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v

Since the introduction of the first recombinant DNA-derived protein insulin in the 
1980s, protein therapeutics market has shown a steady growth. Their high efficacy, 
safety, and ability to treat life-threatening diseases such as cancer, inflammation, 
and genetic disorders have revolutionized modern medicine. This is primarily 
due to advances in recombinant DNA technology that have provided the means 
to  produce therapeutic proteins. However, there are significant challenges in 
 characterizing protein therapeutics, including heterogeneity associated with post-
translational modifications, protein conformational dynamics upon modifications, 
and the complexity in analysis due to the presence of biological matrices. Mass 
spectrometry (MS) is one of the most highly utilized analytical techniques in the 
characterization of protein therapeutics because of its unique analytical sensitivity, 
selectivity, and specificity. Advances in ionization methods including electrospray 
ionization and matrix-assisted laser desorption ionization, the improvement of MS 
instrumentation, and the growth in the data processing have greatly contributed to 
wide applications of MS in biopharmaceutical research and development.

I am delighted to bring together the work of contributors from academia and 
industry in highlighting current analytical approaches and industry practices for 
the characterization of protein therapeutics using MS. The book begins with an 
overview on protein MS (Chap. 1), followed by descriptions of quantitative analysis 
of therapeutic peptides and proteins in biological matrices (Chaps. 2, 3). Structural 
characterization of protein therapeutics is discussed in Chaps. 4–6 with the focus 
on modifications of protein therapeutics from discovery to development. A unique 
class of protein therapeutics, antibody–drug conjugates, is also described in detail 
(Chap. 7). The remaining chapters (Chaps. 8–10) cover emerging MS techniques 
for the characterization of protein therapeutics, including hydrogen/deuterium 
exchange MS, fast photochemical oxidation of proteins, and ion mobility MS.

I would like to acknowledge the special efforts and patience of all the authors, 
who have made significant contributions to this book.

Guodong Chen
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1.1  Introduction

Proteins fulfill a plethora of biochemical functions within every living organism, 
and mass spectrometry (MS) has become one of the most powerful and popu-
lar modern physical–chemical methods to study the complexities of proteins. In 
particular, the invention of matrix-assisted laser desorption/ionization (MALDI) 
[1] and electrospray ionization (ESI) technologies [2, 3] allows one to measure 
protein molecular weights and sequences, and to probe conformations and post-
translational modifications of proteins. In addition, the mass range of species ame-
nable for MS analysis has increased, enabling the transfer of ionized non-covalent 
species with masses well over one million (e.g., 1.5 MDa 24-Mer flavoprotein 
vanillyl-alcohol oxidase (VAO) from Penicillium simplicissimum [4] into the gas 
phase). These advances moved MS into the range of intact protein oligomers and 
functional machineries.

This chapter serves as an introduction to protein MS. As it is a broad topic with 
a vast literature coverage [5–17], we first introduce spray- and laser-based protein 
ionization techniques used for protein ionization, beginning with an introduc-
tion on the historical development of protein ionization methods, followed by the 
description of several methods including their principles, strengths, and analytical 
applications. In addition, we also survey various ion activation methods used for 
protein/peptide structure analysis (viz. tandem mass spectrometry), including col-
lision-, photon-, surface-, and electron-based ion dissociation strategies.

Chapter 1
Introduction to Protein Mass Spectrometry

Ismael Cotte-Rodriguez, Zhixin Miao, Yun Zhang and Hao Chen

G. Chen (ed.), Characterization of Protein Therapeutics using Mass Spectrometry, 
DOI: 10.1007/978-1-4419-7862-2_1, © Springer Science+Business Media New York 2013

I. Cotte-Rodriguez 
Procter & Gamble, Cincinnati, OH, USA

Z. Miao · Y. Zhang · H. Chen (*) 
Department of Chemistry and Biochemistry, Ohio University, 391 Clippinger Laboratory 100 
University Terrace, 45701 Athens, OH, USA
e-mail: chenh2@ohio.edu
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1.2  History of the Development of Protein  
Mass Spectrometry

MS originates from nineteenth century physics regarding the nature of matter. The 
first known mass spectrometer was built by Sir J. J. Thomson in the early 1900s to 
study and measure the m/z values of the “corpuscles” that make up “positive rays” 
[18], a type of radiation initially observed by German physicist Eugen Goldstein. 
Following the seminal work of Thomson, MS underwent countless improvements 
in instrumentation, ionization methods, and applications. The classical ionization 
method, electron ionization (EI), was devised by Dempster and improved later by 
Bleakney [19] and Nier [20] and became a widely used standard for ionization of 
gases and volatile organic molecules. This ionization technique requires extensive 
derivatization for non-volatile molecules and evaporation of the analyte to the ion 
source, and it involves numerous fragmentation and rearrangement reactions.

Peptide applications of MS were begun in the late 1950s by Biemann [21] and 
McLafferty [22]. The first methods that allowed analysis of non-derivatized pep-
tides were field desorption (FD) and chemical ionization (CI) developed in the 
1960s [23, 24]. Ionization by CI is achieved by interaction of its volatile mole-
cules with reagent ions. CI allows ionization without a significant degree of ion 
fragmentation but still requires gas-phase samples. FD was reported by Beckey 
in 1969 [25], in which electron tunneling triggered by a very high electric field 
resulted in ionization of gaseous analyte molecules.

It was plasma desorption (PD) [26] and fast atom bombardment (FAB) [27] that 
opened the way to protein analysis. PD ionization, invented by Macfarlane in 1976 
[28], a breakthrough in the analysis of solid samples, involves ionization of materials 
in the solid state by bombardment with ions or neutral atoms generated by nuclear 
fission of californium isotope 252Cf. In 1982, Sundqvist obtained the first spectrum 
of the protein insulin (Fig. 1.1), using bombardment with a beam of 90 MeV 127I20+ 
ions from a tandem accelerator [26]. Later, FAB, involving  the  focusing of a beam 
of neutral atoms or molecules on a sample contained in a liquid matrix, was imple-
mented for the ionization of proteins up to 24 kDa [29]. In 1983, Blakely and Vestal 
[30] introduced thermospray ionization (TSI) to produce ions from an aqueous solu-
tion sprayed directly into a mass spectrometer. Thermospray is a form of atmospheric 
pressure ionization in MS, transferring ions from the liquid phase to the gas phase for 
analysis. It was particularly useful in coupling liquid chromatography with MS [31].

The breakthrough for large molecule laser desorption/ionization analysis came in 
1987 when Tanaka combined 30 nm cobalt particles in glycerol with a 337 nm nitrogen 
laser for ionization which showed singly charged protein molecular ions up to about 
35 kDa [32]. During that time [33], MALDI [1], first reported in 1985 by Hillenkamp, 
Karas, and their colleagues, emerged as the culmination of a long series of experiments 
using desorption ionization (DI). MALDI is a soft ionization technique for the analysis 
of biomolecules and large organic molecules and has gained wide success in protein 
analysis, particularly when coupled with time-of-flight (TOF) instruments [34, 35].

Another breakthrough occurred in 1984 when Fenn and co-workers used 
electrospray to ionize biomolecules [2]; the first ESI analyses of biopolymers 
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including proteins were published in 1989 [3]. MALDI and ESI have conquered 
protein MS since their invention in 1980s, and they have triggered an explosion in 
applications of MS for protein studies [36].

The advent of ambient ionization methods [37, 38] is a recent advancement 
in the field, in which sample analysis can be conducted with little or no sample 
preparation. Desorption electrospray ionization (DESI) [39] and direct analysis 
in real time (DART) [40] are the first two representative methods of this family. 
There have been about 30 ambient ionization methods for MS reported [37], such 
as electrospray-assisted laser desorption/ionization (ELDI) [41], laser ablation 
electrospray ionization mass spectrometry (LAESI) [42], laser desorption elec-
trospray ionization (LDESI) [43], laser-induced acoustic desorption electrospray 
ionization (LIAD-ESI) [44], matrix-assisted laser desorption electrospray ioni-
zation (MALDESI) [45], and radio frequency acoustic desorption and ionization 
(RADIO) [46], which have been used for protein ionization.

1.3  Ionization Methods

1.3.1  Electrospray Ionization

The principle of ESI was first described by Dole in 1968 [47] and coupled to 
MS in 1984 by Yamashita and Fenn [2]. ESI usually generates intact, multi-
ply charged ions, generally in the form [M+nH]n+ in both the positive-ion mode  

Fig. 1.1  127I-PDMS spectra of bovine insulin recorded over a 1.5 h period with a 90 MeV 127 

I (+20) beam current [26]. Reproduced with permission from ACS, copyright 1982



4 I. Cotte-Rodriguez et al.

(e.g., protonated) and negative-ion mode (e.g., deprotonated). In ESI-MS, “naked” 
ions form via progressive solvent evaporation from charged droplets of a liquid sam-
ple, sprayed in the presence of a strong electrical field. The formation of gaseous ana-
lyte ions by electrospray involves three steps: formation of charged droplets, shrinkage 
of the droplets owing to solvent evaporation, and transfer of ions into the gas phase. 
Although the macroscopic aspects of electrospray are generally well understood, 
the mechanisms for the final generation of desolvated (or nearly desolvated) ions 
from a charged droplet are not yet fully resolved. Two models describe this process. 
The charged residue model (CRM), conceived by Dole et al. [47], invokes succes-
sive cycles of solvent evaporation and coulombic fission at the Rayleigh limit until a 
droplet containing a single residual analyte ion remains. Complete evaporation of the 
solvent comprising this droplet eventually yields a “naked” analyte ion, the charged 
residue. The ion evaporation model (IEM) proposed by Iribarne and Thomson [48] is 
based on the transition-state theory. Prior to complete desolvation of the droplet, suf-
ficiently strong repulsions between the charged analyte ions and the other charges in 
the droplet overcomes solvation forces, resulting in the analyte ion ejected (field des-
orbed) from the droplet surface into the gas phase [49].

With the advent of ESI, it became possible to study protein conformations. 
Different from traditional methods to investigate protein conformations such as cir-
cular dichroism (CD), NMR, and X-ray, ESI-MS offers several advantages for this  
purpose. First, ESI-MS is sensitive, requiring fmol and amol amounts of protein 
samples [12, 50, 51]. Second, ESI analysis makes use of a protein solution, which 
is important because most of biology and much of separations take place in solu-
tion. In traditional ESI experiments, organic compounds are often used as co-sol-
vents; however, the use of highly organic solvents is no longer mandatory. This has 
led to the birth of an emerging field in biomolecular MS, termed native ESI-MS 
[49, 52–54]; the objective of this field is the analysis of intact proteins and protein 
complexes under near-physiological conditions achieved by using neutral volatile 
buffer salts like ammonium acetate for protein sample preparation. The third is that 
gas-phase, multiply charged ions are generated from the protein sample [3]. This 
point plays a central role in protein studies, given that the charge-state distributions 
(CSDs) observable in protein ESI mass spectra are affected by the conformations 
that the protein held in the solution at the moment of its transfer into the gas phase 
[12, 55]. Typically, when a protein is in the folded structure, a narrow CSD in low 
charge states is observed, whereas the CSD is broadened and shifted to high charge 
states after unfolding, probably because the unfolded protein has a greater capacity 
to accommodate charges on its surface [50, 56, 57]. Therefore, information about the 
conformational states of the protein can often be extracted based on the structural 
interpretation of CSDs in ESI-MS, upon controlling other experimental conditions 
[12]. Another MS-based approach to protein conformation study is to monitor protein 
hydrogen/deuterium exchange reactions, which are conformation sensitive; thus, the 
exchange level determined by MS can be related to protein conformational structures 
[58–64], and this subject is covered in an article by Kerfoot and Gross in this volume.

In 1994, Wilm and Mann introduced an important variant of conventional 
ESI, termed nanoelectrospray (nESI) [65]. While this technique uses the same 
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fundamental sequence of charged-droplet generation followed by solvent evapo-
ration, Coulombic fission events, and finally ion formation, it is distinguished 
from regular ESI in several ways. First, nESI is typically performed using glass or 
quartz capillaries that are pulled to a fine tip (~1 μm inner diameter) and given a 
metallic (usually gold) coating to hold the electric potential; these are used instead 
of the metallic capillary used for conventional ESI. Approximately 1–3 μL of sam-
ple is injected into the glass capillary and electrosprayed at flow rates in the range 
of ~1 nL/min to several tens of nL/min [66, 67]. The spray is driven primarily by 
the approximately 0.5–1.5 kV potential applied to the capillary, although it is often 
necessary to provide an auxiliary backing gas pressure to the sample to initiate 
and/or to maintain a steady stream of the solution through the tip [49]. Second, in 
comparison with conventional ESI, a smaller initial droplet size in nESI leads to 
less non-specific aggregation (both protein–protein and protein–salt) and its gentler 

Fig. 1.2  Conventional and nanoelectrospray MS of a protein complex. MS of the GroEL com-
plex ionized by means of ESI (lower) and nESI (upper). Solution conditions were 200 mM 
ammonium acetate, pH 6.9, and a protein concentration of 2 μM tetradecamer. The nESI spec-
trum displays a series of peaks around 11,500 m/z which correspond to the 800 kDa tetrade-
camer. Conventional ESI of the same solution results in poorly resolved “humps” centered on 
12,500, 16,000, and 18,500 m/z. These are assigned to the tetradecamer, a dimer of tetradecam-
ers, and a trimer of tetradecamers, respectively. There is also a signal at low m/z which corre-
sponds to the GroEL monomer [49]. Reproduced with permission from ACS, copyright 2007
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interface conditions, while still allowing adequate desolvation, causing less disso-
ciation and disruption of oligomeric and higher-order structures (Fig. 1.2 shows the 
contrast between nESI and ESI for the ionization of a GroEL complex). The ben-
efits of nESI analysis include high ionization efficiency and well-resolved protein 
complex ion peaks with narrow charge-state distributions, reduced non-specific 
adduct formation, and high salt tolerance.

1.3.2  Matrix-Assisted Laser Desorption/Ionization

Investigations of wavelength influence on ultraviolet laser desorption [68] led to 
invention of ultraviolet laser matrix-assisted laser desorption/ionization (UV-MALDI) 
between 1984 and 1986 (summarized in a 1987 paper) [69]. In 1988, Karas and 
Hillenkamp reported ultraviolet laser desorption (UVLD) of bioorganic compounds 
in the mass range above 10 kDa [1]. As a soft DI method, MALDI handles thermo-
labile, non-volatile organic compounds, especially those with high molecular weight, 
and can be successfully used for the analysis of proteins, peptides, glycoproteins, 
oligosaccharides, and oligonucleotides. Its operation is relatively straightforward 
although matrix preparation requires experience and perhaps some artistry.

MALDI is based on the bombardment of sample molecules with laser light 
to bring about sample ionization. It requires a specific matrix consisting of small 
organic compounds (e.g., nicotinic acid) that exhibit a strong resonance absorp-
tion at the laser wavelength used. The sample is premixed and diluted with the 
highly absorbing matrix and allowed to dry on a sample target. A range of com-
pounds are suitable as matrices: sinapinic acid is a common one for protein 
analysis, while alpha-cyano-4-hydroxycinnamic acid is often used for peptide 
analysis (structures shown in Scheme 1.1.). These acids serve well as a matrix 
for MALDI due to their ability to absorb laser radiation and also to donate pro-
tons (H+) to the analyte of interest. Upon laser irradiation, energy is absorbed by 
the matrix in a localized region of the surface. As a result of this local, rapid heat-
ing, the analyte acquires translational energy without being internally excited.  

H3CO

HO

OCH3

OH

O

sinapinic acid

HO OH

O

N

alpha-cyano-4-hydroxycinnamic acid

Scheme 1.1  The structures of two common MALDI matrices
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The translational excitation occurs by the expansion of the vaporized matrix in 
MALDI and accounts for the release of the analyte molecules from the surface of the 
condensed-phase sample into vacuum. The analyte ions leave the surface with sig-
nificant kinetic energies, entrained in a microsupersonic molecular beam of expand-
ing matrix vapor. The analyte may be pre-charged (e.g., exist as a salt), and the intact 
analyte ion may simply be transferred as an ion from the solid to the vapor state upon 
laser irradiation of the matrix. Alternatively, a neutral analyte may be ionized through 
ion/molecule reactions (e.g., proton transfer reaction) occurring in the energized sel-
vedge [70].

MALDI has remarkable efficiency in producing intact molecular ions (often 
[M+H]+, [M+Na]+) of large biological compounds. An even more remarkable 
characteristic of MALDI is its extraordinary sensitivity. Total amounts of sample 
loaded onto the target surface are often in the picomole to femtomole range, and 
much of this sample is not used. The method has reasonable tolerance to buffers and 
other additives and gives predominantly singly charged ions for large biomolecules 
[35]. TOF mass analyzers are ideal to use with this ionization technique because 
they are compatible with high-mass ions and pulsed ion production [34, 35]. TOF 
analyzers separate ions according to their m/z ratios by measuring the time it takes 
for ions, accelerated to the same kinetic energy, to travel through a field-free region 
known as the flight or drift tube. The heavier ions are slower than the lighter ones.

MALDI Applications

An important application of MALDI is chemical imaging, using a technique called 
matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-
IMS) [16]. Imaging combines parallel, high-throughput molecular analysis with 
location-specific information for the characterization of protein distributions 
directly from thin sections of intact biological tissue [71, 72] and offers comple-
mentary information to two-dimensional (2D) gel electrophoresis and to shotgun 
proteomics for investigating proteomic differences. For example, MALDI-IMS 
strategy can be applied for plant protein analysis. The epidermis of whole leaves is 
sprayed directly with a matrix, or the tissue is cut into small sections (10–15 μm) 
and coated with a matrix on glass slides. During analysis, the matrix heavily 
absorbs the laser energy to be vaporized, and the analyte embedded in the matrix 
is carried in the fast vaporization process. The molecules pick up a charge and 
travel down the TOF tube and are analyzed on basis of their m/z ratios. The data 
is acquired across a section in the form of a raster of predefined resolution, and 
then, the mass spectrum of each raster point is recorded. After that, the ion inten-
sity and distribution for each m/z value are collected. Herein, there are two options 
for identification of potential biomarkers. The slide sometimes is coated with 
enzyme for on-slide protein digestion, and the generated peptides are analyzed by 
MS/MS. Usually, the tissue region of interest needs to be excised and separated in 
order to isolate the m/z ion of interest, which can be further digested with enzyme 
and analyzed using LC–MS/MS [73]. MALDI-IMS has become a powerful tech-
nique capable of identifying and localizing biological compounds directly on tis-
sue surfaces.
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1.3.3  Ambient Ionization Methods

In most applications, MS required moderate to extensive sample preparation 
followed by introduction of the sample into the high-vacuum conditions prior to 
analysis, limiting in situ analysis and increasing the possibility of contamination 
during sample handling. These drawbacks are overcome with the introduction of 
DESI and DART, which can be viewed as ambient ionization methods. In these 
methods, samples are examined in the open environment (natural or in the labora-
tory), and typically, no sample preparation is required, allowing for in situ analy-
sis while preserving all attributes associated with MS analysis. These approaches 
open a new era in MS.

After the first reported applications using DESI and DART [39, 40], a whole 
new family of ambient methods and variants emerged. DESI variants such as 
reactive DESI (reactions accompanying desorption), non-proximate detection 
DESI (transport of sample ions at long distances), geometry-independent DESI, 
transmission-mode DESI, liquid sample DESI and continuous flow-extractive 
desorption electrospray ionization (CF-EDESI) were soon introduced either to 
increase selectivity and sensitivity for trace analysis or to facilitate direct sample 
analysis [74–82]. Another ionization method termed desorption atmospheric pres-
sure chemical ionization (DAPCI) was also developed to study ionization mecha-
nisms in explosive compounds [76]. Other established ambient ionization methods 
include electrospray-assisted laser desorption/ionization (ELDI) [83], MALDESI 
[84], extractive electrospray ionization (EESI) [85], atmospheric solids analysis 
probe (ASAP) [86], jet desorption ionization (JeDI) [87], desorption sonic spray 
ionization (DeSSI) [88], field-induced droplet ionization (FIDI) [89], desorption 
atmospheric pressure photoionization (DAPPI) [90], plasma-assisted desorption 
ionization (PADI) [91], dielectric barrier discharge ionization (DBDI) [92], liquid 
microjunction surface sampling probe method (LMJ-SSP) [93], atmospheric pres-
sure thermal desorption ionization (APTDI) [94], surface sampling probe (SSP) 
[95], fused-droplet electrospray ionization (FD-ESI) [96], helium atmospheric 
pressure glow discharge ionization (HAPGDI) [97], neutral desorption extractive 
electrospray ionization (ND-EESI) [98], LAESI [99], low-temperature plasma 
(LTP) ionization [100], and laser spray ionization (LSI) [101]. Although, these 
methods can be used for ambient analysis, protein or peptide analysis has been 
achieved by a few owing to the ionization process involved (i.e., the amount of 
internal energy deposited into a protein). In the following, we focus on the analy-
sis of proteins and peptides by DESI.

Desorption Electrospray Ionization

DESI allows one to record spectra of condensed-phase samples (pure, mixtures, 
or tissue) under ambient conditions, making the samples accessible during anal-
ysis for manipulation by ordinary physical or chemical means [76, 102–105]. 
Analysis of small and large molecules, very short analysis time (high-throughput), 
high selectivity (reactive DESI and MS/MS), and sensitivity are other attributes 
of this method. The DESI method is based on directing a pneumatically assisted 
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electrospray onto a surface (e.g., paper, metal, plastic, glass, and biological tissue), 
from which small organics and large biomolecules are picked up, ionized, and 
delivered as desolvated ions into the mass spectrometer. Ions are generated by the 
interaction of charged microdroplets or gas-phase ions derived from the electro-
spray with neutral molecules of analyte present on the surface [39, 76]. DESI is 
a soft ionization method and shows ESI-like spectra of proteins, primarily attrib-
uted to some common features of the ionization process that produces low-energy, 
intact molecular ions through fast collisional cooling under atmospheric conditions 
[104]. The method can be used for many types of compounds (polar/non-polar and 
low/high molecular weight) in forensics and homeland security (e.g., explosives, 
chemical warfare agents, and bacteria) [76, 78, 79, 105–107], biomedical (e.g., tis-
sue imaging, proteomics, lipidomics, and pathology) [26, 108–111], pharmaceuti-
cal/industrial (e.g., drug analysis, pharmacokinetics, polymers, process monitoring, 
metabolomics, environmental analysis) [112–117], and other fields. Many of these 
applications can be implemented with various mass spectrometers including triple 
quadrupoles [118], linear ion traps [119], Orbitrap [120], quadrupole time-of-flight 
(QTOF) [121], ion mobility/TOF and ion mobility/QTOF hybrids [121], Q-traps 
[80], Fourier transform ion cyclotron resonance (FT-ICR) instruments [122], and 
miniature ion trap mass spectrometers [123].

DESI Ionization Source

In a typical DESI setup (Fig. 1.3a), the source consists of a solvent nebulizer made 
of deactivated fused silica capillary, similar to the one used in electrosonic spray 
ionization (ESSI) [124]. Nitrogen (N2) is used as the nebulizing gas at a linear 
velocity of approximately 350 m/s. The solvent (typically mixtures of metha-
nol, water, and small amount of acetic acid) is sprayed under the influence of an 
applied high voltage (typically in the range of 3 to 6 kV). The gas jet composed 
of electrosprayed aqueous microdroplets and free gas-phase ions is directed onto 
the analyte on a surface at various incident angles (usually from as low as 25° 
up to 80° depending on the analyte) to the normal. The resulting droplets, ions, 
and neutrals are collected at a shallow angle from the surface. The ions are then 
transferred as a result of electrostatic and pneumatic forces to a mass spectrometer 
equipped with an atmospheric pressure interface. The source is typically mounted 
on an xyz moving stage, allowing it to be positioned at any chosen point with 
respect to the sample. The moving stage also has a tangent arm drive miniature 
stage that allows precise angular adjustment from 0 to 90° (Fig. 1.3a).

DESI Ionization Mechanisms

Droplet pickup has been suggested as the primary ionization mechanism in DESI 
although there is evidence for chemical sputtering (reactive ion/surface collisions) 
and gas-phase ionization processes (e.g., charge transfer, ion–molecule reactions, 
volatilization/desorption of neutrals followed by ionization) [39, 76, 103, 125, 126]. 
According to the droplet pickup mechanism, the surface is pre-wetted by initial 
droplets (velocities in excess of 100 m/s and diameters of less than 10 μm), form-
ing a solvent layer that helps surface analytes to become dissolved. These dissolved 
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analytes are picked up by later arriving droplets that are impacting the surface, creat-
ing secondary droplets containing the dissolved analytes. Gas-phase ions are then 
formed from these secondary droplets by ESI-like mechanisms [103, 125, 126]. 
The resulting gas-phase ions have internal energy values similar to those in ESI and 
ESSI [127]. The formation of cold ions gives DESI its soft ionization character that 
affords ESI-like spectra, especially for proteins and polypeptides.

DESI Analytical Performance

Signal intensity in DESI spectra depends on incident angle (β), collection angle 
(α), tip-to-surface distance (d1), MS inlet-to-surface distance (d2), and other geo-
metric parameters, as defined in Fig. 1.3b. Nebulization gas velocity, spray sol-
vent flow rate, and spray potential also affect performance. The type of surface 

Fig. 1.3  a DESI source and moving stage used to position the source; an early prototype of 
the OmniSpray source of Prosolia, Inc. The source is fitted with an ion transfer capillary [76]. 
Reproduced with permission from ACS, copyright 2005. b Definitions of terms used in conjunc-
tion with DESI [103]. Reproduced with permission from John Wiley and Sons, copyright 2005
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analyzed (its texture and electrical conductivity) is also a factor that affects the 
ionization process. The limits of detection (LOD) are in the low picogram to fem-
togram range for small molecules and some biopolymers [39, 128]. The dynamic 
range is 5 orders of magnitude, and relative standard deviations (RSD) of 5 % for 
quantitation (lower if using an internal standard) can be achieved [103]. For imag-
ing applications, spatial resolution approaching 40 μm can be obtained [129]. 
Accuracies in the range of ±7 % relative errors are possible [39, 130].

DESI for Protein Analysis

Since the first reported applications of DESI for protein and peptide analysis  
[39, 103], various research groups implemented applications ranging from solid 
sample analysis (from surfaces) to direct analysis of liquid samples or liquid films 
[80, 81, 131–134]. A feature of liquid DESI is that it can desorb large proteins 
and protein complexes directly from solution (Fig. 1.4) [135]. For example, the 

Fig. 1.4  Liquid sample DESI a apparatus; b mass spectrum of human hemoglobin (50 μM) in 
20 mM NH4OAc; c IgG (6 μM) in H2O/ACN/FA (90:10:0.1 by volume) [135]. Reproduced with 
permission from ACS, copyright 2011
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ionization of intact hemoglobin tetramer (Fig. 1.4b) and IgG (150 kDa) (Fig. 1.4c) 
was demonstrated by liquid sample DESI. It appears that large proteins and pro-
tein complexes are relatively easier to be desorbed and ionized from solution than 
from dried samples on surface, probably due to less protein aggregation in solution 
than in the solid form [135]. High mass resolving power can be obtained in protein 
and peptide identification by coupling DESI with Fourier transform ion cyclotron 
resonance mass spectrometry (FT-ICR-MS) [122]. Other applications of peptide 
analysis can be envisioned for the direct identification of tryptic digests; exam-
ples are cytochrome c and myoglobin deposited on high-performance thin-layer 
chromatographic (HPTL) plates. After separation on the HPTL plates, the result-
ing bands are exposed to the DESI sprayer for peptide identification.

There are other ionization methods which have been introduced with specific 
advantages such as high sensitivity in terms of protein analysis. For example, 
surface-enhanced laser desorption/ionization (SELDI) [136], a prominent form of 
laser desorption/ionization (LDI) MS, can be readily used to analyze the major 
and minor protein components in heterogeneous samples. This ionization method, 
used for analysis of macromolecules, efficiently facilitates the investigation of bio-
logical molecules on probe and simplifies sample purification and extraction steps 
in contrast to conventional LDI and MALDI. Also, SELDI is a rapid and highly 
reproducible method with high sensitivity for trace protein (<fmol/mL using 
chemical arrays) analysis, offering a significant advancement in protein analysis 
by MS. Furthermore, other methods nanostructure-initiator mass spectrometry 
(NIMS) [137, 138], sonic spray ionization (SSI) [139], ESSI [124], fused-drop-
let electrospray ionization (FD-ESI) [140, 141], ELDI [142], EESI [143], inlet 
ionization [144, 145], etc. are widely used for protein analysis, generating mul-
tiply charged ESI-like spectra. The details for these different methods, including 
apparatus, mechanism, and applications, can be find in our previous book chapter 
[146].

1.4  Ion Activation and Tandem Mass Spectrometry

1.4.1  Collisional Activation Methods

1.4.1.1  Collision-Induced Dissociation

Dissociation of molecular ions in the gas phase can be traced back to the first mass 
spectra recorded by English physicist Sir J. J. Thomson with his parabola mass 
spectrograph at the Cavendish Laboratories, leading to what is known today as 
collision-induced dissociation (CID) or also known as collision-activated dissocia-
tion (CAD) [147, 148]. Consequently, evolution of CID as a tool for ion structural 
elucidation can be traced directly to the work of Jennings [149] and McLafferty 
[150]. CID is one of the most popular activation methods used today to detect, 
identify, and obtain structural information from small and large molecules such 
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as peptides and proteins. Complex mixture analysis and biopolymer sequencing 
(e.g., peptides and proteins) are areas where this technique has proved extremely  
useful [151]. Even though unimolecular dissociation theory [152, 153] is impor-
tant to describe the behavior of an ionized molecule after it has been activated, it 
is beyond the scope of this chapter and we will focus on the specifics of the CID 
process and its applications toward protein and peptide ion activation.

In tandem MS analysis, the precursor ions are isolated, accelerated to higher 
kinetic energies, and allowed to collide with a neutral target gas (usually nitro-
gen, helium, or argon). As a result of these inelastic collisions, part of the trans-
lational energy is converted into internal energy of the ion, leading to subsequent 
decomposition (i.e., CID) [154–157]. Fragment ions produced during CID of 
the precursor are recorded, giving a fingerprint spectrum of the parent ion [155]. 
The CID process is assumed to occur by a two-step process, where activation 
of the precursor ion and its dissociation are separated in time (activation time is 
typically orders of magnitude faster than dissociation) as shown in Eqs. 1.1 and 
1.2 below, where Q is the change in kinetic energy of the system, mp

+ is the pre-
cursor ion, N is the target gas, and mp

+⋅ and N′ are the collision partners in their 
post-collision state [157]. This process is followed by unimolecular dissociation 
(Eq. 1.2), where ma

+ and mb are the products of the unimolecular dissociation of 
the activated ion (mp

+⋅) [157]. Collision yield depends on the activated precur-
sor ion decomposition probability according to the quasi-equilibrium or RRKM 
theory, and fundamental aspects of both theories are detailed in the literature 
[152, 153]. Other dissociation mechanisms such as stripping, where the ion is 
torn away during the collision event (i.e., collision and dissociation cannot be 
separated), might occur under specific conditions.

Fragmentation of the precursor ion will occur if the collision energy is high 
enough to excite the ion beyond its dissociation threshold. In order to simplify and 
make easier to visualize the dynamics of the kinetic to internal energy conversion 
process between a mobile specie (the ion) and a static target (the collision gas), 
a simpler center-of-mass (com) framework has been adapted instead of the lab-
oratory reference frame, since the “com” momentum is always zero [157, 158]. 
The total energy available for kinetic to internal energy conversion is the rela-
tive kinetic energy of the collision partners. This center-of-mass collision energy, 
ECOM, is a fraction of the laboratory kinetic energy, ELab, if the velocity of the 
neutral is ignored [151]. As described in Eq. 1.3, ECOM depends on the masses of 
the collision partners, where m is the mass of the neutral collision gas and M is the 
mass of the ion to be activated.

(1.1)Q + m+

p + N → m+·

p + N′

(1.2)m+·

p → m+

a + mb

(1.3)ECOM =
m

m + M
ELAB
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ECOM increases with the mass of the target (m) and decreases as a function of 
1/M. This means that large precursor ions have less internal energy deposited to 
undergo fragmentation during the collision process. This is very important for protein 
and peptide activation since typical collision partners are much lighter, often deposit-
ing energies orders of magnitude smaller, as calculated using Eq. 1.3. To maximize 
ECOM and minimize ion–molecule reactions and charge transfer, relatively heavy 
atomic targets (e.g., Ar, Xe) with high ionization potentials have been used in the 
electron volt ELab collisional activation [157]. Lighter targets such as helium are used 
in the kiloelectron volt ELab collisional activation of small- to moderate-sized precur-
sor ions to minimize scattering and charge exchange. Besides the parent ion internal 
energy distribution after collision, there are other factors that dictate the appearance 
of the resulting CID spectra, and these include the time frame of the experiment, 
instrumental discrimination effects, and partitioning of energy within the ion [157].

The overall CID process can be achieved via fast (high-energy collision) or slow 
activation (low-energy collision). As the word implies, fast activation methods are 
those in which the energy input occurs rapidly relative to unimolecular dissociation 
and typically involves a single high-energy collision, higher than 1,000 eV of labo-
ratory collision energy [151]. Slow activation occurs via multiple small collisions 
(1–100 eV) with long intervals between individual collisions [151, 158]. If deactiva-
tion processes such as cooling collisions or photon emission occur between activa-
tion events, the process is considered a “very slow” or “slow heating” method. At high 
energy, the ion excitation is mostly electronic [159], while at low energy, the ion exci-
tation energy is mostly vibrational [160], coinciding with a bond’s vibrational period. 
Although the energy deposited per collision in low-energy collisions is slightly lower 
than in high energy, collision yields are extremely high as compared to the total energy 
available. This is due to the multiple collisions allowed by the gas pressures typically 
employed and length of the collision cell (QqQ), or as the case for ion traps, time allot-
ted for CID. Slow activation is mostly performed in collision cells such as the ones 
found in triple quadrupole (QqQ) instruments or in instruments that use multipole col-
lision regions at pressures ranging from few millitorr up to a torr [161], while very 
slow activation or slow heating methods are performed in trapping devices such as 
quadrupole ion traps (e.g., in approximately 1 millitorr He bath gas), linear trapping 
quadrupoles (Q-CAD), and sustained off-resonance irradiation (SORI) in Fourier 
transform ion cyclotron resonance (FT-ICR) [162–165]. In contrast, fast activation is 
mostly performed in beam-type instruments such sectors and TOF [166–168].

CID of Peptide and Protein Ions

Currently, one of the most active and challenging areas for CID applications is to 
address the fragmentation of large peptide and protein ions. Besides providing criti-
cal information for protein and peptide sequencing, CID has been used to under-
stand dissociation mechanisms and to obtain threshold energies from these systems 
[169]. As discussed earlier, there are some factors that influence the CID behavior 
of peptide and protein ions. For large ions, a typical challenge is the efficiency of 
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the CID process itself, that is, the amount of energy that can be deposited and redis-
tributed across the many degrees of freedom, which will eventually induce disso-
ciation of such large systems. For peptides ions, typical backbone cleavage during 
CID occurs at the peptide amide bond (weakest bond) to produce b-type (amino-
terminal retains the charge) and y-type (carboxyl-terminal retains the charge) ions 
(Schemes 1.2 and 1.3) [170]. These b/y ion pairs dominate the low-energy CID 
spectra, in some instances including ions resulting from small molecule losses from 
the sequence fragment ions such as ammonia, water, or carbon monoxide (the loss 
of CO from b ions produces a type ions) [151, 170, 171]. Peptide ion dissociation 
pathways have been studied extensively [172–178] and have been rationalized by 
the “mobile proton model” [175, 177, 178]. In this model, fragmentation is initiated 
by the transfer of a proton or protons (triggered by collisional activation) intramo-
lecularly to cleavage sites among backbone protonation sites (Scheme 1.4). Proton 
transfer is facilitated by the proton affinity of the heteroatoms, for example, oxygen 
or nitrogen of the amide bond to be cleaved. Under these mobile proton conditions 
(number of ionizing protons > number of strong basic sites), charge-directed frag-
mentation pathways become energetically available at several sites, with enhanced 
cleavage at the N-terminal side of proline (known as proline effect) [170, 179, 
180]. Enhanced cleavage is also noted C-terminal to a protonated histidine residue. 
This could be attributed to its ability to transfer a proton to the backbone, a process 

Scheme 1.2  Nomenclature of common ion types [181]. Reproduced with permission from John 
Wiley and Sons, copyright 1984

Scheme 1.3  Representative structures of b ions and y ions [170]. Reproduced with permission 
from Elsevier, copyright 2005
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that triggers formation of a resonance-stabilized cyclic b ion. When all protons are 
bound to basic residues such as arginine (number of ionizing protons ≤ number of 
strong basic sites), cleavage often occurs selectively at the C-terminus of aspartic or 
glutamic acid via a charge-remote mechanism (proton derived from the acidic side 
chain) [170]. Peptides with basic amino acids have higher energy thresholds for 
fragmentation as compared to those with less basic amino acid groups. The basic 
sites sequester the protons, requiring more energy in order to facilitate fragmenta-
tion [169].

Even though b and y ions are the most useful ion types for sequencing, there 
are other ion types (e.g., c, x, z, a, d, w, v, ammonium ions) used for spectral 
identification and database searches, but these are typically observed at higher col-
lision energies (e.g., high-energy CID) [169–171]. A marked difference between 
low- and high-energy CID is the abundant dissociation of amino acid side chains 
forming d-, w-, and v-type ions (Scheme 1.5). Side-chain cleavages are useful 
for distinction of isomeric and isobaric amino acids in peptide sequencing [170]. 
Another characteristic of the high-energy CID process is the abundance of ammo-
nium ions in the low mass range region [151, 171]. Ammonium ions are used as 
sequence qualifier, that is, good indicators of the presence or absence of a particu-
lar amino acid in the peptide sequence. Figure 1.5 shows the CID mass spectra for 
ACTH (decapeptide) collected at high (a) and low (b) collision energies, showing 
the characteristic ion types formed in each case.

Scheme 1.4  Amide bond cleavage typically involves proton migration as an initial step, fol-
lowed by neighboring group–assisted bond cleavage between the nth and (n + 1)th residue [179]. 
Reproduced with permission from John Wiley and Sons, copyright 2008
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Scheme 1.5  Structure of fragments involving side-chain cleavage (d, v, and w ions), with Val as 
residue 4 [170]. Reproduced with permission from Elsevier, copyright 2005

Fig. 1.5  Tandem CID mass spectra of ACTH (1–10), at 7 keV (a) and 45 eV (b) collision ener-
gies (high- and low-energy spectra, respectively). Both precursor ions are singly charged and 
were generated by Cs bombardment of the sample dissolved in glycerol (FAB). The high-energy 
MS/MS spectrum was obtained with a four-sector magnetic deflection mass spectrometer, using 
helium as the collision gas; only the 12C isotope of the precursor ion was selected, and the prod-
uct ion spectrum was acquired at unit mass resolution. For the low-energy MS/MS spectrum, a 
triple quadrupole instrument was used, with argon as the collision gas; the entire precursor ion 
isotope cluster was selected, and the product ion spectrum was acquired at less than unit mass 
resolution [171]. Reproduced with permission from John Wiley and Sons, copyright 1995
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Even though CID has been widely implemented in bottom-up, top-down, and 
shotgun proteomics, the technique has shown several limitations, especially in the 
analysis of post-translational modifications (PTMs). Many PMTs are fairly labile, 
that is, weaker than the peptide amide bond. When ions containing PTMs are col-
lisionally activated, PTMs are the first to dissociate (at expense of sequence frag-
ments), making the localization of the PTMs a challenge [182]. Other effects such 
as sequence scrambling have been observed, which can produce misleading ions, 
that is, making accurate peptide and protein sequencing a more challenging task 
[183, 184]. In the field of structural biology, CID has shown limitations in deter-
mining subunit topology for some quaternary non-covalent protein assemblies, 
due to significant protein subunit unfolding during activation (multicollision CID), 
yielding highly charge-asymmetric monomers, thus limiting the amount of rele-
vant substructure information for such non-covalent complexes [185–187].

1.4.1.2  Surface-Induced Dissociation

Surface-induced dissociation (SID) was pioneered in the mid-1970s by R. Graham 
Cooks at Purdue University [188–190]. Other groups have studied SID, includ-
ing Wysocki [191–200], McLafferty [201, 202], Futrell [203–207], and Laskin 
[206–215]. The SID process is analogous to CID, except that the neutral gas used 
as target in a typical CID experiment is replaced by a surface, as shown in Fig. 1.6 
(ion–surface collision event) [189, 198]. The initial translational energy of the pre-
cursor ion is converted into internal energy upon collision with the surface, causing 
its activation and subsequent dissociation. The main motivation to develop SID was 

Fig. 1.6  Diagram of surface-induced dissociation where surface collision event deposits energy 
into the precursor ion. Collisions can generate fragment ions, neutralized precursor molecules, 
sputtered surface atoms, and ion–surface reaction products. Inset shows an all-trans configuration 
alkanethiolate (e.g., CH3(CH2)11SAu) self-assembled monolayer on gold [198]. Reproduced with 
permission from Springer, copyright 2008
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the fact that energy transfer in CID is limited by the energy available in the center-
of-mass reference frame (ECOM) [158], which depends on the mass of the target 
gas as described in Eq. 1.3, where m is the mass of the neutral collision gas, M is 
the mass of the ion to be activated, and ELAB is the laboratory collision energy.

Since the mass of the target is increased (assuming entire surface as a collision 
partner) in a typical SID experiment, as compared to collisions with individual sur-
face molecules in the gas phase (CID), ECOM becomes larger and energy transfer into 
the projectile ion can be improved. Although conversion of translational energy into 
internal energy should be more efficient in SID, there are cases where the mass of ter-
minal groups on the target surface influences the amount of energy transfer [216]. SID 
reactions are prevalent in the hyperthermal collision energy regime (i.e., 1–100 eV), 
reaching energies of the order of or greater than chemical bond energies, allowing 
bond cleavages and rearrangement reactions [158, 217]. Upon impact with the target 
surface, projectile ions can scatter in an elastic, inelastic, or in a chemically reactive 
way [218]. Reactive scattering includes charge-changing collisions and ion–molecule 
association reactions (new bonds formed). Out of those, inelastic and reactive scatter-
ings are the most common processes observed in SID, based on the typical SID colli-
sion energies implemented [158]. Generally, the SID activation mechanism has been 
rationalized as a two-step process where the projectile ion hits the surface inelasti-
cally (interaction time of ion with surface ≈10−14 s) forming an exited ion (m1

+⋅) with 
enough internal energy, which then undergoes delayed gas-phase dissociation (typi-
cal maximum rate constants for unimolecular dissociations are in the order of 1010 to 
1012 s−1) after it leaves the surface, as described in Eq. 1.4. This mechanism has been 
suggested as a plausible explanation to account for similarities found in CID and SID 
product ion spectra for some systems [158, 218]. Although fragmentation of organic 
ions by SID and CID shows similar sets of fragment ions in some systems, their abun-
dances vary considerably [218]. Another mechanism has been proposed, and this 
involves decomposition of the projectile ion at the surface (at high collision energies 
reaching 30 eV), resulting in fragment ions with the same kinetic energy [215].

In SID, energy is deposited in a large and fast deposition step. This helps to mini-
mize rearrangement product formation (low-energy competitive reactions) and allows 
access to higher-energy pathways such as side-chain cleavage, as compared to a slow 
heating CID process where ions are gradually activated [170, 213, 219]. SID also 
allows obtaining narrow internal energy distributions and provides excellent control 
of energy deposition into the projectile ion. This allows deposition of small and large 
amounts of internal energy, providing access to a variety of fragmentation pathways 
dependent on the collision energy used (see Fig. 1.7) [198, 218, 220]. Besides obvi-
ous advantages such as activation of high-mass ions (peptides and proteins) with high 
dissociation thresholds, other advantages of this technique over CID are the absence 
of collision gas (i.e., eliminating the gas load from the instrument) and 100 % interac-
tion efficiency since the surface is put directly in the path of the ion beam [158, 198]. 
Also, it has been demonstrated that lower kinetic energies can be used for SID, since 
the target is substantially more massive as compared to typical CID lower-mass targets 

(1.4)m+

1 → m+·

1 → m+

2 + m3
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(Fig. 1.8). The SID technique has provided reproducible spectra, including good sig-
nal-to-noise ratios, and has shown its potential for isomer distinction, based on the 
narrow range of internal energies deposited [221]. Some disadvantages of the tech-
nique are poor ion-optical quality of the emerging ion beam and the nonlinear colli-
sion geometry, differing from linear arrangement typically used in MS/MS instrument 
employing CID [218].

Many surfaces and mass analyzers have been used for SID applications. 
Surface studied includes metals, graphite, diamond, and functionalized alkanethi-
olate self-assembled monolayer (SAM) films (e.g., hydrocarbon and fluorocar-
bon). Surface selection is very important since this can affect the dissociation 
efficiency by adding other competing processes. Examples include neutraliza-
tion, chemical sputtering from the surface, and ion surface complex reactions [215, 
218, 222]. A strategy to minimize neutralization of the incident ion beam has 
been the utilization of SAM surfaces, specifically with high ionization potentials  
(e.g., fluorinated SAMs) to avoid charge transfer mechanisms between projectile ions 

Fig. 1.7  Comparison of internal energy distributions in Fe(CO)5
+·  upon collision (a) at a solid 

surface and (b) with Ar under single-collision conditions [218]. Reproduced with permission 
from Elsevier, copyright 1990
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and surface [223]. Some mass analyzers reported for SID applications include dual 
time-of-flight (TOF) ion mobility (IM) SID [224], matrix-assisted laser desorption/
ionization (MALDI)-IM-SID-TOF [225, 226], sector-TOF [227], dual quadrupole 
[227], quadrupole TOF [228], Fourier transform ion cyclotron resonance (FT-ICR) 
[229], and magnetic sector–electric sector–quadrupole mass filter (BEEQ) [230]. 
While most SID applications are focused on protein and peptide analysis, which is 
the focus of this chapter, this technique has been used for small molecule analysis 
[190, 231–238] such as fullerenes [239, 240] and metal clusters [241], most of which 
involved surface composition analysis, characterization of reactions between surface 
adsorbates and projectile ions, and projectile ion structure determinations.

Structural characterization of proteins and peptides via SID has been exten-
sively explored, taking advantage of the well-defined internal energy distribu-
tions deposited and the ability to overcome energy thresholds in large biological 
species, which allows their activation and broad sequence coverage, not always 
provided by methods such as CID [201, 202, 223]. Cooks et al. showed the first 
applications toward peptide characterization (tetrapeptide Met-Arg-Phe-Ala) 
[242]. Later, applications involved the use of SID in FTMS, which showed exten-
sive fragmentation of oligopeptides at 48 eV collision energies, making sequence-
specific dissociations possible for large ions (>3,000 m/z, usually not possible 
via CID for large oligopeptides, Fig. 1.9) [243]. SID has been used to refine the 
“mobile proton” model (proton transferred to cleavage site by internal motions 
in the peptide, i.e., among backbone protonation sites) and to understand unu-
sual peptide fragmentation pathways, providing critical knowledge on how pep-
tide/protein fragment helping protein identification via a more complete peptide 
sequence coverage [199].

Fig. 1.8  Fragmentation efficiency curves for dodecamers of TaHSP16.9 dissociated via SID or 
CID. Much lower laboratory collision energy is needed to fragment TaHSP16.9 when a surface is 
used as the collision partner [196]. Reproduced with permission from Springer, copyright 2008



22 I. Cotte-Rodriguez et al.

Since early applications involving characterization of small peptides  
[244–246], SID has found an integral role in the characterization of larger systems 
such as proteins [202]. Figure 1.10 shows the SID spectrum for carbonic anhy-
drase (M+23H)23+, a 29 kDa protein which primarily yields fragments via amide 
bond cleavages (y/b) [202]. SID has been successfully used to fragment protein 
complexes over 200 kD [196]. Recently, SID has played a complementary role in 
structural biology, that is, characterization of macromolecular assemblies (e.g., large 
protein complexes) [185, 186, 196, 228]. An example of such application is shown 
in Fig. 1.11 for cytochrome c dimmers [196]. By using SID over a broad range 
of collision energies, it leads to the formation of 5+ and 6+ monomers from the 
11+ charge state of cytochrome c, that is, the expected charge states if 11 charges 
are split between two equivalent subunits. When the same experiment is performed 
using CID, charge distributions of 8+ and 3+ monomers are achieved, suggesting 
an unfolding mechanism where one monomer gets enriched. This shows the ability 
of the SID process to reduce unfolding (as a consequence of the one-step activation 
of SID, which provides high-energy deposition within a short time frame, allow-
ing subunit dissociation on a time scale faster than that of protein unfolding) during 
activation of the protein complex, allowing access to dissociation pathways that lead 
to charge-symmetric dissociation, that is, obtaining critical substructure informa-
tion [196]. Charge-symmetric product ions have been obtained via SID for several 

Fig. 1.9  48 eV SID spectra of renin substrate tetradecapeptide (MW 1758, 100 scans), atrio-
peptin III (MW 2549, 200 scans), and RSBP (MW 3054, 200 scans) (top to bottom) [243]. 
Reproduced with permission from Springer, copyright 1990
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Fig. 1.10  SID spectrum of carbonic anhydrase (M+23H)23+ using VSurf = −52 V, 
Vexcrec = +0 V, and Vft = + 52 V for 37 μs; sum of eight scans [202]. Reproduced with permis-
sion from ACS, copyright 1995

Fig. 1.11  Energy-resolved 
SID of the 11+ dimer 
of cytochrome c. The 
dimer (D11+) dissociates 
into monomers with an 
approximately equal 
partitioning of the precursor 
ion charge, regardless of 
the SID collision energy. 
Monomer product ions are 
labeled with an M, followed 
by their respective charge 
state [196]. Reproduced with 
permission from ASMS, 
copyright 2008
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protein complexes including dimmers, tetramers, pentamers, dodecamers, and hexa-
meric complex containing distinct types of subunits [186, 196, 247, 248].

1.4.2  Photodissociation

The exponential growth in applications of MS in biological fields has stimulated 
the exploration of new ion activation/dissociation methods capable of meeting the 
versatile needs for determining sequences, modifications, interactions, and confor-
mations of biopolymers [249, 250]. Most agree that CID dominates the field, but 
recent inroads in electron- and photon-based activation methods have cemented 
their role as outstanding alternatives [249]. Photodissociation (PD) generally 
entails using a laser to irradiate ions with UV, visible, or IR photons, thus resulting 
in internal energy deposition. The activation process can be extremely rapid and 
efficient, as well as having the potential for high total energy deposition [250]. PD 
offers several compelling advantages over other fragmentation techniques. First, 
PD allows better control of energy. In other words, the specificity/selectivity of 
photon/chromophore interactions determines the location and amount of energy 
introduced into a molecule [249, 251]. Second, ultrafast energy deposition allows 
high-throughput analysis. Even the low-energy PD such as infrared multiphoton 
dissociation (IRMPD) takes place in millisecond time scale [252, 253] while for 
UVPD occurs in the nanosecond to microsecond range [251]. Third, PD only 
needs simple implementation of “trapping” mass spectrometers by drilling a hole 
in the trap and adding a quartz window [251]. Fourth, ion-scattering effects can 
be alleviated by using photons instead of collision [249]. Both precursor ions and 
product ions may undergo photoactivation and dissociation, leading to extensive 
fragment ions that may provide a more specific structural fingerprint or may be 
useful for database search.

However, the various advantages of PD do not come without any drawbacks: 
the expense of a laser is an unavoidable upfront cost and the concerns about laser 
safety [249].

1.4.2.1  Implementation of Photodissociation

In PD experiments, ions and photons should be located in the same place at the same 
time to enable absorption of light by the ions to trigger bond cleavage. This require-
ment needs “trapping” instruments, in which ions can be stored and accumulated for 
some period of time. Linear ion trap and ion cyclotron resonance mass spectrom-
eters are well suited for PD owing to the instrument geometries which facilitate the 
introduction of the laser pulse [251]. Besides the addition of a quartz window, access 
holes in ion traps are required. These holes are typically drilled through the ring elec-
trode of the ion trap (Fig. 1.12). An alternative setup for laser introduction is through 
a hole in the end-cap electrode which has also been proved to be an effective option.
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1.4.2.2  Infrared Multiple Photon Dissociation

Infrared multiple photon dissociation (IRMPD), like traditional CID, is classified 
as a “slow heating” method due to the relative low energy of photons (~0.1 eV 
for a typical CO2 laser), allowing multiple photons to be absorbed to promote 
dissociation [250, 254]. The photons used in IRMPD may originate from a laser 
with wavelengths in the infrared range, or from the blackbody irradiation, which 
is called blackbody infrared radiative dissociation (BIRD) [255]. CO2 laser is the 
most popular choice for IRMPD since it is widely available and affordable. Also, 
the wavelength of CO2 (10.6 μm) can be absorbed by a large amount of organic 
molecules [250].

Generally, IRMPD offers several advantages over CID. First, the non-reso-
nant nature of IRMPD allows the simultaneous activation and dissociation of 
both precursor ions and the primary fragment ions, resulting in a richer array of 
fragment ions. Also, since IRMPD is not a collision-based activation process, 
the loss of ions or collision scattering can be minimized compared to CID. In 
addition, the energy deposition in IRMPD is independent of the rf voltage, so it 
displays the collection of full MS/MS spectra due to the alleviation of the low-
mass cutoff associated with traditional CID in QIT instrument [250]. IRMPD 
has proved to be an effective activation/dissociation method for analytes from 
drug to natural products, peptides, nucleic acids, DNA/drug complexes, etc. 
[250, 256].

Figure 1.13 shows the performance of IRMPD versus CID in terms of the dis-
sociation of multiply charged peptide ions, such as melittin (MW 2845.7 Da). 
The low-mass cutoff feature of IRMPD is clearly demonstrated in which a higher 
sequence coverage is obtained.

Low energy of IR photons requires multiple photons to be absorbed for effec-
tive activation of large molecules. The energy deposition needs time to accu-
mulate which causes the low IRMPD efficiency for large molecules [250].  

Fig. 1.12  Photodissociation in a quadrupole ion trap [250]. Reproduced with permission from 
John Wiley and Sons, copyright 2009
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Several approaches have been developed to overcome this problem, which 
includes the use of pulsed-valve introduction of helium, thermally assisted 
IRMPD, and attachment of IR chromophores to analytes of interests [258, 259]. 
The later one is the most commonly used. For example, phosphate and phospho-
nate groups are the outstanding IR absorption groups.

Recently, an alternative PD technique termed “femtosecond laser-induced 
ionization/dissociation” (fs-LID) has been introduced [260, 261]. In this tech-
nique, a pack of ~1 × 105 near-infrared photons (~800 nm, 1.55 eV/photon) 
which has relative low energies is used for energy deposition and dissociation 

Fig. 1.13  a IRMPD and b CAD mass spectra of the [M+4H]4+ melittin precursor ion. The 
precursor ions are indicated by asterisks [257]. Reproduced with permission from Elsevier,  
copyright 2004

Fig. 1.14  fs-LID mass spectrum of the singly phosphorylated peptide LFpT-GHPESLER [260]. 
Reproduced with permission from Elsevier, copyright 2010
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in ultrashort time scale (<35 fs). The fs-LID is characterized as a radical-
directed dissociation in which the losses or rearrangements of the labile func-
tional groups such as phosphate are minimized (Fig. 1.14). This feature allows 
fs-LID to be used to characterize the phosphopeptide precursor ions as well as to 
locate the phosphate groups. Also, in fs-LID, the precursor ions with low charge 
states undergo the most efficient fragmentation due to the low ionization poten-
tial compared to ions with higher charge states [260]. The mechanism involved 
in fs-LID is probably via a tunneling ionization mechanism. The high electric 
field caused by the packet of photons is capable of warping the pseudo-potential 
energy surface of the ions to allow an electron to escape efficiently. Then, the 
resulting radical intermediate ([M+H]+ → [M+H]2+⋅) undergoes relative non-
selective dissociation to form abundant peptide sequence ions (a, b, c, x, y, and z 
ions) [260].

1.4.2.3  Ultraviolet

Compared to IRMPD, photons used in UV dissociation have higher energy, which 
enables single-photon fragmentation [262]. These beams of higher energy expand 
the utility of PD methods for MS [262]. UVPD has some advantages over other 
dissociation methods. First, UVPD occurs on a time scale in the nanosecond to 
microsecond range, which is several orders of magnitude faster than IRMPD 
[251]. This is due to the UV lasers exciting the peptide electronically instead of 
through vibrational energies [251]. Second, energy deposition into the molecules 
is controllable due to the specificity of photon/chromophore interactions. Typical 
UV wavelengths are commonly used for dissociation, as listed in Table 1.1.

Absorption of UV photons leads to higher internal energy deposition than 
IRMPD. However, absorption of UV photons is a more selective process, that is, 
to say that only the ions with suitable UV chromophores can absorb. Recently, 
there have been significant applications of UVPD on the analysis of nucleic 
acids, peptides, and oligosaccharides [263–273]. In the case of molecules in the 
absence of natural chromophores, derivation with the high photoabsorptivity 
functional groups allows the molecules to absorb the specific wavelength. For 
example, peptides do not contain natural chromophores at 355 nm, i.e. cannot be 
dissociated upon absorbing photons at 355 nm. By attaching a molecule, 7-amino-
4-methyl coumarin-3-acetic acid succinimidyl ester (AMCA), containing a UV 

Table 1.1  Relevant energies for UV lasers [251]. Reproduced with permission from John Wiley 
and Sons, copyright 2009

Laser λ (nm) E (kj mol−1) E [eV]

F2 excimer 157 762 7.9
ArF excimer 193 620 6.4
Nd:YAG (4th harmonic) 266 450 4.7
Nd:YAG (3rd harmonic) 355 337 3.5
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Fig. 1.15  ESI-MS/MS spectra of the doubly protonated N-terminally modified AMCA-
modified peptide FSWGAEGQR by (a) CID (0.50 V) and (b) UVPD (15 pulses at 10 Hz) [249]. 
Reproduced with permission from Elsevier, copyright 2011

Fig. 1.16  a Photodissociation spectrum for the +10 charge state of iodo-cytc. b Photoexcitation 
of the unmodified protein. c The radical protein generated in (a) is fragmented by CID. d CID 
spectrum of the unmodified protein [273]. Reproduced with permission from ACS, copyright 
2008
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chromophore at this wavelength, this problem can be solved [249, 274]. A com-
plete series of y ions down to y1 were observed, which helped to sequence the 
peptide (shown in Fig. 1.15). The lack of b ions in UVPD is caused by the high 
photoabsorptivity for the incorporation of the modifications, in which the b ions 
undergo rapid and effective consecutive fragmentation, finally leading to disap-
pearance from the spectra [249].

Intact protein ions can also be efficiently and selectively cleaved at tyrosine or 
histidine residues in gas phase upon the UV irradiation (266 nm) after iodination 
modification [273]. Modification of tyrosine to iodo-tyrosine followed by UVPD 
of the carbon–iodine bond generated a radial site specifically at the modified resi-
due. The subsequent dissociation of the protein is largely dominated by radical-
directed reactions, such as the backbone fragmentation at the modified tyrosine 
site. This method is very useful in terms of reducing the database searching time 
by several orders of magnitudes [273].

Figure 1.16 shows an example for the iodine-modified cytochrome c dissocia-
tion. PD of the I-modified Cytoc gives rise to the radical protein ion by losing I• 
with excellent yield compared to the unmodified protein with no PD (Fig. 1.16a, b). 
Radical protein ions generated from PD for the modified protein undergo further 
CID, providing further fragmentation (Fig. 1.16c). Each of these radical-directed 
fragments is produced within four amino acids of the modified tyrosine residue. In 
comparison, few fragments are resolved from the bulk of non-selective cleavages 
for the unmodified proteins (Fig. 1.16d). This demonstrates that photoactivation of 
iodo-tyrosine is an effective method for generating a radical site selectively, even 
when attached to an intact protein [273].

1.4.3  Electron-Induced Dissociation

1.4.3.1  Electron Capture Dissociation

Gas-phase ion–electron and ion–ion reactions are getting popularity for the 
activation of peptide ions in tandem mass spectrometry. Electron capture dis-
sociation (ECD) [275] is a gas-phase ion fragmentation technique for structural 
elucidation in FT-ICR-MS [275, 276], which has been established for top-down 
sequencing. The first ECD-type mass spectra were observed in UVPD experi-
ments, in which the protein samples were trapped in an FT-MS cell and irradi-
ated with 193 nm laser pulses, followed by a charge reduction effect producing  
c, z fragments [277]. After that, the UV laser was replaced by a standard EI 
source (filament-based electron gun) and the ECD technique was born. ECD was 
first demonstrated by Roman Zubarev and Neil Kelleher in Fred McLafferty’s 
laboratory in 1998 [275], and since then, more and more groups are adopting this 
approach.

ECD spectra of multiply charged protein ions usually produce the c- and z-type 
ions by cleavage of the N–Cα bond [275], which has some unique attributes 
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including the preferential cleavage of disulfide bonds in gaseous multiply proto-
nated proteins by low-energy electrons due to the high S–S affinity for H• atoms 
[278], location of  PTMs [279–282], preservation of the non-covalent bonds [283], 
and extensive backbone cleavage [284]. However, the mechanism of ECD is still 
under debate, and both the Cornell mechanism and the Utah-Washington mecha-
nism (UW) have been proposed [285]. The first one was originally formulated by 
the Cornell group [278, 286]. An electron is captured at a charge state, followed by 
hydrogen transfer to a proximate amide carbonyl forming an aminoketyl interme-
diate, and the resulting fragments are the residues of the peptide N-terminus and 
C-terminus, denoted as c and z ions, respectively [285] (Scheme 1.6).

The second one has been proposed independently by the group of Simons [287] 
and Tureček [288]. The UW mechanism considers that the electron capture was 
directly attached to amide π* orbitals, which generates an anion-radical superbase, 
with high proton affinity. It is possible to abstract an H• from a protonated site to 
generate fragile aminoketyl radicals, thus triggering backbone dissociation via fac-
ile N–Cα bond cleavage to generate c and z ions [285] (Scheme 1.7).

However, there are still some challenges for this ECD method. For example, 
sometimes it is difficult to separate the fragments cleaved by ECD due to the intra-
molecular interactions between the residues in large proteins. In addition, the non-
covalent intramolecular bonding surviving ECD is an obstacle to obtain abundant 
backbone fragmentation in the sequencing of protein larger than 20 kDa [289]. 
To solve this problem, activated ion electron capture dissociation (AI-ECD) was 
introduced [290]. Protein ions are first preheated by collisions with inert gas mol-
ecules or atoms or by irradiation with infrared laser light, and then, ECD is applied. 
This preheating of protein ions can cause unfolding of the protein and break the 

Scheme 1.6  Cornell mechanism [285]. Reproduced with permission from ACS, copyright 2006
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intramolecular interactions. A protein solution was sprayed into the MS entrance 
capillary from the right side and then heated for ion desolvation and folding retarda-
tion. The ions were reaccelerated by Vpre through the pre-skimmer collision region 
of short mean-free path to cleave weak non-covalent bonds. Ions were acceler-
ated by Vpost through the post-skimmer region to cleave the strong backbone cova-
lent bonds in order to get more sequence information [291]. Thus, this approach 
extended top-down mass spectrometry to proteins with masses greater than 200 kDa.

FT-MS is the most effective device for protein sequence analysis by ECD, even 
if it is costly and requires more expertise than other mass spectrometers. The high 
mass resolving power of FT-MS instrumentation [292] affords resolution of over-
lapping fragment ions to obtain a more confident assignment. Bruker [293] and 
IonSpec [294] produce commercial FT-MS instruments that are used for ECD 
experiments without hardware modification. Also, a more efficient low-energy 
source, based on an indirectly heated dispenser cathode, can reduce the ECD 
experiment time from seconds to milliseconds, which improved the ion dissocia-
tion efficiency [283]. Thus, most top-down analyses have been performed with 
FT-MS instruments.

With recent technological developments, ECD has found a lot of applications 
in biomacromolecular research, including the characterization of intact proteins 
[279–282], nucleic acids, characterization of protein conformation [295–299], 
location of protein–ligand binding sites [300–302], and protein–protein assembly 

Scheme 1.7  Utah-Washington mechanism [285]. Reproduced with permission from ACS, copy-
right 2006
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characterization [289, 303, 304]. For example, Gross group introduced ECD for 
the sequence analysis of intact yeast alcohol dehydrogenase (ADH) tetramer 
with 147 kDa using native electrospray MS [303, 304] (shown in Fig. 1.17). This 
novel approach to study protein assemblies that combines ECD, native ESI, and 
FT-ICR-MS can sequence the flexible regions of the assembly subunits of ADH, 
concanavalin A, and photosynthetic Fenna–Matthews–Olson antenna protein com-
plex by ECD or AI-ECD. In addition, non-covalent metal-binding sites for the 
concanavalin A assembly can also be determined. Furthermore, the regions under-
going fragmentation initiated by CID are consistent with the B-factor from X-ray 
crystallography of that protein, which is a measure of the extent that an atom can 
move from its coordinated position as a function of temperature or crystal imper-
fections. The approach can provide sequence information, non-covalent metal-
binding sites, assembly stoichiometry, structural insights that pinpoint flexible 
regions [304], opening up a new top-down approach to characterize macromolecu-
lar assemblies [289].

In addition, negative ion electron capture dissociation (niECD) [305] was 
recently developed to allow the localization of PTMs and de novo sequencing for 
acidic peptides, which have an improved ionization efficiency in the negative-
ion mode compared to the positive-ion mode. The peptide anions can capture 
3.5–6.5 eV electrons, generating radical species with increased charges and yield-
ing peptide backbone bond fragmentation analogous to that observed in cation 
ECD/ETD (including the preservation of PTMs and higher sequence coverage 
compared to CAD, Table 1.2) [305]. Note that backbone N–Cα bond cleavages to 
yield c/z ions are indicated with red lines, and backbone amide bond cleavages to 

Fig. 1.17  ADH sequence 
showing the sites of ECD 
cleavages (top) and crystal 
structure of the yeast ADH 
tetramer (2HCY in PDB) 
with the N-terminal 55 
residues that were sequenced, 
highlighted in red (bottom) 
[303]. Reproduced with 
permission from Springer, 
copyright 2010
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yield b/y ions are indicated with green lines. Dashed lines indicate accompanying 
phosphate loss. Lack of indicated fragments in CAD is due to extensive neutral 
losses (e.g., HPO3, H3PO4, and H2O).

1.4.3.2  Electron Transfer Dissociation

In addition to the prevalent ECD approaches, electron transfer dissociation 
(ETD) is also one of the electron-induced fragmentation methods for fragmenting  
protein/peptide ions. ETD was first invented by the Donald Hunt group [306, 307], 
which shares many similarities with ECD, such as the preferential and extensive 
N–Cα bond cleavage, the preservation of labile modifications, and the ability to 
differentiate certain isomeric amino acid residues by secondary and radical-
induced rearrangements [308–310]. Furthermore, the mechanism of ETD is still in 
debate as for ECD. ETD method dissociates ions utilizing ion/ion chemistry [307, 
311–314], in which an electron from a radical anion is transferred to a protonated 
peptide, inducing the fragmentation of the peptide backbone via the cleavage of 
the N–Cα bond (Scheme 1.8). Similar to ECD, ECD also produces the c- and 
z-type ions [308].

The differences between ETD and ECD are that ETD uses a RF quadrupole 
ion trapping device instead of an FT-ICR-MS for ion trapping and detection [307]. 
The advantage is that RF ion trap mass spectrometers are of low cost, of low main-
tenance, and widely accessible compared to FT-ICR-MS [308]. In addition, for 
ETD, some energy is consumed to overcome the electron affinity of the anion rea-
gent, and the collisional cooling is provided by a higher-pressure ion trap. Thus, 
ETD is considered to be a “colder” fragmentation than ECD, which can preserve 
PTMs, even sulfations, the most labile of PTMs [315].

Although ETD has advanced performance, the efficiency of top-down ETD 
fragmentation is reduced by non-covalent interactions, which are necessary to be 
ruptured before the product ions are detected individually for ETD. This can be 

Table 1.2  Comparison of niECD and CAD for phosphopeptide anions [305]

Reproduced with permission from ACS, copyright 2011
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achieved by post-ETD collisional activation (ETcaD) [316]. ETcaD is a supple-
mental collisional activation (CAD) method targeting the non-dissociated (intact) 
electron transfer (ET) product species ([M+2H]+⋅) to improve the ETD efficiency 
for the doubly charged peptide ions [316]. In addition, ETD efficiency can be 
enhanced by modifying the peptides with fixed charge tags [317].

ETD-based top-down MS has been used in-depth characterization of PTMs in 
large peptides, small- and medium-sized proteins, and non-covalent protein com-
plexes [41, 307, 310, 318, 319]. To date, it has been applied for the structural 
analysis of intact 150 kDa monoclonal antibodies and immunoglobulins G (IgGs) 
[320]. In addition, negative electron transfer dissociation (NETD) is compatible 
with fragmenting peptide and protein ions, with backbone cleavage at the C–Cα 
bond, resulting in a- and x-type product ions (shown in Fig. 1.18) [311, 321].

1.4.3.3  Electron Detachment Dissociation

Electron detachment dissociation (EDD) is another the electron-induced dissocia-
tion method, used for fragmenting anionic species [322]. This technique is mainly 
applied to the structural analysis of peptides [323], carbohydrates [324], oligo-
nucleotides [325–328], and proteins [329]. EDD was first introduced by Zubarev 
and co-workers in 2001 [322]. In EDD, irradiation of multiply deprotonated ions 

Scheme 1.8  ETD fragmentation scheme [307]. Reproduced with permission from PNAS, copy-
right 2004
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with >10 eV electrons results in electron detachment to form the radical ions [M–
nH](n−1)−⋅ which can further undergo backbone dissociation, leading to the forma-
tion of a-, c-, and z-type ions [322]. The first demonstration of EDD for the analysis 
of the large proteins was with ubiquitin [329], whereas EDD can be applied to the 
analysis of RNAs and 34 nt RNA dissociated by EDD [330]. Figure 1.19 shows 
the EDD spectrum of di-anions of the sulfated peptide caerulein obtained at 21 eV, 
and the most prominent losses from [M–2H]−⋅ are –CO2 and –SO3, along with the 
backbone cleavages, generating the a-, c-, and z-type ions. In addition, most frag-
ment ions preserved the sulfate group [322].

1.4.3.4  Electron Ionization Dissociation

Electron ionization dissociation (EID) can be applied to singly charged precursor 
ions (as compared to ECD and EDD). The mechanism of EID is probably attrib-
uted to irradiation of trapped cations [M+nH]n+ by high-energy electrons (at least 

Fig. 1.18  Generalized reaction scheme by which peptide anions are oxidized by fluoranthene 
radical cations to produce a- and x-type product ions (above) [311]. Below is an example NETD 
MS/MS mass spectrum resulting from the fragmentation of the standard peptide human angioten-
sin I ions [321]. Reproduced with permission from ASMS, copyright 2005 and ACS, copyright 
2012
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10 eV higher than the ionization threshold of the cations), which causes simul-
taneous ionization and electronic excitation of [M+nH]n+, generating a radical 
[M+nH](n+1)+⋅ that subsequently undergoes fragmentation and gives both side-
chain losses and backbone fragmentation. EID often leads to N–Cα bond cleavage, 

Fig. 1.19  EDD spectrum of di-anions of the sulfated peptide caerulein. The inset shows the 
results of the capture of the hydrogen ions by the di-anions [322]. Reproduced with permission 
from Elsevier, copyright 2001

Fig. 1.20  EID spectrum of singly protonated substance P. (inset) Isotopic distribution of c
2+

10
 

ions [331]. Reproduced with permission from ACS, copyright 2009
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giving rise to c- and z-type ions. The cleavage of C–C bonds is also observed, 
generating preferentially a- and x-type ions [331]. Thus, the EID spectra are very 
complicated, in which ions are generated by both radical pathways and ergodic 
processes. EID can be used in bottom-up proteomics for structural analysis. It can 
also be adopted in the top-down analysis for probing the folded gas-phase protein 
conformations [331]. Figure 1.20 shows the EID spectrum of singly charged ions 
of substance P, showing backbone cleavages for the generation of  a-, x-, c-, and 
z-type ions [331].

1.4.4  Atmospheric Pressure Ion Dissociation Methods

1.4.4.1  Atmospheric Pressure Thermal Dissociation

Atmospheric pressure thermal dissociation (APTD) [332] is a new dissociation 
method used to fragment protein/peptide ions, which is performed under atmos-
pheric pressure outside of the mass spectrometer. Typically, protein/peptide 
ions generated from an ESSI [124] source, a variant of ESI, go through a heated 
coiled metal tube undergoing thermal fragmentation assisted by the high pres-
sure of N2 gas (175 psi as optimized), which results in extensive fragmentation. 
Complementary structure information can be obtained by utilizing neutral re-ion-
ization (NRI), subsequently after APTD using the online corona discharge, mak-
ing it an attractive method to elucidate the primary sequence of proteins/peptides 
[332]. Figure 1.21a shows the apparatus for the methodology of APTD with sub-
sequent NRI. In this APTD-NRI, a pair of metal plates, serving as an “ion switch,” 
was used to deflect all the fragment ions from the gas stream and to leave the 
neutral species for re-ionization by corona discharge. Temperatures ranging from 
230–380 °C were typically used to heat the coiled metal tube.

An important feature of APTD is that some PTMs such as phosphorylation and 
sulfonation in polypeptides could survive the dissociation process. Figure 1.21b 
shows the APTD of phosphopeptide DHTGFLpTEpYVATR at 290 °C, produc-
ing many b and y ions with preservation of labile phosphate groups (e.g., the ions 
b7

−, b8
−, y5

−, y7
−, y9

−, y10
−, and y12

−). These fragments were not observed 
in CID (the inset of Fig. 1.21b shows that few fragment ions are formed upon CID 
of the singly charged deprotonated phosphopeptide ion [M−H]−) [332]. Also, the 
capability of online re-ionization of the neutral fragments following APTD was 
successfully achieved, as exemplified by the case of angiotensin II in both posi-
tive and negative ion modes (Fig. 1.21c, d) [136]. The formation of a series of 
positively charged y ions (y2

+ to y7
+ in Fig. 1.21c) as well as a series of negatively 

charged y ions (y2
− to y7

− in Fig. 1.21d) points to the presence of the correspond-
ing neutrals (i.e., deprotonated forms of y ions) emerging from the hot coiled tube. 
With this additional information, high fragmentation coverage was achieved [332]. 
Therefore, APTD coupling with subsequent NRI provides rich sequence informa-
tion for proteins/peptides.
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1.4.4.2  Low-Temperature Plasma

Low-temperature plasma (LTP) ionization was first developed by R. Graham 
Cooks and Zheng Ouyang et al. in 2008, for ambient DI. Later, the observation 
of peptide fragmentation in nano-ESI after pre-treatment of the nano-ESI emit-
ter with a helium LTP at atmospheric pressure was reported by Xia et al. [333]. 
Figure 1.22a shows the experimental apparatus including a T-shaped glass tube 
with a nano-ESI emitter inside. Helium discharge gas is introduced from the 
bottom into the glass tube, and the LTP is produced by using a dielectric barrier 
discharge (DBD). In addition, an alternating current is applied to the two elec-
trodes. For this experiment, the LTP was first turned on for 2 min without operat-
ing the nano-ESI emitter, and then, a high voltage was applied to the nano-ESI 
emitter containing sample solutions, while the plasma was off. This new frag-
mentation method was applied to more than 30 peptides with different sequences 
and sizes (5–26 amino acids). The results show that a-, b-, and y-type fragment 
ions were generated via the cleavage of amide bonds. This method was also 
applied to phosphopeptides, and it shows the preservation of the modification. 
Figure 1.22b shows the nano-ESI spectrum for a phosphopeptide after plasma 

Fig. 1.21  a Experimental apparatus for recording mass spectrum of ionized neutral frag-
ments after thermal dissociation of peptide/protein ions. b Mass spectrum of phosphopeptide 
DHTGFLpTEpYVATR at 290 °C (y ions with the loss of one phosphate group is labeled with an 
asterisk); mass spectra recorded by ionizing the neutral fragment generated from angiotensin II 
by thermal dissociation showing c positive and d negative ionization modes [332].  Reproduced 
with permission from ACS, copyright 2007
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exposure. Compared to the conventional ion trap CID spectrum shown in the inset 
of Fig. 1.22b, the extensive backbone fragmentation including a series of y ions 
and several a ions were observed with little loss in phosphorylation [333]. This 
method demonstrates that ESI as a soft ionization technique can also generate 
peptide fragmentation.

1.4.4.3  Atmospheric Pressure Electron Capture Dissociation

When atmospheric pressure photoionization was used to ionize hydrophobic 
peptides, in-source dissociation probably resulting from ECD processes was 
observed. Based on this phenomenon, atmospheric pressure electron capture dis-
sociation (AP-ECD) was developed. In this method, photoelectrons were gen-
erated within a commercial PhotoSpray atmospheric pressure photoionization 
(APPI) source, which was used to induce ECD of multiply charged peptide ions 
produced by an upstream heated nebulizer device, leading to b-, y-, and c-type 
ions. The strength of this method is that this technique does not need the spe-
cialized instruments normally used, such as FT-ICR-MS for ECD. Robb’s 
group introduced a AP-ECD ion source where the conventional nanospray ioni-
zation emitters are coupled with the source block and photoionization lamp of 
a PhotoSpray APPI source (shown in Fig. 1.23) [334]. The multiply charged 
peptide ions generated in the spray chamber by the enclosed nanospray source 
are carried into the downstream source block by the nebulizer gas, where they 
interact with the photoelectrons generated by the photoionization lamp. When 
the lamp is turned off, the source operates as a normal nanospray source; when 
the lamp is turned on, photoelectrons are produced and subsequently captured 
by the peptide ions in the atmospheric pressure reaction/transport region, leading 
to ECD. Ions exit the source and are delivered through the vacuum interface for 
mass analysis and detection [334]. This new source shows the capability of pro-
viding qualitative analysis for low-femtomole sample. The coupling of AP-ECD 

Fig. 1.22  a The experimental setup. b Mass spectrum derived from positive nano-ESI of a phos-
phopeptide TRDIYETDYpYRK. The inset shows data acquired from conventional ion trap CID 
of the [M+2H]2+ peptide ions [333]. Reproduced with permission from John Wiley and Sons, 
copyright 2008
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source with capillary LC (LC–AP-ECD-MS) was also developed, which was 
applied to the analysis of substance P, a tryptic digest of bovine serum albumin 
(BSA), and a phosphopeptide mixture [334]. All samples at the femtomole lev-
els were analyzed, and high-quality ECD spectra were obtained. This study also 
indicated that LC–AP-ECD-MS is suitable and useful for the structural analysis 
of peptides and protein digests. Figure 1.24 shows the AP-ECD spectra for two 
phosphorylated peptides separated by LC, showing extensive fragments [334]. 
This example demonstrated the utility of LC–AP-ECD-MS for peptides with 
labile modifications.

Fig. 1.23  Cross-sectional drawing of the AP-ECD source [334]. Reproduced with permission 
from ACS, copyright 2012

Fig. 1.24  AP-ECD spectra from 100 fmol each of two phosphopeptides [334]. Reproduced with 
permission from ACS, copyright 2012
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1.4.5  Other Fragmentation Methods

1.4.5.1  Metastable Ion Dissociation

Since 2005, several research groups proposed the use of metastable atoms to 
achieve precursor ion dissociation [335–340]. This type of dissociation method, 
termed as metastable atom dissociation (MAD), has been introduced in RF ion 
trap instruments. The precursors of interest that are stored in a RF ion trap are 
irradiated by a beam of particles produced by a FAB gun or a glow discharge 
(Fig. 1.25a [340]). A high voltage (up to 10 kV) was applied on the anode of the 
FAB gun, through which the noble gas flows (Fig. 1.25a). A gas discharge occurs 
when the high voltage bias is applied to the anode and surrounding cathode. With 
the generated electrostatic field, electrons flow along the symmetric axis of the 
anode to ionize the neutral gas. These formed ions are accelerated and subse-
quently converted into neutrals via charge exchange reactions with gas atoms. The 
beam of fast neutrals and few remaining ions thus formed exits the gun through 
the 0.5 mm orifice. Along with neutrals and ions in the electronic ground state, 
the beam contains a fraction of particles in electronically excited metastable states 
[340]. Since the particle beam is neutral, there is no problem inherent to the charge 
capacity limitations of ion traps [338]. The interaction of the isolated precursor 

Fig. 1.25  a Scheme of the instrument for MAD (FAB gun and QIT) [340]. b MAD of non-
phosphorylated IKNLQSLDPSH [336]. c MAD of phosphorylated IKNLQSLDPpSH [336]. 
Reproduced with permission from Wiley, copyright 2005 and Elsevier, copyright 2011
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ions with a high or low kinetic energy beam of noble gas metastable atoms pro-
duces extensive peptide backbone cleavages in the form of a-, b-, c-,  x-, y-, and 
z-type ions, as well as preserving PTMs (Fig. 1.25b, c) [336].

It was shown that peptide ion dissociation occurs following two competing 
mechanisms in MAD, penning ionization (PI) and charge reduction [335–337].

M* is the metastable atom. This PI process (Eq. 1.5) generates the radical cat-
ion which is more reactive than the even-electron cation. Then, the radical cations 
undergo some rearrangement reaction to provide fragments [334, 336]. The second 
mechanism of charge reduction is similar to ECD and ETD, which occurs when an 
electron is transferred to the polycation of interests to reduce charge, which is still 
in debate [336]. However, both of the mechanisms agree that an electron transfer 
process is involved to generate a radical bioion that can rearrange, propagate along 
the peptide backbone, and subsequently fragment [336]. MAD is able to analyze 
the same peptides as ECD techniques as well as singly charged peptides which are 
difficult to be fragmented using ECD/ETD methods. MAD can also be used for 
the study of phosphorylated peptides [341, 342].

1.5  Conclusions

In summary, this chapter introduces several classical protein ionization techniques 
including their working principles, strengths, and analytical applications. In addi-
tion, various ion activation methods used for protein/peptide structure analysis 
(viz. tandem mass spectrometry) are covered to illustrate the versatilities of pro-
tein MS. As this field is very dynamic and rapidly developing, it is not possible 
to cover all the methods for protein analysis. The authors apologize for omis-
sions. As the performance of current MS ionization and dissociation technologies, 
although highly effective, cannot meet all real-world demands in biochemistry, 
structural biology, and biopharmaceutical development, we foresee that these 
methods will undergo further development; the only limitation seems to be our 
imagination [36].
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2.1  Introduction

Historically, new drug entities arose from combinatorial chemistry of small 
molecules. Today, a rapidly increasing number of new drugs, called biopharma-
ceuticals, are being developed which are based on biological molecules such as 
peptides, proteins, and oligonucleotides. For example, as of 2011, there were 
60 peptide drugs available and at least another 400 in late-stage clinical tri-
als. Overall, there are over 600 biologically based drugs in development, many 
of which are antibody based [1, 2]. In fact, according to a recent study through 
the Peptide Therapeutics Foundation, there are approximately 17 new peptide 
drug entities going into clinical trials each year. In addition, the study and iden-
tification of peptide biomarkers are critical areas of research. Advances in the vari-
ous technologies applied for drug discovery and biomolecule characterization  
(i.e., recombinant DNA, fermentation, proteomics, genomics, and informatics) [3] 
have made it possible for drug manufacturers to successfully develop and character-
ize biopharmaceuticals. These types of compounds have been used to treat a variety 
of serious diseases such as diabetes, cancer, arthritis, and hemophilia. Perhaps, the 
oldest and best known peptide therapeutic is insulin. While originally dosed by injec-
tion, current research focuses on developing nasal or transdermal dose formulations 
[4]. Several peptide-based drug products, including goserelin, leuprolide, and octreo-
tide, have even reached over a billion in sales. One additional example is the synthetic 
peptide desmopressin, a modified form of the human hormone arginine vasopressin. 
It is prescribed as a replacement for antidiuretic hormone (vasopressin) and is used 
to treat bed-wetting and diabetes insipidus. Desmopressin provides several treatment 
benefits over recombinant vasopressin. It degrades more slowly, enabling less fre-
quent dosing, and it does not raise blood pressure unlike the unmodified peptide.

While peptide biomarkers are endogenous peptides whose relationship with 
a disease state has been identified, therapeutic peptides are typically modified or 
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synthetic versions of substances that already exist in the body and therefore, as 
drugs, tend to be better tolerated than many small molecule–based medicines. In 
addition, by their very nature, these drugs are often more specific, as they have 
been designed to mimic behavior of endogenous substances and are mapped to 
specific receptor proteins. Relative to small molecules, other benefits of peptide 
drugs include greater activity and potency, lower toxicity, improved molecular rec-
ognition, no accumulation in tissues and organs, and minimal drug–drug interac-
tions. There are also drawbacks to peptide drugs and their development. Peptide 
drugs tend to have low oral bioavailability, often necessitating injection rather than 
preferred delivery methods such as oral dosing. In addition, their solubility is poor, 
they are rapidly cleared from the body and/or broken down by enzymatic activ-
ity, and finally, due to their hydrophilicity, it is difficult to get these drugs across 
biological membranes. Poor membrane transfer accounts for the fact that many 
peptide drugs are aimed at extracellular targets. A few companies, however, do 
focus on the development of peptide drugs for intracellular or “undruggable” tar-
gets. Some of these issues have been resolved through recent research efforts [5]. 
For example, PEGylation, liposomal encapsulation, and conjugation to small mol-
ecules, antibodies, or proteins have been shown to be effective means of improv-
ing the stability and in vivo half-life of peptide therapeutics [6].

Due to the increasing number of peptide therapeutics and biomarkers, there 
exists an immediate need for an efficient method development workflow for the bio-
analysis of peptide therapeutics as well as a comprehensive understanding of their 
differences with respect to small molecules. Quantification of peptides is important 
not only for synthetic peptide drugs, but also for peptide biomarkers and for quanti-
fication of proteins based upon measurement of unique or signature peptides.

Naturally, the determination of pharmacokinetic (PK) parameters and met-
abolic fate is as critical during the drug discovery and development process for 
peptide therapeutics as for small molecules. These data are typically generated 
by liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis of 
in vitro (liver microsomes, CaCo2 cells, etc.,) or in vivo (animal or human fluids 
or tissues) samples. In “small molecule” analysis, LC/MS/MS, specifically triple 
quadrupole MS, has become the technique of choice for these activities due to its 
unparalleled selectivity and sensitivity.

In contrast to small molecules, the gold standard for biomolecule quantitation 
has historically been ligand-binding assays (LBAs) such as enzyme-linked immu-
nosorbent assays (ELISAs) and radioimmunoassays (RIAs). While these types of 
assays remain the primary and most widely accepted method of quantitating pro-
tein and antibody-based therapies, LC/MS/MS has begun to emerge as the tech-
nique of choice for quantitation of synthetic peptides and is increasingly being 
used to analyze endogenous peptide biomarkers [7]. While ligand-binding assays 
have high sensitivity, specificity, and rapid “plate reader” detection, they also have 
several shortcomings that are influencing the transition to LC/MS/MS methods. 
LBAs do not quite meet the demands of a high-throughput discovery setting where 
the specific biological reagents are not yet available. Not only are specific reagents 
necessary, but also the time required to develop these reagents may be on the order 
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of several months. Furthermore, the reproducibility and reliability of quantitative 
results are highly dependent on reagent quality and batch-to-batch consistency. In 
addition, LBAs have limited linear dynamic range (often requiring extensive dilu-
tion of samples to accommodate the concentration range of a PK study), cross-
reactivity (yielding erroneous or inaccurate results), and matrix interferences. 
LBAs also have trouble distinguishing between the drugs and metabolites or other 
closely related substances. Finally, an individual assay is required for each peptide 
of interest, limiting multiplexing ability.

LC/MS/MS is an attractive alternative to LBAs because it is characterized by 
short method development times, broad linear dynamic range, a higher degree of 
accuracy and precision (reflected in more stringent regulatory guidelines) [8], high 
specificity, and the ability to simultaneously quantify multiple peptide therapeutics 
within a single injection and/or method. In addition, LC/MS/MS is already widely 
used in most bioanalytical laboratories, thus making it accessible to those skilled 
with the technology.

Development of LC/MS/MS assays (including sample extraction prior to analysis) 
for peptides is not without its challenges. There are those challenges related specifi-
cally to the nature and handling of peptides, and there are others related to evolving 
regulatory guidelines and our growing understanding of the possible limitations of 
LC/MS/MS. For example, bioanalytical methods have historically relied on the selec-
tivity of triple quadrupole mass spectrometry to generate acceptable data. Reliance 
on MS selectivity was so strong, in fact, that ballistic LC gradients and simple quick 
and dirty sample preparation techniques such as protein precipitation became com-
monplace. The evolution of regulatory guidelines since 2007 now requires that sci-
entists develop more selective and reliable bioanalytical methods [9, 10]. Discussions 
relating to acceptable results from incurred sample reanalysis (ISR) not only impact 
assay reproducibility but also bring a new focus to analyte stability in various matri-
ces (i.e., plasma, blood, urine). New guidelines for the acceptable variability of 
matrix effects will require the most selective bioanalytical method possible, placing 
renewed focus on the bioanalytical method as a whole. These guidelines force bio-
analytical scientists to consider the chromatography, mass spectrometry, and extrac-
tion protocol with equal importance to provide accurate and reproducible results. 
From a handling and analysis standpoint, physiochemical properties of peptides dif-
fer from small molecules in many ways, and in some instances, conventional “small 
molecule” techniques and strategies may not be directly applicable to the analysis of 
peptides. One such difference is the existence of multiple charge states for peptides, 
which decreases MS sensitivity and limits the specific MS instrumentation that can 
be used. For instance, only triple quadrupole instruments with at least a 1,500 dalton 
mass range on the first resolving quadrupole can detect the triply charged state of cer-
tain larger therapeutic peptides (>3,000–4,000 MW). Careful attention must also be 
paid to the choice of precursor and fragment ions to avoid isobaric interferences and 
to improve specificity for the peptide of interest. Furthermore, the zwitterionic nature 
of peptides, their tendency to bind in a concentration-dependent manner to storage 
containers, and the presence of many other peptides and high-abundance proteins in 
biological samples increase the complexity of the method development process.



62 E. E. Chambers

A review of almost 200 articles in the literature [11] shows that many differ-
ent combinations of LC, MS, and sample preparation conditions have been used 
for bioanalysis of peptide therapeutics, making it challenging to identify a com-
mon starting point for method development. In addition, many of the published 
references utilize non-selective sample preparation methods such as protein pre-
cipitation (PPT) and reversed-phase solid-phase extraction (RP SPE). These tech-
niques are often used either because they are inexpensive or because they require 
little to no method development. Though common, the use of less selective sample 
cleanup may necessitate the use of longer chromatographic runs to eliminate the 
co-elution of endogenous materials with the analyte and may result in methods 
which fail matrix effects or ISR criteria. Perhaps, the greatest difficulties arise dur-
ing peptide handling. Adsorption, stability, and solubility are critical parameters to 
understand and control during the method development process.

This chapter describes the development of bioanalytical methods for thera-
peutic and endogenous (such as biomarkers) peptides in three segments: liquid 
chromatography, mass spectrometry, and sample preparation. Each segment will 
identify potential pitfalls, key parameters for consideration, and differences rela-
tive to small molecule analysis. Solutions and recommendations for successful 
method development will then be presented. Following the successful develop-
ment of extraction and LC/MS/MS analytical methods, a logical, stepwise, and 
routine strategy to bioanalytical method development for peptides will be pro-
posed. Special attention will be paid to developing simple, logical strategies which 
are practical for implementation in typical bioanalytical laboratories. A critical 
aspect of this proposal will be the development of more selective, sensitive, and 
reproducible methodologies and their validity with respect to current and evolving 
(future) regulatory requirements. Advanced techniques, requiring instrumentation 
not commonly found in bioanalytical laboratories, will be summarized only briefly 
and are not the focus of this chapter.

2.2  Liquid Chromatography

The challenges associated with chromatography of peptides stem in part from the 
diversity of this class of compounds. As a class, they span a broad range of sizes, 
molecular weights, isoelectric point (pI), three-dimensional structures, and polar-
ity. Although a high degree of diversity is present, peptide composition is actually 
highly conserved—there are only a finite number of amino acids which comprise 
their sequences, ensuring the presence of multiple closely related species. Peptides 
are present in samples across an extensive linear dynamic range, 4–5 orders of 
magnitude or more. Whether derived from a protein digest or present as a natu-
rally existing or synthetic peptide, peptides in biological matrices will need to be 
separated from numerous closely related interferences. For example, missed cleav-
ages and secondary cleavages in protein digests result in peptides that are nearly 
identical to the target peptides. Chromatography of peptides is further complicated 
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by other factors as well. These large molecules have multiple points of interaction 
with chromatographic surfaces, meaning that different parts of the molecule can 
interact in different ways, possibly yielding poor peak shape or peaks which elute 
in two places. In addition, larger molecules such as peptides exhibit slower diffu-
sion properties which can also result in poor peak shape and/or carryover under 
conditions traditionally used in bioanalysis.

Although LC separation of peptides has been well documented in the context 
of proteomic analyses or peptide mapping for qualitative work, LC conditions 
for that type of work differ significantly from what is required for a bioanalyti-
cal workflow. Peptide mapping studies commonly utilize long, shallow gradients 
(60–120 min), low flow rates (relative to small molecule analyses), or nanoflow 
systems, and ion-pairing agents such as TFA. These conditions are not particularly 
attractive for a bioanalytical laboratory where throughput and MS sensitivity are 
key aspects of method development. LC systems for peptide quantitation in these 
types of laboratories must use MS-compatible buffers and additives, run times 
should be in the several minute range (approximately 2–10 min maximum, if pos-
sible), selectivity from endogenous interferences must be obtained, peak shapes 
for small and large peptides alike should be as Gaussian and narrow as possible 
(to improve signal-to-noise ratio), and the LC system should have characteristics, 
such as <2 μm particles, which have been shown to minimize the potential for 
matrix effects caused by co-elutions [12].

Several reviews have been published over the past 3 years on the topic of LC 
conditions for peptide bioanalysis. Surveying well over 250 journal articles, we 
find that the most common set of conditions consists of C18 chromatographic col-
umns and water and acetonitrile mobile phases, most frequently modified with for-
mic acid. Acidic conditions are typically used as the carboxyl groups on peptides 
are neutral at low pH, improving chromatographic retention and minimizing sec-
ondary interactions. Those peptides having strong basic quality (containing several 
arginine or lysine residues) may not exhibit ideal chromatographic behavior under 
these conditions; therefore, ion-pairing reagents, typically TFA, may be employed 
to improve chromatographic peak shape for strongly basic peptides. TFA, how-
ever, is known to cause significant ion suppression under electrospray conditions, 
and one desires to avoid its use where possible. The suppression observed is due to 
both the formation of strong ion pairs (which cannot be ionized) and the reduction 
in signal as a result of high droplet surface tension and conductivity [13].

In 2005, Garcia [14] published a thorough review of the impact of various 
modifiers on the sensitivity and resolution of peptides and proteins. Though many 
buffers and alternate volatile ion-pairing reagents were assessed, none were suit-
able replacements for TFA when peptide chemistry necessitated its use. The MS 
suppression experienced in the presence of TFA was outweighed by the resolu-
tion improvement it afforded. A recent review by Ewles and Goodwin [15] 
describes their findings with respect to balancing the drawbacks and benefits of 
TFA and optimal conditions. In their work, it appears that low concentrations of 
TFA (0.01–0.05 %) in both organic and aqueous mobile phases might provide 
the desired ion pairing without the degree of suppression associated with higher 
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 levels. In addition, mixtures of low concentrations of TFA with more standard MS 
modifiers and buffers (i.e., formic acid or ammonium formate) might provide both 
the peak shape and resolution benefits without the concomitant decrease in sensi-
tivity that usually accompanies the use of TFA. The exact nature and composition 
of the mobile phase will be highly dependent on the peptide and its sequence as 
well as the desired retention, resolution, or sensitivity.

On rare occasion, the use of high-pH mobile phases has been reported either 
to neutralize basic groups or to provide improved solubility of the peptide. For 
the majority of peptide separations, acetonitrile is the organic solvent of choice, 
though Giorgianni et al. [16] reported improved detection limits for  several 
 peptides using methanol. On most modern LC systems, it is straightforward 
to screen ACN and MeOH and should perhaps be considered as part of routine 
method development for peptides. Acetone was also examined as an alternative to 
ACN [17]. Retention order for a set of test peptides remained the same; however, 
acetone resulted in wider peaks, increased tailing, and decreased retention relative 
to ACN. Peptide response by MS, however, was similar.

With respect to chromatography, the final topic worthy of mention is the use of 
hydrophilic interaction chromatography (HILIC). In HILIC separations, acetonitrile 
is typically the weak solvent and water the strong solvent. It is important to note 
that HILIC may only be used successfully for those peptides soluble in higher per-
centages of acetonitrile. Although its use for peptides has been reviewed in the past 
[18, 19], very few quantitative applications have been reported. One very recent 
example combines both HILIC SPE and HILIC chromatography to successfully 
quantitate several arginine-containing hexapeptides [20]. HILIC was also employed 
by Zhan et al. [21] to quantitate a tetrapeptide in plasma. In general, peptide sepa-
ration by HILIC is employed successfully only for smaller, more polar peptides.

The use of end-capped silica-based or hybrid C18 stationary phases is most com-
mon for quantitative peptide applications. Naturally, materials which minimize 
interactions with surface silanols are normally used, primarily to improve peak 
shape. The relatively recent (1999) introduction of hybrid particles has enabled sep-
arations to be carried out over a broader pH range and with significantly reduced 
surface silanol interactions than traditional silica particles. Though C18 seems to 
be the preferred ligand, the use of shorter ligands may occasionally prove advan-
tageous for particularly large or hydrophobic peptides. Figure 2.1 illustrates the 
improvement in peak shape and signal intensity that was obtained on a C4 column 
for the HIV fusion inhibitor enfuvirtide when it was analyzed on columns having 
identical base chemistry, but with either C4 or C18 ligands. From the figure, it is 
clear that peak width is narrower (0.4 min versus 0.6 min wide at base) and peak 
area and intensity are greater (25,560 area counts versus 15,900) on the C4 column.

It is clear that resolution from closely related endogenous constituents, speed, 
and sensitivity are all absolutely critical for effective and efficient LC of pep-
tides in bioanalysis. Sub-2 μm porous particle LC, or UHPLC, has been used 
extensively in both small molecule and peptide bioanalytical applications spe-
cifically for the benefits it provides in terms of these exact parameters [22–32]. 
As valuable as these characteristics are to small molecule analysis, they can be 
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even more critical to successful peptide analysis. Peptide drugs are often modi-
fied versions of substances already in the body, meaning that there will almost 
always be a closely related interference present in the sample. The drug desmo-
pressin and the endogenous hormone vasopressin upon which it is based are good 
examples. Desmopressin differs from human vasopressin by the loss of an amino 
group. Thus, the resolving power of the chromatography system used for this 
separation is critical, and sub-2 μm LC has demonstrated improvements in res-
olution and detection limits that are significantly better than conventional HPLC 
[22–24, 26–32].

It is important to understand the differences between small and large molecules 
as it pertains to the use of UHPLC. A van Deemter plot was constructed using 
flow rate instead of linear velocity to demonstrate how plate height for large mol-
ecules degrades much more rapidly than for small molecules at the higher flow 
rates that typically dominate most bioanalytical laboratories (Fig. 2.2). The figure 
was developed using the van Deemter equation below, where u = flow rate rather 
than linear velocity. In the below equation, HETP is equal to the height equivalent 
to a theoretical plate.

The plot clearly highlights how small molecules can be analyzed with much 
higher flow rates without a significant loss in column efficiency versus larger 
molecules like peptides which must be analyzed using lower flow rates in order 
to achieve maximum performance. This is primarily due to the lower diffusion 
rates of peptides in and out of the pores of the stationary phase. However, for high-
throughput applications such as bioanalysis, it is not practical to use the very low 
flow rates needed for peptide separations.

HETP = 1. 5 (3. 5) + 0. 5/u + 0. 1666 (3. 5)2 u
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Fig. 2.1  Comparison of peak shape and intensity for the peptide enfuvirtide (MW 4492) 
 chromatographed using a C4 and a C18 column
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In order to compensate for the slower diffusion of peptides, smaller particle 
sizes can be used. Figure 2.3 shows the calculated van Deemter plots for a pep-
tide analyzed on 2.1-mm-diameter columns packed with both 1.7 and 3.5 μm 
particles.

While the optimum flow rate for this peptide is similar in both particles (~25–
50 μL/min), the separation performance of the 3.5 μm particle column degrades 
more rapidly than the 1.7 μm particle column as the flow rate increases. From an 
implementation standpoint, this means that better resolution and peak shape can be 
obtained on sub-2 μm particles at higher flow rates. At 0.4 mL/min, a typical bio-
analytical flow rate, the column packed with 3.5 μm particles has a 5X increase in 
plate height compared to its optimum flow rate, whereas the column packed with 
1.7 μm particles exhibits only a 2X increase in plate height. This clearly indicates 

Fig. 2.3  van Deemter plot 
using flow rate for a model 
2,500 MW peptide on 1.7 and 
3.5 μm particle size 2.1 mm 
ID columns. Assumptions are 
as follows: A, B, and C terms 
are equal to 1.5, 0.5, and 
0.1666, respectively, and the 
temperature used was 35 °C
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terms are equal to 1.5, 0.5, and 0.1666, respectively



67

that the use of smaller particles is preferred for high-throughput bioanalysis of 
peptides.

From a practical standpoint, however, peptides are typically analyzed using 
a gradient rather than isocratic methods in order to reduce analysis times and to 
facilitate the separation of complex, diverse mixtures with a wide range of hydro-
phobicities. To illustrate the benefit of using small particles for peptide sepa-
rations, 3.5 and 1.7 μm columns packed with the same stationary phase were 
compared (Fig. 2.4). Both columns were 2.1 × 50 mm, BEH C18, run at 0.4 mL/
min using formic acid and acetonitrile mobile phases. These columns have the 
same base particle and differ only in particle size. Both were run on a low dis-
persion system capable of operating up to 15,000 psi (ACQUITY UPLC system) 
using the same flow rate and gradient. The peptides run on the 1.7 μm particle 
column consistently elute as sharper, more efficient peaks, which translates into 
higher signal-to-noise ratio and the ability to achieve lower limits of detection. 
These data correlate well with previous findings by Gilar et al. [25] who dem-
onstrated a marked increase in peak capacity for peptides using 1.8 μm particles 
compared to either 3.5 or 5 μm particles.

Another parameter of the chromatographic column to consider in peptide sepa-
rations is the pore size. No concrete rule currently exists as to which pore size to 
use for peptides of a particular size, which means columns packed with particles 
of different pore sizes need to be tested to determine the effect on peak shape. 
Figure 2.5 shows a comparison of two columns packed with 1.7 μm particles but 
having two different pore sizes. If one is interested in a screening approach based 
on a single column, the larger pore-size column gives superior peak shape and 
results in better signal-to-noise ratio and lower detection limits, particularly for 
larger peptides. Smaller peptides generally perform equally well on columns with 
130 or 300 Å pores. These data might also suggest that larger pores may mitigate 
some of the loss in efficiency observed for peptides at higher flow rates.
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Fig. 2.4  Influence of particle size on signal-to-noise ratio: 1.7 versus 3.5 μm columns
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Investigation of the particle diameter, pore size, and stationary-phase chemistry 
suggests that a simple screening method can be recommended for peptide bioanal-
ysis. Initial method development for peptide chromatography should consist of a 
C18 column with 300 Å pores (2.1 × 50 mm) packed with <2 μm particles. 50 mm 
columns provide both the throughput required and often adequate separation. If 
improved separation is needed, longer columns may be used. A gradient from 15 
to 75 % acetonitrile could be employed in a generalized screening regime as it rep-
resents the typical elution window for peptides. It is important to note that during 
gradient elution, gradient conditions should be set to ensure the elution of the pep-
tide within the above-defined window. The use of ballistic gradients which could 
cause elution at very high percentages of organic may result in precipitation of the 
peptide on the column. Once a peptide has precipitated on the chromatographic 
column, it may be very difficult to remove and may result in poor chromatography 
in subsequent runs and ghost peaks.

A flow rate of 0.4 mL/min on a 2.1 mm diameter column correlates with previ-
ously published findings [33] and represents a starting point which balances speed 
with sensitivity arising from resolution and peak shape. Although the parameters 
defined here represent an appropriate starting point, they may be optimized dur-
ing method development to achieve the desired resolution, run time, and limits of 
detection (LOD) for a particular assay.

In order to evaluate the feasibility and utility of the proposed chromatographic 
starting point for peptide bioanalysis, twelve therapeutic or endogenous peptides 
were selected for analysis. The peptides were chosen based on their diversity in 
molecular weights, acidity/basicity, and hydrophobicity. Details of each peptide 
along with their chemical properties are listed in Table 2.1. HPLC index is used 
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here as a measure of relative hydrophobicity. A low value indicates a more polar 
peptide, and a high value indicates a more hydrophobic peptide.

A separation of five representative therapeutic/endogenous peptides using 
the UHPLC screening conditions recommended above is shown in Fig. 2.6. 
Vasopressin, human antidiuretic hormone, (peak 1) and desmopressin (peak 3) 
are baseline-resolved using the proposed screening method. These compounds are 
analogous to each other, differing only in the loss of an amino group.

In addition to the challenges already addressed (selectivity, resolution, through-
put, and peak shape), other common pitfalls encountered when analyzing pep-
tides include carryover, adsorption, and issues related to solubility in the mobile 
phase and the injection solvent. In particular, solubility and adsorption problems 
can manifest themselves as any of the following: carryover, poor peak shape, poor 

Table 2.1  Chemical properties for therapeutic and endogenous test peptides

Peptide MW pI # of Residues HPLC Index

Octreotide 1,019 9.3 8 40.8
Angiotensin II 1,046 7.35 8 38.3
Desmopressin 1,069 8.6 9 16.8
Vasopressin 1,084 9.1 9 7.6
Goserelin 1,270 7.3 10 31.7
Angiotensin I 1,296 7.51 10 56.2
Somatostatin 1,638 10.4 14 52.6
Neurotensin 1,673 8.93 13 44.4
Bivalirudin 2,180 3.87 20 46.2
BNP 3,464 12 32 15.9
Teriparatide 4,118 9.1 34 90.4
Enfuvirtide 4,492 4.06 36 155.9
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Fig. 2.6  Separation of five representative therapeutic peptides using a proposed LC screening 
method optimized for peptide bioanalysis. Data acquired on a Waters Xevo TQ MS triple quadrupole 
mass spectrometer using formic acid and acetonitrile at 35 °C

2 Quantitative Analysis of Therapeutic



70 E. E. Chambers

linearity, poor reproducibility, and loss of sensitivity at low concentrations. In the 
case of suspected carryover, one needs to first determine whether the carryover is 
occurring in the chromatographic column or in the LC instrument itself (i.e., tub-
ing, injector port, sample needle).

A simple test to determine the source of carryover involves performing an inter-
nal gradient. In other words, the gradient is repeated within the same run without 
performing a separate injection. If a peak appears in the second gradient at the 
expected retention time of the peptide of interest, then the carryover is suspected 
to be due to incomplete elution of the peptide from the stationary phase in the 
first gradient. This can be resolved in several ways. Column carryover (also called 
memory effect) is due to the inability of the chromatographic conditions to fully 
elute the peptide during the run, either due to slow and incomplete diffusion in 
and out of the chromatographic pores or due to poor solubility in the mobile phase 
with the modifier and flow rate being used. To improve the efficiency of diffusion 
and solubility in the mobile phase, the separation temperature can be increased 
and/or flow rate decreased. In addition, a higher strength or higher percentage of 
the mobile-phase additive can be used (i.e., increasing % of formic acid).

If the internal gradient test does not show carryover due to incomplete elution 
from the stationary phase, then the carryover is occurring in the injection fluidics, 
and adjustment of the needle washes and/or injection solvents may be required. 
A recent paper by Mitulovic et al. [29] identified an efficient wash solvent using 
trifluoroethanol (TFE) to clean not only the autosampler, but also a trap column 
if used. TFE can also be added to mobile phases for additional column cleaning 
for particularly troublesome peptides. An injection solvent that does not contain 
enough organic solvent and modifier can also cause carryover, since peptides pre-
cipitate out of solution during the injection process and “plate-out” on LC tub-
ing and other components, resulting in adsorption and non-specific binding (NSB). 
Adsorption and NSB represent perhaps the greatest difficulty encountered when 
handling peptides and must be assessed as early in method development as pos-
sible, as they can affect not only the LC method but also the sample preparation. 
Care must be taken when choosing LC vials or plates. In general, plastic is bet-
ter than glass, especially for basic peptides which interact with surface silanols in 
glass vials and plate inserts. Recently, so-called low-binding tubes and plates have 
been introduced by such manufacturers as Eppendorf. These tubes and plates are 
now widely used in peptide and protein analysis.

In general, peptide solutions should be made in a solvent containing a minimum 
of 5 % organic and 0.1 % formic acid or 0.05 % TFA, both of which help to keep 
peptides in solution. Injection solvents may contain even higher percentages of 
organic solvent and modifier in order to maintain solubility throughout the duration 
of overnight analytical runs and autosampler stability tests. A recent publication on 
the quantitation of amyloid-β peptides [34] demonstrates this quite nicely. In this 
work, the final injection solvent consisted of ~40 % organic and ~5 % NH4OH, 
both of which were essential for maintaining solubility and minimizing adsorptive 
losses for this incredibly sticky class of peptides. Additional handling recommen-
dations will be described in the sample preparation section of this chapter.
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2.3  Mass Spectrometry

The vast majority of quantitative analysis in bioanalytical laboratories is per-
formed on triple quadrupole mass spectrometers. This section will focus on the 
use of triple quadrupoles (TQs) as they represent the instrument configuration in 
most widespread use, though ion traps and quadrupole time-of-flight instruments 
are also employed. Recent advances in MS instrument design have resulted in the 
increased use of hybrid TOF instruments, but reduced sensitivity versus TQs in 
multiple reaction monitoring (MRM) mode. The existence of TQ MRM mode has 
limited the use of TOFs  as a platform for low-level peptide quantitation. Triple 
quadrupole instruments, operated in MRM mode, still offer the highest sensitivity 
for targeted analyses and are the platform of choice for both small molecule and 
peptide quantitative applications.

MS of peptides differs significantly from that of small molecules, and in gen-
eral, the overall MS signal for peptides is often lower than for small molecules 
for several reasons. First, peptides are multiply charged species, whereas small 
molecules are typically singly charged, and second, there may be several different 
multiply charged precursors present, both of which dilute the overall ion intensity 
across several species. Furthermore, peptides tend to form many low-abundance 
fragments rather than one or two intense ones, reducing overall signal for MRM 
experiments. An even greater loss of signal can be observed for large peptides that 
are not as efficiently transferred into the gas phase during ionization as small mol-
ecules. It may be advantageous to sum transitions to either improve signal inten-
sity or reduce variability if the relative abundance of a specific precursor changes 
during the analysis. Clearly, one not only needs to consider the sensitivity of the 
MS specifically for large molecules, but also any additional aspects of the method 
(LC, sample concentration during extraction, etc.) that can be used to improve 
assay sensitivity.

During MS tuning, it is common to see several different precursor ions due to 
multiple charging. Whereas small molecules gain or lose a single proton, large 
biomolecules have multiple protonation sites and therefore can gain or lose sev-
eral or many protons, generating what are called “multiply charged” species. For 
example, the N-terminus and the various amino acid side chains of peptides are 
common sites of protonation. If one considers that mass spectral detection is per-
formed on the basis of mass-to-charge (m/z) ratio, the following equations can be 
used to calculate the expected m/z for the various possible multiply charged pre-
cursors a peptide may produce.

Singly charged = M + H/1, doubly charged M + 2/2, triply charged = M + 3/3, 
and so on correspond to doubly, triply, quadruply, and even higher charge states.

In electrospray positive ionization mode, the most common mode of MS 
analysis for peptides, peptides fragment in a very predictable manner. Primary 
fragmentation yields a series of ions corresponding to cleavage at the amide (or 
peptide) bonds between the amino acids that comprise the peptide sequence. If the 
charge is retained on the N-terminal fragment, the ions are classified as b ions; 
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if the charge is retained on the C-terminus, the ions are classified as y. There are 
other internal cleavage ions and immonium ions, but b and y ions are the most 
frequently observed [35]. Coincidently, these are also good choices for quantita-
tion as they tend to be inherently specific for the peptide of interest. The final point 
related to fragmentation is that the most complete and the most useful fragmen-
tation is typically obtained when the highest possible charge state is fragmented 
[35]. This reinforces the importance of tuning on multiple precursors.

Source conditions should be tuned for maximum transmission of the precur-
sor without in-source fragmentation. As mentioned, it is good practice to tune and 
optimize several different MRM transitions. These may be multiple fragments 
from a single precursor or the same or different fragments from different precur-
sors. These transitions can be used for both confirmation and to provide options 
for obtaining the best specificity and sensitivity, particularly for biological samples 
that contain many endogenous interferences. It is important to note that a transition 
that appears to be most intense during tuning of solvent standards may not be the 
transition with the highest signal for an extracted sample. When performing MS/
MS tuning and optimization of the of the precursor ion signal intensity using col-
lision-induced dissociation (CID), one must consider that fragments from multiply 
charged precursors may be multiply or singly charged. This requires MS/MS to be 
performed across a broad mass-to-charge range, often up to the maximum range of 
the quadrupoles. This can vary from 1,000 to 3,000 m/z, depending on the manu-
facturer and model. Careful choice of both precursor and fragment ions can be the 
critical factor in developing a robust and reliable MS method for peptide therapeu-
tics. There are several guidelines that may be helpful in choosing the optimal frag-
ment for example. Choice of fragment ion is fairly straightforward in the case of 
small molecule therapeutics, where the most intense fragments are often chosen 
for quantitation. Conversely, the most intense peptide fragments may not always 
be the most specific. In addition to non-specific water losses, it is quite common to 
see intense peptide fragments at low m/z values such as m/z 136, 110, 129. These 
specific fragments correspond to immonium ions, a result of secondary fragmenta-
tion, arising from individual amino acids in the sequence. The m/z ratios of 136, 
120, 129, 110, and 86 indicate the presence of tyrosine, phenylalanine, arginine, 
histidine, and leucine/isoleucine, respectively. Transitions based on this type of 
fragment are often non-specific, resulting in increased baseline noise and multi-
ple peaks from other isobaric peptides present in biological extracts, and should be 
avoided if possible. Occasionally, when a peptide does not fragment well (either no 
fragments are generated or many low-abundance fragments result, the “all or noth-
ing” phenomenon), the use of a “pseudo-MRM” transition, such as a precursor-to-
precursor transition (where both quadrupoles are set to the same m/z value), may 
be required. This approach may require extensive sample preparation and/or multi-
dimensional LC to separate isobaric interferences that are not distinguished by unit 
mass resolving mass spectrometers such as quadrupoles. The ideal fragments for 
reliable, reproducible quantitation are b or y-sequence ions.

An additional consideration for both precursor and fragment ion choices is the 
use of higher m/z ions, for example, using a 4+ instead of a 5+ precursor and/or 
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the use of a fragment present at higher m/z than alternative choices. Transitions 
based on higher m/z ion pairs often benefit from reduced chemical noise relative to 
the equivalent pair (i.e., the same compound, same fragment, but different charge 
states) from a higher charge state present at lower m/z values. This is illustrated in 
Fig. 2.7 where two separate transitions for an amyloid-β peptide with a molecu-
lar weight of 4,132 are monitored during analysis of a human plasma extract. The 
transitions represent quadruply (4−) or quintuply (5−) charged versions of the 
same precursor to fragment pair.

An important aspect of MRM analysis of peptides is the mass range of the 
first and second quadrupoles. For example, the MS infusion of enfuvirtide (MW 
4492) produced a dominant 3+ precursor at approximately m/z 1,498, requiring an 
instrument with a mass range of at least 1,500 (Fig. 2.8). Similarly, MS/MS of the 
2+ precursor of bivalirudin (MW 2,180) at m/z 1,091 produced two major singly 
charged fragments at m/z 650 and m/z 1,531 (Fig. 2.9), again demonstrating the 
need for adequate mass range. In this case, a mass range of ≥2,000 dalton on both 
quadrupoles is desirable.

There are various factors that influence the nature and relative abundance of 
peptide precursors formed in the MS source. Chief among these are flow rate, pH, 
and concentration of the mobile-phase modifier. It is not uncommon, for exam-
ple, to observe different charge-state precursors dominating at different flow rates.  
A recent publication [36] on the quantitation of angiotensin II describes the predom-
inance of a triply charged precursor at 700 μL/min and that of the doubly charged 
under nanoflow conditions (250 nL/min). Figure 2.10 demonstrates this phenom-
enon when insulin is infused at either 10 μL/min or teed into the mobile-phase 
stream with the same composition at a flow rate of 200 μL/min. At the lower flow 
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rate, the 5+ precursor is predominant (Fig. 2.10b), whereas the 4+  precursor domi-
nates the spectra when higher flow rate is used (Fig. 2.10a).

Another well-studied [37–39] phenomenon is the relationship between charge-
state distribution and analyte concentration. Wang and Cole [40] demonstrated 
that the charge-state envelope shifts toward lower values as peptide concentration 
increases. For example, one might observe more doubly charged species than tri-
ply charged at higher analyte concentrations. This suggests that one should moni-
tor transitions from several charge states during method development and assess 
any potential impact on quantitation.

From one instrument vendor to the next, it is common to see differences not 
only in sensitivity for large molecules, but also in the relative abundance of the 
various precursors formed. It is therefore good practice to evaluate multiple 
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vendors’ MS systems as well as equip the laboratory with instruments from several 
vendors to ensure maximum flexibility when developing and validating methods 
for peptides.

2.4  Sample Preparation and Peptide Handling

2.4.1  Peptide Handling

Prior to discussing the utility of specific sample preparation techniques, one 
must first understand how the behavior of peptides, and the challenges associ-
ated with it, impacts the successful development of an extraction method. From 
the moment the peptide standard is dissolved (if it is in lyophilized powder form), 
one must address the issues of solubility  and adsorption. In general, peptides 
are very poorly soluble, and many adsorb to the walls of vials, collection plates, 
LC surfaces, etc. This is particularly true for larger, more hydrophobic peptides.  
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Heavy emphasis is placed here on identifying the condition under which the peptide 
exhibits optimal solubility as this impacts every aspect of method development and 
forms the foundation for successful development of a reproducible, sensitive bio-
analytical assay. In addition, failure to address adsorption/NSB can be likewise det-
rimental to the method as a whole and therefore must be assessed prior to extraction 
and preparation of test solutions.

2.4.2  Peptide Handling: Solubility

Peptide solubility  is heavily dependent on its specific amino acid sequence, in 
particular, the hydrophobicity and acidity or basicity. There exist many sets of 
guidelines for solubilizing peptides, and all seem to agree on a few key points 
and rely on the use of well-understood characteristics of amino acids to help pre-
dict peptide solubility. Several good sets of guidelines, summarized below, can 
be found on web pages from Sigma-Aldrich, Thermo Scientific, GenScript, and 
Pierce. Table 2.2 summarizes the relevant amino acid properties.

A general set of solubility  guidelines for consideration is as follows:

1. If a peptide is very small, <5 residues, it will likely dissolve in aqueous solu-
tions unless the sequence is entirely comprised of hydrophobic residues.

2. Peptides containing >25 % charged residues and <25 % hydrophobic residues 
generally dissolve in aqueous solutions.

3. If the peptide is basic, acidic solutions (formic acid or TFA) with a low % 
organic (5 %) often work well. The converse is true for acidic peptides, try 
solubilizing in basic solutions (1–5 % NH4OH, for example) with a low % 
organic.

4. Peptides containing >50 % hydrophobic residues may be only slightly soluble 
or insoluble in aqueous solutions. Hydrophobic peptides are best solubilized in 
DMSO, DMF, strong acid solutions (TFA, formic, acetic), or isopropanol. For 
cysteine-containing peptides, use DMF instead of DMSO.

Table 2.2  Useful amino acid properties

Property Amino acid
Hydrophobic A, F, I, L, M, P, V, W, Y
Moderate C, G
Hydrophilic D, E, H, K, N, Q, R, S, T, pyroglutamic acid
Positive charge K, R, H, N-terminus
Negative charge D, E, Y, C-terminus
Degradation likely M, W
Prone to de-amidation N,Q, C-terminal amides, N-terminal Q

Dehydration, cyclization to pGlu
Prone to oxidation under mild C, M

conditions
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5. Guanidine HCl or urea may be necessary for those peptides that tend to aggre-
gate and can later be removed during sample preparation.

6. Peptides which contain >75 % of S, T, E, D, K, R, H, N, Q, or Y may form 
intramolecular hydrogen bonds and form gels in aqueous solutions. These pep-
tides should be treated in the same manner as hydrophobic peptides (#4).

2.4.3  Peptide Handling: Adsorption

In addition to solubility, every effort must be made to minimize or eliminate 
adsorption. Peptides bind to vials, collection plates, pipette tips, and other sur-
faces. Many researchers have reported significant peptide losses, particularly to 
pipette tips, during solution preparation or sample handling [41–43]. This may 
be mitigated by “pre-treating” the tips through aspiration of the peptide solution 
up and down in the pipette tip prior to dispensing into the final vessel. Other fac-
tors that may influence adsorption include solvent composition, container mate-
rial, temperature, and pH. Adsorption occurs primarily in solvent standards rather 
than in extracts of biological matrices. Most biological matrices contain residual 
proteins or other peptides at higher levels which can act as carriers, binding pref-
erentially to surfaces rendering them “inert” to the low-level peptides of interest. 
Relative to vial/tube/plate composition, side chains of basic peptides can readily 
interact with surface silanols on glass and hydrophobic peptides may bind through 
hydrophobic interactions with polypropylene or other plastic surfaces. This effect 
is more pronounced at low peptide concentrations. Complete loss of peptide dur-
ing serial dilution often results in the loss at the low end of the calibration curve 
or even absence of the peptide peak during analysis of low-level solvent standards. 
For this reason, when preparing standard curves, one should spike directly into 
plasma from the peptide stock solution (in which adsorption losses are negligible) 
and then prepare subsequent dilutions for the lower concentration points by dilut-
ing the plasma spiked with the peptide stock solution with additional plasma.

Issues related to adsorption are further exacerbated by inappropriate solvent 
choice. Peptide losses occur readily in aqueous solutions. Adsorption can be, in 
part, ameliorated using the proper solvent composition. Any information gathered 
during solubility testing should be applied to all subsequent solution preparation. 
For example, if the addition of acid, base, or organic improves solubility, the appro-
priate action should be taken to include these modifiers in dilutions of the concen-
trated standard. Peptides are naturally more soluble in aqueous solutions if they are 
charged and, conversely, more soluble in organic solutions when uncharged.

For particularly hydrophobic peptides, or low concentration aqueous solutions 
of peptides, one might also consider the addition of a commercially available pro-
tein such as serum albumin to help eliminate NSB to surfaces by blocking adsorp-
tion sites. This is not typically necessary for plasma or serum extracts. However, 
urine or cerebrospinal fluid (CSF) extracts may require the same treatment as 
 solvent-based solutions.

2 Quantitative Analysis of Therapeutic
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Finally, concentration by evaporation and reconstitution should be avoided if at 
all possible as this frequently results in significant losses. Several options exist for 
addressing this problem. One may add a small volume of a viscous solvent such 
as dimethyl sulfoxide (DMSO) or glycerol prior to evaporation, which prevents 
complete dry down. Alternatively, certain SPE formats exist which enable up to 
15-fold concentration of the sample without evaporation. This option has the addi-
tional benefits of not only increasing throughput by eliminating time-consuming 
evaporation, but also of reducing the number of handling steps while ensuring that 
the sample is in a solution which not only provides good solubility for the peptide 
(if SPE method development has been done properly) but also an injection solvent 
which is chromatographically compatible.

2.4.4  Peptide Handling: Stability

Another common concern is possible peptide instability or degradation occurring 
in vivo or ex vivo. Reubsaet et al. [44, 45] describe instability as falling into two 
categories: physical instability and chemical instability. Physical instability is pri-
marily associated with unfolding (caused by temperature, pH extremes or guani-
dine HCl or urea denaturation) and aggregation (primarily due to hydrophobic 
interactions between partially unfolded species). Chemical instability is related 
to modifications in amino acids which can occur through oxidation, reduction, 
de-amidation, hydrolysis, arginine conversion, β-elimination, and racemization 
[44]. It is important to control conditions which may result in modification dur-
ing all phases of method development. For example, the use of protease inhibitors 
to improve matrix stability has been widely accepted. Ewles and Goodwin [15] 
report testing numerous protease inhibitors. They concluded that 20 mM diisopro-
pylfluorophosphate (DFP) or Pefabloc® (Roche Diagnostics, West Sussex, UK) 
was among the best options. In addition, it was noted that simple addition of acid 
(formic or hydrochloric) was often adequate to inhibit protease activity.

Chemical instability is primarily caused by hydrolysis, oxidation, pyroglutamic 
acid formation, and de-amidation. Peptides containing D (Asp) are most likely 
to undergo acid-catalyzed hydrolysis. De-amidation occurs under base-catalyzed 
conditions in the presence of N-G (Asn-Gly) or Q-G (Gln-Gly). Cysteine and 
methionine easily undergo oxidation, which is accelerated at high pH. The pres-
ence of an N-terminal Gln will most certainly result in pyroglutamic acid for-
mation. It is important to note the sequence of the peptide you are working with 
and assess the potential for any chemical modifications that may occur either as 
a result of the storage or as a result extraction conditions. It may be necessary to 
eliminate extreme high-pH or low-pH conditions during an experiment, depend-
ing on the specific amino acid composition. A recent development is the increased 
use of dried blood spots (DBSs) in bioanalytical assays. In addition to the obvious 
benefits with respect to low sample volumes and less expensive storage and ship-
ping, DBS has shown promise in stabilizing unstable compounds. This technique 
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was successfully employed by Kehler et al. [46] for the analysis of the large 
 peptide exendin-4.

2.4.5  Peptide Extraction

Once the issues of solubility, adsorption, and instability have been addressed, an 
extraction technique must be developed in order to isolate a peptide from a com-
plex biological sample containing many closely related interferences. There are 
three main extraction techniques used in peptide bioanalysis: PPT, SPE, and liq-
uid–liquid extraction (LLE), with SPE figuring most prominently in the literature 
[11]. The following section will review the pros and cons of each technique and 
then propose a broadly applicable screening method. In addition, due to the recent 
introduction of additional regulatory criteria that must be met during bioanalyti-
cal method validation (e.g., matrix effects, incurred sample reanalysis), a strong 
emphasis will be on selectivity of the various methods and their role in facilitating 
meeting evolving regulatory guidelines.

Depending on the specific matrix, components that must be separated include 
but are not limited to phospholipids, salts, proteins, other peptides, formula-
tion agents, and dosing media, among others. This discussion will focus primar-
ily on plasma and serum as these are the most common matrices in bioanalytical 
laboratories.

Prior to the extraction itself, one must disrupt binding between the therapeutic 
or endogenous peptides and proteins present in the biological matrix. This binding 
may be stronger than the binding between small molecules and proteins, neces-
sitating additional pre-treatment alternatives. Common means of disrupting protein 
binding include pre-treatment with acid (4 % phosphoric, formic, 1–10 % TFA, or 
TCA) or base (5 % NH4OH), or for particularly hydrophobic peptides, denatura-
tion with guanidine HCl (dilute 1:1 with 6 M and shake for 30–45 min) or urea 
may be necessary. These reagents can later be removed during SPE without con-
cern for peptide losses. Protein-binding problems typically manifest themselves as 
apparent “low recovery” during the extraction process. Peptides that are bound to 
proteins in the matrix either co-precipitate along with endogenous proteins during 
PPT or pass through an SPE device during sample loading. An easy test to confirm 
the presence of protein binding is to prepare a set of spiked samples in both the 
study matrix and phosphate-buffered saline (PBS). Recovery should be calculated 
according to Eq. 2.1 below. If recovery is higher in the PBS samples, then protein 
binding has likely occurred.

In plasma, 22 proteins make up 99 % of the total protein content. Of these, 
albumins (MW ~65 kDa) make up about 45 % of the total protein content and 

(2.1)

% SPE recovery =

(

average peak area in pre-spiked extracted samples

average peak area in post-spiked extracted samples
∗ 100

)
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are present at tens of mg/mL. Immunoglobulins (MW ~150 kDa) make up another 
15–30 % [47]. These proteins are present at many orders of magnitude higher 
concentration than peptide therapeutics and biomarkers and are often even less 
soluble.

In addition to high levels of proteins, plasma phospholipids (PLs) are a major 
source of concern for both small and large molecule bioanalytical assays. The 
presence of high levels of residual PLs in sample extracts is particularly concern-
ing, considering their role in matrix effects. Bennet and Van Horne identified PLs 
as the major source of matrix effects in plasma in 2003 (AAPS posters 2003), 
and discussions relating their removal continue to dominate industry-related con-
ferences. A thorough investigation of various sample preparation techniques and 
their influence specifically on phospholipid removal clearly demonstrated several 
important differences between the techniques [12].

Overall, PPT is universally regarded as a quick, inexpensive technique. However, 
with respect to the removal of the various aforementioned interferences, the result-
ant extract is exceedingly “dirty” due to the entirely non-specific nature of the 
separation. As long as protein binding is disrupted, most high-abundance plasma 
proteins (typically proteins >~40 kDa) can be precipitated or separated using PPT. 
However, PPT has several serious drawbacks. For example, PPT does not remove 
PLs, salts, other peptides, metabolites, or dosing media, and formulation agents. 
In fact, PPT extracts PLs quite well, resulting in extracts with high concentrations 
of this undesirable class of compounds. During PPT, methanol solubilizes more 
lipids than ACN does, making it less desirable as an extraction solvent. However, 
the window to precipitate peptides coincidently is quite narrow when ACN is used; 
therefore, the concentration of ACN in a precipitation solvent should be carefully 
considered. Optimization of the final organic % and the nature of the organic used 
in the precipitation solvent and sample may balance precipitation of unwanted pro-
teins with peptide solubility and hence peptide recovery. The addition of TFA or 
trichloroacetic acid (TCA) may help in cases where peptide solubility in the precip-
itation solvent is limited. The non-specificity which characterizes PPT often leads 
to severe matrix effects which cause variability, poor robustness, and poor repro-
ducibility in the final assay.

The use of LLE to extract peptides from plasma has been reported only a hand-
ful of times and with lower than desired recovery. In general, the ionic nature of 
peptides and their poor solubility in very apolar solvents severely restrict the util-
ity of this approach. Furthermore, typical LLE solvents such as methyl tertiary 
butyl ether (MTBE), hexane, and ethyl acetate also extract lipids efficiently, yield-
ing final extracts saturated with PLs. LLE also does little to separate peptides of 
interest from other peptides present in the sample or many of the other common 
interferences.

Separation of a target peptide from other peptides in the sample is most read-
ily accomplished by SPE, where manipulation of both organic content and nature 
and concentration of modifier can result in very selective final eluates. Neither 
PPT nor LLE possesses the degree of resolving power necessary to accomplish 
this as both rely on simple separation mechanisms: either physical precipitation 
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only or distribution between aqueous and organic layers. SPE, historically silica-
based C18 and more recently polymer-based reversed-phase (RP) or mixed-mode 
(MM) (having both RP and ion-exchange retention mechanisms) sorbents, seems 
to be the method of choice for peptide extraction. There are many reasons for the 
popularity of SPE for selective peptide isolation. In general, one can load in aque-
ous solutions rather than working with organics that may cause precipitation. In 
contrast to other techniques, any reagents used to disrupt protein binding, such as 
denaturants, acids, bases, will be eliminated during the process through a series of 
wash steps. In addition, the majority of unwanted proteins are eliminated during 
the sample loading step of an SPE method due primarily to their exclusion from 
the chromatographic pores of the sorbent. Dosing media and formulation agents 
may not be efficiently removed by PPT or LLE, but may, once again, be removed 
using SPE and judicious choice of wash and elution steps.

Most SPE methods can be automated or converted to online protocols such as 
that recently described by Calderon-Santiago et al. [48]. While online extraction 
methods eliminate many of the manual components of performing an extraction, 
extraction times of 7–12 min per sample (prior to LC) are commonplace. Method 
development may be more challenging when using online systems as risk of car-
ryover increases with multiuse cartridges and recovery and matrix effects are more 
difficult to determine.

Extraction by SPE can be used with polar and non-polar, acidic and basic, and 
large and small peptides, making it an attractive platform for a universal method 
development approach. Solid-phase extraction, specifically MM SPE, is identi-
fied as the technique that provides the most selective final eluates [12]. In addi-
tion, a recent review of techniques specifically for peptide bioanalysis [15] also 
concluded that MM sorbents in conjunction with RP chromatography are the ideal 
platform for this application. MM SPE sorbents typically contain a RP backbone 
functionalized with a strong or weak cationic or anionic moiety. This allows one to 
bind analyte and/or interference molecules by either RP or ion exchange, provid-
ing dual orthogonal mechanisms with which to perform a separation. Furthermore, 
one can manipulate the organic content within each wash or elution step to further 
improve the selectivity and cleanliness of the final elution(s). Finally, extraction 
of peptides using the ion-exchange elution step and subsequent LC separation in 
the RP dimension ensures orthogonality of the bioanalytical method as a whole. 
Selective sample preparation in conjunction with a high-resolution chromato-
graphic separation is critical as TQ MS systems operated at unit mass resolution 
could not differentiate between two isobaric peptides sharing an isobaric fragment. 
Unfortunately, this instance occurs more frequently than we would like due to the 
highly conserved chemical nature of peptide composition. There are only 20 natu-
rally occurring amino acids that make up all of the peptides and proteins in the 
body, making separation challenging, thus requiring a multidimensional approach 
such as the one described herein which uses MM SPE to complement RP LC.

Properties such as pI may be useful in choosing an SPE sorbent and/or in 
optimizing wash and elution solvents. Additionally, the pH of wash and elution 
solutions as well as the specific nature of the SPE sorbent can be manipulated or 
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changed to facilitate separation from other peptides based on knowledge of pI. 
For example, basic peptides such as desmopressin (pI 8.6) or octreotide (pI 8.3) 
are expected to bind to a (MM) cation-exchange sorbent, whereas an acidic pep-
tide such as bivalirudin (pI 3.9) should bind to a (MM) anion-exchange sorbent. 
Depending on the exact % of organic required to elute the target peptide, wash 
solvents should contain as much organic as possible without eluting the peptide. 
The elution solvent should also contain the minimum % organic required to elute 
the peptide in order to minimize the more hydrophobic interferences in the extract. 
Not only can peptides of opposite ionic nature be separated from each other, but 
peptides of similar pIs can also be separated from each other through judicious 
choice of organic content in the wash and elution solutions. Using different wash 
and elution solvents allows for refinement of the SPE method to sequentially and 
systematically optimize the organic content so that the elution window of the pep-
tide is tightly controlled. Finally, utilizing a small-volume elution SPE device can 
eliminate the evaporation and reconstitution steps, which frequently result in pep-
tide losses due to adsorption to the plates or tubes used for evaporation or insolu-
bility in the reconstitution solvent. This low elution volume format can effectively 
concentrate a sample up to 15-fold through well-researched plate designs which 
allow one to load several hundred microliters of sample and elute in as little as 
25 μL. One such plate is the Waters μElution 96-well plate.

To further reinforce the benefits of MM SPE for peptide extraction, stud-
ies were performed in our laboratories to compare traditional sample prepara-
tion methods (PPT, LLE, and RP SPE) to MM SPE. Initially, this was performed 
using two of the 12 peptides from Table 2.1 (desmopressin and bivalirudin). 
Analyte recovery was calculated to compare and contrast extraction efficiency 
using generic methods for each technique, and matrix effect calculations were 
used to reflect sample cleanliness and as a representative measure of selectivity of 
the extraction types. Once the limitations of these techniques were characterized 
and understood, we endeavored to develop a simple screening method for peptide 
extraction.

The exercise of developing a universal sample preparation screening method 
for peptides serves here to clearly reinforce the importance of understanding and 
addressing adsorption, solubility, and stability through concrete examples and 
explanations.

In these studies, Eq. 2.1 (previously described) was used to calculate the recov-
ery of each peptide from human plasma.

Matrix effects were calculated according to Eq. 2.2

Results from the initial characterization experiments are shown in Fig. 2.11.
The data show that none of the techniques provided both the high recovery 

required to meet challenging detection limits and low matrix effects (which would 
indicate improved removal of interferences). In addition to the benefits previously 

(2.2)

% Matrix Effects (ME) =

((

ResponsePost - Extracted Spiked Sample

ResponseSolvent Standard

)

− 1

)

∗ 100
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described, MM SPE has been shown to reduce matrix effects to a greater extent 
than other sample preparation techniques while still providing high analyte recov-
ery [12]. Due to their zwitterionic nature, the behavior of peptide therapeutics 
under various SPE conditions can be difficult to predict. Therefore, initial proof-
of-concept studies were performed on four different MM sorbents, using a generic 
set of conditions originally developed for small molecule screening [12]. Recall 
that each sorbent consists of a moiety that imparts RP behavior as well as an ion-
exchange group (strong or weak cation or anion exchange) for additional selectiv-
ity and therefore is capable of producing two elutions: one contains compounds 
bound by RP (elute 1) and a second containing compounds bound by ion exchange 
(elute 2). Recovery was calculated for both elute 1 and elute 2 fractions on all 
four of the MM sorbents. As expected, using protocols designed for small mol-
ecules, recovery for test peptides was split between the two elutions and was on 
average <60 %, whereas these same protocols typically yield recoveries for small 
molecules that are >80 % on average. It was clear that knowledge and applica-
tion of general peptide physiochemical properties were needed if the advantages 
of MM SPE were going to be successfully applied to develop a generic approach 
to peptide extraction. Conventional “small molecule” thinking and protocols incor-
porate steps and solvents used in a manner that yields poor results for peptides. 
For example, when one thinks of maximizing recovery for small molecules, the 
elution window is quite broad, ranging from 0 to 5 % organic required to elute 
very polar compounds to 100 % organic for hydrophobic small molecules. 
Generic SPE protocols for small molecules often use 100 % organic in the elu-
tion to ensure the highest recovery for many small molecules of potentially diverse 
properties. In contrast, if one considers peptides as a class, the elution window is 
much tighter, with most peptides eluting between approximately 30–65 % acetoni-
trile. This basic information should be applied during extraction method develop-
ment as application of solutions containing higher than optimal organic content 
often results in peptide precipitation onto the SPE cartridges. It is also common 
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Fig. 2.11  Extraction recovery and matrix effects for an acidic and basic peptide using traditional 
sample preparation techniques
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to include modifiers such as formic acid in wash and elution steps for small mol-
ecules. However, stronger acids may be required if maximum solubility, and thus 
recovery, of peptides is to be obtained.

Further experimentation with additional peptides and examination of the result-
ant data were performed in order to formulate a construct for a peptide screening 
protocol. The data indicated that strong anion-exchange and weak cation-exchange 
sorbents produced higher recoveries on average in the ion-exchange elutions for 
the therapeutic peptides tested (data not shown). Subsequently, changes were 
made to the original small molecule protocols, including optimization of wash and 
elution solutions, to generate a protocol developed specifically for peptides which 
incorporates basic knowledge of peptide hydrophobicity, solubility, and their 
zwitterionic nature. Among these changes were to use a 75 % organic elution as 
opposed to a 100 % organic elution. In addition, TFA is added to improve solubil-
ity of hydrophobic peptides. TFA showed a significant improvement in recovery 
for certain peptides over formic acid without deleterious effects. The concentra-
tion of TFA was equally as important. Several concentrations in the final elution 
were tested, and 0.1 or 0.5 % TFA was not adequate to provide high recoveries 
for some of the larger or more hydrophobic peptides. A final concentration of 1 % 
TFA provided the optimal recovery for a diverse set of peptides. It is believed 
that a combination of improved solubility and ion pairing is responsible for the 
recovery increases. This elution solvent has the advantages of providing optimal 
solubility for a wide range of peptides, eliminating the majority of phospholipids 
(which typically require higher organic to elute) and producing an eluate ready for 
injection onto an LC/MS/MS system without further manipulation. The next sec-
tion describes the method details for a universal screening protocol for MM SPE 
extraction of peptides from biological matrices. The method screens two SPE sor-
bents simultaneously to rapidly identify the best starting conditions. Although one 
may be able to predict the appropriate sorbent for a peptide based on pI, it is not 
always a definitive indication. The location of charged residues in the sequence 
and their accessibility to the sorbent influence retention may result in unpredict-
able behavior vis-a-vis pI and sorbent type. For example, two peptides with the 
similar pIs may interact differently with the same SPE sorbents, reinforcing the 
need for a screening protocol.

2.4.6  Proposed Peptide Extraction Screening Protocol

Based on discussions above, we have proposed a general screening protocol: 
 sorbents: weak cation exchange and strong anion exchange

Format: 96-well reduced sorbent bed size

1. Condition with MeOH;
2. Equilibrate with H2O;
3. Load diluted, pre-treated sample;
4. Wash with 5 % NH4OH in H2O;
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5. Wash with 20 % ACN in H2O;
6. Elute with 1 or 2 × 25 μL 1 % TFA in 75/25 ACN/H2O;
7. Dilute with 25 or 50 μL H2O if necessary.

Recovery for 12 peptides tested using this protocol is summarized in Fig. 2.12. 
Recovery for 9 out of the 12 peptides was acceptable (>80 % recovery) on a first 
pass using the screening method, clearly indicating that a single SPE platform can 
be successfully used for method development. Minor modifications to the method, 
including adjustment of pre-treatment to reduce protein binding and elimination of 
the high-pH wash in a single case, resulted in improved recovery for the remain-
ing three peptides. Final SPE recovery and matrix effect values from this approach 
are summarized in Table 2.3. The minor modifications to the screening protocol 
necessary for three of the peptides serve here to highlight areas for troubleshoot-
ing should peptide recovery be low using the screening protocol. In general, there 
are a few primary reasons for actual or apparent low peptide recovery from a bio-
logical matrix: protein binding, inadequate solubility in the final elution solvent, 
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Fig. 2.12  SPE recovery for 12 therapeutic and endogenous peptides using a mixed-mode 
 screening method optimized for peptides and with minor modifications

Table 2.3  Final SPE 
recovery and matrix effect 
values using SPE and 
UHPLC screening methods 
optimized for peptides

Peptide % SPE recovery % Matrix effects

Octreotide 88 <10 %
Angiotensin II 82 8 %
Desmopressin 104 <11 %
Vasopressin 100 −3 %
Goserelin 100 −2 %
Angiotensin I 109 a
Somatostatin 94 a
Neurotensin 114 6 %
Bivalirudin 100 10 %
BNP 84 a
Teriparatide 97 9 %
Enfuvirtide 102 a

aNot yet measured at a time of publication
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chemical modification/instability (which changes the mass, rendering the original 
MRM incapable of quantifying the modified peptide), incomplete ionization of the 
peptide and sorbent during loading, non-specific binding, and insufficient solvent 
strength. In general, the larger and more hydrophobic a peptide is, the greater the 
likelihood of encountering one of these issues. In addition, one should examine 
the amino acid content of the target peptide and refer to Table 2.2 to identify any 
possible chemical modifications that could occur during processing or conditions 
which could cause instability.

As a first step toward improving recovery and/or determining the cause of low 
recovery, the following optional experiments may be performed:

1. Extract the sample in PBS + 10 μg/mL bovine serum albumin (BSA) and com-
pare recovery to the target matrix. If recovery in the PBS solution is higher, this 
may indicate poor disruption of protein binding in the target matrix, indicating 
that a change in pre-treatment is required. If the generic acid pre-treatment is 
inefficient, higher concentrations of acid or base, or denaturation with guani-
dine HCl or urea, may be necessary.
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Fig. 2.13  LLOQ (between 1 and 5 pg/mL) for desmopressin extracted from human plasma 
using slightly modified versions of the proposed generalized UHPLC and SPE screening methods
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2. Increase the concentration of TFA in the final elution to 5 or 10 %. This may 
improve solubility for larger or more hydrophobic peptides. Do not increase the 
organic % in the final elution, and this often results in precipitation. 75% ace-
tonitrile is sufficient. Alternatively, different modifiers such as acetic acid may 
be assessed.

3. Exchange 10 mM ammonium acetate (pH ~6) for the NH4OH wash in the 
generic protocol if using weak cation exchange. This may improve the ioni-
zation of the sorbent and peptide, facilitating complete binding upon sample 
loading. This modification also eliminates high-pH steps from the protocol, 
allowing one to accommodate base-labile peptides without loss.

4. For acid-labile basic peptides, a strong cation-exchange sorbent may be used 
with the ammonium acetate wash described in option 3 and the standard high-
pH elution.

Korthals et al. (http://www.tno.nl/downloads/Poster_Peptides_BB1.pdf) reported 
a similar screening approach to that described here, based on four MM sorbents 
rather than the simpler two-sorbent method here.

The generic LC (as described in the chromatography section) and SPE condi-
tions described in this chapter were used to quantify several therapeutic peptides 
in human plasma. Detection limits in extracted human plasma were determined for 
a subset of the test peptides. Blank human plasma and samples prepared at 0.001, 
0.005, 0.01, 0.02, 0.05, and 0.1 ng/mL (approximately 1–100 fmol/mL) were 
extracted according to the generic screening method. Chromatographic results 
were evaluated to determine LOD and lower limit of quantification (LLOQ). In 
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Fig. 2.14  LLOQ (5 pg/mL) for angiotensin II extracted from 350 μL of human plasma using the 
proposed generalized UHPLC and SPE screening methods
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bioanalytical assays, the LOD is defined as the level which is three times that of an 
extracted blank matrix sample; similarly, LLOQ is defined as five times the level 
of the blank. Resulting representative chromatograms are shown in Figs. 2.13 and 
2.14, demonstrating the successful application of this combination of techniques 
to attain detection limits in the single pg/mL range. Naturally, the exact detection 
limits achievable are dependent on many factors including size and  hydrophobicity 
of the peptide, ionization and extraction efficiency, specificity of MS transition, 
chromatographic behavior, volume of sample used, and sensitivity of MS instru-
mentation employed, among others.

This platform and approach were also successfully applied in the development 
of a flexible, sensitive, and selective method for β-amyloid peptides, putative bio-
markers for Alzheimer’s disease [34]. β-amyloid peptides are considered one of 
the most difficult peptide classes to analyze due to their hydrophobicity, poor solu-
bility, propensity to aggregate, high degree of non-specific binding, low circulating 
levels, poor MS sensitivity, and protein binding. Each aspect of peptide handling 
and each step of the extraction process were evaluated and optimized as per the 
recommendations in this chapter, ultimately yielding a method which overcame 
the inherent challenges faced. Lessons learned from this problematic group of 
 peptides may be applied to other challenging peptides as well.

2.5  Alternative Techniques and Topics

The use of more advanced techniques such as 2D LC and nanoflow LC has been 
documented in cases where detection limits could not be reached with conven-
tional approaches. This is typically due to ultralow levels in study samples or due 
to the presence of closely related endogenous and/or isobaric interferences that 
could not be resolved using more traditional instrumentation. Common configura-
tions of 2D LC systems include trap and back elute, trap and forward elute, two-
column approaches (RP–RP, RP–HILIC, etc.), parallel column regeneration, at 
column dilution and heart-cutting [49]. Trap and elute configurations enable one to 
load more sample at higher flow rates, focus the sample using a trapping column, 
and flush salts and other interferences to waste. Heart-cutting configurations maxi-
mize resolution by allowing one to take a narrow chromatographic band contain-
ing the peak of interest and “cut” it from the first column followed by loading of 
this greatly simplified sample onto the second column for further separation. An 
example of the benefit of 2D LC for a peptide separation is shown in Fig. 2.15.

A recent publication by Zhang et al. [50] details the development of a sensi-
tive method for endogenous oxytocin, which reaches an LLOQ of 1 pg/mL in 
human plasma using SPE and 2D LC. RP was used in both dimensions. Oxytocin 
was eluted with a gradient on the first column; the peak was then heart-cut to the 
second column and eluted under isocratic conditions. The low flow rates used 
in nano-LC can provide significant improvements in MS ionization efficiency, 
resulting in dramatic sensitivity gains. However, nanoflow systems are often per-
ceived as having poor robustness, requiring a very skilled operator and as being 
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somewhat of an “art.” The narrow diameter columns (typically 75–300 μm), sensi-
tivity to integrity of connections and tubing cuts, and “finicky” nature of the spray 
from various tip types contribute to this perception and to the limited use of nano-
flow in routine bioanalytical laboratories. In addition, the low flow rates required 
result in long chromatographic run times, severely restricting throughput.

Methods which include highly selective isolation and enrichment techniques 
based on affinity purification of peptides, such as immunoprecipitation (IP), prior 
to analysis can achieve even greater specificity. Li et al. [51] described such an 
approach for the quantitation of amyloid peptides during the 2009 AAPS meet-
ing. Columns packed with anti-peptide antibodies have also been used to selec-
tively enrich target peptides. This was successfully applied by Neubert et al. [52] 
to enrich signature tryptic peptides of pepsin/pepsinogen for protein quantitation. 
Though in more widespread use currently, these approaches are limited by the 
availability of commercial reagent kits or the internal resources needed to develop 
the highly specialized reagents or columns required.

Although this chapter focuses on therapeutic peptides, the extraction techniques 
described, and to a certain extent, the chromatography, can be applied to the more 
elaborate application area of protein quantitation using signature peptides once the 
digestion of the protein has been accomplished. Surfactants, denaturation, reduc-
tion, and alkylation reagents as well as digestion enzymes and other peptides can 
be removed during SPE of the digest mixture. Figure 2.16 demonstrates the poten-
tial benefit of SPE cleanup for a signature peptide from trastuzumab. Not only are 
many background peaks removed and the spectra simplified, but also signal inten-
sity for the target peptide increased significantly as a result of cleanup using MM 
SPE. Recovery for the signature peptide was ~83 %. In this case, the extraction 
protocol also provided a 5X concentration of the sample, which was diluted during 
addition of the various reagents without evaporation.

(a) (b)

Fig. 2.15  Typical separation of 2 peptides on a 1D system a, the same separation following 
heart of the peptides onto a second column using a 2D system b. Data reproduced with permis-
sion from PPD Pharma

2 Quantitative Analysis of Therapeutic
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2.6  Conclusions

The growing market for biotherapeutic peptides and the development of quanti-
tative methods for those analytes have brought to light the challenges facing the 
analysis of this broad range of compounds. Regulatory requirements are encour-
aging development of methodologies that are time- and cost-effective while still 
producing assays that are sensitive enough to cope with biological matrices. This 
chapter identifies and discusses the challenges in detail, provides potential solu-
tions, and then proposes a generally applicable platform to peptide bioanalysis 

Fig. 2.16  LC/MS/MS 
analysis of a signature 
peptide from trastuzumab 
before a and after b cleanup 
of the digest mixture using 
strong cation-exchange SPE 
in reduced bed size format

(a)

(b)
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method development. The generalized strategy incorporates an understanding of 
peptide challenges to produce methods which more readily achieve the devel-
opment of robust, fast, and generally applicable assays. This was subsequently 
demonstrated using a relevant panel of therapeutic peptides extracted from a bio-
logically relevant matrix. Highly targeted, specific assays can be developed indi-
vidually for each of these peptides, but an approach that addresses at a diverse set 
of peptides serves to examine the multiple factors that need to be considered in 
detail for assay development. Overall, the data in this chapter combined with that 
of other researchers suggest that bioanalysis studies for peptide therapeutics are 
amenable to a platform-based approach to methods development when knowl-
edge of peptide chemistry is carefully applied. Such standardized approaches for 
determining optimal SPE enrichment and MRM-based LC/MS analysis should 
permit companies to reduce development timelines and shorten time-to-market 
for peptide drugs. Where needed, advanced analytical techniques can provide the 
additional selectivity and/or sensitivity needed for exceedingly difficult or unique 
assays such as quantitation of certain endogenous biomarkers or low-level protein 
analysis through targeted enrichment and isolation of signature peptides.
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3.1  Introduction

The search to discover and develop viable therapies for the treatment of diseases con-
tinues to branch out in new directions and to improve and incorporate more efficient 
strategies to identify drug molecules in a cost-effective manner. Although proven treat-
ments such as optimized small molecule drugs continue to provide an effective means 
for the management of certain medical conditions, alternatives such as engineered 
protein constructs have also been successful as therapeutic agents for treatment of a 
variety of diseases. Regardless of the type of drug molecule under consideration, opti-
mized strategies and high-quality quantitative bioanalytical methods must be devel-
oped and applied throughout the drug discovery and development process in order to 
inform critical decisions during the selection and characterization of drug candidates.

For over 20 years, liquid chromatography coupled to mass spectrometry detec-
tion (LC/MS) has been the cornerstone technology in the pharmaceutical indus-
try for definitive, quantitative analysis of small molecule drugs, drug metabolites, 
and corresponding endogenous entities in biological samples. The success of LC/
MS as the predominant technology in the quantitative bioanalytical process for 
small molecule drugs stems from its ability to detect multiple analytes with high 
specificity and sensitivity within a single sample. This platform has been read-
ily and widely applied throughout pharmaceutical research. As technology and 
instrumentation improves and novel and innovative research is conducted to 
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better understand the mechanisms of diseases, LC/MS will continue to play 
an important role in this endeavor. The growing interest and expanded use of  
LC/MS-based methods for the quantitative analysis of proteins in early discovery 
stems from the experiences gained in small molecule bioanalysis. Some of the same 
advantages garnered in the analysis of small molecules: rapid development of meth-
ods on existing platforms, demonstration of wider linear dynamic ranges for assays, 
and discrimination of multiple target analytes on a molecular level have firmly posi-
tioned LC/MS as a widely applicable technology platform for protein bioanalysis 
and a viable complimentary technique to established ligand binding assays (LBA). 
Nevertheless, there are also significant challenges in isolating, concentrating, 
detecting, and quantifying specific proteins by LC/MS in the presence of an over-
whelming abundance of endogenous proteins found in biological matrices.

In this chapter, we will describe the current development and refinement of LC/
MS-based multiple-component bioanalytical methods to support the discovery and 
development of protein therapeutics in the pharmaceutical industry today, includ-
ing a number of the integrated technical procedures used to develop a robust bio-
analytical method capable of accurately and precisely measuring levels of different 
proteins. These steps in the bioanalytical process include the selection of targeted 
or surrogate peptides from in silico analysis, LC/MS parameter optimization for 
the detection of multiple peptides, sample preparation to isolate and/or enrich 
analyte proteins, optimization of proteolytic digestion conditions, and data pro-
cessing and reporting on multiple analytes/peptides. LC/MS methods based upon 
the simultaneous detection of multiple peptides offer several advantages. These 
include the ability to obtain specific molecular information on protein modifica-
tions resulting from metabolism, assessment of the protein stability in biological 
matrices and the capability to simultaneously measure multiple proteins (target 
and therapeutic) in the same sample. Although still early in the application devel-
opment phase, LC/MS has already begun to demonstrate utility as a viable bioana-
lytical technique for quantification of proteins in discovery laboratories.

3.2  Intact Protein Quantitation

The development of LC/MS-based methods for intact protein quantification, 
whether using triple-quadrupole mass spectrometers or high-resolution mass spec-
trometers, remains challenging, and there are only a few published examples of 
this application for small proteins [1–3]. Ji et al. [3] have developed an LC/MS/MS 
method for quantitative determination of rK5, a protein drug candidate with molec-
ular weight of 10,464 Dalton and achieved a lower limit of quantitation (LLOQ) 
at 99.2 ng/mL in monkey plasma samples. In this work, a solid-phase extraction 
(SPE) method was developed to isolate and purify rK5 from endogenous proteins. 
For intact protein quantification, it is often critical to use trifluoroacetic acid as the 
mobile-phase modifier and to maintain a high column temperature between 40 °C 
and 60 °C to ensure good chromatographic peak shape.
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There are several challenges for intact protein quantification using LC/MS. 
One major obstacle is the reduced sensitivity caused by significant signal split-
ting as the typical protein ionizes to form multiple “molecular” ions with differ-
ent charge states. Given the relatively low abundance, sample extraction to isolate 
the protein of interest from endogenous proteins in the biological matrix can be 
challenging. In addition, linear dynamic ranges for ionized proteins are much 
narrower due to ionization competition at higher concentrations of the analyte of 
interest. Trifluoroacetic acid is often used as a mobile-phase modifier to improve 
peak shape but it can also result in significant suppression of mass spectrometric 
response. Therefore, quantification at the peptide level by LC/MS/MS is a more 
commonly used approach for protein bioanalysis.

3.3  Protein Quantitation Through Peptides

3.3.1  Selection of Surrogate Peptides

Currently, the most common approach to quantify a therapeutic protein using mass 
spectrometry involves digesting the protein into constituent peptide components 
which are then detected by either high-resolution or triple-quadrupole mass spec-
trometers. The formation of peptides after enzymatic digestion can be predicted in 
silico using a variety of commercially available software. The peptide sequence 
uniqueness compared to other potential interferences from endogenous pro-
teins should be evaluated by a bioinformatics tool, such as BLAST (Basic Local 
Alignment Search Tool which compares primary biological sequence information, 
such as the amino acid sequences of different proteins) and further verified experi-
mentally by the analysis of digested samples of neat protein and blank matrices. 
The digestion mixture of a neat protein, which contains multiple peptides, is used 
for multiple-component LC/MS-based method development for the protein.

In the case of monoclonal antibodies (mAbs), a major class of protein therapeu-
tics, the peptides selected for bioanalysis preferably contain portions of the com-
plementarily determining region (CDR) which is responsible for binding affinity 
and capacity of the mAb. Since this region of the mAb has been engineered to 
be unique from native proteins, there is a greater chance that peptides from the 
CDR region will be non-native and, therefore, less prone to interference from 
endogenous peptides. Peptides located in the heavy chain and the light chain of the 
mAb can also be a source for targeted analysis, as long as the selected peptides are 
unique and meet assay performance criteria. In addition, reproducible digestion 
efficiency is one of the critical elements of a rugged analytical method. To assess 
the progress of digestion, an equal molar amount of stable isotope–labeled (SIL) 
surrogate peptide can be added to the digestion mixture. Equivalent responses 
between the labeled and unlabeled analogs indicate complete digestion. To evalu-
ate digestion efficiency, one can compare the post-spiked peptide standard curve at 
the corresponding protein concentration with the peptide standard curve generated 
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after trypsin digestion of pre-spiked protein. If the two curves match well, then the 
digestion efficiency and reproducibility are high [4, 5].

The surrogate peptide is selected according to the following criteria [4, 6–8]: 
(a) It is a unique sequence in the intended species and its LC/MS response is not 
observed in endogenous components of the biological fluid; (b) It does not contain 
chemically reactive residues such as Met, Trp, or Cys; (c) It preferably does not 
contain unstable sequence such as Asn-Gly (to avoid N-deamidation) or Asp-Gly 
(to avoid isomerization to form isoaspartate-Gly); (d) It has a sequence length of 
6–20 amino acids, preferably between 8 and 15, to facilitate MS ionization and to 
achieve sufficient chromatographic retention and resolution from other peptides; (e) 
When trypsin is used for digestion, the surrogate peptide does not contain a contin-
uous sequence of arginine (RR), lysine (KK), alternating (RK) or (KR) sequences, 
or when the arginine or lysine is immediately followed by a proline (RP or KP) on 
the carboxyl side.

3.3.2  Assessment of Peptides Generated Through Enzymatic 
Digestion

As stated previously, LC/MS-based quantitative analysis of proteins relies on the 
detection and measurement of smaller peptides generated by enzymatic digestion 
of the target analyte. Among the proteases that are used for protein digestion for 
quantitative bioanalysis, trypsin is the enzyme of choice due to its relatively high 
cleavage specificity, its ability to digest insoluble substrates, and its relatively low 
cost that permits the use of higher amounts per experiment. Trypsin specifically 
cleaves the carboxyl side of lysine and arginine residues of peptides. The rate of 
digestion will be slowed if the arginine or lysine is followed by an acidic residue.

Depending on the nature of the protein, it may be possible to digest it directly 
in the biological matrix, for example, if the protein is already unfolded. However, 
the protein may need to be first chemically denatured using urea or guanidine HCl, 
reduced with dithiothreitol (DTT) or tris (2-carboxyethyl) phosphine (TCEP), 
and alkylated with iodoacetamide or iodoacetic acid prior to digestion. The opti-
mal pH range for trypsin digestion is 7.0–9.0. Most published procedures indi-
cate that trypsin digestion is usually conducted at 37 °C in a water bath overnight 
(~16 h), although there is a growing trend to develop faster conditions, such as 
using microwaves or elevated temperatures, to reduce incubation times. The diges-
tion conditions for specific proteins are optimized by varying the enzyme–protein 
ratio, incubation time, and components of digestion buffer. To increase the trypsin 
digestion rate, the use of a mixed organic-aqueous solvent system, the addition 
of MS compatible surfactants to digestion buffer, and performing the digestion 
with excess amount of trypsin at elevated temperatures have been applied. These 
refinements have increased throughput significantly without loss of assay integrity  
[9–12]. The results are more consistent, and minimal digestion-induced deamida-
tion or N-terminal glutamine cyclization products have been observed with more 
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rapid digestion methods [13, 14]. The cleavage will not take place if a proline resi-
due is on the carboxylic side of the cleavage site [15].

For current mass spectrometric analysis, peptides ranging from 6 to 20 amino 
acids are desired. Their physicochemical properties are amenable to mass spec-
trometric detection in terms of specific detection, linear response over a wide con-
centration range, and good reverse-phased chromatographic properties. Based on 
the typical frequency of occurrence of arginine and lysine in protein, the typical 
length of tryptic peptides are usually within the desired range to obtain sufficient 
signal response. When the size of peptides becomes larger, additional charges are 
needed to bring the mass-to-charge (m /z) ratio down to the range of current mass 
spectrometers. Some types of mass spectrometers, such as Time-of-flight (TOF), 
have a high upper mass range, which make it possible to detect intact proteins and 
larger peptides with higher m /z ratios. However, the higher the charge states of 
the analyte, the wider the spread of the charge distribution envelope. This makes 
it more difficult to achieve good quantitation limits, since the charged species 
selected for detection are only a fraction of the total charge population of the ana-
lyte of interest.

3.3.3  LC/Mass Spectrometric Characterization of Peptides: 
Charge States

Unlike small molecules, electrospray ionization (ESI) of peptides and proteins 
generates multiple charge states and displays various charge distribution enve-
lopes. This phenomenon offers both advantages and disadvantages in the char-
acterization and quantitation of proteins and peptides. Multiple charged states 
produce ions at a lower m /z range which are in the mass range of a variety of 
mass spectrometers to detect these entities. However, the effect of multiple charges 
increases the complexity of the mass spectra by overlapping an abundance of ions 
generated by a multitude of molecules into a narrow m /z window. Additionally, 
the charge state distribution envelope increases the population of ion species 
detected in the mass spectra, thus decreasing resolution and specificity. Moreover, 
the charge state distribution envelope spreads the ion signal across multiple ion 
species and decreases the detection limit. High-resolution accurate mass spectrom-
eters can resolve these highly complex mass spectra and assign peptide identifica-
tion based on their accurate masses.

Aside from solvent and instrument parameters, the sample matrix can also 
have a noticeable effect on charge state distribution. Matrix components com-
pete for charges with analytes of interest causing the charge state distribution to 
downshift. This effect decreases the relative abundance of higher charge state spe-
cies, while increasing the relative abundance of the lower charge state species. 
Consequently, different charge state species can yield different quantitation results 
when the matrices are different: for example, between the standard curve and the 
test samples; between samples collected from different animals; between samples 
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collected at different time points, etc. In addition, analyte peptides can compete 
for charges from themselves and downshift when present in higher concentrations. 
This causes the standard calibration curve to bend downward for higher charge 
state species and bend upward for lower charge state species.

After peptides are generated through enzymatic digestion, LC/MS analy-
sis should be performed to confirm the presence of peptides and to gauge their 
relative response by comparing signal strengths obtained from different MS scan 
types. A good choice of instrumentation for this step is a high-resolution accurate 
mass spectrometer. Full-scan high-resolution mass spectra (FS-HRMS) provide a 
clear pattern of charge states generated from multiple charged peptides and can be 
directly compared to the exact mass of the peptides predicted from in silico diges-
tion. The exact mass of each charge state is calculated and data are mined for a 
match within a narrow mass tolerance range.

The mobile-phase pH, solvent makeup, and electrospray MS parameters will 
have an effect on charge state distribution. In the investigation of the effect of 
pH on the ionization of a motilin analog, a 22 amino acid polypeptide, revealed 
that higher charged ions are more abundantly produced (4+ , 5+ compared to 
3+ ions) at lower pH [16]. In case of beta-endorphin (MW = 3466 Dalton with 
five lysine residues), the electrospray voltage was found to have no effect on the 
relative charge state distribution. However, when the declustering potential (DP) 
was increased, a shift from higher to lower charge states was observed through the 
loss of protons from the high charge state ions. In addition, the extent of deproto-
nation could also be manipulated by using solvents of varying proton affinity [17].

Triply and doubly charged species of peptides are the predominate ions that are 
usually observed following trypsin digestion of therapeutic proteins. Triply charged 
precursor ions might possess higher fragmentation efficiencies and, thus, may provide 
higher detection sensitivity. The evaluation of charge state distribution and enhanced 
formation of favorable charge state precursor ions should be a part of the optimiza-
tion strategy for LC/MS/MS-based method development of peptides. Recently in our 
laboratory, a sensitive assay for a peptide-GLP-1 agonist was required. By optimiz-
ing the DP, a triply charged precursor ion with higher fragmentation efficiency was 
selected and a sensitive assay was developed based upon its detection [18].

3.3.4  Fragmentation Patterns of Surrogate Peptides; HRMS

Collision Induced Dissociation (CID) fragmentation patterns of surrogate peptides 
can also be readily obtained using HRMS. Additional injections using varying 
instrument parameters, different voltage settings in the source, and in the colli-
sion energy in a HCD (Higher-energy collisional dissociation) trap in an Orbitrap 
mass spectrometer will yield different responses. Programming experiments with 
low and high collision energy potential will provide MS/MS data that can be used 
to determine which product ions are increasing in intensity and can be used to 
improve assay sensitivity.
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The CID of a peptide usually occurs by cleavage at amide bonds to gener-
ate “y” or “b” ions, if the COOH- or NH2- terminal fragment retains the charge, 
respectively. When basic residues, especially Arg, are protonated, cleavage occurs 
selectively at the C-terminus of Asp or Glu. If the number of protons exceeds the 
number of Arg residues, cleavage occurs at the N-terminal side of Pro. The dou-
bly charged precursor ion usually produces an abundance of “y” ions and weak 
“b” ions. The intensity of doubly charged “y” ions generated from a triply charged 
precursor may be higher than generated from the doubly charged precursor [19]. 
These product ions can be used for detection on a triple quadrupole under selected 
reaction monitoring (SRM) to transfer and optimize the LC/MS/MS method from 
the HRMS to a triple quadrupole. In some cases, LC/MS using exact mass can 
be utilized for quantification. However, when sensitivity is required, the triple-
quadruple LC/MS/MS will most likely provide the more sensitive method for 
quantification.

3.3.5  HRMS in Protein/Peptide Quantitation:  
Emerging Trends

There is a growing interest in using HRMS for the quantitation of new chemical 
entities (NCE) in the industry because of its potential to provide additional quali-
tative information on untargeted endogenous analytes that are present in biologi-
cal matrices [20–23]. High mass-resolving power of modern mass spectrometers 
(viz. TOF, Orbitrap) combined with superior chromatographic separation in ultra-
high-pressure liquid chromatography (UHPLC) systems can provide the resolution 
and specificity required for more complex bioanalysis [24–27]. Although conven-
tional SRM approaches provide high specificity and sensitivity, they also require 
some initial method development. This slows the process especially early in the 
discovery process when thousands of compounds are screened to select candidates 
for further development. The SRM work flow is less efficient due to the optimiza-
tion of multiple ion source parameters and CID conditions required to select SRM 
transitions for each analyte of interest. SRM strategies will not detect untargeted 
compounds such as metabolites, matrix interferences, and potential endogenous 
biomarkers. HRMS full-scan data sets provide comprehensive details of each 
sample analyzed and can be probed further using post-acquisition software meth-
ods such as mass defect filter (MDF) to identify new analytes for more detailed 
evaluations [28–30]. These simultaneous quantitative and qualitative approaches 
are proving to be attractive options in drug discovery research, when screening for 
potential liabilities at early stages of the programs is cost-effective. Compared to 
small molecules, proteins present additional bioanalytical challenges due to the 
complexity of the matrix resulting from the post-translational modifications (PTM) 
and proteolytic cleavage of the therapeutic protein by peptidases. As described in 
the following section, HRMS offers valuable features for resolving some of these 
bioanalytical challenges [1, 20, 31–33].
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Protein quantification using HRMS falls into two categories: direct 
quantification of therapeutic peptide/proteins (molecular weight typi-
cally < 20,000 Dalton) and the analysis of surrogate peptides derived from enzy-
matically digested proteins. Sample preparation and purification steps prior to 
LC/MS analysis can be quite different for peptides compared to that of proteins. 
However, the detection of both types of molecules using mass spectrometry pre-
sents similar bioanalytical challenges. Both types of molecules generally form 
multiply charged ions under ESI conditions which result in a “dilution effect” 
on the overall response of the molecules in the ion source, directly affecting the 
assay sensitivity. Narrow spacing between the multiply charged molecular ion 
clusters also may cause isotopic interferences particularly when conventional 
SRM-based methods are employed using low-resolution mass spectrometers. 
Furthermore, peptides typically produce multiple fragment ions during CID that 
result in further signal dilution and decreases in assay sensitivity because typi-
cally only one SRM transition, most often the one with the highest signal, is 
used for the quantification. The use of extracted ion chromatograms (XIC) from 
HRMS full-scan mass spectra for peptide quantification can overcome some of 
these limitations.

In certain cases, combining the response from several XICs from multiply 
charged isotopic clusters can be used to improve the detection limits of HRMS 
assays. This is illustrated in the processing of the TOF full-scan mass spectrum 
of an Endothelin-3 (MW = 2643 Dalton) standard (4,000 nM) in rat plasma, 
acquired using quadrupole TOF (QTOF) under positive ESI mode, 5-Hz acquisi-
tion rate, and a resolving power of 20 K (Fig. 3.1). The spectrum identifies ions 
with 3+ and 4+ charges, respectively, at m/z 881.714 and 661.539. The assay 

3+

4+

Fig. 3.1  UHPLC-Q-TOF full-scan mass spectrum of Endothelin-3 standard (4000 nM) in rat 
plasma obtained 5-Hz data acquisition rate and a resolving power of 20 K (Reproduced from 
Ref. [20] with permission of Future Science Ltd)
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LLOQ was 20 nM using a single XIC from the most abundant isotope (4+ charge, 
m/z 661.539). Summing XICs, in a defined Mass Extraction Window (MEW 
10 millidaltons), from several ions improved the S/N three times of that obtained 
using single XIC (upper trace), providing the assay LLOQ of 7 nM (Fig. 3.2). 
However, this approach may not be universally applicable, especially when iso-
topic peaks are masked by matrix and chemical noise.

Common modifications such as deamidation may cause isotopic interferences 
particularly under SRM conditions at unit mass resolution. Each deamidation 
step changes the molecular weight of the parent peptide by only one Dalton, 
hence, the narrow spacing between the multiply charged molecular ion clusters 
results in multiple peaks in the specific SRM channel used for the quantitation. 
This is demonstrated in a recent rat PK study involving a proprietary com-
pound, Peptide-1 (MW = 2615 Dalton). A UHPLC-QTOF–based quantitative 
method based upon XIC’s from the full-scan mass spectra of corresponding MS 
peaks at 30 K resolving power was subsequently developed to support this PK 
study. In addition, the full-scan HRMS data unequivocally confirmed the pres-
ence of several deamidated metabolites as shown in the Fig. 3.3. The response 
of Metabolite-1 and Metabolite-2 increased with time at the expense of the par-
ent (no metabolites were detected in the pre-dose samples) and resulted in meta-
bolic interferences in the triple-quadrupole MS/MS-based SRM channels. This 
resulted in difficulties estimating dose-related responses since these metabolites 
may also contribute to the pharmacology. Because of the small changes in the 
molecular structure of the metabolites, LBA would have not likely distinguished 
metabolites from drug and measured the total combined concentration of the 
components.

Fig. 3.2  Comparison of extracted ion chromatograms for endothelin-3 (20 nM) obtained with a 
single charge state and summing several charge states. (Reproduced from Ref. [20] with permis-
sion of Future Science Ltd)
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Fig. 3.3  a Mass spectra of Peptide-1, Met-1 and Met-2; Met-1 and Met-2 are formed by deami-
dation of one and two side-chain amide residues and caused the addition of one (Met-1) and two 
(Met-2) Da to Peptide-1’s m/z value. b Comparison of UPLC/MS/MS (MRM) chromatograms of 
multiply charged ions (3+ and 4+) at 30 min and 24 h time points, obtained from rats dosed with 
Peptide-1(Reproduced from Ref. [20] with permission of Future Science Ltd)
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3.3.6  High-Resolution Quantitation Using MRM

High-resolution accurate mass spectrometers such as QTOF can be operated 
in high-resolution MRM mode to enhance selectivity and reduce MRM back-
ground noise to improve overall S/N (signal-to-noise) ratios. MRM-HR mode 
offers another added level of selectivity compared with unit-resolution MRM by 
triple-quadrupole mass spectrometers, because product ions are detected with 
high-resolution and high-mass accuracy. MRM-HR data are obtained follow-
ing post-acquisition data processing from MS/MS analysis. Full-scan MS/MS 
data are acquired at high speed and high resolution (>30, 000). High-resolution 
XIC of specific product ions at a mass window of 0.02 Dalton is generated post-
acquisition and used for quantification. Fast acquisition ensures that sufficient 
data points are obtained across the chromatographic peak. The other advantages 
of using MRM-HR are that full-scan MS/MS data are collected throughout the 
analysis and target peptides can be confirmed by MS/MS sequencing. Alternative 
product ions can also be selected for quantitation when interferences are encoun-
tered in real biological samples or for the purpose of extending the linear dynamic 
range of the assay. Multiple MRM XICs can also be summed to improve S/N and 
data accuracy and precision.

We have observed that MRM-HR offers significant advantages for biologics 
quantitation. Sample preparation involving direct trypsin digestion of plasma/serum 
samples or on the protein pellet following precipitation of the plasma/serum sample 
is a commonly used approach for the initial analysis of proteins in early discov-
ery. However, high-abundance endogenous proteins such as albumin, transferrin, 
immunoglobulin IgG, and IgA also generate high levels of peptides during trypsin 
digestion. It is not straightforward to remove high levels of endogenous tryptic pep-
tides from the selected surrogate peptides by commonly used sample preparation 
methods, such as SPE, and they will also co-elute on HPLC or UHPLC columns. 
This could significantly compromise LLOQs due to high SRM background noise, 
co-eluting interference peaks, and ion suppression matrix effects. Operation at 
MRM-HR can reduce the background noise and eliminate interference when com-
pared with SRM in unit resolution by triple-quadrupole mass spectrometers. This 
type of detection is becoming a viable alternative mass spectrometric platform for 
biologics quantitation.

3.4  Sample Preparation Techniques

Plasma (or serum) is a complex sample matrix containing a wide variety of soluble 
proteins that span a dynamic range of several orders in magnitude [34]. The com-
plexity of this matrix presents a challenge for quantification of low-level protein 
and peptide biomarkers and therapeutics. The large matrix background not only 
can interfere with selective detection of analyte but can also perturb ionization 
in the form of variable signal suppression or enhancement. The physicochemical 
properties of the protein of interest will also determine how biological samples are 
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to be prepared for LC/MS-based analysis. Since the physicochemical properties 
vary significantly among different proteins, there is no “one-size fits-all” method 
that can be employed effectively across the wide range of proteins encountered in 
discovery laboratories. Therefore, several different approaches, which have been 
explored and developed in authors’ laboratories for a variety of protein therapeu-
tics, are briefly described below.

3.4.1  Digestion of the Evaporation Residue of Supernatant 
After Precipitation with Water-Miscible Organic 
Solvents [4]

This approach has been developed and implemented for the analysis of therapeutic 
PEGylated proteins. Routinely, plasma samples were pipetted into a 96-well plate 
and to each sample, an analog protein (Internal Standard: IS) solution and a vol-
ume of formic acid in isopropyl alcohol were added for protein precipitation (PPT). 
The sample was mixed and centrifuged. The supernatant was transferred to a clean 
96-well plate and evaporated to dryness. The residue was reconstituted with diges-
tion buffer, and the trypsin enzyme reagent was added. The mixture was incubated 
at 37 °C overnight and then quenched with an acid. The sample was vortex-mixed 
and centrifuged. An aliquot was injected into column for LC/MS/MS analysis.

3.4.2  Direct Digestion of Plasma Samples

Plasma samples were thermally denatured, reduced, and alkylated prior to trypsin 
digestion, when necessary. To plasma samples in a 96-well plate, digestion buffer 
was added. The mixture was heated at 90 °C for denaturation, followed by cooling 
in an ice bath. Samples prone to gelling, like cyno plasma, were allowed to cool in 
room temperature while agitated on an Eppendorf Thermomixer. Reduction and 
alkylation procedures were then performed. The protein IS solution and trypsin 
dissolved in digestion buffer were added. The sample was heated at 60 °C for 1 h. 
Digestion was stopped by the addition of acid. After the addition of acetonitrile, 
the sample was mixed and centrifuged and an aliquot of supernatant was injected 
for LC/MS-based analysis.

3.4.3  Digestion of Protein Pellet Following Precipitation

To plasma samples pipetted into a 96-well plate, methanol was added, the plate 
vortex-mixed and centrifuged. The supernatant was removed and the pellet was 
resuspended with the addition of a digestion buffer solution (200 mM ammonium 
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bicarbonate in 10 % methanol and 90 % water), and the IS was added. After vor-
tex mixing, trypsin was added, and the sample was heated at 60 °C for 1 h. The 
digested plate was centrifuged to remove particulate matter, and an aliquot of the 
supernatant was injected for analysis [35].

3.4.4  Digestion of the Supernatant Following Precipitation

To plasma samples in a 96-well plate, methanol was added. The mixture was vor-
tex-mixed, IS was added, and the samples were centrifuged. The supernatant was 
transferred to a microtube, and ammonium bicarbonate and trypsin were added. 
The mixture was heated at 60 °C with vortex mixing for 1 h. The mixture was 
cooled to room temperature, and quenched with 0.1 % formic acid. After centrifu-
gation, an aliquot of supernatant was injected into column for analysis.

3.4.5  Direct Digestion of Proteins from Dried Blood  
Spot Samples

The sample preparation described by Sleczka et al. [36] may be suitable for analy-
sis of proteins in small volumes of blood that have been collected and dried on 
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Fig. 3.4  LC-MS/MS chromatograms of surrogate peptides obtained from a digest of a dried 
blood spot standard containing both PEGylated Adnectin and FC-fusion protein
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filter paper. 5 mm “punches” representing approximately 8 μl of whole blood 
were directly subjected to a basic trypsin digestion procedure and aliquots were 
analyzed by LC/MS-based methods that were programed to detect multiple spe-
cific tryptic surrogate peptides that were generated from two therapeutic proteins 
(Fig. 3.4). Although the sensitivity of these initial DBS-LC/MS methods was less 
than those obtained by standard LC/MS methods for the quantification of each 
protein separately in plasma and serum, it is analogous to what has been observed 
for small molecules. This is due, in part, to the smaller sampling volume eventu-
ally injected and analyzed by LC–MS and compromises made in procedures to 
accommodate the analysis of multiple analytes. Nonetheless, this strategy has the 
potential to be readily and more widely applied to a variety of studies quantifying 
specific proteins in blood or other biological matrices spotted on filter paper.

3.4.6  Immunoprecipitation (Immunocapture)

To address the removal of the significant background level of proteins that constitute 
serum and plasma, immunoprecipitation (IP) sample preparation combined with mass 
spectrometry has seen a growing number of reported applications. IP, or immunocap-
ture (IC), utilizes a reagent antibody to selectively capture the protein or peptide ana-
lyte of interest from the biological sample. Following the immunoprecipitation step, 
unbound matrix components are washed away, and then the analyte is released or 
digested directly on-bead. In the case of protein analytes, digestion can be utilized 
prior to analysis by LC/MS/MS. Ackerman and Berna [37] published an excellent 
review article describing IP-MS techniques for low-abundance protein biomarkers. 
The authors describe two IP strategies that utilize capture antibodies directed against 
intact protein (anti-protein strategy), or directed against tryptic peptides (anti-peptide 
strategy). The later strategy has been described by Anderson [38–40] and is referred 
to as SISCAPA (stable isotope standards and capture by anti-peptide antibodies). The 
SISCAPA strategy requires antibodies to be raised against tryptic peptide epitopes, 
whereas, the intact protein strategy utilizes antibody reagents with immunoaffinity for 
the intact protein, many of which are commercially available.

IP-MS can dramatically reduce the plasma matrix background and has lead to 
reported LLOQs ranging from 4 to 130 pM utilizing the intact anti-protein strategy 
[41, 42] and LLOQs ranging from 0.1 to 59 pM utilizing the anti-peptide strategy 
with nanoflow HPLC [43]. Achievable LLOQs are dependent upon the analyte and 
starting plasma volume. LOQs in the low pM range require 1 mL of starting sam-
ple volume, whereas mid-pM LOQs can be achieved using 10–100 uL of starting 
plasma volume. The choice of strategy (anti-protein or anti-peptide) employed is 
primarily driven by the availability of IP reagents. Antibody reagents against protein 
and peptide biomarkers, as well as, therapeutics of interest are becoming increas-
ingly available and can be employed for IP-MS method development. Anti-tryptic 
peptide antibodies need to first be generated for the tryptic peptide of interest.

Analyte recovery can be an important consideration in deciding what strategy 
to pursue. Ciccimaro et al. [44] developed an IP-MS method for determination of 
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the absolute level of phosphorylation within a peptide region of a protein kinase. 
The authors determined that IP recovery was dependent upon phosphorylation 
state whereby the phosphorylated form had lower recovery than the unphosphoryl-
ated form. By using full-length isotopically labeled protein as the internal stand-
ard, the authors were able to compensate for differential recoveries during the 
isolation procedure. Berna et al. [45] demonstrated that when using SIL peptides 
added post-digestion as standards that a correction for the IP and digestion recov-
ery of the protein should be used for accurate absolute quantification.

A variety of IP-MS work flows have been described. Magnetic beads coupled to 
capture antibody have been utilized by several groups and can be fully automated 
using magnetic sample manipulation equipment [43, 46]. Non-magnetic beads 
made from agarose or polystyrene have also been employed using centrifugation 
and filtration devices for sample processing. Online IP-MS can be employed when 
the analyte of interest is a peptide and digestion is not required [47]. 96-well ELISA 
format capture plates have also been utilized, and take advantage of widely avail-
able plate-washing equipment commonly found in ligand binding assay laboratories 
[48]. Microwave-assisted digestion has also been used to reduce the digestion time 
and enable sample processing to be completed within one day.

Gain in sensitivity is one advantage of using IP for sample preparation prior to 
LC/MS/MS. Improvement in selectivity is another advantage that IP can offer over 
less selective sample preparation methods, for example, PPT, prior to LC/MS/MS. 
Xu et al. [49] developed a selective IP-MS whole molecule assay for a PEGylated 
drug candidate. Despite being less sensitive than a PPT method, IP-MS utilizing 
anti-PEG antibody for capture provided greater selectivity for the intact drug com-
pared with the PPT method. In other examples [40, 41], sensitive ELISA methods 
were in place for biomarkers; however, the ELISA methods could not discrimi-
nate between multiple forms of the analyte (fragmented and intact forms). IP-MS 
provides increased selectivity and can enable the detection of specific forms of an 
analyte of interest with high sensitivity.

3.5  UHPLC Optimization to Improve Assay Performance

Chromatography conditions are also an important step in the bioanalytical process 
and need to be optimized in order to obtain good peak shape, retention, and resolu-
tion from endogenous tryptic peptides [18]. The resolution from endogenous tryptic 
peptides is critical to reduce matrix effect and SRM background noise and to avoid 
interferences to improve overall S/N ratios. UHPLC with high column efficiency 
has been leveraged to improve sensitivity, selectivity, and the speed of analysis for 
surrogate peptides. With UHPLC, sharper chromatography peaks with increased 
peak heights are obtained due to smaller column particle sizes, higher column effi-
ciency, and higher optimal flow rates can be applied. With small particle columns 
(sub-2 μm), the peak width at about 1 s full width at half maximum (FWHM) can 
be obtained, resulting in the increased peak heights. In addition, the analytes of inter-
est can be better resolved from endogenous tryptic peptides and are, therefore, less 
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prone to be subjected to matrix effects. As a result, the overall S/N ratio is increased. 
For surrogate peptides, between 6 and 21 amino acids, mobile phases composed of 
water and acetonitrile containing 0.1 % formic acid often generate good peak shape. 
This mobile-phase composition is mass spectrometry compatible and also helps to 
achieve high ionization efficiencies. Intact proteins on the other hand often require 
trifluoroacetic acid as mobile-phase modifier to achieve better peak shapes, but are 
subjected to ion suppression due to its strong acidic nature. As a result, mass spec-
trometry response is significantly suppressed. UHPLC column with a dimension of 
2.1 × 50 mm are often used and operated under reasonable column pressures and 
run times. The column temperature is maintained between 40 °C and 60 °C to relieve 
column pressure, improve peak shape, separation, and speed of analysis. Slower gra-
dients may be necessary, especially if samples are prepared by non-selective prepa-
ration methods, such as the direct trypsin digestion of plasma or serum samples, to 
allow better separation from endogenous tryptic peptides, minimize matrix effects, 
and improve the LLOQs. Two-step gradients are often run to allow slow gradient and 
reasonable total run time.

3.6  Selection of Internal Standards

The role of an Internal Standard (IS) is to compensate for potential analyte loss 
during sample preparation and variance during sample analysis as a result of matrix 
effects and ionization efficiencies (suppression/enhancement) [50]. Preferably the 
IS has similar physicochemical properties as the analyte, thus SIL analogs of the 
analyte are typically employed. In protein analysis, the efficiency of analyte isola-
tion and enzymatic digestion during sample preparation is crucial for the analyti-
cal figures of merit of the surrogate peptide such as sensitivity, accuracy, precision, 
and reproducibility. Consequently, it would be advantageous to add an IS prior to 
any sample handling at the protein or peptide level either as a SIL analog or a non-
labeled homolog. The SIL-IS is synthesized using amino acids containing stable 
isotopes (18O, 13C, 2H or 15N) which are then incorporated into the peptide or pro-
tein affording a defined mass difference which is easily distinguished by LC–MS. 
Most commonly, 13C or 15N are used as stable isotopes as 2H causes a slight shift 
in retention time in reversed-phase HPLC, with the heavy form eluting slightly ear-
lier than the light form [51].

3.7  Measurements of Free Versus Total Drug 
Concentrations

In immunoassay methodologies, it is generally assumed that the antigen captures 
the active or free target drug, while the LC/MS-based method, derived using the 
current surrogate peptide strategy, cannot distinguish peptides measured from 
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the cleavage of intact protein or modified/different entities (i.e., the peptide can 
be generated from intact target protein, from bound target protein, or the partially 
degraded protein). The general notion is that the ligand binding assay measures the 
free form of target protein while the LC/MS method measures the total amount of 
protein in the sample. However, these assumptions may not always reflect reality. 
In a capture assay, therapeutic antibodies present in a bound form in the sample 
may dissociate during dilution and incubation with the capture reagent. Therefore, 
it is likely that the ligand binding assay may measure a mixture of bound and 
free form (in addition to molecular variants like post-translation modifications 
(PTM) and degradants that retain the relevant epitopes for binding) and it is highly 
dependent on assay parameters [52].

Additionally, the presence of Anti-Drug Antibodies (ADA), generated in vivo 
following the administration of a protein therapeutic, may also have an adverse 
effect on ligand binding assays. Recently in the authors’ laboratories, a single sub-
cutaneous administration of a PEGylated scaffold protein therapeutic to cynomol-
gus monkeys was conducted for a pharmacokinetic evaluation. The plasma samples 
were analyzed in parallel by established ELISA and LC/MS/MS-based methods. 
The drug concentration data obtained by the ELISA and LC–MS/MS methods are 
in excellent agreement at the initial time points through 96 h. However, the LC/
MS/MS method generated significantly higher values than the ELISA method at 
the later time points. The result was investigated and the origin of the discrepancy 
was verified as due to the formation of ADA at the later time points in vivo. The 
last three time-point samples from monkey #1 were further quantified by western 
blot analysis. The comparison of drug concentration results determined by quanti-
tative western blot analysis and LC/MS/MS revealed that after dissociation of pro-
tein-ADA complex, the released protein measured by western blot matches the MS 
data. The presence of ADA interfered with the drug’s ability to bind to the target 
antigen that was used in the ELISA method [53]. Therefore, a clear understanding 
of the nature of a bioanalytical technique is vital in developing appropriate meth-
ods for measuring protein drugs. Free and total drug measurements by LBA have 
also been reviewed [54].

3.8  Summary

The expanding interest and escalating use of LC–MS-based methods for the quan-
titative analysis of proteins in early drug discovery research is a consequence of 
applying the collected experiences gained in small molecule bioanalysis over the 
past 20 years. The same advantages are noted for the analysis of small molecules 
and proteins: rapid development of methods on proven instrument platforms, 
demonstration of linear dynamic ranges of assays, and the provision of specific 
molecular details for multiple target analytes have established LC/MS as a via-
ble orthogonal technique to LBA in protein laboratories. It is well acknowledged 
that additional development in each of the steps in the bioanalytical process must 
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continue if analysts are to fully realize the potential of this application. However, 
as we continue to gain knowledge and experience in the use of proteins as viable 
therapeutic agents and targets, LC/MS will continue to demonstrate its versatility 
in the pharmaceutical industry.
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4.1  Introduction

Even though most medicines have historically been small molecules, many newly 
approved drugs over the last two decades have been derived from proteins. For the 
past few years, protein therapeutics have been enjoying the fastest growth within 
the global pharmaceutical industry. Protein-based therapeutics, such as insulin, 
interferons, monoclonal antibodies (mAb), growth hormones, erythropoietins, 
blood-clotting factors, colony-stimulating factors (CSFs), plasminogen activators, 
and reproductive hormones, play a significant role in the treatment of many major 
diseases, and protein therapies have revolutionized the methodology followed 
by drugs. These therapies exhibit high efficiency due to their targeted approach, 
which avoids side effects on healthy organs to a great extent. In recent years, the 
number of protein-based pharmaceuticals reaching the marketplace has increased 
exponentially, and they provide innovative as well as effective therapies for several 
chronic diseases which were previously not responsive to treatment. The global 
market for biologics or biotechnology therapeutics is one of the most prolific 
and fastest growing markets in the world, representing at least 24 and 22 % of all 
new chemical entities approved by the US and EU regulatory authorities, respec-
tively [1]. Sales of biotech products in US showed an annual growth rate of 20 % 
between 2001 and 2006 compared with 6–8 % in the pharmaceutical market [2], 
and it is expected to grow at annual growth rate of around 13 % during the next 
three years (2012–2015), with the introduction of new protein therapeutics and 
enhanced investments contributing to this booming growth of this industry.

For protein therapeutics to be effective, they must be produced in biologically 
active forms, which require proper folding, and post-translational modifications 
(PTMs) with the extent of PTMs depending on the nature of the “host” cell and the 
conditions of the fermentation and recovery processes. Even though only a few bio- 
pharmaceutical proteins such as albumin (Recombumin) and insulin (Humulin N and 
Lispro) undergo simple modifications such that they can be manufactured using yeast 
or bacteria [3], most of the production platforms used to produce biopharmaceuticals 
comprise mammalian cells that have the ability to perform complex PTMs. The most 
prevalent modifications include variable glycosylation, formation of disulfide bonds, 
cysteine (C) and methionine (M) oxidation, phosphorylation, misfolding and aggrega-
tion, deamidation of asparagine (N) and glutamine (Q), and proteolysis at the C- and 
N-termini. Even though the presence of PTMs is often required for normal biological 
function or tissue disposition of the protein, in many cases, the role of the modifica-
tion is as of yet unknown. Therefore, detailed characterization of these modifications 
is extremely important, because they may alter physical and chemical properties, 
folding, conformation distribution, stability, activity, which in turn may affect cellu-
lar processes, in which the protein is involved [4–6]. Examples of the latter can be 
regulation of signal transduction and a wide variety of cellular events such as growth, 
metabolism, proliferation and differentiation in case of protein phosphorylation  
[7–9], targeting, cell–matrix interaction, as well as pharmacokinetic and pharmacody-
namic behavior in case of glycosylation [10, 11]. Therefore, a thorough verification 
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of the protein’s (amino acid) sequence, assessment of the purity and impurities in 
a recombinant protein drug product along with a detailed characterization of the 
existing PTMs, is a regulatory requirement prior to its approval for clinical use [12].

Full structural characterization of the existing PTMs in a recombinant protein 
often poses a considerable analytical challenge owing to their inherent complexity. 
The presence of PTMs often complicates or even prevents the use of classical tools 
for protein sequence analysis (e.g., automated Edman degradation). Moreover, 
the presence of lipid or carbohydrate covalent attachments on proteins can dra-
matically decrease the accuracy of the molecular weight (Mr) measurement when 
using sedimentation velocity, gel permeation, or SDS-PAGE analysis. Separation 
techniques such as high-performance liquid chromatography (HPLC) or capillary 
electrophoresis (CE) combined with a variety of mass spectrometry (MS) tech-
niques are commonly employed for the profiling and quantitation of PTMs present 
in recombinant therapeutic proteins. The development of electrospray ionization 
(ESI) [13, 14] MS coupled with online liquid chromatographic (LC–MS) or elec-
trophoretic separation (CE-MS) [15, 16] and matrix-assisted laser desorption/
ionization (MALDI) [17, 18] has established MS as the technology of choice for 
protein mapping, localization, structure identification, and quantification of exist-
ing PTMs [19, 20]. Several MS-based approaches have been developed employ-
ing tailored tandem MS scanning methods diagnostic for specific PTMs, such as 
monitoring precursor/product-ion transitions and neutral loss scan [21–23].

Recently, online LC–MS combined with collision-induced dissociation (CID) 
and electron-capture dissociation (ECD) [24] or electron-transfer dissociation 
(ETD) [25] fragmentation has been used to elucidate disulfide linkages and site-spe-
cific glycosylation in recombinant therapeutic proteins and glycoproteins [26, 27]. 
Similarly, MS-based approaches can be employed in the production of a recombi-
nant therapeutic protein in order to ensure the purity, the production yield, and the 
absence of chemical degradation and/or aggregation products in the protein formu-
lations for clinical and eventually commercial use.

In this chapter, we discuss MS-based methodologies that are employed to 
detect, identify, and characterize two of the most prevalent PTMs in the production 
of therapeutic recombinant proteins, glycosylation and disulfide bond formation. 
These MS-based approaches discussed here are representative of those used for 
the comprehensive characterization and quantitation of other PTMs encountered in 
recombinant proteins intended for therapeutic use in humans.

4.2  Glycosylation

Glycosylation process, that is, the covalent attachment of oligosaccharide chains 
on the protein backbone, is considered as the most important and common PTM 
of proteins. It is estimated that over 70 % of all human proteins are glycosylated 
[28] and 90 % of protein therapeutics are glycosylated [10]. The carbohydrate 
moieties of glycoproteins (glycans) can modulate the biological functions of a 
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glycoprotein such as circulation, cell-to-cell interactions, receptor binding, molecu-
lar and immune recognition, which in turn affect intracellular signaling, fertiliza-
tion, embryonic development, immune defense, recognition of hormones, cell 
adhesion, and pathogenicity [4]. In addition, glycan-chain modification can signifi-
cantly impact their physicochemical properties such as protein folding, solubility, 
stability, aggregation, and susceptibility to proteolysis [29]. Finally, carbohydrate 
modifications can also considerably alter protein conformation, which may conse-
quently modulate the functional activity of the protein, especially in its interactions 
with other proteins or ligands. It has been established that altered glycosylation or 
variation of a protein’s glycosylation pattern is associated with numerous diseases 
and disorders [30–32]. Therefore, detailed structural studies of the glycosylation 
and its inherent heterogeneity are also potentially vital toward understanding their 
function in complex physiopathological processes and establishing glycan profile 
changes between healthy and disease states [33, 34]. The latter has increased the 
potential of using glycan biomarkers for the diagnosis of several diseases [35], as 
well as for the design of new therapeutics [10, 36, 37]. Moreover, carbohydrate 
modification can be used toward the production of “custom-made” glycoproteins 
tailored, such as glycoproteins with defined homogeneous glycosylation structure, 
for specific therapeutic use [38].

Therefore, complete structural analysis of a glycoprotein end product will 
involve not only the determination of the primary peptide sequence, but also 
detailed analysis of the glycan structures including information on the individ-
ual glycosylation sites, the glycosylation patterns, and the structure elucidation 
of the attached carbohydrates (glycoproteome) [39–43]. As it has become obvi-
ous that many of the changes associated with disease and differentiation are due 
to the glycans attached to proteins (glycome), a thorough understanding of these 
glycan structures will be invaluable for gaining insight into their involvement in 
disease mechanisms and the potential for novel therapeutic interventions [44]. 
Characterizing the glycoproteome, however, is a challenging and daunting task 
because the structural heterogeneity of these glycans is vast, necessitating the 
development of highly sensitive and efficient analytical methods for detection, 
separation, and structural investigation of glycoproteins.

4.2.1  Intact Glycoprotein Analysis by Mass Spectrometry

An important preliminary step in the quality control and structure characterization of 
a therapeutic recombinant protein is the Mr determination of the protein product. On 
the intact glycoprotein level, non-spectrometric techniques such as SDS-PAGE, lec-
tin affinity chromatography (LAC), isoelectric focusing (also in a capillary), or cap-
illary zone electrophoresis (CZE) are generally used. In case of the two-dimensional 
(2D) gel electrophoresis separation of glycoproteins, characteristic spots reflecting 
their different isoelectric points and Mr of different glycoforms can be seen. The 
subsequent detection of the glycosylation pattern of the electroblotted glycoproteins 
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may be performed by LAC [45, 46], where carbohydrate-specific lectins can be used 
to probe distinct oligosaccharide structures (motifs). In addition, this affinity purifi-
cation can be employed as an enrichment method for the glycosylated peptides and 
proteins (see Sect. 4.2.2.2). Nevertheless, the low solubility of the membrane gly-
coproteins, resulting in their poor detection, is a significant drawback of the 2D gel 
electrophoresis approach. An alternative method of higher resolving potential is CZE 
or CE, where the various glycoforms are detected even though no information on the 
nature of the attached glycans is revealed [47]. These electrophoretic methods have 
been successfully used in the separation of sialic acid isoforms of endogenous and 
recombinant glycoproteins, and they have proved their usefulness in clinical diagno-
sis and product quality assessment [48].

In the late 1980s, the incorporation of ESI and MALDI MS, along with advances 
in electrophoretic separations and high-resolution MS, has provided a powerful 
analytical tool for the analysis and even quantitation of the intact individual gly-
coforms in glycoproteins [15]. ESI and MALDI MS are the premier methods of 
choice for Mr measurement and the ensuing protein mapping. In case of ESI MS 
analysis of therapeutic proteins, spraying of an aqueous protein solution at μL/min 
or nL/min flow rates generates multiply protonated signals with reduced mass-to-
charge (m/z) ratios, thus making them readily detected by typical mass analyzers 
with a mass range up to 2,500 Da. This is demonstrated in the ESI mass spectrum 
of human recombinant interferon α-2b (INTRON A) (Fig. 4.1), which is used in 
the treatment of certain viral infections, including chronic hepatitis B, C, and D, 
malignant melanoma, follicular lymphoma, Kaposi’s sarcoma caused by AIDS, 
and infections caused by human papillomavirus (HPV). The ESI mass spectrum 
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Fig. 4.1  Positive-ion ESI mass spectrum of human recombinant interferon α-2b (INTRON A)
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exhibited a bell-shaped distribution of multiply charged ions ranging from the 
9+ to the 13+ charge state, and the average Mr value derived from the five mul-
tiply charged ions present in the ESI mass spectrum was 19,266.3 (Fig. 4.1, inset). 
The excellent mass measurement accuracy, which is usually better than 0.01 % 
for masses up to 100 kDa [49], makes ESI MS an ideal preliminary method for 
monitoring the integrity of the therapeutic recombinant protein batches. In case of 
larger proteins, we observe greater charge states, often in the presence of a dilute 
acid, due to the presence of more available sites to carry the positive charge (i.e., 
K-, R-, H-, N-terminus). The simultaneous shift of the observed ion envelope dis-
tribution to lower m/z values is also accompanied by a decrease in the spacing 
between adjacent charge states, thus making the identification of the envelope’s 
charge-state components difficult. This becomes more complicated in the analysis 
of a recombinant glycoprotein sample where the inherent complexity of the carbo-
hydrate structure heterogeneity enhances the aforementioned analytical challenge. 
This complexity is shown in the ESI mass spectrum of the Chinese hamster ovary 
(CHO)-derived interleukin-4 (IL-4), a glycoprotein containing two N-linked glyco-
sylation sites (Fig. 4.2) [50].

The ESI mass spectrum of CHO IL-4 (Fig. 4.2a) contained three envelopes of 
multiply charged ions ranging from 8+ to 10+ charge state, with each envelope 
containing several peaks corresponding to individual glycoforms of the glycopro-
tein and adducts thereof. This is better depicted in the deconvoluted mass spectrum 
(Fig. 4.2b), with the mono- and disialylated components (separated by 291 Da) 
representing the most abundant signals. Other higher Mr components indicated the 
presence of tri- and tetraantennary glycans containing up to three additional lac-
tosamine units (in-chain mass of 365 Da), whereas satellite signals 98 Da higher 
were also observed (Fig. 4.2b). These signals probably arise from the attachment of  
sulfate groups, since sulfate salts were used in the protein isolation process and 
operating at a higher desolvation potential or using low pH solvents can minimize 
their formation [51]. Overall, the success of glycoprotein analysis by ESI MS 
depends on their relative carbohydrate content, with the success decreasing signifi-
cantly with a relatively high percentage weight of the carbohydrate component. ESI 
MS analysis of complex glycoproteins by direct infusion often results in broad unre-
solved signals arising from the large number of different glycoforms and potential 
salt adducts, along with the ESI multiple charging phenomenon that spreads the sig-
nals over a large m/z region. In agreement with that, ESI MS analysis of the 44 kDa 
ovalbumin containing 4 % carbohydrate was successful [52], whereas glycoproteins 
with higher carbohydrate content such as the CHO IL-5 (Mr ~ 31 kDa; 15 % car-
bohydrate) and CHO IL-4 receptor (IL-4R; Mr ~ 38 kDa with 35 % carbohydrate) 
did not give any ESI signals [53]. Another contribution to the unsuccessful ESI 
MS analysis is the poor ionization efficiency in the positive ion mode due to the 
presence of negatively charged glycans, as this is demonstrated in the comparative 
analysis of recombinant human erythropoietin (rHuEPO) and its asialo counterpart 
[54]. The use of nano-electrospray ionization (nESI) overcomes this drawback and 
improves the sensitivity of analysis due to the generation of smaller-sized droplets 
[55]. Moreover, the interfacing of the nESI source with orthogonal time-of-flight 
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(oTOF) instrumentation [56] has led to better mass measurement accuracy and 
increased analytical mass range, thus offering new momentum to the ESI MS analy-
sis of glycoproteins. It should be emphasized that the commonly used quadrupole, 
quadrupole ion trap, and even Orbitrap [57] analyzers have mass range of analysis 
limited to m/z 2,000 and 4,000 (Orbitrap), which is a significant drawback when 
larger glycoproteins or non-covalent complexes thereof must be detected; thus, an 
upper mass limit greater than even m/z 10,000 may be required [58, 59]. This is 
shown in the nESI mass spectrum of Sf9-derived IL-4R (Mr ~ 30.2 kDa) obtained 
on an oTOF mass spectrometer, where an extensive series of multiply charged ions 
up to m/z 3,000 corresponding to two sets of high-mannose glycoforms separated by 
a fucosylated Man3(GlcNAc)2 structure (in-chain mass of 1,039 Da) were observed 
[51]. Therefore, the improved mass resolving power, sensitivity and extended mass 

Fig. 4.2  Positive-ion ESI mass spectrum of CHO-derived interleukin-4 (IL-4): Raw spectrum 
(a) and deconvoluted spectrum (b) showing the individual glycoforms of the glycoprotein. 
(Reprinted with permission from Wiley [50])
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range, has made the oTOF, hybrid quadrupole TOF (QTOF), and recently the ion 
mobility (IM) [60] TOF as the analyzers of choice for nESI MS analysis of glyco-
proteins. The use of the IM TOF analyzer is nicely shown in the nESI mass spec-
trum of the intact therapeutic mAb trastuzumab (Herceptin), which is a humanized 
monoclonal immunoglobulin γ-1 (IgG1) antibody directed against the HER2/neu 
receptor, which is over-expressed in about 25 % of all breast cancer patients [61]. In 
the ESI mass spectrum of trastuzumab obtained on an IM TOF mass spectrometer 
[62] (Fig. 4.3), an extensive series of multiply charged ions ranging from the 35+ 
up to the 75+ charge state were observed, and the separation between successive 
charge states was sufficient to reveal the presence of six glycoform variants. The 
illustration of these glycoforms is portrayed in the zoomed spectrum for the 53+ 
charge state (Fig. 4.3b), while their respective assignment is shown in the deconvo-
luted mass spectrum (Fig. 4.3c). The spectrum clearly reveals the glycoprofile dif-
ference between trastuzumab antibodies from different batches (shown in different 
colors) where the intensity of each glycoform varies.

It should be mentioned that the mass measurement accuracy of the main glyco-
form is within 1.5–2 Da (~10 ppm) from its theoretical mass value (148,057 Da), 
an unthinkable achievement prior to the advent of ESI and MALDI MS. The latter 
is an essential attribute of this method and renders it suitable to distinguish the 
lot-to-lot heterogeneity in glycosylation profile of the commercially available  
glycoprotein biopharmaceutical. Glycoprotein heterogeneity can result in an 
enhancement or loss of the protein’s biological activity, as this has been demon-
strated in the case of rHuEPO, where desialylation causes complete loss of its 
hormonal activity in vivo [63]. In particular, intravenously administered rHuEPO 
consisting of highly branched sialylated oligosaccharide structures has been shown 
to result in a plasma half-life of 5–6 h as compared to desialylated rHuEPO, which 
is cleared within minutes [64].

On the other hand, glycoprotein analysis by MALDI MS yields signals corre-
sponding to protonated molecules (MH+) of the individual glycoforms and allows 
the determination of the heterogeneity for glycoproteins with Mr less than 30 kDa 
and a relatively low percentage of carbohydrate content. This is clearly shown in 
the screening of the glycosylation profile for the human soluble urokinase-type 
plasminogen activator receptor (uPAR) expressed in CHO cells, where the extent 
and type of glycosylation in its three domains was assessed by MALDI MS [65]. 
On the contrary, MALDI MS analysis of the Sf9-derived interleukin-5 receptor 
α-subunit (IL-5Rα) [66] and CHO IL-4R [53] with 17 and 35 % carbohydrate con-
tent, respectively, did not provide any information on the type of the glycosyla-
tion. In addition, the choice of an appropriate MALDI matrix is very important 
toward achieving the optimum mass resolving power and separation of the indi-
vidual glycoform signals [67, 68]. This is shown in the MALDI mass spectra of 
the Sf9-derived IL-5Rα (in a reflectron and a linear TOF instrument) using differ-
ent matrices, where the use of the sDHB matrix (2,5-dihydroxybenzoic acid with a 
10 % admixture of 2-hydroxy-5-methoxybenzoic acid) in a linear TOF instrument 
resulted in a more reliable mass measurement due to minimized metastable frag-
mentation [69] (Fig. 4.4).
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Fig. 4.3  Positive-ion ESI 
ion mobility (IM) TOF 
mass spectrum of the intact 
therapeutic monoclonal 
antibody trastuzumab 
(Herceptin) (a); The 53+ 
charged ion with the signals 
corresponding to various 
glycoforms is annotated (b); 
The glycoform assignments 
and the glycosylation 
heterogeneity of the 
monoclonal antibody arising 
from variations in the hexose 
and fucose content are shown 
in the deconvoluted mass 
spectrum (c). (Reprinted with 
permission from Springer 
[62])
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Overall, ESI MS analysis of intact glycoproteins has better success over 
MALDI MS for surveying the individual glycoforms in a glycoprotein biother-
apeutic sample and ensuring the homogeneity of the manufacturing batches. 
Nevertheless, the biggest challenge for the analysis of glycoproteins is their low 
abundance compared to that of unmodified proteins and the resulting low inten-
sities of the mass spectral signals. This is mainly due to the low ionization effi-
ciency of glycoproteins and the distribution of their signal among the various 
glycoforms sharing a common peptide sequence, thus rendering their detection 
an overwhelming task. This can be overcome by performing an enrichment step 
for the glycoproteins, which eliminates the most abundant unmodified proteins 
from competing for charge during the ionization process and results in higher 
ionization efficiencies and increased probability for detecting glycoproteins. The 
commonly used analytical methods for glycoprotein/glycopeptide enrichment are 
discussed in Sect. 4.2.2.2. Another promising solution to this problem is coupling 
of ESI MS with a separation device such as nano-LC [70], CE [71] or CZE [72] 
that can definitely improve the chances for a successful analysis. This is shown 
in the analysis of intact rHuEPO and bovine α1-acid glycoproteins by a devel-
oped CZE-ESI MS method without any complicated sample treatment, where 
characterization of the intact glycoforms was provided along with their relative 
intensities [73, 74]. In addition to the efficient separation of the intact glycoforms, 
small glycan modifications such as acetylation, oxidation, and sulfation could be 

Fig. 4.4  Positive-ion 
MALDI-TOF mass spectrum 
of Sf9-derived interleukin-5 
receptor α (IL-5Rα) obtained 
with reflectron TOF with 
sDHB (a) and HPA (b) 
matrix, and linear TOF  
instrument using sDHB 
matrix (c). The asterisk 
denotes an internal calibrant. 
(Reprinted with permission 
from Wiley [69])
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successfully characterized. Similarly, high-resolution CE-Fourier transform ion 
cyclotron resonance (FT ICR) MS analysis was used for the profiling of the intact 
glycoforms of recombinant human chorionic gonadotrophin (r-RhCG) produced 
in a murine cell line, which resulted in the identification of over 60 different gly-
coforms with up to nine sialic acids [75]. These studies suggest that CE-MS can 
be an important tool for rapid assessment of the recombinant product quality 
either for product release or for in-process control, and even for demonstrating 
comparability of a glycoprotein therapeutic biosimilar to the innovator product 
being replicated.

Moreover, the rapid assessment of glycosylation at the molecular level is inval-
uable in glycoform screening of glycoproteins involved in certain diseases, such 
as the human transferrin (Tf) model glycoprotein for congenital disorders of gly-
cosylation (CDG) diagnosis. CE-ESI MS was used successfully for carbohy-
drate-deficient transferrin (CDT) detection and CDG-type characterization [76]. 
Comparative analysis of serum samples from healthy and CDG patients by CE-ESI 
MS (Fig. 4.5) provided partial separation of Tf glycoforms and identification of 
the carbohydrate-deficient Tf glycoforms in the CDG patients’ serum. It is clearly 
shown that the Tf glycoforms in the CDG serum correspond to a disialoform con-
taining one free N-glycosylation site (Fig. 4.5e) and another one occupied by a 
biantennary instead of a triantennary N-linked sialylated glycan (Fig. 4.5f), thus 
confirming that the sample belongs to a patient who has CDG of type I [76].

Fig. 4.5  Total ion electropherogram obtained for a serum from a healthy individual (a) and a 
CDG patient (d) under optimized CE-ESI MS conditions. The deconvoluted spectra obtained 
from the beginning and the end of the Tf peak are shown in (b) and (c), respectively. In case of 
the CDG patient, the deconvoluted spectra obtained from the two partial resolved glycoforms 
of Tf provided identification of the carbohydrate-deficient Tf glycoforms in the CDG patients’ 
serum (e) and (f). The most probable glycan composition is displayed below the deconvoluted 
mass spectra. (Reprinted with permission from Wiley [76])
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4.2.2  Mass Spectrometry and Glycoproteomics

Glycoproteomics involves the study of the glycosylation of proteins, includ-
ing the structures of the attached oligosaccharide moieties and the identification 
of the glycosylation sites. There are two distinct classes of protein glycosyla-
tion in nature depending on the linkage site. First, the “O-linked” are the ones 
that are linked to serine (S), threonine (T), or hydroxyproline residues in the pro-
tein backbone, and then the “N-linked” which are linked to N residues through 
an N-acetylglucosamine residue (GlcNAc). Regarding O-glycosylation, a number 
of monosaccharides attached to S and T have been found, most commonly 
N-acetylgalactosamine (GalNAc), GlcNAc, xylose, mannose, and fucose [29]. 
O-glycans are synthesized in a stepwise process that involves single monosaccha-
ride transfer steps, and their biosynthesis takes place after protein N-glycosylation, 
folding, and oligomerization. O-glycosylation may occur at any S or T residue 
with no single common core structure or consensus protein sequence. Extended 
structures from a core GalNAc that are called mucin-type O-glycans are the most 
frequently occurring [77, 78]. In contrast to O-glycans, N-glycosylation sites can 
be predicted by the tripeptide sequon Asn-Xaa-Ser/Thr (N-X-S/T, where X is 
any amino acid except P) [79, 80] (Fig. 4.6). All three types of N-glycans found 
in mature glycoproteins share a pentasaccharide core (i.e., the trimannosyl core 
with two N-acetylglucosamine residues (Man3GlcNAc2)) because of a common 
biosynthetic pathway in the endoplasmic reticulum compartment of the cell. This 
N-glycan Man3GlcNAc2 core is common to complex, high-mannose, and hybrid 
structures as shown in Fig. 4.6.

The high-mannose-type glycoproteins (e.g., ovalbumin) contain two to eight 
mannose residues added to the pentasaccharide core. Glycoproteins containing 
complex-type N-structures (e.g., fetuin) exhibit the highest structural variation by  
having a number of GlcNAc, Gal, Fuc and NeuAc (sialic acid) residues attached 
to the N-glycan Man3GlcNAc2 core, as well as possible extension and/or branch-
ing of the outer chains through lactosamine repeats and sialylation. Finally, the 
hybrid-type glycoproteins combine features from both high-mannose- and com-
plex-type glycans [79]. At this point, it should be emphasized that for both N- and 
O-glycosylation, there is an inherent microheterogeneity resulting from the array 
of glycan structures associated with each glycosylation site. Moreover, there is 
macroheterogeneity due to the fact that not all N-glycan sequons or S/T residues 
present in the glycoproteins are glycosylated. The end result is a diverse degree 
of occupancy at different O- or N-linked glycosylation sites with a wide array of 
structurally different oligosaccharides that generate a complex mixture of glyco-
sylated variants (glycoforms). The variety of these glycoforms depends not only on 
the polypeptide backbone and the number of putative glycosylation sites but also 
on the cell type, in which the glycoprotein is expressed, and its development stage. 
Therefore, characterizing the glycoproteome is a demanding task because of the 
inherent macro- and microheterogeneity of glycans along with the complex nature 
of this modification.
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4.2.2.1  Top-Down and Bottom-Up Analytical Approaches

Complete structural characterization of a glycoprotein includes the following 
tasks: (1) characterization of glycans in intact glycoproteins (2) determination 
of the protein primary sequence and the glycosylation attachment sites (3) char-
acterization of glycopeptides, and (4) structural analysis of chemically or enzy-
matically released glycans. The Mr determination of intact glycoproteins by either 
ESI or MALDI MS analysis is successful only for glycoproteins up to 20–30 kDa 
with a relatively low percentage of carbohydrate content as demonstrated above  
(Sect. 4.2.1). Even though this accurate Mr measurement is valuable for profil-
ing of intact glycoproteins and providing very useful information on the type and 
extent of glycosylation, there is no information on the nature and the attachment 
sites of the glycan chains. Therefore, one needs to cleave the protein into smaller 
fragments before attempting MS analysis. In the top-down approach, the intact 
molecule is introduced into the mass spectrometer where limited fragmentation 
of the ionized protein is induced (i.e., in the gas phase) and the resulting product-
ion mass spectra can provide information on the location of the glycosylation sites 
(or other PTMs) [81, 82]. Even though there are several mass analyzers capable of 
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Fig. 4.6  Classes of N-linked carbohydrate structures sharing a common pentasaccharide core 
structure, that is, the trimannosyl core with two N-acetylglucosamine residues (Man3GlcNAc2). 
a High-mannose-type; b Complex-type (triantennary); c Hybrid-type. The sugar symbols 
used throughout this chapter are those adopted by the consortium for functional glycomics 
(CFG). Circles represent hexoses (Hex) [yellow: Galactose (Gal), green: Mannose], squares 
represent N-acetylhexosamines (HexNAc) [blue: N-acetylglucosamine (GlcNAc), yellow: 
N-acetylgalactosamine (GalNAc)], red triangle: fucose, purple diamond: N-acetylneuraminic 
acid (NeuAc). (Gal: , Man: , GlcNAc: , GalNAc: , Fuc: , NeuAc: )
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measuring intact proteins and large ionic fragments (such as TOF, QTOF, FT ICR), 
the unusually high resolving power (>105) of FT ICR has made possible accurate 
assignments of ESI charge state and mass, even for MS/MS of intact proteins [83, 
84]. Such top-down methods have proven especially powerful in stability and for-
mulation studies of intact antibodies with Mr ~ 150 kDa used as therapeutics in the 
biopharmaceutical industry. Nevertheless, FT ICR instruments have not become 
standard analytical tools for the characterization of recombinant biopharmaceuti-
cals mainly due to the high cost of acquisition and maintenance. For that reason, 
the most commonly followed MS-based approach for characterization of a recom-
binant biopharmaceutical involves the enzymatic digestion of the glycoprotein 
(usually with trypsin or another endoprotease) followed by the separation/analysis 
of the resulting peptide digests by LC–MS/MS [41, 85, 86] or CE-MS/MS [87] and 
MALDI MS [88] (bottom-up approach). In case of purified proteins or simple mix-
tures thereof, LC–MS or MALDI MS analysis of the proteolytic mixture provides 
Mr information on the peptide components. The advantage of MALDI-TOF MS 
is the simplicity of the spectra, which contain usually intense protonated (MH+) 
or sodiated signals corresponding to the enzyme-generated peptides. Further, pro-
tein structural information can be deduced by carrying out LC–MS/MS analysis 
of the enzyme-generated peptides. Peptide identification is performed through 
a direct search of the Mr measured values and the tandem MS-derived fragment 
ions (sequence tags) [89] against a protein sequence database (peptide fingerprint-
ing). The general experimental workflow comprising the commonly employed 
approaches in glycoproteomic analysis is shown in Fig. 4.7. Of course, the nature 
of the glycoprotein sample determines the number of the necessary steps needed in 
order to determine site-specific glycosylation and heterogeneity.

In general, MS mapping of the enzyme-generated peptide mixtures provides 
not only confirmation of the expected protein sequence but also identification of 
any existing modifications, including the glycosylation attachment sites. In addi-
tion, unexpected mass spectral signals can provide insights into the glycosylation 
profile of the protein, taking into consideration the known N-glycan structures 
(Fig. 4.6). Nevertheless, there are several problems associated with the bottom-up 
approach. The major problem arises from the fact that many glycoproteins are 
resistant to enzymatic proteolysis (e.g., trypsin or S. aureus V8 protease) due to 
the presence of the attached glycans near the proteolytic site, thus requiring an 
additional specific enzymatic proteolysis. In addition, the resulting mixture of 
peptides and glycopeptides could complicate the analysis because glycosylation 
strongly diminishes the ionization efficiency of the peptide [90, 91], especially 
when the glycans are terminated with the negatively charged sialic acid moi-
ety [47]. This problem becomes more significant considering that the glycopep-
tides are in much lower abundance than the peptides from the same glycoprotein, 
and the glycopeptide signals are distributed over several peaks due to the glycan 
heterogeneity and multiple adduct ion formation. However, several enrichment 
methods (either in parallel or sequentially) prior to glycoprotein analysis can be 
used to compensate for the low abundance of glycopeptides (and glycoproteins) 
and the presence of multiple glycan structures (heterogeneity) [92]. The use of 
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glycoprotein enrichment methods can bypass the aforementioned obstacles in 
glycoprotein analysis by achieving exclusion or reduction of the most abundant 
unmodified peptides from the analysis, thus improving the ionization efficiency of 
the low-abundance glycopeptides, which do not have to compete for charge during 
the ionization process with unmodified peptides.

4.2.2.2  Glycopeptides Enrichment Methods

Enrichment of glycoproteins and glycopeptides can be achieved by using the natural 
affinity of lectins for their glycan “handles” [93], whereas other analytical meth-
odologies based on general physical and chemical properties of glycopeptides have 
been employed, such as size-exclusion chromatography (SEC) [94], hydrophilic 
interaction chromatography (HILIC) [95–97] or graphitized carbon columns (GCC) 
[98, 99]. A rough classification of the commonly used enrichment techniques in 
glycopeptides analysis can be made into chemical [100, 101] and chromatographic 
methods (such as affinity chromatography [102–104], LAC [93], immunoaffinity 
chromatography [105], SEC [94], hydrophilic phases [96, 97] and GCC [99]).

Fig. 4.7  The general experimental workflow comprising the commonly employed approaches in 
glycoproteomic analysis. The top-down approach starts with the analysis of intact glycoproteins, 
while the bottom-up analytical approach begins with proteolytic or chemical cleavage of the gly-
coprotein, followed by mapping of the generated glycopeptides by an assortment of LC–MS and 
tandem MS techniques
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Lectin Affinity Chromatography

Lectins are proteins originating from plants, fungi, bacteria, or animals that 
express a special affinity toward glycans [106] and thus are used for glycopep-
tide/glycoprotein isolation from complex mixtures after being immobilized onto 
various solid supports such as silica [107], agarose [46], resins, magnetic beads, 
and affinity membranes. These are used in different arrangements, such as col-
umns [108–110], tubes [46], and microfluidic chips [111]. Lectins generally 
interact with specific motifs in a glycan and demonstrate selectivity for different 
oligosaccharides and broad range of specificity [112], thus enabling glycopro-
tein/glycopeptide isolation from a complex protein mixture along with glycoform 
pre-fractionation. Widely used lectins include concanavalin A (ConA) [113, 114], 
which binds glycan residues containing mannose and glucose and affords broad 
selectivity (i.e., high-mannose, hybrid, complex biantennary [115]), wheat germ 
agglutinin (WGA), which presents selectivity for GlcNAc and NeuAc, and Jacalin 
(JCA), which expresses affinity against galactose (b1-3) GalNAc and O-linked 
glycoproteins.

Various analytical strategies have been proposed for the isolation and pre- 
concentration of glycoproteins/glycopeptides prior to MS analysis [93]. In sum-
mary, the sample enrichment using lectin columns can be performed before or 
after the protein mixture digestion by loading the sample onto the columns under 
high-ionic-strength buffers to prevent non-specific retention. The same loading 
buffer containing a displacer (haptene saccharide) is used to elute the captured 
glycopeptides/glycoproteins, which can then be subjected to MS analysis.

There are two principal enrichment methodologies based on LAC: Serial Affinity 
Chromatography (SLAC) [116] and Multi-Lectin approach (M-LAC) [117]. The 
first one uses a serial set of lectin columns with different specificity, thus enabling 
the sequential selective binding of various glycan moieties of a peptide or protein 
mixture. SLAC has proven to be a powerful tool for rapid and primary elucida-
tion of glycans’ structural features, especially when columns with broad (ConA, 
WGA, or JCA) and narrow selectivities (also known as “structure-specific affinity 
selectors,” i.e., Sambucus nigra agglutinin, SNA) are combined [118]. The SLAC 
approach was used in the characterization of a prostate-specific antigen in human 
prostate cancer [119]. Furthermore, coupling LAC with advances in stable isotopic 
labeling has been successfully applied for the comparative analysis of sialylated 
proteins [120], thus providing a valuable tool for exploring the glycosylation sites 
of the whole proteome as well as an excellent tool for biomarker discovery. On the 
other hand, the M-LAC approach uses a single column (multi-lectin column) con-
taining various lectins with broad specificity (i.e., ConA, WGA, JCA), thus enabling 
the comprehensive isolation of glycoproteins/glycopeptides from a complex mixture 
covering an extended dynamic range. This approach was used in the study of glyco-
proteins in human serum [117, 121] and plasma [122].

Integrated analytical platforms combining LAC with various separation tech-
niques have been developed lately in order to overcome the low-throughput  
drawback of the off-line procedures. Such methodologies include a microfluidic 
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chip [111] containing a polymeric monolithic column with immobilized pisum 
sativum agglutinin (PSA), an integrated glass microchip [123] for online tryptic 
digestion of glycoproteins in the first channel, followed by selective enrichment 
of resulting peptides through ConA in the second channel. The eluted fractions 
were subjected to CE and nano-LC–MS analysis employing capillary polymeth-
acrylate monolithic columns with immobilized ConA and WGA [109] allowing 
large volume injection and adequate sensitivity. Similarly, a fully automated LAC 
system coupled online to ESI MS with silica-based lectin microcolumns [108] 
demonstrated high-binding capacity and excellent reproducibility, whereas a varia-
tion of this platform with SLAC [124] was proved to be superior over the M-LAC 
approach for the selective enrichment of small volumes of blood serum [115].

Immunoaffinity Chromatography

Immunoaffinity (IA) enrichment protocols for glycoproteins/glycopeptides rely 
on the unique specificity of the antibody–antigen interaction and enable the highly 
selective adsorption of a target analyte through the covalent attachment on a prop-
erly functionalized solid support containing an affinity ligand [125]. This can be 
performed either by the covalent attachment of antibody fragments via proper 
chemistries that provide correct orientation of the fragment, or by immobilization 
of a secondary binder molecule. The elution of the bound ligands is achieved by 
lowering the pH of the eluting buffer to pH 1–3, by using chaotropic salts, or by 
using polarity-reducing agents in order to weaken the antibody–antigen hydropho-
bic interactions. Although the IA enrichment approach has been mainly used for 
off-line targeted glycoproteomics [105], an online integration of this technique 
with CE was employed for the pre-concentration of rHuEPO in diluted solutions 
[126]. This integrated platform has demonstrated high loading sample capacity 
and good separation efficiency of the glycoforms.

Porous Graphitized Carbon Chromatography

Porous graphitized carbon chromatography (PGC) has been employed for the sepa-
ration of oligosaccharides, in their native form as well as after derivatization, based 
on a retention mechanism driven mainly by hydrophobic and electrostatic stack-
ing interactions. The oligosaccharide analytes are eluted in order of increased size, 
and structural isomer resolution is often provided [47]. In addition to separation, 
PGC has been used for the selective enrichment of glycans and glycopeptides. An 
off-line approach combining solid-phase extraction (SPE) with PGC cartridges 
was used to concentrate and pre-fractionate pronase glycopeptides and glycans 
prior to MALDI-TOF MS analysis [127]. An automated variation of the aforemen-
tioned approach for glycoprotein analysis has been reported combining digestion, 
extraction, and separation processes in one analysis [128]. This integrated platform 
employs a pronase-based chromatographic bioreactor for the in situ rapid digestion 
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of glycoproteins, an online SPE of the produced glycopeptides with a PGC trap 
column, and separation by LC–MS/MS. This system allowed the direct sequencing 
of the glycans and peptides along with simultaneous characterization of the glycan 
composition and localization of the glycosylation site.

Chemical Derivatization Methods

In addition to the affinity techniques described above, that do not change the struc-
ture of the modification and the peptides/proteins, several chemical methods spe-
cific to the glycan moieties have been used for the detection and the purification 
of glycosylated proteins. Most of the chemical derivatization strategies use two 
basic reactions: (1) the Schiff base reaction of aldehydes with a hydrazine [129–
131], and (2) a Staudinger ligation between a phosphine and an azide [132, 133]. 
However, most of these derivatization methods provide peptide/protein identifi-
cation without much information about the site or the structure of glycosylation, 
mainly due to inadequate search algorithms and the occasional modification of the 
glycan structure [112].

One of the strategies using the Schiff base reaction is the O-GlcNAc ketone 
enrichment method [134], where a chemo-enzymatic approach using an engi-
neered β-1,4-galactosyl transferase is employed to transfer a ketone contain-
ing substrate onto O-GlcNAc-modified proteins. A  Schiff base reaction was 
used to biotinylate the ketones with biotin-hydrazine and subsequently the 
O-GlcNAcylated peptides/proteins were captured on a streptavidin affinity col-
umn. This methodology was successfully used for the identification of the cAMP-
responsive Element-Binding Factor (CREB), a low-abundance protein with 
two known O-GlcNAc sites, in a whole cell lysate [135]. Another derivatization 
enrichment approach for the glycoproteome and especially for N-glycosylation, 
is the Periodate-acid-Schiff (PAS) reaction using an iminobiotin hydrazide via the 
Schiff base reaction [129]. The derivatized peptides/proteins are affinity purified 
on a streptavidin column and analyzed by MS. This reaction exploits the unique 
vicinal diol functionality of glycans, thus oxidizing these diols to aldehydes with-
out affecting any other amino acid apart from M, which is oxidized to its sulfoxide 
analog. This approach provides important information regarding N-glycosylation 
site modifications and has been used for high-throughput quantitative analyses 
[136]. In addition, it is an extremely versatile process for proteins and peptides, 
as different coupling agents such as biotin hydrazides and digoxigenin hydrazides 
can be incorporated. However, the major disadvantage of the PAS strategy is the 
heterogeneous modification of the glycan structures by an undefined number of 
hydrazide tags, thus necessitating PNGase cleavage of the glycans in order to 
sequence the peptide backbone. In this way, all information pertaining to the gly-
can structure is lost and only N-glycosylation sites can be determined.

In a modification [133] to the standard Staudinger reaction (a reaction of an azide 
with a phosphine), the intermediate aza-ylide formed in the standard Staudinger 
reaction reacts with an electrophilic trap to form an amide bond with a compound 
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that is biotin tagged. This reaction is biologically unique as neither phosphines nor 
azides occur in biomolecules and also offers the possibility to design phosphines in 
order to incorporate a wide variety of tags, such as fluorescent probes and affinity 
tags [137, 138]. A tagging-via-substrate (TAS) strategy based on a tag attached to 
the modification substrate was used for the identification of O-GlcNAc glycosylated 
proteins [117, 124], as well as for the detection and isolation of other PTMs in pro-
teins, such as farnesylation [139]. Another derivatization method that has been used 
for the enrichment of O-linked β-GlcNAc is β-elimination followed by Michael 
addition with dithiothreitol (BEMAD) [140]. BEMAD has also been used to quanti-
tate both O-glycosylated and O-phosphorylated peptides [141].

4.2.3  Determination of Site-Specific Glycosylation  
and Heterogeneity

The complete characterization of a glycoprotein biopharmaceutical involves the 
analysis of the glycan structures that are expressed on the glycoprotein of a given 
organism or cell line, the identification of the proteins that express these glycans, 
as well as the individual glycosylation sites on each protein [39, 41]. MS and 
tandem MS analysis of glycopeptides usually after chromatographic or electro-
phoretic separation, either online or off-line, holds a central role in all the strate-
gies for glycoproteomic analysis [142] (Fig. 4.7). The most commonly followed 
experimental approach for providing a detailed glycoprotein mapping involves 
the analysis of enzymatically derived glycopeptides by fast atom bombardment 
(FAB) [22, 143], MALDI [144] or LC-ESI MS and MS/MS [50, 85]. This MS 
mapping identifies most of the expected peptide signals (peptide fingerprinting), 
whereas any new, unexpected mass spectral signals may correspond to glycopep-
tides. In a similar off-line strategy, the isolated fractions are mapped by ESI or 
MALDI MS and MS/MS approaches. Nevertheless, there are several issues related 
to these MS approaches, such as the potential deglycosylation of glycopeptides in 
the gas phase combined with the low ionization efficiency and low abundance of 
the glycopeptides compared with the peptides derived from the proteolytic diges-
tion. One of the remedies to ensure the appearance of glycoproteomic informa-
tion within the copious proteomic data is enrichment of glycoproteins and/or 
glycopeptides prior to analysis (as discussed above). Another way to overcome 
this difficulty is the carbohydrate removal from the glycoprotein by base-catalyzed 
β-elimination for O-linked glycans or digestion with PNGase F (N-Glycanase) for 
N-linked glycans. The former leads to the conversion of S and T residues to A and 
α-aminobutyric acid sequences, respectively (i.e., loss of 16 Da), whereas the lat-
ter converts the glycosylated N residues to D (i.e., increase of 1 Da). In the MS 
mapping of the enzyme-generated peptide mixture of the deglycosylated protein, 
the former O- and N-glycosylated peptides can be readily identified by the appear-
ance of new mass spectral signals at lower m/z (for O-linked sugars) or higher m/z 
(for N-linked sugars) than those of the unglycosylated peptides [145]. This mass 
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difference can be magnified by carrying out the N-Glycanase reaction in fully or 
partially (50 %) 18O-labeled glycosylated N residues, which results in character-
istic doublets separated by 2 Da [146]. These doublets can be used to locate the 
modification site and to determine the degree of occupancy at each N-linked gly-
cosylation site. Another approach for N-linked glycans involves the release of the 
high-mannose- and hybrid-type oligosaccharides by digestion of the glycoprotein 
with endoglycosidase H, leaving a GlcNAc residue attached to the peptide’s N 
residue. That results in the detection of peptides having Mr values 203 Da higher 
than that of the respective unglycosylated peptides. Glycosylation sites contain-
ing complex-type glycans are unaffected by the endoglycosidase H treatment. This 
approach was employed in the FAB carbohydrate mapping of the major envelope 
glycoprotein gp120 of HIV type 1 [147] and recombinant tissue plasminogen acti-
vator (rtPA) [148]. On a similar approach, glycoprotein mapping of CHO rHuEPO 
was facilitated by removal of terminal NeuAc residues with neuraminidase fol-
lowed by LC-ESI MS analysis of the enzyme-generated peptide fragments of 
asialo CHO rHuEPO [54]. rHuEPO contains three N-glycosylation sites at N-24, 
N-38, and N-83 and a single O-glycosylation site at S-126; the glycans account 
for up to 40 % of the total molecular mass. This LC–MS mapping provided infor-
mation on the microheterogeneity of the carbohydrate structures, which is asso-
ciated with the presence or absence of lactosamine extensions and varying levels 
of O-acetylated NeuAc residues. Similarly, comparative LC-ESI MS tryptic map-
ping of untreated and neuraminidase-treated rtPA allowed the identification of the 
attachment site of two hybrid-type carbohydrates on one of the tryptic peptides 
[149]. The same analytical protocol was applied in the characterization of a rtPA 
mutant with an additional glycosylation site (T103N), where two new complex-
type carbohydrate chains have been observed [149]. An analogous LC-ESI MS/
MS approach combined with a multi-enzymatic digestion strategy was employed 
for the characterization of the glycosylation occupancy in the generic variant of 
rtPA (TNK-tPA), which was approved for treatments of acute myocardial infarc-
tion and ischemic stroke [150]. TNK-tPA has the same amino acid sequence as 
natural human tPA except for the three substitutions: T103N, N117Q, and AAAA 
for KHRR (296–299) which lead to longer half-life and higher fibrin activity than 
those of tPA. Nevertheless, differences in the glycosylation occupancy at N184 
along with different extents of deamidation at N184 and oxidation at M207 have 
been observed between the therapeutic biosimilar and the innovator product, thus 
raising concerns as to its bioequivalence.

In the case of CHO IL-4, comparative LC–MS tryptic and V8 protease map-
ping of CHO IL-4 and its N-Glycanase-treated protein revealed that the N resi-
due in the sequon N38TT was glycosylated rather than the other potential site at 
N105QS. We should point out that the presence of carbohydrate often provides 
shielding of a neighboring proteolytic site, thus leading to the incorporation of 
the adjacent peptide fragment, as demonstrated by the incorporation of the T5 
tryptic glycopeptide into the adjacent disulfide-linked peptide T4–T10 of CHO 
IL-4 [50]. When ESI MS/MS approaches are incorporated in the analysis of the 
LC- or CE-separated enzymatic fragments of a glycoprotein, the identification of 
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glycopeptide-containing chromatographic fractions is facilitated by the appear-
ance of several diagnostic fragment ions. CID product-ion spectra of ESI generated 
glycopeptides in a variety of instruments, such as triple quadrupole, ion trap (IT), 
and QTOF, are dominated by fragmentation of glycosidic linkages thereby reveal-
ing predominantly information on the composition and sequence of the glycan moi-
ety. Glycopeptide marker ions under CID conditions are low-mass sugar-specific  
oxonium ions (B-type fragmentation in the Domon and Costello nomenclature 
[151]) of m/z 162 for Hex+, m/z 204 for HexNAc+, m/z 274 and 292 for NeuAc+, 
m/z 366 for Hex-HexNAc+, and m/z 657 for NeuAc-Hex-HexNAc+. Scanning for 
these diagnostic fragment ions in the “precursor ion” mode on triple-quadrupole 
mass spectrometers can selectively identify the glycopeptides within the enzymatic 
digest mixture, whereas screening of constant neutral losses of terminal monosac-
charides could also pinpoint the glycopeptides. Selected ion monitoring (SIM) 
experiments can also be performed for glycopeptide identification with IT and 
QTOF mass analyzers. In cases, where MS/MS is not available, these low-mass 
glycopeptides marker ions can be generated by either “in-source” fragmentation of 
ESI-produced ions [50, 149, 152] or post-source decay (PSD) of MALDI-produced 
ions [153]. In the former, increasing the source entrance potential into the mass 
spectrometer, which controls the collision excitation and the extent of fragmenta-
tion, induces the fragmentation. This online LC–MS “in-source” CID mapping of 
glycopeptides utilizes both low and high source potentials and monitoring of the 
resulting sugar-specific oxonium ions. In case of complex/hybrid or high-mannose 
structures, monitoring of the oxonium ions at m/z 204, 274/292, 366 and 657 has 
allowed the fast glycan profiling in the LC-ESI MS analysis of the trypsin-treated 
CHO rTPA [154] and CHO IL-4 [50] without having to search each individual mass 
spectrum for glycopeptide-characteristic patterns. In the case of rTPA, this method 
allowed the identification of a low-level novel N-glycosylation at N142, which is 
part of an atypical N-Y-C consensus motif. Although this site is only 1 % occupied 
by predominantly biantennary hybrid structures, it was readily detected by this sen-
sitive LC-ESI MS tryptic mapping approach. In the case of CHO IL-4, the observa-
tion of the glycopeptides marker ions at m/z 274, 366 and 657 revealed the presence 
of sialylated complex-type N-glycans in the specific chromatographic fraction. In 
addition, the mass separation of the signals within the triply and quadruply multiply 
charged ion envelopes revealed the presence of mono- and di-sialylated glycoforms 
(291 Da apart) along with higher Mr components containing additional lactosa-
mine units (365 Da apart) owing to the presence of extended arms or branching. 
Similarly, this rapid glycopeptide screening approach was applied to other mam-
malian-cell-derived proteins, such as the Sf9-derived IL-5Rα, where this low/high 
“in-source” fragmentation allowed the identification of all glycopeptide-containing 
fractions in the LC-ESI MS tryptic peptide map of Sf9 IL-5Rα (Fig. 4.8). This 
method allowed the identification of four glycosylation sites in Sf9 IL-5Rα out of 
the six potential sites fulfilling the N-glycosylation consensus sequence [66].

The ESI mass spectrum of one glycopeptide-containing fraction (Fig. 4.8, peak 
10) showed signals corresponding to doubly and triply charged tryptic glycopep-
tides containing a Man9(GlcNAc)2 high-mannose carbohydrate (Fig. 4.9). All these 
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glycopeptides contain the N196 glycosylation site and the Mr values of the respec-
tive glycoforms differ by 162 Da due to an extensive heterogeneity in the Man ( ) 
content, as shown in the deconvoluted mass spectrum (Fig. 4.9, inset).

The assignment of the putative glycan structures to the experimental masses 
with a high degree of confidence is made possible by the excellent mass measure-
ment accuracy provided by ESI MS analysis. Corroborative information on the 
composition and sequence of the attached glycans can be attained from MS/MS 
analysis of the glycopeptides, because CID tandem mass spectra of glycopeptides 
contain mainly fragments arising from glycosidic bond cleavage [155]. In the anal-
ysis of the therapeutic glycoprotein BRP 3 EPO by a combined anion-exchange 
chromatography (AEC)—ultra-performance liquid chromatography (UPLC) MS/
MS approach, tetra-antennary glycans with up to four NeuAc and up to five poly- 
N-acetyl lactosamine extensions were observed at the glycosylation sites N24 and 
N83, whereas biantennary glycans were the major structures at N38 [156]. The 
presence of these large repeating glycan motifs although at low levels may infer 
additional functional interactions for EPO and may be beneficial in terms of immu-
nogenicity. A more detailed characterization of N-glycopeptides, especially in 
terms of the peptide sequence, can be obtained by an alternative approach com-
bining MS/MS and MS3 experiments in an IT MS [142]. The glycopeptide ion is 
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selected and fragmented, and the peptide ion carrying a single GlcNAc (which is 
often the most abundant ion) is subjected to a second fragmentation cycle result-
ing in extended fragmentation of the peptide moiety into b- and y-series ions, 
thus allowing the deduction of the glycan attachment site. MS/MS analysis of 
N-glycopeptides with QTOF mass analyzers at low collision energy exhibited 
mostly cleavages of glycosidic linkages providing information on the glycan moi-
ety [157]. Nevertheless, CID mass spectra at elevated collision energies resulted in 
a significant level of b-type and y-type peptide fragmentation, thus allowing iden-
tification of the glycosylation site. The potential of the nESI QTOF MS/MS in the 
characterization of O-glycopeptides has also been demonstrated in the analysis of 
mucin-type glycopeptides with S- or T-linked O-glycans [88, 158] where informa-
tion on the structure and the attachment site of the O-glycan has been provided 
based on the b-type and y-type peptide ions comprising the glycan attachment site.

Alternatively, the development of the complementary mass spectrometric 
fragmentation techniques of electron-capture dissociation (ECD) [24, 159] and 
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electron-transfer dissociation (ETD) [25] has expanded the analytical options 
for mapping the modification sites of both N-glycosylation and O-glycosylation. 
In the ECD technique, which is mainly restricted to FT ICR analyzers, multiply 
protonated peptide ions are irradiated with low-energy electrons (<0.2 eV) and 
undergo fragmentation. On the other hand, ETD can be combined with IT, QIT, 
and Orbitrap analyzers and peptide fragmentation is generated through gas-phase 
electron-transfer reactions from singly charged anions (e.g., anions of fluoran-
thene, sulfur dioxide) to a multiply charged peptide/glycopeptide. Unlike the tra-
ditional MS/MS techniques, both ECD and ETD appear to retain labile PTMs 
and induce fragmentation of the peptide backbone with minimal loss of the gly-
can moiety. ECD and ETD of glycopeptides result in the cleavage of the amine 
backbone (N–Cα) to generate preferentially c′ and z• fragments ions (nomencla-
ture of Zubarev and co-workers [160]). The intact oligosaccharide moieties are 
retained in the fragment ions containing the site of glycosylation. Consequently, 
ECD and ETD represent excellent tools for the localization of modification sites 
in post-translationally modified proteins [161–163], and there have been few 
reports of using theses techniques in the characterization of N-linked [142, 164] 
and O-linked glycopeptides [162, 165]. This is nicely shown in the ESI tandem 
MS analysis of a tryptic glycopeptide (S295-R313) from horseradish peroxidase 
(HRP) containing a core-fucosylated and core-xylosylated trimannosyl N-glycan 
attached to the N298 residue (Fig. 4.10) [142]. The [M+3H]3+ ion at m/z 1119 
was subjected to CID fragmentation which led to preferential cleavage of glyco-
sidic linkages rather than polypeptide bonds (Fig. 4.10a), thus providing infor-
mation primarily on the composition and sequence of the glycan moiety. On the 
contrary, ETD ion activation of the [M+3H]3+ ion yielded the cleavage of the 
peptide backbone with no loss of the glycan moiety, thus leaving the N-glycan 
modification on the N298 residue intact and providing complete peptide backbone 
sequence through the observed c′- and z• -ion series (Fig. 4.10b).

Therefore, the use of both CID and ETD ion activation in the LC–MS analy-
sis of glycopeptides has allowed the characterization of both glycan structure 
(CID-MS/MS) and peptide sequence/site attachment (ETD-MS/MS) within the 
same LC–MS run. Similarly, use of LC–MS and the ETD and CID fragmentation 
techniques allowed the identification of two distinct O-glycopeptide structures and 
three glycosylation sites from the secreted amyloid precursor protein (sAPP695) 
expressed in CHO cells [166]. This de novo characterization of unknown 
O-glycosylation sites was extremely challenging due to the large number of S and 
T residues (27 S and 39 T residues) contained in the protein sequence of the APP 
fragment. In a modified strategy, LC–MS combined with CID, ETD, and CID of 
an isolated charge-reduced species derived from ETD was employed to determine 
the peptide backbone sequence and the site of modification for an O-linked glyco-
sylated peptide fragment of rtPA at the low femtomol level [167].

In case of glycoprotein mapping by MALDI MS, the intense protonated (MH+) 
glycopeptides signals are much more stable in CID than the multiply protonated 
glycopeptide species obtained by ESI. Although PSD, as well as CID, is used for 
MS/MS of glycopeptides, precise analysis of fragment ion peaks often seems to 
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be difficult because of preferential and fast deglycosylation, and the limited pep-
tide sequence information [168]. Therefore, fragmentation of these glycopep-
tide ions by metastable dissociation in a MALDI-TOF/TOF MS or by CID in a 
MALDI QTOF instrument is performed at higher energies. MALDI-TOF/TOF MS 
of N-glycopeptides results in a set of cleavages at or near the innermost GlcNAc 
residue, with the peptide moiety retained in all the fragment ions. In addition, pep-
tide bond cleavages next to the fragmentation of glycosidic bonds are observed 
(predominantly b-type and y-type ions), which provide useful peptide sequence 
tags [169, 170]. All these fragments comprising the N-glycosylation site retain the 
attached glycan, thus confirming the glycan attachment site. Similarly, MALDI-
TOF/TOF MS of O-glycopeptides generate fragmentation patterns from the glyco-
peptides precursor ions (b- and y-series ions), which can be used for identification 
of O-glycosylation sites as it was demonstrated in the case of mucin-type glyco-
peptide derivatives [171].

At this point, we should point out that parallel glycomic analyses for provid-
ing information on the linkage, branching points, and configuration of the con-
stituent monosaccharides (microheterogeneity) are also essential in the whole 
glycoproteomic strategy. In general, the glycans are released by enzymatic or 
chemical digestion of the glycoprotein or the glycopeptide mixture, undergo per-
methylation and then subjected to a range of techniques, selected upon the level 
of analysis to be carried out, that is, fingerprinting, linear sequencing, linkage, 
branching, or quantitation of monosaccharides [172, 173]. In one of the followed 
approaches, the permethylated glycans are subjected to LC–MS analysis and 
the supplied mass spectral information on the specific glycans and their relative 
amounts can be compared and matched with data at the glycopeptide and over-
all glycoprotein levels (Fig. 4.7). Incorporation of MALDI-TOF and ESI tandem 
MS can definitely enhance the analytical potential for tackling complex glycobi-
ology structural issues [43]. Further information on the carbohydrate secondary 
structures can be provided by well-established methods in structural glycobiol-
ogy such as X-ray crystallography and especially 2D nuclear magnetic resonance 
(NMR) analysis [174, 175], albeit the requirement for highly purified glycans and 
large amounts of sample.

4.2.4  Bioinformatics Tools for Glycoprotein Analysis

Because of the extreme glycan heterogeneity, interpretation of the data produced 
from the aforementioned glycoproteomic approaches and glycopeptide identifica-
tion through a comprehensive large-scale data analysis is a challenging task. The 
development and use of informatics tools and databases for glycobiology research 
has increased considerably in recent years [176], even though the progress of 
these tools for glycobiology and glycomics is still in its infancy compared to 
those already used in genomics and proteomics. Even though, the automated 
identification of proteins from MS and MS/MS spectra is now almost routine by 
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using informatics tools such as Mascot (http://www.matrixscience.com/), there is 
lack of rapid and accurate automated tools for retrieving structural information 
from MS data in case of glycoproteomics. The MS and MS/MS-derived informa-
tion should be searched for putative glycopeptides predicted by comparison with 
other glycoconjugate structures derived through the same biosynthetic machinery 
in other closely related organism, cell line, or tissue. Nevertheless, the inherent 
complexity of the glycan structures combined with the wide range of techniques 
employed in their study renders the development of similar automated computa-
tional tools a formidable task [177]. In addition, the lack of libraries of glycan 
sequences similar to the SWISS-PROT protein databank makes matters more 
challenging. It should be emphasized that more than half of all proteins are gly-
cosylated, based on the analysis of well-characterized proteins deposited in the 
SWISS-PROT databank [28].

In case of proteomics, bioinformatics tools essentially utilize sequences of the 
building blocks of proteins (20 amino acids), which are always linked in a pre-
dicted linear way in order to provide automated protein identification from MS and 
tandem MS data. On the contrary, carbohydrates are structurally diverse as their 
building blocks, the monosaccharides, may be connected in various ways to form 
branched structures, thus complicating their digital encoding. Moreover, in con-
trast to protein expression, glycosylation is a non-template-driven synthetic process 
where multiple enzymes are involved and the final glycoprotein product depends 
on the type of enzymes expressed in the cell that synthesizes the glycoprotein. The 
development of bioinformatics methods has mainly found applications in glyco-
sylation analysis, glycomics, glycan structure analysis, glycan biomarker predic-
tion, and glycan structure mining (e.g., using lectins that recognize a certain glycan 
[178]). In the glycosylation analysis and the prediction of glycosylation binding 
sites on proteins, the first step is the selective search of protein databases for pro-
teins containing only the consensus sequence for N-linked glycosylation. Several 
software platforms have been developed for the identification of intact N-linked 
glycopeptides, such as GlycoMod [179], GlycoPep DB [180], Cartoonist [181], 
Peptoonist [182], and Glyco-Miner [183]. These methods can be used mainly for 
glycopeptides generated from specific enzymes, for example, trypsin or endopro-
teinase Glu-C, whereas GlycoX [184] can be used for interpretation of mass spec-
tra obtained from non-specific proteases, such as protease K. Cartoonist is one of 
the earlier developed glycomic MS interpretation approaches containing a library 
of several hundred archetype glycans derived from information about biosynthetic 
pathways and employing a set of rules to modify these structures. Cartoonist incor-
porates the same assumptions used by human expert in the annotation of MS data, 
and it is used to automatically annotate N-glycans in MALDI mass spectra with 
diagrams or cartoons of the most possible glycans consistent with the observed 
mass values. Peptoonist [182] uses MS/MS data to identify glycosylated peptides in  
LC-ESI MS runs of enzymatically digested glycoproteins and MS data to identify 
the N-glycans present on each of those peptides. On the other hand, the GlyDB 
[185] approach has been developed to address the need for structure annotation 
of N-linked glycopeptides in the LC-ESI MS analysis of glycoprotein proteolytic 

http://www.matrixscience.com/
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digests. The annotation of low-resolution tandem MS spectra of N-linked glyco-
peptides arising from low-energy CID, where cleavage along the glycosidic bonds 
occurs preferentially, is based on matching experimental spectra to theoretical 
spectra generated by a linearized database of glycan structures using the estab-
lished search engine SEQUEST. Similarly, GlycoPep ID [186] is a web-based 
tool used to identify the peptide moiety of either sialylated, sulfated, or both sia-
lylated and sulfated glycopeptides, by correlating the product ions of suspected 
glycopeptides to a peptide composition. Following the identification of the peptide 
portion, the mass of the remaining segment can be attributed to the carbohydrate 
component.

Even though the development and use of informatics tools and databases for 
glycobiology and glycomics research has increased significantly in recent years, 
it has lagged behind the development of similar tools for genomics and proteom-
ics. This drawback arises from the lack of comprehensive and well-organized 
compilations of glycan sequences and efficient automatic assignment procedures 
for high-throughput analysis of glycans. Most of the aforementioned library-based 
sequencing and N-glycopeptide identification tools for MS data interpretation are 
not publicly available; they have their own standards, databases and/or run on a 
special hardware platform. Moreover, the independently developed database with 
their own format and language along with the absence of publicly available data-
bases with carefully assigned MS spectra of glycans hinders the development 
of efficient scoring algorithms. Therefore, rules should be established for the 
standardization of the structural description of glycans and the deposit of glycan 
structures and the associated glyco-related data in databases of complex glycan 
structures. In addition, the deposit of complex glycan structures and glyco-related 
data in generally accepted databases should be maintained by well-recognized 
international institutions such as NCBI (www.ncbi.nlm.nih.gov) and European 
Bioinformatics Institute (EMBL-EBI, www.ebi.ac.uk), which house genome 
sequencing data (GenBank) and protein related databases, respectively. It is also 
essential to ensure the intercompatibility of the related data formats, in order to 
facilitate data exchange between different databases and efficient cross-linking and 
referencing thereof between various projects.

Toward this direction, the EU FP6-funded EUROCarbDB project 
(http://www.ebi.ac.uk/eurocarb/home.action) was an initiative to create the tech-
nical framework where interested research groups could feed in their complex gly-
can structural data, which would be archived and maintained at the EMBL-EBI. 
Other most prominent publically available glycan-related databases are the 
Consortium for Functional Glycomics (CFG) relational database (http://www.func
tionalglycomics.org/glycomics/common/jsp/firstpage.jsp), the Kyoto Encyclopedia 
of Genes and Genomes glycome informatics resource (KEGG GLYCAN) 
(http://www.genome.jp/kegg/glycan/), and Glycosciences.de (http://www.dkfz.de/
spec/glycosciences.de/sweetdb/index.php). Finally, genomic/proteomic findings 
need to be integrated with biomedical studies where glycan structures can serve as 
biomarkers for specific diseases or malfunctions [187], like the ones provided by the 
KEGG resources [188–190].

http://www.ncbi.nlm.nih.gov
http://www.ebi.ac.uk
http://www.ebi.ac.uk/eurocarb/home.action
http://www.functionalglycomics.org/glycomics/common/jsp/firstpage.jsp
http://www.functionalglycomics.org/glycomics/common/jsp/firstpage.jsp
http://www.genome.jp/kegg/glycan/
http://www.dkfz.de/spec/glycosciences.de/sweetdb/index.php
http://www.dkfz.de/spec/glycosciences.de/sweetdb/index.php
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4.3  Disulfide Bond Formation

4.3.1  MS Determination of Disulfide Bonds

Even though glycosylation enjoys more popularity in the PTM literature, disulfide 
bond formation is one of the most common PTMs playing a critical role in estab-
lishing and stabilizing the three-dimensional structure of proteins [6, 191]. The 
physiological and pathological relevance of disulfide bonds to diseases has been 
recognized in several cases, such as tumor immunity [192], neurodegenerative 
diseases [193], and G-protein receptors [194]. These cross-linkages between the 
sulfhydryl groups of two C residues can be either intramolecular or intermolec-
ular. The former stabilize the tertiary structures of proteins, while the latter are 
involved in stabilizing quaternary structures of proteins [195, 196]. For protein 
therapeutics, the generation of correctly folded recombinant proteins is of para-
mount importance. Difficulties in folding recombinant protein products are com-
mon from E.coli cell line, thus resulting in loss of specific activity compared to 
the native material. Similarly, over-expression of proteins in CHO cell line leads 
to disulfide scrambling. Therefore, there are significant efforts to develop reliable 
methods for mapping disulfide bonds in therapeutic proteins, thus ensuring drug 
quality. The determination of disulfide bond arrangements of proteins not only 
provides insights into protein activity relationships but also guides further struc-
tural determination by NMR and X-ray crystallography. The first step in disulfide 
mapping is the determination of the number of disulfides in a given protein, which 
can be readily deduced by a simple MS analysis before and after protein reduction. 
This is nicely illustrated in the ESI MS analysis of recombinant interferon α-2b 
and GM-CSF, where reduction resulted in a 4 Da shift in the measured Mr, thus 
indicating the presence of two disulfide bonds [197]. In case of GM-CSF, the ESI 
mass spectrum prior to and after treatment with β-mercaptoethanol clearly showed 
a 4 Da shift in the measured Mr (Fig. 4.11 insets), hence confirming the presence 
of two disulfide bonds in the recombinant protein product.

4.3.2  Disulfide Mapping

Following the determination of the number of disulfide linkages, mapping of the 
protein’s primary sequence by proteolytic cleavage of the protein between half- 
cystine residues to produce disulfide-linked peptides and MS analysis of the result-
ing peptide fragments allows the identification of the existing disulfide arrangement 
[198]. The potential of MS in this disulfide mapping approach was first realized 
with the implementation of soft ionization techniques, such as FAB/liquid second-
ary ion (LSI) [199–201], plasma desorption (PD) [202, 203], and later by the more 
sensitive method of MALDI [18, 204]. That was nicely illustrated in the disulfide 
mapping of several therapeutic proteins, such as recombinant human interferon 
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α-2b (INTRON A) [205, 206], human growth hormone [203] and IL-4 [207] by 
FAB, PD, and MALDI mapping. It should be noted that weak ion signals corre-
sponding to the MH+ of the constituent C-containing peptides were also pre-
sent in the FAB, LSI, PD, and MALDI mass spectra arising from fragmentation 
of disulfide-linked peptides during the ionization process [208]. This is shown in 
the LSI mass spectrum of the disulfide-linked tryptic core peptide of rhGM-CSF 
(expected Mr 7,613) (Fig. 4.12), where additional signals at 5665.2 and 4412.4 Da 
were also observed due to the presence of the partially reduced peptides T5-S–
S-T11 and T11-S–S-T13, respectively (Fig. 4.12, inset) [197].

Even though the disulfide-linked peptides yield unique mass spectral signals, 
the protein fragmentation should be carefully controlled to avoid rearrangement of 
disulfide bonds (disulfide scrambling), which can take place at neutral and alkaline 
pH [209]. Therefore, protein cleavage methods performed in aqueous solvents at 
acidic pH are preferred, such as cyanogen bromide [210] and pepsin [200]. This 
acidic pH is also optimum for disrupting the protein conformation and making 
the cleavage sites between half-cystine residues more accessible. That was nicely 
illustrated in the first report on the disulfide mapping of insulin where FAB MS of 
peptic digest peptides was combined with Edman analysis for disulfide bond anal-
ysis [200]. The intramolecularly linked peptides are identified by the 2 Da increase 

(a)

(b)

Fig. 4.11  Positive-ion ESI mass spectrum of recombinant human granulocyte–macrophage col-
ony-stimulating factor (rhGMCSF) in 1 % HCOOH (a) and after treatment with β-mercaptoethanol 
(b). The deconvoluted spectra are shown in the insets. (Reprinted with permission from Wiley 
[197])
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upon reduction in their constituent half-cystines with β-mercaptoethanol or dithio-
threitol, whereas intermolecularly bridged peptides yield protonated MH+ signals 
of the constituent half-cystine-containing peptide fragments.

The advent of ESI [13] has made LC-ESI MS the favorite approach for ana-
lyzing the enzyme-generated protein fragments and mapping disulfide linkages in 
recombinant proteins [198, 206]. Analysis of the peptide mixtures before and after 
reduction generally allows the identification of the C residues involved in disulfide 
bonding, taking all aforementioned precautions to minimize disulfide scrambling. 
It should be noted that ESI MS analysis of disulfide-linked peptides is not condu-
cive to peptide signals arising from partial disulfide bond reduction, as shown in 
the ESI mass spectrum of the disulfide-linked tryptic peptide T20-T25,26 of IL-5Rα 
(Fig. 4.13).

When protein chains are disulfide-linked and proteolysis between half-cystine 
residues is not possible, identification of the exact location of the disulfide link-
age often requires (1) successive proteolytic digestions, such as the ones demon-
strated for interleukin-13 (chymotrypsin plus S. aureus V8 protease) [211] and 
rtPA (Lys-C plus trypsin) [26] or (2) chromatographic separation of the enzyme-
derived protein fragments coupled with online MS/MS analysis (e.g., LC-ESI MS/
MS), and/or off-line MS/MS analysis and Edman sequencing [212, 213]. This is 
essential for proteins where three proteolytic fragments are linked by intermolecu-
lar disulfides or where two peptide chains contained an intramolecular disulfide 

Fig. 4.12  Positive-ion Cs+ LSI mass spectrum of the HPLC-isolated fraction containing the 
disulfide-linked tryptic core peptide T5-T11-T13 of rhGM-CSF. (Reprinted with permission from 
Wiley [197])
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and no further proteolysis is possible. The existence of disulfide bonds is usually 
confirmed by fragmentation of putatively disulfide-linked peptides by MS/MS 
analysis following ionization by FAB [214], ESI [215], or MALDI PSD [216]. In 
the MALDI PSD approach, the characteristic ion triplet separated by 33 Da, aris-
ing from cleavage at the C–S bond with a concomitant proton transfer [168], can 
be used as a diagnostic tool for the location and identification of disulfide-paired 
peptides, even from complex digest mixtures of proteins.

The LC-ESI MS and tandem MS approach is especially valuable in the 
disulfide mapping of protein receptors and therapeutic proteins having high Mr, 
such as rtPA and mAb. In mAb, the inter- and intrachain disulfides are responsi-
ble for maintaining the characteristic three-dimensional antibody structure, which 
allows the highly specific antigen binding. Therefore, complete disulfide map-
ping in mAb is critical for ensuring its therapeutic activity, because incomplete 
disulfide linkages and/or free sulfhydryl groups can lead to antibody fragments 
with no antigen-binding activity [217]. In case of the anti-HER2 mAb (Herceptin) 
that interferes with the HER2/neu receptor and used for the treatment of early-
stage breast cancer, the disulfides were completely mapped by LC-ESI MS with 
the combination of ETD and CID fragmentation [218]. Using ETD cleaves pref-
erentially the disulfides into two polypeptides while CID generates mainly pep-
tide backbone cleavage (with the disulfides intact). This approach was successful 
in mapping a total of 16 disulfides, 12 intra- and 4 intermolecular, in anti-HER2 
mAb and a similar therapeutic mAb. This ETD fragmentation strategy can be fur-
ther enhanced by CID-MS3 on the dissociated peptides (after ETD) in order to 
provide corroborating information on the linkage assignment. The same multi-
fragmentation approach in combination with multi-enzyme digestion scheme 
(Lys-C followed by trypsin and Glu-C) was employed in the mapping of the  
17 disulfide linkages in human growth hormone [26] and rtPA, as well as for the 
identification of the unpaired C residue in rtPA [219]. The ETD-MS2 spectrum of 
the disulfide-linked tryptic peptide T7-T8-T9 clearly showed that the unassigned C 
residue (C83) was found to be paired with either a glutathione or C molecule, which 

Fig. 4.13  Positive-ion ESI 
mass spectrum of Sf9 IL-5Rα 
tryptic fraction (Fig. 4.8, 
TIC peak 19) containing the 
disulfide-bonded peptides 
T20 and T25,26 with Mr value 
of 5553
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could shed light into the activation or signaling pathway of rtPA. A novel approach 
based on IM MS was also employed for the rapid characterization of disulfide 
variants in intact IgG2 mAb [220]. IM MS revealed two to three gas-phase con-
former populations for IgG2, compared to only one conformer for IgG1 mAb and 
a C232S mutant of IgG2, thus indicating that the observed conformers are appar-
ently related to disulfide variants. Therefore, IM MS is a new powerful tool for the 
characterization of intact mAb and may be useful for fingerprinting higher-order 
structures of these protein therapeutics.

Finally, disulfide mapping combined with stable isotope-labeling of peptides 
with 18O greatly facilitated the identification and characterization of disulfide-
linked peptides [221]. Isotope profiles of enzymatically generated peptides pro-
duced in 50 % H2 

18O (v/v) in H2 
16O would produce unique doublets separated 

by 2 Da, whereas the disulfide-linked peptides should be distinctly different than 
single-chain peptides [222]. Therefore, the disulfide-linked peptides could be iden-
tified in complex peptic digests or chromatographic fractions thereof by MS analy-
sis, and especially MALDI-TOF MS. This procedure is ideally performed in acidic 
solutions (e.g., peptic digestion) in order to preclude disulfide rearrangement and it 
may also be used to aid the interpretation of product-ion spectra of disulfide-linked 
peptides.

4.4  Future Prospects and Challenges

In the past two decades, recombinant protein therapeutics have changed the face of 
modern medicine as they provide innovative and effective therapies for numerous 
previously incurable diseases. Protein therapeutics have already a significant role 
in almost every field of medicine, even though this role is still only in its infancy. 
The number of recombinant proteins in clinical trials for new and existing thera-
peutic targets continues to increase annually, as does the total number of protein-
based pharmaceuticals reaching the marketplace. The acceptance of the various 
protein therapies can be attributed to the increasing prevalence of chronic diseases, 
such as cancer, diabetes, cardiovascular diseases, and neurological/neurodegenera-
tive disorders. In addition, the rising penetration of medical insurance industry has 
made protein therapeutics available to a wider population. The global protein ther-
apeutics market is expected to grow at an annual rate of 13 % during 2012–2015, 
arising from the introduction of new protein therapeutics in the major sectors of 
protein therapeutics market, which include mAb, insulin, interferons, G-CSF, tPA, 
EPO, coagulation factors, etc.

Recombinant therapeutic proteins for human use must be characterized thoroughly 
prior to clinical development in order to satisfy the rigorous regulatory requirements 
(ICH Q6B guidance) [12]. In addition, the manufactured final product should be com-
parable to that used in preclinical and clinical studies, and its purity, potency, safety, 
stability, and batch-to-batch consistency should be established. Advances in MS 
techniques, especially MALDI and ESI, have made MS-based mapping approaches 
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powerful and essential analytical tools for structure characterization of therapeutic 
proteins and evaluation of recombinant protein heterogeneity including identifica-
tion of PTMs, sequence variants, and degradation products in recombinant proteins. 
Structure characterization of all PTMs in a protein is of a great concern for regula-
tory agencies, such as glycosylation and disulfide linkages. Glycosylation, the most 
common form of PTM, plays a crucial role in the stability and therapeutic potency 
of the glycoprotein, as it was demonstrated for rHuEPO. Moreover, changes in levels 
and types of glycosylation can be associated with certain diseases, such as aggres-
sive breast cancer [223], thus making glycoprotein screening invaluable, not only for 
diagnostic purposes, but also for design of novel therapeutic drugs. In addition, glycan 
profiling of normal and diseased forms of a glycoprotein has provided new insights 
into future research in rheumatoid arthritis, prostate cancer, and congenital disorders 
of glycosylation [224–226].

In general, LC–MS and tandem MS peptide mapping is the standard and well-
accepted approach by the regulatory agencies (FDA, EMA) for identifying PTMs 
and establishing the recombinant product purity. Nevertheless, a variety of tan-
dem MS experiments should be performed in order to provide insights into the 
glycan structure (low-energy CID) and peptide backbone sequence/site attachment 
(ETD and/or high-energy CID) within the same LC–MS run. These MS fragmen-
tation approaches are ideally suited with higher-resolution mass spectrometers, for 
example, QTOF, IM TOF, and Orbitrap analyzers. The interpretation of the com-
plex and abundant data generated from these experiments undoubtedly requires the 
support of the growing resources of bioinformatics tools for automated search and 
identification of glycopeptides and the attached glycans. The advantages of this 
multi-fragmentation approach (ETD, CID) combined with these high-resolution 
mass analyzers are also essential in the mapping of disulfide linkages in recombi-
nant protein therapeutics. Even though disulfide linkages are assigned in the initial 
development stage of the protein, they often need to be reassigned in large-scale 
production or when the cell production conditions change. Therefore, confirma-
tion of disulfide linkages and identification of any unpaired C location needs to be 
provided by the aforementioned mapping approach, thus ensuring the proper fold-
ing and biological activity of the protein therapeutic product. The latter is espe-
cially critical in case of developing innovative treatments using mAbs, which are 
expected to top the global market in protein therapeutics in the near future. Fast 
growth in protein therapeutics will also strengthen the emerging segment of bio-
generics (biosimilars), which is a key future growth sector due to patent expira-
tions of the branded innovator products. In that case, a thorough characterization 
of the biosimilar product in terms of glycosylation occupancy and identification 
of disulfide linkages will be essential for evaluating the comparability between 
the innovator and biosimilar products. In case of a generic variant of rtPA (TNK-
tPA) [150], the analysis strategy was focused on regions that could impact the clot 
lysis activity such as the glycosylation occupancy at the N184 site and the differ-
ent extent of oxidation at several M sites. Finally, the advent of more accurate and 
sensitive instrumentation will enable the development of novel methodologies for 
the structural characterization of recombinant protein therapeutics and shed some 
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light into the role of specific carbohydrates in many complex biological interac-
tions. That, in turn, will incite the development of novel glycosylated therapeutics 
for treating infectious, chronic, and other diseases, as well as the improvement of 
the immunogenicity and pharmacokinetic profiles of existing protein therapeutics.
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5.1  Introduction

5.1.1  Protein Therapeutics

With advances in recombinant DNA and hybridoma technologies, including  
chimerization and humanization, which allow customized proteins to be produced 
in large quantities, pharmaceutical applications of proteins as human therapeu-
tics have expanded rapidly in the last 30 years [1]. Protein therapeutics now rep-
resent the second largest biopharmaceutical product category after vaccines [2]. 
Advantages of protein therapeutics include high specificity, efficacy, and fewer 
side effects. They have been applied in the treatment of many life-threatening  
diseases, such as cancer, infectious diseases, inflammation, and genetic disorders, 
and have a higher regulatory approval rate compared to small molecules in drug 
development [3]. Advances in formulation science that deliver proteins in vivo 
with improved pharmacokinetic (PK) and pharmacodynamic (PD) properties are 
also enabling rapid development of new protein therapeutics [4]. Pharmaceutical 
companies are now dedicating more and more of their pipeline efforts to protein 
therapeutics. According to global business intelligence (GBI) research, the thera-
peutic protein market is forecast to grow to $141.5 billion by 2017, which repre-
sents a growth rate of 6.2 % between 2010 and 2017 [5].

In protein drug discovery, there are typically two categories of protein mol-
ecules that need to be characterized: the target protein (found in the body) and 
the therapeutic protein (drug candidate). Target proteins normally present as a set 
of molecules that include the primary human target molecule(s) and other close  
analogs (i.e., chemically or biochemically modified forms and structurally homol-
ogous sequences). Understanding and characterizing the physiologically relevant 
protein target(s) can facilitate the identification of selectively acting lead drug 
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candidates [6]. Once the target proteins are produced, the process of discovering 
a therapeutic protein involves screening for a lead sequence followed by sequence 
optimization and characterization of the final development candidate. Several 
methods can be used to identify lead sequences, such as traditional immunization 
or molecular display technologies [7, 8]. The goal during the optimization phase 
is to identify a candidate protein with superior biophysical, PK, and PD proper-
ties to maximize its chances of success during downstream development. It can 
take up to 15 years to develop one new therapeutic protein from the earliest stages 
of discovery to the time it is available on the market [5]. Production of therapeu-
tic proteins begins with the development of a suitable cell line, determined by the 
selection of cell type. Escherichia coli (E. coli) is the most commonly used micro-
bial protein expression system; and Chinese hamster ovary (CHO) is the most 
commonly used mammalian protein expression system, although murine myeloma 
(NS0), baby hamster kidney (BHK), human embryonic kidney (HEK-293), and 
human retina–derived PER-C6 cell lines are also widely used [9, 10].

Recombinant proteins, in particular monoclonal antibodies (mAbs), constitute 
the fastest growing sector within the therapeutic protein industry [11–13], with an 
estimated market value of around US$48.5 billion (over 47 % of protein therapeu-
tics) at the end of 2011 [14]. Antibodies, also known as immunoglobulins (Igs), are 
represented by five distinct structural classes: IgA, IgD, IgE, IgG, and IgM. IgGs 
are the most abundant class, and all antibody drugs approved for clinical use today 
are based on IgG antibodies [15, 16]. Polyclonal antibodies harvested from immu-
nized animals are mixtures of structurally diverse proteins with different binding 
properties, while mAbs are antibodies that are produced from immune cells that are 
all clones of one single parent cell and are therefore identical in primary sequence.

Typical IgGs are Y-shaped protein molecules composed of two identical 
light chains and two identical heavy chains. Each light chain contains one vari-
able domain (VL) and one constant domain (CL), and each heavy chain con-
tains one variable domain (VH) and three constant domains (CH1, CH2, and 
CH3). IgGs are linked together by different numbers of disulfide bonds (S–S), 
depending on the subtype. For example, in subtype IgG1 molecules, each light 
chain is linked to a heavy chain through one S–S, and the two heavy chains 
are connected in the hinge region through two S–S (Scheme 5.1). The enzyme 
papain can cleave IgGs at the hinge region to produce two Fab (antigen bind-
ing) fragments and one Fc (crystallizable) fragment. The Fab fragment contains 
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complementarity-determining regions (CDRs) in VL and VH that are hypervariable 
and responsible for the diversity and specificity of antigen binding [17]. The Fc 
fragment, consisting of the CH2 and CH3 domains, has roles in recruiting cyto-
toxic effector functions such as complement activation, antigen-dependent cellu-
lar cytotoxicity, binding to the phagocyte Fc receptors, and providing long serum 
half-lives (typically two to three weeks) through interaction with the neonatal Fc 
receptor (FcRn) [18, 19]. There is also an N-linked biantennary oligosaccharide 
chain located within each CH2 domain that can influence the structure and func-
tion of the antibody.

Full-length mAbs have been used in a myriad of therapeutic applications. 
However, in applications where binding to the target alone is sufficient for ther-
apeutic efficacy and Fc-induced effector functions are not required and/or may 
even cause unwanted side effects (e.g., cytokine inactivation, receptor blockade, 
viral neutralization, targets requiring fast clearance rates, and targets requir-
ing protein cross-linking), use of mAbs is limited [20–22]. There are different 
approaches to eliminate the Fc-induced effector functions while still retaining 
the targeted function; examples include mutating the amino acids (AAs) in Fc 
that are critical for receptor binding [23], removing the N-linked glycosylation 
in the CH2 domain [24] or mutating the hinge region sequence [25]. The use of 
modified antibodies that do not have Fc domains or that have been dissected to 
recombinant antibody fragments is increasing as an alternative to full-length 
mAbs, since they are smaller yet highly specific proteins possess properties 
advantageous for some medical applications, can be produced more economi-
cally, and are easily amenable to genetic manipulation [8, 20, 26]. Proteolytic 
treatment with papain and pepsin can remove the Fc region and generate Fab 
and Fab2 fragments, respectively [27]. In addition, there are many other forms 
of antibody fragments that have been studied, including monovalent fragments 
(e.g., Fab, scFv, and single VH and VL domains), bivalent fragments (e.g., Fab2, 
diabodies and minibodies), and multivalent fragments (e.g., triabodies and tetra-
bodies) [26].

The single-chain variable fragment (scFv) is the most commonly used anti-
body truncation, and it has been engineered into several types of scFv-based frag-
ments for a range of therapeutic and diagnostic applications [8]. scFv fragments 
contain both the VH and VL domains (antigen-binding sites) that can be linked by 
a flexible polypeptide linker (e.g., (GGGGS)3) or associated covalently through a 
S–S [28]. They can also be used to form multivalent and multispecific molecules 
with increased target-binding affinity and in vivo persistence [8]. There are sev-
eral FDA-approved antibody fragment therapeutics, and many others are under-
going clinical evaluation [26]. However, due to the absence of the Fc domain and 
a low molecular weight (MW), antibody fragments generally have short in vivo 
half-lives, and chronic treatments require high doses and frequent administration.

Strategies to extend the circulating half-life and improve bioavailability of an 
antibody fragment include conjugating the antibody fragment with another protein 
or polymer such as albumin [29, 30], with a heavy chain fragment (e.g., Fc fusion 
protein) [31, 32], or with a water-soluble polymer polyethylene glycol (PEG) [33, 
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34]. PEG is a class of polymers that is non-toxic, non-immunogenic, non-anti-
genic, highly soluble in water and FDA approved. It is typically eliminated from 
the body in the urine (for PEGs < 20 kDa) or in feces (for PEGs > 20 kDa) [35]. 
PEGylation is the process of covalently attaching one or more PEG chains to the 
protein drug. PEGylated protein conjugates have several advantages: prolonged in 
vivo circulating half-lives due to increased molecular mass, decreased degrada-
tion by metabolic enzymes due to the steric shielding of cleavage sites by PEG 
[36], improved PK and PD properties due to better solubility [37, 38], and reduced 
protein immunogenicity [39]. Because of these favorable properties, PEGylation 
now plays an important role in drug delivery, increasing the potential of peptides 
and proteins to become useful therapeutic agents [40]. Several classes of protein 
drugs, such as enzymes, cytokines, and antibodies, are significantly improved by 
PEGylation [41]. In some cases, PEGylation may be accompanied by decreased 
biological activities; however, the prolonged body-residence times and increased 
stabilities can offset this effect [42–46].

5.1.2  Mass Spectrometry in Protein Therapeutics Discovery

Therapeutic proteins produced using recombinant DNA technologies are gener-
ally complex and heterogeneous molecules that are further subject to a variety of 
enzymatic or chemical modifications, such as glycosylation, deamidation, oxida-
tion, and S–S formation [47]. Although they are highly specific molecules, their 
efficacy, clearance, and immunogenicity properties are highly dependent on the 
AA sequence, presence/absence of specific modifications, conformational changes 
upon modifications, non-covalent interactions with receptor proteins, and aggrega-
tion caused by misfolding and modifications. For these reasons, there is a grow-
ing need for more precise protein characterization methods, particularly during 
the discovery phase of drug development when a large number of candidates are 
being investigated. As one of the most commonly used analytical techniques in 
pharmaceutical research and development, mass spectrometry (MS) has become 
an essential analytical tool for the characterization of protein therapeutics because 
of its analytical sensitivity, resolution, selectivity, and molecular specificity [6, 16, 
47–51]. When coupled to online liquid chromatography (LC) separation, LC/MS 
can provide detailed information about the primary structure of a protein, such 
as its MW, AA sequence, post-translational modifications (PTMs), and degrada-
tion products. In addition, MS can be used to investigate higher-order structures 
when combined with hydrogen/deuterium exchange (HDX) and ion mobility spec-
trometry (IMS) (Scheme 5.2). MS is routinely used to support selection of host 
expression systems, identification of clones with the most favorable quality attrib-
utes, and evaluation of molecular stability under different stress conditions. In the 
following sections, MS characterization of protein MW, AA sequence, common 
PTMs, and higher-order structure, as well as its applications in clone selection and 
stability evaluation, will be described.
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5.2  Structural Characterization of Protein Therapeutics  
by Mass Spectrometry

5.2.1  General Approach

With advances in ionization methods, including electrospray ionization (ESI) 
[52] and matrix-assisted laser desorption/ionization (MALDI) [53], the develop-
ment of novel MS instrumentation and ion activation methods, MS has expanded 
significantly the capability of protein characterization with enhanced accu-
racy, throughput and detection limits below femtomoles of material. The gen-
eral approach of MS-based protein characterization typically involves analysis 
of either intact protein (top-down) or peptide fragments generated from enzy-
matic digestion of the protein (bottom-up), as shown in Scheme 5.3. Samples 
are generally separated by LC prior to MS analysis because non-MS com-
patible salts or other matrix components can interfere with the protein ana-
lyte. Ultra-high-performance liquid chromatography (UHPLC) utilizing small 
stationary phase particles in a packed column increases the speed of analy-
sis with superior resolution, sensitivity, and peak capacity [54]. If the pro-
tein of interest comes from cell culture supernatants, an additional “capture” 
step, such as affinity purification, may be required to concentrate the pro-
tein from the cell culture medium prior to the LC separation step [55]. The 
“top-down” approach of analyzing intact proteins involves minimum sample 
treatment and avoids artificial modifications that may arise during sample han-
dling. Direct tandem MS fragmentation analysis (MS/MS or MSn) can pro-
vide information on overall protein heterogeneity, MW, and PTMs, such as  
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Scheme 5.2  Application of MS in structural characterization of recombinant protein therapeutics
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glycosylation and N-/C-terminal sequences. However, the “top-down” approach 
is limited by protein size [56]. “Bottom-up” approaches, on the other hand, are 
not limited by protein size as the large molecules are digested to produce small 
peptides for analysis; however, this approach consumes more material, requires 
more sample treatment, and may introduce artificial modifications or degradations  
[57–59]. There are also methods that fall between the “top-down” and “bottom-
up” approaches. If intact protein is cleaved into a few large fragments for MS 
analysis, it is called a “middle-up” approach; if these large fragments undergo 
further MS/MS fragmentation, that is referred to as a “middle-down” approach.

5.2.2  Molecular Mass Analysis

The first step in characterizing a protein is often determination of its MW. It is 
an important physical parameter that can be used to confirm primary structure 
and identity of the protein, characterize PTMs, and detect degradations resulting 
from clipping of terminal AAs. Analysis of intact large proteins requires the use 
of an appropriate ionization technique and a mass analyzer with suitable resolv-
ing power and mass accuracy [47]. ESI and MALDI are the most commonly used 
ionization methods for proteins, with ESI preferable, when the mass spectrometer 
is coupled to LC. ESI generates multiply charged ions requiring data deconvolu-
tion [52], while MALDI produces mostly singly charged ions [60]. Time-of-flight 
(TOF)-type mass analyzers have been widely accepted as the standard instrumen-
tation for intact mass analysis of large molecules as they deliver higher resolv-
ing power and mass accuracy, and a wider m/z range (up to 5,000 in a hybrid 
ESI-qTOF instrument) compared to other mass analyzers [61]. Fourier transform 
ion cyclotron resonance (FT-ICR) MS provides the greatest resolving power, 
mass accuracy and peak capacity [62]; however, it is not as common in industrial 
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Scheme 5.3  General approach of MS characterization for protein therapeutics
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laboratories as the TOF-type instruments due to its high cost and more stringent 
requirements for routine maintenance.

For an ESI-qTOF instrument, the mass accuracy of intact mAbs (~150 kDa) 
is usually within 100 ppm (~15 Da) with daily external calibration. When experi-
mental conditions are optimized to minimize adduct formation and deconvolution 
parameters are carefully controlled, the mass accuracy can approach 25–50 ppm 
[63–65] or even 10 ppm [66]. Higher throughput for mass determination can be 
achieved by coupling MS to LC [16]. Typically, reversed-phase high-performance 
liquid chromatography (RP-HPLC) is preferred due to mobile phase compatibil-
ity with MS. However, due to the large size and relatively high hydrophobicity of 
antibodies, high column temperatures are often used and trifluoroacetic acid (TFA) 
is included in the mobile phases to improve elution and peak-shaped profiles [67, 
68]. HPLC performance can also be improved by utilizing the appropriate type of 
column and using organic solvents with high eluotropic strength coefficients, such 
as isopropyl and n-propyl alcohols [68, 69]. Using optimized RP-HPLC methods, 
scientists have successfully separated an intact mAb from its C-terminal Lys vari-
ants [67], degradation products [68], cysteinylated forms [70], and disulfide vari-
ants [71, 72]. Size-exclusion chromatography (SEC) can also be coupled to MS 
for intact mass analysis of large molecules if the mobile phase is modified to 
exclude salt. In some cases, SEC/MS is advantageous over RP-HPLC/MS in terms 
of sensitivity and overall quality of the mass spectra [65].

5.2.2.1  Mass Analysis of mAbs

LC/MS analysis of a typical intact mAb on an UHPLC system coupled to an ESI-
qTOF-type mass spectrometer with 10 k resolving power is shown in Fig. 5.1. In 
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this case, different charge states of the intact molecule occur over the m/z range 
of 2,000–3,500, and spectral deconvolution of these charge states can provide the 
molecular mass of the protein. For large molecules such as mAbs, it is extremely 
difficult to resolve the isotopic peaks and reliably determine the monoisotopic 
mass, and even if the monoisotopic peak is resolved, its relative abundance is 
virtually zero. Therefore, for large molecules, the average mass is normally used 
to confirm the MW. As shown in Fig. 5.1, the observed mass for the (G0F, G0F) 
glycoform is 147,996 Da (other glycoforms will be discussed later). The theo-
retical mass is 147,992 Da, assuming that the AA sequence has the C-terminal 
Lys cleaved and the N-terminal Gln modified to pyro-glutamic acid (pyro-E) in 
both heavy chains (both of these modifications are commonly observed in mAbs 
and will be discussed later). This mass difference results in a mass error of 4 Da 
(<30 ppm). If the LC/MS experiment is performed on a mass spectrometer with 
modest resolving power and mass accuracy, the mass analysis can be facilitated 
by limited digestion using papain or other enzymes to generate Fab, Fab2, and Fc 
fragments [73–78], or partial or complete reduction of S–S to generate separate 
heavy chains and light chains [78, 79]. Compared to intact mAbs, these fragments 
are much smaller and easier to analyze and therefore have reduced requirements 
for the mass range and resolving power of the mass spectrometer. As mentioned 
earlier, this is referred to as a “middle-up” approach (Scheme 5.3).

Figure 5.2 shows the mass spectrum of the same mAb analyzed in Fig. 5.1 after 
partial reduction by dithiothreitol (DTT). Under controlled temperature and time, 
and in the absence of denaturant, the inter-chain S–S can be selectively reduced, so 
that the intra-chain S–S remains intact [79]. The constituent heavy chains and light 

Time

10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00

A
U

0.0

2.0e-2

4.0e-2

6.0e-2

8.0e-2

1.0e-1

1.2e-1

1.4e-1

1.6e-1

mass

22750 23000 23250 23500 23750 24000

%

0

100 23454

23434 23508

mass

50000 50500 51000 51500

%

0

100 50552

50714

G0F

G1F

Light chain Heavy chain

Fig. 5.2  LC/MS analysis of a reduced mAb: heavy chain and light chain



1715 Mass Spectrometric Characterization in Protein Therapeutics Discovery 

chains in the reduced sample are then separated by RP-UHPLC with a C4 column. 
Observed masses for both heavy chains and light chains are within 5 Da of the the-
oretical masses. Issues with this approach include tailing of the heavy chain com-
ponent and the potential for carryover problems [16]. These issues can be solved by 
the inclusion of blank runs between samples to increase confidence in the results.

5.2.2.2  Mass Analysis of PEGylated Proteins

PEGylated proteins present significant challenges for structural characterization 
due to the heterogeneity caused by the number of PEG moieties attached and the 
sites of PEGylation. PEGylated proteins generally show a distribution of oligo-
meric masses with a difference of 44 Da between each oligomer. Most published 
studies use MALDI-TOF MS for PEG characterization, as MALDI is a soft ioni-
zation process [80] and generates singly charged ions [60] that can greatly reduce 
the complexity of the mass spectra for easier and more confident data interpre-
tation [81–84]. ESI–MS with high resolution mass accuracy can better eluci-
date structural information for larger PEGylated proteins; however, the ESI–MS 
approach has limitations as the PEG charge state distribution is often convoluted 
over the size distribution, resulting in many isobaric ions and broad mass spectral 
features [85]. A conventional way to solve this problem is dePEGylation before 
mass analysis [86]. Other strategies include charge reduction to reduce the com-
plexity associated with multiple charges [87–90], incorporation of high-resolution 
FT-ICR MS to resolve multiply charged species [91], using ion mobility mass 
spectrometry (IMMS) to resolve multiple charge states [85], and using a gas-phase 
proton-transfer reaction approach [92]. Applying these methodologies for char-
acterization of PEGylated proteins can map PEGylation sites, structural variants, 
degradation products, modifications and potential PEG cleavage sites.

5.2.2.3  Mass Analysis of Glycoproteins

Glycosylation represents the most pronounced and complex type of protein PTM. It 
can significantly change protein conformation and consequently modulate the func-
tional activity of proteins as well as protein/protein interactions [93–96]. There are 
mainly two types of protein glycosylation: N-linked glycosylation, in which the 
glycan is attached to the amide group of Asn in the consensus sequence of Asn- 
X-Ser/Thr (sometimes Asn-X-Cys), where X can be any AA except Pro [97, 98]; 
and O-linked glycosylation, in which the glycan is linked to the oxygen on a Ser or 
Thr residue [99]. Recombinant IgG antibodies produced in CHO cells possess a con-
served N-linked glycosylation site in the Fc CH2 domain on each heavy chain. These 
are primarily fucosylated biantennary complex structures that differ in the number 
of terminal Gal residues (G0F, G1F, and G2F), as shown in Scheme 5.4. Other more 
immature structures have also been reported, such as high mannose (Man5) or hybrid 
types [100–102]; however, these structures are typically present at very low levels. 
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Approximately 20 % of human IgG also contain N-linked glycosylation in the Fab 
region in addition to the conserved Fc site [103]. Structural changes of antibodies 
caused by glycan variants have been shown to impact antigen-binding and antibody 
effector functions [104–107]. In early discovery research, cataloging and control-
ling glycosylation patterns of recombinant proteins are important activities to sup-
port many decision points during expression and assay development [108]. The high 
resolution and extended mass range of intact mass analysis allows the distribution 
of the major glycoforms and their relative abundance to be monitored [109, 110]. In 
cases where glycosylation is present at sites beyond the Fc (e.g., O-glycosylation or 
N-glycosylation in the Fab region), site-specific glycosylations are typically analyzed 
at the glycopeptide level to allow the glycans attached to the different sites to be char-
acterized separately [111, 112]. Figures 5.1 and 5.2 display intact and reduced mass 
spectra of a typical mAb, illustrating G0F, G1F, and low level of G2F glycoforms. 
The relative peak abundance can be used to estimate the relative abundance of each 
glycoform, not counting the differences in ionization efficiency. MS can also provide 
detailed structural analysis of the glycans; however, it is not necessary to carry out 
this type of analysis during early drug discovery as further process optimization and 
downstream purification will likely remove most low-level impurities. For proteins 
with more complicated glycosylation profiles, removing the carbohydrate portion 
before MS analysis can significantly reduce the molecular heterogeneity and facilitate 
mass spectral interpretation. N-linked glycosylations can be completely removed with 
peptide-N-glycosidase F (PNGase F) treatment or hydrolysis [47]. O-linked oligosac-
charides are typically removed using β-elimination, hydrolysis, or O-glycosidase [47]. 
However, the complete removal of O-linked glycosylation is very challenging.

5.2.2.4  Applications: Assessment of Protein Fragmentation/Degradation

Fragmentation is one of the major degradation pathways of therapeutic proteins in 
liquid formulations [113]. To assist in clone selection, the susceptibility of proteins 
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Fucose( Fuc): mass=146Da

Scheme 5.4  Glycans with fucosylated biantennary core structures
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to fragmentation can be assessed under stressed conditions such as elevated temper-
atures, exposure to chemicals, light, or a combination of these. For example, incu-
bating at high temperature can lead to a progressive loss of intact antibodies due to 
non-enzymatic hydrolysis [114–116], with the hinge region being most susceptible 
to hydrolysis, generating Fab, Fc, and antibodies missing one Fab arm [68, 116–119]. 
Protein fragmentation often occurs at the C-terminal side of an acidic residue, or near 
a Ser residue, and the predominant cleavage site occurs between Asp and Pro [120]. 
With high mass accuracy, the fragments (degradants) generated from hydrolysis can 
be assigned. These fragments usually can be resolved in UHPLC separation, and their 
relative abundance to intact molecules can be estimated from either the chromato-
graphic peak abundance or MS peak abundance (especially for low abundance frag-
ments). By measuring susceptibility to fragmentation, clones with similar sequences 
can be differentiated based on stability in simple buffer screening conditions.

5.2.3  Amino Acid Sequence Analysis

5.2.3.1  Tandem Mass Spectrometry

It is essential to perform sequence confirmation for therapeutic proteins to estab-
lish product identity and integrity and to ensure that the protein has the correct AA 
sequence as predicted by DNA sequencing. To analyze protein AA sequences, tan-
dem mass spectrometry (MS/MS or MSn) is needed to cleave the peptide backbone 
to generate fragments, ideally at each AA residue. There are many different types of 
MS/MS techniques, including collisionally activated dissociation (CAD) or colli-
sion-induced dissociation (CID) [121], infrared multiphoton dissociation (IRMPD) 
[122], blackbody infrared dissociation (BIRD) [123], electron capture dissocia-
tion (ECD) [124], and electron transfer dissociation (ETD) [125]. CID involving 
cleavage at amide bonds of the peptide backbone to generate characteristic b and 
y ions (see Scheme 5.5 for nomenclature of fragment ions) is the most widely used 
fragmentation method. It is more efficient to fragment the backbone for highly 
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charged ions (e.g., 2+, 3+) compared to singly charged ions [126], and complete 
sequence coverage can be achieved for peptides less than 5 kDa [127]. CID is also 
AA dependent as it preferentially cleaves at the N-termini of Pro residues [128]. 
IRMPD and BIRD are similar to CID as they are all “slow heating” methods [129], 
which activate ions to increase the internal energy to above the dissociation thresh-
old for various bonds in the ions. Therefore, these methods cause weak bonds, such 
as non-covalent interactions, and labile side chain modifications, such as phos-
phorylation and glycosylation, to dissociate before the backbone amide bonds. 
ECD and ETD techniques fragment peptides in a very different manner from CID. 
They introduce a low energy electron (<1 eV) into the molecular ion from either 
an electron source (ECD) or another chemical reagent (ETD) to generate a radical 
ion, which has large charge recombination energy (>5 eV) that can quickly dissoci-
ate the backbone and form characteristic c and z ions (see Scheme 5.5) before this 
energy is randomized over the molecular ion to dissociate weak bonds. Therefore, 
labile PTMs and non-covalent interactions can be preserved in ECD and ETD 
[130–136]. Compared to CID, ECD, and ETD are less dependent on AA sequence 
and thus provide more extensive and complementary sequence coverage [137–140].

Normally, the MS/MS techniques described above are applied in data-dependent 
analysis (DDA), where MS detection switches between two modes: a full MS scan 
to obtain masses of precursor ions and several MS/MS scans to obtain masses of 
fragment ions from these precursors, one precursor per scan. One disadvantage of 
DDA is the loss of data in one scan mode while performing detection in the other 
mode, which results in poor duty cycles and slow analysis. A new form of MS and 
MS/MS data acquisition that maximizes the instrument duty cycle and collects 
information for both precursor and fragment ions in the same mode is called MSE, 
which was first introduced in 2005 [141–143]. MSE is a CID-based fragmentation 
technique that utilizes parallel alternating scans acquired at either low collision 
energy to obtain precursor ion information or high collision energy to obtain both 
precursor and fragment ions information. Multiple peptides can be detected and 
analyzed in the same scan. When combined with UHPLC, it provides both chro-
matographic and MS efficiencies that are ideal for fast analysis, narrow and rapid 
eluting peak analysis, and complex mixture analysis. Figure 5.3 illustrates an exam-
ple of MSE data collected on a Synapt G2 HDMS instrument. In the low collision 
energy scan, two peptides were observed (P1 and P2) with different charge states. 
In the high collision energy scan, fragment ions from both peptides were observed 
(red series ions from P1 and blue series ions from P2).

5.2.3.2  “Bottom-up” and “Top-down” Sequencing

“Bottom-up” is the most versatile and frequently used approach for AA sequence 
analysis of proteins [144]. In the “bottom-up” approach, the protein under-
goes the following steps: denaturation using a denaturant such as urea, guani-
dine, or RapiGest SF [145]; reduction of S–S normally using DTT; alkylation of 
free Cys using reagents such as iodoacetamide (IAM), iodoacetic acid (IAA), or 
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4-vinylpyridine (4-VP); and digestion using a protease such as trypsin, Lys-C,  
Glu-C, or Asp-C. The digested peptides are then separated by RP-HPLC or 
UHPLC and analyzed by MS, MS/MS, or MSE, which is often referred to as LC/
MS/MS peptide mapping analysis. After generating the MS and MS/MS data, 
the sequence of each peptide can be determined, and by putting all the peptide 
sequences together, the sequence of the entire protein can be confirmed. This data 
analysis can be done either manually or preferably by utilizing a database that con-
tains protein AA sequence information predicted from DNA sequences [146–150].

Figure 5.4 shows an example of peptide mapping analysis from a typical 
mAb. The top chromatogram contains peaks for digested tryptic peptides sepa-
rated in RP-UHPLC. Each of these peaks represents one or several peptides, and 
the MS spectrum of each peak (e.g., the one circled by red line) gives initial con-
firmation of the peptide based on accurate mass (<2 ppm); the MS/MS spectrum 
further confirms the identity of these peptides. It is important to note that very 
small peptides (2–3 AA residues) are often undetected due to their short reten-
tion times in RP columns [16]. Nevertheless, with the use of UHPLC/MS at high 
resolving power and mass accuracy as well as multiple enzyme options when 
necessary, typical peptide mapping experiment can often achieve a sequence cov-
erage above 90 %.

Although the “bottom-up” approach provides high sequence coverage and 
is applicable for very large proteins, it often requires relatively large sample 
amounts and is both time consuming and labor intensive [16, 47]. The “top-
down” approach is a viable alternative as it directly sequences the protein in the 
gas phase and involves minimum sample handling [127]. For complex mixtures, 
the “top-down” approach can be used to isolate a single component that generates 
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molecular ions for MS/MS fragmentation, provides molecular identity with far 
higher reliability, and allows direct characterization of sequence errors and PTMs 
[151–154]. Mass spectrometers with high resolving power and mass accuracy, 
such as FT-ICR and Orbitrap or their hybrid instruments [62, 155–162], are pre-
ferred in the “top-down” approach. However, currently “top-down” MS is feasi-
ble only for rapid characterization of small- to medium-sized proteins (<50 kDa) 
[163]. For larger proteins, “top-down” structural analysis remains a challenge 
with only limited success due to the decreased MS/MS efficiency of larger ions 
[56]. For example, “top-down” sequencing of a mAb provides only information 
about AA sequence in the variable regions and terminal regions [164]. As a rule of 
thumb, the size of a protein that can be analyzed by “top-down” MS is on the same 
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order as the resolution of the instrument [16]. In other words, an instrument with 
a resolution of 10 k should yield a significant amount of structural information for 
proteins of up to 10 kDa.

One way to increase the effective mass range for current MS/MS instrumen-
tation is to use the “middle-down” approach, in which limited proteolysis or 
S–S reduction is performed on large proteins to generate a few large fragments 
(3–20 kDa) which can then be subjected to MS/MS analysis [16, 47]. An example 
is the MS/MS analysis of separated light and heavy chains on a Q-TOF instru-
ment [165]. Considerable effort is being invested for improving the utility of 
“top-down” sequencing [166, 167]. The optimal technique for solving a structural 
question depends on the nature of the problem, throughput requirements, available 
sample amount, and other factors. Due to the complementary nature of these meth-
ods, complete molecular characterization often requires a combination of tech-
niques [168].

5.2.3.3  Applications: Identification and Quantification  
of Terminal Variants

C-terminal Lys cleavage (sometimes the second C-terminal residue, usually 
Gly, is also partially cleaved) [169–171] and N-terminal pyro-E formation [79, 
172] are commonly observed in recombinant mAbs produced from CHO cells. 
A “bottom-up” approach is useful to characterize and quantify these terminal 
variants. In a typical analysis, the antibody is first digested using trypsin and 
the peptide mixture is separated by RP-UHPLC and analyzed by MS and MS/
MS on a QTOF instrument. From the protein AA sequence, the monoisotopic 
masses of C-terminal peptides [e.g., SLSLSLG(K)] generated from the trypsin 
digest can be calculated: 803.4753 Da with Lys and 675.3803 Da without Lys. 
By using extracted ion chromatograms (EICs), MS signals from these two  
peptides can be extracted from the peptide map, with observed monoisotopic 
masses of 803.4672 and 675.3751 Da and a mass error of 10.0 and 7.7 ppm, 
respectively (Fig. 5.5). This high mass accuracy provides an initial identity of 
these two peptides, and further confirmation can be achieved through MS/MS 
analysis (Fig. 5.6). By integrating the EIC signals of these two peptides, the rela-
tive abundance of the C-terminal variant (Lys cleavage) can be calculated. It is 
important to note that such semi-quantitative analysis does not take into con-
sideration potential differences in ionization efficiencies for these two peptides 
(with and without Lys).

In a similar fashion, N-terminal variants can be monitored. For example, the 
unmodified N-terminal peptide, EVQLLESGGGLVQPGGSLR, has a theoretical 
mass of 1,895.0112 Da and an observed mass of 1,895.0218 (5.6 ppm, spectrum 
not shown here). When N-terminal Glu is modified to pyro-E, the calculated mass 
is 1,877.0006 Da and observed mass is 1,877.0080 Da (3.9 ppm, spectrum not 
shown here). MS/MS spectra of the modified and unmodified peptides further sug-
gest that the modification is at the N-terminus (Fig. 5.7): all of the y ions observed 
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for the modified peptide (bottom) have the same mass as those observed for the 
unmodified peptide (top), and all of the b ions observed for the modified peptide 
have masses that are 18 Da lower compared to those observed for the unmodified 
peptide. Although some b ions from the unmodified peptide are also 18 Da lower 
in mass, their abundance is much lower and the difference in mass can probably be 
attributed to neutral water loss (−18 Da).

5.2.4  Disulfide Bond Linkage Analysis

Disulfide bond (S–S) formation is a common covalent PTM of proteins and is crit-
ical for stabilizing protein structure and function [173]. For example, the four sub-
types of IgG antibodies have homologous intra-chain S–S and characteristically 
different inter-chain S–S linkages [72]. Mis-linkages or scrambling of these S–S 
can lead to structural isoforms of the antibodies, resulting in increased sample het-
erogeneity and potentially changing antigen-binding affinities [71, 72]. Therefore, 
localization and characterization of S–S and S–S scrambling are important aspects 
of protein structural analysis.
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5.2.4.1  Non-Reduced and Reduced Peptide Mapping Approach

A common strategy for characterizing S–S linkages involves identification of S–S 
linked peptides in non-reduced digests of proteins and characterization of their 
half-cystinyl peptide constituents in reduced digests of proteins using LC/MS and 
LC/MS/MS analysis [174]. Instruments with high resolving power and mass accu-
racy are preferred for this purpose as the S–S linked peptides normally have high 
masses. The challenge associated with this approach is that S–S scrambling/shuf-
fling can occur during sample preparation, which results in incorrect assignment 
of S–S linkages. Although the exact mechanism of S–S scrambling is unclear, it 
is likely that the presence of free sulfhydryl groups (SH) in basic pH conditions 
causes thiol–disulfide exchanges, which result in S–S scrambling [175, 176].

There are a number of approaches to minimizing S–S scrambling. The use 
of pepsin for protein digestion at low pH has been demonstrated to reduce S–S 
scrambling; however, ragged peptide products resulting from pepsin digests  
(pepsin is a non-specific enzyme for proteins) increase the complexity of peptide 
mapping [177]. Using a solvent that contains 50 % H2

18O during pepsin diges-
tion can simplify the identification of S–S linked peptides because these peptides 
have distinct isotope profiles compared to the same peptides with 16O [174]. To 
date, the most practical way to minimize S–S scrambling is to alkylate SH groups 
with suitable reagents, such as N-ethylmaleimide (NEM), prior to enzymatic 
digestion and to split the digest into two aliquots: one aliquot subjected to peptide 
mapping analysis directly (non-reduced peptide mapping) and the other aliquot 
reduced before peptide mapping analysis (reduced peptide mapping), as shown in 

Scheme 5.6  Procedure for 
S–S linkage analysis using 
non-reduced and reduced 
peptide mapping methods

Protein

Alkylation under 
denatured condition

Desalting

Digestion

LC/MS or LC/MS/MS
(non-reduced peptide map)

Reduction

LC/MS or LC/MS/MS
(reduced peptide map)
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Scheme 5.6. This approach has been used to minimize S–S scrambling, to provide 
a quantitative measurement of free SH groups and to assign S–S linkages correctly 
[72, 175, 176, 178].

5.2.4.2  ETD/CID MS3 Approach

Another way to perform S–S linkage analysis is to directly identify the S–S 
linked peptides produced from a non-reduced digestion by MS/MS or MSn. 
This approach involves minimum sample preparation and sample consump-
tion, but requires special instrumentation. The fragmentation efficiency of CID 
or other “slow heating” methods on S–S linked peptides is poor and generates 
insufficient backbone fragmentation, making it very difficult to accurately and 
confidently identify S–S linked peptides. ETD, with its unique fragmentation 
pathway, has been shown to preferentially break apart S–S linkages in peptides 
and generate dissociated half-cystinyl peptide constituents, which can be iden-
tified with further fragmentation analysis (MS3). Many research groups have 
applied ETD/CID MS3 to S–S analysis, where ETD is utilized first to break 
S–S linked peptides (MS2) and then CID is applied to sequence the dissociated  

peptides [179–182].

5.2.4.3  N-Terminal Edman Sequencing Approach

For S–S linked peptides containing two closely spaced and symmetrical S–S link-
ages (e.g., in the hinge region of an IgG1), there is no enzymatic cleavage site 
between the Cys residues, and therefore, the linkage pattern cannot be identified 
using the above two approaches. For this type of analysis, N-terminal Edman 
sequencing has been successful in identifying the correct arrangement of S–S link-
ages [176]. Although two bonding patterns are possible for the disulfides, only one 
can produce the di-phenylthiohydantoin (PTH)-cystine and, subsequently, a signal 
in Edman degradation.

5.2.4.4  Applications: Examples of Disulfide Bond Linkage Analysis

Figure 5.8 shows an example of S–S linkage analysis of a typical IgG1 mAb 
using the non-reduced and reduced peptide mapping approach. The top and bot-
tom traces show the non-reduced and reduced peptide mapping chromatograms, 
respectively. When these two traces are compared, peaks that appear only in the 
top trace indicate presence of S–S linked peptides, for example, P1–P2 and P3–
P4. Accurate mass measurements of these peaks provide initial identification 
of these peptides (Table 5.1). Peaks that appear only in the bottom trace repre-
sent the half-cystinyl peptide constituents generated from the reduction of S–S 
linked peptides, for example, P1, P2, and P3 (P4 is not detected as it contains two 
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AA residues and elutes very early with salts). MS and MS/MS analysis of these 
reduced peptides can provide AA sequence confirmation. For example, P1 and 
P2 in the reduced peptide mapping was first identified by matching observed and 
theoretical masses (Table 5.1) and subsequently confirmed by MS/MS spectra as 
shown in Fig. 5.9.

Figure 5.10 illustrates how an S–S linked peptide (P3–P4) can be identified 
using ETD/CID MS3. The observed mass of the S–S linked peptide (2328.12 Da) 
is consistent with the mass calculated from the sum of the mass of P3 and the 
mass of P4 (2328.12 Da), which provides the initial identification. After apply-
ing ETD, the S–S linkage breaks, yielding separate P3 and P4 peptides (in some 

Table 5.1  Comparison of theoretical and observed masses of disulfide linked peptides and their 
corresponding reduced peptidesa

Theoretical mass (Da) Observed mass (Da)

P1–P2 3422.53 3422.53
P3–P4 2328.11 2328.12
P1a 1331.59 1331.61
P2a 2138.03 2138.06
P3a 2207.00 2207.02

aReduced peptides are alkylated with iodoacetamide
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Fig. 5.8  Non-reduced (top) and reduced (bottom) peptide mapping of a mAb: two S–S linked 
peptides (P1–P2 and P3–P4) and their corresponding reduced peptides (P1, P2 and P3, P4 were 
not observed)
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cases, P3 and P4 are held together by non-covalent interactions and additional 
“supplemental activation” is needed to break them apart [183]), and the individ-
ual masses of P3 and P4 are consistent with the masses calculated from their AA 
sequences. Further CID fragmentation of P3 confirms its AA sequence (P4 has 
only two AA residues and is not subject to CID for further identification).

When there are three peptides linked by two S–S linkages, the ETD/CID MS3 
approach can be used to determine the correct linkage pattern. As displayed in 
Scheme 5.7, the CID fragments of the dipeptide (P1–P2 or P2–P3) generated 
from ETD are different depending on the patterns of S–S linkages in the original  
peptide. For example, in pattern 1, the b3 up to b7 ions generated from CID of P2 
peptide in P1–P2 all contain the linked P1 peptide; in pattern 2, only the b6 and b7 
ions contain the linked P1 peptide.
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5.2.5  Common Chemical Modification Analysis

5.2.5.1  Oxidation

Protein oxidation can be induced by the presence of oxidants, transition metal 
ions, heat and light [184, 185]. All AAs are susceptible to oxidation, although their 
susceptibilities vary greatly [186]. Due to their high reactivity with various reac-
tive oxygen species, free Cys residues that are not involved in S–S linkages, Met, 
Trp, His, and Tyr residues, in that order, are most prone to oxidation [185]. The 
thiol group (RSH) in free Cys is a very reactive functional group and is involved 
in many biological pathways; hence, very few pharmaceutical proteins con-
tain free Cys [185]. As summarized in Table 5.2, Cys can incorporate up to three  
oxygen atoms to form sulfenic acid (RSOH), sulfinic acid (RSO2H), or sulfonic 
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acid (RSO3H) [187], which correspond to mass increases of 16, 32 or 48 Da, 
respectively. Met oxidation is most common in protein therapeutics and will be 
discussed in more detail in the next paragraph. Trp oxidation is most likely to 
occur when proteins are exposed to UV light [188–190], and under such condi-
tions, Trp can be oxidized to several forms, including kynurenine, hydroxy-Trp, 
3-hydroxykynurenine, N-formylkynurenine, or hydroxy-N-formylkynurenine, with 
mass increases of 4, 16, 20, 32 or 48 Da, respectively [191]. Trp oxidation in the 
CDR region has been showed to result in a loss of protein-binding affinity and bio-
activity [189, 190]. His and Tyr oxidation are less common than the others men-
tioned above, and their oxidation products are listed in Table 5.2 [184, 185, 192].

ETD
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P3 ZZ C ZZ
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CID

Pattern 1
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Scheme 5.7  Differentiation of S–S linkage patterns among three peptides using ETD/CID MS3

Table 5.2  Common oxidation products of labile amino acids in protein

AA residue Oxidation product Mass change (Da)

Cys Sulfenic acid (RSOH) +16
Sulfinic acid (RSO2H) +32
Sulfonic acid (RSO3H) +48

Met Met sulfoxide +16
Met sulfone +32

Trp Kynurenine +4
Hydroxy-Trp +16
3-hydroxykynurenine +20
N-formylkynurenine +32
Hydroxy-N-formylkynurenine +48

His 2-oxo-His +16
Asp/Asn −22/−23

Tyr 3,4-dihydroxyphenylalanine +16
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Met oxidation is very common in proteins as it contains a sulfur residue on the 
side chain that is susceptible to oxidation (Scheme 5.8). When oxidized, Met sul-
foxide forms, resulting in a mass increase of 16 Da. Under harsh oxidative condi-
tions, further oxidation of Met sulfoxide into Met sulfone can occur and result in 
a mass increase of 32 Da [184]. Met oxidation has been demonstrated to change 
protein structure, stability and function [193–200]. In humanized and fully human 
mAbs, the two Met residues in the Fc constant regions, one in the CH2 and one 
in the CH3 domain, are the most susceptible to oxidation [201–203]. Although 
Met oxidation in the Fc region can change antibody conformation [204–206], it 
is not expected to affect antigen-binding affinity due to the presence of the highly 
flexible hinge region [202]. However, in the 3D structure, these two Met residues 
are located close to the CH2–CH3 interface, and oxidation of these residues can 
decrease the binding affinity of antibody to Protein A, Protein G, FcRn and Fcγ 
and reduce the circulation half-life of the antibody [207–209]. Oxidation of these 
two Met residues can also influence the antibody-dependent complement cascade 
[210], and complement dependent cytotoxicity and phagocytosis [204].

Since protein oxidation can result in the loss of biological activity and/or other 
changes that are detrimental to therapeutic potency, monitoring the level of pro-
tein oxidation is critical for biopharmaceutical research and development. There 
are a wide array of tests such as AA analysis [211], capillary electrophoresis 
[212], immunoassays [213, 214], or HPLC/UV [188, 202, 215, 216] to detect and 
monitor protein oxidation. MS-based assays at either the intact protein or pep-
tide level can be used; however, intact mass analysis of oxidized proteins requires 
high resolving power of the mass spectrometer since the expected mass increases 
(e.g., 16 or 32 Da) needs to be discriminated from molecular adducts such ammo-
nia (+17 Da), water (+18 Da), sodium (+22 Da), and potassium (+38 Da). LC/
MS/MS peptide mapping is a more practical approach to obtain both site-specific 
information and an estimation of the level of oxidation [185, 205, 206, 217, 218].

Figure 5.11 shows an example of identification of Met oxidation by MS and 
MS/MS analysis at the peptide level (peptides are generated from protein tryp-
tic digestion). Oxidized peptides containing Met sulfoxide can be separated from 
non-oxidized peptides using RP-UHPLC, as oxidized peptides normally elute ear-
lier than their corresponding non-oxidized peptides on a C18 column. The observed 

Scheme 5.8  Methionine 
oxidation pathway
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precursor ion of the oxidized peptide (DTLMISR with Met oxidized to Met sulfox-
ide) is 16 Da heavier than the non-oxidized peptide (850.42 vs. 834.43 Da). A com-
parison of their MS/MS spectra shows that all the y ions that contain the Met site (y4 
and y5) have a 16 Da shift in mass, while the y ions that do not contain Met (y1, y2, 
and y3) have the same mass in both spectra. Quantitation of Met oxidation can be 
achieved by using either the UHPLC/UV signal or EIC MS signal of the precursor 
ions. MS quantitation is more sensitive than UV quantitation, but it is influenced 
by the difference in ionization efficiencies between the non-oxidized and oxidized  
peptides; thus, MS measurements without appropriate standards provide only a 
semi-quantitative estimate of oxidation levels. UV quantitation is reliable only when 
there is no co-eluted peptide for both oxidized and non-oxidized peptides.

5.2.5.2  Deamidation and Isomerization

Deamidation is a chemical degradation of protein and peptides that mainly occurs 
at Asn residues. As shown in Scheme 5.9, deamidation can be the product of two 
pathways [219, 220]: under acidic conditions, Asn deamidates by direct hydroly-
sis of the amide side chain and forms Asp (pathway B); under neutral and basic 
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conditions, Asn deamidates by forming a cyclic imide intermediate (succinim-
ide or Asu) and produces iso-aspartic acid (iso-Asp) and Asp (pathway A) with 
a ratio of approximately 3:1 [221]. Asp and iso-Asp are isoforms with the same 
mass, which is 1 Da heavier than the mass of Asn. Deamidation can also occur on 
Gln residues in a similar manner, but to a lesser degree and at a much slower rate 
[222, 223]. Isomerization is a process in which Asp converts to iso-Asp through 
an Asu intermediate (Scheme 5.10) [224]. Isomerization of Glu is rarely observed, 
except when it occurs at the N-terminus of a protein [172]. One of the major con-
cerns regarding the deamidation and isomerization of therapeutic proteins is that 
the unnatural AA iso-Asp can potentially increase immunogenicity [15]. However, 
deamidation is known to occur in vivo [225, 226] and under physiological temper-
ature (37 °C) and pH (7.4), so it seems that deamidation is a naturally occurring 
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process for endogenous proteins. The potential immunogenicity of iso-Asp in a 
given protein can only be assessed in clinical studies. Regardless, deamidation and 
isomerization can change protein conformation and significantly affect the potency 
and binding efficiency of therapeutic proteins [227–235].

There are many studies investigating the factors that influence the rates of 
deamidation and isomerization in proteins. Both processes are dependent on pH, 
temperature, buffer composition, the C-terminal neighboring AA, local polypep-
tide conformation, and tertiary structure. When undergoing pathway A (above 
pH 5), deamidation rates increase with increasing pH; when undergoing path-
way B (below pH 3), deamidation rates increase with decreasing pH [219, 236]. 
Therefore, deamidation is typically minimal at pH 4–5. Isomerization is favored 
under slightly acidic conditions (pH 5–6) [236]. Higher temperatures favor both 
deamidation and isomerization [219, 224]. The relationship between primary 
sequence and deamidation/isomerization has been extensively studied. Although 
the N-terminal AA of Asn has little or no effect on deamidation rates, the 
C-terminal AA of Asn has a significant effect under neutral and basic conditions 
(pathway A), with a small AA (e.g., Gly, Ser, or His) favoring deamidation as the 
low steric hindrance can facilitate the formation of Asu [237–240]. A similar effect 
was observed for isomerization, and therefore, Asp followed by a Gly is typically 
the most favorable site for isomerization [240, 241]. Secondary and tertiary struc-
tures also influence deamidation rates. For example, the rate of deamidation in 
peptides is inversely proportional to the extent of α-helicity [242], and a molecule 
in its native (folded) conformation deamidates more slowly than when it is in a 
denaturated conformation [243, 244]. Buffer composition has an effect on deami-
dation and isomerization rates through its impact on the pH, dielectric constant and 
viscosity of the buffer solution as well as on the protein conformation [245, 246].

Since deamidation shifts the pI of a protein toward the acidic end, any charge-
based assays, such as ion exchange chromatography and isoelectric focusing, can 
be used to monitor overall deamidation. There is also a commercial IsoQuant kit 
that can be used for quantitative detection of iso-Asp residues in proteins and 
peptides [247]. However, this method only detects the presence of iso-Asp resi-
dues, and an adjustment, based on the approximate 3:1 ratio of iso-Asp to Asp, 
needs to be made to account for Asp residues in order to get an accurate assess-
ment of deamidation levels. All of these methods, however, only provide overall 
deamidation levels. To obtain site-specific information, the most commonly used 
technique is LC/MS/MS peptide mapping [243, 248]. Briefly, after the protein is 
digested, the unmodified peptide can be separated from its deamidated forms, and 
MS or MS/MS detection can further differentiate the deamidated peptides from the 
unmodified peptides because deamidation results in a 1 Da increase in mass. As 
shown in Fig. 5.12, the precursor ion (3+) of a deamidated peptide is 1 Da higher 
than the precursor ion of the unmodified peptide (1,808.03 vs. 1,807.03 Da), and 
MS/MS fragments containing the deamidation site (N) also show a 1 Da increase 
in mass compared to those generated from unmodified peptides (e.g., y3 is at m/z 
319.2 in the MS/MS spectrum of deamidated peptide, while it is at m/z 318.2 in 
the MS/MS spectrum of unmodified peptide). The level of deamidation can be 
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assessed using either LC–UV or EIC signals, similar to the quantitation of Met 
oxidation mentioned earlier. It should be noted that enzymatic digestion under 
alkaline conditions can induce deamidation; therefore, digestion is normally con-
trolled at pH 7.5 for a short period of time with a high enzyme-to-protein ratio 
in order to minimize experimentally induced deamidation. There are studies using 
H2

18O labeling to differentiate between deamidation that is present in the original 
sample from deamidation that occurs during sample preparation [59].

For characterization of isomerization, peptide mapping is the most commonly 
used approach. HPLC methods, such as using RP-HPLC [234] and hydrophobic 
interaction chromatography (HIC) [229, 246], have been developed to separate 
peptides/proteins with iso-Asp from those with Asp residues. Further differen-
tiation between Asp-containing peptides and iso-Asp-containing peptides by MS 
requires the use of specialized MS instrumentation and alternative MS/MS 
approaches because iso-Asp and Asp residues are isobaric. Some groups have suc-
cessfully differentiated peptides containing either Asp or iso-Asp by using H2

18O 
labeling [249]. Some reports have suggested that the different intensity ratios of 
b:y ions from CID fragmentation of the Asp-containing peptides and the iso-Asp-
containing peptides can be used to differentiate them [250]. However, other reports 
suggest that this is not a general phenomenon and may be dependent on both 
peptide sequence and the type of MS instrumentation used. ECD implemented 
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on an FT-ICR mass spectrometer has demonstrated the ability to differenti-
ate peptides containing Asp from those containing iso-Asp residues since it pro-
duces unique diagnostic ions for both peptides, that is, side chain loss (−60 Da) 
for Asp-containing peptides, and (cr+58 Da) and (zl−r–57 Da) for iso-Asp-con-
taining peptides where l is the total number of AA residues in the peptide, and 
r is the position of iso-Asp residue [251–254]. Because of its similar fragmenta-
tion pathway to ECD, ETD can produce the same diagnostic ions and therefore 
is also capable of differentiating between peptides containing Asp and iso-Asp 
residues [255, 256]. With a low-resolution instrument such as an ion trap, identi-
fication of diagnostic peaks of Asp-containing peptides is difficult due to interfer-
ence from side chain fragment ions of Arg and Glu residues [255, 256]. However, 
the diagnostic peaks for iso-Asp-containing peptides can still be clearly defined. 
For example, ETD fragmentation of deamidated peptides with an iso-Asp residue 
from VVSVLTVLHQDWLNGK using an ion trap instrument exhibits a diagnostic 
product ion (z3–57 Da) at m/z 246 indicative of the presence of iso-Asp residue.

5.2.5.3  Applications: Evaluation of Protein Stability

During protein drug discovery, once a lead molecule is selected, its stability profile 
is evaluated to ensure that the molecule has acceptable biophysical properties for 
development into a final product. Typically, the molecule is tested under different 
stress conditions, such as elevated temperatures, increased humidity, different pH, 
exposure to chemicals, light, or a combination of these, to monitor its susceptibility 
to different types of modifications. Normally, the “hot spots” for modifications, such 
as Met oxidation, Asn deamidation in Asn-Gly sequence and Asp isomerization in 
Asp-Gly sequence, are monitored, and their levels are calculated from EIC MS sig-
nals of the modified and unmodified peptides using LC/MS/MS as described above. 
The results can be used as guidelines for candidate optimization, buffer optimiza-
tion, etc. For example, if a high level of deamidation is observed at a particular site, 
mutation of that Asn or its neighboring residues may be needed to prevent or mini-
mize deamidation. Another phenomenon commonly observed is that the pH of the 
formulation buffer plays an important role in controlling the level of deamidation.

5.2.6  Higher-Order Structure Analysis

Since the biological activity of all proteins is dictated by higher-order structure 
and dynamics in solution, the therapeutic properties of protein biopharmaceuti-
cals are uniquely determined by their conformation [257]. Techniques that allow 
for molecular investigation of protein structure and conformational dynamics are 
invaluable to fully understand how proteins drive and contribute to basic biological 
and biochemical events. In this section, MS-based approaches for protein struc-
tural analysis, hydrogen/deuterium exchange mass spectrometry (HDX–MS) and 
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ion mobility mass spectrometry (IMMS) will be briefly described. More details are 
also provided in Chaps. 8 and 10.

5.2.6.1  Hydrogen/Deuterium Exchange Mass Spectrometry

Over the last decade, HDX–MS has been used extensively to study protein con-
formational behavior in solution [258–262]. HDX–MS offers several advantages 
over other techniques such as X-ray crystallography and NMR spectroscopy: it is 
more sensitive; sample preparation is simpler; it can analyze protein mixtures that 
are more complex; and it offers high structural resolution with minimal sample 
preparation. In HDX–MS, the exchange rates of protein amide hydrogens with 
deuteriums from deuteriated buffer are monitored by MS, and a 1 Da increase in 
mass reflects the exchange of one hydrogen with a deuterium. Because the rate of 
HDX is dependent on protein exposure to the solvent and on inter-/intra-molecu-
lar hydrogen bonding, the information obtained from HDX–MS can be correlated 
to the protein structure in solution at the intact molecular level (global conforma-
tion) as well as at the peptide level (local conformation), and sometimes even at 
the single AA residue level. HDX–MS has been widely used to probe protein con-
formation and locate changes in protein structure [263, 264], to study the impact 
of PTMs, such as glycosylation and Met oxidation, on protein conformation 
and function [265, 266], and to investigate complex protein interactions at their 
binding sites [265, 267–270]. With automated instrumentation and data analysis 
software becoming commercially available, the application of HDX–MS in bio-
analytical laboratories for exploring protein or protein complex higher-order struc-
tures is likely to become routine practice in the near future.

5.2.6.2  Ion Mobility Mass Spectrometry

With the recent introduction of commercially available instrumentation in several 
forms, IMMS has been extensively integrated into life sciences research programs 
[271]. When coupled to LC, IMMS has been used for the structural characteriza-
tion of peptides, proteins, complex mixtures, and heterogeneous macromolecular 
assemblies [272–274]. Compared to LC/MS alone, IMMS provides an additional 
separation step based on protein size, shape, and conformation that offers sig-
nificant simplification of the spectra of complex biological samples. For exam-
ple, IMMS has been utilized to separate the heavy chains and light chains from 
a reduced antibody, which reduces molecular complexity, yields more accurate 
mass measurements, and facilitates quantitation of different glycoforms [275]. It 
has also been used to quickly resolve disulfide structural isoforms of IgG2 anti-
bodies to assist in S–S heterogeneity analysis [276]. IMMS has been particularly 
useful for characterizing PEGylated proteins since it can separate PEGs based on 
their size and charge [85, 92], and it offers enhanced dynamic range, increased 
sensitivity, and increased specificity for characterizing large PEGylated molecules. 

http://dx.doi.org/10.1007/978-1-4419-7862-2_8
http://dx.doi.org/10.1007/978-1-4419-7862-2_8


1935 Mass Spectrometric Characterization in Protein Therapeutics Discovery 

There are also efforts to use computational approaches to interpret and discover 
additional structural details from spectra generated by IMMS, for example, cor-
relating drift time (ion mobility parameter) with mass to determine which class 
(lipidomics, proteomics, glycomics, and metabolomics) the analyte belongs to, or 
to reveal specific structural motifs in the analyte [277]. IMMS is a powerful new 
methodology for characterizing intact biomolecules and may be used to fingerprint 
the higher-order structure of therapeutic proteins in the near future.

5.3  Conclusions

MS is an essential tool for candidate selection and lead molecule stability evalua-
tion in protein therapeutics discovery. Key structural features of proteins, including 
MW, AA sequence, S–S linkages, glycosylation structure and profile, and many 
different PTMs as well as higher-order structures can be characterized by utilizing 
MS. Continued technical improvements in instrumentation will provide new mass 
spectrometers with higher sensitivity, resolving power, and mass accuracy, which 
will further improve the performance of MS in protein structural analyzes. Although 
“bottom-up” methods still remain the most popular approaches for protein character-
ization, especially for large proteins, “top-down” approaches incorporating advanced 
separation techniques, such as UHPLC and efficient MS/MS techniques such as 
ETD for large biomolecules, are evolving as promising alternatives that involve less 
sample handing prior to structural analyzes. Increased demands for analyzing pro-
tein higher-order structures will lead to further advances in HDX–MS and IMMS 
for probing protein conformational dynamics, as well as protein/protein (drug/tar-
get) interactions for a better understanding of mechanisms of action at the molecular 
level. With its sensitivity and versatility, it is clear that MS will continue to play a 
major role in biopharmaceutical research and development of protein therapeutics.
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6.1  Development of Protein Therapeutics

The fervor for biologics in the pharmaceutical industry has been fueled by several 
successful launches in recent years and the potential of biologics for delivering novel 
therapeutics to patients and high financial returns for pharmaceutical companies. While 
more and more promising candidates are generated from different drug discovery plat-
forms to fill the pipeline, many challenges remain in developing efficacious and safe 
products. Due to specific interactions between biomolecules, protein therapeutics 
are generally more specific toward therapeutic targets resulting in fewer side effects. 
However, the complex nature of biomolecules and the sophisticated manufactur-
ing processes pose more challenges than those for small molecule drugs with regard 
to analytics for the control of quality, and ultimately efficacy and safety. Many protein 
molecules consist of hundreds of amino acid residues, change in any one of them results 
in a change in their combined identity as a protein molecule. Any variation in primary, 
secondary, tertiary, and quaternary structure can generate variants. It is fair to say that 
a protein therapeutic is very rarely composed of a single species at the time of produc-
tion, let alone after additional variants are introduced due to degradation during storage. 
Therefore, the characterization of variants in therapeutic proteins present unique chal-
lenges that differ from those encountered when characterizing small molecule drugs.

In general, the molecular composition of protein therapeutics, excluding formu-
lation components, can be classified into the following categories:

1. Product-related substances: molecular variants that have comparable properties 
to the desired form of the drug with regard to efficacy and safety.

2. Product-related impurities: molecular variants that do not have comparable 
properties to the desired form with regard to efficacy and safety.
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3. Process-related impurities: molecules that are derived from the manufacturing 
process.

Variants of protein therapeutics, depending on their therapeutic properties 
related to efficacy and safety, can be product-related substances or product-
related impurities. Although some variants are benign in terms of toxicity, others 
may pose serious side effects if their contents reach certain levels. Unfortunately, 
most protein variants cannot be categorized directly, since it is often techni-
cally unfeasible to isolate individual variants and test their properties indepen-
dently. Unlike small molecule drugs in which most covalent modifications result 
in change in a drug’s properties and activities, many modifications of protein 
therapeutics do not affect their intended activities. On the other hand, conforma-
tional changes in which covalent bonds remain intact, such as denaturation and 
aggregation, can have a significant and detrimental impact on a protein drug’s 
properties. The assurance of quality for a protein therapeutic is achieved in part 
by detailed characterization of the protein and development of a well-controlled 
manufacturing process that is capable of generating highly reproducible prod-
uct over time. Ultimately, the efficacy and safety of the protein therapeutics and 
their associated manufacturing process is validated by the results from clinical 
trials, for which the characterization of protein therapeutics always plays an 
important role.

Categorically, molecular variants can also be divided into those that are gen-
erated during biosynthesis and those that are formed through degradation. 
Heterogeneity and variants can be introduced through biosynthetic error or incom-
plete processing at any point in the protein biosynthesis, starting from amino acids 
being first assembled into the polypeptide chain, through post-translation modifi-
cation (PTMs) such as glycosylation, N- and C-terminal processing, and disulfide 
bond formation. After the protein synthesis is complete, degradation such as oxi-
dation, deamidation, isomerization, and fragmentation can occur throughout the 
lifetimes of therapeutic proteins. The following sections will focus on each of the 
main biosynthesis steps and the major degradation pathways for proteins under 
typical manufacturing and storage conditions and the common variants and degra-
dation products are generated.

6.2  Sequence Variants Generated by Mutation  
or Mistranslation

The synthesis of a protein starting from genetic code through complete assem-
bly of polypeptide chain is a culmination of multistep processes involving 
deoxyribonucleic acid (DNA) replication, messenger ribonucleic acid (mRNA) 
transcription, polypeptide synthesis, etc. Errors within any stage of gene expres-
sion can result in an unintended amino acid being incorporated into the poly-
peptide chain, thus generating a sequence variant of the target protein. Known 
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mechanisms of sequence variants include mutations at the DNA level [1], or 
mistranslation (through either tRNA misaminoacylation or misreading) at the 
protein level [2]. While the overall fidelity of protein synthesis relies on the 
combined accuracy of all processes involved, each process exhibits different 
probabilities of introducing a variant. While the misincorporation rates have 
been found to vary and are influenced by different conditions and among dif-
ferent species [3], the often-quoted error rates for the individual processes in 
typical cells are as follows: ~1 in 108 for DNA replication by bacteriophages, 
Escherichia coli (E. coli), and various eukaryotes [4]; ~1 in 105 bases for tran-
scription in E. coli [5]; and ~1 in 104 codons translated in proteins produced by 
E. coli and mammalian expression systems. At the DNA level, although most 
variants involve a single-base mutation—for which a total of 75 pairs of possi-
ble amino acid substitution can be derived [6]—sequence variants involving two 
bases substitution have also been reported [7]. In addition, mutations at the DNA 
levels are usually found to occur at one or a few specific sites [7–10], whereas 
translational errors are often found to be randomly distributed in the protein. The 
error rates can be significantly higher when expression occurs under stressed 
conditions, such as the presence of mutagenic reagents [11], exposure to reac-
tive oxygen species [12], amino acid starvation [10], and the use of high-yield 
expression systems [13]. It is known that overexpression can lead to nutritional 
stress on host cells which in turn can cause increased misincorporation in recom-
binant proteins, especially in heterologous systems [10, 13]. Nevertheless, over-
expression of recombinant proteins is almost always desirable in the production 
of recombinant proteins intended for structural and functional studies, as well as 
in the manufacture of therapeutic proteins.

Misincorporation of amino acid occurs in both nature and recombinant pro-
teins. Ala to Ser misincorporation has been reported to occur in nature through 
either tRNA ribosomal frameshift [14] or misaminoacylation [15, 16], as well 
as through mutation at the DNA level [17, 18]. Hemoglobinopathy is a well-
known disorder resulting from mutation and subsequent amino acid misincorpo-
ration. To date, more than a thousand hemoglobin variants have been discovered 
[19]. Sequence variants have also been observed during the production of human 
monoclonal antibodies and other recombinant proteins [8–10, 20–23]. Multiple 
reports for a variety of types of amino acid misincorporations have been reported 
when mammalian (mouse or human) proteins were expressed in E. coli cells, for 
instance, norleucine for Met [24], norvaline for Leu [25], Gln for Arg [26], His for 
Gln [27], norvaline for Leu for Arg [28], Gln for His [29], and Cys for Tyr [30]. 
Typically, the sequence variants are at low levels, however, a Lys for Arg misincor-
poration which produced two functional proteins with different properties at close 
to 1:1 ratio has been reported [28]. Although mammalian expression system is 
generally considered of higher fidelity, misincorporation has also been observed in 
recombinant proteins expressed from CHO cells such as Gln for Tyr [31], Ser for 
Asn or Asn for Ser [7, 32], Arg for Ser [11], Thr for Pro, Arg for Met, Gln for Leu, 
and Gly for Ser [9, 21]. Furthermore, both codon-specific (likely caused by mis-
reading) [20] and noncodon-specific (likely caused by mischarging of tRNA) [21] 
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mistranslations have been observed in recombinant proteins expressed in Chinese 
hamster ovary (CHO) cells.

Conceptually, the consequence of amino acid misincorporation in recombinant 
proteins can be varied. Even though many of the misincorporations are benign 
and do not affect a protein’s properties, some of them can significantly alter a pro-
tein’s characteristics such as catalytic constants, specificity, and stability [33–36]. 
In proteins produced for therapeutic use, amino acid misincorporation can poten-
tially induce undesired immune response or abnormal receptor-ligand interactions. 
Sequence variants of the desired product are generally considered product-related 
impurities by regulatory authorities, unless proved otherwise. Misincorporated 
populations in protein therapeutics are generally very difficult to remove during 
downstream purification. Therefore, it is essential to understand all mechanisms 
underlying cellular processes that contribute to the generation of sequence vari-
ants and to control the production process to reduce or eliminate sequence variants 
whenever possible.

Historically, high-level misincorporations have been detected using electropho-
resis-based methodologies such as isoelectric focusing [13] or two-dimensional 
gels [10]. Edman sequencing [20], ion-exchange chromatography [9], and DNA 
sequencing have also been employed. The electrophoretic and chromatographic 
methods can only detect variants that cause observable changes in the electropho-
retic or chromatographic properties. In many cases, the misincorporated protein 
would need to be isolated from the normal protein pool in order to facilitate identi-
fication. However, the variant proteins with only one or a few amino acid substitu-
tions often behave similarly to the unaltered proteins which are typically orders of 
magnitude greater in quantity. This makes isolation of variant proteins extremely 
difficult. As a result, detection and identification of amino acid sequence variants 
remains a challenging task.

Thanks to ever-improving performance of mass spectrometers in sensitivity, 
resolution, and throughput, mass spectrometry has become the workhorse for pro-
tein structural analysis. Misincorporated proteins can be detected as whole mol-
ecules by intact mass analysis when the misincorporation is not isobaric to the 
unaltered protein. Furthermore, peptide mapping can be performed to confirm the 
presence of misincorporations and to locate the specific site of the misincorporated 
residues using liquid chromatography-tandem mass spectrometry (LC-MS/MS) 
analysis. A typical enzyme digest of monoclonal antibody can be analyzed within 
two to three hours by LC-MS/MS. Sequence variant as low as 0.01 % has been 
detected using LTQ-Orbitrap XL instrument [21]. Analytical approaches com-
bining LC-MS/MS and automatic Mascot or SEQUEST database searches were 
developed to detect and identify protein sequence variants [37, 38]. However, it is 
worth noting that manual assessment of the results is generally required to confirm 
the automatic assignment of sequence variants, since false positive results can be 
generated by automatic database searches. An inherent weakness of MS analysis is 
that it cannot detect a variant with no net mass change, for example, substitution 
between Leu and Ile. In addition, only high-resolution Fourier transform (FT) MS 
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can detect a substitution between Lys and Gln due to their small mass difference 
(Δm = 0.0364 Da) [39].

6.3  Variants Resulting from Post-Translational 
Modifications

Post-translational modification (PTMs) is an important step in protein biosynthesis 
in which protein is covalently modified post-translation by various functional groups. 
PTMs convey many functional and pharmacokinetic attributes to therapeutic pro-
teins. The application of MS in the characterization of PTMs has been discussed in 
several recent reviews [40–48]. The most prominent and most complex form of PTM 
is glycosylation which occurs in proteins expressed mainly by mammalian cells [49, 
50]. In addition to the characterization of protein glycosylation, MS has also been 
used successfully to direct the control of cell culture conditions to manipulate oli-
gosaccharide profiles for glycoproteins in mammalian expression systems [51]. In 
bacterial fermentations, feeding strategies have been used to mitigate amino acid 
misincorporation or translation errors that result in unexpected protein sequences or 
unwanted variants [52]. LC-MS has also been used to monitor chemical modifica-
tions following storage of formulated bulk solutions or lyophilized products [53].

Most PTMs happen intracellularly during protein expression, others such 
as disulfide formation result from protein production processes. Many PTMs in 
protein therapeutics are not relevant to protein function and therefore constitute a 
source of product-related variants. However, it is usually challenging to determine 
whether or not a modification affects the pharmaceutical properties of a protein, 
due to the technical difficulty in isolating the modified molecules from the rest of 
the population.

Although many types of modifications to proteins are possible, the nature of 
modifications correlates with the physiological conditions of the host cells and the 
specific processes in protein production. Some variants are generated during pro-
tein expression such as glycosylation and gluconoylation. The latter is frequently 
observed in E. coli expressed recombinant proteins [54–56]. Information about 
the expression system and the manufacturing processes can significantly facili-
tate identification of the modifications. In addition to glycosylation, the common 
PTMs observed in therapeutic proteins include phosphorylation, acetylation, meth-
ylation, N-terminal pyroglutamation, carbamylation, gluconoylation/phosphoglu
conoylation, S-thiolation, etc. If molecular heterogeneity is not overwhelmingly 
complicated, a simple intact mass analysis can reveal the extent and nature of the 
PTMs. If the locations of PTMs are to be determined, LC-MS/MS analysis on 
enzymatically digested proteins is usually the method of choice. If the heterogene-
ity is overwhelmingly complicated for intact mass analysis by ESI-MS, MALDI-
TOF can be used to obtain a mass spectrum at the expense of fine molecular mass 
profiles due to limited resolution of MALDI on larger molecules.
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6.3.1  Glycosylation in Protein Therapeutics

Protein glycosylation represents one of the most prominent and most complex forms 
of protein post-translational modification. It has been estimated that in excess of 
half of all human proteins are functionalized with glycans attached to one or more 
sites [57] and that glycosylation is present in about the same fraction of approved 
biopharmaceuticals in the United States [58]. The biosynthetic pathway for gly-
cosylation is complex; it consumes a substantial amount of energy and employs a 
set of well-defined cellular machinery that spans from the endoplasmic reticulum 
to the trans-Golgi network. The collective glycosylation machinery used is similar 
across eukaryotic expression systems, however, differences that are characteristic of 
or exclusive to specific host expression systems can potentially influence immuno-
genic responses, pharmacokinetic profiles, or drug stability characteristics [59–64]. 
As a consequence of this, the Food and Drug Administration (FDA) in the United 
States and the Committee for Proprietary Medical Productions (CPMP) of the 
European Community have been requiring more and more sophisticated carbohy-
drate analysis for new glycoprotein therapeutics intended for use in human therapy 
[65]. Accordingly, the use of suitable analytical methods in the characterization and 
monitoring of glycosylation characteristics within manufactured biotherapeutics has 
become a critical aspect in the understanding of both drug function and determina-
tion of manufacturing process capabilities. The importance of demonstrating control 
over glycosylation has recently been illustrated when the application for a scaled up 
manufacturing process for alglucosidase α (rhGAA) was rejected by the FDA due 
to concerns about the differences in glycosylation at two differing manufacturing 
scales, resulting in a determined lack of comparability [66].

Glycosylation is depended on cell, tissue and site-specific and sensitive to envi-
ronmental variations as well. Therefore, a given glycoprotein may be differentially 
glycosylated depending on the conditions under which it is produced. Three fac-
tors are commonly accepted as exerting significant influence on the glycosylation 
profile of a glycoprotein with respect to both the degree of site occupancy and the 
distribution of glycans at each occupied site. These are as follows: (1) the specific 
polypeptide structure; (2) cell-specific parameters of the cell type used in expres-
sion of the protein; and (3) environmental factors and stresses which affect cellular 
homeostasis, or in some way alter the cellular phenotype [67]. Given the breadth 
of potential influencing factors, it is not surprising that producing biotherapeutics 
with a consistent oligosaccharide profile can be a challenge. Extensive characteri-
zations as well as profile trending are required in order to ensure manufacturing 
process robustness and product consistency.

Glycosylation introduces heterogeneity within a biotherapeutics product 
through the incorporation of varying glycans resulting in the generation of differ-
ent glycoform profiles in which the contribution from individual oligosaccharide 
components vary in both their core structure and by differences in the addition of 
outer-arm sugars. The presence and nature of the glycoforms present can impact 
a wide range of protein characteristics such as functional activity, folding, stabil-
ity, pharmacokinetics, and immunogenicity. The presence of glycan structures on 
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a therapeutic protein which are foreign to the host system in which the therapeutic 
protein is to be used can, therefore, induce undesirable effects. Mammalian expres-
sion systems produce glycosylation comparable to that of produced in humans and 
have, at least in part, for this reason become the dominant platform for the produc-
tion of therapeutic glycoproteins. Even so, they exhibit an inherent glycan hetero-
geneity that is sensitive to culture conditions [68, 69], and these platforms require 
tight process control in order to ensure consistent product glycosylation.

6.3.1.1  Glycosylation and Biological Activity

The impact of protein glycosylation on protein function can be varied. There are 
cases where complete glycosylation equates with full biological activity [70, 71], 
and there are cases where the extent of glycosylation has no significant impact on 
the biological effectiveness of a protein at all [72, 73]. Glycosylation can affect 
many properties of protein therapeutics [49], such as structural stability [74], 
potency [75], efficacy [68], immunogenicity [76–78], and pharmacokinetics [79, 
80]. Glycosylation of therapeutic proteins itself [81–86] and the applications of MS 
in this area have been extensively reviewed in some recent publications [87–91].

Glycosylation is known to be involved in regulating biological processes, particu-
larly in immune response, in which it can have a direct impact on immunogenicity, 
manifested as an IgE response or by inducing the formation of antidrug antibod-
ies and in doing so render the drug ineffective or even harmful to the recipient 
[58]. CHO cells produce glycosylation patterns that fairly closely resemble that of 
humans. However, there are significant differences. For example, CHO and mouse 
cell lines produce N-acetylneuraminic acid (NANA) which is present in human 
IgGs, but in addition CHO cells also express N-glycolylneuraminic acid (NGNA), 
a form of sialic acid (SA) which is not found in humans and has been reported as 
immunogenic [68, 80, 92–94]. High-mannose glycan structures also potentially 
raise the risk of adverse immune response as they can be substrates for the mannose 
receptors commonly expressed on the surface of macrophages and antigen present-
ing dendritic cells [95]. The absence of SA terminal residue [96] or of galactose resi-
dues [97] on the IgG heavy chain often results in immune complex formation. Slight 
variations in glycosylation can result in significant nonimmunogenic changes in pro-
tein properties as well. For instance, biantennary oligosaccharide structures lacking 
galactosylation have been reported to have slightly faster clearance rates than other 
structures in IgG1 antibodies [98]. Glycosylation can also have an indirect effect on 
immunogenicity through its impact on protein folding, solubility, or stability.

6.3.1.2  Solubility and Stability

The attachment of oligosaccharide structures on proteins frequently contributes 
to improved solubility and reduced protein aggregation [99]. The presence of 
altered or incomplete glycan structures has been reported to lead to conforma-
tional changes [100] as well as significant increases in protein aggregation [101]. 
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Glycosylation has also been reported to have an effect on local secondary structure 
which in turn can play a role in the assembly of tertiary structure. Altered or absent 
glycosylation can potentially alter or eliminate protein epitopes or create new 
ones. The presence of attached oligosaccharides can alter solubility by shielding 
hydrophobic regions of a protein’s surface thereby reducing the tendency to aggre-
gate thereby enhancing stability by participating in stabilizing intrachain interac-
tions [80, 81]. One example of this is the physicochemical properties of human 
granulocyte colony-stimulating factor (hG-CSF) which depends on the presence 
of O-linked glycan structures to prevent self aggregation which would result in 
complete biological inactivation [102]. Thermal stability may also be improved 
by glycosylation as has been shown for IFN-β [103], interleukin (IL)-5, rhEPO, 
and IgG1-Fc [104, 105]. In the case of the IgG1-Fc, the native glycosylated from 
was the most stable followed by various truncated glycoforms with the fully degly-
cosylated version being the least stable. Since IgGs have been used extensively 
within the field of biologics, a large amount of data has been generated regard-
ing the impact of minor glycosylation changes and their impact on the function 
of this protein class. Therefore, IgG serves as a valuable example to illustrate the 
importance of glycosylation. It has been shown that the majority of IgG effec-
tor functions are compromised by the removal of the N-linked oligosaccharides: 
FcγRI activation is reduced by 2 orders of magnitude; FcγRII and FcγRIII, are 
abolished by complement activation and mannose-binding lectin (MBL) activation. 
In fact, protein’s characteristics can be significantly affected even without complete 

Fig. 6.1  Effect of terminal sugar residues of N-linked glycans on pharmacokinetic properties of 
IgG molecules
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removal of glycosylation. Figure 6.1 illustrates some findings of the biological 
impact of individual glycoforms on biological activity of IgGs [106–110].

6.3.1.3  Glycoprotein Structure

The high degree of oligosaccharide complexity, resulting from the variable com-
position, linkage, branching points and configuration of monosaccharides, and the 
presence of various degrees of glycosylation at different glycosylation sites on 
glycoproteins are the main reasons for the diversity of analytical approaches that 
have been developed for the study of this post-translational modification [111]. To 
date, four types of protein-linked glycans are known, including (1) N-linked, (2) 
O-linked, (3) C-glycans, and (4) glycosylphosphatidylinositol anchors.

In N-linked glycosylation, the oligosaccharide is linked via a GlcNAc molecule 
in a β-N-glycosidic type bond to a nitrogen of the amide group of an asparagine 
(Asn) as illustrated in Fig. 6.2.

N-Linked glycosylation of proteins is a co-translational event occurring dur-
ing protein synthesis and is initiated as the newly synthesized polypeptide chain 
enters the lumen of the endoplasmic reticulum (ER). N-linked oligosaccharide 
synthesis continues as the protein is transported from the ER to the Golgi appara-
tus and is completed by the time the glycoprotein leaves the trans-Golgi network. 
The presence of a consensus amino acid sequence within the protein amino acid 
sequence is a prerequisite for N-linked oligosaccharide incorporation. The consen-
sus sequence for N-linked glycosylation is Asn-Xaa-Ser/Thr, in which Xaa may be 
any amino acid with the exception of proline. The consensus sequence allows rec-
ognition of the glycosylation site by the first enzyme involved in N-linked oligo-
saccharide production (oligosaccharyltransferase or OST) by providing a protein 
conformation which enables the enzyme to gain access to the glycosylation site.

The presence of the N-linked consensus sequence Asn-Xaa-Ser/Thr does not 
guarantee oligosaccharide attachment. The sequence may occur many times in 
a polypeptide chain with only a small number of the potential sites being glyco-
sylated. Numerous factors influence whether a putative glycosylation site is coupled 
to an oligosaccharide. Occupied N-linked consensus sequences are frequently those 

Fig. 6.2  N-Linked 
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in which the consensus sequence is in a “turn” or “loop” in the polypeptide chain 
which enables access to the OST.

In O-linked glycoproteins, the first monosaccharide of the oligosaccharide 
chain, usually GalNAc, is attached through an α-O-glycosidic linkage to an oxy-
gen atom of an amino acid residue, typically serine or threonine and to a lesser 
extent hydroxylysine or hydroxyproline on the polypeptide chain of a protein as 
illustrated in Fig. 6.3. Both N- and O-linked glycoproteins share common features 
and many proteins contain both types of glycan attachments within the same pro-
tein molecule.

The other two glycosylation structures C-glycans and glycosylphosphatidylino-
sitol anchors are less common. In the former, the glycan (Mannose) is attached 
to the Trp residues by a C–C bond in a consensus sequence of Trp-Xxx-Xxx-Trp 
or Trp-Ser/Thr-Xxx-Cys; and in the latter, the glycan attaches to the carboxyl ter-
minus of certain membrane-associated proteins by a phosphoethanolamine bridge 
with Mannose (Man) [112].

Within therapeutic proteins, the two most common forms of protein glycosyla-
tion are N- and O-linked glycosylation. Both N- and O-linked glycoforms are 
characterized by complex branched structures that vary greatly in form and size. 
Common core structures for both structures are provided in Figs. 6.4 and 6.5. 
N-linked glycans contain a common trimannosyl-chitobiose core (Man3GlcNAc2) 
with one or more antennae attached to each of the Man units [89]. Based on the 
location and nature of the additional monosaccharides added to the core, N-linked 
glycans are further classified into; (1) the “high Man” or “oligomannose” type 
(Man5–9GlcNAc2) N-glycans that have only Man residues added to the core; 
(2) N-glycans of the complex type that contain N-acetyllactosamine (Galb1-
3/4GlcNAc) within their antennal region; and (3) the “hybrid type” N-glycans that 
contain both Man residues and N-acetyllactosamine attached to the trimannosyl-
chitobiose core residues.

O-linked glycans, on the other hand, are characterized by the stepwise addition 
of sugar residues directly to a protein through a hydroxyl group. In mammals, the 
initiating step is typically the addition of N-acetylgalactosamine to Ser/Thr residues, 

Fig. 6.3  O-Linked 
oligosaccharide structure 
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although other monosaccharide units, such as GlcNAc, or Man-linked oligosac-
charides, have been reported to be involved in O-glycosidic linkages to hydroxyl 
amino acids [89]. Subsequent addition of Gal and/or GlcNAc leads to the formation 
of the common O-glycan core structures (Fig. 6.5). Biosynthesis of complex N- and 
O-linked glycans is completed by a variety of capping reactions, the most import in 
mammals being sialylation and fucosylation [113]. Because of the acidic nature of 
SA residues, primarily NANA (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) 
impart a net negative charge to the otherwise neutral glycans. Glycans can be fur-
ther modified by acetylation, methylation, phosphorylation, and sulfation, which 
can occur at internal or terminal positions in the glycan structure [83].

Fig. 6.4  N-Linked oligosaccharide structural classes

Fig. 6.5  O-Linked 
oligosaccharide core 
structures
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6.3.1.4  MS Detection of Carbohydrates: Ionization

The two most common ionization techniques use in the analysis of glycoproteins 
are electrospray ionization (ESI) and matrix-assisted laser desorption/ionization 
(MALDI). Both techniques posses their own strengths and weaknesses and one 
is often used as complementary approaches to the other. Conventional ESI-MS 
involves a flow of solution into the ion source of a MS instrument and has been 
observed to produce relatively weak ion signals for native oligosaccharides com-
pared to those for peptides and proteins [114, 115]. It has also been observed that 
the ESI signal is increased when oligosaccharides are derivatized. This is consist-
ent with the idea that the decrease of ESI signal for oligosaccharides relative to 
peptides is mainly due to decreased surface activity rather than decreased volatil-
ity [116]. In addition, nano-ESI has been reported to produce ion signals that are 
comparable in magnitude between the peptide and carbohydrate compound classes 
[117]. This increase in sensitivity in nano-ESI suggests that the hydrophilicity of 
oligosaccharides limits the surface activity in ESI droplets, and the barrier can be 
overcome by the more efficient droplet formation produced by the nanospray [116]. 
The fact that the ESI of carbohydrates appears to be more effective at the nanoscale 
could have important implications. Interfaces for online ESI LC/MS typically pro-
duce droplet sizes that are larger relative to those produced by spraying from a 1 
to 2 μm-orifice nanospray emitter, and thus, the spray characteristics are typical of 
forced flow. As commercial nano-ESI systems continue to become more robust, the 
potential for routine use of nanospray ESI in the characterization and quantitation 
of underivatized oligosaccharides becomes an increasingly viable approach.

The Ionization mechanism for MALDI is different from that of ESI. For exam-
ple, in contrast to that for ESI, where the ionization efficiency decreases with 
increasing molecular weight, MALDI-TOF ionization efficiency for neutral car-
bohydrate oligomers has been observed to be constant as the size of the molecule 
increases [118]. MALDI-TOF for neutral oligosaccharide analysis has advan-
tages over ESI, particularly for applications that involve the profiling of mixtures 
released from glycoproteins. Quantitation of permethylated carbohydrate mixtures 
by MALDI-TOF has been shown to result in reproducible data with precision levels 
comparable to those obtained for the same oligosaccharide mixture after derivati-
zation with a chromophore and chromatographic quantitation [119]. The MALDI-
TOF approach has the added benefit of providing information on the structural 
composition.  The commonly used MALDI matrices are listed in Table 6.1.

The advantages of MALDI in terms of ionization response must be balanced 
against the disadvantages of presence of meta-stable fragmentation that is caused by 
the high internal energies imparted to the ions in MALDI relative to those resulting 
from ESI. Although fragmentation is useful in the analysis of carbohydrate ion struc-
ture with post-source decay (PSD) on a MALDI-TOF instrument [120], it complicates 
MS profiling by introducing uncertainty as to whether or not an observed structure was 
generated in source. Nevertheless, the use of MALDI in carbohydrate and glycoconju-
gate analysis continues to advance and has been the subject of extensive review [121]. 
MALDI continues to be a major technique for the analysis of carbohydrates although 



2196 Molecular Variants Characterization in Protein Therapeutics Development 

Table 6.1  Common MALDI matrices used in glycoprotein, glycopeptide, and oligosaccharide 
analysis

MALDI matrix and structure Abbreviation Application

O

OH

OO

HO

sinapinic acid

SA Large peptides or proteins with 
molecular mass larger than 
10 kDa

O

OH

HO

OH

2,5-dihydroxybenzoic acid

DHB Protein digests, carbohydrates, 
oligosaccharides, glyco-
peptides, and both proteins 
and peptides below 10 kDa. 
This matrix is also well 
suited for the negative ion 
MALDI-MS glycolipids

NH

SN
H

O

N

6-aza-2-thiothymine

ATT Glycans, glycoproteins, and 
oligonucleotides

O
OH

HO

OH

2',4',6'-trihydroxyacetophenone

THAP Glycans, glycoproteins, and 
oligonucleotides work well 
in negative ion mode

H
N

N

norharmane

-- Glycans and proteins

O

OH

OH

2',6'-dihydroxyacetophenone

DHAP Glycoproteins and mixtures 
containing glycoproteins

(continued)
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electrospray, particularly with quadrupole–time-of-flight (Q-TOF) instruments, for 
the most part coupled with CID, has become increasingly popular. MALDI-TOF usu-
ally provides a superior profile of component glycan because of the predisposition of 
the technique to produce mainly singly charged ions. However, MALDI-TOF MS of 
native acidic glycans is less satisfactory due to problems arising from glycan fragmen-
tation. ESI causes less fragmentation of these compounds but tends to produce ions in 
different charge states from glycans with several acidic groups, thus giving a profile 
that is not directly representative of the glycan content. This problem, and the insta-
bility of acidic carbohydrates under MALDI conditions, can be overcome by derivati-
zation of the carboxylic acid group of SAs. Ultimately, both MALDI and ESI have 
advantages and disadvantages for carbohydrate work and the best technique to use will 
be dictated by the problem to be solved.

6.3.1.5  Nomenclature for the Fragmentation of Oligosaccharides  
and Glycoconjugates

Collision-induced dissociation (CID) of oligosaccharides and glycoconjugates 
results in the observation of ions that correspond to cleavage of the oligosaccharide 
portion of the molecule. Due to the labile nature of the glycan bonds under acidic 
conditions, ions are produced in greater abundances for the oligosaccharide portion 
than are those that occur in the aglycon (nonoligosaccharide) portion of the gly-
coconjugates. The nomenclature for oligosaccharide fragmentation used through-
out the mass spectrometry field is shown in Fig. 6.6. Fragment ions that contain 
a nonreducing terminus are labeled with uppercase letters from the beginning of 
the alphabet (A, B, C) and those that contain the reducing end of the oligosaccha-
ride or the glycoconjugate terminal end are labeled with letters from the end of the 
alphabet (X, Y, Z); subscripts indicate the cleaved ions location within the oligosac-
charide structure. The A and X ion are produced by cleavage across the glycosidic 
ring and are labeled by assigning each ring bond a number and counting clockwise. 
Examples for two cross-ring cleavage ions are shown in Figs. 6.7, 6.8, and 6.9. Ions 
produced from cleavage of successive residues are labeled: Am, Bm, Cm with M = 1 

MALDI matrix and structure Abbreviation Application

O OH

N
N

HO

2-(4'-Hydroxybenzeneazo)benzoic acid

HABA Oligosaccharides and glyco-
proteins (less discrimina-
tion against high-mass 
compounds)

Table 6.1 Continued
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for the nonreducing end and Xn, Yn, and Zn with n = 1 for the reducing end resi-
due. Note that Y0 and Z0 refer to the fragmentation of the bond to the aglycone.

Fig. 6.6  Nomenclature for the fragmentation of oligosaccharides
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Fig. 6.7  Mass spectral fragmentation of hexose A, B, and C Ions



222 R. Ludwig et al.

When performing tandem MS of oligosaccharides, there are multiple possibili-
ties regarding the state of the precursor ion, the choice of which can significantly 
influence the product-ion pattern and the structural information obtained. For 
native oligosaccharides, common possibilities include protonated molecular ions 
[M+nH]n+, deprotonated molecular ions [M−nH]n−, and nitrated molecular ions, 
[M+nNa]n+ as well as other metal- and salt-adducted ions.

Product-ion mass spectra of glycoconjugates are considerably more compli-
cated than those of peptides because of the glycan branching structure. Within 
these branching structures, fragmentation occurs from the nonreducing end of 
each antenna and from the reducing end. Multiple cleavages are not uncommon, 
giving rise to a high level of spectral complexity. The input of energy into the mol-
ecule by collision most often breaks the single-bond glycosidic linkages. Using 
low-energy CID, fragmentation of glycosidic linkages is most likely, whereas frag-
mentation across the sugar rings is less likely because two covalent bonds must be 
cleaved. It does occur, however, and provides essential information on the location 
of substituents on branching monosaccharide residues.
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It has been demonstrated that CID product-ion mass spectra can provide infor-
mation on stereochemistry of individual sugar residues, the linkage position [122], 
and branching structure [123, 124]. Oligosaccharides that contain the same mono-
saccharides linked with a different branching structure often show distinct prod-
uct-ion patterns because the local steric environments differ between the alternate 
isomers and result in different ion abundances in product-ion mass spectra. Due to 
the dependence of fragmentation patterns on the particular parameters and instru-
ments used, it can be difficult to correlate the fragmentation patterns with confi-
dence to data produced across multiple laboratories.

6.3.1.6  Analytical Approaches

The analysis of glycoproteins can be divided into three general approaches as 
shown in Fig. 6.10. Each approach provides information on different aspects of 
glycoprotein structure. Analysis of intact glycoproteins provides a global view 
of the glycan population or profile of the glycan content of the glycoprotein. It 
does not, however, provide information on the localized glycosylation sites within 
the protein, and in many cases, information on the oligosaccharide structures are 
confounded due to overlapping masses of glycoforms with multiple glycosylation 
sites. Glycopeptide analysis performed on proteolytic digest mixtures allows the 
identification of site-specific glycosylation and in many cases provides strong data 
for the determination of oligosaccharide structures when MSn data are evaluated. 
Analysis of glycans after release from a glycoprotein enables the use of a wide 
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range of methods and analytical strategies which enable detailed structural investi-
gation of individual glycan structures as well as the overall glycan profile without 
complication from additional protein modifications. Each of these approaches pro-
vide valuable information and taken together can produce a comprehensive view 
of the glycan structure of a given glycoprotein.

6.3.1.7  Intact Glycoprotein Analysis

MALDI-TOF and ESI have emerged as powerful tools for the analysis of 
large biomolecules. The characterization of glycoproteins by mass spectrom-
etry is naturally more difficult than the mass spectrometric analysis of proteins, 
because glycoproteins exhibit extensive heterogeneity and because they are ion-
ized less efficiently than nonglycosylated proteins. Nonetheless, to some degree, 
intact glycoproteins can be resolved to their individual glycoforms using both 
methodologies.

Fig. 6.10  Approaches used in glycosylation analysis
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MALDI-TOF MS

MALDI-TOF MS has been extensively used for the exact molecular mass determi-
nation of peptides and proteins [125]. MALDI provides a rapid and simple method 
of obtaining molecular mass information at the picomole to femtomole sensitivity 
range. In fact, this analytical tool is routinely used to complement and in some 
instances even replace common protein biochemical techniques, such as sodium 
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) [126, 127]. 
MALDI is known to be well suited for detection of glycoproteins and high-mass 
proteins owing to its combination of high sensitivity and a theoretically unlimited 
m/z range for linear TOF analyzers, which has allowed the determination of singly 
charged molecular ions of up to 106 Da [128]. Due to the enormous heterogeneity 
arising from the macro- and microheterogeneity of glycosylation as well as other 
post-translational modifications (sulfation, phosphorylation, hydroxylation, car-
boxylation, etc.), MALDI-TOF analysis of intact glycoproteins has generally been 
unable to resolve individual protein glycoforms of larger proteins and typically is 
used to provide data on only the average carbohydrate content.

Instrumental resolution generally restricts the use of MALDI-TOF instruments 
to studies of glycoproteins with masses below 20 kDa. For example, MALDI 
spectra of ribonuclease B, a small glycoprotein (15 kDa) that contains five man-
nose N-linked glycans at a single glycosylation site, can be resolved well enough 
to determine the glycosylation pattern using linear instruments [129]. The careful 
selection and optimization of parameters which determines the desorption/ioni-
zation of glycoproteins can improve the quality of MALDI mass spectra as well 
as mass reproducibility and resolution. When parameters like the sample matrix, 
sample-matrix preparation technique, pH, and instrumental conditions are opti-
mized, resolution of glycoforms can be achieved for both sialyl and nonsialyl oli-
gosaccharide proteins [130, 131].

It has also been reported that the use of delayed ion extraction can result in 
improved glycoform resolution. This is because the delayed ion extraction mini-
mizes the observed metastable fragmentation, which is known to adversely influ-
ence MALDI analysis of glycoproteins. By carefully controlling field strength and 
delay time, improvement of more than one order of magnitude in resolution has 
been reported relative to the nondelayed extraction case [132].

Given that existing TOF mass spectrometers can only achieve isotopic resolu-
tion for glycoproteins with masses below 10 kDa, and the fact that resolution of 
individual glycoforms becomes increasingly difficult due to the presence of non-
glycosylation-related PTMs, salt adducts as well as fragment ions, the only viable 
solutions are analysis of glycans after release from the protein, or cleavage of the 
protein into smaller units. Even in the absence of glycoform resolution, the meas-
urement of protein molecular mass before and after removal of the attached glycan 
provides information on the state of glycosylation. The difference between the gly-
coprotein molecular mass obtained by MALDI-MS and the predicted molecular 
mass from the amino acid sequence can also provide information about the carbo-
hydrate content of the glycoprotein [133].
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ESI Quadrupole and TOF

ESI coupled to a Q-TOF mass analyzer typically produces better results than 
MALDI-TOF in terms of resolution and mass accuracy for intact protein analy-
sis. Advances in quadrupole technology continue to result in the maximum m/z 
of quadrupole analyzers moving higher. Given the higher mass ranges available 
and the computing power to rapidly deconvoluted the data generated, the mass of 
an intact mAb can be determined quickly and reproducibly on an ESI-quadrupole 
instrument with high mass accuracy and resolution.

Most modern orthogonal acceleration time-of-flight analyzers with reflection 
achieve a mass accuracy on the order of 2–10 ppm, a resolution of 5,000–30,000, 
and a maximum m/z of up to 10,000. When coupled with ESI, TOF instruments 
make an ideal system for mass determination of intact mAbs. For this reason, ESI 
with TOF analyzers, such as ESI-TOF or ESI-Q-TOF configurations, has become 
the method of choice for mass determination of intact mAbs. Using this method-
ology, ions from a given molecule produce an ion envelope in which a given ion 
differs by plus or minus one charge from adjacent ions in the series. In measuring 
the molecular mass, the charge on any one of the ions is first established by solv-
ing a series of simultaneous equations for any two consecutive ions in the series. 
From the combined data, the charge for all ions in the series can be deduced and 
the molecular mass calculated. As with any spectral data, overlapping of peaks 
may occur within electrospray data, particularly when several species are present, 
each giving rise to its own series of multiply charged ions. Under these conditions, 
accurate values for mass/charge ratios of the components in an unresolved multi-
plet may not be obtainable without some form of data deconvolution.

Maximum entropy (MaxEnt) techniques are particularly well suited for the 
effective deconvolution of mass spectral data. The MaxEnt deconvolution solu-
tion contains the minimum amount of spectral structure consistent with the data 
and is capable of providing a level of deconvolution which can enable overlapping 
peaks to be resolved and accurately centroided [134]. With external calibration on 
an ESI-TOF instrument, the mass of an intact mAb can be determined with a mass 
accuracy of less than 100 ppm. With carefully executed experiments, the mass of 
an intact mAb has been determined to an accuracy of 25–50 ppm [135, 136]. With 
experimental conditions optimized to minimize adduct formation, a calibrant ana-
lyzed immediately before sample analysis, and carefully controlled deconvolution 
parameters, mass accuracy that approached 10 ppm have been achieved [137]. 
This level of accuracy in mass measurement of intact mAbs by a TOF analyzer 
approaches the natural variation of the protein average mass. The mass range and 
mass accuracy of an ESI-TOF instrument, combined with an appropriate charge-
deconvolution algorithm, make it an ideal match for the mass determination of 
intact mAbs [138].

Along with the high level of accuracy, there is a high level of mass resolution that 
is obtained from the combination of the instrumental mass resolution and the resolu-
tion enhancement afforded by deconvolution of the ion envelope data. The resulting 
level of resolution allows for resolved detection of individual glycoforms on glyco-
proteins of relatively large size. A typical example of an ESI-Q-TOF mass spectra 
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of a mAb is shown in Fig. 6.11. For mAbs, typically in the 150-kDa mass range, the 
mass resolution after deconvolution easily allows for separation of glycoform masses.

Fig. 6.11  Mass spectra of a monoclonal antibody
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Typical raw and deconvoluted spectra of a mAb: (a) raw ESI-Q-TOF spectrum 
acquired on a Thermo Q-Star Elite. (b) Region of raw spectrum showing charge 
states 49–53. (c) Deconvoluted mass spectrum, in which clear resolution of glyco-
forms are identifiable.

It should be noted that isobaric glycoforms cannot be distinguished from one 
another from the intact analysis data. In the example presented in Fig. (6.11), a 
mAb with only two N-linked glycosylation sites and only three predominant oli-
gosaccharide structures, the two glycoforms G0G2 and G1G1 are indistinguish-
able from one another. In glycoproteins with only moderate glycosylation, such 
as typical mAbs, the confounding of structural identification is minor. However, 
as a protein’s glycosylation becomes more extensive, the number of isobaric gly-
coforms increases dramatically. In such cases, the intact mass data may be use-
ful as a measure of glycan content and a means of monitoring profile consistency. 
However, complementary methods are needed in order to provide more detailed 
glycan characterization.

As with selection of the appropriate matrix and analyzer settings in MALDI-
TOF, there are multiple options available when selecting the liquid chromato-
graphic separation input for ESI MS. The two most commonly used include 
reversed-phase (RP) high-performance liquid chromatography (HPLC) and size-
exclusion chromatography (SEC).

Chromatographic analysis of protein samples are usually performed on SEC, 
ion-exchange, or hydrophobic interaction chromatography. However, these chro-
matographic techniques are generally not compatible with MS detection due to the 
high salt content used in the mobile phases. The ideal combination of LC with 
MS is through RP-HPLC as the RP eluate is typically salt free and contains some 
levels of organic solvent. Historically, RP-HPLC analysis of proteins has suffered 
from poor chromatographic resolution and recovery. However, several laboratories 
have successfully developed reversed-phase methods for intact mAb analysis. A 
high column temperature of 60–80 °C is often required to minimize sample loss 
to the column and to minimize sample carryover [139, 140]. Other important fac-
tors include a careful choice of the column, and the usage of organic solvents with 
high eluotropic strength coefficients such as isopropyl or n-propyl alcohol. With 
an optimized reversed-phase method, separation of an intact mAb has been chro-
matographically separated from their C-terminal lysine variants, degradation prod-
ucts, cysteinylated form, and disulfide variants [141–145].

SEC has historically not been compatible with MS due to the use of high salt 
concentrations used in the mobile phase. However, newer column technology has 
allowed the modification the mobile phase to exclude salt, and the technique has 
become compatible with MS for LC/MS analysis of intact proteins. There is typi-
cally some sacrifice in chromatographic resolution upon the mobile-phase modifi-
cation. A typical mobile phase appropriate for this application would contain some 
organic solvent under acidic conditions [146]. As an alternative, acidic aqueous 
mobile phase with post-column addition of organic solvent has also been reported 
[135]. Published results demonstrated that the SEC/MS analysis had advantages 
over the RP-LC/MS method in terms of sensitivity and overall quality of the mass 
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spectra. Although most mAb isoforms are not resolved by SEC, the chromatogra-
phy does not require elevated temperatures, minimizing concerns about method–
induced glycoprotein degradation. SEC typically has less of a carryover problem 
than the RP method [146]. The selection of RP versus SEC LC methods will 
depend on the particular needs of the experimenter. RP-HPLC is often used when 
chromatographic resolution or sample throughput is important, whereas SEC is 
favored when better MS spectral quality is needed or when chromatographic sepa-
ration is not a concern.

Generally, intact mass analysis gives a global view of the protein glycosyla-
tion, that is to say that specific information regarding local site glycosylation is not 
extractable from the intact view directly. However, if it were possible to fragment 
the intact protein within the spectrometer, it would be possible to gain some higher 
level of regiospecific information regarding the attached glycan location and local 
glycan populations. Top-down mass spectrometry refers to mass spectrometric 
evaluation of the instrument-induced fragmentation of biomolecular ions of any 
size [147–149]. This approach has the potential to be able to identify and charac-
terize all types of post-translational modifications, including glycosylation, on the 
native protein of interest.

To date, the fragmentation of intact proteins the size of intact monoclonal anti-
bodies in the gas phase has been attempted with CID, both through use of the ded-
icated CID cell as well as directly within the ion source itself [150, 151]. However, 
CID-generated sequence coverage, particularly from IgGs, has been limited. 
Electron-capture dissociation (ECD)- [152–154] and electron-transfer dissocia-
tion (ETD) [155]-induced fragmentation of large proteins provides an alternative, 
radical-based mechanism of fragmentation and creates additional opportunities 
in top-down MS analysis. The radical-induced fragmentation generally provides 
more extensive sequence coverage on large proteins and produces efficient rupture 
of disulfide bonds [156, 157] when compared to CID and Infrared Multiphoton 
Dissociation (IRMPD). However, possibly the most significant advantage of 
ECD/ETD over CID/IRMPD is in the characterization of labile PTMs on peptides 
[158], even though this advantage is less pronounced on proteins, where the dis-
tribution of vibrational energy can be more easily dispersed in the large protein 
structure which increases the chance for labile PTMs to remain intact during the 
fragmentation of the protein backbone bonds in CID/IRMPD [159, 160]. Although 
this approach presents great promise, it is still in its infancy. As the availability of 
ETD/ECD instruments becomes more accessible, the maturity of top-down analy-
sis with respect to characterization of PTMs including glycosylation will continue 
to evolve.

Cases will always exist where intact mass analysis of a native protein will 
not be possible with available instrumentation or where more detailed structural 
information is desired. Under this circumstance, one must cleave the protein into 
smaller fragments before mass analysis. A variant of the top-down approach, 
named “middle-up,” involves cleaving the protein into several large fragments 
before MS analysis. This approach is a convenient approach to use on mAbs 
as these structures are easily fractured into several medium-sized fragments.  
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A common strategy is to cleave a mAb into a few large fragments through reduc-
tion in the disulfide bonds to liberate the heavy chains and light chains. Mass 
analysis of the individual chains can be used to confirm the structure, or to locate 
variants or modifications in each individual chain. To illustrate how this simple 
variation in experimentation can increase structural information, we can use the 
intact mass example given previously. The inability to distinguish between the 
G1G1 and G0G2 glycoforms is due to the presence of multiple N-linked sites 
contained on the intact protein. By reducing the mAb, freeing the light and heavy 
chains to be analyzed individually without the interchain disulfide bonds, the 
number of N-linked sites per fragment is reduced to one and the elucidation of 
the contribution of the G1G1 and G0G2 glycoform contributions becomes evident. 
This level of detail was not possible from the native intact data in Fig. 6.11 and is 
obtained only after reduction and analysis of the heavy-chain data. Due in part to 
the prevalence of mAbs as biotherapeutics, a wide range of conditions have been 
reported which allow either complete reduction in disulfide bonds by employ-
ing denaturing conditions [161], or selective reduction in the interchain disulfide 
bonds in the absence of a denaturing agent [162]. This simple reduction method 
has been used to confirm mAb structures [163], to characterize the structure of 
antibody conjugates [164], to locate different modification of the light and heavy 
chains [165], and to examine carbohydrate structure on the heavy chain [166].

Another common middle-up approach is limited digestion of protein, under 
native condition, with a protease such as papain, pepsin, or Lys-C. Reduction in 
these enzymatically generated fragments yields even smaller fragments. Mass 
analysis of these smaller fragments allows for the elucidation of more detailed 
structural information than mass measurements of intact proteins alone. Similar 
to the reduction method, the limited-digestion method has been used to confirm 
mAb structures [167], to identify post-translational modifications [168], and to 
characterize the structure of antibody conjugates [169]. Although the middle-down 
approach provides the opportunity to gain additional regiospecific information, 
the top-down approaches currently do not, it has yet to be developed into a robust 
approach for detailed site-specific glycan characterization. Analysis of glycopep-
tides remains one of the most commonly used approach in obtaining detailed and 
localized characterization information regarding site connectivity and localized 
glycan population distributions.

6.3.1.8  Glycopeptide Analysis

Determining the glycosylation site specificity can be problematic in the top-down 
approach since the approach inherently gives a global, rather than local, view of 
the glycoprotein being investigated. Advances in fragmentation techniques and 
data analysis may ultimately allow the top-down approach to be used more rou-
tinely for this purpose, but currently the analysis of glycopeptide from a bottom-
up approach is more common. This approach typically employs a combination of 
specific enzymatic proteolysis (usually with trypsin) followed by fractionation of 
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glycopeptides by liquid chromatography or affinity chromatography and ultimately 
glycopeptide analysis by MS and MS/MS [170–174].

Due to its specificity and robust performance, the most common proteolytic 
enzyme employed in this type of analysis is trypsin. As the analysis of glycopep-
tides is typically part of a concurrent protein structural characterization, the same 
protocols for digestion are generally used and no additional optimization of the 
digestion protocols is performed to accommodate glycoproteins. Trypsin read-
ily produces highly predictable peptide masses because of its high activity and 
specificity. In addition, tryptic glycopeptides guarantee a basic residue in every 
peptide which increases ionization efficiency during MS analysis. A significant 
drawback with this approach is that glycoproteins exhibit increased resistance to 
trypsin digestion. In addition, the resulting glycopeptides may often be too large 
for effective MS/MS analysis. This problem is often complicated by the presence 
of missed cleavages particularly near the sites of glycosylation. Despite these limi-
tations, in the characterization of therapeutic proteins, where glycoprotein samples 
are typically relatively pure and available in significant quantity, this approach 
can give relatively comprehensive data on the location and micro-heterogeneity of 
glycosylation.

If needed, enrichment of the glycopeptides can be performed, but this intro-
duces its own set of challenges. One enrichment strategy has been developed in 
which a cleavage of the carbon–carbon group between the diols of saccharide 
units produces aldehyde groups that can be captured by reaction with hydrazine 
which is immobilized on a solid support [175, 176]. Capture with immobilized 
boronic acid [177] and by hydrophilic interaction liquid chromatography (HILIC) 
have also been reported as well as lectin affinity chromatography using ConA, 
WGA, or a combination of lectins [172]. However, despite the wide variety of the 
methods, there is still no generally effective method for glycopeptide enrichment, 
as no single method is both comprehensive and highly specific [178].

6.3.1.9  Tandem MS of Glycopeptides

In theory, tandem MS can provide peptide and glycan sequence as well as the site 
of glycosylation. In practice, however, tandem MS analysis of glycopeptides can be 
problematic and far from routine. Studies of glycopeptide fragmentation reactions 
have focused almost exclusively on protonated tryptic glycopeptides. The typical 
glycopeptide fragments correspond to the loss of the fragments from the glycan 
moiety, while information on the peptide sequence and glycan attachment sites is 
often harder to obtain. Tandem MS is complicated by the sizes of tryptic peptides, 
which tend to be larger than the mass range which would allow for comprehen-
sive sequence characterization using CID. This coupled with the labile nature of the 
glycan-peptide bond makes complete characterization using CID alone difficult. A 
common strategy is to determine the overall mass of the glycopeptide and perform 
tandem MS to yield the peptide mass. To sequence the peptide, the glycopeptide is 
first deglycosylated and evaluated separately in a second tandem MS experiment.
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Multiple reviews on glycopeptide analysis by mass spectrometry [170, 179] 
conclude that the fragmentation behavior of glycopeptide ions under collision-
induced dissociation tend to vary with the instrument, the instrumental param-
eters, the specific peptide composition, the charge carrier, and the charge state 
[173–182]. Upon instrumental and experimental optimization, detailed informa-
tion on oligosaccharide structure can be obtained from the CID MS/MS data. 
Extensive fragmentation of the glycan can be obtained in the absence of pep-
tide backbone fracture. MS/MS data on glycan stoichiometry and connectivity 
in combination with knowledge about the protein expression system used can 
then be useful in assignment of glycan structures. Ultimately detailed link-
age information may require additional experimental data such as enzymatic 
glycan sequencing data. Glycopeptides when subjected to CID also yield low 
molecular weight ions such as m/z 163 (Hex + H), 204 (HexNAc + H), 292 
(neuAc + H), and 366 (Hex-HexNAc) that are useful diagnostic peaks for the 
presence of glycosylation [171, 183]. In this way, glycopeptides can be readily 
identified by selective ion monitoring with ion trap MS [184] or Q-TOF mass 
analyzers [185, 186]. Additionally, neutral losses of saccharides such as hexose, 
n-acetylhexosamine, fucose, NANA can also be used to identify the presence of 
glycopeptides in mass spectra.

ECD and ETD have been applied to glycopeptides and show great prom-
ise as a complement to CID [187, 188]. These methods tend to cleave peptide 
bonds while leaving the attached glycan unaltered. The usefulness of the frag-
mentation technique has been demonstrated in a number of ECD and ETD stud-
ies on N-linked glycans where the glycosylation sites are predictable from the 
consensus sequence. The true power of ETD and ECD will become evident as 
application in the characterization of O-linked glycans becomes more prevalent. 
Therefore, ETD, ECD, and CID provide complementary information in a thor-
ough characterization of glycopeptides, CID providing data for glycan characteri-
zation, and ETD/ECD providing peptide structural information including glycan 
site connectivity.

6.3.1.10  Free Glycan Analysis

When detailed glycan characterization of the global glycan population is required, 
it is often most practical to release the glycans from the glycoprotein and analyze 
the resulting free glycans directly or after derivatization. As native glycans typi-
cally do not contain strong chromophores, derivatization is an important consid-
eration when high sensitivity is required. When characterizing a biotherapeutics, 
it is not uncommon to have significant enough quantities to alleviate the need for 
derivatization. However, derivatization is often required to detect and characterize 
glycan structures which may represent only a small fraction of the overall popula-
tion or if quantification is needed. Many options are available for derivatization 
with fluorescent tags being the most common [189]. Prior to derivatization, how-
ever, glycans must be effectively released from the glycoprotein.
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Release of Glycans from Glycoproteins

Different chemistries are used for the release of N- and O-linked glycans. This is 
due to the fundamental difference in the linkage connectivity. Intact N-linked gly-
cans can be release effectively under relatively mild conditions because there exist 
readily available enzymes which will cleave the amide linkage between the protein 
and the glycan. PNGase F cleaves the linkage between the core GlcNAc and the 
Asn residue of all classes of N-linked glycans, with the exception of N-glycans 
that contain α(1,3)-linked fucose on the core GlcNAc directly attached to the pro-
tein. This type of structure is more likely to be found in plant- and insect-derived 
glycoproteins than those expressed in mammalian systems [190]. Also available 
are endoglycosidase D (endo D) which releases all classes of N-linked glycans 
through cleavage between the two GlcNAc residues within the chitobiose core, 
and endo H which cleaves at the same location and is selective for oligomannose 
and hybrid type structures. The ease of enzymatic release for N-linked glycans has 
made this approach the most commonly used, while release of N-linked glycans 
can also be performed by chemical methods which are more commonly used for 
O-linked glycan release.

Unfortunately, an enzyme of comparable activity and general effectiveness as 
PNGase F is for N-linked glycan release is not known for O-linked glycan release. 
An enzyme, endo-α-N-acetylgalactosaminidase (O-glycanase), which is specific 
for cleavage of core 1 O-glycan structures, has been reported [191]. However, 
given there are eight known O-linked cores and that in cases where the core 1 
structure is present, the cores are often extended beyond the O-glycanase speci-
ficity, and O-glycanase cannot be used as a general solution for O-linked glycan 
cleavage. For this reason, chemical methods of O-linked glycan release are gen-
erally used. Two commonly used chemical methods are hydrazinolysis [192] and 
base-induced beta-elimination [193]. Care must be taken to ensure that the chemi-
cal means of removal does not alter the glycans being released. The conditions 
employed in alkaline beta-elimination can cause glycan degradation. An ammo-
nia-based nonreductive beta-elimination has been reported which minimizes the 
potential for glycan degradation and is compatible with subsequent mass spec-
troscopic analysis [194]. Reductive beta-elimination with NaBH4 results in the 
release of glycans and reduction in the resulting free reducing terminus to an aldi-
tol. This minimizes the degradation of the glycan but at the same time limits, the 
number of suitable reagents for derivatization if subsequent tagging and quantita-
tion is desired.

6.3.1.11  Detailed Sequence and Linkage Analysis of Glycans

Complete structural analysis of glycans involves not only monosaccharide and 
sequence information but also the stereochemistry of each linkage and the level 
of branching. Regulatory agencies often require such detailed structural analysis 
of therapeutic glycoproteins (such as monoclonal antibodies) because the glycan 
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structure can affect a biotherapeutics immunogenicity, stability, or pharmacoki-
netics [195]. Glycan analysis is important during glycoprotein production as a 
means of mapping process parameters and downstream processing impact on gly-
can structure [50]. Analysis of the primary structure of oligosaccharide is com-
plicated by the number of parameters that must be determined. These include as 
follows: (1) the nature of the individual monosaccharides as well as their ring 
conformation; (2) the absolute stereochemistry of individual residues (D or L); 
(3) the anomericity of glycosidic bonds (a or b linkages); (4) substitution patterns 
and branch points; (5) the nature and location of any additional chemical modifica-
tions (such as acetylation, methylation, etc.) on a given monosaccharide. Although 

Table 6.2  Commonly  employed glycosidases for oligosaccharide sequencing

Enzyme Source EC number Specificity

α-D-Sialidase Arthrobacter ureafaciens 
sialidase

EC 3.2.1.18 Releases α-(2-6/3/8)-linked 
nonreducing terminal 
N-acetylneuraminic acid 
(NANA, Neu5Ac) and 
N-glycolylneuraminic 
acids (NGNA, Neu5Gc)

Streptococcus pneumoniae 
sialidase

EC 3.2.1.18 Releases α(2-3)-linked 
nonreducing terminal 
sialic acids (NANA and 
NGNA)

β-D-Galactosidase Bovine testes β-galactosidase EC 3.2.1.23 Hydrolyzes nonreducing 
terminal galactose with 
β(1-3/4) linkages

S. pneumoniae 
β-galactosidase

EC 3.2.1.23 Hydrolyzes nonreducing 
terminal galactose with 
β(1-3) linkages

α-D-Mannosidase Helix Pomatio EC 3.2.1.25 Hydrolysis of terminal, 
nonreducing β-d-
mannose β(1-4) residues 
in β-D-mannosides

β-N-Acetyl-D-
hexosaminidase

β-N-acetylglucosaminidase 
cloned from S.  
pneumoniae expressed in 
Escherichia coli

EC 3.2.1.30 Will digest β(1-4)-linked 
GlcNAc to mannose but 
not a bisecting GlcNAc 
β(1-4)-linked mannose

α-L-Fucosidase Almond meal α-fucosidase EC 3.2.1.51 Releases α(1-3/4)-linked 
nonreducing terminal 
fucose residues except 
core α(1-6) fucose

Bovine kidney α-fucosidase EC 3.2.1.51 Releases α(1-2/6) fucose-
linked nonreducing 
terminal fucose residues 
more efficiently than 
α(1-3/4)-linked fucose
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mass spectrometry can provide information on some of these parameters, by 
itself it cannot provide a complete characterization of all of the structural details. 
Although there are reports of using CID product-ion mass spectra to provide infor-
mation on stereochemistry of individual sugar residues [196], the linkage position 
[122], and branching structure [123, 124] by evaluating the distinct product-ion 
patterns specific to oligosaccharide that contain the same monosaccharides linked 
with a different branching structure, use of these data is unlikely to provide strong 
enough evidence to make structural and stereochemical assignments with great 
confidence. Typically additional information is used to support the comprehensive 
assignment of oligosaccharide structure. Mass spectroscopic data coupled to enzy-
matic sequencing experiments are one method in which connectivity and stereo-
chemistry is probed further. The principle of oligosaccharide sequencing is to take 
advantage of the ability of enzymes (endo- and exo-glycosidases) to remove termi-
nal monosaccharides from the nonreducing end of oligosaccharides. The exo- and 
endo-glycosidases that are used in the structural analysis of oligosaccharides are 
very specific for the monosaccharide anomericity (α/β) of the glycosidic linkage, 
and the absolute stereoisomer (D/L) of the glycan. The individual specificities for 
some of the better defined exo-glycosidases are summarized in Table 6.2.

6.3.1.12  Future Considerations on Glycosylation

The importance of carbohydrates in biology, and therefore protein therapeu-
tics, cannot be underestimated. The impact of glycosylation on mAbs, which 
have rather modest glycan diversity in comparison to other glycoprotein classes, 
has been well documented. The distinctive structural properties of oligosac-
charides are particularly well suited for generating variability through primary 
structure (sequence and connectivity) but also in the spatial distribution. The vari-
ability introduced through branching and stereochemistry as well as the flexibility 
afforded within their cyclic structures produces an enormous degree of variabil-
ity. Given this combination of impact on glycoprotein function and variability in 
structure, the ability to understand the causal relationships between the two will 
require technological advances to facilitate deeper structural characterization as 
well as greater analytical throughput. One of the main challenges of the glyco-
analytics field will be the simplification and automation of the analysis to make 
it accessible to a wider range of researchers. The beginnings of this revolution in 
analytical development is evident in the development and application of microar-
ray platforms, including lectin and glycan, the development of glycan-binding oli-
gonucleotide ligands (aptamers) [197] and the availability of nanoflow HPLC-chip 
technologies for routine use [198]. More and more detailed glycan analysis will 
continue to be pushed for by regulatory agencies as glycosylation has been dem-
onstrated to be a critical attribute of many therapeutic glycoproteins. This coupled 
with the continued discovery of the importance of glycosylation and its association 
with health and disease will drive technological advancements both in the short 
term and for the foreseeable future.
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6.4  Variants Involving Cysteine, Cystine, and Disulfide 
Bridging

Cysteine is one of the rarest and most strongly sequence-conserved amino acid 
residues in proteins. The thiol (RSH) side chain makes cysteine the most nucleo-
philic and chemically reactive of all the common amino acids [199–205]. Cysteine 
thiols (sulfhydryls) in proteins participate in a many different chemical modifica-
tions, including oxidation, S-nitrosylation, and thiolation to form cysteinylated, 
glutathionylated, and other mixed-disulfides. Disulfide bond formation results 
from the oxidation of pairs of cysteine thiols and is critical for protein folding 
and maintaining three-dimensional structures. Additionally, disulfide heterogene-
ity, including formation of “nonnative” disulfide bonds from thiol–disulfide shuf-
fling, mixed-disulfides, and various other transformations are of concern in the 
production and formulation of protein pharmaceuticals. Therefore, in addition to 
characterization of cysteine residues and disulfide bridging as part of an initial 
proof-of-structure, identifying and preventing unwanted cysteine modifications is 
also an important element of the comprehensive characterization and analytical 
testing of protein therapeutics.

The chemistry of cysteine disulfide bonding is often described as the chemistry 
of thiols. However, since the deprotonated thiolate anion (RS−) form of cysteine 
is a much stronger nucleophile than the protonated thiol form (RSH), it is actually 
the chemistry of thiolates that predominates. Hence, the pKa values of cysteine 
residues are of critical importance to understand oxidation of cysteine to form 
disulfide links, thiol–disulfide exchange reactions, S-alkylations, metal ion coordi-
nation, and all the diverse chemical reactions of cysteine residues (Fig. 6.12). The 
pKa’s of cysteine thiols are generally close to an average value of 8 for solvent-
accessible cysteines. The exact thiol acid-ionization constants will vary depending 
on the local environment for the particular cysteine residue and pKa values can 
vary by as much as several units for certain buried cysteine residues, for instance.

Although the amino acid, cysteine, has a natural tendency to form cystine 
disulfide bridges via mild air-oxidation, only less than half of all cysteine residues 
in the natural proteins are actually present in the cystine disulfide-linked form. 
The remaining cysteines are involved in a variety of other interactions includ-
ing reactive cysteine thiols in the active sites of enzymes, coordination to bound 
metal ions, covalent attachment to prosthetic groups such as the heme moiety in 
cytochrome c, S-lipolyation in lipoproteins, S-glutathionylated cysteines and other 
mixed-disulfides [206–211], and S-nitrosylated cysteines (RS-NO) in hemoglobin 
[212], and other nitrosylated proteins [213–217]. The strong affinity of cysteine 
thiols for zinc (Zn2+) and other metal ions is exemplified by the metallothioneins 
which possess the highest known abundance of cysteine residues and bound metal 
ions in proteins. Mammalian metallothioneins [218–228] consist of a single chain 
of approximately 60 residues, of which no less than 20 are cysteines, all of which 
form stable thiolate metal ion clusters in the interior of the protein. Nitric oxide 
(NO) binding to thiolates is another interesting reversible modification of cysteine 
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residues in proteins that remained unknown and unappreciated until fairly recently. 
One of the first reported examples was the discovery of the S-nitrosylation of the 
highly conserved cysteine 93 residue in the beta chain of hemoglobin [212] which 
led to the astounding realization of a previously unknown biological function in 
blood-pressure regulation for one of the most extensively characterized of all pro-
teins. Cysteine residues are also key functional elements in certain intramolecu-
lar intein-splicing pathways. Clearly, cysteine is known to be a key component of 
a great many post-translational modifications of proteins in addition to its familiar 
role in disulfide bridging and the many known functional roles for cysteine residues 
in the natural proteins are beyond the scope of this brief review paper. While mass 
spectrometry has become an increasingly important tool for studying S-nitrosylation 
[213–215, 217], metal ion binding [227, 228], and many other cysteine modifica-
tions, this chapter focuses on MS studies of disulfide bridging in protein pharmaceu-
ticals with a special emphasis on the IgG antibodies. Selected thiol modifications, 
labeling reagents, and degradative pathways of cysteine thiols and disulfides will 
also be reviewed briefly as well as an interesting interconversion of disulfides and 
trisulfides in antibody therapeutics via the reversible loss or gain of a sulfur atom.

Cysteine residues in proteins are generally found in either a stable static envi-
ronment, that is, the disulfide-bridged cysteines buried in the hydrophobic interiors 
proteins or, alternatively, as dynamic elements for some type of chemically reac-
tive site in an enzyme, for instance. The best characterized functional disulfides are 

property serine cysteine
side chain alcohol (-OH) thiol (-SH)
% frequency in proteins a 7.3% 1.8% 
% SS-bridged in proteins b -- 42%  
mean solvent-exposure in proteins c 44.2  A2 13.9  A2

water/octanol partition (π)d -0.04 +1.54
metal ion binding no Zn2+, Cu2+, Fe2+ ,...
pKa of side chain 13 (aprotic) 8
% ionized (thiolate) at pH 7.4 0% 25%

aNCBI database. Only Trp (1.3%) is rarer than Cys (1.8%).
bN. Nagano, et al., FEBS Lett., 458, 69-71, 1999.
C G.D. Rose, et al., Science, 22, 834-838, 1985.
d J.-L. Fauchere, V. Pliska, Eur. J. Med. Chem.-Chim. 
Ther., 18, 369-375, 1983. π scale is for acetyl-AA-amides
and covers range from Arg (-1.01) to Trp (+2.25); Gly (0).

Fig. 6.12  The amino acid, cysteine (Cys), is one of the rarest and most strongly sequence-con-
served amino acids. The table above compares physicochemical properties of cysteine and serine 
(Ser) which differ by a single atom in their side chains, that is, sulfur versus oxygen, respec-
tively. The nucleophilic sulfur atom makes the cysteine side chain the most chemically reactive 
of all the twenty common amino acids. The amino acid, cystine, is the relatively stable disulfide-
bridged form of cysteine. Individual disulfide-linked Cys residues in proteins are traditionally 
referred to as half-cystine residues although the term, cysteine, is very often used synonymously 
to refer to both cysteine and half-cystine residues in proteins
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those at the active sites of thiol–disulfide oxidoreductases. These dithiol/disulfides 
undergo a cycle of oxidation/reduction reactions with the thiols or disulfides 
in a protein substrate, resulting in net formation, reduction, or isomerization of 
disulfide bond(s) in the substrate. Most notably, the protein disulfide isomerase 
(PDI) family of enzymes are the major catalysts of thiol–disulfide exchange reac-
tions in the ER [205]. PDI is a multidomain member of the thioredoxin superfam-
ily and consists of four thioredoxin domains (a–b–b′–a′) of which only the a and 
a′ domains are active in catalyzing thiol–disulfide exchange reactions (“disulfide 
shuffling”) by means of a Cys-Gly-His-Cys active-site CXXC motif. Interestingly, 
one of the PDI active-site cysteines has an unusually low pKa, such that the 
active thiolate state predominates at physiological pH, whereas the other active-
site cysteine is reported to have an unusually high pKa, such that the inactive thiol 
state predominates at physiological pH.

Disulfide bonds are generally categorized as either structural or functional. 
Structural bonds stabilize a protein, while catalytic disulfide bonds in the active 
sites of enzymes catalyze thiol–disulfide interchange reactions in specific sub-
strates. Even though disulfide bridges are generally perceived as primarily static 
structural elements in cytokines, monoclonal antibodies, and other protein thera-
peutics, it can be useful to keep an open mind to other more dynamic roles for 
cystine disulfides and/or cysteine thiols in natural systems and in vitro. Indeed, 
there is emerging evidence for a third type of disulfide bond that can control pro-
tein function [201–203, 205] by triggering a conformational change when it breaks 
and/or forms, that is, a type of “molecular switch.” Furthermore, it is becoming 
apparent that some disulfide bonds regulate protein function in a nonenzymatic 
way by triggering changes in the intra- or intermolecular structure of proteins 
[201–203, 205] and these have been referred to as “allosteric disulfides.” This sec-
tion focuses on some interesting recent mass spectrometry and other structural 
studies of the interchain bridges in IgG4 and IgG2 antibodies which appear to 
exhibit dynamic thiol–disulfide exchange allosterism of structural and functional 
significance in molecular immunology and for protein pharmaceuticals.

6.4.1  Mass Spectrometry for Determining Cystine Disulfide 
Pairings and Unpaired Cysteine Thiols

Ellman’s reagent (DTNB), 5,5′-dithiobis-(2-nitrobenzoic acid), is one of the 
best known classical methods for assaying cysteine thiols in protein and pep-
tide samples, and this reagent and enhanced versions of it are still very useful. 
Traditionally, these are spectrophotometric assays which measure the absorbance 
of the yellow thionitrobenzoate anion (TNB) that is released upon thiol–disulfide 
exchange of DTNB with the thiols in the sample. In recent times, it has become 
quite feasible to also employ mass spectrometry to literally count the number of 
TNB-derivatized cysteine residues (mixed-disulfides) in the protein [229] which 
are the other products of the DTNB thiol–disulfide exchange chemistry aside from 
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the TNB anion product. Mass spectrometry has thus added a new wrinkle to the 
venerable Ellman’s assay for thiols.

Mass spectrometry has greatly augmented the experimental determination 
of cystine disulfide pairings and cysteine thiols in proteins [230–236] since the 
advent of MALDI and ESI in the 1980s and 1990s. Prior to wide availability of 
the now ubiquitous MALDI and ESI MS instruments, fast-atom bombardment 
(FAB) desorption/ionization was the only commonly available MS method for 
many years and this technique was usually limited to peptides smaller than about 
6,000–8,000 Da. Of course, the FAB mode of ionization was not nearly as reliable 
or versatile as either MALDI or ESI. Many new possibilities for characterizing 
the chemical structures of peptides and proteins have opened up with the arrival 
in laboratories of these new readily available modes of ionization and new mass 
analyzers and hybrid MS instruments. One item to be aware from the outset, with 
regard to mass spectrometry of cysteine and other sulfur compounds, is the simi-
larity in mass and isotopic distributions between a sulfur atom and two oxygen 
atoms. In some cases, this coincidental similarity in masses can lead to ambiguity 
in assigning accurate mass differences and interpreting results for cysteine resi-
dues in peptides and proteins. In most cases, this close similarity in mass between 
a sulfur atom and two oxygen atoms will, in all likelihood, not come into play nor 
cause any complications. Fortunately, the very high mass accuracy of the newer 
generation of FT-ICR and Orbitrap-type instruments can be called upon to resolve 
this ambiguity.

Much of the literature on mass spectrometric studies of cysteine and cystine 
disulfide bridging in protein therapeutics has been concerned with structural 
characterization and proof-of-structure determinations [234–236]. Recombinant 
cDNA-derived proteins expressed in E. coli microbial fermentation and other 
prokaryotic systems are typically recovered by lysis of the host cells to release 
reduced and denatured polypeptide chains which then undergo a “refolding step” 
prior to further downstream chromatographic purification steps. The refolding 
step generally consists of a simultaneous protein folding and mild oxidation of the 
cysteine residues to form a full set of correctly paired cystine disulfide bridges and 
allow the protein to assume its proper folded active structure. The determination 
of the disulfide-bridge pairings in the final product is of considerable importance 
because of this in vitro refolding step in the manufacturing process. On the other 
hand, recombinant monoclonal antibodies and other biologics manufactured by 
mammalian cell culture, that is, eukaryotic systems, are generally secreted from 
the host cells as fully folded, assembled, glycosylated, and correctly disulfide-
bridged forms of the mature protein. However, it is generally still required that 
the disulfide pairings or other post-translational modifications of cysteines be con-
firmed as part of the Investigational New Drug (IND)-stage proof-of-structure for 
secreted proteins and other biologics manufactured in eukaryotic production sys-
tems such as CHO cell lines.

Ideally, one seeks to cleave between all the half-cystine residues with 
trypsin or some other reagent so as to generate a full set of disulfide-bridged 
pairs of peptides corresponding to the full complement of disulfide pairings 
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in the protein sample [237–248]. Conventional methods for disulfide mapping 
include enzymatic digestion of nonreduced proteins by pepsin at pH 2–4 [239]. 
However, pepsin generates nonspecific cleavages, which increases the complex-
ity of the digests. Alternatively, enzymes such as trypsin or Asp-N can provide 
specific cleavages; however, these enzymes prefer basic pH, which may lead to 
disulfide bond scrambling. In this case, it is advisable to perform an initial mild 
S-alkylation with N-ethylmaleimide (NEM) or similar reagent to label and block 
any small amounts of buried cysteine thiols prior to unfolding and fragmenting 
the sample in order to prevent unwanted method-induced artifacts arising from 
thiol–disulfide scrambling and/or air-oxidation of thiols.

6.4.2  Symmetrical Sulfur–Sulfur Cleavages of Cystine 
Residues and Nonsymmetric Carbon–Carbon Cleavages

MALDI of disulfide-bridged peptides [249–261] is known to include some 
degree of method-induced rupture of the sulfur–sulfur bond [249] which has been 
referred to as “prompt fragmentation.” This type of S–S bond cleavage is quite 
useful for studying disulfide bridging and, more recently, several examples of gas-
phase S–S bond cleavages have also been observed for ESI–MS by photolysis and 
other mechanisms. Katta et al. [252] and others have also reported even more use-
ful cleavages at C–S bonds by MSMS that can be attained by MALDI with PSD 
[250, 251, 260].

To locate the exact linkage positions of disulfides, ESI-MSMS in the negative 
mode has been suggested [262–266]. Recently, ECD and ETD have been reported 
to facilitate the identification of disulfide linkages [267–274]. Traditional pep-
tide mapping approaches rely on data generated with and without solution-phase 
reduction/alkylation whereas ETD can be used to create preferential gas-phase 
cleavage of the sulfur–sulfur bonds with little to no peptide backbone fragmenta-
tions and thereby lessen the need for solution-phase sample preparation with DTT 
and other reducing agents. Subsequent MSMS can then be employed for identifi-
cation of individual peptides [267].

A new approach has been presented for the determination of the disulfide 
bond connectivity in proteins using negative ionization ESI mass spectrometry 
of nonreduced enzymatic digests [263]. Negative ion mode LC–MS peptide map-
ping was used to determine the disulfide structure of a human IgG2 antibody 
containing 18 unique cysteine residues linked via 11 unique disulfide bonds. 
The efficiency of the gas-phase dissociation of disulfide-linked peptides using 
negative ESI was evaluated for an ion trap mass spectrometer and an orthogo-
nal acceleration TOF mass spectrometer and both techniques provided efficient 
in-source CID for the identification of the disulfide-linked peptides of the anti-
body. Seven of the 11 unique disulfide linkages have been determined in this 
way, including the H-to-L linkage. Only the precise disulfide connectivity of 
the H-to-H hinge peptide, CCVECPPCPAPPVAGPSVFLFPPKPK, could not be 
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determined from these LC–MS peptide mapping data alone although this dimeric 
peptide was found in good yield as single species in the peptide map and an 
accurate MW was obtained [263].

A tandem MS approach employing ETD and CID was used to directly iden-
tify 5 out of a total of 9 disulfide linkages in an insulin-like growth factor binding 
protein (IGFBP-5), that is, Cys47-Cys60, Cys54-Cys80, Cys172-Cys199, Cys210-
Cys221, and Cys223-Cys243 [267]. The combination of these MS results with ab 
initio molecular modeling was then used to predict the most likely arrangement of 
the remaining four disulfide pairs: Cys7-Cys33, Cys10-Cys35, Cys18-Cys36, and 
Cys25-Cys39. Taken together, these studies show that IGFBP-5 is composed of 
independent N- and C-terminal domains, containing six and three disulfide bonds, 
respectively [267]. Electron detachment dissociation (EDD) and IRMPD of pep-
tide anions containing disulfide linkages result in preferential cleavage of S–S and 
C–S bonds and, therefore, both techniques can be used for probing disulfide bonds 
in peptide anions [248]. Factors such as precursor ion charge state and m/z value, 
peptide mass, and protease selection that may influence the dissociation outcome 
in ECD were investigated, aiming to improve peptide sequence coverage. It was 
shown that doubly protonated peptides did not fragment efficiently in ECD and 
that precursor ion m/z value is the main factor determining a successful ECD out-
come. Highly charged precursor ions at m/z <~960 fragmented efficiently in ECD 
and yielded high peptide sequence coverage.

Often the limiting factor in characterizing proteins by MS methods is not the 
actual physical sample preparation or data acquisition. The real bottle-neck is 
processing and interpreting very large volumes of raw data generated by auto-
mated instruments and high-speed electronic computers [275–277]. And the fact 
that the MS and MSMS spectra of disulfide-bridged peptides are rather more 
complex to interpret than for the corresponding linear unbridged peptides cer-
tainly contributes to the challenge. Most automated analysis algorithms func-
tion based on the assumption that the preponderance of product ions observed 
during the dissociation of disulfide-bonded peptides result from the cleavage of 
just one peptide bond, and this assumption was tested recently for product ions 
generated when several disulfide-bonded peptides were subjected to CID on a 
QTOF instrument  [276]. It was found that one of the most common types of 
product ions resulted from two peptide bond cleavages and for several of the 
disulfide-bonded peptides, the number of double cleavage product ions outnum-
bered those with single cleavages. The influence of charge state and precursor 
ion size was investigated to determine whether those parameters dictated the 
amount of double cleavage product ions formed. It was found that no strong 
correlation existed between the charge state or peptide size and the portion of 
product ions assigned as double cleavages. These ions could account for many 
of the product ions detected in CID data of disulfide-bonded peptides. The util-
ity of double cleavage product ions was demonstrated for peptides connected by 
multiple cystine disulfide bridges, and this approach was able to fully character-
ize the bonding pattern of each half-cystine where typical single b/y cleavage 
products could not [276].
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6.4.3  Labeling of Cysteine Thiols

The selective labeling or tagging of cysteine thiols [278–290] is an integral part of 
most strategies for characterizing disulfide pairings in proteins by mass spectrom-
etry and peptide mapping. The other main component, generally, is the choice of 
proteolytic enzyme or other means of cleaving peptide bonds between individual 
half-cystine residues in nonreduced protein samples. Single labeling of thiols can 
be employed for either nonreduced or reduced samples or a double-labeling (dif-
ferential labeling) scheme can be used with, for instance, an initial labeling of thi-
ols for nonreduced sample, followed by a different label for the reduced protein 
sample or proteolytic digest sample. The reagents can range from simple protect-
ing groups such as NEM and iodoacetamide (IAM) to specialized spectroscopic 
labels, affinity-handles, isotopic labels, and so on. The traditional Ellman’s rea-
gent (DTNB) described in the previous section can be used to good effect for 
covalently labeling cysteines for analysis by MS and LC–MS methods in favora-
ble cases [278–281]. However, because the thiol–disulfide chemistry involved 
in derivatization with DTNB yields TNB mixed-disulfide products, the Ellman’s 
reagent is usually not a good choice when highly stable derivatives are desired. 
The most widely used thiol-specific conjugation chemistries are either alkyl hal-
ides for direct S-alkylation, such as IAM and similar iodoacetyl-type reagents, 
or via Michael addition of the thiolate sulfur across the C=C double bonds in 
NEM and other reagents with maleimide and other vinyl functions. Both of these 
S-alkylation chemistries have their relative merits. The maleimide-type reagents 
are highly selective for thiols whereas some care should be taken with IAM and 
other alkyl halides so as not to “over-derivatize” the sample. In other words, if 
too high an excess of IAM is employed and/or the reaction is allowed to proceed 
for too long, complications will ensue when the less nucleophilic thioether of 
methionine begins to undergo a slow alkylation once all the more reactive cysteine 
thiols have been consumed. In the case of the maleimide reagents, things are com-
plicated by the fact that the sulfur atom will generally add to both sides of the 
double-bond and generate two diastereomeric products which may or may not be 
resolved by HPLC into a “split peak” containing isobaric molecular ions. And to 
further complicate things, the succinimide ring in the maleimido ring can undergo 
hydrolysis (+18 Da) under certain conditions to yield two ring-opened carboxylic 
acid forms of the linker. The many diverse cysteine-specific tagging reagents avail-
able for proteomics and protein characterization have been extensively reviewed in 
the recent literature [281]; therefore, only selected examples will be discussed in 
this section.

Fluorescence-based tagging in protein characterization and proteomics is use-
ful in tracking and quantifying target proteins during sample preparation or 
chromatographic processes. For example, the utility of thiol-reactive 5-iodoacet-
amido-fluorescein to target cysteinyl residues on the intact proteins has been 
demonstrated for ovalbumin, bovine serum albumin, and proteins in MCF-7 cells 
[282]. After trypsin digestion, samples were analyzed by nano-LC-ESI-Q-TOF 
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or MALDI-TOF. The resulting MS spectra of tryptic fragments were similar to 
those of unlabeled or iodoacetamide-derivatized proteins, and the MSMS frag-
mentation of all fluorescein-tagged peptides was readily interpretable with intact 
label. Thus, fluorescein-derivatized proteins can be identified by automatic 
mass mapping or peptide sequencing with high confidence. It is notable that, in 
MSMS mode, a strong reporter ion (m/z 422) containing the fluorescein moiety 
was readily detected and was believed to derive from the immonium fragment of 
fluorescein-labeled cysteine residues (m/z 463), under CID conditions. Using a 
precursor scan of the reporter ion, a cysteinyl protein, ovomucoid, was identified 
to be present in the ovalbumin sample as an impurity. The fluorescein derivatives 
were further shown to have high affinities toward metal-chelating materials that 
have iminodiacetic acid functional groups either with or without the presence of 
bound metal ions. When combined with stable isotope labeling, fluorescein-tagged 
peptides could be selectively enriched, identified, and quantified [282]. Another 
useful reagent for labeling unpaired cysteine thiols is N-(Iodoacetyl)-N′-(5-sulfo-
1-naphthyl) ethylenediamine (IA-EDANS) [283, 284]. EDANS derivatives can be 
detected by either UV absorbance at 340 nm or fluorescence (ex/em 360/500 nm) 
and are amenable to both MALDI and ESI–MS detection for intact proteins and 
LC–MS peptide mapping of proteins [284].

A low percentage of buried free thiol is a common feature of recombi-
nant monoclonal antibodies although, in theory, all cysteine residues should be 
involved in disulfide bonds (Fig. 6.13). The 2002 report of Zhang and Czupryn 
[285] describes detection and quantification of free sulfhydryl in recombinant 
mAbs produced in CHO cells using fluorescent labeling with N-(1-pyrenyl) 
maleimide (NPM). Purified mAbs appear to be homogeneous under native condi-
tions with approximately 0.02 mol of free sulfhydryl per mole of protein. Upon 
denaturation, minor species related to the mAbs are observed on SDS-PAGE, and 
the free sulfhydryl level is determined to be approximately 0.1 mol/mol of pro-
tein. These results suggest that a small portion of these recombinant mAbs lack 
in intermolecular disulfide bonds but remain noncovalently associated under 
native conditions [285]. The presence of free sulfhydryl groups in five recom-
binant monoclonal antibodies and their locations were investigated by labeling 
with 5-idoacetamidofluorescein (5-IAF), followed by reduction in disulfide bonds 
and alkylation with iodoacetic acid [286]. This double-labeling procedure allows 
differentiation of free cysteine residues from cysteine residues that are involved 
in disulfide bonding and a sensitive fluorescence detection of peptides with free 
sulfhydryl groups (thiols). The locations of the free sulfhydryl groups were 
determined using LC–MS peptide mapping for five different antibodies. Levels 
of free thiol varied for different antibodies, and residual thiol was detected com-
monly for intramolecular disulfides buried in the constant domains (Fig. 6.13). 
Furthermore, unpaired cysteine residues in the variable domains differed for 
particular antibodies and were rarely found for cysteines involved in interchain 
disulfide bonds [286].

A differential isotopic labeling method was developed to determine the per-
centage of free thiol at each cysteine residue of four recombinant monoclonal 
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antibodies [287]. Free sulfhydryl was first alkylated with 12C iodoacetic acid  for 
a nonreduced antibody sample. Free sulfhydryl, resulting from the reduction in 
disulfide bonds  for a DTT-reduced sample, was then alkylated with 13C iodoacetic 
acid. Cysteine-containing peptides that were modified by 13C iodoacetic acid 
showed a molecular weight that was 2 Da higher than the same peptide that was 
modified by 12C iodoacetic acid. Peptides containing the same cysteine residues that 
had been modified with both alkylating reagents, coeluted on reversed-phase chro-
matography. Analysis by mass spectrometry resulted in two partially overlapped 
m/z series for each cysteine-containing peptide, corresponding to modification by 
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Fig. 6.13  The IgG1 antibody consists of two copies each of the light (L) and heavy (H) chains 
linked by 16 cystine disulfide-bridge pairings (yellow spheres) which consist of 12 intrachain 
bridges buried in immunoglobulin (Ig) folds, 2 partially buried interchain bridges linking L-to-H, 
and 2 solvent-accessible H-to-H interchain bridges. The 12 Ig subdomains consist of the H and 
L variable domains, (VH and VL) and constant domains (CH and CL) in the Fab antigen-binding 
domains and CH2 and CH3 subdomains which form the Fc domain. The six complementarity-
determining region (CDR) hypervariable loops are located at the tips of the Fab antigen-binding 
arms as indicated
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iodoacetic acid with 12C or 13C. The percentage of free thiol was then calculated 
using the two m/z series at each cysteine site. A low percentage of free sulfhydryl 
was detected at every cysteine residue in the four antibodies studied. Although dif-
ferent antibodies contained different levels of free sulfhydryl, similar distributions 
of free thiol in the domain structures was observed in the four antibodies [287].

Traditionally, because of the high reactivity of thiol groups, alkylating reagents 
such as iodoacetic acid or 4-vinyl pyridine have been used to protect cysteine resi-
dues and  prevent oxidation or thiol–disulfide exchange. However, these reagents 
require basic pH (∼pH 8.0) for optimal reactivity and this can lead to unwanted 
disulfide mispairing (disulfide scrambling). Therefore, a reagent that would 
alkylate free sulfhydryl groups under acidic conditions would be desirable to 
obtain data for assigning free cysteine residues and maintaining the native disulfide 
linkages. An alternative way to protect thiol groups is cyanylation, which has been 
known and used for many years [237, 238]. New cyanylation reagents that show 
promise, such as 1-cyano-4-dimethylaminopyridinium tetrafluoroborate (CDAP), 
have been developed [288]. CDAP selectively cyanylates sulfhydryl groups of 
unpaired cysteine residues under acidic conditions resulting in a shift of +25 Da 
in molecular mass. Subsequent basic cleavage of the protein chain and analysis by 
RP-HPLC with online MS provides a simple method to identify the locations of 
unpaired as well as disulfide-paired cysteine residues. CDAP is reactive in a pH 
range of 2.0–8.0 with an optimal labeling efficiency at pH 5.0. CDAP labeling of 
cysteines under conditions of acidic pH diminishes thiol–disulfide exchange by 
reducing the concentration of reactive thiolate anion. The authors successfully 
employed CDAP as a thiol-directed probe to identify pH-dependent structural dif-
ferences in recombinant methionyl G-CSF due to changes in the accessibility of 
the free thiol group of Cys-17. Cyanylation of Fc-OPG resulted in the characteriza-
tion of an isoform where two unpaired cysteine residues were identified. In both 
G-CSF and Fc-OPG, the site specificity and acid compatibility of CDAP, as well 
as subsequent cleavages of the protein chains, afforded an accurate identification of 
the unpaired cysteines and served as a probe of their accessibility to solvent [288].

Monobromobimane (MBB) is a lipophilic reagent that selectively modifies 
free cysteine residues in proteins to yield highly fluorescent derivatives. A proce-
dure has been described for the detection and relative quantitation of MBB-labeled 
cysteines using fluorescence and mass spectrometric analyses, which allow deter-
mination of free cysteine content and unambiguous identification of MBB-modified 
cysteine residues [289]. This approach was applied to the analysis of the redox-
sensitive cysteine residues of a large membrane protein, the sarcoplasmic reticu-
lum Ca2+ release channel with a molecular mass of 2.2 million Da. Labeling was 
performed for the active channel complex under physiological conditions followed 
by enzymatic digestion, and the resulting peptides were separated by RP-HPLC 
with fluorescence detection and identified by MALDI-TOF MS. Under MALDI 
conditions, partial photolytic fragmentation of the MBB–peptide bond occurred, 
thus allowing convenient screening for the MBB-modified peptides in the MS spec-
trum by detection of the specific mass increment of 190.07 Da for MBB-modified 
cysteine residues. Modification of the peptides was further confirmed by tandem 
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mass spectrometric analysis, utilizing sequencing information and the presence of 
the specific immonium ion for the MBB-modified cysteine residues at m/z 266.6. 
Quantitative information was obtained by comparison of both fluorescence and 
MS signal intensities of MBB-modified peptides. Combination of fluorescence 
with MS detection and analysis of MBB-labeled peptides supported by a custom-
ized software program provides a convenient method for identifying and quanti-
fying redox-sensitive cysteines in membrane proteins of native biological systems. 
Identification of one redox-sensitive cysteine in the native membrane-bound sarco-
plasmic reticulum Ca2+ release channel was described [289].

Many proteomics studies make use of specialized fluorescent dyes to specifi-
cally stain the proteins either by adsorption after gel electrophoresis (in-gel stain-
ing) or by covalent coupling prior to gel electrophoresis (in-solution staining). 
Multiplex analysis of protein samples using maleimide-activated cyanine-based 
(Cy3 and Cy5) and rhodamine-based dyes (Dy505, Dy535, and Dy635) to per-
manently label all thiol groups of cysteine-containing proteins has been described 
[290]. The detection limits in SDS-PAGE were about 10 ng per band and even 
2 ng for BSA due to its high content of cysteine residues.

6.4.4  Edman Chemistry as a Complementary Technique  
to LC–MS

Edman degradation chemistry is a useful microchemical technique for the 
N-terminal sequencing of picomolar amounts of samples when used in combination 
with LC–MS peptide mapping methods [291–297]. In addition to the commonly 
used approach of isolating peptides from an LC–MS peptide map for Edman micro-
sequencing, it is also often feasible to do the converse, that is, recover samples after 
performing multiple Edman degradation cycles and then run MALDI-TOF MS 
or ESI–MS on the recovered sample. This tactic was nicely illustrated as part of 
a strategy for the elucidation of the disulfide structure of alfimeprase, a recombi-
nant analog of fibrolase [293]. This protein contains closely spaced cysteine resi-
dues, 156 and 158, and the pairings, Cys-116/196, Cys-156/180, and Cys-158/163, 
were experimentally determined by a combination of peptide mapping, Edman deg-
radation, and mass spectrometry. To determine the disulfide linkages among four 
cysteine residues within one proteolytic fragment in the nonreduced endoprotein-
ase Asp-N digest, the peptide was first subjected to a specific number of cycles of 
Edman degradation, followed by MS analysis. Edman degradation was performed 
on an ABI Procise protein sequencer (PE Biosystems) for sample immobilized by 
adsorption to a PVDF membrane. After the specified number of Edman degradation 
cycles, the sample was eluted from the PVDF membrane with 0.1 % TFA in 50 % 
acetonitrile and analyzed on a Finnigan MAT LCQ quadrupole ion-trap mass spec-
trometer using a custom nanoelectrospray interface [293].

The formation of di-PTH-cysteine is a useful aspect to understand and be aware of 
for the Edman degradation of disulfide-bridged peptides. Edman degradation can be 
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used to assign pairs of cysteine residues such that disulfide-bonded cysteine residues 
(i.e., Cysx–Cysy) remain linked during the sequencing cycle. During the Edman deri-
vatization with phenylisothiocyanate (PTC), cleavage, and cyclization to the phenylth-
iohydantoin (PTH) derivative, half-cystine residues (Cysx) remain covalently linked 
to Cysy until the Edman cycle in which the latter cysteine is reacted. At that cycle, the 
disulfide-bonded cysteines are derivatized and released as di-PTH-cysteine. In favora-
ble cases, multiple disulfide linkages between two or more peptides can be assigned 
using this strategy. This approach was used very nicely to dissect the “cystine-knot” 
and assign the Cys parings for a vascular endothelial growth factor (VEGF) [294]. 
Preparations of recombinant human vascular endothelial growth factor (VEGF165) 
expressed in CHO cells and E. coli were compared using a variety of analytical 
methods. These methods included determinations of the disulfide linkages for the 
eight cysteine residues in the carboxyl-terminal heparin-binding domain, which were 
assigned by amino-terminal sequencing of peptide fragments isolated from tryptic 
digests of each native molecule. The following closely spaced disulfide-knot pairings 
were identified for both CHO- and E. coli-derived VEGF165: Cys-117 and Cys-135, 
Cys-120 and Cys-137, Cys-139 and Cys-158, plus Cys-146 and Cys-160.

Gray [292] reported a partial reduction technique using TCEP under acidic con-
ditions, followed by alkylation with a high concentration of iodoacetate or IAM at 
alkaline conditions. The conventional technique for disulfide determination is by 
proteolytic digestion and sequence analysis of the resulting peptides. The partial 
reduction technique releases some compactness of structure in the cystine-knot, 
therefore allowing disulfide analysis to reach enclosed regions where traditional 
methods fail. Although the low pH used in TCEP reduction prevented disulfide 
rearrangement, the higher pH required for IAM alkylation often resulted in 
disulfide exchange reactions during S-alkylation. More recently, alternative alkyla-
tion methods using acidic conditions (pH 5–6) have been developed which employ 
partial reduction with TCEP and S-alkylation with NEM. The disulfide bonds in 
the cystine knot structure of Md65 agouti-related protein (Md65-AGRP) were elu-
cidated [297] by partial reduction with tris (2-carboxyethyl) phosphine (TCEP) 
under acidic conditions, followed by alkylation with NEM and Edman N-terminal 
sequencing. The procedure generated several isoforms with varying degrees of 
NEM alkylation. The multiple forms of Md65-AGRP generated by partial reduc-
tion and NEM modification were then completely reduced and carboxymethylated 
to identify unreactive disulfide bonds. Differentially labeled Md65-AGRP were 
then directly sequenced and analyzed by MALDI mass spectrometry [297].

6.4.5  Cystine-Knot and Other Highly Disulfide-Bridged 
Proteins

The “cystine knot” protein, VEGF, was given special mention in the previous sec-
tion on Edman degradation as an example of a highly disulfide cross-linked protein 
which presented special challenges to common methods of disulfide mapping [294]. 
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Similarly, the literature on disulfide bridging in conotoxins [298–304], a highly 
diverse superfamily of compact disulfide-knot peptide neurotoxins from cone snails, 
is well worth following for anyone seeking new strategies and tactics for disulfide 
mapping of highly bridged proteins and peptides. The critical and often quite dif-
ficult step in structure elucidation for the conotoxins is the determination of correct 
disulfide pairing between multiple closely spaced cysteine residues. A direct mass 
spectrometric analytical methodology for the determination of disulfide pairing of 
these highly bridged cystine-knot conotoxin peptides has been described by Gupta 
et al. [298]. CID of protonated ions of highly disulfide-bridged conotoxin peptides 
yielded fragmentation preferentially along the peptide backbone, with occasional 
fragmentation either by C–S bond cleavages or by S–S bond cleavages. Further 
MSn fragmentation of the initial set of product ions yielded third- and fourth-gen-
eration fragment ions corresponding to various disulfide-bonded structures. This 
approach was illustrated by establishing cysteine pairing patterns in five conotoxins 
containing two disulfide bonds and was extended to the Conus araneosus peptides 
Ar1446 and Ar1430, two 14-residue sequences containing 3 disulfide bonds. The 
mass spectrometers used were a Bruker Ultraflex TOF/TOF MALDI MS and HCT-
Ultra ETDII ion trap mass spectrometer. For all the intact fragmentation and MSn 
experiments, purified HPLC fractions were injected directly into the ESI ion trap 
mass spectrometer using a syringe pump at a flow rate of 120 μL/h, and fragmenta-
tions were carried out inside the ion trap through the collision of helium gas with 
the protonated molecular ions of interest [298].

The examples of two and three disulfide-bonded conotoxins presented above 
establish that mass spectral fragmentation of intact disulfides can provide a 
means of establishing cysteine pairings. The question arose as to whether the 
generation of reactive thiol species can lead to disulfide scrambling in the gas 
phase. If such scrambling occurs, product ions must be observed which are 
diagnostic of the presence of dehydroalanine, cysteine persulfide, cysteine-
thioaldehyde, and cysteine at specific positions along the sequence. These 
diagnostic product ions were not observed and so the authors concluded that 
thiol–disulfide interchange processes were not favored in the gas phase during 
MS experiments, although such reactions can occur readily in aqueous solution 
at alkaline pH [298].

De novo mass spectrometric sequencing using MALDI-MS can be used to 
determine disulfide connectivity in peptides, as in the case of two Conus peptides 
Vi1359 and Vi1361, from the vermivorous cone snail Conus virgo, found off the 
southern Indian coast [299]. The peptides, whose masses differ only by 2 Da, pos-
sess two disulfide bonds and an amidated C-terminus. Simple chemical modifica-
tions and enzymatic cleavage coupled with MALDI mass spectrometric analysis 
aided in establishing the sequences of Vi1359, ZCCITIPECCRI-NH2, and Vi1361, 
ZCCPTMPECCRI-NH2, which differ only at residues 4 and 6 (Z = pyroglutamic 
acid). The presence of the pyroglutamyl residue at the N-terminus was unambigu-
ously identified by chemical hydrolysis of the cyclic amide, followed by esteri-
fication. The presence of isoleucine residues in both the peptides was confirmed 
from high-energy CID studies, using the observation of diagnostic w(n) and d(n) 
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ions. Differential cysteine labeling, in conjunction with MALDI-MSMS, permitted 
establishment of disulfide connectivity in both peptides as Cys2-Cys9 and Cys3-
Cys10. The cysteine pattern clearly reveals that the peptides belong to the class of 
T-superfamily conotoxins, in particular the T-1 superfamily [299].

6.4.6  Interchain Disulfide Bridging in IgG1 Antibodies  
and Isotypes

Modern molecular immunology and monoclonal antibody technology began to 
emerge in the 1960s with the pioneering work of Edelman and coworkers [305–
307] on the first characterization of the full chemical structure of a human gamma-
globulin (IgG), including all 16 disulfide pairings (Fig. 6.13). This comprehensive 
and accurate structural characterization of a protein molecule of unprecedented 
size and complexity was a monumental undertaking at the time. This work cul-
minated in a detailed chemical structure of a human IgG1 and many important 
insights into their genetics and immunology. The entire project required years 
of painstaking sample preparation by classical column chromatography, manual 
dansyl-Edman sequencing, diagonal electrophoresis, and so on. It is even more 
impressive that this complete IgG structure was elucidated without the benefit 
of mass spectrometry or other powerful instruments and research tools routinely 
available today.

The disulfide bond structure is critical for antibody stability, antigen bind-
ing, and Fc effector functions [308–314]. IgG antibodies of various classes, 
IgG1, IgG2, IgG3, and IgG4, differ in the number and positions of the interchain 
disulfide bonds. The prototypical IgG1 molecule depicted in Fig. 6.13 is the most 
abundant subclass or isotype of the natural circulating blood serum IgG molecules 
as well as the most prevalent subclass or isotype of the IgG molecules in biomedi-
cal research, pharmaceutical development, and clinical diagnostics. However, 
the more rare and specialized IgG2 and IgG4 subclasses also occupy niches in 
the biopharmaceutical industry as immunotherapy drugs for selected clinical 
indications.

For kappa light chains, the light-chain cysteine residue that links the light chain to 
the heavy chain in the IgG1 molecule (L-to-H) is the C-terminal residue. For lambda 
light chains, on the other hand, the cysteine residue is the penultimate residue fol-
lowed by a serine residue at the C-terminus. The effect of this added C-terminal serine 
residue for the lambda light chains on the susceptibility of disulfide bonds to reduc-
tion was investigated by reduction, differential alkylation using iodoacetic acid with 
either natural isotopes or enriched with carbon-13, and mass spectrometry analysis 
[315]. The effect of the serine residue on disulfide bond susceptibility was compared 
using three antibodies with differences only in the light chain last amino acid, which 
was either a serine residue, an alanine residue, or truncated. The results demonstrated 
that the presence of the amino acid (serine or alanine) increased the susceptibility to 
reduction in the interlight- to interheavy-chain disulfide bonds (L-to-H). On the other 
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hand, susceptibility of the pair of IgG1 interheavy-chain disulfide bonds (H-to-H) was 
not changed significantly.

Several differences from the classical disulfide bond structures have been 
reported in the literature recently. Furthermore, low levels of free thiol are com-
mon and may even have a similar distribution pattern in different IgG1 molecules 
[286–288, 316–318]. For example, it has been well documented that the intrachain 
and interchain disulfide bonds in the hinge region are in equilibrium in IgG4 anti-
bodies and IgG2 antibodies which exist as ensembles of several isoforms with 
 different in disulfide pairings in the hinge region.

6.4.7  Interchain Disulfides in IgG4 Antibodies

IgG4 antibodies differ functionally from other IgG subclasses in their antiinflam-
matory activity, which includes a poor ability to induce complement and cell acti-
vation because of low affinity for C1q complement and Fc receptors [319–328]. 
Consequently, IgG4 has become the preferred subclass for immunotherapy in 
which recruitment of host effector functions is undesirable and thus considered as 
a “nondepleting” antibody for blocking a target antigen with little to no unwanted 
ADCC [320]. Another attribute of blood-derived IgG4 is its inability to cross-link 
identical antigens, which is referred to as “functional monovalency.” IgG4 antibod-
ies are considered to be less efficient in inducing inflammatory responses and may 
even inhibit the inflammatory effects of other antibodies. Prolonged stimulation 
with high doses of soluble protein antigen preferentially induces IgG4 antibodies. 
Human IgG4 antibody is unable to precipitate purified antigens as a “neutralizing 
antibody.” The inability to cross-link and precipitate antigen is not due to a differ-
ence in intrinsic antigen-binding affinity but rather is caused by the inability of 
functionally monovalent IgG4 antibodies to cross-link two antigens. IgG4, often 
induced by chronic antigen stimulation, then may interfere with immune complex 
formation by other antibody isotypes and may dampen inflammatory reactions. In 
specific immunotherapy with allergen in allergic rhinitis, for example, increases in 
allergen-specific IgG4 levels indeed correlate with clinical responses. In contrast, 
bispecific cross-linking of nonidentical antigens has been observed under certain 
conditions and it was postulated that this apparent bispecificity might be explained 
by the exchange of half-molecules between distinct IgG4 molecules [321, 329]. 
The presence of serine in the canonical pair of H-to-H disulfides in the hinge 
region, CPXCP, explains the unique property of IgG4 molecules to form LH half-
structures from the traditional LHHL configuration. Recent reports have shown 
that this property allows a dynamic exchange of the hinge disulfides in vivo result-
ing in bispecific IgG4 antibodies. This incomplete formation of interheavy-chain 
disulfide bonds (H-to-H) might make IgG4 antibodies susceptible to exchange of 
half-molecules. Exchange in a pool of polyclonal IgG4 would result in bispecific 
antibodies that behave as monovalent antibodies toward a single antigen. In con-
trast, monoclonal chimeric IgG4 antibodies would remain bivalent.
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Bloom et al. [319] analyzed denatured samples of an IgG4 with 4-vinylpyri-
dine labeling of free cysteines with and without 50 mM DTT (reduced vs. non-
reduced) and compared them by LC–MS tryptic peptide mapping. In the 
nonreduced map of the CDP571 IgG4, a large peak at 118 min was found to 
contain a peptide with a measured mass of 2,827.5 Da. This mass matched 
that of the heavy-chain hinge-region peptide consisting of residues 223–249, 
YGPPCPSCPAPEFLGGPSVFLFPPKPK, with an intrachain disulfide bond hav-
ing a calculated mass of 2,827.4 Da. In the 50 mM DTT map, the 118 min peak 
was not apparent and a new large peak was observed at 109 min that contained 
a peptide with a measured mass of 3,039.6. This mass matched that of the same 
223–249 hinge peptide with 4-vinylpyridine modification of the two cysteines and 
calculated mass of 3,040.5 Da. The heights of the 118 and 109 min peaks in the 
two maps were nearly identical. These peptide mapping studies of CDP571 iden-
tified the factors preventing interheavy-chain disulfide bond formation between 
IgG4 half-molecules, that is, the two cysteines in the IgG4 and IgGl core hinge 
regions (CPSCP and CPPCP, respectively) are capable of forming an intrachain 
disulfide bond. Conformational modeling studies on cyclic disulfide-bonded 
CPSCP and CPPCP peptides suggested that the serine in the core hinge region of 
IgG4 allows more hinge-region flexibility than the proline of IgGl and thus more 
readily permits formation of a stable intrachain disulfide bond [319].

Since it was first suggested that IgG4 antibodies are bispecific as a result of 
half-molecule exchange, the role of the hinge cysteines has remained enigmatic 
[316, 319, 322, 324]. Although it was recognized that a noncovalent isomer 
of IgG4 exists without disulfide bonds between the heavy chains, its role in the 
exchange process could not be determined. More recently, it has been shown that 
IgG4 hinge disulfide isomerization results in Fab-arm exchange, with dissocia-
tion of the CH3 domains as the ultimate rate-determining step [325, 326, 329]. 
Under mild reducing conditions, the intrachain isomer can form dynamically 
from the interchain form, and this equilibrium determines the overall rate. Fab-
arm exchange appears to be much slower in vivo compared to the rate of exchange 
observed for fully reduced IgG4. This implies that in vivo the process is under 
control of redox conditions. Blood levels of GSH seem too low to account for the 
observed exchange reaction. Thus, actual rates of Fab-arm exchange may vary 
considerably from site to site depending on local redox potentials and the presence 
of thiols to initiate the thiol–disulfide exchange chemistry.

To conclusively demonstrate that Fab-arm exchange is indeed the result of an 
intermolecular exchange reaction, intact antibody samples were analyzed using 
SEC and ESI-TOF MS [327, 330]. Samples containing 200 μg/mL of each anti-
body were deglycosylated overnight with peptidyl N-glycosidase F and then 
desalted with a BEH C8, 1.7 μm, 2.1 × 50 mm column at 60 °C. ESI-TOF MS 
was acquired online by a microTOF™ mass spectrometer operating in the posi-
tive ion mode. Plasma from mice injected with an IgG4 antibody mixture was ana-
lyzed and bispecific antibodies eluted at the expected position for monomeric IgG, 
which ruled out the possibility that the observed reactivity was due to aggrega-
tion. In a second experiment, mixtures of anti-CD20 IgG4 and anti-EGFR IgG4 
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were prepared in the absence or presence of reduced glutathione (GSH), fol-
lowed by ESI-TOF MS. The molecular masses of anti-CD20 IgG4 (145.5 kDa) 
and anti-EGFR IgG4 (145.9 kDa) remained unchanged in the absence of GSH. 
In the presence of GSH, however, a new peak appeared with an intermediate mass 
(145.7 kDa) corresponded to the expected mass of the bispecific antibody against 
EGFR/CD20. Moreover, from the peak heights of the MS spectra, it was estimated 
that the bispecific antibody represented 50% of the total antibody mass in the mix-
ture, which indicated a stochastic exchange [327, 330].

Dynamic Fab-arm exchange therefore represents a novel type of post-transla-
tional modification, which serves as an additional mechanism for generating anti-
inflammatory activity. The mechanism by which IgG4 Fab-arm exchange occurs 
in vivo likely requires the reducing environment in blood or at cell surfaces to 
facilitate the breaking of interheavy-chain disulfide bonds located in the hinge 
region. Indeed, the addition of reducing compounds, such as GSH, to purified 
IgG4 alone was sufficient to induce in vitro Fab-arm exchange [327, 329, 330]. 
GSH, present in all cell types, may well perform this role in vivo, and so addi-
tional cofactors, chaperones, or receptors, as hypothesized for PDI and FcRn 
previously, may therefore not be essential. An important second antibody heavy-
chain interface is located between the CH3 domains, which has been shown to be 
critically involved in Fab-arm exchange, and the contributions of specific CH3-
domain amino acid contacts to the mechanism of this reaction have been investi-
gated recently [328, 330].

In summary, antibodies of the IgG4 isotype are shown to be dynamic mol-
ecules, undergoing Fab-arm exchange in vivo and in vitro. The ability to engage 
in Fab-arm exchange appears to be an inherent feature of IgG4 that involves the 
third constant domain in addition to the hinge region and that only requires a 
reducing environment to be activated [325]. This novel protein modification chal-
lenges the commonly accepted one antibody–one antigen paradigm and rede-
fines our thinking about the role of IgG4 in antibody-mediated immunity and the 
application of IgG4 monoclonal antibodies to immunotherapy. Fab-arm exchange 
is not limited to endogenous IgG4 but can also take place with therapeutic IgG4 
antibodies. Natalizumab is an example of a therapeutic monoclonal antibody 
based on a wild-type IgG4 that was shown to participate in Fab-arm exchange 
in vivo [325]. Most IgG4 therapeutic antibodies in development now possess a 
hinge with a proline instead of a serine at position 228 in the hinge. Such anti-
bodies were shown not to participate in Fab-arm exchange in animal models. 
However, at higher concentrations of reduced glutathione (GSH), an exchange 
reaction is observed for these “hinge-stabilized” IgG4 antibodies. Preliminary 
experiments with a hinge-stabilized IgG4 antibody indicated that at 5 mM GSH, 
equilibrium is reached after 2 days, whereas reducing the antibody with DTT 
resulted in similar kinetics as wild-type IgG4. Thus, slow Fab-arm exchange 
may still be observed using “hinge-stabilized” IgG4 antibodies depending on the 
redox conditions, and at present, it cannot be ruled out that such conditions are 
never met in vivo [325].
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6.4.8  Interchain Disulfides in IgG2 Antibodies

Specific residues of the hinge region have been shown to have profound impact 
on the properties of immunoglobulins. For example, IgG2 is unique in present-
ing 4 cysteine residues in the hinge region, notably two consecutive residues, Cys-
219 and Cys-220 that have no equivalent in any other immunoglobulin subclass 
(Fig. 6.14). Human IgG2s are also distinguished from other IgG isotypes by their 
preferential response toward polysaccharide antigens as well as their limited abil-
ity to engage in Fc-mediated effector functions [331]. In addition to the expected 
interchain disulfide pairings for the IgG2 structure, recent studies have revealed 
novel disulfide isoforms termed IgG2-B and IgG2-A/B [144, 334]. The A iso-
form is the familiar IgG2 structure with all four hinge cysteines engaged in sym-
metrical interchain disulfide bonding to the corresponding cysteines in the second 
heavy chain (Fig. 6.14). In the IgG-B isoform, two of the four hinge cysteines are 
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bridged to the second heavy-chain hinge cysteines, the third is bridged to the light 
chain, and the fourth is bridged to a cysteine to the CH1 domain which pairs with 
the light-chain cysteine in the A isoform. The A/B isoform is an intermediate con-
taining both A- and B-isoform disulfide linkages. Moreover, IgG2 with a lambda 
light chain (IgG2λ) showed relatively smaller amounts of the IgG2-B disulfide 
isoform whereas IgG2 with kappa light chain (IgG2κ) generally populated this 
isoform in higher abundance. It was hypothesized that the additional C-terminal 
serine residue of the lambda light chain sterically interferes with the lambda 
light-chain cysteine forming a disulfide bond with the hinge cysteines. Although 
IgG2-A seems to be preferred for IgG2λ, IgG2-A/B is detected in approximately 
equal amounts for IgG2λ and IgG2κ [144, 332].

The report by Martinez et al. [333] presents arguments for a dynamic exchange 
of IgG2 disulfide bridges between hinge, CH1 domain, and light chains. The 
authors also note that the presence of covalent IgG2 dimers in normal pooled 
human sera has been reported and attributed to cross-linking of the hinge 
cysteines. The two results appear complementary. It is possible that in vivo thiol–
disulfide exchange could generate covalent dimers and this is quite interesting 
because it could represent a natural “allosteric disulfide” or shuffling mechanism 
for doubling the effective valency and thereby perhaps increasing antigen-binding 
avidity. On the other hand, for the biotechnology-derived recombinant IgG2 mon-
oclonal antibodies manufactured by large-scale mammalian cell culture, the prod-
uct was apparently secreted predominantly as monomer and, once purified, the 
IgG2 and isoforms were stable as monomers. Upon storage, however, both nonco-
valent and covalent dimers did gradually form at minor levels.

Evolution has favored emergence of a hinge region in mammalian immu-
noglobulins for increased flexibility and the ability to adopt a large number of 
conformations. Although it is often depicted as a static “Y-shaped” molecule 
in diagrams such as the one in Fig. 6.14, the IgG molecule is more accurately 
described as a dynamic “flexible-adaptor.” In other words, it is rather inaccurate 
to describe the hinge region of an IgG as a “hinge.” It certainly does not function 
as a rigid hinge, and it is more accurate to describe this region as a flexible poly-
peptide linker connecting compactly folded Fab and Fc domains. In this context, 
the arrangement of the disulfide bridges in IgG2 molecules would be appear to be 
less flexible and less dynamic than for an IgG1 or IgG4, for instance. These IgG2 
structures could represent an early state of IgG development which is supported by 
the fact that the IgG2 subclass is, reportedly, the most evolutionarily distant of the 
human immunoglobulins [333]. Moreover, the Fc constant regions share >95 % 
homology, whereas the hinge regions are significantly divergent, illustrating a high 
evolutionary pressure on this region. Elimination of one of the two cysteine resi-
dues in the hinge region specific to the IgG2 subclass, Cys-221 or Cys-222, abol-
ishes the structural isoforms and generated a homogeneous structure. Therefore, 
the authors propose that elimination of these two cysteine residues during human 
evolution may have resulted in an IgG1-like hinge, leading to simplification of the 
number of Ig structures, optimized flexibility within this family of molecules, and 
better adaptability of the immune response.
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It is interesting to compare the disulfide shuffling of the hinge-region inter-
chain disulfides in the IgG2 framework with the Fab-arm exchange in IgG4 anti-
bodies which both occur via the very same thiol–disulfide exchange chemistry 
but give opposite net results. In vivo IgG2 thiol–disulfide shuffling may serve 
to form tetravalent dimers with stronger avidity [331, 332] whereas the thiol–
disulfide shuffling of IgG4 antibodies, on the other hand, forms bispecific anti-
bodies which are functionally monovalent and have weaker avidity. An intriguing 
picture of the “hinge” region–interchain disulfide bridges in IgG antibodies is 
emerging from these recent studies of the IgG4 and IgG2 isoforms in which the 
interchain disulfides are dynamic and functional rather than static and structural. 
At minimum, these recent MS and structural characterization studies show how 
these hinge-region disulfide bridges, in addition to having the known high solvent-
accessibility to facilitate thiol–disulfide exchange chemistry, also possess a type 
of molecular dynamics characterized by conformational flexibility and thermal 
mobility. It seems that these interchain disulfides may be positioned in the hinge 
region of antibodies for more than simply cross-linking protein chains together. 
Indeed, there may be a closer relationship shared by the CXXC in the hinge region 
of IgG antibodies and the homologous redox-active CXXC in the active site of 
PDIs than previously thought.

6.4.9  Trisulfide Bridges

It has been known for some time that antibodies under long-term storage in solu-
tion can form a nonreducible entity that appears on SDS-PAGE arising from the 
expulsion of sulfur from a disulfide, resulting in a thioether bridge. (–CH2–S–
CH2–). In addition, evidence has been found recently [335–339] for the insertion 
of a sulfur into the hinge to form a trisulfide bridge (–CH2–S–S–S–CH2–). One of 
the first reported trisulfide-containing proteins is the recombinant human growth 
hormone (rhGH) expressed in E. coli [336]. Although possible routes of trisulfide 
formation in rhGH have been postulated, the exact mechanism remains unknown. 
One possible mechanism of trisulfide formation in recombinant proteins involves 
reaction of dissolved hydrogen sulfide (H2S) generated during the fermentation 
process, since treatment of rhGH with solutions that contained dissolved H2S 
has been shown to lead to the formation of elevated levels of trisulfide forms of 
the protein. For monoclonal antibodies, the hinge-region interchain disulfides are 
more solvent-accessible than other disulfides and thus a possible target for reaction 
with H2S and the formation of trisulfide. Pristatsky et al. [337] identified trisulfide 
modification in the hinge region of a human IgG2 mAb fractionated on an ion-
exchange column. More recently, Gu et al. [338] have demonstrated that trisulfides 
can occur in all IgG frameworks of recombinant and natural antibodies as well 
as commercial therapeutics. Trisulfide levels were found to range from below the 
detection limit to more than 40 % although the presence of high levels of trisulfide 
had no observable effect on the function or stability of the antibody. Although 
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very little has been published on the insertion of a sulfur atom into an interchain 
disulfide bond to form a trisulfide in proteins, these findings suggest that it may be 
a fairly commonplace modification.

Peptide mapping of nonreduced protein samples using an LC–MS system 
was found to be a sensitive and reliable method for identifying and quantifying 
trisulfides [338]. In all IgG antibodies evaluated, trisulfides were observed in the 
H-to-L and, to a somewhat lesser degree, in the H-to-H interchain linkages and 
not in any of the intrachain disulfides. The percentages of the trisulfide in the 
light–heavy-chain linkage estimated from LC–MS peptide map extracted ion cur-
rents (EICs) were similar to those from corresponding UV traces although the EIC 
method was found to be more sensitive with a detection limit of 0.1 % and RSD 
of 3.8 % estimated on more than 20 experiments. The Lys-C peptide mapping 
method is generally applicable to nearly all human IgG1 antibodies, and similar 
peptide mapping strategies were successfully developed for quantification of tri-
sulfide linkages in IgG2, IgG3, and IgG4 antibodies.

Lys endopeptidase peptide mapping analysis of H-to-L bond trisulfide by LC–MS 
[150, 338] was performed at room temperature for 30 min with 4-vinylpyridine in 
the presence of 6 M guanidine hydrochloride, followed by ethanol precipitation. 
Alkylated mAb was digested with endoproteinase Lys-C in the presence of 2 M 
urea at room temperature for 16 h. The percentage of trisulfide–linked H-to-L pep-
tides was calculated from LC–MS peak areas from the UV trace or on the extracted 
ion chromatogram of all three charged states, 1+ to 3+, with known peptides used 
as internal standards. The percent H-to-L trisulfide was calculated as (peak area of 
trisulfide) / (peak area of disulfide + peak area of trisulfide), and the lower limit of 
detection for the assay was <1.0 %. In the nearly 100 monoclonal antibody prep-
arations that were purified and characterized, the level of trisulfide at the L-to-H 
linkage ranged from less than 1–40 %. Changes in culture conditions that seemed 
relatively minor and did not significantly affect growth and culture productivity 
resulted in large differences in trisulfide levels. In particular, culture duration and 
feeding strategy were important variables, and product with reproducible trisulfide 
levels was obtained by keeping cell culture conditions consistent [338].

The authors have shown that trisulfides can be incorporated into antibodies by 
exposure to hydrogen sulfide (H2S), confirming the original finding with hGH 
[338]. Production of H2S by mammalian cells and tissues through the enzymatic 
breakdown of cysteine and homocysteine could account for trisulfide forma-
tion during cell culture. The specificity of the chemical reaction is driven by sol-
vent exposure of the interchain disulfides and by lack of exposure of intrachain 
disulfides, which are buried in the hydrophobic interior of antibodies. The trisulfide 
linkage was stable to prolonged storage at 4 °C and at room temperature and in rat 
serum in vitro but was rapidly converted to a disulfide within 24 h after systemic 
administration to rats. The rapid conversion of the trisulfide to a disulfide in rats 
is consistent with other reported reduction–oxidation-related changes that occur in 
vivo such as the rearrangement of human IgG2 antibody hinge disulfides and Fab-
arm exchange of human IgG4 discussed in the previous section. In the absence of 
a reductant, the trisulfide linkage is very stable, but reversal of the trisulfide to a 
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disulfide can occur both in vitro and in vivo by a mild reduction–oxidation process. 
Furthermore, it was reported that trisulfide linkages could be efficiently converted 
to disulfides by washing IgG antibody bound to a protein A affinity LC column 
with buffers containing millimolar concentrations of L-cysteine [339].

6.4.10  Cystine Desulfurization to Thioether  
and Dehydroalanine

The degradation of cystine disulfide residues via beta-elimination to generate 
dehydroalanine and lysinolalanine species at elevated temperatures has been stud-
ied fairly extensively for insulin and other proteins for many years [340–346]. 
More recently, a thioether bridge between the heavy and light chains of a IgG1 
monoclonal antibody was observed as a 92 kDa species observed by SDS-PAGE 
analysis under reducing conditions [341]. LTQ ion-trap LC–MS endoprotein-
ase Lys-C peptide mapping of an SEC fraction of the reduced/alkylated antibody 
showed that the heavy and light chains were cross-linked by a nonreducible 
thioether bond between Cys223 of the heavy chain and the C-terminal Cys213 res-
idue of the light chain. The L-to-H thioether linkage was found for a “nonstressed” 
monoclonal antibody, and its content increased with the duration of incubation at 
40°C. In addition to the disulfide-bridged pair of peptides, SFNRGEC/SCDK (m/z 
1,260.4), approximately 0.4 % of an earlier eluting peptide with an m/z at 1,228.4 
(32 Da less) was identified in the Lys-C digest of a control antibody sample and 
13.6 % in a 40 °C heat-stressed antibody sample, in agreement with the presence 
of a thioether-linked SFNRGEC/SCDK pair. These structural assignments were 
further confirmed by MSMS and an accurate mass difference between the two 
Lys-C peptides of 31.97220 Da found by FT-ICR-MS which is consistent a theo-
retical value of 31.97207 Da for the loss of a sulfur atom.

The above partial H-to-L disulfide-to-thioether modification was also indepen-
dently observed [342] for another IgG1 mAb formulated in phosphate buffered 
saline (pH adjusted between 4 and 10) stored for 17 days at 45 °C. The authors 
report LC–MS endoproteinase Asp-N peptide mapping results indicating the 
H-to-L disulfide-to-thioether formation through an initial beta-elimination mech-
anism to form a dehydroalanine intermediate with concomitant disruption of the 
L-to-H disulfide bridge followed by a Michael-like addition of thiocysteine across 
the dehydroalanine vinyl group (C=C) to form a stable thioether (lanthionine) 
linkage. In addition to the thioether formation, hydrolysis of the heavy-chain 
Ser219-Cys220 peptide bond in the hinge-region sequence, SCDKTHTCPPCPAP, 
to yield a Fab fragment was also observed and attributed to hydrolysis of the vinyl 
group in the dehydroalanine 219 intermediate. The rate of degradation was highly 
pH-dependent, minimizing at pH 6 and rapidly increasing at both pH extremes. 
It is also worth noting that, in addition to these liquid-phase cysteine desulfuriza-
tions, formation of dehydroalanine from cysteine in the gas phase has also been 
observed by MS and MSMS experiments under certain conditions.
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Two method-induced modifications involving desulfurization of cysteine-
containing peptides during sample preparation for protein characterization by 
MS have also been reported recently [343]. In addition to the above previously 
observed conversion of cysteine to dehydroalanine, a novel modification cor-
responding to conversion of cysteine to alanine was shown to occur by heat-
ing cysteine-containing peptides in the presence of the reducing agent, 
tris(carboxyethyl)phosphine (TCEP). Using model peptides, the conversion of 
half-cystine residues to dehydroalanine via beta-elimination of a disulfide bond 
was seen to result from the conditions of a typical tryptic digestion (37 °C, pH 
7.0–9.0) done without disulfide reduction and alkylation. The conversion of 
cysteine to alanine was investigated by performing experiments in H2O or D2O, 
and the results suggested a radical-based desulfurization mechanism unrelated to 
beta-elimination. The formation of thioethers by beta-elimination of disulfides has 
been observed as a method-induced artifact in SDS-PAGE [343].

Mozziconacci et al. [245] have reported the conversion of disulfides to 
thioethers in an IgG1 following photolysis of the sulfur–sulfur bond with 254 nm 
ultraviolet radiation and subsequent formation of a thiohemiacetal. Unlike the 
above beta-elimination chemistry, this degradation of cystine proceeds by a free-
radical mechanism to form a dithiohemiacetal and thioether products followed 
by the expulsion of hydrogen sulfide (H2S) to form the stable thioether linkage. 
This photolytic sulfur–sulfur bond rupture is probably similar to the laser-induced 
“prompt fragmentation” of S–S bonds commonly observed by MALDI-TOF MS.

6.5  Variants Generated by Physical Degradation

Degradation of proteins can be divided into physical and chemical in nature. The 
former refers to denaturation, aggregation, precipitation, and other degradations 
without affecting the covalent bonds of the proteins. Because of protein molecule’s 
polymeric nature and their ability to adopt various secondary, tertiary, and qua-
ternary structures, their properties can be drastically different without change of 
chemical bonds [347, 348]. Among all physical degradation pathways, aggregation 
and precipitation are probably the most prominent which directly affect the func-
tionality of therapeutic proteins and ultimately their efficacy and safety profiles. 
Consequently, aggregation and precipitation are among the critical quality attrib-
utes of therapeutic proteins. Aggregation and precipitation are characterized and 
analyzed by various chromatography and biophysical techniques [349, 350], such 
as SEC, field flow fractionation (FFF) [351], dynamic or static light scattering 
[352], and analytical ultracentrifugation (AUC) [353]. MS-based techniques have 
begun to be used successfully under certain circumstances to probe protein con-
formational changes [354–356]; among them, H/D exchange has proven to be a 
more dependable technique not only in the academic setting but also in industry as 
a robust technique to provide critical information for process and quality control, 
and as one of the critical methods for extensive characterizations [357].
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6.6  Chemical Degradation

Degradation products in protein therapeutics can also be generated through vari-
ous chemical reactions in which breaking or forming of covalent bonds occurs. 
Characterization and analysis of molecular variants resulting from chemical deg-
radation is a daunting task due to multiple pathways of protein degradation, and 
the heterogeneous nature of protein molecules to begin with. However, since 
therapeutic proteins usually are not subjected to extreme conditions during their 
manufacturing processes and under storage conditions, degradation through regu-
lar pathways can be monitored by well-developed methods. The most challeng-
ing parts often involve detailed, site-specific, and accurate quantification of each 
degradation.

The major chemical degradation pathways for protein therapeutics include 
deamidation/isomerization, oxidation, fragmentation, disulfide scrambling, etc. 
Any of these degradation pathways can change therapeutic proteins’ efficacy and 
safety. Therefore, it is critical to monitor and accurately measure chemical deg-
radation during pharmaceutical development to optimize manufacturing processes 
and formulation conditions to reduce their impact. As deamidation/isomerization 
and oxidation are covered in Chap. 5, the following section will focus on fragmen-
tation pathway.

6.6.1  Fragmentation

6.6.1.1  Asn- and Gln-related fragmentation

Besides being involved in protein deamidation/isomerization, Asn and Gln residues 
are also involved in spontaneous peptide bond cleavage at their carboxy sides [358, 
359, 362 372]. When deamidation proceeds through direct hydrolysis or cyclic imide 
formation, it usually exhibits lower activation barriers than peptide bond cleavage and 
therefore is a more favorable pathway. But under certain circumstances, bond cleav-
age does happen. The fundamental distinction between the mechanisms leading to 
deamidation via a succinimide and backbone cleavage was found to be the difference 
in nucleophilic entities involved in the cyclization process (backbone vs. side-chain 
amide nitrogen). If deamidation is prevented by protein three-dimensional structure, 
cleavage may become a competing pathway. In addition, peptide bond cleavage at Asn 
residues is more likely to take place after it has deamidated into Asp [363]. Peptide 
bond cleavages at Asp and Glu residues have been reported also in peptides and pro-
teins, and the occurrence rate is higher than Asn and Gln, respectively [364–366].

The mechanism of Asp/Glu-related cleavages is closely related to that of 
Asn/Gln deamidation process, in which it was proposed to involve nucleophilic 
attack of the ionized side-chain carboxylate on the protonated carbonyl carbon 
of the peptide bond to give a cyclic anhydride intermediate [365]. The cleavage 
rate is affected by the side-chain carboxylic acid group [366, 367]. Cleavage of 
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Asn-Pro residues turned out to be the fastest where succinimide formation could 
not occur [368, 369]. Needless to say, such peptide bond cleavage can inacti-
vate proteins. For instance, one of the modifications observed in lens proteins 
is the progressive, age-dependent cleavage of specific peptide bonds in bovine 
A-crystallin [370]. In fact, peptide bond cleavages are observed in most peptide 
deamidation reactions, but the fragmentation is usually much slower than deami-
dation. Asn peptide deamidation half-time ranges from about 1 to 400 days, and 
Asn cleavage rate ranges from about 200 to >10,000 days [371].

6.6.1.2  Ab Fragmentation

Another type of fragmentation is observed in the hinge region of monoclonal anti-
bodies [342, 361, 373–376]. This cleavage is not affected by protease inhibitors or 
EDTA which inhibits metal-mediated protease activities, indicating its spontane-
ous nature. This cleavage was observed on some antibody molecules after long-
term storage for an extended period of time, even at 5 °C [377, 378]. The site of 
cleavage is usually in the heavy-chain hinge region near the papain cleavage site, 
generating Fab and Fab + Fc fragments which can be detected by MALDI-TOF 
MS [376]. Metal-mediated cleavage of the antibody molecules in the hinge region 
has also been reported [378].

Two mechanisms for antibody fragmentation in the hinge region have been 
proposed: beta-elimination and direct hydrolysis [342, 360]. Beta-elimination is 
more pronounced at pH 7 and above, which causes cleavage in between S/C in 
the SCDKTHTC region. Beta-elimination of the disulfide bond leads to the forma-
tion of a dehydroalanine residue, which hydrolyzes to form an amide group at the 
newly formed C-terminus and a pyruvyl group at the newly formed N-terminus 
[342]. Direct hydrolysis is accelerated by acidic and basic pH. While cleavage was 
found in every peptide bond in SCDKTHTC of the hinge region, the major cleav-
age sites have been identified to be in between S/C, C/D, D/K, and H/T [373]. It 
was also found that the major cleavage sites in the hinge region shift toward the 
C-terminus when pH changes from 9 to 5. At pH 4, the major cleavage site shifted 
to the CH2 domain. In addition, oligosaccharides only inhibit hinge-region frag-
mentation at pH 4. This shift was not observed at pH 9 to 5 [360].

6.7  Conclusions

The ultimate goal of drug development is to determine the safety and efficacy of 
drug candidates and to ensure drug candidates are produced by highly reproducible 
and well-controlled processes. The strengths of biologics and the associated chal-
lenges during drug development result from the complex biophysical properties of 
biomolecules. While the complex interaction between biomolecules allows specific 
inhibition or stimulation of therapeutic targets, thus with fewer side effects, it is 
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quite challenging to characterize biomolecules extensively. In the past decade, MS 
has played a pivotal role in the characterization of biomolecules. Even though not 
all molecular variants can be tested for safety and efficacy, since it is almost impos-
sible to isolate all components, MS made it possible to characterize and monitor 
these minor components to ensure that biomolecules are produced reproducibly with 
regard to the amounts of variants. Through this approach, the correlation of complex 
biomolecules to the corresponding therapeutic outcomes can be firmly established.
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7.1  Introduction

The discovery of “soft” ionization techniques in mass spectrometry (MS) such 
as electrospray ionization (ESI) [1] and matrix-assisted laser desorption/ioniza-
tion (MALDI) [2] for measuring molecular masses of intact proteins was a sig-
nificant breakthrough in the analysis of proteins. The work was recognized by a 
Nobel Prize in Chemistry in 2002 and led to the widespread use of ESI–MS to 
characterize intact protein molecular masses in protein therapeutics discovery and 
development in biotechnology. Previously, it was only possible to measure pep-
tide molecular masses. In contrast to the analysis of intact purified proteins in sim-
ple buffers by ESI–MS, the ability to analyze biotherapeutic proteins in plasma or 
other tissues is significantly more challenging due to interference from the back-
ground plasma/tissue proteome and has only recently been reported for plasma 
[3]. The intact molecular mass measurement of biotherapeutic proteins in plasma 
by ESI–MS required isolation of the proteins from plasma using affinity capture 
followed by elution of the isolated intact biotherapeutics of interest and liquid 
chromatography (LC)–ESI–MS characterization to determine their intact molecu-
lar masses. The ability to obtain intact molecular masses and thereby character-
ize structural changes in biotherapeutics in plasma for in vivo studies provides 
key insights for large molecule drug development. Additional information can be 
obtained by enzymatic digestion followed by peptide analysis using LC-tandem 
MS (MS/MS) methodology. Understanding biotransformation and molecular 
changes of biotherapeutics in vivo is particularly valuable for the development 
of antibody–drug conjugates (ADCs) where efficacy and safety may be affected. 
It also provides essential structural characterization information for the ADCs in 
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vivo, necessary for designing appropriate quantitative assays for measuring phar-
macokinetics (PK) and toxicokinetics (TK).

ADCs are monoclonal antibodies (mAbs) with covalently bound cytotoxic 
drugs. The drug is typically conjugated to the antibody via a chemical linker that 
reacts with either lysine or cysteine side chain residues in the antibody (Fig. 7.1) 
[4, 5]. The linker may be designed to be chemically or enzymatically cleavable 
or noncleavable [6–9]. The conjugation reaction results in a heterogeneous mix-
ture of ADC molecules with a range of different drug-to-antibody ratios (DARs). 
Homogeneous ADCs with a defined DAR can also be produced by engineer-
ing reactive cysteine residues at specific sites in antibodies for the conjugation of 
drugs (Fig. 7.1) [10, 11]. The ADC molecules are designed to specifically bind 
to antigens that are overexpressed on the surface of tumor cells and minimally 
expressed on normal tissue. Upon binding, the ADCs are internalized and traf-
ficked to lysosomes, where the cytotoxic drug or cytotoxic catabolites are subse-
quently designed to be released within the cell [6–9]. The targeted delivery and use 
of highly potent cytotoxic drugs are designed to enhance the antitumor effects of 
the molecule while reducing the systemic toxicity [12–14]. Highly potent cyto-
toxic agents that are otherwise too toxic to develop as therapeutics may be useful to 
develop as ADCs.

The concept of ADCs was first clinically validated by gemtuzumab ozo-
gamicin, a conjugate of an anti-CD33 antibody and the cytotoxic agent cali-
cheamicin. Gemtuzumab ozogamicin was approved by the Food and Drug 

(a) (b) (c)

Fig. 7.1  ADC conjugation sites and drug/antibody ratio heterogeneity. a Conjugation through 
lysines. b Conjugation through reduced inter-chain disulfide bonds. c Conjugation through engi-
neered cysteines
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Administration (FDA) in 2000 for the treatment of patients with CD33-positive 
acute myeloid leukemia, a bone marrow cancer [15]. The product was recently 
withdrawn from the market after a later clinical trial raised new concerns about the 
product’s safety and failed to demonstrate clinical benefit to patients [16]. A num-
ber of novel ADCs are currently in preclinical, early clinical, or late-stage clini-
cal development for the treatment for solid and hematologic tumors [12–14, 17, 
18]. In April 2011, the FDA approved Adcetris™ (brentuximab vedotin), an ADC, 
that targets CD30 on lymphoma cells, to treat Hodgkin lymphoma and a rare lym-
phoma known as systemic anaplastic large cell lymphoma under the accelerated 
approval program.

ADCs combine the molecular characteristics of small and large molecules; 
thus, methods designed for each therapeutic type have been used in drug develop-
ment, in addition to new methods developed specifically for ADCs. Diverse bioan-
alytical methods are required for ADCs because of their structural complexity. Due 
to the tertiary structure and selective binding properties of large molecules, bio-
analysis of biotherapeutics is predominantly performed by ligand-binding assays, 
for example, enzyme-linked immunosorbent assay (ELISA) [19–21]. Recently, 
MS-based methods have also been shown to provide quantitative data for large 
molecules in plasma and may provide an orthogonal bioanalytical method [22]. 
Chapters 2 and 3 in this book have detailed descriptions on the approaches. In gen-
eral, these methods involve proteolytic digestion of the protein of interest in serum 
or plasma to generate a peptide specific for the protein; addition of an appropri-
ate peptide stable isotope labeled internal standard and its quantification using 
LC–MS/MS. Bioanalysis of small molecule drugs is predominantly performed by 
plasma/serum extraction followed by LC–MS/MS quantification. It is challenging 
to develop ligand-binding assays for small molecules due to the lack of tertiary 
structure and potential steric hindrance issues of binding capture and detection 
reagents.

In addition to having complex molecular structures, ADCs are also typically 
complex mixtures comprising the antibody species with varying numbers of cyto-
toxic drugs attached resulting in a DAR distribution (Fig. 7.1). A variety of con-
ventional large molecule and small molecule bioanalytical ELISA and LC–MS/
MS methods have been employed to quantify ADCs and the cytotoxic drugs 
released from ADCs into circulation, respectively [23–25]. However, these meth-
ods have some limitations when used for the bioanalysis of ADCs. For instance, 
ELISA methods can measure the mAb concentration and conjugate concentration 
but cannot measure the ADC drug payload [25–27]. This is important to deter-
mine because the drug load or DARs can have a significant effect on in vitro and 
in vivo properties of ADCs [10, 28, 29]. On the other hand, current small mol-
ecule LC–MS/MS methods usually quantify a priori determined forms of the drug 
released from the ADC; however, this may not represent the major form of the 
drug released; for example, it is theoretically possible that the released drug con-
tains part of the linker.

Bioanalytical methods developed specifically for ADCs include those that 
measure the total drug payload in circulation, including that conjugated to the 

http://dx.doi.org/10.1007/978-1-4419-7862-2_2
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antibody plus any released drug. For example, the total amount of monomethyl 
auristatin E (MMAE) in circulating ADC cAC10-MC-vc-PAB-MMAE, MMAE 
linked to antibody cAC10 by maleimido-caproyl-valine-citrulline-para-amino-
benzyloxy-carbonyl, has been determined by incubating plasma samples with 
cathepsin B (to completely release the drug from the antibody) and then detecting 
the drug (MMAE) in a competition ELISA using an MMAE conjugated to horse-
radish peroxidase (HRP) as a reporter and an anti-MMAE mAb coat [24]. Using 
a similar sample treatment strategy, LC–MS/MS could also provide an effective 
method to quantify the antibody-conjugated drug payload for ADCs in biological 
matrices. Another method developed specifically for ADCs is affinity capture cap-
illary LC–ESI–MS to measure the intact molecular masses of ADCs in biological 
matrices [3]. This method involves isolation of the ADC from plasma or tissues 
by affinity capture followed by analysis of the molecular masses of the captured 
ADCs by capillary LC–ESI–MS. The molecular masses provide the DAR distribu-
tion and quantification of the relative amounts of the individual DAR ADC spe-
cies. Thus, novel methods designed specifically for complex ADCs can provide 
additional information that cannot be obtained from conventional large and small 
molecule methods alone.

Additional complexity of ADCs can be generated in circulation in vivo due 
to biotransformations (Fig. 7.2). Early ADCs were based upon acid-cleavable 
hydrazone linkers that were relatively stable at neutral pH in the bloodstream 
(pH 7.3–7.5), while the more acidic environment within the cellular endosomes 

Drugs, linkers,
and linker-drugs 

Intact antibodies 

Adducts

Metabolites/
catabolites

Complexes with
antigen and other antibodies

Reference Standard

Fig. 7.2  ADC’s complexity may increase in vivo due to catabolism or metabolism
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(pH 5.0–6.5) and lysosomes (pH 4.5–5.0) resulted in hydrolysis of the linker 
after internalization of the ADCs and release of the drug payload [15, 30–32]. 
Enzymatically cleavable linkers, when the drug can be specifically released from 
the antibody by a lysosomal protease, such as cathepsin B, upon cleavage of the 
appropriate peptide bond in the linker have been reported [4, 33, 34] Linkers that 
are resistant to enzymatic or chemical cleavage have also been reported [35, 36].

Even for linkers designed to be entirely stable in plasma, unanticipated chemi-
cal or enzymatic activity in plasma may result in some drug release (deconju-
gation). Drug loss can result in the formation of ADC species containing lower 
DARs, thereby resulting in greater complexity in vivo. For a homogeneous ADC 
with a defined DAR, deconjugation in vivo may result in a mixture of DARs 
(Fig. 7.2) [3]. For example, loss of drug from a homogeneous ADC with a DAR 
of 2 (DAR2) in the dosing solution may result in a mixture of DAR0, DAR1, and 
DAR2. A reduction in the drug payload can affect the amount of drug being deliv-
ered to the site of action for efficacy and systemically released drug may pose a 
potential safety risk due to its high potency. For example, released drug may 
react with plasma proteins and peptides and could result in the formation of drug 
adducts that may have safety implications. Therefore, it is important to understand 
ADC structural changes (biotransformation) in vitro/in vivo. It is also important to 
understand biotransformations in plasma to ensure that assays developed for ADC 
quantification are suitable to measure the species that exist in circulation in addi-
tion to those present in the dosing solution.

In summary, ADCs present a new paradigm for bioanalysis to measure PK, TK, 
and catabolism/metabolism in drug development. It is important to use a variety 
of analytical methods to obtain both molecular characterization and quantifica-
tion data. The molecular structures of ADCs are complex, they are typically mix-
tures, and there is the possibility of biotransformations in vivo that can increase 
the complexity further. Therefore, an integrated bioanalytical strategy incorporat-
ing a variety of large molecule ligand-binding assays, small molecule LC–MS/MS 
assays, novel quantitative approaches designed specifically for ADCs and protein 
mass spectrometric characterization methods are essential for ADC bioanalysis. 
Our bioanalytical strategy includes the molecular characterization of ADCs in 
biological matrices, for example, intact molecular mass measurement of ADCs 
in plasma by affinity capture LC–MS. This is important for understanding of the 
key analytes that circulate in vivo and must be measured appropriately by quanti-
tative assays for PK and TK assessment. The quantitative assays include the use 
of ligand-binding and MS assays and are designed to measure specific molecu-
lar components in the mixture of ADC molecules in vivo, for example, the total 
amount of antibody, the total amount of conjugated antibody, the total amount 
of conjugated drug, released drug and released drug catabolites. A case-by-case 
strategy is used to select a subset of assays based on the ADC molecular struc-
ture. This chapter will focus on how MS can be incorporated into the bioanalytical 
strategies for ADCs and a case study including highlights of the ELISA and MS 
assays used.
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7.2  Bioanalytical Methods

7.2.1  Affinity Capture Capillary LC–MS

Affinity capture LC–MS assay [3] was used to measure the relative intensi-
ties of ADCs with different DARs to obtain DAR distributions in plasma/serum. 
Typically, the biotinylated extracellular domain (ECD) of the receptor that is rec-
ognized by the antibody component of the ADC was immobilized onto strepta-
vidin-coated paramagnetic beads. This affinity bead system was used to capture 
ADCs by incubating with the plasma/serum samples containing ADCs for approx-
imately 2 h at room temperature. Following the affinity capture process, the bound 
ADCs were isolated, washed, and deglycosylated on the beads by incubating 
with PNGase F in HBS-EP buffer (0.01 M HEPES, pH 7.4, 0.15 M NaCl, 3 mM 
EDTA, 0.005 % surfactant P20) at 37 °C overnight. Subsequently, the beads 
were washed extensively with HBS-EP and water, and the ADC analytes were 
then eluted by 30 % acetonitrile in water for LC–MS analysis. A volume of 10 
μL of the ADC elute was injected onto a PLRP-S column (50 × 0.3 mm, 5 μM, 
4,000 Å) with a 15 μL/min flow rate. Typical mobile phase (acetonitrile and 
water containing 0.1 % formic acid) was used. Analytes were ionized by ESI and 
detected by a quadrupole time-of-flight (QTOF) mass spectrometer operated in 
the positive TOF–MS mode. Raw data of ADCs were deconvoluted, and peak area 
under curve was obtained for each ADC component of interest. Relative intensities 
for the ADC components were calculated.

7.2.2  LC–MS/MS Method for DM1 in Rat Plasma, Bile and 
Urine and Human Plasma

Since emtansine (DM1) has a thiol, it can dimerize and/or form disulfide bonds 
with thiol-containing molecules in plasma. Therefore, before extraction, lith-
ium-heparin plasma samples were treated with 1 mM tris(2-carboxyethyl) phos-
phine (TCEP) a reducing agent to reduce any mixed disulfides with DM1, and 
then alkylated with n-ethyl maleimide (NEM) to block the resulting free thiol 
and prevent further reaction. The samples (30 μL) were extracted by protein 
precipitation using 80/20 acetonitrile and water (120 μL) containing 7.5 nM of 
maytansine (internal standard) and separated with a high-performance liquid 
chromatography (HPLC) system. A reverse phase analytical column (MAX-RP 
80A, C12, 4 μ, 50 × 2.00 mm) heated to 50 °C was used for separation fol-
lowed by analysis on a triple quadrupole mass spectrometer. The transition 
monitored for DM1–NEM was m/z 845.7/485.3, for DM1 (to ensure complete 
derivatization)–m/z 738.5/547.3, and for maytansine (IS)–m/z 692.6/547.2. For 
DM1–NEM, the lower limits of quantitation (LLOQ) in rat plasma were 0.24 nM 
(0.18 ng/mL), and 0.49 nM (0.36 ng/mL) in rat bile and urine. In human plasma 
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samples, the LLOQ of DM1–NEM in the LC–MS/MS assay was 1.00 nM 
(0.737 ng/mL). DM1 was not detected in rat and human plasma, or in rat bile or 
urine.

7.2.3  LC–MS/MS Method for MCC-DM1, and Lys-MCC-
DM1 in Rat Plasma, Bile and Urine and Human 
Plasma (Exploratory Catabolites)

The samples (30 μL) were extracted by protein precipitation using 80/20 acetoni-
trile and water (120 μL) containing 7.5 nM of maytansine (internal standard) and 
analyzed for MCC (4-(N-maleimidomethyl) cyclohexane-1-carboxylate)-DM1 
and Lys-MCC-DM1 on a triple quadrupole mass spectrometer by LC–MS/MS (as 
described above). Multiple reaction monitoring scan mode was used for quantita-
tion. Transition m/z 975.3/547.4 was monitored for MCC-DM1, m/z 1,103.9/485.5 
for Lys-MCC-DM1 and m/z 692.3/547.1 for maytansine (IS). For MCC-DM1, the 
LLOQ of the assay was 3.91 nM (3.81 ng/mL) in rat plasma and bile and 0.98 nM 
(0.95 ng/mL) in rat urine. For Lys-MCC-DM1, the LLOQ in rat plasma, bile, and 
urine was 1.95 nM (2.15 ng/mL), 7.81 nM (8.61 ng/mL), and 3.91 nM (4.31 ng/
mL), respectively. For patient samples, MCC-DM1 and Lys-MCC-DM1 were 
measured in a similar manner, and the LLOQs in human plasma were 1.95 nM 
(1.90 ng/mL) and 0.976 nM (1.08 ng/mL), respectively.

7.2.4  ELISA Methods for T-DM1 in Rat and Cynomolgus 
Monkey Serum

Two ELISAs, total trastuzumab ELISA and conjugated trastuzumab emtansine 
(T-DM1) ELISA, were developed and validated to measure T-DM1 (Figs. 7.3 
and  7.4) concentrations in serum samples from Sprague-Dawley rats and cyn-
omolgus monkeys. The total trastuzumab ELISA measures both conjugated and 

Fig. 7.3  Structure of 
trastuzumab-DM1 (T-DM1)

~1 kDa ~150 kDa

(MCC) (Herceptin )
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unconjugated trastuzumab and the conjugated T-DM1 ELISA measures trastu-
zumab conjugated with one or more DM1 [37]. The general formats of the assays 
are shown in Fig. 7.4. The total trastuzumab ELISA utilized recombinant human 
epidermal growth factor receptor 2 (HER2) ECD as capture reagent and perox-
idase-conjugated F(ab′)2 goat anti–human IgG Fc for detection. The total tras-
tuzumab ELISA was designed to measure T-DM1 with one or more covalently 
bound DM1 molecules and unconjugated trastuzumab. The minimum quantifiable 
concentration for total T-DM1 in both rat and cynomolgus monkey serum was 
40 ng/mL. The conjugated T-DM1 ELISA utilized a murine anti-DM1 mAb as the 
capture reagent and biotinylated recombinant HER2 ECD and HRP-conjugated 
streptavidin for detection. The conjugated T-DM1 ELISA was designed to meas-
ure T-DM1 conjugate containing one or more covalently bound DM1. The mini-
mum quantifiable concentrations for conjugated T-DM1 in rat and cynomolgus 
monkey serum were 30 and 40 ng/mL, respectively. For both validated assays, 
serum samples were quantified against T-DM1 calibrators with an average DAR of 
approximately 3.5.

7.2.5  Tissue Analysis by Affinity Capture Capillary LC–MS 
and LC–MS/MS

Exploratory tissue samples (lung, liver, and kidney) were collected during toxic-
ity studies for ADC DAR distribution by affinity capture capillary LC–MS and 
for MMAE analysis by LC–MS/MS. At necropsies, appropriate tissue sections 
were collected, weighed, flash-frozen in liquid N2 and stored at −80 °C. Tissues 
were then homogenized using a Mini-Beadbeater. To prevent any potential drug 

T-DM1

Biotinylated 
HER2 Receptor/
Streptavidin-
HRP

Anti-DM1 
Antibody

Conjugate Assay

Conjugate Assay

T-DM1

Anti-human 
antibody-
HRP 

HER2 
Receptor

Total Assay

Total Assay

Fig. 7.4  Formats of T-DM1 ligand-binding assays
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release from the ADC during tissue homogenization, a protease inhibitor cock-
tail consisting of 4-(2-aminoethyl) benzenesulfonyl fluoride (AEBSF), E-64, 
bestatin, leupeptin, aprotinin, and sodium EDTA was added to the tissues prior to 
homogenization. Tissue homogenate was analyzed by affinity capture LC–MS for 
the DAR distribution using a QTOF mass spectrometer coupled with a reversed 
phase capillary PolymerLab PLRP-S column (50 × 0.3 mm). Free MMAE drug 
was quantified by LC–MS/MS using a QTrap mass spectrometer coupled with a 
reversed phase Phenomenex Synergy Max-RP column (50 × 4.6 mm). In both 
cases, mobile phase A was 0.1 % formic acid in water and mobile phase B was 
0.1 % formic acid in acetonitrile.

7.3  ADC Data Analysis and Discussion

The qualitative and quantitative MS methods for ADCs and how these methods 
can be integrated into the overall bioanalytical strategy during development of bio-
therapeutics are illustrated using a case study of T-DM1 during clinical develop-
ment for HER2-positive metastatic breast cancer. Additional applications of MS to 
study ADC biotransformations in plasma and tissue and explore biotransformation 
mechanisms in vivo are illustrated using model trastuzumab thio-mAbs and thio-
mAbs incorporating a variety of mAbs (thio-mAb1, thio-mAb2, and thio-mAb3) 
as models for ADC compounds.

7.3.1  T-DM1 Case Study

The HER2 is a transmembrane receptor tyrosine kinase that is part of a complex 
signal transduction network that plays an important role in cell differentiation, 
proliferation, and survival during morphogenesis [38]. In healthy adults, HER2 is 
expressed at relatively low levels in normal epithelial tissue [39] but is overex-
pressed in approximately 25–30 % of tumors from patients with breast cancer [40, 
41]. These HER2-positive breast tumors are associated with aggressive growth 
and poor clinical outcomes [40, 41]. Trastuzumab, a humanized antibody directed 
against the extracellular region of HER2, is approved for the treatment of HER2-
overexpressing breast cancer. However, some patients do not respond to trastu-
zumab or relapse following treatment. Therefore, there is a need for additional 
therapies [42, 43].

T-DM1 is an ADC that contains trastuzumab, a nonreducible thioether linker 
(MCC) and a maytansine derivative (DM1) that inhibits microtubule polymeri-
zation (Fig. 7.3) [6, 44–46]. T-DM1 is a mixture composed of trastuzumab with 
an approximately Poisson distribution of 0–8 DM1 molecules linked via MCC, 
primarily to lysine residues. The average DAR for T-DM1 achieved during con-
jugation is approximately 3.5 [47]. It has been shown that after T-DM1 binds to 
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HER2, the T-DM1/HER2 complex is internalized via endocytosis and degraded 
in lysosomes, ultimately leading to the intracellular release of lysine-MCC-DM1 
[35, 36, 48]. Lys-MCC-DM1, MCC-DM1 and DM1 were identified as the major 
T-DM1 catabolites in rat plasma and were detected at low nanomolar levels in 
plasma collected from metastatic breast cancer patients during clinical develop-
ment (data not shown).

A total of six assays were used to characterize the PK and catabolism of 
T-DM1 in serum/plasma for nonclinical and clinical studies (Figs. 7.4, 7.5, 7.6, 
7.7). This included the use of three validated quantitative assays for all T-DM1 
nonclinical and clinical studies: two large molecule ligand-binding assays 
(Fig. 7.4) and one small molecule LC–MS/MS assay (Fig. 7.5). In addition, two 
small molecule exploratory quantitative LC–MS/MS catabolite assays (Fig. 7.6) 
and one novel affinity capture LC–MS method specifically designed for ADC 
characterization in plasma and tissues (Fig. 7.7) were used in selected nonclinical 
and clinical studies.

The two large molecule PK ELISAs (Fig. 7.4) were designed to measure (1) 
total trastuzumab (including fully conjugated, partially deconjugated and fully 
deconjugated trastuzumab that are capable of binding to HER2 ECD) and (2) 
conjugated T-DM1 (trastuzumab conjugated to one or more DM1). The validated 
small molecule LC–MS/MS assay was designed to measure total DM1 released 
from T-DM1 (Fig. 7.5). Since DM1 contains a sulfhydryl moiety, it is possible that 
released DM1 could bind to plasma proteins or peptides or dimerize. Thus, the 
DM1 assay sample preparation included a reduction step to ensure measurement 
of these forms of DM1. Additional exploratory LC–MS/MS assays were used to 

Fig. 7.5  General procedure for DM1 LC–MS/MS assay [53]. Reproduced with permission of 
Future Science Ltd
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measure the catabolites, Lys-MCC-DM1 and MCC-DM1 for selected nonclini-
cal and clinical studies (Fig. 7.6) (data not shown). In addition, a novel affinity 
capture LC–MS assay was used to measure intact T-DM1 isolated from plasma in 
selected samples collected from plasma stability, and rat and cynomolgus monkey 
studies (Fig. 7.7) [3].

ADCs present unique challenges for ligand-binding assays primarily due to the 
dynamically changing nature of the mixtures in vivo. The DAR distribution of the 
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analyte mixture can change in vivo over time due to drug loss [3]. As the calibra-
tion curve of the assay is made up of the product reference material that represents 
the dosed starting ADC mixture, it is important to understand the impact of chang-
ing DARs on the assay accuracy. For example, the binding of the assay reagents to 
the analytes may vary with the individual DARs. For reagents that bind to the anti-
body portion of the ADC, a high drug load may interfere with binding. In the case 
of the anti-drug reagents, low avidity could result in under-quantification when the 
drug load is low, for example, DAR1. Ideally, it would be preferable to assess the 
assay recovery using individually isolated DARs for each component in the mix-
ture, but in practice with existing technology, it is not often feasible to obtain indi-
vidual DARs for a such complex mixture, particularly those present at low levels, 
for example, high DARs or DAR1.

A variety of T-DM1 DAR lots available for characterizing the ligand-binding 
assays were tested in the assays. This included data from testing T-DM1 mixtures 
with average DARs ranging from 2.6 to 4.1 in both of the T-DM1 ELISAs and 
confirmed that the assay had acceptable recovery across the range of DARs tested. 
Additional confirmation that T-DM1 reagents had acceptable recoveries across the 
range of DARs was obtained indirectly using affinity capture LC–MS (see below).

DM1 concentrations in nonclinical and clinical plasma samples were deter-
mined using validated LC–MS/MS assays. The assays were designed to meas-
ure free DM1 and any disulfide-bound forms of released DM1 (e.g., dimers, 
glutathione, cysteine, and albumin adducts) in plasma and to exclude DM1 that 
remained conjugated to trastuzumab via MCC-DM1 (Fig. 7.5). LC–MS/MS detec-
tion of DM1 was performed by detection of the alkylated form of DM1 (DM1–
NEM). The three validated assays described above have been used for T-DM1 
quantification in rat and cynomolgus monkey plasma samples collected during PK 
and TK studies (data not shown) and in human plasma samples collected during 
clinical studies.

Changes in T-DM1 DAR distribution in plasma in vitro and in vivo were meas-
ured using an affinity capture LC–MS method (Fig. 7.7) [3]. This method allowed 
the characterization of T-DM1 DAR distribution in vitro and in vivo directly by 
measuring the molecular masses of the ADC species isolated from plasma by 
affinity capture [3]. In addition to providing an understanding of the T-DM1 DAR 
species present in plasma, the data were important for appropriate characteriza-
tion of the conjugate ELISA by confirming the ability of the anti-DM1 mAb rea-
gent to recover all DAR species. Figure 7.7 shows the general procedure for the 
affinity capture LC–MS method for T-DM1. Streptavidin-coated paramagnetic 
beads coupled with biotinylated capture probes were used to capture intact T-DM1 
in plasma. For ADCs, the capture probe can be the target antigen, or an antibody 
that specifically recognizes the ADC antibody. A probe that recognizes the anti-
body is important for measuring the DAR distribution as this will capture all 
DARs, including DAR0. Alternatively, the capture probe can be a mAb that rec-
ognizes the drug. A probe that recognizes the drug is important for understanding 
drug-related molecules that may be formed in vivo, for example, some drug may 
deconjugate and bind to other proteins. For T-DM1, two capture probes were used; 
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HER2 ECD to capture the ADC molecules via trastuzumab and an anti-DM1 mAb 
to capture DM1-containing molecules.

The method development included optimization of the paramagnetic bead type 
for analyte capture, the amount of beads, the amount of T-DM1, sample volumes, 
wash conditions for removal of background plasma proteins and elution buffers 
for recovery of T-DM1 analytes from the beads. For example, Fig. 7.8 shows the 
extracted mass spectra obtained using six different bead types. The optimal con-
ditions are described in the methods section. The T-DM1 captured on the beads 
was deglycosylated, eluted from the beads, and analyzed by a Q-TOF MS coupled 
with a capillary flow LC. This method was able to resolve the molecular masses of 
individual T-DM1 molecules with different DARs to show the DAR distribution 
(DARs0–8) and allow determination of the relative abundance of each DAR. The 
DAR distribution accuracy and precision for the general affinity capture LC–MS 
method was previously published for more simple ADC mixtures made from indi-
vidual known standards of DARs0–2 and found to be within 15 % [3].

To ensure that there was no bias during the affinity capture step, the DAR 
distribution data for T-DM1 spiked into human plasma and isolated by affin-
ity capture was compared to the DAR distribution data for T-DM1 spiked into 
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buffer and analyzed directly without affinity capture. Figure 7.9 shows the decon-
voluted mass spectrum of T-DM1 reference material in buffer overlaid with the 
corresponding affinity capture LC–MS mass spectrum for T-DM1 from plasma 
using an anti-DM1 mAb capture probe. The data showed comparable drug dis-
tributions with DARs ranging from 1 to 8, indicating that there were no selective 
losses or bias during the affinity capture LC–MS procedure. As expected, T-DM1 
DAR0 (naked trastuzumab) was not observed in the mass spectrum after affin-
ity capture with anti-DM1 antibody as the anti-DM1 affinity probe captures the 
analyte via DM1. These data (Fig. 7.9) also indicated that the anti-DM1 mAb 
affinity probe is capable of capturing low DAR species such as DAR1 effec-
tively and provided support for characterization of the conjugate T-DM1 ELISA, 
where the anti-DM1 mAb is a critical reagent. Since drug development studies 
are conducted in a variety of animal species and in the clinic, affinity capture 
LC–MS data were compared for T-DM1 spiked into a variety of plasma matrices. 
Figure 7.10 shows the T-DM1 DAR distribution determined by LC–MS in buffer 
by direct injection and in plasma by affinity capture LC–MS using an anti-DM1 
mAb capture probe in mouse, rat, cynomolgus monkey, and human plasma. For 
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simplicity, only DARs1–7 are shown in Fig. 7.10 as the concentration of DAR8 
was minimal and hence not meaningful to compare. In each plasma matrix, the 
DAR distribution for DARs1–7 was comparable to that obtained in buffer, indi-
cating that there is no species-dependent bias. A comparison of the DAR distribu-
tion from affinity capture LC–MS using an anti-DM1 mAb capture probe and a 
target antigen HER2 ECD capture probe is shown in Fig. 7.11. As expected, only 
the HER2 ECD capture probe was capable of measuring DAR0, and this differ-
ence was observed in the DAR distribution. Also, the determined DAR distribu-
tion for the conjugated T-DM1 molecules was comparable for the two capture 
probes (Fig. 7.11).

Once the affinity capture LC–MS method was developed and optimized, it was 
used to gain insight into changes in the DAR distribution of T-DM1 for an in vitro 
plasma stability study (Fig. 7.12). The study involved incubation of 100 μg/mL of 
T-DM1 in human plasma at 37 °C for up to 96 h. Samples were frozen at −70 °C 

Fig. 7.10  Comparison of the 
DAR distributions from the 
affinity capture LC–MS of 
T-DM1 in PBS buffer, mouse, 
rat, dog, cynomolgus monkey 
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until analysis. An aliquot of 20 μL was used for affinity capture LC–MS analysis. 
A control experiment was conducted in the phosphate-buffered saline (PBS) buffer 
with 1 % bovine serum albumin (BSA) carrier protein under the same conditions. 
Figure 7.12 illustrates the affinity capture LC–MS data using an anti-DM1 mAb 
capture probe comparing T-DM1 DAR distribution in human plasma and the PBS 
buffer. The DAR in PBS buffer at 37 °C at all time points including the end of the 
96 h study was virtually identical to the starting material, indicating that T-DM1 was 
stable in buffer under these conditions (Fig. 7.12). In contrast, changes in the DAR 
distribution were observed in plasma. For example, Fig. 7.12 shows the DAR dis-
tributions at 0 h and at 48 h in plasma. The relative amount of the higher DARs3–5 
appeared to be decreasing, indicating losses of drug in plasma. The MCC linker is 
designed to be stable as observed in buffer; however, clearly in plasma some drug 
is lost with incubation at 37 °C. The mechanism of drug loss in plasma has not been 
studied in T-DM1 to date. However, insights into ADC drug deconjugation pro-
cesses have been gained using less structurally complex engineered thio-mAb ADCs 
(DAR2) using the affinity capture LC–MS method [3]. It was observed that although 
maleimide is stable in buffer, in plasma, maleimide-containing linkers can exchange 
with sulfhydryl containing molecules such as albumin or cysteine in plasma by a 
nonenzymatic mechanism [49]. Therefore, it is possible that deconjugation of DM1 
may also involve exchange of the maleimide in the MCC linker [50].

Affinity capture LC–MS using a HER2 ECD capture probe was used to deter-
mine the changes in T-DM1 DAR distribution in vivo in a cynomolgus monkey 
plasma samples collected during a PK study. Using a HER2 ECD capture probe 
allowed the measurement of fully deconjugated T-DM1 (DAR0) in addition 
to measuring changes in DARs1–8. Figure 7.13 shows the deconvoluted mass 
spectra of T-DM1 in cynomolgus monkey plasma up to 28 days. The spectra are 
normalized to the most abundant DAR to allow visualization of T-DM1 DAR dis-
tribution at later time points where the absolute amounts in plasma are relatively 
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low due to clearance. The DAR distribution at time 2 min (Fig. 7.13) is compa-
rable to the DAR distribution in the dosing solution (Fig. 7.9). Up to day 7, the 
DAR distribution remains relatively unchanged. However, beyond day 7, the dis-
tribution is seen to change, where the relative abundances of higher DARs, for 
example, DAR4, DAR5, and DAR6 are seen to decrease. This is reflected in the 
average DAR for the distribution calculated from the peak areas that starts at an 
average DAR of 3.16 at 2 min and decreases over time to an average DAR of 0.66 
at the end of the study (Fig. 7.13). The DAR0 relative abundance is low through-
out the 28-day time course studied. Interestingly, at later time points, for exam-
ple, day 10, new molecular masses are observed that are intermediate between the 
DAR molecules. The structures of these species are not yet known. Overall, the 
affinity capture LC–MS provided direct evidence that although some DM1 drug 
is lost from T-DM1, the majority of the trastuzumab molecules carry at least one 
DM1 throughout the 28-day duration of the PK study.

7.3.2  The Use of Structurally Less Complex Engineered 
Model ADCs (DAR2) to Elucidate the Mechanisms of 
ADC Deconjugation in Plasma

Understanding the stability and mechanisms of ADC deconjugation in vivo is 
important for designing and developing this new class of biotherapeutics. However, 
this is analytically challenging for biotherapeutic ADCs that are typically complex 

Fig. 7.13  Characterization of ADC (T-DM1) drug distribution in a cynomolgus PK study by 
HER2 ECD affinity capture LC–MS shows the DAR distribution shifts to lower values over time. 
Spectrum is normalized to the major component at each time point, * Extra MCC linker
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heterogeneous mixtures, such as T-DM1 (DARs1–8). We have used engineered 
thio-mAb model ADCs that are structurally homogeneous with a DAR of 2 to gain 
insight into the mechanisms of deconjugation [49]. Three model ADCs trastu-
zumab-based thio-mAb structures with specific conjugation sites in the light chain 
(LC-V205C), heavy chain-Fab region (HC-A114C), or heavy chain-Fc region 
(Fc-S396C) were conjugated with MMAE via a maleimido-caproyl-valine-citrul-
line-p-amino-benzyloxy-carbonyl (MC-vc-PAB) linker or conjugated with mono-
methyl auristatin F (MMAF) via a maleimido-caproyl (MC) linker to obtain DAR2 
model ADCs. The MC-vc-PAB (vc) linker contains an enzymatic cleavage site at 
valine-citrulline while the MC linker is enzymatically stable. These thio-mAb ADC 
molecules (Fig. 7.1), called thio-trastuzumab-vc-MMAE, thio-trastuzumab-MC-
MMAF and analogous heavy chain thio-mAb ADCs with different mAbs (mAb1, 
mAb2, and mAb3), are structurally less complex than T-DM1 and allowed the 
accurate investigation of degree and rates of drug loss, the effect of the site of con-
jugation on drug loss, the structural characterization of the forms of the drug loss, 
that is, the component of the linker lost with the drug, and the molecular mecha-
nism of the linker drug loss [49]. Mechanistic insights gained from these less com-
plex ADC structures can be used to hypothesize analogous mechanisms for more 
complex biotherapeutic ADCs.

Model ADCs with cleavable linkers also allowed the development of a quantita-
tive LC–MS/MS approach to understand drug deconjugation. As an example, the 
total antibody-conjugated drug payload was measured in vitro and in vivo. This 
process involved enrichment of the ADC in plasma using protein A affinity frac-
tionation, enzymatic digestion to cleave the linker to release the drug and quan-
tification of the drug using LC–MS/MS. This approach allowed assessment of 
the stability in plasma in vitro by quantifying the amount of antibody-conjugated 
drug in the ADC over time and allowed the direct comparison of changes in the 
antibody-conjugated drug payload for different model ADCs. Model ADCs were 
important to optimize and assess the performance of this method. Once optimized, 
the method was validated for more complex mixture ADCs, to ensure that the pro-
tein A affinity isolation and enzymatic digestion at the cleavage site in the linker is 
not compromised for mixtures. This provided a useful MS-based method for quan-
tifying conjugated drug for in vitro stability and PK assessment in vivo.

In order to investigate the effect of the site of conjugation on the stability of 
ADCs, an in vitro plasma stability study was conducted by incubating LC-V205C, 
HC-A114C, and Fc-S396C thio-trastuzumab-vc-MMAE ADCs in human plasma 
at 37 °C for 96 h. They were also incubated with buffer for the same period of 
time as a control experiment. The DAR distribution was analyzed using the affin-
ity capture capillary LC–MS method described earlier [3]. Prior to incubation 
with plasma, all three ADCs showed predominantly a DAR of 2. No changes 
were observed in any of the three ADCs in buffer after incubation for 96 h indi-
cating these were stable in plasma [49]. In contrast, in plasma the three ADCs 
showed differing stability. The LC-V205C ADC showed virtually no change and 
retained its DAR of 2 throughout the 96 h incubation period, indicating it is sta-
ble in plasma. The HC-A114C ADC showed a significant formation of DAR1, 
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indicating drug loss from DAR2, and by 96 h there were similar amounts of 
DARs1 and 2. The Fc-S396C ADC showed a rapid conversion of DAR2 to DAR1 
and DAR0 species within the first 24 h indicating it was the least stable ADC. 
Clearly these changes in DAR distribution were plasma dependent as no changes 
in DAR distribution were observed in buffer over the same time period. These data 
indicate that the rate of drug loss from the antibody is dependent on the conju-
gation site and the three thio-trastuzumab-vc-MMAE ADCs can be ranked in 
the order of decreasing stability in plasma (from high to low): LC-V205C > HC-
A114C > Fc-S396C. Thus, affinity capture LC–MS of model DAR2 thio-mAb 
ADCs provides valuable insights into ADC stability and structural considerations, 
such as site of conjugation, which impacts ADC stability [49].

MS was also used to study the mechanism of drug loss from ADCs in plasma 
during stability experiments [49]. The DAR distribution of the ADCs containing 
the enzyme cleavable MC-vc-PAB-MMAE linker drug was compared with DAR 
distribution data from the corresponding ADCs conjugated via the noncleavable 
MC-MMAF linker drug. Surprisingly, similar conjugation site–dependent DAR 
distribution changes in the order of decreasing stability in plasma (light chain 
(LC) > heavy chain (HC) > fragment, crystallizable (Fc)) were observed for both 
the enzymatically cleavable and the noncleavable linkers in plasma, while both 
linkers were stable in buffer [49]. This suggested that the cleavage mechanism in 
plasma was not dependent on the vc enzymatic cleavage site as similar deconjuga-
tion was observed in the ADC with the MC linker (noncleavable linker).

Additional insights into the deconjugation mechanism were gained by evalua-
tion of the mass spectral data. Consistent molecular mass decreases were observed 
with deconjugation in plasma during in vitro stability and nonclinical PK stud-
ies for a variety of model DAR2 thio-mAbs: approximately 1,200 Da for MC-
vc-PAB-MMAE conjugates and 810 Da for MC-MMAF conjugates [49]. The 
mass shifts suggested loss of the entire linker drug from the respective ADCs 
followed by a possible addition of cysteine to the antibody to form a disulfide 
bond. It was earlier reported that albumin-MC-MMAF adducts in plasma were 
observed in the case of an anti-CD30-MC-MMAF conjugate [51]. Therefore, it 
was of interest to determine whether albumin-linker drug could be observed for 
a variety of model ADCs using affinity capture LC–MS with an anti-drug anti-
body capture probe. Three thio-trastuzumab-MC-MMAF ADCs (LC-V205C, 
HC-A114C, and Fc-S396C) and heavy chain thio-mAb1 ADC with noncleav-
able MC-MMAF linker drug were incubated in plasma at 37 °C and analyzed by 
affinity capture LC–MS. In each case, as the relative abundance of the intact ADC 
DAR2 decreased, a lower molecular mass protein of approximately 67,370 Da was 
observed to increase [49]. The molecular mass of this new protein was consistent 
with albumin-MC-MMAF. Similarly, albumin-MC-vc-PAB-MMAE adducts were 
observed upon incubation of the corresponding ADCs with the enzyme cleavable 
MC-vc-PAB-MMAE linker drug in plasma. The Fc-S396C ADC showed the most 
albumin adduct formation, and the LC-V205C ADC showed very little albumin 
adduct formation indicating a good correlation with the rate of drug loss from 
ADC described above. This maleimide exchange phenomenon was also observed 
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for ADCs with MC-vc-PAB-MMAE linker drugs, where linker drug was trans-
ferred to cysteine or glutathione if incubated in plasma with an excess of cysteine 
or glutathione. These results indicate that the maleimide exchange phenomenon 
for maleimide-containing linker drugs appears to be common for ADCs in plasma 
at 37 °C. It is noteworthy that maleimide exchange has only been observed in 
plasma and not in buffers under the same conditions.

Further insight into the mechanisms of deconjugation was gained from the 
intact molecular masses generated from model thio-mAb ADCs in vivo by affin-
ity capture LC–MS [49]. Plasma samples collected from cynomolgus monkeys 
that received a single intravenous injection of thio-mAb2-MC-vc-PAB-MMAE 
or thio-mAb1-MC-MMAF ADCs (both HC DAR2 thio-mAb variants HC-
A114C) were analyzed by affinity capture LC–MS using the corresponding tar-
get antigen affinity capture probes. Although both ADCs had different mAbs, 
linkers, and drugs, they showed similar DAR distribution profiles from day 1 
to day 21, where the relative abundance of DAR2 decreased and that of DAR1 
and DAR0 increased. This finding confirmed that the drug loss from these ADCs 
in vivo was independent of linker, drug, and antibody [49]. The same phenom-
enon was observed in in vitro plasma stability studies using the same ADCs [49]. 
Surprisingly, LC–MS analysis of plasma samples beyond day 35 from the PK 
studies showed minimal further loss of drug from DAR2 and DAR1 indicating the 
maleimide exchange process was no longer occurring after this time [49]. Careful 
examination of the mass spectra (day 1–day 35) revealed mass increases of 18 Da 
for DAR1 and 36 Da for DAR2 in mass spectra of samples collected on day 35 
post-dose, indicating possible changes in their chemical structures [49]. The mass 
increase of 18 Da per linker drug was consistent with hydrolysis of the succinim-
ide ring.

Further characterization of the proposed succinimide hydrolysis product was 
performed by tryptic digestion and peptide analysis. Plasma samples from the 
model thio-mAb2-vc-PAB-MMAE (HC-A114C variant) PK study above were 
affinity purified using an anti-antigen capture probe, digested with trypsin, and 
analyzed by LC–MS/MS. This further localized the 18 Da increase to the mass of 
tryptic peptide containing the MC-vc-PAB-MMAE linker drug. MS/MS sequenc-
ing data of this peptide identified that the site of the 18 Da mass increase was spe-
cifically at the Cys containing the MC-vc-PAB linker conjugation (likely on the 
succinimide ring) and not at any other amino acid in the peptide or at the MMAE 
portion of the linker drug (data not shown).

Thus, the MS data indicated that by day 35 in the PK studies of model DAR2 
ADCs containing MC-vc-PAB or MC linkers, the succinimide ring in these linkers 
can hydrolyze resulting in an 18 Da mass increase. Once hydrolyzed, the succin-
imide no longer exchanges with other thiols in plasma and therefore helps stabilize 
the linker. Different rates of succinimide ring hydrolysis have been observed for 
model DAR2 thio-mAb ADCs in plasma in vitro and in vivo, depending on the 
site of linker drug conjugation [49]. This suggests that the linker stability of ADCs 
with site-specific conjugation on light chains may be higher due to faster succin-
imide ring hydrolysis in plasma [49].
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The possibility of other structural alterations at the site of linker drug loss in 
model thio-mAb ADCs was explored, as the molecular mass change upon loss of 
the linker drug did not correspond exactly with the mass of the linker drug. For 
example, the 1,200 Da mass shift observed upon loss of linker drug in MC-vc-
PAB-MMAE conjugates is greater than the molecular mass of the linker drug 
(1,319 Da). The hypothesis that a multi-step process giving rise to an overall mass 
shift of 1,200 Da was investigated by structural characterization of affinity-puri-
fied samples from a thio-mAb2-MC-vc-PAB-MMAE plasma stability study (data 
not shown). The DAR2, DAR1, and DAR0 affinity-purified mixture from capture 
with an anti-antigen probe in plasma was subjected to a partial proteolysis using 
endoproteinase Lys-C, without reduction. Analysis of the Lys-C digest by LC–
MS showed components with molecular masses of 47,229 Da and 48,434 Da. The 
mass of 48,434 Da is consistent with the molecular mass of an expected Lys-C 
proteolytic product for the ADC, corresponding to the antibody fragment, antigen 
binding (Fab fragment) plus the linker drug. However, the mass of 47,229 Da is 
an unexpected mass, corresponding to the antibody Fab fragment plus 119 Da. 
Based on the molecular mass of cysteine being 119 Da, it was hypothesized that 
the (Fab+119) Da corresponds to Fab+cysteine. The loss of the entire linker drug 
combination (−1,319 Da) followed by the addition of cysteine (+119 Da) at the 
conjugation site would result in an overall mass loss of 1,200 Da from the intact 
MC-vc-PAB-MMAE ADCs. This corresponds to the mass loss observed in MC-
vc-PAB-MMAE model DAR2 thio-mAbs in plasma upon conversion of DAR2 to 
DAR1 and an additional 1,200 Da loss for conversion from DAR1 to DAR0. Thus, 
the presence of (Fab+119) Da and the mass loss of 1,200 Da during loss of linker 
drug support the addition of 119 Da at the conjugation site in MC-vc-PAB-MMAE 
ADCs upon loss of linker drug in plasma. It is likely that this ADC structural mod-
ification at the site of linker drug loss in plasma is the addition of cysteine.

To confirm whether the 119 Da structural modification at the site (HC-A114C 
conjugate) of linker drug loss was cysteine, disulfide reduction was performed 
to assess if the 119 Da was linked via a disulfide bond and therefore reducible. 
Disulfide reduction of the partial Lys-C digest of thio-mAb2-MC-vc-PAB-MMAE 
mixture of DAR0, DAR1, and DAR2 (discussed above), containing the (Fab+119) 
Da species, was performed with TCEP. After the reduction, the LC–MS analysis 
showed unmodified light chain, unmodified HC Fd fragment (amino terminal half 
of the HC), HC Fd+(MC-vc-PAB) and HC Fd+(MC-vc-PAB) + 18 Da com-
ponents (data not shown). The light chain and the conjugated HC (Fd-MC-vc-
PAB-MMAE) components were expected products from reduction of the Lys-C 
digest of the thio-mAb2-MC-vc-PAB-MMAE DARs mixture. Interestingly, an 
unconjugated HC Fd fragment (23,632 Da) was observed, while an Fd+119 Da 
(23,751 Da) was not observed. This indicates that the 119 Da moiety in the 
Fab+119 Da fragment in the Lys-C digest of the thio-mAb2-MC-vc-PAB-MMAE 
thio-mAb DARs from plasma was reducible with TCEP. Therefore, these data sup-
port the possible addition of cysteine at the conjugation site after the loss of the 
entire MC-vc-PAB-MMAE, and this modification may also occur during deconju-
gation of other maleimide-containing linkers.
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7.3.3  Measuring Intact ADCs and Released Drug in Tissues

Since the biodistribution of antibodies is not well understood, tissue analysis is 
important for ADCs as there may be nonspecific mechanisms for the biodistribu-
tion of ADCs. It is also possible that deconjugated drug-containing fragments or 
drug adducts could also traffic to tissues. Any drug-containing species trafficked 
to tissues could have the potential for toxicity. MS is commonly used to measure 
small molecule drugs in tissues using quantitative methods that are analogous to 
those used for plasma analysis, for example, organic extraction of the drug from 
tissue followed by LC–MS/MS. Similarly, qualitative MS methods developed for 
the analysis of proteins in plasma can be applied to tissues [52]. For ADCs, both 
the large molecule qualitative methods and small molecule quantitative methods 
developed in plasma can be extended to tissue analysis. Comparison of ADC anal-
yses in plasma versus tissue, different tissues and subsections of the same tissue 
type can provide valuable insights into the fate of ADCs in vivo such as stability to 
proteolysis of the antibody in different tissue types and differences in ADC decon-
jugation processes across different tissues.

The following example illustrates the affinity capture LC–MS and released 
cytotoxic drug analysis in a variety of rat tissues using a model HC DAR2 thio-
mAb3-MC-vc-PAB-MMAE ADC. Tissue was collected for analysis following the 
administration of four weekly intravenous doses. Plasma and tissue samples includ-
ing lung and kidney were analyzed for the DAR distribution by affinity capture 
LC–MS and analyzed for the cytotoxic drug, MMAE by LC–MS/MS. It is possible 
that enzyme activity in the tissue may release some cytotoxic drug during tissue 
sample processing. To test this hypothesis, 15 μg of the thio-mAb3-MC-vc-PAB-
MMAE was spiked into 0.3 g rat intact lung samples and the tissue was prepared 
using a variety of homogenization and room temperature storage conditions [52]. 
LC–MS/MS data showed an increase in MMAE with the homogenization time and 
the room temperature storage period [52]. Release of MMAE during homogeniza-
tion was minimized by the addition of protease inhibitor cocktail. MMAE levels in 
rat tissues were measured by LC–MS/MS using an optimized tissue homogeniza-
tion procedure with addition of a protease inhibitor cocktail. Tissue concentrations 
of MMAE appeared to be higher than that in plasma (Fig. 7.14a). The higher con-
centrations in tissues indicate that MMAE might be produced from the intact thio-
mAb trafficked to the tissues. Or, it is possible that MMAE could partition there 
from plasma, as the octanol–water partition coefficient for MMAE suggests that 
it could accumulate in tissues. Figure 7.14b shows representative affinity capture 
LC–MS spectra from lung and kidney and indicates the formation of similar DAR 
distributions for thio-mAb3-MC-vc-PAC-MMAE in vivo in each of the tissues. The 
DAR distributions are also similar to those typically observed in plasma for HC 
thio-mAbs. Based on a limited sample set, this suggests that the deconjugation phe-
nomenon in tissues is not significantly different from that in plasma.

The characterization of intact ADCs in tissues by affinity capture LC–MS and 
LC–MS/MS free drug quantification allows for the comparison of qualitative and 
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quantitative concentrations of ADCs across different tissues and plasma. The 
quantification data for the rat study described above suggested that MMAE in 
tissues might be generated in situ upon tissue uptake of intact ADCs or MMAE 
could partition there from plasma. The qualitative characterization of the model 
heavy chain thio-mAb3-MC-vc-PAB-MMAE in a variety of tissues suggested that 
the deconjugation in tissues does not appear to be significantly different from that 
in plasma. Overall, both quantitative and qualitative MS measurements of ADCs 
in tissues may provide valuable insights into mechanisms of ADC trafficking and 
mechanisms of biotransformation in tissues.

7.4  Conclusions

ADCs are complex biotherapeutics where additional complexity can be generated by 
a variety of biotransformation mechanisms in vivo. MS is an essential tool to help 
understand the fate of ADCs in vivo to gain insights that can help evaluate safety and 
efficacy. This includes qualitative measurement of intact molecular masses of ADCs 
in plasma by affinity capture LC–MS using either target antigen affinity probes or 
anti-drug antibody affinity probes. Intact ADC molecular masses provide valu-
able DAR distribution data. Due to the high molecular mass of ADCs, in excess of 
150 kDa, it may be challenging to detect all biotransformations at the intact molecu-
lar level. To assess structural changes that may not be apparent at the intact mol-
ecule level, the ADC can be reduced to light and heavy chains and then analyzed. 
With lower masses of the reduced form, additional resolution at the lower mass 
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allows ready assignment of molecular mass shifts resulting from biotransformation. 
Confirmation of molecular structural changes, such as succinimide hydrolysis, can 
be obtained by enzymatic digestion of affinity captured ADCs and peptide-tandem 
MS. In addition to providing structural characterization information, MS can be 
used to quantify ADC components of interest. This includes quantification of cat-
abolites and metabolites, for example, free drug, linker drug. Methods for protein 
quantification using proteomic approaches may also be applicable to quantify ADCs. 
Finally, MS is a critical component of the overall bioanalytical strategy for ADCs. 
Characterization of the biotransformation of ADCs in vivo provides important data 
for understanding analytes that should be quantified by ligand-binding assays. It 
is critical to integrate the qualitative and quantitative MS analytical strategies with 
ligand-binding strategies for ADC bioanalysis during drug development.
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8.1  Introduction

As some of the most essential molecules of life, proteins fulfill a plethora of 
biochemical functions within every living organism. They are involved in virtu-
ally all cell functions, such as cell division, cell death, immune response, signal 
transduction, and ligand binding. In contrast to small molecules, proteins are sig-
nificantly more complicated in structure. In biophysical conditions, proteins fold 
into unique three-dimensional structures in solution that are flexible and dynamic. 
The biochemical functions of a protein are directly related to such protein higher-
order structures and structural dynamics. Proteins also interact with each other as 
well as with small ligands and other biopolymers to form complexes. Governed 
by the protein higher-order structure and dynamics, such interactions form the 
basis of signaling and regulatory processes and play a key role in drug action 
mechanisms [1]. Therefore, it is not only important to elucidate the chemical 
composition of a protein, but also to characterize its higher-order structure, or 
conformation, and the conformational dynamics in solution for a better under-
standing of the protein’s functions.

With advances in mass spectrometry (MS), MS has become the standard 
method to identify cellular and therapeutic proteins, quantify expression lev-
els, and characterize post-translational modifications, network relationships, 
and metabolism products, as described in the previous chapters of this book. 
Applications of MS methods are also being developed for determination of higher-
order structures and dynamics of biomolecules. These methods successfully 
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complement other biophysical techniques, such as X-ray crystallography and 
NMR spectroscopy. X-ray crystallography and NMR can determine protein 
structures with high spatial resolution; however, the technologies require either 
successful crystallization or highly purified isotopically labeled proteins and 
are therefore unsuitable for rapid and routine sample analysis. NMR is further 
restricted by the size of the proteins to be analyzed. Structural MS, on the other 
hand, offers unique advantages over other techniques to study protein structures, 
including those of multi-protein complexes, regardless of the molecular size, 
amount of material available, solubility, or crystallization properties that often 
limit the utility of other techniques.

As an orthogonal biophysical technique, hydrogen/deuterium exchange mass 
spectrometry (HDX MS) represents one of the most widely used techniques for 
exploring protein higher-order structure in solution. As shown in Fig. 8.1, the pro-
tein backbone amide hydrogens can be exchanged with deuterium atoms from 
the surrounding solvent at different measurable exchange rates. The exchange 
rate is a function of the protein structure and solvent accessibility of the amide 
hydrogen, and it can be measured by MS as the heavier mass of deuterium gets 
incorporated into the protein. The hydrogen atoms at the surface of the proteins 
exchange more rapidly than the amide hydrogens buried in the interior or involved 
in stabilizing hydrogen bonds. Therefore, HDX MS can provide information on 

NH CH CO NH CH CO NH CH CO

CH2
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CH2 CH3

H2N
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Fig. 8.1  a Schematic representation of protein backbone amide hydrogens (blue dots) exchange 
with deuterons in solution (red dots). b Types of hydrogens in a segment of a protein: back-
bone amide hydrogens (blue), hydrogens bonded to carbon (black) that do not exchange, and 
hydrogens on side chains containing –OH, –SH, –NH2, –COOH, and –CONH2 groups (red) that 
exchange too fast to be monitored
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protein structure and solvent accessibility in solution. HDX was first introduced 
by Hvidt and Linderstrom-Lang in the mid-1950s, who realized that slower amide 
hydrogen exchange rates should reflect the presence of hydrogen bonding [2, 3]. 
Since then, HDX has been detected with various techniques such as scintilla-
tion counting [4], infrared and ultraviolet spectroscopies [5, 6], neutron diffrac-
tion [7], and NMR spectroscopy [8]. NMR methods remain particularly useful for 
measuring the exchange rates of individual amides in proteins [9, 10]. However, 
some amides exchange too rapidly to be measured with standard NMR tech-
niques, making the study of most protein–protein interactions difficult by NMR 
[11]. The spatial resolution of HDX using other detectors was improved by com-
bining limited proteolysis with separation of resulting peptides using the newly 
introduced high-pressure liquid chromatography (HPLC) techniques in the late 
1970s and early 1980s [12, 13]. The coupling of MS for detection of HDX was 
introduced in 1991 [14] after it became possible to introduce protein molecules 
into a mass spectrometer for mass analysis, and the method was further enhanced 
by pairing the experiment with proteolytic digestion, enabling structural changes 
to be resolved at the peptide level [15]. The earliest experiments employed fast 
atom bombardment (FAB) for ionization of peptides, yielding a low number of 
peptides recovered from the HDX experiment (59 %). A year later, electrospray 
ionization mass spectrometry (ESI-MS) was coupled with HPLC peptide separa-
tion in HDX analyses of horse skeletal muscle myoglobin, and this combination 
demonstrated improved sequence coverage to 89 % [16]. Throughout the past two 
decades, the HDX MS method has developed rapidly with advances in both HDX 
methodology and MS instrumentation (hardware and software) and has emerged 
as an essential tool for the study of protein structure in solution including higher-
order structures of protein therapeutics. It has been applied to study protein con-
formation, conformational dynamics, folding, binding, and aggregation [17–24]. 
The method requires only a small quantity of sample (picomoles) and can provide 
useful results with dilute solutions (submicromolar) [25]. It can be used to study 
proteins that are hard to purify and can reveal protein conformational dynamics on 
a wide timescale.

8.2  Theory

The kinetics of amide HDX has been measured by several methods, and the mech-
anism has been thoroughly reviewed [23, 24, 26–29]. In this section, a short sum-
mary of the basic HDX principles is described to lay the foundation for discussion 
of the HDX MS experimental design and data analysis.

There are three types of protons in protein that are grouped by their HDX 
behavior (Fig. 8.1b). Protons in side chains containing –OH, –SH, –NH2, –COOH, 
and –CONH2 groups and from the amino and carboxy termini exchange too rap-
idly to be measurable by isotope exchange methods; the carbon-bound aliphatic 
and aromatic protons have high covalent character, and the isotope exchange can 
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only occur by catalyst activation, such as reaction with hydroxyl radicals [30]; 
protons on secondary amides comprising the backbone of a folded protein have 
measurable isotope exchange rates. The amide proton exchange rate is dependent 
on several factors including protein structure, pH, temperature, and adjacent amino 
acid side chains of the amide group that alter the pKa of the hydrogen atom [31]. 
Given a certain temperature and pH, the exchange rate for the amide hydrogen in 
an unstructured peptide can be affected by the primary structure, or sequence, by 
as much as 30-fold and can be predicted [31, 32]. In a folded protein, the exchange 
rate of each amide hydrogen can be decreased by its higher-order structure by up 
to eight orders of magnitude, ranging from milliseconds to many years [26]. The 
drastic difference in exchange rates allows the HDX method to serve as a sensitive 
probe for studying conformational changes in proteins. With the exception of pro-
line and certain post-translationally modified residues, every non-N-terminal resi-
due possesses amide hydrogen; therefore, HDX can probe structural features along 
the entire protein sequence.

In short peptides, amide hydrogen exchange involves proton abstraction 
described by a chemical exchange rate (kch). It depends on an “intrinsic” rate of 
exchange for that hydrogen (kint) and the concentration of available catalyst, 
including OH−, H3O+, water, and acidic or basic solutes:

The exchange occurs in all aqueous solutions and can be catalyzed by acid 
or base. At lower pH, exchange occurs via proton addition, catalyzed by D3O+  
(see acid-catalyzed reaction mechanism in Fig. 8.2a, [32–35]). Above pH 2.5, 
exchange occurs by proton abstraction, predominantly by OH− (see base-catalyzed 
reaction mechanism in Fig. 8.2b, [35, 36]). The base-catalyzed exchange of back-
bone amide hydrogens is much more effective than acid-catalyzed or water-catalyzed 
exchanges by around eight or twelve orders of magnitude, respectively, at room tem-
perature [31, 37]. Because chemical exchange rates for amide deuterium atoms are 
slower than for hydrogen atoms, with little solvent isotope effect, proton abstraction 
is rate-limiting for reactions occurring above pH 2.5 [38]. The rates of the base-cat-
alyzed reactions increase at higher pH values. An increase of 1 pH unit increases the 
exchange rate constant by approximately 10-fold, with kch being minimum around 
pH ~ 2.5 (pHmin, sequence dependent) [37]. At pH 7.0, the chemical exchange occurs 
rapidly (kch ~ 101–103 s−1) [23, 31].

The backbone amide hydrogen exchange rates vary drastically after the protein 
has adopted a folded three-dimensional structure. To complicate matters even fur-
ther, the rates are also affected by the protein flexibility and mobility, whereas the 
protein structure is altered briefly exposing regions that were previously inacces-
sible to solvent [39]. Below is a model describing HDX in native, folded proteins:

(8.1)kch = kint
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where kop is the rate of unfolding, kf is the rate of folding, protein (H) represents 
unlabeled protein, and protein (D) represents deuterated protein. Protein in the 
folded state contains inaccessible amide hydrogens, and protein in the open state 
contains accessible exchange-competent amide hydrogens. In this scheme, the 
HDX rate is given by Eq. (8.3) [40, 41]:

The assumption that stable proteins in the native state have a higher propensity 
for the folded form than for the open form implies that kop ≪ kf, which results in a 
simplified rate expression:

This expression leads to the well-known limiting EX1 and EX2 regimes. When 
the small-amplitude fluctuations that convert solvent-protected hydrogens to 
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Fig. 8.2  a Acid-catalyzed HDX mechanism. b Base-catalyzed HDX mechanism
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solvent-exposed hydrogens are assumed to be completely reversible, the chemical 
exchange occurs quickly after conversion to the solvent-exposed form (kch ≫ kf). 
This represents a continuum of hydrogen exchange mechanisms which is termed 
as the EX1 regime or monomolecular exchange. The rate expression becomes

such that the HDX behavior of the protein reflects the kinetics of the opening 
event. The reaction rate is only proportional to the concentration of the single 
species unexchanged. The rate is independent of chemical exchange, and in most 
cases, complete pH independence will be observed if protein structure and the 
opening/folding rates are not affected by pH. Regions of proteins exhibiting EX1 
kinetics can exchange all amide hydrogens during one unfolding event; hence, 
regions of proteins that undergo slow folding and refolding may display amide 
EX1 exchange kinetics with a short period of deuterium exposure [42]. Proteins 
can also be induced to exhibit EX1 kinetics with chemical denaturant [43] or by 
increasing pH [44].

A second type of bimolecular exchange, termed EX2, occurs when reconver-
sion of the open form back to the folded, protected form occurs much faster than 
the rate of chemical exchange, or kf ≫ kch, then the equation changes into

Under conditions that obey EX2 kinetics, kHDX depends on the equilibrium of 
folded and unfolded forms and on the chemical exchange rate. The unfolding–folding 
process may occur many times before the proton is exchanged. The exchange rate is 
pH dependent as the chemical exchange rate is pH dependent. For native-state pro-
teins, experimental evidence based on the pH dependence of the exchange rate con-
firms that EX2 kinetics is the predominant mechanism of exchange for most proteins 
[39, 45]. However, some proteins may contain regions that undergo both mechanisms 
simultaneously [45]. Regions where either EX1 or EX2 mechanisms occur can also 
be distinguished by examining the characteristic isotope patterns in mass spectra [19].

In Eq. (8.6), the ratio of the rate constant for protein unfolding to folding, Kop, 
represents the unfolding equilibrium constant in the protein-opening reaction. 
HDX under EX2 conditions does not provide any information on the rate at which 
structural fluctuations occur. However, the unfolding rate constant (kop) divided 
by the chemical exchange rate (kch) yields the unfolding equilibrium constant. 
Therefore, under EX2 conditions, the equilibrium free energy change upon unfold-
ing (ΔGop) can be obtained based on Eq. (8.6):

where R and T correspond to the gas constant and the absolute temperature in 
Kelvin, respectively. The values of kch can be obtained from the literature [31] 

(8.5)kHDX = kop
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and calculated together with other values using spreadsheets downloadable from 
Walter Englander’s website (http://hx2.med.upenn.edu). The values of kHDX can 
be obtained from experimental data as it is the first-order rate constant that best fits 
the experimental deuterium uptake curves.

The ratio kch/kHDX is referred to as the protection factor

that provides a measure of the slowing of HDX rate induced by the structure of the 
protein or upon binding [46]. If a segment of a protein has an average protection 
factor of 1, then it indicates that the segment is essentially unstructured. If the pro-
tection factor is greater than 1, it indicates that the region is protected from HDX 
and vice versa.

In addition to pH, protein primary structure, higher-order structure and mobil-
ity, other factors such as temperature, solvent composition, and pressure can 
also affect the HDX rate. Changes in temperature alter the ionization constant 
of water, thus affecting the catalyst concentration in the exchange reaction [47]. 
The backbone amide exchange rate increases by about threefold for each 10 °C 
increment [35, 48]. The rate can be reduced by approximately tenfold by adjusting 
the temperature in the HDX experiment from room temperature to 0 °C. Solvent 
composition also has an impact on the exchange rates and has been reviewed com-
prehensively [13, 49]. Addition of organic solvent alters the equilibrium constant 
Kw for water which directly determines the OH− ion concentration at a given pH 
value, thus affecting the base-catalyzed exchange rate. Miscible organic solvents 
used in reverse-phase HPLC generally slow down the exchange rate. For exam-
ple, adding organic solvent such as dioxane lowers the concentration of OH− ions, 
causing the shift of pHmin to progressively higher values [48]. Hence, reducing the 
temperature or changing solvent composition offers practical ways to minimize 
back exchange of the isotopic label.

8.3  Methodology

8.3.1  Labeling Approaches

There are two main approaches to perform the HDX experiments: continu-
ous labeling and pulsed labeling (Fig. 8.3). In continuous labeling, the protein 
is exposed to the deuterated buffer under conditions where the native conforma-
tion of the protein is “stable.” Incubation is carried out in aliquots of the protein 
sample for various amounts of times until quenched, allowing continuous deute-
rium incorporation into the protein structure to be monitored as a function of time 
(Fig. 8.3a). During the incubation, the populations of folded and unfolded states 
of the protein are constantly changing. Proteins or regions of the proteins that are 

(8.8)Pf =
kch

kHDX

http://hx2.med.upenn.edu
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or become unfolded during the incubation are labeled with deuterium, and the 
reaction is not reversible due to the high concentration of D2O. Such information 
is readily measured by MS due to the heavier mass of deuterium. The deuterium 
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Fig. 8.3  Scheme for HDX MS experiments: a continuous labeling, b pulsed labeling, and  
c exchange-out experiments followed by either global (intact protein level) or local (peptide 
level) analysis. See text for detailed explanation for each workflow
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incorporation rate monitored as a function of incubation time provides informa-
tion on the conformational dynamics of a protein under equilibrium conditions. 
The continuous labeling method is particularly useful for monitoring slow unfold-
ing transitions [50]. Due to the relatively simple experimental procedures, it has 
been widely adopted for a variety of studies, such as characterizing protein con-
formation and dynamics [51], protein/ligand binding [52, 53], and protein/protein 
interactions [54, 55].

As illustrated in Fig. 8.3b, in the pulsed labeling approach, a protein is usually 
perturbed in some manner, such as by adding chemical denaturant, forming com-
plexes, changing pH, and changing temperature, in order to induce some struc-
tural changes [56, 57]. Then, the protein is exposed to deuterated buffer (typically 
with higher pH, e.g., pH 8–10) for a very brief period of time, typically 10 s or 
less [58]. The slightly basic solution serves to ensure a sufficient exchange rate 
during the brief labeling pulse. For example at pH 8.5, the exchange of unpro-
tected amide hydrogens occurs on a timescale of 10 ms [31, 57]. Extensive HDX 
will only affect sites that are solvent exposed and not involved in hydrogen bonds. 
Binding to other moieties will decrease the HDX level as a result of the formation 
of intermolecular hydrogen bonds and steric protection of the exchangeable sites. 
After the brief labeling period, the deuterated protein or protein complex provides 
a snapshot of the protein (complex) that existed during the pulsed exposure to 
deuterium. The pulsed labeling approach is less commonly used as the technical 
requirements for performing such experiment are much higher than for the con-
tinuous labeling experiment. Nonetheless, pulsed labeling has unique advantages 
and applications since it only focuses on the rapidly exchanging amides, which 
typically occur on the surface of the protein and are the most relevant for bind-
ing events. Pulsed labeling has been adopted to study protein-folding kinetics and 
transient intermediate states [57, 59], as well as to characterize non-covalent pro-
tein complexes [58].

Instead of exchanging the deuterium atoms “into” the protein structure and 
measuring increased mass (“exchange in”), an alternative approach is to perform 
“exchange-out” reactions in which samples are fully deuterated before exposure 
to a pulsed labeling with H2O [60] (Fig. 8.3c). Such an approach is also called 
“kinetic labeling.” The deuterons in backbone amides with very fast exchange 
rates completely exchange back to hydrogens, and those with slow and intermedi-
ate exchange rates stay deuterated. This approach has often been used to probe the 
antigen epitopes of antibodies [55, 61]. The strategy involves complete deutera-
tion of the free antigen, then loading the sample onto a column in which antibody 
has been covalently immobilized. The antigen then binds with antibody to form 
a complex, followed by a washing step with aqueous buffer for a predetermined 
period of time to exchange out the deuterium atoms. The antigen is then eluted out 
by a low-pH buffer, and the deuterium atoms retained by the epitope regions can 
be identified.

If the concentration of deuterium in the surrounding medium is low, then the 
deuterium in a protein will revert back to hydrogen form. The labeling experi-
ments are almost always followed by a quenching step in order to stop the reaction 
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and retain the specific isotope-labeled signature. As discussed in the previous 
section, the amide hydrogen exchange rate is minimal around pH 2.5 and is also 
temperature dependent. By changing the conditions from room temperature and 
physiological pH (pH 7.0–8.0) where most labeling experiments occur to 0 °C 
and pH 2.5, the exchange rate decreases by about five orders of magnitude [62, 
63]. Under such conditions, if a protein is placed in a 100 % H2O environment, 
the half-life for reversion of the deuterium label back to hydrogen is between  
30 and 120 min, depending on the protein sequence [26, 31]. The subsequent steps 
to get the sample ready for MS analysis, such as enzyme digestion, desalting, and 
chromatographic separation, are usually performed in H2O solution, and all the 
deuterium atoms that had been incorporated into terminal and side-chain posi-
tions should rapidly revert to the hydrogen atom forms, simplifying the data inter-
pretation. However, these steps need to be performed rapidly under the quenched 
conditions in order to minimize the back exchange of secondary amide deuterium 
atoms. The quenching step also serves another purpose as it mildly denatures the 
protein and thereby facilitates the proteolytic digestion step.

8.3.2  Global Versus Peptide HDX MS

Isotopically labeled protein samples from the HDX experiments can be meas-
ured by mass spectrometers either at the intact protein level to reveal the global 
deuterium incorporation or at peptide level following enzyme digestion to reveal 
local structural information (see bottom part of Fig. 8.3). Global analysis was the 
first type of analysis reported for HDX MS [14] and is the most basic and simple 
application of the technique. As only the mass of the intact protein needs to be 
measured, there is no need for chromatographic separation. ESI is the preferred 
ionization mode for intact proteins because of its high sensitivity and suitability 
for detecting the low m/z values of the multiply charged species generated dur-
ing ionization of intact proteins. Typically, a desalting column is used for remov-
ing salt that suppresses protein signals. The desalting is performed under quenched 
conditions to minimize back-exchange reactions. The desalting step also washes 
away N-terminal and side-chain deuterons, simplifying the subsequent data 
analysis as only the deuterons incorporated into the backbone amide positions 
are retained. The total number of deuterium atoms incorporated into the protein 
structure is then measured as a function of time. Though the global HDX analy-
sis has no spatial resolution, it can quickly provide information on protein con-
formational stability and reflect the extent of overall folding of the protein. As 
the technical requirements for global HDX MS analysis are relatively simple, the 
experiments can be automated for high throughput with a platform programmed 
to perform labeling/quenching and online desalting automatically. This approach 
has the potential to be adopted in biopharmaceutical industries as a rapid structural 
screening tool for protein characterization and quality control studies.
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Peptide-level HDX MS offers improved spatial resolution of protein con-
formations by measuring the deuterium incorporation into short stretches of 
peptide fragments that are produced after proteolytic digestion of the labeled 
protein. Therefore, more specific HDX information is provided, revealing 
both the rate and location of deuterium incorporation. The concept was first 
introduced by Rosa and Richards [12] and was later demonstrated in com-
bination with MS analysis by Smith and coworkers [15]. Pepsin is the most 
widely used protease in HDX because it is stable and highly active under the 
acidic quenched conditions. Other acidic proteases such as Aspergillus saitoi 
(type XIII) and Rhizopus sp. (type XVIII) have also been used but with less 
digesting efficiency than obtained with pepsin under similar quenched condi-
tions. Although pepsin exhibits preferential cleavage for hydrophobic, pref-
erably aromatic, residues, it is still considered a non-specific protease and 
typically produces peptides 10–20 amino acids in length and with overlapping 
sequences [64]. The degree of overlap can be significant, reaching 3–4 over-
lapping peptides for a given region of the protein, which in turn helps improve 
the spatial resolution for assigning deuterium incorporation to short stretches 
of amino acids [28]. Though non-specific, pepsin cleavage is highly reproduc-
ible if the digestion conditions such as temperature, pH, concentration, and time 
are carefully controlled. Successive protease treatments can also be used to gen-
erate smaller fragments for mass spectrometric analysis, yielding even higher 
sequence coverage and spatial resolution [64].

Peptides generated from HDX experiments can be directly analyzed by 
matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) 
[65, 66] or separated chromatographically for analysis by ESI-MS [15], with 
the latter method being used more predominantly. Advantages for MALDI MS 
detection include easier interpretation of spectra as only singly charged ions 
are produced and a greater buffer salt tolerance than ESI therefore obviating 
the need for desalting. However, deuterium losses due to back exchange have 
been reported to be significantly higher in MALDI than in ESI [67]. Moreover, 
for a larger protein, for example, 50 kDa, directly measured spectra are com-
plicated by more than one hundred peptides typically generated from pepsin 
digestion. With the alternative approach of coupling HPLC separation and 
ESI-MS, mass overlap of peptides is minimized and ionization suppression 
is reduced, although the separation time needs to be well controlled to mini-
mize back exchange. During ionization in ESI, the cone temperature and des-
olvation gas temperature also need to be reduced to minimize back exchange. 
Proteolyzed peptides are then identified using a combination of exact mass and 
tandem MS analyses using control samples prepared under HDX conditions 
with the exception that the D2O exchange buffer is replaced with an otherwise 
identical H2O-based buffer. It is assumed that the same peptides (without iso-
topic labeling) are produced in the control experiment. Once identified, these 
peptides can be monitored for their deuterium uptake levels in subsequent labe-
ling experiments.
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8.3.3  Tandem MS

Further improvement in the spatial resolution of HDX MS can be achieved by dis-
sociating peptic peptides into shorter fragment ions through collisions in the gas 
phase (MS/MS) in a tandem mass spectrometer. Ideally, deuteration of individual 
amides should then be revealed whenever a mass increment of 1 Da greater than 
the residue mass is observed. This concept was first tested using collision-induced 
dissociation (CID) as the method for peptide fragmentation [68, 69]. While it was 
possible to measure the extent of HDX at individual amide hydrogen, extensive 
scrambling of hydrogen or deuterium atoms attached to nitrogen and oxygen dur-
ing the CID fragmentation process was observed [70–72]. Scrambling occurs 
when a peptide ion reaches the internal energy threshold that mobilizes protons 
before achieving backbone fragmentation.

Non-conventional fragmentation techniques such as electron capture dissocia-
tion (ECD) was demonstrated to proceed with a very low level of amide hydrogen 
scrambling [73]. ECD is a low energy, radical-driven fragmentation technique that 
cleaves the polypeptide backbone with minimal vibrational excitation [74] and is 
likely to limit the possibility of intramolecular amide hydrogen migration. ECD 
has been shown to fragment proteins into c and z ion series, but mainly at ter-
minal regions of the peptide, yielding limited sequence information [75]. More 
efficient ECD has been demonstrated using the oscillating electric fields available 
in Fourier transform ion cyclotron resonance mass spectrometers (FT-ICR-MS) 
[74]; however, this technology is very expensive and not easily accessible to 
many laboratories. A more recently developed fragmentation technique, elec-
tron transfer dissociation (ETD), also yields c and z ion series [76]. It relies on 
the transfer of an electron to multiply charged peptide/protein ions using singly 
charged anions, generating odd-electron fragment ions via radical-based rear-
rangements. The resulting peptide backbone cleavage is assumed to proceed by 
the same mechanisms as for ECD. The ETD ion/ion reaction can be performed 
in any instrument that uses radio frequency oscillating electric fields such as in 
ion traps [76, 77]. Experiments conducted using peptides with unique selective 
labeling have demonstrated that very low levels of hydrogen scrambling can be 
observed when the collisional activation prior to the ETD event is carefully mini-
mized [78]. Instrumental parameters that involve ion desolvation and transfer 
into the mass analyzer also need to be optimized to reduce the energy imparted 
to the precursor ion, hence minimizing scrambling. With careful experimental 
design, single-amide resolution for deuterium incorporation measurements has 
been achieved using model peptide systems [78] and has been applied to the char-
acterization of conformational dynamics of proteins (the apo-form of amyloido-
genic protein β2-microglobulin) [79] and protein/ligand interactions (peroxisome 
proliferator-activated receptor bound with ligands) [80]. Figure 8.4 shows example 
data for the measurement of deuterium content of individual backbone amides for 
a section of β2-microglobulin (residues 40–54) using the ETD approach [79]. An 
exchange-out experiment was performed on fully deuterated β2-microglobulin for 



3178 Hydrogen/Deuterium Exchange Mass Spectrometry

40 min, followed by online pepsin digestion and LC/MS/MS with ETD fragmenta-
tion in an ion trap mass spectrometer. As shown in the figure, the exact location of 
retained deuterons is apparent from the masses of sequential fragment ions (c ions) 
of the peptic peptide. The exclusive retention of deuterium to E44 and I46 shown 
in the ETD data is in excellent agreement with the previously published HDX-
NMR results obtained on the same molecule [81].

Studies examining full-length proteins by HDX combined with a top-down  
MS/MS approach with either ECD or ETD have also obtained single-amide reso-
lution without requiring enzyme digestion or chromatographic separation [82, 83]. 
Another advantage of the top-down approach is that it provides a solution to the 
characterization of higher-order structure and dynamics in a conformer-specific 

Fig. 8.4  Measuring the deuterium content of individual backbone amides of 2-microglobulin by 
ETD: a ETD mass spectra of the triply charged 2-microglobulin peptide KNGERIEKVEHSDL 
(residues 40–54) from an unlabeled (upper panels) and a labeled sample obtained after 40 min 
isotopic exchange (lower panels). The isotopic patterns of the fragment ions c3–c6 are displayed. 
b Bar chart showing the deuterium level of all c ions. The deuterium level of the intact peptide 
precursor ion is indicated by a dotted line. The protected residues E44 and I46 are colored in red 
in the sequence. Note that the amide hydrogen of residue n is contained in the cn−1 fragment ion. 
c Crystal structure of 2-microglobulin (PDB:1LDS) with the sequence LKNGERIEKVEHSDL 
highlighted in blue. Residues E44 and I46, which were identified as slow exchanging by recent 
NMR32 and present ETD data, are shown as red sticks. Figure was adapted with permission from 
Ref. [79]. Copyright (2009) American Chemical Society
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fashion, while this level of discrimination is lost in the bottom-up approach [84]. 
However, the top-down HDX method is limited to small- and mid-sized pro-
teins where relatively high sequence coverage can be obtained. For large proteins 
(>50 kDa), for example, monoclonal antibodies, and protein–protein complexes, 
the large number of fragment ions is confined to a narrow m/z region, leading to 
overlapping fragment ions and their isotopomers, thus complicating the data anal-
ysis and interpretation. Combining MS/MS fragmentation in the gas phase with 
proteolytic fragmentation in solution should help to yield better spatial resolution 
and higher sequence coverage for proteins.

8.3.4  Measuring Back Exchange

In HDX approaches coupled to either ESI or MALDI instruments, even under 
quenched conditions with low temperature and low pH, the occurrence of amide 
back exchange losing the deuterium labels during digestion, chromatography sepa-
ration, or matrix preparation is unavoidable [85]. With well-controlled experimen-
tal conditions, much of the backbone amide deuteration can be preserved. Back 
exchange on side chain occurs very rapidly, and the conversion back to hydro-
gen substitution is almost complete, simplifying the data analysis by confining 
the mass increase to a unit dalton change reflecting a single deuterium label per 
residue. One exception is in the case of arginine, where the guanidine side chain 
has a minimum exchange rate similar to that of backbone secondary amides [35]. 
Proteins rich in arginine may complicate the analysis because not all side-chain 
deuterium atoms can be washed away prior to MS analysis.

The back-exchange process on backbone amides is significant, and correc-
tions need to be made in order to achieve true values for HDX rates. One common 
approach for adjusting back exchange is to collect data on a pair of control pep-
tides, one fully protonated and one fully deuterated, using identical conditions for 
digestion and HPLC separation [15, 62]. Assuming that the back-exchange rates 
are equal for different sites in the peptide, the measured mass shifts are used to 
correct measurements on digested aliquots using a simple scaling factor. Statistical 
analysis of 3,000 peptides with random sequences and 5–25 peptide linkages indi-
cated that the average error in deuterium content would be 5.5 % of the adjustment 
[62]. Other methods have been described as well for correcting back exchange 
[23, 86, 87]. Some studies have demonstrated that backbone amide back exchange 
is more complex and dependent on the sequence [32, 88]. To address this, a set 
of parameters analogous to those developed by Englander and Bai for aqueous 
solution [31] could be derived for typical HPLC separation solvents and used to 
predict back-exchange rates [88]. In practice, however, an adjustment for back 
exchange is not always necessary. In the studies comparing proteins under vari-
ous states, such as conformational changes, folding/unfolding and binding stud-
ies, determination of relative exchange levels may be sufficient assuming that the 
back-exchange rate for the same peptide under the same experimental conditions 
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remains the same. Many studies have relied on relative exchange levels without 
the correction of back exchange [51, 89–91].

An alternative way to minimize back exchange is not to perform the analysis 
in proton-containing solvents. In one example, supercritical fluid chromatography 
(SFC) was used to replace HPLC as the desalting/separation technique prior to 
mass analysis [92]. The combined use of a non-exchanging CO2 mobile phase, fast 
flow rates, and the short retention times afforded by SFC greatly reduced back-
exchange rates comparing to fast, reduced temperature HPLC methods. However, 
some back exchange of deuterium still occurred in this study during the digestion 
step because it was conducted in a protonated aqueous buffer.

8.3.5  Data Interpretation and Instrumentation

When HDX is measured by MS, either MALDI or ESI instruments, each peptide 
is present in the mass spectrum as an envelope of peaks differing mainly by 2H (D)  
in a deuterium-labeled sample. The most common method of determining the 
average deuterium uptake is to perform a centroid comparison, which takes the 
weighted mean of all points between user-defined upper and lower bounds for 
each mass envelope. The mass difference between unlabeled and labeled species 
determines the average amount of deuterium incorporated. The fractional deute-
rium uptake level of a protein or a protein segment is then determined as a func-
tion of labeling time t:

where m(t) is the centroid mass of the protein/peptide at labeling time t,  m100 and 
m0 are the centroid masses of completely labeled and unlabeled molecules, respec-
tively. The deuteration level is the sum of deuterium uptake at all the backbone 
amide positions in the molecule. In MS/MS experiments with ECD or ETD frag-
mentation (see discussion in Sect. 8.3.3), the deuterium uptake level for each frag-
ment ion can be determined from the centroid masses in the MS/MS spectra.

In addition to the deuterium incorporation, naturally occurring rare isotopes 
(13C, 15N, 18O, 34S, etc.) also contribute to the isotope distribution. One group 
applied a maximum entropy method (MEM) to determine the backbone deutera-
tion levels [93]. The deconvolution of the natural abundance isotopic distribu-
tion pattern narrowed the mass spectral isotopic abundance envelope for greatly 
enhanced effective mass resolution. Another group developed a Fourier deconvo-
lution method to explicitly determine the amount of backbone amide deuterium 
incorporated into protein regions or segments by HDX with high-resolution MS 
detection [94]. The method is based on a deconvolution calculation that removes 
both the natural isotopic abundance and fast-exchanging side-chain deuterons 
from the observed MALDI-TOF MS mass envelope for any desired peptide.

(8.9)fractional deuteration level (t) =
m (t) − m0

m100 − m0
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HDX data processing can be very time-consuming if performed manually. 
Automated data analysis for low- or medium-resolution [94, 95] or even high-
resolution [96, 97] mass spectral data still remains challenging. There are several 
recently developed laboratory-built or commercial software solutions available to 
facilitate the processing of HDX MS data: DXMS, a software program that uses 
a curve-fitting approach to assign the centroid m/z values of the isotopic cluster 
envelopes of a set of peptides; an in-house analysis package was developed by 
Marshall’s group that performs automatic mass assignment for HDX data col-
lected on high-resolution, accurate mass FT-ICR-MS [98]; TOF2H, a download-
able laboratory-built toolbox for analyzing MALDI-based HDX data [99]; HD 
Desktop, an integrated platform for the analysis and visualization of HDX data 
[100]; HYDRA, a Web-based application for automatically extracting deuterium 
incorporation values from MS or MS/MS analysis and subsequent data visualiza-
tion [101]; HX-Express, Excel-based software for mass assignment and plotting 
deuterium uptake curves [95]; and ExMS, a computer program that efficiently 
processes crowded mass spectra packed with sequentially and chromatographi-
cally overlapping peptide fragments to determine their HDX level [102]. These 
tools have substantially shorten the analysis time from weeks or even months of 
manual work down to days or hours, making the technique more practical for even 
analyzing more complex samples, such as large protein molecules and protein–
protein interactions.

In addition to data interpretation, performing the HDX experiments, espe-
cially at the peptide levels, can be very laborious without automated instru-
mentation. Commercial and laboratory-built automated systems have been used 
to reduce human labor and improve the throughput for HDX experiments. For 
example, rapid quenched-flow techniques have been incorporated to facilitate 
the pulsed labeling HDX approach, and the method has been applied to exam-
ine the stabilization of secondary structure in refolding experiments [59, 103]. 
The Griffin Lab at Scripps introduced an automated platform for performing 
HDX experiments [53]. The platform contains an autosampler with cooled 
sample stacks which is connected to a three-valve unit contained in a cooling 
chamber that keeps the mobile phases at ~1 °C. An online pepsin digestion, 
peptide desalting, and HPLC separation are also integrated into the platform. 
The automated platform has been utilized for many HDX studies such as char-
acterizing protein–ligand binding of PPARγ with full and partial agonist drugs. 
Another platform was based on a commercial nano-ACQUITY UPLC system 
that performs online pepsin digestion, as well as high-speed and high-resolu-
tion ultra-high-pressure LC (UHPLC) separation at 0 °C [104]. Integrated with 
an HDX manager for dual temperature control and automatic sampling, labe-
ling, and quenching steps, the platform provides high-throughput HDX experi-
ments [91]. Combining automation in instrumentation with software tools, 
HDX MS has become a more practical and attractive method in both academic 
and industrial research to provide insight into the behavior of macromolecular 
systems.
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8.4  Protein Structure/Dynamics

The HDX method cannot determine the structure of a protein or define second-
ary structural elements. Because both solvent accessibility and hydrogen bond-
ing contribute to the HDX rate, it is difficult to attribute a given exchange rate 
to a structural element without X-ray crystallography or NMR structural data. 
Nonetheless, conformational changes in proteins that result from post-translational 
modification, enzyme activation, drug binding, or other functional events can 
induce changes in HDX rate that are monitorable by HDX MS. This approach is 
particularly attractive for investigational studies because it employs an essentially 
continuous series of sensors along the entire length of the polypeptide backbone 
without a need to modify the protein.

8.4.1  Enzyme Conformational Dynamics

Measurement of protein dynamics at global or local scale is crucial to the under-
standing of protein functions. Especially in the case of enzymes, static structures 
are inadequate for describing the sometimes subtle, yet complex dynamic nature 
of enzyme processes that play an important role in catalytic efficiency. Several 
applications of HDX MS for examining dynamic and structural changes related to 
enzyme catalysis have been demonstrated and reviewed [29]. An example on how 
HDX MS was used in detecting the conformation mobility of extracellular regu-
lated protein kinase-2 (ERK2) is discussed below [105].

Mitogen-activated protein (MAP) kinase ERK2 is an enzyme involved in a 
wide variety of cellular processes such as cell growth, differentiation, transcrip-
tion regulation, and development in eukaryotic cells. Phosphorylation at Thr-183 
or Tyr-185 leads to >1,000-fold enhanced specific kinase activity [106, 107]. In 
this study, Hoofnagle and coworkers applied a continuous HDX MS approach with 
pepsin digestion for peptide-level analysis to monitor HDX rates along the ERK2 
sequence, and data obtained from unphosphorylated and dephosphorylated ERK2 
(ppERK2) were compared. Thirty-nine peptic peptides were identified, provid-
ing 90 % sequence coverage with overlapping regions (Fig. 8.5a). The HDX rate 
for each peptide was obtained by fitting the kinetics of the exchange using cor-
rected peptide masses (see Sect. 8.3.4) to sum exponentials by a nonlinear least-
squared method [86]. The exchange rates were compared, and 20 peptides showed 
differences upon ERK2 activation by phosphorylation, with results mapped onto 
the sequence (Fig. 8.5a) and three-dimensional structures (Fig. 8.5b). The HDX 
data were also compared with the conformational changes in the corresponding 
regions of the known X-ray structures of ERK and ppERK [108]. In the activation 
lip and dimerization interface, as highlighted in Fig. 8.5b, the changes in exchange 
rates coincided with changes in conformation according to the X-ray structures. 
However, altered HDX upon activation in other regions, such as the ATP-binding 
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loop, the hinge region, the extended substrate binding groove, and the MAPK 
insert, could not be inferred from X-ray structures, but were consistent with 
expected changes in backbone flexibility upon activation. For instance, upon acti-
vation, the ATP-binding loop showed an increased HDX rate, indicating enhanced 
flexibility of this region which may also contribute to the increased specific activ-
ity by facilitating nucleotide binding or release. Such insights cannot be deduced 
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from static crystallographic structures. Significant changes in protein mobility in 
regions important to catalysis upon enzyme activation are revealed by HDX MS. 
This work illustrated how the HDX technique can measure protein structural 
dynamics in solution and complement structural information obtained from X-ray 
crystallography by providing insight into internal motions of enzymes.

8.4.2  Folding/Unfolding

Protein-folding states can be readily resolved by HDX MS as it can identify 
bimodal populations of proteins or peptides as reflected by distinct patterns of 
deuteration. A single envelope of isotope peaks can be observed in HDX MS 
data if the sample is structurally homogeneous and if exchange is uncorrelated 
(kch ≪ kf, as in the EX2 regime). On the contrary, HDX can detect whether the 
molecules in a sample exist in two structurally different states that exchange 
through different mechanisms in some regions. For example, if the native form 
exchanges through equilibrium (EX2) mechanisms and a denatured or partially 
unfolded form exchanges through unfolding (EX1) mechanisms, then the mass 
spectra of peptides derived from these regions may display a bimodal isotope 
pattern [62]. Bimodal isotope patterns have been observed in the early folding 
studies of lysozyme [19], rabbit muscle aldolase destabilized by acid [62], and 
peptides derived from three segments of aldolase [22] with transient folding 
populations identified. In a folding/unfolding study of rabbit muscle triosephos-
phate isomerase, a pulsed labeling HDX approach was applied with the use 
of denaturant for the unfolding step, and a bimodal isotope pattern of labeled 
protein was observed (Fig. 8.6a), providing evidence for a two-state unfolding 
behavior [109]. During the renaturation step, three envelopes of isotope peaks 
were observed, suggesting an intermediate in the refolding pathway (Fig. 8.6b). 
The intermediate was then identified to have a folded C-terminal half and 
unfolded N-terminal half, by performing pepsin digestion immediately after the 
pulsed labeling.

These approaches for studying protein folding/unfolding lay the foundation for 
screening assays in the assessment of protein integrity and stability. The method, 

Fig. 8.5  a Sequence coverage of ERK2 indicating residue numbering and secondary struc-
ture [108]. Peptides colored red, green, yellow, or white showed HX rates that, respectively, 
increased, decreased, both increased and decreased, or did not change upon kinase phosphoryla-
tion. Peptides recovered only from unphosphorylated ERK but not from ppERK are shown in 
black. Residues phosphorylated in ppERK are shown in blue. b Structural representation of ERK 
[108]. Sequences not recovered from peptide digests are colored gray. c Structural representation 
of ppERK [107] as in (b), rotated slightly clockwise (as viewed down the vertical axis) to more 
clearly show the major differences with the inactive form, the reorganization of the activation lip 
(yellow arrow) and the formation of a 3/10-helix near the C-terminus (green arrow). Figure was 
adapted with permission from Ref. [105]. Copyright (2001) National Academy of Sciences, USA

◄



324 H. Wei et al.

named stability of unpurified proteins from rates of H/D exchange (SUPREX), 
uses HDX coupled with MALDI MS to estimate the stability of unpurified protein 
extracts, providing a high-throughput screen for assessing thermodynamic stabil-
ity of proteins [25, 65]. In this approach, increasing concentration of denaturant is 
titrated into the protein solution, and protein stability is measured from the mid-
point at which the HDX rate becomes dominated by cooperative opening events 
when a sharp increase in the total deuterium incorporation into full-length protein 
is observed. The method was also extended to the evaluation of protein–ligand 
binding as discussed in a later Sect. 8.6.2.

Fig. 8.6  a Mass spectra of the (M+28H)+28 charge state of intact triosephosphate isomerase 
(TIM) unfolded in 1.5 M guanidine-HCl (GdHCl) for different times. Each sample was labeled 
for 10 s in GdHCl/D2O prior to quenching isotope exchange. b Mass spectra of the (M+27H)+27 
charge state of intact TIM folded in 0.3 M GdHCl. The unfolded TIM was totally unfolded in 
3.0 M GdHCl for 24 h and then diluted tenfold with phosphate buffer to initiate folding. Each 
sample was labeled for 3 s in D2O (0.3 M GdHCl) prior to quenching isotope exchange. The 
peaks marked by hachure lines represent an impurity, which was identified as TIM truncated at 
the N-terminus. Figure was reprinted from Ref. [109]. Copyright (2004), with permission from 
Elsevier
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8.4.3  Comparability Studies for Protein Therapeutics

Higher-order structures and structural dynamics of protein therapeutics are criti-
cal factors in determining the function, efficacy, and safety of these drugs. Due 
to the complexity and limitations of NMR and X-ray crystallography techniques, 
which have been discussed earlier in this chapter, routine biopharmaceutical anal-
yses of conformation and stability of protein drugs typically rely on classical bio-
physical methods, such as circular dichroism, FTIR spectroscopy, and calorimetry, 
which are more direct and less time-consuming methods [44, 110–114]. However, 
limited structural information can be revealed by these techniques. HDX MS has 
emerged as a more informative and sensitive method for higher-order structure 
analysis that can detect more subtle structural differences [115]. It can be used as 
an orthogonal measurement in structural comparison studies.

Changes in protein drug conformation and dynamics can be triggered by a vari-
ety of factors, such as chemical modification, mutation, surface binding, thermo 
denaturation, and pH denaturation caused by differences in manufacturing pro-
cesses, cell media, or during storage. Covalent attachment of PEG (polyethyl-
ene glycol) to therapeutic proteins, or PEGylation, can be an effective strategy to 
improve the pharmacokinetic behavior of proteins [116, 117]. However, covalent 
attachment of PEG may cause possible conformational changes, steric interfer-
ences, and changes in electrostatic-binding properties for certain proteins [118, 
119]. Aimed to determine the impact of PEGylation on protein conformation, a 
study was performed to compare the PEGylated and non-PEGylated forms of a 
protein drug, granulocyte colony-stimulating factor (G-CSF), using HDX MS [91].

In this study, peptide HDX MS experiments with a continuous “exchange-
in” approach were carried out on both forms of G-CSF. Forty-six common pep-
tides were identified in both proteins, constituting a linear sequence coverage of 
91 % of the peptide backbone of G-CSF, with overlapping peptides in multiple 
regions. Deuterium uptake levels over a time span of 10 s to 4 h were obtained for 
each peptide. Some but not all peptides displayed differences in deuterium incor-
poration between the two forms of G-CSF. Figure 8.7a illustrates representative 
data of peptides in which deuterium uptake was the same or different. The loca-
tion of each of the peptides was overlaid (Fig. 8.7b) onto the three-dimensional 
X-ray crystal structure of G-CSF (PDB code 2D9Q) [120]. Although small but 
significant differences in deuteration were found in multiple regions of G-CSF, 
for 65 % of G-CSF, there were no detectable differences in deuterium incorpo-
ration upon PEGylation. Many such peptides were located in the loop regions 
(e.g., residues 125–138, Fig. 8.7a, b), where exchange is predicted to be rapid. 
The peptide-covering residues 19–32 (part of an alpha helix) in which multiple 
amino acids are involved in receptor binding indicated no difference in deutera-
tion rates and remained low in deuterium uptake for both forms. The HDX com-
parison data were visualized in a comparability butterfly chart (Fig. 8.7c) and a 
difference chart (Fig. 8.7d) to allow rapid qualitative and quantitative analy-
sis of differences and the location of such differences. This plotting scheme was 
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introduced by Houde et al. [51] and was used to compare a bound versus a free 
form of N-myristoyltransferase [121]. It is obvious from the charts that there are 
multiple regions along G-CSF with significant differences in deuterium incorpora-
tion between the two forms. Both the raw difference values (colored lines) and the 
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summed differences for each peptide (the vertical black bars) exceed significance 
lines for many peptides. However, no massive protein conformational changes 
occurred based on the extent of the difference. The conformation and confor-
mational stability of the receptor-binding regions of the protein were not signifi-
cantly affected by PEGylation either. The study indicated that the conformational 
differences detected may not have significant impact on the biological activity 
of G-CSF, which is consistent with other studies, showing that G-CSF maintains 
most of its biological activity after PEGlyation [122].

Comparability studies have also been conducted using similar peptide HDX 
MS approach on a protein drug interferon β-1a (IFN), a member of the type I 
interferon family (a group of homologous cytokines that display broad biological 
activity). One study compared the conformation of IFN versus a non-enzymatic 
version of the protein with alkylation at Cys-17 [115]. Dramatic destabilization of 
helix D by the modification was detected, and it affects a remote site in the amino 
acid sequence of this protein which is proximal to the Cys-17 side chain within the 
three-dimensional structure [123]. Another HDX MS study compared the HDX 
behavior of IFN reference material with a variety of other protein samples testing 
the effect of changed conditions such as freezing for 8 years, production from a 
different tissue culture growth medium, oxidation, and PEGylation [51]. The HDX 
MS data concluded that the only sample with significant differences from the ref-
erence material was the oxidized IFN. Upon oxidation, IFN showed widespread 
structural perturbation as reflected by changes in HDX.

These studies illustrate that changes in protein conformation as a result of some 
modification, process change, or other outside forces are readily assessed and can 
also be localized and quantified by HDX MS. Each of these experiments and data 
analysis were completed within a few days with automation in labeling, data col-
lection, and data processing, making the technique potentially suitable for compa-
rability studies, process monitoring, and protein therapeutic characterization in the 
biopharmaceutical industry.

Fig. 8.7  a Deuterium uptake curves of six peptic peptides, three that had changes upon 
PEGylation (left) and three that did not (right). b The peptides are illustrated on the G-CSF crys-
tal structure, with the color of the peptide matching the color of the residue labels in part A: 
cyan, residues 5–12; orange, residues 107–113; pink, residues 115–122; black, residues 19–32, 
93–104, and 125–138. The three-dimensional structure of G-CSF is from PDB code 2D9Q 
[120]. c A butterfly chart of the raw deuterium levels and d a difference chart compare the forty-
six common peptides (along the x-axis). Relative fractional uptake was calculated by dividing 
the deuterium level (in Da) by the total number of backbone amide hydrogens that could have 
become deuterated (equal to the number of amino acids, minus proline residues minus 1 for the 
N-terminal amide). In (d), the blue dotted line is set at 0.5 Da (both positive and negative dif-
ferences), indicating the threshold for significant differences in raw fractional uptake. The black 
vertical bars indicate the summed differences in deuteration for each peptide, and the black dot-
ted line is set at 1.5 Da (positive and negative) to indicate the threshold for a significant dif-
ference in summed deviations. Figure was adapted from Ref. [91] with kind permission from 
Springer Science + Business Media (Wei et al. [91] Figs. 2 and 3. Copyright 2012)

◄
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8.5  Binding Studies

Protein binding studies are of crucial importance in biophysical studies and drug 
design. Non-covalent binding events, such as protein–ligand interaction (usually 
small molecule ligands or peptides) and protein–protein interaction, provide the 
foundation for virtually all drug action mechanisms [124]. HDX MS is an efficient 
analytical tool for analyzing these interactions because binding events usually 
enhance the thermodynamic stability of the protein, causing the protein complex 
to be more strongly protected from HDX than the free protein [125]. Spatially 
resolved HDX MS with the assistance of enzyme digestion and/or gas phase frag-
mentation is capable of measuring the deuterium incorporation rate at specific 
regions of a protein. A very important application of such an approach is to probe 
binding sites for molecular interactions. When a protein complex forms, the inter-
face between the binding partners is likely to exclude solvent, hence reducing the 
exchange rate due to steric exclusion of solvent.

8.5.1  Protein–Protein Interactions

In order to probe binding sites, HDX experiments are usually performed on both 
the free protein as a control experiment and the protein–protein complex. The 
two experiments are compared, and regions in the protein that possess different 
exchange kinetics are highlighted. Both continuous labeling and pulsed labeling 
with “exchange-in” and “exchange-out” kinetics have been adopted to study bind-
ing regions [52, 54, 55, 63, 66, 126–130]. In several cases, the size and nature of 
the samples with complexity exclude the use of X-ray crystallography and NMR. 
One example from the continuous labeling approach for the study of a protein 
complex is briefly described [54].

In this study, HDX MS was used to map the structured and disordered regions 
of intrinsically disordered proteins (IDPs) and used to identify the disorder-to-
order transitions. Two model IDPs were used in the study: an unstructured protein, 
ACTR (the unstructured activation domain of the activator of thyroid and retinoid 
receptors), and CBP (the molten globular nuclear coactivator-binding domain of 
CREB-binding protein), which together form a well-folded protein complex. 
Continuous “exchange-in” HDX MS experiments were performed followed by 
online pepsin digestion and LC separation on four independently prepared sam-
ples: free ACTR, free CBP, ACTR-CBP mixture (1:4.9 ACTR:CBP molar ratio) 
with 94 % of ACTR bound, and ACTR-CBP mixture (4/7:1 ACTR:CBP molar 
ratio) with 93 % of CBP bound. The labeling intervals ranged from 5 s to 12 h. 
The deuterium uptake for each peptic peptide was quantified via MS as a func-
tion of labeling time. Data obtained were used to calculate the protection factor for 
each peptide (see Eq. 8.8 in Method, and Ref. [46]). The protection factors were 
then compared between the free and bound states of each protein with and without 
the presence of a fivefold molar excess of its binding partner. Figure 8.8 shows the 
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coverage maps for ACTR and CBP with peptide protection factors from both free 
and bound forms mapped onto the sequences. All the segments of the free ACTR 
exchange at rapid exchange rate, as predicted for an unstructured protein. Unlike 
ACTR, all segments in free CBP exchange more slowly than predicted by the 
intrinsic exchange calculation (kch). Similar HDX rates were observed across all 
segments, with protection factors ranging between 4.1 and 5.7. While in the bound 
complex, substantial changes were observed for both proteins. Many segments in 
ACTR were protected, especially in the middle regions of ACTR. For CBP, sub-
stantial changes were observed along almost the entire sequence, with the largest 
decrease in HDX rate in the Cα2 and Cα3 regions and in the linker connecting 
the two. While HDX data were informative for defining the complex interfaces, 
they also revealed dramatic conformational changes to each protein upon com-
plex formation. The protein–protein interface or folding can be indicated by those 
peptides that retained more deuterons in the complex, or with increased protection 
factors, compared with control experiments in which only one protein was present. 
Segments of ACTR that had the largest decrease in HDX rate corresponded to the 
regions that make hydrophobic side chain contacts with hydrophobic residues lin-
ing a groove in CBP. While in CBP, though smaller changes were observed, the 
relatively largest decrease in HDX rate mapped to the core of the complex. The 

Fig. 8.8  Protection factors mapped onto the sequences of ACTR and CBP for each peptide for 
both free and bound forms. The assigned secondary structural elements from the CBP−/ACTR 
complex [152] are also indicated. The first two residues of each peptide are colored gray to indi-
cate that rapid back exchange of the deuterium label at these two positions leads to no measur-
able deuterium uptake. Figure was adapted with permission from Ref. [54]. Copyright (2011) 
American Chemical Society
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conclusions drawn from the HDX MS data were consistent with those obtained 
from other biophysical measurements such as NMR and X-ray crystallography.

Although proved very useful for probing interfaces for non-covalent protein–
protein complexes, one needs to bear in mind that HDX cannot be used to locate 
binding interfaces for all interactions. Some protein–protein interactions driven by 
electrostatic forces of side chains are unlikely to change the exchange rate of back-
bone amide hydrogens, particularly if the amide hydrogens are located in stable 
structural elements such as alpha helices. In such circumstances, other biophysical 
methods are required.

8.5.2  Protein–Ligand Interactions

The characterization of protein binding to small ligands, such as small molecule 
drugs and peptides, is important for the development of small molecule thera-
peutics in pharmaceutical industries. Heme binding to myoglobin was one of 
the first published experiments using HDX MS to analyze small ligand binding 
to a protein molecule [16]. In the past two decades, the binding sites of small 
ligands on proteins have been identified in several instances: the binding region 
of the metalloproteinase inhibitor doxycycline on the active form of the matrilysin 
enzyme [131], the ligand-binding domain of the nuclear receptor PPARγ induced 
upon binding a full agonist and a partial agonist [53], and the two regions that 
are mainly involved in the interaction of insulin-like growth factor I binding to 
IGFBP-I [132], etc. Similar approaches to the study of protein–protein interactions 
can be used for identification of protein–ligand binding sites and will not be dis-
cussed in this section.

Another potentially important application of HDX MS is to quantitatively 
analyze protein–ligand binding interactions. Conventional methods for quan-
titative analysis of protein–ligand binding have limitations such as the relatively 
large quantity required for both proteins and ligands. High-throughput screening  
assays have been developed based on HDX MS technology that requires low 
amounts of samples. Protein–ligand interaction by mass spectrometry, titration, 
and H/D exchange (PLIMSTEX) is a high-throughput screening assay for quan-
titative analysis of protein–ligand binding that was developed by Gross and his 
group [133, 134]. It is an ESI-MS-based method which measures the global HDX 
kinetics of the apo- and holo-forms of the protein to quantify the binding affin-
ity and stoichiometry of ligands. The method requires that a change, for example, 
conformational change and/or stability difference between the apo- and holo-form 
of the protein, occurs during a ligand titration. The approach is to conduct a titra-
tion where the ligand is added to aliquots of the protein solution with increas-
ing ligand concentrations from zero (free protein) to excess (complex formation) 
and allowed to equilibrate. The aliquots are then diluted with excess deuterated 
buffer. Deuterium labeling is allowed for a predetermined period of time before 
quenching at which the global difference in deuterium (ΔD) between the apo- and 
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holo-form is the greatest. Then, a plot of the mass difference between the deute-
rium uptake level and the ratio of total ligand concentration to the total protein 
concentration is constructed as the PLIMSTEX curve. The curve is fitted using 
a 1:n protein:ligand sequential binding model, where n is the number of binding 
sites for the same ligand, to extract the binding constants [134]. Figure 8.9 is a 
PLIMSTEX curve obtained from the titration of wild-type rat intestinal fatty-acid-
binding protein (I-FABP) with potassium oleate fitted with a 1:1 binding model. 
The Kd derived from the model is (2.6 ± 0.2) × 106 M−1, agrees with the litera-
ture value (3.0 × 106 M−1). Later on, the PLIMSTEX approach was applied to the 
characterization of human telomeric repeat-binding factor 2 (hTRF2) and DNA 
complex with the affinity constant determined [135]. By increasing the resolution 
of PLIMSTEX to the peptide level with pepsin digestion, the changes in deuterium 
uptake of hTRF2 as a function of varying amounts of a model oligodeoxynucleo-
tide were also localized.

Another high-throughput screening assay for protein–ligand binding is 
SUPREX which was developed by Fitzgerald and coworkers [65, 136]. It is a 
MALDI-MS-based global HDX MS stability determination method and measures 
the increase in a protein’s thermodynamic stability upon ligand binding in solution 
with the use of denaturants for inducing protein unfolding. The method was first 
used as a high-throughput stability screening approach (see Sect. 8.4.2). Higher 
concentration of denaturant is used in the presence of a bound ligand as the ligand 
usually induces stabilization of the protein structure [137]. The measured change 
in stability is used to calculate the dissociation constant (Kd) of the protein–ligand 
complex. The method has been applied to a range of different protein–ligand sys-
tems with obtained Kd values in good agreement with those reported on the same 
complexes using other techniques [138–141]. A single-point SUPREX protocol 
was also developed in a proof-of-concept study using the S-protein and a small 
test library of five peptides with known binding affinities for the S-protein [142]. 
The approach is suitable for performing high-throughput screening against large 
compound libraries in assays aimed at identifying high-affinity ligands to selected 

Fig. 8.9  PLIMSTEX data for 0.3 μM wild-type I-FABP titrated with K+-oleate in 95 % D2O, 
20 mM pyrophosphate buffer, 135 mM KCl, and 10 mM NaCl (pH = 9.0), after 3 h of exchange. 
Error bars are from two independent runs. The solid line represents the fit by PLIMSTEX, using 
1:1 binding and a three-parameter model (K1, D0, and ΔD1). Figure was adapted with permission 
from Ref. [133]. Copyright (2003) American Chemical Society
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protein targets. A protease digestion strategy was recently incorporated into the 
single-point SUPREX approach [143]. It has been demonstrated that the peptide 
readout was more efficient than the intact protein readout of the original single-
point SUPREX protocol at discriminating hits from non-hits.

8.5.3  Allosteric Effects

In the binding studies, the observed information on the changes in HDX upon 
complex formation needs to be analyzed with extreme caution before drawing any 
conclusions regarding the binding interfaces, especially when the binding partner 
is a small molecule ligand. The reason for this caution is that upon ligand bind-
ing, other than through steric hindrance, protein conformational changes that are 
distant from the binding sites may be induced, leading to changes in HDX rates 
at sites remote from the binding interface. This effect is referred to as “allosteric 
effect.” One example is the binding of cAMP to protein kinase A. In this case, 
binding causes the catalytic subunits to dissociate, releasing two active kinase 
molecules. The HDX MS experiments revealed the communication between the 
cAMP-binding site and the catalytic subunit, where upon cAMP binding, higher 
HDX rates were observed in the regulatory subunit that binds the catalytic subunit 
[144]. However, in cases where conformational changes reduced the local HDX 
rate, the interpretation of the HDX data becomes more complex, especially in the 
absence of three-dimensional structures. Recent HDX MS studies showed that 
the complex formation between cystatin (a thiol protease inhibitor) and its target 
enzyme, papain, reduced the flexibility throughout the sequence of cystatin [145]; 
binding of a peptide docking motif DEJL to a MAP kinase (ERK2) induced distal 
backbone flexibility changes in the activation lip [146]; upon the formation of a 
Dnase I:G-actin complex, conformational changes were observed to occur away 
from the binding site [147].

In order to distinguish the reduced HDX rate caused by ligand protection from 
the changes due to the allosteric effect, one effective approach is to combine site-
directed mutagenesis with HDX MS experiments. This approach has been dem-
onstrated by Brier and coworkers to identify the binding region of inhibitors 
targeting the human mitotic kinesin Eg5 [148]. By conducting mutagenesis on 
the two regions that showed decreases in deuterium incorporation rate: loop L5/
helix alpha2 (region Tyr125-Glu145) and strand beta5/helix alpha3 (region Ile202-
Leu227), the ligand-binding site of the protein was rapidly pinpointed. In another 
study, HDX MS combined with mutagenesis crystallography detected that the 
binding of GNF-5 to Abl via the myristate-binding region altered the conforma-
tion of the ATP-binding site of the protein [129]. GNF-5 is an analogue of a selec-
tive allosteric Bcr-Abl inhibitor (GNF-2). The changes in deuterium incorporation 
along the sequence of Abl in the presence versus absence of GNF-5 were observed 
in several peptides surrounding the myristate-binding cleft (e.g., residues 506–
515), as well as in peptides near the ATP-binding site (e.g., residues 306–316). 
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The exchange rates were not altered in the non-binding Abl E505 K myristate 
mutant, indicating that the binding of GNF-5 is responsible for the allosteric con-
formational change.

Residues in binding regions can also be identified and distinguished from 
non-binding conformational changes by “exchange-out” experiments. In this 
approach, the apo-protein and its binding partner are first deuterated separately 
for a brief period of time, allowing surface amides to undergo rapid deuterium 
exchange. Then, the solutions are combined for complex formation to reach equi-
librium, followed by dilution in H2O-based buffer to exchange out the deuterium 
labels under conditions that preserve the non-covalent complex. The residues 
trapped in the binding regions will retain deuterium labels, while unprotected 
regions will lose the deuterium labels. After proteolysis, the segments of the pro-
tein that showed extensive deuterium incorporation are predicted to be the bind-
ing regions. Using this approach, the protein–protein interface between thrombin 
and a fragment of thrombomodulin, TMEGF45, was identified and differenti-
ated from the regions of thrombin involved in allosteric changes [149]. Carefully 
designed control experiments are also critical to ensure the data accuracy for 
mapping binding regions using such an approach and to enhance the confidence 
in the conclusions drawn.

8.6  Future Perspectives

More than twenty years have passed since the initial protein studies were reported 
using the coupling of HDX to MS [14]. There have been significant advances 
in HDX MS instrumentation (hardware and software) and its expanded applica-
tions. With enhanced sensitivity, mass accuracy, and mass resolution of new MS 
instrumentation, HDX MS becomes more suitable to study proteins for compre-
hensive characterization. Advances in separation science will further improve the 
data quality for proteolysis-based HDX MS experiments, enabling the analysis of 
even larger proteins and complexes. The strategy to incorporate ETD/ECD into 
peptide-level HDX MS approach will greatly enhance the spatial resolution of the 
methodology/technology and is likely to be more widely adopted. With advance-
ment in mass spectrometers, top-down HDX MS methods have the potential to 
spatially resolve deuteration patterns in larger proteins without proteolysis. This 
strategy can be applied to analyze heterogeneous proteins, such as protein con-
formers, protein conjugated to other molecules, which remained to be a challenge 
for the current HDX MS workflow. Further refinement in hardware automation 
and increasingly user-friendly software will pave the way for the technology being 
utilized for more sophisticated experiments, higher throughput, and more practi-
cal applications in higher-order structure characterization of protein therapeutics. 
With better data quality, accuracy, and throughput, another direction for HDX MS 
is likely to be coupled to computational protocols for structure–activity relation 
analysis, modeling, and docking studies [150, 151]. It is expected that HDX MS 
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will continue to play an important role in protein structure characterization, help to 
gain new insight into the behavior of biomolecular systems, assist in drug design, 
and enhance quality control of biologics pharmaceuticals.
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9.1  Oxidation as a Tool for Structural Biology

Protein footprinting coupled with mass spectrometry (MS) has become a powerful 
tool for studying protein interactions. There are many types of footprinting labels 
that can be reversible or irreversible, and in either case they can be either gen-
eral or specific for a particular amino acid. Reversible labels used for footprinting 
include deuterium [1–3] and citraconic anhydride for lysine modification [4, 5]. 
Examples of irreversible labels include hydroxyl radicals [6, 7], N-ethylmaleimide 
(NEM) for cysteine modification [8], and glycine ethyl ester (GEE) for modifica-
tion of carboxylic acids [9]. These footprinting methods are a good probe of sol-
vent accessibility.

Hydrogen–deuterium exchange (HDX) is perhaps the most widely used foot-
printing method with a number of publications using this method in recent years 
[10–13]. HDX is advantageous because every amino acid except proline can be 
labeled with deuterium. This general labeling strategy can be used on many dif-
ferent protein systems regardless of the primary sequence. However, HDX utilizes 
a reversible label which requires rapid post-labeling sample handling to mini-
mize back exchange. This could be unfavorable for complex protein systems that 
require post-labeling purification to reduce the complexity of the mass spectrum.

In recent years, another footprinting method, hydroxyl radical-mediated oxida-
tive labeling, has emerged as a tool for studying protein structure [14]. A benefit 
of hydroxyl radicals (•OH) for footprinting is that their size is similar to water, 
thus making them an excellent probe of solvent accessibility. Oxidative labeling 
is considered a general label because •OH react with more than half of the amino 
acids. However, unlike deuterium, amino acids have different reactivities with •OH 
(Table 9.1). This reactivity–specificity may bias the experiment based on the pri-
mary sequence of the protein system being studied.

Chapter 9
Fast Photochemical Oxidation of Proteins 
for Structural Characterization

Lisa M. Jones

G. Chen (ed.), Characterization of Protein Therapeutics using Mass Spectrometry,  
DOI: 10.1007/978-1-4419-7862-2_9, © Springer Science+Business Media New York 2013

L. M. Jones (*) 
Department of Chemistry and Chemical Biology, Indiana University-Purdue University  
in Indianapolis, LD326, 402 N. Blackford St, Indianapolis IN 46202, USA
e-mail: joneslis@iupui.edu



344 L. M. Jones

9.2  Oxidation Coupled with Mass Spectrometry

Tullius and Dombroski [15] first developed the use of hydroxyl radical footprinting 
to map DNA–protein interactions. They used Fenton chemistry to generate •OH via 
the reduction of hydrogen peroxide by iron(II). The backbone of DNA is broken in 
the presence of •OH in a sequence-independent manner, thus permitting analysis of 
the entire DNA molecule. When protein is bound, those regions of the DNA that 
interact with the protein are protected from hydroxyl radical-mediated backbone 
cleavage. In this study, the results of oxidative modification were examined by gel 
electrophoresis.

Hydroxyl-mediated oxidative labeling was first coupled with MS by Chance 
and coworkers [16]. Mass spectrometry provides higher-resolution data than gel 
electrophoresis allowing for site-specific information to be obtained from the 
footprinting experiment. Maleknia et al. [16] used synchrotron X-ray radiolysis 
of water to form •OH. This method eliminates the need for additional reagents to 
be added to the sample. Fenton chemistry requires the addition of hydrogen per-
oxide and Fe(II), but other transition metals such as Cu(II), Co(II), Ni(II), and 
Mn(II) can be used as the reductant in Fenton-like reactions [14]. Moreover, 
Fenton chemistry is slow with labeling performed on the minutes timescale [15]. 
Synchrotron X-rays generate •OH much faster, on the millisecond timescale. The 
synchrotron method for oxidative labeling has been successful in studying the 
structure of nucleic acids [6, 17], identifying structural allostery and the binding 

Table 9.1  Rate constants  
for reaction of amino acids 
with hydroxyl radicals

Amino acid k•OH(M−1s−1)a

Cys 3.5 × 1010

Trp 1.3 × 1010

Tyr 1.3 × 1010

Met 8.5 × 109

Phe 6.9 × 109

His 4.8 × 109

Arg 3.5 × 109

Ile 1.8 × 109

Leu 1.7 × 109

Val 8.5 × 108

Pro 6.5 ×  108

Gln 5.4 × 108

Thr 5.1 × 108

Lys 3.5 × 108

Ser 3.2 × 108

Glu 2.3 × 108

Ala 7.7 × 107

Asp 7.5 × 107

Asn 4.9 × 107

Gly 1.7 × 107

aBuxton [76]
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interface in the transferrin–transferrin receptor complex [18], and characterizing 
conformational changes that occur in gating of potassium channels [19]. There are 
several other methods to generate •OH including radiolysis of water by γ-rays [20] 
and methods that photolyze hydrogen peroxide by UV light [21] or pulsed laser 
[22, 23]. These methods have been extensively reviewed by Xu and Chance [14].

To date, several groups utilize oxidative labeling to characterize protein structure, 
protein–ligand interactions, and protein–protein interactions. The Konermann group 
has mapped the structure of the integral membrane protein bacteriorhodopsin [24–
26]. They have also used oxidative labeling to monitor protein unfolding [27]/fold-
ing [28]. The Sharp group has developed a pulsed electron beam water radiolysis 
method that footprints on the submicrosecond timescale [29]. The Fitzgerald group 
has developed a method, stability of proteins from rates of oxidation (SPROX), that 
utilizes oxidative labeling to perform thermodynamic analysis of protein–ligand 
complexes [30]. This chapter specifically focuses on the work done by the Gross 
group, who developed fast photochemical oxidation of proteins (FPOP), an oxida-
tive labeling method that labels on the microsecond timescale [23].

9.3  Fast Photochemical Oxidation of Proteins

Previous methods used to generate hydroxyl radicals label on the millisecond or 
longer timescale. Long exposures to the radical could initiate protein unfolding 
[31–33]. To minimize oxidation-induced protein unfolding, Hambly and Gross 
[23] developed FPOP. This method utilizes an excimer laser to photolyze hydro-
gen peroxide to form hydroxyl radicals. The labeling is rapid, faster than protein 
unfolding [34], which is an advantage over other oxidative labeling methods.

For FPOP labeling, H2O2 is cleaved by using a pulsed 17 ns KrF excimer laser 
operating at 248 nm (Fig. 9.1). To ensure a bolus of sample receives only one 
laser shot, the sample is under constant flow in flow cell. The first test of FPOP 
labeling was performed on apomyoglobin where a large amount of oxidation is 
observed with many different oxidation states sampled (Fig. 9.2 a middle panel). 
Although the radicals are formed in nanoseconds, kinetic calculations indicate 
self-quenching takes more than 100 μs (Fig. 9.2b), a time that allows for radical-
induced protein unfolding. Therefore, the large amount of oxidation observed for 
apomyoglobin may include residues that are only solvent exposed because of pro-
tein unfolding. To reduce the radical lifetime, a scavenger was added to the sam-
ple. Studies were done using two different amino acids as scavengers, the highly 
reactive phenylalanine residue and glutamine, a residue that has medium reac-
tivity with •OH (Table 9.1). As expected, owing to its high reactivity with •OH, 
the use of phenylalanine as a scavenger produced almost no oxidation (Fig. 9.2a 
top panel). Before the radicals can label the protein, they are rapidly quenched, 
in ~70 ns (Fig. 9.2b), by the phenylalanine scavenger. Alternatively, the use of 
the moderately reactive glutamine as a scavenger leads to a satisfactory level of 
labeling, where many oxidation states are sampled (Fig. 9.2a bottom panel). In 
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the presence of glutamine, the radical lifetime is limited to 1 μs (Fig. 9.2b), a 
time faster than protein folding. Presumably, the oxidation observed in the pres-
ence of glutamine is limited to the solvent-exposed regions of properly folded 
apomyoglobin.

An advantage of using hydroxyl radicals for protein footprinting is their size, 
which is similar to water, making them an excellent probe for solvent accessibility. 
With the proper experimental procedure, including using a scavenger molecule to 
limit the radical lifetime, FPOP labeling should be sampling solvent accessibility. 
Hambly and Gross [35] demonstrated the utility of FPOP as a measure of solvent 
accessibility by using apo- and holomyoglobin as model systems. The oxidation 
of residues in both states of myoglobin is consistent with their calculated solvent 
accessibility (Table 9.2). For example, the calculated solvent exposure of P43 is 

Fig. 9.2  a Oxidation of apomyoglobin with (top) phenylalanine as a scavenger, (middle) no 
scavenger present, and (bottom) with glutamine as a scavenger. b Disappearance of hydroxyl rad-
ical as a result of reaction with excess phenylalanine (squares), excess glutamine (triangles), and 
no scavenger (diamonds). Reprinted from Hambly and Gross [23] with permission from Elsevier

Fig. 9.1  Schematic of FPOP workflow. The sample, in a flow cell, is irradiated by an excimer 
laser at 248 nm. Hydrogen peroxide is photolyzed to form hydroxyl radicals that oxidize the pro-
tein (Oxidized side chains are highlighted in green spheres)
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decreased by eightfold in holomyoglobin compared to the apo form. This residue 
is oxidized in the apo form; however, no oxidation is observed for this residue in 
holomyoglobin even though phenylalanine is highly reactive with •OH. This data 
suggest that FPOP is indeed monitoring solvent accessibility. Further, Phe43 is 
part of the heme-binding pocket. The absence of labeling of this residue in the 
ligand-bound form of the protein indicates the efficacy of FPOP in identifying pro-
tein–ligand interaction sites.

Table 9.2  Solvent accessibility calculations and oxidations observed on myoglobin. Reprinted 
from Hambly [35] with permission from Elsevier

Amino acid Solvent exposure (Å2) Observed oxidation

Type Number Apo Holo Apo Holo

MET 55 16 16 Y Y
MET 131 0 0 Y Y
TRP 7 19 19 Y Y
TRP 14 7 7 Y nd
TYR 103 28 12 Y nd
TYR 146 18 18 Y Y
PHE 43 56 6 Y N
PHE 46 8 8 N N
PHE 106 36 36 Y nd
PHE 123 9 9 N N
PHE 138 30 0 N N
PHE 151 38 38 Y Y
HIS 24 12 12 Y Y
HIS 36 29 29 Y Y
HIS 48 61 61 Y Y
HIS 64 28 12 Y Y
HIS 81 64 64 Y Y
HIS 82 9 9 N N
HIS 93 37 0 Y N
HIS 97 38 17 nd nd
HIS 113 48 48 Y nd
HIS 116 47 47 Y nd
HIS 119 24 24 Y Y
ILE 21 54 54 Y Y
ILE 30 14 14 N N
ILE 75 14 11 N N
LEU 72 27 0 N N
LEU 76 0 0 N N
LEU 86 10 10 Y N
LYS 87 58 58 N Y
PRO 88 46 46 Y Y
LEU 89 56 22 Y N
LEU 137 50 50 Y N
LEU 149 55 55 N Y
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9.4  FPOP Labels Faster Than Protein Unfolding

A disadvantage of oxidative labeling is that, if not properly controlled, oxidative-
induced conformational changes occur [31, 32, 36]. This would be detrimental 
for a footprinting experiment where you want to probe the native structure of a 
protein. Oxidative-induced structural changes can be minimized by carefully con-
trolling modification levels [33]. FPOP does this by adding Gln as a scavenger to 
control the lifetime of the radical. Additionally, to limit post-labeling oxidation, 
the samples are collected from the flow cell in tubes that contain methionine and 
catalase to quench excess •OH and hydrogen peroxide, respectively. Hambly and 
Gross [23] proposed the speed of FPOP labeling circumvents the protein unfold-
ing problem because the method is labeling faster than protein unfolding can 
occur. To test whether FPOP truly labels faster than protein unfolding, Gau et al. 
[34] assessed the FPOP modification patterns of three proteins, β-lactoglobulin, 
apo-calmodulin, and lysozyme. These proteins were chosen because they are sen-
sitive to conformational changes induced by oxidation [32, 37].

Gau et al. [34] hypothesized that if oxidation occurred faster than protein unfold-
ing, the resulting mass spectrum of the oxidized products should fit a Poisson dis-
tribution indicating a single conformation of the protein was present. Figure 9.3a 

Fig. 9.3  a ESI spectrum of the 15th charge state of FPOP-treated β-lactoglobulin and its com-
posite model. b Background-subtracted model with first five oxygen-addition states. c Oxygen-
addition state ion counts modeled for β-lactoglobulin (top) treated without glutamine radical 
scavenger, post-FPOP catalase, or post-FPOP methionine, (middle) FPOP treated without glu-
tamine scavenger, (bottom) FPOP treated with appropriate experimental controls. The dotted line 
with diamonds corresponds to the calculated Poisson distribution. The solid line corresponds to 
the averages of ion counts of replicate samples with error bars. Reprinted with permission from 
Gau et al. [34]. Copyright 2009 American Chemical Society
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shows a mass spectrum of the 15th charge state of FPOP-treated β-lactoglobulin 
where the raw data correlate well with the Poisson model. All three proteins exhib-
ited a pattern similar to the Poisson model of the unmodified with its first five 
oxygen additions shown in Fig. 9.3b. The nonlinear regression best-fit Poisson dis-
tribution fit of β-lactoglobulin labeled under varying FPOP conditions underscore the 
importance of experimental controls (Fig. 9.3c). When there is no Gln scavenger pre-
sent, the data do not fit well to a Poisson distribution (Fig. 9.3c middle panel). The 
lack of the post-labeling quench solution of catalase and Met further reduces the fit 
of the data (Fig. 9.3c top panel). However, when the experiment is run with proper 
controls, including the presence of the Gln scavenger and the catalase-Met quench, 
the data fit very well to a Poisson distribution indicating FPOP is sampling a single 
conformation (Fig. 9.3c bottom panel). This data demonstrate that FPOP, done with 
the proper experimental controls, is indeed labeling faster than protein unfolding.

9.5  Data Acquisition and Processing

An advantage of FPOP is the ability to gain amino acid residue-level information 
with standard collision-induced dissociation (CID) methods. This is in contrast to 
hydrogen deuterium exchange, which owing to deuterium scrambling, requires 
electron transfer methods such as electron transfer dissociation (ETD) or electron 
capture dissociation (ECD) to provide residue-level information. ETD methods 
are not standard on many instruments and require specialized instrumentation. In 
order to capitalize on the use of residue-level information, rigorous data process-
ing is required.

The inclusion of replicates is essential, not only for statistical informa-
tion but also to expand the number of identified proteins in the experiment. The  
LC/MS/MS analysis is an important step in obtaining a large breadth of data. It 
is important to sample as many peaks as possible both in the MS and in the MS/
MS domains. Good chromatography with 5–30 s wide peak widths, depending on 
the speed of the mass spectrometer that is used for analysis, is essential. In the 
case of a single peptide with multiple single modifications, it is best to get good 
enough chromatography to separate the single modifications within that peptide. 
Figure 9.4a shows an extracted ion chromatogram of a single peptide that has 
multiple modifications. The various modifications within this single peptide have 
been separated providing more detailed information on site-specific modification. 
This separation is especially important in peptides that contain a highly reactive 
residue such as methionine. Although Met has a high level of modification, the 
information found in the other less modified residues may be more informative. 
These data need to be examined to gain a more complete view of the system. In 
addition to good chromatography, it is also important to obtain high-quality MS/
MS data (Fig. 9.4b). To date, all FPOP data have been recorded on a LTQ-Orbitrap 
(Thermo Fisher). This instrument provides high resolution and accurate mass on 
the peptide level and high sensitivity for MS/MS. All of the possible modifications 



350 L. M. Jones

for FPOP labeling are listed in Table 9.3 [14, 38–40]. Modifications other than 
+16 are possible on several amino acids. This leads to a complex analysis where 
high resolution and mass accuracy are very important.

Fig. 9.4  a Extracted ion chromatogram of a single peptide with multiple modifications that are 
separated by liquid chromatography. b MS/MS spectrum identifying Val3 as the oxidized residue 
within the peptide. Oxidized residues are highlighted in red on the peptide sequence

Table 9.3  Possible amino 
acid modifications by 
hydroxyl radicals

Amino acid Possible modification

1 C 15.9949, 31.9898, 47.9847, −15.9772
2 M 15.9949, 31.9898, −32.008
3 W 15.9949, 31.9898, 47.9847
4 Y 15.9949, 31.9898, 47.9847
5 F 15.9949, 31.9898, 47.9847
6 H 15.9949, −23.0160, −22.0320, 

−10.0320, 4.9879
7 L 15.9949, 13.9793
8 I 15.9949, 13.9793
9 V 15.9949, 13.9793
10 P 15.9949, 13.9793
11 R 15.9949, 13.9793, −43.0534
12 K 15.9949, 13.9793
13 E 15.9949, 13.9793, −30.0106, −27.9949, 

−43.9898
14 Q 15.9949, 13.9793
15 D 15.9949, −30.0106, −27.9949, −43.9898
16 N 15.9949
17 A 15.9949
18 S 15.9949, −2.0157
19 T 15.9949, −2.0157
20 G
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Figure 9.5 shows the coverage map of thrombin after FPOP labeling of the 
protein bound to its antibody [41]. In total, 34 peptides were assigned for this 
protein. The high sequence coverage, 86 %, afforded a more detailed analysis of 
this protein system [41]. Additionally, several specific sites of modification were 
identified. The high sequence coverage was achieved even though the protein 
was analyzed in the presence of the antibody owing to good chromatography 
and high-resolution MS. As will be discussed later in this chapter, the residue-
level data acquired for this protein were essential in identifying the antibody-
binding site.

A first step in data processing is LC–MS feature alignment. In alignment, 
a sum of the extracted ion chromatogram peaks of ions with the same elution 
time and de-charged monoisotopic mass (±5 ppm) are organized. The list of 
features, each with a unique ID number, with their intensities from the LC–MS 
analysis is one of the outputs from alignment. Thus far, two alignment programs, 
Rosetta Elucidator version 3.3.0.0.220 (Rosetta Biosoftware, Seattle, WA) and 
Progenesis LC–MS (Nonlinear Dynamics, Durham, NC), have been used to pro-
cess FPOP data. The alignment program also creates a data (dta) file for each 
product-ion spectrum. The dta files are merged into a single mascot generic for-
mat (mgf) file that is searched for modified and unmodified peptides by using 
MASCOT (Matrix Science, London, U.K.). All known side-chain reaction prod-
ucts of hydroxyl radical labeling were added to the modification database for 
search as variable modifications (Table 9.3) [14, 38–40]. In-house excel-based 
software is used to merge the MASCOT results with the feature list from the 
alignment program. An example of the data output for a particular peptide is 
shown in Table 9.4. Each entry in the table has a signal intensity for each repli-
cate associated with it (data not shown). In some cases, database searching can 
lead to missed or incorrect assignments. Manual validation is recommended to 
check for errors in assignment.

Fig. 9.5  Coverage map of the tryptic digest of thrombin. Peptides that were no oxidatively 
labeled are shown in black. Peptides that displayed no difference between the antibody-bound 
and antibody-free states are shown in green. Peptides that had protection in the antibody-bound 
form are shown in blue. Peptides that were de-protected in the antibody-bound form are in red. 
Reprinted with permission from Jones et al. [41]. Copyright 2011 American Chemical Society
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The extent of modification can be calculated from the intensities of each peak 
using Eq. 9.1:

where Iox1 is the signal intensity of each modification in the peptide, and I is the sig-
nal intensity of the unmodified peptide. This equation can be modified to calculate the 
extent of modification on individual amino acids to quantify site-specific information. 
It is important to note that quantitation of modification levels is done solely using the 
LC–MS data. MS/MS data are used exclusively for residue-level assignment.

9.6  Applications of FPOP

9.6.1  High-Throughput Analysis of Similarities in Ligand Binding

Many protein systems have multiple ligands that bind in a similar manner. The 
identification of the binding interactions of all of these ligands by high-resolution 
methods such as NMR and X-ray crystallography can be time consuming. Protein 
footprinting may be a useful tool for analyzing the binding interactions of multiple 
ligands to a single protein. Hambly and Gross [35] demonstrated the efficacy of 
FPOP in studying protein–ligand interactions using myoglobin as a model system. 
This ability of FPOP to identify interactions sites makes it a suitable method for 
screening interaction similarities in protein systems that bind multiple ligands.

To demonstrate the efficacy of FPOP for characterizing multiple ligand interac-
tions, the calcium-binding protein calmodulin was studied [42]. Calmodulin binds 
multiple ligands including the skeletal muscle myosin light chain kinase (SK-
MLCK), mastoparan (Mas), and melittin (Mel). An NMR structure of calmodulin 
bound to the M13 peptide, the binding domain of SK-MLCK, has been solved [43]. 
However, no high-resolution structures are available for calmodulin bound to Mas or 
Mel. FPOP analysis was done on M13-, Mas-, and Mel-bound calmodulin to evalu-
ate the utility of FPOP as a method for comparing structures of protein–ligand com-
plexes. A comparison of the oxidative labeling patterns could provide information on 
whether Mas and Mel bind calmodulin in a similar manner as the M13 peptide.

The similarity of binding between the three peptides was validated using a spec-
tral-contrast angle θ that provides a confidence value that is related to similarity [44]. 
The θ values comparing the peptide labeling patterns of calmodulin bound to M13, 
Mas, and Mel were calculated. A comparison of calmodulin and M13-/Mas-/Mel-
bound calmodulin gives a large θ indicating a significant change in conformation 
upon ligand binding. Conversely, the θ of pairwise comparisons of the three different 
peptides bound to calmodulin is similar to the smallest θ from replicate experiments 
indicating structural similarity when the three peptides are bound.

(9.1)Extent of Modification =

∑

n

i=1
IOX1

∑

n

i=1
IOX1 +

∑

I
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To provide more detailed information, further analysis was done on the residue 
level. Figure 9.6a shows the labeling differences between calmodulin and calmo-
dulin bound to M13, Mas, and Mel in the presence and absence of calcium. The 
data demonstrate that residues M109, M124, M144, M145, L18, and F19 are pro-
tected from labeling when any of the three peptides are bound to calcium-loaded 
calmodulin indicating these regions are part of the interaction site for the bind-
ing of all three peptides. These residues correlate well with interaction site that 
is highlighted in the NMR structure of M13-bound calmodulin (Fig. 9.6b). The 
data on both the peptide and residue levels validate the efficacy of FPOP as a 
method for comparing interactions of multiple ligands with a single protein. This 
method is more powerful when the structure of the protein with one of the ligands 
bound is known. This reference complex can be used to determine whether the 
other ligands bind in a similar manner. This relatively high-throughput screening 
of multiple ligands binding using FPOP may prove useful in the development of 
therapeutics.

9.6.2  Epitope Mapping

Antibodies are increasingly being used as therapeutics for a wide variety of dis-
eases [45–47]. As is the case for all biologics, detailed analytical structural char-
acterization is an important step in their use as therapeutics. One step in antibody 
characterization is the identification of the epitope. Multiple methods such as 
site-directed mutagenesis [48], X-ray crystallography [49], and epitope extraction 
[50] have been used in epitope mapping with success. FPOP could provide a high-
throughput, specific method for epitope mapping.

Fig. 9.6  a Extent of modification for Ca2+-free (white) and Ca2+-bound (black) states of each 
modified residue for various calmodulin complexes. b FPOP results mapped onto the structure 
of the calmodulin–M13 complex. Residues in pink are modified residues detected by LC–MS. 
Reprinted with permission from Zhang et al. [42]. Copyright 2011 American Chemical Society
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The ability of FPOP to map an antibody epitope was tested using thrombin 
as a model system. The serine protease thrombin binds to its antibody via a dis-
continuous epitope, an epitope that consists of residues that are not together on 
the primary sequence but come together in the folded structure of the protein. 
Discontinuous epitopes are difficult to ascertain using site-directed mutagenesis. 
HDX was previously used to map the epitope of thrombin demonstrating the abil-
ity of protein footprinting to be a valuable tool in epitope mapping [51]. Since the 
epitope of thrombin is known, it is a good model system to determine whether 
FPOP will be useful for epitope mapping studies.

FPOP labeling was performed on apo-thrombin and antibody-bound throm-
bin. The peptide-level data indicated the oxidative modification of a six-residue 
peptide, 114–119, was decreased when the antibody was bound to thrombin, sig-
nifying it is a part of the epitope (Fig. 9.7a) [41]. This decreased level of modifi-
cation was also observed in a second region of the antibody-bound protein. This 
region was represented by five peptides, including missed trypsin cleavages, which 
spanned 41 residues (Fig. 9.7b, e). It is highly unlikely the epitope spans such a 
large region, so further analysis needed to be done to determine the epitope.

To obtain a higher definition in the experiment, the residue-level data were 
analyzed. The acquisition of good MS/MS data allowed for the interrogation of 
residue-level information. Figure 9.7c displays the MS/MS spectrum of peptide 
130–140, one of the peptides which displayed decreased oxidative modification in 
the antibody-bound form of thrombin. The modification in this peptide is a loss of 
carbon dioxide, a mass difference of −43.9898 Da, which is observed in modifi-
cation of acidic residues [40]. The MS/MS spectrum indicates that Asp133 is the 
modified residue within this peptide. Analysis of the residue-level data indicates 
the regions of decreased oxidative modification are found specifically between 
residues 133–150 (Fig. 9.7d). A comparison of the interaction region identified by 
peptide-level data (Fig. 9.7e) and residue-level data (Fig. 9.7f) demonstrates the 
importance of obtaining residue-level information in an FPOP experiment. The 
epitope was identified at a higher resolution, when the residue-level data were 
analyzed.

The two regions that FPOP identified as the epitope of thrombin correlate well 
with the previously mapped hydrogen deuterium exchange data [51]. The HDX-
identified epitope is represented by the peptic peptides 113–117 and 139–149, 
while the epitope mapped by FPOP is represented by the tryptic peptide 114–119 
and residues 133–150. Additionally, when these regions are mapped onto the struc-
ture of thrombin, Fig. 9.7h, they are together in the folded protein even though 
they are far apart in the primary sequence, a characteristic of a discontinuous 
epitope. This data confirm that FPOP has utility for epitope mapping providing 
another structural tool for the characterization of antibodies.

The FPOP data also revealed regions where the antibody-bound thrombin had 
increased oxidative modification compared to apo-thrombin (Fig. 9.7g). Specific 
residues that displayed this labeling behavior were R134, P153, C155, and P157 
(Fig. 9.7d). The regions of increased solvent accessibility are in the loop regions 
of the protein including the 99- and 148-loops (Fig. 9.7h). Thrombin is known 
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to undergo allosteric conformational changes, particular in its loop regions, upon 
ligand binding [52, 53]. The FPOP data reveal these allosteric changes occur when 
thrombin is bound to the antibody. These antibody-bound allosteric changes have 
not been previously observed for thrombin. These changes were not observed in 
the HDX epitope mapping study presumably because the conformational changes 
are due to side-chain rotations. HDX monitors backbone amides and their role 
in hydrogen bonding and solvent accessibility. In this case, the antibody-induced 
allosteric conformational changes in the thrombin loops must not involve altera-
tions in the hydrogen bonding network but rather side-chain rotations. FPOP 
monitors the side chains of amino acids and, therefore, would readily detect these 
side-chain rotations.

This data demonstrate the efficacy of FPOP as a tool for epitope mapping 
and for mapping protein conformational changes. Additionally, the method has 
a higher throughput than site-directed mutagenesis, X-ray crystallography, and 
NMR increasing its value as a reliable tool for antibody characterization [54].

9.6.3  Structural Analysis of Apolipoprotein E

Apolipoprotein E apoE is an important biological molecule that plays a role in 
Alzheimer’s disease. apoE binds to multiple ligands to regulate lipid metabo-
lism and control lipid redistribution in tissue and cells [55]. It is thought to inter-
act with amyloid beta peptides, which possibly contributes to the progression of 
Alzheimer’s disease [56, 57]. There are three apoE isoforms, apolipoprotein E2 
(apoE2), apolipoprotein E3 (apoE3), and apolipoprotein E4 (apoE4) that differ 
slightly in their amino acid sequence at positions 112 and 158. apoE2 has cysteine 
residues at these two positions, but apoE4 has an arginine at these sites. apoE3 has 
a cysteine at position 112 and an arginine at position 158. Interestingly, the apoE4 
isoform is strongly associated with Alzheimer’s disease suggesting a relevancy to 
the residue differences between the isoforms [56, 58]. To examine the structural 
differences between the isoforms of apoE, Gau et al. [60] used FPOP. The labeling 
of the three isoforms was compared to determine whether the solvent accessibili-
ties of specific residues are different.

Fig. 9.7  a Extent of modification of peptide 114–119 in the antibody-bound (holo) and antibody-
free (apo) states of thrombin. b Extent of modification for the five peptides that span the 130–
171 region. c MS/MS spectrum of peptide 130–140 identifying D134 as the oxidized residue.  
d Extent of modification of thrombin on the residue level. Regions displaying modifications 
differences identified on the e peptide and f residue levels mapped onto the structure of throm-
bin (pdb: 2AFQ). g Extent of modification of thrombin that displayed increased solvent acces-
sibility in the antibody-bound form. h Structural model of thrombin with the proposed epitope 
highlighted in blue. Regions of increased solvent accessibility in the antibody-bound form are 
highlighted in green with specific residues shown with sticks. Figure c reprinted, figures a, b, d, g, 
and h adapted with permission from Jones et al. [41]. Copyright 2011 American Chemical Society
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Figure 9.8a shows the comparison of apoE4 and apoE3 on the residue (top) 
and peptide level (bottom). There are five specific residues, M108, Y162, P183, 
V185, and E266, that are modified significantly different between the isoforms 
at 95 % confidence by the Student’s t test. Moreover, on the peptide level, three 

Fig. 9.8  Comparison of the tryptic peptide-level and residue-level FPOP labeling yields for 
a apoE3 and apoE4 and b apoE2 and apoE3. In the residue-level data, residues highlighted in 
red [M108, Y162, P183, V185, E266 in (a) Y162, E255, E266 in (b)] have significant differ-
ence between isoforms at 95 % confidence by the Student’s t test. In the bottom panels of both 
a and b, the light blue area is the standard error. Reprinted with permission from Gau et al. [60]. 
Copyright 2011 American Chemical Society
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peptides, 62–72, 120–134, and 261–274, display increased oxidative modifica-
tionin apoE4 compared to apoE3, while peptide 104–112 has increased modi-
fication in apoE3. The differences between apoE2 and apoE3 are even smaller. 

Fig. 9.9  a Comparison of the residue-level FPOP labeling yields for ApoE3 and ApoE3MM. b 
Residues along the ApoE3 sequence the display more labeling in ApoE3MM. Residues underlined in 
black are from the FPOP experiment. Residues underlined in red are from the GEE labeling experi-
ment. Reprinted with permission from Gau et al. [60]. Copyright 2011 American Chemical Society
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Three residues, Y162, E255, and E266, and one peptide, 62–68, display signif-
icant labeling differences (Fig. 9.8b). The largest difference between the three 
isoforms is M108 which is extensively modified in apoE4 but has only negligi-
ble modification in apoE2 and apoE3. This indicates a structural difference in 
this region of apoE4. This may provide insight into the source of the increased 
risk of Alzheimer’s disease for apoE4.

It has been shown that apoE oligomerizes, forming dimers at nanomolar 
concentrations and tetramers at micromolar concentrations [59]. The self-asso-
ciation of apoE plays a major role in its lipid-binding ability [61]; thus, it is 
important to understand the characteristics of this self-association. The tendency 
of the protein to self-associate makes it difficult to study via NMR owing to the 
large size of the oligomeric states. Gau et al. [60] compared the oxidative modi-
fication of the tetrameric form of apoE3 to a monomeric mutant (apoE3MM). 
Four mutations, F257A, W264R, L279Q, and V287E, were engineered to pro-
duce the monomeric mutant [62], and its NMR structure has been solved [63]. A 
comparison of apoE3 and apoE3MM labeling shows the C-terminus of the pro-
tein has significantly greater oxidative modification for apoE3MM (Fig. 9.9a). 
In total, 26 residues in the C-terminus had increased modification for apoE3MM 
(Fig. 9.9b). This trend was observed on both the residue and peptide levels. 
This data correlate well with previous studies that indicated the C-terminus was 
involved in oligomerization [64–66]. The FPOP labeling data were further veri-
fied by using another footprinting method GEE footprinting. GEE specifically 
labels the carboxylic acids aspartate and glutamate. The GEE labeling also indi-
cated that several Glu residues in the C-terminus had increased modification for 
apoE3MM compared to the apoE3 tetramer (Fig. 9.9b). The residues that dem-
onstrated increased modification for apoE3MM for both FPOP and GEE labe-
ling are highlighted on the apoE3MM structure in Fig. 9.9c. These regions of 
increased solvent accessibility are localized in the C-terminal portion of the pro-
tein. Since there are no primary sequence differences between the three isoforms 
in this region of apoE, it can be assumed that the same region is responsible 
for oligomerization of apoE2 and apoE4. This study reveals FPOP’s proficiency 
in determining differences in protein isoforms that differ by a couple of amino 
acids as well as identifying oligomerization interfaces.

9.7  Method Development

FPOP has been successful as probe for solvent accessibility, elucidating protein–
ligand and protein–protein interactions in a variety of systems. However, further 
development of the method can extend its use to other applications including 
protein folding. Moreover, the use of other radicals for footprinting may pro-
vide different information than •OH increasing the utility of FPOP for structural 
biology.
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9.7.1  FPOP as a Tool for Studying Protein Folding

The high speed of FPOP labeling, 1 μs, makes its potential use to study protein 
folding dynamics interesting. Chen et al. [67] have developed a temperature jump 
(T jump) strategy to monitor protein folding using FPOP. The approach uses two 
lasers, an Nd:YAG laser to provide a T jump and an excimer laser to generate •OH 
(Fig. 9.10a). The delay time between the two lasers could be adjusted to provide 
kinetic information. This strategy allows for the analysis of protein folding on a 
submillisecond timescale.

Barstar was chosen as a test system for this approach. This protein is dena-
tured at 0 °C and folds when its temperature is increased. First, the Nd:YAG laser 
provided a T jump (~20 °C) to the protein system. Then, the excimer laser was 
pulsed at various time intervals post-T jump to generate •OH for FPOP labe-
ling. Figure 9.10b shows the differences in barstar modification at varying times 
between the heat pulse and FPOP compared to FPOP modification without a  
T jump (RT). As the time delay is increased, the amount of oxidative modification 
is decreased. This is consistent with the progression of protein folding where sites 
would become protected from labeling as the protein folds. Barstar has two inter-
mediate states in its folding pathway. Based on the timescale of this experiment, 
it is presumed the first state is being monitored. This first transition state is more 
solvent exposed than the native state, even at 1 ms (Fig. 9.10b), compared to the 
native state control (RT control spectrum in Fig. 9.10b).

A rate constant for equilibrium of folding was calculated using the centroid 
of the 10+ charge state peak of the mass spectra. The centroid shift was plotted 
against the delay time of the excimer laser pulse (Fig. 9.10c). The data were fit 
using a single-exponential function, and a constant of 1.5 ms−1 was obtained [67]. 

Fig. 9.10  a Schematic of the T jump system that shows flow system is intersected by two laser 
beams at a window in the tube. The delay circuit allows for time between the two laser pulses to 
be adjusted. b Mass spectra of FPOP-labeled barstar at different times between the heating pulse 
and the FPOP probe. The RT control spectrum is barstar FPOP-labeled at room temperature. c 
Plot of the centroid mass shift versus delay time with a curve fit obtained by fitting a single-expo-
nential function (solid curve) to the data (O). Reprinted with permission from Chen et al. [67]. 
Copyright 2010 American Chemical Society
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This agrees fairly well with the transition rate from the unfolded state to the first 
intermediate state measured by fluorescence which was 3.10 ms−1 [68].

These results indicate that a T jump coupled with FPOP is an effective 
approach for following protein folding kinetics on a submillisecond timescale. 
The use of MS as the detection method allows for more detailed information than 
global methods such as fluorescence. This experiment can be coupled with protein 
proteolysis to examine the changes in the local regions during folding.

9.7.2  New Reagents for FPOP-Based Labeling

Multiple laboratories have demonstrated the efficacy of •OH for oxidative labeling 
of protein complexes [19, 29, 33]. However, other radicals could be as effective or 
more effective in footprinting proteins. Radicals have varying reduction potentials 
that determine its tendency to be either a strong oxidant or a reductant. For oxi-
dative labeling, radicals with larger reduction potentials could be advantageous. 
Moreover, in certain protein systems, radicals that label more specifically than 
•OH could be beneficial. An advantage of FPOP is that the method is tunable, so 
that other radicals can be used to label proteins.

9.7.2.1  The Sulfate Radical Anion

The sulfate radical anion, SO4
−•, has a reduction potential of 2,430 mV making it 

a slightly stronger oxidant than •OH which has a reduction potential of 1,900 mV 
[69]. The efficacy of SO4

−• as an oxidant has been previously described [70]. It has 
been shown to oxidize methionine, aromatic, carboxyl, and zwitterionic residues. 
The usefulness of SO4

−• as a reagent for FPOP has been established by Gau et al. 
[40]. Sodium persulfate, Na2S2O8, was used as the precursor molecule for the radi-
cal. A comparison of global labeling of β-lactoglobulin with •OH and SO4

−• with 
Na2S2O8 and hydrogen peroxide in equimolar concentrations showed that SO4

−• 
labeled with a higher yield (Fig. 9.11a). No oxidation was observed in the Na2S2O8 
control experiment where no laser was used (Fig. 9.11a top panel). Similar modifi-
cation levels were only achieved once the Na2S2O8 concentration was lowered from 
15 to 5 mM (Fig. 9.11a). This correlates well with the reduction potential of the two 
radicals which indicate that SO4

−• is a stronger oxidant than  •OH. Further, the labe-
ling data at 5 mM Na2S2O8 fit well to a Poisson distribution indicating SO4

−• labe-
ling has sampled the native conformation, similar to •OH labeling [34, 40].

For residue-level studies, the proteins apomyoglobin and calmodulin and pep-
tides bradykinin and angiotensin II were labeled. The protein samples were pro-
teolyzed with trypsin and analyzed by using LC/MS/MS. The residue-specific 
data indicate that similar to •OH, the sulfate radical anion is a promiscuous label. 
In total, 16 different amino acid residues types were labeled by SO4

−•. However, 
reagent reactivity differences were observed. A fraction modified metric was 
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calculated for each residue type for apomyoglobin, calmodulin, bradykinin, and 
angiotensin II [40]. Figure 9.11b shows a comparison of •OH and SO4

−• modifica-
tion on a residue-by-residue basis. The data suggest that •OH react more readily 
with certain residues such as Phe, Gln, and Lys as well as the aliphatic residues 
Pro, Thr, Leu, Ile, and Val. When the maximum fraction modified values for each 
residue are compared, a slightly different order of reactivity is observed for the 
SO4

−• (Fig. 9.11 c). The reactivities for Met, Trp, and Glu are similar for the two 
radicals. Tyr and His have slightly higher reactivities with the SO4

−•, but its reac-
tivity with Phe is greatly decreased in comparison to •OH [40]. Gau et al. [40] 
attribute these differences to both the inherent reactivities of the two radicals and 
their different molecular sizes.

Lastly, the correlation between persulfate FPOP labeling and solvent accessibil-
ity was assessed. The per-residue fraction modified residue data for the histidines 
of myoglobin were compared to solvent accessible surface area calculated from an 
X-ray crystal structure. The reactivity does not correlate well when His64 is part of 
the fit (R2 = 0.63, Fig. 9.12a). The reason for this is that His64 is an axial ligand of 
the heme iron and persulfate or SO4− may have a high affinity for the heme-bind-
ing pocket [40]. When His64 is omitted from the fit, the correlation is much better 
with an R2 of 0.83 (Fig. 9.12b). The results indicate that similar to peroxide FPOP 
labeling, persulfate FPOP labeling is a suitable monitor of solvent accessibility.

Fig. 9.11  a ESI mass spectra of the 15th charge state of β-lactoglobulin with varying labeling 
conditions. b The relative difference between persulfate and peroxide fraction modified of calmo-
dulin, apomyoglobin, bradykinin, and angiotensin II residues (values averaged per amino acid 
type). c Maximum fraction modified of all amino acid residues of H2O2 FPOP labeling (black 
bars) and Na2S2O8 FPOP labeling (diagonal-pattern bars). Reprinted with permission from Gau 
et al. [40]. Copyright 2010 American Chemical Society
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9.7.2.2  The Iodine Radical

The sulfate radical anion, similar to hydroxyl radicals, is a nonspecific labeling 
method. Both radicals have the ability to oxidatively modify at least 14 amino acid 
residues. In certain protein systems, a radical that specifically modifies one or two 
residues is desirable. Iodination of proteins has been shown to be a very specific 
labeling strategy where tyrosine and to a lesser extent histidine residues are modi-
fied [71, 72]. The major product of iodination of tyrosine is 3,5-di-iodotyrosine. 
Three major products, 2-iodohistidine, 2,5-di-iodohistidine, and 1,2,5,-tri-iodohis-
tidine, result from iodination of histidine. To take advantage of the specific labe-
ling of iodine, an FPOP-based iodination method was developed [73].

To generate a radical species, iodobenzoic acid was used as the source. The 
photolysis of iodobenzoic acid by the excimer laser at 248 nm resulted in the 
formation of the iodide radical (I). Instead of glutamine, which is used in both 
peroxide and persulfate FPOP, free histidine was used as a scavenger to control 
radical lifetimes and reduce labeling-induced conformational changes. Histidine 
was chosen because its reaction with •I is 30–100 times slower than tyrosine [74]. 
It should consume radical at a rate that would still allow for adequate reaction 
with the protein. The higher reactivity of tyrosine may cause it to quench the radi-
cal prior to protein labeling. The modification of proteins with •I leads to a mass 
increase of 125.90 Da, in the case of a single modification.

Myoglobin was used as a model system to test FPOP-based iodination [73]. The 
labeling of myoglobin (Mb) and apomyoglobin (apoMb) with •I was compared on 
the global protein. MS analysis shows that modification levels in aMb (Fig. 9.13b) 
are much higher than those in Mb (Fig. 9.13a). In Mb, mono-iodinated species are 
present at 38 % of the unmodified species. In aMb, these species have increased to 
130 %. Further, tri-iodination, which is present in aMb, is not detected in Mb.

Fig. 9.12  Correlation 
of modification yields of 
apomyoglobin his residues 
with their calculated solvent 
accessible surface areas with 
least-squares fit. His64 is 
omitted from the fit in plot 
b. Reprinted with permission 
from Gau et al.  [40]. 
Copyright 2010 American 
Chemical Society
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The specificity of the •I makes iodinated proteins more suitable for top-down 
MS analysis than peroxide or persulfate FPOP-labeled proteins. Chen et al. [73] 
used top-down MS to identify the locations of modified sites. One state, the mono-
iodinated species, was isolated and subjected to ECD fragmentation (Fig. 9.13c). 

Fig. 9.13  Global protein MS analysis of iodinated Mb (a) and aMb (b). c Sequence coverage 
and ECD spectra of the 16th charge state of mono-iodinated aMb (right panel) and Mb (left 
panel). Top-down MS analysis of myoglobin. Reprinted from Chen et al. [73], with permission 
from Springer
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Several modified sites were identified by top-down including Y146 and Y103. 
Results indicated that modified Y146 was observed in aMb (26 %) but not in Mb 
(Fig. 9.13c). Residue Y103 has similar levels of iodination in both states indicating 
the solvent accessibility of this residue does not change upon heme binding.

While top-down sequencing provided valuable information, it could not detect 
very low levels of labeling, thereby leaving large gaps in sequence coverage. Some 
modification sites could not be determined owing to their location in the middle 
of an unfragmented protein sequence. To increase the yield of modification infor-
mation, bottom-up sequencing using trypsin digestion was applied. A significant 
modification difference was observed in residues H82, H93, and H97 (Fig. 9.14). 
The results agree well with previous NMR analysis of aMb and Mb that showed 
helix F is not formed in aMb but is well formed in Mb. Residues H82, H93, and 
H97 are all located in helix F. FPOP-based iodination was also successful in ana-
lyzing apo- and holo-carbonic anhydrase II as well as comparing lispro insulin, 
insulin-EDTA, and zinc-bound insulin.

The success of using persulfate and iodine as reagents in FPOP has opened the 
door for the use of a host of other radicals for protein labeling. It has been dem-
onstrated that methylene carbene is a good reagent for footprinting of proteins via 
methylation [75]. Carbene radicals, unlike •OH, do not have an amino acid reac-
tivity prejudice, thus providing a more broad-based labeling that is not biased by 
primary sequence. This and other radicals may be well suited for the photolysis 
strategy of FPOP.

9.8  Conclusions

To date, FPOP coupled with MS has been effective in the elucidation of protein–
ligand and protein–protein interactions. The method reliably measures solvent 
accessibility, thus providing insight into protein structure. The irreversible nature of 

Fig. 9.14  Extent of iodination histidine and tyrosine (inset) residues of aMb (dark bars) and Mb 
(light bars). Reprinted from Chen et al.  [73] with permission from Springer
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the label allows for post-labeling purification and long chromatography gradients 
for separation prior to MS analysis. Owing to this, the method is not limited by size 
and complex multi-protein systems can be analyzed. Further, the method has been 
shown to be tunable with other radicals such as SO4−• and •I. FPOP has also been 
shown to be useful in studying protein folding. Further developments in methodol-
ogy could further extend its use as a tool for structural biology and structural char-
acterization of protein therapeutics.
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10.1  Introduction

A major proportion of protein therapeutics marketed to date are produced by 
recombinant DNA technologies using well-chosen protein expression systems. 
Compared with small-molecule pharmaceuticals, recombinant therapeutic pro-
teins are generally complex, heterogeneous, and subject to a variety of enzymatic 
or chemical modifications during expression, purification, and long-term storage. 
Because of unique structural features and production processes, the analytical strat-
egies for characterization, quantitation, impurity profiling, and bioactivity evalua-
tion of recombinant proteins represent a great challenge and a matter for debate.

The analysis of protein therapeutic products normally involves the appropriate 
combination of analytical tools in order to effectively address different aspects of 
the product’s structural features. The need for many analytical technologies under-
lines the complexity of analytical support in biopharmaceutical development. 
It also calls for continued development of new tools, technologies, and assays to 
streamline the process, so that critical information regarding the biotherapeutic 
attributes can be reliably and seamlessly acquired.

Mass spectrometry (MS) has played an important role in the ensemble of analyti-
cal tools for in-depth characterization of biotherapeutic products [1]. MS is widely 
used for revealing the covalent structure and stability of protein therapeutics due to 
its analytical sensitivity, selectivity, and specificity. Information acquired from MS is 
particularly useful to demonstrate product quality and consistency and to identify the 
desired or undesired forms of protein products. Structural analysis is important to the 
production process as small changes in an optimized process may affect the structure 
of the product. On the other hand, assuring sufficient pharmaceutical stability is a 
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great challenge in protein drug formulation as a large number of functional groups in 
protein therapeutics are susceptible to chemical degradation.

Owing to the advantages that MS offers, it is of great interest to develop 
MS-based methods to characterize protein therapeutics not only by mass but also by 
other properties such as protein conformation (i.e., secondary/tertiary structures of 
proteins). Biophysical properties such as protein conformation, protein dynamics, 
and aggregation contribute either collectively or individually to the quality attributes 
of protein therapeutics. Reproducible safety and efficacy profiles for protein thera-
peutics require manufacturers to produce products with consistent higher-order struc-
tures. Methods for determining changes in higher-order structure are invaluable for 
such assessments. Despite the versatility and capability demonstrated by MS in pro-
tein characterization, most current applications of MS in biopharmaceutical industry 
are focused on characterizing primary structures of proteins [e.g., confirming protein 
sequence and identifying post-translational modifications (PTMs)]. Its role in studies 
of non-covalent features of proteins is less developed. Although methods that rely 
on direct electrospray ionization (ESI) MS analysis for higher-order structure study, 
such as probing non-covalent assemblies [2–4] or analysis of protein ion charge state 
distributions [5], have been reported, direct ESI MS measurements for protein con-
formation analysis have long been limited to academic laboratories. The embrace of 
these methodologies in industrial settings has been somewhat hindered due to the 
lack of robustness and direct connection between analytical data and protein struc-
tural information. Therefore, it is highly desirable to develop additional MS-based 
methods elucidating the three-dimensional molecular structure of proteins.

When coupled to spectroscopic techniques such as ion mobility spectrometry 
(IMS), or methods probing the conformation-dependent chemical reactivity such 
as hydrogen/deuterium (H/D) exchange (see Chap. 8) and fast photochemical 
oxidation (see Chap. 9), MS has demonstrated the potential of probing detailed 
molecular structures [6–9]. IMS is an electrophoretic technique that uses mobil-
ity rather than mass to separate gas-phase ions. Under the influence of an elec-
tric field and at either low vacuum or atmospheric pressure conditions, ions with 
different properties such as size, shape and charge show different characteristic 
behavior in the gas phase, which result in a specific drift velocity and thus ion 
mobility separation. Therefore, this gas-phase electrophoretic technique can be 
used analytically to deduce structural information regarding the ion of interest. As 
a stand-alone system, IMS has been in use for many decades for many analyti-
cal applications, ranging from the detection of chemical warfare agents [10, 11] to 
particle sizing [12, 13]. More recently, ion mobility has been coupled to MS pro-
viding a new dimension in the analysis of biomolecules with ion mobility offer-
ing direct molecular structural information for all resolved species. The unique 
information afforded by integrating the information from both the IM and the MS 
separation dimensions highlights the strength of ion mobility mass spectrometry 
(IMMS) techniques in life sciences research. With these characteristics, IMMS is 
viewed as a complementary tool in the context of structural biology, offering even 
greater insight into the properties of large and heterogeneous protein complexes by 
providing information on the stoichiometry, topology, and cross section of these 
assemblies and their composite sub-units [14–16].

http://dx.doi.org/10.1007/978-1-4419-7862-2_8
http://dx.doi.org/10.1007/978-1-4419-7862-2_9


37310 Applications of Ion Mobility Mass Spectrometry

The need for further advances in the ensemble of analytical tools to address 
different aspects of the quality assessment of protein therapeutics and in particu-
lar for conformation analysis and aggregates prompts much interest to explore the 
utility of IMMS. The aim of this chapter is to briefly introduce the development 
of IMS instrumentation and the major configurations of IMMS instruments. The 
focus of this chapter is to discuss the main applications of IMMS technique in the 
different aspects of the quality assessment of protein therapeutics.

10.2  Overview of Ion Mobility Spectrometry and Ion 
Mobility Mass Spectrometry

10.2.1  Brief History of Ion Mobility Spectrometry Development

The development of analytical IMS can date back to the mid- to late-nineteenth 
century when an early burst of scientific activities brought in a broad range and 
depth of inquiry about the formation and behavior of ions in gases at ambient pres-
sure [17]. Through these activities, a wealth of data and experience was acquired 
regarding the identity of the ions formed in the gases, their mobilities as well 
as the factors that control the ion mobility (e.g., temperature, pressure, and gas 
purity). The development from these early years made important contribution to 
subsequent advances in mobility measurements and analytical IMS instrumenta-
tion. Langevin was one of the first to describe the theoretical treatment of mobility 
and practical experimentation. Two of his seminal papers [18, 19] properly recog-
nized the interactions between ions and gaseous molecules and the influence of 
the gas on the mobility of the ion. Langevin’s theory laid down the fundamental 
principles of modern analytical IMS; that is, ions can be separated by their char-
acteristic velocity through a gas-filled electric field. It was also during this period 
of time, ion shutters technique for pulsed ion injection was developed by van de 
Graaf [20] and Cravath [21] (and later further modified by Bradbury [22]). This 
breakthrough solved one of the practical problems in IM measurement: how to 
couple continuous ion sources with IM drift tube for only discrete packet of ions is 
allowed to be injected into the ion mobility device (i.e., drift tube) at a time.

The next period of IMS progression started from 1948 when Lovelock [23] first 
reported his findings that a simple ionization detector [electron capture detector 
(ECD)] was able to detect ultralow concentrations of airborne industry–related 
organic vapors that were released into the atmosphere as pollutants. The signifi-
cance of Lovelock’s study lies in that it established for the first time that there is 
a direct link between the composition of a vapor sample, such as trace impurities 
in ambient air, and the ions created in an ionization source. Later on in the 1950s, 
due to research interest into pollution, warfare, and space exploration, extensive 
investigation of gas-phase ion-molecule reactions at elevated pressures was under-
taken, and these studies formed a chemical foundation for the interpretation of the 
chemical events that occurred inside an IM drift tube. Experiments performed by 
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McDaniel [24] and Kebarle [25] with drift cells under a low electric field to study 
the separation and reactions of ions and small molecules in the gas phase led to the 
development of the predecessors of modern IM instrumentation.

On the basis of these early foundational work, the core component of modern 
analytical IMS, a drift tube, was created by McDaniel at Georgia Tech [26]. The drift 
tube consisted of a stack of electrically isolated rings, and a linear electric field was 
established with voltage dividers. In the mid-1960s, Martin Cohen and coworkers at 
Franklin GNO developed the first analytical IMS, so-called plasma chromatography 
[27], in an attempt to characterize vapors as ions in air using a drift tube. At a con-
ceptual level, the instrument was a blend of Lovelock’s ionization detector and the 
drift tube initially built at Georgia Tech. The instrumentation was soon commercial-
ized with one of the configurations coupled with a mass spectrometer. The commer-
cialization of IMS technology marked an end to the period of foundational discovery 
and introduced an era of extensive exploration of IMS as an analytical tool.

The introduction of commercial analytical IMS made it possible for researchers to 
explore its industrial applications and to transform the large laboratory instrument into 
portable or handheld rugged analyzers for detection of chemical warfare agents, explo-
sives, and drugs. Although successful industrial application of IMS was rather limited 
in the era from 1970s to 1990s, miniaturization efforts put forth by industrial groups 
and US/UK military successfully brought in the deployment of IMS as a chemical 
agent monitor in combat and as explosives detectors in aviation security checks [17]. 
Since the 1950s, military-based applications had been a major driving force behind 
the development of IMS. The high acceptance and the trust placed by soldiers and the 
traveling public onto IMS demonstrated the unique applications of the technique and 
showed the strides that have been made over the years as an analytical instrument.

In the 1990s, with the advent of soft ionization methods, electrospray ionization 
(ESI) and matrix-assisted laser desorption/ionization (MALDI), the ionization of 
large intact macromolecules without fragmentation became a reality. Coupled with 
the soft ionization techniques, IMS was applied for analyzing biomolecules [28–31]. 
In the meantime, theoretical methods for elucidating ion structure were developed 
by correlating the ion mobility experimental values (cross sections) with calculated 
results for computer-generated trial structures/geometries [32, 33]. This development 
arguably represents one of the most important advances achieved with IMS tech-
nologies and paves the way to link the IMS technique with the ability to determine 
information about ion shape. In instrumentation, a number of MS techniques were 
successfully coupled to IMS to accelerate the study of biomolecules by IMS, includ-
ing Fourier transform ion cyclotron resonance [34], linear quadrupoles [35], and 
trapping devices [36–38], as well as time-of-flight (TOF) [39] mass spectrometers.

10.2.2  General Principles of Ion Mobility Spectrometry

The basic principle behind IMS separations is straightforward: it measures how fast a 
given ion moves against an electrical field through an atmosphere composed of neutral 
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drift molecules (e.g., N2, He, etc.). Ion species with different properties, such as size, 
shape, and charge, travel with different velocities (i.e., ion mobilities) when they are 
pulled by an electric field through a drift cell filled with a buffer carrier gas (e.g., N2). 
For example, an ion with a large average cross section undergoes more collisions with 
the buffer gas and travels more slowly than an ion with a small average collision cross 
section (CCS). Ion mobility separation is obtained when the ions disperse throughout 
the device. Through the measurement of the arrival time (distribution) at the detector, 
this information can be used analytically to deduce structural information regarding 
the ion of interest. The main advantages of IM measurement are the simplicity and 
speed of the measurement as well as the high sensitivity and selectivity of the analysis.

The principles of the three different ion mobility devices that are most fre-
quently found in tandem with mass spectrometers will be described in this section 
(Fig. 10.1). Because the development of IM separation originated from linear drift 
tube (LDT) IMS, the principles employed in this type of instrument are discussed 
before the more recently developed traveling wave (TW) IMS and field asymmet-
ric ion mobility spectrometry (FAIMS) are reviewed.

10.2.2.1  Linear Drift Tube IMS

The basics of LDT IMS have been known for a long time. The theoretical treat-
ment of the technique is based on the primary conditions that the electric field 
employed for LDT IMS is weak and uniform throughout the device. The applied 
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field is considered to be weak if the thermal energy obtained by the ions due to the 
collision with the drift gas molecules is greater than the energy the ions acquired 
from the electric field. Under those circumstances, the ions have the energies simi-
lar to that of the bulk buffer gas and diffusion process dominates over ion mobility. 
Under these weak-field conditions, according to Mason and McDaniel [40], the 
mobility of any ion, K, is defined as following (Eq. 10.1)

where ϑd
 is the drift velocity of ions, E is the electric field (in units of V/cm and 

calculated as V/L), V is the voltage drop over the drift tube, L is the length of the 
drift cell, and td is the drift time.

The reduced ion mobility, K0, normalized with respect to pressure, P, and tem-
perature, T, can thus be defined as

K0 is calculated using values in standard conditions to facilitate the comparison of 
ion mobility measurements between laboratories/settings.

When an ion is placed in the IM cell, it experiences an accelerated electric 
force, which is proportional to charge (ze), and a deceleration friction force caused 
by the collision with the buffer gas. This friction force is inversely proportional 
to the number density of buffer gas N and the CCS Ω of the ion. Therefore, this 
mobility constant can also be quantitatively described based on the characteristics 
of the ion and the conditions of the drift cell, namely the ion’s charge (ze); average 
CCS Ω the number density of the drift gas (N).

where µ = Mm
/

(M + m) is the reduced mass of the ion (with mass m) and 
buffer gas (with mass M), kB is the Boltzmann’s constant, T is the gas temperature, 
and N0 is the number density of the drift gas at standard temperature and pressure.

When coupling IM with MS, the mass and charge of ions can be easily 
obtained. This information, combined with the measured ion arrival time, allows 
the Ω of an ion to be calculated using Eq. 10.3. This characteristic value represents 
the orientationally averaged area of the ion which is able to interact with the buffer 
gas. In comparison, the Ω for larger ions (e.g., proteins) can be approximated 
computationally using different theoretical models (e.g., relatively simple hard 
sphere scattering [32]) based on the coordinate data from either X-ray or NMR 
structural analysis.

During the transit process in the IM drift tube, the injected ion packet  
experiences a force exerted by an electric field and is accelerated along the field 
line until it collides with a gas molecule and scatters in random directions. This 
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process is repeated throughout the entire navigation process until it exits out of 
the drift tube. Simultaneously, normal diffusion process will cause the ion pack to 
grow in size, while the ions are moved through the drift tube. These are opposing 
effects that limit the resolution obtainable with a drift tube.

Based on Eq. 10.1, the measurement of ion mobility, K, involves the determina-
tion of the arrival time td of an ion pack traveling in a weak field E over a given drift 
length L. The spread, Δx of a pack of identical ions due to diffusion, is given by

Therefore, the resolution of an IMS device, td/Δt, can be calculated as follows:

Based on Eq. 10.5, the IM resolution is affected only by two experimen-
tal parameters: temperature, T, and drift voltage, V. To improve the resolution of 
IM separation, one can reduce T to decrease diffusion and thus reduce Δt. On 
the other hand, the resolution is proportional to 

√
V/T , so increasing the voltage 

applied across the drift tube also improves the resolution. However, increasing V 
requires a simultaneous increase in the gas pressure (the buffer gas number density 
N) to maintain the ratio of E/N constant and to stay in the low-field regime desir-
able for ion mobility experiments.

IM separation based on drift tube is the simplest version among all the IM tech-
niques available now. The IM device normally operates in one of two modes to 
obtain drift time ion mobility spectra: reduced pressure IMS and ambient pressure 
IMS. Historically, a field-deployable stand-alone IMS analytical instrument operates 
at ambient pressure for the separation and detection of trace quantities of explosives, 
drugs, and chemical warfare agents. Because of the higher gas pressure, ambient pres-
sure IMS generally produces higher resolving power and greater separation selectivity 
but suffers from lower sensitivity due to inefficient transfer of ions from ambient pres-
sure into the vacuum of the mass spectrometer [39, 41, 42]. In comparison with other 
variants of IM technologies (see below), the traditional LDT IMS provides the highest 
resolving powers, but has a decreased sensitivity due to its low duty cycle.

10.2.2.2  Traveling Wave IMS

Traveling wave ion mobility spectrometry (TWIMS) is a relatively new IMS tech-
nique developed by Giles et al. [43–45] and was implemented in the first integrated 
commercially available IMMS instrument, the Synapt™ HDMS system. TWIMS 
is operated at a reduced pressure (typically 3 mbar), and the TWIMS device [also 
called traveling wave ion guide (TWIG)] consists of a gas-filled cell that comprises 
a series of ring electrodes (similar to LDT device) arranged orthogonally to the 
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direction of ion transmission. However, the operating principle of TWIMS is dras-
tically different from the traditional LDT IMS device. Firstly, a radio frequency 
(RF) field is applied to a pair of consecutive electrodes in the stacked ring ion guide, 
providing an electric field that confines ions radially within the device. Secondly, 
instead of a low electrical field being applied uniformly across the cell, the TWIG 
uses a dynamically pulsed electrical field that is superimposed on top of the RF volt-
age to provide an electric field. This transient DC voltage is applied sequentially 
to pairs of ring electrodes to push the ions toward the exit of the ion guide. While 
this TW pushes ions through the gas, the friction from collisions between the ions 
and the buffer gas impedes the ion’s travel, so that ions with a large CCS experi-
ence more drag force by the buffer gas and tumble backwards over the wave more 
frequently than small ions. Because the larger ions fall backwards more frequently, 
they remain in the TWIM cell longer, and separations are generated by the relative 
retention of different-sized ions within the device. The details of the ion separation 
process are yet to be completely understood although an attempt on theoretical treat-
ment of the separation mechanism is reported in the literature [46].

The TWIM is a dispersive technology, and therefore, the measured mobility is 
the arrival time distribution (ATD) of ions at the detector. Since TWIMS is operated 
at reduced pressures, the resolution is generally lower than for a conventional LDT 
IMS. Resolving power will undoubtedly improve as more is learned about this com-
plex but unique mobility cell. However, the TWIM technique has a high ion trans-
mission efficiency compared with conventional LDT IMS. Unlike the LDT IMS, for 
which a quantitative relationship can be clearly defined between the mobility and the 
CCS of ions, the relationship between the measured drift time and the ions’ CCS is 
complicated for the TWIM technique due to the complicated ion separation process, 
notwithstanding recent advances in theory and calibration methods that have made it 
possible to use TWIMS for cross-sectional measurements [46–48].

10.2.2.3  Field Asymmetric Ion Mobility Spectrometry

FAIMS, also known as differential mobility spectrometry (DMS), is a technique that 
separates gas-phase ions based on the IM difference in high and low electric field 
(opposite polarity) [49–52]. In a FAIMS device, ions are passed between two flat 
parallel electrodes and two concentric cylinder electrodes with a buffer gas flow-
ing through the gap between the closely spaced electrodes. High drift electric field 
(far greater than the weak-field limit) is applied across the gap in a direction per-
pendicular to the gas flow. The field causes the ions to drift sideways, toward one or 
the other electrode. At high electric fields, the ion mobility is no longer constant but 
becomes dependent on the strength of the applied electric field. By applying a high 
frequency periodic asymmetric waveform across the two electrodes, ions alternately 
experience two distinct field strengths. The ions oscillate between the electrodes 
and, due to differential mobility in each field, will preferentially move toward one 
electrode. This process creates a net drift in the direction of the field but, unlike in 
low-field IMS, the net drift velocity is now a function of the difference in high- and 
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low-field mobility of the ion. Because ions with different overall size and charge will 
acquire different net drift velocities, this effect causes the dispersion of ions accord-
ing to their differential mobility. Separation of ions in FAIMS occurs under atmos-
pheric pressure and room temperature conditions.

To counteract this sideways drift and enable the ions to transmit through the 
electrode region, a DC field is applied in the opposite direction to the ion drift. 
This is called the compensation field (CF). Because a given magnitude of CF only 
compensates for a specific drift velocity—and hence only ions that have the cor-
responding net drift velocity will be transmitted as a result of the applied CF—dif-
ferent compensation voltages are required for each ion to pass through the FAIMS 
cell. Therefore, the compensation voltage can be scanned to allow sequential 
detection of all ions present. Alternatively, a predetermined CF value is chosen to 
only allow specific ions of interest to pass through the FAIMS device for analysis 
(similar to a quadrupole mass analyzer). For a given species, it is the compensa-
tion voltage, rather than the drift time, which is generally reported.

In contrast to the LDT IMS setup described above, the principle of FAIMS is 
effectively based on the dependence of mobility on the field strength rather than an 
absolute value of mobility that is measured. Because ions are separated by the differ-
ence in their mobilities at high and low values of E, the absolute value of K cannot 
be determined from FAIMS data. Therefore, the relationship between the mobility of 
an ion and its CCS is not as straightforward as that found in the LDT IM instruments. 
Additionally, a FAIMS spectrometer has lower resolving power than the LDT IMS 
instruments. When the instrument needs to operate in a voltage scan mode to monitor 
a range of mobilities, sensitivity is also reduced due to the duty cycle of the scan.

10.2.3  Ion Mobility Mass Spectrometry

The first ion mobility mass spectrometer was built in the 1960s. The instrument 
comprised of a LDT IMS and a magnetic sector analyzer and was used to study 
gas-phase ion-molecule reactions [24, 53, 54]. Before 1990, only a few IMMS 
instruments were employed in research and the roles of those instruments were 
mainly for supporting the development of IMS as an analytical method [17]. 
The next important development in the field of IMMS for biological applications 
occurred in the mid-1990s when Bowers et al. [33, 55] first reported the structural 
studies for peptides and Clemmer et al. [28, 56, 57] described the structural analy-
sis of intact proteins by IMMS. The pioneering work led to a period of rapid and 
expanding applications of IMMS, with much activity focusing on characterizing 
biomolecular structures as represented by the work from Robinson et al. on the 
elucidation of protein complex quaternary structure [14, 58–60] using IMMS strat-
egies. The application of IMMS in biological and biochemical research acceler-
ated the IMMS instrumentation development, and instrumental designs of IMMS 
have been one of the most rapidly growing areas of MS as exemplified by the first 
commercially available integrated IMMS instrument in 2007 [44].
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There have been a rich variety of IMMS instrument configurations reported 
for the combination of IM with MS. Among all the methods recording ion mobil-
ity, three principal types of ion mobility instrumentation have been successfully 
coupled with mass spectrometers. They are LDT IMS, TWIG IMS, and FAIMS. 
LDT IMS is operated under either reduced or ambient pressure conditions; FAIMS 
is operated under ambient pressure conditions, while TWIG IMS is operated at 
reduced pressure. Each of these ion mobility spectrometers can be interfaced to a 
variety of mass analyzers to create IMMS. TOF [39, 61], quadrupole [62], ion trap 
[29], or ion cyclotron [34], and magnetic sector analyzer [53, 54] have all been cou-
pled with IMS. In addition to the various mass analyzers that can be coupled with 
ion mobility, an ion mobility cell can be placed in a number of positions relative to 
the mass analyzer. Among all the instrument designs, two main instrument configu-
rations are frequently seen: the mass analyzer is either placed before the drift cell 
(MS/IMS) or positioned after the drift cell (IMS/MS). Details on the various IMMS 
configurations can be found in a comprehensive review by Kanu et al. [63].

There are several factors under consideration when coupling mass spectrometers 
with an IMS device. Firstly, from a typical performance parameter point of view, 
the mass resolution and mass spectral acquisition rate of mass spectrometers need to 
meet the analysis requirement. Since IMS operation uses a buffer gas, which poten-
tially leaks into the mass spectrometer, vacuum requirement for various MS ana-
lyzers is another factor to consider. Not all types of mass spectrometers are readily 
coupled with IMS to the same degree due to the vacuum requirement. TOF mass 
spectrometers, although requiring high vacuum, have emerged as a powerful compo-
nent in IMMS combination [39, 64, 65]. Some of the advantages of TOF MS are the 
wide mass range, the high sensitivity compared to scanning MS filters where unse-
lected ions are lost, and the high resolution in a reflection arrangement. For mass 
spectral acquisition, the use of TOF [39] and in particular orthogonal acceleration 
(oa)-TOF technology provides full mass spectra on a timescale (microseconds) short 
enough to profile entire ion mobility peaks (usually milliseconds), a capability not 
possible with mass analyzers such as quadrupoles or ion traps. Because IMS spectra 
are obtained in milliseconds and TOF mass spectra are obtained in microseconds, 
thousands of mass spectra can be obtained for each ion mobility spectrum producing 
a two-dimensional array in which both mobility and mass of ions are recorded [65].

Perhaps the biggest challenge in the development of modern IMMS instru-
ments is to address inherent sensitivity issues associated with the traditional drift 
tube IMS. There are two factors responsible for the poor sensitivity normally 
seen with the LDT IM device. For mobility measurements, ion pulses are intrinsi-
cally required. When combined with a continuous ion source such as ESI during 
the mobility experiment, ions have to be gated and only a narrow pulse of ions is 
introduced into the drift region. The majority of ion signal (up to 99–99.9 %) is 
discarded. The low duty cycle leads to severe undersampling of the ion signals and 
makes the method inherently insensitive. Another factor causing the low sensitiv-
ity is ion radial diffusion in the drift tubes. During the transportation process, due 
to the diffusion process, the sizes of ion could increase beyond the diameter of 
sampling apertures in the mass spectrometer.
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Different approaches have been used during the development of IMMS to enhance 
the sensitivity. A Paul geometry ion trap was incorporated into a LDT IMMS to over-
come the low duty cycle issue in sub-ambient pressure in linear drift cells. The ion trap 
accumulates ions, while the mobility separation is occurring for the previous packet 
of trapped ions, and then injects the trapped ions into the drift tube [61] for the next 
round of separation. Reports on the use of other ion storage geometries to improve 
duty cycle are also found [65, 66]. The issue of ion loss due to radial diffusion has 
been addressed through use of a periodic focusing DC drift tube design [67–69]. More 
recently, the use of duel ion funnels before and after the drift tube has been reported to 
provide essentially total ion transmission [70, 71]. The function of the first funnel is to 
accumulate ions and then pulse ions into the drift tube, whereas the second ion funnel 
to refocus and align the radially diffused mobility-separated ions.

In comparison with the traditional LDT IM setup, several technological features 
associated with the TWIM device make it very attractive to modern instrumentation. 
The TWIM technologies implemented in the commercial instrument consist of three 
stacked ring ion guides (called TriWave technology, see Fig. 10.2) with RF field 
applied to each of the ion guides [43–45]. The use of RF field creates a radial poten-
tial well to confine ions to the center of the guide. This essentially eliminates radial 
diffusion effects. In addition, the mobility cell is the center cell of three ion guides, 
so the first ion guide stores the ions, while the ion mobility is taking place and the 
final ion guide transfers the ions to the TOF analyzer. The primary advantage of this 
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in the literature [43]
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arrangement is that the sensitivity of the mass spectrometer is not compromised by 
the duty cycle of the IMS that is common with other mobility drift cells. As a result, 
this IMS/TOF instrument geometry provides mobility separation without sacrificing 
the base sensitivity of the mass spectrometer. In addition, because the TriWave tech-
nology is embedded in a high-performance oa-TOF tandem mass spectrometer, this 
instrument retains all the high-performance attributes of a TOF MS/MS instrument 
and yet adds a degree of orthogonality to the mass spectrometer.

10.3  Applications of IMMS for Characterization  
of Protein Therapeutics

Although the use of IMS in the battlefield and commercial aviation industry prob-
ably represents well-known applications of IMS, the focus of combined IMMS 
approach was historically used to perform basic research in ion-molecule reac-
tions. In recent years, especially after the advent of ESI and MALDI soft ioniza-
tion methods, the application of IMMS has been focused on biomolecule analysis. 
In particular, with commercial IMMS instruments available, applications expanded 
further into the field of analytical chemistry where the technique is used as a tool to 
address many challenges in biological studies. The studies range from identifying 
species in complex biological samples, simplifying complex datasets, to determining 
the conformations of large macromolecular complexes [58, 71]. Elaboration on these 
applications is out of scope of the chapter, and a book dedicated to IMMS theory 
and applications was recently published [72] to bring an update on the advances of 
IMMS and its routine applications. In this chapter, we focus on how IMMS is used 
as a tool in biopharmaceutical analysis to characterize the structures of protein ther-
apeutics and help the development of therapeutic drugs. The selected applications 
cover a range of topics from the conformation analysis to the differentiation of iso-
baric species that are important to the attributes of therapeutic proteins.

10.3.1  Analysis of Conformation of Monomeric Proteins

The three‐dimensional structure of a protein is critical to its functions and, there-
fore, its biological activity. Because the unique structural information that IMS 
offers, it is not surprising that the use of IMMS has gained attention as a tool for 
the analysis of macromolecules and in particular for its application in determining 
the conformations adopted by biological molecules in gas phases [55–60].

The analysis of protein conformation using IMMS generally requires a proper 
means to transfer protein ions from solution phase to the gas phase. This is normally 
accomplished by using ESI or nanoelectrospray ionization (nESI) methods [73]. 
Also important in the context of this measurement is that the ionization step should 
bring in little or no artificial perturbation, apart from the impact of natural desolvation 



38310 Applications of Ion Mobility Mass Spectrometry

processes, so the gas-phase ion structures can closely mimic the structural features 
in the solution states [14]. A common practice for this exercise is to electrospray the 
protein or protein complex samples from a fully aqueous environment (i.e., typically 
10–500 mM ammonium acetate), where proteins can maintain its native structures. 
When proteins or protein complexes are analyzed under native (non-denaturing) 
aqueous conditions, the analytes under investigation do not carry a large number 
of charges and, therefore, appear in the high m/z range of the mass spectra. Hence, 
instruments with a wide mass range are needed to cope with the high m/z signals that 
are typically observed in such analyses. TOF MS fits particularly well to the analysis 
of high m/z ions [74, 75], because in theory it has an unlimited mass range.

Perhaps the most direct and convincing example to demonstrate the utility of 
IMMS for the characterization of therapeutic proteins is those effectively connecting 
the IM measurement with the quality attributes of protein therapeutics. Such con-
nection is nicely illustrated by the work performed by Bagal et al. [76] for the rapid 
characterization of disulfide variants in intact IgG2 monoclonal antibodies (mAbs). 
Recombinant mAbs are an important class of therapeutic agent that has found wide-
spread use for the treatment of many human diseases. It is known that intact human 
IgG2s have three distinct structural isoforms (IgG2-A, IgG2-B, and IgG2-A/B) 
which are caused by alternating disulfide connectivity from two of the four cysteine 
residues in the hinge region of the heavy chain (Cys-232 and Cys-233). For some 
IgG2 molecules, the disulfide-related structural isoforms have shown different activ-
ity against antigen targets. Therefore, the ability to rapidly detect and characterize 
IgG2 isoforms is of great interest to the development of mAbs.

In this study, Bagal et al. [76] developed a sensitive method using IMMS for 
quickly profiling the IgG2 isoforms with minimal sample preparation. For the IMMS 
analysis, the IgG2 samples were ionized from a solution of 160 mM ammonium 
acetate using nanoelectrospray. IMMS reveals 2–3 gas-phase conformer populations 
for IgG2s (Fig. 10.3), whereas a single gas-phase conformer was observed for both 
an IgG1 antibody and an IgG2 mutant (Cys-232 f Ser). Since both IgG1 and IgG2 
mutant molecules are homogeneous with respect to disulfide bonding, the authors 
deduced the observed IgG2 gas-phase conformers are related to disulfide bond 
heterogeneity. Furthermore, the authors carried out IMMS analysis on the redox-
enriched disulfide isoforms, so the identities of the mobility peaks can be assigned 
with respect to the established disulfide bonding patterns. Although analytical meth-
ods for structural characterization of disulfide isoforms of the human IgG2 subclass 
have been reported previously, the study clearly illustrates how IMMS can be used to 
quickly provide information on the higher-order structure of antibody therapeutics.

In a separate study, Atmanene et al. [77] showed how to use IMMS to probe 
protein conformation and provide the information for the lead optimization dur-
ing the development of a therapeutic mAb. A murine mAb, mumAb 6F4, that has 
shown anti-proliferative and anti-tumoral properties was humanized to develop a 
new therapeutic drug. To determine whether the anti-tumoral properties observed 
for the murine mAb are conserved in the humanized version, it is necessary to 
study the formation of immune complexes involving between mumAb 6F4/hzmAb 
6F4 and its antigen JAM-A.
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In this study, several orthogonal analytical methods were developed to per-
form the structural assessment both for mAbs and for recombinant target antigen. 
Among them, IMMS was used to probe the structural features for several recombi-
nant batches of human JAM-A and to ensure that the antigen displays the expected 
structural characteristics before forming the immune complexes with hzmAb 6F4. 
The goal of this study was to analyze recombinant antigen batches in order to 
verify their structural homogeneity, to determine their oligomerization state, and 
to check that folded conformation was maintained in the experimental conditions 

Fig. 10.3  Ion mobility 
separation of protein isoforms 
of a mAb#1 (IgG2) and c 
mAb#2 (IgG1) by TWIMS. 
The normalized ion mobility 
intensities are graphed as 
contour plots. Extracted 
ATDs for the 26+ charge 
states of b mAb#1 (IgG2) 
and d mAb#2 (IgG1) are also 
plotted to show the separation 
of IgG2 isoforms by ion 
mobility. Reprinted with 
permission from Ref. [111]. 
Copyright 2010 American 
Chemical Society
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used for binding assays. The IMMS technique was initially used to check the 
purity and homogeneity of two antigen batches prepared either from the soluble 
fraction (JAM-A SF) or from inclusion bodies (JAM-A IB) of E. coli expression 
system. The nanoESI-TWIMS analysis in denaturing conditions revealed that mul-
tiply charged ions of JAM-A IB display lower m/z with longer drift times than 
those detected for JAM-A SF (Fig. 10.4). This observation indicates that heteroge-
neity existed between the two samples that were prepared differently. JAM-A IB 
contained more extended protein conformations which was believed to be caused 
by the formation of fewer disulfide bonds in the protein, conferring lower mobili-
ties (i.e., longer drift times) to protein ions. The IM results correlated well with 
the information from the intact mass measurement in the same experiment for the 
same samples, which showed that the measured mass for JAM-A IB sample was 
2 Da higher than that for JAM-A SF. Since the value of the measured mass for 
JAM-A SF sample (24540.3 ± 0.5 Da) was in good agreement with the theoretical 
value calculated from the amino acid sequence (24539.4 Da), the IMMS method 
provided direct evidence, based on different molecular properties, to demonstrate 
that absence of a disulfide bond in the preparation of JAM-A IB.

Fig. 10.4  Analysis of antigen JAM-A for sample purity and homogeneity using nanoESI-MS, 
nanoESI-IMS-MS and LC/MS under denaturing conditions. a–c nanoESI-MS analyses of JAM-A 
SF, JAM-A IB, and DTT-reduced JAM-A IB, respectively. d–f nanoESI-TWIMS analyses of 
JAM-A SF, JAM-A IB, and DTT-reduced JAM-A IB, respectively. g–i UV trace from LC–MS 
analyses of JAM-A SF, JAM-A IB, and DTT-reduced JAM-A IB, respectively. Asterisk (*) refers 
to a co-purified protein (26754.6 ± 0.9 Da). Circled ions populations correspond to species 
with different mobility properties. Reprinted with permission from Ref. [112]. Copyright 2009 
American Chemical Society
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The disulfide bridge pairing heterogeneity observed in denaturing conditions 
between JAM-A SF and JAM-A IB preparations is likely to induce differences in the 
native conformation of the protein. The difference, if it exists, would lead to incor-
rect conclusions about the binding assay between the hzmAb 6F4 and the antigens. 
nESI-TWIMS experiments were thus performed under non-denaturing conditions to 
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Fig. 10.5  Analysis of thermally stressed interferon α-2b by ion mobility mass spectrometry.  
a Mass spectrum of 10 pmol/μL interferon α-2b from a direct infusion experiment. The sample 
was dialyzed against 50 mM ammonium acetate, pH 7.0 for 2 h, and then incubated at 55 °C for 
20 min before the experiment. b Mass spectrum of 10 pmol/μL interferon α-2b from a direct 
infusion experiment. The sample was dialyzed against 50 mM ammonium acetate, pH 7.0 for 2 h 
before the analysis. c Ion mobility arrival time distribution (ADT) of interferon α-2b ions (5+ 
charge state). The ions from the sample experiencing thermal stress (in RED) showed the shift of 
ADT as well as an increase in the dimer species (colour figure for online purpose)
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get further insights into the native structure of the antigen batches under study. Their 
experimental results showed that homogeneous monomeric and dimeric ion popula-
tions were detected under non-denaturing conditions for both samples, suggesting both 
antigen batches were uniformly folded despite their heterogeneous disulfide bond con-
nectivity. Furthermore, the authors estimated the CCS for the monomeric and dimeric 
species based on the IM measurement and found the CCS values were in good agree-
ment with the CCS data obtained from a computational approximation approach using 
X-ray structural data. Therefore, the authors concluded the disulfide heterogeneities 
observed with the samples did not seem to affect the global protein conformation.

Interferon alpha-2 (IFN α-2) is widely prescribed for the treatment for hepatitis 
B and C as anti-viral drugs. Like many proteins, IFN has a problematic propensity 
to misfold, which leads to activity loss, aggregation, and increased immunogenic 
response [78, 79]. This structure loss can be accelerated by a variety of factors, such 
as chemical modifications, surface binding, exposure to elevated temperatures, lyo-
philization. Recently, we demonstrated the use of IMMS to detect the conformational 
changes of interferon protein from a thermal stress experiment [80]. A sample of 
IFN α-2b treated at 55 °C for 20 min was analyzed by nESI-IMMS from a buffer of 
50 mM ammonium acetate, and the results were compared against the data acquired 
for the interferon samples without experiencing any thermal stress. The extracted 
ATDs (i.e., driftograms) for the lowest charge state (5+) interferon are shown 
in Fig. 10.5. Also shown are the mass spectra for the interferon samples with and 
without thermal stress. Clear shifts in the drift times are shown for the charge state, 
suggesting the changes of ion conformation after thermal treatment. In addition, an 
increase in the peak attributed to the IFN dimer (the peak at 17.41 ms) in the diagram 
is also seen. These results correlated well with the study on interferon protein aggre-
gation under the influence of thermal treatment using orthogonal techniques such as 
size exclusion chromatography (SEC) and spectroscopy [81]. On the contrary, com-
parison of the MS spectra for the two samples shows no evidence that the native con-
formation of IFN was compromised as a result of thermal stress since similar charge 
state distribution was observed for both samples. Any attempt to deduce the confor-
mational changes based on the direct mass analysis is not possible in this case.

10.3.2  Applications for Aggregation and Complexes Analysis 
of Protein Therapeutics

Protein aggregation is a common issue encountered during the preparation, formu-
lation, or storage of biotherapeutics. Protein aggregation can be caused by many 
factors, such as protein misfolding during protein expression, or denaturation dur-
ing protein purification, or high protein concentration [82]. Protein aggregation 
has been linked to potential loss of therapeutic efficacy or unwanted immune reac-
tions [78, 79]. For these reasons, the biotechnology industry is under increasing 
pressure from regulatory bodies to provide detailed information about the quantity 
and nature of any aggregates present in a biopharmaceutical product.
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As a generic term, protein aggregation includes many types of aggregation, 
from rapidly reversible aggregation caused by non-covalent bonds to irreversible 
aggregation in the form of covalent oligomers. As a result, no single analytical 
method can detect all types of aggregates, and an arsenal of methods and tech-
niques are frequently employed for detecting and quantifying protein aggregation. 
SEC is a well-established method and has been the workhorse technique in aggre-
gation analysis [81, 83–85]. However, the validity of SEC results is often chal-
lenged because aggregates can be lost through non-specific binding to the columns 
[86], and thus not all the aggregate species in a product are represented in the SEC 
results. For that reason, column (matrix)-free techniques, such as analytical ultra-
centrifugation (AUC) [87], dynamic light scattering (DLS) [87], and field-flow 
fractionation (FFF) [88], now find increasing applications in aggregation analysis.

Electrospray ionization differential mobility analysis (ESI-DMA), also known 
as gas-phase electrophoretic mobility molecular analysis (GEMMA), was recently 
explored as an alternative method for measuring low-order soluble aggregates of IgG 
antibodies in solution because of its low sample consumption and short analysis time 
[89]. The instrument essentially consists of a charge-reduced ESI source to gener-
ate macromolecular ions in the gas phase, a differential mobility analyzer (DMA) 
to measure gas-phase electrophoretic mobility diameter (EMD), and a condensation 
particle counter (CPC) as the detector [90, 91] to measure the number concentration 
of particles in the gas phase. The direct output of the instrument is a size distribution 
based on IMS separation, and the size spectrum can be converted to a mass spec-
trum, due to the strong correlation between mobility size and molecular weight [91].

When applied to the analysis of protein aggregates of IgGs, the method [89] can 
measure a size distribution of protein species present from 3 to 250 nm. These par-
ticles correspond to a mass range of 8 kDa (monomer of insulin) to 80 MDa (whole 
cell organelles). Distinct resolution for IgG aggregates from monomers to pentamer 
was achieved, and the sizes of the IgG and its aggregates measured by DMA were 
found to be in good agreement with those calculated from simple models, based on 
structural coordinates of IgG from protein crystallographic data (see the references 
cited therein). This finding corroborates the results from a separate study, where the 
protein sizes measured by ES-DMA method were proven to be comparable to the 
values from established bioanalytical techniques such as multi-angle laser light scat-
tering (MALLS) and quasi-elastic light scattering (QELS). The benefits of ES-DMA 
method is that the method provides direct and quantitative measure of aggregate dis-
tributions quickly (<1 h) and is well suited for studying early stages of aggregation. 
However, the technique is limited by its narrow concentration range that it can meas-
ure and the inability to examine proteins in formulation buffers (because of the sup-
pression caused by nonvolatile salts in the formulation buffer).

The same GEMMA technique was also applied to confirm the binding and bridging 
of antibodies to their antigens and to determine the formation of stable non-covalent 
complexes [92]. A single-chain variant of a monoclonal antibody (scFv), a monoclonal 
IgG, antigens as well as the complexes formed between the binding pairs was ana-
lyzed by IMS sequentially. When converted into a mass scale, the analysis covers a 
mass range from ~25 to ~500 kDa. The mass profile generated by the IMS technique 
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provides detailed information of the nature of the binding in terms of stoichiometry. 
Although this information is not directly from a study with physiological buffer, which 
is preferred for determining binding kinetics, it can be used to quickly assess whether 
or not binding will occur and determine the stoichiometry of the binding interaction.

In an effort to assess the utility of IMMS as a sensitive analytical tool to probe 
the higher-order structures of therapeutic proteins, a number of human insulin 
analogs on the market were analyzed recently by the use of Synapt™ G2 HDMS 
[80]. The purpose of the experiment was to compare the CCS values measured 
for the insulin samples and identify the tertiary structure differences, if any, of 
the insulin produced by different manufacturers. The recombinant biotherapeu-
tics were analyzed under non-denaturing conditions, and the CCS for individual 
charge states of both insulin monomer and dimer were determined. Measured 
CCS values were found in very good agreement with the calculated values for 
solid-state and solution-phase structures based on “projection approximation” 
model in MOBCAL [32]. In comparison with the CCS values obtained from tra-
ditional drift tube IM instruments, the CCS values from TWIMS exhibit a typical 
variance of approximately 2.5 %. The corroboration provided by the orthogo-
nal analytical techniques (theoretical calculation and the CCS values from LDT 
IMS) suggests that the IMMS techniques offer an effective means to monitor the 
three-dimensional structures of insulin. Figure 10.6 shows the driftograms of six 

Fig. 10.6  Ion mobility analysis of insulin analogs using a Synapt G2 HDMS system. Six insu-
lin analog products were analyzed by a direct infusion method after the samples were dialyzed 
against a solution of 50 mM ammonium acetate, pH 7.0. The concentration of the samples was 
estimated to be about 5 pmol/μL. The two small peaks behind the highest peak in each diagram 
are from either monomer (3+) or dimer (6+) of insulin
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insulin analogs from different manufactures. The CCS values for monomeric and 
dimeric species for all the insulin samples were compared. Although little differ-
ence in measured CCS values among all the monomer species for insulin analogs 
were found, the data clearly demonstrate the power of the IMMS technique to 
profile the insulin oligomer populations that coexist in the solution and to exam-
ine each species at each individual state without any concern for the interferences 
caused by the presences of other species. For instance, closer examination of 
Fig. 10.6 showed that there is great variation in the concentration of dimers for 
the sample analyzed.

Because of the intrinsic nature, all measurements related to protein conforma-
tion by IMMS are performed in gas-phase environments. The CCS value from 
IMMS is modeled by the rotationally averaged CCS of proteins. Although strong 
evidence does exist, suggesting that ESI (to some extent MALDI) can produce 
ions that retain key aspects of solution structure, and thus the experimental CCSs 
of these molecules should have some relationship to crystal structure coordinates, 
care should be taken when interpreting results from IMMS measurements, and 
in particular correlation with measurements from crystallography or NMR spec-
troscopy. The influence of solvent molecules on the proteins structures should not 
be ignored when performing CCS calculations using theoretical modeling—the 
extent of correlations is difficult to gauge currently. Perhaps a sensible approach 
is first to adjust the crystal or NMR coordinates via molecular dynamics to factor 
out the impact imposed by the solvent molecules prior to calculation of the gas-
phase CCS for comparison with gas-phase experimental CCS values. However, 
these challenges should not diminish the utility of IMMS as a technique for iso-
lated proteins or protein complexes to provide both m/z values and information 
about the gas-phase conformation(s) for each m/z species, especially when the 
conformation information is sought for analytical support of biotherapeutic drug 
development.

10.3.3  Differentiation of Isobaric Species for Protein 
Therapeutics Characterization

Although the application of IMMS for rapid analysis of conformation adopted 
by biological molecules in gas phases has been an active research area for many 
years, the introduction of commercial IMMS instruments drives this technology 
from research into solving specific problems in routine analytical tasks. Many 
studies have focused as much on mixture separation as on structural measurement, 
reflecting the growing power of IMS as a unique separation technique. In this sec-
tion, we present several examples to showcase the utility of IMS as an analytical 
tool for differentiating isobaric species that are relevant to biopharmaceutical char-
acterization. Moreover, the use of IMS to separate complex mixtures of ions for 
mass spectral simplification is also discussed.
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10.3.3.1  Differentiation of Isobaric Deamidated Peptides by IMMS

Deamidation of asparagine residues is one of the most common PTMs in recombinant 
therapeutic proteins [93]. It represents a non-enzymatic process in which an asparagine 
residue is converted into either aspartic acid (Asp) and/or isoaspartic acid (isoAsp). 
The deamidation process is generally regarded as a chemical degradation pathway and 
plays an important role in protein folding studies, including antibody-based therapeu-
tics. Deamidation of therapeutic proteins may result in the loss of activity of the protein 
therapeutic or even trigger immunogenicity because of a change in tertiary structure. 
Accordingly, it is important to establish methods for characterizing the sites of deami-
dation as well as for evaluating the effect on biological activity and antigenicity.

With the employment of modern high-resolution mass spectrometers, a deami-
dation event (Asn → Asp) would be readily recognized, as it elicits a mass shift 
of +0.985 Da. However, since the resultant Asp and isoAsp residues share the 
identical molecular weight (isobaric isomers), structural differentiation of Asp and 
isoAsp products is inherently difficult. Mass measurement alone fails to resolve 
these two isomers, and even traditional CID experiments are not sufficient to dif-
ferentiate these two isomers. Since the formation of isoAsp inserts a methylene 
group into the protein backbone, resulting in a beta-peptide linkage, and thus may 
significantly alter protein structure and function, there is strong interest in charac-
terizing isoAsp in both biological research and pharmaceutical discovery [94, 95].

Currently, there are several existing methods for distinguishing isoaspartic acid 
from aspartic acid. These include NMR [96], Edman sequencing methods [97], 
antibody-based detection methods [98], and HPLC methods [99]. Due to the sub-
tle differences in physical properties between Asp and isoAsp, effective separation 
and identification of aspartate-/isoaspartate-containing proteins and peptides by those 
methods are often tedious and laborious and require relatively large concentrations 
of peptides to generate differentiable signals. We recently introduced a rapid method 
for the differentiation of aspartate-/isoaspartate-containing peptides using IMMS. 
The peptide, FYPSDIAVEWESNGQPENNYK, also known as the “PENNYK” pep-
tide, can be found in the tryptic digest of all humanized mAbs. It derives from the 
constant region (Fc) of humanized mAb and is known to be susceptible to deami-
dation in various experimental conditions. There are several potential deamidation 
sites in the peptide, and differentiation of these sites as well as identification of Asp 
from isoAsp for each site has always been an analytical challenge. In our experiment, 
deamidated PENNYK peptide isomers that have identical amino acid sequences but 
only differ at the deamidated amino acid residue (Asp vs. isoAsp) were synthesized 
and individually analyzed by a direct infusion experiment using a commercial IMMS 
system (Fig. 10.7a, e). The precursor ion with m/z 830.0 (MH3

3+) was selected to 
undergo CID fragmentation. Fragment ions were subjected to IM separation to dif-
ferentiate the presence of the Asp or isoAsp residue in the peptides. In an effort to 
make the method applicable for PENNYK peptides containing different deamidation 
sites, the IM separation was performed on the fragment ions instead of the precursors 
so the deamidation site could be simultaneously determined in a single experiment.
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Figure 10.7b–d, f depict the IMMS results from an infusion experiment where 
binary mixtures of the peptides [GFYPSDIAVEWESNGQPEisoDNYK (Pep1) vs. 
GFYPSDIAVEWESNGQPEDNYK (Pep2)] at a ratio of 3:1, 1:1, and 1:3 were intro-
duced into the system, respectively. The MS/MS spectrum contains a series of b,y-ion 
peaks from which the deamidation site can be deduced. In addition, it is of particular 

Time (ms)

1.00 3.00 5.00 7.00 9.00 11.00 13.00

%

0

100

%

0

100

%

0

100

%

0

100
%

0

100

(f)

GFYPSDIAVEWESNGQPEDNYK

Ion Mobility

m
/z

(a)

(b)

(c)

(d)

(e)

Fig. 10.7  Differentiation of deamidated PENNYK peptides that contain either isoaspartic (Pep1) 
or aspartic (Pep2) acid amino acid residue. a Synthetic PENNYK peptide containing only isoas-
partic acid residue (Pep1). b A peptide mixture containing both Pep1 and Pep 2 at a ratio of 3:1.  
c A peptide mixture containing both Pep1 and Pep 2 at a ratio of 1:1. d A peptide mixture con-
taining both Pep1 and Pep 2 at a ratio of 1:3. e Synthetic PENNYK peptide containing only 
aspartic acid residue (Pep2). f Ion mobility separation of fragment ions from the analysis of pep-
tide mixture (Pep1:Pep2 = 1:1). The resolving peaks of y6 at the ion mobility dimension show 
the deamidated peptides containing both aspartic acid and isoaspartic acid residues
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note that we observe two partially resolved peaks in the dimension of ion mobil-
ity ATDs for the fragment ion (y6) for each of the binary peptide mixtures, and the 
intensity of each y6  ion peaks (containing either Asp or isoAsp) varies according to 
the concentration of precursor peptides. Under identical instrumental conditions, IM 
arrival times are affected by ion structure (as indicated by CCS), mass, and charge 
[17]. Since both peptide isomers have identical mass and charge and were analyzed 
under identical conditions, these ATD differences are a clear indicator of their differ-
ence in molecular structure. In this case, the structural difference is caused by a single 
amino acid residue variation.

10.3.3.2  Analysis of Structural and Positional Isomers of Glycans

Glycosylation plays a vital role in stability, biodisposition, in vivo activity, solubil-
ity, serum half-life, and immunogenicity of therapeutic protein drugs and can affect 
efficacy, folding, target binding, and pharmacokinetic properties. In addition, gly-
cosylation in recombinant proteins differs widely with cell culture parameters. As 
a result, it is important to accurately characterize the carbohydrate moieties of bio-
therapeutic proteins to demonstrate control of the manufacturing process.

A major challenge associated with the characterization of glycoproteins is the 
structural complexity and heterogeneity of their glycan moieties. Biological oligo-
saccharides frequently exist as sets of isomers that are identical in the number and 
type of carbohydrate monomers but differ in anomeric configurations, or glycosidic 
linkage, or connection sequence. Comprehensive characterization of the carbohy-
drate moiety of glycoproteins involves the resolution of the extensive presence of 
those isobaric species. Without prior chromatographic or electrophoretic separation, 
MS faces a number of distinct challenges in resolving isomeric structures, and typi-
cally extra steps such as sample derivatization are required for confident analysis.

The analysis of isobaric oligosaccharide structures by IMMS has been demon-
strated by different IMMS combinations. In a broad sense, the published work can 
be generally grouped into two categories based on the nature of the carbohydrate 
structures: studies for differentiating isomers with different constitutional types and 
studies for analyzing spatial isomers comprised of the same number and type of car-
bohydrate monomers. The latter can be further divided between structural isomers 
and positional isomers. Positional isomers refer to the carbohydrate structures with 
the same number, type, sequence, and anomeric carbons of monomer units but differ 
in the specific glycosidic linkage arrangement (e.g., 1 → 3 vs. 1 → 6). On the other 
hand, structural isomers comprise identical carbohydrate monomeric units, but are 
arranged in different branching patterns.

The separation of positional isomers is probably more challenging than the dif-
ferentiation of other carbohydrate isomers simply because the structure difference 
is rather small for this type of carbohydrate isomer. Using electrospray ionization-
atmospheric pressure ion mobility time-of-flight mass spectrometry (a LTD IMS 
device), Clowers et al. [100] separated a series of disaccharide alditol positional iso-
mers, some of which are derived from O-linked glycoproteins. Unfortunately, the 
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sensitivity of the analysis is poor, requiring hundreds of pmol of material, mainly 
due to the low duty cycles of the instrument caused by the ion gating mechanism of 
LDT device. Similarly, the possibility of separating positional isomers of disaccha-
rides was also shown using a FAIMS-type ion mobility separator [101]. However, the 
time needed to achieve the separation using FAIMS was relatively long (about 1 h) in 
comparison with LDT IMS approach (~5 min). In addition, the signal-to-noise ratio 
was low and multiple peaks corresponding to cluster dissociation were also seen.

Several studies have been reported to use IMMS to analyze positional carbohy-
drates isomers ranging from tri- to hexa-saccharides [102–104]. The final resolv-
ing power depends on the magnitude of differences in the glycosidic connectivity 
between isomers and the type of metal ions used for ionizing oligosaccharides. When 
only partial separation is achieved, the unique dual collision cell design associated 
with the instrument enhances the confidence in carbohydrate identification by frag-
menting the carbohydrates either pre- and/or post-IM. The studies also suggest that 
the capability of the instrument to differentiate positional isomers is limited by the 
mass (size) with an upper limit of ~1,000 m/z [103] at the current IMS resolution.

The possibility of distinguishing structural isomers of protein-derived glycan was 
recently explored [104–106]. In favorable circumstances, structural isomeric glycan 
can be separated and characterized using IMMS approaches. For example, using 
TWIMS-MS, Williams et al. [105] successfully separated two structural isomers 
of GlcNAc1Man3GlcNAc2, and proved that the two ATD peaks observed in drifto-
gram indeed originated from the structural differences due to the capping GlcNAc 
group bound to the different branching arms of the glycan structures (1–3 branch 
vs. 1–6 branch, Fig. 10.8). In a separate report, Plasencia et al. [106] performed the 
analysis of N-linked glycans enzymatically released from ovalbumin using an LDT 
IMS-TOF/MS approach. The use of LDT IMS allowed them to achieve a higher 
resolution in IMS separation and obtain three sharp peaks in the ATD for the gly-
can ion with a composition of [H5N4+2Na+]2+. Through molecular modeling, the 
glycan structures corresponding to each of the peaks were assigned, and the relative 
ratios of the three structural isomers were determined. Together with the analysis for 
carbohydrate structural isomers from natural sources (e.g., milk) [103], these studies 
demonstrate that IMMS offers a number of advantages for the analysis of a complex 
mixture of released glycans, including short analysis time, minimum sample prepa-
ration, and the high information content of the experiment. However, while promis-
ing, the methodology for detailed characterization of glycans is clearly at an early 
stage of development. Care should be taken when assigning IMS peaks to glycan 
structures because a single isomer may exist as multiple conformations [107] and 
IMS separation may show multiple features for individual isomers.

The use of IMMS as a multi-dimensional separations tool to extract the spectra of 
N-glycans released for recombinant glycoprotein, gp120 (from the human immuno-
deficiency virus), was recently demonstrated by Harvey et al. [108]. The study took 
advantage of the IMS separation to extract glycan spectra that are obscured by the 
dominant signals from other abundant compounds such as detergents and residual 
buffer salts. Because the N-glycans signals fell into a unique region on the driftogram 
(ion mobility vs. m/z plot) after IMS separation, signals from other high-abundance 
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interfering species can be filtered out and the glycan profiles are extracted with good 
signal-to-noise ratios. With this method, the glycans released from minute amount 
(sub-microgram) of glycoprotein material can be directly analyzed with little sample 
preparation, and a clear glycan profile can be obtained. In addition, structural analy-
sis could be accomplished by MS/MS experiments after IMS separation.

10.4  Summary and Perspective

The inherent structural complexity and heterogeneity associated with therapeutic 
proteins require the deployment of many different analytical techniques to pro-
vide multi-faceted detailed characterization. The coupling of ion mobility separa-
tion with MS has created a powerful analytical technique that leads to important 
and revealing insights into protein analysis. More specifically, from the plethora 
of studies described in this chapter, IMMS is evidently a valuable addition to the 
toolbox for therapeutic protein characterization. Data obtained from IMMS experi-
ments allow the identification and analysis of coexisting conformational states 
of proteins, observation of protein aggregates or conformational change in the 
absence of solvent, and the analysis of isobaric species that are difficult to handle 
by MS alone. Its ability to complement other structural methods in specific appli-
cations makes IMMS a powerful new tool in therapeutic protein characterization.

The development of this powerful hybrid technique and its application for bio-
therapeutic protein analysis has come a long way, but has much further to go in 
order to be fully adapted and incorporated into the analytical workflow for protein 
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therapeutics development. Since IMMS essentially measures the protein confor-
mation in gas phases, the protein conformation information derived from IMMS 
measurement has long been under critical assessment when effort is made to cor-
relate the measurement to protein conformation in solution. Although gas-phase 
studies can eliminate the effects of solvent molecules, thus enabling the analysis 
of the intrinsic properties of the protein and providing invaluable insights into 
the structure and cross sections of well-defined (mass-selected) protein or protein 
complexes, a major concern with the approach is that the absence of solvent can 
affect the structure of the protein or complex in various ways such that the cross 
section obtained by IMMS may not necessarily resemble the cross section of the 
structure in solution. On the other hand, strong evidence from several IMMS stud-
ies [14, 15, 109, 110] has suggested protein structure is often largely retained upon 
transfer into the gas phase, and thus biological relevance is self-evident in the 
measurement. Therefore, more detailed fundamental studies are warrant to further 
validate the approach for its relevance to biomolecule conformation study.

The applicability of IMMS in biotherapeutic protein characterization could 
benefit greatly from the continued improvement in IM separation resolution. 
Currently, most of the commercial IMS techniques only offer a relatively low- to 
moderate-capability in structural resolution. The limited IMS resolution achieved 
by the available instrument offerings suggests that the techniques measure the 
average shape of an ensemble of ions of interest. Although some conclusions 
could still be drawn based on the distribution of drift times regarding the structural 
diversity of an ensemble, or the kinetics of interconverting conformational states, 
further enhancement in IMS resolution would certainly make the technique more 
acceptable to the biopharmaceutical industry and enable scientists to develop pow-
erful new methods to meet the challenges faced by the ever evolving industry.
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