. This
indicates that wave activity is propagating upward. This second stage is completed
by day 8, and is followed by the quasi-horizontal direction of the EP flux appearing
just below the tropopause; the convergent region in the second stage turns to be
divergent around (50°N, 350 hPa) and strong convergence exists around (30°N,
150 hPa). In the third stage, wave activity propagates quasi-horizontally from
midlatitudes to the subtropics. The schematic pattern of the three stages of EP
flux is summarized in Fig. 18.17. As investigated in Section 17.3, Rossby wave
propagation and its absorption are associated with angular momentum transport,
and result in a change of zonal wind distribution on a sphere.

TIf F > 0, we have dA/0t > 0 and v'q’ < 0 from (18.3.2). In the case dq/dy > 0, ¢'2 and 7’2
increase with time due to (18.3.3). We also have v/q’ o« —0q/0y, where v'¢’ = —n'v'0q/0y.
T At the lower boundary, the equation of potential temperature is given by
o6’ ol’d , 00 a0 17}

= —u_. —v = — v

ot oz oy’ ot dy
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(4+ and — enclosed by contours) for three different stages of the life cycle of extratropical cyclones
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FIGURE 18.17: Schematic figure of the evolution of EP flux (arrows) and the convergent/divergent
region (+ and —) for the three different stages of the life cycle of extratropical cyclones at days
1, 5, and 8. After Held and Hoskins (1985) by permission of Elsevier (copyright, 2003).
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Global mixing

We have examined meridional circulation of the atmosphere in terms of Hadley
circulation in low latitudes and circulations associated with baroclinic waves in
midlatitudes. Both circulations have a hemispheric one-cellular structure if viewed
as transformed Eulerian mean or isentropic mean circulations. One-cellular circu-
lation is directly described as a thermally driven circulation, and is also related
to material transport in the Lagrangian sense. It must be remarked, however,
that one-cellular circulation is not a static overturning flow. For instance, associ-
ated with baroclinic waves, latitudinally meandering flows along isentropic surfaces
predominate at midlatitudes. One-cellular circulation of the atmosphere is charac-
terized by these isentropic flows and cross-isentropic circulations in the meridional
section. Isentropic flows are by definition adiabatic, while cross-isentropic flows
are related to diabatic heating or cooling. The former results in isentropic mizing
through north-south meandering air motions.

In this chapter, we describe the global-scale mixing of the atmosphere that
is characterized by thermally driven meridional circulations and isentropic flows.
First, the meridional structure of potential vorticity and potential temperature is
reviewed. The meridional section of the atmosphere can be divided into three
regions that have different characteristics depending on the relation between isen-
tropic surfaces, ground surface, and tropopause. Second, the Lagrangian circulation
of atmospheric general circulation is examined using trajectory analysis. In the last
section, mass exchange between the troposphere and stratosphere is overviewed.

19.1 Potential vorticity and potential temperature

Under adiabatic and frictionless conditions, potential vorticity P and potential
temperature 6 are conserved in the Lagrangian sense. If potential vorticity is
tracked on isentropic surfaces, therefore, it gives an approximate Lagrangian view
of air motions. In contrast, by tracking potential temperature on constant potential
vorticity surfaces, we will obtain similar Lagrangian motions.

M. Satoh, Atmospheric Circulation Dynamics and General Circulation Models, 505
Springer Praxis Books, DOI 10.1007/978-3-642-13574-3 19, © Springer-Verlag Berlin Heidelberg 2014
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In the hydrostatic balance, potential vorticity is expressed by (3.3.70) as

G G+ 96
Po= o M o gt Dy, (19.1.1)

where (49 and (yp are absolute and relative vorticities in isentropic coordinates,
respectively, pg is density in isentropic coordinates given by (3.3.62), and f =
2Q)sin @ is the Coriolis parameter. For large-scale motions at midlatitudes, since
Cp < f in general, we may have an approximation:

06

P = —gfap.

(19.1.2)

In the troposphere, typical values are gz ~ —plg gz ~107*KPa!and P~ 107"
K m?2 kg~ s7!'. The unit 107% K m? kg=! s~! is called one potential vorticity unit,
or 1 PVU.

The observed meridional distributions of zonal-mean potential vorticity and
zonal-mean potential temperature are shown in Fig. 19.1. Potential vorticity is close
to zero in the Hadley circulation region in the tropics, and its gradient is relatively
small along isentropic surfaces in midlatitudes 30-60°. The homogenization of
potential vorticity along isentropic surfaces is caused by the mixing of air parcels
along isentropic surfaces. If air parcels are mixed by advective flow, no change in
entropy occurs. Thus, it is called isentropic mizing.

The isentropic motions of air parcels in the troposphere are interrupted by two
boundaries: the ground surface and the tropopause. In general, isentropic surfaces
incline and intersect with the ground. Since air motions cannot pass through the
ground, the ground plays the role of a mizing barrier. The tropopause is a boundary

Latitude

\ \ [
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FIGURE 19.1: Meridional distributions of zonal-mean potential vorticity and zonal-mean potential

temperature. The contour interval of potential vorticity is 0.1 PVU and that of potential temp-

erature is 5 K with the thick curves being 20 K. Potential vorticity is calculated from monthly
mean data in January of 1993. Data are based on the same source as Appendix A3.
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between the stratosphere and the troposphere and again plays the role of a mixing
barrier. Although various definitions of the tropopause exist as described in Section
18.2.3, a constant PV surface is frequently used as the dynamic tropopause in
midlatitudes but not for that of lower latitudes. Since PV is conserved along air
parcels for adiabatic and frictionless motion, air parcels in the troposphere do not
easily pass through the tropopause.

As schematically shown in Fig. 19.2 (a), the atmosphere can be divided into
three regions according to the relation between the tropopause and isentropic
surfaces; these regions are called the Overworld, the Middleworld, and the Un-
derworld. The Overworld is the region whose isentropic surfaces are above the
tropopause, the Middleworld is the region whose isentropic surfaces intersect with
the tropopause, and the Underworld is the region whose isentropic surfaces are
below the tropopause. In the real atmosphere, almost all isentropic surfaces in
the Underworld also intersect with the ground. This means that the highest isen-
tropic surface in the Underworld is in contact with the ground near the equator
and touches the tropopause at the poles.

Figure 19.2 (b) displays the schematic motions of air parcels in the meridional
section. In midlatitudes, in particular, since the potential temperature of air parcels
is well conserved, air parcels move along isentropic surfaces over a short-range time
scale, such as ten days. As air parcels move along isentropic surfaces, they also
undulate with an amplitude about 1,000 km in the latitudinal direction. Thus,
air parcels have oscillatory motion in the meridional section as shown in Fig. 19.2
(b). If air parcels are tracked for an even longer time, thermally driven meridional
circulation will emerge and cross-isentropic motion occurs as described in Section
18.1.4.

Overworld
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FIGURE 19.2: (a) Definitions of the three regions in the meridional section according to the position

of isentropic surfaces. The dashed curves are the tropopause and solid curves are isentropic sur-

faces. (b) The relation between the motions of air parcels and isentropic surfaces. The meridional
motions of air parcels are shown by arrows.
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19.2 Lagrangian circulation

If the velocity field v(x, t) is known, the trajectories of air parcels can be calculated.
The location of an air parcel at any time ¢ is given by integrating the relation
between position and velocity,

dx

P v(x, t), (19.2.1)

and given the initial conditions under which the air parcel is located at xq at time %.
Here, we use spherical coordinates (A, ¢, () where A is longitude, ¢ is latitude, and
( is an appropriate vertical coordinate. The position of an air parcel is calculated
from zonal wind wu, latitudinal wind v, and vertical velocity C by

dA _ U(A,%Cat)7 d(p _ U(/\MPant)’ d< _ C (1922)

dt Rcosp dt R dt
Pressure p is used as the vertical coordinate ( if observed data are used, while in
modeling studies the vertical coordinate of the model such as ¢ = p/ps is used
where pg is the surface pressure. The potential temperature 6 can be the vertical
coordinate in isentropic coordinates. Latitude-longitude coordinates have singular
points at the poles. Thus, other coordinates such as stereographic coordinates are
used near the poles, and the velocity field and the positions on the trajectory are
transformed into the new coordinates.

When the trajectories of a large number of air parcels are calculated using the
global data of the velocity field, the set of trajectories is usually referred to as
Lagrangian circulation. In this case, Lagrangian circulation is differently expressed
depending on the initial positions of air parcels or the duration of integration time
for the trajectories.

In practice, it is hard to determine the precise trajectories of air parcels, since
vertical velocities are generally unknown from observational data. In the observed
global data or the output data from an atmospheric general circulation model,
vertical motions associated with cumulus convection are not explicitly resolved,
since cumulus convection is expressed in some parameterized forms. This means
that vertical velocity from global data is different from that of the real vertical wind.
If an air parcel approaches an active cumulus region in the tropics, for instance, the
precise position of the air parcel cannot be traced any longer since vertical velocity
is not properly represented. Remember that the calculation of trajectory always
involves large uncertainty of the vertical position in the tropical region.

As an example of Lagrangian circulation, we present a trajectory calculation
given by a dynamical core experiment for a general circulation model, which is a
simple experimental set for understanding the dynamical properties of the atmos-
phere (see Chapter 27). The dynamical core experiment used here is slightly dif-
ferent from that in Chapter 27 because diabatic heating is directly given near the
equator. The radiative process is represented by Newtonian cooling, and explicit
vertical motions associated with cumulus convection are not included (Satoh, 1999).
Although the physical process is simplified, the midlatitude circulation of the model
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FIGURE 19.3: Zonal-mean potential temperature and zonal-mean potential vorticity for the dy-

namical core experiment. The contour interval of potential temperature is 5 K, and that of

potential vorticity is 0.1 PVU. Backward trajectories are calculated for air parcels that are re-

leased from the latitude 32.1° and potential temperature 296 K. The positions of air parcels at 10

days before the arrival at this point are marked by dots. The vertical ordinate is altitude in the
sigma-coordinate.

has characteristics similar to the general circulation of the real atmosphere; this
is because dynamics at midlatitudes are well described by dry dynamics. Figure
19.3 shows the meridional distributions of zonal-mean potential temperature and
potential vorticity (PV). While PV is close to zero in a wide range near the equator,
it has an intrusion of relatively higher absolute values of PV in the lower layers of
low latitudes around the subtropical jet near latitude 30°. At midlatitudes, PV is
relatively homogenized along isentropic surfaces.

Air parcels that started at mid-latitudes in the troposphere behave relatively
adiabatically. They meander on isentropic surfaces and oscillate between the lower
layer in the subtropics and the tropopause region at high latitudes. In Fig. 19.3, the
distribution of air parcels that started from latitude 32.1° on the isentropic surface
at 296 K is added in the meridional section. Air parcels spread throughout the depth
of the troposphere on the isentropic surface in about 10 days. At midlatitudes, the
values of potential temperature possessed by air parcels gradually decrease due to
radiative cooling. Since deviation from the original isentropic surface is small in
the 10-day excursion, the motions of air parcels are almost on the same isentropic
surface. On the other hand, although PV is also conserved if the motions are
adiabatic and frictionless, the contours of PV in the region in which the air parcels
spread are relatively broad; this reflects the homogenization of PV by isentropic
mixing. Near the tropopause and the lower layer in the subtropics, however, air
parcels enter the steeper gradient regions of PV; this indicates that the PV values
of air parcels are changing in these regions. Near the tropopause, for instance,
when an air parcel that has a relatively smaller value of PV in the troposphere
reaches the tropopause region, it comes into contact with an air parcel that has
larger values of PV in the stratosphere. In such a case, smaller scale turbulence
occurs and irreversible mixing processes will change the value of PV. Figure 19.4
shows the relation between PV distributions and the locations of air parcels on
isentropic surfaces and meridional sections.
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FIGURE 19.4: Relation between the locations of air parcels and the distributions of PV: horizontal

distribution (left) and meridional distribution (right). In horizontal distribution, PV contours

on the isentropic surface 291.5 K are shown. In meridional distribution, both the contours of

potential temperature and potential vorticity are shown. The top two panels are the distributions

when the air parcels are released (day 0), the middle and bottom panels are those at day 5 and
10 from the release of the air parcels, respectively. After Satoh (1999).

Figure 19.5 shows the meridional distribution of the Lagrangian circulation
which is calculated as the zonal average of Lagrangian motions during 10 days
based on the above experiment. It should be noted that the zonal-mean trajecto-
ries shown by the arrows do not represent the actual motion of air parcels. Since
the motions of air parcels are almost isentropic in about 10 days, the Lagrangian
mean trajectories of parcels that started from lower latitudes are directed poleward,
while those of parcels that started from higher latitudes are directed equatorward,
as can be seen from trajectories on the 300 K isentropic surface, for example. For
a longer duration than 10 days, however, air parcels depart from the original isen-
tropic surface such that Lagrangian mean trajectories cross isentropic surfaces. At
midlatitudes, trajectories are downward. Trajectories in the lower layers of the Un-
derworld are interesting in that isentropic surfaces intersect with the ground. Air
parcels in the Underworld rapidly move toward lower latitudes along the surface,
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FIGURE 19.5: Meridional distribution of Lagrangian mean circulation for 10 (left) and 60 (right)
days. The contours of potential temperature and potential vorticity are shown in the figure for
day 10. The contour intervals are 5 K and 0.1 PVU, respectively. After Satoh (1999).

trajectories are equatorward in the lower boundary layer.

An interesting phenomenon of air motions along isentropic surfaces is the trans-
port of water vapor in the middle level of the troposphere. If water vapor is trans-
ported from lower latitudes to mid and high latitudes along an isentropic surface,
it is condensed into rain at some latitude in general. The region of water vapor
condensation is characterized by latent heat release associated with extratropi-
cal cyclones. Actually, the meridional distribution of diabatic heating shows that
diabatic heating has two maxima: the deep tropics and the middle layer in midlat-
itudes. The latter region reflects the precipitation zone associated with the warm
front of extratropical cyclones. In contrast to this, when air is transported from
high latitudes to low latitudes, since water vapor content in high latitudes is small,
dry air intrudes into low latitudes. This type of transport of dry air occurs in a
narrow region of the low latitudes about 100 km in the horizontal scale and 100 m
in the vertical, and is called a dry intrusion. As a result, the vertical structure of
water vapor has a very fine layer structure, and has a strong impact on radiative
transfer (Pierrehumbert, 1999).

19.3 Stratosphere troposphere exchange

Mass exchange between the stratosphere and the troposphere (STE) can be evalu-
ated by tracing the Lagrangian motions of air parcels. To estimate the exchange,
we need to define the tropopause as the boundary between the stratosphere and the
troposphere using some clear criterion. Mass flux across the tropopause is given
by calculating the motions of air parcels relative to the tropopause, by setting air
parcels on the tropopause initially. In mid and high latitudes, the surface of a
particular value of potential vorticity can be used as the tropopause. If potential
vorticity is conserved along air trajectories under adiabatic and frictionless flows,
the constant potential vorticity surface is a material surface and no STE occurs. For
synoptic-scale disturbances in midlatitudes, potential vorticity is well conserved in
a short-range time scale (say, a few days). In general, however, potential vorticity is
not conserved for a longer time and mass exchange exists between the stratosphere
and the troposphere.

STE may be categorized into the following two aspects. The first is that caused
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by isentropic mixing, and the second is by diabatic motions that intersect isentropic
surfaces. In fact, these two occur simultaneously, so that they cannot be considered
separately in a strict sense. Since the potential vorticity surface and the isentropic
surface are almost parallel near the poles, however, it is formally thought that only
the second effect contributes to STE. Generally, stirring on isentropic surfaces is
so rapid that isentropic mixing of potential vorticity easily occurs. When strato-
spheric air intrudes into the troposphere in a filamentary shape, for instance, air
parcels with a larger value of potential vorticity in the stratosphere descend equa-
torward, and then become closer to air with lower values of potential vorticity in
the troposphere. Thus, mixing occurs between air parcels with a large gradient
in potential vorticity, and the potential vorticity of air parcels from the strato-
sphere becomes smaller. As a result, the potential vorticity of intruded air parcels
becomes smaller than potential vorticity at the tropopause, and net mass trans-
port from the stratosphere to the troposphere occurs. Figure 19.6 schematically
shows this process of STE on the isentropic surface. The tropopause is defined
as a constant potential vorticity surface which is indicated by a solid curve on
the isentropic surface. Air parcels that start from the tropopause at time t — At
denoted by the dashed curve are transformed to the solid curve or dotted curve
connected to the solid one at time t. The narrow filamentary region enveloped
by the dotted curve is well mixed with the environment in the troposphere, and
the value of potential vorticity changes. Then, the tropopause at time ¢ becomes
the solid curve. In this case, the mass between the material surface at ¢ of air
parcels that start from the tropopause at ¢t — At and the tropopause defined by a
particular value of the potential vorticity is STE-generated within the time interval

Troposphere —  Stratosphere

Stratosphere

Troposphere

Stratosphere —  Troposphere

FIGURE 19.6: Mass exchange between the stratosphere and the troposphere (STE) on an isentropic

surface. The dashed curve is the tropopause at time ¢t — At and the solid curve is that at time ¢.

The dotted curve is a part of the material surface of air parcels that started from the tropopause

at t — At. Air on the dotted curve experiences a change in potential vorticity and deviates from
the tropopause. The hatched region corresponds to STE.
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At. The upper hatched region in the figure is mass inflow from the troposphere to
the stratosphere, while the lower hatched region is mass inflow from the stratosphere
to the troposphere. Figure 19.7 shows an observational example of STE. Evolution
of the PV contours on the 320 K isentropic surface is depicted with 24-hour intervals.
The 2 PVU isoline shown by the bold curve is elongated and becomes isolated. This
indicates that stratospheric air composed of air possessing higher PV values than
2 PVU is mixed with tropospheric air.

The second effect of STE, diabatic heating, is not strictly distinguished from the
first effect (i.e., isentropic mixing), if we look closely at individual STE processes.
It is a useful concept, however, since it can be used to estimate the bulk effect of
STE. For instance, let us consider the case where the rate of change in potential
temperature due to radiation at the lower stratosphere in high latitudes is given
uniformly by @ [K s~!]. This kind of heating actually occurs in the lower strato-
sphere of the northern hemispheric polar region in winter where subsidence motion
exists (Fig. 19.8). In this case, air parcels in the lower stratosphere are cooled and
their potential temperature gradually decreases, so that these air parcels are taken
into the troposphere in the end. Let 6 denote the minimum value of potential temp-
erature at the tropopause. During the time interval At, air parcels in the region
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FIGURE 19.7: Evolution of the PV distribution on the § = 320 K surface for 1200UT on November

(a) 10, (b) 11, (c) 12, and (d) 13, 1991. The bold curve is PV = 2 PVU, lower contour values

are dashed at 0.5 PVU intervals, and higher contour values are solid at 1 PVU intervals. After
Appenzeller et al. (1996), reproduced by permission of the American Geophysical Union.
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Tropopause

Pole

FIGURE 19.8: An example of STE when diabatic heating exists. Air parcels in the region between
the isentropic surface +Q At and the tropopause in the polar region are taken into the troposphere
during the time interval At. Precisely, isentropic mixing occurs in the directions indicated by the
arrows and mass inflow from the troposphere to the stratosphere is associated with it. Net STE
is, however, air inflow into the troposphere designated by the hatched region of the stratosphere.

between the isentropic surface 6 + QAt¢ and the tropopause are taken into the
troposphere.

Typical indicators of air exchange from the stratosphere to the troposphere are
tropopause folds. Associated with the development of extratropical cyclones, the
upper air decreases along a cold front behind extratropical cyclones. In this case,
upper air parcels with high values of potential vorticity descend and the troposphere
is lowered. This kind of deformation of the tropopause occurs locally so that the
tropopause will have a folded structure.
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In Part III, the fundamental numerical techniques needed to construct an atmos-
pheric general circulation model are described. Since atmospheric flows are non-
linear, numerical experiments are powerful and inevitable approaches to the study
of the characteristics of the atmosphere. Atmospheric general circulation models
(AGCMs) are numerical models that simulate three-dimensional global atmospheric
flows. If an AGCM is combined with an oceanic general circulation model and a
land surface model using various physical processes, they form the coupled model
that is used for climate prediction of global warming.

Atmospheric circulation modeling mainly consists of two parts: the dynamical
process and the physical process. The dynamical part describes fluid motions of
the atmosphere based on appropriate discretized forms of dynamical equations.
This is the central part of AGCMs and is called the dynamical core. As described
at the beginning of Chapter 10, the physical part includes representations of the
hydrological process, radiation, and turbulence. There is a wide range of techniques
for numerical implementation of these processes. In this part, we concentrate on
the dynamical core of AGCMs, and do not touch on the numerical procedure of
physical processes, whose basis has already been introduced in Part I.

This part is intended as a technical guide to making a practical model. This part
describes two types of AGCMs. Chapters 20-23 are for hydrostatic spectral global
atmospheric models. Descriptions are restricted to the spectrum model that is
widely used and has a clear model structure. More precisely, the spectrum method
referred to in this part is the spectral transform method using spherical harmonics.
Chapters 24-26 are for global nonhydrostatic atmospheric models. We focus on the
icosahdral division grid.

Chapter 20 summarizes the basic equations used for hydrostatic AGCMs. These
equations were introduced in Chapter 3 in Part I. In Chapter 21, the spherical
spectrum method, which is discretization in horizontal directions on a sphere, is
described, and vertical discretizations are explained in Chapter 22. The description
of the dynamical framework of AGCMs is concluded with the time integration
method in Chapter 23.

Chapter 24 desribes nonhydrostatic models in a Cartesian coordinate. Chapter
25 desribes icosahedral grids as one type of the spherical grid system, and a shallow-
water model based on icosahedral grids is constructed. These two chapters are
preparations for Chapter 26, where the formulation of global nonhydrostatic models
is described with a focus on the Nonhydrostatic Icosahedral Atmospheric Model
(NICAM). These three chapters also contain the numerical results of these models.

In order to validate AGCMs and the study of dynamical characteristics of the
atmosphere, some standard experiments are listed in Chapter 27.



Basic equations of hydrostatic general
circulation models

In this first chapter of Part III, we present the basic equations for an atmospheric
general circulation model. We consider the model governed by primitive equations
on a sphere in o-coordinates. Primitive equations have already been described
in Chapter 3. Here, we summarize these equations in spherical coordinates for
convenience of numerical discretization in the following chapters.

The typical resolution of the currently used general circulation model is about
100 km in the horizontal direction and about a few kilometers in the vertical direc-
tion. This means that the aspect ratio of the typical resolution is about 1/100, which
represents quasi-two-dimensional atmospheric motion. It can be thought that a me-
teorologically important phenomenon at such a small aspect ratio is approximately
in hydrostatic balance in the vertical direction. Thus, primitive equations in hydro-
static balance are generally used as the governing equations of general circulation
models.

Recently, however, much higher computer performance than ever before can be
used, such as massively parallel computers. In such circumstances, a very high res-
olution simulation of less than 10 km in the horizontal scale is becoming achievable
for global models. In these models, the above assumption is no longer acceptable,
and nonhydrostatic equations will take the place of hydrostatic primitive equations
for the framework of general circulation models. These models may well be called
next-generation atmospheric general circulation models, and will be described in
Chapters 24-26.

20.1 Overview

The general circulation model is a numerical model that can calculate three-
dimensional atmospheric motions on a globe. Primitive equations based on hydro-
static balance in the vertical direction are most commonly used as the governing

M. Satoh, Atmospheric Circulation Dynamics and General Circulation Models, 519
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equations of general circulation models. Although nonhydrostatic equations is also
used for a new type of general circulation models, we concentrate on hydrostatic
primitive equations first. We summarize primitive equations in this chapter and
describe numerical methods based on the primitive equations in the following chap-
ters.

The spatial discretization of general circulation models is categorized into two
groups: the spectral method and the grid method. In the case of the spectral
method, variables are expanded in spectral space only in the horizontal directions
(i-e., the spherical surfaces) and are based on the grid method in the vertical direc-
tion using the finite discretized form. The spectral method used in meteorology is
normally based on the transform method in which nonlinear terms are evaluated
in the grid space. One of the advantages of the spectral method is that the conser-
vation of physical quantities is automatically guaranteed. In contrast, if the grid
method is used, discretization forms should be carefully devised in order to keep
the conservation. Even for spectral models, since the finite discretization method is
used in the vertical direction, we need to take care of the discretized expressions of
energy transform terms to conserve total energy. Spectral expressions on a sphere
will be described in Chapter 21, while vertical discretization will be discussed in
Chapter 22.

The time integration method of numerical models is in general constrained by
the fastest motions contained in the governing equations, such as sound waves and
gravity waves. If an implicit scheme is used, the time step of time integration be-
comes free from the constraint of such waves. For general circulation models, a
semi-implicit method is used for the treatment of gravity waves. The time integra-
tion scheme using a semi-implicit method will be described in Chapter 23.

One can further extend the time step using the semi-Lagrangian scheme, where
advection is no longer a constraint. In the field of numerical weather prediction, one
major branch is the semi-Lagrangian method (Staniforth and Cété, 1991). There is
no restriction on the time step for advection and waves if both a semi-Lagrangian
method and a semi-implicit method are used. Normally, the time step is optimized
based on the condition that the accuracy of prognostic fields is kept within a sat-
isfactory range. A defect of a semi-Lagrangian method is that the global integral
of physical quantities is not generally conserved, so that it is thought that semi-
Lagrange models are not suitable for long-time integration like climate study. We
do not describe the semi-Lagrangian method in this book; the dynamical framework
using the semi-Lagrangian method is very different from Eulerian spectral models.

Along with the recent development of computer facilities, the resolution of gen-
eral circulation models can be much increased. The horizontal resolution of cur-
rently used general circulation models is about 100 km. The recent development of
computer technology will allow us to increase horizontal resolution to just below 10
km in the near future. New types of general circulation models are being developed
to maximize the performance of computer power.

One of the most uncertain factors in the reliability of currently used general
circulation models is the use of cumulus parameterization. Since the horizontal
extent of cumulus convection is about 1 km, the effects of cumulus convection must
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be statistically treated in general circulation models with horizontal resolutions of
about 100 km. However, it is very difficult to appropriately parameterize all the
statistical effects of cumulus convection, though many kinds of cumulus parameter-
izations are being used in current models. As the horizontal resolution of numerical
models approaches 1 km, individual clouds can be directly resolved in the models,
so that it is expected that we will no longer need to use such cumulus parameter-
izations based on statistical hypothesis. Thus, the likely horizontal resolution of
next-generation general circulation models is a few kilometers. We expect the use
of models with 10 km resolution or less will come within the range of our computer
facilities. With such finer resolution models, the assumption of hydrostatic balance
is no longer acceptable. We must switch the governing equations of general circula-
tion models from hydrostatic primitive equations to nonhydrostatic equations. As
for vertical resolution, we do not have a suitable measure of its appropriateness.

The change in designs of computers imposes a restriction on the algorithm of
numerical models. In general, we tend to use massively parallel computers with
distributed memories. It is considered that, as the number of computers becomes
larger, such an algorithm requiring data transformations between all computers
will become less scalable. We have mainly focused on spectrum models with the
transform method for the numerical framework of general circulation models in this
book. The transform method requires Legendre transformation at each time step
between the grid space and the spectral space. It is thought in general that the
Legendre transformation is not an appropriate choice for the algorithm on massive
parallel computers with distributed memories, if the model resolution becomes very
fine. Hence, we need to choose different numerical frameworks for higher resolution
general circulation models in the future. A possible choice is the use of grid models
on a globe. Although latitudinal-longitudinal grid models have been used as the
other type of general circulation model, a new framework of the conservative flux-
form semi-Lagrangian method has also been used for general circulation models (Lin
and Rood, 1997). However, since the simple latitudinal-longitudinal grid model
has a very inhomogeneous grid spacing between the equator and the poles, this
type of grid model is not suitable for higher resolution global models. We instead
need to use quasi-homogeneous resolution grid models. As examples of such quasi-
homogeneous grids, we can use the icosahedral grid or the cubic grid (see Chapter
25).

20.2 Basic equations

20.2.1 Primitive equations

We use primitive equations in hydrostatic balance in the vertical direction as the
basic equations for a general circulation model. Primitive equations are given by
(3.3.15)—(3.3.18) in Chapter 3, and are expressed in height z-coordinates. For the
general circulation model, the o-coordinates system is mainly adopted since it is
easy to incorporate the topography at the lowest boundary. o represents pressure
normalized by surface pressure and can be a monotonic function of pressure in
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generic form. The transformation to o-coordinates is summarized in Section 3.3.4.
Here, we only consider the simplest form

o = 7, (20.2.1)

Ps

where p; is the surface pressure. In this case, top and bottom boundary conditions
are written as

1, at z =2z, e, p=ps,

g
{U = 0, at z=o0, ie., p=0. (20.2.2)

where z; is the surface height.

Here, we present primitive equations in o-coordinates on a sphere. We use lon-
gitude A and latitude ¢ on spherical surfaces. The equations of horizontal motion,
hydrostatic balance, continuity, and thermal energy in o-coordinates are respec-
tively given by (3.3.54), (3.3.55), (3.3.56), and (3.3.61):

d;]tH = —fkxvyg—V,®—- R IV,n+ Fp, (20.2.3)
0P RyT
= 20.2.4
0 do + o’ (202:4)
dm lo)ed
- _ . _ 20.2.
dt Vo v do’ (20-2:5)
dT o 0o
P kT (g e Vo - vH> +Q, (20.2.6)

where 7 = lnp,, kK = Rq/Cp, and k is a unit vector in the vertical direction. vy =
(u,v) is the longitudinal and latitudinal components of velocity. F g = (F\, F,,) is
the frictional force and @ is diabatic heating. V, is the two-dimensional gradient
operator along a o-surface. The time derivative is written as

dA 0A 0A
pr— . A 5
dt g TVH VoAt

0A uw O0A wvdA 0A

20.2.
8t+Rcos<p8)\+R890+030 (20-2.7)

where the derivatives with respect to ¢, A, and ¢ are taken along a constant o-
surface. The Lagrangian derivative of the velocity vy is given by

dvg du uv dv  u?
P <dt R tan ¢, gt + R tancp). (20.2.8)

The horizontal divergence along a o-surface is written as

1 Ou 1 9J(vcosy)
D = V,. - . 20.2.
Vo vn R cosp O + Rcosyp Oy (20.2.9)
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Thus, (20.2.3)-(20.2.6) are written explicitly in the following form:
ou v Ou v Oou ,0u+uvta +20si
= - — -0 n inp-v
ot Rcosp 0N ROy Jdoc R v v
1 00 RJT Om
_ — F 20.2.10
Rcosp O\ Rcosyp OX Ty ( )
ov uw  Ov vOov .Ov wu? ta 9() i
- _ — D ne — ing-u
ot Rcosp 0N ROy Jdo R v v
100 RyT O
— — F. 20.2.11
0 RyT
0 = 20.2.12
R ( )
or u O vom ¢
= - — —D— 20.2.13
ot Rcosp ON ROy o’ ( )
oT u 0T voT oT 6 0o
= — —_ — 0 T - - D .
ot Rcosp 0N ROy 7 o T (0 Jo >+Q
(20.2.14)
We also need the equation of state, which is written for dry air as
p = pRJT. (20.2.15)

The case where the hydrological cycle and phase change are included will be sum-
marized in Section 20.2.7.

20.2.2 Alternative forms of the equations of motion

The velocity components in the longitude-latitude coordinates vy = (u,v) are not
continuous at the poles. Hence, it is convenient to define the following nonsingular
form of velocity components by multiplying by cos ¢:

U Vv

We define Vg = (U, V). Since U and V become zero at the poles, singularity at
the poles is avoided.

We replace the latitudinal coordinate with g = sin . In this case, the gradient
on a o-surface is defined by

(20.2.16)

U COS ©,

V COS .

1 1 o 190
b= . = , . 20.2.1
Vo cos<pv <R(1—,u2)8)\ Ra,u) (20-2.17)
Using this, we have the following forms of derivatives for a scalar quantity A:
v - VoA = Vg -VEA (20.2.18)
1 0 1 0
. A) = A
Vo (vmd) Rcosp O\ (ud) + Rcosp 0y (vA cos )
1 0 10
= UA VA
R(1— 2y orx AT g, (VA
= VL. (VHA). (20.2.19)
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The Laplacian operator on a sphere is written as

v o 1 1 02 n 1 0 0
7 R2\cos2pdA?  cosp Oy COS(p@cp
1 1 o2 0 9 O
= o {1 “eoe Tt o {(1 —u )0MH' (20.2.20)

Multiplying (20.2.10) and (20.2.11) by cos ¢ and changing variables u, v to U,
V', we can rewrite the equations of motion as

Y [P ]
e ]1%_83(/1\) - RId%T g: + F cos p, (20.2.21)

P ]
200 - ;f gi B RdT(; . gz + Fcosp.

(20.2.22)

20.2.3 The equation for sigma velocity

Since hydrostatic balance is assumed for the vertical momentum equation, vertical

velocity is not a predictable variable in the governing system of primitive equations

(20.2.10)—(20.2.14). Vertical velocity in o-coordinates, ¢ (or sigma velocity), can

be calculated using boundary conditions and the continuity equation (20.2.13).
The boundary condition for ¢ at ¢ = 0, 1 is given by

& = 0. (20.2.23)

The continuity equation (20.2.13) is rewritten as

or lole)
= - -Vhr — D — 20.2.24
ot Vi - Vo oo’ (202.24)
Integrating this from ¢ = 0 to 1 gives
or ! !
= - / Vi - Vhndo — / Ddo. (20.2.25)
ot 0 0
Integration (20.2.24) from arbitrary o to o = 1, we also have
aﬂ_ 1 1
(1-0) o = / Vi - Vindo — / Ddo + 0, (20.2.26)

or, alternatively, integrating from o = 0 to o gives

Jom 7/ VH.vgﬂdgf/ Ddo — 6. (20.2.27)
ot 0 0
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From (20.2.25), (20.2.26), or (20.2.27), we have the following different forms of the
equation for &:

1 1
o = (170)867;+/ VH-VngJ+/ Ddo
7 1 7 1
= —(170)/ DdUJr/ Dda—(lfa)/ Vu - Vindo
0 o 0
1
+/ Vi - Vindo
= —o—a“—/ VHngda—/ Ddo
ot 0 0
1 o 1 o
= 0/ VH~Vﬁ7rde/ VH«VngUJrU/ Dda—/ Ddo.
0 0 0 0

(20.2.28)

20.2.4 The thermodynamic equation

The thermodynamic equation (20.2.14) can be rewritten using 7" and @', which are
the deviations of temperature and geopotential from horizontally uniform values T'
and ®, respectively: T =T +T" and ® = &+ ®’. Here, T and ® are not necessarily
horizontally mean values, but can be appropriately chosen. Thus, (20.2.14) can be
written as

oT oT 6 0o
= —Vg-VET -5 T — -D
ot Vo 080+H (0 do )+Q
06
= —VE - (VET')+T'D+c6vy— kT (DJraZ) +Q, (20.2.29)
where + is static stability defined by
T 0T O(To™")
= — = —0o" . 20.2.30
K "o T B0 7 do ( )
Since the potential temperature is written as
0 = T <p0> = To* <p0> : (20.2.31)
p Ps
the Brunt-Vaiséla frequency N is related to static stability + as
dlnd 0o dInb g’c
N? = = = 20.2.32
I 52 Y92 80 RdTQFY7 ( )

where hydrostatic balance (20.2.12) is used.
Using (20.2.24), the thermodynamic equation (20.2.29) can be rewritten as
oT
ot

onr

= -V - (VuT')+T'D+6y+ kT ( ot

+ Vi - Vf,‘w) +Q.
(20.2.33)
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20.2.5 Vorticity and divergence equations

The vorticity and divergence equations can be derived from the equations of motion
(20.2.21) and (20.2.22). Vorticity ¢ and divergence D are related to the stream-
function ¢ and the velocity potential x, respectively, as

vg = kxV,y+ Vs, (20.2.34)
¢ = k-V,xvg = Vi, (20.2.35)
D = V,-vg = Vix. (20.2.36)

These are written in spherical coordinates using U, V', and u as
1—p20y 10y

= 20.2.
u R du  ROXN (20.2.37)
10y 1—pu?0x
= 20.2.
v RO\ + R ou (20.2.38)
1 1
= ov ou (20.2.39)

¢ = R(1—p2) 0N  Rop’
1 ou 10V
D = . 20.2.4
R(1 — p?) 8)\+R8,u (20.2.40)
Noting (20.2.39), we obtain the vorticity equation by
Eq. (20.2.21) >

.. . _ Rl
Vorticity equation = k- VI x ( Eq. (20.2.22)

Using the relation
1 0 1 U ov
R(1—pu2) 0N | R(1—p?) oA

_}1?/38# {R(l 1* (%) {_UZ(A] —- MQ)V{;Z} }

1 0 10 i
= [R(l—MQ) a)\(UOJFRaM(VO} = 7VU.(CVH)’

we find that the vorticity equation is written as

a¢ 1 0 10
= — A B 20.2.41
ot [R(luz) " T Rou } ( )
where
OV RJI on
A = (C+20u)U + N “2)@ — F, cos p, (20.2.42)
LOU  RJT'Om
B = (C+2Qu)VfJag ~ R 9 + F) cos . (20.2.43)
If we rewrite the Coriolis term as
—VE-2QuVy) = =2QuVE-Va + Vi - Vi)

= —20 (uD + 2) : (20.2.44)
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we obtain the following form of the vorticity equation from (20.2.41):

a¢ 1 d 10 1%
= - A’ B'| —2Q ( uD 20.2.45
ot R—2)on" T Rou ] (“ +R>’ ( )
OV RyT om
A = 1—u? - F 20.2.4
CU+O-80_ + R ( Iu )a'u APCOSQO7 ( O 6)
OU  RyT' Om
/ _ A _
B" = (V 5y R 9\ + Fcos . (20.2.47)

In a similar way, since (20.2.40), the divergence equation can be calculated by

Eq. (20.2.21) )
Eq. (20.2.22) )~

o

Divergence equation = V4. (

We can show

Rou | R(1—p?) o)) o
1 0 10
1 0? 1 0 0 U? +V?
- 2 2 2 T po (1- '“2) 2
R2(1 — p?) OA R? du o) 2(1 - p?)
U?+v?
= . H — 2
k-VE x ((Va)- Vs 21— i2)’
Thus the divergence equation can be written as
oD 1 0 10
= B — A-V2(®' +RIm+FE 20.2.48
ot R — ) on B pop A Ve F BT+ E) )
where
U?+Vv?
E = 201 — ) (20.2.49)
is the kinetic energy. Using the expression of the Coriolis term
k-VEx (2QuVyg) = 2QuVE X Vg + Vg x VEu)
= 2Q <u( — U> , (20.2.50)
R
we can rewrite (20.2.48) as
oD 1 o, 10 U
= - A+ 29 —
ot RO—p2)ox" ~Rou” T <“< R>

~VZ(®' + R/ T7 + E). (20.2.51)
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20.2.6 The moisture equation

We also have an equation for a scalar quantity in addition to the above basic
equations. Specific humidity ¢ is an example of a scalar quantity. The general form
of the equation of ¢ is written as

dq

5y = So (20.2.52)

where S; is a source term of specific humidity; it includes convergence of moisture
diffusion or change due to condensation. This equation can be rewritten as

dq . 0q
or — TvH Vel =0, +5
)
= V. (Vaq)+qD— dag + 8, (20.2.53)

If water vapor is contained, the equation of state (20.2.15) is modified as
p = pRT,, (20.2.54)
where T}, = (1 + 0.608¢)T is virtual temperature given by (8.2.38).

20.2.7 Summary of governing equations

Let us summarize the above equation set for a general circulation model; (20.2.41),
(20.2.48), (20.2.12), (20.2.33), (20.2.25), (20.2.28), and (20.2.53) are

o¢ 1 0 10
= - A 20.2.
ot [R(l—/ﬂ) o T Rou } (20.2.55)
oD 1 0 10
= B - A—V2(P Tr+E 20.2.
5 R(1— 2) 02 Rop VZ(®' + RyT'm + E), (20.2.56)
0%  RyT
- 20.2.
0 S (20.2.57)
oT 1 9. . 10,
ot [R(l 2y on U+ g, VT )}
+T'D + 6y + &T <881r + Vi - Vﬁﬂ) +Q, (20.2.58)
aﬂ_ 1 1
= f/ Vi - Vhndo — / Ddo. (20.2.59)
] 87T o o
6 = -0, - Vi - Vhndo — Ddo, (20.2.60)
dq 1 1o} 0 . 0q
- — D—
ot [R(l—/ﬂ) o q”}zau(vq)} D=0, + S,

(20.2.61)
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where 1 = sin ¢ and the following symbols are defined:

Vu = (U, V) = (ucosp,vcosp) = vV COsp, (20.2.62)

1 av. 19U
_ _ 20.2.
¢ R(1—p2) 0N  ROop’ (20.2.63)

1 ou 10V

D = pa_wort Rop (20.2.64)
A = (C+20u)U + (;—ZZ + R}f/ (1- ,ﬁ)gz — Fycosp,  (20.2.65)
B = (C+20u)V — dgg - RZT/ gz + Py cos g, (20.2.66)
E = Qlﬁ j,,‘;z)’ (20.2.67)
N _O.ma(j;:“). (20.2.68)

In (20.2.55)—(20.2.61), the predictable variables are ¢, D, T, 7, and ¢, while &
and @ are the diagnostic variables. The velocity components U and V are solved
from ¢ and D through the streamfunction v and the velocity potential x. That is,
from (20.2.35) and (20.2.36), we have

( = Vi, D= Vix (20.2.69)

then the Poisson equation must be solved for ¢» and y. The velocity components
can be calculated from (20.2.37), (20.2.38):
1—p20y 10y
U = — 20.2.70
R op  RON ( )
10y 1—pu?dyx

V.= raxt R au (20.2.71)
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Spectral method on a sphere

One of the dynamical frameworks of currently used atmospheric general circu-
lation models is the spectral method in which all the variables are expanded using
spherical harmonics. The spectral method used for atmospheric general circulation
models is different from a pure spectrum method in which only the coefficients in
spectrum space are integrated as used in fluid dynamics. Instead, the values at the
grid points and the coefficients in spectral space are used for calculating nonlinear
terms and these values in different spaces are transformed at each time step; this
method is called the transform method.

In this chapter, after a brief introduction of the spectrum method, we first
summarize the mathematical formulation of spherical harmonics and necessary in-
tegral formulas for later use. Then, we describe the spectrum method using the
nondivergent barotropic system on a sphere. This clarifies the treatment of non-
linear terms, and the difference between the interaction coefficients method and
the transform method are explained. We also describe conservation in the spectral
form of the barotropic equation. Subsequently, we discuss the spectrum method of
shallow-water equations and primitive equations on a sphere.

Spherical spectral expansion plays a fundamental role not only in numerical
techniques but also in global atmospheric dynamics. The normal modes of waves
on a sphere are analyzed using spherical harmonics in Section 4.7.2. Nonlinear inter-
action between different spherical modes is essential for two-dimensional turbulence
on a sphere as described in Section 17.4.2.

21.1 The spectrum method

To introduce the spectrum method, we use the following differential equation
0
ot

where F' is an operator involving spatial derivatives of 1. This equation can be
solved for 1) by integrating in time under appropriate boundary and initial condi-

P(x,t) = F(y), (21.1.1)

M. Satoh, Atmospheric Circulation Dynamics and General Circulation Models, 531
Springer Praxis Books, DOI 10.1007/978-3-642-13574-3_21, © Springer-Verlag Berlin Heidelberg 2014
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tions. The function ¢ (z) can be expanded by a series of appropriate orthogonal
functions ¢y such that

Pl t) = > d(t)dr(x), (21.1.2)
k=1

where the 1 ’s are called expansion coefficients. In the case of the spectrum method,
coefficients 1), are integrated in time instead of integrating v in physical space.
From orthogonality, expansion functions satisfy

/S¢k($)¢l($)d$ = bk, (21.1.3)

where ay, is the norm of ¢y.

If the above equations are to be solved numerically, the number of expansion
functions must be truncated with a finite number N. In this case, let a numerical
solution for v be denoted by ¢:

d) = Y r(t)gr(x). (21.1.4)
k=1

Since the summation is over a finite number, (21.1.4) is not an exact solution to
(21.1.1) unless ¢y (z) are eigenfunctions of F'. To seek an approximate solution, we
define the residual by

R(¢) = aatqb—F(aﬁ)- (21.1.5)

We can obtain equations for expansion coefficients by minimizing the residual R(¢)
using an appropriate method. There are several methods for minimizing the resid-
ual. In particular, the method called the Galerkin approximation requires that the
residual R be orthogonal to all the expansion functions ¢y:

/R(q’)(m))qﬁk(m) dr =0, for k =1,--- N (21.1.6)
S
Substituting (21.1.4) into this equation, we obtain
d 1
Z;”“ = / F(é(2))on(z) da. (21.1.7)
t ag Js

This is a basic equation for integrating v, in time. The remaining problem is how
to express the right-hand side.

To solve primitive equations on a sphere summarized in the previous chapter,
we use spherical harmonics as expansion functions. The properties of spherical
harmonics are described in Section 21.2. The tendency F involves nonlinear terms
such as advection terms. To calculate the nonlinear tendency term in the spectrum
method, one may use the interaction coefficient method or the transform method.
These will be explained in Section 21.4.
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21.2 Spectral expansion on a sphere

In this section, we summarize the spectral expansion method on a sphere.

21.2.1 Spherical harmonics
A function f that satisfies the Laplace equation
0? 02 02
Vif = = 0, 21.2.1
/ (8962 +83;2 +8z2>f ( )
is called a harmonic function. In spherical coordinates (), ¢, r), the Laplacian V2
takes the form:

1 19? 1 0 9
2f = — 2
Vo= are Ten = [Aﬂar <1" arfﬂ, (21.2.2)
in which the operator A is written as
A = 1 92 N 1 0 0
© cos2p 02 cosg g cosapaw
1 02 0 0
= 1—p® 21.2.3
ot an [0, (21.2.3)

where ;1 = sin ¢ is defined. As a class of harmonic functions,
o= r"Y.(\ (21.2.4)

is called a solid harmonic, where Y, (X, ) is an n-th order spherical harmonic.
Substituting (21.2.4) into (21.2.2), we obtain the differential equation for Y,,:

A+n(n+1)]Y,(\y) = 0. (21.2.5)

We define the two-dimensional Laplacian operator on a sphere by
1 1 1 92 0 0
A= A = 1— 2 , 21.2.6
. R? R2{1u25>\2+5u [( mﬁu” (21.26)
where R is the radius of the sphere. Using this, (21.2.5) is written as

nin+1)

{v%ﬁ B2 }Yn = 0. (21.2.7)

Since V? is different from A in dimension by 1/r%, we introduce the factor 1/R? in
V2. We also define the gradient and divergence operators on a sphere:

B 1 94 V1-p204
VA = (R\/l—;ﬂa)\’ R au>’ (21.2.8)

1 OAN i aly/1 - p*A,
\/1 — /’LQ oA 3u

where A is a scalar and A = (A, A,, A;) is a vector.

1

Vu-A R

, (21.2.9)
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The expression of spherical harmonic Y,, can be determined by the separation
method of variables as

oA u) = ON)D(u). (21.2.10)
Substituting this into (21.2.5) and dividing by ©®/(1 — p?), we obtain

(1 — %) {;}di [(1 —,ﬂ)di@} +n(n+1)} = - édd;@. (21.2.11)

This is the separation form: the left-hand side is a function of © and the right-hand
side is a function of A\. Equating the above equation to a constant C, we have

d*e

e TCO = 0. (21.2.12)

The solution to this is written as

O = C1eVO 4 Che VO, (21.2.13)
where C; and Cy are constant. From periodicity ©(A\+27) = O()), we have C' = m?
for m =0,1,2,---. Therefore, (21.2.13) can be written as

0 = Ae™ 4+ Be ™ = A'cosm)+ B sinm), (21.2.14)

where A, B and A’, B’ are constant. Substituting (21.2.14) into (21.2.11), we
obtain the equation for ® as

d m?

dCL [(1 —/f)duﬂ + [n(n—&- -7 L2 = o (21.2.15)

The solution to this equation is an associated Legendre function, whose normalized
form is given as (see Section 21.8)

- n —m)! AR n—+m
Pmu) = \/(2n+1)§n+m;; (1 zn‘;!) d(jﬂ”rm (W2—1)",  (21.2.16)

where m is an integer with 0 < m < n. P]ﬁ is a normalized associated Legendre
function, and satisfies orthogonality:*

1
[ BroRr s = 20 (21.2.17)
—1

The n index indicates the degree and the m index indicates the order of the asso-
ciated Legendre function.

TWe define normalization such that the integral in the range —1 < pu < 1 is 2. In some
literature, normalization is defined such that the integral is 1.
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Substituting (21.2.14), (21.2.16) into (21.2.10), we find that the spherical har-
monic Y,, can be expanded as

o) = > Pru)(Ape™ + Bre™), (21.2.18)

m=0

where A7 and B are expansion coefficients. If we define P for the indices
—n<m<0 byJr

BMu) = (~1)"Bm(w), (21.2.19)

we may expand the spherical harmonic in the form

Yo\ pu) = Z a™ P ()™, (21.2.20)

n n
m=—n

If we define a function for all the indices —n < m < n,
Y™\ p) = P™(p)e™, (21.2.21)

then the following orthogonality relation holds:

27
/ / Yo O )Y (N pdpdN = AT Onn, (21.2.22)
-1

where Y,”"* is the complex conjugate of ¥, and can be written from (21.2.19) as
Y™ (M) = PT(p)e ™ = (=1)™Y; ™\, p). (21.2.23)

The associated Legendre function P (u) has n — |m| zero points in the range
—1 < p < 1. Since the trigonometric functions cosmA and sinmA have 2m zero
points in the longitudinal direction, the spherical harmonic function Y, (A, u) di-
vides the sphere into 2m(n — |m|+ 1) pieces if m # 0. Figure 21.1 shows examples
of profiles of Y,

Spherical harmonics have the following property for rotational transformation
of the coordinates. If new coordinates (X, u') are generated by the operation of
rotation R, spherical harmonics of n-th degree in the new coordinates are expressed
by a linear combination of the same spherical harmonics of n-th degree in the
original coordinates:

This can be confirmed by (21.2.4) where the spherical harmonic Y,:”/ is the angular
part of solid harmonics of the n-th degree. The operation of rotation does not
change the degree n.

T Another convention P (u) = Py ™ () is used in some literature.
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FIGURE 21.1: Examples of spherical harmonics. The distributions of Y™ (0 < m < 5) on the
sphere. The cross is the pole and the dotted curve is the equato