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Preface

Interpretation of structures from field is an integral part of structural geology. While
research papers cannot display morphologic variations of individual structures, an
atlas of field structural snaps remained due. This book fills up that gap. I have drawn
most examples from western Himalayan shear zones. The reader is suggested to
consult the key papers in the ‘References’ section for more information. I welcome
comments and counterarguments at: soumyajitm@gmail.com
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Chapter 1
Ductile Shear

Ductile shear can host economically important minerals (Upton and Craw 2013).
S–C fabrics (Bèrthe et al. 1979; Mukherjee 2011; Figs. 1.1, 1.2, 1.3, 1.4, 1.5, 1.6,
1.7, 1.8, 1.9, 1.10, 1.11, 1.12, 1.13, 1.14, 1.15, 1.16, 1.17, 1.18, 1.19, 1.20, 1.21,
1.22, 1.23, 1.24, 1.25, 1.26, 1.27, 1.28, 1.29, 1.30 and 1.31) and sheared clasts
(Passchier and Trouw 2005; Figs. 1.32, 1.33, 1.34, 1.35, 1.36, 1.37, 1.38, 1.39,
1.40, 1.41, 1.42, 1.43, 1.44, 1.45, 1.46, 1.47, 1.48, 1.49 1.50) are the commonest
ductile shear sense indicators in meso-scale. Sigmoid-shaped or sigma structures
of clasts are most common (Figs. 1.32, 1.33, 1.34, 1.35, 1.36, 1.37, 1.38, 1.39,
1.40, 1.41, 1.42, 1.43, 1.44, 1.45, 1.46 1.47). On the other hand, delta structures are
rather rare (Fig. 1.50). Secondary ductile shears (Figs. 1.5, 1.12, 1.14, 1.15, 1.17)
indicate a pure shear component, besides simple shear, within the shear zone
(Goscombe et al. 2006). Presence of granitic melt/leucosome at both S- and C-
planes indicate possibly a syn-shearing migmatization (Marchildon and Brown
2003; Misra et al. 2009; especially Figs. 1.3, 1.4, 1.5, 1.9, 1.14, 1.15, 1.17, 1.20,
1.23, 1.25). Unlike tectonic simple shear (Mukherjee 2012), magma flows can
locally induce ductile shear. The most ubiquitous manifestation of this are sheared
vesicles (Philpotts and Ague 2005; Misra 2013; etc.; Figs. 1.51, 1.52, 1.53 1.54).
For reviews on S–C fabrics, see structural geological text books such as Davis
et al. (2012). In terms of tectonics, ductile shear fabrics from the Greater Hima-
layan Crystallines indicate a top-to-S/SW fore-shear, which has also been well
documented also under microscale (e.g. Mukherjee 2013a). Additionally, from the
South Tibetan Detachment, a top-to-N/NE extensional shear is also reported,
which has recently been explained by a combination of crustal channel flow and
critical taper mechanisms (Beaumont and Jamieson 2010; recent review by
Mukherjee and Ghosh 2013).

S. Mukherjee, Atlas of Shear Zone Structures in Meso-scale, Springer Geology,
DOI: 10.1007/978-3-319-00089-3_1, � Springer International Publishing Switzerland 2014
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Fig. 1.1 Top-to-left ductile sheared sigmoidal S-fabrics bound by sub-horizontal shear C-planes.
Near Kali Mitti Bridge, on National Highway 22A, Rampur district, Himachal Pradesh, Greater
Himalayan Crystallines, India

Fig. 1.2 Top-to-left (down) ductile sheared quartzofeldspathic minerals define S-fabrics. These
are bound by left dipping biotite foliations that define C-planes. Ambaji, Gujrat, India
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Fig. 1.3 Top-to-right ductile sheared S-fabric bound by leftward converging non-parallel
C-planes. At right a thick sigmoid leucosome body defines a prominent S-fabric. Migmatite from
the Greater Himalayan Crystallines, India. Reproduced from Fig. 3a of Mukherjee (2010)

Fig. 1.4 A zone of close-spaced thinner melanosomes and few thicker leucosomes occur as a lens
in the bottom and the central part of the photo and define S-planes. Top-to-right (up) ductile sheared.
These S-planes are curved only near the C-planes. This lens is bound by thicker leucosome layers.
Above this, curved close-spaced C-planes bound S-fabrics of nearly sigmoidal quartz pods. Greater
Himalayan Crystallines, Sutlej section, India. Reproduced from Fig. 4c of Mukherjee (2010)

1 Ductile Shear 3



Fig. 1.5 Top-to-right ductile sheared thicker leucosomes and thinner melanosomes. Top-to-right
(down) synthetic secondary C0 shear also developed. Reproduced from Fig. 4a of Mukherjee and
Koyi (2010)

Fig. 1.6 Top-to-right sheared migmatite with thicker leucosomes and thinner melanosomes. The
C-plane of ductile shear is nearly horizontal and is marked by the pen. Leucosomes that define the
S-planes are of varying thickness. Greater Himalayan Crystallines, Sutlej section, Himachal
Pradesh, India
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Fig. 1.7 S-fabrics and intrafoliual folds of leucosomes consistently indicate a top-to-right (up)
ductile shear. Both the C- and the S-planes dip towards left. However, the S-planes are steeper.
Secondary synthetic shear planes (C0) exist. Ductile sheared migmatite from Greater Himalayan
Crystallines, Sutlej section, Himachal Pradesh, India

Fig. 1.8 Top-to-left (up) ductile sheared migmatite with thicker leucosome and thinner
melanosome layers. The C-planes are sub-horizontal. Greater Himalayan Crystallines, Sutlej
section, Himachal Pradesh, India
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Fig. 1.9 Top-to-right (down) ductile sheared S-fabrics defined by leucosomes. Nearly straight
C-planes dip towards right. Located between Pangi and Kashang bridges, Sutlej section of
Greater Himalayan Crystallines. Reproduced from Fig. 5a of Mukherjee and Koyi (2010)

Fig. 1.10 Top-to-right (down) ductile sheared S-fabrics defined by leucosomes. Nearly straight
C-planes dip towards right. Sutlej section of Greater Himalayan Crystallines, Himachal Pradesh,
India. Reproduced from Fig. 5b of Mukherjee and Koyi (2010)
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Fig. 1.11 Top-to-left ductile sheared leucosome pod define the S-fabric. Sub-horizontal C-plane.
Sutlej section of Greater Himalayan Crystallines, Himachal Pradesh, India

Fig. 1.12 Top-to-right and top-to-right (down) ductile sheared leucosome layers. Near Kharo
bridge, Sutlej section of Greater Himalayan Crystallines, Himachal Pradesh, India. Reproduced
from Fig. 5d of Mukherjee and Koyi (2010)
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Fig. 1.13 Top-to-left (up) ductile sheared S-planes defined by thicker leucosomes and thinner
melanosomes. Thin sharp straight C-plane dips towards right. Between Kashang and Kharo
bridges, Sutlej section of Greater Himalayan Crystallines, Himachal Pradesh, India. Reproduced
from Figs. 4d and 5c, d of Mukherjee and Koyi (2010)

Fig. 1.14 A train of top-to-right (up) sheared quartz rich sigmoid ductile sheared pods. Primary
C-shear acted along the left dipping foliation planes. Synthetic secondary C0 acted along the short
straight tails through which individual sigmoids are interconnected. From mylonitized gneiss/
migmatite of Greater Himalayan Crystallines, Sutlej section, India

8 1 Ductile Shear



Fig. 1.15 Top-to-right (down) ductile sheared S-fabrics are defined by a part of foliations of
quartzo-feldspathic minerals and biotites. Note accumulation of quartz of irregular geometry
along C-plane. Mylonitized gneiss/migmatite of Greater Himalayan Crystallines, Sutlej section,
India

Fig. 1.16 Rootless sigmoidal quartz veins and overturned folded veins indicate consistently a
top-to-right shear. Greater Himalayan Crystallines, Sutlej section, India
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Fig. 1.17 A ductile shear oblique to the left dipping main foliation along sharp short straight
lines affected quartz rich foliations giving rise to diverse shapes. From mylonitized gneiss/
migmatite of Greater Himalayan Crystallines, Sutlej section, India

Fig. 1.18 Top-to-right sheared sigmoid quartz veins in several zones. Greater Himalayan
Crystallines, Sutlej section, India
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Fig. 1.19 Asymmetric quartz pods indicate both primary top-to-right-down (C, blue half arrow)
and synthetic secondary (C0, green half arrow) ductile shear. Here the C-planes dip towards right.
From mylonitized gneiss/migmatite of Greater Himalayan Crystallines, Sutlej section, India

Fig. 1.20 A number of sigmoid quartz pods that act as ductile shear S-fabric reveal a top-to-right
(down) shear. Exact geometries and in some cases sizes of individual sigmoids vary. An
overturned round hinge intrafolial fold also shows the same shear sense. From mylonitized
gneiss/migmatite of Greater Himalayan Crystallines, Sutlej section, India. Reproduced from
Fig. 1.5d of Mukherjee (2010)
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Fig. 1.21 Top-to-left ductile shear indicated by sigmoid-shaped leucosomes. Thin melanosomes
within leucosomes also define S-fabrics. The ductile shear C-planes are sub-horizontal and
weavy. Near Pangi, Sutlej section of Greater Himalayan Crystallines, Himachal Pradesh, India.
Reproduced from Fig. 1.4d of Mukherjee and Koyi (2010)

Fig. 1.22 Weavy sub-horizontal C-planes. Top-to-left shear given by sigmoid quartz veins near
the center and the top parts of the photo. Greater Himalayan Crystallines, Sutlej section, India
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Fig. 1.23 Top-to-right (up) ductile sheared sigmoid quartz veins in several zones. A few quartz
veins parallel the C-planes. Greater Himalayan Crystallines, Sutlej section, India

Fig. 1.24 A train of interconnected sigmoid shaped quartz pods define a top-to-left (up) ductile
shear. Bottom left to this, foliation boudins developed. No fabrics visible inside these sigmoids
and boudins. From mylonitized gneiss/migmatite of Greater Himalayan Crystallines, Sutlej
section, India. Isolated sub-rounded and sigmoidal quartz veins define the shear fabrics
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Fig. 1.25 Top-to-right (down) sheared quartz veins in a mylonitized gneiss. Bhagirathi section
of Greater Himalayan Crystallines, India. Reproduced from Fig. 3b of Mukherjee (2013b)

Fig. 1.26 Top-to-left (up) ductile sheared foliations. A few quartzofeldspathic layers are like
sigma-structures. Bhagirathi section of Greater Himalayan Crystallines, India
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Fig. 1.27 Weavy foliations in a mylonitized gneiss. No clear cut shear sense revealed. Greater
Himalayan Crystallines, Sutlej section, India

Fig. 1.28 Top-to-left (down) sheared quartz and feldspar clasts bound by straight C-planes of
ductile shear. Some of the sheared fabrics within the C-planes are folded. Greater Himalayan
Crystallines, Sutlej section, India
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Fig. 1.29 Top-to-right (down) ductile sheared C-planes restricted near right dipping C-planes.
Tethyan Sedimentary Zone. Sutlej section, India

Fig. 1.30 Top-to-left (brittle/ductile?) sheared foliations from mylonitized gneiss/migmatite of
Greater Himalayan Crystallines, Sutlej section, India. Isolated sub-rounded and sigmoidal quartz
veins define the shear fabrics. Reproduced from Fig. 23b of Mukherjee (2010)
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Fig. 1.31 Black (burnt?) lithology within migmatitic gneiss shows a top-to-left (up) shear.
Within individual bulges of yellowish rock that define S-fabrics, complicated internal fabrics also
seen. Greater Himalayan Crystallines, Sutlej section, Himachal Pradesh, India

Fig. 1.32 An aggregate of quartz grains with irregular margins define a sigmoid shape and
indicate a top-to-right ductile shear. It resembles microscopic composite sigmoid fish of
Mukherjee (2011). From mylonitized gneiss/migmatite of Greater Himalayan Crystallines, Sutlej
section, Himachal Pradesh, India
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Fig. 1.33 A top-to-right ductile sheared leucosome pod defines the S-fabric. Its tail at left
parallels and defines the C-plane. Greater Himalayan Crystallines, Sutlej section, Himachal
Pradesh, India

Fig. 1.34 A top-to-left ductile sheard sigmoid quartz pod defines the S-fabric. Its left tip is of
uncommon morphology. From mylonitized gneiss/migmatite of Greater Himalayan Crystallines,
Sutlej section, Himachal Pradesh, India. Reproduced from Fig. 2c of Mukherjee (2010)
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Fig. 1.35 An S-fabric defined by quartz vein and biotites. Pulled margins of the vein along the
C-planes at opposite corners helps identify the C-planes easily. Top-to-left (up) shear sense.
Greater Himalayan Crystallines, Sutlej section, Himachal Pradesh, India

Fig. 1.36 A sigmoid/parallelogram rootless quartz vein. Top-to-right (down) shear. Much
thinner isolated white quartz veins at left define the same shear sense. Near Karcham hydropower
plant. Greater Himalayan Crystallines, Sutlej section, Himachal Pradesh, India
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Fig. 1.37 Top-to-left (up) ductile sheared sigmoid-shaped quartz veins (with notches at corners).
The C-planes of ductile shear dips towards right. Greater Himalayan Crystallines, Sutlej section,
Himachal Pradesh, India. Reproduced from Fig. 6c of Mukherjee and Koyi (2010)

Fig. 1.38 Top-to-right (up) sheared sigmoid pods of quartz veins define the sheared S-planes
within mylonitized gneiss. The C-planes dip towards left. Right to the pen, mylonitic/gneissic
foliation are brittle normal faulted. Greater Himalayan Crystallines, Sutlej section, Himachal
Pradesh, India. Reproduced from Fig. 6d of Mukherjee and Koyi (2010)
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Fig. 1.39 Top-to-right (down) ductile sheared quartz veins defines the S-planes of various aspect
ratios. The C-planes dip towards right. Greater Himalayan Crystallines, Sutlej section, Himachal
Pradesh, India. Reproduced from Fig. 6b of Mukherjee and Koyi (2010)

Fig. 1.40 A top-to-left ductile sheared clast resembles a sigma structure. Its parallel tails define
the ductile shear C-planes. Mylonitized gneiss from Greater Himalayan Crystallines, Bhagirathi
section, India
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Fig. 1.41 Top-to-right (up) ductile sheared quartz pod within mylonitized gneiss. The mylonitic
foliations defined by thinner biotite and thicker quartzofeldspathic minerals dip towards right.
Greater Himalayan Crystallines, Bhagirathi section, India

Fig. 1.42 A symmetric clast within mylonitized gneiss does not give any ductile shear sense.
However, a few adjacent clasts reveal a top-to-left (up) ductile shear along right dipping foliation
planes (= C-planes). Greater Himalayan Crystallines, Bhagirathi section, India
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Fig. 1.43 Top-to-left (up) ductile sheared clast of quartz. Alternate layers of biotites and
quarzofeldspathic minerals define mylonitic foliation. Note the tail in bottom is much longer than
that at top. Sheared gneiss from Bhagirathi section of Greater Himalayan Crystallines, India

Fig. 1.44 A sheared feldspar clast. Shear sense is ambiguous. Biotites and elongated quartz
define the C-planes that dip towards right. Greater Himalayan Crystallines, Bhagirathi section,
India
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Fig. 1.45 A rootless sigmoid quartz vein defines S-plane of ductile shear. Schistosity defines the
top-to-left (up) primary shear C-plane. Bhagirathi section of Greater Himalayan Crystallines,
India

Fig. 1.46 A top-to-right (down) ductile sheared quartz pod with strong asymmetry restricted at
its tails. The main body of the clast is sub-rounded. A thick layer of biotite defines the C-plane
more prominently left to the clast. Reproduced from Fig. 4c of Mukherjee (2013b). Bhagirathi
section of Greater Himalayan Crystallines, India
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Fig. 1.47 A sigma structure of quartz vein. Top-to-left (up) ductile sheared. Close spaced
quartzofeldspathic minerals and biotites define the mylonitic foliations A fracture at *90� cut
across the mylonitic foliations and the clast. Bhagirathi section of Greater Himalayan
Crystallines, India

Fig. 1.48 A sigma structure of feldspar clast. Top-to-left sheared. Primary shear C-planes nearly
horizontal. Note the two tails are of different geometries. Greater Himalayan Crystallines,
Bhagirathi section, India
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Fig. 1.49 A delta structure of quartz clast. Top-to-left (up) ductile sheared. Reproduced from
Fig. 2b of Mukherjee (2013b). From mylonitized gneiss at Bhagirathi section of Greater
Himalayan Crystallines, India

Fig. 1.50 A top-to-left (down) ductile sheared delta structure of quartz vein. Its tails merge with
the primary shear C-planes (= gneissosity = mylonitic foliation = main foliation) of the
mylonitized gneiss. Delta structures are observed rarely from meso- and micro-scales, and
indicate usually a high strain (Passchier and Trouw 2005). A vein developing a delta structure
probably has not been reported previously, except 1.4d of Mukherjee (2013b) from where this
figure is reproduced. Notice that (1) at top left of the delta structure, an asymmetric quartz pod
demonstrate the same shear sense; (2) when the tails and the clast are of the same minerals and
both define a delta geometry, it has been described as a ‘rolling structure’ (Driessche and Brun
1996). Bhagirathi section of Greater Himalayan Crystallines, India
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Fig. 1.51 A basalt flow layer consisting of curved sheared elongated zeolite vesicles. Comparing
these sheared vesicles with S-fabric’s curvature, we can assign a top-to-left shear. However, this
deformation is most likely to be due to lava flow and is not related to tectonics. Deccan trap basalt
at Malsejghat, Maharashtra

Fig. 1.52 ‘Arrow-head’ zeolite vesicles from the Deccan trap basalt at Malsejghat. Maharashtra.
Curved internally strained individual zeolite vesicles define limbs of individual arrows. Does this
indicate a flow of lavas from right to left? Deccan trap basalt at Malsejghat. Maharashtra
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Fig. 1.53 Sheared, curved, internally strained zeolite vesicles possibly indicate a top-to-left local
shear due to lava flow. A few vesicles resemble folds. However, those could be due to
coalescence of gas bubbles when they tried to escape upwards from hot lava. Note a few nearly
straight vesicles at the left portion of the photo. Deccan trap basalt at Malsejghat, Maharashtra

Fig. 1.54 ‘Arrow-head’ zeolite vesicles as described previously in 1.52. ‘Folded vesicle’ as
described in 1.53. Deccan trap basalt at Malsejghat. Maharashtra
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Chapter 2
Folds

Ductile shear related folds have been studied by many (e.g. Bell 2010 but many
others). Alsop and Holdsworth (2004) classified folds in relation to shear of two
main types: (1) those with low inter-limb angles and curved hinge lines formed
before shear; and (2) flow perturbed syn-shear overturned intrafolial folds. Ver-
gences of intrafolial folds reveal shear sense in meso- (Figs. 2.1, 2.2, 2.3, 2.4, 2.5,
2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20,
2.21, 2.22, 2.23, and 2.28; Mukherjee et al. 2013) and micro-scales (Mukherjee
2013a). Intrafolial folds with axial traces sub-parallel to the shear planes
(Fig. 2.24) are not useful in shear sense determination. Folds that are not bound by
a pair of ductile shear planes (Figs. 2.25, 2.26, 2.27, 2.28, 2.29, 2.30, 2.31, 2.32
and 2.33) are not intrafolial, and do not indicate any ductile shear. In terms of
tectonics, intrafolial folds from the Greater Himalayan Crystallines indicate a top-
to-S/SW fore-shear (see Mukherjee and Koyi 2010a, b; Mukherjee 2013a, b etc.).
Additionally, from the South Tibetan Detachment, a top-to-N/NE extensional
shear is also reported, which has recently been explained by a combination of
crustal channel flow and critical taper mechanisms (Beaumont and Jamieson 2010;
recent review by Mukherjee and Ghosh 2013).

S. Mukherjee, Atlas of Shear Zone Structures in Meso-scale, Springer Geology,
DOI: 10.1007/978-3-319-00089-3_2, � Springer International Publishing Switzerland 2014

31



Fig. 2.1 A train of intrafolial folds of quartz (left) merges to a sigmoidal bulge (right). Dip of
axial planes of the folds and the asymmetry of the sigmoid indicate consistently a top-to-right
(up) shear sense. Location Greater Himalayan Crystallines from Sutlej section, Himachal
Pradesh, India

Fig. 2.2 An overturned intrafolial fold of quartzose layer. Top-to-left (up) ductile sheared. At
Jeori, Sutlej section of Greater Himalayan Crystallines, Himachal Pradesh, India. Reproduced
from Fig. 4c of Mukherjee and Koyi (2010a, b)
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Fig. 2.3 Irregular inconsistent folds inside a mylonitized gneiss. The two fold closures near the
central part of the photo have left dipping axial traces. Location Greater Himalayan Crystallines
from Sutlej section, Himachal Pradesh, India

Fig. 2.4 Intrafolial folds of quartz veins with hinges thicker than the limbs. Since their axial
traces sub-parallel the bounding nearly straight quartz veins defining primary shear C-planes,
these folds cannot indicate any clear cut shear sense. Greater Himalayan Crystallines from Sutlej
section, Himachal Pradesh, India
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Fig. 2.5 Hook-shaped round hinged folds of quartz veins. Axial traces of these folds sub-parallel
the mylonitic foliations. Shear sense is not convincing. Ductile sheared migmatitic gneiss near an
unnamed iron bridge at Karcham, Greater Himalayan Crystallines, Sutlej section, Himachal
Pradesh, India

Fig. 2.6 Round-hinged overturned intrafolial folds of quartz veins indicate a top-to-left (down)
ductile shear. Near Karcham hydropower plant, Sutlej section of Greater Himalayan Crystallines,
Himachal Pradesh, India
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Fig. 2.7 Same description and location as the previous caption. A few folds have nearly straight
hinge zones produced by ductile shear

Fig. 2.8 An overturned intrafolial fold of quartz vein follows nearly the same geometry of
folding of gneissic foliation. Top-to-right (up) shear. At right, the folded vein merges with an
irregular bulge of quartz. Location Karchham, near an unnamed iron bridge, Greater Himalayan
Crystallines, Sutlej section, Himachal Pradesh, India
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Fig. 2.9 A rootless fold of quartz with a hinge zone much thicker than the limbs. The axial trace
sub-parallels the main foliation, and is therefore not a shear sense indicator. Location Greater
Himalayan Crystallines, Bhagirathi section in India

Fig. 2.10 Overturned intrafolial folds of quartz veins with round hinges much thicker than the
limbs. No clear-cut shear sense is revealed since the axial traces are at very low angles to the
primary shear planes. From mylonitized gneiss/migmatite of Greater Himalayan Crystallines,
Sutlej section, Himachal Pradesh, India. Reproduced from Fig. 17b of Mukherjee (2010). See
Figs. 14.29 and 14.30 of Klein and Philpotts (2013) for similar cases
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Fig. 2.11 Top-to-right sheared overturned intrafolial fold of quartz with round hinge. Left to it is
an asymmetric quartz pod with mouth/notch at right. From mylonitized gneiss/migmatite of
Greater Himalayan Crystallines, Sutlej section, Himachal Pradesh, India

Fig. 2.12 Top-to-left (down) ductile sheared thicker intrafolially folded leucosome layers. The
central part of this photograph was published as Fig. 2.16d in Mukherjee (2010). Near Karcham,
Greater Himalayan Crystallines, Sutlej section, Himachal Pradesh, India
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Fig. 2.13 Top-to-right (up) ductile sheared migmatitic foliations. At places brittle rupture in the
same shear sense took place. Greater Himalayan Crystallines, Sutlej section, Himachal Pradesh,
India. Reproduced from Fig. 15d in Mukherjee (2010)

Fig. 2.14 Overturned intrafolial fold of quartz vein. Top-to-right (up) sheared. Pronounced shear
led to boudinage. From mylonitized gneiss/migmatite of Greater Himalayan Crystallines, Sutlej
section, India
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Fig. 2.15 Isoclinally folded round hinged quartz vein. A few are hook-shaped. Notice at bottom,
the fold cuts across the left dipping foliation. Hence these are not intrafolial folds, and are not to
be considered as ductile shear sense indicators. From mylonitized gneiss/migmatite of Greater
Himalayan Crystallines, Sutlej section, India

Fig. 2.16 Quartz vein folded with a vergence towards right. Shear sense is ambiguous since
these folds are not bound by (nearly) straight shear C-planes. Location Greater Himalayan
Crystallines from Sutlej section, Himachal Pradesh, India
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Fig. 2.17 A tight polyclinally folded quartz vein cuts across foliations of mylonitized gneiss/
migmatite. Since this fold is not bound by foliations, it is not to be considered an ‘intrafolial fold’,
and therefore is not to be used as a shear sense indicator. Greater Himalayan Crystallines, Sutlej
section, India. Reproduced from Fig. 15c of Mukherjee (2010)

Fig. 2.18 Quartz-rich foliations at places show hook-fabric [see Wennberg (1996) for
modeled—and Mukherjee and Koyi (2010b) for micro-scale examples]. Hook-fabrics are
produced from pro- and retro- shear along the same primary shear C-planes. One can also work
out the relative timing of the two shear sense from them. However, in the present case, the hook
fabrics is seen to cut across the C-planes (= main foliations dipping towards right). So its origin
might be different. From mylonitized gneiss/migmatite of Greater Himalayan Crystallines, Sutlej
section, India. Reproduced from Fig. 14c of Mukherjee (2010)
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Fig. 2.19 An isoclinally folded quartz vein resembling a ‘hook’ with hinge much thicker than
the limbs. Since its axial trace parallels the main foliation, it cannot be used for ductile shear
sense determination. Such parallel nature may be achieved if the fold underwent a protracted
ductile shear. From mylonitized gneiss/migmatite of Greater Himalayan Crystallines, Sutlej
section, India

Fig. 2.20 Folded quartz vein cuts across gneissic foliation, and is not bound by the later.
Therefore these folds are not intrafolial and are to be avoided to determine shear sense. Location
Karchham, near an unnamed iron bridge, Greater Himalayan Crystallines, Sutlej section, India
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Fig. 2.21 A zone of folded gneissic foliation bound by nearly straight sub-parallel foliations.
Axial traces of these folds sub-parallel those bounding foliations. Parasitic folds are also present.
For these complicacies, these folds are to be avoided in shear sense determination. Location
Karchham, near an unnamed iron bridge, Greater Himalayan Crystallines, Sutlej section, India

Fig. 2.22 Left verging folded quartz veins with hinge zones much thicker than the limbs.
Location Greater Himalayan Crystallines, Bhagirathi section, India
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Fig. 2.23 Left verging folded quartz veins with hinge zones much thicker than the limbs. Its
axial trace sub-parallels the foliation, therefore the vergence cannot be used reliably as a shear
sense indicator. Instead, a train of quartz vein with sheared sigmoid bulges at right gives a top-to-
left (up) shear sense. Location Greater Himalayan Crystallines, Bhagirathi section, India

Fig. 2.24 Right to the marker (pen), a rootless flame fold of quartz with axial trace parallel to the
left dipping mylonitic foliation. The fold does not indicate any shear sense. However, a few
sigmoid quartz pods interconnected by secondary synthetic ductile shear C0 planes indicate
reliably a top-to-right (up) shear, at top right portion of the photo. From mylonitized gneiss/
migmatite of Greater Himalayan Crystallines, Sutlej section, India
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Fig. 2.25 A thicker quartz vein of irregular margins is folded isoclinally and is bound by
migmatitic/gneissic foliations. The axial trace of this intrafolial fold sub-parallels the foliation.
Location Greater Himalayan Crystallines, Bhagirathi section, India

Fig. 2.26 A sheath fold from migmatized gneiss from Greater Himalayan Crystallines,
Bhagirathi section (India). These folds were considered by previous workers as indicators of
high strain. See Reber et al. (2013) as a latest work on sheath folds
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Fig. 2.27 A sheath fold from migmatized gneiss from Greater Himalayan Crystallines,
Bhagirathi section (India). Curvature/closure of limb is seen especially at top left corner of the
fold. Does asymmetry of sheath folds also indicate (here a top-to-left) shear sense? Interestingly,
Dell et al. (2013) analogue modeled development of sheath fold during progressive shear

Fig. 2.28 An overturned intrafolial fold of gneissic foliation with a rightward vergence. Top-to-
right (up) shear. The fold is bound at top by nearly straight foliations. Location Greater
Himalayan Crystallines, Sutlej section (India)
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Fig. 2.29 Neutral folded psamitic schist with M-geometry in the hinge zone. Location Tethyan
Himalaya, near Jangi check post. Sutlej section (India)

Fig. 2.30 Zeolite vesicles within Deccan basalt at Malsejghat, Maharashtra. In first appearance,
a single vesicle appears to get isoclinally folded. Hinge thicker than the limbs. However, these
structures are produced due to escape of gas bubble upwards when the lava (now the country
rock) was hot, and subsequent coalescence of the bubbles. Zeolite later filled up the vesicles
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Fig. 2.31 Same interpretation as the previous Fig. 2.30. Deccan trap basalt at Malsejghat,
Maharashtra

Fig. 2.32 Elongated zeolite vesicles plunging towards right. A few appear folded. Same
interpretation as that for Fig. 2.30. Deccan trap basalt at Malsejghat. Maharashtra
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Chapter 3
Veins and Near Symmetric Clasts

Near symmetric clasts of quartz and feldspar have classically been described as
augens (Figs. 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.13, 3.14,
3.15, 3.16, 3.17, 3.18, 3.19, 3.20, 3.21, 3.22, 3.23; Figs. 3.31, 3.32, 3.33, 3.34,
3.35), and have been neglected so far possibly because they are not u‘seful in
ductile shear sense determination. These clasts are commonly elliptical with their
long axes sub-parallel to the shear planes (Figs. 3.1, 3.5, 3.6, 3.7, 3.17, 3.22, 3.26,
3.31, 3.32, 3.33), seldom rhombic (Figs. 3.2, 3.3, 3.4), and could be parts of veins
(Fig. 3.1), get pinched and swelled (Figs. 3.13, 3.14, 3.16), or simply irregular-
shaped (Figs. 3.8, 3.9, 3.10, 3.11, 3.12, 3.33, 3.34 and 3.35). On the other hand,
quartz rich veins within ductile shear zones may run parallel to the ductile shear
planes (Figs. 3.24, 3.25), or cut across them (Figs. 3.27, 3.28, 3.29, 3.30). In the
later case, the veins may themselves be also ductile sheared (Figs. 3.27, 3.28,
3.30). Symmetric objects in ductile shear zones that do not decode shear sense has
been exemplified under optical microscopes by many such as Passchier and Trouw
(2005) and Mukherjee (2013a). Most of the photographs described in this section
for symmetric clasts and unshared veins bear no tectonic connotations.

S. Mukherjee, Atlas of Shear Zone Structures in Meso-scale, Springer Geology,
DOI: 10.1007/978-3-319-00089-3_3, � Springer International Publishing Switzerland 2014
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Fig. 3.1 A near-symmetric rhombic bulged part of a quartz vein. No clear ductile shear sense
indicated. From mylonitized gneiss at Sutlej section of Greater Himalayan Crystallines, Himachal
Pradesh, India. Reproduced from Fig. 3b of Mukherjee (2010). Such feature in micro-scale were
presented in Mukherjee (2013a)

Fig. 3.2 A near-rhombic clast of quartz with all the margins curved. Being symmetric, no ductile
shear sense is indicated. Location: Greater Himalayan Crystallines, Bhagirathi section, India. See
Mukherjee (2013b) for a latest review on tectonics of this terrain
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Fig. 3.3 A symmetric rhombic u-structure defined by an aggregate of quartzofeldspathic
minerals. No shear sense indicated. From mylonitized gneiss at Bhagirathi section of Greater
Himalayan Crystallines, India

Fig. 3.4 Irregular feldspar clasts—a few rhombic, do not indicate any shear sense. Location:
Greater Himalayan Crystallines, Bhagirathi section, India
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Fig. 3.5 A rootless symmetric lenticular quartz vein with internal foliations parallel to the
external ones within the host rock. No ductile shear sense indicated. Greater Himalayan
Crystallines, Bhagirathi section, India

Fig. 3.6 A rootless symmetric lenticular quartz vein with internal foliations parallel to the
external ones within the host rock. No ductile shear sense indicated. Greater Himalayan
Crystallines, Bhagirathi section, India
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Fig. 3.7 A mylonitized augen gneiss. The biggest clast here is lenticular, symmetric and has tails.
No shear sense indicated. Location: Greater Himalayan Crystallines, Bhagirathi section, India

Fig. 3.8 Irregular feldspar clasts, do not indicate any shear sense. Location: Greater Himalayan
Crystallines, Bhagirathi section, India
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Fig. 3.9 Irregular feldspar clasts, do not indicate any shear sense. Location: Greater Himalayan
Crystallines, Bhagirathi section, India

Fig. 3.10 Elongated clast of quartz parallel to the main foliation. No shear sense indicated.
Location: Greater Himalayan Crystallines, Bhagirathi section, India
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Fig. 3.11 Inside anastomosed foliated ductile sheared rock, symmetric clasts of rather irregular
shapes persist. These were previously described as ‘augen’ structures. From mylonitized gneiss at
Bhagirathi section of Greater Himalayan Crystallines, India

Fig. 3.12 An irregular clast of quartz with tails at two sides. No clear-cut ductile shear sense
indicated. From mylonitized gneiss at Bhagirathi section of Greater Himalayan Crystallines, India
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Fig. 3.13 Nearly symmetric and a little pinched centrally clast of quartz along with tails of
different lengths. No ductile shear sense indicated. At immediate left and also above, top-to-left
sheared clasts. Location: Greater Himalayan Crystallines, Bhagirathi section, India

Fig. 3.14 Pinched and swelled quartz vein within mylonitized gneiss. Gneissosity warped near
the pinch. Greater Himalayan Crystallines, Bhagirathi section, India
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Fig. 3.15 A symmetric u-object from mylonitized gneiss. Tails at two sides parallel the
mylonitic foliation. No ductile shear sense indicated. Greater Himalayan Crystallines, Goriganga
section, India

Fig. 3.16 An irregular clast of quartz that does not indicate any shear sense. Location: Greater
Himalayan Crystallines, Bhagirathi section, India
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Fig. 3.17 An augen gneiss/sheared mylonite with lenticular/subrounded clasts. No clear shear
sense indicated since a number of clasts are not inclined consistently in a single direction with
respect to the foliations that dip towards right. Location: Greater Himalayan Crystallines,
Bhagirathi section, India

Fig. 3.18 A symmetric porphyroblast of feldspar with short tails. No shear sense indicated. The
blast is selectively fractured near the margin. Location: Greater Himalayan Crystallines,
Bhagirathi section, India
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Fig. 3.19 A symmetric clast of feldspar with tail along the foliation, inside an augen gneiss/
mylonitized gneiss. Greater Himalayan Crystallines, Bhagirathi section, India

Fig. 3.20 A nearly symmetric object (quartz) with tails sub-parallel to the mylonitic foliations.
Greater Himalayan Crystallines, Bhagirathi section, India
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Fig. 3.21 Two adjacent feldspar clasts inside augengneiss/mylonitized gneiss. Shape asymmetry
indicates reverse sense of shear. However, detail study of shape asymmetry of this rock is needed,
preferably under an optical microscope, to confirm this. Location: Greater Himalayan
Crystallines, Bhagirathi section, India

Fig. 3.22 A lenticular quartz porphyroblast. No shear sense indicated. A sigmoid clast at its
right bottom is top-to-left (up) sheared. Location: Greater Himalayan Crystallines, Bhagirathi
section, India
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Fig. 3.23 A sub-rounded clast of weak asymmetry. No clear cut shear sense indicated. From
mylonitized gneiss at Bhagirathi section of Greater Himalayan Crystallines, India

Fig. 3.24 A rootless quartz vein in a mica schist. Location: Greater Himalayan Crystallines,
Bhagirathi section, India
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Fig. 3.25 A rootless quartz vein within ductile shear zone attained nearly lenticular shape. No
shear sense indicated. Location: Greater Himalayan Crystallines, Bhagirathi section, India

Fig. 3.26 Quartzofeldspathic layers at places swelled to symmetric lenticles. No ductile shear
sense indicated. Location: Greater Himalayan Crystallines, Bhagirathi section, India. Fig. 15b of
Simpson and De Paor (1993) reports a similar feature
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Fig. 3.27 A quartz vein cut across the gneissic foliations. In addition, at several places along
foliations, the quartz vein got sheared. Some parts of the sheared vein are sigmoidal and give a
top-to-left (up) shear. This also matches with the sense displayed by sheared clasts at top-left
portion of the photo. Note the topmost part of the vein is entirely sheared. Intrusion of the vein
was either a pre- or a syn-shearing event. Greater Himalayan Crystallines, Bhagirathi section,
India. Deformed and stretched cross-cutting elements were also reported in Fig. 3b of Maeder
et al. (2009). Also see Maeder (2007)

Fig. 3.28 Similar to the caption of Fig. 3.27. Intrusion of vein was certainly not a post-top-to-left
(up) shearing event. Mylonitic foliations at places swerve strongly near the shear vein. Greater
Himalayan Crystallines, Bhagirathi section, India. Reproduced from Fig. 19a of Mukherjee (2013c)
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Fig. 3.29 Near cross-cutting element veins of quartz within migmatitic gneiss, the mylonitic
foliations are strongly warped. Greater Himalayan Crystallines, Sutlej section, Himachal Pradesh,
India. Reproduced from Fig. 18c of Mukherjee (2010)

Fig. 3.30 An overturned isoclinal fold of quartz vein (left to the pen), and a deformed vein of
irregular geometry indicate possibly a top-to-right ductile shear. Ambaji, Gujrat, India.
Reproduced from Fig. 19c of Mukherjee (2013c)
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Fig. 3.31 A lenticular/rhombic quartz vein with long axis parallel to the main foliation inside
mylonitized gneiss. No shear sense indicated. Location: Greater Himalayan Crystallines,
Bhagirathi section, India

Fig. 3.32 A lenticular quartz vein inside ductile sheared mylonitized gneiss. Fractures at high
angle to the main foliation developed inside the quartz lenticle. Location: Greater Himalayan
Crystallines, Bhagirathi section, India
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Fig. 3.33 An internally deformed irregular shaped clast from mylonitized gneiss at Bhagirathi
section of Greater Himalayan Crystallines. The shape of the clast does not match with sigma-,
delta- or phi-objects. No unambiguous shear sense indicated

Fig. 3.34 An internally deformed irregular shaped clast from mylonitized gneiss at Bhagirathi
section of Greater Himalayan Crystallines. The shape of the clast does not match with sigma-,
delta- or phi-objects. No unambiguous shear sense indicated. From mylonitized gneiss at
Bhagirathi section of Greater Himalayan Crystallines
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Chapter 4
Boudins

Boudins are produced by local brittle-ductile extension in rocks. This collection
presents pinch and swells (Figs. 4.8, 4.9, 4.10, 4.11, 4.17, 4.18, 4.20), foliation
boudins (Figs. 4.5, 4.12, 4.16), shearband boudins (Figs. 4.3, 4.27), lenticular
boudins (Figs. 4.2, 4.7, 4.15, 4.21, 4.22, 4.23, 4.24, 4.26), rare rotated boudins
(Fig. 4.19), and trapezoid-shaped boudins (Fig. 4.25). Scar folds near the inter-
boudin spaces most of the times have round hinges (such as Figs. 4.2, 4.7, 4.8, 4.9,
4.10, 4.15, 4.23). Asymmetric boudins were used as shear sense indicators (Gos-
combe et al. 2004; here Fig. 4.21). In some cases, the geometry of secondary quartz
veins at the inter-boudin space matches with what has been described in the liter-
ature especially by Arslan et al. (2009a, b); see Figs. 4.1, 4.2, 4.3. In other cases, the
quartz veins have diffuse margins (Figs. 4.6, 4.13, 4.14, 4.15) and do not possess
regular geometries. Few boudins lack quartz veins at the inter-boudin space
(Figs. 4.3, 4.7, 4.8, 4.9, 4.10, 4.11, 4.16, 4.17, 4.19, 4.20, 4.21, 4.22, 4.23, 4.25).
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Fig. 4.1 Lenticular boudin of quartz vein. The inter-boudin space is occupied by quadrilateral
shaped secondary quartz vein. The vein geometry matches with ‘lozenge type’ as described by
Arslan et al. (2009a, b). This vein, prominent scar folds and the foliations within the matrix
underwent a normal faulting. Ductile shear fabrics seen below the boudin. However, the sense of
shear is difficult to comment conclusively. Goriganga section of Greater Himalayan Crystallines,
India. Reproduced from Fig. 19d of Mukherjee (2013)

Fig. 4.2 A lenticular boudinaged calc-silicate layer within mylonitized gneiss/migmatite.
Prominent round hinged scar folds. A pentagonal quartz deposition at the inter-boudin space.
The vein geometry matches with ‘X-type’ as described by Arslan et al. (2009a, b). Near Karcham
iron bridge, Sutlej section of Greater Himalayan Crystallines, Himachal Pradesh, India.
Reproduced from Fig. 20a of Mukherjee (2013)
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Fig. 4.3 A listric normal faulted calc-silicate layer within mylonitized gneiss/migmatite. Partly
boudinaged calc-silicate layer shows internal foliations that parallel that within the host rock.
Near Karcham iron bridge, Sutlej section of Greater Himalayan Crystallines, Himachal Pradesh,
India. Reproduced from Fig. 20d of Mukherjee (2013)

Fig. 4.4 An irregular quartz body at the inter-boudin space. Migmatitic foliations within the host
rock are prominently folded locally near the quartz body. Sutlej section of Greater Himalayan
Crystallines, Himachal Pradesh, India
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Fig. 4.5 Layered migmatitic gneiss shows foliation boudinage. A quartz vein convexed towards
left occupies the pinched part of the boudin. The vein geometry matches with ‘crescent type’ as
described by Arslan et al. (2009a, b). Greater Himalayan Crystallines, Himachal Pradesh, India

Fig. 4.6 Inter-boudin space in a foliation boudin inside a migmatitic gneiss is occupied by
secondary quartz of irregular geometry. Prominent scar folds of sub-rounded hinges. Location
near an unnamed iron bridge near Karcham, Greater Himalayan Crystallines in Sutlej section,
India
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Fig. 4.7 Symmetric lenticular boudins of quartz within gneiss of the Greater Himalayan
Crystallines at Dhauliganga section, India. Notice close spaced biotite foliations bound these
boudis and also occupy the inter-boudin space

Fig. 4.8 A pinch and swell structure of quartz vein. Prominent scar folds. Hammer for marker.
Location Powari, Greater Himalayan Crystallines in Sutlej section, Himachal Pradesh, India.
Reproduced from Fig. 10c of Mukherjee and Koyi (2010)
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Fig. 4.9 Pinched and swelled foliations. Greater Himalayan Crystallines at Goriganga section,
India

Fig. 4.10 Pinch and swell structure of calc-silicate layer within mylonitized gneiss. Foliations
within the boudin sub-parallel that within the host rock. Greater Himalayan Crystallines at Sutlej
section, Himachal Pradesh, India

76 4 Boudins



Fig. 4.11 Multiply pinched quartz vein (above the coin) within gneiss. Ambaji, Gujarat, India

Fig. 4.12 Foliation boudins. The left bottom boudin is more lenticular shaped. Prominent round
hinge scar fold of foliation and a quartz vein at the pinch. At top left corner, foliations show dip
towards left. Near Karcham hydropower plant, Sutlej section of Greater Himalayan Crystallines.
Himachal Pradesh, India
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Fig. 4.13 A boudinaged calc-silicate layer along the left dipping foliation plane shows accumu-
lation of quartz as a polygon at the inter-boudin space. Scar folds more prominent at bottom. A
second minor pinch is present above folded fingers. Near Karcham hydropower plant, Sutlej section
of Greater Himalayan Crystallines. Himachal Pradesh, India. Reproduced from Fig. 20b, c of
Mukherjee (2013)

Fig. 4.14 Similar caption as Fig. 4.13 except that scar folds are almost absent. Near Karcham
hydropower plant, Sutlej section of Greater Himalayan Crystallines, India. Notice that even layer
parallel extension (e.g. Figs. 7d,e of Abe and Ural 2012) and layer perpendicular compression
(Figs. 9,10 of Komoróczi et al. 2013) can rotate few boudins
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Fig. 4.15 Lenticular boudins of a calc-silicate layer. Prominent scar folds at inter-boudin space.
Irregular quartz veins of different geometries at inter-boudin spaces. Sutlej section of Greater
Himalayan Crystallines. Himachal Pradesh. Reproduced from Fig. 10a of Mukherjee and Koyi
(2010)

Fig. 4.16 Foliation boudinage within migmatite with thicker leucosomes and thinner melano-
somes. An asymmetric pod of leucosome below the boudin. Sutlej section of Greater Himalayan
Crystallines. Himachal Pradesh, India. Reproduced from Fig. 10d of Mukherjee and Koyi (2010)
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Fig. 4.17 Pinch and swell structure from Fig. 10b of quartz within psamitic schist. Near
Shongthong, Sutlej section of Greater Himalayan Crystallines, Himachal Pradesh. India.
Reproduced from Fig. 10a of Mukherjee and Koyi (2010)

Fig. 4.18 Pinch and swelled quartz vein. The swelled portions are nearly symmetric and do not
indicate any shear sense. The matrix foliations are warped. Dhauliganga section of Greater
Himalayan Crystallines
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Fig. 4.19 Rare rotated boudins within gneiss. Ambaji, Gujarat, India

Fig. 4.20 A part of a granite dyke got pinched and swelled (below the pen). Well developed scar
folds. Ambaji, Gujarat, India
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Fig. 4.21 Top-to-right ductile sheared quartz clasts/fish develop shearband boudins. The clasts are
joined by ‘tails’. Prominent scar folds of schistosity planes of the host rock. Ambaji, Gujarat, India

Fig. 4.22 A lenticular boudinaged clast of quartz. Prominent scar folded schistosity planes are
cut by a fracture plane at high-angle to it (see above the quartz clast). Notice that the fracture is
restricted within the host rock and does not pass through the clast. Ambaji, Gujarat, India
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Fig. 4.23 Lenticular boudins of quartz clasts. Prominent scar folds—especially just above the
finger. Ambaji, Gujarat, India

Fig. 4.24 A lenticular boudinaged quartz clast was cut-across by a sub-vertical fracture plane.
Ambaji, Gujarat, India
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Fig. 4.25 A folded and boudinaged granite dyke. The boudins are of trapezoidal geometry. See
Sengupta (1983) for their genesis. Ambaji, Gujarat, India

Fig. 4.26 A warped dyke of granite pinched at places. A few fractures developed at right angle
to the dyke margin and within the dyke. Ambaji, Gujarat, India
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Chapter 5
Brittle Shear

This chapter presents morphologic variations of P- and Y-planes of brittle shear.
The inclination of P-planes, usually sigmoid-shaped, is a reliable indicator of brittle
shear sense. Such brittle shear can be quite pervasive in the rocks (Fig. 5.1).
Alternately, they can affect only along narrow zones (Figs. 5.2, 5.3, 5.4, 5.7, 5.32).
The P-planes vary in sizes quite drastically (compare Figs. 5.4, 5.5, 5.6, 5.8). The Y-
planes can be sub-horizontal (e.g. Figs. 5.9, 5.10, 5.11, etc.). Brittle shear defined
by Y- and P-planes may be associated with synthetic secondary Riedel shearing R0

(see Passchier and Trouw 2005; Fig. 5.12). Isolated lenses of rocks (Fig. 5.15)
could indicate brittle shear. Instead of bound by a pair of Y-planes, sometimes the P-
planes are found to be bound by a single Y-plane (e.g. Figs. 5.16, 5.59, 5.62). P-
planes restricted with a part of rock/quartz veins is a common phenomenon
(Figs. 5.17, 5.18, 5.19). Geometries of thrust slices may vary (Figs. 5.20, 5.21, 5.22;
5.27). The P-planes might be curved only near the Y-planes (Fig. 5.23). Fracturing
of thrust slices in different ways is noted (Figs. 5.24, 5.25, 5.26). Rare examples of
P-planes not bound by any Y-planes were observed (Fig. 5.28). The Y-planes are
mutually sub-parallel (Figs. 5.1, 5.4, 5.11, 5.14, 5.20, 5.21, 5.22, 5.24, 5.27, 5.29,
5.30, 5.31, 5.34, 5.35, 5.37, 5.38, 5.39, 5.41, 5.44, 5.45, 5.46, 5.50, 5.52, 5.53. 5.54,
5.55, 5.57, 5.63) and usually straight. However, non-parallel Y-planes exist rarely
(Figs. 5.32, 5.64). Sigmoidal thrust slices and P-planes are most common (Figs. 5.1,
5.4, 5.5, 5.6, 5.9, 5.10, 5.11, 5.12, 5.13, 5.14, 5.15, 5.16, 5.17, 5.18, 5.19, 5.20, 5.21,
5.22, 5.23, 5.24, 5.25, 5.27, 5.29, 5.30, 5.31, 5.32, 5.35, 5.36, 5.38, 5.39, 5.42, 5.43,
5.44, 5.45, 5.46, 5.47, 5.48, 5.49, 5.50, 5.51, 5.52, 5.53, 5.54, 5.55, 5.56, 5.57, 5.58,
5.59, 5.60, 5.63, 5.64). However, rhombic varieties do exist (Fig. 5.41). Poorly
developed P-planes presumably indicate weak shearing (Fig. 5.57). Weavy Y-
planes do exist (Fig. 5.61). During brittle shear, the P-planes develop from the Y-
planes and migrate in a curvilinear manner to join at the adjacent parallel Y-plane
(Tchlenko 1970, summarized by Handy et al. 2007). A few other eye-catching
brittle shear sense indicators such as V-pull apart structure (Fig. 5.66), small-scale
brittle faults along veins (Figs. 5.67, 5.68, 5.69), slickenslides with peaks
(Figs. 5.70, 5.71, 5.72). Brittle fractures not bound by sets of other fracture planes
should not be related to brittle shear (Fig. 5.73). Greater Himalayan Crystallines in
western Himalaya shows a top-to-S/SW fore-thrusting. However, backthrusting of
top-to-N/NE sense has recently been reported from the Bhagirathi section (Muk-
herjee 2013) (Figs. 5.28, 5.29). The Y-plane can be sharp (Figs. 5.33, 5.40, 5.65).

S. Mukherjee, Atlas of Shear Zone Structures in Meso-scale, Springer Geology,
DOI: 10.1007/978-3-319-00089-3_5, � Springer International Publishing Switzerland 2014

87



Fig. 5.2 A rather narrow zone of top-to-left (up) brittle sheared mylonitized gneiss (Bhagirathi
section of the Greater Himalayan Crystallines, India). The shear is restricted where Arpan
Bandyopadhyay put his hand

Fig. 5.1 Top-to-left (up) brittle sheared gneisses of Bhagirathi section of the Greater Himalayan
Crystallines. The Y-planes of brittle shear are longer, more straight and gentler than the P-planes.
Both the Y- and the P-planes dip towards right. Perpendicular distances between adjacent
Y-planes vary significantly. The P-planes are sigmoid-shaped and are bound by the Y-planes. No
straight secondary brittle shear planes oblique to the Y-planes are noted. See Mukherjee (2013)
for latest review on geology and tectonics of Bhagirathi section of the Greater Himalayan
Crystallines, India
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Fig. 5.3 Top-to-left (up) brittle sheared patch of quartzose body. Curved P-planes developed
both inside and outside (especially at top left part) of the body at an angle to the Y-plane. At left
to this body, a sheared vein of sigmoid bulge of same sense is also present. Greater Himalayan
Crystallines, Bhagirathi section (India)

Fig. 5.4 Top-to-right (up) brittle sheared mylonitized gneiss. The shear is restricted within the
two parallel Y-planes where Arpan Bandyopadhyay kept his hand. P-planes are confined within
this layer, and cannot be found prominently in the surrounding rock. Greater Himalayan
Crystallines, Bhagirathi section (India)
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Fig. 5.5 Top-to-left sheared near sigmoid thrust slice with several sets of fractures. Location:
Greater Himalayan Crystallines, Bhagirathi section (India)

Fig. 5.6 Top-to-right brittle sheared mylonitized gneiss. Curved P-planes at one place define a
sigmoid mass (just above the geologist marker). No Y-planes visible. Greater Himalayan
Crystallines, Bhagirathi section (India)
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Fig. 5.7 Top-to-right (up) brittle sheared mylonitized gneiss. A single prominent Y-plane
(= brittle reverse fault plane) dips towards left. No other Y-plane is seen that could bound the P-
planes at the other side. The curved P-planes are restricted only near the Y-plane. Greater
Himalayan Crystallines, Bhagirathi section (India)

Fig. 5.8 Top-to-left (up) sheared gneiss of the Greater Himalayan Crystallines, Bhagirathi
section (India). Dip directions of both the P and the Y-planes are the same (towards left).
Reproduced from Fig. 6c of Mukherjee (2013)
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Fig. 5.9 Top-to-left sheared gneiss of the Greater Himalayan Crystallines, Bhagirathi section
(India). Note that the Y-planes that bound the curved P-planes are non-parallel

Fig. 5.10 Top-to-left (up) brittle sheared gneisses. Sujoy Kanti Ghosh as marker. Greater
Himalayan Crystallines, Sutlej section, Himachal Pradesh, India
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Fig. 5.11 Top-to-right sheared thrust slices (P-planes) bound by near parallel brittle shear Y-
planes. Greater Himalayan Crystallines, Sutlej section, Himachal Pradesh, India

Fig. 5.12 Top-to-right brittle shear evident from quite a distance. Sigmoid thrust slices and
fractures inside them define curved P-planes. The Y-plane of shear is weavy. Near the central
portion of the photograph, a synthetic brittle shear plane R0 is visible. Near Kharo bridge, Greater
Himalayan Crystallines, Sutlej section, Himachal Pradesh, India. Reproduced from Fig. 11d of
Mukherjee and Koyi (2010)
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Fig. 5.13 Top-to-right sheared (sigmoid) thrust slices. Although snapped from a great distance,
the Y-plane of brittle shear is still decipherable. Vegetations mask partly the sheared rock units.
Greater Himalayan Crystallines, Sutlej section, Himachal Pradesh, India

Fig. 5.14 Top-to-left (up) sheared thrust slices overall defining a parallelogram shaped lens.
Hammer for marker. An irregular black layer bounds this lens and might be a manifestation of
shear heating of the country rock. Greater Himalayan Crystallines, Sutlej section, Himachal
Pradesh, India
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Fig. 5.15 An isolated sigmoid thrust slice defines the P-planes of brittle shear. Top-to-left (up)
brittle sheared. Right to this slice, mylonitic foliation along with a few thicker white
quartzofeldspathic layers of the ductile sheared gneiss also reveal S-fabrics and a top-to-left
(up) ductile shear. Thus, the shear senses in the ductile and that in the brittle regime match.
Greater Himalayan Crystallines, Sutlej section, Himachal Pradesh, India. Reproduced from
Fig. 11c of Mukherjee and Koyi (2010)

Fig. 5.16 Top-to-left (up) sheared P-planes is bound by irregular Y-planes. The Y-plane in
bottom is longer than that at top. Reproduced from Fig. 6b of Mukherjee (2013). Greater
Himalayan Crystallines, Bhagirathi section, India
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Fig. 5.17 Short nearly straight P-planes developed but those do not reach upto the Y-planes.
Top-to-left shear. A single P-plane at right shows stepping. Mylonitized gneiss in Greater
Himalayan Crystallines, Bhagirathi section, India

Fig. 5.18 A rootless quartz pod of irregular geometry within mylonitized schist shows curved
sub-parallel fractures restricted solely inside the pod. Top-to-right (up) brittle shear. Greater
Himalayan Crystallines, Bhagirathi section, India
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Fig. 5.19 Top-to-left sheared P-planes restricted within a quartz pod inside mylonitized gneiss.
Greater Himalayan Crystallines, Bhagirathi section, India

Fig. 5.20 Top-to-left (up) sheared P planes with significantly different curvatures. Mylonitized
gneiss in Greater Himalayan Crystallines, Bhagirathi section, India
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Fig. 5.21 Top-to-right (up) brittle shear displayed by sigmoid P-planes bound by Y-planes.
Exact geometries of individual P-planes do not match. Both the P- and the Y-planes dip towards
left. On the other hand, gneissic foliations dip towards right. Greater Himalayan Crystallines,
Bhagirathi section, India. Reproduced from Fig. 8c of Mukherjee (2013)

Fig. 5.22 A top-to-left (up) brittle shear indicated by P-planes, a few of which are curved, bound
by Y-planes. Angles between the Y and the P plane vary in adjacent cases. Greater Himalayan
Crystallines, Bhagirathi section, India
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Fig. 5.23 Top-to-left (up) brittle sheared P-planes within mylonitized gneiss of Greater
Himalayan Crystallines at Bhagirathi section, India. The Y-plane is developed more prominantly
at top. Both the Y- and the P-planes dip towards right

Fig. 5.24 S-C fabric mylonitized gneiss shows a top-to-left (up) ductile shear. Brittle P-plane
parallel to the S-planes developed (indicating a top-to-left up brittle shear) possibly after the
ductile deformation. The brittle Y-plane parallels the ductile C-plane. Greater Himalayan
Crystallines, Bhagirathi section, India
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Fig. 5.25 A top-to-left brittle sheared quartz vein within weakly ductile sheared gneiss, near
Ambaji temple, Ambaji, Gujarat. The thrust slice was multiply fractured

Fig. 5.26 Top-to-left (up) sheared quartz vein that later got fractured at an angle to the Y-plane.
Greater Himalayan Crystallines, Sutlej section, Himachal Pradesh, India
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Fig. 5.27 Top-to-left (up) sheared Gangotri Granite, Greater Himalayan Crystallines, Bhagirathi
section (India). Non-parallel straight P-planes are bound by straight Y-planes. P-planes are not
developed right to the pen. Reproduced from Fig. 12b of Mukherjee (2013)

Fig. 5.28 Top-to-right (up) brittle sheared brittle P-planes. No sharp/clear Y-planes are present.
These P-planes do not resemble their usual curvature (e.g. Fig. 5.6). The P-planes dip towards
right at a steeper angle than the gneissic foliation planes. Greater Himalayan Crystallines,
Bhagirathi section (India). Reproduced from Fig. 8c of Mukherjee (2013)
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Fig. 5.29 Top-to-right (up) brittle sheared curved P-planes are bound by much straight and
parallel Y-planes. Notice that curvatures of the P-planes are not like their usual appearances (e.g.
Fig. 5.6). Both the P- and the Y-planes dip towards left, whereas the gneissic foliations towards
right. Greater Himalayan Crystallines, Bhagirathi section (India). Reproduced from Fig. 8d of
Mukherjee (2013)

Fig. 5.30 Top-to-right (down) sheared thrust slices bound by sharp Y-planes (= brittle fault
planes). Greater Himalayan Crystallines, Bhagirathi section (India)

102 5 Brittle Shear



Fig. 5.31 Top-to-left (down) brittle sheared psamitic schist. The Y-planes dip steeply. The P-
planes run parallel although they are curved. Tethyan Himalaya, Sutlej section, Himachal
Pradesh, India

Fig. 5.32 Top-to-left (up) brittle sheared P-planes within Siwalik rocks at Dehradun–Mussourie
road. The P-planes are nearly straight. Notice that the brittle Y-planes are curved and are non-
parallel. The P-planes are restricted inside the Y-planes. The Y-planes dip towards right, and the
P-planes towards left
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Fig. 5.33 Top-to-left (up) brittle sheared shorter nearly straight P-planes bound by sub-parallel
Y-planes. The P-planes dip at steeper angles towards right than the Y-planes. Main Boundary
Thrust Zone, Sahinsahi Ashram, near Dehradun, India

Fig. 5.34 A left dipping brittle fault zone within mylonitized gneiss. Fracture planes restricted
inside it are sub-parallel. Therefore, the brittle shear sense cannot be deciphered. Bhagirathi
section of Greater Himalayan Crystallines, India
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Fig. 5.35 Top-to-left (up) brittle shear revealed by sigmoidal thrust slices of various sizes. These
slices define the P-planes. From mylonitized gneiss at Sutlej section of Greater Himalayan
Crystallines, Himachal Pradesh, India. Reproduced from Fig. 11b of Mukherjee and Koyi (2010)

Fig. 5.36 Top-to-left (down) brittle sheared psamitic schist. Not all near sigmoid P-planes are
pervasive. The P-planes are curved only at their contacts with the Y-planes. Tethyan Himalaya,
Sutlej section, Himachal Pradesh, India
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Fig. 5.37 Top-to-right (up) brittle sheared P-planes restricted within irregular Y-planes. Notice
that the P-planes are developed only at the central portion of the photograph. Both the P- and the
Y-planes dip toward left. The P-planes dip steeper than the Y-planes. Bhagirathi section of
Greater Himalayan Crystallines, India

Fig. 5.38 Top-to-right (up) sheared mylonitized gneiss. Sigmoid P-planes dip steeper than the
more straight Y-planes. Both the P- and the Y-planes dip towards right. The Y-planes are more
close spaced at top left than the central part of the photo. Bhagirathi section of Greater Himalayan
Crystallines, India
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Fig. 5.39 Sigmoid P-planes of migmatitic host rock bound by sub-horizontal Y-planes define a
top-to-left shear. At right, a quartz vein also underwent the same shear. Notice that left to the
hammer, no P-planes are developed. This means that portion of the rock escaped shearing.
Greater Himalayan Crystallines, Sutlej section, Himachal Pradesh, India

Fig. 5.40 A sub-horizontal brittle fault plane inside mylonitized gneiss. Presuming folds
adjacent to this fault to be due to a normal drag (such as Fig. 1 of Grasemann et al. 2003), a top-
to-left slip is deduced. Alternately, the fault plane developed after folding. Greater Himalayan
Crystallines, Bhagirathi section (India)
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Fig. 5.41 Three parallelogram/rhombic thrust slices bound at top by sub-horizontal Y-planes
near the central part of the photo. Top-to-left brittle sheared. Greater Himalayan Crystallines,
Bhagirathi section (India)

Fig. 5.42 Top-to-right brittle sheared mylonitized gneiss. The P-planes are curved only near the
Y-plane. The P-planes dip steeply towards left. Greater Himalayan Crystallines, Bhagirathi
section (India)
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Fig. 5.43 A sub-vertical fault plane deciphered from opposite senses of drag of foliations and
fracture planes across it. The shear sense is shown by a half arrow. Fracture planes near the fault
plane seemed to form due to faulting. Gangotri Granite. Greater Himalayan Crystallines,
Bhagirathi section (India)

Fig. 5.44 Black ‘burnt rock’ (Mukherjee 2013) shows top-to-right (up) brittle shear. Curved
P-planes bound by sub-parallel left dipping Y-planes. Greater Himalayan Crystallines, Bhagirathi
section (India). Similar to Fig. 10b of Mukherjee (2013)
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Fig. 5.45 Top-to-right brittle sheared P-planes. Two trains of P-planes are seen. The Y-plane is
best developed at the bottom part of the photograph. Notice that at right extremity of the
photograph, the P-planes are difficult to decipher. Greater Himalayan Crystallines, Bhagirathi
section (India). Similar to Fig. 10b of Mukherjee (2013)

Fig. 5.46 Top-to-right (down) brittle sheared Gangotri Granite. The P-planes are obscure at
places but are still decipherable. The Y-planes dip towards right, and the P-planes towards left.
Bhagirathi section of Greater Himalayan Crystallines, India. Similar to Fig. 11a of Mukherjee
(2013)
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Fig. 5.47 Top-to-right (down) brittle sheared Gangotri Granite. Notice the P-planes are step-like.
Bhagirathi section of Greater Himalayan Crystallines, India

Fig. 5.48 Top-to-right (up) brittle sheared P-planes. No Y-planes within the field of view that
bound the P-planes. Bhagirathi section of Greater Himalayan Crystallines, India
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Fig. 5.49 Top-to-left (down) brittle sheared curved P-planes restricted near a single Y-plane.
Gangotri Granite at Bhagirathi section of Greater Himalayan Crystallines, India. Reproduced
from Fig. 11c of Mukherjee (2013)

Fig. 5.50 Top-to-left (down) brittle sheared curved P-planes. Bothe the Y- and the P-planes dip
towards right. Gangotri Granite at Bhagirathi section of Greater Himalayan Crystallines, India.
Reproduced from Fig. 11c of Mukherjee (2013)
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Fig. 5.51 Top-to-left (down) sheared granite where the P-planes are developed imperfectly. The
Y-plane, however, is better developed. From Gangotri Granite, Greater Himalayan Crystallines,
Bhagirathi section (India). Reproduced from Fig. 11d of Mukherjee (2013)

Fig. 5.52 Top-to-left (down) sheared P-planes affected quartz rich layers. From Gangotri
Granite, Greater Himalayan Crystallines, Bhagirathi section (India). Reproduced from Fig. 12a of
Mukherjee (2013)
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Fig. 5.53 Top-to-right (up) brittle sheared Gangotri Granite. Both the P- and the Y-planes dip
towards left. Greater Himalayan Crystallines, Bhagirathi section (India)

Fig. 5.54 Top-to-right (up) brittle sheared Gangotri Granite. The P-planes are strongly
sigmoidal. Both the P- and the Y-planes dip towards left. Reproduced from Fig. 12c of
Mukherjee (2013). Greater Himalayan Crystallines, Bhagirathi section (India)
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Fig. 5.55 Top-to-right (up) sheared P-planes dipping left are bound by brittle shear Y-planes dip
in the same direction. Note the P-planes are quite irregular. From Gangotri Granite, Greater
Himalayan Crystallines, Bhagirathi section (India)

Fig. 5.56 Top-to-right sheared P-planes bound by sub-horizontal Y-planes. This remains the
first ever report of brittle shear from this terrain. Deccan trap basalt, near the MTDC guest house,
Malsejghat. Maharashtra
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Fig. 5.57 Poorly developed concave rightward P-planes bound by sub-horizontal Y-planes.
P-planes are usually sigmoid. Unlike that, the P-planes shown here are curved uniformly at one
side. The Y-planes developed discontinuously at top. Deccan trap basalt, near the MTDC guest
house, Malsejghat, Maharashtra

Fig. 5.58 Sigmoid P-planes bound at top by an irregular Y-plane demonstrate a top-to-left shear.
No clear-cut Y-planes at bottom to the P-plane exist. Faint foliations restricted within the sheared
bulge. These foliations terminate against the P-plane at bottom. Deccan trap basalt, near the
MTDC guest house, Malsejghat. Maharashtra
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Fig. 5.59 A single curved Y-plane bounds at top a set of P-planes that dip towards left. Deccan
trap basalt, near the MTDC guest house, Malsejghat. Maharashtra

Fig. 5.60 Top-to-right sheared P brittle planes of sigmoid geometry. Notice that only at bottom,
the Y-plane is developed that bound the P-planes, but not at the top. Top-to-right sheared.
Located at the vertical exposure of basalts at the Mumbai-Pune expressway, Maharashtra, India
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Fig. 5.61 Weavy sub-horizontal Y-plane bounds at a set of P brittle shear planes. The P-planes
are very gently curved. Top-to-left brittle shear. An undulatory sub-horizontal brittle shear is
typical of regional thrusting. However, this shear was not observed from any second exposure
from the Kharghar hill. Basalts at Kharghat hill, Mumbai, Maharashtra, India. This shear sense
was hitherto not reported from Mumbai nor from the Deccan basalts

Fig. 5.62 At the same location as that for Fig. 5.61, a top-to-left brittle shear is defined by gently
curved P-planes dipping at right that terminates near a Y brittle plane. Note that this brittle shear
zone is restricted within the middle portion of the photo, and does not persist in the top part.
Basalts at Kharghat hill, Mumbai, Maharashtra, India
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Fig. 5.63 A plan view. Whether this represents a top-to-right brittle shear in terms of curved P-
planes bound by Y-planes cannot be said with certainty. Columnar joints of complicated
geometry present in this area on plan might had produced such a geometry. From rhyolites of
Aksa beach, Mumbai, Maharashtra

Fig. 5.64 In plan view, distinct curved planes of similar geometries bound by two planes
confirm that the former are the P-planes, and the later are the Y-planes. Top-to-right sheared.
From rhyolites of Aksa beach, Mumbai, Maharashtra. A number of such features with nearly the
same *northerly trend of Y-planes bring confidence in this interpretation
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Fig. 5.65 In plan view, a set of brittle planes are found to be bound by another set of planes. At
first it appears that the former are the P-planes, and the later are the Y-planes. However, these
could be manifestation of columnar joints observed on plan. Columnar joints are abundant in this
area. From rhyolites of Aksa beach, Mumbai, Maharashtra

Fig. 5.66 A V-pull apart structure of garnet within gneiss. Top-to-left (up) brittle sheared. Notice
that the V is curved and the opening is filled up by quartz. This was probably the first ever report
of such a structure from meso-scale. Location: North to Suraithota, Dhauliganga river section of
Greater Himalayan Crystallines, western Indian Himalaya. Reproduced from Mukherjee (2010).
For detail of V-pull aparts, consult Hippertt (1993), Singh (1996), Roy et al. (2010) etc
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Fig. 5.67 A reverse faulted quartz vein within gneiss. Ambaji, Gujarat, India. No drag folds
developed near the fault plane. Quartz vein also formed along the fault plane

Fig. 5.68 A reverse faulted quartz vein within gneiss. Ambaji, Gujarat, India. Quartz vein also
formed along the fault plane
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Fig. 5.69 A normal faulted quartz vein within gneiss. Ambaji, Gujarat, India

Fig. 5.70 A reverse fault plane with prominent slickenslides and peaks. Finger points the
direction of slip of the missing block. Greater Himalayan Crystallines at Bhagirathi section, India
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Fig. 5.71 A fault plane with slickenslides and peaks. The pen points the direction of slip of the
missing block. Greater Himalayan Crystallines at Bhagirathi section, India

Fig. 5.72 A sub-vertical fault plane with prominent slickenslides and peaks. The pen points the
direction of slip of the missing block. Reproduced from Fig. 11b of Mukherjee (2013)
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Fig. 5.73 Gently curved fractures. Ductile sheared gneiss within Greater Himalayan Crystal-
lines, Bhagirathi section, India. Since these fractures are not bound by sets of other brittle planes,
the former are not brittle shear related
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