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Preface 

The present proceedings assemble the contributions to the second work
shop on "Scientific Computing in Chemical Engineering". The two volumed 
edition covers the wide spectrum of computational activities in chemical pro
cess engineering encompassing tasks from process development, process de
sign and optimization to process operations and control. The increasing per
formance of computers and the rapid advancement of numerical techniques 
encourages the employment of more sophisticated models. Quantum chemical 
approaches, molecular dynamics and Monte Carlo methods penetrate engi
neering design of catalysts and the calculation of phase transfer phenomena. 
Computational fluid dynamics of multi-phase flow is now a standard tool in 
chemical plant design. Numerical simulations replace time consuming and, 
therefore, expensive experiments to an ever increasing extent. The present 
workshop reflects these developments. 

The large number of contributions made it necessary to split the proceed
ings into two volumes. We grouped the contributions into ten sections with 
the headings Simulation of Reactive Flows, Reaction Engineering, Reaction 
Diffusion Problems, Molecular Properties, Computer Aided Process Design, 
Combustion and Flame, Image Processing, Optimization, Control and Neural 
Networks. The present volume deals with the first four of them including the 
invited presentations related to these topics. The companion volume deals 
with the remaining six. 

The workshop was organized by the Collaborative Research Center (Son
derforschungsbereich) 238 of the Deutsche Forschungsgemeinschaft "In-situ 
measuring techniques and dynamic modelling of multiphase flow systems" at 
the Technical University of Hamburg-Harburg in cooperation with the Ger
man Society for Chemical Apparatus, Chemical Engineering and Biotechnol
ogy e.V. (DECHEMA), the special interest groups "Scientific Computing" 
and "Industrial Mathematics" of the Deutsche Mathematiker Vereinigung 
(DMV), the joint special interest group "Numerical Software" of the DMV, 
the Gesellschaft fUr Angewandte Mathematik und Mechanik (GAMM), and 
the Gesellschaft fUr Informatik (GI), as well as the GAMM special interest 
group "Scientific Computing". 

We thank all the people from these societies and groups who helped to 
realize both these proceedings and the workshop. We are grateful to our 
large number of referees for their careful inspection of the contributed papers 
and their valuable comments which increased the quality of the proceedings 
considerably. 

Last but not least it is a pleasure for us to thank Dipl.-Phys. Ing. Vera 
Lochmann and Margitta Janssen for their untiring efforts in collecting all 
contributions and adapting them to the Springer g\1EX conventions. 

The Editors 
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Molecular Simulation: 
Phase equilibria and confined systems 

Keith E. Gubbins 

North Carolina State University, Department of Chemical Engineering 
Raleigh, North Carolina 27695 - 7905, USA 

Abstract. Recent advances in direct and indirect methods of molecular simulation 
for studying fluid phase equilibria are reviewed. For bulk fluids and mixtures, the 
emphasis is on phase equilibria for fluids of nonspherical molecules, including ionic 
fluids, aqueous mixtures, hydrocarbons and chain molecules. The application of 
these methods to adsorption is also discussed, with emphasis on phase separation 
in porous media. 

1 Introduction 

The use of Molecular Dynamics (MD) or Monte Carlo (MC) simulation meth
ods to calculate the so-called" mechanical" properties, such as internal energy 
or pressure, is straightforward. The situation is considerably more difficult for 
the "statistical" properties - free energy, chemical potential or entropy. The 
difficulty is that conventional methods sample parts of phase space where 
the Boltzmann factor exp( -U /kT) is large (here U is configurational energy), 
whereas for the statistical properties other regions of phase space make ma
jor contributions [1]. Various ways around this problem have been devised, 
including special sampling techniques and integration over a range of ther
modynamic states. Reviews are given in refs. [1-6] and references therein. 
Recently, methods for simulating fluid phase equilibria directly have been 
developed, and are fast and convenient where they can be applied [5]. 

An important application of such simulations is to the prediction of phase 
equilibria in cases where experimental measurements are difficult or impossi
ble; examples include bulk systems at extreme temperatures or pressures, or 
fluids confined within porous media. Simulations of this sort also find other 
applications, e.g.: (a) testing statistical mechanical theories, where identical 
models for the molecules (and any surfaces present) are used in both simula
tion and theory, so that the comparison tests only the statistical mechanical 
approximations in the theory; (b) comparisons with experiment, which give 
information about the suitability of the assumed intermolecular potential. 

The main limitation of the simulations is usually the reliability of the 
intermolecular potentials used. Since computers are still too slow to calculate 
reliable ab initio potentials for any but the simplest molecules, most workers 
use semi-empirical potentials, developed by using a combination of knowledge 
from theory (quantum mechanics, electrostatics) and experimental data. Such 

F. Keil et al. (eds.), Scientific Computing in Chemical Engineering II
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Molecular Simulation 3 

models [7] include universal force fields, transferable isotropic site-site models 
(e.g. the OPLS model, or optimized potentials for liquid simulations), and 
more sophisticated models [8] involving anisotropic site-site potentials and 
distributed multi poles. 

In the remainder of this paper a brief survey is given of some developments 
in this area over the last ten years. Both direct and indirect (via calculation 
of the chemical potential) methods for calculating phase equilibria are con
sidered, with an emphasis on applications to fluids of complex molecules and 
on confined systems. 

2 Bulk Fluids 

2.1 Direct Method: Gibbs Ensemble Monte Carlo 

The Gibbs Ensemble Monte Carlo (GEMC) method, first proposed by Pana
giotopoulos in 1987 [9], involves setting up boxes representing the two coexist
ing phases (I and II) that are in equilibrium with each other; however, these 
phases are not in physical contact. The two boxes representing the phases 
have volumes VI and VII and contain NJ and NIl molecules, respectively. 
The system of two boxes is at a uniform temperature T, and the usual peri
odic boundaries are used with each box to minimize surface effects. The sim
ulation requires three kinds of trial moves [9], which are designed to achieve 
(a) internal thermal equilibrium in each box through the usual Monte Carlo 
molecular moves, (b) mechanical equilibrium through equality of pressures 
between the two phases, by changing the volumes of the two phases (keeping 
the total volume of the two phases constant), and (c) chemical equilibrium 
via equality of chemical potential between phases, through molecule exchange 
between the two boxes. The derivation of the GEMC method is given in de
tail by Smit et al. [10]' and the implementation of the method, programming 
considerations and applications have been recently reviewed [5,6]. The merit 
of the method is its directness and resulting speed of computation; in partic
ular it is not necessary to calculate the chemical potentials, and the molecules 
do not have to diffuse across a physical interface in order for the system to 
reach equilibrium. The method is particularly attractive for mixture phase 
equilibria, where the indirect methods become tedious. The main limitation 
is the difficulty in making the molecule transfer step at high densities; this 
problem becomes more pronounced if the molecules are highly nonspherical 
in their interactions, and is acute for polymers. This limitation is shared by 
many of the other methods for calculating phase equilibria described below. 
The difficulty can be largely overcome by various biased sampling methods 
for liquids, but so far the method has not been successfully applied to solids 
or liquid crystals. 

Applications of the method to pure fluids and mixtures up to 1995 have 
been reviewed [5,6]. Studies of vapor-liquid equilibria in pure fluids of more 
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complex molecules have included the restricted primitive model of a 1:1 elec
trolyte (charged hard spheres of equal diameter and unit charge) [11], and 
chain molecules [12,13]. The usual sampling methods fail for chain molecules, 
and it is necessary to bias the sampling in a way that 'looks' for available 
space (see section below). 

For mixtures, the method has been applied to high pressure fluid phase 
equilibria in hydrogen-helium mixtures [14]. Further calculations for this sys
tem have been made to 2500 K and 700 kbar [15]. Agreement with the existing 
experimental data is good. These studies provide a further example of the use 
of these methods to extrapolate existing data into regions that are difficult 
to reach experimentally. An application to a more complex mixture has been 
made for water with methanol [16]. The SPC (simple point charge) model was 
used for water, and OPLS (optimized potential for liquid state) for methanol 
with potential parameters taken from the literature and used without ad
justment. The compositions of the two phases agree with experimental data 
within a few percent. 

2.2 Indirect Methods 

An alternative to the Gibbs ensemble MC method is to calculate the free 
energy or chemical potentials for a range of state conditions. The phase tran
sition conditions can then be determined by the usual methods of Gibbs 
thermodynamics. Such methods are called indirect ones; they involve more 
computational effort than the Gibbs method, in general. However, they are 
useful because: (a) one often wants to know the values of the chemical po
tentials, e.g. in studying surface phase transitions or conformational changes 
(the Gibbs method does not yield the chemical potential unless special steps 
are taken in coding), and (b) the Gibbs method (and some of the indirect 
methods) fails for high densities because of the molecule insertion step. This 
is particularly the case for liquid crystals and solids. 

These indirect methods include the test particle method, Grand Canoni
cal Monte Carlo (GCMC), modified sampling methods, and thermodynamic 
integration over states. They have been reviewed elsewhere [2-6). Both the 
test particle and GCMC methods involve attempts to insert a molecule into 
the fluid, and so suffer from the same difficulty as the Gibbs ensemble MC 
method at high densities. In the modified sampling methods an attempt is 
made to overcome this problem by modifying the MC sampling procedure, 
so that the probability of successful insertion attempts is greatly increased. 
The aim of these methods is to try to find the 'holes' in the fluid and put the 
molecule there. 

Of particular importance is the use of histogram reweighting methods. 
This method, due to Ferrenberg and Swendsen [17], can be applied in a va
riety of ensembles, but is most often used in the Grand Canonical Monte 
Carlo (GCMe) method, in which chemical potential, volume and tempera
ture (IL, V and T) are the independent variables that are fixed in the simu-
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lation. In this ensemble, the number of molecules, N, and the energy of the 
system, U, fluctuate. The essence of Ferrenberg and Swendsen's method is 
to construct a histogram of the distribution of Nand U during the course 
of the simulation, and thus determine the distribution function f(N, U) at 
the state condition ({L, V, T). From this distribution function it is possible to 
calculate the thermodynamic average of any property X(N, U), including the 
grand partition function itself, and hence the grand free energy. Moreover, 
once f(N, U) is known at a given state condition ({L, V, T), it is possible to 
calculate any property X(N, U), including free energy, at all other state con
ditions ({L', V, T') [17,18]. Thus, in principle, one long GCMC run should be 
sufficient to obtain the complete phase diagram for the system. In practice 
it is usually necessary to carry out several runs at different ({L, V, T) values 
in order to obtain f(N, U) with sufficient accuracy over the range of Nand 
U needed. Weighting or biasing is frequently used in order to improve the 
statistics in regions of phase space that are important in the desired averages. 
Histogram reweighting has been used to determine the vapor-liquid coexis
tence curve for polarizable Stockmayer fluids [18], polarizable water models 
[19,20]' and carbon dioxide-water mixtures [19]. It can also be applied in 
other MC ensembles, including the Gibbs [19] and semi-grand ensemble [21]. 

For the most difficult systems, e.g. liquid crystals and solids, thermody
namic integration may be necessary. This involves making a series of simula
tions for a range of thermodynamic temperatures, densities or intermolecular 
potentials, and then integrating over thermodynamic states using standard 
thermodynamic or statistical mechanical equations to obtain the chemical 
potential [4,6]. An alternative procedure is to calculate the Landau free en
ergy as a function of some order parameter, P [22,23]. The probability P(P) 
of observing the system with an order parameter value between P and P + dp 
is determined in the simulation, and assumes a bi-modal distribution when 
two phases are in coexistence. The Landau free energy is obtained from this 
probability distribution, and subsequent integration of this over the order 
parameter gives the grand free energy. The success of this method hinges on 
an appropriate choice of order parameter; the order parameter is a density 
variable or rotational invariant that takes on distinctly different values in 
different phases of the system. It has been used to study the fluid-solid phase 
transition for simple fluids and metals [24,25]. 

To obtain a complete phase diagram it is often necessary to employ several 
simulation techniques for different parts of the phase diagram. For the Gay
Berne model of a liquid crystal [26]' for example, the vapor-liquid region 
was determined by the Gibbs ensemble MC method; isotropic liquid-nematic 
transitions were determined by thermodynamic integration and the remaining 
transitions were found approximately from order parameters (orientational 
correlation parameter P2 , tilt angle ¢ and heat capacity Cv ). 

The extension of some of these methods to chain molecules in the last few 
years has sparked particular interest. Two approaches have been put forward, 
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the chain increment method and the configurational bias Me method. The 
chain increment method, proposed by Kumar et al. [27], is based on a test 
particle equation that gives an exact expression for the incremental chemical 
potential for adding a monomer unit to a chain molecule. This increment 
is found to become essentially constant for chains longer than about 10-20 
mers. If this limiting value is determined, and also the chemical potential for 
a relatively short chain, it is possible to calculate the chemical potential for 
long chains. The method has been applied [28] to obtain the phase diagram 
for a polymer melt of chains of length up to 100 mers. The chain increment 
method has the advantage that it can be applied to arbitrarily long chains. 

The configurational bias Me method [29-31] involves the insertion of a 
short chain into the fluid, followed by the addition of other segments to the 
end of the chain until a chain of the desired length has been grown. The 
chain configuration is chosen by a suitable weighting process, using another 
modified test particle equation. The method can be used in Gibbs ensemble 
simulations to obtain phase equilibria directly. It has been used to study 
alkanes [30], and also alkanes dissolved in polyethylene and in supercritical 
solvents [29]. 

3 Confined fluids and solids 

A fluid confined within a porous material can exhibit a variety of phase tran
sitions. Such transitions are of two general types, those that also occur in the 
bulk phase but are modified in the pore by finite size effects and the strong 
fluid-wall forces (e.g. melting, condensation, liquid-liquid equilibria, etc.), and 
new transitions that arise solely from the fluid-wall forces (e.g. wetting, lay
ering transitions). The methods used to study phase transitions in bulk fluids 
are, with little modification, suitable for investigation of phase transitions in 
pores. However, long-lived metastable states are often a more serious prob
lem in confined systems. These lead to hysteresis effects in many cases, the 
state condition at which the transition occurs being different depending on 
the direction from which the transition is approached. The determination of 
the true thermodynamic transition point will often require the calculation of 
the free energy or chemical potential. Phase transitions that have been stud
ied rather extensively by simulation are capillary condensation (condensation 
from vapor to liquid inside the pore; this usually occurs at a pressure much 
below the normal vapor pressure), wetting (the point at which the liquid just 
wets the surface, i.e. the contact angle becomes zero), and layering transitions 
(transitions between low coverage and a full monolayer, between a full mono
layer and two full layers, and so on). The melting transition, liquid-liquid 
separation for mixtures, and solubility of dilute components in a solvent have 
received less attention from the simulation community, but are the subject 
of current investigations. 
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Care is needed in defining exactly what is meant by a 'phase transition' 
in a pore. In cylindrical pores, for example, the molecular correlation length 
can grow to infinity along the axis of the cylinder, but is restricted to the 
pore diameter in the other two dimensions. Such a fluid does not have a true 
critical point in the usual sense. Nevertheless, in such a system there are 
often two states of distinctly different density and structure having the same 
free energy or chemical potential, and sharp changes occur between these two 
states. 

We first briefly consider the most commonly used methods, followed by 
a brief discussion of the main types of transition. More extensive reviews of 
phase separation in porous materials are available [32,33] 

3.1 Methods 

Phase equilibria in pores, and also the equilibrium between the porous medium 
and the bulk phase, are governed by equality of temperature and the chemical 
potential of each component between the various phases. Pressure equality is 
not a requirement since pressure in confined systems is a tensor. 

The GCMC method has been widely used to determine adsorption isotherms, 
heats of adsorption, and phase transitions in pores. The method (like the 
GEMC method) runs into difficulties with the molecule insertion step at 
high densities. This difficulty, which is more pronounced for significantly non
spherical molecules, can be overcome by using a biased sampling method [2-6], 
which attempts to insert the molecules into 'holes' in the fluid, thus improving 
the chance of successful insertion; the effects of such biasing on the statistical 
sampling is removed at a later stage. A further difficulty with GCMC (and 
some other methods) is that hysteresis is found in the calculation of adsorp
tion isotherms where phase transitions occur. Thermodynamic integration 
can be used to determine the true transition point [34,35]. This method has 
been used by Peterson et al. [34,35] to determine capillary condensation lines. 

Molecular dynamics (MD) simulations can be used to observe the inter
faces in the pore between coexisting phases, and so have this advantage over 
the GCMC method. One procedure that has proved successful [34,36] in
volves first equilibrating the fluid in the pore at a high temperature, above 
the critical point in the case of gas-liquid or liquid-liquid transitions (or above 
the range in which the transition of interest occurs in other cases). The sim
ulation is then stopped, the velocities of all the molecules scaled back by 
a constant factor (chosen to correspond to a suitably lower temperature), 
and then restarted. The new molecular velocities correspond to a tempera
ture inside the spinodal region for the two phase region of interest. The fluid 
in the pore will then separate into the two phases. In general, mechanical 
equilibrium is quickly reached, whereas chemical equilibrium takes at least 
one order of magnitude longer, because of the slow diffusion in the dense 
phases. This quench MD method has the advantage of providing dynamic 
information about diffusion in the pore and the kinetics associated with the 
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phase separation. Moreover it provides a clear picture of the interface itself, 
something that cannot be easily studied in the laboratory. 

Other methods have proved valuable for special cases. For example, the 
semi-grand ensemble MC method is useful for the study of phase equilibria 
in dense fluid mixtures [21J; in this method there is no particle insertion step, 
but rather a species exchange, which is tolerated more easily at high densi
ties. Thermodynamic integration methods for studying fluid-solid transitions 
usually fail for confined systems, because adsorbed layers near the wall of the 
pore freeze at a different point than the adsorbate in the pore interior. Order 
parameter methods are usually preferable for such studies [37J. 

3.2 Capillary Condensation and Layering Transitions 

Since about 1986 there have been numerous simulation studies of capillary 
condensation in pores of simple geometry, e.g. slits and cylinders, and several 
studies of layering transitions. More recently, there have also been studies 
of capillary condensation in more complex and realistic pore structures [e.g. 
38,39J. These are too numerous to review here, but a cross-section of examples 
of studies of this type can be found in the proceedings of the International 
Conferences on the Fundamentals of Adsorption, held every few years [40J. 
Most of these simulations have employed the GCMC method, but several use 
either Gibbs Ensemble MC or Quench MD. 

Studies of the gas-liquid coexistence behavior (temperature vs. density) 
in narrow pores show that the coexistence curve is considerably narrower 
than for bulk fluids, and the critical point is lowered. The narrowing of the 
coexistence region occurs because the 'gas' phase in the pore usually consists 
of several layers of adsorbed fluid molecules on the pore walls, with a gas-like 
phase in the interior of the pore; since the adsorbed layers have a liquid
like density, the overall density in the pore is relatively high. The liquid side 
of the coexistence curve has a density similar (usually somewhat higher) to 
that of the bulk liquid. The lowering of the critical temperature in the pore 
is expected since the average coordination number, Z, of fluid molecules in 
the pore will be lower than that of the bulk liquid (because an appreciable 
fraction of molecules are near the wall). Mean field theory predicts that the 
critical temperature is proportional to Z. 

3.3 Liquid-Liquid Equilibria 

Simulation studies of liquid-liquid separation in pores have been reported 
for a simple Lennard-Jones mixture in which the unlike pair interaction is 
weak [21,41-43J. This is the simplest model for such phase separation. Recent 
simulations have been made using semi-grand ensemble MC with histogram 
reweighting to obtain the liquid-liquid coexistence curves [21 J. The critical 
mixing temperature is lowered as for the vapor-liquid case, and the coexis
tence curve (temperature vs. composition) is shifted towards the side of the 
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component that more strongly wets the pore walls. These qualitative features 
agree with experiment. In addition to these equilibrium studies, the kinetics 
of phase separation has been studied using quench MD simulations [43], and 
the power laws governing the growth of the phases has been determined for 
simple geometries. 

3.4 Melting/Freezing Transitions 

Freezing and melting transitions in pores are of importance in frost heav
ing, in the distribution of pollutants in soils, in the manufacture of nano
materials, and in several other manufacturing processes. Simulation studies, 
using GCMC and MD, have been made to study the melting and freezing 
of Lennard-Jones methane in both slit [37,44,45] and cylindrical [46] pores. 
Large hysteresis loops are found on heating or cooling, and it is necessary 
to calculate the free energies in order to determine the true melting point. 
Since adsorbed layers near the wall melt at different temperatures to ad
sorbed material in the inner parts of the pore, the usual thermodynamic 
integration methods cannot be used. Instead, order parameter methods have 
proved successful [37]. The freezing transition is found to be first order. For 
weakly adsorbing walls, such as silicas and oxides, the melting temperature 
in the pore is lower than that in the bulk. For carbons, however, the melting 
temperature is generally higher than the bulk value, and this effect is partic
ularly marked for slit pores, since the molecules can more readily form the 
necessary lattice. 

4 Conclusions 

For fluid phase transitions the Gibbs ensemble MC and histogram reweight
ing methods are particularly useful. For transitions involving solid phases 
the order parameter method for obtaining free energies is likely to emerge as 
an important technique. Current research is likely to focus On applying and 
extending these methods to difficult systems such as ionic fluids, associating 
and reacting liquids, liquid crystals, polymers and surfactants. In the case of 
confined systems, applications to more realistic and complex pore geometries 
will be emphasized. A persistent problem in such work remains the deter
mination of sufficiently accurate intermolecular potentials for prediction of 
phase equilibria in real systems. 
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Abstract. A numerically efficient procedure is described for computing the loci 
of bifurcation points separating parameter regions with qualitatively different dy
namics and bifurcation diagrams of spatially distributed and periodically forced 
processes. The numerical method combines shooting, Broyden's Jacobian update, 
continuation and direct Frechet differentiation of the PDEs describing the system. 
The reverse-flow reactor is used to illustrate the application of the numerical pro
cedure. 

1 Introduction 

In several chemical processes, reactors are operated periodically to exploit 
the improved performance during transient operation. Typically, the feed 
conditions (flow rate, concentration, pressure, etc.) are periodically changed. 
In some cases the periodic operation is achieved only by reversing the flow 
direction of a constant feed source at fixed intervals, Le., by using a reverse
flow operation. In pressure and temperature swing adsorption (PSA, TSA) 
[20]; [2]; [12], different steps (adsorption, desorption, purge, etc,) are used to 
separate gases with different adsorption affinities and/or kinetics. In a reverse
flow reactor (RFR) the slow motion of the temperature wave (relative to that 
of the gas) is used to trap a hot zone within the reactor. [14] reviewed various 
industrial applications of the RFR. 

Early studies of periodically forced operations used dynamic simulations 
to determine the periodic states. These methods are numerically inefficient as 
the (pseudo-steady) periodic states are typically attained only after several 
hundreds to thousands of cycle periods. To overcome this deficiency, direct 
determination of these states may be used, Le., requiring the state variables at 
the end and beginning of a cycle to be identical, Le., u(O) = u(tc), where u de
notes the state variables and tc is the cycle period. This transforms the initial 
value problem solved by dynamic simulation into a temporal boundary-value 
problem solvable by Newton-based methods. A special feature of reverse-flow 
reactors is the fact that the temperature profiles at the beginning and the 
end of a flowing period are symmetric. [5] suggested to directly determine 
the periodic states by forcing the temperature profiles at the beginning and 
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end of each semi-cycle (half cycle) to be mirror images of each other, i.e., 
u(O, x) = u(tc /2, L - x), where x is the spatial variable and L the length of 
the fixed bed. This requires integration of the model equations only over half 
a cycle (semi-cycle). 

In practice, it is important to know the various types of qualitatively 
different dynamics and the possible coexistence of multiple periodic states. 
In addition, it is important to know the bifurcation loci, at which qualitative 
changes in the dynamic features occur. We describe here the mathematical 
and numerical techniques, which enable a detailed bifurcation analysis and 
prediction of these transitions. 

A bifurcation diagram shows the dependence of a state variable on a pa
rameter. Bifurcation diagrams are qualitatively similar when the number, 
order, and orientation of the solution is changed in an identical way upon 
a continuous change in the bifurcation variable A. We consider a system 
g( u, A, p) = 0, in which p is a vector of parameters and restrict the treat
ment to cases in which 9 is a single-valued function of u and A within the 
feasible region and the branches of the solution neither intersect nor have 
limit points on the u and A boundaries. For convenience we omit p in the 
future notation. A typical bifurcation diagram of the maximum reactor tem
perature in a cycle versus the cooling capacity is shown in Fig.I. The model 
used to generate the diagram is presented in section 5. 
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Fig. 1. Typical dependence of the maximum RFR temperature 8rnax on the cooling 
capacity Ll. 
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2 Transitions between qualitatively different 
multiplicity features 

Multiple periodic states are frequently encountered in periodic operations, 
e.g., in PSA and reverse flow operation. The boundaries of parameter regions 
containing bifurcation diagrams with qualitatively different multiplicity fea
tures may be determined by application of the singularity theory with a 
distinguished parameter, developed by [4]. We follow the scheme used by [19] 
of solving simultaneously the model equations and the defining conditions 
obtained by a Liapunov-Schmidt reduction [4]. 

Regions with qualitatively different multiplicity features are separated by 
three surfaces (varieties). Typically, two limit points coalesce upon crossing 
a hysteresis variety, at which a transition between nand n+2 periodic states 
occurs. An isolated branch of solutions appears (or disappears) upon crossing 
an isola variety. Crossing of either the hysteresis or the isola variety typically 
changes by two the number of limit points of the bifurcation diagrams. Cross
ing a double limit variety typically changes the relative positions of two limit 
points in the bifurcation diagrams. In Fig.2 a schematic of these three vari
eties are shown. For example, the defining conditions of a hysteresis variety 
of g(u,'\) = 0 are: 
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Fig. 2. The bifurcation diagrams (solid lines) and their unfoldings (dashed lines) 
for a set of parameters on the hysteresis, double limit and isola variety. 
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g(u, >.) = 0 (1) 

Lv = Dug· v = 0 (2) 

L*y = 0 (3) 

< y, D~ug· (v, v) >= 0, (4) 

where Dug· v and D;LUg· (v, v) are the first and second F'rechet derivatives 
of g, u is the vector of the state variables, v and yare the eigenvector and 
adjoint eigenvector corresponding to the zero eigenvalue of the linearization 
operator Dug. Eq. (4) defines the second derivative of the branching equation, 
which has to vanish at the hysteresis variety. 

The linearization Lv can be determined by computing the Jacobian ma
trix J of the discretized model equations 9 followed by a numerical estimation 
of eigenvectors and eigenvalues. However, we circumvent this tedious compu
tational task by direct F'rechet differentiation of g(u, >.), which yields a set 
of equations similar in structure to the model equations. Thus, we do not 
compute J but only the product of J v, which is equal to Dug v. This direct 
linearization by F'rechet differentiation significantly reduces the numerical ef
fort associated with determining the different varieties. The details of this 
procedure are presented in a separate paper [10J. 

Since the eigenvectors are defined except for a multiplicative constant, we 
have to specify a norm of the eigenvector. We use 

(v, y) = 1. (5) 

This normalization condition avoids obtaining the trivial solution v = 
y = 0 for both eigenvectors. The adjoint problem L*y may be determined 
by the Lagrangian identity 

(Lv, y) = (v, L*y). (6) 

The above set of 3n+2 equations determines the 3n variables, (u, y, v), >. 
and a parameter Pl in p. The hysteresis can then be continued with respect 
to a third parameter P2. The defining conditions of the isola and double-limit 
variety are reported by [4], [19J and [8J. 

3 Numerical bifurcation analysis 

We consider here cases in which g(u, >.) is a set of periodically forced, cou
pled, non-linear PDEs. Then, the linearization and the adjoint problem are 
a set of linear PDEs and Eqs. (4) and (5) are integral conditions. The set of 
defining conditions may be solved by various numerical schemes, such as a 
shooting technique or discretization of both the spatial and temporal deriva
tives (relaxation method). We describe here a numerical method, which is 
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based on the shooting technique, using Broyden's method and Fnkhet dif
ferentiation to avoid the numerically expensive calculations of the Jacobian 
matrix and its eigenvalues. 

As an example the conditions of the hysteresis point are used. We dis
cretize the spatial derivatives by finite differences (100 node points on a sym
metric grid) and compute the integral terms in the defining conditions by 
a Gaussian quadrature. After spatial discretization the defining conditions 
form a differential-algebraic (DA) system of first order. Since the conditions 
are periodic they may be solved by requiring the solutions to be identical 
after one period (cycle). If U is the vector of all the discretized variables, e.g. 
(u, v, y), we define an algebraic set of residual function as 

f(U, >.) = Uo(t = 0) - U(t = t c) = 0, (7) 

where tc is the cycle period. In order to evaluate U(tc) the differential
algebraic system has to be integrated over one cycle using U 0 as the initial 
condition. We use LIMEX (3) with a relative tolerance of 5.10-7 to integrate 
the DA system in time (shooting in time). If the residual function and Eqs. 
( 4) and (5) vanish, the defining conditions of a singular point or variety are 
satisfied. Usually, a Newton-based method is used to iteratively determine 
these solutions. For an RFR the mirror symmetry over a half cycle may be 
used as the defining condition rather than integrating over a full cycle. 

We use pseudo-arc length continuation to track the loci of the singular
ities as a function of a parameter P2 (18). If U is the vector of all spatially 
discretized variables, e.g. (u, v, y), the set of defining conditions, i.e., Eqs. 
(4), (5) and (7) are augmented by the single equation 

2 

IU - U oldl 2 + (>. - >'old)2 + L(Pi - Pi,old)2 = s2, (8) 

where>. is the bifurcation parameter and P2 the continuation parameter. 
In Eq. (8) s is a user-defined step size and the subscript "old" denotes the 
previous continuation step. For example, the final set of algebraic equations 
defining the hysteresis variety are: 

g(u, >.) 
Lv 
L*y 

G(X) = (y, D~ug· (v, v)) 
(v,y)-1 

2 
s2 -IU - U oldl 2 - (>. - >'old? - I: (Pi - Pi,old? 

i=l 

= 0 (9) 
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Note, that u, v, and yare spatially discretized. Eq. (9) is a nonlinear 
problem in X. It may be solved by a Newton method. In our calculations we 
use N = 100 node points and the maximum number of state variables M is 12, 
so that we have at most (N·M +3) = 1203 residual equations. Thus, inverting 
of the Jacobian matrix of G needed in the Newton method is inexpensive. 
Since no analytical solution of the Jacobian matrix exists, a finite-difference 
method may be used for its numerical approximation. However, this is very 
expensive since it requires integration of the defining conditions 1203 times 
over one cycle. To avoid the need for repeated calculations of the Jacobian 
we use Broyden's method [15], which updates the Jacobian matrix by 

[(Gk - Gk-d - J[k-l] . dXk]· dX[ 
J[k] = J[k-l] + dX[dXk (10) 

The use of Broyden's method requires two to three times more iteration 
steps than Newton's method to converge to the solution. However, it requires 
only one integration (function evaluation) per step, while Newton's method 
requires 1203 integrations. In general, for the start-up step the Jacobian ma
trix has to be determined. When the update strategy is embedded in the 
continuation scheme the Jacobian matrix of the preceding step may be used 
for the first iteration in the actual continuation step. Thus, the Jacobian ma
trix is estimated only once for the whole solution branch at the beginning 
of the continuation procedure. It should be noted that other quasi-Newton 
methods exist, e.g., the Davidson-Fletcher-Powell [15] or the Zontendijk for
mula, which may give better convergence for a specific problem. 

The shooting method is more efficient than the relaxation method (dis
cretization of temporal and spatial derivatives) since relaxation results in 
very large matrices that have to be inverted. For 80 node points in time, 
M·N·80 + 3 = 96,003. Thus a sparse 96,003 x 96,003 matrix has to be in
verted for each iteration step, which is very time consuming. The shooting 
method results in a matrix size of 1203 x 1203, and the computation of the 
Jacobian matrix is fast since Broyden's method is used. Additionally, accu
rate time integration may be obtained by using a standard IVP-solver. The 
relative numerical advantage of our numerical approach increases as the num
ber of state variables in the model and/or the number of spatial node points 
increases. For example, when the various varieties of the RFR were computed 
a speed-up of at least 5 was obtained by using the shooting method. 

4 Dynamic Bifurcations of Periodic Processes 

Bifurcations from the periodic states may occur for critical parameter values. 
Examples are stability loss, a bifurcation to period-n states, quasi-periodic or 
even chaotic states. The stability of a periodic state is characterized by the 
spectrum of the eigenvalues of its monodromy matrix M, i.e., the matrix, 
which reflects the propagation of small perturbations over one cycle [1], [6]. 
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Generically, a periodic state is stable, when the absolute value of every eigen
value (Floquet multiplier) of the monodromy matrix is smaller than unity. 
A periodic solution becomes unstable when at least one eigenvalue crosses 
the unit circle in the complex plane. Different bifurcations occur depend
ing on the angle, at which the eigenvalues cross the unit circle. In principle, 
it is possible to track the various bifurcations by repeatedly computing the 
monodromy matrix and its eigenvalues. The computation of the monodromy 
matrix may be implemented by perturbing each variable or by integration 
of the sensitivity equations [13]. Repeated computation of the monodromy 
matrix requires extensive computer capacity and time. This motivated us to 
develop an alternative method for tracking the dynamic bifurcations. 

We define the periodic residual function of the state variables u (temper
atures, concentrations, etc.) as 

F(uo, A) = uo(t = 0) - u(t = tc). (11) 

Eq. (11) has to vanish at a periodic orbit. The monodromy matrix and 
the Jacobian matrix of Eq. (11) are related by 

8Uk+1 
M(UO,Ao) = -J;:- = 1 - J(UO,AO) 

UUk 
(12) 

Here 8Uk denotes a small perturbation vector at the beginning of cycle 
k. Eq. (12) establishes a relation between the monodromy matrix and the 
Jacobian (linearization) of the residual equations. These relations are essen
tial for tracking the dynamic singular points, since the linearization may be 
determined by Frechet differentiation. 

We now discuss the individual bifurcations from the periodic states. At 
a limit point of a periodic state (saddle node bifurcation) one eigenvalue of 
M crosses the unit circle at JL = +1. A period-l solution undergoes a period 
doubling bifurcation when M has a JL = -1 eigenvalue. When a conjugate 
complex pair of eigenvalues crosses the unit circle a quasi-periodic (two-torus) 
state is usually obtained. We denote this as a bifurcation to quasi-periodic 
solutions. Each of the described bifurcations satisfies the condition 

Mvo = (I - J)vo = JLVo (13) 

where 

(14) 

An eigenvector Vo satisfying Eq. (13) can be found only at the bifurcation 
point under consideration. We rewrite Eq. (13) as 

Jvo = (1 - JL) . Vo (15) 
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[8] proposed to use the fact that the product of the Jacobian matrix with 
its eigenvector can be determined by direct Frechet differentiation of the 
residual equation, Eq. (11), 

DuF(uo, >.) . Vo = J. Vo = Vo - v(t = t c) (16) 

Substitution of Eqs. (16) into (15) gives the final condition for a bifurca
tion from periodic states 

J.Lvo = v(t = tc). (17) 

Additionally, a norm of Vo has to chosen, e.g. (vo, va) = 1. v(tc) can be 
obtained by integrating the linearized equations (Frechet derivative of g) in 
time using Vo as initial conditions. We iterate the solution until we find avo, 
which satisfies Eq. (17) for the specific J.L value of the corresponding bifurca
tion (J.L = + 1 at limit point, -1 at period-doubling, J.Lr + i . J.Li at a bifurcation 
to quasi-periodic solutions). This relation leads to significant computational 
saving in computing the loci of the various dynamic bifurcations. In order 
to find the bifurcation varieties we first compute a bifurcation diagram and 
the monodromy matrix at every nth (n = about 20) continuation step in 
order to identify an approximate locus of the bifurcation. This information 
is then used to start-up a continuation procedure with Eq. (17) as a con
straint. This procedure enables us to circumvent the extensive calculation of 
the monodromy matrix and its eigenvectors. The continuation procedure is 
much faster and requires less memory storage than one based on repeated 
computation of the monodromy matrix. In the examples reported later the 
speed up was at least one to two orders of magnitude. 

In case of the RFR the symmetry within one half of the cycle leads to 
special bifurcations. Here the monodromy matrix may be defined for only half 
of the cycle and an eigenvalue of J.L = -1 corresponds to symmetry loss, i.e., 
a bifurcation to asymmetric solutions. (The profile at the end of a semi-cycle 
is not a mirror of that at the beginning of the semi-cycle, see Fig. 3b). Details 
are given in [9]. 

5 Example: The RFR 

A reverse-flow reactor (RFR) is a forced periodic system in which the flow 
direction is periodically reversed to trap a hot zone within a packed-bed 
reactor. Heat losses frequently occur and if temperature limitations exist, 
the reactor has to be cooled. The RFR operates under conditions for which 
multiple periodic, asymmetric, quasi-periodic and chaotic states exist. The 
dimensionless energy and species balances and boundary conditions describ
ing a single exothermic, first-order reaction occurring in a cooled RFR are 
[10]: 
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Fig. 3. Termperature profiles in the catalytic bed just before the flow direction is 
switched from the left to the right. a. Symmetric period-l state, b. Asymmetric 
period-l state, b. Aperiodic state (quasi-periodic, chaotic). 

() (aT Peh a~ a~ ( 
WB __ 1_~ + foB - Da. f3. B(8) . (1 - x) + Ll(8 - 8 e )) 

9 u = =0 
.lax __ l_~ + fax - Da. B(8) . (1 - x) 
Le aT Pe", o~- a~ 

The boundary conditions are: 

ou 
- = Pe . u at ~ = 0; 
o~ 

ou = 0 at ~ = 1 
o~ 

(18) 

(19) 

(20) 
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for the right flowing period. For the left flowing period the boundary 
conditions in space are flipped. At constant intervals, i.e., T = 1,2,3 ... , the 
flow direction is reversed. In Eqs. (18) - (20) 

where e and x are the dimensionless temperature and conversion, re
spectively. Pei are the Peclet numbers, kc the mass transfer coefficient, kCX) 
the rate constant, "Y the dimensionless activation energy, f3 the dimensionless 
adiabatic temperature rise, and av the specific surface area of the catalytic 
packing per m 3 reactor volume. A full cycle tc consists of two flowing periods 
t f. In dimensionless coordinates, T = 1 corresponds to t = t f. The parameter 
values are the same as those used by [9J. Frechet differentiation yields the 
linearized system: 

( 
1 ~ __ 1_ a2 V,! + ~ _ Daf3 [aB v (1 - x) - Bv ] + L1v ) (ar Peh at; at; as 1 2 1 

Lv= 
.1...~ __ 1_ a2v,.2 + ~ _ Da [aBv (1 - x) - Bv ] 
Le ar Pe= at; at; as 1 2 

(22) 

av 
- =Pe·v 
a~ 

at ~ = 0; 
av 
a~ = 0 at ~=l. (23) 

(24) 

Both [16,17J and [8J found that for an adiabatic RFR a stability exchange 
occurs only at the limit points of the solution branches. The cooled RFR ex
hibits more interesting dynamic features, such as the existence of asymmetric 
states in which the profiles at the end of a semi-cycle are not mirror images 
of those at its beginning, and of quasi-periodic and chaotic states as shown 
in Fig. 3. 

The bifurcation diagram of the dependence of the maximum RFR temper
ature on the cooling capacity L1 (Fig.l) describes such a stability change. The 
branch of the extinguished states emanates from a bifurcation point, with a 
negative cooling capacity so that an extinguished state exists for all L1 ~ 0 
values. An ignited state exists for all L1 smaller than that of the limit point. 
All states with negative L1 values have no physical meaning. Quasi-periodic 
states emanate from the ignited solution branch and exist in a bounded range 
of .1-values. 

The methods described in section 2, 3 and 4 were used to construct a map 
(Fig.4) of regions with qualitatively different dynamic states. 
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Fig. 4. Map of regions with qualitatively different dynamic behavior of an RFR. 
Boundaries are loci of codimension-O singularities in the Ll - t f plane. (SL = 
symmetric-loss, L-S = limit point of the symmetric solution, L-AS = limit point of 
the asymmetric solution, QP-S = quasi-periodic bifurcation of the symmetric solu
tion, DQP = degenerate quasi-periodic bifurcation, DSL = degenerate symmetry
loss bifurcation, TW = twist bifurcation. 

The boundaries separating regions with qualitatively different dynamic 
features are the loci of various codimension-1 singularities. The relevant bi
furcations are: 

(1) Limit points of symmetric states (L-S), 
(2) bifurcation from symmetric to quasi-periodic states (QP-S), 
(3) bifurcation from symmetric to asymmetric states (symmetry loss = SL), 
(4) limit points of asymmetric states (L-AS), and 
(5) bifurcation from asymmetric to quasi-periodic states (QP-AS). 

In the case shown in Fig.4 an extinguished state exists for any t f and 
cooling capacity. However, only an extinguished state is attained when either 
the cooling capacity exceeds a critical value or the flow reversal time is either 
very long or very short (extinguished region). The loci of the limit points of 
the symmetric (L-S) and asymmetric (L-AS) period-1 states bound a region 
in which the RFR has ignited states in addition to the extinguished ones. The 
period-1 symmetric states occupy the largest part of this region of feasible 
operation and are the only ignited states that exist when the cooling and heat 
loss are insignificant. However, when the reactor is cooled complex periodic 
and asymmetric states exist when the flow-reversal period is short relative 
to the time the temperature front needs to propagate through the reactor. 
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Asymmetric states exist for relatively high cooling capacities and short flow
reversal periods. The transition from symmetric to asymmetric states upon 
a decrease in tf occurs via symmetry loss (SL) bifurcation. Quasi-periodic 
states exist for intermediate flow-reversal times and an intermediate level of 
cooling capacity. The symmetric period-1 states transform to quasi-periodic 
states usually via a quasi-periodic symmetric (QP-S) bifurcation. The asym
metric period-1 states transform to quasi-periodic states at a quasi-periodic
asymmetric (QP-AS) bifurcation. However, in some cases this transition is 
more intricate and consists of a sequence of several bifurcations [9]. 

Our calculations reveal a rather moderate change in the behavior of the 
RFR following a SL bifurcation. However, crossing the QP-S loci causes a 
rapid change in the qualitative dynamic features. The time series of the re
actor center temperature (Fig. 5) illustrates such a sharp transition. While 
a period-1 symmetric state exists for tf of 129 s, a complex quasi-periodic 
state is obtained for t f of 127 s. Additional simulations show that for a limited 
range of parameters, chaotic states exist within the "quasi-periodic" window. 
The time series and Poincare map of a chaotic attractor of a cooled RFR are 
shown in Fig. 6 [11]. We could not predict these transitions, as we do not 
know which bifurcation led to these transitions. 
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Fig. 5. Changes between symmetric period-l to quasi-periodic behavior of the tem
perature at the center of the RFR upon crossing the QP-S bifurcation. 
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Fig. 6. Chaotic temporal reactor center temperature and corresponding Poincare 
map of the RFR model. 

6 Conclusions 

The combination of direct Frechet differentiation, continuation techniques, 
quasi-Newton and the shooting method was found to be an efficient tech
nique in the numerical determination of the various varieties and dynamic 
bifurcations of periodic distributed parameter systems. The main numerical 
savings are due to the use of the Frechet differentiation of the PDEs to avoid 
the lengthy computation of either the Jacobian or the monodromy matrix and 
its eigenvectors and the use of the Broyden update of the Jacobian matrix 
in the shooting method. While the technique was illustrated for the RFR, it 
may be applied to many other forced periodic processes. 
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Abstract. Mathematical modeling of chemically reacting flows is complicated by 
the fact that the chemical kinetics typically involves a large number of chemical 
species leading to a high dimension of the governing equation system. We present 
methods which allow a simplification of the description of the chemical kinetics and 
its coupling with molecular transport and turbulent mixing. The methods are based 
on the observation that the chemical kinetics does not access the whole composi
tion space, but it is confined to low-dimensional subspaces, the so-called intrinsic 
low-dimensional manifolds (ILDM). The reason is that the fast chemical processes 
introduce correlations between the species concentrations. These correlations can 
be extracted either by a direct mathematical analysis of the system of chemical 
rate equations or by an analysis of direct numerical simulation (DNS) data. Several 
examples of laminar and turbulent flame calculations which verify the approach are 
shown and discussed. 

1 Introduction 

The interest in mathematical modeling of reacting flows has grown consider
ably during the last years. One particular example is mathematical modeling 
of combustion processes. In this case the underlying chemical kinetics is (at 
least for the combustion of aliphatic hydrocarbons) well understood [1], and 
numerical simulations of laminar flames in simple one- or two-dimensional 
configurations have become a standard research tool. Furthermore, direct 
numerical simulations (DNS), originally developed to investigate turbulent 
non-reactive flows, have found important applications in the simulation of 
turbulent combustion processes [2,3). For general turbulent three-dimensional 
flows a detailed treatment of the chemical and physical processes by DNS is, 
and will remain in the near future, computationally prohibitive [4). Thus, 
simplified models for the turbulence (see, e.g. [5)) as well as for the chemical 
kinetics have to be devised. 

The need of simplified models for the chemistry stems from the fact that 
one species conservation equation has to be solved for each chemical species. 
This is computationally prohibitive for complex reacting flow systems. More
over, it is desirable not to perform the time-consuming evaluation of all the 
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chemical source terms during the computation of a reacting flow, but to evalu
ate them beforehand, store the functional dependence on the thermochemical 
state variables (e.g., based on table look-up procedures [4,6] or polynomial 
representations [7]) and then use the results in the computational fluid dy
namics code. In the past various methods have been developed to generate 
reduced reaction mechanisms for combustion systems. Examples are system
atically reduced reaction mechanisms [8,9], the constrained equilibrium ap
proach [10]' repro-modeling [11], computational singular perturbation [12,13]' 
the method of intrinsic low-dimensional manifolds [14,6,15,16]' and dynamic 
dimension reduction [17,18] (surveys of the work can be found in [8,9,19]). 
In principle all these methods are based on the fact that the chemical kinet
ics does not access the whole composition space, but is restricted to small 
subspaces of lower dimension. This is caused by the dynamic nature of the 
chemical kinetics, but also by the fact that the physical processes like dif
fusion, heat conduction, or turbulent mixing introduce correlations between 
the thermochemical state variables, too. 

Summarizing, we can state that the thermokinetic state space of reacting 
flows is characterized by two important properties: 

• The state space accessed in a reacting flow is only a small subset of the 
allowed space (i. e., of the space which is in principle accessible and whose 
states do not violate physical laws). 

• After a short relaxation time the thermo kinetic state is restricted to a 
small neighborhood of low-dimensional attractors (intrinsic low-dimen
sional manifolds, ILDMs). 

These observations can be used to simplify mathematical modeling of reacting 
flows, as will be shown in the following. 

2 Dynamics of reacting flows 

The dynamics of reacting flows is governed by the system of conservation 
equations for mass, momentum, energy, and species masses, which reads in 
its general form [20] 

8p 
+div (p v) 

f]~v jriu +div (pv 0 v + p) 

j/ +div (puv + jq) + p: grad v = qr 

PWi d· ( d·· ) • ~ + IV PWiV + IV Ji = Wi 

=0 

=pg 
(1) 

i = 1,2, ... , ns , 

where t denotes the time, p the density, v the velocity, p the pressure 
tensor, 9 the gravitational acceleration, u the specific enthalpy, jq the heat 
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flux density, qr a source term for energy (e. g. due to radiation), Wi the mass 
fraction of species i, i .. the diffusion flux density of species i, Wi the mass 
rate of production of species i per volume, and ns the number of different 
chemical species. The chemical reaction rates Wi are complicated nonlinear 
functions of the thermokinetic state variables u, p, and Wi. The transport 
terms p, ii and i q , which are needed to close the system, are functions of 
the thermokinetic state variables and, in addition, of the gradients of the 
primitive variables v, T, x, and p [20,21] (x = vector of mole fractions, T= 
temperature, p = pressure) [20-22]. 

For the following analysis it is useful to separate the equations for the 
thermokinetic state variables from the equations for the flow field and to 
assume (for sake of simplicity) a low Mach number flow with constant ther
modynamic pressure (a generalization to general flows is straight forward 
and shall not be considered here). Using the expressions for the molecular 
transport terms as given in [20-22] and reformulating them in terms of the 
dependent variables, the evolution equation for the n = (ns + 1 )-dimensional 
vector of thermokinetic variables 1/J = (u, WI, ... , Wns)T can be expressed as: 

~~ = F (1/J) + E (1/J, '\j1/J, '\j21/J) 

E = vgrad1/J + ~diV ( D grad1/J) , 

(2) 

(3) 

where F (1/J) is the vector of source terms (e.g., chemical rates of produc
tion), E (1/J, '\j1/J, '\j21/J) is a vector denoting all other physical processes (e.g., 

heat conduction, diffusion, etc.), and D is the n by n matrix of transport 
coefficients (cf. [20,22]) 

Physical constraints like positiveness of temperature and mass fractions 
limit the allowed state space to a domain E, where 

E = {1/JIT(1/J) > 0, p(1/J) > 0, Wi(1/J) 2: 0, i = 1, ... , n s , f= Wj(1/J) = I} . 
)=1 

(4) 
Because (2) does not invoke any modeling procedure, it is valid for laminar as 
well as for turbulent flows. Furthermore it constitutes a reaction - convection 
- diffusion problem which has three important features: The eigenvalues of 
the Jacobian F.p, (F"')ij = 8Fi/8'l/Jj typically differ by several orders of 

magnitude, the molecular transport term div(D grad1/J) is characterized by 

the fact that the eigenvalues of the matrix D of transport coefficients have 
typically non-negative real parts [23] which causes the diffusion term to lead 
to a "contraction" of the accessed state with time, and the convective term 
can be eliminated by a transformation into Lagrangian coordinates [24]. 

The nature of the molecular transport operator causes the accessed space 
of a system to be only a small subset of the allowed domain E. This can be 
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Fig. 1. Plot of DNS results [25] in the state space 
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Fig. 2. Trajectories of the chemical reaction for a CO - H 2-air system, 0 denotes the 
equilibrium; projection into the CO2-H 20-plane. Left: complete reaction process, 
Right: trajectories after a relaxation time of 100 11,5. 

seen from scatter plots of DNS-results for a non-premixed hydrogen-oxygen
nitrogen flame in the state space (Fig. 1). Shown are projections into the N2 
- H2 and the H20 - OH plane, respectively. The points in state space are 
sample points from a DNS-calculation [25]. 

Furthermore, the strongly differing time scales of the chemical kinetics 
cause the existence of attractors (intrinsic low-dimensional manifolds, ILDM) 
in the state space with the property that the chemical kinetics relaxes very 
fast to these attractors and that after a short initialization phase the chemical 
kinetics is governed by a movement along these attractors [14]. This can 
be seen from Fig. 2, where sample trajectories of chemical reactions in a 
CO - H2-air combustion system [26] in the state space are shown. Plotted are 
projections into the CO2-H20-plane. Different initial conditions were chosen. 
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It can be seen from Fig. 2 (left) that the chemical kinetics leads to a quite 
complicated dynamics in the state space. The reason is that the dynamics 
considered includes all chemical processes, Le., also all the fast equilibration 
processes causing species to obtain quasi-steady states or reactions to be in 
partial equilibrium. On the other hand the dynamics after the first 100 J.LS 
shows a much simpler behavior. This is shown in the right part of Fig. 2, where 
the parts of the trajectories which correspond to the time interval [0,100J.Ls] 
have been omitted. Within 100 J.LS all the trajectories have almost merged to 
a single curve (one-dimensional manifold) in the state space, and the state of 
the whole system can be described by one variable only. The reason is that 
the fast relaxation processes lead to species being in quasi-steady state or 
reactions in partial equilibrium, and thus introduce correlations among the 
various species. 

3 Intrinsic low-dimensional manifolds of chemical 
reaction systems 

It is well known that the molecular transport term introduces an infinite 
number of time scales into the system of governing equations (see, e.g., [27]). 
On the other hand the chemical kinetics, represented by the chemical source 
term F( 't/J) is governed by n time scales. The chemical time scales correspond 
to the eigenvalues of the Jacobian F", and the characteristic directions of the 
reaction progress correspond to the eigenvectors of the Jacobian. It has been 
shown in [14] that a chemical system relaxes to low-dimensional manifolds 
in composition space such that after a short time the system can be ap
proximated by a movement along these low-dimensional manifolds. They are 
defined by the requirement that the reaction rates in direction of the sub
space corresponding to the fast relaxing processes vanish. This means that 
the low (ms)-dimensional manifolds are defined according to: 

(5) 

where 

(6) 

and Zs is the n by rns-dimensional matrix which forms an invariant subspace 
associated with the rns eigenvalues having the largest real parts, and Z f the n 
by mf-dimensional matrix which forms an invariant subspace associated with 
the rnf eigenvalues having the smallest real parts (degenerate eigenvalues 
are counted multiple) [14,25]. This equation system is an implicit definition 
of the correlations between the state variables of a reacting flow which are 
introduced by fast relaxing chemical processes (species in quasi-steady state, 
reactions in partial equilibrium). 
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Fig. 3. Intrinsic low-dimensional manifolds of a syngas - air system [28] 

An example for two-dimensional manifolds for a CO - H2 - O2 - N2 system 
is shown in Fig. 3. Plotted are the manifolds of OH and H versus CO2 and 
H2 0 (the axis denote the mass fractions of the species divided by their molar 
masses). Similar figures (not shown here) are obtained for all other chemical 
species in the system. This means that if all chemical time scales except for 
the largest two can be decoupled from the system, then it is sufficient to 
describe the dynamics of the system by two variables (e.g., CO 2 and H 2 0), 
and all other state variables are known from the correlations introduces by 
the fast relaxation processes. 

After a suitable parametrization of the manifolds [25,29J by a vector 0 of 
ms parameters ()i, the state of a chemical system is completely determined 
by the values of these parameters (1/J = 1/J(0)). Furthermore let us assume 
that a parametrization of the manifold is used such that 0"" = P, where P 
is an ms x n parametrization matrix. Then (2) can be simplified to yield the 
reduced equation system [6J 

ao A A ~ ( 2 ) (2 ) at = PZsZsF (1/J) + PZsZs': 1/J, \l1/J, \l1/J = S (0) + r 0, 'VO, 'V 0 , 
(7) 

where S = PZsZsF, and r = vgradO + (l!p)PZsZsdiv (D1/Jo gradO) [29J. 

This reduced equation system describes the dynamics of the scalar field of 
a reacting flow based on the assumption that for the whole physical domain 
n and for all times t > to the time scales introduced by the physical processes 
are longer than those chemical time scales which have been decoupled from 
the system. 

To summarize, the ILDM method, based on a local analysis of the chem
ical reaction system, consists of three steps [14,6,15,16J: 

• the identification of the intrinsic low-dimensional manifolds [14,16,25J . 
• the storage of the information for subsequent use in reacting flow codes 

[15,7,29]' 
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• and the solution of the projected equation system for the scalar field 
[14-16,29]. 

4 Coupling of the chemical kinetics with molecular 
transport 

In the previous section it has been shown that fast relaxing chemical processes 
introduce correlations between the state variables. The number of correla
tions depends on how the chemistry is perturbed by the physical processes 
(molecular transport, turbulent mixing) that means on the characteristics of 
the reacting flow. The question arises how much the chemical kinetics is per
turbed locally in a reacting flow, L e. what the local ILDMs are. If the physical 
processes are slow compared to the chemical kinetics, then the dimensions 
of the ILDMs are small, whereas if the physical processes are fast and per
turb the chemical kinetics considerably, then the dimensions of the ILDMs 
increase. Based on the results of reacting flow calculations, the local ILDMs 
of the system can be identified. Let us look at a given point r in physical 
space where we have the thermochemical state "p(r). The following question 
arises: What is the thermochemical state at point r if the n f fastest chemical 
time scales are assumed to be infinitely fast and have already relaxed onto a 
local ILDM? In order to answer this question, we start from the governing 
equations for the chemical kinetics only (eq. (2) with E = 0). Finding the 
point "pm on the local manifold to which the system relaxes corresponds to 
solving the equation 

(8) 

until the stationary solution is obtained [30]. 
The local dimension of the manifold can then be determined based on the 

local error as follows: Find the minimal ms for which l"pm -1/1°1 < E, where 
1 . 1 denotes a weighted norm of the difference between the values "po in the 
reacting flow and the corresponding values "pm on the manifold. In this way 
no physical time scale has to be identified, but the analysis is based on the 
local error. 

Using this method, it is possible to calculate the local dimensions of the 
ILDM. The results for a free flat premixed syngas-air-flame (using a detailed 
transport model) are shown in Fig. 4. Plotted are the mass fractions of H2 , 

H 20, H, and OH versus the mass fraction of CO2 , which characterizes the 
reaction progress, and is a more suitable coordinate than the spatial coordi
nate in this context. Furthermore, the number of relaxed modes is shown. The 
local dimension, Le. the remaining number of reaction progress variables re
sulting after elimination of the relaxed modes, is based on an error E = 10-2 • 

This small error has been chosen to show that an arbitrary accuracy can be 
obtained if the dimension is adapted to the local time scale of the physical 
processes (if the dimension of the manifold equals the dimension of the state 
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Fig. 4. Coupling of the chemical kinetics with the physical processes for a free flat 
premixed syngas-air-flame [30], plots versus WC02' which characterizes the reaction 
progress. Upper part: species profiles and number of relaxed modes based on a local 
error of 1 %. Lower part: Different terms in the species conservation equations for 
CO 2 (left) and H (right); lines denote the overall contributions, symbols denote the 
net contributions after eliminating the fast time scales. 

space, we obtain the detailed mechanism and the error is zero). The predic
tions of the detailed (curves) and the reduced scheme (symbols) show barely 
any difference, because the dimension of the manifold has been adapted lo
cally, taking into account the coupling with the physical processes. For large 
values of WC02 (near chemical equilibrium) the number of the relaxed modes 
is 8, corresponding to only one slow chemical process that has to be taken into 
account. The number of very fast, relaxed chemical processes decreases with 
increasing departure from the equilibrium. But even in the low temperature 
regime at least 4 chemical time scales can be decoupled while still guaran
teeing an error of the reduced scheme of less than 1 %. If the allowed error 
is larger, then the number of relaxed modes is larger, too, and practically all 
of the domain can be described by two reaction progress variables only (see 
[26,15]). Because the required minimal dimension of the manifold is very low 
in most parts of the state space, a local adaptation of the dimension of the 
manifolds can lead to a large reduction of the storage needed for the tabula
tion of the manifolds. As already mentioned, Fig. 4 shows that in some parts 
of the domain almost all fast chemical processes have relaxed, whereas in oth-
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ers (Le. for low amounts of CO2 in Fig. 4) a considerable number of chemical 
processes are slow. In these parts of the state space, however, the chemical 
kinetics in general is slow and the dynamics of the system is governed by 
the physical processes. If the chemistry is slow compared to the transport 
processes, then the transport itself causes the existence of attractors in the 
state space (cf. section 5). 

In section 3 it has been shown that the coupling of the chemical kinetics 
with the molecular transport is accounted for by projecting the governing 
equation system onto the ILDM. This is necessary, because a physical per
turbation can be decomposed into two parts: One part which is in direction 
of fast relaxing chemical processes and results in a zero net contribution, and 
another part which is tangential to the manifold and leads to a non-zero net 
contribution [6). 

The coupling of molecular transport with the chemical kinetics is illus
trated for the flat syngas - air flame in Fig. 4. The diffusion, reaction, and 
convection terms in the CO2 and H species conservation equations are plot
ted against WC02 • Curves denote the terms that are obtained if a detailed 
reaction mechanism is used, symbols denote the values of the terms after 
projection onto the manifold, Le. the net terms after relaxation of the fast 
modes. In the left part of the figure (C02 ) it can be seen that the terms are 
almost identical for both the detailed and the simplified kinetics. The reason 
is that CO2 is a slowly changing variable, whose rate of formation is directly 
associated with a slow time scale. On the other hand H is a species which 
attains a steady state in large parts of the flame. This means that a pertur
bation caused by diffusion is relaxed back to the manifold very fast. Because 
the fast relaxation processes had been decoupled during the simplification 
of the chemical kinetics, the effective diffusion term has to be changed, too. 
This means that within the concept of ILDM the coupling of chemical kinetics 
with molecular transport is treated correctly: The decoupling of the fast time 
scales is not only performed for the chemical kinetics, but the information 
about the dynamics of the chemical kinetics is stored and used subsequently 
for the evaluation of the molecular transport terms (via the projection matrix 
ZsZs). 

ilC 

"'1 
Fig. 5. Convex domains in the state space 
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One problem in the identification of the ILDMs based on an analysis of the 
chemical reaction system is that the ILDMs are identified within the whole 
state space. From typical combustion processes, however, we know that only 
a small subset of the state space is actually accessed, and it is desirable to 
restrict the computation of the ILDMs to this small subset [30]. This can be 
done if information about the transport processes is incorporated into the 
calculation of the manifolds. Let us assume for simplicity that the evolution 
of the scalar field is governed by the simplified equation 

~~ = F (1jJ) + vgrad1jJ + D~ixdiv (grad1jJ) . (9) 

Furthermore the initial- and boundary conditions shall be contained in a 
convex subdomain C of the state space bounded by ac. Then it can be 
shown that no transport processes (D~ixdiv (grad'¢)) can cause a state of 
the system to leave the domain C. Furthermore, if all chemical rates Fare 
directed into the domain C, it can be shown that all states accessed in the 
further evolution of the scalar field will remain within C. For the reduced 
system (7) a similar behavior results with the difference that "convexity" has 
to be defined locally in terms of the tangent space of the manifold. Using 
this observation, a simple method to generate bounded subsets of the ILDMs 
can be developed [31], which reduces the storage requirement for the ILDMs 
considerably. 

5 Correlation analysis of DNS data 

Direct numerical simulations (DNS), which are based on a direct solution of 
the conservation equations without applying any modeling assumption, allow 
detailed studies of turbulent combustion, even taking into account detailed 
chemical kinetics [3,32-34]. Nevertheless, the cost of such simulations is still 
extremely high, which limits the physical domain that can be simulated (typ
ical lengths of the computational domains are of the order of cm) and the 
number of computations that can be carried out. Nevertheless DNS provide 
a deep insight into the coupling of chemical kinetics with turbulence, and 
knowledge obtained through DNS can be used to improve statistical models 
for turbulent reacting flows. One major problem of DNS is the overwhelm
ing amount of data that is obtained from each calculation, and methods are 
needed which allow to extract the information which one is really interested 
in and answer questions such as 

• How does the turbulence perturb the chemical kinetics? Are some chem
ical processes so fast that they are not influenced by turbulent mixing? 

• Are there correlations between the species concentrations that allow to 
reduce the dimension of the system (cf. section 3)? 

• Are there correlations of the thermokinetic state variables with their gra
dients? 
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Fig. 6. Results of DNS of a hydrogen-oxygen-nitrogen non-premixed flame [25]. 
Upper figures: data plotted in the physical space (x-y-plots)j Lower Figures: scatter 
plots in the composition space. The left figures correspond to the initial conditions, 
the right figures to the results after t = 2.2Tt. 

In the previous sections it has been outlined that, indeed, the coupling of 
chemical kinetics with transport introduces correlations among the state vari
ables and their gradients, and in the following we shall outline briefly how 
these correlations can be extracted from DNS data (see [25] for details). 

DNS are typically initialized starting with laminar flame profiles and im
posing a random turbulent flow field. Then the interaction of the turbulent 
flow field with the flame is calculated and can be analyzed. This is shown in 
Fig. 6, where results of a DNS for a non-premixed hydrogen-air flame (fuel: 
25 Vol.% H2 , 75 Vol.% N2 ) are plotted for an initial turbulent Reynolds 
number of 210 and a turbulent characteristic time Tt of 0.536 ms [25]. In 
the upper left figure the initial temperature field is shown, whereas in the 
upper right figure the turbulent flame is shown after a a time t = 2.2Tt. It 
can be seen that the turbulent flow field perturbs the structure of the flame 
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considerably. Now it is interesting to look at the results in the state space. 
In the lower parts of Fig. 6 the results of the DNS (Le. the states at the 
different nodes of the computational grid (301 by 301) have been represented 
as scatter plots in the state space (only about 5% of the points are shown 
for sake of clarity of the representation). In our example which consists of 
9 species we have a 9-dimensional composition space, but in order to visu
alize the results we restrict to a 3-dimensional plot of the results with the 
mass fractions of N2 , H20, and H as coordinates. In the left figure it can be 
seen that there is a direct correlation between the different mass fractions. 
This is evident because the DNS has been initialized with the profiles of a 
one-dimensional flame, where all the mass fractions are unique functions of 
the mixture fraction which is represented by the mass fraction of N2 . After 
the turbulent flow field has had enough time to perturb the flame, some of 
the correlations cease to exist. But the figure shows that still not the whole 
composition space is accessed and that the accessed states seem to be in the 
neighborhood of intrinsic low-dimensional manifolds. In section 4 it has been 
shown that fast chemical processes lead to the relaxation to intrinsic low
dimensional manifolds and that the local dimensions of the ILDMs depend 
on the physical perturbation of the chemistry. The smaller the time scale of 
the physical perturbation the fewer chemical processes can be assumed to be 
in local equilibrium and be decoupled. 

Recently a method has been reported [25J which allows to determine 
whether the points obtained from the DNS lie on low-dimensional manifolds 
and, if yes, what the local dimension is. The method is based on an analy
sis of clusters of neighboring points in the state space. For these clusters a 
local analysis is performed. If we assume that the low-dimensional manifolds 
can be linearized locally, this corresponds to determining whether the cluster 
of points can be approximated locally by m-dimensional hyperplanes. The 
quality of the approximation is then given by the root mean square Ern of 
the distances of the points from the hyperplanes. It can be shown [25J that a 
simple analysis allows to specify the local error EO which is made by approx
imating the cluster of points by their mean value, and the errors Ern which 
are made by approximating the points by an m-dimensional hyperplane. A 
suitable measure for the quality of the m-dimensional approximation is given 
by calculating TJ = Ern/EO. The analysis can be performed for any point in the 
composition space. In this way it is possible either to specify the maximum 
error resulting from an m-dimensional approximation or to calculate locally 
the minimum dimension that is necessary to keep the error below a cer
tain threshold. Furthermore the analysis reveals the equation of the locally 
approximating hyperplanes and allows to characterize the low-dimensional 
manifold. For the example presented above it was shown that a maximum 
dimension of 4 is necessary to decrease the approximation error below 1.5% 
[25J. This means that the whole composition space is a function of 4 vari-
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abIes at most if the required accuracy is less than 1.5%. If a more accurate 
description is desired, then the dimension has to be increased. 

As a consequence it is possible to determine approximate low-dimensional 
manifolds by a correlation analysis of DNS data. A major advantage of this 
method (in contrast to the calculation of the ILDM as outlined in section 3) is 
that not only the attractors caused by the chemistry, but also those caused by 
the transport processes can be identified. Furthermore correlations between 
the state variables t/J and their gradients gradt/J can be identified, which yields 
important information for the improvement of mixing models for turbulent 
reacting flows. 

6 ILDM in the context of PDF models for turbulent 
reacting flows 

In PDF-models for reacting flows, a transport equation for the joint proba
bility density function f of velocity and scalars (PDF) is solved in order to 
model the coupling of chemical kinetics with the turbulent flow field. In this 
way the closure problem for the chemical kinetics is overcome, whereas the 
molecular transport still needs modeling. Typically the flow is represented 
by a large number of stochastic particles which mimic the PDF. A detailed 
description of the method can be found in [35]. 

The fast relaxing chemical processes cause the existence of ILDMs in the 
state space, and the question arises how this is reflected in the evolution of 
the joint PDF. First of all it is evident that the existence of correlations 
among the state variables causes the random variables of the reacting flow 
to be no longer independent. This has important consequences for the joint 
PDF. 

In order to simplify the analysis let us restrict to a pure chemical reaction 
system neglecting all transport processes. Then the transport equation for 
the PDF is given by 

8f(t/J;t) n 8 
at + L 81/Ja {Faf(t/J; t)} = 0 , 

a=l 

and the corresponding characteristic system is 

dt/J = F( t/J) 
ds 
df n 8Fa - = -fL - = -f trace(F.p) 
ds a=181/Ja 

(10) 

(11) 

(12) 

Analogous to the relaxation of a chemical system to the ILDM (8), the PDF 
relaxes according to 

(13) 
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df 
ds = - ftrace(Nf ) (14) 

Noting that the eigenvalues of N f are smaller than zero (cf. section 3), it 
can be seen that, according to fast chemical relaxation processes, the PDF 
evolves such that f (1/J) -t 0 for 'IjJ ~ Lm and f (1/J) -t 00 for 'IjJ E Lm. 

This observation has important consequences for the use of statistical 
models for turbulent reacting flows. First it shows that the concept of ILDM 
can be used to reduce the number of independent variables in the PDF trans
port equation considerably. Furthermore it shows that if assumed shape PDF 
methods (cf. [5]) are used in connection with reduced kinetic schemes, the 
shape of the PDFs have to be chosen carefully such that the correlations 
among the state variables, introduced by the chemical kinetics, are not vio
lated. 

One further aspect of ILDMs in the context of PDF methods is the fact 
that correlations do not only exist among the state variables 1/J, but also 
among 'P1/J (cf. section 5). Thus, an analysis of DNS-data can be used to 
extract information about correlations among the state variables and their 
gradients. This is an important issue in PDF-methods for turbulent flows 
[35], because it allows to gain information about the conditional expectations 
(div Dgrad¢l¢ = 1/J) of the molecular transport terms and to close, at least 
partially, the unclosed molecular transport terms. 

7 Conclusions 

In this paper we have outlined some aspects of modeling the coupling of 
chemical kinetics with flow and molecular transport. It has been shown that 
the chemical kinetics as well as molecular transport processes cause the ex
istence of intrinsic low-dimensional manifolds (ILDMs) in the state space 
which act as attractors for the dynamics of the reacting flow. These ILDMs 
can be identified either by a time scale analysis of the chemical reaction sys
tem or by a correlation analysis of DNS data. The information obtained on 
the ILDMs can then be used to simplify the chemical kinetics and its coupling 
with molecular transport processes. 
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Non-Adiabatic Effects in Quantum-Classical 
Molecular Dynamics 
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Abstract. In molecular dynamics applications there is a growing interest in mixed 
quantum-classical models. The article is concerned with the so-called QCMD model. 
This model describes most atoms of the molecular system by the means of clas
sical mechanics but an important, small portion of the system by the means of a 
wavefunction. We review the conditions under which the QCMD model is known 
to approximate the full quantum dynamical evolution of the system. 

In most quantum-classical simulations the Born-Oppenheimer model (BO) is 
used. In this model, the wavefunction is adiabatically coupled to the classical mo
tion which leads to serious approximation deficiencies with respect to non-adiabatic 
effects in the fully quantum dynamical description of the system. In contrast to the 
BO model, the QCMD model does include non-adiabatic processes, e.g., transitions 
between the energy levels of the quantum system. It is demonstrated that, in mildly 
non-adiabatic scenarios, so-called surface hopping extensions of QCMD simulations 
yield good approximations of the non-adiabatic effects in full quantum dynamics. 
The algorithmic strategy of such extensions of QCMD is explained and the cru
cial steps of its realization are discussed with special emphasis on the numerical 
problems caused by highly oscillatory phase effects. 

1 Introduction 

In molecular dynamics applications there is a growing interest in including 
specific quantum dynamical effects into the otherwise classical description of 
some large molecular system. Typical examples are proton transfer processes 
in the active site of an enzyme, electron diffusion in molten salts, or scatter
ing effects on the electronic structure of the target molecule. Unfortunately, 
full quantum dynamical calculations for the entire molecule are beyond the 
scope of simulations, today and in the next decades. In the mixed quantum
classical approach to this problem, most atoms of the molecular system are 
described by the means of classical mechanics but important (and mostly 
small) portions of the system by the means of a wavefunction. 

A typical example of these models, the so-called QCMD model, consists of 
a singularly perturbed Schrodinger equation nonlinearly coupled to classical 
Newtonian equations, see §2. We will carefully review the assumptions under 
which this model is known to approximate the full quantum dynamical (QD) 
evolution of the system. One important insight is that both, the QCMD model 
and the full QD evolution, in fact have the same adiabatic limit system, the 
well-known time-dependent Born-Oppenheimer (BO) model, see §2.1. 
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© Springer-Verlag Berlin Heidelberg 1999
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It is well-known that BO simulations are sufficient approximations of the 
full QD evolution in many important situations but lead to entirely wrong 
descriptions in as many other "non-adiabatic" cases. In contrast to the BO 
model, the QCMD model includes non-adiabatic processes, e.g., transitions 
between the energy levels of the quantum system or resonance effects near 
level crossings, §2.2. The literature on this topic contains a significant number 
of specific examples in which QCMD simulations yield better approximations 
of QD than the simple BO approximation. But the literature also contains 
important examples in which QCMD fails entirely because it is a single
trajectory model while the full QD solution develops multi-configuration 
character [11). In the present article, these observations will be illustrated 
by means of a certain simple example, see §2.3. 

Subsequently, a specific surface hopping extension of QCMD will be in
troduced and compared with similar approaches, §3. The insights gained in 
the example will then allow to understand the algorithmic strategy of such 
QCMD-based surface hopping algorithms: to exploit the advantages of the 
non-adiabatic effects in QCMD while preventing the algorithm from behaving 
like QCMD in situations where multiply-branched classical paths are required 
for an accurate description. 

For an efficient realization of QCMD simulations numerical integrators 
are required which allow to use time steps much larger than the fastest quan
tum time scales. Such long-step integrators have to reproduce correctly the 
highly oscillatory phase effects in the quantum part of the system. The ba
sic problems related to this requirement are discussed with special emphasis 
on the particular aspects in the context of QCMD-based surface hopping 
simulations, see §4. 

2 QCMD Model 

To keep the notation simple we restrict our study to the case of a system with 
just two degrees of freedom x E ]Rd 1 and q E ]Rd2 with significantly different 
associated masses, m and M. We suppose that the mass ratio E2 = mjM is 
a small parameter. After an appropriate rescaling [21), the time-dependent 
Schrodinger equation of this systems becomes 

(1) 

The corresponding solution IJF = lJF(x, q, t) describes what we call the full 
QD evolution of the system. Typically, a proper choice of the coordinate 
system allows the initial quantum state to be approximated by a product 
state (cf. [7), §IIb): 

(2) 

We will throughout assume this initial condition to be given. 
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The equations of motion of the QCMD model are given by 

ifOt1/;QC = H(q) 1/;QC and qQC = -gradq (1/;, V1/;) (qQc) , (3) 

where H = H(q) is the q-parametrized Hamiltonian 

H(q) = -~.1x + V(x, q). 

The QCMD solution can be understood as an approximation of the full QD 
evolution if the initial wavefunction ¢* is an approximate b"-function, e.g., 

(4) 

If this is the case and some other conditions are satisfied,l the QD solution 
lfJ = lfJ(x, q, t) is approximately given by lfJ(x, q, t) ~ ¢(q, t)1/;(x, t) with ¢ 
remaining an approximate b"-function moving along the classical part qQC = 
qQc(t) of the QCMD solution and 1/; ~ 1/;Qc (for details compare [3]). 

This approach, however, does not reveal the close connection between 
the QCMD and BO models. For establishing this connection, we will now 
summarize the approach of [4J showing that -under some non-resonance 
conditions- the BO model is the adiabatic limit of both, QD and QCMD. 

2.1 Adiabatic Theory and BO Model 

Subsequently, we will study the limit equations governing the QCMD solu
tions for the adiabatic limit f ---+ 0, in which the motions in the degree of 
freedom x are infinitely faster than the slow processes in the classical coor
dinate q. Therefore, we rewrite the QCMD system, Eqs. (3), by explicitly 
denoting the dependence of its solution (q£, q£, 1/;£) on the parameter f: 

q,(O) = q*, q,(O) = q*. 
(5) 

We restrict ourselves to finite-dimensional Hilbert spaces,2 making H a Her
mitian matrix. We denote the eigenvalues of H(q) by Ek(q) and consider the 
spectral decomposition 

(6) 

where Pk is the orthogonal projection onto the eigenspace associated with 
Ek. With respect to a quantum state 1/;, the number (h = (1/;, Pk1/;) is the 
population of the energy level Ek. 

1 The main condition is the absence of caustics along the QCMD-solution, cf. [3J. 
2 The reader may think of a finite dimensional subspace of the original state space. 

This subspace may, e.g., be associated with a suitable discretization in space. 
For a generalization of the results presented in this subsection to the infinitely 
dimensional case, see [2J. 
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Adiabatic Limit of QCMD The limit equation governing lim€--+o q€ can 
be motivated by referring to the quantum adiabatic theorem which originates 
from work of BORN and FOCK [1,14]: The classical position q influences the 
Hamiltonian very slowly compared to the time scale of oscillations of 'l/J€, in 
fact, "infinitely slowly" in the limit E ---> 0. Thus, in analogy to the quantum 
adiabatic theorem, one would expect that the populations of the energy levels 
remain invariant during the evolution: 

The constant Oz is the initial population of level Ek and thus computable 
from the initial data, Eq. (5). All this turns out to be true: According to [4], 
the limit solution qBO = lim€ ...... o q€ is given by: 

(7) 

whenever the following assumption on the eigenspaces and eigenenergies of 
H (q) is satisfied: 

(A) The spectral decomposition Eq. (6) of H depends smoothly on q and the 
transversality condition -1t (Ek (qBO) - Ez (qBO») #- ° holds. 

We refer to equation (7) as to the time-dependent Born-Oppenheimer (BO) 
model of adiabatic motion. Notice that Assumption (A) does not exclude 
energy level crossings (Le., positions qc at which Ek(qc) = Ez(qc) for some 
k #- 1). 

For simplicity we will assume in the following that, for every position q, 
all the eigenspaces of H(q) are one-dimensional, i.e., for every energy level 
E k (q) there exists a normalized eigenvector qJ k (q) such that 

Then, the population of the energy level Ek(q) with respect to the quantum 
state 1jJ is given by Ok( q) = 1 (qJk (q), 1jJ) 12. 

Adiabatic Limit of QD The time-dependent BO model describes the adi
abatic limit of QCMD. If QCMD is a valid approximation of full QD for 
sufficiently small E, the BO model has to be the adiabatic limit of QD it
self. Exactly this question has been addressed in different mathematical ap
proaches, [5], [8]' and [13]. We will follow HAGEDORN [8] whose results are 
based on the product state assumption Eq. (2) for the initial state with 1;* 
assumed to be given by (4) and on the "no-crossings" assumption 

(B) Along the BO solution qBO, crossings between initially occupied energy 
levels are excluded, Le., for all pairs (Ek' Ez) of energy levels with k #- 1 
and OZ + Of > 0, we have Ek(qBO(t)) #- EZ(qBO(t)) for all t E [0, T]. 
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Using these conditions and the BO solution qBO, a wave function .pBO is con
structed which comes out to be the limit of the sequence of QD solution .p, 
for E ---+ 0, [8]. In particular, for the position expectation 

(q)~D = (.p" qlff,)(t), 

the statement of HAGEDORN is: 

THEOREM 1 (THM. 2.1 IN [8]) Assume qBO = qBO(t) to be the solution of 
the BO equation, Eq. (7), in a finite time interval [0, T] and let assumption 
(B) be satisfied. Then, we have 

lim(q)~D = qBO in [0, T]. 
,-+0 

That is, in the limit, the center of the QD wavepacket Iff, moves along the 
BO-solution. Summarizing, QD and QCMD have the same adiabatic limit so
lution which is given by the BO model if the initial conditions are appropriate 
and if we exclude energy level crossings and discontinuities of the spectral 
decomposition. Consequently, QCMD is justified as an approximation of QD 
if only E is small enough and these conditions are satisfied. 

These are important results. However, the following question remains: 
Can QCMD describe anything beyond the correct adiabatic limit of QD? 
Can it describe non-adiabatic effects, i.e., deviations of the QD solution from 
its adiabatic limit for realistically small E > O? 

2.2 Non-Adiabaticity in QCMD 

One can easily inspect the deviation of QCMD from its adiabatic limit if 
we reformulate its equation of motion in the coordinate system given by 
the eigenstate of the one-particle Hamiltonian H. In terms of the notation 
introduced above, we therefore make the following ansatz for the QCMD
wavepacket 1/J,: 

1/J,(t) = L c'J.,(t) <Pk(q,(t». 
k 

Inserting this into the QCMD equations we find 

idJtc'k = Ek(q,)C'k - iEq, L:dkl(q,)cl, 
l 

ij, = -\1q L: Ic'k1 2 Ek(q,) - L:(c'J.,)*cl L1Ekl(q,) dkl(q,), 
k kl 

(8) 

where the coupling matrix elements dkl and energy gaps L1Ekl are given by 

dkl(q) = (d{l)' dtl = (<Pk(q), Oqj<PI (q») and L1Ekl(q) = Ek(q) - El(q). 

Thus, the non-adiabatic coupling between the energy levels in QCMD is gov
erned by the coupling matrix (dkl). Whenever assumption (B) from above is 
valid one can show [21 that the deviation from the adiabatic solution induced 
by this non-adiabatic coupling is of order O(E)! 
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First Order Corrections Additionally, we are able to construct explicit 
expressions for the first order deviation terms: To this end, the coefficients 
ck must be represented in polar coordinates, i.e., 

ck(t) = V0k(t) exp ( -~CPk(t») , 

and one introduces the BO angle cP~o as the solution of ~~o = Ek(qBO) along 
the BO solution qBO with cp~O(O) = cpk(O). In addition, we have to exclude all 
symmetric resonances of order four, Le., to assume that in some neighborhood 
of qBO = qBO(t): 

Ek(q) + El(q) -=I- Ej(q) + Ern(q) for k -=I- j, k -=I- m, l -=I- j, l -=I- m. (9) 

This condition allows to compute the non-adiabatic corrections to the adia
batic limit up to the leading orders in E [2,18]: 

q. = qBO + E25q2,. + 0(E3), q. = qBo + E 5q1,. + 0(E2), 

Ok = oz + E50!" + E250Z" + 0(E3), CPk = cP~o + 0(E2). 

Under the assumption of (9), we have the following two theorems: 

This result implies ck(t) = v'erz exp(-~cp~O(t» + O(E). Moreover, in the 
particular case, that initially the wave packet occupies only one of the eigen
states, say cP Jl' this theorem states that the first order corrections vanish 
identically. Then, the following is valid for the second order corrections: 

THEOREM 3 ([18]) Whenever O? = 5Jl ,I, the second order corrections for the 
populations in state l, l -=I- I-L, are given by 

(10) 
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2.3 An A voided Crossing Example 

In the subsequent, let us consider the particularly simple test case where the 
quantum subsystem can be described as a two state system and the classical 
subsystem is one-dimensional. Thus, q E JR1 and the full Sch6dinger equation 
has the form: 

(11) 

with H = H(q) and Tq denoting 2 x 2 hermitian matrices: 

_ (..1q 0 ) Tq- o ..1q and H(q) = (V1(q) C ). 
c V2(q) 

The wavefunction 1/1 E L2(JR) x L2(JR) consists of two components 1/1 = 
(1/I1 ,1/I2 )T, each of which a function in q and t. 

Herein, we choose the potentials to be Vi (q) = q2 and V2 (q) = 1/ q. The 
interpretation is the following: VI describes a harmonic bond, V2 a repulsive 
potential, and c a weak coupling between these two (electronic) configura
tions. We choose E = 0.01 which is a suitable scaling for electrons. In the 
following we set c = 0.1. For the choices made, Fig. 1 shows the energy eigen
values E1 = E1(q) and E2 = E2(q) < E1(q) of H(q) and the corresponding 
off-diagonal entry of the non-adiabatic coupling matrix d 12 . Notice that there 
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Fig. 1. (a) Potentials VI and V2 (solid lines) and energy levels El and E2 (dashed 
lines) versus q. (b) Non-Adiabatic coupling matrix element d12 versus q 

is some "transition zone" around q = 1 where the gap between the two energy 
levels is minimal and the coupling matrix entry significantly large. 

We are interested in the following initial condition: Let PI = PI (q) be 
the eigenvector to El, qo = 0.4 and Po = 1. Then the initial wavefunction 
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is centered at qo with momentum expectation Po and the energy level El is 
occupied only, i.e., 

1 (1 2') .p(q, t = 0) = A exp -4€'(q - qo) - ~POq . c[>l(qO). 

Figure 2 illustrates the true quantum dynamical solution of (11) for the initial 
condition given. We observe that the centers of the two components .pi and .p2 
of the wavefunction diverge when crossing the transition zone. The motion of 
each of these two centers is governed by the Born-Oppenheimer solutions on 
the corresponding3 energy levels El and E2 (cf. Fig. 3 (b)). We can conclude 
that the non-adiabatic effect of the transition zone induces some significant 
population of the initially unoccupied energy level whereas the motion outside 
of the transition zone is governed by classical dynamics on the energy levels 
and induces the observed divergence. Obviously, a single QCMD trajectory
even when representing the correct population dynamics - cannot reproduce 
this divergence. Thus, we follow the idea of splitting QCMD trajectories 
leading to a specific variant of so-called surface hopping. 

,~ 
o 

05 

Fig. 2. A voided Crossing Example: Evolution of the full QD wavepacket in q and 
t for parameter E = 0.01. Absolute value of (a) Wl and (b) W2 

3 QCMD-based Surface Hopping 

Due to the previous section, a single QCMD trajectory may reproduce the QD 
evolution if E is small enough, resonances (level crossings) are avoided, and 
the initial QD wave packet .p(.,., t = 0) is an approximate a-function in the 
q-direction (cf. eqs. (2) and (4)). Since the full Schrodinger equation is linear, 
we may drop this last condition by decomposing the actual .p(., " t = 0) into 

3 A way from the transition zone, the eigenvectors of H are approximately given 
by the two unit vectors. 
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%~------nO~.5--------~--~ 

Fig. 3. Full QD for € = 0.01: (a) Statistical weights nl = 1IlP"11l~ and n2 = 1IlP"211~ of 
the two components versus t. (b) Position expectation values (q}k = (lP"k,qlP"k}/nk 
of the components 

finitely many approximate 8-functions at appropriately distributed locations 
qg and momenta rd. Thus, we have to simulate the QCMD trajectory bundle 
starting at all the different (qg,4g) each with an initial x-wavefunction 'ljJg = 
tP(qg,., t = 0). In a simulation of this kind, every QCMD-trajectory exhibits 
its own non-adiabaticity as discussed in §2.2, but any non-adiabatic effect 
mediated by coupling between different trajectories is excluded. 

In [24], the "father" of the so-called surface hopping techniques [25,22]' 
C.J. TULLY, shows that we can understand the non-adiabatic effects in full 
QD as a composition of two different contributions: the non-adiabatic effects 
along each QCMD trajectory given by the solution of (8) and the contribu
tion of the coupling between the trajectories in the QCMD particle bundle 
constructed to represent the QD wavefunction. 

In this section, a surface hopping algorithm is introduced which makes 
use of the QCMD solution in order to include non-adiabatic effects. 

3.1 Surface Hopping Algorithm 

Suppose that we start a trajectory at position qo with initial momentum 40 on 
the kth energy surface Ek, i.e., with initial QCMD-wavefunction 'ljJo = tPk(qO). 
In the following we denote the QCMD trajectory, i.e., the solution of (5), 
by (q(t), 4(t), 'ljJ(t)) = QCMD(tl q(O), 4(0), 'ljJ(0)) , omitting the E-dependence 
since E now is assumed to have a fixed value. The key assumption of surface 
hopping techniques is as follows: We can use the non-adiabatic effects along 
the QCMD trajectory as an indicator for the deviation of the full QD evo
lution from its adiabatic limit. In other words: Whenever the non-adiabatic 
effects along the QCMD trajectory induce populations on some level l '" k 
which are significantly larger than zero, i.e., whenever (Jz 2: tol > 0, one 
should additionally follow the path which corresponds to the dynamics on 
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level E1• But instead of starting a new trajectory on this level in every such 
case which would finally yield a combinatorial explosion, one stochastically 
decides whether or not to switch the energy level ("make a hop or not"). 
This algorithm should be constructed so that, at any instance in time for a 
large ensemble of particles, the fraction of trajectories assigned to any energy 
surface is approximately equal to the relative population of this energy level. 

This idea leads to the following QCMD-based surface hopping variant of 
TULLY's surface hopping algorithm: 

1. Start with a large ensemble of N independent QCMD-trajectories with 
states (cd, %, 'ljJ6), j = 1, ... , N, where every 'ljJ~ belongs to a certain 
energy level kj , that is, satisfies 'ljJ~ = <-hj (cd). This trajectory bundle 
has to represent the initial QD wavepacket W(·,·, t = 0) in the ensemble 
sense. 

2. For every single trajectory j = 1, ... , N repeat the following propagation: 
(a) Propagate the trajectory along the QCMD solution 

(q;"+l,q;"+l,'ljJ;"+l) = QCMD(L1t lq!n,q!n,'ljJ!n) 

for some large time span L1t. 
(b) Compute the transition zone indicator 5 for the trajectory on level 

k j : 

(c) If the indicator 5 exceeds a preset threshold value 50, decide whether 
to make a hop or not (Step 2d). Otherwise continue with the propa
gation (Step 2a). 

(d) Compute the level populations Bl = Icfl2 with cf = (PI (q;"+l)' 'ljJ;"+1)' 
In the last step the trajectory j started on the energy level Ekj ; the 
energy level for the next step is selected via the hopping probabilities 
P(kj ---> l) = Icf 12, k = 1, ... , n. If due to this random decision a hop 
onto the lth level is carried out, then set the wavefunction on energy 
level El and accordingly modify the momentum: 

'ljJ;"+1 = <PI (q;"+l)' q;"+l = p,(kj ---> l,q;"+l,q;"+l)' and kj = l 

Otherwise - if the random decision is to stay on level k j - do nothing. 
(e) Continue the propagation with Step 2a. 

The reader might have noticed that the transition zone indicator 5 is de
duced from the second order correction (10) of the populations. In contrast 
to indicators used in other approaches, it is not highly oscillatory. 

The momentum adjustment is standardly realized in form of a correction 
in the direction of the non-adiabatic coupling vector [12J: 

Pnew = p,(kj ---> l, q'Pold) = Pold + IIdk~q)1I2 dkj1(q), 
J 
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where the scalar coefficient a is chosen such that energy conservation is 
achieved, i.e., such that 

The above version of the scheme can be improved by removing the popu
lations on the energy levels E/, l =f kj, of trajectories initially on the kjth 
level when leaving the transition zone, i.e., the region where the indicator 
:5 exceeds the threshold 5'0. This ensures a Born-Oppenheimer-like motion 
outside of the transition zone. 

Surface hopping algorithms vary mainly in the realization of the hopping 
procedure. In several aspects, the above proposed QCMD-based variant dif
fers from typical realizations; the interested reader may compare the above 
algorithmic scheme with the detailed description of typical algorithmic steps 
in [12) or with the derivation of the standard realization [23). 

3.2 Numerical Example 

In this section, the performance of the proposed surface hopping algorithm 
is presented in application to the avoided crossing example from §2.3. For 
comparison, we solved the full Schrodinger equation (1) of the problem. Using 
N = 2000 trajectories with randomly distributed initial values sampling the 
initial wavefunction, we found an astonishingly good agreement between the 
purely quantum solution and the result of our surface hopping algorithm. 
The populations of the wavefunction components seem to be in accordance 
to the "exact" solution (cf., Figs. 4 and 5). But notice, just the absolute value 
of the components can be obtained by the surface hopping algorithm. The 
corresponding phase of rJt1(q, t) and rJt2 (q, t) cannot be reconstructed. 

0.8 

12",\ 
o 0.5 

1.5 
o q 

Fig. 4. QCMD-based surface hopping algorithm: Reconstructed wavepacket evolu
tion in q and t . Absolute value of (a) W1 and (b) W2 for € = 0.01 
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q q 

Fig. 5. Comparison of quantum dynamically calculated solution (lines) and solution 
of QCMD-based surface hopping algorithm (bars) at time t = 1.3. Absolute value 
of (a) tJF1 (q,t = 1.3) and (b) tJF2 (q,t = 1.3) vs. q for E = 0.01 

Unfortunately, the results of our algorithm strongly depend On the param
eters. Obviously, the number of sampling trajectories has a major influence 
on the accuracy of the computation. The algorithm reacts comparably sen
sitively On modifications of the transition ZOne threshold So and the size of 
the time interval L1t. The present authors think that only some careful math
ematical analysis of the approximation properties may be able to cope with 
these difficulties - which are a commOn problem of surface hopping methods. 
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Fig. 6. QCMD-based surface hopping algorithm for E = 0.01: Statistical weights 
IltJF111~ (solid line) and IltJF211~ (dashed dotted) of the two components of the recon
structed wave function versus t 

4 Numerical Integrators for QCMD 

The numerical integration of the QCMD equations of motion includes the 
following crucial problem: the time scales of the quantum phase oscillations 
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are of order O(E) and are nonlinearly coupled to the slow classical motion. 
Thus, any numerical reproduction of these highly oscillatory behavior is a 
challenging problem whenever E is smalL In fact, most of the presently used 
QCMD integrators require discretization steps of order O(E) in time. Several 
quite different types of such integrators have been developed (cf. [20,16]); the 
results presented in Sec. 3 have been produced by means of the symplectic 
PICKABACK scheme [15]. 

However, for every QCMD simulation over an 0(1) time span, such in
tegrators require O(l/E) many time steps, which adds up to an undesirable 
numerical effort whenever light quantum particles as, e.g., electrons are con
cerned. Consequently, it is of outstanding interest to construct QCMD in
tegrators that circumvent the pointwise resolution of the highly oscillatory 
quantum phases, but allow for 0(1) time steps (adapted to the classical 
motion) while still propagating the quantum motion correctly. In order to 
summarize the present state of the discussion concerning such long-stepsize 
integration schemes, we have to distinguish between two different cases: (a) 
essentially non-adiabatic quantum processes for which the value of E is signif
icantly different from 0, and (b) almost adiabatic quantum processes where 
E is close to 0 and the asymptotic scaling E -+ 0 is of real interest. For the 
essentially non-adiabatic case, it is in fact possible to construct long-stepsize 
integration schemes by means of applying appropriate exponential integra
tors to the almost harmonic quantum phase oscillation, compare [17,9,10]. 
For almost adiabatic situations, however, it seems to be impossible to realize 
any exact reproduction of the quantal phases (in any pointwise sense). Thus, 
we have to ask whether it might at least be possible to reproduce correctly 
the "essential" dynamics of the QCMD system, i.e., the classical location and 
momentum as well as the quantum state population dynamics, while taking 
(arbitrary) errors in the quantal phases into account. For surface-hopping-like 
algorithmic schemes such "essential" QCMD simulations would be sufficient. 
But notice that any error in the phase might have a devastating effect on the 
other degrees of freedom because of the nonlinear coupling. However, a pre
cise asymptotic analysis [19] reveals that under certain conditions so-called 
averaging integration schemes allow to correctly approximate the dynamics 
up to a given order in E thus preventing an E- I error growth. Due to the 
highly oscillatory character of the analytic solution "correct" is now meant 
with respect to an averaging norm but not to a "pointwise" evaluation in 
time. Consequently, a mathematical justification of the QCMD-based surface 
hopping as an approximation of the full quantum evolution should reveal 
whether some pointwise reproduction of the quantal phase is necessary or 
not. 
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Abstract. Detailed atomistic Molecular Dynamics (MD) simulations are used 
to investigate the transport behaviour of small penetrant molecules in compos
ites consisting of polymer and microporous inorganic materials. The two model 
components, an amorphously packed rubbery polymer (PDMS) with included gas 
molecules (N2/02 and CH4 /C02 mixtures, respectively) and a surface modified 
fully siliceous type-A zeolite (ZK4) were constructed separately and then combined 
within a single simulation box with applied periodic boundary conditions. After 
interface formation between these components and thorough equilibration subse
quent MD-simulation runs are analysed considering the trajectories of individual 
gas molecules as well as the polymer and zeolite phase. 

1 Introduction 

Membrane processes provide a cost effective and flexible way for separating a 
wide range of mixtures of gases, vapours and liquids in the chemical industry 
as well as in the environmental and the energy supply sector. In most cases 
amorphous polymers are used to form a dense separating membrane layer 
in which the transport of small penetrant molecules is described in terms of 
a solution diffusion mechanism [1,2]. Although a huge amount of new poly
mers was synthesised and characterised with respect to their gas transport 
properties within the last two decades, it was not possible to significantly 
overcome a limitation known as 'Robeson Upper Bound' [3,4] concerning the 
relation between selectivity and permeability of polymeric membrane materi
als. One promising way to distinctively improve the separation performance is 
the incorporation of micro porous structures in a polymeric matrix [5] provid
ing additional molecular sieving as well as adsorption effects influencing the 
transport processes in combination with the easy handling of polymer based 
membrane materials. Our molecular dynamics (MD) simulation study is in
tende to investigate the combination of a rigid microporous lattice structure 
with a flexible rubbery polymer especially in the interfacial region between 
these two phases on an atomistic level. 
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1.1 Gas transport in dense polymeric membranes 

According to the solution-diffusion model the overall transport of small molecules 
through a dense polymer membrane, denoted as permeation, involves the 
sorption of the penetrant particles at the upstream surface (feed), the dif
fusion along the membrane cross section and the desorption at the down
stream side (permeate). The concentration gradient as the driving force of 
the diffusive transport is determined by the sorption equilibria at the opposite 
boundaries of the dense membrane layer (Fig. 1: G1 , G2 ). 

Plef Membrane 

Penneate 

x~ 

Fig. 1. Concentration profile along the membrane cross section 

Generally the permeability (P) of a membrane is given by the product 
of diffusivity (D) and solubility (S) (equation 1) while the ideal selectivity 
(aid) can be calculated from the permeability ratio according to equation 2. 

(1) 

atB = PA = (DA) . (SA) 
PB DB SB 

(2) 

The ideal selectivity can be further splitted into a diffusivity term (D A/ DB) 
depending mainly on chain mobility, free volume fraction and penetrant size, 
and a solubility term (SA/SB) determined primarily by the chemical compo
sition of penetrant molecule and polymer. With respect to MD simulations 
it has to be pointed out that a sufficient size of the model is necessary in 
order to represent the dynamic behaviour as well as the free volume distribu
tion of an amorphously packed polymer determining its transport properties 
towards small molecules. 

1.2 Gas transport in the interfacial region between polymer and 
zeolite 

MD simulations of various amorphous polymers performed in our group [6] as 
well as reported in literature [7,8] have shown that the macroscopic diffusive 
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transport of gases is a result of certain molecular jump events which allow 
the penetrant molecule to move between two adjacent free volume elements 
within the polymer matrix. The occurrence and lifetime of temporary 'chan
nels' between these holes depends strongly on the chain mobility affected by 
the stiffness of the polymer backbone as well as the local morphology which 
both are expected to be different in the vicinity of the very rigid inorganic lat
tice. Therefore, the gas transport in the interfacial regions is of considerable 
importance for the transition of gas molecules between the two phases of the 
composite and the overall performance of the membrane material. It has to 
be noted that our primary focus is on the polymer and penetrant behaviour 
near the interface. 

2 Model and simulation details 

The model used in our study is composed of an amorphous polymer pack
ing and a surface modified zeolite lattice as described below. Our calcula
tions were performed using the 1nsightI1 / Discover package of Molecular 
Simulations Inc. (MSI, San Diego) on a Silicon Graphics (SGI) Octane S1 
workstation with a MIPS RlOOOO CPU at 175MHz and 640MB RAM. For 
the construction of the zeolite the Solids_ Builder module was utilised while 
the polymer chain was created using the Polymerizer module. Amorphous 
packing of the polymer chain together with the appropriate amount of gas 
molecules was done with the Amorphous_ Cell module. All dynamics cal
culations and minimisations were performed with Discover3/CDiscover and 
the PCFF forcefield using the 1nsightI1 interface as well as the implemented 
BTCL scripting language [9]. 

2.1 Model components 

For the zeolite phase a fully siliceous type-A (LTA) structure (ZK4) was 
chosen. The absence of AI-atoms in the framework implies that the structure 
contains no cations normally necessary for compensating the negative charge 
of AIOi - framework units. In order to get at least a somewhat more realistic 
surface structure the unit cell of the zeolite was shifted by 1/4 in z-direction 
and the resulting surface Si atoms were terminated with hydroxyl groups. a 
and b dimensions of the zeolite structure were kept as in the unit cell (a= 
b= 24.61A) whereas in c direction the size was doubled (c= 49.22A). As 
polymer component a poly(dimethyl siloxane) (PDMS, Fig.2) with a degree 
of polymerisation of P= 220 was chosen. 

PDMS is a well characterised rubbery membrane material showing a 
high chain mobility due to a very flexible backbone structure. Therefore it 
was possible to start the packing procedure using the experimental value of 
p = 0.95g/crn3 [10,11] as initial density. The subsequent equilibration pro
cedure consisted of several high temperature dynamic runs in combination 
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Fig. 2. Repeat unit of poly(dimethylsiloxane) (PDMS) 

with energy minimisation where the last equilibration/minimisation stage 
was performed at the intended simulation temperature of 303K. The a and 
b dimensions of the packing cell were predetermined by the zeolite size in 
order to allow the interface formation while the c dimension was adjusted 
during packing to meet the anticipated experimental density value. The 
high mobility of the chosen polymer should allow the mobility constraints 
which might be imposed by the rigid zeolite to be more easily observed. The 
gas mixtures under investigation so far (i.e. N2 /02 and CH4 /C0 2 , respec
tively) were inserted into the polymer phase prior to the amorphous packing 
procedure. The number of gas particles was chosen according to calculated 
concentration values using experimentally determined solubility parameters 
taken from literature [12], based on a modified dual-mode sorption relation 
of Suwandi and Stern (also shortly described in [12]). In the case of the 
methane / carbon dioxide mixture 10 and 33 molecules, respectively, were 
included in the polymer packing which corresponds to the gas concentra
tion of PDMS being in equilibrium with a gas phase pressure of about 15bar 
(GCH4 = 7.8cm3 (STP)/cm3 (polymer) , GC02 = 25.6cm3 (STP)/cm3 (poly
mer) 1). For nitrogen / oxygen 10 and 18 molecules, respectively, were in-

a 
A c B 

Fig. 3. A - Amorphously packed PDMS; B - Initial distribution of the gas molecules 
(CH4 /C02) within the packing (after equilibration; a = b = 24.61A, c = 50.0A, r = 
0.95g/cm3 ) 

serted corresponding to a pressure of about 60bar in the gas phase (CN2 = 
7.8cm3 (STP)/cm3 (polymer) , CO2 = 13.7cm3 (STP)/cm3 (polymer». Fig. 3 

1 Concentration are given in cm3 of gas under STP conditions per cm3 of polymer. 
STP denotes standard temperature and pressure (po = 1.013bar, To = 273.15K) 
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shows the initial distribution of gas molecules (CH4 /C02 , B) within the 
packed polymer cell (A). 

2.2 Composite model 

The complete model was then created by placing the polymer/gas packing 
and the zeolite lattice with an additional empty volume into a single simu
lation cell as shown in Fig. 4. This resulted in a system size of about 3500 
atoms. 

Barrier 

! Vacuum 

Fig. 4. Simulation cell (after interface formation and equilibration) containing the 
PDMSjgas packing and the zeolite structure used for MD calculations under peri
odic boundary conditions 

The periodic boundary conditions (PBC) applied during the subsequent 
simulation runs were restricted to two dimensions by means of an energy bar
rier at the a-b cell surface in order to prevent the enclosed gas molecules from 
directly entering the empty volume within the simulation cell. The interface 
between the two components was formed by a cautious approach during an 
initial molecular dynamics run with extremely small simulation steps of 0.1 
fs. Unlike the polymer packing the zeolite structure needs a special treatment 
under the applied PBC. Two different attempts were made to consider effects 
of cross boundary bonds in the zeolite lattice. First this can be achieved by 
fixing the lateral edge atoms of the lattice. A more sophisticated approach 
is to ensure that bonding information is retained across the cell boundaries. 
The latter is complicated by the fact that the three dimensional lattice sym
metry of the zeolite is destroyed by the surface modification done before. The 
problem can, however, be solved by the introduction of translational symme
try for the zeolite in the lateral (x, y) directions only. Both approaches were 
tested in our study. 

2.3 Simulation details 

Molecular dynamics runs for data production were performed under NVT 
conditions, i.e. number of atoms and volume are held constant, at 303K with 
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a step-width of 1.0 fs. The temperature was controlled using the Berendsen 
heat-bath method. For our model special attention has to be paid to the 
treatment of nonbonding interactions. Coulombic interactions within infinite 
periodic lattice structures, such as the zeolite under PBC, cannot be calcu
lated with sufficient accuracy using the usual atom- or group-based cutoff 
methods [9J. The Ewald summation technique [9,13J is best suited in those 
cases but associated with a high consumption of CPU time. As for the tra
jectory analysis of single penetrant molecules with respect to their diffusive 
movement within the polymer matrix as well as the zeolite rather long sim
ulation times of several nanoseconds are necessary, we also performed calcu
lations using the periodic cell multipole method (CMM) [9J implemented in 
MSI's Discover package which provides a reasonable accuracy level at 5 to 
10 times higher computing speed. 

2.4 Temperature differences 

A general problem associated with interface MD-simulations is the occurrence 
of temperature differences between model components with very different 
atom mobilities. In the case of our model the arising temperature differences 
between the flexible polymer and the very rigid zeolite become as high as 
300K during MD simulation runs. An attempt to overcome this behaviour 
was made by scaling the atom velocities of polymer and zeolite separately 
to meet the target temperature. Using the BTCL scripting language of the 
Discover software an appropriate procedure was included in every calculation 
step of the dynamics run. 

2.5 Trajectory analysis 

Trajectory data of individual gas molecules may be analysed using the Ein
stein relation which allows the calculation of diffusion coefficients (D) from 
the mean squared displacement (MSD) averaged over all possible time origins 
(s(t), eq.4) according to equation 5. 

r(t) = IR(t) - R(O)I 

s(t) = (Ir(t) - r(0)12) 

D = s(t)j6t 

(3) 

(4) 

(5) 

The distance r(t) can be calculated from the position vectors R (eq. 3) which 
are extracted from the time dependent cartesian atom coordinates stored 
during the dynamics run. The MSD of selected atoms within the lattice can 
also be used to compare the vibrational motion of the zeolite framework for 
the different methods of calculation of nonbonding interactions mentioned 
above as well as for comparison between the bulk and interface regions of 
the amorphous polymer. The trajectory of a single N2 molecule within the 
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simulation box can be seen in Fig. 5. It has to be noted that the trajectory 
parts at the polymer/zeolite interface are connected by the outer surfaces of 
the box due to the applied periodic boundary conditions. The corresponding 

Fig. 5. Trajectory of a single N2 molecule within the simulation box 

plot of r(t) vs. simulated time t (Fig. 6A) together with the z-coordinate (Fig. 
6B) allows a more detailed analysis of the molecules trajectory. The interface 
between polymer and zeolite is situated around z = 50..4.. 
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Fig. 6. Radial distance r(t) (A) and z-coordinate (B) for the single molecule tra
jectory (shown in Fig.5) plotted vs. simulated time t 

3 Conclusions 

A detailed atomistic model combining an amorphously packed rubbery poly
mer and a rigid microporous lattice structure was constructed. Gas molecules 
were included within the polymer packing in order to investigate their trans
port behaviour within the two model phases as well as in the interface region 
using molecular dynamics calculations. 

The very complex structure of the model implicates an extensive consid
eration of the calculation of nonbonding interactions with respect to accuracy 
and computing speed. Besides the Ewald summation technique for coulom
bic nonbond interactions, also the cell multipole method can be used to treat 
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the composite model with reasonable accuracy providing distinctively higher 
performance. The latter is particularly necessary considering long dynam
ics simulation runs up to several nanoseconds needed for detailed trajectory 
studies. Furthermore, the problem of temperature differences across a mod
elled interface arising during MD-simulation runs, which appeared drastically 
between the very rigid zeolite and the flexible polymer used in our model, 
was addressed by a velocity scaling procedure treating the atoms of the two 
phases separately. 

The results obtained so far suggest further expansions of our study which 
may include sandwich models with two polymer/zeolite interfaces in the sim
ulation box as well as the employment of latest, more sophisticated forcefields 
such as the COMPASS forcefield of MSI. 
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Abstract. A density functional method for electronic structure calculations of 
atoms, molecules and clusters has been parallelized and newly implemented in the 
program Pam Gauss. Parallelization strategies and performance aspects are dis
cussed. The capabilities of this new quantum chemical code, which includes an 
option for scalar-relativistic calculations, are demonstrated by all-electron results 
for large transition metal clusters (Pd309 , AU3S(SH)24). 

1 Introduction 

The efficient development and optimization of many modern technological 
and scientific devices and processes hinges upon a detailed understanding of 
underlying structures and mechanisms at an atomic scale. Examples range 
from homogeneous and heterogeneous catalysis and drug design in pharma
ceutical research to the areas of material sciences and semiconductor devices. 
Not every information desirable for a thorough understanding is directly avail
able via experiment. Accurate theoretical calculations can provide comple
mentary insight. Moreover, the interpretation of experimental results often 
strongly relies on comparison with theoretical models. Thus, there is a grow
ing interest in an accurate theoretical description of systems on the molecular 
scale. Quantum chemistry, which is the appropriate approach for such a treat
ment, has become a powerful tool to deal with practical problems during the 
last two decades. On the one hand, this progress relies on the considerable in
crease in available computer power, on the other hand, also quantum chemical 
methodology has made noticeable progress. A wide spectrum of methods is 
available [1]. They range from empirical approaches, which can handle about 
several thousands of atoms up to highly sophisticated methods yielding very 
accurate results for small molecules. Parallel computers had a large impact 
on the capabilities of quantum chemistry. Quite a number of methods have 
been adapted to exploit parallel hardware architectures [2], relying mostly on 
the parallelization of existing serial codes. 

Here we present a new implementation of a first-principles density func
tional approach to the electronic structure of molecular systems. The new 
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program Para Gauss has been developed for efficient use of parallel and vector
parallel architectures [3]. Nonrelativistic as well as relativistic variants of the 
method allow application to molecules and clusters composed of elements of 
the entire periodic table. After a brief introduction to the concepts of the 
underlying density functional methodology the parallelization strategy is de
scribed. Scaling properties and capabilities of the new code are illustrated by 
sample applications. 

2 The LCGTO Approach and its Relativistic Extension 

Quantum theory provides the proper framework for determining the elec
tronic structure of molecules, clusters, and solids, which represents the basis 
for accessing further properties of these systems. Relativistic effects have to 
be accounted for when heavy elements are present. First the solution of a 
non-relativistic electronic many-body problem will be considered. 

Conventional wave function based methods of quantum chemistry which 
start with a solution of the Hartree-Fock problem aim at a direct determi
nation of the many-particle wave function as a solution of the Schrodinger 
equation. Density functional theory [4] pursues a different approach: The 
total energy is viewed as a functional of the electron density p, which is ex
pressed by the so-called Kohn-Sham orbitals 'lj;i. Variation of the total energy 
with respect to these orbitals leads to the Kohn-Sham equations 

(1) 

with the one-electron Kohn-Sham operator 

hKS = hkin + Vnuc + Vcoul + Vxc· (2) 

In analogy to the Schrodinger equation the first term represents the kinetic 
energy operator, the second term the nuclear potential and the last two 
terms account for the electron-electron interaction. Since the latter two po
tentials depend on the electron density via the one-particle orbitals, the above 
operator pseudo-eigenvalue equation has to be solved self-consistently (self
consistent field procedure, SCF). The exchange-correlation potential Vxc is de
fined as a functional derivative of the exchange-correlation energy Exc [p (r)] 
with respect to the density p, which is not known in general as a functional 
of the density. However, good approximations are available for Exc and thus 
for VXC. 

In order to transform the effective one-particle equation (1) into an alge
braic problem, the Kohn-Sham orbitals 'lj;i are expanded in a finite set of basis 
functions XI' with coefficients c~. The LCGTO approach (L.inear Combination 
of Gaussian-TYpe Orbitals) [5] applies Gaussian functions to model the radial 
dependence and harmonic polynomials rll/m ('19, cp) to describe the angular 
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part. Expressing the Kohn-Sham orbitals by means of basis functions leads 
to the following symmetric generalized matrix eigenvalue problem 

with hA-"s = (p, liiKSI v) and S/LV = (p, 111 v). (3) 

hKS is the Kohn-Sham matrix and S/LV is the so-called overlap matrix which 
contains the unity operator 1. For brevity we introduce a shorthand notation 
for integrals: 

(p, 101 v) = J X/L (r) 0 (r) Xv (r) dr, [p,lv] = J J X/L (r) Xv (r') dr dr' 
Ir - r'l 

(4) 
Apart from the overlap matrix S/LV the construction of the Hamilton matrix 
requires further integrals which can be classified according to the number of 
basis functions involved as "n-center" integrals. 

The classical electron-electron interaction yields four-center integrals, since 
the electron density is proportional to the (absolute) square of the orbitals, 

(5) 

Introduction of an approximate variational expansion of the electron density 
via an auxiliary set of Gaussian basis functions fk ("fitting" functions), 

p(r) ~ p(r) = ~akfdr), (6) 
k 

reduces the computational effort for the electron Coulomb interaction term 
to three-center integrals [5] 

h~:ul ~ ~ ak [p,vlfk]. 
k 

(7) 

Due to its complex form, the exchange-correlation term is integrated numer
ically while all other integrals are determined analytically. 

If an automatic optimization of the molecular geometry is desired, the 
forces acting on the nuclei have to be calculated. They are given as the 
negative gradients of the total energy expression with respect to the atomic 
positions [6]. 

In a relativistic density functional treatment one has to solve a four
component Kohn-Sham-Dirac equation [6]: 

hA (4) .1,(4) (f3 2 ) .1,(4) .1,(4) 
OKS'f'i = C + CCt7l"i + VeIl 'f'i = €i'f'i 

VeIl = Vnuc + Vcoul + Vxc · 

(8) 

(9) 

The four-component spinors 1/J;4) comprise two electronic and two positronic 
components which can be decoupled to second order in the effective potential 
veIl by means of a unitary Douglas-Kroll (DK) transformation U: 

ii(2) - U t ii(4) U 
OKS - OKS (10) 
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The electronic operator hgks still includes all relativistic effects of chem
ical relevance. It can be further simplified to a single-component, scalar
relativistic form by neglecting spin-orbit interaction. Since the Douglas-Kroll 
transformation depends on the effective potential vef f' it has to be carried 
out in every cycle of the SCF procedure when the relativistic Hamilton ma
trix is constructed. The repeated transformation can be avoided when only 
the nuclear potential is taken into account for the DK transformation and 
relativistic effects are restricted to the kinetic and nuclear potential terms 
of the Hamilton operator. Then the latter terms can be transformed before 
entering the SCF procedure while the electron-electron interaction is treated 
nonrelativistically. This efficient and accurate approximation of the relativis
tic Dirac-Kohn-Sham Hamilton operator is implemented in Para Gauss in 
the scalar-relativistic as well as in the two-component version that includes 
spin-orbit interaction. In Para Gauss forces are so far available for the scalar
relativistic variant of the method. For more details on the relativistic Kohn
Sham approach see Ref. [6]. 

With respect to its structure, Para Gauss is a typical density functional 
program. At the beginning of an electronic structure calculation the input is 
processed and information for symmetry adaption of orbitals and operators 
is provided. In the subsequent "integral" part the analytical integrals needed 
for the SCF procedure are precalculated and stored. The dominating amount 
of data are the three-center integrals, which may accumulate to several giga
bytes for larger applications. For relativistic calculations, two-center integrals 
only are needed in addition. Also the grid for numerical integration of the 
exchange-correlation potential is set up before the SCF procedure is started. 
The core of the algorithm is the SCF part, where the Kohn-Sham equations 
are solved iteratively. This part is repeated until the electron density and 
the total energy are converged to the desired accuracy. In case of a geome
try optimization, the density is used subsequently to calculate the forces on 
all nuclei. Together with the total energy these data are passed to an ex
ternal optimization package which searches a local mimimum of the energy 
hypersurface (ground state) or a saddle point ("transition state"). At the 
end, various modules for analysis of the results and for calculating properties 
can be invoked. The computational demand of the different parts depends 
crucially on the system under study, but in general the SCF part dominates. 

3 Parallelization and Performance 

Each of the various steps of a molecular density functional calculation with 
a Gaussian-type basis set features a different data structure; thus, no overall 
strategy for parallelization may be invoked. On the other hand, a fine grain 
parallelization at the level of the basic linear algebra operations would not 
be effective due to a low ratio of computation-to-communication effort [7]. 
For this reason a coarse grain parallelization was chosen, applying suitable 
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parallelization strategies for each specific task. The structure of the parallel 
implementation has been designed as a controlling master process which exe
cutes serial parts and distributes the parallelized tasks to slave processes [3]. 
To exemplify this approach, we discuss in the following the implementation 
for the dominating SCF part in more detail. 

Within each loop of the SCF part, several steps, each involving a different 
data structur, are performed as depicted in Fig. 1. The four dominanting steps 
which account for over 98% of computational cost have been parallelized. 

integrals 

t 
f-··-··;~;;~~-·-·--'-'+: +-pr~··-···-···! 

! hamilton matrix : : 
......... _ ••••• _______ ... .} ._ .. ___ ._._ • .1 

r··~i:~:~;~:::~~~···-. 1"·········1 
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irred. rep .• spin 
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([pVllkJ) 

grid pOints 

Fig. 1. Structure and parallelization of the SCF part. Parallelized tasks are indi
cated by dashed boxes. 

First, the Hamilton matrix is constructed using the three-center integrals 
which are distributed according to the index of the fitting basis. Each proces
sor calculates a certain contribution to the elements of the Hamilton matrix; 
these contributions are then summed up in a binary cascade and the final 
result is sent to the master. Next, the Hamilton matrix is diagonalized. In the 
present implementation, this step is parallelized exploiting the block-diagonal 
form of the Hamilton matrix according to the irreducible representations of 
the point group symmetry of the molecular structure. In a spin-polarized 
calculation, the duplication of blocks for spin-up and spin-down orbitals is 
also exploited. These independent eigenvalue problems are solved in par
allel in the order of decreasing matrix dimension; application of a parallel 
eigensolver may be more efficient for large problem sizes. The following step 
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where the occupation numbers of the calculated orbitals are determined re
quires negligible computational effort and thus is not parallelized. Setting 
up the charge density matrix and subsequently fitting the density involves 
three-center integrals. The construction of the corresponding system of linear 
equations is thus parallelized over the index of the fitting functions. The nu
merical integration of the contribution of the exchange-correlation potential 
to the Hamilton matrix is carried out over a grid which typically comprises 
about 3000 points per atom. This task is parallelized by partitioning the grid 
in sections of equal size. Accordingly, for the various grid partitions the elec
tron density and the exchange-correlation potential are evaluated in parallel. 
Finally, the contributions to the Hamilton matrix from the grid partition 
are summed in a cascade. The evaluation of the exchange-correlation related 
quantities is the computationally most demanding step of the SCF proce
dure. It is vectorized over the grid points in the innermost loops, which are 
partitioned further according to the optimal vector length of the hardware 
architecture used. At the end of the SCF procedure convergence checks and 
acceleration are performed; they involve negligible computational effort. 

28 
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Fig. 2. Parallel performance of single geometry runs on an IBM SP2 computer. 

In Fig. 2 the acceleration of electronic structure calculations including 
forces is shown, using up to 28 processors of an IBM SP2. Three test examples 
were selected which feature considerable variation with respect to the compu
tational parameters: the surface cluster model Ni25, the hydrocarbon C 1sH20 , 
and the molybdenum complex [(HOCHO) (SH) OMOS2C2 H2]-. Although 
the performance differs for the three examples, very good scaling is obtained 
for up to 16 processors. This demonstrates that most parts of the algorithm 
have been efficiently parallelized. For larger numbers of nodes the more de
manding test system Ni25 exhibits better efficiency than the smaller ones. 
The program Para Gauss was developed on a cluster of HP workstations 
and ported to the shared-memory parallel hardware SGI PowerChallenge, 
to the scalar distributed-memory architecture IBM SP2, and to the high
performance distributed-memory vector-parallel computer Fujitsu VPP700. 
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The relative performance of the different parts of the program on various 
platforms depends on the relative weight of integer and floating-point oper
ations as well as on the loop length available for vectorization. While the 
integral part features a higher fraction of integer operations and rather short 
loop lengths, the other parts are dominated by floating-point operations and, 
at least in the numerical parts, support very long loop lengths. This is cor
roborated by a comparison of computing times on an IBM SP2 computer and 
a Fujitsu VPP700 machine (vector length 2048). Efficient vectorization leads 
to an overall speed-up on a VPP700 by about a factor of ten relative to SP2. 

Finally, to illustrate the efficiency of the parallel code Para Gauss and the 
possibilities it offers, we discuss recent applications, focusing on the compu
tational aspects. Large transition metal clusters provide some of the most 
challenging computational problems in quantum chemistry. We studied gas
phase clusters in order to identify how various properties scale with cluster 
size. In this context, the average interatomic distance of the four-shell icosa
hedral cluster Pd309 has been optimized in an all-electron density functional 
calculation. The orbitals of the 14214 electrons of this clusters have been de
scribed by 13905 contracted (i.e. fixed linear combinations of) Gaussian basis 
functions leading to 2 GB background storage for the three-center integrals. 
The calculations were performed utilizing 20 thin nodes of an IBM SP2 in 
parallel; the wall clock time for the computation of one geometry was about 
58 hours. 

Fig. 3. Cluster AU38(SH)24: optimized ground state geometries of octahedral sym
metry for different ligand orientations. 

An even more demanding task is the determination of the equilibrium 
geometry of ligated clusters. As a model for the recently synthesized species 
AU38(SRh4 with R = C15H25 we studied the ligand orientation and the 
cluster deformation of AU38 (SHh4 (Fig. 3). All 4598 electrons of the cluster 
were described utilizing 3410 contracted basis functions. Although the geom
etry was restricted to octahedral symmetry, eight degrees of freedom had to 
be optimized. With 8 processors of a Fujitsu VPP700, a single geometry (in
cluding forces) required 3.2 hours computing time for the scalar-relativistic 
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variant of the method. About 30 single-geometry calculations were necessary 
to determine the ground state geometry of a specific ligand orientation. 

4 Summary and Outlook 

The code Para Gauss presents a new implementation of a density functional 
method for carrying out first-principles calculations ofthe electronic structure 
of molecules and clusters. Both standard nonrelativistic as well as relativis
tic variants of the method are available. In the code Para Gauss the method 
is fully parallelized as well as adapted to high-performance vector-parallel 
architectures. For applications of moderate size up to 16 processors can be 
efficiently used. The good overall scaling behavior of the implemented algo
rithms permits employment of more nodes for more demanding problems. 
Electronic structure calculations on systems with more than 10000 electrons 
are now feasible with high accuracy. The strongly enhanced computational 
capability of Para Gauss allows one to tackle problems of considerably en
hanced complexity, like complete geometry optimizations for a many degrees 
of freedom on systems that include heavy elements. Yet, there is consider
able demand for further methodological development. For example, increased 
computational power of programs and hardware opens the path to a new goal 
of computational molecular science: the treatment of dynamical processes on 
a "first principles" level. Such problems require electronic structure deter
minations for at least 104 geometries, a demand that is within reach with 
Para Gauss, at least for smaller systems. 
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Mathematics for Combinatorial Chemistry 
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Abstract. Some of the mathematical methods will be described which are imple
mented in the software package 

MOLCOMBl 

that allows to simulate combinatorial chemistry by generating combinatorial li
braries and to do screening according to geometric substructures. 

1 Combinatorial Chemistry 

To begin with, we consider the examples described in the prominent papers 
[1) and [2) on combinatorial chemistry. The authors introduce particular com
binatoriallibraries obtained by starting from the central molecules 

Cl~O :;;-' Cl 

I 
:,-.. 0 

Cl 
o 

Cl 

i.e. they start from cubane, xanthene, benzene triacid chlorine as central 
molecules to which they attach amino acids according to the reaction scheme 
that describes the reaction between the active sites 

of the central molecule and the active parts of the aminoacids in question: 

1 MOLCOMB is the outcome of a research project supported by the federal min
istery for technology, under contract 03 KE7BA 1-4 
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Here is the reaction scheme: 

P= (
00 1 00) 

-~-~-~-~-~ 
Atom i of the central molecule's active site will be connected to atom j of 
the amino acid by a bond of multiplicity Pi,j. 

It is a variation of the Ugi's be&r-matrices. The aim is to describe the combi
natoriallibraries that arise from the given central molecule by reaction with 
a prescribed set of amino acids. 

2 A mathematical model 

A mathematical model for that situation is well known since P6lya ([3]). It is 
in fact the very same model that applies to the description of permutational 
isomers corresponding to a given skeleton and a prescribed set of ligands. We 
introduce two sets: 

• S, the set of active sites of the central molecule, 
• A, the prescribed set of building blocks, which are in our example, a set 

of amino acids. 

A reaction of the central molecule with the amino acids is, in mathematical 
terms, a mapping from S into A, i.e. an element of the following set of all 
such mappings: 

AS := {f: S -> A}. 

For example, if we allow 20 amino acids to react, then there are 204 = 160000 
mappings in the case of the cubane as well as in the case of the xanthen or 
the benzene triacid chlorine. 

These 160000 molecules (better say: the corresponding molecular graphs) 
arc easily generated, but we definitely should not put them into a big data 
bank and do screening immediately, since they are in fact too many, as not 
all of them are essentially different and we should definitely try to save space, 
since combinatorial libraries can be very big. The reason why not all of them 
are different is the symmetry group of the central molecule. In case of the 
cubane it is the group Td, in case of the xanthen it is C2v while the symmetry 
group of the triacid is C3v . 

Hence what we are really after is the set of orbits of these groups on the 
set of mappings. We indicate these sets by 

P6lya's theory of enumeration under group action contains enough results 
to evaluate first of all the size of these sets, i.e. the size of the libraries of 
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molecules arising from the central molecules and the amino acids. We obtain 
the following formulae in terms of the order IAI of the set of amino acids 
which we would like to take: In the cubane case we get that 

IAI = 20 yields the number 8 855. For the xanthen we obtain 

WI = 20 gives 80 200, while for the triacid we find 

which gives 2680 in the case when IAI = 20. Here is a table for different sizes 
of A: 

IAI cubane xanthene triacid 
1 1 1 1 
2 5 10 4 
3 15 45 11 
4 35 136 24 
5 70 325 45 
6 126 666 76 
7 210 1225 119 
8 330 2080 176 
9 495 3321 249 

10 715 5050 340 
11 1001 7381 451 
12 1365 10440 584 
13 1820 14365 741 
14 2380 19306 924 
15 3060 25425 1135 
16 3876 32896 1376 
17 4845 41905 1649 
18 5985 52650 1956 
19 7315 65341 2299 
20 8855 80200 2680 

If you want to do further examples you may use the online calculations 
offered by the home page of MOLGEN 

http://wwv.mathe2.uni-bayreuth.de/molgen4/ 
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You simply enter a vector of permutations (in list notation) that generate 
the symmetry group together with the number of admissible different amino 
acids that you want to allow. For example, in case you want to allow proper 
rotations of the cubane only, then you enter the vector (after numbering the 
active sites from 1 to 4): 

[[2,3,1,4]' [1,3,4,2]] 

as a vector of generators and the number 19 of admissible amino acids. You 
will obtain the following result: 

The input was 

[[2,3,1,4], [1,3,4,2]] 

and 

19 

The result of the computation is 

11191 

the computation was finished after 0.01 seconds 
on a pentium 133 MHz 

Palya's theory allows a refinement, the enumeration of the libraries by weight. 
This means that we can derive a multivariate polynomial such that the co
efficient of a monomial summand is the number of orbits the weight of the 
elements of which is just the sequence of exponents of the monomial. For 
example, in the case of the cubane, the polynomial 

is the desired generating function. For xanthen it is 

while for the triacid we obtain 
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In order to get that in a more explicit form, we can use the online calculations 
offered by the home page of MOLGEN. It yields, for the xanthen case, say, 
and for 3 admissible amino acids the expression 

grf_arb 

The input was 

[ [2 , 1 ,4,3]] 

and 

3 

The result of the computation is 

1 [0,0,4] 2 [0,1,3] 4 [0,2,2] 2 [0,3,1] 

1 [0,4] 2 [1,0,3] 6 [1,1,2] 6 [1,2,1] 

2 [1,3] 4 [2,0,2] 6 [2,1,1] 4 [2,2] 

2 [3,0,1] 2 [3,1] 1 [4] 

the computation was finished after 0.01 seconds 

on a pentium 133 MHz 

It shows, for example, that there are exactly 6 elements of type [1,2,1] in the 
library, i.e. which contain exactly one amino acid of type 1, 2 of type 2 and 
1 of type 3. 

3 The library 

The most interesting problem is, of course, the generation of the elements in 
the library itself. In order to solve this we simply need to apply the connection 
between isomers and double cosets introduced by Ruch/Hasselbarth/Richter 
([4], see also [5]) for the construction of permutational isomers of a given 
ligand partition. It says, for example, that the elements in the library that 
contain al amino acids of type 1, a2 amino acids of type 2 and so on are in 
one-to-one correspondence to the elements of the set of couble cosets 

Ttl \S4/ Sal EB Sa2 EB •.• 

in the cubane case, while we have for the xanthen case the corresponding 
bijection to the set of double cosets 

C2v \S4/ Sal EB Sa2 EB ..•• 
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and for the triacid we get 

This fact is used in the software package 

MOL COMB 

which will be demonstrated. Here are 4 elements of the xanthen library for 
the case when 3 different amino acids are allowed (see the generating function 
given above): 

• 

OH 

OH 

The method used is to go along a so-called subgroup ladder. It is in fact 
the very same method that can be used for the construction of permutational 
isomers. Here is, for example, the subgroup ladder that is used for the eval
uation of the isomers of dioxin: 
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More detailed descriptions of the methods used can be found in [6]' [7],[8]. 

4 Conformations 

Having the library at hand we may want to do screening for a lead structure. 
Such a structure is mostly a geometric one, and so we need to evaluate con
formations for the elements in the library. This is, of course, the most time 
consuming part of the process. For this purpose we have developed an object 
oriented way of classifying energy minima ([9]) and a mixture of conjugate 
gradient method of optimization together with an evolutionary approach to 
the evaluation of energetic minima ([10]). This software package is called 
MOLCLASS. The picture on the next page illustrates an example of several 
classes of conformations of norbornan which we obtained this way (start
ing from a random distribution of the atoms in space, so that, at least in 
principle, we can reach all the minima, and also using atomic tables for the 
approximate lengths of bonds and sizes of angles). 
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Abstract. Diffusion within porous media modeled by three-dimensional networks 
containing pores with irregular walls is simulated by the Monte Carlo method. 
Lennard-Jones 12-6 potential is introduced to calculate the interaction between 
diffusing species and the pore walls. From the simulation, the diffusion within the 
irregular pores could be anomalous or normal depending on the molecular size and 
pore diameter. Moreover, the diffusivity in irregular pores is found to be more 
dependent on the porosity than in smooth pores. 

1 Introduction 

Porous media have been widely used in many industrial processes such as 
catalysis, adsorption, membrane separation etc. Most of these media are com
posed of small microporous particles which usually form into macroporous 
pellets [1]. Obviously, it is of great importance to fully characterize their struc
tures and describe the transport phenomena within the media. The classic 
theories dealing with the problem are often based on some assumptions, by 
which pore space is uniform and surrounded by smooth walls. The diffusion 
is modeled by Fick's law or Maxwell-Stefan approach. Now, it is well known 
that most of the micro porous particles can be regarded as fractal at molec
ular level [2-3]. Therefore, diffusion and reaction within the media formed 
by fractal particles have attracted much attention in recent years and a lot 
of theoretical work on diffusion and reaction over fractal substrates was ex
ecuted [4]. However, the diffusion of gaseous molecules within porous media 
takes place in a void space separated by walls, and it is usually a combined 
bulk and Knudsen diffusion. In some cases, the surface diffusion is also sig
nificant. Therefore, it would be a challenge to develop a model for describing 
the process in detail. Moreover, computer experiments based on molecular 
dynamics (MD) and Monte Carlo (MC) simulations have been successfully 
employed to the problem of diffusion and reaction within porous media, and 
one of the authors has reviewed the advances of computer simulations in this 
field [5]. 

The present work will focus on Monte Carlo simulation of diffusion within 
a three-dimensional network model containing irregular pores, which is ex
pected to resemble a realistic porous pellet. The aim of this work is to examine 
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the difference between the diffusion in irregular and smooth pores. Details of 
network models are given in [6]. 

2 Model and Algorithm 

Monte Carlo models for investigating diffusion within porous media usually 
include two different sections: generation of porous pellets and the simulation 
of diffusion within the pellets. The porous pellets employed in the present 
work are like aggregates formed by fractal clusters which are similar to DLA 
clusters [7]. The procedure used to generate the pellets follows our previous 
work [8] with some improvement, and is briefly described as follows. Initially, 
some seeds are randomly placed in a simple cubic lattice with 100 x 100 
x 100 sites, and fixed at lattice sites as growing centers of fractal clusters. 
The pellets are formed by aggregating particles on the seeds. A particle is 
deposited at a randomly chosen lattice site, and the particle then starts a 
random walk within the lattice until it visits one of the seeds where it adheres 
as a part of one growing cluster. A further particle is deposited after the 
previous one has been fixed in the lattice. The random walk is limited to the 
lattice, in other words, it is not permitted to move out of the lattice. The 
process continues until the particles fixed in the lattice reach a given total 
number. A two-dimensional pellet model is shown in Fig. 1. 

Fig. 1 Irregular pore-network (2-dim.) 

•••••••••• •••••••••• •••••••••• •••••••••• •••••••••• •••••••••• •••••••••• •••••••••• •••••••••• •••••••••• 
Fig. 2 Smooth pore-network (2-dim.) 

As can be seen, it is composed of many small clusters. Correspondingly, 
Fig. 2 is a two-dimensional model of a smooth pore structure which is uni
formly formed by regular bricks. 

The clusters forming the pellets are fractal when they contain a significant 
number of particles, and the fractal dimension calculated by the window box 
scaling method according to [9J 

(1) 
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gives values of 2 < df < 3 , where R is the window radius and M(R) is the 
number of particles in the window box. By making a log-log plot of M(R) 
vs R, the fractal dimension df is equal to the slope of the plot. For large 
three-dimensional clusters containing more than 5,000 particles, the fractal 
dimension is about 2.45 from the log-log plots shown in Fig. 3, and it is 
slightly dependent on the number of particles forming clusters. 
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However, the clusters cannot be regarded as real fractals when they con
tain several hundreds of particles, because the plot-slope always changes with 
the particle number although the log-log plot is linear. To construct irregular 
pores, we have to place many seeds (usually 103 ) on the lattice, and, as a 
result, the cluster.s cannot grow to large size. Such small clusters can form 
pores with irregular walls. The given porosity is obtained by changing the 
total number of particles forming the pellet. 

The diffusion of molecules is represented by a simple random walk, which 
makes one jump per unit time. In case of self-diffusion, the probability of 
jumping in one of the six axial directions is identical and equal to 1/6. In 
the simulation of transient experiments, the walk will be under the influence 
of a bias field, that is, the probability of moving along the field direction 
is increased by a pressure factor (a) and the probability of moving against 
the field direction is decreased correspondingly. A diffusing molecule is only 
permitted to adsorb at an empty lattice point. When a new direction is 
randomly chosen, the molecule can proceed along the chosen direction in one 
jump at most n lattice units, except it reaches at any of the clusters in the 
pellet. Whether a trial jump is accepted or not is determined by a random 
number (() distributed uniformly over the interval (0,1). The number ( is 
compared with a transition probability 

P = exp(-LlE/kT) (2) 
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where T is the temperature, k is Boltzmann's constant and dE is the energy 
difference between the two configurations. The jump is only successful when 
the random number ( is less than the probability P, otherwise, the walker 
has to stay at its present place. 

The interaction between a moving molecule and an atom in pore walls is 
calculated by the Lennard-Jones 12-6 potential. 

In the simulation, only the nearest atoms in walls are taken into account 
for calculating the interaction. A moving molecule can at a certain time step 
only stay at one lattice site, so one can calculate the interaction energy (E) 
by taking into account the number of the wall atoms which are adjacent to 
the moving molecule 

(3) 

where N is the number of nearest neighbors. It is assumed that the pore walls 
are formed of oxygen atoms. 

In uniform Euclidean systems, the mean square displacement of a random 
walker, < R(t)2 >, is proportional to time t 

< R(t)2 >= 6 D t (4) 

The Equation (4) is well known as Einstein's relation. However, it is not valid 
in general for diffusion in disordered systems. Rather, the diffusion becomes 
anomalous, that is, the mean square displacement grows geometrically with 
time 

(t > 0) (5) 

with dw > 2 . In our simulation, it is noticed that the mean square dis
placement can be regarded to grow linearly with the time when the time of 
diffusion is sufficiently long. Therefore, the diffusivity in the present work is 
calculated by 

D = lim < R(t)2 > f6t (t--+oo) (6) 

D in Eq.(4) and (6) is generally called self-diffusivity. 

According to percolation theory [9], there exists a critical concentration 
Pc below which only finite clusters exist and above which a cluster extends 
over the entire lattice. When the particle concentration is greater than Pc, 
the "infinite" cluster is called a conductive phase, which is homogeneous in 
nature. Of course, the random walk on the cluster is also normal when the 
observation time is long enough. The present model is similar to the random 
walk in the void network of the percolation clusters. Therefore, some of the 
results from the present simulation are expected to be in agreement with 
those in the percolation theory. 
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3 Results and Discussion 

3.1 Characteristic of the void network 

If the void space (or pores) in our model is fractal, the fractal dimension 
should be obtained by Eq.(1). In this case, of course, M(R) means the number 
of empty sites in the box with the radius of R. A series of pellets with the 
porosity from fp = 0.2 to 0.6 are analyzed by the method, and all of them 
have the same dimension value of 3.00, as shown in Fig. 4. From the figure, 
all of the log-log plots have an identical slope, and it is same as obtained from 
an uniform three-dimensional void space, which is represented by the solid 
line in the figure. The results in the figure indicate that the pore void space 
is not fractal. As the porosity values of real porous media such as catalysts 
are usually in the range of fp = 0.4 to 0.6, we conclude that the void space in 
pore networks in the present porous media are not fractal although the walls 
forming the pore networks may be fractal. 
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Three types of molecules He, Ne and Ar are used to investigate the effect of 
molecule sizes on diffusion. In each Monte Carlo (MC) experiment, a molecule 
is released at an empty site in the void space of the pellet, and the molecule 
then starts a random walk within the pellet. To obtain correct values for the 
mean square displacement, the experiment is generally repeated about 105 

times. The simulation results of different types of molecules are shown in Fig. 
5, in which the solid lines are curved for Ar and Ne, and linear for He. The 
figure reveals that the diffusion of He is normal, that is, the mean square 
displacement linearly increases with time. Within the same pellet, however, 
the diffusion of He and Ar is anomalous. It indicates that within the same 
pellets diffusion of molecules with different sizes have different dependence of 
the mean square displacement on time. Diffusion of molecules with a smaller 
size is normal, while on the other hand molecules with a larger size may reveal 
an anomalous diffusion. 

Increasing the porosity leads to diffusivities for Ne and Ar as presented 
in Figs. 6 and 7. From Fig. 6, the diffusion of Ne in low porosity pellets is 
anomalous, and becomes normal when the porosity is increased. On the other 
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hand, when the porosity is increased from 0.488 to 0.657, the diffusion of Ar 
is still anomalous although the diffusivity increases obviously, as shown in 
Fig. 7. This effect can be explained by the larger van der Waals radius of 
argon compared to neon. 
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According to the Einstein relation diffusivities are independent of time. 
Moreover, it is also known that the diffusivity is directly proportional to 
the pore size in case of the Knudsen mechanism, in which the mean free 
path of diffusing molecules is comparable with or even greater than the pore 
diameter. Generally, the diffusivity for irregular pores can become smaller 
than for smooth pores, and the slowing down is caused by the delay of the 
diffusing species in the dangling ends, bottlenecks and backbends in irregular 
pores. 

Our simulation corresponds to Knudsen diffusion, and the dependence 
of the diffusivities within irregular pores on the porosity is shown in Fig. 
8. As can be seen, the diffusivities of He, Ne and Ar increase exponentially 
with the porosity, or, with the pore diameter because all of the pellets in 
the simulation are composed of the same number of clusters. Comparatively, 
the diffusion within a series of smooth pores is also simulated by the same 
model, however it is found that the diffusivity within smooth pores (shown 
in Fig. 2) increases slowly and linearly with the porosity. From the above 
results one can conclude that the diffusivity within irregular pores depends 
more strongly on the pore diameter than in smooth pores. 

The present model can also be employed to simulate transient exper
iments. In transient experiments, the total quantity (Qt) of the diffusing 
species that has passed through the porous membrane with a thickness of L 
in time t is related to the diffusivity D. For t ~ 00, the relation approaches 
the asymptote 

Qt = Deo (t _ L2) 
L 6D 

(7) 

which yields a straight line with intercept (time lag) L2/6D on the time axis. 
Therefore the diffusivity can be obtained by measuring the time lag [lOJ. 

A molecule pulse in the simulation is released at one of the parallel sides 
of pellets, and than the number of the passed molecules is measured at the 
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opposite side. The Qt rv t curves for different pressure values are shown in 
Fig. 9. The different curves approach to nearly the same intercept regardless 
of pressure, and this indicates that the diffusivity is slightly dependent of gas 
pressure over the given range. It is noticed that the result is in agreement 
with that in Knudsen diffusion. 

300 

A: ct =0.05 
DO 

250 D 
"'c 

200 o B 
0 

ISO • • A 
CI 

100 

50 Fig. 9 

0 
0 3000 4000 

4 Conclusions 

Porous media composed of small fractal particles were represented by a net
work model, and the network model was employed to investigate the diffusion 
within irregular pores. From the simulation, the diffusion within irregular 
pores is different from those both in uniform space and over fractals, and the 
results are: 
4.1 Void space of porous media created by the present algorithm is not frac
tal. The diffusion within irregular pores could be anomalous or normal in 
finite observation time, and it depends on the molecular size and the pore 
diameter. However, the diffusion in smooth pores is always normal. 
4.2 The diffusivity in irregular pores is found to grow exponentially with the 
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porosity. For diffusion in smooth pores, as it is expected, the diffusivity in
creases slowly and linearly with the porosity. 
4.3 The simulation results of transient experiments show that the diffusivity 
is slightly dependent on the gaseous pressure, and indicates that the Knud
sen diffusion is predominant. This is in agreement with the conditions in the 
simulation. Acknowledgements - One of the authors (X.y'G.) is grateful to 

the Alexander von Humboldt Foundation for a grant of research fellowship, 
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Molecular Modeling of Polymers 
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Abstract. Computer simulations based on phenomenological interaction poten
tials have developed into a powerful tool aiding the understanding of materials 
properties on the molecular level. Here we discuss two applications of force field 
molecular modeling to polymers (for a broader overview see for instance [1] or [2]). 
These include structural and dynamic properties of two vinyl polymers in aqueous 
solutions, and adsorption/swelling phenomena in a model polymeric network. 

1 Modeling of Polyvinylpyrrolidone and 
Polyvinylimidazole in Aqueous Solution 

Polyvinylpyrrolidone (PVP) and polyvinylimidazole (PVI) are polymers of 
great technical importance for example in the context of the manufacturing 
of textiles, paper, adhesives, membranes, plastics, cosmetics, pharmaceuti
cal products or as polymeric dye transfer inhibitor in laundry detergents [3]. 
The goal was a better understanding of the material properties of these poly
mers on the basis of microscopic simulations. Here we studied the polymer 
hydration and the conformation behavior in aqueous solution. 

We employed a conventional Molecular Dynamics algorithm numerically 
solving Newton's equations of motion for all atoms i = 1, ... , N in the molec
ular liquid. The potential energy U is given by 

bonds i angles i 

This is the AMBER (Assisted Model Building with Energy Refinement) de
scription of the potential energy for a large molecular system [4] (and refer
ences therein). The first three sums encompass the valence potential energy 
contributions due to bond (bi ) and bond angle (ai) deformations as well as 
bond rotations (¢i). The last sum describes the inter-atomic overlap repulsion 
and dispersion attraction in terms of Lennard-Jones potentials and Coulomb 
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interactions between partial charge sites located on the nuclei. The summa
tions include all atom pairs ij (i and j are separated by at least three covalent 
bonds if they do belong to the same molecule). In addition, the non-bonded 
(1-4)-interaction terms are scaled by a factor 1/2 in the case of the Lennard
Jones potential and by a factor 1/1.2 in the case of the Coulomb potential. 
Non-bonded interactions are calculated using a molecule based cutoff of gAo 
In addition, the Lorentz-Berthelot combining rules [5] are used to compute 
the dispersion interaction between unlike atoms. The atomic equations of mo
tion were integrated via the leap-frog Verlet algorithm [5] with a time step 
of 2fs (using version 4.1 of the AMBER modeling package [6]). Temperature 
and pressure (1bar) were controlled via the weak coupling method due to 
Berendsen et al. [5]. All bond lengths were constrained using the SHAKE 
algorithm [5]. The water model used in this work was SPC/E (Simple Point 
Charge/Extended) [7] with a single Lennard-Jones center on the oxygen and 
three charge sites on the nuclei. The force field parameters were taken from 
the AMBER 4.1 data base [6] with the exception of the SPC/E parameters, 
the torsion parameters of the Cn - N-bond, and the polymer partial charges 
located on the nuclei. The missing polymer parameters were obtained via a 
combination of quantum mechanical calculations, and separate simulations 
of liquid properties of the monomer-analogous compounds (see [3] for a com
plete listing). 

We have investigated the hydration of oligo-VP and oligo-VI (isolated 
20-mers in explicit water) in terms of the quantity N(t, te). N(t, t e) is the 
average number of water molecules residing within a particular solvation shell 
of an oligomer atom A at time t under the condition that the same molecules 
were residing in the same solvation shell at time t = o. Here we defined sol
vation shells in terms of the successive minima in the radial pair correlation 
function, g2(r A .. H 20 ), where r A ... H20 is the distance between atom A and 
the water oxygen. The above definition of N(t, t e ) allows excursions from the 
solvation shell, under the additional condition that the particle is not absent 
from the solvation shell longer than te per excursion. Here we used te = = 
(for a discussion see [3]), and defined N(t) == N(t, =). The example in Fig. 1 
displays N(t) calculated with respect to the carbonyl oxygen atom in i-PVP 
and s-PVP. In this case N(O) is the average number of water molecules fulfill
ing the following criterion: (a) the water oxygen is inside the first hydration 
shell, and (b) the angle, 0:', between the direction of the angular bisector of the 
water molecule and the direction of the carbonyl bond does not exceed 77.5 0 

(cf. the sketch in Fig. 1). This geometric condition is motivated by the shape 
of the corresponding orientation-correlation function [3]. It roughly captures 
the hydrogen bonded water molecules together with a certain number of less 
strongly bonded, more mobile water molecules. N(t) can be represented in 
terms of the fit function N(t) = Nfast exp( -t/Tfast) + Ns10w exp( -t/Tslow ) 
(cf. Fig. 1). The parameter values T;Z,~V p = 112ps and T:1-;'::;V P = 62ps can 
be considered as the approximate life time of the C = O ... H-hydrogen bond 
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in the two cases. Note that Nslow exp( -t/Tslow ) extrapolates to ~ 1 for t --t 0, 
i.e. one hydrogen bonded water molecule per C = O-group. 

N(t) 

0.1 

0.01 L.......~~--.J..-'--'-'-~..L-~-'-----..J.~~~~ 

o 50 100 150 200 

t [ps] 

Fig. 1. Average residence 
time, N(t), of molecules ful
filling the sketched distance
orientation criterion used 
to characterize the lifetime 
of the C = O ... H-hydrogen 
bonds vs. time, t. The solid 
lines correspond to the fit 
functions explained in the 
text. In addition, i- and 
s- stand for the respective 
tacticities. 

In order to characterize the polymer conformation globally as well as 
locally we calculated the characteristic ratio, Cn = (R2) /nb2, where (R2) is 
the mean square end-to-end distance for a polymer consisting of n bonds of 
length b, and the averaged scattering intensity, I, given by 

I ~ 2 ~ ~ 2. sin(qL1r . i) . T = ~Nzfl(q) + ~NI'fl(q)fdq)(~47r,tj,r ·z Pll'(z). (2) 
o I 1,1' i=l q 

10 is a structure independent constant, NI is the number of atoms of type 
l, fl(q) is the corresponding atomic form factor, and q is the magnitude of 
the scattering vector. In addition, PIl' (i) denotes the average number den
sity of l-atoms in a spherical shell, L1r . i ± ,tj,r /2, centered on the If -atom 
(,tj,r ~ o.01A). The averages, ( ... ), should be calculated using a large number 
(typically> 100) of conformations. As an example Fig. 2 shows the intensity 
of polyethylene (PE) computed in this fashion as a function of NCH2 (here 
fCH2 = 1). Apparently there is only little difference between the 20-mer and 
the 1000-mer above q ~ 0.5b- 1. Because PE has the same backbone struc
ture as PVP and PYI, we do expect the simulated 20-mers to yield a very 
similar reduced scattering intensity as the polymer in this q-regime. Detailed 
calculations of the scattering intensity for iso-, a-, and syndiotactic PVP as 
well as PYI are carried out in ref. [3J. Here we focus on Cn. 

Independent of the details of the underlying chemical structure global 
polymer conformations are well understood based on scaling arguments [8J 
(with the exception of systems dominated by long range electrostatic inter
actions). On small and intermediate length scales, where the chemical struc
ture governs the conformation behavior, the RIS/transfer matrix-model has 
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qb 

Fig. 2. Reduced intensity, 
(qb)2I/(IoNcH2)' for PE vs. 
qb at T = 413K generated via 
a RIS/transfer matrix-model 
[3). NCH2 is the number of 
methylene units (jCH2 = 1) 
per chain (NCH2 
20(a), 50(b), 200(c), lOOO(d». 
The crosses are neutron 
scattering data. 

proven to be immensely powerful in relating molecular structure to molecular 
conformations [9]. However, including solvent effects in the transfer matrix 
formalism requires effective statistical weights which are a priori unknown 
and difficult to obtain. Here we use a Monte Carlo construction based on the 
simulated oligomer conformations for sampling the conformation space of the 
polymers. 

Our Monte Carlo construction of backbone conformations (cf. also [9]) uti
lizes the conditional probability, p(¢'I¢) = p(¢'¢)/p(¢), that a torsion angle 
¢ is followed by <1/ along the backbone. p( ¢) is the probability of occurrence 
of the main chain torsion angle ¢. Similarly, p(¢'¢) is the probability of oc
currence of the neighbor pair ¢' ¢. We directly extracted these probabilities 
from the simulation in terms of the normalized frequencies h", and h""", , i.e. 
p( ¢) = h", and p( <// ¢) = h"" ",. Thus, other than in the usual transfer matrix 
calculation of these probabilities molecular solvent effects are included on the 
length scale of the simulated oligomer in solution. A simple backbone con
struction algorithm appropriate for PE with three rotational isomeric states 
(t,g- ,g+) consists of the two steps: (i) generate a random number z be
tween 0 and 1; (ii) following the torsion angle ¢, which can be either ¢t, 
¢g- 1 or ¢g+) continue the backbone with ¢t if z ~ p( <// I<p) or with <pg- if 

p(¢tl¢) ~ z ~ p(<ptl¢) + p(¢g-I¢) or with ¢g+ if p(¢tl¢) + p(<pg-I<p) < z. 
A new bond vector bi+l = bbi+l is added to an existing chain of backbone 
bond vectors via bi+l = -bi cos a + bi x b i - 1 sin¢' - (bi x bi-d X bi cos ¢', 
where b is the bond length. The angles a and ¢' are the fixed bond angle and 
the newly selected torsion angle, respectively. Note that the intensities shown 
in Fig. 2 are calculated from conformations generated in this fashion, except 
that h", and h",,,,, were calculated using the transfer matrix. The extension 
of the above algorithm to a larger number of possible RIS-values for <p is 
obvious. Note, however, that in general the polymer backbone is character
ized by a periodic sequence of non-equivalent torsion angles, ¢A, <PB, <Pc, ... , 
¢A, ¢B, ... rather than by just one (type of) torsion angle <p as in the case 
of PE. For i-PVP and i-PVI there are two non-equivalent backbone torsion 
angles. Consequently the construction algorithm for these types of polymers 
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is based on the successive conditional probabilities p(cPAlcPB) and p(cPBlcPA). 
Fig. 3 shows the corresponding distributions h<PA<PB and h<PB<PA extracted 
from the simulation of i-PVP in SPC IE water, which can be used directly 
to calculate the conditional probabilities. Results for en obtained in this 
fashion are shown in Fig. 4. Also included are experimental measurements 
on atactic PVP obtained in an 9% NaCl solution. The overall correspon
dence between experimental and theoretical results is fairly close. It should 
be noted that C:,xP diverges for large n due to excluded volume interactions 
which the Me-RIS construction neglects, i.e., in the former case (R2) ex: n2v 
with 1/ ~ 0.63 whereas in the latter case 1/ = 0.5. Note that Cn is rather 
similar for i-PVP and i-PYI, whereas s-PVP is significantly stiffer than s
PVI. The corresponding persistence lengths a, where a = (Coo + 1)b/2, are 
6.7 A(i-PVP), 8.6A(a-PVP), 46A(s-PVP), 8.5A(i-PVI), and 19.3A(s-PVI). 

211: 

Fig. 3. Frequency histograms of the backbone torsion angle pairs <PA<PB (top: 
h1>A1>B) and <PB<PA (bottom: h1>B1>A) extracted from the simulation of i-~YP in 
water. Note that ¢ = 1800 corresponds to the trans-state. 

2 Swelling of a model network 

The swelling characteristics of polymer networks playa crucial role in many 
technical and hygienic (e.g. superabsorber) applications. Despite the indus
trial importance of swelling phenomena and the research activities in this 
field, our knowledge of the underlying mechanisms on an atomic level is still 
incomplete. Here we studied the swelling process in model networks by apply
ing the Gibbs-Ensemble Molecular Dynamics (GEMD) technique [10] (and 
references therein). The method models the simultaneous chemical equilib
rium of two (or more) bulk phases based on the molecular dynamics frame
work. Each phase is represented by a simulation box, which exchange particles 
in an unphysical but thermodynamically consistent fashion. This is achieved 
by introducing a dynamic transfer variable, 0 ::; ~i ::; 1, for each molecule i, 
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Fig.4. Top: Characteristic ratio, en, 
vs. n for i-, a-, and s-PVP as obtained 
with the MC-RIS method compared to 
experimental values (dashed line) ob
tained in a 9% NaCl solution. The ar
row indicates Coo for s-PVP. Middle: 
The minor influence of the bin width in 
the torsion histograms (solid line: 1° as 
in the upper panel; dashed line: 5°) as 
well as the effect of next-nearest neigh
bor coupling (dashed-dotted line) on 
Cn for i-PVP. Note that next-nearest 
neighbor coupling leads to significant 
stiffening. Bottom: Characteristic ra
tio, Cn , vs. n for i- and s-PVI as ob
tained with the MC-RIS method. 

which obeys its own equation of motion. Values of ~i close to a or 1 corre
spond to "real" molecules residing in respective boxes. Intermediate values 
correspond to molecules in a transfer state. Note that each ~i is like a cou
pling parameter in thermodynamic cycle integration [11 J. We have applied 
the GEMD method to analyze a model network in contact with an atomic 
as well as with a molecular Lennard-Jones fluid. The first box contained 
the model network, the second box represented the bulk fluid. The network 
nodes were connected through harmonic potentials, while long range inter
actions were of the Lennard-Jones type. Angle and torsion potentials within 
the network were not employed. The fluid-fluid and fluid-network interac
tions are also modeled via Lennard-Jones potentials. Furthermore we use the 
AMBER force field (cf. above) to model the internal degrees of freedom of 
the molecular species. 

Fig. 5 shows a simulation snapshot for (united atom) dodecane in contact 
with the model network. Note that the number of transfer particles must be 
sufficiently small in order to not disturb the physically meaningful equilib
rium distribution of molecules between the boxes. Fig. 6 illustrates the time 
evolution of selected quantities for methane in contact with the same model 
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network. Notice that the final number of transfer particles is indeed small. 
Fig. 7 finally shows different isobars in the T-q-plane, where q is the swelling 
ratio. Note the shrinkage of the network with increasing temperature. This 
behavior, which currently is under investigation, bears a certain analogy to 
the collapse transition observed in real gels [12]. 

Fig. 5. Snapshot of the model polymeric network (right) containing dodecane 
molecules diffusing through the network. The dodecane molecules may transfer 
between the fluid phase (left) and the network cavities. The transferring molecule 
is positioned between the two boxes according to its instantaneous ~-value. 
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Fig. 6. Top: Time evolution of the number of real and transferring methane 
molecules. Bottom: Time evolution of the densities in the simulation volumes. 
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Fig. 7. Temperature vs. swelling ratio, 
q = V.woll en networkjVdry network. P is 
the hydrostatic pressure. 
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Abstract. The prediction of phase equilibria without using experimental data is 
one of the most difficult things to do in thermodynamics. By the time, group con
tribution methods generally yield the most trustworthy results. At the moment, the 
Modified UNIFAC (Dortmund) method has become common standard for VLE, hE 
and LLE predictions. To apply this method to refrigerants, as it has already been 
done for the original UNIFAC method, finally 386 adjustable parameters had to be 
fitted simultaneously. 

For fitting the parameters, a conventional gradient method and an Evolutionary 
Algorithm have been compared. The latter uses the mutation-selection-principle 
which is well-known from biological evolution. The optimum interplay of different 
strategies as well as the use of parallel computers resulted in levels well below the 
local extremes found using a conventional search method. 

The results of genuine predictions using the new parameters are satisfactory. 

1 Introduction 

In chemical industry, information about multicomponent phase equilibria is 
extremely important for the design of thermal separation processes like dis
tillation, absorption, extraction, and its various combinations. Generally, cal
culations on multicomponent phase equilibria are based on parameters de
scribing the interactions of two different molecules. If these parameters are 
unknown, the choice is to determine them by experiments or to estimate 
them. The latter way is meaningful if qualitative statements about the phase 
equilibria are sufficient, for instance for compounds that are not decisive for 
the process or even for important binary mixtures in the concept evalua
tion phase. The most popular tool for phase equilibrium estimations is the 
UNIFAC group contribution method, which does not treat a system as a 
mixture of components but of functional groups. Its foundations are in detail 
explained in [5]. 

During the last few years, the Modified UNIFAC (Dortmund) method [4] 
has been recognized as the most powerful tool in predicting phase equilibria 
by this time and has almost replaced the original version. The main differ
ence between UNIFAC and Mod. UNIFAC is caused by an extension of the 
UNIFAC group interaction parameters a ... n to a quadratic polynomial with 
respect to temperature: 
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Furthermore, in Mod. UNIFAC the van-der-Waals-volume Rj and the 
van-der-Waals surface area Qj of the groups are taken as adjustable to get 
a higher flexibility. In order to extend the application range of the method 
to refrigerant mixtures, it was decided to integrate the structural groups for 
the refrigerants developed in 1994 [2] and fit the involved parameters using 
the EVOBOX program, which was introduced in [2]. The groups are shown 
in Table 1. 

jMain group Subgroups jMain group Subgroups jMain group Subgroups 

CF4 CF4 CHF3 CHF3 CHClF CHCIF2 
CHF CH3F (CH2-)CF3 (CH3-)CCIF2 

CH2F CCIF CCbF CHClF 
CHF CCbF CHCbF CHCbF 

CHF2 CH2F 2 CCIF2 CCbF2 CH3-CCbF 
CHF2 CCIF2 CHCb-CF3 
CH3-CHF2 CBrF3 C2 F 3Cb CFCb-CF2CI 
(CF3-)CH2F CCIF3 CCIF3 

(CF3-)CCIF2 

CClBrF2 

Table 1. New UNIFAC structural groups for refrigerants 

2 Data Base and Procedure 

Table 2 shows the structure of the database for refrigerant mixtures. Data 
sets for Liquid-liquid Equilibria (LLE) had been converted into activity co
efficient data sets. For the VLE data sets, a sensitive consistency test has 
been performed, non-consistent data have already been removed from the 
data base. 

data sets data points 
VLE 510 4301 
hE 36 587 
"Y 42 145 

Table 2. Structure of the data base 
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However, considering that 196 binary systems are available for fitting 122 
pairs of interaction parameters amn , it must be stated that the data base is 
comparably small. 
For the VLE calculations the PRSV equation [8] was used to determine the 
fugacity coefficients and the Poynting corrections in the phase equilibrium 
conditions. Details can be taken from [7]. 
The Modified UNIFAC interaction parameters and the R- and Q-values of 
the groups are adjusted by minimizing the objective function 

Nj [ 2] F - ~ ( . _ . )2 + (pj'Cal - pj,exp ) + 
- ~ YIJ,cal YIJ,exp 

j Pj,exp 

+ ~ (h{cal- h{exp )
2 

h 100J/mol 

+ ~ [('Ylk,cal - 'Ylk,exp ) 2 + ('Y2k,cal - 'Y2k,exp ) 2] (2) 
k 'Ylk,exp 'Y2k,exp 

where N j , Nh and Nk are the number of VLE excess enthalpy and activity 
coefficient data points, respectively. 

Totally this function depends on 330 Mod. UNIFAC interaction param
eters. The linear term !3mn * T in eq. (1) was only used if the temperature 
differences between the various data points affected by this parameter ex
ceeded 100 K, the quadratic term 8mn * T2 was introduced if the differences 
were greater than 200 K. If a parameter pair had to describe excess enthalpies 
as well, the largest temperature difference was artificially increased by 100 K. 
Thus, it can be stated that temperature-dependent parameters have only 
been fitted when it was justified. 

Together with the 28 R- and 28 Q-values the number of adjustable vari
ables becomes 386. These parameters intercorrelate complicatedly lee ding to 
a complex optimization problem hardly to be divided into smaller indepen
dent subproblems. 

3 Optimization with relaxation method 

First optimizations were done with a relaxation method. Successively, in a 
cyclic sequence, every pair of interaction parameters aij, aji (eq. 1) is taken 
as the only variables and the objective function is minimized with respect 
to them. As the last part of a cycle, the R- and Q-values are optimized. 
When the algorithm does not proceed any more, the parameters !3ij, !3ji and 
8ij , 8ji describing the temperature-dependence of the interaction parameters 
are additionally taken into account. For the refrigerant mixture database, 
normally five or six cycles are necessary to get close to a minimum. 
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Thus, only functions with at most 6 variables have to be minimized within 
a cycle step. Such a problem is easy to solve with common minimization 
routines. During each step only those data points that are involved with the 
actual parameters are considered, which saves a lot of computing time. 

This approach -like all gradient methods- shows a serious disadvantage: it 
systematically searches for the next local minimum that can be reached. How
ever, the function (eq. 9) has proved to offer several local minima of similar 
quality. Thus, several trials using different starting points should be carried 
out to increase the probability of reaching the global minimum. Additionally, 
the convergence in the near of the minimum is very slow. 

The FORTRAN program was quite easy to develop and ran without prob
lems on a mainframe computer, on a VAX workstation and even on a personal 
computer with a xx486 processor, where it took several days to converge. 

The best quality that was reached after several optimization runs using 
the relaxation method with different starting values was1 

F = 6.848, 
fJ.pjp = 2.77%, 
fJ.-y h = 4.98%, 

fJ.y = 1.14%, 

fJ.h E = 62.3 J jmol. 

4 Parallel Evolutionary Algorithms 

By applying one method of biological evolution - the mutation-selection prin
ciple - to the field of mathematics, Evolutionary Algorithms have proved to 
be powerful and robust optimization methods. The foundations have been 
discussed in [2]. 

4.1 The EVOBOX code 

The EVOBOX code was conceived for discrete grouping and continuous para
meter optimizations. The task of determining the Modified UNIFAC parame
ter set happens to be a continuous parameter optimization problem. The 330 

1 Definitions: 

.:1p/p = 
N j 2 

~ L (pj'Cal .- pj,exp ) 

N J . PJ,exp 
J 

(3) 

(4) 

.:1,h = _1_ f [( 1 1k ,cal - Ilk,exp ) 2 + ('2k,cal - 1 2k ,exp ) 2] 
2 Nk k Ilk,exp 12k,exp 

(5) 
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UNIFAC interaction parameters and the 28 R- and 28 Q-values are coded as 
negative or positive REAL values without any limitations. Every parameter 
of the matrix can be varied continuously and independently. 

4.2 Parallel computing 

By copying the parallel structure of nature in generational parent-to-child 
succession, parallelity was applied to the optimization program system, too. 
The determination of the objective function F represents the most time
consuming phase of the parameter optimization resulting from the repeat
edly calculated vapor-liquid equilibrium conditions. These computations can 
be performed in parallel for all sets of parameters as the optimization algo
rithm only requires the quality values calculated for the selections and new 
mutations. Consequently, the use of parallel processors is possible without 
high programming expenditure. This kind of coarse grain parallelism causes 
a low level of data communications, so workstation clusters can be used as a 
'virtual' parallel computer. 

The EVOBOX code works on the processor as a so-called 'master' and 
is responsible for mutations and selections, while other processors configured 
as 'slaves' have to compute the quality functions of the different individu
als. As a communications routine 'Parallel Virtual Machine (PVM) , [9J was 
implemented. For the optimization of the UNIFAC matrix, up to thirty work
stations were used. The optimizations were allowed to run in the background 
of the cluster as low-priority batch jobs during normal computer operation. 

4.3 Load management 

Workstation pools in industry often consist of different architectures and 
types offering different computing power from the processors for a parallel 
application. As a consequence a heterogeneous workstation cluster temporar
ily installed with the help of a message passing software like PVM can only 
be used efficiently under a resource management system. In the case of the 
EVOBOX program the integration of a management system into the opti
mization code without any dependence on operating systems was chosen. 
This offers a high migration ability [3]. 

In the code system the resource manager supports three different appli
cations which are performed by three corresponding subroutines. 

The load management, an optimized partitioning of the next generation 
of parallel tasks, is done on basis of measured runtimes of the individual pro
cesses on the respective processors. Additionally a second subroutine admin
istrates the inclusion and the release of additional workstations in dependence 
of the time of the day. With the help of this management tool also additional 
workstations can be included in the case of hardware failors or shutdowns 
caused by users. In an analog manner a third subroutine manages the restart 
of lost or stopped parallel processes in an optimization run. 
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5 Results of EVOBOX 

The best quality that was reached using the EVOBOX code in a run of several 
weeks 

F = 5.135, 
ilplp = 2.41 %, 
il'Yh = 4.47%, 

ily = 1.02%, 
ilhE = 52.5 J Imol 

In comparison to the results of the relaxation method, the reduction of the 
value of the objective function is about 25%, which is considered to be sig
nificant. 

6 Prediction capability of the parameters 

Meanwhile, several new VLE data sets have been published that were not 
integrated in the database when EVOBOX was started. Thus, there is now 
a chance to carry out genuine predictions by examining systems that did 
not have any influence on the adjusted parameters. The results are quite 
satisfactory. Two examples are discussed below. 
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Fig.!. VLE-estimation for the system R134a-R218 at T=220K. Data from [1] 

For R134a-R218, the isothermal data set at 220K has large numerical 
deviations. The activity coefficients are strongly overestimated (Fig. 1). How
ever, the qualitative description is correct, and even the predicted azeotropic 
concentration does not seem to be far away from the correct value. With 
increasing temperatures the phase behaviour is predicted more accurately. 
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Fig. 2. VLE-estimation for the system R32-R12 at T=283.15 K. Data from [6] 

R32-R12 has an azeotropic point near XR32 = 0.9 (Fig. 2). Beyond this 
point boiling- and dew-point line are very close together, which is predicted 
by Mod. UNIFAC with a remarkable accuracy. 

In general, a lack of prediction capability occured for narrow boiling sys
tem with small deviations from Raoult's law, i.e. when the qualitative be
haviour of the system performs highly sensitively to small errors in the ac
tivity coefficients. 

7 Summary and Outlook 

Adaptive evolutionary algorithms have proved to be a robust and effective 
optimization method for time-consuming simulations and adjustment calcu
lations. The simple parallel algorithmic structures require only minor commu
nications and allow workstation clusters to be used efficiently with a message 
passing communications software. 
Regarding to the problem of determining optimized Modified UNIFAC pa
rameters for refrigerants significantly inproved results compared to conven
tional minimization methods could be found in acceptable turn-around-times. 
By now, these parameters represent the only way to predict the behaviour of 
refrigerant mixtures. The group assignment seems to be reasonable, as it has 
proved to be capable to predict unknown phase equilibria, despite the fact 
that the database is relatively small. 
Furthermore, it has been demonstrated that the quality of local minima that 
occur during the optimization of the UNIFAC matrix can differ significantly, 
which is caused by strong interdependencies of the parameters. This should 
be taken into account in further developments of the method. 
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8 List of Symbols 

aij UNIFAC interaction parameters T temperature (K) 
F objective function x liquid mole fraction 
hE excess enthalpy y vapor mole fraction 

number of component aij UNIFAC interaction parameters 
j number of an experimental point f3ij UNIFAC interaction parameters 
N number of experimental points 'Y activity coefficient 
p pressure (Pa) ISij UNIFAC interaction parameters 
Qk group surface area parameter Rk group volume parameter 

Subscripts 

cal calculated 
exp experimental 
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Abstract. The idea that the Voronoi network of a granular system lies "in the 
depth" of the empty space is used intuitively in different fields of science to study 
the transport of fluids, diffusion and other percolation and path problems. We dis
cuss the concept of a "navigation map" for the interparticle empty space. It helps 
to study the spatial distribution and hierarchy of pores in noncrystalline packings 
generated in computer simulations. The approach is applied for a porosimetry anal
ysis of packings of monodisperse spheres of different density. A generalization of the 
technique to systems of polydisperse spheres and nonspherical particles is also taken 
up. 

1 Introduction. 

The structure and distribution of pores is a factor, which governs many im
portant physical phenomena in physical chemistry, catalysis and materials 
science. It determines the permeability of porous media, stability of powder 
materials, diffusion and thermodynamic properties of simple and complex 
liquids and glasses. 

A promising way to study the structure of pores is the application of com
puter simulations. A model obtained by molecular dynamics or Monte Carlo 
methods comprises the coordinates of all atoms (particles). However the voids 
are not simply related to these coordinates. It needs additional efforts and 
algorithms to extract "physical" informations about the unoccupied volume 
and to make a quantitative analysis. This question had been understood and 
was raised long ago [1). However, advances have been obtained in the last 
decade only. A reason for this is the use of a rigorous mathematical basis, 
which gives a geometrical technique to partition the space between the atoms 
[2,3). This Voronoi-Delaunay approach is well-known in the study of atomic 
arrangements in liquids and amorphous structures [4). Next, it had been ap
plied to study interatomic voids [5,6). The permeability and flow through 
packings of mono disperse spheres was simulated in [7,8); paths for the diffu
sion of particles with different size in liquid and glassy polymers was studied 
in [9); the thermodynamic aspects of voids in simple liquids was discussed in 
[10,11); a porosimetry analysis for sphere packings was made in [12). 

The main idea for a quantitative analysis of the voids inside an arbitrary 
ensemble of atoms (particles) is based on the analysis of "the navigation 
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map" of this ensemble. This map keeps track of the location of the "deepest" 
points (most distant from the surfaces of the particles) inside an ensemble 
and defines channels (fairways) connecting these points [13]. There are no 
principal problems to get this map because its mathematical construction is 
well-known. It is the Voronoi network [2,3] which exists for any system [14]. 
A practical question, however, is to have an efficient algorithm to calculate it 
for a given system. Of course, before the calculation of the Voronoi network, 
one has to construct the system to be studied. The next stage is then the 
analysis: the computation of the Voronoi network, of the holes of a given 
size, their spatial distribution, channels acceptable to a given probe, perco
lation characteristics of the porous space. This needs also mathematical and 
programming work. 

Note, the conception of the navigation map is close to the idea of "the 
medial axes", which is used to describe the structure of a cavity inside a 
continuous medium, or, in the opposite, the structure of an individual domain 
with a given shape [15,16]. As it was remarked in [16]' the medial axis is a 
"continuous version" of the Voronoi network. 

2 Geometrical analysis 

. The Voronoi-Delaunay approach is originally known for systems of discrete 
points. The mosaic of the Voronoi polyhedra (the Voronoi tessellation) cov
ers the entire space without overlaps and gaps. The set of all edges and 
vertices of the Voronoi polyhedra defines the Voronoi network. Therefore it is 
a simply-connected and four-bonded network for any nondegenerate ensemble 
of points. The bonds of this network are segments of straight lines. 

However for physical-chemical applications we deal with systems of finite 
size particles, the most simple one being a system of equal spheres. Fortu
nately, the properties of the Voronoi network for point systems are also true 
for this case. 

The idea to use the Voronoi-Delaunay approach for a broader class of 
particles is very tempting. However, as it was remarked many times, the 
classical Voronoi-Delaunay construction cannot be used in general, see for 
example [17]. The original Voronoi-Delaunay tessellation does not take into 
account the size and the shape of particles. 

The problem had been solved for systems of spheres of different radii 
[13,11,14]. Such systems are used as models of polydisperse powders, poly
atomic materials and alloys. To take into account the surface of the particles, 
one should introduce a new geometrical construction: instead of the classical 
Voronoi polyhedron defined by the centers of spheres, one should define an
other volume, all points of which are closer to the surface of a given sphere 
than to the surfaces of the other spheres of the systems. This region was called 
a Voronoi S-region [13]. It is analogous to the usual Voronoi polyhedron, but 
its faces and edges are curved. The Voronoi S-regions generate a Voronoi 



108 V.A. Luchnikovet al. 

S-tessellation. The set of vertices and edges defines the Voronoi S-network 
of the system of polydisperse spheres. A special algorithm was created to 
calculate the S-constructions. An application of this technique to study 3D 
Apollonian packings was made in [18]. 

Studying the porous space, we are working with the Voronoi S-construction 
only. Here we will omit the letter S in the names, for simplicity. 

In fact, the Voronoi-Delaunay ideas can be extended to systems of parti
cles with arbitrary convex shapes. It opens a way to use a rigorous geometrical 
technique to study the structure of pores for a much broader class of particles 
then systems of spheres. Recently, the corresponding algorithm was developed 
and a system of straight lines and spherocylinders was analyzed [19]. Convex 
particles possess an important property: the closest distance from any point 
of space to the surface of a convex particle is single-valued. This condition 
is sufficient to be sure that the Voronoi tessellation exists for any system of 
convex particles. 

In the general case the Voronoi network is the set of edges (bonds) and 
vertices (sites) of the Voronoi regions in the Voronoi tessellation of a given 
system of particles. The fact that the Voronoi network lies "in the depth" of 
the unoccupied space is valid in general. It follows directly from the definition 
of the Voronoi region. If we leave a bond of the Voronoi network (which is a 
common edge of the adjacent Voronoi regions), we will be inside of a Voronoi 
region and therefore closer to the surface of one of the particles. In this 
respect a bond is a fairway: if a probe leaves this line it can "run aground" 
on a surface of a particle. The Voronoi network is four-valenced: every site 
of the Voronoi network is the origin of four bonds. (It is assumed that the 
system is nondegenerate). This is easy to understand: any site of the Voronoi 
network is defined by four particles, but four particles open four and only 
four channels (bonds) from this site. This is true for any particle which has 
one and only one point of contact with a sphere [19]. 

There are also differences between the general and classical Voronoi net
work. A major one being the problem of simple connectedness of the network 
in 3D. Indeed, even for a system of polydisperse spheres an example can 
be constructed for a totally disconnected Voronoi network. Fortunately, we 
can ignore this theoretical possibility of the disconnectedness of the Voronoi 
network for relevant physical systems [14,19]. 

3 Algorithms for the navigation map 

. To describe the Voronoi network, we should have the following sets of data: 
the list {D} of the coordinates of the Voronoi sites and the table {DD} for 
the connectivity of the sites. For thr metric analysis of the voids we should 
additionally keep the value of the radius of the inscribed sphere at every 
site (list {Ri}) and the minimum radius of the Delaunay spheres along every 
bond, the so called bottleneck radii (list {Rb}). These data give us the full 
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information to use the Voronoi network as a navigation map: the location of 
all "deepest" points, their connectivity, and the corresponding values of the 
bottleneck radii. 

To create the Voronoi network of a mono disperse system one can use any 
algorithm for a classical Voronoi polyhedra calculation. The main task of 
these algorithms is usually the calculation of the circumsphere for a given 
set of four centers (a site of the Voronoi network) by solving the system of 
equations 

(1) 

Xi, Yi, Zi are the coordinates ofthe centre of the i-th particle of a given quartet. 
The four unknown variables X, y, Z and R are the coordinates and the radius 
of the circumsphere. The main step of the algorithm is the determination 
of the vertex which is adjacent to a given one (to find the second endpoint 
on the Voronoi bond). This can easily be done, because the second site on 
a bond is the center of the inscribed sphere, which is closest to the known 
vertex on the given Voronoi channel, see e.g. [20]. 

To create an algorithm for the Voronoi network of polydisperse spheres 
one can use the same ideas, however to find a site of the Voronoi network we 
should be able to obtain an inscribed sphere between four spherical particles 
of arbitrary radii. The solution of the following system of equations gives an 
answer to the question: 

Where Ri is the radius of the i-th particle. Fortunately, this system can be 
solved and analytical formulas for Xi, Yi, Zi and R can be obtained. As a 
result, the algorithm for a polydisperse system has the same efficiency as for 
mono disperse one. For details see [14]. 

In the general case of convex particles we cannot calculate Voronoi sites 
analytically. However we can use the same idea to find the next site of the 
Voronoi network: the adjacent site is the closest one to the known site on a 
given Voronoi bond. In this case we have to go step by step along the Voronoi 
bond from a known site to define a new site numerically. A general algorithm 
for the Voronoi network of such systems is proposed in [19]. It can be used 
for particles of any shape. The peculiarities of the particles are hidden in 
the distance function di(r), which defines the minimal distance from a given 
point r to the surface of the i-th particle. 

4 Permeability and diffusion. 

The navigation map is a rigorous geometric construction and represents a real 
channel system in a sample. Physical assumptions will be made at the step 
of application to a given physical problem. For example one should define 
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Fig. 1. Fraction of pore volume accessible to a probe of radius Rprobe ("intrusion" 
curve) for packings of mono disperse spheres at different values of porosity E (given 
in the insert). Diameter of spheres D is unity. 

a "resistance" for fluids moving through a bottleneck, as it was made in 
[7,8] to study the permeability in a granular porous media. The results were 
successfully compared with experimental data measured on sand packs, bead 
packs, and a simple sandstone. 

The problem of diffusion of hard particles in a porous media, can be sim
ulated as a random walk on the navigation map. The probability to go along 
a given edge can be assumed to be proportional to the value of the Voronoi 
bond bottleneck for a given direction. Knowing the location of all vertices, 
their connectivity, and probabilities to go from one vertex to another, a Monte 
Carlo process for particle transport can easily be realized. In particular, for
bidding the possibility to go up, we can simulate a rolling process of a ball 
inside a packing of spheres [21]. 

As an application of the Voronoi network analysis, we present the results 
of a study to characterize the hierarchy of pores in mono disperse packings 
of spherical particles at different densities. Recently such an analysis was 
proposed for the interpretation of mercury porosimetry experiments [12]. We 
have created a set of noncrystalline packings of 8000 Lennard Jones particles 
relaxed at zero temperature. The porosity of the different packings is in an in
terval from E = 0.30 to E = 0.70. The denser models represent the well-known 
Bernal-like noncrystalline packings of spheres. As the density decreases, we 
get more and more cavities inside the packing. The low density packings con
tain a percolative cluster of relatively large pores and, at the same time, a 
percolative cluster of closed packed particles. 
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Fig. 2. Voronoi network of a system of nonspherical particles. a.) Representation 
of a molecular dynamic model of the isotropic phase of a liquid crystal by 50 
spherocylinders. b.) The Voronoi network of this model ( 401 sites and 802 bonds). 
Periodic boundary conditions are used. 

The "intrusion" curves for a set of our structural models are shown in 
Fig.1. They show the volume fraction of pores, where a probe of a given 
radius Rprobe (radius of meniscus) can be placed, as a function of the value 
of Rprobe' With decreasing probe size, the fraction of the volume increases to 
the total empty volume inside the model and becomes equal to unity with 
Rprobe = O. The curves characterize the nature of pores at different densities 
of packing. 

In the terminology of percolation theory the study of pores is a bond 
percolation problem on the navigation map. Indeed, all bonds with a value 
of the bottleneck radius greater than the radius of a given probe, can be 
distinguished (coloured) on the network. Any cluster of coloured bonds de
fines a pore for a given probe: the probe can be moved inside the pore along 
the coloured bonds. Depending on the size of the probe particle, this can 
be a finite pore or a percolative one. It is not difficult to define all clusters 
of coloured bonds on the network and then to make their analysis, e.g., to 
calculate the volume of every pore. 

The Voronoi network of a syst~m of nonspherical particles is illustrated 
in Fig.2. As an example of a physical sample we use a simplified model of 
a liquid crystal. At first an atomically resolved molecular dynamic model 
of 50 molecules of 4-(trans- 4' -pentyl-cyclohexyl)-benzonitrile (PCH5) in 
the isotropic phase at T = 330 K had been created [22]. Then we have 
represented every molecule of the liquid crystal by a spherocylinder (cylinder 
with hemispheres at the ends). The model box of this system is shown on 
Fig. 2a. The length of every spherocylinder is L = 1.3 nm and the radius 
r = 0.2 nm. The Voronoi network of this model is demonstrated in Fig.2b. 
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Actually, this Voronoi network with the bottleneck radii can be used for a 
pore analysis similar to that of the packings of spheres. 

5 Conclusions. 

We discussed a method to study the structure of the pore space in granular 
and atomic systems. It is based on the analysis of the Voronoi network. This 
network lies in the depth of the unoccupied space between particles and 
plays the pole of a "navigation map" of the system. It gives quantitative 
informations about the spatial distribution of pores in a model, which help 
to study flow and diffusion phenomena. The main idea of an algorithm to 
calculate the navigation map in 3D for systems of spheres and nonspherical 
particles is discussed. The approach is applied for a porosimetry analysis 
of packings of monodisperse spheres of different density. An application of 
the method to a system of spherocylinders (as a model of liquid crystals) is 
demonstrated. 
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Abstract. Nowadays many experimental techniques for the measurement of sur
face diffusion coefficients exist. However, a lot more work remains to be done to 
establish the complete or at least a partial understanding of surface diffusion phe
nomena. In many cases, the interpretation of experimental surface diffusion data 
has been extremely complicated. Therefore, Monte Carlo studies of static and dy
namic properties of adsorbed monolayers on metal surfaces by means of lattice gas 
modeling has attracted considerable attention during the last two decades. In this 
presentation recent progresses in the Monte Carlo modeling of surface diffusion 
processes in interacting systems with phase transitions will be discussed. 

1 Introduction 

Surface diffusion of adsorbates on metal and alloy surfaces has become an 
important subject of surface science. The detailed comprehension of surface 
diffusion is one of the key steps in understanding (and controlling) many 
interesting surface phenomena such as adsorption, desorption, catalytic reac
tions, melting, roughening, and crystal and film growth. 

In recent years, the effects of lateral interactions on the chemical surface 
diffusion coefficient of adsorbed particles have been intensively investigated 
using many different theoretical and numerical methods. For instance, mean
field [1], Bethe-Peierls [2], real-space renormalization group (RSRG) [3,4]' 
transfer matrix [5] and Monte Carlo (MC) [6] methods have been used in 
order to describe the surface diffusion phenomenon. It was found that ad
particle interaction can strongly influence surface diffusion, especially at low 
temperatures and in the close vicinity of surface phase transitions [7]. 

The MC simulation of surface diffusion is probably the most reliable nu
merical method which can be used to study adparticle diffusion on different 
lattices and for various sets of the interaction parameters. However, com
pared to the theoretical methods mentioned above the MC method is very 
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time consuming and requires powerful computers. Most of the results to be 
discussed below are obtained by a fully parallelized algorithm in conjunction 
with Cray T3E (LC768-128) supermassive parallel computer operated by the 
Max-Planck community in Garching/Germany. 

The outline of this contribution is as follows. In Sec. 2 we will describe the 
basics of surface diffusion. The Monte Carlo simulation of surface diffusion is 
discussed in Sec. 3. Finally, selected results of recent studies are presented in 
Sec. 4. 

2 Basics of Surface Diffusion 

Phenomenologically, diffusion is described by Fick's laws. In particular, ac
cording to Fick's first law, the diffusion flux of particles driven by a gradient 
of the particle density, p, is given by 

(1) 

Here Dc is the chemical diffusion coefficient. It is probably important to 
note that the term" diffusion coefficient' is certainly misleading. Only for an 
isotropic medium, such as a gas, a liquid or a solid with cubic symmetry, D 
can be considered as a scalar coefficient. For an anisotropic solid Eq. 1 should 
be written as 

(2) 

Dc denote the diffusion tensor, which can be represented by a 3 x 3 matrix. 
In general, it is possible to find principle axes which diagonalize Dc. For the 
specific situation of surface diffusion, Eq. 1 can then be rewritten as 

J = _ (Dxx:) . 
Dyy8y 

(3) 

Here we implicitly assume that the x and y directions are located within the 
two-dimensional surface plane, and that the surface normal is directed along 
the z axis. 

In the following we will restrict the considerations to solid surfaces of 
square symmetry (for which Dxx = Dyy) and, therefore, we can apply Eq. 1 
with Dc as chemical diffusion "coefficient". Eq. 1 suffices to define Dc, but for 
practical considerations it is useful to combine it with the continuity equation 
V' J = -op/ot, which gives 

(4) 

If Dc is independent of particle density p, i.e. D =I- De(P), then Eq. 4 simplifies 
to 

(5) 
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Eq. 5 is known as Fick's second law. From Eqs. 1 and 5 it is clear that the 
chemical diffusion coefficient Dc describes the response of a system in the 
presence of a concentration or particle density gradient. From that point of 
view, it is justified to conclude that the chemical diffusion coefficient em
phasizes the macroscopic phenomenological point of view. However, the oc
currence of chemical diffusion does not necessarily require the existence of 
macroscopic concentration gradients. This point has been discussed in more 
detail in Ref. [8). 

In contrast to the chemical diffusion coefficient, which is a many particle 
diffusion coefficient, the tracer diffusion coefficient, D t , describes the ran
dom walk of a tagged single particle. D t is defined through the generalized 
definition 

(6) 

where d is the Euclidean dimension, (in the case of surface diffusion d = 2); 
the vector ret) determines the position of a tagged particle at time t, and 

(r(t) - r(o))2) is its mean square displacement. 

For the sake of completeness, we introduce also the so-called jump diffu
sion coefficient D j , defined by Reed and Ehrlich [9) as 

(7) 

It can be shown that D j can also be written as 

(8) 

D j is a many particle diffusion coefficient, which describes the motion of the 
center of mass. 

3 The Monte Carlo Simulation of Surface Diffusion 

For the computer simulation of surface diffusion two powerful methods are 
frequently used, the molecular dynamics (MD) scheme and the Monte Carlo 
(MC) scheme. Since most of the studies to be discussed in Sec. 4 are based 
on lattice gas models investigated via MC simulations, we will discuss this 
method in some detail here. 

Within the lattice gas scheme the basic steps of surface diffusion are jumps 
of adatoms from filled initial sites i to adjacent vacant sites f. The activation 
energy for such jumps can be calculated as the energy difference between 
saddle point f:-+/ and single site energy of the initial site fi, [6] 

(9) 
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The associated jump probability Pj is given by 

(10) 

with K, as a normalization factor. This choice ensures full microscopic re
versibility and fulfills the condition of detailed balance [10]. However, the ac
tivation energies L1E and the jump probabilities Pj are partly arbitrary since 
the detailed balance condition does not specify these quantities uniquely [11]. 
In order to optimize the computational time of a Monte Carlo algorithm, a 
suitable normalization of jump probabilities is indispensable. A natural choice 
for '" would be 

( L1Emin) 
K, = "'max = exp - kBT . (11) 

Here L1Emin represents the jump probability for the most favorable physically 
realizable jump [6]. This choice of '" generates the highest possible jump prob
abilities, i.e., minimizes the number of unsuccessful attempts, while avoiding 
jump events with Pj > 1. In some cases this choice of '" leads to an im
practically large number of Monte Carlo steps required for the equilibration 
of the lattice gas and for the determination of the desired surface diffusion 
coefficients. Especially at very low temperatures and in ordered regions of 
the relevant phase diagram, hop events occur very infrequently. Therefore, 
smaller normalization factors '" < "'max can be chosen. However, it should 
be verified very carefully that in such cases the fraction of jumps with jump 
probabilities Pj > 1 is still negligibly small « 0.1%). 

The procedure for simulating jumps in the canonical ensemble has been 
described in some detail in Refs. [6,12] and, therefore, we will present only 
the general schema of the computations. First, for a given lattice gas config
uration an initial site i is randomly picked. If filled, an adjacent final site j is 
randomly selected. If the destination is vacant, a jump may occur with prob
ability Pj (Eq. 10), otherwise, no jump occurs. Thermodynamic equilibrium 
is established before starting a diffusion run at the desired fixed coverage B. 
Approach to equilibrium is monitored by following the configurational energy 
and in case of ordering by measuring corresponding order parameters of the 
system. Equilibrium is assumed to be established when these quantities fluc
tuate about their average values. In a recent publication, we have shown that 
in some systems even minute deviations from thermodynamic equilibrium 
may substantially influence the surface diffusion coefficients [13]. 

In the MC method the tracer diffusion coefficient D t can be easily de
termined from measurements of the mean square displacements of N tagged 
adatoms according to Eq. 6. The displacements L1ri (t) are expressed in units 
of the lattice constant ao . 

The chemical diffusion coefficient Dc can be determined via two different 
approaches, the fluctuation method as well as the Kubo-Green method. In 
essence, the fluctuation method measures the particle number autocorrelation 
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function fn(t)/ fn(O) for a small probed region embedded in the whole two
dimensional lattice. It has been shown in detail how the decay of fn(t)/ fn(O) 
can be used to obtain the chemical surface diffusion coefficient, which is called 
DF [14,15]. Thus, this method is a computer simulation of the field emis
sion fluctuation method [14] used experimentally for determining adsorbate 
diffusion coefficients. For the autocorrelation function one can write 

(12) 

where N is the number of adatoms in the probed area. In Ref. [15] an ana
lytical expression for the autocorrelation function of the particle density for 
a square probe hole was given: 

fn(t) [ (To) 1/2 (t) 1/2 ( (To) )]2 
fn(O) = erf T + 7rTo exp -T - 1 (13) 

In the very long time limit, i.e., when the mean square displacement of the 
diffusion particles Llri(t) is long with respect to the lattice spacing, Llri(t) » 
ao , the correlation function is approximately given by [15] 

f ( ) ~ kBT KT(Pa; 
n t ~ D· 

47r t 
(14) 

Here KT denotes the isothermal compressibility of the adlayer. e = (N}/A 
is the mean density of adatoms, Le., the mean number of adatoms per area 
A [15]. Equation 14 implies that the correlation function decays as t- 1 at 
long times. However, Eq. 14 is valid only in the hydrodynamic regime, Le., 
on a time and distance scale being large compared to a mean-free time and 
mean-free path (;:::: lattice spacing) of the lattice gas model [15]. 

The second method of determining the chemical diffusion coefficient Dc 
is based on the Kubo-Green equation, [9] here written as 

( 8J.-L/kBT) 
81nO T 

'--v-----' 
Thermodynamic factor 

(15) 

where J.-L is the chemical potential, 0 the coverage and D j the jump diffusion 

coefficient given by Eq. 7. (8N)2) is the mean square number fluctuation 

in an area A containing (N) particles on the average. [8 (J.-L/kBT) /81n e]T is 
the well-known thermodynamic factor. 

4 Influence of Phase Transitions on Surface Diffusion 

In this section we focus on recent investigations of surface diffusion processes 
in the vicinity of phase transitions and critical points. This topic is of general 
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interest since at a phase transition the properties of a two-dimensional system 
changes from one phase to another abruptly. In case of a first-order phase 
transition the density (or the magnetization) changes abruptly, while in case 
of a continuous or second-order phase transition the symmetry of the phases 
changes. Most of the studies to be discussed below deal with surface diffusion 
in the vicinity of second-order phase transitions and critical points (Sec. 4.1). 
Unfortunately, only a few studies have addressed the interesting issue how a 
first-order phase transition influences surface diffusion. Some of those studies 
will be discussed in Sec. 4.2. 

4.1 Influence of Second-order Phase Transitions 
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Fig. 1. (a) Mean square number fluctuation as a function of coverage for square 
lattices of 64 x 64 sites. Filled circles denote MC results. 
(b) Normalized chemical diffusion coefficient as a function of coverage for 
'PNN /kBT = 5.28, after [16). 

At equilibrium (i.e. in the absence of macroscopic particle density gradi
ents), D t and Dc often strongly depend both on temperature and coverage 
due to the potential barrier for diffusion and lateral adsorbate-adsorbate in
teractions [6,17,18]. A few years ago, several studies were aimed to enhance 
our understanding of collective adsorbate diffusion in the vicinity of sec
ond order or continuous phase transitions on square lattices. The emphasis 
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of these studies was on the peculiarities in the coverage dependence of De 
near the critical points [16,19]. Results of Monte Carlo (MC) simulations for 
a square lattice with repulsive interactions between nearest neighbor parti
cles indicate that the phase transition induced effects on De are localized in 
rather narrow regions near critical points [16]. The coverage dependence of 
the normalized mean square fluctuations (Fig. 1a), obtained at a tempera
ture Cf'NN/kT = 5.28 well below the critical temperature Cf'NN/kTe = 1.76, 
exhibits a narrow maximum centered around Be = 0.385. In Ref. [16] it was 
found that this maximum increases with increasing lattice size L. This finding 
qualitatively agrees with results obtained via transfer-matrix techniques [16]. 
The coverage dependence of the chemical diffusion coefficient, obtained via 
the Kubo-Green method, clearly exhibits a minimum at the second-order 
phase transition (Fig. 1b) [16]. 
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Fig. 2. 3D plot of the normalized chemical diffusion coefficient In DIDo vs. () and 
Ic,onnllkBT, after [20]. Note the logarithmic axis. Solid lines represent RSRG results, 
symbols denote Me results. Arrows indicate the minima of Dc at the second-order 
phase transitions below Te. 

A comparison between normalized chemical diffusion coefficients of repul
sively interacting adatoms on a square lattice obtained via RSRG treatment 
and MC simulations is shown in Fig. 2. The fit between RSRG and MC data 
is surprisingly good for the whole range of temperatures and coverages. Even 
for low temperatures, T < Te , the deviations between data obtained by these 
quite different methods, are very small. Only in the vicinity of the critical 
point at half coverage there are visible discrepancies. 
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Employing the scaling arguments, it has been shown that in the vicin
ity of continuous surface phase transitions, the temperature dependence of 
Dc has power-law or inverse logarithmic singularities, Dc ()( \LlT\o:/(l-o:) 
or ()( l/\ln \LlTIl (0: > 0 is the specific heat exponent). Very recently such 
anomalies have also been seen in the temperature dependence of Dc (but not 
for Dt) for oxygen adsorbed on W(llO) [21J. Monte Carlo simulations indicate 
that these singularities (i) occur in a very narrow temperature interval near 
the continuous phase transition between disordered lattice gas and ordered 
structures, (ii) can be reproduced only if the lattice size is large (L > 500) 
and (iii) are unequivocally attributable to the well known anomalies of the 
thermodynamic factor in the vicinity of continuous phase transitions [21J. 
Outside the critical region, the temperature dependence of Dc is regular and 
the deviations from the ideal Arrhenius behavior are relatively weak. 

4.2 Influence of First-order Phase 'Iransitions 

Only a few attempts have been undertaken to investigate the influence of 
phase transitions of first-order on surface diffusion. In Ref. [22] a lattice gas 
on a square lattice with nearest neighbor attractive (tpNN > 0) and next 
nearest neighbor repulsive interactions (tpNNN < 0) has been investigated 
in detail. This model shows first and second-order phase transitions at low 
temperatures, depending on the ratio R == tpNNN / tpNN ::; O. 

Fig. 3 shows typical adsorption isotherms () = f(tL) for equilibrated lat
tices gases with nearest neighbor attraction and next nearest neighbor re
pulsion. For R = -2 the isotherms show a wide plateau around () = 0.5 
which corresponds to the p(2 x 1) lattice gas phase [13], which is separated 
from disordered lattice gas by second-order phase transitions. On increasing 
the temperature the plateau disappears above the critical temperature Te. It 
is tpNN/kBTC = 0.90 [13]. With decreasing next nearest neighbor repulsions 
tpNNN the width of the plateau shrinks and finally disappears for the case 
R = -0.5. Second-order phase transitions are still present for R = -1 but 
disappear for R = -0.5. Obviously the p(2 x 1) ordered lattice gas phase 
is stabilized by the next nearest neighbor repulsive interactions. For R = 0 
and tpNN/kBT = 2.40 and also for R = -0.5 and tpNN/kBT = 4.01 almost 
vertical jumps of the surface coverage () are observed, which are attributed to 
first-order phase transitions between low density lattice gas (LG) and high 
density lattice fluid (LF). 

Fig. 4 shows the normalized chemical diffusion coefficient obtained via 
Kubo-Green (DKG) and fluctuation method (DF) vs tpNN/kBT at () = 0.5. 
The T range goes from that corresponding to disordered lattice gas deep 
into the p(2 x 1) ordered region for R = -2, R = -1. For R = 0 the lowest 
temperature studied lies within the miscibility gap of the phase diagram. The 
data were obtained in the canonical ensemble after full equilibration. Here we 
do not intent to discuss the general temperature dependence of the diffusion 
coefficient, which behaves as intuitively expected (see for instance Ref. [22]). 
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Fig. 3. Adsorption isotherm (}(I1,f'PNN) for the lattice gas model with various values 
of R == 'PNNN/'PNN as indicated: (*): 'PNN/kBT = 4.01; (0): 'PNN/kBT = 2.40; (6): 
'PNN/kBT = 1.60; (+): 'PNN/kBT = 0.48; (x): 'PNN/kBT = 0.24. For the calculations 
a 64 x 64 lattice was used. Equilibration was carried out in the grand canonical 
ensemble, after [22J. 

More interesting than that is the comparison of Kubo-Green and fluctuation 
results. For R = -2 and R = -1 DKG and DF agree quantitatively over 
the entire T range. This is true for R = -0.5 and R = 0 only at relatively 
high temperatures. At lower temperatures there are significant deviations 
between both quantities, DF «: DKG. This striking finding is completely 
unexpected since it has been shown in [13] that both methods give identical 
results for lattice gases with various sets of interaction energies. The reasons 
for these discrepancies are not fully understood. However, it is very likely 
that these discrepancies are related to the first-order phase transition at low 
temperatures at R = -0.5 and R = 0 well above Te. Simulations for 256 x 256 
lattices indicate that the observed deviations are not due to finite size effects. 

The deviations between DF and DKG persist at temperatures well above 
the first-order phase transitions between LG and LF at R = -0.5 and R = O. 
Characteristic snapshots such as shown in Ref. [22] indicate that even at 
such high temperatures the lattice gas starts to decompose into tiny domains 
of low and high density, respectively. It is intuitively obvious that even in a 
(thermodynamically) disordered region of the phase diagram, i.e. correspond-
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Fig. 4. Temperature dependence of DF (0) and DKG (x) at () = 0.5 for various 
values of R as indicated, after [22]. For the calculations 64 x 64 lattices were used. 
For R = 0 the critical temperature is given by <pNN / kB Tc = 1.76 (dashed line). 

Fig. 5. D F (0) and DKG (x) vs size of the probed region at () = 0.5 and <pNN / kB T = 
2.40 for the lattice gas model with R = -0.5, after [22]. For the calculations 256 x 
256 lattices were used. 

ing to disordered lattice gas, homogeneity at a given instant exists only on a 
length scale sufficiently larger than remanent correlation lengths. Therefore, 
some of the diffusion runs were repeated for lattices with 256 x 256 sites and 
probe sizes of up to 64 x 64 sites [22]. The results of this calculations are 
shown in Fig. 5. It is obvious that both DF and DKG depends slightly on the 
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probe size in such a way that the deviations between both quantities decrease 
with increasing probe size. However even for probes of 64 x 64 sites the de
viations are still measurable. Therefore it can be concluded that the results 
of diffusion measurements may depend on the length scale of the measuring 
technique. The effect of the length scale is well pronounced in systems with 
substantial remanent "graininess", i.e. in the vicinity of a first-order phase 
transition [22). 

5 Concl usion 

This contribution has clearly shown that the Monte Carlo simulation of sur
face diffusion is a rapidly progressing field of research. It is evident that the 
Monte Carlo method has significantly contributed to the understanding of 
surface diffusion. Additional studies are highly desirable, for instance, to im
prove our understanding of surface diffusion in systems with first-order phase 
transitions. 
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Abstract. We have studied dilute aqueous solutions of nonionic surfactants of gen
eral structure H(CH2)m(OCH2CH2)nOH (abbreviated as CmEn) by an extensive 
series of classical molecular dynamics simulations. The temperature dependent asso
ciation of surfactant molecules and hydrophobic test-particles has been determined 
by Widom's particle insertion method. The simulations were performed at constant 
ambient pressure conditions and temperatures between 275 K and 450 K. Our sim
ulations suggest an entropy driven association process, which can be described well 
by temperature independent enthalpy and entropy contributions. These properties 
can be further reduced to group contributions. The resulting Gibbs free energy of 
transfer was used as a measure of the hydrophobicity and could be correlated with 
the experimental cloud point temperatures of binary aqueous mixtures of these sur
factants. An empirical entropy correction leads to a quantitative description of the 
experimental data. 

1 Introduction 

Nonionic surfactants of the alkylpolyglycol ether type are key ingredients 
of detergent formulations because of their good detergency performance [1]. 
The interfacial and colloidal properties of alkylpolyglycol ethers have been 
the subject of numerous publications. In particular, the phase behavior of bi
nary mixtures of water and nonionic surfactants has been studied intensively 
[2]. In such systems at low surfactant concentrations an increase in tempera
ture induces the transition from the isotropic Ll single-phase into a two-phase 
system with two coexisting liquid phases (W + Ll)' Since the transition is 
accompanied by a change from a transparent isotropic monomer or micellar 
solution into a turbid two-phase system it is usually called a "cloud-point". 
This phase transition is a consequence of a solubility decrease of the non
ionic surfactant molecule with increasing temperature. The lower boundary 
curve of the two-phase region is shifted to lower temperatures with decreasing 
number of ethylene oxide units in the nonionic surfactant molecule. 

It was the purpose of this investigation to study the temperature de
pendent interaction of a single nonionic surfactant molecule with water and 
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with hydrophobic test particles, using molecular dynamics computer simu
lations. The hydrophobic interaction with the test particle is quantified by 
the average chemical potential of this particle in the hydration shell of the 
surfactant molecule. This value is then used as a quantitative measure of the 
hydrophobicity of the solute. The hydrophobicity of the nonionic monomer 
is expected to change with temperature and its chemical composition. This 
should have an influence on the phase behavior of the system and therefore 
on the performance properties of the surfactant solution. 

Here we consider three different nonionic surfactant molecules (C 12E 3 , 

C12E 6 , C SE6) in aqueous solution to study the effect of varying chain length 
of both ether- and alkyl-group. From this limited number of simulations, 
which are based on the same set of interaction parameters, we are able to pre
dict quantitatively the cloud point temperatures of a wide range of nonionic 
surfactants CmEn, introducing in a final step a single adjustable parameter 
(called stabilisation entropy). 

2 MD-Simulations 

All MD simulations were performed with the MOSCITO simulation package 
[3]. The simulated systems consisted of one surfactant molecule surrounded 
by water [4,5]. We employed SPCjE [6] as solvent model, since it reproduces 
the structural and thermodynamical properties of real water in the temper
ature regime above 270 K rather well [7] and gives an almost quantitative 
description of rare gas solubilities in water over the wide temperature range 
from 270 K to 650 K. For the solute molecules we use elements of different 
force-fields. The parameters can be found in the references cited in [8], with 
the exception of some torsion potentials. which we refined by the use of ab 
initio data. A detailed description of the analytic form of the interaction po
tentials and a compilation of all employed parameters are also given in [9]. 
All bond-lengths were kept fixed during the simulation runs. 

3 Test Particle Method and QHI Model 

The present study is aimed to determine the temperature dependence of the 
hydrophobic interaction of nonionic surfactants. For this purpose we study 
the solvent induced interaction of a hydrophobic test particle with nonionic 
surfactant molecules as a whole and with particular parts (groups) of the 
molecule. Since this type of interaction has to be determined as a free energy 
difference, we apply the Widom test particle method [10] as an efficient way 
to evaluate free energies from the simulation trajectories: 

In the canonic ensemble the excess chemical potential /lex (the solvation 
free energy of a solute particle (N + 1) in a N particle solvent) is given by 
[11] 

(1) 
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where f3 = 1 IkB T is the inverse temperature, sNare scaled coordinates of the 
particles with S N = r NIL and L being the box-length of the cubic system. 
Particle N + 1 is the inserted test particle. Eq 1 makes it possible to deter
mine the excess chemical potential as a conventional thermodynamic average 
of a quantity exp ( - f3<fJ). Here ( ... ) N denotes ensemble averaging over the 
configurational space of the N -particle system and <fJ is the potential energy 
of particle (N + 1) inserted into the system of N solvent molecules at position 
SN+I. Although not rigorously correct for the NPT ensemble, application of 
eq 1 serves as a reasonable estimate for the excess chemical potential in the 
present study, since the volume fluctuations [10) were not found to affect the 
data significantly. To speed up numerically the volume integration of eq 1, 
values for the potential energy were evaluated only for insertions in the free 
volume of a configuration. This has been determined by an excluded volume 
map, where the excluded volume is mapped on a grid with approximatly 
0.2 A mesh spacing. The excluded volume is defined by a distance less than 
0.80- between the grid point and any molecular site (0- is the Lennard-Jones 
parameter of the interaction between test particle and molecular site). Fig
ure 1 illustrates this particle insertion method. In preliminary trial runs this 
procedure has been found to affect the obtained chemical potential by less 
than 0.02 kJ mol-I. To ensure a comparable statistics of the test particle 
chemical potential in the vicinity of the surfactant molecules, for any system 
about 120 successful insertions (= insertions into the free volume) per nm3 

and configuration were performed. 

We consider the average chemical potential in the vicinity of a surfactant 
as a quantitative measure of "hydrophobicity" . The construction of the solute 

/' Bulk-Volume 

Fig. 1. Schematic illustration of Fig. 2. Illustration of the QHI solute volume 
the grid based excluded volume partitioning. Around each non-hydrogen cen
map. The grey regions represent ter of the solute molecule a sphere of 0.65 nm 
the excluded volume of the black radius is drawn. The solute volume of a par
particles in the N-particle system. ticular site is defined by all points which have 
The radius of the excluded spheres a larger distance to any other site. Sites be
is determined by the Lennard- longing to particular parts of the molecule (e.g. 
Jones u of the interaction with the alkyl-chain) can be combined to form a group 
test particle. solute volume. 
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volume (the integration volume) is indicated in Figure 2. Around each non 
hydrogen center of the solute molecule a sphere of 0.65 nm radius is drawn. 
The solute volume belonging to a particular site is defined by its larger dis
tance with respect to any other site. As also indicated in Figure 2, the solute 
volume of different sites of the molecule can be added up to form a group. 
The described procedure ensures a strict additive partitioning of the entire 
solute volume. As standard test particle we use a Ne atom (O'Ne-Ne = 3.2 A, 
fNe-Ne/kB = 38.12 K). The use of the rather small Ne-particle is advan
tagous since it guarantees a sufficiently large "free volume" fraction in order 
to ensure appropriate statistics for the obtained excess chemical potential 
values. Moreover, a variation of the test particle type should not affect the 
temperature dependence of the hydrophobic interaction dramatically since 
the excess chemical potential of particles of different size is more or less 
shifted by a constant value [13]. We will refer to values of the excess chemical 
potential for the standard Ne obtained from the outlined solute volume as 
quantified hydrophic interaction (QHI) model data. 

4 Discussion 

In Figure 3a the average chemical potential of the Ne particle in the bulk 
phase as well as in the shell volume of the surfactant C 12E 6 is shown as a 
function of temperature. There are two interesting features: First, we observe 
an intersection of the temperature dependences in bulk and shell. Moreover, 
for different parts of the shell (head-group and alkyl-chain) the intersection 
temperature is shifted significantly We find a typical intersection temperature 
of about 320 K for the alkyl chain and 380 K for the head group, independent 
of the specific surfactant solute molecule. 

In Figure 3b the differences between the chemical potentials of Ne in shell 
and bulk, denoted as free energy of transfer from bulk to shell 

.dtG = /Lex (Shell) -/Lex(Bulk) , (2) 

are shown. To obtain these values, the group contributions are averaged over 
all solute molecules from our simulations. The error bars result from this av
eraging procedure. Figure 3b is indicating that the free energy of transferring 
a hydrophobic particle from the bulk to the solvation shell is a linear function 
of temperature. Therefore, a division into temperature independent enthalpic 
and entropic terms according to 

(3) 

is reasonable. It becomes evident from Figure 3b that the polarity of a group 
controls the temperature dependence of the association with a hydrophobic 
particle. In other words, the transfer-entropy of an apolar test particle from 
bulk to shell depends strongly on the polarity of the group considered. 
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Fig. 3. (a) Comparison of the excess chemical potential of a Ne particle in the 
bulk phase with values obtained for the shell of the surfactant C 12 Es. Note the 
different temperature behavior of head-group (ether-chain plus OR-Group) and 
alkyl-chain. The lines represent fits of the data to polynomials of cubic order. (b) 
Average free energy of transferring a Ne particle from bulk to shell for several 
groups of the studied surfactants. 

From the point of view of the hydrophobic test particle this can be un
derstood by different temperature dependences of the water structure in the 
shell volume with respect to the bulk phase. In the vicinity of an OR-group 
the water structure is very similar to the bulk phase since the OR-group is 
involved into the hydrogen bond network. Therefore no significant tempera
ture dependence is observed. The opposite situation is found for the hydration 
shell of an apolar alkane-chain. 

In addition to the previous observations we find that the average excess 
chemical potential for the total surfactant solvation shell can be expressed 
as weighted sum of the group contributions. Moreover, the shell volumes 
attributed to the groups are rather well linearly related to the stoichiomet
ric coefficients m and n. Assuming temperature independent enthalpies and 
entropies as indicated by the QRI-data, the observed group additivity sug
gests to predict the intersection temperature (where LltG = 0) for the entire 
molecule from the transfer properties of the different groups depending on 
the chemical composition according to 

(4) 

with LltH = (1 - oX) LltHE + oX LltHC and LltS = (1 - oX) LltSE + oX LltSc, 
where oX is the fraction of the hydration shell volumes of head-group and 
alkane-chain (superscripts E and C). We find, that oX can be expressed by the 
stoichiometric coefficients m and n 

oX = m/(m + fn) , (5) 
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Fig. 4. Correlation of the empirically corrected 
intersection temperatures T'. with experimen
tally obtained cloud point temperatures Te. 

where f takes account of the actual size of the constituent groups. f was found 
to be 2.9 (The ether group units are about 3 times as big as the methylen 
groups). The values which we obtained by fitting eqs 3 and 5 to the data 
of Figure 3b, are 6.t HE = 2100 J mol-I, LJ.tHC = 3400 J mol-I, 6.tS E = 
5.3 J K-l mol- 1 and LJ.tSC = 10.7 J K-I mol-I. With these parameters, 
obtained from the simulations of three specific surfactant molecules, we can 
now predict the intersection temperature Ts for any given surfactant molecule 
CmEn. 

In the last part of this contribution we try to relate the predicted inter
section temperature Ts , which is a purely molecular property, with macro
scopic properties like the position of the lower critical solution temperature of 
aqueous surfactant mixtures or experimental cloud point temperatures. This 
approach is motivated by the fact that the location of the critical point of 
a van der Waals gas is determined by its mean field interaction parameters. 
However, in the present case we do not know much about such interaction 
parameters, nor about the structure of an appropriate equation of state. Nev
ertheless, neglecting any further structural aspects of the complex aqueous 
surfactant mixtures and starting from the MD-simulation results, we conjec
ture that the location of the intersection temperature Ts might be related 
to the lower critical solution temperature. A rather heuristic argument for 
such an expectation is the fact, that the transfer free energy of the hydropho
bic test particle changes its sign at Ts , indicating an increasing tendency for 
aggregation with increasing temperature. 

A comparison of the determined intersection temperatures with a large set 
of experimental cloud point temperatures [14] shows that the values are well 
correlated. However, the data do not coincide perfectly since the hydrophobic 
test particle employed is only a very rough estimate for the chemical potential 
of a complete surfactant molecule in a micellar solution. There is a far better 
correlation with the cloud point data when considering constant ether or 
alkane chain lengths. To take the apparently important chain length effect 
into account, we introduce now an empirical term, the so called stabilisation 
entropy LJ.stabS and replace in eq 4 LJ.tS by LJ.tS' 

(6) 
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LlstabS is estimated to be linearly dependent on the size of the surfactant 
groups with LlstabS = m LlstabSC + n LlstabSE. The values were determined 
empirically for optimum correlation to LlstabSC = -0.024 JK- 1 mol- 1 and 
LlstabSE = 0.025 J K- 1 mol-I. The corresponding values for T;, shown in 
Figure 4, allow a quantitative prediction of the cloud point temperatures 
based on the given values, when using the scaling relation Tc = (T's - T'~) ks, 
with the parameters ks =0.1324 and T'~ =314.3 K. 

5 Conclusions 

The hydrophobic hydration of nonionic akylpolyglycol ether type surfactant 
in dilute aqueous solutions have been studied by a series of classical molecu
lar dynamics computer simulations covering the temperature range between 
275 K and 450 K by applying Widom's particle insertion method. The tem
perature dependent association of surfactant molecules and hydrophobic neon 
test particles can be described well by temperature independent enthalpies 
and entropies of transfer of the test particle from the bulk to the hydration 
shell of the surfactant. These transfer properties can be reduced to group 
contributions. The resulting Gibbs free energy has been taken as a measure 
of the hydrophobicity and can be correlated with experimental cloud point 
temperatures of binary aqueous mixtures of these nonionic surfactants. A 
term called stabilisation entropy is introduced in order to take into account 
that interacting groups are not independent, but attached to neighbors within 
the chains. This empirical correction finally enables a quantitative prediction 
of the experimental cloud point temperatures for any kind of alkylpolyglycol 
ether surfactant in water. 
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Abstract. Latest results from molecular dynamics (MD) simulations on perva
poration in the interfacial region between polymer and feed are reported. A bi
nary organic mixture containing 80wt% n-heptane and 20wtpoly(methyl phenyl 
siloxane) (PMPhS) and selected poly(methacrylates) containing 6-membered rings 
like benzyl- (PBMA), cyclohexyl methyl- (PcHMA), a-naphthyl methyl- (PNMA), 
9-anthryl methyl- (PAMA) and 2,4,6-tri-tert-butyl benzyl (PtBBMA) esters of 
methacrylic acid were studied. While a solubility related enrichment factor of 2 
for the benzene component was observed for PMPhS all studied methacrylates 
sorbed preferentially the major component n-heptane. Although there was a fast 
diffusion observed in the case of PMPhS the selectivity is low in comparison to the 
PcHMA containing polymer membrane. 

1 Introduction 

Pervaporation is a concentration gradient driven technique to separate two 
liquids by the transport through suitable dense polymeric membranes. The 
membrane separates a liquid mixture (upstream side) from a vapor phase 
(downstream side), where the transport goes into the direction of the vapor 
[1 J. The low energy costs in comparison to destillation procedures are indus
trially significant, e.g. the removal of water from ethanol with the help of 
poly(vinyl alcohol) (PVA) membranes is already technically utilized. There, 
the ethanol is enriched in the retentate at the upstream side. As reported 
elsewhere [2,3J the separation behavior of poly( dimethyl siloxane) (PDMS) is 
opposite to PYA. PDMS membranes enrich ethanol in the permeate stream 
(downstream side). Up to the present time it is not possible to theoretically 
predict the separation behavior of a membrane material efficiently. It is known 
that the mechanism has to be regarded in close connection with the static 
structure and the dynamic behavior of the separation system (membrane 
plus penetrants) on an atomistic scale. In this connection, detailed molecular 
dynamics (MD) simulations have proven to b useful for studying membrane 
separation problems, e.g. the separation of 90:10 wtethanol/water utilizing a 
PYA membrane has already been successfully simulated [3]. The investiga
tion of amorphous polymer/solvent models enables to follow the movements 
of solvent molecules in the feed and in the polymer membrane over several 

F. Keil et al. (eds.), Scientific Computing in Chemical Engineering II
© Springer-Verlag Berlin Heidelberg 1999



Molecular Dynamics Simulations 135 

nanoseconds and to analyze their intermolecular interactions. Modeling can, 
thus, give a realistic description of important aspects of the pervaporation 
mechanism. Also trends concerning the suitability of a membrane material 
for a given solvent mixture could already be observed under favorable con
ditions [2,4,5]. Our main objectives are to arrive at a better theoretical un
derstanding of pervaporation processes and to help experimentalists to find 
new and more efficient membrane materials particularly for the separation 
of organic liquid mixtures. Industrial interest is focused among others on the 
n-heptane/benzene (80:20 wt%) separation. As membrane polymers mainly 
poly(methacrylic acid esters) and for comparison also poly(methyl phenyl 
siloxane) (PMPhS)[3] have been investigated. Our main objectives are to ar
rive at a better theoretical understanding of pervaporation processes and to 
help experimentalists to find new and more efficient membrane materials par
ticularly for the separation of organic liquid mixtures. Industrial interest is 
focused among others on the n-heptane/benzene (80:20 wt%) separation. As 
membrane polymers mainly poly(methacrylic acid esters) and for compari
son also poly(methyl phenyl siloxane) (PMPhS)[3] have been investigated. 
One question was if there are any methacrylate based membranes in order 
to economically separate this binary organic a mixture mentioned? To an
swer this question a study of selected poly( methacrylates) containing cyclic 
structures was started because experimentalists observed that methacrylates 
with 6-membered rings may have positive separation effects on the partic
ular organic mixture. Latest, partly still preliminary, results of simulation 
are available for benzyl- (PBMA), cyclohexyl methyl- (PcHMA), a-naphthyl 
methyl- (PNMA), 9-anthryl methyl- (PAMA) and 2,4,6-tri-tert-butyl benzyl 
(PtBBMA) esters of methacrylic acid (table 1). 

Table 1. Methacrylate based polymers 

Repeat unit Ester groups Abbreviation 

f[J 
Rl= V Cyclohexyl methyl- =i> PcHMA 

R2= ~ Benzyl- =i> PBMA 

R3= r-8 a-Naphthyl methyl- =i> PNMA 

R4= OO© 9-Anthryl methyl- =i> PAMA 

Rs= ~ 2.4,6-Tri-tert-butyl benzyl- =i> PlBBMA 
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The transport of a small molecules through dense amorphous polymers 
can be described by a solution-diffusion model, i.e. first the penetrant molecules 
have to be solved first in the membrane at the upstream side. Considering 
the fact that in pervaporation processes, besides the permeate pressure, the 
sorptive stage at the upstream side of the polymer membrane is often very de
cisive for the separation behavior, energetical interactions between the solvent 
molecules and the polymer segments are important for the intended separa
tion effect. After the solution stage, the penetrants have to move through 
the membrane by diffusion. This process can only occur in the free volume 
of the polymer. Thus, usually polymers with a high amount of free volume 
(low density polymers) allow a faster diffusion then more dense materials. 
The transport of given components through a membrane can be described 
as a mass flux J (in kg/m2). Another important membrane parameter is the 
enrichment factor f3 which can be defined as 

f3B = (WB)permeate 

(WB)/eed 
(1) 

with W B being the concentration of one component (B: benzene) to be re
moved from the feed stream (1). The parameter f3B is very sensitive to the 
feed composition, because in pervaporation the flux of one component can 
change quite rapidly due to interactions with the other component (coupling 
of fluxes). Therefore, the prediction of enrichment or selectivity is often very 
difficult. The situation is often further complicated by considerable swelling 
of the polymer matrix under the influence of the respective feed mixture. 

2 Simulation Details 

In the present investigation MD simulations of pervaporation processes were 
usually carried out over a period of one to four nanoseconds with system sizes 
of about 5000 Atoms. The size of any simulated system is generally limited 
by the power of the available computers. Until now all simulations were per
formed on IBM RS6000 and SGI Octane workstations and also on the CRAY 
C916 of the Deutsches Klimarechenzentrum (DKRZ) in Hamburg. This pa
per describes investigations of the interfacial region between several polymers 
and the mentioned solvent mixture. The poly(methacrylates) studied include 
homo- and copolymers as well as crosslinked polymers. Extensive packing 
and equilibration procedures are necessary to create the suitable models. 
To perform MD simulations at first the basic monomer units of interest are 
built. The construction of the respective polymer chain containing 100 re
peat units is done by the Polymerizer module of the MSI software [6]. These 
chains undergo a static structure optimization via the steepest descents en
ergy minimization. An initial amorphous packing of the respective polymer 
chain into a characteristic volume element (box) is done by the Amorphous 
Cell module. This module uses a modified Theodorou-Suter approach [6,7] 



Molecular Dynamics Simulations 137 

as packing algorithm. The packing cells to be filled with chain segments had 
a side length of 2.45nm in two dimensions while the third dimension after 
packing and equilibration is determined by the experimental density of the 
polymer. In cases where no experimental densities were available, the SYN
TRIA module of the MSI software [6) was utilized to predict the density 
at 303K. Despite SYNTHIA cannot explicitly consider effects like structural 
isomerism, bifunctionality and crosslinking a good consistence between mea
sured densities (density gradient column method) and SYNTRIA calculation 
results (table 2) was observed in cases with available experimental data. 

Table 2. Densities of the examined poly (methacrylates) in gcm- 3 

Polymer SYNTHIA Measured 

Prediction 

PAMA 1.222 

PNMA 1.198 

PBMA-co-PGMA 1.178 1.19± 0.01 

PcHMA-co-PGMA 1.110 1.11 ± 0.01 

PtBBMA 0.967 

If a polymer, like the investigated methacrylates, contains a certain amount 
of 6-membered rings it is usually not possible to perform the initial packing 
routine at the real experimental density. This is mainly related with the in
troduction of a number of overlaps between adjacent rings and backbone 
bonds (catenations and spearings) by the packing algorithm. Therefore, the 
initial packing has to be performed at very low initial densities (e.g. 0.05 
g cm-3). Nevertheless, there may be still some remaining ring catenations 
which have to be removed by a laborious manual procedure. Afterwards the 
box length has to be decreased via a stepwise procedure, where after each 
compression stage a careful equilibration (with an integration time of 0.1 fs 
only), has to be carried out. Any manipulation of the system causes unre
alistic tensions that have to be removed during the following equilibration 
procedures. The single polymer box and the single solvent box were packed 
and equilibrated separately. There, 2D-PBC had to be used in the a and b 
directions, while penalty surface potentials force the non-periodic coordinates 
of the constituent atoms into a layer of a thickness of about 5nm along the c
direction. The layered interface simulation models are then composed of two 
sub-packing models in each case, one for the polymer and one for the organic 
feed mixture. Both cells are layered along the third dimension axis followed 
by a cautious approach of the cells' molecules (figure 1). Subsequently, the 
MD data production can be started up to a duration of several nanoseconds 
under 3D-PBC conditions. For the potential energy calculation the PCFF 
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Fig. 1. Packed cell with PNMA-polymer and n-heptane/benzene mixture (80:20) 
before equilibration (light gray: polymer, medium gray: n-heptane, black: benzene). 

forcefield [6] was applied. The following simulation parameters are utilized in 
all dynamic runs: constant number (N) of atoms, constant volume (V) and 
303K (NVT). The cell dimensions are in all examples a,b= 2.45nm and c as 
given in table 3. Two advanced MD simulation stages of the initial adsorp-

Table 3. Cell length (c) and numbers of atoms (N) for the investigated models. 

Polymer c (nm) N 

PMBPhS 7.15 3709 

PBMA-co-PGMA 6.94 4040 

PcHMA-co-PGMA 7.37 4539 

PNMA 7.90 4548 

PAMA 8.89 5148 

PtBBMA 9.73 6102 

tion at the interfaces are shown for PNMA at 1.0 and 2.0 ns in the following 
figure 2. 

So far, the interface simulations reflect a preferential initial n-heptane 
sorption. After a simulation time of 1 ns one single n-heptane molecule out 
of 54 left the solvent cage and got completely solved into the PNMA-matrix 
while this number increased to three after 2 ns. Figure 3 represents PMPhS 
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Fig. 2. Dynamic states of the PNMA-polymer and solvent at 1.0 ns (top) and 2.0 ns 
(bottom) of simulation time (light gray: polymer, medium gray: n-heptane, black: 
benzene). 

after 3.5 ns of MD. There the sorption processes were faster then in all 
methacrylate systems investigated so far. The main difference between the 
investigated methacrylates and PMPhS is that the latter shows a preferential 
solubility-based selectivity for benzene with an enrichment factor f3B = 2 [3]. 
PMPhS would, therefore, preferentially remove benzene from the feed. 

Fig. 3. Dynamic state of the PMPhS-polymer and solvent at a simulation time of 
3.5 ns (light gray: polymer, medium gray: n-heptane, black: benzene). 

In order to reduce extreme swelling crosslinking elements are often intro
duced in the starting material of a polymer synthesis. We have, therefore, 
also investigated the poly( cyclohexyl methyl methacrylate )-co-poly(glycidyl 
methacrylate) (PcHMA-co-PGMA) as a crosslinked model. Hitherto, there 
are no suitable modeling modules available for the construction of crosslinked 
polymers. Extensive construction strategies were employed to obtain these 
two component polymers. Nevertheless, as shown in figure 4 swelling effects 
can be observed as expected also in reality. 

In comparison to the PNMA-homopolymer (figure 2), there is even more 
swelling of the PcHMA-copolymer visible after 2.0 ns at the polymer jsolvent 
interface. While the preferential n-heptane selectivity is qualitatively as in 
the case of PNMA, the initial sorption process occurs considerably faster 
in PcHMA-co-PGMA (figure 4). Six n-heptane molecules are already sorbed 
completely after 2.0 ns, that means 11 % of the major component of the feed. 
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Fig. 4. Dynamic state of the PcHMA-co-PGMA-polymer and solvent at a simula
tion time of 2.0 ns (light gray: polymer, medium gray: n-heptane, black: benzene). 

Yet, no sorbed benzene-molecules are observed, that confirms the prediction 
of a high n-heptane selectivity of the PcHMA-co-PGMA material. 

3 Temperature Distribution 

A typical problem for simulations of interfaces with very different mobilities, 
e.g. solid phase and liquid phase, is the effect that, while the overall average 
system temperature as intended is at 303K, the individual phases may show 
different temperature averages. For the already mentioned PMPhS system [3] 
the overall temperature was 303K, while the polymer phase was at 310K and 
the feed at 290K. These temperature differences were even smaller «4K) for 
the investigated methacrylates. Therefore, no specific action was necessary 
to reduce these effects. 

4 Conclusions 

MD simulations were used to obtain some qualitative information about the 
separation of the given binary organic mixture by pervaporation membranes. 
It was possible to create well equilibrated highly complex interface models 
mainly of different methacrylates and a feed mixture of n-heptane/benzene 
(80:20 wt%). From the investigated methacrylates by now, after 2ns of MD, 
only the PcHMA-co-PGMA showed already a significant tendency of a strongly 
preferred n-heptane removal from the feed. Also the other methacrylates seem 
to deplete the feed from the majority component n-heptane. For the system 
PMPhS-benzene/n-heptane, on the other hand, an enrichment factor of 2 of 
benzene was observed from the MD simulation. The initial sorption and dif
fusion processes of the other methacrylates are, however, considerably slower 
than in the cases of the PcHMA copolymer and PMPhS. Therefore, to ob
tain more representative data additional MD simulations are needed in these 
cases. Furthermore, it is intended to include studies of methacrylates with 
a very low density (predicted by the SYNTHIA module) in the simulations. 
Those polymer membranes are supposed to result in even faster sorption and 
diffusion processes. 
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Abstract. We present a continuation method for low-dimensional invariant sub
spaces of a parameterized family of large and sparse matrices. Such matrices typ
ically occur when linearizing about branches of steady states in reaction-diffusion 
equations. Our continuation method provides bases of the invariant subspaces de
pending smoothly on the parameter. From these we can compute the corresponding 
eigenvalues efficiently. The predictor and the corrector step are reduced to solving 
bordered matrix equations of Sylvester type. For these equations we develop a bor
dered version of the Bartels-Stewart algorithm. The numerical techniques are used 
to study the stability problem for traveling waves in two examples: the Ginzburg
Landau and the FitzHugh-Nagumo system. In these cases there always exists a 
simple or multiple eigenvalue zero while the remaining eigenvalues determine the 
stability. We demonstrate the difficulties of separating these critical eigenvalues 
from clusters of eigenvalues that are generated by the essential spectrum of the 
continuous problem. 

1 Introduction 

Spatial discretizations of reaction-diffusion systems lead to parameterized 
dynamical systems it = F(u,.\) of large dimension. A considerable amount 
of software has been developed for pathfollowing branches of steady states, 
periodic and homo clinic orbits and their bifurcations (see e.g. [6], [14]). How
ever, transferring these techniques to large and sparse systems is still a par
tially developed subject. One topic in this area is the calculation of low
dimensional invariant subspaces of matrices that occur as Jacobians A(s) = 
DuF(u(s), -\(s)) at branches (u(s), .\(s)) of steady states. While it is possible 
to use the (easier accessible) singular subspaces for the branches themselves 
[12], invariant subs paces seem to be indispensable for questions of stability 
and local approximation of invariant manifolds [1]. 

In this paper we set up the basics of a continuation method for low
dimensional invariant subspaces of parameter-dependent large matrices. Es
sentially, we combine well-known predictor-corrector methods with a gener
alization of the Bartels-Stewart algorithm ([9]) that allows us to reduce to 
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linear systems with bordered matrices of the type 

b)' T E ~,¢,¢ E IRm,k,k« m. 

To these systems we apply the method of [10] which works with a black box 
solver for the large principle submatrix D"F - T I and which is robust even 
if this matrix is almost singular. As an application we consider the stability 
problem for traveling waves in reaction diffusion systems of spatial dimension 
one. The particular difficulties in this case arise from the essential spectrum 
(present in the infinite problem) that has to be separated from a few isolated 
eigenvalues which determine the stability. 

This paper is largely based on the theses of the second [13] and the third 
author [19]. Full details will be provided in a forthcoming paper [2]. 

2 Continuation of invariant subspaces 

We consider a family of matrices A(s) E IRm,m depending smoothly on a 
parameter s E IR. Our aim is to compute smooth matrices ¢( s) E nrn,k the 
columns of which form a basis of a k-dimensional subspace R( <p( s)) invariant 
under A(s), i.e. 

A(s)¢(s) = ¢(s)A(s) (1) 

for some A( s) E IRk,k. With suitable choices of ¢, ¢o E IR1n ,k we will normalize 
¢( s) according to 

(2) 

2.1 Existence and smooth dependence 

Assume that for some So E IR we have a simple invariant subspace R( <Po), <Po E 
IRm,k of A(so) (see [18] for this notion) i.e. rank ¢o = k, A(so)<Po = <poAo 
for some Ao E IRk,k and R(¢o) is the unique maximal subspace E c lRm 

satisfying A(so)(E) c E,o-(A(so)IE) c o-(Ao). Our continuation strategy is 
based on the following result (see [13]). 

Theorem 1. Under the above assumptions choose ¢ E IRm,k such that ¢T <Po 
is nonsingular. Then the implicit function theorem applies to the operator 
equation 

(3) 
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at cP = cPo, A = Ao, s = so. In particular, the partial derivative 

D T('/' A )(H ..1) = (A(So)H -: HAo - cPofl ) HE lRm,k ..1 E lRk,k 4>,A 'f'0, 0, So , cPT H ' , 

is nonsingular and for s close to So there is a unique branch of solutions 
cP(s),A(s) of (1), (2). Moreover, R(cP(s)) is a simple invariant subspace of 
A(s). 

2.2 The predictor and the corrector step 

Assuming the conditions of Theorem 1 we can compute the tangent (Ho, flo) = 
(cP'(so),A'(so)) to the branch (cP(s),A(s)) at s = So from a linear system of 
dimension (m + k)k 

( A(So)Ho -: HoAo - cPo..1o) = (-A'(So)cPo) 
cPTHo 0 

(4) 

This system is a Sylvester type matrix equation for Ho (cf. [9]) bordered 
by k2 extra equations and unknowns. Since u(Ao) c u(A(so)) the Sylvester 
equation is singular and it is essential to use the bordering for a stable solution 
algorithm (see 2.3). Given a step size 6 the predictor is given by (cP1, AI, Sl) = 
(cPo, Ao, so) + 6(Ho, flo, 1). 

In the corrector step we solve the system (3) with (s, 4>, cPo) replaced by 
(S17 cPo, cP1). Starting at the predictor (cPl. AI), Newton's method generates 
the sequence (cPv, Av), l.I ~ 1 defined by 

( A(sI)cPv+1 - *V+1 Av - cPvAv+1) = (-~Av) 
cPo cPv+ 1 cPo cP1 

(5) 

This system is of the same type as (4) and it is solved by the algorithm in 
2.3. We notice that this approach differs from the conventional realization of 
Newton's method ([5], [4]) where Av+1 is eliminated from the first equation 
of (5) with the help of the second equation. 

2.3 A bordered Bartels-Stewart algorithm 

The linear systems to be solved in (4) and (5) are of the form 

(6) 

where H, B, 4> E IRm ,\ C, A,..1 E IRk,k and u(A) C u(A). We compute the 
complex Schur decomposition of the matrix A (see [9]). 

QH AQ = Ii, QH Q = I, Ii upper triangular. (7) 
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This involves solving an eigenvalue problem of low dimension k « m. The 
system (6) may then be transformed by replacing the matrices H, .1, B, C,.Ii 
by iI = HQ, ii = .1Q, B = BQ,C = CQ, A. Since A is upper triangular, 
we can compute the columns iIj , iij of iI, ii similar to the Bartels-Stewart 
algorithm ([9]' 7.6.3) by a sequence of bordered linear systems 

Notice that the upper left block A - Aj,j! is a large sparse and (almost) 
singular matrix, but that the bordered matrix is generally well conditioned. 
Linear systems of this type occur quite frequently in bifurcation problems 
and numerous approaches have been developed for their stable and efficient 
solution. We propose to use the mixed block elimination method of Govaerts, 
Pryce [10J. It requires for A-Aj,j! and its transpose a black box solver which 
is normwise backward stable. It is obvious how to compute the matrices Hand 
L1 from iI and ii. Moreover, we can avoid complex arithmetic by transforming 
to quasi upper triangular form in (7) (see [13J for the details). 

2.4 Some details on the implementation 

The previous sections just describe the core linear algebra used in our con
tinuation method. The whole framework has several additional numerical 
features which will be briefly mentioned here (see [13]' [2J for the details). 

• An initial guess for an invariant subspace of prescribed dimension k is 
obtained by well known methods such as Cayley transforms combined 
with orthogonal subspace iteration. ([9], [8]) 

• A standard step-size selection strategy is used. If the matrices A (s) arise 
from linearizing about a steady state branch of a dynamical system it = 
F( u, >..) then both continuation methods must be well suited to each other. 

• The corresponding k-dimensional invariant subspace R(lJr( s» of AT (s) 
can be computed from one additional linear system. 

• The normalizing matrices ¢ are constantly re-orthogonalized along the 
branch in order to avoid ill-conditioning. 

• Along the branch one tries to keep the dimension of the invariant sub
space minimal but above k. Typically, changes in dimension occur when 
two real eigenvalues collide and become complex or vice versa. The bases 
of the left and right invariant subspaces are used to detect changes in 
dimension and provide initial guesses for the updated subspaces. Cur
rently no device is implemented to guarantee that the continued part of 
the spectrum contains the rightmost eigenvalues in the complex plane. 
For some interesting algorithms in this direction we refer to [17], [8J. 
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3 Stability of traveling waves 

Consider a parabolic system 

x E IR, t ~ 0, (8) 

where u(x,t) E IRn,A E IRn,n. Traveling wave solutions of this system are 
special types of bounded solutions u(x, t) = v(x - ct) where 

A necessary condition for the asymptotic states u± is f(u±,O) = 0. In case 
u_ = u+ we have a pulse and a front solution otherwise. In a moving coor
dinate frame v(~, t) = u(~ + ct, t) equation (8) transforms into 

Vt = Avee + cve + f(v,ve), ~ E IR, t ~ 0, (9) 

with stationary solution v(~, t) := v(~). The stability is determined by the 
spectrum of the linearization of (9) at v given by 

Ut = Auxx + B(· )ux + C(-)u =: Pu 

where B(x) = cI + D2!(v(x), v'(x», C(x) = Dd(v(x), v'(x». 

Since (8) is autonomous, the operator P has the eigenvalue zero. If the re
maining spectrum is in the half plane Re :::; -"I < ° then the wave turns 
out to be stable with asymptotic phase. We assume that the traveling wave 
has been computed on a finite interval [x _ , x + J to sufficient accuracy by 

standard methods for homo clinic or heteroclinic orbits in the steady state 
equation of (9) ([6]). Then we consider the eigenvalue problem Pu = AU on 
[x_, x+ J with either periodic or Dirichlet boundary conditions. An analysis 
of the perturbation of the spectra under this process is carried out in [3J. The 
finite problem is further discretized with constant step size h = (x+ -x_)/M 
using centered second-order differences. One obtains a large block tridiagonal 
matrix (with some bordering due to the boundary conditions) for which we 
compute small invariant subspaces by the methods of section 2. 

4 The complex Ginzburg-Landau equation 

The complex Ginzburg-Landau equation is a well known modulation equa
tion, used in physics, and chemistry [15J which depends on two parameters 
a, f3 E IR. We consider a two-parametric version ([16]) 

Ut = (1 + ia)(uxx - (1 + if3)2u + (1 + if3)(2 + if3)luI2u). (10) 

We investigate the stability of the stationary solution v(x) = cosh(x)-(l+i/3) 
of (10) (see [11]) where u± = limx--+±oo v(x) = o. The linearization £0;,/3 of 
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(10) at v is given in real and imaginary parts by the following two-dimensional 
system 

where 

The operator L a ,f3 has a zero eigenvalue with geometric multiplicity at least 
two and corresponding eigenfunctions v' and iV. The full spectrum for the 
values x± = ±20, h = 0.04, a = -2, f3 = 3 and the essential spectrum are 
shown in Fig. lea). The essential spectrum consists of two half-lines which 
cross the imaginary axis on the critical curve (cf. [3]). 

f3(f3 + 2a) - 1 = O. (11) 

We continue a four-dimensional subspace that belongs to the zero eigen
values and the two real eigenvalues encircled in Fig. lea). With increas
ing f3 the stable eigenvalue passes zero (as shown by Mielke this happens 
precisely on the curve (11) where a generalized eigenvector corresponding 
to iv appears), then forms a complex pair with the unstable eigenvalue 
which finally moves to the left half plane. For the numerical eigenvalues 
(x± = ±10, h = 0.004) a perturbation of this motion appears in l(b) (see 
[3] for details). This sensitive behaviour could only be revealed since the 4D
subspace stays separated and the remaining 4 x 4 eigenvalue problem can be 
solved very accurately. 

5 The FitzHugh-Nagumo system 

The FitzHugh-Nagumo equation is a model equation for the propagation 
of nerve impulses [7]. We consider a two-dimensional system with a small 
additional diffusive term 

Vt = Vxx + F(v,w), Wt = fWxx + G(v,w) 

1 3 
F(v,w)=v-"3V -w, G(v,w)=q>(v+a-bw), a,b,q>EIR. 

For the parameters a = 0.7, b = 0.8 there is a branch containing stable and 
unstable waves (for details see [2]). We consider a specific part of the stable 
branch and follow again a four dimensional subspace with decreasing param
eter q>. Fig. 2(a) shows real and imaginary parts of the eigenvalues on this 
branch. While the two largest real eigenvalues remain separated from the es
sential spectrum the other two move towards it. The situation at q>crit = 0.062 
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Fig. 1. Ginzburg-Landau equation, a = -2 

is shown in Fig. 2(b). At this point our algorithm breaks down (due to stag
nation of the continuation steps) because these two eigenvalues can no longer 
be separated from the cluster that approximates the essential spectrum. Of 
course, concerning the stability problem there is no need to further include 
these eigenvalues in the continuation. 
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Fig. 2. FitzHugh-Nagumo, stable wave, x_ = 0, x+ = 65, h = 0.1 



A continuation framework for invariant subspaces 151 

References 

1. W.-J. Beyn and W. KleB. Numerical Taylor expansions of invariant manifolds 
in large dynamical systems. Numerische Mathematik, 80:1-38, 1998. 

2. W.-J. Beyn, W. KleB, and V. Thiimmler. Continuation methods for low
dimensional invariant subspaces with applications to dynamical systems of large 
dimension. in preparation, 1999. 

3. W.-J. Beyn and J. Lorenz. Stability of traveling waves: Dichotomies and eigen
value conditions on finite intervals. Preprint SFB 343 No. 094, University of 
Bielefeld, 1998. 

4. F. Chatelin. Eigenvalues of matrices. John Wiley & Sons, 1993. 
5. J. W. Demmel. Three methods for refining estimates of invariant subspaces. 

Computing, 38:43-57, 1987. 
6. E. Doedel, T. Champneys, T. Fairgrieve, Y. Kuznetsov, B. Sandstede, and X.-J. 

Wang. A UT097 Continuation and bifurcation software for ordinary differential 
equations (with HomCont). Concordia Univ. Montreal, 1997. 

7. R. FitzHugh. Impulses and physiological states in theoretical models of nerve 
membrane. Biophysical Journal, 1:445-466, 1961. 

8. T. J. Garratt, G. Moore, and A. Spence. A generalised Cayley transform for 
the numerical detection of Hopf bifurcations in large systems. In Contributions 
in numerical mathematics, pages 177-195. World Sci. Publ., 1993. 

9. G. H. Golub and C. F. van Loan. Matrix Computations. The John Hopkins 
University Press, 2 edition, 1989. 

10. W. Govaerts and J. D. Pryce. Mixed block elimination for linear systems with 
wider borders. IMA J. Numer. Anal., 13:161-180, 1993. 

11. L. M. Hocking and K. Stewartson. On the nonlinear response of a marginally 
unstable plane parallel flow to a two-dimensional disturbance. Proc. Roy. Soc. 
London Ser. A, 326:289-313, 1972. 

12. H. Jarausch. Analyzing stationary and periodic solutions of systems of 
parabolic partial differential equations by using singular subspaces as reduced 
basis. Math. Comput. Modelling, 20:69-87, 1994. 

13. W. KleB. Numerische Approximation lokal invarianter Mannigfaltigkeiten in 
gmen dynamischen Systemen. PhD thesis, University of Bielefeld, 1997. 

14. Y. Kuznetsov and V. Levitin. CONTENT: A multiplatform environment for 
analyzing dynamical systems. CWI Amsterdam, 1997. 

15. C. D. Levermore and M. Oliver. The complex Ginzburg-Landau equation as 

a model problem. In Dynamical systems and probabilistic methods in partial 
differential equations, pages 141-190. Amer. Math. Soc., 1996. 

16. A. Mielke. The complex Ginzburg-Landau equation on large and unbounded 
domains: sharper bounds and attractors. Nonlinearity, 10:199-222, 1997. 

17. R. Neubert. Predictor-corrector techniques for detecting Hopf bifurcation 
points. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 3:1311-1318, 1993. 

18. G. W. Stewart and J. Sun. Matrix perturbation theory. Academic press, 1990. 
19. V. Thiimmler. Numerische Stabilitatskriterien fUr wandernde Wellen. Diploma 

thesis, University of Bielefeld, 1998. 



Sensitivity Analysis of Multicomponent Mass 
Transport in Porous Solids Descibed 
by Partial Differential Equations 

Pavel Capekl and Andreas Seidel-Morgenstern1,2 

1 Otto-von-Guericke Universitat 
2 Max-Planck-Institut fur Dynamik komplexer technischer Systeme 

D-39106 Magdeburg, Germany 

Abstract. The sensitivity analysis of multicomponent mass transport in porous 
media is utilised for prediction of suitable experimental conditions and, conse
quently, for parameter estimation . Experimental data obtained using a suitable 
set-up were analysed for this purpose. The system of non-linear partial differen
tial equations is first discretized in space and the resulting system of differential
algebraic equations (DAEs) is solved together with the derived system of DAEs for 
sensitivity functions. 

Introduction 

A proper description of mass transport of multicomponent mixtures inside 
porous materials is essential in the simulation and design of catalytic reactors, 
adsorption and membrane separation processes. Two convenient approaches 
to model the transport of gases in porous media are the Dusty Gas Model [1] 
or the Mean Transport-Pore Model (MTPM) [2]. Both models are based on 
the Maxwell-Stefan theory modified for mass transport of multicomponent 
gaseous mixtures in porous materials. They use two types of parameter sets: 
transport properties of gases and textural parameters of the porous solids. 
The transport properties of gases are usually known and do not depend on 
porous solids used. However, the textural parameters are usually not accessi
ble on a theoretical basis and have to be determined experimentally. In order 
to estimate these textural parameters various techniques have been proposed 
and used. A particularly useful one utilises the fact that a temporary total 
pressure difference arises in a modified diffusion cell of the Wicke-Kallenbach 
type (Fig. 1) after perturbing the input composition [2]. The course of this 
spontaneous pressure difference allows the determination of all textural pa
rameters. The cell contains porous pellets (length L) mounted in parallel in a 
stainless steel disk. The lower chamber of the cell is closed and equipped with 
a pressure gauge. Before the start of a run the cell was swept with gas B. At 
the start of the run a concentration step change at the inlet of the upper cell 
part was carried out by replacing gas B by another gas A (B --+ A). Common 
gases experimentally used are hydrogen (H2), helium (He), nitrogen (N2 ), 

argon (Ar) and their mixtures. 
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x=L 

x=O 
7 

3 

Fig. 1. Scheme of the modified WK cell. I-Metallic disc with cylindrical holes for 
pellets, 2-pellets of total volume Vp and length L, 3-pressure transducer, 4-gas inlet, 
5-gas outlet, 6-upper chamber of volume VeL, 7-lower chamber of volume VeO 

The dynamics of the diffusion cell can be described by non-linear parabolic 
partial differential equations (PDEs) originating from mass balance consider
ations. The experimental method and, consequently, the PDE model should 
be applicable to estimate the textural parameters of very different porous 
solids. However, depending on the particular porous structure, optimum ex
perimental conditions will be very different in each case. To quantify this as
pect, a sensitivity analysis of the PDE system should be quite instructive [3]. 
It is the aim of this work to perform a numerical study of multicomponent 
mass transport in the Wicke-Kallenbach cell (WK cell) including sensitiv
ity functions and to specify experimental conditions for reliable parameter 
estimation. The sensitivity analysis of MTPM was chosen to describe the in
traparticle mass transport because this model best fitted experimental data. 

Combined Isothermal Mass Transport 

The MTPM is based on a few simplifying assumptions. Important for this 
work is the assumption of three averaged values of textural parameters, 'ljJ, 
(r) and (r2), which are capable of modelling a real porous network. They are 
material constants which depend on neither a total pressure nor gases used. 
Their physical meaning is the following: 'ljJ is the ratio of total porosity, E, 
and tortuosity; (r) is the mean pore radius; (r2) is the mean of the square 
of transport pore radii. The two last parameters appear always in products 
with the first parameter, 'ljJ, and, therefore, the vector of modified parameters, 
e, is introduced. Roughly speaking, each modified parameter is related to a 
different kind of mass transport: 
• Bl == 'ljJ E (0.01, E) diffusion in the region of continuum 
• B2 == 'ljJ(r) E (10- 11 ,10-5 ) mass transport in Knudsen region 
• B3 == 'ljJ(r2) E (10- 2°,10- 10) viscous flux contribution. 
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All parameters are positive numbers lying usually in the intervals given above. 
In the model driving forces for combined mass transport of n components in 
a gaseous mixture are expressed by means of molar concentration gradients, 
oe/ox. The spatial coordinate in the porous material is denoted by x E (0, L) 
and e denotes the column vector with the component molar concentrations 
Ci as elements. The total molar concentration, CT, is given by the sum of all 
molar concentrations, CT = L:~=1 Ci. The constitutive equations written in 
terms of molar flux densities, N, and molar concentration gradients have the 
general mathematical structure [4] 

oe 
F(e, e) eN + G(e, e) e ox = o. (1) 

The elements of square n x n matrices, Hand G, are non-linearly dependent 
on molar concentrations, e, and textural parameters, e. A simplified version 
of MTPM [5] was used below for calculation of the matrix G. It is worthwhile 
to note that the model is linear and implicit in molar flux densities, N. 

Balance of Diffusion Cell 

The constitutive equations (1) are supplemented by n balances of components 
inside the porous pellet 

oe oN 
A(e)e- =--

ot ax 
(2) 

where t is time and A(e) is generally a n x n square non-symmetric ma
trix with off-diagonal elements, aij = oqi/OCj, and diagonal elements, aii = 
oqi/ OCi+e. Herein qi denotes the surface concentration ofthe i-th component. 
If no adsorption occurs in the porous solid, the matrix A is diagonal with 
identical elements, au = e. The mass balance of the upper chamber forms 
the boundary condition of (2) at x = L. The chamber balance is formulated 
assuming a well mixed volume and constant total molar concentration, CT, 

where FL denotes input flow rate and C L denotes the vector of input molar 
concentrations. In the small gas volume below the pellets (Le. at x = 0) again 
ideal mixing is again assumed. Thus, the second boundary condition of (2) is 

V, oe(t,O) = _ Vp N( 0) 
cO ot L t, , (4) 

Initial conditions for the system of equations are given by 

e(O, x) = {ci, ... ,c~}T (5) 
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with vector elements, ci, ... ,c~, denoting the vector of constant component 
concentrations attained by sweeping the cell before the start of the step 
change. 

The PDE system(l) - (5) was solved using the method of lines dividing 
the pellet body into m disjunctive cells [4]. After discretization the system of 
PDEs together with boundary conditions was transformed into a system of 
n x (m + 2) differential-algebraic equations (DAEs), where the vector c(t, x) 
was approximated by the vector u(t)and (2) by 

E(u(t)) e du(t)/dt = f(u(t), 8) (6) 

The specification of initial conditions of this transformed system is straight
forward. 

u(O) = {ci, ... ,c~,ci, ... ,c~, ... }T. 

Sensitivity Functions 

The matrix W (t) of sensitivity functions, Wij, is defined as 

Wet) == au(t)/aln8. 

(7) 

(8) 

The partial derivatives of state variables u(t) were chosen with respect to the 
natural logarithm of 8 because of problem scaling where elements of 8 differ 
in orders of magnitude. Using (8) the following set of DAEs can be derived 
by partial differentiation of (6) with respect to the natural logarithm of the 
parameter vector 8 

a (dU) dW a a 
au E(u)eTt eW+E(u)eTt= auf(u,8)eW+aln8f(u,8) (9) 

Here, u and W were used as shorthand for u(t) and Wet), respectively. The 
initial conditions of (9) follow from the fact that the system is in equilibrium 
and does not depend on transport parameters 

W(O) = o. (10) 

The system (9) for sensitivity functions Wet) has to be solved together with 
(6). The whole set of DAEs was solved in this work by implicit integrator 
DASSL [6]. As an appropriate number of disjunctive cells, m = 128 was 
determined by repeated integration and by comparison of results for vari
ous typical conditions. Partial derivation with respect to the vector of state 
variables u and the vector parameters 8 in (9) was carried out analytically. 
A natural requirement of Newton iteration built in the DASSL code is the 
evaluation of the Jacobian matrix for (6) and (9). The storage format chosen 
for this was the compressed sparse column [7]. After grouping of the column 
indices the Jacobian matrix was calculated numerically by finite differences. 
The solution of linear equations resulting in the Newton iteration was deter
mined by the preconditioned biconjugate gradient method with incomplete 
LU preconditioner [7]. 
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Results and Discussion 

The solution of (6) and (9) together with (7) and (10) provide the approxima
tions of state variables and sensitivity functions in the whole time and spatial 
domains. On the other hand, experiments carried out in the WK cell (Fig. 2) 
provide only the temporal total molar concentration differences recorded with 
certain frequency (e.g. 1 Hz) and, thus, for textural parameter estimation only 
the calculated total molar concentration difference is needed. It is defined for 
convenience in dimensionless form as relative total concentration difference 

(11) 

where the total molar concentration, co, used for normalization is propor
tional to the standard pressure (101325Pa). Note, that the total molar con
centration, CT, in the above equation is constant as assumed in the bound
ary condition at x = L. According to (8) and (11) the vector of sensitiv
ity functions of the relative total molar concentration difference, Q(t) = 
{Wl(t),W2(t),W3(t)}, is defined as Q(t) == 8L1cr (t)/8ln8. The model formu
lated in the above paragraphs is non-linear in the three parameters 8. The 
validity of the concrete results of sensitivity analysis reported below should 
be restricted to the concrete porous solid studied. However, this restriction is 
not very essential and results can be generalized for other solids with similar 
texture. 

The transport of inert gases (H2' He, N2 and Ar) in an industrial catalyst 
for methanol synthesis was studied in this work. Its textural parameters were 
estimated by Marquardt's technique from selected experiments performed 
during this study. The estimated values of textural parameters, 8, as well 
as parameters of the WK cell are given in Table 1. Despite of the fact that 
only inert gases were used for experiments additional simulations including 
equilibrium adsorption with typical adsorption coefficients were performed to 
judge its influence on parameter estimation. Preliminary calculations revealed 
that the total molar concentration, CT(t, L), and the type of applied gases 
had the major importance on the sensitivity functions. The cell construction 
(volume of pellets, Vp , volumes of chambers, VeO and VeL) and the adsorption 
effects were found to be of minor importance. 

Table 1. Parameters of the WK cell, parameters of industrial catalyst for methanol 
synthesis and estimated values of textural parameters, B 

Vp Vco VeL L c 

cm3 cm3 cm3 mm _ 

1.734 10.1 9.754.900.5736 0.0833 1.720 63.27 
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Fig. 2. Total molar concentration difference, Llcr(t), and sensitivity functions, net), 
for the step change Ar ........ H 2 . The numbering of curves is related to total molar 
concentration (1-40.2 mol/m3 , 2-80.8 mol/m3 , 3-161.3 mol/m3 ), letters a, band c 
designate parameters (a-Bl, b-B2, c-(h) 

The influence of the total molar concentration on Llcr(t) and S?(t) is 
illustrated for the step change Ar ........ H2 and the sequence of three discrete 
levels (40.2mol/m3 , 80.8 mol/m3 and 161.3mol/m3 , Fig. 2a,b). 

After the step change the total molar concentration below the pellets 
rises. The higher the total molar concentration, the larger is the maximum 
of the total molar concentration difference. Because the studied catalyst had 
relatively narrow pores the mass transport in Knudsen region dominates in 
the case of the total molar concentration of 40.2mol/m3 (lines 1). Simply 
put, the sensitivity functions Wl(t) and W3(t) are smaller than W2(t) in the 
whole time domain and, consequently, small changes of (h and (h do not 
result in significant change of the function Llcr(t). It can be concluded that 
experiments performed under conditions where the total molar concentration, 
CT(t, L), is less than 40.2 mol/m3, are not suitable for the estimation of 
all three parameters and only the second parameter, (h, can be estimated 
reliably. This phenomenon was also observed for another catalyst with similar 
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Table 2. Maxima and minima of relative total molar concentration, Ller(t), and 
sensitivity functions, n(t), for selected step changes and total molar concentrations 

step 

change 

Ar-+H2 

Ar-+H2 

Ar-+H2 

Ar-+He 

CT(t,L) Ller(t) 10wl (t) 

min max min max min max 

40.2 0.443 -0.1060.431 -2.741 1.465 -0.141 0.002 

80.8 0.798 -0.338 1.369 -4.627 2.150 -0.4850.006 

161.3 1.328 -0.9123.689 -6.938 2.537 -1.4730.017 

160.9 1.110 -0.722 2.774 -6.389 2.427 -1.188 0.014 

N2-+He 161.6 0.922 -0.658 2.459 -5.430 1.902 -1.065 0.011 

(N2,Ar)-+(H2,N2) 41.3 0.220 -0.0550.258 -1.389 0.670 -0.085 0.000 

(N2,Ar)-+(H2,N2) 81.4 0.386 -0.1670.769 -2.310 0.920 -0.2840.003 

(N2,Ar)-+(H2,N2) 163.3 0.630 -0.431 1.997 -3.441 0.993 -0.860 0.008 

texture [5]. Higher total molar concentrations have a favourable influence on 
the range of sensitivity functions. Maxima of WI (t) and W3 (t) increase more 
pronouncedly compared to the value for W2(t) as the mass transport in region 
of continuum becomes more significant. Values of determined maxima and 
minima of sensitivity functions are given in Table 2. 

Concerning the relation of the total molar concentration, CT(t, L), the 
molar concentration difference, ~cr(t), and sensitivity functions, .n(t), in 
principle the following rule holds: the higher the total molar concentration 
=? the higher the total molar concentration difference =? the better the con
ditions for estimation of all parameters (i.e. there is a higher sensitivity of 
..:1cr (t) relative to small changes of (h and (h). However, this rule is not valid 
for gaseous pairs He/ Ar and He/N2. Despite of the higher total molar con
centration difference arising after a step change Ar -+ He the conditions for 
parameter estimation are better for the step change N2 -+He, see Table 2. 
A closer inspection of Table 2 reveals that the ratios of maxima/minima of 
WI(t) and W3(t) to maxima/minima of W2(t) are more favourable in the case 
N2 -+ He. 

The idea to use ternary mixtures with a certain composition for further 
improvement of parameter estimation was inspired by the work of Duncan 
and Toor [1]. They observed "uphill" diffusion in the ideal ternary mixture 
hydrogen-nitrogen-carbon dioxide. Despite of the very different experimental 
set-up, the performed simulations (and experiments) conducted in the spirit 
of Duncan and Toor's experiments resulted in greater differences among sen
sitivity functions, .n(t), (Table 2) where the relevant step changes are denoted 
by (N2,Ar) -+ (H2,N2). In the experiments the nitrogen mole fraction in both 
gas pairs was set equal to 0.5, i.e. ratios of components were (N2/ Ar) = (1/1) 
and (H2,N2) = (1/1). The observed behaviour of sensitivity functions can be 
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accounted for by the increased contribution of the bulk diffusion mechanism 
in ternary mixtures under elevated total molar concentration. The sensitivity 
functions, D(t), for simulated step changes of inlet composition between a 
single gas and a binary mixture (e.g. (N2,Ar) ~ H2) exhibited roughly the 
same behaviour as for step changes between two single gases. Apparently, 
experiments carried out in this manner do not have the potential to improve 
parameter estimation. 

Conclusions 

A mathematical model of the WK cell was applied to quantify mass transport 
in porous media. To determine optimum experimental conditions for param
eter estimation a sensitivity analysis was performed. The parameter which 
had the greatest influence on the sensitivity function behaviour was found to 
be the total molar concentration in the upper chamber of the WK cell. In 
order to estimate reliable textural parameters the total molar concentration 
has to be adjusted with respect to the actual porous medium. Conditions for 
a reliable estimation of all three parameters can be further improved by using 
response curves for the exchange of equimolar mixture of nitrogen and argon 
versus nitrogen and hydrogen. 

Acknowledgements. The financial support of the Volkswagen Foundation, Han
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Abstract. The authors propose a 2D-model for diffusant concentration distribu
tion in a diffusion furnace with wafers inside for Integrated Circuits (IC) manufac
turing. For obtaining the initial diffusion concentration at the inlet of the horizontal 
reactor a model for vaporization process in the saturator is proposed. Then treat 
the chemical reaction and PDE for concentration is solved using finite volume tech
nique. These models are included in the CAD of IC process" ProMIC-T" . 

1 INTRODUCTION 

Diffusion processes are widely used in the microelectronic industry for gen
erating the concentration profiles in silicon semiconductors. So-called" open 
flow" systems with different sources of the diffusion (Fig. 1) is often employed 
in the semiconductor manufacturing. The diffusion process is conducted in 
the horizontal quartz tube furnace with hot walls. Liquid diffusant BBr3 
(source) is located in the saturator. Getting through the saturator, carrier 
gas (N2 ) is saturated by vapour diffusant (BBr3). Then it enters the diffusion 
furnace where it reacts with the oxygen (02 ), forms diffusant oxide B 2 0 3 
which is deposited on the silicon wafer forming a boron-silicate glass (BSG) 
layer. The silicon wafers are placed perpendicular to the moving flow. The 
initial stage of this process is called predeposition. A pure element, boron 
(B), precipitates as a result of interactions between the BSG and the silicon. 
Hereinafter this element diffuses in the depth of the silicon slice and creates 
a doping area. This stage is identified - drive-in. There is a simplified picture 
of running the diffusion process in the tube furnace (reactor) [1]. A problem 
is that concentration of the diffusant oxide near the wafers depends on many 
factors, such as temperature in the reactor, gas flow velocity, geometry of 
reactor, temperature in the saturator. We added a model of the stage of pre
deposition to the already existing program of modeling of the drive-in process 
- "ProMIC-T". Two mathematical models were developed, one for saturator 
and second for the process in the reactor. 

2 A SATURATOR MODEL 

Consider the widely used design of the saturator, as shown in Fig. 2. Into the 
saturator with known sizes and parameters (height, width, diameters of tubes 

F. Keil et al. (eds.), Scientific Computing in Chemical Engineering II
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N2+02_..,..._~ 2 
N2 ........... 11111111 81 

Diffuse region 
3 

Fig. 1. Diffuse "open tube" furnace; 1. quarts tube, 2. wafers, 3. heater, 4. gas 
system, 5. saturator 

and saturatorer) a carrier-gas is given (N2)' At the output the VGM-Vapour
Gas-Mixture consists of the feed gas and the saturated diffusing vapour. For 
the performance of the saturator it is decisive that the bubbles at the end of 
the saturator inlet are removed at constant flow. Thereafter, they accelerate 
for a small period and then rise vertically to the liquid surface through a 
liquid layer at constant velocity. Supposing that a bubble has the shape of a 
sphere, and there are no interactions among them, the diameter of a bubble 
can be obtained from force balances acting on a bubble at the moment of 
raising from the saturator inlet [2J: 

Fig. 2. A saturator scheme 

(1) 

where do = diameter of the bubbler inlet (m), a = surface tension (N/m), 
Pl = liquid density (kg/m3 ), g = carrier gas density (kg/m3 ), Pg = the Earth 
acceleration (m/c2) and Rb.i = the initial bubble radius (m). When forming a 
continuous chain of spherical bubbles the velocity of their appearance equals 
their initial velocity which is 

(2) 

where Qg = rate of carrier gas (m3 /c), Wo = velocity of one bubble (m/c) 
and I-t = liquid viscosity Pa . c. 

(3) 

The difference between the pressure inside and outside of the bubble is 
the surface tension, which is created on the surface of the bubble: 
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(4) 

where P 2 = a pressure in bubble (Pa), PI = outside hydrostatic pressure 
(Pa), Rb = radius of bubble with VGM inside (m). 

The VGM in each bubble consists of two components: the feed gas, and 
the vapor of saturator liquid. Besides, certain amounts of gas diffuse through 
the wall of the bubble into the liquid and vice versa. Taking into account 
that diffusants are materials of significant volatility, as well as the fact that 
bubbles keep in the saturator for a very short time, this diffusion is neglected. 
Carrier-gas does not change its mass in mixtures [3]. Using Dalton's law the 
pressure inside the bubble is: 

(5) 

where P s.v = saturated vapour pressure inside bubble (Pa), P g.b = carrier 
gas pressure inside bubble (Pa), which is equal to: 

Pg.b = (3/4)mRT/M7rR~ (6) 

where m = carrier gas mass (kg), M = carrier gas molar mass (kg/mol), 
R = the gas constant 8.3143 Nm/(mol·K), T = saturator temperature (K). 

Writing the dependence of P s.v, as a function of temperature [4] 

ps .v = 133.322. 107.709-1754.032/T (7) 

and inserting all dependencies into (4), a cubic equation results for the 
unknown Rb. Applying Redlich-Kwong's equation [5] leads to 

p s .v = RT/(V - b) - a/(V + b)VTo. 5 (8) 

where V = molar volume (mol/m3 ), a and b are functions from critical 
temperature and pressure [5]. Solving the cubic equation for the determina
tion of the mole volume, the saturated vapor mass is found in one bubble. 
Knowing the mass of carrier gas m and saturated vapor mass m s .v in the 
bubble their correlation coefficient 

cae!! = m/ms .v (9) 

3 A PROCESS MODEL IN THE REACTOR 

The two-dimensional distribution of the diffusant in the reactor is described 
by the stationary diffusion equation in cartesian coordinates: 
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where u, v are flow velocity components at x axis along the reactor (m/c) 
and y axis along diameter (m/c) correspondingly, D = diffusivity of B 20 3 
(m2 /c), W = rate of chemical reaction and C = concentration (m3). 

The process performs differently in the reactor, depending on the number 
of moles of the diffusant. In general, the rate of formation of B 20 3 as a final 
product of reaction of boron tribromide oxidation is 

(11) 

The chemical reaction runs at a condition of small BBr3 and O2 content 
in the VGM. The B2 0 3 deposition area is shifted from the diffusion furnace 
inlet of the reagents along the moving direction of the gas mixture. The 
distance of shift depends on the velocity of the gas flow and the rate of 
formation of intermediate products. In this case W i- 0, and after carrying 
out a thermodynamic analysis of system [6], a reaction mechanism as follows 
is expected: 

(12) 

(13) 

(14) 

Using the method of stationary concentrations [7] the authors of paper [6] 
got a diffusant concentration distribution on condition that [02] » [BBr3] 
and the concentration [02] along the reactor is constant. As a result, they 
found an equation: 

(15) 

where [BBr3]O = initial concentration at the inlet x = 0 (m-3), u = linear 
velocity (m/c), x = coordinate (m), Kl = chemical reaction rate constant of 
(12). 

Under high concentrations of oxygen and boron tribromide a deposition 
begins right in the area of the reagents blending, with the result that a 
depletion of VGM by reagents occurs [8]. In this case, chemical reaction 
occurs instantly and accordingly W = o. 

It is necessary to formulate the boundary and initial conditions for solving 
the equation (10): 

At the reactor inlet, initial concentration Co which is obtained from the 
saturator correlation coef and reaction (11) 

c=Co (16) 

At the reactor outlet and wall (absorption is neglected) 
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8Cj8x = 0 (17) 

At the wafers [9] 

8Cj8x = H· Cg (18) 

where H is the gas phase mass transfer coefficient of B203 and Cg is bulk 
concentration in the gas (m-3), which is defined in [10) 

H = 8.5.109 • exp( -3.53jkT) (19) 

where k is Boltzmann constant 1.38.10-23 (JK-l). 
The concentration is based on known, calculated beforehand field of flow 

and temperature [11). The equation of diffusion (10) was discretised in space 
using a finite volume technique on a non-uniform cartesian grid. A view of 
the control volume is shown in Fig. 3. Discretisation of the grid was directed 
near hard surfaces (walls and wafers). A numerical hybrid scheme was used to 
raise accuracy without loss of stability. The motivation of the scheme is given 
in work [12). Obtained as a result of approximation, the system of algebraic 
linear equations was solved by the SOR-method with the lower relaxation. 
The resulting analytical and numerical models are presented in the program 
"ProMIC-T" which describes the diffusion process (stage predeposition) in 
the diffusion furnace. 

N 

W I pi E 
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S 

Fig. 3. View of typical control volumne 

4 RESULTS 

Note the following results of the simulations. A change of concentration oc
curred along radius and after decreasing the Reynolds and Schmidt numbers 
along tube axes. Concentration transfer between wafers basically occurred 
owing to diffusion. Its value rapidly decreases near the center of the wafer 
because of the deposition on the wafer surface (Fig. 4). 

Fig. 5 shows the dependency of surface resistance of the wafer as a function 
of the diffusant consumption. As can be seen from this figure, simulation 
data mostly agree with experimental data. The models presented simulate 
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Fig. 4. Concentration field near wafer 

the process quite good under high and low concentration of the diffusant, 
but do not give desired accuracy under medium concentrations. 

Fig. 5. Experimental data vs. simulated data by "proMIC-T" 

5 CONCLUSIONS 

The presented mathematical models of the saturator and the process in the 
diffusion furnace allow to simulate the diffusant distribution in the diffusion 
furnace. The model of the saturator estimates the influence of flow rate, sat
urator temperature and geometry of saturator for different types of sources. 
The model of diffusant distribution has two parts: first, in the case of a small 
amount of dopant in the gas mixture and second a large amount of dopant. 
In the first case an exponential dependence describes the diffusant distribu
tion. In the second case numerical simulation is needed for solving diffusion 
equation with boundary and initial conditions. From the results of simulation 
the following conclusions can be drawn: the change of concentration occurrs 
along the radius and after decreasing of Re and Sc numbers along tube axes. 
Concentration transfer between wafers basically occurrs by diffusion. The 
program "ProMIC-T" comprises these models that allow to simulate two 
stages of the diffusion process. 
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Modelling and Simulation of Thansient Thansport 
Processes Using Axial Dispersion Model 

Xing L uo and Bernd Niemeyer 
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Max-Planck-StraBe, 21502 Geesthacht 

1 Introduction 

'Itansient analysis in heat and mass transfer processes is often demanded in 
chemical industries. In many apparatus the fluid flows are arranged parallel 
with each other (cocurrent flow or countercurrent flow). The general mathe
matical model describing the transient behaviour of the heat and mass trans
fer in such apparatus can be expressed with the following partial differential 
equation system 

B. oli U. oli D82li 
n 

+ + LQrjrj +Qi (i=1,2, ... ,n) (1) tOT tax t ox2 
'--v--" '--v--" --...-..- j=1 

accumulation convection dispersion 
, 

v 
term term term source terms 

One application of the present modelling and simulation is the analysis of the 
dynamic behaviour of heat exchangers. Roetzel developed an axial dispersion 
model which simplifies the mathematical model of real heat exchangers and 
reduced the problem into a dynamic system with one-dimensional spatial 
coordinate[l]. The general form of his model can be expressed as follows 

(i = 1,2, ... , nw)(3) 

In some processes the mathematical models might be strongly nonlinear. 
Applying the dispersion model to a simultaneous adsorption process of mul
ticomponent system in liquid chromatography will yield [2] 

OCi F ~ Oqi OCj U OCi _ D 02Ci -+ L--+ i-- i-
aT j=1 OCj aT ax ox2 

(i=1,2, ... ,n)(4) 

where the Langmuir isotherm qi = aici/ (1 + 'L,7=1 bjcj) is used. In the 
present investigation such types of transport processes are described by a 
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general form of the partial differential equation system, which can be solved 
analytically by means of Laplace transform if the parameters involved are 
constant or by means of the finite-difference method with moving grid tech
nique for general cases. Based on the analytical and numerical solutions, the 
software "TAIPE" is developed to simulate the transient transport processes. 

2 Mathematical model of the transient transport 
processes with axial dispersion 

In order to deal with the multicomponent diffusion problems, the governing 
equation system will be expressed in a more general form 

(i=1,2, ... ,n)(5) 

In fact, Eq. (5) describes a general one-dimensional transport process. The 
two terms of the left side of the equation are the mass/energy accumula
tion and the convective mass/energy transport, respectively. The first term 
of the right side represents the mass/energy transport driven by their field 
potentials, where Dij is the axial dispersion coefficient defined by Fick's law 
or Fourier's law which represents not only the physical properties of materi
als (e.g. diffusivity, conductivity) but also the flow muldistributions and the 
microscopic details of the solid medium. Therefore the dispersion coefficient 
must either be measured or deduced from a similar system. The dispersion 
coefficient matrix used in Eq. (5) describes a multicomponent diffusion, in 
which the off diagonal coefficients Dij,i~j are called the" cross-term" diffusion 
coefficients and are often ten percent or less of the main diffusion coefficient 
Dii [3]. In the present investigation the Danckwerts boundary condition [4] 

x=O: (i=1,2, ... ,n)(6) 

x=L: (i=1,2, ... ,n)(7) 

is used. The boundary conditions (6) and (7) result from the conservation laws 
of mass and energy. They indicate that there is no axial dispersion before the 
inlet section and after the outlet section of the apparatus being investigated. 
Equations (5)-(7) together with the user-supplied initial distributions, inlet 
variations and source terms can then be solved analytically or numerically. 
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3 "TAIPE"-a powerful tool to simulate the transient 
transport processes 

To obtain the dynamic response of the transport process defined by Eqs. 
(5)-(7), a software "Transient Analysis In Process Engineering" (TAIPE) is 
being developed, which offers the tools of the transient analysis for variable 
kinds of transport processes, their analytical and numerical solutions as well 
as frequently used mathematical subroutines. As examples two kinds of them 
will be described in details as follows. 

3.1 The solution for linear processes with constant parameters 

First we consider a simple case in which the parameters B i , Ui , D ij , Q:j' are 
constant, the initial distributions are uniform and the source term Qi and 
the inlet conditions are functions of time. Thus the Laplace transform can be 
applied to Eqs. (5)-(7), which yields an ordinary differential equation system 

n d2y d1: n L Dij dxi -Ui dx' - L (8;jsB,-Q:j)Yj =-(Bi YO;+Q;J(i = 1,2, ... , n) (8) 
j=1 j=1 

~ dfj - -
x = 0 : ~ Dij dx = max(Ui , O)(Yi - YinJ (i=1,2, ... ,n)(9) 

j=1 

~ dfj - -
x = 0 : ~ Dij dx = - max( -Ui , O)(Yi - YinJ (i = 1,2, ... , n) (10) 

j=1 

where rSii = 1, rSij,#i = O. In general, the solution of Eq. (8) in Laplace 
domain can be expressed in a matrix form 

Y = UeAxR+S (11) 

where U = {U1,U2, ... ,Um }, A = diag{A1,A2, ... ,Am }. Ai and Ui are the 
eigenvalues and the corresponding eigenvectors of Eq. (8), respectively. S 
depends on the initial values and source terms, whereas R is determined by 
the boundary conditions. The form of the complete expression of the solution 
is tedious but there is no mathematical difficulty to obtain it. Therefore it 
will not be listed here. The FFT algorithm is applied to Eq. (11) to get its 
inverse transformation numerically. However, this algorithm will introduce 
additional impulses near discontinuity points. The maximum magnitude of 
these additional impulses could reach 0.8949 times as much as the magnitude 
of the real step change [5]. This phenomena is called Gibbs phenomena and 
cannot be eliminated by increasing the number of the points. To avoid such 
additional impulses, a very small dispersion coefficient Dii could be added 
into the governing equation system. 
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3.2 Numerical simulation for general cases 

If the equation system is not linear, the Laplace transform cannot be applied 
to Eqs. (5)-(7). In such cases TAIPE uses the finite-difference method to solve 
the governing equation system numerically. The Crank-Nicholson scheme is 
used to discretize the partial differential equation system. The convection 
term is treated with the power-law scheme by Patankar [6J, which is a good 
approximation of the exponential scheme. It should be mentioned that in 
chemical processes the axial dispersion coefficient might be very small. In 
such a case the numerical" diffusion" due to truncation error may be larger 
than the physical dispersion. The calculated profile would be flattened by the 
numerical diffusion as is shown in Fig. 1. Therefore a very small grid width 
is demanded for small values of dispersion coefficients, 

0.25 mTTmTTmTTmTTmrrmrrmrnmrnmrnmrnmmmmmmmmmmrmnrmnmmmmTT1Il 

- Moving grid 

0.20 0 Analytical solution 

t Llx""tZ. - 0.0005, N_- 475 

.s 0.15 

.g 
i 0.10 

8 
0.05 

0.00 "",P!'mI~~'PI:mnrmmmlTTTTTmmmmmmrrmrmmrmTi~~'"TII'_ 
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Fig. 1. The elution profile for a single system. Comparison of the numerical results 
with the analytical solution. a = 5ml/ml , b = Oml/mmol, F = 1, L = 20cm, 
V = 2ml, V = 1ml/min, Pe = 2000, Cinj = O.lmmol/ml(O < T ~ O.OOlmin). 

which means much more computing time. In TAIPE the moving grid tech
nique is applied, which divides the spatial interval automatically according 
to the interpolation error [7J. Figure 1 shows the comparison of the numer
ical results with the analytical solution. With the decrease of the minimum 
allowed grid width the calculated response is closing to the exact solution. If 
.t1xmin/ L = 0.00005, the numerical profile coincides with the analytical one 
but the maximum number of cells Nmax is only 2702. 
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4 Applications and Discussions 

4.1 Single-blow problem 

Single-blow testing techniques are widely used to determine the heat transfer 
coefficients of the compact heat exchangers. The earliest single-blow model 
was proposed and solved by Anzelius [8), Nusselt [9), Hausen [10] und Schu
mann [11), in which there is neither the axial heat conduction in the wall nor 
the axial heat dispersion in the fluid. Using finite-difference method, Cai et al. 
solved the single-blow problem with the axial heat conduction in the wall [12]. 
The model which takes the axial dispersion into account was solved by Luo 
analytically [13)' in which the heat conduction in the wall is neglected. Now 
we will apply TAIPE to a more realistic model of the single-blow problem 

Botf otf _ ~ f)2tf = NTU(t _ t ) 
aT + ax Pe ox2 w f 

(12) 

(13) 

x = 0: (14) 

x = 1: (15) 

T= 0: (16) 

The influences of Pe and rw on the outlet fluid temperature responses 
of the exchanger to a step change in inlet fluid temperature are shown in 
Figures 2 and 3, respectively. Both of them agree well with the data given by 
Luo [13] and Cai et al. [12), respectively. 

4.2 Nonlinear chromatography 

The dispersion model of the liquid chromatography for a multi component 
system is given by Eq. (4). On the substitution of the Langmuir isotherm in 
Eq. (4), TAIPE is applied to simulate the process numerically. The concentra
tion variations of a binary system and a ternary system are given in Figures 
4 and 5, respectively. The parameters used in the figures are taken from the 
literature [2] for comparison. The figures show that the present results agree 
with the results of Seidel-Morgenstern using finite element method [2]. How
ever, the peak values of Seidel-Morgenstern in Fig. 5 is a little lower than 
those in the present work, probably because the grid width he used is still 
not small enough. 
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5 Conclusions 

Using axial dispersion model we can simplify a real transport process into 
a one-dimensional one. The influence of the flow maldistribution is taken 
into account by adding a dispersion term into the governing equations. If the 
parameters involved are constant, the resulting partial differential equation 
system can be solved analytically by means of Laplace transform. For general 
cases the finite-difference method with moving grid technique can be used. 
The software" TAIPE" is developed to simulate the general one-dimensional 
transient transport processes. The results given by TAIPE are compared with 
the available data and good agreements are found between them. Because 
TAIPE is designed for the general cases, it is expected that it would be very 
useful in the transient analysis in process engineering. 
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Fig.2. The outlet fluid temperature response to a step change in the inlet 
fluid temperature, B = 'Yw = O. 
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Fig.3. The outlet fluid temperature response to a step change in the inlet 
fluid temperature, B = Pe = O. 
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Fig. 5. The elution profile for a bi
nary system: al = 4ml/ml, bI 

4ml/mmol, a2 = 4.5ml/ml, b2 = 
4.5ml/mmol, a3 = 5ml/ml, b3 = 
5ml/mmol, F 1, L 20cm, 
V = 2ml, V = 1ml/min, Pel = 
Pe2 = 6000, Clinj = 10mmol/ml, 
C2inj = C3inj = 100mmol/ml(0 < 
T :::: O.OOlmin). 

B fluid/wall heat capacity ratio in the test core, dimensionless 

e concentration in the solution phase, mmol/ml 

C heat capacity, J/kgK 

D dispersion coefficient, cm 2 /rnin 

F phase ratio, dimensionless 

L Length of the apparatus, em 

M mass flow rate, kg/s 

NTU number of transfer unit, dimensionless 

Pe dispersive Peclet number, , dimensionless 

q concentration in the absorbed phase, mmol/ml 

Laplace parameter 

temperature, K 

U flow velocity, U = V L/V, em/min 

V volume of the fluid in the apparatus, ml 

V volumetric flow rate, ml/min 

x coordinate, em 

x dimensionless coordinate, x = x/ L , dimensionless 

Greek symbols 
IW dimensionless axial heat conductivity of the wall material, 

IW = AqwAw/MfCfL , dimensionless 

T time, min 

T dimensionless time,T = MfCfT/MwCw , dimensionless 

Subscript 
f fluid 

w solid wall 
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ANew Sparse Matrix Storage Method for 
Adaptive Solving of Large Systems of 
Reaction-Diffusion-Transport Equations 

Nicolas Neuss 

Ruprecht-Karls-Universitiit Heidelberg, 69120 Heidelberg, Germany 

Abstract. We present a new method for storing sparse matrices as a block matrix
graph where the blocks are stored via a compact, row-ordered scheme. This com
bines the flexibility of the graph structure with the high efficiency of the compact 
storage technique. The inner compact pattern also allows identification of entries, 
which often leads to advantages with respect to memory and computing time. Using 
this technique in the PDE toolbox UG yields a flexible solver for large systems of 
reaction-diffusion-transport equations. 

1 Introduction 

Adaptivity is essential for the efficient numerical solution of partial differen
tial equations. Together with the need to handle complicated domains, it is 
one of the main reasons why unstructured grids become almost mandatory for 
the discretization. These grids must be stored in an appropriate way, which 
is also influenced by the choice of programming language: FORTRAN im
plementations usually use index arrays, while CjC++ implementations often 
prefer pointers in order to represent the grid structure. 

For the representation of the corresponding sparse linear systems, most 
applications use index arrays in the form of the "compact" or "Harwell
Boeing" storage technique l . Only rarely, the matrix is stored as a pointered 
graph (an example is given by the PDE package UG, see [Bas96],[BBJ+97]). 
Reasons are, first, that there are no well-known libraries for handling these 
graphs, and second, that due to the inefficient use of the memory cache this 
technique is less efficient on modern computers. 

However, a pointer-based matrix graph has several advantages over the 
classical Harwell-Boeing format. First, it allows for the local insertion/ deletion 
of matrix elements in O( n) operations where n is the number of elements to 
be changed, which can be an advantage if moving reaction zones are adap
tively resolved. Second, the unknowns can easily be reordered, which is useful 
for obtaining robust multigrid smoothers in regions of dominating convection 
or anisotropy. Finally, the parallelization on MIMD architectures can be done 
on an abstract graph level, see [BB94]. 

1 See http://math . nist . gOY /MatrixMarket for more information 

F. Keil et al. (eds.), Scientific Computing in Chemical Engineering II
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For systems of PDEs, another point must be considered. Often, several 
unknowns are collocated, and it may be necessary to treat the linear system 
while respecting this block structure (e.g., for the definition of preconditioners 
for CG iterations or smoothers inside of a multigrid cycle). This may be 
achieved quite easily by replacing single matrix entries with blocks, which 
also increases the performance significantly: the ratio of index information 
versus value information decreases, additionally the enhanced data locality 
leads to faster execution. 

Yet, there are many systems of PDEs where the use of a full block for each 
edge in the graph of the block matrix is not adequate. Often, equations are not 
coupled that much. For example, there are many discretizations of reaction
diffusion-transport systems where the reaction terms lead to interactions only 
(or almost only) inside of the diagonal block. Now, storing full blocks may 
introduce a tremendous overhead in memory and computing time. 

Here we introduce a new approach: sparse blocks are stored at the edges 
of a graph which is closely connected to the underlying grid, see Fig. 1. The 
local sparsity pattern of these blocks is determined by selecting between a 
limited number of row-ordered patterns. Additionally, identification of equal 
matrix entries is permitted, which can cut down memory needs even further. 
In this way a fully implicit solution of this kind of systems is possible, thus 
avoiding the potential problems of splitting approaches (see [SM96]). 

2 Model problem 

Let n be a domain in JR2 or JR3. For i = 1, ... , N, let u(i) be given flow fields 
satisfying divu(i) = 0 everywhere, and let D(i) be symmetric positive definite 
tensor functions (diffusion tensors). Then we search for a vector function 
y = (y(i»)i=l, ... ,N (species concentrations) satisfying 

8~;i) _ div(D(i) (x)Vy(i») + div(u(i)y(i») = p(i)(y) , Vi = 1, ... ,N (1) 

for all x E nand t > O. These equations are supplemented with suitable 
boundary conditions (Dirichlet, natural, inflow, outflow) as well as prescribed 
initial values at t = O. 

In most of the interesting cases, the flow fields u(i) are not known apri
ori, but determined by an additional equation coupled to the system (1). 
Examples are combustion processes or (multiphase) reactive flow in porous 
media. 

3 Discretization and solving 

For the space discretization, we use vertex-centered finite volumes on a tri
angulation T with vertices VA' >. E A, A being some index set. This yields a 
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stiff system of ODEs which should be handled by an implicit time-stepping 
scheme. The simplest representative of such a scheme is the implicit Euler 
method. Here, the iteration step from time tk to time tk+l = tk + .::1t is of 
the form 

with M>. denoting the volume of the box centered at v>. and Aii~ arises 
from discretizing the diffusion and convection terms in 1. Equation (2) is a 

nonlinear system in the vector y = (y1i»i=1, ... ,N;J.IEA. By applying Newton's 
method, we have to solve a linear system K y = b where 

(3) 

is a block matrix (every entry K>.J.1 is an N x N-block). Only K>.>. may be full 
(depending on the sparsity of V' F), whereas the off-diagonal blocks K >'1' are 
diagonal matrices. The non-zero pattern (at least a superset) of the diagonal 
blocks is known apriori: it contains the diagonal (K>.>.)ii' i = 1, ... ,N plus 

entries (K>.>.)ij where a%u~) does not vanish. In some important cases, we 
know even more: 

1. If D(i) = D(j) and u(i) = u(j) in (1) for some indices i =F j, the corre
sponding elements (Kii )>.J.1 and (Kjj )>'1' are equal for A =F fl· 

2. If D(i) = 0, u(i) = 0 in (1) for some index i, then the corresponding 
elements (K>'J.I)it vanish for A =F fl. 

It is clear that a direct decomposition of such a matrix would not be the 
right choice for larger IAI. However, a multigrid algorithm with point-block 
Gauss-Seidel smoothing (also called collective Gauss-Seidel smoothing) is a 
good choice, since it is known to be robust for certain limiting cases: first, for 
dominating diffusion it is robust by the multi grid properties, for dominating 
convection it can be made robust by stream-wise ordering of unknowns, and 
for dominating reaction the method reduces to an ordinary implicit Euler 
scheme on decoupled systems of ODEs. Nevertheless, to be really efficient, 
the matrix-vector operations performed during the iteration have to take into 
account the sparse structure of the whole matrix as well as the special sparse 
structure of the block entries. 

4 Sparse matrix storage methods 

As mentioned in the introduction, the most frequently used storage method 
for sparse matrices is via index arrays, a possible implementation being the 
structure from Table 1. 
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int 
int 
int 
int 

int 
double 

int 
VECTOR 
MATRIX 
double 

int 
MATRIX 
VECTOR 
double 

Table 1. Array implementation of a sparse matrix 

HARWELLJBOEING_TYPE~PARSEJMATRIX 

nrows 
ncols 
N 
row_off [nrows+l] 

coLind[N] 
value[N] 

number of rows 
number of columns 
number of nonzeros 
offsets for row starts/row ends in 
the coLind and value arrays 
N column indices 
N doublevalues 

Fig. 1. Part of the grid and corresponding graph. 

Table 2. The VECTOR and MATRIX data types. 

control 
*pred. *succ 
*start 
value [nv] 

control 
*next 
*vect 
value [nm] 

VECTOR 
used bitwise 
double linked list 
start of block row 
block components 

MATRIX 
used bitwise 
next in block row 
column vector 
block components 

An alternative is storing a (block) matrix graph with the help of pointers. 
This format is used in the PDE toolbox VG, see [BBJ+97]. Here, a node of the 
matrix graph is called VECTOR, and an edge is called MATRIX. Bit information 
in the control field of VECTOR and MATRIX object allows for having different 
types of each. The pred and succ pointers connect all VECTOR objects in 
a doubly linked list which can be reordered without any effort. The start 
pointer in the VECTOR object gives access to the corresponding (block) matrix 
row which is a simple list connected by the next pointer of the MATRIX object. 
For our example in Section 6, we have one VECTOR for each vertex VA of Th, 
and MATRIX structures exist only between vectors whose vertices are corners 
of a common element, see Fig. 1 and Table 2. 

In the value array of the VECTOR object, the unknowns corresponding to 
that location are stored, e.g., the concentration of the chemical species at the 
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associated vertex of the triangulation. The value array of the MATRIX object 
contains the block K>-.,.. for source VECTOR v>-. and destination VECTOR Vw 

We now take advantage of the sparse structure of the blocks K >-.,.. by 
storing only the nonzero entries in the value field, while the sparsity pattern 
is determined by one of several patterns of a form similar to Table 1. The 
type information in the control field of the MATRIX object determines which 
pattern is chosen. However, there is one important difference to Table 1: the 
double array value in Table 1 is replaced by an integer array offset. These 
integers are interpreted as offsets in the value-array of the MATRIX object in 
Table 2. Using the same offset several times then means using one double 
in the value array for several positions in the sparse block. This procedure, 
which we call identification, can lead to an enormous saving of memory for 
certain problems. 

5 Efficiency tests 

For testing the efficiency of the data structure described in Section 4, we 
concentrate on a basic building block of iterative solvers, namely the sparse 
matrix-vector -multi plication 

x=Ky (4) 

where K = (K>-.,..)ij, >.., fl E A, i, j E {I, ... , N}, A indexes VECTORs, N is the 
number of species. 

We choose the following easy testing configuration: the matrix graph is 
given by a nine-point stencil in 2D, the diagonal block has a full pattern (cor
responding to a nonlinearity which couples each species with all others) while 
the pattern of the off-diagonal blocks is either full, or diagonal, or diagonal 
with all entries having the same value (in this case, only one value is stored). 
The ordering of the VECTORs is chosen to be lexicographic. The size of the 
matrix blocks (i.e. the number of species) is varied, and for each blocksize, 
the number of unknowns (given by the resolution of the underlying uniform 
square grid) is always chosen as large as possible, which may be considered 
as a worst case. Fig. 2 shows the results of this test. We can see that our 
matrix graph technique is much faster for problems with many species than 
for problems with only a few species. 

To understand this phenomenon, one should know that on modern com
puters random access to main memory is much slower than register operations 
inside the CPU. This is overcome to a certain extent by the caching mech
anism: between CPU and main memory lies a cache consisting of very fast 
memory chips. Whenever data from the main memory is asked for by the 
CPU, there is either a copy in the cache (which can be accessed without 
essential delay), or a whole block of data is transfered into the cache first 
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Fig. 2. Performance results (SGI Octane, 250 MHz). 

block
size 

(with some delay) 2 • Now the performance difference can be easily explained, 
since the grid-based graph structure represents a large memory overhead for 
few species, while the use of fixed sparsity patterns for the augmented blocks 
saves memory in the case of many species. 

Doing the same test for the Harwell-Boeing scheme, one obtains per
formance values reaching from 40 MFLOPS (scalar case, and irregularly at 
larger blocksize) to slightly above 70 MFLOPS. Thus, for few species, the 
graph technique is much slower, while for the problems we are interested in, 
the performance is approximately the same or even better for the graph tech
nique. It should be noted that the low efficiency for few species is much less 
dramatic if one considers the combination of assembling and solving. Since 
the matrix graph is coupled tightly to the underlying grid, the work for as
sembling will be of the same magnitude as the work for solving. In contrast, 
for many species the work for assembling can be much less than the work for 
solving by using identification of equal entries. 

Finally, it is interesting to discuss how near these values are to the peak 
performance which can be obtained for this machine. If we measure the per
formance for a simple dot product between a short vector and chunks of a 
longer vector, which can be seen as the basic inner operation, we obtain a per
formance of about 100 MFLOPS. Thus, the limit performance of 80 MFLOPS 

2 Here are some numbers: on the SGI Octane the size of the (second level) cache 
is 1 MB, the blocks transferred to the cache have a length of 128 bytes and the 
delay time is something in the order of 100 CPU instructions. 



New Sparse Matrix Storage Method 181 

is quite near to what one can reasonably expect. However, the main memory 
peak bandwidth of the SGI Octane lies at 1 GBjsec which would indicate a 
hardware limit of 

(1 Multiplication + 1 Addition) B ; G~js;;d bi)j = 250 MFLOPS . 
8 ytes =S2zeo ou e 

Yet, it seems as if this limit cannot be reached without very machine-specific 
optimizations. 

Note that even higher MFLOPS rates can be obtained for algorithms 
which do more work locally (Le. perform more floating point operations per 
cache miss). This is the case for direct solvers (see [Don98]) and for matrix
matrix-multiplications (both doing O(N3) operations on O(N2) data). For 
example, the LINPACK value of the SGI Octane is 409 MFLOPS. 

6 Example 

Consider the following setting, which arises for the modeling of a bio reme
diation problem3 . First, a flow field is computed by solving Darcy's equation 
for a geostatistically generated permeability field. Apart from this stationary 
flow field, we have five substances in two states, mobile and immobile, plus 
an eleventh immobile species (bacteria). Following the procedure described 
in Section 2, we end up with a block sparse matrix with the block patterns 

*0000*00000 aOOOOOOOOOO 
0*0000*0000 OaOOOOOOOOO 
00*0000*000 OOaOOOOOOOO 
000*0000*00 OOOaOOOOOOO 
0000*0000*0 OOOOaOOOOOO 

K>.>.= *0000****** , K>./" = 00000000000 , >.. =1= f.L . 
0*000****** 00000000000 
00*00****** 00000000000 
000*0****** 00000000000 
o 0 0 0 * * * * * * * 00000000000 
00000****** 00000000000 

Here, the letter a indicates that only one double value must be stored for 
K Aw Since we use hexahedra because of their better approximation proper
ties, we must store one diagonal block K AA and 26 off-diagonal blocks K AI-' 

for every vertex of the grid. In total, this amounts to 1688 Bytes per ver
tex, while a performance measurement yields a value of 25 MFLOPS for a 
matrix-vector multiplication. The use of full blocks would be disastrous here, 
because it would need about 16 times more memory and the overall time for a 
matrix-vector multiplication would be more than eight times higher (a rough 
estimate of these numbers can be obtained from Fig. 2). 

3 This example is taken from ajoint work with Christian Wagner (IWR, Universitat 
Heidelberg) which will be covered in detail in a forthcoming paper. 
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In contrast, the Harwell-Boeing scheme is still an earnest competitor: 
with 2352 Bytes per grid node it needs about 40 % more memory to store 
the matrix while being about 75 % faster (45 MFLO PS). However, in any case 
it lacks the advantages of the graph structure concerning local modifiability, 
easy reordering and easy parallelization. For even larger number of species, 
also the advantage with respect to computing speed vanishes. 

7 Conclusion 

The augmentation of sparse blocks on a grid-based matrix graph allows for ef
ficient storing and handling of general sparse matrices, if the size of the blocks 
(corresponding to the number of species for a convection-diffusion-reaction 
system of PDEs) is not very small. The use of this technique inside of the 
PDE toolbox UG gives the possibility to handle a broad class of convection
diffusion-reaction systems with parallel and adaptive multigrid. 
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The Numerical Simulation of Annular 
Chromatography by Adaptive Finite Element 
Method 

A. Thiele and L. Tobiska 

Otto-von-Guericke-Universitat Magdeburg, Institut fur Analysis und Numerik 

Abstract. The mathematical model of the annular chromatography consists of a 
coupled system of nonlinear convection diffusion equations. The model is discretized 
by the streamline diffusion method and the upwind finite element method, and the 
nonlinear system is solved by a simple iteration method. For linear adsorption 
isotherms both methods are compared on uniform and adaptive meshes, for various 
perturbation parameters and the influence of the coarse mesh and the flow direction 
on the quality of the numerical solution is considered. For the nonlinear convection 
diffusion equation we also examine the influence of the parameters of nonlinearity 
and the effect of a higher concentration at the inflow boundary. 

1 Model of Annular Chromatography 

A continuous rotating annular chromatograph was developed for preparative 
multicomponents separations [1 J. Chromatography is increasingly applied for 
the separation and purification of different products in the biochemical and 
pharmaceutical industries. One way to perform a continuous separation is 
offered by the concept of annular chromatography (Figure 1). 

T 
x 

Fig. 1. Chromatograph 

Here the stationary phase, a porous 
medium, is fixed between two con
centric cylinders and this bed is ro
tating along a fixed feed port. The 
multicomponent mixture is dosed 
continuously on top of the appara
tus at one rotating point and the 
mobile phase, an eluent fluid, is sup
plied everywhere else. The mixture 
is separated on its way downwards, 
because of their different affinity for 
the stationary phase [2]. Thus pure 
components can be collected con
tinuously at the bottom of the ap
paratus at different angles relative 
to the stationary feed point. 
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Nonlinear adsorption isotherms according to the Multi-Langmuir equation 
are used to describe the equilibrium distribution between the mobile phase 
and the stationary phase. Based on the mass conservation combined with the 
nonlinear adsorption isotherms the mathematical model consists of a coupled 
system of nonlinear. convection diffusion equations in two dimensions 

f)Ci f)qi ( c) f)Ci f)2 Ci f)2 Ci 

W f)() + wF----ao + u f)x = Dax f)x2 + Dtan f)()2 in n, i = 1, .. , n 

where q and C are related through the adsorption isotherms: 

i = 1, .. ,n. 

There are n pure components in the mixture. The variables x and () denote 
the axial coordinate and the angular coordinate respectively. Also, Ci is the 
concentration in the mobile phase and qi the loading on the stationary phase, 
u is the axial velocity, w the angular velocity and D .. are the Dispersion 
coefficients. Finally F is given by F = (1 - £)/£ with the porosity £. 

2 Discretization 

After introducing nondimensional variables, dispersion coefficients Dax and 
D tan and the width of the inflow are small parameters for practical problems. 
Because of the singular perturbation character of the problem stabilized dis
cretisation methods and adaptive mesh refinements are used to guarantee a 
high accuracy of the numerical solution. 

Let n be the unit square. For simulating the dosage of the mixture on top of 
the apparatus we take the following boundary condition: 

lr----------, 
Ci((), 1) = {~ () E [1'1,1'2] 

r1 : 

otherwise, 
Ci(O, x) = 0 Vx 

x ci(l,x) =0 Vx 

r 2 : f)Ci~~ 0) = 0 

where: 1'1,1'2 E (0,1) and 1'2 > 1'1· 
o () 1 

Let l' = 1'2 - 1'1 be the width of the inflow. 

We consider two types of stabilized discretizations for the problem above, 
an upwind finite element method and a streamline diffusion method. In both 
cases conforming finite elements with piecewise linear trial functions are used 
to approximate the solution. 
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The upwind finite element method is based on a special discretization of the 
convective term using a secondary grid of barycentric type [3]. In order to 
control the amount of upwinding and numerical viscosity in the scheme the 
corresponding weighting function is chosen as Samarskij upwinding. 

In case of the streamline diffusion method we set the local streamline diffusion 
parameter DT equal to the diameter of the element T. 

3 Solution of the Discrete Problem 

In the case of low concentration of the mixture there IS a linear relation 
between concentrations qi and Ci: 

Then the above equations are linear and uncoupled: 

in n. 

For the practical relevant case of higher concentration, the nonlinearity play 
an important rule. Thats why we examine the nonlinear case for one compo
nent. Solving the nonlinear case for one component we use a simple iteration 
method. 

We note the equality 

We set 

Oqi = If/( .) OCi 
of} c, of} with 

and obtain the following iteration rule: 

As initial solution c? of the iteration we use the solution of the corresponding 
linear problem. 
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4 Numerical Tests 

4.1 Influence of the perturbation parameter D 

We investigate a simple linear case, for which we know the exact solution. 

w=o 
U= -1 
D = Dtan = Dax 
')'1 = 0.495 
')'2 = 0.505 
')' = 0.01 

We compare the upwind finite element method and the streamline diffusion 
method using the exact solution for various small parameters D. 
We use a coarse mesh and uniform refinement strategy as follows. 

7 times 
==> 131841 Unknowns 

The Figures 2, 3 and 4 show ci(B,x = 0), the profiles at the outflow part. 

0.' ,--....----.----,--,..--..., 

0.7 

0.' 

0.5 

0.' 

0.3 

O~ 

..,. .... -
~tdtern" --_. 
"upfom" •••••• 

o:o~ -~0'2:---0~(\----:-0,~. --0"' .• ----' 
Fig. 2. Dax = D tan = 10-3 

The solutions of the streamline dif
fusion method and the upwind fi
nite element method are compared 
with the exact solutions for various 
parameter D. The error of the so
lution using the upwind finite ele
ment method is always greater than 
the error of the solution using the 
streamline diffusion method (Ta
ble 1). The solution of the upwind 
finite element method is still ac
ceptable for Dax = D tan = 10-3 

but is insufficient if the parameters 
Dax and D tan are very small. 

Better solutions can be obtained by adaptive mesh refinements using the 
same number of unknowns. However, we still can observe the same effect 
with respect to the quality of the solution for decreasing values of D when 
comparing the upwind finite element solution with the solution of the stream
line diffusion method calculated on a-priori or a-posteriori adaptive meshes. 
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Table 1. Relative error of Ci"'QX (0, 0) using uniform meshes (%) 

D 

UPFEM 

SDFEM 

4.2 Influence of the Mesh 

10-3 

1.57 

0.51 

10-4 10-5 

32.1 71.5 

0.41 0.005 

Now we consider several coarse meshes (Figure 5 - 10), locally adapted to the 
behaviour of the solution, solving the same problem as before. 

Fig. 5. Mesh m1 Fig. 6. Mesh m2 Fig. 7. Mesh m3 

Fig. 8. Mesh m4 Fig. 9. Mesh m5 Fig. 10. Mesh m6 

Let D = Dtan = Dax = 10-5 . 

We use the same mesh refinement as before and compute the solutions for 
the mehses mi for both discretizations. 
The solution of the streamline diffusion method is nearly independent of 
the used coarse mesh, but the solution of the upwind finite element method 
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strongly depends on the coarse mesh (Figure 11 and 12). The solution of the 
streamline diffusion method is acceptable in any case whereas the upwind 
finite element method requires locally adapted meshes (Table 2). 
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Fig. 11. SDFEM 
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Fig. 12. UPFEM 

Table 2. Relative error of Ci",ax (8, 0) (%) 

Mesh I ml I m2 I m3 I m4 I m5 I m6 

UPFEM 71.5 64.1 45.5 31.9 16.5 5.4 

SDFEM 0.005 0.08 0.27 0.29 0.31 0.31 

4.3 Influence of the flow direction 

Now we consider the linear case with w =f=. O. Let w(1 + F· a) = 1, D = 10-4 , 

')'1 = 0.0 and ')'2 = 0.01, hence')' = 0.01. 

u: -5, -2, -1.1 
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Fig. 13" SDFEM - UPFEM 

We solve the problem for various u using an adaptive refinement strategy 
based on an error indicator like the gradient error indicator. The solution of 
the upwind finite element method is not acceptable if there is no alignment 
between the flow direction and the mesh, whereas the solution of the stream
line diffusion method is better in all examples (Figure 13). 

For the following numerical tests we only use the streamline diffusion method, 
because an optimal mesh alignment is not possible in the multi component 
case. 

4.4 Influence of the Parameter of nonlinearity 

Now we consider a nonlinear equation for one component, more precisely: 

ai 
t]i(Ci) = (1 + biCiF with bi =I- o. 

We are especially interested in the effect of the parameter of nonlinearity bi 

on the profile of the solution at the outlet of the chromatograph. 
Let u = -2, w = 0.5, ai = 1, F = 1, Dax = 0.00114 and D tan = 0.0. 
An increasing bi leads to an elongation to the left side and to an asymmetric 
graph of the solution (Figure 14). 

4.5 Concentration at the inflow 

Last we change for fixed parameters u = -2, w = 0.5, ai = 1, F = 1, bi = 1, 
Dax = 0.00114 and D tan = 0.0, the height of concentration at the inflow 
boundary (Figure 15). 
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Abstract. A thorough understanding of the degradation mechanisms of polymers 
is needed in order to predict the formation of gaseous products from thermal treat
ment of plastic waste. To simulate the reactions of polydispers macromolecules a 
high dimensional system of rate equations has to be solved. An efficient and flexible 
algorithm based on a discrete Galerkin h-p-method which has been developed by 
Wulkow was adapted in this study to the numerical simulation of polymer decom
position. 

Subject of investigation is the thermal degradation of polystyrene and polyethy
lene. Random scission, "weak link" - scission, depropagation, inter- and intramolec
ular H-transfer, ,a-scission, termination via recombination and the evaporation of 
volatile oligomers is included in the kinetic schemes. 

1 Introduction 

Since several decades polymers are subject to investigation concerning their 
reaction to thermal stress. In recent times the interest in thermal degradation 
processes is intensified by the growing demand for recycling methods for 
the increasing amount of plastic waste. A thorough understanding of the 
degradation kinetics and advanced simulation methods are required to predict 
the formation of gaseous products during the thermal treatment of plastic 
waste [IJ. 

The modeling of polymer reactions involves the solution of a high dimen
sional system of rate equations. A number of methods has been developed 
for this task, often employing simplifying assumptions. Recently, Wulkow de
veloped an algorithm based on a discrete Galerkin h-p-method for modeling 
of polymer reactions. The algorithm provides a method for the efficient and 
flexible solution of polyreaction kinetics with no necessity of model reductions 
and no restriction to the form of the molecular weight distribution [2J. 

The aim of this work is the modeling of complex polymer degradation 
reactions. Two comprehensive models describing the thermal degradation of 
polyethylene and polystyrene, respectively, are composed which establish a 
basis for further work. Both polymers have been subject to numerous experi
mental [3-11J and numerical [12-15J investigation. Several models include the 
simultaneous independent scission of chains randomly and at the end [12,13J. 

F. Keil et al. (eds.), Scientific Computing in Chemical Engineering II
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However, these models do not take into account the nature of the radical 
chain mechanism where depropagation is a consecutive reaction of the slower 
bond scission. 

Other studies use a radical chain mechanism usually accompanied by the 
assumption of quasistationarity for the radical concentration [14,5]. It is not 
considered that the polymer radical may undergo further bond scission. How
ever, in case of high decomposition temperatures or stabilized radicals the 
secondary scission of radicals may have considerable influence. In this work 
the degradation process is simulated without the assumption of quasistation
arity. Secondary scission of radicals is included in the thermal degradation 
mechanism of polystyrene because high radical concentrations are observed 
during the degradation [9]. 

2 Kinetic Scheme and Rate Constants 

The degradation mechanisms of polyethylene and polystyrene both consist of 
a radical chain mechanism but they are different in several ways. Polystyrene 
pyrolysis yields monomer (>65%) and small oligomers [1] whereas polyethy
lene decomposes into a variety of saturated and unsaturated oligomers [16]. 
Additionally, the thermal degradation of polystyrene takes place at lower 
temperatures than the thermal degradation of polyethylene. 

According to the degradation process of each polymer the kinetic schemes 
as discussed in the following are employed in the simulations. 

Thermal Degradation of Polyethylene The initiation reaction of the 
thermal degradation of polyethylene is assumed to proceed via random chain 
scission of C-C bonds producing primary radicals. In literature the scission 
of "weak links" like branching points or the f1-position of unsaturated links 
is also discussed [17,3,4]. The scission of "weak links" has an influence on the 
energy of activation but the product formation is not effected considerably. 
Because the "weak links" should be randomly distributed the random chain 
scission is supposed to be a suitable initiation step. One has to keep in mind 
that the energy of activation may be lower than the bond dissociation used 
in this simulation of 364 kJ Imol derived from the bond dissociation energy of 
butane [18]. As preexponential factor 1013 s-1 is proposed for the dissociation 
of molecules into radicals [18]. 

The macromolecular reactands include primary radicals, secondary rad
icals and unsaturated polymer and radical species. An overview is given in 
figure 1. A summary of the mechanistic scheme and the rate coefficients are 
displayed in table 1 and table 2, respectively. 

Propagation reactions include intermolecular H-transfer and subsequent 
f1-scission of the resulting secondary radical Rs to give again primary radicals 
and unsaturated polymer DpE. The depropagation reaction is not considered, 
because at low temperatures ethene is only a by-product [10]. Several authors 
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~CH2rsA PE (alkane) 
polymer ~CH~ DPE (alkene) 

A;CH:z0 DPED (diene) 

prima~ ~CH~. Rp 
radicas ~CH2rsA· DRp 

secondary ~CHJsA Rs 

radicals ~CH2>V" DRs 

A;CH2rsA DAsD 

Fig. 1. Macromolecular reactands in PE and PS thermal degradation model 

Table 1. Kinetic scheme of polyethylene thermal degradation 

PEs --> RPr + RPs-r 

D PEs --> RPr + D RPs-r 

analog for D P E:; 

Rps + PEr --> PEs + RSr 

Rps + D PEr --> PEs + D RSr 

Rps + D PE;? --> PEs + DRs;? 

analog for D Rps 

Rss --> D PEr + RPs-r 

analog for D Rss and DRs:; 

Rps + RPr --> P Es+r 

analog for D Rps and combinations 

s x kri random chain scission 

r x ktr intermol. H-transfer 

(3 - scission 

ktc recombination 

additionally propose intramolecular H-transfer [4,3J which is not included in 
the mechanism of this work. This reaction increases the concentration of sec
ondary radicals with the radical center near the end of the chain. Thus the 
amounts of small alkanes and alkenes would be increased, however, compar
atively few products are affected. The energy of activation for intermolecular 
H-transfer is approximated by the activation energy for the hydrogen trans
fer from propane to ethyl radicals of 44 kJ fmol. The preexponential factor is 
proposed by Mita to be 107 to 108 (mol s)-1 [17J, therefore, a value of 5x 107 

(mol S)-1 is used as preexponential factor in this calculation. The Arrhenius 
parameters for ,B-scission of secondary radicals are assumed to be 109 kJ fmol 
and 1013 s-1 [17J. 

Termination reactions are recombination and disproportion at ion of the 
radicals. The activation energies of such reactions are small, meaning that 
the radicals react when colliding. However, the influence of diffusion is not 
yet elucidated. A preexponential factor of 104 1 (mol s)-1 is proposed by 
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Mita [17]. The ratio of recombination to disproportionation for reactions of 
n-propane radicals is about 7/1 [17]. Therefore, as a first approximation only 
recombination is employed. 

An essential feature of the polyethylene thermal degradation is the evap
oration of gaseous compounds. The vapor pressure Ps of the oligomers in 
dependence on the number of carbon atoms nc and temperature T / K 
can be estimated by the rule of Pictet-Trouton and the Clausius-Clapeyron 
equation. A similar estimation was performed by Ranzi et. al [14]. From the 
boiling temperatures of C 4 to C 20 n-alkanes the boiling temperatures of the 
oligomers are approximated by 140x ync. Then oligomers with their num
ber of C-atoms larger than nc = (T /140)2 remain in the liquid phase at 1 
atm pressure. Oligomers with their number of C-atoms smaller than nc are 
supposed to be present in the gas phase. 

Thermal Degradation of Polystyrene The initiation reaction of the ther
mal degradation of polystyrene is controversely discussed. The scission of 
"weak links" like head-to-head linkages or peroxides is assumed to be re
sponsible for a rapid initial drop of the average molecular weight observed 
for radically polymerized polystyrene [17,6]. Recent studies evaluated the ra
tio of "weak links" to "strong links" to be 1/47 [13]. The ratio of "weak 
links" at the chain-end to "strong links" can maximally amount to 2/Pn . 

Since P n - the number average chainlength - for commercial polystyrene is 
typically in the range of 1000 only the scission of randomly distributed head
to-head bonds is considered in this work. However, further work is planned 
to investigate chain-end initiation and random scission of strong links. The 
preexponential factor kri used in the simulation represents the product of the 
pure rate of bond scission and the ratio of "weak links" to "strong links". 
Because the Arrhenius parameters of the initiation step have fundamental 
influence upon the overall reaction a parameter estimation is performed. 

Table 2. Reaction rate parameters for PE and PS thermal degradation 

PE PS 

kri ktr kbs ktc kri kd kbb k ra 

Ea/kJ/mol 364 44 109 0 96 96 96 

19(ko x s) 13.0 7.7 13.0 4.0 - * 13.0 12.4 10.9 

·parameter estimation see section 4 

Depropagation and a back-biting mechanism - intramolecular H-transfer 
followed by ,B-scission - are responsible for the production of styrene monomer, 
dimer and trimer [8]. The energy of activation for depropagation is proposed 
by Richards and Salter to be 86-100 kJ/mol [7] in correspondence to values 
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of 103 kJ Imol calculated by Mita [17J. The mean value of 96 kJ Imol is used 
in the model. Because depropagation and fJ-scission of tertiary radicals are 
similar, the same activation energy is assumed. The termination reaction of 
polystyrene is found to be of first order [5J. Therefore, the first order termina
tion via abstraction of small radicals - namely benzyl and diphenylpropane 
(DP) radical - from the tertiary radicals is introduced into the mechanism. 
The backbiting reaction may be simulated in one single step if a quasi equilib
rium of secondary and tertiary radicals is assumed. The preexponential factor 
of the fJ-scission reactions can then be estimated according to the product 
ratio of monomer, dimer, trimer, benzyl and diphenylpropane radicals, re
spectively. Isothermal experiments yielded 65 % monomer, 1 % by-products 
including diphenylpropane and equal amounts of dimer and trimer [1 J. The 
preexponential factors calculated according to these values are given in ta
ble 2. The kinetic scheme is shown in table 3. 

Table 3. Kinetic scheme of polystyrene thermal degradation 

PSs ---+ RSr + RSs- r 

analog for Rss and RRss 

Rss ---+ RSs- 1 + styrene 

RRss ---+ RRss- 1 + styrene 

Rss ---+ RSs- 2 + styrene-dimer 

Rss ---+ RSs- 3 + styrene-trimer 

analog for RRss 

Rss ---+ PSs- 1 + benzyl-radical 

Rss ---+ PSs- 2 + DP-radical 

analog for RRss 

s x kri random chain scission 

kd depolymerization 

2 x kd depolym. (dirad.) 

kbb back-biting* 

radical abstr. * 

• represents intramolecular H-transfer and subsequent /3-scission 

3 Simulation Procedure 

The complete kinetic schemes are implemented into the simulation program 
PREDICI. The algorithm is based on a discrete Galerkin h-p-method which 
is described in detail by Wulkow [2J. The software includes a function for 
parameter estimation based on a modified Gau£-Newton method. The present 
models consist of up to seven distributions and 18 reaction steps ranging up 
to a chainlength of about 5000. Moreover, a correct point-wise resolution of 
the distributions is crucial for the evaporation process. Thus the complexity 
of the model can be considered as extremely high. 
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The initial distributions of the macromolecular reactands PE and PS are 
given by the generalized Schulz distribution [19J. Two initial distributions are 
employed in the simulation corresponding to an initial number average degree 
of polymerization Pn,o of 500 and 2000 and a non-uniformity coefficient Vo 
of 1 and 1/3, respectively. 

4 Results and Discussion 

Thermal Degradation of Polyethylene The thermal degradation of poly
ethylene is simulated at a decomposition temperature of 440°C employing 
an initial distribution of P n,o=500, Vo=l. Besides the evaporation of volatile 
alkanes contained in the initial distribution no significant product formation 
takes place within 400 min in contradiction to experimental results [lOJ. This 
indicates that the initiation rate is far too low. It can, therefore, be concluded, 
that either the scission of "weak links" like allyl-bonds is an important step in 
polyethylene decomposition, corresponding to a 50 - 60 kJ /mollower activa
tion energy[17J, or that the preexponential factor is higher than the estimated 
value of 1013 s-l. 
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Fig. 2. Simulated gas-chromatogram of PE pyrolysis products 

A part of the product distribution is shown in figure 2 in the form of 
a simulated gas-chromatogram. Alkanes are presented by the right peak of 
each group, alkenes and alkadienes by the middle and left peak, respectively. 
The alkenes clearly present the main products. This result is not in agree
ment with experiments, where alkanes are formed in even higher amounts 
than alkenes [l1J. Further work should clarify wether the introduction of 
intramolecular H-transfer improves the agreement with experimental data. 

Thermal Degradation of Polystyrene A parameter estimation is per
formed to evaluate the rate constant for random initiation kri . Experimental 
data from pyrolysis experiments in a gradient free isothermal reactor, de
veloped for the determination of the decomposition kinetics of plastics [8J, 
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are adapted. The parameter estimation for two degradation temperatures, 
360°C and 410 °C respectively, (initial distribution P n,0=500, Uo=l) yields 
a preexponential factor log(koxs) of 8.8 - corresponding to log(koxs)=10.5 
per "weak link" if the share of "weak links" is 1/47 [13] - and an activation 
energy of 178 kJ Imol. Figure 3a) shows the comparison of the experimental 
conversion curve and simulations for two initial distributions. 

2000 1.1 
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Fig. 3. (a) Degree of conversion for polystyrene thermal degradation, experiment 
(circles); simulation Pn,o=500, Uo=l (solid line); P no =2000, Uo=1/3 (dashed line) 
(b) Simulated number average chainlength(open marker} and non-uniformity (filled 
marker); P n,o=500, Uo=l (circles); P n ,o=2000, Uo=1/3 (triangles) 

The initial molecular weight distribution has only insignificent influence 
on the product formation. Of considerable interest is the developement of 
the molecular weight distribution shown in figure 3b). The number average 
chainlength Pn and the non-uniformity U for two different initial distribu
tions (Pn,0=500, Uo=l and Pn,0=2000, Uo=1/3) are displayed. Within the 
first 50 minutes of the degradation reaction the more uniform distribution 
is transformed via repeated scission and termination to the "most probable" 
distribution corresponding to U=l. 

The evaluated activation energy for initial bond scission in polystyrene 
corresponds well to values obtained by Kuroki, 173 kJ/mol [6], and Carniti 
et al., 185 kJ/mol [9]. The preexponential factor proposed by Kuroki is three 
orders of magnitude higher, log(ko x s )=12.0 and similar to the preexponential 
factor log(koxs)=13.4 evaluated by Carniti et al. [9]. The comparatively low 
value oflog(koxs)=8.8 per monomer unit derived in this work suggests that 
a further termination reaction of an approximate rate of 104 s-1 should be 
supplemented to the mechanism. Further work also will adress evaluation of 
models from overall kinetics as derived from isothermal measurements [8]. 
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5 Conclusions 

Complex reaction models are presented for the thermal decomposition of 
polystyrene and polyethylene establishing a basis for further work. The ap
plication of discrete h-p-Galerkin methods enables the simulation of complex 
thermal degradation processes of polymers within limited computation time. 
Further refinement of the kinetic scheme will allow the reliable prediction 
of the thermal degradation reactions of polymers and eventually polymer 
mixtures. 

Acknowledgements The financial support of this investigation by the 
Deutsche Forschungsgemeinschaft is gratefully acknowledged. 

References 

1. Bockhorn, H., Hornung, A., Hornung U. Macromolecular Symposia, in press 
2. Wulkow, M. (1996) Macromol. Theory Simul. 5,393-416 
3. Kuroki, R, Sawaguchi, T., Niikuni, S., Ikemura, T. (1982) Macromolecules 15, 

1460-1464 
4. Holmstrom, A., Sorvik, E. M. (1974) J. Appl. Poly. Sci. 18, 761-778 
5. Lehrle, R S., Peakman, R E., Robb, J. C. (1982) Eur. Polym. J. 18, 517-529 
6. Kuroki, T., Ikemura, T., Ogawa, T., Sekiguchi, Y. (1982) Polymer 23,1091-1094 
7. Richards, D. H., Salter, D. A. (1967) Polymer 8,139-152 
8. Bockhorn, H., Hornung, A., Hornung, U. Twenty-Seventh Symposium (Interna

tional) on Combustion, The Combustion Institute, Pittsburgh, PA, in press 
9. Carniti, P., Gervasini, A., Beltrame, P. L. (1989) Journal of Polymer Science: 

Part A: Polymer Chemistry 21, 3865-3873 
10. Bockhorn, H., Hornung, A., Hornung, U. J. Anal. Appl. Pyrolysis, in press 
11. Bockhorn, H., Hornung, A., Hornung, U., Schawaller, D. J. Anal. App!. Pyrol

ysis, in press 
12. Ebert, K. H., Ederer, H. J., Schroder, U. K. 0., Hamielec, A. W. (1982) Makro

mo!. Chern. 183, 1207-1218 
13. Madras, G., Smith, J. M., McCoy, B. J. (1996) Polymer Degradation and Sta

bility 58, 131-138 
14. Ranzi, E., Dente, M., Faravelli, T., Bozzano, G., Fabini, S., Nava, R., Coz

zani, V., Tognotti, L. (1997) J. Anal. App!. Pyrolysis 40-41, 305-319 
15. Nyden, M. R, Coley, T. R, Mumby, S. (1997) Polymer Engineering and Science 

31, 1496-1500 
16. Bockhorn, H., Hentschel, J., Hornung, A., Hornung, U. Chern. Eng. Sci., in 

press 
17. Mita, I. (1978) in: Aspects of Degradation and Stabilization of Polymers. Degra

dation and Depolymerization Kinetics. Jellinek, H. H. G. (ed.), Elsevier, Ams
terdam 

18. Kerr, J. A. (1966) Chern. Rev. 66, 465-500 
19. Glockner, G. (1987) Polymer Characterization by Liquid Chromatography. El

sevier, Amsterdam 



Influence of Occupancy and Pore Network 
Topology on Tracer and Transport Diffusion 
Zeolites 

Marc-Olivier Coppens 1 , Alexis T. Be1l2 , and Arup K. Chakraborty3 

1 Department of Chemical Engineering 
Delft University of Technology, 2628 BL Delft, The Netherlands 

2 Department of Chemical Engineering 
University of California, Berkeley, CA 94720-1462, U.S.A. 

3 Department of Chemical Engineering and Department of Chemistry 
University of California, Berkeley, CA 94720-1462, U.S.A. 

. 
In 

Abstract. We performed dynamic Monte-Carlo simulations of self-diffusion and 
transport diffusion on lattice models of zeolites, to study the influence of the strong 
adsorption sites and of various geometrical parameters. Despite the simplicity of 
the model, our results for self-diffusion confirm and explain the trends observed 
in pulsed-field gradient NMR experiments. Also for transport diffusion, agreement 
with recent chromatographic experiments is found. The Darken relationship could 
directly be verified at any occupancy. A mean-field theory predicts the results well, 
except for poorly connected lattices at high occupancy. 

1 Introduction 

With the advent of ever faster computers, dynamic Monte-Carlo simulations 
are an increasingly useful tool to investigate how diffusion in zeolites depends 
on various physico-chemical and geometrical parameters, such as the molec
ular occupancy 0, the pore network topology, and the types and numbers of 
adsorption sites. Knowing the sensitivity of the diffusivities to these param
eters is essential to simulate and design separation and catalytic processes, 
which are often diffusion limited. 

Parameters are easier to change in a computer than in an actual ex
periment, so that their influence can be more quickly revealed. Although 
computer simulations cannot replace experiments altogether yet, experimen
tally observed trends can be verified and explained. Moreover, carefully con
trolled diffusion experiments are hard to perform, and results based on dif
ferent methods are regularly at odds, even for important zeolites like ZSM-5 
[9,14,10]. Again, computer simulations can help to resolve these differences. 

In this paper, we report on results from Monte-Carlo simulations of both 
self-diffusion, V, and transport diffusion, VT, on lattice models of zeolites. 
More details about the method are provided in Sect. 2. Due to space limita
tions, we can only give an overview of the main findings; more information 
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can be found in [3-5J. Simulating hopping diffusion on a lattice is particu
larly useful to investigate the long-time diffusion properties that cannot be 
reached by performing more detailed, but far too slow Molecular Dynamics 
simulations. The coarse-grained, mesoscopic dynamic Monte-Carlo method is 
highly flexible and allows us to test a wide variety of problems. An analytical 
mean-field theory gives approximate solutions for the diffusivity, which can 
be compared with the Monte-Carlo results. 

Self-diffusion, which is diffusion in the absence of a concentration gradient, 
is generally measured using a microscopic method, such as Pulsed-Field Gra
dient NMR. Our starting point in the study of the tracer or self-diffusivity, 
D, is the wide variety of experimentally determined curves of V versus occu
pancy or loading B, as reported in [8,lOJ. The Monte-Carlo simulations should 
give a better idea on the origin of this diversity. 

'Itansport diffusion, on the other hand, occurs when a concentration gradi
ent is present. The (Fickian) transport diffusivity is defined by the ratio of the 
flux to this concentration gradient. While the transport and self-diffusivities 
are equal at zero coverage, this is not the case at higher occupancies B. A 
phenomenologic expression, known as the Darken relation, relates both dif
fusivities for pure components: 

(1) 

where () is the sorbate occupancy or concentration in equilibrium with sorbate 
at pressure p. For a pure component, a simplified form of the Stefan-Maxwell 
approach shows that the ratio of both diffusivities can be related to the 
adsorption isotherm, and is a result of using a concentration gradient, instead 
of the more fundamental chemical potential gradient [11 ,12J. Macroscopic 
uptake or sorption measurements, if carried out carefully, can measure the 
transport diffusivity, DT , yet application of the Darken relationship leads to 
values for the so-called (thermodynamically) corrected diffusivity, Dc, which 
are supposed to be, but are often not equal to independently measured self
diffusivities, D. Differences can be as high as a few orders of magnitude 
and predicted trends as a function of loading can differ even qualitatively 
[1O,2J. Monte-Carlo simulations of transport diffusion and comparison with 
self-diffusivities can directly test the relationship. 

2 Method 

A simple lattice model describes the zeolite pore network structure. During 
the Monte-Carlo simulations, molecules attempt to hop from one site on the 
lattice to another [17,6,16,3J. Time intervals are exponentially distributed. If 
a molecule attempts to hop to a free site, the hop is successful; if not, the 
molecule remains at the original site. A fraction f of the sites is strong, the 
remainder 1 - f is weak. The unit cell of the pore network can easily be 
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changed, so that any crystalline porous material can be simulated; we report 
results for a cubic lattice and for ZSM-5. Up to q molecules can occupy q 
sites inside the zeolite cages; intracage hopping is assumed to be a factor 'Y 
times more facile than hopping out and into another cage or, in the case of 
ZSM-5, to a channel site. 

Self-diffusion is simulated in a sufficiently large collection of unit cells, 
applying periodic boundary conditions, i.e., molecules leaving the simulation 
space at one end enter the opposite end. A fraction 0 of the sites is occupied. 
The self-diffusivity is evaluated using Einstein's relation: 

v = lim 2-(lr(t) - r(0)12), 
t-+oo 6t 

(2) 

in which r(t) is the position of a molecule at time t. For each set of parameters 
(f, q, 0, ,), ensemble averages ( ... ) are performed over a large number of 
simulations on different realizations of the network, resetting time to zero 
(t = 0) after a long enough time for the system to equilibrate. More details 
can be found in [16,3,4). 

'fransport diffusion VT(O) is simulated by imposing a concentration gradi
ent (02 - 01 ) / L over the slab, where L is the length or the number of unit cells 
along the direction of the gradient. The average occupancy 0 = (01 + O2 )/2. 
The simulation program is similar to that for self-diffusion, although several 
runs with different Land (01 , O2 ) are performed, in order to verify linearity. 
The transport diffusivity is then estimated from: 

V 1· N(t) LVu .c . 
T = 1m 

t-+oo 8(02 - 01 ) t 
(3) 

where N(t) is the net number of molecules flowing through the boundary 
planes on which the concentrations are imposed, 8 is the area of an edge, 
and Vu .c . is the volume of the unit cell. Periodic boundary conditions are 
used along directions perpendicular to the gradient. Molecules leaving in the 
direction of the gradient are randomly readsorbed in order to conserve the 
occupancy. Molecules entering the bulk of the slab from the outside surface 
induce adsorption, while molecules hopping from within the slab to the out
side surface lead to desorption, again to preserve equilibrium. Note that this 
is an approximation: statistical fluctuations of the occupancies on the outside 
layers are possible and could be simulated by imposing outside gas pressures 
and assuming a certain adsorption law, instead of imposing fixed boundary 
concentrations. 

We could easily add interactions between neighboring molecules, but pre
ferred to keep the model as simple as possible: it will indeed be seen from the 
simulations discussed in the next section that there is very good agreement 
with experimentally observed trends. Note, however, that interactions can 
be present and that, because of the modular structure of the model, addi
tional features such as interactions can easily be added. Hopping rates could 
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be determined using, e.g., Transition State Theory or Molecular Dynamics 
(for a review, see [1,15]). Our model is indeed meso scopic in nature, i.e., we 
desire to simulate the average- to long-time behavior of diffusion, based on 
parameters that can be obtained from short-time, microscopic methods. 

3 Results 

3.1 Self-diffusion 
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Fig. 1. Self-diffusion in ZSM-5 with 2 sites per cage, Ts/Tw = 100 and,,! 10. 
Results are normalized with respect to diffusivity at zero occupancy 

The topology of the pore network has an important effect on the self
diffusivity [3]. Let us first observe the situation with only one type of site 
and one site per cage, as is, e.g., the case for ZSM-5/silicalite. A molecule 
cannot move to a neighboring site when this site is occupied, thus increasing 
the probability to return to a recently occupied site, which is more likely 
to be vacant. These negative correlations in the molecular motion are more 
important at high occupancy B on a poorly connected lattice, such as for ZSM-
5, which has an average connectivity of 2.67 compared to 6 for a cubic lattice. 
If correlations were absent, the self-diffusivity would show a linear decrease 
with occupancy. The presence of correlations leads to negative deviations 
from this mean-field result. 

A small fraction f of strong adsorption sites has a large impact on how 
the self-diffusivity V changes with occupancy B. We simulated many cases 
[4], but one example, shown in Fig. 1, illustrates our main findings. The 
example in Fig. 1 is for ZSM-5 with 2 sites per cage, a ratio of average 
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adsorption times on strong and weak sites Ts/Tw = 100, and an intra- to 
extracage hopping probability ratio 'Y = 10, i.e., it is 10 times more likely 
for a molecule to attempt a hop to another site within the cage than it is 
to move out of the cage. For j near 0 or 1, the self-diffusivity decreases 
monotonically with e. At low to average j, strong adsorption sites tend to 
be occupied first, enabling most molecules to move along paths that consist 
of mostly weak adsorption sites, when the occupancy is low. This leads to 
an increase of V with e. At higher occupancies, the diffusivity reaches a 
maximum, then decreases, because the strong adsorption sites are saturated 
and molecules occupying both strong and weak adsorption sites increasingly 
hinder each others movement. This confirms the trends observed in PPG 
NMR experiments [8,10]. An initial plateau and inclination points, due to 
the filling of different types of sites (strong and weak sites in cages, less 
connected weak sites in the pore channels of ZSM-5), are also among the 
possibilities. 
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Fig. 2. Influence of the ratio of intra- to extracage hopping probabilities, /, on the 
self-diffusivity in ZSM-5, with 2 sites per cage and Ts/Tw = 100 

The effect of an increase in the number of sites per cage, q > 1, is to facili
tate the passage of molecules through the cages, thus leading to higher peaks 
in the curves. Based on occupancy and flow balances between the different 
types of sites, algebraic equations for the self-diffusivity can be derived under 
the mean-field approximation that the concentration at each point is equal 
to the average concentration for that particular type of site (weak or strong 
cage or channel site). The formulae can be found in [4]. The higher q, the bet
ter the agreement between such mean-field calculations and the Monte-Carlo 
simulations, but qualitative agreement of the trends is remarkable, even for 
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one site per cage, except for average to high f and at high occupancy, because 
of the significance of correlation effects. 

Also the intra- to extracage hopping probability ratio, has an important 
influence for more complex lattices, such as ZSM-5 with 2 sites per cage. 
Figure 2 shows how an increase in , leads to a significant increase in the 
self-diffusivity for f = 0.5, and how this trend is inverted for f = O.S. When 
, is high, a molecule adsorbed on a strong cage site is likely to attempt a 
move to the other cage site; if that site is weak, it will readily be vacated and 
diffusion is enhanced, but at higher f, it is likely to be strong as well, so that 
the cage is effectively blocked. 

3.2 Transport diffusion 
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Fig. 3. Transport diffusion on a cubic lattice for Ts/Tw = 100 and different fractions 
f of strong adsorption sites. Symbols are Monte-Carlo simulation results, lines with 
symbols are corresponding mean-field results, using the Darken relationship 

Figure 3 shows the transport diffusivity V T on a cubic lattice as a func
tion of occupancy, normalized with respect to the diffusivity in the limit of 
zero occupancy. The lines are mean-field approximations, the symbols are 
Monte-Carlo results. In the mean-field approximation, the transport diffusiv
ity was calculated based on the Monte-Carlo or mean-field calculation of the 
self-diffusivity, D, and applying the Darken relationship (1) with Dc = D(O). 
A rather bold step was to use a Langmuir isotherm with mean-field approx
imations for the occupancies of strong and weak sites, to derive dlnp/dlnO. 
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In view of this approximation, the agreement is remarkably good, even up to 
high occupancies, except for intermediate fractions of strong sites f rv 0.5. 

Our results are in agreement with most experimental observations that, 
at very low occupancy (0 _ 0), self- and transport diffusivities are equal 
to each other [10,13). In this limit, the Darken relationship (1) holds with 
Henry's law, p rv O. For f = 0 or f = 1 (only weak or strong sites), we also 
confirm that the transport diffusivity is independent of occupancy, as found 
in experiments and simulations of hopping diffusion of molecules that cannot 
pass each other [17). 

Recent chromatographic experiments of diffusion of iso-butane and iso
butene in silicalite [7) show that the diffusivity of iso-butane hardly changes 
with occupancy, while the diffusivity of iso-butene sharply increases up to a 
constant plateau value at low occupancies, when a small fraction of defects 
in the silicalite are present. The defects act as strong adsorption sites for the 
unsaturated iso-butene (small f > 0), but not for the saturated iso-butane 
(f = 0). Therefore, this observation agrees well with our simulations. More 
details will be published shortly [5). 

4 Conclusion 

Diffusion in zeolites strongly depends on the pore network topology and on 
the types and fractions of the different adsorption sites. Simple Monte-Carlo 
simulations on a lattice model of the zeolite pore network enable us to ef
ficiently study a particular system. The calculated trends are in agreement 
with experimental observations. This "meso-scale" method has the advan
tage that it can predict long time values using a few microscopic parameters, 
whereas more detailed methods cannot reach this long time regime for other 
than the simplest systems. Mean-field calculations can quickly estimate the 
diffusivity, although large deviations from the Monte-Carlo values occur when 
long-time correlations are present, i.e., at higher occupancies, when the site 
distribution is strongly heterogeneous and the connectivity of the network is 
low. 

Acknowledgement 

This work was supported by the Office of Industrial Technology of the U. S. 
Department of Energy under contract DE-AC03-SF7600098. A Postdoctoral 
Fellowship for MOC from the F.W.O. (Fund for Scientific Research - Flan
ders, Belgium) and a F.W.O.-N.S.F. grant for the first stages of this project 
are gratefully acknowledged. 



Influence of Occupancy and Pore Network Topology on Tracer 207 

References 

1. Bell A.T., Maginn E.J., Theodorou D.N. (1997) Molecular Simulation of Ad
sorption and Diffusion in Zeolites. In: Ertl G., Knozinger H., Weitkamp J. 
(Eds.) Handbook of Heterogeneous Catalysis. VCH, Germany. 

2. Brandani S., Hufton J., Ruthven D. (1995) Self-Diffusion of Propane and Propy
lene in 5A and 13X Zeolite Crystals Studied by the Tracer ZLC Method. Zeolites 
15:624-631 

3. Coppens M.-O., Bell A.T., Chakraborty A.K. (1998) Effect of Topology and 
Molecular Occupancy on Self-Diffusion in Lattice Models of Zeolites - Monte
Carlo Simulations. Chem. Engng Sci. 53:2053-2061 

4. Coppens M.-O., Bell A.T., Chakraborty A.K. (1998) Dynamic Monte-Carlo and 
Mean-Field Study of the Effect of Strong Adsorption Sites on Self-Diffusion in 
Zeolites. In press for Chem. Engng Sci. 

5. Coppens M.-O., Bell A.T., Chakraborty A.K. (1999) In preparation. 
6. Hinderer J., Keil F.J. (1996) Three-Dimensional Monte-Carlo Simulations of 

Diffusion and Reaction Phenomena in Zeolites. Chem. Engng Sci. 51:2667-
2672. 

7. Hufton J.R., Ruthven D.M., Danner R.P. (1995) Adsorption and Diffusion of 
Hydrocarbons in Silicalite at Very Low Concentration: Effect of Defect Sites. 
Microporous Materials 5:39-52 

8. Karger J., Pfeifer H. (1987) N.M.R. Self-Diffusion Studies in Zeolite Science 
and Technology. Zeolites 7:90-107 

9. Karger J., Ruthven D.M. (1989) On the Comparison Between Macroscopic and 
N.M.R. Measurements of Intracrystalline Diffusion in Zeolites. Zeolites 9:267-
281 

10. Karger J., Ruthven, D.M. (1992) Diffusion in Zeolites and Other Microporous 
Solids. Wiley, New York 

11. Krishna R. (1990) Multicomponent Surface Diffusion of Adsorbed Species: A 
Description Based on the Generalized Maxwell-Stefan Equations. Chem. Engng 
Sci. 45:1779-1791 

12. Krishna R. (1993) A Unified Approach to the Modelling of Intraparticle Diffu
sion in Adsorption Processes. Gas Separation & Purification 7:91-104 

13. Nijhuis T.A., Van den Broeke L.J.P., Van de Graaf J.M., Kapteijn F., Makkee 
M., Moulijn J.A. (1997) Bridging the Gap Between Macroscopic and NMR 
Diffusivities. Chem. Engng Sci. 52:3401-3404 

14. Pfeifer H., Freude D., Karger J. (1991) Basic Principles and Recent Results of 
IH Magic-AngIe-Spinning and Pulsed Field Gradient Nuclear Magnetic Reso
nance Studies on Zeolites. In: Ohlmann et al. (Eds.) Catalysis and Adsorption 
by Zeolites. Elsevier, Amsterdam, 89-115 

15. Theodorou D.N., Snurr R.Q., Bell A.T. (1996) Molecular Dynamics and Dif
fusion in Microporous Materials. In: Atwood J.L et al. (Eds.) Comprehensive 
Supramolecular Chemistry. Pergamon, Oxford, 507-548 

16. Trout B.L., Chakraborty A.K., Bell A.T. (1997) Diffusion and Reaction in 
ZSM-5 Studied by Dynamic Monte-Carlo. Chem. Engng Sci. 52:2265-2276 

17. Tsikoyiannis J.G., Wei J. (1991) Diffusion and Reaction in High-Occupancy 
Zeolite Catalysts - 1. A Stochastic Theory Chem. Engng Sci. 46:233-253 



Modeling of pressure fields in various 
environments including damping effects and 
change of wave velocity due to the emergence 
of cavitation bubbles 

Sascha Dahnke! and Frerich J. Keil! 

Technical University of Hamburg-Harburg, Eissendorfer Strasse 38, D-21071 
Hamburg, Germany email: keil@tu-harburg.de 

Abstract. In sonochemical reactors the effect of emerging cavitation bubbles has 
significant influence on the amplitude and structure of the sound field. Calcula
tions show that the damping parameter and the phase velocity may, depending 
on the pressure amplitude, change in several orders of magnitude. In this work a 
new method will be presented, which enables one to calculate the time- dependent 
three-dimensional pressure field in sonochemical reactors of various shapes taking 
inhomogeneous distributed wave parameters into account, which are a function of 
the spatial depending pressure amplitude. Also some results for different reaction 
vessels are shown. 

1 Introduction 

The radiation of the liquid by ultrasound causes a series of compression and 
rarefaction cycles which create areas of high and low local pressures. During 
the rarefaction phase of the pressure wave a cavitation bubble will emerge 
if the local under-pressure reaches the cavitation threshold pressure (Apfel 
(1984); 'Devena (1984)). 

An important task for sonochemistry in industry is to develop ultrasonic 
reactors for different reactions with optimized characteristics, like a maximum 
volume fraction of cavitation zone which is essential to get a high reaction 
yield. To do so the sound field inside the sonoreactors has to be calculated. As 
a first step in this direction pressure fields in homogeneous media in reactors 
of different geometric shapes with various dimensions were calculated (Keil 
and Dahnke (1996) and Keil and Dahnke (1997) 11, 12). In three subsequent 
papers (Dahnke and Keil (1998) 5-7) a new model has been proposed to cal
culate the three-dimensional pressure field in a liquid with an inhomogeneous 
distribution of cavitation bubbles. In two following papers (Dahnke and Keil 
(1998) 8, Dahnke et al.(1998) 9), a new approach has been presented where 
the pressure field in any sonochemical reactor was calculated including an 
inhomogeneous density distribution of cavitation bubbles dependend on the 
spatial varying sound amplitude of the pressure waves. The bubble volume 
fraction f3 of the developing cavitation bubbles will be related to the pres
sure values, and the damping parameters 0' and phase velocities c resulting 
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from the bubbles present are calculated by the theories of Commander and 
Prosperetti (1989). 

In this work a model is presented that predicts at least approximately the 
number and kind of cavitation bubbles in sonochemical reactors of different 
geometric shapes and applications. 

2 Theory 

The present work is based on the numerical solution of a modified time
dependent three-dimensional wave equation. It is a modification of the homo
geneous wave equations in three-dimensions taking the results of Commander 
and Prosperetti (1989) and damping phenomena into account. 

Our starting point is the three-dimensional homogeneous wave equation 
(Junger and Feit (1986)): 

L1(r t) __ 1_ a2p(r, t) 
, - Cliq 2 at2 

(1) 

Cliq describes the sound velocity in the liquid onephase medium. The pres
ence of cavitation bubbles in an ultrasonic irradiated fluid causes, amongst 
other effects, a local change of the density and the compressibility. Taking 
this into account, an additional term arises: 

Llp(r,t)+Pmix(r) [v \ )] [VP(r,t)] 
prnlX r 

1 a2p(r, t) 
Cmix 2 (r) at2 

(2) 

Damping of waves in a lossy fluid means an exponential decrease of wave 
energy with distance. It can be described in the one-dimensional case by the 
equation 

(3) 

which expresses a propagating pressure wave, which amplitude decreases with 
eax . Introducing the relation x=c*t, applying an equation similar to (3) in 
three dimensions and calculating the second derivatives in space and time, a 
differential equation with a damping term results: 

a2p(r, t) I ap(r, t) _ 0/2 + w2 A ( ) 

at2 + 2a at - k2 ~p r, t . (4) 

Considering the time-dependent wave equation, the description of the damp
ing as a function of time leads to equivalent results. 

Over the last decade, much work has been done to describe the influ
ence of a bubbly liquid on the propagational characteristics of wave motion 
(Nakoryakov et al. (1993); Prosperetti et al. (1988); Prosperetti and Com
mander (1989); Gumerov (1994); Sangani (1991); Blake (1994) and Ye and 
Ding (1995»). The main wave parameters, namely damping coefficient a and 
phase velocity emix, may change in several orders of magnitude due to the 
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bubble presence. For example, the speed of sound in the bubbly medium 
(down to 20 ms- 1) is quite different from that of a pure liquid (in pure wa
ter approximately 1500 ms- 1) or the pure gas (340 ms- 1 for air), which is 
in the bubble. One main result of the work of Commander and Pros peretti 
(1989), consists of the homogeneous wave equation (1) with an additional 
source term. 

[
ex:> 1 1 Rof(r, Ro) a2p(r, t) 

.1p(r,t) = --2 +47r/ (Ro)2 2 2·b dRo a 2 
Cliq Wo - W + z W t 

o 

(5) 

R(r, Ro, t) defines the instantaneous bubble radius at position r and time 
t having an equilibrium radius Ro and f(r, Ro)dRo the number of bubbles 
per unit volume with equilibrium radius Ro between Ro and Ro + dRo. w 
is the angular frequency of the pressure field, Wo the resonance frequency of 
a single cavitation bubble and b a damping constant refering to one single 
vibrating bubble that arises from viscous, thermal and acoustic effects. A 
second final result of the work of Commander and Prosperetti is the complex 
wavenumber, kmix , which is given by the dispersion relation 

ex:> 

w2 2/ Rof(r, Ro) 
krnix(r) = --2 + 47rW 2 2 .b dRo , 

Cliq Wo - W + 2z W 
(6) 

o 

which implies the damping coefficient a(r) and phase velocity Crnix(r) of the 
acoustic waves. To calculate the wave number kmix , a certain radial distri
bution has to be considered. We followed the suggestions of Commander and 
Prosperetti (1989), who proposed a gaussian radii distribution with a range 
of bubble radii from R1 = 5 x 1O-6 m to R2 = 3 x 1O-3 m and a standard 
deviation (j of about 2 x 10-3 m. 

As yet, we are not aware of any experimental or theoretical results con
cerning the dependency of the bubble density distribution on the amplitude 
or frequency of the surrounding sound field. Therefore, as a first approxima
tion, we start with a simple relationship between the bubble volume fraction 
and the pressure amplitude: The bubble volume fraction (3 should be lin
ear dependent on the amplitude and restricted in a range from 10-4 up to 
10-1 . Furthermore, no cavitation bubbles emerge below a pressure threshold 
of 106 Pa = 10 bar, which is the only parameter that is experimentally con
firmed (Prosperetti and Commander (1989), Ye and Ding (1995),Yount et 
al. (1984)). The limit of the pressure amplitude, at which the bubble volume 
fraction reaches its upper limit, has been varied from 5*107 Pa to 108 Pa to 
take more than one possible damping characteristic into consideration. Above 
these upper pressure limits, the bubble volume fraction remains constant. 

Unfortunately, the complex character of the factor on the right-hand side 
of eq. (5) may cause a negative real part at certain pressure values. This leads 
to an unstable condition for a numerical solution of this equation. To calculate 
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the developing three-dimensional pressure field, the differential equation (4) 
will be solved by applying the approach of finite differences. The resulting 
finite difference equation which is based On eq. (4) is solved explicitly for 
p(ri' tj+l), the pressure value at position ri, for a subsequent time-step. With 
this final equation one is able to calculate the pressure at a subsequent time 
step for the entire interior of the reactor if the pressure values at two previous 
points in time are known. The initial conditions can be described with a zero 
pressure amplitude at the time zero and a harmonic change of a certain 
pressure distribution at the surfaces of the transducers. At the transducer 
complex harmonic boundary conditions were used. The boundary conditions 
in the region of the transducer read 

P (r, t) = po(r)cos(wt) + i· po(r)sin(wt). (7) 

i represents the imaginary unit.This procedure enables One to determine im
mediately the sound field amplitude at each point in time and space by taking 
the absolute value of the complex pressure value. In order to determine an 
amplitude dependent bubble density for every point in time and space this 
is a very helpful procedure. At the water surface an ideal pressure-release 
boundary was assumed, signified by a vanishing pressure: 

P (r,t) = o. (8) 

The remaining boundaries are assumed to act like ideal-rigid walls, which 
can be described by a vanishing normal pressure derivative to the respective 
surface where n is the normal unit vector. 

ap(r,t) -+-

an = n '\lP (r,t) = 0, 

3 Modeled sonochernical reactors and boundary 
conditions 

(9) 

Two different types of ultrasonic reactors (Fig. 1) were analyzed and their 
pressure fields calculated as a function of the transducer's frequency and two 
different damping characteristics. The first reactor (Fig. la) has a simple 
geometry: the ultrasonic transducer is a circular plate with a diameter of 
0.06 m which performs a harmonic movement in the z-direction. Acoustic 
waves are generated and emerge from the bottom of the reaction vessel. The 
outer shape of the reactor is a circular tube with a height of 0.15 m. The 
second reactor (Fig. 1 b) that was modeled is a cylindrical tube with the same 
dimensions as reactor 1. An ultrasonic horn emits the acoustic waves from a 
height of 0.075 m downwards to the bottom. All the calculations were carried 
out for transducer frequencies of 20 and 50 kHz and an uniform transducer 
surface amplitude of 10-5 m. 
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(a) (b) 

Fig. 1. Two types of modeled sonochemical reactors 

4 Results 

The influence of the emerging cavitation bubbles on the amplitudes and ge
ometric structure of the sound field for two transducer frequencies of 20 and 
50 kHz are analyzed. To show the difference of the sound field properties with 
and without the presence of bubbles is the main task in this section. In Fig. 
2 the undamped pressure field amplitudes for the reactor of type (Fig. la) 
one for the two frequencies are shown. 

a) b) 

Fig. 2. Undamped pressure field for reactor type one for transducer frequencies of 
a) 20 kHz and b) 50 kHz. 

On the left side of the coordinate system the transducer is located and 
the right side represents the water surface. One can see that the number of 
maxima and the absolute maximum of the pressure amplitudes is increased 
in Fig. 2 b). This is due to the higher frequency and the assumed constant 



Modeling of pressure fields in various environments 213 

amplitude of the transducer. In Fig. 3, the results in the case of the cavitation 
bubble's presence are shown. 

a) b) 

Fig. 3.Pressure field for reactor type one in the case of bubble presence for trans
ducer frequencies of a) 20 kHz and b) 50 kHz. 

The amplitudes in the case of bubble presence for both frequencies shows 
a remarkable decrease of approximately halb a magnitude. Furthermore, the 
structure of the sound field has significantly changed. The most remarkable 
structure change is visible in the case of a 20 kHz stimulation. The number of 
the main maxima is reduced from three to two. This effect is a result of the 
additional change of phase velocity which alters the wavelength of the sound 
waves. In Fig. 4 the pressure fields for reactor type two in the undamped 
case for both transducer frequencies are shown. The area of zero pressure 
amplitudes is dedicated to the body of the sonotrode. 

l 
lie 

a) b) 

Fig. 4.Undamped pressure field for reactor type two for transducer frequencies of 
a) 20 kHz and b) 50 kHz. 

For this reactor type the nearly identical total maximum of the pressure 
amplitudes for both frequencies is remarkable. This can be explained by the 
)) disadvantageous" distance of the sonotrode to the opposite boundary re
garding the frequency of 50 kHz. In this case, the distance may not be a 
multiple of the wavelength (A = 0.0288 m, dist = 0.075 m -> AI dist = 2.604; 
both boundary surfaces are determined to be ideal rigid) which causes a de
crease of the acoustic energy density. The effect of emerging cavitation bubble 
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is presented in Fig. 5. Again the amplitudes and the structure of the sound 
field change significantly. 

a) b) 

Fig. 5.Pressure field for reactor type two in the case of bubble presence for trans
ducer frequencies of a) 20 kHz and b) 50 kHz. 

Compared to the results of reactor type one for a frequency of 50 kHz 
the relative decrease of amplitudes is lower for reactor type two. It can be 
justified by the lower total maximum of the undamped field which causes 
smaller damping coefficients and changes of wave velocity. 

5 Summary 

A numerical method has been presented which predicts the pressure field dis
tribution in ultrasonic reactors by solving the inhomogeneous three-dimensio
nal time-dependent wave equation, using the approach of finite differences. 
The change of wave parameters due to the inhomogeneous distributed cavi
tation bubbles has been calculated using the work of Commander and Pros
peretti (1989). To relate the bubble density to the sound field amplitude, a 
linear approach was initially employed. The influence of emerging cavitation 
bubbles on the amplitude and structure of the sound field could be shown. 

6 Notation 

b 

c 

f(r, Ro) 

i 
k 

damping constant refering to one single vibrating bubble arising 
from viscous, thermal and acoustic effects 
sound velocity in an homogeneous one-phase liquid 
spatial dependent sound velocity in the mixture of liquid and 
gas bubbles 
constant of the Gaussian distribution of the relative number of 
the bubbles as a function of their radius 
relative bubble density at r for bubbles having a equilibrium 
radius Ro 
imaginary unit 
wave vector in an undamped fluid (without imaginary part) 



n 
per, t) 
p(ri,tj) 
po(r) 
r 
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wave vector in an homogeneous one-phase liquid ( = 21f / >.) 
spatial dependent wave vector in the mixture of liquid and gas 
bubbles 
unit normal vector belonging to a certain boundary 
pressure value depending on the vector r at a time t 
pressure values at distinct points in the finite difference scheme 
pressure amplitude distribution at the surface of the transducer 
coordinate vector 

t time coordinate 
Llt finite difference time step 
u velocity of the fluid medium 
x spatial coordinate in an one-dimensional system 
R(r, Ro, t)instantaneous bubble radius at time t at position r having 

an equilibrium radius Ro 
Ro equilibrium radius of a cavitating bubble 

7 Greek Letters 

a(r) 

al(r) 

f3(r,t) 
"'liq 

Pliq 

Pmix(r) 

w 
Wo 

spatial-dependent attenuation coefficient due to the presence of 
cavitation bubbles in the liquid 
modified attenuation coefficient for the case of time-dependent 
damping 
spatial- and time-dependent bubble volume fraction 
compressibility of the homogeneous one-phase medium 
density of the homogeneous one-phase medium 
spatial dependent density in the mixture of liquid and gas 
bubbles 
circle frequency 
resonance frequency of a cavitation bubble 

8 Differential operators 

'V nabla operator 
Ll laplace operator 
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Abstract. The authors have recently developed a mathematical model for the 
description of the behavior of viscoplastic materials. The model is based on a non
linear differential equation of order (3, where (3 is a material constant typically in the 
range 0 < (3 < 1. This equation is coupled with a first-order differential equation. In 
the present paper, we introduce and discuss a numerical scheme for the numerical 
solution of these equations. The algorithm is based on a PECE-type approach. 

1 Introduction 

In recent work [7], the authors have constructed a mathematical model for 
the description of the behavior of viscoplastic materials under certain con
ditions. In particular, we are interested in describing the strain and entropy 
reacting in response to changes in stress and temperature. In the theory of 
viscoelasticity, it is well known [4J that the constitutive equations governing 
these phenomena involve differential equations of fractional order. Since the 
theory of viscoelasticity is essentially a linear theory, these differential equa
tions are also linear, and therefore they may be solved using rather simple 
methods. For our situation, we have found that we have to replace these linear 
equations by nonlinear ones. The standard solution methods for the linear 
equations usually fail in the nonlinear case. In order to resolve the situation, 
we now present a numerical scheme that allows us to handle these equations. 
In the derivation of the algorithm, we have taken particular care of the fact 
that the model does not consist of fractional differential equations only, but 
that first-order differential equations are contained too. This has imposed the 
requirement to find coherent schemes for both types of differential equations. 

In the following section, we briefly review our mathematical model. Hav
ing done this, we will introduce and discuss our new numerical method in 
§3. 
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2 The Mathematical Model 

In order to motivate the algorithm that we developed, we give a short de
scription of our mathematical model, thus explaining the equations we want 
to solve. For this description of our model of viscoplastic materials, it is useful 
to first briefly recall some key facts from fractional calculus. 

The Riemann-Liouville derivative of order 13 > 0 of a function f with 
respect to the point to is denoted and defined by [18, p. 59] 

(3 1 dm it m-{3-1 
Dtof(t) = r(m _ (3) dtm to f(u)(t - u) du (1) 

where m is the integer defined by the relation m -1 < 13 :::; m. If 13 is a natural 
number, then we recover the classical definition of the derivative. This form 
of a derivative has got very nice and useful mathematical properties [18,19]' 
but a direct application to physical problems often leads to difficulties when 
trying to handle initial conditions in a meaningful way. The reason is that 
the fractional derivative of a constant is not identically zero. Therefore, it is 
common to use Caputo's [3] variant of the Riemann-Liouville derivative, Le. 

{3 {3 ( ~ (. - to)k (k) ) 
dtof(t) = Dto f - 6 k! Y (to+) (t), (2) 

where m is as above; cf. also the survey article [16] and the references cited 
therein. There is one particularly important property that both these (and 
indeed all other) fractional derivatives share, namely the fact that these op
erators are not local. This means that the value of d~of(t) depends on all the 
values of f in the interval [to, t] (Le. on the entire history of the function J). 
In sharp contrast to this, differential operators of integer order are always 
local, Le. they can be evaluated from functions values of f in an arbitrarily 
small neighborhood of t. This hereditary behavior makes fractional differen
tial operators a natural choice when it comes to modeling path-dependent 
phenomena. On the other hand, the property has got an influence on the 
numerical scheme: The fact that we cannot neglect the past history of f im
plies an increased arithemtic complexity of the algorithm compared to similar 
methods for integer-order equations. 

In our model presented in [7], a simplified form of which we shall now 
briefly review, we have essentially set up three sets of equations. The first set 
describes the hydrostatic response (Le. the dilatational kinetics), the second 
set deals with deviatoric response (Le. the distortional kinetics), and the last 
set covers the evolution of an internal stress. 

Our description starts with the first group of relations. We have decom
posed the dilatational strain response e additively into an elastic (reversible) 
part ee and a plastic (irreversible) part eP, Le., 

(3) 
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where the individual parts fulfil the relations 

ee = 30:(T - To) - E.., 
",e 

(4) 

eP = -~exp (_~) I;,p-x. 
TO RT ",p 

(5) 

Here 0: is the mean coefficient of thermal expansion (and thus a material con
stant), T is the current temperature, To is the temperature at the beginning 
of the experiment, p is the pressure, ",e and ",p are the elastic and plastic bulk 
moduli, TO is a characteristic time, Q is the activation energy, R = 8.3145 
J Imol K is the universal gas constant, and x is the hydrostatic component 
of the internal stress. These relations describe the dilatational kinetics of the 
model. Formulae (3-5) constitute the standard linear solid of viscolelastic
ity in disguise, at least when x = -",P[e - 30:(T - To)]. This choice for a 
constitutive relation was made because, based on our present knowledge of 
hydrostatic data, this seems to be the best model currently available for the 
problem at hand. 

For the distortional response E = Ee + EP (also decomposed into elastic 
and plastic components), we have found 

(6) 

and 
. 1 (1IS-XII)n S-X 

EP = -:;. J-lp(l - 1;,) 211S - XII· (7) 

In these equations, J-le and J-lP are the elastic and plastic shear moduli, S is 
the deviatoric stress, T = TO exp(QI RT), I;, quantifies the ratio IISII/IIXII at 
saturation satisfying the restriction 0 < I;, < 1, and n establishes the stress 
dependence. These relations are motivated by corresponding models from 
nonlinear viscoelasticity [12]. 

Whereas fractional derivatives are a very natural and common tool in the 
classical models of viscoelasticity [4], it seems that in the rather young area of 
viscoplasticity, the only such model to have been proposed is by Lion [14]. Our 
approach distinguishes itself from his in that we consider a nonlinear material 
model that is, we believe, more keeping in line with dislocation physics. 

There is abundant metallographic and experimental evidence implying 
that microstructure evolves in a path-dependent manner and, consequently, 
the state of stress that a microstructure generates will be hereditary in nature. 
Therefore, as mentioned above, the internal stress can be considered as a 
viable candidate for postulating fractional-order equations for its evolution. 

Thus, for the evolution of the internal stress X = X - xl (I being the 
identity tensor), we demand in the model that 

x = -",P(e-30:(T-To)) (8) 
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(9) 

(10) 

where (3 is a material constant. 
These equations fully describe our model for the viscoplastic material, 

expressing the unknown quantities X (internal pressure) and L (limit strength 
of X) in terms of the control variables T (temperature), S (deviatoric stress), 
and p (pressure). Of course, we have to assume that initial values for the 
unknown functions at time t = to are given. 

The reader is referred to [7] for further details. 

3 The Numerical Algorithm 

3.1 Preliminary Remarks 

The viscoplastic material model just presented, which we believe has the po
tential to apply to plastics and metallics alike for a broad class of applications, 
requires the simultaneous solution of a linear first-order differential equation 
for the plastic dilatation eP, a nonlinear first-order differential equation for 
the plastic distortion EP, and two nonlinear fractional-order differential equa
tions for the internal stress X and its limit strength L. It is imperative that 
one has a coherent numerical scheme for handling these various types of dif
ferential equations simultaneously, which is what we now turn our attention 
to. For the sake of simplicity, we restrict ourselves to the case important for 
the application we have in mind, viz. 0 < (3 < 1, and we only state here that 
the considerations below can be generalized to arbitrary positive (3. 

The definition of the fractional derivative and some well known results 
of fractional calculus (cf., e.g., [6]) tell us that we can interpret a fractional 
differential equation 

D~(y - yo)(t) = !(t, y(t)), y(to) = Yo (11) 

as a strongly singular Volterra integral equation of the second kind, 

1 it y(u) - Yo 
r( -(3) to (t _ u)f3+1 du = !(t, y(t)) , y(to) = Yo (12) 

thus forcing us to regularize the integral in Hadamard's finite-part sense. 
The numerical methods developed for this purpose, however, are currently 
able to cope with linear equations only [6,8,9]. Alternatively, we can apply a 
fractional integral operator to the differential equation and incorporate the 
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initial conditions, thus converting the equation into a weakly singular Volterra 
equation of the second kind 

1 it yet) = y(to) + r(f3) to (t - u)f3- 1J(u,y(u))du (13) 

where a regularization is not necessary any more. It seems [17] that there 
exists only a very small number of software packages for nonlinear Volterra 
equations [1,2]. Moreover, these routines are tailored specifically for equations 
with smooth kernels, and it is known (cf., e.g., [2, p. 63]) that they fail to 
produce reliable results (and return error flags instead) even if the kernels are 
continuous but not differentiable. In our situation the kernel is not continu
ous (actually it even is unbounded), and therefore these classical numerical 
algorithms are unable to handle our equation. 

3.2 Description of the Algorithm 

In the following, we shall now present our scheme for the numerical solution 
of the general fractional differential equation (11) that may of course be used 
for the special case discussed in the previous section, viz., eqs. (9) and (10). In 
the development we have in mind that these fractional differential equations 
are coupled with the first-order differential equations (4)-(7), and thus we 
need to combine the fractional-order algorithm with a classical method. The 
results of [15] give us the general advice to choose these two algorithms such 
that both methods are based on analoguous construction principles. We thus 
chose an Adams-Bashforth-Moulton approach for both integrators. Whereas 
this approach is very well known for first-order equations [10,11]' we shall 
give some more details for the fractional variant. 

The key to the derivation of the method is to replace the original fractional 
differential equation (11) by the equivalent weakly singular Volterra equation 
(13) and to implement a product integration method for the latter. What we 
do is simply use the product trapezoidal quadrature formula with nodes tj 
(j = 0, 1, ... , n + 1), taken with respect to the weight function (tn+l - .)f3- 1 , 

to replace the integral. In other words, we apply the approximation 

(14) 

where gn+l is the piecewise linear interpolant for g with nodes and knots 
chosen at the t j , j = 0,1,2, ... , n + 1. An explicit calculation yields that we 
can write the integral on the right-hand side of eq. (14) as 

(15) 
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where 

and 

{ 
(u - tj_l)/(tj - tj-l) if t j-l < u < tj, 

<Pj,n+1(u) = (tj+l - U)/(tj+l - tj) if tj < u < tj+l, 
o otherwise. 

(16) 

(17) 

In the case of equispaced nodes tj = to + jh with some fixed h, the relations 
of eq. (16) reduce to 

a. _ { (3(;: 1) (n13+1 - (n - (3)(n + 1)13) 
J,n+l - h13 

(3((3+1) 

if j = 0, 

(18) 
if j = n + 1, 

whereas for 1 ::; j ::; n, we have 

aj,n+l = (3(;: 1) ((n - j + 2)13+1 - 2(n - j + 1)13+1 + (n - j)13+1). (19) 

This then gives us our corrector formula, i.e. the fractional variant of the 
one-step Adams-Moulton method, which is 

The remaining problem is the determination of the predictor formula that 
we require to calculate the value Y;+I' The idea we use to generalize the one
step Adams-Bashforth method is the same as the one described above for the 
Adams-Moulton technique: We replace the integral on the right-hand side of 
eq. (13) by the product rectangle rule, i.e. 

(21) 

where now 

Again, in the equispaced case, we have the simpler expression 

(23) 
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Thus, the predictor Y!+l is determined by 

(24) 

This completes the description of our basic algorithm, the fractional version of 
the one-step Adams-Bashforth-Moulton method. Recapitulating, we see that 
we first calculate the predictor Y!+l according to eq. (24), then we evaluate 
f(tn+b Y!+l) , use this to determine the corrector Yn+l by means of eq. (20), 
and finally evaluate f(tn+l, Yn+d which is then used in the next integration 
step. Therefore, methods of this type are usually called predictor-corrector 
or, more precisely, PECE (Predict, Evaluate, Correct, Evaluate) methods. 

3.3 Main Properties of the Algorithm 

We shall now describe the main properties of the algorithm. In particular, 
we find that, with respect to the most important questions, the behaviour of 
the method is independent of the parameter f3 and that it behaves very much 
like the classical one-step Adams-Bashforth-Moulton method (i.e. the case 
f3 = 1). Therefore, a combination of the fractional Adams-Bashforth-Moulton 
scheme outlined above with its classical version is very natural when the set 
of equations to be solved consists, as in our case, of first-order differential 
equations combined with fractional-order differential equations. Moreover, it 
can even be generalized to include more fractional order equations, even if the 
order of the differential operators involved varies from equation to equation. 

Stability. The issue of stability is very important when implementing the 
method on a computer in finite-precision arithmetic because we must take 
into account effects due to rounding errors. It is known [11, Ch. IV] that 
the classical Adams-Bashforth-Moulton method (for first-order equations) is 
a reasonable and practically useful compromise in the sense that its stability 
properties allow for a safe application to mildly stiff equations without undue 
propagation of rounding errors, whereas the implementation does not require 
extremely time consuming elements. From the results of [15] we can see that 
these properties remain unchanged when we look at the fractional version of 
the algorithm instead of the classical one, and thus it is also clear that the 
behaviour does not depend on the order of the differential operators involved. 

Convergence. Of course, stability alone is not sufficient in practice to make 
sure that the numerical solution is a good approximation to the exact solu
tion. We must also address the problem of error estimates, i.e. the question 
of convergence. In this context, we can use some of the standard analysis 
techniques [13, §§8.2 & 8.3] to derive that (assuming sufficient smoothness of 
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the functions involved) the convergence order of the scheme is 2, i.e. we have 
an error bound of the form 

(25) 

where h = maXj(tj+l - tj) for all tj E [to, to + t*] with some fixed t* > O. 
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Abstract. In this paper we present stability of a class of exothermic chain reactions 
both from coolant and dilution rates. Moreover the influence of diffusion is also 
considered. Our analysis is based on upscaling balance conditions for equilibria 
concentrations. 

1 Upscaling balance conditions for equilibria 
concentrations 

Following Feinberg [3] we write chemical reactions of species Xo, ... ,Xn as 

(j) (j) k j -(j) -(j) 
Yo Xo + ... + Yn Xn ----+ Yo Xo + ... + Yn Xn (1) 

with integer stoichiometric coefficients y(j), y(j) 2: 0 and positive real reaction 
rate coefficient k j . Then the associated dynamics is given by 

M 

:i; = L kjxy(y(j) - y(j»). (2) 
j=l 

Here x = (xo, ... , Xn) E R n + 1 is the vector of concentrations and x Y := 

X6° ... x~n represents the usual mass action kinetics. 
Note that the external feed concentrations can be incorporated in this 

model by adding formal reactions 

(3) 

For the radical starter reactions considered in the present paper, we can 
therefore introduce a crucial small parameter f > 0, in this sense, by the feed 
"reaction" 

O~S (4) 

with f := So denoting the feed concentration of the radical starter. Let a = 
(ao, . .. , an) E Rn+l denote the scaling that is 

(5) 
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Substituting (5) into (2) we obtain 

(6) 

With the abbreviation a· y(j) = aoy~j) + ... + any~P for the scalar product, 
the equilibrium equation (6) is 

M L kjEa .yW f,y(j) (y(j) - y(j)) = 0 (7) 
j=l 

for the scaled steady state f, = f,(E). 
Definition 
We call a = (ao,···, an) E Rn+1 a scaling exponent for the steady state 

concentrations x = (xo,···, x n ) of (2) , if there exists a sequence of scaled 
equilibria f,(Ee) = (f,o(Ee),··· ,f,n(Ee)),Ee ---> O,l ---> 00 of (7), such that for all 
m = 0, ... , n the following nondegeneracy conditions holds: 

0< lim inf f,m,(Ee) ~ lim supf,m,(Ee) < 00. 
e-+oo e-+oo 

(8) 

Theorem 1.1 (see also [1], [2]) Any scaling exponent a = (ao, ... ,an) E 
Rn+l satisfies 

min {(a· y(j))} = min {(a· y(i))}, 
j:y~) #0 i:y~) #0 

(9) 

for all fixed m = 0, ... , n. 
Proof: 
Let a = (ao, ... , an) be any scaling exponent. We rewrite equation (7) 

for the scaled steady state f, = f,(E) in components m = 0,· .. , n as 

(10) 

or, equivalently, 

(11) 

Fix m. We sort the terms on either side of (11) by increasing powers a . 
y(j), a . y(i) of E respectively. Note that all terms are strictly positive, by the 
nondegeneracyassumption (8). Let 

min {a· y(j)} = a· y(jo) and min {a. y(i))} = a. y(io), 
j :y~) #0 i:y~) #0 

in (11). The the leading (alias: lowest) power of E in the m-th component of 
(11) is given by a . y(jo) on the left, as compared to a . y(io) on the right. 
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These leading powers may in fact be realized by several other scalar products 
0: . y(j), 0: . y(i) in addition. Comparing coefficients, we divide (11) by E to the 
power min (0: . y(jo), 0:' y(io», and let E ----> O. This immediately yields 

by positivity of all terms in the sums. This proves the theorem . 

2 Model reactor 

As a paradigm to the problem of stability analysis of a chemical reactor we 
consider the following radical reaction 

(12) 

E+E· ----> p. 

p. +E ----> P+E· 
(13) 

(14) 

Here S is a radical starter, such as hydrogen peroxide or UV-light, and the 
chain (13) converts the educt E into the product P. This reaction scheme is 
not only the basis for radicalic dimerisations, but with small changes it can 
also be found in hydrocarbon-cracking and radicalic polymerisations (see [4]). 
The corresponding radicals are S·, E·, p •. Inconsequential side products are 
denoted by D 1 , D 2 , D3 . The starter reactions (12) get the chain (13) going, by 
the restroing the educt radical E·. Chain termination reactions are considered 
in (14). Assuming that, aside from some small regions of laminarity, the 
reactor volume is essentially mixed, then for the concentrations S, E and for 
the radicals, s, e,p we have 

s = So - klS - DS 

E = Eo - k2 sE - k3eE - k4pE - DE 

S = 2k1S - k 2 sE - k6es - Ds 

e = k2sE - k3eE + k4 pE - 2k5e2 - k6es - DE 

P = k3eE - k4 pE - Dp 

(15) 

. 2 
T = h1k1S + h2k2SE + h3k3eE + h4 k4pE + h5k5e + h6k6es - ",,(T - To) 
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Here T denotes temperature, hi are the reaction enthalpies, and the reaction 
rates 

(16) 

are of Arrhenius type with activation energies Ii and rate constants ki, i = 
1, ... ,6. Externally sustained, space dependent feed concentrations are de
noted by Eo, 80 • D and K, indicates dilution and external cooling rates with 
coolant temperature To respectively. Our next step is based on the applica
tion of upscaling balance condition (9) to the reaction mechanism (12)-(14). 
To this end, following (3) we add to (12)-(14) formal reactions 

(17) 

Following mathematical convention, we introduce 

E:= 80 (18) 

and consider the limit E i ° henceforth. For the reaction mechanism (12)
(14), (17) with x = (xo, ... , xn) = (8, E, s, e,p) and D = ° upscaling balance 
condition (9) for the scaling exponent 

takes the form 

8) = min{as} = min{l} 

E) = min{aE + as,aE + a e, aE + a p } = ° 
s) = min{aE +as,as +ae } = as 

e) = min{aE +ae ,2ae ,as +ae } = min{aE +as,aE +ap } 

p) = min{aE + a p } = min{aE + a e } 

It is not difficult to prove, that (19) yields 

Analogously we have 

a = (1,0,1,1,1) in the case D i=- ° 

(19) 

(20) 

(21) 

We will use the expressions (20) and (21) for the scaling exponent in our 
stability analysis. 
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3 Stability analysis 

As we mentioned above, for stability analysis we make use of asymptotic 
expansions of equilibria concentrations 

(22) 

in E := So. First we restrict ourselves to the case D = O. To this end we 
consider the following 6 x 6 matrix (linearization at X(E» A(E). 

-k1 0 0 0 0 k~S 

0 -k3e - k4P - k2S -k2E -k3E -k4E 81 

2k1 -k2S -k2E - k6e -k6 S 0 82 
A(t) = 

0 k2s - k3e - k4P k2E - k6e -k3E - 4ks e - k6S k4E 83 

0 k3e - k4P 0 k3E -k4E 8 4 

T/1 T/2 T/3 T/4 T/5 85 

where by (9 j, TJj, j = 1, ... , 5 we denote the derivatives with respect to T and 
educts, respectively. Note, that k~ = d'!rk1 . 

We consider the following eigenvalue problem 

(23) 

and are interested in the stability of chemical reaction under consideration. 
We begin our stability analysis by grouping the matrix A( E) according to its 
leading order in E. As was mentioned above, for this purposes we use scaling 
exponents (20). Thus A(E) can be decomposed as 

(24) 

It remains to compute >'j(AO(E»,j = 1, ... ,6. Note that the (5 x 5) matrix 
which consists of first five columns and rows of A( E) has the first five negative 
eigenvalues. We denote this matrix by Ao,5 (E). It is not difficult to see that, 
some of eigenvalues of Ao,5(E) have zero limit as E ~ 0, (remaining negative 
for E > 0). 

Remark 3.1. In the case D = 1 the corresponding matrix (dominant) 
Ao,5(E) has negative eigenvalues '\l(E), ... , '\5(E) with limE-+o '\j(E) = >';,0 < 0 
(so-called stabilization effect of dilution rate). 

Thus for stability analysis it remains to check of the influence of the 
coolant rate K. For simplicity of computations we assume that k3 = k 4 . It is 
not difficult to see that (using some transformation) the stability analysis of 
the (6 x 6) matrix A ( E) reduced to that of the (4 x 4) matrix of the form 



230 M. A. Efendiev and A. Schuppert 

_lfu -c -k3E -k4 E E 

_h3+h 4 lfu c-,,- h3k3E + 2h5k5e h4 k4 E 2 E 
(25) 

0 0 -k3E - 2k5e k4 E 

0 0 k3 E -k4 E 

Here c = ~ is a constant depending on the activitation energy and the 
given temperature T. Hence it follows from (25) we have stability (for given 
temperature T) when "- is sufficiently large, that is there exists "-c > 0 such 
that "- ::::: "-c we have stability and 0 < "- < "-c is the instability region (T is 
fixed). 

Remark 3.2. In the same manner one can analyze the influence of the 
presence of diffusion, the so-called diffusion effect. Indeed in this case stability 
analysis will be governed by the equation 

det(A(E) -I-LD - AId) = 0 

where A( E) is the same (6 x 6) matrix as above, D = diag (d1 , ••• , d6 ), I-L E 

R+,Id is the identity matrix. Here we also have for the (5 x 5) matrix .40 ,5 (E) 
strong stable directions due to the presence of diffusion. 

Conclusions: We presented stability analysis for a class of exothermic 
radical chemical reactions, which run with low starter concentrations, pro
viding nevertheless sufficiently many radicals. Our mathematical analysis is 
based on upscaling balance condition, which in turn allow us to predict stable 
(strong stable) directions of educts under considerations. Moreover our anal
ysis describes (mathematically) phenomena, when CFSTR reactor remaining 
stable for a while, suddenly become unstable (effect of temperature). 

Acknowledgments: We thanks to B. Fiedler and M. Wolfrum for useful 
discussions. 
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Simulation of the Non-Stationary Behaviour of 
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D-21071 Hamburg, Germany 

Abstract. A model for the simulation of fixed-bed reactors is presented. Special 
care is taken of single catalyst pellets, that are assumed to be heterogeneous in 
spatial direction. All the reaction steps and equilibrium conditions may be included. 
The resulting ODE-PDE system is solved by the package pdexlm. A complete 
example set of parameters is presented as well as calculation results. 

1 Problem formulation 

Industrial reactors are more and more optimized with respect to their dy
namical behaviour. The predominant applications are simulations of start-up 
or shut-down procedures and the calculation of non-stationary reactor oper
ation. 

It is well known that kinetic expressions that are based on measure
ments under stationary conditions may not give satisfactory results under 
non-stationary conditions. Therefore it is often necessary to conduct experi
ments under non-stationary conditions [1]. These require a more sophisticated 
analysis, which in return often requires the simulation of the reactor behaviou
runder non-stationary conditions. Such simulations will be presented in this 
paper. As many common simplifications do not apply to the non-stationary 
operation, the appropriate modeling of the mass-transfer processes is indis
pensable [2]. The kinetics of adsorption/ desorption processes may be included 
as well as changes of the catalyst behaviour over time. 

2 Model Description and Equations 

The model presented here combines a model of the reactor with a detailed 
description of the catalyst. Due to numerical difficulties the latter is usually 
neglected or included just by simple constants, e.g. effectiveness factors. There 
are many cases in which these simplification do not hold, e.g. rapid catalyst 
deactivation. 
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2.1 Assumptions 

The model can be separated into two parts, some equations describe the 
behaviour within the catalysts, others the reactor. The following assumptions 
are made: 

• The catalyst pellets are heterogeneous in spatial direction. There are 
two separate phases representing the gaseous and adsorbed components. 
The structure parameters, the catalytic activity, and the physical gas 
properties are not necessarily homogeneous and may change with the 
particle radius. 

• The ideal gas law holds for the gas phase. The model equations can be 
easily adopted to different equations-of-state by a compressibility factor. 

• Due to symmetry, only one spatial direction must be considered within 
the catalyst pellets. If only one spatial co-ordinate must be taken into 
account, the equations given here apply to a planar, a cylindrical, or a 
spherical geometry, if Cartesian, cylindrical, or spherical co-ordinates are 
employed. More complicated geometries require only little modifications 
in the model equations. 

• All transport processes within the catalyst pores are described by the 
Dusty-Gas-Model [3]. 

• Adsorption and desorption processes are treated as chemical reactions. 
Gaseous and adsorbed parts of a component are treated as two different 
species. 

• In the example calculations treated here, chemical reactions are resolved 
to their elementary steps. The formal model equations need not to be 
changed, if elementary steps are treated as equilibrium conditions or if 
some are lumped to total reactions. 

• The equations presented apply to the isothermal case. They can easily 
be adopted to non-isothermal conditions. 

2.2 Equations for the Catalyst Pellets 

At first, the model for the catalytic reaction will be outlined. The material 
balance over a differential volume element gives a system of parabolic partial 
differential equations (PDE) 

an = dV . ~ (CRT r~ ~ Oct + D ac ~ + (1 - €) DB ac ~) + dV . ""' v -r .. 
at ai 8"., T oi oi T T ai T ~ J J 

J 

(1) 
Under the assumptions given above these equations have a special structure, 
so the system can be transformed into the dimensionless system 
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in the gas phase, and 

8(V;x) = ~ (OS~) 8(V;x) + _l_~v.w 
80 8z T 8z 1 - f . J J 

J 

(3) 

in the solid phase. 
The dimensionless numbers are calculated according to 

z = ~. .1t V; _ p . w _ rL2RT . {30 = r~ plz=0.5 
L' 0 = £2; - plz=0.5' - Ll pl z=0.5 ' 8'1].1 

(4) 

OS = ~ ~ =J {
DB I' . 
o li:f=j 

(5) 

{ ~ + ~N ~ + 4 I i :f= j 
_0- 1 = ODi j L..J :'¥! Dil Df 

Ii = j 
(6) 

2.3 Equations for the Reactor 

Secondly, a model for the reactor is necessary. For this purpose the common 
reactor models are employable. Spatially continuous models like one-, two-, 
or three-dimensional dispersion models are not applicable with the available 
numerical methods, if the radial profile within the pellets is resolved as above, 
because the computational demand is too high. Alternatively a cell model is 
employed in the present work. In such models the fixed-bed reactor is given as 
a one-, two-, or three-dimensional network of ideal continuous-fed stirred tank 
reactors (CSTR). Usually 1-6 cells are required to simulate the behaviour of a 
fixd-bed gas reactor. The cell model is equivalent to a relatively coarse spatial 
discretisation of the continuous profiles, while the transitions between the 
points are modeled to fulfil physico-chemical laws. In that way the errors due 
to the coarse discretisation are mainly compensated. Compared to dispersion 
models far less floating point operations are required, which significantly 
decreases the round-off errors as well as the computation time. 

The balance over a cell leads to a system of ordinary differential equations 
(ODE) for every single cell 

dnR . dt = (Xin - XR) . ntotal,in 

- BlLl pIR=;·5 b [(XR - xl z=0.5) - XR' ~ (XR,i - Xilz=0.5)] (7) 

with 
. kL 

B~ = Lf' (8) 
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They result in the dimensionless form 

~: = O~ (Zin - z) - Bi· K, [(ZR - zlz=0.5) - ZR' ~ (XR,i - Xilz=0.5)] , 

(9) 
if the outer diffusion resistance is neglected 

dZR 1 (T) (1 T) {)z 1_ dO = OR (Zin - z) - K,' €. 1 - ZRe -:;. ZI.~=L/2 e + 6 ()z z = L/2 

(10) 
will result similarily. 

2.4 Initial and Boundary Conditions 

The initial material distribution can be set arbitrarily. In the present example 

Zgas(t = 0) = Zgas,O, ZR(t = 0) = ZR,O, Zsolid = 0 (11) 

was assumed. 
The boundary conditions for the gaseous phase are 

. 1 T {)z 
Bz· (XR - z) = -:;.(ze + 6) {)z (12) 

if the film mass transfer resistance is taken into account, or 

(13) 

if it is neglected. 
Similar conditions can be found for the solid phase. If the surface diffusion 

is neglected (68 = 0), the eq. (3) will become ODEs at the discretisation 
points. So 

(14) 

is used at the boundary. 
In the present example a one-dimensional model was used. The cell inlet 

concentrations are given by 

(15) 

Care must be taken of the reactor residence time, OR. The usual residence 
time is the first moment of the residence time distribution. The integral may 
not exist (e.g. in the case of irreversible adsorption). Therefore a characteristic 
hydrodynamic residence time 

n(t) 
tr = -.-

nin,O 
(16) 
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is employed. The real hydrodynamic residence time of cell i is given by the 
correction 

(17) 

3 Programming 

For the numerical solution of the relatively large system of parabolic PDEs 
the package pdexlm [4], version 0.95, is employed. It implements a semi
implicit extrapolation method. The moving-grid option was not used. The 
code was modified in order to increase the number of solvable equations to 
200. Since the program cannot process combined ODE-PDE systems, the 
equations (9-10) are solved at all inner points with a local XR. 

Table 1 lists a typical parameter set for a calculation with one cell where 
adsorption becomes rate determining. 

4 Example Calculations 

As an example the transient response of a system with a Langmuir-Hinshelwood 
type kinetics to different input signals is calculated. The reaction scheme is 

A + ( )* ----> (A)* 

B + ( )* ----> (B)* 
(A)* + (B)* ----> (C)* + (D)* 

(C)* ----> C + ( )* 
(D)* ----> D + ( )* 

(18) 

(19) 

(20) 

(21 ) 

(22) 

In the Fig. 1, 2 the mole fraction of reactant A is given as it would be recorded 
in an experiment. Figure 1 shows the response function to a concentration 
change in the gas phase. The catalyst surface is clean at the beginning. The 
minimum in Fig. 1 at time 25 is explainable by the adsorption processes in
volved [5]. Such processes may have the effect that measurements will not 
give the desired information about the catalytic mechanism. For the details 
of the theoretical fundamentals the reader is referred to the literature. Al
ternatively periodic signals can be used for the investigation of the catalyst 
[6]. The system is the same as in the first example, but the feed composi
tion changes sinusodially. It is evident, that the signal is a combination of 
the influences from the system and initial effects. After the initial period the 
non-stationary behaviour of the catalytic system still can be measured. The 
results are presented in Fig. 2. 
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5 Notation 

Bi [-] Biot-Number 
b [~] Volume specific surface 
c [~] Concentration 
Ct [~] Total Concentration 
D [~] Dusty-Gas diffusion matrix 
D B [ms2] S f D ff ur ace i usion matrix 
D [ ms2] B d ff ij inary i usivity 
D B [ms2] S f d ff ur ace i usivity 
D K [ms2] K d d ff nu sen i usivity 
e [-] Vector with all elements equal to 1 
Z,J [-] Index 
k [r;-] Mass transfer coefficient 
L [m] Characteristic length, here particle diameter 
n [mol] Mole vector 
ntotal, in [msol] Feed 
p [Pal Pressure 
R [m:~K] Universal gas constant 
r [~] Reaction rate 
rp [m] Mean pore radius 
T [K] Temperature 
t [s] Time 
V [m3 ] Volume 
x [-] Mole fractions of the components 

[-] Mole fractions of the components in the reactor 
[-] Mole fractions of the components in the feed 

z [-] Dimensionless spatial co-ordinate 
[m] Spatial co-ordinate 

Greek Symbols 

(30 [-j Convective factor 

..:1 [m. 2
] Characteristic diffusivity 

8 [-j Dimensionless Dusty-Gas diffusion matrix 
~B [_j Dimensionless surface diffusivity matrix 
E [-] Porosity 
'T] [Pas] Viscosity 
e [-] Dimensionless time 
e R [-] Dimensionless residence time 
K [-] Dimensionless volume specific surface 
v [-] Vector of stoichiometric coefficients 
T [-] Tortuosity 
'ljJ [-] Pressure ratio 
w [-] Dimensionless rate of reaction 
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Table 1. Typical values for the dimensionless variables 

Bi 

ngaseous,solid 

x'fn 
(30 

_0- 1 

T 

Ws 

References 

11 

4,4 

(004,0.6,0,0) 

6.3.10-4 

{ 
0~2 I i i= j 
o Ii =j 

o (all entries) 
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50 
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Abstract. A dynamic model of a venturi loop reactor was set-up. First steady state 
calculations describing the hydrodynamics and mass transfers coefficients were per
formed. The second group of simulations concentrated on the performance of the 
system for different kinetics and operating conditions. Finally the scale up of the 
reactor was modelled resulting in the conclusion that using proper chosen scaling 
rules, the reaction time and time dependency of the key variables can be kept uni
form. 

1 Introduction 

In a venturi loop reactor mass transfer [1] between gas and liquid plays an 
important role. In literature already a lot of attention is paid to the mea
surement of this mass-transfer but also data about the interfacial areas, the 
hydrodynamics and the gas etrainment rate [2] exist. With the help of all 
these experimental data and the increasing computational power of the com
puter, it should be possible to build a suitable simulation model predicting 
the operation and scale-up [3]. This should lead to the possibility to bypass 
steps in the development from lab process to the final plant. Such a model 
should incorporate hydrodynamic behaviour, mass and heat transfer mod
els [4] in combination with heterogeneous catalyst, physical properties and 
start-up and shut-down processes. The objective of the research performed 
was to model a venturi loop reactor, applicable to arbitrarily chosen kinetics, 
reactants and processing conditions. With the model; interpretation of ex
perimental data, optimisation and scale-up should be made easier and much 
faster. 

2 Theory 

The principle design of the venturi loop reactor is shown in figure 1. In order 
to model such a system it was subdivided into six parts. For both the main 
reaction vessel and the venturi injector the same mass balances, reaction 
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(VES), Venturi ejector (VEJ), 'lUbes 
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Fig. 2. Reaction model (both for the 
vessel and the venturi) 

kinetics and enthalpy balances were set up. For the pump, control valve, 
tubes and heat exchanger different models were set up. The venturi ejector 
is a very efficient gas-liquid contactor. The liquid feed is led through a small 
nozzle, resulting in a high liquid velocity. This high velocity jet passes through 
a small tube, which is slightly larger in diameter. Gas is fed near the nozzle. 
Instabilities at the jet surface entrain the gas. A continuous enlargement of 
the jet causes finally a mixing shock. The two-phase stream of gas and liquid, 
flow downward through a wider section of the venturi. In the mixing shock 
liquid and gas is finely dispersed and most of the kinetic energy of the liquid 
is dissipated. This results in the formation of very small gas bubbles. These 
fine gas bubbles in turn lead to high mass transfer rates. Because of the high 
energy dissipation in the mixing shock the mass transfer in the venturi tube 
is a few orders of magnitude larger than the mass transfer in the main vessel. 
For a system where the absorption of gas is the limiting step (Ha > 2, Fast 
reaction), the venturi ejector almost solely determines the reaction time of 
the system, although the residence time in the ejector is small compared to 
the vessel. The energy dissipated by the liquid flow in the mixing shock is 
estimated as the kinetic energy of the jet leaving the nozzle: 

(1) 

where p[kgm-3 ], uN[ms- 1] and 4>dm3s-1] are the density of the liquid, 
the velocity of the liquid leaving the nozzle and the throughput of the liquid. 
The energy consumed by the gas flow is estimated by: 
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We = (Pout - Pee)¢e (2) 

where Pout[N m-2 ], Pee and ¢e[m3 8- 1 ] are the pressure of the stream 
leaving the ejector, the gas pressure near the nozzle and the gas throughput. 
Combining both equations lead to the dissipation of energy in the mixing 
shock per unit volume or: 

E = WL - We (3) 
ELpLVEJ 

where EL[-] and VEJ [m3 ] are the liquid hold-up in the ejector and the vol
ume of the ejector. This dissipation is used to calculate the bubble diameter [1] : 

db = 0.62 ~ --:-- E-O.4 + Ee (W )0.6 ( )0.6 (1 ) 1.2 

2 PLPe 1 + 0.2Ee 
(4) 

where Wec[-], a[Nm- l ], E[W kg-I] and Ee[-] are the Weber number, 
the surface tension, the local energy dissipation and the gas hold-up in the 
venturi. Now the k L [m8- 1] in the venturi can be calculated according to the 
following relation [5]: 

( )
1/4 

kL = 0.302 7]: y'/J;. (5) 

where E[Wkg-l], 7][m2 8- 1] and D A[m2 8- 1] are the energy dissipation rate, 
the liquid viscosity and the diffusion coefficient. 

The main reaction vessel behaves like a bubble column. The jet of the 
ejector enters the main vessel where it hits a collision plate. The jet velocity is 
transferred into a circulation flow in the reaction vessel. The formed bubbles, 
rise upward and grow in size through coalescense. As a first assumption, the 
mixing in the vessel is not included in the model. Both the liquid- and the gas 
volume are well mixed in relation to the reaction rate. The headspace of the 
reactor is assumed to be small and therefore not modelled. Three different 
sections can be distinguished in the main vessel [see figure 2]. 

• The liquid volume above the collision plate (VL ). This volume is in contact 
with the gas volume through a film volume (VF). 

• A clear liquid volume that is below the collision plate (Ve). 
• The gas volume (Ve) in the top of the main vessel 

The liquid volume is treated as two separate volumes. The volume under 
the collision plate which is regarded as a single phase reactor and the volume 
above the collision plate which behaves like a two phase bubble column to 
which the specific area is related. Since the venturi and the main vessel both 
are gas-liquid contactors, the description of mass transfer and reaction is 
almost identical. A difference between the main vessel and the ejector is that 
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all the liquid in the ejector behaves as a plug flow, while the main vessel is 
divided in a mixed volume and a plug flow part below the collision plate. 

Beside models for the reaction section also models for the pump zone, 
the tubes, the control valve and the heat-exchanger were set-up. For all the 
tubes (also the tubes in the heat exchanger) the axial dispersion model was 
used. In case of the heat exchanger also a shell side was incorporated using 
the same model as was used for the tubes. The numerical solution of the 
partial differential equations for a heat exchanger is sensitive to the algorithm 
applied. Stable results were obtained using a backward finite elements method 
for the tube sides (no strong diffusive terms) and a forward finite element 
method for the shell side. 

3 Testing 

The models as described in the theory contain dynamic and non-dynamic 
equations. Both parts have to be tested and solved. As solver software gPR
OMS was choosen. This software package is developed at the Imperial Col
lege and on this moment commercially available at PSE ltd .. This software 
package is capable of solving large sets of equations (linear and partially dif
ferential equations). Beside that it has as advantage that it is able to model 
discrete events. Each model was tested separately. MathCAD calculations 
were used to calculate steady state values. These results were validated with 
the individual gPROMS models by letting the gPROMS simulations run to 
steady state. No deviations were found in the models indicating that the 
gPROMS models were stable. The dynamic part of the system was tested by 
checking the mass and energy balances. The tests showed errors of less than 
0.5 %. These errors were decreased by increasing the amount of grid points. It 
should be noted at this point that in the model neither the throughput nor 
the pressure drop is explicitly given. The model calculates the recycle flowrate 
from the combined pressure-throughput relations in the separate models. 

4 Results and Discussion 

4.1 Hydrodynamics, kinetics and mass transfer 

An important design value in venturi loop reactors is the gas entrainment 
rate. Comparing simulated gas entrainment rates with measured rates, no 
differences were found. In our case a Henzler type relation [6J was used: 

(6) 

where Qc[m3s- 1J, QL, Pout, Pcc, PL, Pc, dm[mJ, dn , uN[ms-1J, B, Cl 
and C2 are the gas and liquid flow rates discharging through the gas suction 
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chamber of the ejector, the pressure of the stream leaving the ejector, the 
gas pressure near the nozzle, the density of the liquid and the gas, the nozzle 
velocity by the nozzle cross section, the nozzle diameter, the mixing tube 
diameter and three nozzle dependant constants. 

Calculations of the mass transfer capability of the ejector showed that 
the kLa is about 18 to 20 times higher compared to the kLa in the main 
reaction vessel. These values are also comparable to measured values [1]. 
Beside calculating the mass transfer characteristics, also the influence of an 
arbitrary reaction on the mass transfer was examined. The present model 
describes reactions of type: 

Different reaction times were simulated by varying the activation energy, 
see table [1]. The reaction time was defined as the time needed to obtain 
99,9% conversion. 

Table 1. Activation energy, rate constants and reaction times (T= 298 K) 

Ea[Jmol- 1 ) kr [m3 (mols)-l) Reaction time[min) 

2000 17.4 21 

4000 7.75 26 

8000 1.54 43 

16000 0.0609 113 

32000 9.5310- 5 750 

Because of the large differences in reaction time, all test results were plot
ted against the conversion, rather than time. In the design of a venturi reactor 
for a single reaction, it is important that the gas dissolved in both the ejector 
and the vessel is converted before it enters the loop. If the gas concentration 
in the loop is high, the capacity is limited by the kinetics, as opposed to the 
mass transfer. In order to verify that both the regime of chemically enhanced 
absorption and physical absorption are treated, the Hatta number for the 
fastest and the slowest reaction in the vessel and the ejector were calculated 
[figure 3]. The results showed that both regimes were covered. In figure 6 
the bulk concentration of the dissolved gas is plotted (slowest reaction). The 
solubility of the used gas was 1.2 mol m-3 • For the very slow reaction, the 
concentration of the dissolved gas is of this order of magnitude. For faster 
reactions, the concentration drops to near zero values, as can be expected for 
higher Ha-numbers. The amount of mass transfer in the vessel, relative to the 
mass transfer in the total system, was also computed. From these results it 
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could be concluded that the vessel volume is only important for the capacity 
of the reactor if the reaction rate is moderate (Ha < < 0.5). 

4.2 Operating condition 

For the slowest and the fastest reaction rates the reaction time has been 
investigated as a function of the operating conditions [Figure 4]. 
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0.00 0.25 O.SO 0.75 1.00 

eonveraion Ix 100 '%oj 

Fig. 3. Hatta numbers in the ejector 
and the main reaction vessel. 
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Fig.4. Reaction time versus the re
cycle flow and vessel pressure 

Increasing the gas pressure in the system increases the concentration of 
the gas, which yield higher mass transfer capacities in the system. So using 
elevated pressures, the time required to complete the reaction, can be re
duced independent of the used kinetics. Simulations were performed where 
the vessel top pressure was varied from 1 to 6 bar. In these runs, the ejector 
outlet pressure was equal to the top pressure, and the gas suction pressure 
was 0.2 bar lower than the outlet pressure (constant pressure drop in the 
ejector) [Figure 4]. The liquid recycle flowrate has also a profound effect on 
the reaction time in case of fast reactions[ Figure 4]. Increasing this the re
cycle flow increases the gas entrainment and thus a higher mass transfer is 
obtained. 

4.3 Scale-up 

The scale-up rules for any chemical reactor are deduced by identifying the 
rate-controlling step. In the venturi loop reactor, this may be the absorp
tion of gas in the liquid. The subsequent reaction in the liquid is faster, and 
need not be considered in a scale-up or mixing behaviour study. The rate 
of absorption is dependent on the interfacial concentrations, mass transfer 
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coefficient, specific area and kinetic and physical properties of the system. 
Careful examination of the model equations learns that for an identical reac
tion system on a large and small scale, kL and a can be kept constant if the 
dissipation of energy (ejector and main reaction vessel) per unit volume is 
the same on the large and small scale. Dissipation of energy (E)is calculated 
by: 

ePL 
Un = -1--2-

"47rdN 
(8) 

~PLU7vePL - iJ.PEJePC 
E = PLEL VEJ (9) 

where ePL is the Liquid throughput [m3 8- 1], dn the nozzle diameter [m], 
P the density [kg m-3 ], E is the energy dissipation [W m-3 ] and Un the 
nozzle velocity [m 8- 1]. The pilot scale system was geometrically scaled-up 
by a factor 3. In the case of the unscaled situation our energy dissipation 
was E = 400[W m-3 ]. By solving the above system of equations for E = 
400[W m-3] in the scaled system, the flowrate in this system will be ePLarge = 
0.02105 [m 3 8- 1 ] A simulation of the scaled system, where all dimensions are 
multiplied by a factor of 3, was performed using this liquid flowrate. The 
resulting reaction time for the large system was approximately 86.5% of the 
reaction time for the small system. Figure 5 illustrates that in the ejector the 
scale rule works satisfactory: the dissipation of energy is almost the same in 
both systems, and so are the mass transfer coefficients. Figure 6 shows that 
the situation in the main reaction vessel is completely different. The scaled 
vessel also contributes in an appreciable amount to the absorption of gas. A 
scaling rule for the vessel must be included. This is to be expected because 
the slowest reaction rate was used. In the vessel, the product kLa is a function 
of the superficial gas velocity and the physical properties. The superficial gas 
velocity on its turn is dependent on the vessel diameter. A new simulation 
was done, where the diameter (not the volume) of the vessel was altered to 
obtain the same superficial gas velocity in the vessel as in the small system (a 
scaling rule common to bubble columns). This resulted in the right behaviour 
as can be seen in figure 6. 

D~es (ePL)large = 1.074[m] 
(ePL)srnall 

(10) 

where Dves is the vessel diameter [m]. The results of the second simulation 
show a much better agreement [Figure 6]. 

5 Concl usions 

The influence of the reaction rate can be well explained by the present knowl
edge of two-phase reactors in general and venturi loop reactors in specific. 
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The results of the steady state calculations for hydrodynamic variables agree 
well with data found in the literature; all the variables are at least of the same 
order of magnitude. Since the system is sensitive to the empirical parame
ters in the equations for gas entrainment and kLa values, closer comparison 
with data in the literature is impossible. With the model operating condi
tions could be predicted. Also the use of the model for the study of scale-up 
was successful. Using proper chosen scaling rules, the reaction time and time 
dependency of the key variables were uniform in the small and large system. 
In general the conclusion is drawn that the model is well in agreement with 
venturi loop know how. 
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Abstract. Flow and transport processes in the subsurface are of major interest 
for the study of NAPL (non-aqueous phase liquids) contaminations and for the 
development of efficient remediation techniques and strategies. 

For the simulation of NAPL infiltrations the gaseous diffusion in the soil air is 
an important transport mechanism in the unsaturated zone. Due to the thermody
namic equilibrium organic chemicals migrate from the soil air into the groundwater 
travelling considerable distances from the infiltration source. Numerical simulations 
can be used as a prognosis tool to predict the movement of contaminant plumes in 
the subsurface. 

New clean-up methods such as alcohol flooding, SEAR (surfactant-enhanced 
aquifer remediation), SVE (soil vapor extraction), and steam injection are devel
oped and investigated using numerical simulators. E.g., miscible displacement and 
enhanced dissolution are the key processes for alcohol flooding to remove residual 
organic contaminants from the subsurface. This involves the phase partitioning of 
the different compounds over the ambient phases. 

The modelling of multiphase-multicomponent systems in porous media is pre
sented. Furthermore, a contamination and a remediation scenario are studied by 
the use of a numerical simulator. 

1 Introduction 

Subsurface multiphase flow is of interest for the simulation of contamination 
scenarios involving nonaqueous/organic liquid phases, e.g., halogenated or 
aromatic hydrocarbons, to develop effective remediation strategies. Further
more, the design of new in-situ clean-up technologies require the development 
of numerical simulators which describe the flow and reactive processes in the 
soil accurately. 

Multiphase models can be subdivided into those which assume immiscible 
fluid phases and the class of compositional models. The latter ones take 
into account interphase mass transfer processes. Under natural conditions 
only a small portion of a component partitions into the other phases (see 
e.g., Helmig[l]). The mass transfer can be described either using the local 
equilibrium assumption (LEA) or a nonlinear kinetic model. However, for 
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remediation techniques such as alcohol or surfactant flooding one component 
(alcohol or surfactant) may be fully miscible into the ambient phases (Delshad 
et al. [2]). In this case, a different approach is used. 

In the following two formulations are presented: The first formulation 
considers three components which partition in relative small amounts into 
the up to three phases. The second formulation is for a two-phase three
component system where one component is fully miscible. 

2 Governing Equations 

Three-phase systems in the subsurface typically consist of two liquid phases 
(aqueous/water (w) and a non-aqueous phase liquid (n), in short NAPL) and 
one gaseous phase (g). For immiscible flow the conservation of each phase 
a E {w,n,g} is utilized (e.g., Aziz & Settari[3]). However, for compositional 
flow and transport, conservation of the components (chemical species: organic 
compound (C), water (W), air (a), alcohol (al)) needs to be considered (Forsyth 
& Shao[4]): 

:t I)ct> ea Sa X~) = - LV. [ea Va X~l 
a a 

where ct> is the porosity, ea, Sa, Va are the density, saturation and the Darcy 
velocity of each phase a, respectively. X:; is the (molar) fraction of component 
K in phase a, D~ the hydrodynamic dispersion tensor, and q"" is the source 
rate of K. 

The generalized Darcy's law for multiphase flow in porous media is de
scribed by: 

va=-AaK(VPa-eag) ,aE{w,n,g} (2) 

where Aa is the a-phase mobility which is the ratio of relative permeability 
kro to viscosity /-la. K is the absolute permeability tensor, Pa the a-phase 
pressure and 9 the gravitational acceleration vector. 

These two laws are supplemented by the constraint that the sum of all 
phases is always one, i.e., Sw+Sn+Sg = 1, and the following constitutive rela
tionships: The relative permeabilities are assumed to be functions of the phase 
saturations and the interfacial tension. The differences of the phase pressures 
of the three-phase system are described by capillary pressure-saturation re
lations. The aqueous phase is assumed to be the most wetting phase forming 
a continuous film along the pore walls. N APL as the intermediate wetting 
phase separates the water and gas phases. 
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3 Numerical Formulations 

Formulations of immiscible two-phase and three-phase flow are studied ex
tensively by Helmig[1] and Huber & Helmig[5]. Based on them, the here 
presented formulations are developed. The compositional formulations em
ploy a balancing of the components on a molar basis. The substitution of 
Darcy's law (2) into the component conservation equations (1) and a finite 
volume (box) discretization (see Fig. 1) with backward Euler time discretiza
tion, mass lumping and rearrangement of the accumulation terms yields the 
following discrete formulation (Helmig[1]' Forsyth & Shao[4], Forsyth[6], Pan
dayet al.[7]): 

{[¢z. ~ ""SId' [¢z. ~ "Usaf} 
= '"'" '"'" ( >. XK)t+4t (nl.~.+). 4t _ nl.:t4t) L L ea a a ups(i,j) I'aij 'f/~ 'f/~. 

a jET/i 

+ '"'" '"'" t+4t I .. (XK,t+4t _ XK,t+4t) L Lea,» I'm) aJ m 

a jET/i 

K, E {c, w, a} (3) 

where ZK is the overall global mole fraction of component K, and 1/Jai = 
Pa - ea g. 1]i is the set of all neighbor boxes/nodes which share a box boundary 
with B i , or in other words, all indices j with baij I > O. Vi = fBi dx is the 
volume of box B i . The transmissivity terms I'aij and l'~ij for the box scheme, 
which are factors of the discrete fluxes between neighboring boxes, are given 
by 

l'aij= L K·VNj·n(lfj)A(lfj) (4) 
e:i,jEe 

l'~ij = L ¢ Sa D~ . V N j . n(lfj) A(lfj) (5) 
e:i,jEe 

n is the outward unit normal vector w.r.t. box B i . In the case of quadrilateral 
elements each element is divided into four subcontrol-volumes each belonging 
to a box associated with an element node (see Fig. 1). A(lfj) is the area of 
box boundary segment lfj between boxes i and j inside of element e. The 
mobilities, densities and phase mole fractions in the advective flux term in 
(3) are upstream weighted. The a-phase upstream direction at the interface 
between boxes associated with nodes i and j is determined by 

(..) {i if 
ups Z,] = j if 

(1/Jaj - 1/Jad :s; 0 
(1/Jaj - 1/Jai) > 0 

(6) 
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Fig. 1. Box scheme in ID (left) and for a rectangular mesh (right). 

This upstream weighting of saturation dependent terms is necessary to 
obtain a stable solution, especially in the case of convection-dominated pro
cesses where the equations are essentially hyperbolic (e.g., Forsyth[6]). The 
resulting scheme represents a five-point discretization in 2D. However, there 
is also the choice of a control-volume finite element discretization which gives 
a nine-point stencil (Forsyth[6], Helmig[l]). 

The slightly miscible three-phase three-component formulation uses a 
variable substitution algorithm for the primary variables (see Tab. 1). The 
phase molar fractions for each component are derived using the concept of 
K-factors (Henry's and Raoult's laws). 

The strongly miscible two-phase three-phase formulation uses as primary 
variables the fixed set (ZC,Pw, zal). Phase states, phase molar compositions 
and interfacial tensions are obtained using a ternary diagram. 

Both presented compositional multiphase simulators utilize the Newton
Raphson concept to solve the nonlinear discrete system equations. The J a

cobian is constructed with a chord slope technique. The resulting systems of 
equations are solved using an ILU decomposition and a BICGSTAB solver. 

Table 1. Phase states and primary variables of 3-phase 3-component formulation: 

Resident Phases Primary Variables 
V C VW va 

aqueous, NAPL, gas 8 n 8 g pg 
aqueous, NAPL 8 n za pg 
NAPL, gas 8 n ZW pg 
aqueous, gas ZC 8 g pg 
aqueous ZC za pg 
NAPL za ZW pg 
gas ZC ZW pg 
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4 LN APL Infiltration Simulation 

The infiltration of an LNAPL (lighter-than-water nonaqueous phase liquid) 
into the subsurface due to a hypothetical accidental spill is simulated. The 
vertical two-dimensional model domain has dimensions of 50m x 4m. The in
filtration source is located on the ground surface at x=15m. The water table 
varies linearly from z=2m at the left boundary to z=lm at the right bound
ary. On the ground surface atmospheric pressure is prescribed. The bottom 
is impermeable. Mass transfer from the NAPL into the aqueous and gaseous 
phases is described. For the dispersion, longitudinal and transversal disper
sivities of 50m and O.lm, resp., are used. Molecular diffusion is neglected. A 
mesh of 50 x 40 elements is used. We employ a full three-phase formulation 
with a local equilibrium assumption for the mass transfer. 

Before the NAPL infiltraton starts, the system has been allowed to reach 
from a fully saturated state an equilibrium state. The vadose zone is then 
almost entirely at residual water saturation. Infiltrating NAPL is moving 
mainly downwards due to gravitational forces. At the water table LNAPL is 
pooling. When the infiltration has stopped, the NAPL saturations above the 
pool approach the NAPL residual saturation. The state after 6 days is shown 
in Fig. 2 . 

1> " g;, .s 4~ ~ 
~ ~ 

ooL-------~10~------2~0------~iLO-------4iO------~50 
Distance [m] 

10 20 30 
Distance [m] 

I 
40 50 

Fig. 2 top: NAPL saturation; below: loglO normalized contaminant mole 
fractions in the aqueous phase. 
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In the vadose zone, the contaminant transport occurs mainly in the non
aqueous phase. However, when the NAPL phase reaches the water table, 
organic compounds dissolve into the flowing groundwater in the saturated 
zone and migrate by advective transport down-gradient (to the right in Fig. 
2). 

5 Alcohol Flooding Simulation 

Alcohol-water floods can be used to mobilize residual NAPL in the subsurface 
(after an accidental spill) and remove it by enhanced dissolution and/or im
miscible and miscible displacement. In the following, an experimental study 
by Brandes [8] is simulated. He used a one-dimensional vertical upward flood 
of one pore volume (PV) of a 70% by volume t-butyl alcohol (TBA) solution 
followed by a water flood to remove tetrachloroethylene (PCE) which was 
initially at residual saturation from a column. The 60cm long column is filled 
with glass beads. Injection is done under a hydraulic gradient of 0.3. The 
column is discretized using 100 elements. 

In Fig. 3 (left) the simulation results after injection of 0.5 PV are depicted. 
Alcohol is partitoning into the NAPL causing a swelling and mobilization. 
Thus, ahead of the alcohol solution front a NAPL bank forms which merges 
at its tail into a miscible front. The remaining PCE is removed by enhanced 
dissolution into the alcohol-water mixture. The simulated efHuent concentra
tions (in Fig. 3 (right» reproduce the experimental data only partly. This is 
probably due to kinetic mass transfer and side effects of the conducted exper
iment. However, Brame [9] who also based a simulation on this experiment 
obtained similar efHuent rates. Simulations of complex processes like this one 
are impeded by a lack of data for relative permeabilities and capillary pres
sures which are in this case strongly dependent on the overall composition 
of the system. Unfortunately, they are difficult to measure under such com
plicated conditions. The simulation overpredicted the recovery of PCE with 
100% compared to about 95% in the experiment. 

6 Conclusions 

Two compositional multi phase porous media flow formulations which are 
based on a finite volume discretization are presented. A (slightly miscible) 
three-phase three-component formulation is applied to a typical contamina
tion scenario of a temporary LNAPL spill. 
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Fig. 3 left: NAPL saturation Sn and global mass fractions of PCE ZC and TBA 
zal; right: effluent concentrations of PCE C C and TBA cal 

Simulation results indicate that in general organic chemicals do not mi
grate far from their source in form of a nonaqueous phase. However, if N APL 
is present in the subsurface, it acts as a long-term contamination source, 
especially to the groundwater. Dissolved organics may travel large distances 
and threaten the supply of drinking water. Also, a strongly miscible two
phase three-component simulator is introduced which can be employed to 
study and improve the clean-up performance of alcohol flooding operations. 
One major danger in improper use of this technique is the uncontrolled mo
bilization of dense NAPLs which would migrate downwards in the saturated 
Zone where it would be much more difficult to assess and remediate them. 
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Abstract. Computing the loci of singular points of PDEs requires repeated compu
tation of the Jacobian or monodromy matrix and of the corresponding eigenvalues 
and eigenvectors of the discretized equations. This is a very tedious task for large 
sets of equations. We propose to simplify these computations by a combined use of 
shooting, quasi-Newton methods and direct linearization embedded in a continua
tion scheme [8]. In this paper we describe the large reduction in the numerical effort 
that may be accomplished by direct Frechet differentiation of the PDEs, i.e., the 
direct linearization. This method is more general than earlier approaches and can 
be applied to general bifurcation problems, which is illustrated by two examples. 

1 Introduction 

Singular points are the boundaries between qualitatively different types of 
model behavior, e.g., the transition from steady to periodic solutions. A bi
furcation analysis determines and tracks singular points in the parameter 
space. We present here a method for computing the bifurcations of chemical 
reactor models, described by a set of coupled nonlinear PDEs, e.g., 

du 2 Cdt = feu, \7u, \7 u, >.), (1) 

where C is the capacitance matrix,u the state vector, f a vector of nonlinear 
functions, and>' a distinguished or bifurcation parameter. For convenience, we 
do not refer to the other parameters p in the equations. Spatial discretization 
leads to equations of the form 

,du N 
Cdt = f(u,>'), u E ~ . (2) 

To avoid spurious solutions one is often forced to use a large number of grid 
points. Typically, 2-D problems require 104 - 105 grid points, 3-D problems 
105 - 107 grid points. Thus, N is usually a large number (N > 104 ). 

A singular point is defined to be of co dimension k, if k parameters (in
cluding the bifurcation variable) have to be varied to obtain all the possible 
qualitatively different features (unfolding) next to it. We list in Table 1 sin
gular points of steady-state and periodic solutions of co dimension 1 and 2. 
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(The list of codimension-2 singular points is not complete). The correspond
ing defining conditions may be found in[I] and are also given in [4, 5, 6]. These 
conditions require computing the eigenvalues of either the Jacobian matrix 
(steady-state analysis) or of the monodromy matrix (periodic states). Deter
mination of singularities with k > I requires the computation of higher-order 
derivatives. 

Table 1. Singular points of codimension 1 and 2 for steady-state and periodic 
solutions. 

Steady-State Periodic 

Codim I Codim 2 Codim 1 Codim 2 

• Limit point • Hysteresis • Saddle-node • Period n,n > 2 

• Hopf point • Isola (ell., hyp.) • Period-doubling • Twist 

• Boundary point • Double limit • Quasi-periodic • 1: 1 resonance 

• Double Hopf bifurcation • Degenerate period 

• Hopf-Hopf doubling 

• Boundary-Hopf • Degenerate quasi-

• Boundary-Limit periodic bifurcation 

• Hopf-Limit • etc. 

• etc. 

We propose to simplify the computation of the loci of singular points for 
high-dimensional models by a combined use of shooting, quasi-Newton meth
ods and direct linearization embedded in a continuation scheme [8]. In this 
paper we describe the large reduction in the numerical effort accomplished 
by direct Frechet differentiation (direct linearization) of the model. 

2 Direct Differentiation Method 

Computation of the discretized Jacobian or monodromy matrix and of the 
corresponding eigenvalues and eigenvectors is very time consuming and be
comes unpractical for large systems. Additionally, for large matrices the 
influence of numerical inaccuracies becomes significant in the computation 
of eigenvalues and eigenvectors. In a normal bifurcation analysis the model 
equations are first discretized in space and then the Jacobian or monodromy 
matrix plus corresponding eigenvectors and eigenvalues are computed. We, 
however, propose to first linearize the PDEs by Frechet differentiation, to 
subsequently define the conditions of the singular points and then use spatial 
discretization. We therefore circumvent the need to compute the Jacobian 



Efficient Computation of Singularities of Chemical Reactor Models 257 

or monodromy matrix and the corresponding eigenvectors by using Frechet 
differentiation of the PDEs. Thus, we only compute a product of the ma
trix with its eigenvector, e.g. by using the identity J. v = Lv, where Lv 
is the linearized operator. While direct linearization of ODEs has been used 
in the past to determine simple bifurcation points of ODEs (e.g., [7]) the 
approach presented here can be extended to general and more complicated 
bifurcations of reactor models. This method is illustrated by two examples. 
The applicability of the procedure to more general bifurcation problems is 
yet to be tested. 

Example 1. The single-phase model of a cooled countercurrent reactor 
[5] is given by Eq. (1) with 

~~ + f3. B(8) ·0.5· [(1 - Xl) + (1 - X2)] - ..d . (8 - 8 e ) 

feu) = * a;e"? - ria W- + B(8) . (1 - xI) = o. (

I a
2

e 1 
* a;[i + ria W + B(8) . (1 - X2) 

(3) 

where u = (8,XI,X2)T,XI, and X2 are the conversions in the two counter
current flow compartments, 8 the dimensionless temperature, B(8) a non
linear rate expression. The corresponding boundary conditions are: 

Daa8 1 DaaXI aX2 = 0 
if>~ at, = 2(8 - 1), if>~ at, = Xl, at, 

at ';=0 (4) 

Daa8 1 Da aX2 aXI = 0 
if>~ at, = 2(8 - 1), if>~ at, = -X2 at, 

at ';=1. (5) 

To illustrate the concept, we determine the extinction (limit) point of the 
model as a function of the cooling capacity, ..d. At the limit point 

f(u,A) = 0 (6) 

J(u, A) . v = 0 (7) 

< v,v >= 1, (8) 

where (.,.) denotes the inner product, J is the Jacobian matrix of /, and v is 
the zero-eigenvector of J. As the eigenvector is defined up to a multiplicative 
constant, we assign a value to the norm of v (Eq. 8). These 3 equations 
define the state vector u, the eigenvector v and A at the limit point. To avoid 
computing the discretized Jacobian matrix of /, we obtain by direct Frechet 
differentiation the set of linear differential equations (+BC's) 
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J. v = Du/(u, >..). v = Lv = 0 

OV3 = 0 at ~ = 0 
o~ 

(9) 

(10) 

(11) 

Da OVl Da OV3 OV2 = 0 
qi~ o~ = -Vi, qi;' O~ = -V3 O~ at ~ = 1, (12) 

where v = [Vl,V2,V3]T. Eq. (6)-(8) are then discretized (u,v) and solved 
simultaneously by either a Newton or quasi-Newton method [8]. Instead of 
discretization shooting may be used. However, shooting in space direction is 
only recommended if no significant boundary layers exist. The locus of the 
extinction point is tracked with respect to a second parameter .d - the cooling 
capacity - by a continuation method [2] as can be seen in Figure 1. In this 
case a finite difference approximation with 100 equidistant node points and 
Broyden's method have been used. Parameter values are reported in [5]. 

Example 2: A reverse-flow reactor (RFR) is a forced periodic system in 
which the flow direction is periodically reversed to trap a hot zone within a 
packed-bed reactor. The RFR operates under conditions for which multiple 
periodic, quasi-periodic and chaotic states exist. The dimensionless energy 
and species balances and boundary conditions for a single exothermic first
order reaction in a cooled RFR are [3]: 

( 
.! ae __ 1_ ~ + f ae - Da . f3 . B(8) . (1 - x) + .d(8 - 8 ») 

() , ar Peh ae· ae c 
/ u = =0 

....!..ax __ 1_~ + fax _ Da. B(8) . (1 - x) 
Le ar Peon ae· ae 

ou - = Pe . u at ~ = 0; 
o~ 

ou = 0 at ~ = 1 
o~ 

(13) 

(14) 
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Fig. 1. Extinction point of the cooled counter-current reactor in the plane of the 
cooling capacity vs. adiabatic temperature rise ,6(feed concentration). Below the 
solid curve ignited and extinguished states coexist for the same set of parameters. 
Below ,6 = 0.017 no ignited states exist even for adiabatic operation. 

U(T = O,~) = U(T = 1,1-~). (16) 

where T and ~ are the time and spatial coordinate, and f is switched between 
+ 1 to -1 at every interval Tf = 1. Eqs. (14) are the boundary conditions for 
the flow in the right direction (J = + 1). For the left flowing period (J = -1) 
symmetric boundary conditions apply. The temporal boundary condition (16) 
enforces the periodicity of the solutions. Typically, two limit points (saddle 
node bifurcation) of the periodic solutions coalesce upon crossing the hys
teresis point [1]). It is defined by Eqs.(6), (7) and 

J*(U,>..)· y = 0 (17) 

(y, D~uf(u, >..) . (v, v)) = 0 (18) 

< y,v >= 1 (19) 

where * denotes the conjugate transpose. v and yare the eigenvector and ad
joint eigenvector of J, and D~LUf(u, >..) the second Frechet derivative. These 5 
equations determine 3 variables (u, v, y), >.. and an additional parameter Pl at 
the hysteresis point. An isolated branch of solutions appears (or disappears) 
upon crossing the isola variety [1], which satisfies Eqs. (6), (17) and 

(y, D)..f(u, >..)) = 0 (20) 
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< y,y >= 1. 

The linearized operator in this case is: 

Lv= (
.!fu - _1_a2~1 + fu - Da(3 [aBv (1- x) - Bv 1 + Llv ) (ar Peh at; at; ae 1 2 1 

.l~ - _1_a2vl + ~ - Da [aBv (1- x) - Bv 1 
Le ar Pe.". at; at; ae 1 2 

8v - = Pe . v at e = 0; 
8e 

The adjoint problem L*y may be determined by the relation 

(Lv, y) = (v, L*y) 

by partial integration. Thus, the adjoint problem L*y is: 

(21) 

(22) 

(24) 

(25) 

( 
-.! £la. - _1_ a2'¥,.1 _ £la. _ Da aB (1 - x) [(3Y1 + LeY2/(] + LlY1) (ar Peh at; at; ae 

L*y= 
_.l~ __ 1_ a2~2 - ~ + DaB(8) [(31Y1(/Le + Y2] 

Le ar Pe.". at; at; 
(26) 

8y T 
- 8e = Pe . y at e = 1, Y = (Y1, Y2) . (27) 

(28) 

The Frechet derivative with respect to >. = u, the superficial gas velocity, is 

( 
_1_ ae __ 1 _ ~ _ (31 . B1 (8) . (1 - x) ) 
Da( ar DaPeh at; 

D>.f = , 
_1_~ _ 1 a2 Xl -B (8). (I-x) 
DaLe ar DaPe."..l at;2 1 

(29) 

since the Peclet, Lewis, and Damkoehler numbers (Peh, Pern, Le, (, Da,) are 
functions of u (see [3]). The second Frechet-derivative D;uf . (v, b) is com
puted from the equation: 

(30) 
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In order to track a hysteresis point Eqs. (6), (7), (17)-(19) have to be 
satisfied and for the isola point Eqs. (6), (17), (20) and (21) have to be 
satisfied. Again these equations are discretized (it, V, y) in space and time 
and solved simultaneously. This procedure leads to a significant reduction in 
the computational effort. Figure 2 describes the hysteresis and isola points 
in the parameter space. The corresponding parameters are reported in [3]. 
Orthogonal collocation on finite elements with 50-80 collocation points was 
used to spatially discretize the grid. Shooting in time was used to solve for 
the symmetric boundary conditions. 
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Abstract. This work compares different strategies to solve a mathematical model 
in order to predict the transient and steady-state behavior of a 5MB unit. The 
model assumes axial dispersion flow for the liquid phase and plug flow for the solid 
phase. Intraparticle mass transfer was described in terms of a simple linear driv
ing (LDF) approximation. Equilibrium isotherms may be inserted into the PDE 
code system or written out as separate algebraic equations, especially if they are 
non-linear. Different public domain solvers were used to integrate numerically the 
systems of PDEs, ODEs and PDAEs obtained. For the transient model PDECOL 
was used to solve the PDEs and the DASSL code was used when the isotherm equa
tion was written separately as an algebraic equation. For the steady-state model, 
the codes COLNEW and COLDAE were used, respectively. Simulations of the glu
cose/fructose separation were performed for a 12 column configuration considering 
linear isotherms. An extension was also proposed which considered the mass trans
fer not only in the macropores but also in the micropores. 

1 Introduction 

The Simulated Moving Bed (SMB) [1] processes are widely used for vari
ous kinds of multicomponent mixture separations. It was developed by UOP 
in the early 60's and since then its area of application has been increased 
from the separation of normal paraffins till the separation of enantiomers in 
the pharmaceutical and fine chemistry industries [2-4]. The counter-current 
movement between the solid and liquid phases is the basic principle of the 
5MB technology. The two products to be separated, included in the feed, 
have different adsorption affinities which permits that the more retained feed 
component moves towards the extract outlet, while the other moves towards 
the raffinate outlet (less retained feed component). Due to practical problems 
the solid phase movement is simulated by shifting the feed and withdrawal 
points along the adsorbent bed, in the same direction of the fluid flow. The 
system studied in this work was the separation of glucose and fructose [5]. 
The scheme of the 8MB and the equivalent TMB used, are described in sev
eral works developed [4,6]. This work presents two models to predict the 
performance and concentration profiles in a 5MB unit based on the equiva
lence with the TMB concept. Both models assume axial dispersion flow for 
the liquid phase and plug flow for the solid phase. 

F. Keil et al. (eds.), Scientific Computing in Chemical Engineering II
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2 Mathematical Models 

2.1 LDF approximation 

For the first model, a simple linear driving force (LDF) approximation was 
used to describe the intraparticle mass transfer. It is a model similar to the 
one used by [4], however, in this work we took into account linear adsorp
tion equilibrium for both components. The basic dimensionless mass balance 
equations in the fluid phase of a TMB section volume element and in the ad
sorbent particles, as well as the initial and boundary conditions, are written 
as: 

• mass balance in the fluid phase of a TMB section volume element: 

8l;j _ . [_1_82Cij _ 8Cij] _ (1- e) .( * _ .. ) 
80 - 'Y, Pe. 8x2 8x e 0, qij q., , 

• mass balance in the particle (solid phase) 

• linear adsorption equilibrium 

• initial and boundary conditions 

Cij(X, t = 0) = %(x, t = 0) = 0 

1 dl;j 
Cij - -P -d = l;j,o 

ej x 
[a]x=O, 

[b]x = 1, dCij = 0 
dx 

and 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

the spatial and time dimensionless variables were, x = zlL j , and 0 = tiTs 

with Ts = Ljlus , where L j is the section length. The subscripts i = 1,2, 
refers to the components to be separated in the feed (glucose and fructose, 
respectively), and j = 1,2,3,4 refers to the section number; l;j and qij are the 
liquid and average adsorbed phase concentrations of component i in section 
j of the TMB, respectively; Ki are the equilibrium constant of component 
i. The model parameters presented are: OJ(= kLjlus ), the number of mass 
transfer units in a TMB section; Pej(= vjLjl DLj), the Peclet number; 'Yj(= 
Vj I us), the ratio between fluid and solid velocities in section j; and (1 - e) Ie, 
the ratio between solid and fluid volumes. To the left boundary conditions 
(5), four equations must be added regarding to the mass balance equations 
at each node, 
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j = 1(eluent node) (7) 

j = 2, 4( extract and raffinate nodes) (8) 

Q2 QF F 
Ci3,O = Q3 Ci2,L2 + Q3 Ci j = 3(feed node) (9) 

where Qj is the liquid flow rate through section j and cf is the feed concentra
tion of component i. This model was the one used to compare the four strate
gies presented. The set of equations (1-9), defines a problem of second order 
PDAE's due the presence of the algebraic equation (3) for each component 
in each of the four sections. The second order derivative term, representing 
the axial dispersion term, renders the model a parabolic classification, while 
the second equation is hyperbolic. This set of equations can be transformed 
into a system of PDEs by incorporating the algebraic equations (equilibrium 
isotherms) into the of mass balance equations (1-2). If we consider the terms 
with respect to the time derivative equal to zero, i.e. ~ = a~;/ = 0 , the 
system of PDE's becomes a system of ODE's of second order. This system 
can be transformed into a system of DAE's if the equilibrium isotherms are 
written out as separate algebraic equations. 

2.2 bi-LDF approximation 

The second model considers a bi-linear driving force (bi-LDF) approximation 
[7] to describe the diffusion in bidisperse solids, which have both macropores 
and micropores. The equation concerning the mass balance in the liquid phase 
in a TMB section volume element is changed to (10), and one more differen
tial equation per component is added (11), defining the mass balance in the 
intraparticle fluid phase of a TMB section volume element: 

• mass balance in outer fluid phase a TMB section volume element: 

(10) 

• mass balance in intraparticle fluid phase of a TMB section volume ele
ment: 

• mass balance in the micro particles present in a TMB section volume 
element: 

(12) 



266 Celina P. Leiio et al. 

• linear adsorption equilibrium 

(13) 

where Cpij and ilij are the mean intraparticle fluid and solid phase concen
trations, respectively, averaged over the particle volume. The new model pa
rameters are, a pi = kpLj IUs , number of macropore mass transfer units in a 
TMB section; a/-,j = k/-'L j IUs , number of microparticle mass transfer units 
in a TMB section. The boundary and initial conditions are the same as in 
the previous model (4-5) for the fluid phase concentration Cij . For the intra
particle concentration Cpij and ilij the right end boundary conditions are: 

x = 1, Cpij = Cpij+l,O and (14) 

3 Differential Equation Solvers 

• PDECOL package [8) is a package for numerical solutions of a system of 
nonlinear partial differential equations in one space and one time dimen
sion. It implements finite element collocation methods, with B-splines as 
basis functions, for the spatial discretization. The PDE system is then 
reduced to an initial-value ODE system, which is solved with a time inte
grator derived from [9) with dimension, for both models, as described in 
Table 1. The set of equations to be solved with the PDECOL package are 
(1-2) for the simple LDF model and (10-12) for the bi-LDF model. For 
both models, the equilibrium isotherm equations, (3) and (13), were di
rectly inserted into the corresponding mass balance equations. The initial 
and boundary conditions are the same as previously defined. 

• DDASSL subroutine [10) solves a system of ordinary differential-algebraic 
equations (ODAEs) in t by using the backward differentiation formulas 
of orders one through five. To use DDASSL we first need to transform 
the system of PDAEs (1-5) in t and x, into a system of ODAEs initial 
value problem in t. The spatial derivatives are approximated by finite 
element collocation method, as indicated in Table 1, to obtain an initial 
value DAE system. In this case, the algebraic relationship (3) is simple 
and linear and there is virtually no reason to work with it separately. 
However, when this relationship is non-linear, it is better to keep the 
algebraic form, not only because of the complexity of the problem but 
because it permits the study of the effect of modeling changes. 

• COLNEW is a modification of the package COLSYS [12) and solves sys
tems of boundary ordinary differential equations. It incorporates a new 
basis representation replacing b-splines, and improvements for the lin
ear and nonlinear algebraic equation solvers. The system of ODEs to be 
solved was derived from (1-2) for the simple LDF model and (10-12) for 
the bi-LDF model, considering the time dependent terms equal to zero, 
and with the linear equilibrium isotherm inserted into the corresponding 
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mass balance equations. The final size of the two systems to be solved 
are illustrated in Table 1 . 

• COLDAE subroutine [13] is a modification of the package COLNEW. 
It works practically the same way as COLNEW and optionally, solves 
semi-explicit DAEs with index at most 2. It uses the collocation method 
at Gaussian points and a Runge-Kutta-monomial solution representation 
is utilized. It was applied to the model described previously (1-2) with 
the time dependent time terms set to zero plus the algebraic equations 
(3). The way to identify the difficulty of solving numerically a system of 
DAE's is the index [10]. Applying analytical differentiations repeatelly 
if necessary, will yield to an explicit ODE system for all the unknowns, 
with the exception for singular problems. The number of differentiations 
needed for this transformation is called the index of the DAE. Differen
tiating the equilibrium isotherm equation (3) yields, 

(15) 

Doing this, we obtain a differential equation for all the unknowns. The 
index of this system is one. Note that if we carry out the substitution for 
qij then the resulting system is an ODE as previously solved. The final 
size of the system to be solved is illustrated in Table 1. 

Table 1. Relevant parameters for the four packages used 

Code Name Spatial Discretization Time Integrator Tolerance System Dimension 

PDECOL Collocation; Gear's method 10- 7 (LDF) 448 (LDF) 

B-splines basis 10-10 (bi-LDF) 672 (bi-LDF) 

DDASSL Collocation; backward 

Hermite cubic basisl differentiation 10- 7 (LDF) 672 (LDF) 

COLNEW modified B-splines 10-8 (LDF) 448 (LDF) 

bsis - 10-9 (bi-LDF) 672 (bi-LDF) 

COLDAE collocation at Gaussian 

points; Rung-Kutta- - 10-8 (LDF) 672 (LDF) 

monomial solution 

1 provided by the user, described in (11]. 
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4 Simulation results and discussion 

Computer simulations were carried out to permit the estimation of the tran
sient and steady-state concentration profiles of the glucose/fructose separa
tion system, and to verify the effect of the strategy chosen to solve the model, 
in the final results. The first model, as described by (1-7), was solved using 
the four packages previously mentioned, PDECOL, DDA88L, COLNEW and 
COLDAE. The second model was solved using the PDECOL and COLNEW 
packages. In all the simulations, the polynomials used were of order 3 and the 
tolerance on the time integrator set as described in Table 1. For the second 
model was necessary to decrease the tolerance parameter in order to reduce 
the global mass balance errors. For the spatial variable discretization fourteen 
finite elements were considered with two collocation points in each. 

The operating conditions and model parameters used in the simulation 
of the TMB are listed in Table 2. The operating conditions were estimated 
by the method developed by [5], considering the equilibrium theory, linear 
isotherms, and a margin parameter {3 = 1.2. 

Table 2. Operating conditions and models parameters used in the simulations of 
the TMB/8MB system, for the two models. 

Model Parameters 

8MB: 

Pe = 2000 

(1- c)/c = 1.5; cp = 0.13 

OJ = 3.15; Opj = 10.03 

0l-'j = 3.153 

KG! = 0.3142 KFr = 0.6252 

TMB: 

/'1 = 1.125/'2 = 0.565 

/'3 = 0.781/'4 = 0.392 

Operating conditions Columns 

8MB: 8MB: 

T = 20°C Dc = 2.6cm 

Feed cone. = 30g/l each Lc = Il.5cm 

t* = 105s Configuration: 3-3-3-3 

Q Rec = 19.431 ml/min L j = 34.5cm 

Q D = 10.221 ml/min 

QE = 7.811 ml/min 

QF = 3.021 ml/min 

QR = 5.431 ml/min 

Regardless the numerical package used, the same profile is obtained when 
the system reaches the steady-state, as expected. Although PDECOL solves 
the 8MB transient model, the steady-state solution, that obtained as t ---+ 

00, should be the same as that given by the ODE solver, under the same 
conditions. 

1 values estimated by the method developed by Ruthven and Ching 
2 data measured at our laboratory 
3 data considered for the bi-LDF model 
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Table 3 summarizes the final results for the performances parameters 
obtained by using the four different packages in the resolution of the two 
mathematical model, simple LDF and bi-LDF approximation, as the run 
time consumed. All simulations were run in a Pentium II 300 MHz. The only 
difference obtained in the purity parameters for the simple LDF and bi-LDF 
models considered, is due to the fact that the absorbent particle is taken to 
be more porous (,sp = 0.1) in the second model. A more detailed physical 
description may be found elsewhere [14]. 

Table 3. Final results for the performance parameters obtained by using the four 
different packages in the resolution of the two mathematical model, simple LDF 
and bi-LDF approximation, as the run time needed. 

II II Simple LDF II bi - LDF II 
PDECOL DDASSL COL NEW COLDAE COLNEW PDECOL 

Pu F ('Yo) 72.4 72.0 72.4 72.4 77.0 76.8 

Pu G ('Yo) 66.3 66.0 66.3 66.3 67.2 66.5 

Rc F ('Yo) 61.0 60.8 60.9 60.9 59.2 58.6 

Rc G ('Yo) 76.9 77.0 76.8 76.8 82.3 82.6 

Se F (1/,,) 0.240 0.242 0.240 0.240 0.247 0.250 

Se G (1/,,) 0.190 0.189 0.190 0.190 0.178 0.177 

Pr F (,,/hr IS) 7.539 7.541 7.530 7.529 7.310 7.300 

Pr G (,,/hr IS) 9.504 9.506 9.501 9.501 10.200 10.300 

Run Time (m.ln) 108 > 180 0.26 0.20 0.30 150 

5 Conclusions 

The models used to predict the transient and steady-state performance of the 
5MB were described based on the analogy with the TMB. A test system was 
considered for 5MB operation: the glucose/fructose separation. Transient and 
steady-state systems for both models, depending of the user's interest and un
der properly selected conditions, simulate efficiently the separation system. 
Steady-state models can be used for a preliminary estimation of the con
centration profiles and the performance parameters with less computational 
time. With the transient model, the user can have an exact representation of 
the evolution of internal concentration profiles through the time period and 
estimate how long the operation of an actual plant would take to reach the 
steady-state. The run time, for the system of DAEs, is slightly lower than that 
taken by the ODEs systems. However, the opposite situation occurs for the 
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partial differential equations. The system of PDAEs needs more run time to 
be solved than the PDE system. It may be possible to over come this problem 
by using the same subroutine for the spatial discretization as implemented 
by PDECOL in DASSL code with the corresponding modifications. 
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Abstract. In this contribution a population model with two particle coordinates is 
developed for a continuous crystallizer . The considered particle coordinates are the 
crystal length and the internal lattice strain of individual crystals. The presented 
simulation results show a strong dependence of the steady state mass density func
tion on the different assumptions for the relaxation of the internal lattice strain 
during crystal growth. 

1 Introduction 

Crystallization from solution or melt is one of the oldest and economically 
most important industrial separation and purification processes. For many 
crystallization applications the crystal size distribution (CSD) is of primary 
importance. Quality requirements such as the ability to flow or the dissolution 
rate of the produced particles can be directly related to the CSD. 

One of the major problems in crystallization modeling is that up to now, 
detailed microscopic theories and submodels are rarely included into macro
scopic models for crystallizers. On a microscopic scale, phenomena such as 
primary nucleation, crystal growth and attrition of crystals due to crystal
stirrer collisions have to be investigated and modeled in a quantitative way. 

A commonly accepted concept for the modeling of dispersed phase systems 
is the population balance approach [5J. The main aspects of this contribution 
are the development of a detailed population model using two particle coor
dinates and the numerical solution of the resulting set of model equations. 

2 Model Development 

For modeling purposes the suspension within a continuous crystallizer can be 
decomposed into two phases: a continuous liquid phase (L) and a dispersed 
solid phase (8). The continuous liquid phase contains a binary mixture of 
dissolved crystals (solute component A) and solvent (component B). The 
composition of the mixture can be characterized by the mole fraction XL,A = 
nL,A/nL calculated by the total number of moles and the number of moles 
of dissolved crystals nL,A. 

F. Keil et al. (eds.), Scientific Computing in Chemical Engineering II
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The dispersed solid phase consists of individual crystals. To characterize 
an individual crystal particle coordinates have to be defined. These particle 
coordinates have to describe the present state of a specific crystal. 

2.1 Definition of Particle Coordinates 

Wang and Mersmann [6] observed, that attrition fragments of the same ini
tial size have different growth rates. In population models for crystallization 
processes presented in literature (e.g. [2,9]), this distribution of growth rates 
is neglected and only a size and/or supersaturation dependent growth rate 
is used. To describe the observed growth rate distribution a more detailed 
approach is needed. It is essential to characterize the crystals not only by 
their length, but also by a second particle coordinate. This second particle 
coordinate should account for the internal lattice strain of individual crystals 
which is identified to be a main source of growth rate dispersion [10]. 

In Gahn [7] the driving force for crystal growth .dcL,A is defined as the 
difference between the molar density of the solute in the liquid phase and the 
real molar density of the solute at saturation .dcL,A = CL,A -CL,A,sat,real. The 
real molar density CL,A,sat,real at saturation of an individual crystal depends 
on the molar plastic deformation energy wp (internal lattice strain) of the 
crystal and on the ideal molar density CL,A,sat,ideal at saturation according 
to Gahn [7] 

CL,A,sat,real = CL,A,sat,ideal . exp [~~] . (1) 

In the above equation Rand T denote the ideal gas constant and the 
actual temperature, respectively. 

2.2 Population Balance of the Dispersed Phase 

Using the identified particle coordinates Land Wp, the population balance 
for the number density function F(L, Wp, t) is given by 

of(L, Wp, t) _ ovLF oVwF . . . + . ± . _ 
at - -8£ - owp + Fin - Fout + Fnue + F attr - F dis ' (2) 

The first two terms on the right hand side represent the convective trans
port in the direction of the particle coordinates Land Wp due to crystal 
growth and relaxation of the internal lattice strain. The terms Pin and Pout 

denote the particle number fluxes due to in- and outflow of the continuous 
crystallizer. The source and sink terms due to primary nucleation, particle 
attrition and dissolution of particles are denoted by P;tue, P!ttr , and Pdis. 

Aggregation of crystals is not considered. In the following section the phenom
ena underlying these terms will be discussed together with the expressions 
required for their calculation. For the population balance (2) suitable initial 
and boundary conditions have to be defined. 
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2.3 Primary Nucleation 

In the presented model it is assumed that primary nucleation occurs only at 
a specific critical nucleation length Lcrit . This length can be calculated by 
the Gibbs-Thomson equation [11). The particle number flux P';;uc of primary 
nucleation can be formulated using a Dirac 8 distribution at the position 
Lcrit and the nucleation rate Bnuc per unit volume of the continuous phase. 

(3) 

Mersmann et al. [8) derived an equation for the volumetric rate of primary 
nucleation Bnuc. This nucleation rate depends mainly on the temperature T 
and the supersaturation Srat = CL,A/CL,A,sat,real . 

2.4 Crystal Growth 

The convective transport vLF in the direction of the particle coordinate L 
is determined by the velocity v L. This internal velocity is equivalent to the 
crystal growth rate C. In Mersmann et al. [8) a growth rate C = G(LkL,A, L) 
is given for surface integrated (integration rate constant kr ) and diffusion 
limited (mass transfer coefficient kd ) crystal growth. 

(4) 

Where Cs denotes the molar concentration of the solid Phase. The influ
ence of the deformation energy (internal lattice strain) on the growth rate 
results in dissolution of crystals for high values of the deformation energy 
Wp. The dissolution rate GDiss(LlcL,A, L) used in the model is given by the 
mass transfer limited part of the growth rate (4). 

2.5 Relaxation of Lattice Strain during Crystal Growth 

One of the main issues of the two dimensional population model is to identify 
approaches for the relaxation of the internal molar lattice strain wp during 
crystal growth, i.e. to define the velocity Vw = dw p / dt in direction of the 
particle coordinate Wp . Therefore assumptions about the behavior of the 
absolute internal lattice strain W p during crystal growth have to be made. 
The absolute lattice strain W p can be calculated from the molar lattice strain 
w p by using the volume shape factor kv according to 

W p = kv cS L3wp . (5) 

The total differentiation of equation (5) with respect to time yields 
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dW p [2 dL 3 dw p ] [2 3] ----;It" = kvcs 3L wPdi + L dt = kvcs 3L wpG + L Vw . (6) 

In equation (6) the change of crystal length with time is given by the 
growth rate. The remaining two unknowns are the time derivatives of W p 

and Wp . To calculate the time derivative of Wp different assumptions for the 
behavior of dW p / dt have to be made. Four cases are presented in Table 1. 

Table 1. Assumptions for the change of the absolute lattice strain W p 

Case Wp dWpjdt dwPjdt 

1 const. 0 _3w P G 
L 

2 ",L kv Cs K2' G [¥i - 3~p] G 

3 '" L2 2kv Cs K3 L· G [¥/ _ 3~p] G 

4 '" L3 3kv Cs K4 L2 . G [~_ 3~p] G 

All assumptions for W p except the first one W p = constant, lead to 
expressions for the relaxation of molar lattice strain which are determined by 
the crystal growth rate G and a free parameter K 2 , K3 and K4 , respectively. 
For the numerical simulation, dissolving crystals are assumed to maintain 
their individual lattice strain during dissolution. 

2.6 Attrition 

The particle number flux due to attrition F!ttr can be separated according 
to 

(7) 

These particular source and sink terms can be interpreted as a particle 
number flux F;;ttr due to the removal of large crystals that collide with the 
stirrer, a particle number flux Fd"ttr,2 due to the generation of abraded large 
crystals with a length L * somewhat smaller than the original crystal and 
finally a particle number flux Fd"ttr,l due to generation of N jrag attrition 
fragments with a size distribution itrag (L) resulting from crystal-stirrer col
lisions. To add the second particle coordinate Wp into the attrition model it 
is assumed that remaining large crystals Fd"ttr 2 do not change their lattice 
strain due to collisions with the stirrer. An att~ition fragment gets its initial 
lattice strain wp according to [7] only as a function of its initial fragment 
length L' by wp = rp / L', where rp is a parameter depending on the used 
chemical system and has to be adapted to measurements. 
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The source and sink terms resulting from attrition due to crystal-stirrer 
collisions can be calculated for the two particle coordinates Land w p by 
integration over the stirrer radius r, with R = 0.5dst . 

R 

Fa-;'tr(L, wp) = J F::ttr,r(L, Wp, r)dr 
o 

F:!itr,2(L, wp) = J (WJoo Lr <5 [L* - L, wp - wp]· Fa-;'tr,r(L', wp, r)dL'dWP) dr 
o 0 L 

Fa~tr,l(L,wp) = J <5(wp - wp) J J [h(L - Lmin ) - h(L - Lmax(L',r))]. 
Wpoo R (Loo 
o 0 L 

Nfrag(L', r) . ffrag(L', L, r) . F;;;'tr,r(L', wp, r) dL') drdwp 

(8) 
In the above equations h is the heavyside function and the sink Fa-;'tr r de
scribes the particle number flux due to crystal-stirrer collision at a po~ition 
r on the stirrer blade. This particle number flux is given by 

. _ Vpump 
Fattr,r(L, Wp, r) = ----v- "lgeo(r) "ltar(L, r) F(L, wp) , (9) 

where Vpump is the volumetric flow rate of the stirrer. The collision prob
abilities "lgeo and "ltar and other parameters of the attrition model are based 
on theoretical considerations and are experimentally verified by Gahn [7]. 
Most of the parameters are specific to the used chemical system. 

2.7 Material Balance of the Continuous Phase 

The differential equation for the mole fraction XL,A of the solute can be 
derived by a total and a component material balance for the liquid phase. 

The total molar fluxes between the continuous liquid phase and the dis
persed solid phase nnuc, ndis and ngr due to primary nucleation, dissolution 
and growth in equation (10) are given by 

Wpoo 
nnuc = -kv Cs L~rit Bnuc VL , ndis = -kv Cs J L~ritDdis dwp 

o 

ngr = -kv Cs Lr wJoo L3 . (8<;{) + 8~:F») dwpdL . 
o 0 p 

(11) 

The expression for the total molar flux ndis due to dissolution shows that 
small dissolving crystals which reached the critical length Lcrit are removed 
from the crystal population by a dissolution rate Ddis that can also be found 
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in the sink term fr;;.s of the population balance. With these total molar fluxes 
equation (10) represents an ordinary integra-differential equation. The total 
number of moles in the continuous liquid phase is given by the molar density 
CL and the volume VL of the continuous phase nL = CL VL . Further equations 
to calculate the volumes Vs and VL of the solid· and the liquid phase are 
required. The volume Vs can be calculated by integrating the number density 
function F(L, wp) multiplied by the volume of one crystal over all crystal 
lengths. 

Loo Wpoo 

Vs=kv J J L3 p(L,wp)dwpdL (12) 
o 0 

The volume VL = V - Vs of the liquid phase is then defined by the constant 
total volume V and the volume Vs. To calculate the particle number flux 

. lii out ( 
Pout = --V;;-F L, wp) (13) 

due to product removal in the population balance, an expression for the 
outlet volumetric flow rate VL,out of the dispersed solid phase is required. 
After longer algebraic manipulations an equation to calculate the volumetric 
flow rate VL,out required in equation (13) can be derived. 

V 1-es [(-* + 
L,out = es+(1-es)(vi, B+XL,A,i,,(Vi, A-vi, B»' l/L,B XL,A,in' (14) 

(v'i,A - vl,~)) CL,in VL,i~+ (~S1 - Vl,A)] 

In the above equation the partial molar volumes of the components A and 
B are denoted by vr A and vr B, the volumetric holdup of the solid phase 
is given by ES. This ~ew equation can be interpreted as a balance of the in
and outflowing volumetric fluxes. 

3 Numerical Methods 

The numerical solution of the mathematical model by simulation tools (e.g. 
DIVA [1], MatLab [3]) requires a semi-discretization (method-of-lines ap
proach) of the partial integro-differential equation (2). The discretization of 
the particle coordinates was done by a non-equidistant finite volume method 
[4]. For a detailed description of issues related to the numerical solution of 
population balance models see also [12]. 

The following equation demonstrates the discretization of the convective 
transport in the direction of L at a specific point, which can be derived by 
an integration over the finite volume surrounding the considered point. 

y 7' 8~'i dwpdL = IVLF1L"w.,;'1Wp,j -lvLF1L,w",LlWp,j (15) 

L; W;,j 
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The required values at the volume boundaries are determined by profile 
assumptions [4] and by the direction of transport. In this case constant profiles 
are assumed. The growth rate of crystals depends on the internal lattice strain 
w p . Due to a high lattice strain the growth rate can become negative. In that 
case the discretization strategy has to be changed. This results in a switching 
of the profile assumptions depending on the velocities VL and Vw and on the 
particle coordinates. 

4 Simulation Results 

The semi-discretized model equations were implemented into the MatLab 
[3] simulation environment. Dynamic and steady state simulations were per
formed for potassium nitrate. Due to space limitations only steady state 
simulation results will be shown. The following figure presents a compari
son between the four different assumptions for the growth behavior of the 
absolute lattice strain from Table 1. 

Fig. 1. Steady state simulation results for different growth assumptions 

In Fig. 1 mass density functions (MDF) are presented versus the particle 
coordinates crystal length L and internal lattice strain Wp. The first mass 
density function shows the result for a constant absolute lattice strain during 
crystal growth. In that case the molar lattice strain of the crystals diminishes 
fast. Thus, most of the crystals in the depicted MDF have very low lattice 
strains. The second and third MDF in Fig. 1 are simulation results for cases in 
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which the absolute lattice strain changes proportional to the length W p '" L 
and the surface area W p '" L2. Comparing the first three MDFs it is observed, 
that higher orders in the dependency of W p on L lead to higher molar lattice 
strains of crystals at steady state. 

The fourth MDF is qualitatively different from the others presented in 
Fig. 1. Due to the formulation of the absolute lattice strain proportional to 
the volume W p '" L3, the minimum molar lattice strain to be reached is set 
by the value of the constant K4 shown in Table 1. 

In summary the presented simulation results show a strong dependence of 
the MDF, and accordingly of the crystal population, on the different assump
tions for the behavior of the absolute lattice strain during crystal growth. 

5 Conclusions 

In this contribution a population model with two particle coordinates was de
veloped for a continuous crystallizer. The considered particle coordinates are 
the crystal length L and the internal lattice strain Wp of individual crystals. 
The numerical solution of the resulting system of model equations was done 
by a finite-volume semi-discretization following the method-of-lines approach. 

The presented simulation results show a strong dependence of the steady 
state mass density function on the different assumptions for the relaxation 
of the internal lattice strain. This results in the implication that the molar 
lattice strain should not be neglected as a characteristic particle coordinate. 
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Abstract. The calculation of phase equilibria may serve as a cheap alternative 
compared to the measurement of phase equilibria. This is especially true for high 
pressure where the necessary equipment to measure phase equilibria is more ex
pensive than at low pressure. The calculation may often serve as a fast alterna
tive compared to measurements, also. The program PE (= Phase Equilibria) 
has been developed for modeling phase equilibria with equations of state (EOS) 
[1,2]. PE offers more than 40 different EOS, allowing the user to choose the one 
which best fits his needs. P E also offers powerful routines to determine adjustable 
EOS pure-component and mixture parameters by correlating experimental data and 
subroutines to use these parameters for predictions at conditions not investigated 
experimentally, yet. 

1 Introduction 

The knowledge of phase equilibria is essential for separation processes that 
are controlled by equilibrium like distillation, extraction and absorption. The 
distance to phase equilibrium is the driving force of these processes. At 
the department Thermische Verfahrenstechnik at the Technical University 
of Hamburg-Harburg high-pressure phase equilibria with supercritical com
pounds have been investigated experimentally since 1982. About ten appara
tuses for measurements of phase equilibria have been constructed. The exper
imental results cover systems with carbon dioxide, hydrogen, water, ethanol, 
hexadecane, benzene derivatives and phenol derivatives as well as multicom
ponent mixtures from natural sources. The results cover a temperature range 
from 300 to 600 K and pressures up to 50 MPa [3,4). In order to keep the 
number of necessary experiments low, the program package PE for the cal
culation of phase equilibria has been developed within the last decade. In 
the beginning, the program P E has been created on Hewlett-Packard UNIX 
workstations using FORTRAN and hp-Starbase-Graphics. Starting late 1997, 
an user friendly interface was developed for Windows NT /95/98 enabling its 
use on commercial PC. The Windows version of PE uses windows, menus, 
and dialog boxes and supports multitasking. Further, the graphical output 
files in PostScript and Enhanced Windows Metafile format are fully compat
ible with other Windows programs like Microsoft®Office, CorelDRAwT M, 
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Micrografix®Picture Publisher. PEcan be downloaded from 
http)jvt2pc8.vt2.tu-harburg.de. 

2 Equations of State 

P E offers about 40 different equations of state: 

- Cubic EOS with different a - functions and volume translations ( Soave
Redlich-Kwong [5], Peng-Robinson [6]' ... ) 

- EOS based on statistical mechanics ( BACK [7], SAFT [8, 9], SAFT-2 
[10], ... ) 

- EOS explicitly accounting for association (SAFT [8, 9]' SAFT-2 [10]' 
Cubic Plus Association [11], Anderko [12], ... ) 

SAFT-2 has been developed by Pfohl and Brunner [10] in order to combine 
the benefits of original SAFT and the BACK EOS: 

- BACK can describe small molecules as often used as supercritical solvents 
(carbon dioxide, ethane, nitrogen and propane) extremely well including 
the critical region [13]. This is of special interest for gas-extraction pro
cesses which are often carried out in this region in order to utilize the 
high compressibility of the solvent there [14]. 

- Original SAFT can describe large and associating molecules well - but 
fails to reproduce pure-component properties of many supercritical sol
vents with physical meaningful parameters, if the correct reproduction of 
critical temperature and pressure is enforced [13]. 

SAFT serves as an example for a physically sound EOS implemented in PE, 
here. Original SAFT [8, 9] describes molecules as chains of mi covalently 
bonded spheres with the diameter di . Using Physical Theory, association 
between molecules can be accounted for. The molecules are equipped with so
called sites, therefore. The different effects lead to four different contributions 
of the residual Helmholtz energy aT. The first term in Eq. (1) is the hard 
sphere term by Boublik [15] and Mansoori et al. [16], which reduces to the 
hard sphere term by Carnahan and Starling [17] for pure compounds. The 
second term accounts for covalently bonded spheres within a molecule. The 
third term is the term by Alder et al. [18] which is also used in the BACK 
EOS [7] for dispersive forces between molecules. The fourth term accounts for 
association j solvation: X Ai is the fraction of sites of type A on the molecule 
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type i, which does not bond. 

N 

L zi(l - mi)ln(gi(di ))+ 
i=l 

(1) 

The average packing fraction (3 in a mixture is determined similar to the 
average molecular surfaces and length according to Eq. (2). The temperature 
dependence of the sphere volumes is the same as in the BACK EOS: in Eq. 
(3), vO is the sphere volume at a given temperature which would be occupied 
by a single sphere in a packing of identical spheres; the sphere diameter di is 
obtained by Eq. (4), then. 

(2) 

o 00 -3u i ( ( 0))3 
Vi = Vi 1 - 0, 12exp --,zr- (3) 

(4) 

The effective depth of the intermolecular potential is determined according 
to one-fluid mixing rules (section 3) based on the temperature-dependent 
pure-component potential depth given in Eq. (5). 

Ui = u? ( 1 + :~) (5) 

The fraction of non-associating sites X Ai in Eq. (6) decreases with a rising 
concentration of free sites which can associate with the former, NAvp L L ZjX B j 

, and the association strength, LlAiBj, defined in Eq. (7). 

(6) 

(7) 
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. h 0"-+0"- d 00 NA v 0"3 
WIt (T- - = ~ an v- = ~ tJ 2 t v'2. 

The system of non-linear equations, multiple Eq. (6), is solved by iterative 
methods. Solvation, called cross-association, is accounted for by using the 
geometric means of the pure-component parameters E: and Ii, which describe 
the pure compounds' association. 

In SAFT-2, convex bodies from the BACK EOS are used to model su
per critical compounds. Sphere chains from SAFT are used to model all other 
large and associating molecules. Both EOS are combined by the use of the 
average radial distribution of convex bodies at contact by Boublik [19]: Eq. 
(8). 

(8) 

The advantageous use of convex bodies instead of sphere chains for the su
per critical solvent in SAFT-2 is demonstrated for pure carbon dioxide, below. 
The arrows point to the areas of interest with respect to the solvent's high 
compressibility in gas-extraction processes. 

100 100 

~ ~ 
~ ~ 
oS 10 ~ 10 
~ ::I 

'" '" '" '" ~ ~ 

0,1 1 10 0,1 1 10 
Density, lanoUrn3 Density, lanollrn3 

Fig. 1. Left diagram: Sphere chains from original SAFT with parameters from 
[9] overestimate critical temperature and critical pressure [13]. Right diagram: In 
SAFT-2, convex bodies from BACK with parameters from [10] yield excellent pure
component properties. 

3 Mixing Rules 

P E offers different mixing rules for each EOS for the calculation of mixture 
properties (here: potential depth u) from the pure-component properties (Ui) 
and mixture composition (Zi). The two mixing rules proposed by Pfohl and 
Brunner [10] for use in SAFT and SAFT-2 serve as an example for mixing 
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rules implemented in P E, here. The van der Waals and volume fraction 
mixing rule of SAFT [9] have been extended according to the ideas of Mathias, 
Klotz, and Prausnitz [20]. They have been applied to SAFT and SAFT-2. 
Both extensions are based on segments and thus promise higher predictive 
capabilities than the original two-parameter mixing rules of SAFT. 

2-parameter van-der- Waals mixing rule 

:L ~ ZiZjVijy'uiuj(l-kij)+:L Zi (:L Zj (y'UiUjVij Aj;)1/3) 3 (9) 
't J 1. J 

U= :L:L~~~ 
i j 

2-parameter volume-fraction mixing rule 

U = 'L'LfdjVuiuj(l- kij ) + 'Lfi ('Lfj(VUiUjAji)1/3)
3 

, J ' J 

(here: fi = volume fractions of component i, kij and Aij 
binary parameters) 

(10) 

adjustable 

4 Determination of Pure-Component Parameters 

P E offers routines to determine pure-component parameters for all EOS 
based on pure-component vapor pressures and densities. Further, a subrou
tine exists that enforces parameters that result in a correct reproduction of 
critical temperature and critical pressure. The correct reproduction of the 
critical temperature and pressure of the super critical solvent is essential for 
modeling gas-extraction processes near the critical point of the solvent. 

5 Determination of Mixture Parameters 

P E offers routines to determine binary interaction parameters for the opti
mum reproduction of experimentally determined binary (or ternary) phase 
equilibria. Using P E, optimizations of interaction parameters can be per
formed according to one of two different ways. Using a Simplex-Nelder-Mead 
algorithm in order to obtain the optimum interaction parameters is the stan
dard method. However, the Simplex-Nelder-Mead algorithm requires initial 
guesses for the interaction parameters and will not necessarily find the way 
from one local optimum to another optimum. Therefore a second method -
the so-called grid - enables to find initial guesses and different minima on the 
expense of increased time consumption. 

6 Prediction of Binary Equilibria 

P E offers routines to predict phase equilibria where no experimental data 
might be available. 
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Fig. 2. Calculation of binary VLE and LLE at 373.15 K with the Peng-Robinson 
EOS in systems containing carbon dioxide and water. Experiments [3]: o-cresol = 
., m-cresol = • , p-cresol = ., phenol/carbon dioxide = ~. Two interaction 
parameters of the Mathias-Klotz-Prausnitz mixing rule [20] have been adjusted for 
each binary system. 
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Fig. 3. The above predictions for the binary systems carbon dioxide + p-cresol 
at 323.15 K and 473.15 K are based on the parameters regressed from the binary 
systems at 373.15 K shown above. Experimental data: 323.15 K = ., 473,15 K = 
• [3,4]. 

SAFT-2 gives better predictions for the phase behavior at these temper
atures than the Peng-Robinson EOS. In SAFT-2, p-cresol is modeled as a 
sphere chain with two association sites and carbon dioxide is modeled as a 
convex body [4, 10]. 
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7 Prediction of Ternary Equilibria 

P E includes routines to predict phase equilibria with more than two com
pounds based on binary interaction parameters regressed from binary sys
tems. 

rn-Cresol Toluene 

Water Carbon Dioxide Water Carbon Dioxide 

Fig. 4. Predictions of ternary systems calculated with the Peng-Robinson EOS [6] 
with the Mathias-Klotz-Prausnitz mixing rule [20] and binary parameters from the 
binary systems, above. Experimental results: [3]. 

o-Cresol p-Cresol 

p..cresol Carbon Dioxide Ethanol Carbon Dioxide 

Fig. 5. Predictions of ternary systems calculated with SAFT-2 [10] with the van 
der Waals - Mathias - Klotz - Prausnitz mixing rule [20] and binary parameters 
from the binary systems. Experimental results: [4]. Left diagram: 356.15 K / 18.3 
MPa = • ,373.15 K /19.0 MPa = ., 373.15 K / 22.0 MPa = A. 
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Abstract. A simple and efficient moving grid method for the simulation of one 
dimensional chemical engineering problems with steep propagating fronts is pre
sented. A combination with a fully adaptive static regridding technique as im
plemented in PDEXPACK was used. The moving grid method was tested for the 
simulation of an adiabatic fixed bed adsorption process. Compared to conventional 
adaptive methods on a static grid a significant reduction of the CPU time and a 
higher stability of the simulation could be achieved. 

1 Introduction 

Many chemical engineering processes are characterized by steep propagating 
fronts in the spatial profiles of the state variables. Examples are fixed bed 
reactors, adsorption columns, ion exchangers and regenerative heat exchang
ers. Usually the fronts are significant but continuous changes of the variables 
within a limited region of the spatial domain. However, also discontinuous 
fronts can be observed. For the description of these processes often one dimen
sional models are sufficient. Commonly, the model equations consist of partial 
differential as well as algebraic equations. A widely used numerical method 
for the solution of such sets of equations is the method of lines treatment. In 
this approach the partial differential equations are discretized in space. The 
resulting set of differential algebraic equations can then be solved by efficient 
and robust solvers such as LIMEX [3J or DASSL [2J. 

If the systems show steep moving fronts in the spatial profiles of the state 
variables either a very fine equidistant grid has to be used or the space grid has 
to be adapted locally during the time integration in order to reduce numerical 
dispersion. The use of a fine grid throughout the whole space domain results in 
impractically huge sets of equations. In contrast, adaptive methods guarantee 
high accuracies while the calculation effort is significantly reduced. 

As an additional approach to increase the efficiency of the method of 
lines, moving grid methods have been proposed. In contrast to a static grid 
adapt ion a contiuous dynamic adaption of the spatial grid is performed. The 
major objective of these methods is to reduce the dynamics of the solution 
on the moving grid which makes a frequent grid adaption unnecessary. The 
smaller changes of the state variables result in larger time steps. 

F. Keil et al. (eds.), Scientific Computing in Chemical Engineering II
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Another problem arises when moving discontinuities occur. For the sim
ulation it is necessary to know the exact location of the discontinuities since, 
e.g., the model equations or the physical properties change. Using high ac
curacy adaptive methods with an automatic control of the time steps and 
the space grid, these model shifts evoke convergence problems. In this case 
moving grid methods also can help, being able to capture the location of the 
discontinuities [4]. 

In conventional moving grid methods the grid velocity is calculated for 
each time step based upon special mathematical criteria, e.g. the minimiza
tion of the time rate of change of the state variables [9] or the principle of 
equidistribution of the spatial error [12]. In order to avoid a crossing of the 
grid trajectories these methods require strict grid regularization procedures 
which are often difficult to handle. 

In this paper a simple and efficient moving grid method is presented. The 
algorithm is a modification of the method developed by NOWAK [6]. The 
benefits of this method are demonstrated for the example of the modeling 
and simulation of an adiabatic fixed bed adsorber for waste air purification. 

2 Adapive Moving Grid Methods 

In this section the algorithm of the developed adaptive moving grid method 
is described. As an illustrative example the following one dimensional system 
of parabolic partial differential equations is treated: 

_ v ay + ~ (nay) -az az -az + Q (1) 

or 
ay 

Bat = f(y, Yz, yzz) (2) 

In this notation y is the vector of the state variables, i.e. the unkowns of the 
system with the dimension m. B, y and n are matrices with the dimension 
(m x m) and depend on y, z and t. The vector Q representing sources and 
sinks has the same dimension as y and also depends on y, z and t. 

The system in eq. (1) can be solved numerically using the method of lines. 
A finite difference method has been used for the spatial discretization. 

i = 1, ... ,n (3) 

In moving grid methods the location of the spatial grid points is no longer 
fixed during one integration step (Zi = Zi(t), i = 1, ... , n). The transition to 
a moving grid requires a transformation of the model equations in a moving 
coordinate system. In eq. (3) the partial derivative 8yi/at is the variation of 
Yi with time at a fixed position in the spatial domain. The change of Yi with 
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time while moving along the space coordinate with the velocity Wi = dzi/ dt 
is described by the total derivative 

(4) 

Thus, eq. (3) is transformed by replacing the partial derivative with eq. (4): 

i = 1, ... ,n (5) 

If the velocity Wi = dzi/dt is equal to zero the partial derivative 8Yi/8t co
incides with the total derivative and eqs. (5) and (3) are equal. Since the 
location of the grid points changes with time they can be considered as ad
ditional state variables requiring n additional equations. 

In contrast to conventional moving grid methods, in the considered method 
the movement of the grid points is not calculated based upon universal cri
teria. Instead, the additional equations to describe the movement of the grid 
points can be obtained due to the following simple and very efficient consider
ations [4J. The basic idea behind the developed algorithm is to couple specific 
grid points (moving points) directely to the propagating fronts, moving them 
with the real physical front velocity. All other grid points are moved in such 
a way that a crossing of their trajectories is avoided. 

For many chemical engineering problems simple and often algebraic equa
tions for the calculation of the front velocity can be derived. Well known ex
amples are the equations for propagating reaction fronts in catalytic fixed bed 
reactors [5J or the method of non-linear wave dynamics for the calculation 
of the movement of the mass transfer zones in adsorption and ion exchange 
columns [lOJ. This a priori information is used to link the moving points to 
the front, moving them with the front velocity (cf. section 3). 

k=l, ... ,nMP (6) 

The first and the last grid point of the spatial domain, i.e. Zl and Zn are 
fixed. This leads to the following conditions: 

dZ l = 0 
dt 

and dZn = 0 
dt 

(7) 

For all other grid points the only requirement is that they do not cross each 
other. This is fullfilled if the ratio of two adjacent grid point distances (Zi -

Zi-r) and (Zi+l - Zi) remains constant during the movement of the grid. For 
a grid with Zi-l < Zi < Zi+l this can be expressed as: 

Zi+ 1 - Zi I Zi+ 1 - Zi I 
Zi - Zi-l t Zi - Zi-l t+dt 

(8) 
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Based on a taylor series the following equation can be derived [4]: 

(9) 

This equation is valid for all grid points between the boundaries of the spatial 
domain and the various moving points. Equation (9) can be understood as a 
linear interpolation of the grid velocities. 

A very efficient method is obtained if the moving grid method is com
bined with an adaptive static regridding algorithm. In this work a fully 
adaptive method of lines treatment was applied based on regridding tech
niques such that both the spatial discretization error and the error arising 
from the time integration can be controlled [6,7]. Based on this algorithm 
the program package PDEXPACK [8] has been developed to solve parabolic 
differential equations of the gerneral form given in eq. (1). For the calculation 
of the transformed model equations on a moving grid minor modifications of 
the error control had to be implemented [4]. 

3 Performance of the adaptive moving grid method 

In this paper the adsorption of toluene at a commercial DAY zeolite is consid
ered. This system is a typical example for a technical application for adsorp
tive waste air purification. Using a zeolite monolith a narrow mass transfer 
zone can be obtained. 

A one dimensional two phase model with axial dispersion of the adiabatic 
adsorption fixed bed has been derived. This model descibes the adsorption 
process with a sufficient accuracy. The following assumptions have been made: 
The fluid phase and the quasihomogeneous adsorbent phase have been mod
eled seperately, except for a quasihomogeneous energy balance. Mass transfer 
in axial direction can be described by an convection dispersion model. Radial 
gradients of the state variables can be neglected. Mass exchange between the 
fluid and the adsorbate phase is calculated based on a linear driving force ap
proximation. Due to low adsorptive concentrations the total mass flux in axial 
direction can be considered as constant. The following system of equations 
has been derived under these assumtions [11]: 

ae ae Da2e e = - v- + -- - -K(q* -q) (10) 
at az £ az2 £ 

aq=K(q*_q) (11) 
at 

aT aT a2T 
(£GI + eGa) 8t = - £vGI az + ,\ az2 - eK (q* - q) (-L1HA) (12) 

The equilibrium loading q* of toluene on the DAY zeolite can be described 
with the LANGMUIR isotherm. The mass exchange coefficient K is calculated 
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due to GLUECKAUFs approach. DANCKWERTS boundary conditions of the 
material balance in the gas phase and the quasihomogeneous energy bal
ance are used. In this example the adsorption of toluene on a completely 
regenerated adsorbent at ambient temperature is considered. Due to space 
limitations the numerical values of the process parameters as well as the 
thermodynamic properties will not be presented here. 

In Fig. 1 the dynamic system behaviour for the adsorption process is de
picted. The numerical solution of the model equations was performed with 
PDEXPACK on a static adaptive discretization grid. This simulation run 
serves as a reference for the later calculation of the model on an adaptive 
moving grid. Fig. 1 show the axial profiles of gas phase concentration and 
column temperature at different times. Due to the adsorption of toluene, the 
toluene concentration decreases over the bed length and a concentration front 
forms propagating slowly through the column. As a result of the exothermic 
adsorption process the temperature rises. Thus, a pure thermal wave is gen
erated which propagates through the fixed bed traveling in front of the slower 
adsorption front. This temperature front heates up the adsorber. Due to the 
cool feed gas stream the adsorbent is cooled back to ambient temperature 
in regions behind the adsorption front where equilibrium is reached. This 
second temperature wave is coupled to the slow adsorption wave. When the 
adsorption wave reaches the end of the column the capacity of the adsorbent 
is exhausted and breakthrough occurs. 

The dynamic system behaviour of complex non-linear adsorption pro
cesses can be described at least approximately by the phenomena of non
linear wave dynamics [10]. These theories are based on simple equilibrium 
models of the adsorption process without axial dispersion. Such a reduced 
model can easily be derived from the detailed model given in the eqs. (10-
12). All mass exchange resistances are neglected so that local equilibrium can 
be assumed. Axial dispersion effects are neglected. This yields the following 
equations: 

oT 
- wCfoz 

(13) 

(14) 

The equilibrium model without axial dispersion represents a system of first or
der hyperbolic partial differential equations. For the solution of these sytems 
an extensive mathematical theory exists. In this work we used the method 
of characterisics proposed in [10] which is particularly suitable for systems of 
two hyperbolic equations. 

In Fig. 1 the solutions of the detailed model and the reduced model are 
compared. Due to dispersive effects and finite mass exchange fluxes a char
acteristic spreading of the fronts in the detailed simulation can be observed. 
But the comparison shows that the reduced model correctely predicts both 
the wave velocity and the plateau. This suggests to use the simple analytical 
solutions of the reduced model to calculate the velocity of the moving points. 
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Fig. 1. Axial profiles of gas phase toluene concentration (top) and column tem
perature (bottom) at different times: 0 to 250 s (left) and 2000 to 14000 s (right). 
Detailed model (-), reduced model (- - -). 

3.1 Comparison of the static grid and the moving grid solutions 

In the following section the performance of the numerical solutions based on 
the adaptive static grid and the adaptive moving grid method is compared. 
To obtain a solution with the adaptive moving grid method the model equa
tions (10-12) have to be transformed to the moving coordinates according 
to the algorithm described in section 2. The velocity of the moving points is 
calculated with the solution of the reduced model. All other grid points are 
moved as shown in section 2. 

Fig. 2 illustrates the movement of the grid, represented by the velocity of 
the grid points, in comparison with the axial temperature profile at differ
ent times. Fig. 2 shows that the location of the front is correctely captured 
throughout the complete simulation. The labeled grid points are the two mov
ing points MP1 and MP2. The velocity of the other grid points results from 
a linear interpolation between the moving points and the static boundaries. 
As a result of the additional regridding procedure, the grid density around 
the front is increased whereas it decreases in the other regions. 

The results of a direct comparison between the static grid method and 
the moving grid method are resumed in Tab. 1. The results are judged by the 
number of required grid points ii z and the time steps nt until t = 24000 s. 
At this time even the slow adsorption wave has broken through. Due to the 
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regridding the number of the grid points varies between n,;in and n,;ax. nz 
represents the time average. The CPU time of the simulation runs refers to 
a SUN ULTRA 1. 

Table 1. Performance of the adaptive static grid method (tol=1O- 5 ) and the adap
tive moving grid method (tol=1O-4 ). 

Static grid Moving Grid 

nt 1519 101 

nz 1120 374 

n TTun 
z 55 33 

n tnax 
z 1597 1577 

CPU time in s 3063 309 

As a result of the convection dominant system (Pe ;:::::;; 105 ) the error 
tolerances for the simulation at a static grid have to be very small in order 
to guarantee a sufficient stability of the solution by small time steps and a 
very fine grid. The calculations with a moving grid can be performed with 
destinctively higher tolerances without a loss of stability. 

As illustrated in Tab. 1 the calculations with a moving grid descrease the 
required time steps by factor 15. This is a result of the reduced dynamics of 
the system in the transformed coordinates. Due to the higher error tolerances 
the average number of grid points is also smaller. But the simultaneous calcu
lation of the movement of the grid points results in a larger set of equations. 
Thus, only an overall decrease in CPU time by factor 10 is achieved. 
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4 Conclusions 

We presented a simple and very efficient adaptive moving grid method for the 
simulation of one dimensional processes with steep propagating fronts. This 
method was used in combination with an adaptive regridding technique as 
implemented in PDEXPACK. We successfully tested this method for the sim
ulation of various fixed bed processes . It was shown that using this method 
a significant reduction of the CPU time can be obtained. The accuracy and 
the stability of the solution are very good. 

Acknowledgement The financial support from the Deutsche Forschungs
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References 

1. BLOM, J. G., J. M. SANZ-SERNA and J. G. VERWER: On Simple Moving Grid 
Methods for One-dimensional Evolutionary Partial Differential Equations. J. 
Comput. Phys., 74:191-213, 1988. 

2. BRENAN, K. E., S. L. CAMPBELL and L. R. PETZOLD: Numerical Solution of 
Initial- Value Problems in Differential-Algebraic Equations. North-Holland, 1989. 

3. DEUFLHARD, P., E. HAIRER and J. ZUGCK: One Step and Extrapolation Methods 
for Differential Algebraic Systems. Numer. Math., 51:501-516, 1987. 

4. FRAUHAMMER, J., H. KLEIN, G. EIGENBERGER and V. NOWAK: Solving moving 
boundary problems with an adaptive moving grid method: Rotary heat exchangers 
with condensation and evaporation. Chem. Engng. Sci., 53(19):3393-3411, 1998. 

5. GILLES, E. D.: Quasi-stationiires Verhalten von wandernden Brennzonen. Chem. 
Engng. Sci., 29:1211-1216, 1974. 

6. NOWAK, V.: Adaptive Linienmethoden fur nichtlineare parabolische Systeme in 
einer Raumdimension. TR 93-14, Konrad-Zuse-Zentrum fur lnformationstech
nik, Berlin, 1993. 

7. NOWAK, V.: A fully adaptive MOL-treatment of parabolic I-D problems with 
extrapolation techniques. Appl.Numer. Math., 20:129-145, 1996. 

8. NOWAK, V., J. FRAUHAMMER and V. NIEKEN: A fully adaptive algorithm for 
parabolic partial differential equations in one space dimension. Computers chem. 
Engng., 20(5):547-561, 1996. 

9. PETZOLD, L. R.: Observations on an adaptive Moving Grid Method for one
dimensional Systems of Partial Differential Equations. Applied Numerical Math
ematics, 3:347-360, 1987. 

10. RHEE, H. K., R. ARIS and N. R. AMUNDSON: First-Order Partial Differential 
Equations, volume 2. Prentice Hall, 1989. 

11. SALDEN, A., T. BOGER and G. EIGENBERGER: Adsorptive Abtrennung 
und Ruckgewinnung organischer Komponenten aus Abluft. PEF-report, 
Forschungszentrum Karlsruhe, 1997. 

12. ZEGELING, P. A., J. G. VERWER and J. C. H. VAN EIJKEREN: Application of 
a Moving-Grid Method to a Class of ID Brine Transport Problems in Porous 
Media. TR NM-R9112, CWl, Center for Mathematics and Computer Science, 
1991. 



Dynamic Simulation of Reactive Absorption Processes 
for the Purification of Coke Oven Gases 

R. Schneider, E.Y. Kenig, and A. G6rak 

Essen University, Chair of Thermal Process Eng., Mech. Eng. Dept., 
D -45141 Essen; e-mail: ralf.schneider@uni-essen.de 

Abstract. Reactive absorption processes represent complex mass transfer of mul
ticomponent systems combined with chemical reactions. Therefore, traditional equi
librium stage models and efficiency approaches are usually inadequate and a rigor
ous two-phase model, based on the two film theory had to be developed. This dy
namic model takes into account diffusional interactions and the influence of chemical 
reactions on mass transfer as well as thermodynamic non-idealities and considers 
the impact of special column internals like structured packings on hydrodynamics. 
By making use of the Nernst-Planck equation for the description of mass transfer, 
the influence of additional driving forces in electrolyte systems like electrical poten
tial gradients are expressed. This rigorous dynamic rate-based approach leads to a 
system of partial differential equations, which had to be discretized in axial direc
tion. The resulting DAE system has been implemented into SpeedUp® and solved 
numerically. For the H 2 S scrubber some simulation results are presented with the 
consideration of three liquid distributors and a structured packing section. For the 
validation of the model, pilot plant steady state experiments have been carried out 
at Thyssen Still Otto in Duisburg. The simulation results are in good agreement 
with the experimental data. 

1 Introduction 

The recent strong emphasis on environmental protection and more stringent 
requirements gave new impetus to improvements of coke oven gas purification 
processes. Coke oven gas mainly consists of a mixture of carbon monoxide, 
hydrogen, methane and carbon dioxide. It is contaminated with a variety of 
organic and inorganic compounds, which have to be separated in absorption 
columns before using it as synthesis gas in further process steps. The objective 
of these scrubber units is a selective removal of H2 S, N H3 and HCN, whereas 
competing reactions of the major impurity CO2 have to be suppressed. As an 
example of innovative purification processes the Ammonia Hydrogen S,ulfide 
Qirculation S,crubbing CASCS) has been investigated, in which the ammonia 
available from the raw gas is used instead of an external solvent. Computer 
simulations based on detailed physical models will reduce the experimental 
expenditure and support optimal operation strategies as well as energetic 
and design optimizations. In addition, the changing feed compositions of coal 
and coke gas necessitate a process control based on dynamic model equations 
which will be presented in this work. 

F. Keil et al. (eds.), Scientific Computing in Chemical Engineering II
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2 Modeling aspects 

2.1 Model complexity 

Traditional equilibrium models are based on the assumption that both phases 
leaving a stage are in thermodynamic equilibrium. In practice, equilibrium is 
rarely attained since mass and heat transfer are actually rate-based processes 
that are driven by gradients of chemical potential and temperature. There
fore, traditional models and efficiency approaches are usually inadequate. 
Mass transfer resistances can only be considered by rate-based models with 
separate balance equations for each phase (see e. g. [1-3]). The interfacial 
molar and heat fluxes are calculated explicitly, e. g. by the Maxwell-Stefan 
approach that considers molecular interactions and diffusional phenomena 
in multicomponent mixtures [2,3]. In rigorous and predictive models the in
fluence of chemical reactions on mass transfer cannot be neglected, if both 
phenomena occur with similar velocities. In the case of a single irreversible 
reaction, this influence can be estimated by enhancement factors [4]. This 
approximation fails for complex reaction schemes with many parallel and re
versible reactions like in the chemisorption process (Fig. 2) considered in this 
work. In this case, the direct impact on mass transfer can be expressed by 
differential mass balances for the liquid film region in terms of the two film 
model [5]. 

2.2 Rate-based approach for reactive absorption 

A rigorous two-phase model for the coke oven gas purification based on the 
two-film theory has been developed. This advanced dynamic rate-based ap
proach takes into account thermodynamic non-idealities and considers the 
impact of special column internals like structured packings on the hydro
dynamics. It comprises the material and energy balances of a differential 
element of the two-phase volume in the packing. Each element consists of an 
ideally mixed vapor and liquid bulk phase and two film regions adjacent to 
the interface (Fig. 1). 

2.3 Dynamic differential balances 

In this dynamic non-equilibrium stage model molar holdup terms have to 
be considered in the mass balances which represent the basic differential 
equations. In the dynamic component material balances for the bulk phases 
both, changes of the specific molar component and the total molar holdup, 
are considered: 

a u1b a (L Ib) (lb i RlbJ. )A at i = - az Xi + n i a + i '¥liq c ;i = I, ... ,m (1) 

where m is the number of components in the liquid phase, and the com
ponent holdups are given as follows: 
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Fig. 1. Differential absorber cross-section and schematic concentration profile for 
the rate-based approach 

U 1b = x1bUIb . 1 , ,,;2= , ... ,m (2) 

and the summation equation for the liquid bulk mole fractions is 

(3) 

The volumetric liquid holdup cf>liq depends on the vapor and liquid flows 
and is calculated from empiric correlations for the column packing [6J. The 
vapor holdup has been neglected due to the low operating pressure of the 
column (p:::; 1, 2bar): 

(4) 

The bulk phase balances are completed by the summation equation for 
the gas bulk mole fractions: 

m 

(5) 

In addition to the bulk balances, differential component mass balances for 
the liquid film region are introduced: 

(6) 

Due to the chemical conversion in the liquid film, the molar fluxes at 
the interface n~ and at the boundary between the film and the liquid bulk 
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phase n~b will differ. The system of equations is completed by the conserva
tion equations for the mass and energy fluxes at the phase interface and the 
necessary linking conditions between the sections. 

2.4 Chemical reactions 

The selective absorption of coke plant gas impurities results from a complex 
system of parallel liquid phase reactions (Fig. 2). They are considered not 
only in the liquid bulk phase mass balance (1) but also in the differential 
balances for the liquid film (6) in order to express their direct influence on 
mass transfer. 

Instantaneous reversible reactions: 

NH3+H20 ~ NH 4++OH· 

H2S + H20 

HCN + H 20 
HC03· + H20 
H30+ +OH· 

~ HS· +H30+ 
~ CN·+H30+ 
~ COl·+H30+ 
~2H20 

Kinetic controlled reversible reactions: 
CO2 + OH· ~ HCO 3· 

CO2 + 2 H20 ~ HCO 3· + H30+ 
CO2+NH 3+H20 ~ H 2NCOO·+H30+ 

Fig. 2. System of parallel liquid phase reactions 

The reactions including CO2 obey first and second order kinetics, whereas 
the other reversible reactions are based on simple proton transfers and are 
therefore regarded as instantaneous by the corresponding mass action laws. 
The CO2 absorption is hindered by a slow chemical reaction which is required 
to convert the dissolved carbon dioxide molecules into the more reactive ionic 
species. Therefore, when gases containing H 2 S, N H3 and CO2 are contacted 
with water, the H 2S and ammonia are absorbed much more rapidly than CO2 

and this selectivity can be accentuated by optimizing the operating conditions 
[7J. Nevertheless, all chemical reactions are coupled by hydronium ions (Fig.2) 
and additional CO2 absorption leads to the desorption of hydrogen sulfide 
and decreases the scrubber efficiency. 

2.5 Mass transfer 

The most important difference between the rate-based approach and the equi
librium stage model is the direct calculation of the interfacial molar fluxes. 
Our advanced model uses the Nernst-Planck equation (7) for the descrip
tion of mass transfer to consider the influence of additional driving forces in 
electrolyte systems like electrical potential gradients: 
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(7) 

The consideration of the electrical potential requires an additional condi
tion, namely the electroneutrality (8), which has to be met in every section 
of the liquid phase, 

rn 

LXiZi = 0 
i=l 

(8) 

where Zi is the ionic charge of species i. For the determination of the 
mass transfer coefficients and film thicknesses empirical correlations have 
been used, which express the influence of column internals and hydraulics 
[8]. 

2.6 Thermodynamics 

Thermodynamic non-idealities have been considered in the transport equa
tions and the phase equilibrium. The liquid phase diffusion coefficients are 
determined by the Nemst-Hartley equation [9], which expresses the trans
port properties in weak electrolyte systems. At the gas-liquid interface, the 
thermodynamic equilibrium between the two phases is assumed: 

yt = KiX~ ; i = 1, ... , m (9) 

The distribution coefficient Ki comprises fugacities in both phases and 
activity coefficients in the liquid phase. They are calculated from the three
parametric Electrolyte-NRTL method, included in the Properties Plus pack
age of ASPEN P LU ST M. 

3 Experimental investigation 

Pilot plant experiments have been carried out at real process conditions in an 
ASCS sidestream of the coke plant" August Thyssen" (Duisburg, Germany). 
The DN 100 pilot column was made of stainless steel and equipped with 
about 4m of structured packing (SULZER Mellapak® 350Y), three liquid 
distributors and a digital control system. Several steady state experiments 
have been compared with the simulation results and supported the design 
optimization of the coke gas purification process [10]. 

4 Simulation results 

The above rigorous dynamic model constitutes a system of partial differen
tial equations, which had to be discretized in axial and film direction. The 
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resulting DAE system has been implemented into SpeedUp® and solved nu
merically. For the H2 S scrubber some steady state and dynamic simulation 
results are presented. 

4.1 Steady-state simulations 

The first simulations for the H 2S scrubber were based on the equilibrium 
stage model extended by the chemical reaction kinetics. This approach was 
completely inconsistent with the experimental studies, because the selectiv
ity towards H 2S and HCN absorption could not be expressed. Therefore, 
the advanced rate-based approach has been implemented into the numerical 
solver. The differential balance in the film (6) leads to non-linear concen
tration profiles along the film coordinate (Fig. 3) representing the direct 
influence of the chemical reactions on the mass transfer (see also [5]). The 
greatest concentration gradients appear for the ionic components near the 
interface, which corresponds to the very fast transfer of protons and causes 
a significant enhancement of the H 2 S and N H3 transport. 
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Fig. 3. Concentration profiles in the liquid film 

This differential model for the stage has been extended step by step to 
the whole absorber. In addition, the three liquid distributors and the column 
bottom have been considered. Their liquid holdup exceeds the total molar 
holdup of the packing and therefore influences the chemical conversion. The 
axial steady state concentration and temperature profiles are now in good 
agreement with the experimental results (Fig. 4). The aqueous ammonia so
lution, leaving a previous column after the physical absorption of N H3 from 
the raw gas, results in the required elimination of H 2S by chemisorption. 
Substantial amounts of HCN are also removed in this selective absorber. 
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4.2 Dynamic simulations 

For the numerical solution of the DAE system presented above, a careful 
analysis of the whole system of equations was necessary in order to prevent 
high index problems. 
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both phases 

This differential index is defined as the number of time differentiations of 
the algebraic equations necessary to obtain a set of pure differential equations 
(ODE) and must not exceed 1 for a correct solution with SpeedUp. 
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referring to the steady state conditions at t = 0 

Therefore, an appropriate set of initial conditions is required. Fig. 5 shows 
dynamic concentration profiles for the purified gas at the top and the solvent 
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at the bottom of the column after introducing a disturbance of the coke oven 
gas feed composition, in this case doubling the amount of H2S. Additional 
H 2 S is absorbed, but the parallel reactions of CO2 lead to an increasing 
amount of carbon dioxide in the purified gas. The corresponding solvent com
position proves the CO2 formation due to the decreasing mole fractions of 
the carbonate (CO~-) and carbamate (H2NCOO-) ions. 

5 Conclusions 

Predictive simulation of complex reactive absorption processes like coke gas 
purification requires a rigorous and detailed rate-based approach due to mass 
transfer resistances and the significant influence of fast chemical reactions. 
On this framework, a model, based on the two-film theory and considering 
kinetic reaction rates, thermodynamic non-idealities, non-isothermal effects 
and additional influences of electrolytes has been developed. Instead of intro
ducing correction terms like enhancement factors to express the influence of 
chemical conversions on mass transfer, the differential balances for the liquid 
film region including all parallel reactions have been formulated. The whole 
DAE system has been implemented into SpeedUp and solved numerically 
with relevant prevention of high-index problems. Several steady state and 
dynamic simulations have been performed, their results are in good agree
ment with the experimental data. 
Acknowledgement Financial support of the German Volkswagen Founda
tion and supply of experimental data by Thyssen Still Otto Co. are gratefully 
acknowledged. 
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Abstract. The mathematical models resulting from many problems in chemical 
kinetics are often initial-value problems (IVP) for systems of ordinary differen
tial equations with special properties: the equations are nonlinear and also stiff. 
We consider mathematical problems of this kind for special chemical processes of 
radical polymerization, where systems of very large dimension occur, and describe 
a solution procedure with well-known IVP-solvers. Furthermore, the influence of 
incomplete micromixing on these chemical processes is taken into account. This re
quires the solution of initial-boundary problems for parabolic differential equations, 
which will be done using the numerical method of lines. 
Results of examples of the described kind and comments on performance are given. 

1 Introduction 

Considering chemical reactions, each of them is divided into a set of so-called 
elementary reactions. A distinguishing feature of these elementary processes 
is often the very large difference between their reaction rates, i.e. between 
the lengths of the reactions. These effects are of great influence on the math
ematical task belonging to the chemical problem. 
In most cases, the resulting mathematical model consists of the same num
ber of ordinary differential equations (ODEs) like elementary reactions. These 
equations are nonlinear of polynomial form and stiff as well, which determines 
the numerical procedure for their solution. 
The polymerization processes studied by us together with chemists are inter
esting applications for such chemical reactions. In the following, two special 
examples of polymerizations will be described, and the solutions of mathe
matical tasks belonging to them will be discussed. 

2 Polymerization 

The basic principle of our polymerization model can be characterized that 
m monomers Xi, i = l(l)m react together with an initiator I in a solvent 
S in a chemical reactor and form polymer-radicals Yi, i = l(l)m ("living" 
polymers) and a macromolecule Z ("dead" polymer). These last substances 
are chains of the monomers, the Yi can rise further while the growth of Z 
is finished. 

F. Keil et al. (eds.), Scientific Computing in Chemical Engineering II
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The whole process is going off in form of the following elementary reactions: 
initiation, growth, transfers of the reagents and chain termination. In addi
tion, it is assumed that the initial substances are ideally mixed in the reactor. 
For sake of simplicity, we use the same denotations for the reagents and their 
concentrations. 
Our polymerization process now contains M = 2m + 3 reacting substances, 
the concentrations of which we arrange in form of a vector u E JRM in the 
following manner 

u = u(t) = (1, Xl. ... , X m , Y1 , ... , Ym , Z, sf· 

The mathematical model consists of MODEs 

du 
dt = f(u), 

for t > to and the initial conditions 

u(to) = <p 

(1) 

(2) 

(3) 

with constant values of the components of <p E JRM. The vector f E JRM 
puts together the reaction terms in our model, i.e. the mentioned polynomial 
terms, which we abbreviate with 

f(u) =: r,. =: (r/, rx" ... , ry" ... , rz, rs)T. (4) 

This initial-value problem must be solved numerically. For this purpose, suit
able well-known high quality IVP-solvers are at disposal taking into account 
the special structure of the Jacobian and the stiffness of the ODEs caused by 
the different reaction rates. 
We consider some of such solvers and simultaneously we test and compare 
them to get some informations about their effectiveness. Particularly, we are 
successful with the solvers LSODE (by A.C.HINDMARSH) and VODE (by 
P.N.BROWN, G.D.BYRNE and A.C.HINDMARSH) using multistep methods, 
especially backward differentiation formulas of different order for our stiff 
equations, and with the solvers RODAS and RADAU5 resp. (by E.HAIRER 
and G.WANNER) which employ an embedded Rosenbrock method of order 
(3)4 and an implicit Runge-Kutta method of order 5 resp .. 

3 Controlled Polymerization 

Recently, chemists proposed and investigated some extended models of the 
polymerization process, in order to get a better regulation of the reactions, 
i.e. to achieve a more regular growth of the polymers (see [5] and [6]). An 
example of these so-called controlled polymerization processes includes, apart 
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from initiator I, monomer X, belonging polymer-radical Y (m = 1) and 
arising macromolecule Z, also a terminator-radical U, a product substance 
V by decay of U, and a so-called "sleeping" polymer-radical W, controlled 
by U. Moreover, interim results for polymer-radicals of different chain lengths 
are introduced, which yields further ODEs for their concentrations }j and 
Wj, j = l(l)n. 
In order to give an impression of the principal mathematical structure of the 
differential equations (2), that means of the character of the nonlinearities on 
the right hand sides, the resulting system of ODEs for one of these extended 
models is presented in the following. Our special system can be written in 
form of two groups (5) and (6) of equations, where the first group is inde
pendent of the second, a fact, which is also of significance for the solution 
algorithm. We have 

!fit = rI:= -kII, 

djf = rx := -2krf 1- (kp - km)XY 

dY 
ill 

dZ 
at 

djf = ru ;= kdW - kcYU - kdNU2, 

dV 2 ill = rv := O. 5kdNU - ktNo YV, 

dJf = rW ;= kcYU - kdW - kdecompW 

with the abbreviations r I, r X, . .. for the right hand sides and 

where 

dlt1 = 2krfl - (km + kp)YIX + kdWl - kcY1U 
-ktNoYl V - ktcY1Y + kmYX, 

j = l(l)n 

n n 

(5) 

(6) 
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The values 

denote the reaction rates of our example. They are constant but usually very 
different in magnitude. 
The initial values of the two systems (5) and (6) at t = to consist of the 
nonzero values of I, X, W, Wi, while the other concentrations Y, Z, U, V, Wj 
for j = 2(1)n and }j for j = l(l)n are zero at this point. 
The requirement of the chemists was a large number of interim polymer
radicals, that means n» 1 . Therefore splitting into the two systems is 
quite advantageous for the solution process, because system (5) can be solved 
independently of system (6), and on the other hand, the last system has a 
banded Jacobian with a bandwidth of only 4. 
For a numerical example, we integrate over the time interval [0,200 min] and 
for n = 10000, the reaction rates lie between 10-5 and 108 . 

The numerical computations show the usual results for polymerization pro
cesses: the polymer-radicals arise and change very quickly at the beginning 
of the time interval, while the macromolecule is growing relatively slow. The 
other reagents also change as expected in very different manner. 

4 Influence of Incomplete Micrornixing 

We find a more complicated situation, if the reagents being put together are 
not ideally mixed or the reactions have an effect only in parts of a chemical 
reactor. In this case, micromixing processes influence the polymer properties, 
the product quality and the reactor stability. 
The chemical model used by us in this case is based on a description of the 
process within small deforming fluid elements, so-called slabs or striations, 
and we have different concentrations of the reacting substances in different 
striations. The thickness of the slabs depends on the viscosity of the reacting 
mixture and the energy dissipation. The exchange of substances between 
adjoining striations proceeds only by diffusion. 
We assume analogously to Section 2 that m monomers react together with 
an initiator in a solvent in our process, i.e. we have to consider M = 2m + 3 
substances. The concentrations and therefore u E JRM are depending now on 
time t and a spatial variable x , and we get the mathematical model of an 
initial-boundary-value problem of M partial differential equations 

(7) 

with a < x < h + l2 and t> to, the initial conditions 

u(to,x) = <p(x) (8) 
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with piecewise constant components of <p(x) E JRM and the Neumann 
boundary conditions 

au(t,O) = au(t, it + l2) = O. (9) 
ax ax 

The values lI, l2 > 0 characterize the thickness of the striations. The diffu
sion matrix D is of diagonal form 

with the diffusivities 

as diagonal elements. The vector f E JRM contains the reaction terms of 
our model analogously as described in (4) of a form similarly as in (5). 
For the numerical treatment, we use the numerical method of lines with at 
first a semidiscretization in spatial direction x by standard difference for
mulas. A uniform grid is sufficient in most cases of the accuracy requirements 
with which we are confronted. The resulting IVP with the variables Uj(t) 
as approximations for U (t, x j) along the lines x = x j, j = 1 (1) N contains 
M·N ODEs 

dy 
dt = g(t, y) (10) 

and the initial conditions 

(11) 

where 
y = y(t) = (y1, ... , YM·N f = (Ul, ... , Uj, ... , UN f, 
Uj = (Ij, X lj , ... , Ylj , ... , Zj, Sjf, j = l(l)N, 

9 = (g1, ... ,gM'Nf· 

This task will be treated with the IVP-solvers mentioned in Section 2 taking 
into account the structure of the banded Jacobian matrix of (10). 
Interesting examples of this kind are polyreactions in microgravity environ
ment, which are based on tests with the "Drop Tower" of the Centre of 
Applied Space Technology and Microgravity (ZARM) at the University of 
Bremen. In this case, photoinitiated radical polymerization processes with 
Metacrylate, which are "very fast" reactions, occur simultaneously with mi
crogravity effects. 
In our example, one monomer (Metacrylate, m = 1) is taken, and the ini
tiation is done by laser beams. Thus, we have a system of M = 5 partial 
differential equations for the diffusion-reaction process. Two different stria
tions are introduced, one, where the laser beams are of influence, and one 
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Fig. 1. Initiator 

Fig. 2. Monomer 

with no reactions. We choose equidistant gridpoints Xj in spatial direction 
and then have to solve an IVP with nearly 1000 ODEs after semidiscretiza
tion. The Jacobian matrix of the ODEs is banded with a bandwidth 11. The 
reaction rates move between 10-4 and 105 , and it is assumed that they 
depend on the spatial variable, i.e. 

kI = kI(X), ... 

More details, e.g. special values of the reaction rates, can be found in [2]. 
The integration in time direction is done over the small interval [0,4 sec]. 
The diffusion coefficients d = di are constant during a single process and 
are investigated for values from 6 . 10-6 , where it is also possible to assume 
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that the polymer radicals and the molecules do not diffuse, up to turbulent 
diffusivities 10- 1. 

Fig. 3. Polymer-radical 

Fig. 4. Macromolecule 

The results, shown in Figs. 1-4, are received for a diffusion coefficient in the 
range of normal liquids (d i = 6 . 10-6 ), where all reagents diffuse. In the 
right part of the spatial interval, we see the influence of the laser beams, 
while the reactions are not active in the left part, the diffusion seems to be 
only in its starting phase. Comparing the polymer-radical and the macro
molecule, we remark the different velocities in decreasing and increasing of 
their concentrations. The very fast changes of the radical at the beginning of 



310 Peter Seifert 

the reaction process are also obvious. This fact and the comparison with the 
other concentrations confirm the stiffness of our problem. 
Greater values of the diffusion coefficients cause an apparent balance of the 
concentrations, partly more rapidly, especially very soon for the initiator and 
the monomer, but relatively slowly for the polymer-radical, where the very 
fast reacting process dominates. 
We obtain results of similar character for polymerization processes, where 
quantities of some reagents are added during the considered time. 
The processes can be described as follows: Particularly at first, a prepoly
merization in an ideally mixed reactor is carried out. Considering the case of 
radical homopolymerization with an initiator and one monomer in a solvent, 
we get a polymer-radical and the macromolecule as resulting substances. This 
requires only the solution of an IVP with 5 ODEs. 
At a later point in time, we add quantities of the initiator, of the monomer or 
other monomers or of the solvent, and have now to take account of the incom
plete micromixing and therefore to solve an initial-boundary-value problem 
with 5 or more partial differential equations. The solutions again show the 
very different decreasing and increasing of the reagents in time direction and 
also the influence of the diffusivity on the whole process parallel in time. 
Detailed results can be found in [3J. 
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Abstract. We study the convergence behaviour of cyclically operated reactors 
Typically, the reactor will converge to a cyclic steady state . However, the deter
mination of this cyclic steady state by dynamical simulation techniques may be 
so computationally inefficient that model equations need to be oversimplified. Sev
eral convergence acceleration techniques are studied and illustrated by two simple 
systems for pressure swing adsorption. We show that the largest eigenvalue of the 
Jacobian of the system can be used as a useful criterion in deciding which acceler
ation method to use. 

1 Introduction 

Cyclic processes, such as temperature swing and pressure swing separation, 
the simulated moving bed separator, the reverse flow reactor, and the newly 
developed pressure swing reactor are important in the present day chemical 
industry. When simulating these processes, the long time behaviour is the 
relevant behaviour. The typical long time behaviour of a cyclic process is a 
periodic state, a so called "cyclic steady state" (CSS). 

A natural way to determine a CSS of a cyclic process is to simulate the 
total behaviour of the process. The large disadvantage of this method is that 
the convergence to a CSS may be very slow, in particular in case of large ca
pacity terms and slow kinetic terms. For packed bed reactors as named above, 
typically the buffer terms are large. In such cases the dynamic simulation of 
the process may need tens of thousand of cycles to converge. 

This slow convergence enforces the use of over-simplified models to be able 
to make any computations at all. The use of more realistic models therefore 
requires faster numerical techniques. In the literature a number of methods 
has been proposed. Most of these methods, however, have very much an 'ad 
hoc' character and only work for a limited class of periodic processes. 

Smith and Westerberg [1] use Broyden's method to accelerate the con
vergence and Newton's method is studied by Croft and Levan [2]. Nilchan 
and Pantelides [7] use a simultaneous discretization of both the spatial and 
temporal domain to calculate a CSS of two different PSA systems. 

In K vamsdal [5] a number of different acceleration methods are compared 
for a specific model. In this paper we continue this approach and compare a 
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number of methods for a given proto-type model. We show that the largest 
eigenvalue of the Jacobian of the map defined by simulating one cycle deter
mines the asymptotic convergence rate of the system to a CSS. The largest 
eigenvalue of the Jacobian is easily computed and can be used as an apriori
criterium to decide which method to use. 

In general the modeling of chemical processes amounts to strongly nonlin
ear equations. Although the goal of our study is to understand better general 
cyclic chemical processes in order to find a more generic simulation strategy, 
in this paper we investigate two simple pressure swing adsorption systems 
with linear convergence behaviour. It should be understood that the results 
presented here are only the first step along the road to a more profound in
sight into general cyclic processes and that the emphasis of this work lies on 
the convergence acceleration methods; the two simple pressure swing adsorp
tion systems are only used to illustrate these methods. Further investigations 
and the analysis of nonlinear models are in progress [6]. 

2 System Description 

In this paper we study two pressure swing adsorption (PSA) systems. These 
are the process of pressure swing adsorption of H2 0 from air onto alumina 
(System I) and the process of pressure swing adsorption of CO2 from He gas 
onto silica gel (System II). These two systems have been investigated before 
in [4], [1] and [3]. For both systems we will use the same model (model I), 
which will be described below. 

A PSA system is operated in four consecutive steps: the adsorption step, 
the blowdown step, the purge step and the pressurization step. A sequence 
of these steps is called a cycle. If the reactor is operated for a large number 
of cycles, the amount of adsorb ens that is adsorbed in the adsorption step 
and the amount of adsorb ens that is purged in the purge step will attain 
an equilibrium and the state of the reactor will converge to a periodic state. 
This periodic state is called a cyclic steady state (CSS). A more detailed 
description of a pressure swing adsorption process is found in [4]. 

2.1 The Model 

The model we use for the H20-air-alumina and the CO2-He-silica gel pressure 
swing adsorption processes is based on the following assumptions: 

I The system is isothermal with negligible axial pressure drop. 
II Radial and axial dispersion is negligible. 

III The equilibrium concentration of the adsorbens in the solid phase depends 
linearly on the concentration of the adsorbens in the gas phase. The mass 
transfer rate is represented by a linear driving force expression. 

IV The feed consists of a single trace component in a carrier which is inert 
to the adsorbent. 
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V The pressure is constant during the adsorption and desorption steps. 
VI We consider the gas phase to be ideal. 

VII The flow pattern of the gas phase is assumed to be a plug flow pattern. 

These assumptions result in the following set of dimensionless equations 

Ct(X, t) = -K1(u(x, t)C(X, t))x + K2K3(C(X, t) - q(x, t)jp(t) , (1) 

qt(x, t) = K3(C(X, t) - q(x, t)jp(t) (2) 

for 0 ::; x ::; 1 and t ;::: O. Here C denotes the dimensionless gas phase con
centration, q the dimensionless solid phase concentration, u the dimelsionless 
gas phase velocity and p the dimensionless pressure. The relation between the 
three dimensionless parameters K 1, K2 and K3 and the physical parameters 
is given by 

Kl = UTjL; K2 = 1- € K; K3 = Tkads , 
€ 

(3) 

where U is a characteristic velocity, T the duration of one cycle, L the bed 
length, € the bed porosity, K the adsorption equilibrium constant and kads 
the external film mass transfer coefficient during the adsorption step. 

The parameters that change periodically are p, u and boundary concen
trations of the adsorbate in the feed and purge streams (Table 1). The values 
of the physical parameters for system I and II are given in Table 2 [4]. 

Table 1. The periodic values of u, p and the boundary conditions 

u(x,t) pet) c(O,t) c(l,t) 

pres. step Li!L( ) KIP(t) x-I £I.. + _t_(l _ £I..) 
PtI tpres PtI 1 

ads. step 1 1 1 

blow. step p'(t) ( 1) 
KIP(t) x- 1_(I_£I..)_t 

PtI tblo 

purge step -2 £I.. 0 PtI 

3 Determination of the ess of a PSA System 

In this section we discuss several methods to obtain the possible CSS's of a 
PSA system. These methods are: the dynamical simulation method, Newton's 
method and Broyden's method. For all three methods, we first discretize 
the space variable of the dimensionless equations with centred second order 
finite differences on 256 nodes for both the gas phase and the solid phase 
concentration. We then obtain a large system of time periodic ODE's 

x'(t) = M(t)x(t) + r(t), M(t + T) = M(t) , ret + T) = ret) . (4) 
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Table 2. The physical parameter values for system I and II 

I II I II 

kad. 2.583e-4 S-1 4.67e-2 s-1 K 9084 52.7 

to 0.40 0.42 t pre• 30 s 20 s 

tad. 270 s 180 s tblo 30 s 20 s 

tpur 270 s 180 s L 0.5m 1.1 m 

Uads 0.25 mls 0.1 mls Udes -0.5 mls -0.2 mls 

PH 5.0 atm 4 atm PL 1.0 atm 1.3 atm 

This system is integrated in time with the classical four stage Runge-Kutta 
method with 60000 time steps per period. A CSS of the PSA system is now 
equivalent to a T-periodic solution x (x(O) = x(T» of this system. The map 
9 that assigns to x(O) the solution at time t = T with x(O) = Xo is called 
the Poincare or period map. Thus a T-periodic solution is a solution of the 
fixed-point equation Xo = g(xo). Methods to solve this equation are called 
shooting methods. The three methods for obtaining a CSS of a PSA system 
differ in the way the fixed point equation is solved. 

3.1 Dynamical Simulation 

This method consists of directly integrating the model equations for a number 
of cycles starting from an initial condition. In this way the dynamics of the 
process are simulated. However, it may happen that the process converges 
very slowly to a CSS and a large number of "redundant" cycles of the process 
are to be computed before a CSS is obtained. 

We can also look at this method as the iteration of the period map g. 
Following the dynamics of the system is equivalent to iterating this map 9 
and the convergence rate of the dynamical simulation method to a fixed
point depends on the physical parameters of the cyclic process. Thus if the 
PSA process that is simulated converges slowly to a CSS then the dynamical 
simulation method will also converge slowly. On the other hand, if the process 
converges fast then the dynamical simulation method will also converge fast. 

We say that the system has reached a CSS if the "error" E:i satisfies 

(5) 

where Xo is an initial value for the iteration of g. 
We have studied the convergence rate of the dynamical simulation method 

for both described PSA systems. In Fig. 1 the error versus the CPU time 
in seconds is given for the two above described PSA systems. We see that 
System I converges very slowly (769 iterations of g) to a CSS, whereas System 
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II converges very fast (31 iterations of g). The model equations for these two 
processes are linear. This implies that the map g is affine, i.e., it can be 
written as 

g(x) = Ax + b, (6) 

where A is a linear operator and b a constant vector. i,From this we can see 
that the dynamical simulation method will converge to a fixed-point with 
rate equal to the large eigenvalue of A. For System I, the largest eigenvalue 
of the Jacobian equals 0.9692739 and for System II, the largest eigenvalue 
equals 0.4575510. If we compare these values with the convergence rate of 
the dynamical simulation of System I and II, we find a good agreement (see 
Table 3). 

Table 3. The convergence rate of the dynamical simulation for system I and II 

system I 

€i 

0.13104E-05 

0.12694E-05 

0.12296E-05 

0.1191OE-05 

0.11537E-05 

0.11174E-05 

i = 603 ... 608 system II 

€i/€i-l €i 

0.96875 0.27185E-04 

0.96872 0.12529E-04 

0.96867 0.56946E-05 

0.96863 0.2570lE-05 

0.96860 0.11606E-05 

0.96856 0.52708E-06 

1e+ 10 r-_~D..:..y_nam~ic_al_S_im~UI_at_ion_M~e_th_od~_--, 

1 e-20 0~---=-5000-:'--=---:-1 OO~00:--:1-::-:5000=-=--:2=OOOO7=-:::25:=-OOO=--:::3000::-! 0 

CPU time in seconds 

i = 19 ... 24 

€i/€i-l 

0.46857 

0.46088 

0.45450 

0.45132 

0.45157 

0.45414 

Fig. 1. The error versus the CPU time in seconds for the dynamical simulation 
method for System I (thick black line, 769 iterations) and System II (+ 's, 31 itera
tions) 
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3.2 Newton's Method 

In section 3.1, we found fixed-points of the map 9 by iterating the map itself. 
If we define the map f = 9 - Id, then fixed-points of 9 become zeros of f. So 
we can use Newton's method, or a quasi-Newton method, such as Broyden's 
method, to compute the zeros of f. In this section we will discuss Newton's 
method. The next section deals with Broyden's method. 

Newton's method generates approximations of a zero of f using the iter
ation scheme 

(7) 

where Jjl(Xi) is the inverse of the Jacobian of f at Xi. Note that each 
iteration of Newton's method requires the computation of Jf. Our model 
equations are linear and therefore we only need to evaluate Jf once. If we 
could exactly compute Jf , Newton's method would converge in one iteration, 
but due to inaccuracies, there results an iteration of defect correction type 
that needs a few iterations to converge. 

Let N denote the number of nodes in the spatial discretization of the 
model equations (in our case N = 512). The evaluation of Jf requires the 
computation of the dependencies of f on each of these N variables. If we use 
first order finite differences to compute these dependencies, this results in 
simulating N + 1 cycles with different initial conditions. Therefore if the dy
namical simulation method already converges in less than N cycles, Newton's 
method will not accelerate the convergence. 

In Fig. 2 the convergence times for both systems are shown and we see 
that Newton's method accelerates the convergence to a fixed-point for System 
I, but not for System II. We also see that the convergence times for Newton's 
method for both the test systems are approximately the same. 

Newton's Method 

+ 

~ 1e-10 + 

+ 

1e-20 L-_~_~_~_~_~---' 
17850 17900 17950 18000 18050 18100 18150 

CPU time in seconds 

Fig. 2. The error versus the CPU time in seconds for Newton's method for System 
I (0) and System II (+) 



Cyclic Steady States 317 

3.3 Broyden's Method 

Rather that computing the Jacobian of f, Broyden's method [8) uses an 
approximation of J! which is updated each iteration. 

To be more precise, Broyden's method produces approximations to a zero 
of f using the following iteration scheme 

Xi+1 = Xi + Hd(Xi) , (8) 

with Hi iterative approximations to -Ji1 (Xi) which are defined by 

H. - H- _ (Pi + HiYi)pr Hi 
,+1 - t TH ' 

Pi iYi 
(9) 

where Yi = f(Xi+1)- f(Xi) and Pi = Xi+l-Xi. The advantage of this method is 
that, in contrast to Newton's method, for each iteration only one cycle needs 
to be simulated. This implies that the work of one iteration of Broyden's 
method is comparable to an iteration of the dynamical simulation method. 
As the initial approximation of the inverse of the J! we use Ho = Id. 

It can be shown that for linear problems, this method converges in at 
most 2N iterations which is approximately twice the time needed for New
ton's method to converge [9). Our computations show that this is a very 
conservative bound for the convergence rate of out test problems. For Sys
tem I, Broyden's method converges in 99 iterations and for System II even 
in 14 iterations, thus for the two test systems Broyden's method converges 
much faster than the dynamical simulation method and also in far less than 
N steps (see Figure 3). 

Broyden's Method 

.. 
+ 

g 1e-10 
+ .... 

+ ., 

1 e·20 O:-----:C1 000-:=--::2:::':000:::---:30=00:---::40-:::00::---=-5000:=0 ---:6":000 
CPU time in seconds 

Fig. 3. The error versus the CPU time in seconds for Broyden's method for System 
1(<>,99 iterations) and System II (+,14 iterations) 

4 ConcI us ions 

We find that for linear systems the largest eigenvalue of the Jacobian of 9 
indicates the convergence rate of the dynamical simulation method. Using this 
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information we can determine on beforehand how many cycles the dynamical 
simulation method needs to converge and thus whether Newton's method 
will have a shorter convergence time or not. For Broyden's method we know 
that it converges in at most twice the convergence time of Newton's method, 
but the two test systems show that it converges much faster. For System I 
Broyden's method reduces the convergence time with a factor five, whereas 
for System 2 it is only slightly faster than the dynamical simulation method. 

Here we will also make a remark about the double discretization method. 
This method consists of discretizing the spatial as well as the temporal do
main simultaneously and directly imposing the periodic boundary conditions. 
In this way we obtain a system of algebraic equations. The disadvantage of 
this method is that it can only handle coarse discretizations. We find that if 
the discretization is made too fine, the number of variables becomes too large, 
even if routines for sparse systems are used, to be handled by the computers 
we use. Therefore we do not give results for this method. 

The next step in the search for a more generic simulation strategy for 
cyclic processes is to study the acceleration methods we present in this paper 
applied to nonlinear models. Nonlinear models are obtained if for example 
temperature dependencies, reaction kinetics or nonlinear isotherm are in
corporated in the model. In contrast to linear models, for nonlinear models 
we also have to address questions about uniqueness of CSS's. Another issue 
for nonlinear systems is the dependence of the performance of acceleration 
methods upon the initial approximation of a CSS. 
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Abstract. In this note, we present the application of weighted-residual techniques 
for a posteriori error estimation to reactive flow problems. The main goal is to 
control arbitrary functionals of the solutions and to obtain economical locally re
fined meshes. The discretization error is controlled by considering an associated 
dual problem, where the dual solution represents the sensitivity of the error to 
the local mesh-size distribution. The Galerkin orthogonality of the finite element 
discretization leads to an error estimator in which local residuals of the computed 
solution are multiplied by weights involving second derivatives of the dual solution. 
This estimator is used as a stopping criterion for the simulation and for local mesh 
refinement. In an iterative process the mesh is adapted in order to produce the 
minimal overall error for a prescribed number of grid nodes. 

1 Introduction 

The Navier-Stokes equations including Arrhenius-type chemical production 
terms for the simulation of reactive flow problems lead to an extremely com
plex nonlinear system of PDEs. The use of adaptive meshes for this kind of 
problems is crucial in reducing the computational cost. The adaptive process 
should not only be efficient, but also reliable in order to allow for quantitative 
error control. Especially for comparisons between numerical and experimental 
results (e.g., laser measurements in flames) error control for relevant quanti
ties is desirable. In this note, we show how the general approach of Becker 
and Rannacher [2] to error control for finite element schemes can be applied 
to stationary reactive flow problems. 

The underlying equations describe the conservation of mass, momentum, 
energy and species mass fractions. We use the equations in the primitive 
variables, p for pressUre, v for the velocity, T for the temperature and Wi for 
the species mass fractions, 

V· (pv) = 0, (Ia) 

(pv·V)v-V·/-LVv+Vp=p·fe, (Ib) 
1 I 

pv. VT - -V· ('xVT) = -fr(T,w) , (lc) 
cp cp 

pv. VWi - V· (pDiVWi) = fi(T, w), i = 1, ... n, (Id) 
PM 

p = RT ' (Ie) 
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including several well known physical coefficients. We are mainly interested 
in low-speed flows. Therefore, there is no need to worry about the entropy 
condition because there are no shock waves. 

Since our application is directed to low-Mach-number flow, the flow is 
hydro-dynamically incompressible while strong heat release leads to thermo
dynamical changes. We apply the approximation for low-Mach-number com
bustion [9], splitting the total pressure p(x, t) in two parts, the thermody
namic part Pth(t), which is uniform in space, and the hydrodynamic part 
Phyd(X, t), which is several magnitudes smaller than Pth and is neglected in 
the equation of state (Ie). This approximation implies the elimination of 
acoustic waves. We denote by u = (p, v, T, w) the set of unknowns. Because 
the density is given by the algebraic relation (Ie), the gradient \I p can be 
expressed by the derivatives of T and M while the minor influence of \lPhyd 

is neglected. 
Due to the exponential dependence on temperature (Arrhenius law) and 

polynomial dependence on w, the source terms J;(T, w) are highly nonlinear. 
In general, these zero-order terms lead to a coupling between all chemical 
species mass fractions. For accurate modeling of the underlying chemical 
processes a large number of chemical species is necessary, (e.g., n rv 30 - 40 
for a methane flame). This leads to very high computational cost. The use of 
adaptive meshes is particularly important for resolving thin reaction zones. 

2 Finite Element Discretization 

Our discretization is based on conforming finite elements on quadrilateral 
meshes 'TJ, = {K} for the computational domain [2. The trial space consists 
of continuous and piecewise bilinear functions (Ql-elements) for all variables. 
It is well known that the original Galerkin formulation is not stable for the 
Stokes system, because the Babuska-Brezzi stability condition is not fulfilled 
[5]. We stabilize the formulation by introducing additional least-square terms 
in the equation for the pressure [6]. For convection dominated flow, we use 
streamline diffusion for velocity, temperature and all chemical species. We 
refer to [10,4,1] for more details. 

We introduce the semi-linear form a(·,·) defined by 

a(u, ¢) = (p\l. v - T-Iv· \IT + M-Iv· \1M, X) 

+(pv\7 . v, 1jJ) + (Jl\lv, \l1jJ) - (p, \I .1jJ) 

+(pcp v\7 . T,7r) + (>. \IT, \l7r) + (h(T, w), 7r) 
n 

+ L [(pv\l . Wi, ad + (pDi \lWi, \lai) + (J;(T, w), ad] 
i=1 

for test functions ¢ = (X, 1jJ, 7r, a) E V. The variational space V consists in 
each component of subspaces of HI ([2) (for the velocity, the temperature and 
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the species). If Diriclet conditions are opposed at the whole boundary, the 
hydrodynamical pressure is only determine modulo a constant. Therefore, 
for p the space L2(0)/1R is appropriate. Using this semi-linear form, the 
system (la)-(le) reads in variational formulation 

uEV: a(u,</J) = (j,</J) V</JEV. (2) 

Let a'(uh;·,·) denote the Frechet derivative of a at a discrete Uh E Vh. The 
linear equations which have to be solved during one step of the nonlinear 
iteration, are of the form 

(3) 

for a correction Wh E Vh and the residual rh. The discrete spaces Vh we 
use, consist of continuous and piecewise bilinear functions. For this choice 
of elements, the bilinear form a'(uh;·,·) is not stable, because the lnf-Sup 
condition is not fulfilled [6]. However, it can be stabilized by modifications of 
the test functions: 

with a certain operator Sh : Vh --+ Vh. When L denotes the nonlinear operator 
associated to the system (la)-(le) and L'(Uh)* the adjoint ofthe linearization 
at Uh, we choose 

(4) 

with symmetric 8h depending on the local mesh size. This choice of Sh in
cludes !n our case the following features 

• pressure-velocity stabilization (Hughes and Franca [6]) 
• streamline diffusion (Johnson [7]) 
• (div,div) stabilization (Franca and Frey [4]) 

Furthermore, this choice of Sh has a nice feature concerning the associated 
dual problem, which will be explained later. 

Solving the linear equations (3) for successive updates u~+1 := u~ + w~ 
until convergence corresponds to solving the discrete nonlinear equation 

which is consistent with (2). 

3 Solver 

The solution procedure consists of several nested loops. On the initial mesh, 
the outermost loop is an implicit time-iteration. During each time step, the 
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arising nonlinear system is solved by a quasi-Newton iteration. Each Newton 
step requires the solution of a linear system which represents a discretiza
tion of a linear PDE. On the successive refined meshes no time-stepping is 
necessary. 

Even in the case of a simple Laplace operator (which is always a part of 
our system), the inversion by a direct solver or a simple iterative scheme as 
in the Conjugated Gradient Method (CG) is prohibitive, since it requires N2 
operations due to the bad condition of the matrix. Therefore, we use the Gen
eralized Minimal Residual (GMRES) algorithm which is preconditioned by a 
multigrid iteration (V-cycle). GMRES is appropriate for non-symmetric and 
indefinite matrices. The use of a multigrid preconditioner makes the condition 
number independent from the number of grid points, which is especially im
portant on locally refined meshes. The smoothing is obtained by a block-ILU 
decomposition on each level of the hierarchical mesh. 

4 Error Estimate 

In reactive flow computations it is often necessary to apply error control only 
for functionals of the solution. This holds especially for optimization problems 
and for comparisons between simulations and experimental results. In this 
cases, error control in a global norm for all components of the solution seems 
not appropriate. We develop the general approach of a posteriori error control 
for a functional J(u) of the solution [2] in the context of combustion problems. 
The functional can represent, e.g., the maximum temperature, local values of 
temperature, a species mass fraction or a line average of certain components 
of the system. The error functional can be chosen according to the aims of 
the simulation. The stopping criterion for the adaptive iteration is 

IJ(u) - J(uh)1 < TOL, 

for a given tolerance TOL. We use a duality argument in order to control 
these local quantities. By solving a linearized dual problem we determine 
weights for the error contribution of the local residuals. This information is 
used for quantitive error control and as a criterion for local mesh refinement. 
We assume J to be linear, although the approach can be extended to nonlinear 
functionals, see [2]. We have an a posteriori error estimate of the form 

IJ(e)1 s:; LWKPK, 
K 

where PK are element-wise residuals and WK are weights bounded by 

Here, z is the solution of the corresponding dual problem 

a'(u; ¢, z) = J(¢) V¢ E V. 
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The evaluation ofthe weights WK requires approximation since the dual prob
lem is posed on the continuous level and its coefficients depend on the un
known solution u. We propose to use a numerical approximation of the form 

where Zh is the solution of the perturbed discrete dual problem 

(5) 

For simplicity this linear problem is solved on the same mesh on which the 
primal solution has been obtained. The corresponding computational cost is 
equivalent to just one additional Newton step in solving the primal problem. 
The obtained error estimator is 

IJ(e)I>=:::!'fJ=L'fJK' 'fJK=WKPK· 
K 

The chosen stabilization Sh according to (4) leads to the fact that the bilinear 
form associated to the dual problem (5) is exactly the stabilized bilinear form 
of (a')*(uh;·, .). That means, taking the adjoint operator and stabilization 
commutates. 

The entire process leads to an alternating solution of primal and dual 
problem on a sequence of successively improved meshes and is called weighted
residual feed-back error control. For more details, see [3]. 

5 Numerical Results 

We present numerical results for a combustion model describing an ozone 
decomposition flame with three species: ozone 0 3 , oxygen molecules O2 and 
oxygen atoms O. The underlying reaction mechanism consists of six (three 
bidirectional) elementary reactions [11]: 

0 3 + M +----+ O2 + 0 + M 
o + 0 + M +----+ O2 + M 

o + 0 3 +----+ O2 + O2 

, 
=e 

I 
1'-

+ 
20mm 

i 
1",IUoo 

Fig. 1. Geometry for the ozone decomposition 
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Here, M denotes an arbitrary third body, i.e., one of the three considered 
species. The formation of the stable O2 molecules leads to the main part 
of heat release. Transport coefficients for viscosity, thermal conductivity and 
diffusion are evaluated using the kinetic models with coefficients based on the 
data bases of the Sandia National Laboratories [8J. The geometry consists of 
two flat plates with an inflow of a cold mixture of ozone and oxygen molecules 
(wo 3 = 0.2, w02 = 0.8, T = 298 K). The flame is ignited by the hot walls. The 
hottest point of the wall is indicated by the arrows in Fig. 1. The quantities we 
wish to control are point values of Wo and the mean value of the temperature. 
The corresponding functionals are 

JI(u) = wo(xo) + wo(xI) and h(u) = In T dx. 

The points xo, I = (10 mm, ± 1.25mm) are symmetric to the symmetry axis 
of the model. For each functional we perform a computation imposing the 
corresponding error estimator. We get different histories of mesh refinement 
because the adaptation process is based on 'rJ. In Fig. 2, we show the relative 
error 

ere! = IJI(u) - h(Uh)I/IJI(u)1 

and the estimated relative error of the point values. In Fig. 3, it is shown for 
the mean value of the temperature. In both cases, we observe an excellent a 

posteriori error estimate over a wide range of mesh size h. The asymptotic 
behaviour of erel and 'rJ are the same. 

error pointvalue 0 ..
ela pointvalue 0 -+--. 

0.0001 '--__ -'-__ --1. ___ -'--__ -'-__ --1 

500 1000 2000 4000 8000 16000 

Fig. 2. Relative error erel and estimator Tlrel for the control of Jl 

Two of the obtained meshes with about 5000 cells are shown in Fig. 4 for 
the control of J I and in Fig. 5 for h. In both cases, the flame front is locally 
refined. However, in the first case, also the neighborhoods of the points Xo 
and Xl are automatically refined. The temperature profile is shown in Fig. 6. 
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0.01 .,...---..,----,----r----r-----,-""";l 

...... "" .......... 
...... "'+0. .... 

.... --.... 
0.001 --"'-

0.0001 

error meanvalue T ...
eta meanvalue T -+-_ . 

1e-05 '--__ ...L-__ -L. __ --''--__ ..L.... __ -L.-' 

500 1000 2000 4000 8000 16000 

Fig. 3. Relative error erel and estimator TIre! for the control of J2 

Fig.4. Obtained mesh for the control of the point values of 0 

Fig. 5. Obtained mesh for the control of mean value of temperature 

Fig. 6. Temperature profile 
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Abstract. In this article we present numerical results concerning the simula
tion of semiconductor melts with free capillary surfaces , particularly silicon 
crystal growth by the floating zone method. Considering the solid/liquid in
terface as fixed such a simulation requires the computation of the moving 
capillary surface of the melting zone. The mathematical model is a coupled 
system which consists of a heat equation and the Navier-Stokes equations 
in the melt with a Marangoni boundary condition. We describe an efficient 
numerical method for solving this problem and give some results for different 
physical parameters. 

1 Introduction 

Fluctuations of the electrical resistivity due to inhomogeneous dopant dis
tribution are still a serious problem for the industrial processing of doped 
semiconductor crystals. In the case of silicon floating-zone growth, the main 
source of these inhomogeneities are time-dependent flows in the liquid phase 
during the growth process. Hence, for optimizing the growth process, it is 
of great importance to study the influence of thermocapillary and buoyancy 
convection on macro- and microsegregation, see [4-8]. A very practical exper
imental setup for these investigations is the floating-zone growth in a mono 
ellipsoid mirror furnace. 
For instance, such a configuration has been successfully used at the Institute 
for Crystallography, University of Freiburg, for performing silicon floating
zone experiments on earth and also under microgravity, see e.g. [5]. A halogen 
lamp, positioned in the upper geometrical focus of the ellipsoid, served as a 
heat source. Fused quartz ampoules containing the starting material were 
placed in the lower geometrical focus. The parameters of the liquid zone were 
as follows: 8mm zone height and 12mm zone diameter. Figure 1 shows both, 
the surface of the silicon melt and an etched axial cut of the zone showing 
the solid-liquid interface. 
Due to the opaqueness of semiconductor melts, experimental fluid flow obser
vation is extremely difficult and expensive in general. Therefore the numerical 
simulation of the growth process is an important tool in understanding and 
predicting the behavior of the system, see e.g. [6]. 
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Fig. 1. Silicon floating zone: (a) Surface of the silicon melt, (b) Etched axial cut of 
the zone showing the solid-liquid interface 

2 Mathematical model 

Figure 2 gives a schematic diagram of a floating-zone configuration. 

raw 
material 

rSL 

crystal 

Fig. 2. Geometry of a floating zone 

The heat and mass transfer in the liquid zone is governed by the following 
system of partial differential equations (in dimensionless form): 
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• Navier-Stokes equations: 

1 Ra 
OtU + (u· 'V)u - Re Llu + 'Vp = - Re2 Pr Teg 

'V·u=O 

• Energy equation: 

1 
OtT + U· 'VT - RePrL1T = 0 in net) 

in net) 

in net) 
(1) 

(2) 

Here u(t,.) : net) -+ IRd, p(t,·) : net) -+ IR and T(t,·) : net) -+ m denote 
the flow velocity, the pressure and the temperature, respectively. 
The interfaces rSL and rGL are free boundaries, the first one being subject to 
a Stefan condition, the latter one determined by a balance of capillary forces 
versus normal stresses of the flow. We simplify the problem by focusing on 
the free boundary conditions on r LG and prescribing a given solid-liquid 
interface rSL where we impose a homogeneous Dirichlet boundary condition 
for u and T (T = 0 the dimensionless melting temperature): 

u = 0 on rSL, 

T = 0 on rSL . 

(3) 

(4) 

Note that prescribing rSL implies that also the d-2 dimensional tripleline (or 
triplepoint for d = 2) rLGnrSL is prescribed and fixed. On the free liquid-gas 
interface the temperature is prescribed by a given parabolic profile: 

T=TD on rLG. (5) 

For the velocity and the motion of the free surface the following conditions 
hold on r LG: 

u . n = Vr (slip boundary condition) 

Ma 
n·OT = ----VT· T (Marangoni condition) 

Re2Pr 

1 BO.d 
n . un = ReCa K, + ReCa 1 r· e g (normal stress condition) 

(6) 

(7) 

(8) 

with u := (JeD(U)ij - p8ij ):'j=1 the stress tensor, D(u) := (8Xi uj + oXj ui):'j=l 
the deformation tensor, K, the sum of the principal curvatures, the unit outer 
normal vector n, an arbitrary tangential vector T and the normal velocity Vr 
of the free boundary rLG. 

The system has to be closed by initial conditions for u, T and n. Note that 
in the continuous case we have conservation of volume since the velocity u is 
divergence free. 
The dimensionless numbers occurring in the above equations are the Reynolds 

UL v 
number Re = -;-' the Prandtl number Pr k' the Rayleigh number 
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gj38TP . (o,/oT)8TL 
Ra = k ' the Marangom number M a = - k ' the capillary 

v pv 
vpU pgL2 . . . 

number Ca = -- and the Bond number Bo = --, wIth a charactenstlc , , 
velocity U, a characteristic length L, a characteristic temperature difference 
8T, the density p, the surface tension " the thermal coefficient 0,/ oT of 
surface tension, the thermal diffusivity k, the kinematic viscosity v and the 
gravitational acceleration g. 
Stationary, two dimensional numerical methods for the above free boundary 
problem were studied for instance in [4). However, even if all data are rota
tionally symmetric or two dimensional according to the physical setup, the 
solution may be expected to be 3D and also time-dependent due to sym
metry breaking. Thus, it is necessary to define a numerical scheme for the 
time-dependent case and which works also in 3 space dimensions. 

3 Numerical approximation 

Discretizing equations (1)-(8), the free boundary conditions (6)-(8) cause 
several problems, in particular the treatment of the curvature terms and in 
finding a stable and efficient time discretization. 
To resolve these problems we use a variational formulation, where the free 
boundary conditions are transformed to a boundary integral part of the bi
linear forms, see [2) for details. To this end we write the momentum part 
of the Stokes equations (analogously for the Navier-Stokes equations) in the 
strong form, multiply by a solenoidal test function 'P and integrate by parts. 
We get 

J {- ~e.1u+ V'p}. 'P = 2~e J D(u): D('P) - J pV'. 'P - J n· O''P. 
S] S] S] rLG 

Taking into account the boundary conditions (7,8) yields 

n . O''P = - a ""' V'T . Ti 'P . Ti + __ 0_ J M d-l J B J 
Re2 Pr ~ ReCa 

rLG i=l rLG rLG 

+ Re~a J Ii, n . 'P. (9) 

rLG 

Now we make use of the identity 

(10) 

where Ll denotes the Laplace Beltrami operator on r LC . Recalling that .1 = 
V' . V' with V' the tangential derivatives, the last term in (9) can be written 
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as 

j /),n· ep = J L1idrLG · ep = - j V'idrLG . V'ep. (11) 

rLG rLG rLG 

Summarizing we get 

j{- ~eL1u+ V'p}. ep = 2~e J D(u): D(ep) - j pV'. ep 
n n n 

+ Re~a J V'idrLG . V'ep 
rLG 

Ma d-l 

+ Re2Pr L J V'T· Tiep· Ti 

.=1 rLG 

Bo J - ReCa idrLG . egep . n 
rLG 

(12) 

Time discretization To discretize in time a semi-implicit coupling of the 
unknowns for temperature T, geometry n and the flow variables u,p is used. 
More precisely, giving the values at the discrete time instant tk-l we compute 

Step 1: Tk by solving (2) on nk- 1 with u k- 1 

Step 2: uk, pk by solving (1) with boundary conditions (7,8) on nk- 1 

and using Tk on the right hand side 

In Step 2 the boundary conditions (7,8) are incorporated into the variational 
formulation according to (12). The curvature terms are treated in a semi
implicit way: 

j V'idrzG · V'ep = J V'idr~;;l . V'ep + (tk - tk-t) J V'uk . V'1.p, 

r~;; 1 r~;; 1 r~;; 1 

thus decoupling the flow computation from the determination of the geome
try. This leads to a stable and efficient treatment of the free boundary con
ditions, see [2). 
The computation of uk, pk is based on the fractional step O-scheme in a vari
ant as an operator splitting, which decouples two major numerical difficulties, 
the solenoidal condition and the nonlinearity, see [1,3). 
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Spatial discretization To discretize in space piecewise quadratic, globally con
tinuous elements for u and T and piecewise linear, globally continuous ele
ments for p are used on a tetrahedral grid. 

4 Numerical results 

The following two examples show the influence of the hydrostatic pressure on 
the shape of a floating zone with aspect ratio hid = 1.5. Here gE = 9.81m 8- 2 

denotes the gravitational acceleration on earth. 

Example 1 First we consider a 2D- floating zone with buoyancy convection 
and no thermo capillary convection, i.e. M a = O. The dimensionless parame
ters are chosen as follows: Re = 500, Pr = 0.02, Ca = 0.0016, Ra = 400 * Igl , 
Bo = 0.18 * Igl with g E {0.5 * gE, 2.0 * gE, 3.5 * gEl. Figures 3 - 5 show both 
the velocity field together with the temperature distribution in the melt and 
the corresponding triangulation of the domain n. 

Fig. 3. Velocity field, temperature distribution and triangulation for 9 = 0.5 * gE 

Fig. 4. Velocity field, temperature distribution and triangulation for 9 = 2.0 * gE 
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Fig. 5. Velocity field, temperature distribution and triangulation for g = 3.5 * gE 

Example 2 Now let us consider a 3D-floating zone with Marangoni convection 
and no buoyancy convection, Le. Ra = O. The other dimensionless parameters 
are: Re = 50, Pr = 2, M a = 150, Ca = 0.016, Bo = 0.18 * Igl with g E 
{O, 1.0 * gE, 2.0 * gEl. Figures 6 - 8 show both the velocity field together with 
the temperature distribution in the melt and the corresponding triangulation 
of the domain n. 

Fig. 6. Velocity field, temperature distribution and triangulation for g = 0 
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Abstract. We used the lattice Boltzmann technique for a detailed study of the 
pressure drop in porous media flow. In accordance with the experimental results it 
is shown that the Kozeny-Darcy equation underestimates pressure loss in porous 
media flow owing to a significant error which is made when only shear forces are 
taken into account. As an application to engineering problems, we present a 3-
D flow simulation through a porous SiC structure which was digitized using the 
computer tomography technique. 

1 Pressure Drop in Porous Media Flow 

The exact determination of hydrodynamic data in the flow through com
plex geometries such as porous media (in filters, catalysts) is of increasing 
importance for the design of many devices in chemical engineering. Usually, 
these data are obtained from semi-empirical models such as the Kozeny
Darcy equation for the pressure loss as a function of the Reynolds number 
and parameters of a geometrically simplified structure. As a consequence, 
significant errors may result in engineering applications when these correla
tions are used outside their range of validity. Hence a better understanding of 
the underlying phenomena is required, allowing more general formulation of 
flow models. The numerical simulation of the flow in porous media allows one 
on the one hand, to investigate in detail these phenomena, e.g. by analysing 
the elongational deformation and the resulting shear rates in the flow and 
their effect on the bulk hydrodynamic properties. On the other hand, semi
empirical parameters entering in the above models can be easily obtained in 
a 'numerical' experiment. 

This paper presents a short overview of the hydrodynamic phenomena 
and some modelling aspects. 

1.1 The Kozeny-Darcy Equation 

The derivation of the Kozeny-Darcy equation is based on the assumption that 
porous media flow can be modelled as a flow through a bundle of channels 
with not strongly changing cross-sections The generalized equation for the 
cross-sectional mean velocity Uz of a flow through a capillary with hydraulic 
radius Rh holds (see, e.g., [1]): 

F. Keil et al. (eds.), Scientific Computing in Chemical Engineering II
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U = -~ (dP) R2 (1) 
z 2p, d z h , 

where P is the pressure, p, the fluid viscosity and z the mean flow coordinate. 
The hydraulic radius Rh can be derived from the radius R of the pipe by 

(2) 

Assuming a bundle of tubes with an average hydraulic radius Rh and 
length l, (1) can be rewritten as 

(3) 

If the porous medium is built up of spheres of diameter D p , the quantity 
Rh can be written as a function of Dp and its porosity c: 

(4) 

Introducing an effective velocity Uo = cUz and substituting in (3) the 
hydraulic radius as defined in (4), one obtains 

Uz = ~ Uo = ~ ilP D~ __ c_ . 
c 2p, ill 36 (I-c) 

(5) 

This equation can be rewritten in Ergun [3] coordinates: 

(6) 

Introducing the dimensionless quantities Reynolds number Re and friction 
factor f as defined by 

ilP Dp c3 

f = ill {! ug (1 - c) , 

Re _ UoDp{! 
- p,(I-c)' 

equation (5) can be written in the compact form 

with Ath = 72. 

f = Ath 
Re 

(7) 

(8) 

(9) 

Most experimental data show a friction coefficient with a factor two or 
three times higher than this theoretical Ath . Anyway, for an experimentally 
found constant Aexp , the friction factor times Reynolds number relationship 
appears to be valid. 
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One attempt to resolve this contradiction between theory and experiment 
is the introduction of a tortuosity factor T, which is defined as the ratio of 
the macroscopic length scale of the porous media and the average length of 
the particle paths in the medium. Thus, the model assumes that the fluid 
particles move along a highly wrinkled path (fluid channels) owing to their 
deflection in this highly irregular structure, resulting in a higher pressure 
drop. 

Recent investigations by Durst et al. [2] show that a second and - com
pared with the tortuosity - much more important physical effect has been 
neglected in the derivation of the Kozeny-Darcy equation, namely effect of an 
additional pressure drop due to elongational strain of the fluid. In addition 
to this argument, it might be doubted that a tortuosity factor of T = 2 - 3 is 
a realistic assumption, because this would imply that the length of the fluid 
channels is up to three times longer than the length of the porous media. 

One way to get some insight into the nature of these problems is to per
form detailed numerical simulations of porous media flow. Three aspects could 
be dealt with by this simulation: 

• The reliability of experimental friction factors Aexp for both synthetic 
and natural porous geometries with exactly known properties. 

• The tortuosity T by integrating the streamlines (for stationary flow). 
• The contribution of the elongation of fluid elements to the pressure drop 

by computing this elongation numerically. 

In this paper, we will restrict ourselves to the first point by presenting 
numerical results for the friction factor Anum for randomly distributed rect
angles in three dimensions. A method to compute three-dimensional flows 
through natural geometries is described by the simulation of flow through 
computer tomographic data for an SiC structure. 

2 Numerical Method 

For a detailed numerical simulation of highly complex geometry flow, the 
Navier-Stokes equation - based finite volume (FV) and finite element (FE) 
techniques are hardly applicable. The new lattice gas/Boltzmann (LGA/LBA) 
methods [4] treat the fluid on a statistical level, simulating the movement and 
interaction of single particles or ensemble-averaged particle density distribu
tions by solving a velocity discrete Boltzmann-type equation. 

The lattice Boltzmann method could be shown to be a very efficient tool 
for flow simulation in highly complex geometries (discretized by up to several 
million grid points) [5-8]. All numerical simulations presented in this paper 
were performed with an implementation of the lattice Boltzmann method 
proposed by Quian [9], which will be briefly described in the following section. 
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2.1 Lattice-Boltzmann (BGK) Automata 

For simplicity, an equidistant orthogonal lattice is chosen for common LBA 
computations. This could be done without significant loss of memory and 
performance, since the LBA method requires much less memory and CPU 
time than conventional FV /FE methods. 

On every lattice node T., a set of i real numbers, the particle density 
distributions N i , is stored. The updating of the lattice consists of basically two 
steps: a streaming process, where the particle densities are shifted in discrete 
time steps t* through the lattice along the connection lines in direction Ci to 
their next neighbouring nodes T. + Ci, and a relaxation step, where locally 
a new particle distribution is computed by evaluating an equivalent to the 
Boltzmann collision integrals (6foltz). 

For every time step, all quantities appearing in the Navier-Stokes equa
tions (velocity, density, pressure gradient and viscosity) can locally be com
puted in terms of simple functions of this density distribution and (for the 
viscosity) of the relaxation parameter w. 

For the present computations, a 3-D nineteen-speed (D3Q19) lattice Boltz
mann automata with single time Bhatnager-Gross-Krook (BGK) relaxation 
collision operator 6f°ltz proposed by Qian [9] is used 

Ni(t* + 1, T. + Ci) = Ni(t*, T.) + 6f°ltz , 
6foltz = W (Ni - N:q) , 

with a local equilibrium distribution function N:q 

(10) 

(11) 

(12) 

This local equilibrium distribution function N:q has to be computed every 
time step for every node from the components of the local flow velocity U a , 

the fluid density e, a lattice geometry weighting factor tp and the speed of 
sound Cs . It is chosen to recover the incompressible time-dependent Navier
Stokes equations [9]: 

ate + aa (euo,) = 0, 

Ot(eua) + af3«(!Uauf3) = -OaP + f..LOf3 (af3U a + aau(3) 

2.2 Introducing Complex Geometries 

(13) 

(14) 

As already mentioned, the LBA method allows the application of simple 
orthogonal equidistant lattices. This lattice type makes (semi-automatic) in
tegration of arbitrary complex geometries very easy: single lattice nodes are 
either occupied by an elementary obstacle, or they are free (marker and cell 
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approach) . Particle densities N i , which are shifted on an occupied node owing 
to the streaming process, are simply bounced back to their original location 
during the next iteration, but with opposite velocity (indicated by the index 
i). This results in the desired no-slip (zero velocity) wall boundary condition. 

2.3 Inlet and Outlet Boundary Conditions 

To achieve a well defined Reynolds number, the average flow velocity was 
fixed at the inlet and the pressure was extrapolated upstream. At the outlet, 
a fixed pressure was imposed with downstream extrapolated velocity. 

3 Numerical Simulations 

3.1 Randomly Distributed Rectangles 

To check the theoretically derived and experimentally proved relationship 
between Reynolds number and friction factor (9), and to compute numerically 
the friction factors Anum, the pressure drop for flows through various sets 
of randomly distributed rectangles was determined for different Reynolds 
numbers. 

Problem Definition Inside an Ix x Iy x Iz = 198 x 100 x 100 sized computa
tional domain, non-overlapping square obstacles of size 143 lattice units were 
distributed randomly. A porosity of e ~ 0.8 was achieved for three different 
samples with up to 156 cubes. Periodic boundary conditions were applied 
in y- and z-directions (rectangular to the main flow direction). At the inlet, 
a uniform velocity profile was imposed, and an additional Ix x Iy x Iz 
50 x 100 x 100 domain was added at both sides of the obstacle area. 

Numerical Results For Reynolds numbers over five orders of magnitude 
(up to ~ 50), the pressure drop was computed from the numerically achieved 
flow data for each of the five obstacle samples. An average friction coeffi
cient was computed from these data and compared with the experimental 
results from Durst et al. (Fig. 1). These experimental data could be very well 
described by the function Aexp = 182 + 1. 75 Re. 

Discussion For low Reynolds numbers, the numerical data fit the exper
imental results very well. The averaged friction coefficient for Re < 10 is 
Anum = 186.3 ± 11.6. This indicates that lattice Boltzmann computations 
are a suitable method for investigating the pressure drop in highly complex 
geometries. 
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Fig.!. Friction factor A as a function of Reynolds number Re. The numerical 
results of the LBA simulations (dashed line) are compared with the experimental 
data from Durst et al. [2] (straight line) 

3.2 Flow Simulation through Computer Tomographic Data for 
Porous Media 

The ability of the lattice Boltzmann method to simulate flow in highly com
plex geometries opens up the possibility of achieving detailed information 
about flow properties inside porous structures, which could not be measured 
by means of experimental devices. 

3.3 Geometry Preprocessing 

A necessary requirement for the numerical simulation is to digitize the three
dimensional complex structure. With 3-D computer tomography (3D CT), 
one is able to produce this kind of data, which, after one preprocessing step 
to a set of voxel data, could automatically be integrated in the LBA software. 
This procedure omits the time-consuming - and for the present geometries 
nearly impossible - procedure of grid generation. 

3.4 Example: Flow Simulation through an SiC Structure 

To illustrate the above-described procedure, low-Reynolds flow was simulated 
with LBA through a porous SiC 'sponge-like' structure. 

Problem Definition A cylindrical probe with a height of 30 mm and a 
diameter of 82 mm was scanned with 3D CT with an average resolution of 
0.5 mm. This leads to a discretization of lx x ly x lz = 44 x 147 x 147 voxels. 
This resolution, although still rather coarse, leads to a qualitatively good 
reproduction of the basic features of the original porous geometry, as can be 
seen from the visualization of these data in Fig. 2. 
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Fig. 2. Section of the digitized SiC structure for the LBA flow simulation 

The complex geometry data were centred inside an lx x ly x lz = 100 x 
149 x 149 sized channel, and a flow for a Reynolds number of about Re ~ 1 
was simulated using velocity inlet and pressure outlet boundary conditions. 

Computational Efforts The simulation was performed on one processor of 
a VPP 700 at the Leibniz-Rechenzentrum in Munich; 10 000 iterations were 
necessary for this set-up, which took about 5760 CPU seconds, and 800 Mb 
of computer memory were necessary for the storage of the ~ 2.2 x 106 voxels. 

Numerical Results As a result of the LBA simulation, at each of the 
~ 2.2 x 106 lattice nodes, the pressure, the three components of the flow 
velocity and the geometry information are known. It is now possible to obtain 
local or averaged information from this data set. As an illustration, the flow 
velocity in two orthogonal cuts through the geometry is shown in Fig. 3. On 
can see there the huge amount of interconnected flow channels. 
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Fig. 3. Flow velocity in rectangular cross-sections of the porous sample 

The pressure drop in the same cross-section as in Fig. 3 is shown in Fig. 4 
(left), and an isosurface of the overall flow velocity is coloured by the pressure, 
in Fig. 4 (right), to give a three-dimensional impression of the flow properties . 
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Fig. 4. Pressure drop: in a cross-section (left) and on an isosurface of the flow 
velocity (right) 

4 Conclusion 

We were able to demonstrate that the lattice Boltzmann automata are an 
efficient method for predicting the correct pressure drop in three-dimensional 
complex geometry flows. A friction coefficient in very good agreement with 
experimental data from Durst et al. was achieved for randomnly distributed 
square obstacles. As an illustration of industrial applications of this method, 
we demonstrated, how three-dimensional computer tomographic data for 
porous media could be used as geometry input for LBA simulations. 
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Abstract. This paper presents direct numerical simulations of mixing of passive 
and reactive scalars in two-dimensional flows. By means of pseudo-spectral meth
ods the governing equations are numerically integrated. As an application we study 
a temporally growing mixing layer where we focus on the role of coherent vortices. 
Wavelet techniques are applied to obtain local spectral information about vortic
ity and scalars. We show that the local generation of fine scales in shear zones 
is strongly correlated with locally enhanced mixing. Furthermore, we examine the 
influence of chemical reactions. 

1 Introduction 

Enhanced transport and mixing of scalars in turbulent flows are important 
features of turbulent motion. Numerous examples for such mixing processes 
are found in engineering applications, in particular it plays a prominent role 
when chemical time scales are smaller or of the same order as the the mixing 
time. For reasons of optimization and control of technical devices a profound 
understanding of turbulence, chemical reactions and their interaction is of 
fundamental interest. 

Recent studies have shown the significance of coherent vortices for the 
dynamics of turbulent flows. We previously studied [1] the influence of dif
ferent vortex configurations on the mixing of passive and reactive species in 
two dimensions. In the present paper we investigate the mixing properties in 
the practically relevant and well-studied case of a planar shear layer [6]. The 
analyzed flow stems from direct numerical simulations (DNS) performed by 
means of a Fourier-Galerkin pseudo-spectral method. The advantage with 
respect to laboratory experiments is that all information about the flow is ac
cessible. We study the mixing of passive scalars by determining global time 
scales for different Schmidt numbers. Moreover, we show the influence of 
chemical reactions on the formation of fine scales in scalar fields. Employing 
Fourier techniques we obtain the global scaling information of the analyzed 
flow. 

Wavelets techniques have been developed in the last decade for analyzing, 
modelling and computing turbulent flows. For a review we refer to [5]. In con
trast to classical Fourier methods the simultaneous localization of wavelets 
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in space and frequency allows a quantification of the local formation of fine 
scales, e.g. using local wavelet spectra. Therewith, we show a correlation be
tween the spatially different scaling behaviour of the flow, e.g. the generation 
of fine scales in shear zones, and the locally enhanced mixing of reactive 
scalars, leading to increased chemical reaction rates. 

2 Physical Problem and Method of Analysis 

In this section we present the governing equations with a brief sketch of the 
numerical scheme and introduce the employed analysis techniques. 

2.1 Numerical Scheme 

A two~dimensional incompressible viscous flow is described by the Navier~ 
Stokes equations. In primitive variables the equations read: 

8t v + V· Vv - vV2v + Vp = 0 

V·v=O 

(1) 

(2) 

with the velocity v, the pressure p, and where v denotes the kinematic vis
cosity which is assumed to be constant. For flow visualization we employ the 
vorticity w = V x v which is a pseudo~scalar in two dimensions. 

The convection~diffusion~reaction equations describe the transport of the 
species, represented by their concentration, 

(3) 

where C i denotes the concentration of species i = A, B, k2 the reaction 
rate coefficient for an isothermal second order reaction, and D the diffusion 
coefficient. 

The above equations are completed by periodic boundary conditions. The 
initial conditions are described in Sect. 3.1. We discretize (1-3) with a classi
cal Fourier~Galerkin pseudo~spectral method [2] using a semi~implicit time 
discretization. The equations are solved directly without any subgrid~scale 
model. For further details on the numerical scheme we refer to [1]. As dimen
sionless parameters we introduce the Reynolds number Re = U L / v using a 
characteristic velocity U and length L and the Schmidt number S c = v / D. 

2.2 Fourier and Wavelet Spectra 

The global spectral behaviour of the flow is obtained from Fourier~spectra. 
We define the enstrophy spectrum 

Z(k) = ~ L IW(k)12 
k~~<lkl:S;k+~ 

(4) 
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with the Fourier transform w(k) = 1/(27r)2 J w(x) exp( -i(k . x))dx where 
k = (kx , ky) and x = (x, y). It measures the amount of enstrophy in a ring 
of wave numbers with radius k and gives a global scaling information of w. 
For the total enstrophy we have Z = 1/2 J Iw(x)l2dx = Ek>O Z(k). 

To obtain local information in space and scale, we use a two-dimensional 
multi-resolution analysis (MRA) [4] and develop w into an orthogonal wavelet 
series: 

w(x) = wo,o,o cPo,o,o(x) + , (5) 

where cPj,i", ,iy (x) and 'l/J';,i", ,iy (x) are the two-dimensional scaling functions and 
the wavelets, respectively. Due to the orthogonality the scaling coefficient 
is given by wo,o,o = (w, cPo,o,o) and the wavelet coefficients are given by 
wJI:" i i = (w, 'l/JJ~ i i ) where (., .) denotes the inner product. The coefficient 

, XI 11 , x, 11 

Wo ° ° denotes the mean value of vorticity and the coefficients wJI:"., .' give 
, , , XI 11 

the magnitude of oscillation of w with wave number k = 2j near the point 
(i x /2 j ,jy/2j ) in the horizontal, vertical or diagonal direction (f.L = 1,2,3, 
respectively). Therewith, the local enstrophy spectrum can be defined [3]: 

Z(Xk)=~{~(W1 . . +w1 . . )2 +~(W2 . . +w2 .. )2 , 2 2 J,1.x ,'l..11 1,'l..x+ 1 ,'ty 2 ),1.x ,1. y ),l.x ,'l.. y +1 

(-3 )2} 22j + w··· --
J,'", ,'y ..:1kj 

(6) 

with ...:1kj = (kj+1kj)1/2 - (kj_1kj )1/2 describing the spectral behaviour of w 
for wave numbers (kj_1kj )1/2 < k < (kJ+ 1kj )1/2 at the point x = «2ix + 
1) /2j+1, (2iy + 1) /2 j+1), and where kj are the wave numbers around which 
the wavelets are localized in Fourier space [3]. 

The global wavelet spectrum is obtained by averaging the local spectra 

2i_12i_1 
Z(k) = L L Z(x, k)T2j (7) 

i",=O iy=O 

and constitutes a smoothed version of the Fourier spectrum. Due to orthog
onality of the decomposition we also have Z = Ek. Z(kj). In Sect. 3 we use 

J 

cubic spline wavelets of Battle-Lemarie type [3]. 
Replacing the vorticity w by the concentration C we analogously get the 

Fourier and wavelet scalar spectra, denoted as Ec(k). 

3 Results and Discussion 

TUrbulent flows typically exhibit coherent vortices created in boundary or 
shear layers or they are emerging from random initial conditions. Their for
mation and interaction plays an important role for turbulent mixing of scalars 
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in non-reactive and reactive flows. In two and three-dimensional rotational 
fluids different characteristics are observed, e.g. rotation of single vortices, 
merging of co-rotating vortices, and translation of counter-rotating vortices, 
completed by vortex stretching as an effect in three dimensional turbulence. 
The strongest nonlinear interaction in two-dimensional turbulence is the 
merging of two co-rotating vortices. We exemplarily depict in Fig. 1 such a 
pairing process and illustrate its influence on the mixing of a passive scalar. 
The vortices are situated in between two initially segregated layers of non-

Fig. 1. Evolution of co-rotating vortices in two dimensions at t=O, 2.5 and 10 initial 
eddy turnover times. Top: vorticity. Bottom: Concentration of initially segregated 
non-reactive species. The gray scale is adjusted to data minimum and maximum 

reactive fluids and rotate clockwise round each other. The species interface 
is rolled up and consequently elongated. The rotation and the merging of the 
vortices generate steep gradients in the concentration field and hence give 
rise to enhanced diffusion. The efficiency of mixing strongly depends on the 
initial arrangement of vortices and concentration [1]. 

3.1 Initial Conditions 

As a model of a free shear layer encountered in many practical applications, 
we consider a temporally growing mixing layer. From the coherent struc
ture point of view we study its mixing properties for passive and reactive 
scalars. Figure 2 schematically illustrates the initial configuration. As mean 
initial velocity profile we choose u(y) = U tanh(2y / 8i ) with the initial vortic
ity thickness 8i = 2U/(dil/dy)y=o. From linear stability analysis the mixing 
layer is known to be inviscidly unstable [6]. A perturbation leads to the for
mation of Kelvin-Helmholtz vortices of longitudinal wavelength Aa = 78i , 

corresponding to the most amplified wave number. Hence, we superimpose 
in the vortical region of the initial flow both, a white-noise and a sinusoidal 
perturbation, the latter with a frequency according to the most unstable wave 
number to ensure the creation of regularily distributed vortices. The longitu
dinal extend of the domain is L = 27r and corresponds to 8Aa. In the normal 
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Fig. 2. Scheme of initial configuration for the mixing layer 

direction we choose the same box length, which was checked to be sufficiently 
large to avoid effects of periodicity. The calculations are carried out with a 
resolution of 2562 Fourier modes for Re = 3148. As initial profile of the con
centration we take a smoothed step function to avoid Gibbs-phenomena. The 
subsequent visualizations refer to a zoom of the longitudinal region between 
L/4 and 3L/4. The time scale is normalized by 8dU. 

3.2 Non-reactive Mixing 

First we consider the mixing layer for non-reactive scalars, i.e. with k2 = 0 
in (3). Figure 3 presents the evolution of vorticity together with the passive 
scalar. At t = 18 we observe the formation of 8 fundamental eddies according 

Fig. 3. Flow evolution at t = 18, 45 and 72. Vorticity (top). Concentration for a 
non-reactive species with S c = 1 (middle). Reaction rate for a second order reaction 
with k2 = 1 (bottom). For gray scale see Fig. 1 

to theory. The co-rotating vortices undergo successive pairings, i.e. at t = 45 
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the first merging is completed while at t = 72 the second merging process 
is initiated. The corresponding concentration fields show how the coherent 
structures elongate the interface and therefore enhance the mixing of the two 
scalars. To quantify the efficiency of the mixing process for different Be, we 
determine global time scales to by fitting the evolution of the concentration 
variance assuming an exponential decay, valid for pure diffusion. Comparing 
the obtained time scales for the shear flow with pure diffusion (Table 1) we 
observe that the vortex interaction strongly enhances mixing, particularly 
with increasing Be. 

Table 1. Global mixing time scales to for different Se compared to to for pure 
diffusion. 

Se 

0.3 

1.0 

3.0 

tO,mixing layer 

601 

908 

1285 

to,pure diffusion 

2674 

8913 

26738 

4.4 

9.8 

20.8 

The Fourier spectra of vorticity and concentration in Fig. 4 are very sim
ilar and show a large range of active scales. A comparison with the global 
wavelet spectra shows in both cases a very good agreement, conforming the 
fact that the latter are smoothed Fourier spectra, where the averaging is in
creasing with scale. By means of local wavelet spectra the scaling behaviour 
of flow regions with typical characteristica can be identified and locations of 
mixing activity can be quantified. Exemplarily, we choose three typical points 
in the vorticity field at t = 45 (see Fig. 3), located in the centre of a vortex 
(A), in a narrow vortex filament (B), and outside the active vorticity region 
(C). For the local enstrophy spectra (Fig.4 a) we find consistent results as 
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Fig. 4. Global Fourier and wavelet spectra compared with local wavelet spectra for 
three points in the vorticity ( a) and concentration (b) fields in Fig. 3 



350 Henning Bockhorn et al. 

in [3]. Additionally, we consider the local spectra of the scalar at the corre
sponding points (Fig.4 b). In large scales all local wavelet spectra coincide 
by construction with the global one. At fine scales we observe different scal
ing behaviour for the three points, which is very similar for the enstrophy 
and scalar spectra. Fine scales are most active in the strain field between 
the vortices (B), i.e. the steep gradients in the shear zones of the vortices 
also generate small scales in the concentration field leading to enhanced dif
fusion. The spectrum for the vortex centre (A), i.e. at locations where the 
vorticity is maximal, contains more enstrophy at medium scales but less at 
finer scales. Corresponding to the scalar spectrum the mixing is less efficient. 
Outside the active vorticity region (C) the two spectra decay rapidly in scale 
which is equivalent to an almost dynamically inactive region and where no 
mixing takes place. We conclude that both the Fourier and the global wavelet 
spectra, and also the local spectra are highly correlated for the flow and the 
scalars. 

3.3 Mixing of Reactive Species 

In [1] we have shown that chemical reactions in mixing processes lead to the 
formation of fine scales, resulting in a reduced decay of the Fourier spec
tra. Motivated by the results of the previous section we investigate the local 
spectral properties in a reactive case. Therefore, we perform a simulation 
for Be = 1 and k2 = 1. As molecular mixing is a prerequisite for chemical 
reaction, the reaction rate, shown in Fig. 3, directly reflects locations of ef
ficient mixing. The maxima are located in the shear zone where the species 

Fig. 5. Comparison of local wavelet spectra for the points A and B of a concen
tration field in the reactive and the non-reactive case at t = 45 

are being efficiently mixed against which the rate is considerably reduced 
inside the vortices. To quantify the local increase of fine scales we compare in 
Fig. 5 the local wavelet spectra of the species for the reactive with that of the 
non-reactive case in the vortex centre (point A) and in the shear zone (point 
B). For both points we find in the reactive case a slight increase of smaller 
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scales. In the vortex this primarily affects medium wave numbers whereas in 
the shear zone medium and fine scales are enhanced. Hence, we conclude that 
the global steepening of concentration gradients by chemical reactions in the 
scalars' Fourier spectra is mainly produced in the shear zone, and therefore 
is correlated with small scale structures identified in the flow field. 

4 ConcI us ions 

We have presented DNS of a temporally developing mixing layer and studied 
the mixing properties of passive and reactive scalars using Fourier and wavelet 
techniques. The observed enhanced mixing is due to two mechanisms, the 
rolling-up of species interface into spirals leading to the generation of fine 
scales, and the merging of vortices implying an increased stirring. The local 
spectral analysis by using wavelets shows a spatially varying scaling behaviour 
of the flow which is strongly correlated with that of the concentration field. 
This implies that the mixing is most efficient in shear zones where fine scales 
are produced whereas in the centres of the vortices the mixing activity is 
reduced by the smoothed gradients. In the reactive case enhanced mixing of 
the scalars is directly reflected by the chemical reaction, i.e. the reaction rate 
is locally increased. 

Future work is concerned with studying of mixing in more complex ge
ometries, like channel flows with bluff bodies using a penalization method. 
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Abstract. We present a three-dimensional pseudospectral numerical scheme for 
Benard-Marangoni convection in a two-fluid system based on the full set of hydro
dynamic equations. Performance measurements demonstrate good parallel speedup 
for our implementation. The code provides an efficient tool for high-resolution nu
merical studies of heat and mass transfer across interfaces . 

1 Introduction 

Gradients of interfacial tension between liquid phases produce shear stresses 
driving fluid motion. This so-called Marangoni effect is of importance in ex
traction processes in chemical engineering [1], in Marangoni drying [2], in 
electron beam evaporation of liquid metals [3]' and other applications. More
over, Marangoni flows are of interest in the context of structure formation 
in spatially extended systems. One important example is Benard-Marangoni 
convection in an oil layer heated from below with an air layer on top, which 
has received significant attention in recent years [4,5]. However, numerical 
simulations have so far mostly been conducted for a reduced system, in which 
only the flow in the oil layer is computed. The flow in the air layer is ignored. 
Only recently the flow in both layers was simulated in the two-dimensional 
case [5]. In this paper, we shall treat the same problem in the full three
dimensional case. After presentation of the basic equations we describe a 
pseudospectral numerical algorithm for the computation of the flow in both 
the liquid and the gas phase. Next, we demonstrate that the method can 
be efficiently parallelized. Finally, we compare the results of a full two-layer 
simulation with the corresponding one-layer simulation. 

2 Two-layer equations 

We consider a liquid overlaid with either another liquid or a gas. Both fluids 
are bounded by parallel rigid walls located at z = 0 and z = dz + dg • The 
interface between the fluids is assumed parallel to these walls. The symbols d z 

and dg denote the height of the lower and upper layer, where the subscripts 
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I and 9 stand for liquid and gas. The liquid-gas interface is located at z = dl . 

The rigid walls are kept at constant temperatures with a positive difference 
i1T = n - Tt between bottom and top. In the horizontal directions x and y 
we assume periodic boundary conditions with periodicity lengths Lx and L y • 

The relevant material properties of the fluids are the kinematic viscosities 
Vj, the densities Pj, the heat conductivities Aj and the thermal diffusivities 
K,j, where j E {I, g}. The interfacial tension a acting on the fluid interface 
depends on the temperature according to a = ao - "(T. We choose dz as unit 
of length, Vz I dz as unit of velocity, dr I Vz as unit of time, pz vl I dr as unit of 
pressure, and i1T as unit of temperature. In the basic state of pure heat 
conduction, the temperature depends linearly on the vertical coordinate in 
each layer. Because of the different thermal conductivities, the slope changes 
at the interface. The conductive profile reads 

O::;z<l, 
1 < z ::; 1 + Rd , 

(1) 

where Rx = XglXI denotes the ratio between gas and liquid layer for the 
quantity x. We can now introduce the temperature perturbation () = T -
Tc(z) as deviation from the distribution in the quiescent state. The velocity 
fields Vj = (Uj, Vj, Wj) and the temperature perturbations ()j in each of the 
incompressible fluid layers are governed by the dimensionless Navier-Stokes 
and energy equations 

Aj (OtVj + (Vj· \7)Vj) = -Aj \7pj + \72Vj, 

\7 . Vj = 0, 

E j (Ot()j + (Vj . \7) ()j) = \72()j + XjWj. 

(2a) 

(2b) 

(2c) 

The separation of the linear conductive profile gives rise to the linear terms 
XjWj in the latter equation. The parameters A j , Ej and Xj are given by 

Al = 1, Ag = II R v , (3a) 

El = Pz, Eg = PgIRv, (3b) 
PI = vt/K,Z, Pg = vglK,g, (3c) 

Xl = PzR)j(R>. + Rd ), Xg = PgI (Rv (R>. + R d )) , (3d) 

where Pj denote the Prandtl numbers of the fluids. 
The boundary conditions complementing the above equations read 

()z(z = 0) = VI(Z = 0) = 0, 

()g(1 + Rd) = v g(1 + Rd) = 0 

at bottom and top walls. At the liquid-gas interface Z 

conditions hold: 

(4) 

(5) 

1 the following 

(6a) 
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azol = R>.azOg, 

Ul = Ug, VI = vg, WI = Wg = 0, 

azUl - Rpvazug = -MaxOI, 

azVI - Rpvazvg = -MayOI . 

(6b) 

(6c) 

(6d) 

(6e) 

Condition (6b) implies the continuity of heat flux. The last two conditions 
reflect the balance of the surface shear components. The terms on the right 
hand sides are the Marangoni forces. The parameter 

(7) 

is called the Marangoni number. 

3 Numerical scheme 

3.1 Poloidal-toroidal decomposition 

The numerical algorithm is based on the poloidal-toroidal decomposition 

of the velocity fields in both layers. By that, the incompressibility constraint 
is satisfied automatically. The evolution equations for tf>j and 1}ij are derived 
by taking the curl and twice the curl of the Navier-Stokes equation and 
projection onto the vertical direction. We obtain the equations 

Aj (at(j + Nl (Vj)) = \72(j, 

Aj (at \72Wj + N2 (Vj)) = \74Wj , 

(9a) 

(9b) 

for the vertical velocity component Wj = -L1htf>j and the vertical vorticity 
component (j = -L1h1}ij, where L1h = a-; + a; denotes the horizontal Laplace 
operator. The vorticity is defined by W j = \7 x v j. The nonlinear terms N 1 , N2 
read 

Nl (v) = -ez . \7 x (v x (\7 x v)), (lOa) 

N2 (v) = az \7 . (v x (\7 x v)) - ez . \72 (v X (\7 x v)). (lOb) 

The velocity components Uj and Vj are related to Wj and (j by 

L1hUj = -axazWj - ay(j, 

L1hVj = -ayazWj + ax(j, 

(lIa) 
(lIb) 

where the continuity equation and the definition (j = axVj - ayUj have 
been used. Obviously, Wj and (j determine the velocity field up to a mean 
flow Uj(z)ex + Vj(z)ey. Equations for Uj and Vj are obtained by averaging 
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the Navier-Stokes equation over horizontal cross-sections of the periodicity 
domain. From the Navier-Stokes equations in each layer we find that 

Aj (8t Uj + 8z (UjWj)) = 8;Uj , 

Aj (8t Vj +8z (VjWj)) = 8;Vj, 

(12a) 

(12b) 

where the angular brackets 0 denote horizontal averages over the periodicity 
domain. The remaining problem in the reformulation of the evolution equa
tions in terms of Wj, (j, OJ, Uj and Vj consists in the derivation of appropriate 
boundary conditions. At the rigid walls z = 0 and z = 1 + Rd we have 

(13) 

The condition 8zwj = 0 is a consequence of the continuity equation and 
the no-slip condition Vj = 0 at the walls. The conditions at the liquid-gas 
interface z = 1 become 

01 = Og, 8z01 = R)..8z0g, 

WI = 0, Wg = 0, 

8zWl = 8z wg, 8;Wl - R pv 8;wg = M i1h Ol, 

(1 = (g, 8z(1 = Rpv8z(g, 

Ul = Ug, 8zUl = RpvUg, 

Vi = Vg, 8z Vi = Rpv Vg, 

where the continuity equation has again been used in deriving (14c). 

3.2 Pseudospectral discretization 

(14a) 

(14b) 

(14c) 

(14d) 

(14e) 

(14f) 

The discretization in each layer is based on an expansion in Fourier modes 
with respect to x and y and in Chebyshev polynomials in z. In each layer, the 
same number of Fourier modes is used. The discretization in time employs a 
finite difference method with fixed time step 8t. A hydrodynamic variable T/ 
at timelevel n8t is represented as 

T/(X, y, z, n8t) = 2: TJ~(z) exp( i (kxx + kyY)) 
k 

(15) 

with k = (kx, ky) as wavevector. Here the expansion coefficients T/~ (z) are 
still functions of the continuous variable z. We now substitute (15) in each of 
the evolution equations (9a,9b, 2c) and apply the backward Euler method for 
the linear terms and the Adams-Bashforth method for the nonlinear terms. 
Using the definitions ~ = i1w, D = d/dz and AB{f}n = (3fn - fn-l)/2 
from the Adams-Bashforth formula we find the system 

( D2 _ k 2 _ Aj) (n+l = A- ((j,k _ AB {[N (v.)] }n) 
8t J,k J 8t 1 J k ' 

(16a) 
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( D2 _ k2 _ Aj) t"n+1 = A. (e;;k _ AB {[N (v.») }n) Ot <"J,k J Ot 2 J k ' 
(16b) 

(D2 - k 2) w':t1 - ct1 = 0, ], 1, 
(16c) 

( D2 _ k 2 _ E j ) 0,:+1 + X ·Wn+! = E· (O"J. k + AB {[v· . "\10·] }n) (16d) Ot J,k J J,k J Ot J J k ' 

( 2 Aj) n+1 (u; { {} }n) D -- U. =A- --AB -(U·W·) 8t J J Ot {}Z J 1 , 
(16e) 

( 2 Aj) n+1 (VP { {} }n) D - - V. =A- - -AB - (V·W·) Ot 1 1 Ot {}Z 1 1 
(16f) 

of equations for the expansion coefficients for the wavevector k and for the 
mean flow components at timelevel (n + 1 )Ot. Each of the above equations 
is of the form (D2 - JL) f = g, i.e. it represents a one-dimensional Helmholtz 
equation. Discretization by means of the Chebyshev-tau method yields a tridi
agonal system of linear equations for the expansion coefficients of f, which 
can be solved very efficiently [6]. The equations for the lower and upper layer 
are coupled via the interface boundary conditions. Moreover, the equations 
for ej, Wj and OJ are coupled because of the Marangoni boundary condition 
(14c). Because of the coupling we employ a Green function technique as in 
[7). Dropping the indices k and n for the moment, the solution for the coupled 
equations (16b,16c,16d) reads 

ej = ejp) + ajey) + (3jej2) , 

Wj = w;p) + ajwY) + (3jw?) , 

OJ = O;p) + ajO;1) + (3jO?) + '"00;3). 

(17a) 

(17b) 

(17c) 

The functions e;p), w;p) and O;p) are particular solutions of the inhomoge
neous equations (16b,16c,16d) with zero boundary values of the function 
itself. The unknown coefficients aj, (3j and "Ij multiply the Green functions, 
which satisfy 

(D2 - k 2 - ~:) ejm) = 0, ejm)(l) = 1, ejm\Zj) = (_l)m, (18a) 

(D2 - k 2) w;m) = ejm), w;m) (1) = w;m) (Zj) = 0, (I8b) 

( D2 _ k 2 _ E j ) O~m) = -X ·w(m) O(m)(l) = O(m)(z·) = ° (18c) Ot J J l' 1 J 1 , 

(D2 - k 2 - ~:) O?) = 0, 0;3)(1) = 1, O?)(Zj) = 0, (18d) 

where m = 1,2. Here we have used Zj to denote the position of the rigid wall 
in layer j, i.e. Zl = ° and Zg = 1 + Rd. The coefficients al, ag, (3l, (3g, "Il, "Ig are 
computed by inserting the representation (17a-17c) in the boundary condi
tions (13,14a-14c) and solving the resulting 6 x 6 system of linear equations. 
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Since the Green functions are constant, they need only be computed once 
at the start of the time integration. We apply the same technique for the 
solution of the equations for (j and the mean flow components Uj and Vj. 

4 Results 

4.1 Parallel speedup 

The computation of the nonlinear terms requires the largest share of compu
tational cost per time step. We compute these terms by transformation into 
physical space using fast Fourier and fast Chebyshev transforms. The com
munication bandwidth available on current parallel architectures allows for 
an effective parallelization of the algorithm. Each processor is assigned a slice 
of the wavevector array. The wavevectors assigned to an individual processor 
cover some x-wavenumber range and the entire range of y-wavenumbers. By 
that, only the Fourier transforms require inter-process communication. It is 
implemented by means of global cross-processor transposition [7]. The pro
gram can be executed on a number of processors which is a power of two 
and which is not larger than the number of collocation points with respect to 
both the x-direction and the y-direction. The number of collocation points 
are also powers of two since only base two Fourier transforms are used. 

The program has been implemented in C and parallelized using MPI 
. Performance data have been obtained on the Cray T3E-256 at the HLRZ 
.lulich using up to 64 processors. We have measured the execution time for 50 
timesteps at two different resolutions using the MPI function Wt ime () . Table 
I contains the time per step for two cases as well as the execution speed. 
The latter has been obtained with the Performance Analysis Tool PAT. The 
almost linear increase in speed levels off when the problem size per processor 
becomes too small. With the larger problem of case 2 this happens at a larger 
number of processors than for case 1. We remark but cannot explain at the 
moment that the execution speed increases somewhat faster than the inverse 
execution time per step. 

4.2 Comparison with one-layer simulations 

The two-layer code provides a means to access the validity of previous simula
tions of Benard-Marangoni convection, which have almost exclusively focused 
on a one-layer approximation. In the framework of the one-layer approxima
tion, convection in the gas layer is ignored. Moreover, the thermal boundary 
condition at the liquid-gas interface is commonly approximated by Newton's 
law of cooling [5] 

(19) 

where B is called the Biot number. The applicability of this simplified model 
has only recently been tested numerically for the two-dimensional case. We 
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Table 1. Efficiency of parallelization for two different cases. Case 1 uses a resolution 
of 64 Fourier modes in x and y and 17 Chebyshev polynomials in each layer. Case 
2 uses 128 modes in x and y. Time per step given in seconds, execution speed in 
MFlop/s. 

number of time per step execution speed time per step execution speed 

processors (case 1) (case 1) (case 2) (case 2) 

1 3.05 45 

2 1.56 88 6.53 89 

4 0.80 173 3.31 178 

8 0.39 353 1.68 349 

16 0.21 696 0.87 680 

32 0.16 1045 0.47 1310 

64 0.34 1950 

have obtained a first example of good quantitative agreement in the three
dimensional case for an air-silicone oil system. Figure 1 shows isotherms at 
the liquid-gas interface for the set of parameters given in Table 2. The result 
of this simulation was used as initial condition for a one-layer simulation cor
responding to the same physical situation. No visible difference is found in 
the isotherms. The Nusselt numbers characterizing convective heat transport 
are 1.287 for two-layer model and 1.289 for the one-layer model. However, 
differences are expected for strong convection with M » 1. 

Fig. 1. Isotherms on the liquid-gas in
terface for a layer of silicon oil with an 
air layer on top. Notice the hexagonal 
cell structure. Dashed lines correspond 
to negative values of the temperature 
perturbation B. Hot silicon oil rises in 
the cell centers, which accounts for the 
elevated temperature there. 
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Table 2. Material properties and other parameters of the simulation. N x , Ny and 
N z denote the number of collocation points in the respective directions in each 
layer. 

4.8 0.33 0.19 1.62 0.0013 100 0.6 20 20 128 128 17 

5 Concl usions 

We have presented a numerical scheme for the computation of Benard-Maran
goni convection in both the liquid and gas layer. The only significant approx
imation in the model consists in the neglect of interface deformations. The 
scheme can be efficiently parallelized. A first simulation for realistic experi
mental parameters indicates that the full two-layer and the reduced one-layer 
model give good quantitative agreement. Future investigations will address 
this question systematically. Another application of the code could be the 
analysis of defect dynamics in imperfect hexagonal patterns [5]. Incorporation 
of additional effects such as chemical species and reactions is also possible. 

We acknowledge financial support of the Deutsche Forschungsgemein
schaft under grants Th497/9-1, Th497/9-2, of the German-Israeli founda
tion for scientific research and development under grant 10460-228.10/95, 
and computer resources provided by the HLRZ Julich. 
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Abstract. The paper presents two methods for comuting flows with free surfaces: 
an interface-tracking and an interface-capturing method. The former computes the 
liquid flow only, using a numerical grid which adapts itself to the shape and position 
of the free surface; the kinematic and dynamic boundary conditions are applied 
there. The second method considers both fluids as a single effective fluid with 
variable properties; the interface is captured as a region of a sudden change in fluid 
properties. An additional transport equation is solved to determine the volume 
fraction of one of the fluids. Advantages and disadvantages of the two methods are 
discussed and several application examples are presented. 

1 Introduction 

Many processes in chemical and process engineering involve flows of either 
Newtonian or non-Newtonian fluids with free surfaces, e.g. coating and mixing 
processes. In some cases only the flow of the liquid phase is of interest, but 
very often both gas and liquid flows need to be considered in a coupled 
manner, e.g. when gas pockets are enclosed by liquid or vice versa. 

The computation of such flows is difficult because the shape and the 
position of the interface between gas and liquid is not known a priori; on 
the contrary, it often changes both its location and shape in time and may 
involve merging and fragmentation processes. Yet it is very important to be 
able to predict the shape of the free surface: first of all, in order to be able to 
predict the flow of both fluids on either side of it, but also because the free 
surface itself (its shape, area, velocity etc.) plays an important role in many 
chemical and bio-chemical processes which may take place e.g. in the liquid 
phase. Another important aspect in such flows is the determination of the 
wetted wall surface, which affects the drag, lift, power entrainment, energy 
dissipation etc. 

There are basically two approaches to computing flows with free surfaces: 
interface-tracking and interface-capturing methods. The former compute the 
liquid flow only, using a numerical grid which adapts itself to the shape 
and position of the free surface. The free surface is treated as a boundary 
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of the computational domain, where the kinematic and dynamic boundary 
conditions are applied. 

On the other hand, interface-capturing methods consider both fluids as a 
single effective fluid with variable properties; the interface is captured as a 
region of a sudden change in fluid properties - just like shocks in compressible 
flows. An additional transport equation needs to be solved to determine the 
volume fraction of one of the constituent fluids. 

Both kinds of methods have their advantages and disadvantages; these 
are discussed below, after one representative of each kind is described. 

2 Interface-Tracking Method 

There are various methods of this type, but due to space limitations, only 
one approach will be described; more details are available in [1]. 

Approaches of this kind can be used when the free surface is smooth and 
does not undergo severe deformation; otherwise, the grid may deform too 
much and prevent further computation without re-gridding. Also, if the free 
surface is in contact with a solid wall of a complicated shape, it may be 
difficult to adapt the grid to both free surface and the solid boundary. 

The dynamic condition, which implies that the forces acting on the fluid 
at the free surface are in equilibrium, is implemented in the solution method 
through prescribing the pressure at the free surface. If viscous and surface 
tension forces are also appreciable, an iterative procedure with an adequate 
extrapolation of velocities to the free surface must be used. 

The kinematic condition, which implies that the free surface is an interface 
between two fluids with no flow through it, can then be used to find the new 
location of the free surface. Namely, treating the free surface as a boundary 
with prescribed pressure leads to non-zero mass fluxes through it, thus vio
lating the kinematic condition. These fluxes are used to determine in which 
direction and by how much the interface needs to be displaced in order to pre
vent fluid from crossing it. The solution process is iterative and fits within the 
framework of the standard SIMPLE-type pressure-correction methods usu
ally used to compute incompressible flows. A typical finite-volume method 
proceeds as follows: 

1. Solve the momentum equations using the geometry defined by the current 
shape of the free surface and the prescribed pressure at it. 

2. Enforce local mass conservation in each control volume (CV) by solving 
the pressure-correction equation, using the prescribed pressure boundary 
condition at the current free surface. Mass is conserved both globally and 
in each CV, but the non-zero mass fluxes through the free surface may 
result. 

3. Correct the position of the free surface so that the volume defined by its 
corrected and previous position compensates the mass fluxes through the 
free surface obtained in the preceding step. 
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4. Return to step 1 and repeat until all equations and boundary conditions 
are satisfied (Le. until all corrections become negligibly small). 

5. Advance to the next time step. 

An interface-tracking method of this kind can be implemented in almost 
any CFD-algorithm. There are many possibilities for adaptation and opti
mization of the method, which will not be dealt with here; see [1] for more 
details. 

3 Interface-Capturing Method 

In this type of methods, a fixed grid is used which covers the space occupied 
by both the liquid and the gas phase. Since the grid does not follow the 
deformation of the free surface, the grid movement is only necessary if the 
shape or location of the solution domain changes. 

In addition to the conservation equations for mass and momentum, one 
introduces and solves an equation for the volume fraction of one phase, c. 
One sets e.g. c = 1 for CVs filled by liquid and c = 0 in CVs filled by gas. 
The change of c is governed by the transport equation: 

1t[CdV+ lC(V-Vb).ndS=O, (1) 

where V is the CV-volume bounded by a closed surface S with a unit normal 
vector n directed outwards, v is the fluid velocity vector and Vb is the velocity 
of the CV surface in the case of a moving grid. 

The properties of the effective fluid vary in space according to the volume 
fraction of each phase, Le.: 

(2) 

where subscripts 1 and 2 denote the two fluids (e.g. liquid and gas). If one CV 
is partially filled with one and partially with the other fluid (Le. 0:::; C :::; 1), 
it is assumed that both fluids have the same velocity and pressure. The free 
surface does not represent a boundary and no boundary conditions need to 
be prescribed at it. If surface tension is significant at the free surface, this can 
also be taken into account by transforming the resulting force into a body 
force [2]. These methods can also deal with merging and fragmentation in 
multiphase flows [3]. 

Equation (1) contains only convective fluxes and the unsteady term. If 
only a steady solution is sought or slowly-varying flows are considered, the 
fully-implicit Euler method is appropriate for integration in time. For flows in 
which time evolution of the free surface is important, second-order schemes 
such as Crank-Nicolson, implicit three-time-Ievels scheme etc. should be used. 

The choice of approximations for convective fluxes is less obvious. The 
only scheme which unconditionally satisfies the monotonicity criterion is 
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the first-order upwind scheme; however, it can not be used due to exces
sive numerical diffusion, which smeares the interface and causes the two flu
ids to mix over a wide region. On the other hand, any of the higher-order 
schemes tends to produce over- and undershoots in the vicinity of discon
tinuities, so special care is needed. One can resort to a wide range of spe
cial variation-bounded schemes developed for applications in aerodynamics, 
like total-variation-diminishing (TVD) and essentially non-oscillatory (EN 0) 
schemes; see [4) for examples. However, the interface-capturing in free-surface 
flows has some specialities which need to be considered. 

b) 

Fig.!. The normalized variable diagram (a) and the definition of free-surface ori
entation (b) 

The sharpness of the interface without over- and undershoots can be 
achieved by limiting the approximation of the cell-face value to lie in the 
shaded area of the so-called normalized variable diagram (NVD) shown in 
Fig. 1 [5]. The local normalized variable c in the vicinity of the cell-center C 
is defined as: 

_() c(r) - Cu 
c r = , 

CD - Cu 
(3) 

where subscripts 'U' and 'D' denote nodes upstream and downstream of the 
cell-center C. Should the cell-center value Cc turn out to be smaller than 
zero or larger than unity, this means that the profile of c is not monotone 
and we need numerical diffusion to get rid of oscillations; for values of cc 
between zero and unity, one can choose any dependency from the shaded 
region of the NVD-diagram. The particular choice made here is indicated in 
Fig. 1 as HRIC (high-resolution interface capturing) scheme. The reasoning 
for such a choice is as follows: if the cell around node C is almost empty, 
only the fluid present at the downstream cell will be convected through the 
cell face, so it is appropriate to use the downwind scheme (DDS). However, 
this applies only if the interface is parallel to the cell face and moves in the 
direction of the cell-face normal; if the interface is perpendicular to the cell 
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face, it is likely that the convected fluid would be of the same composition as 
in the donor cell center, so the upwind scheme (UDS) is appropriate. Also, 
downwind approximation must not drain more fluid than is available in the 
cell, which depends on the local Courant number, 

C _ v· nSjLlt 
0- LlVc ' (4) 

where Sj is the area of the cell-face j, Ll Vc is the volume of the cell centered 
around node C, and L1t is the time step. There is no obvious way how to 
vary the approximation of Cj depending on the Courant number and interface 
orientation. Generally, for small Courant numbers (S; 0.5) the value according 
to HRIC should be used. If the Courant number is large (order of unity or 
larger), upwind scheme should be used since all fluid from the cell will flow 
out of it; in the intermediate range, blending of UDS and HRIC should be 
used. Also, if the angle between the interface normal and cell-face normal is 
large, UDS should be used. 

Finally, the cell-face value of C can be expressed as: 

Cj = ,Cc + (1 - ,)CD , (5) 

where, is a non-linear function of the profile of c, Courant number, and the 
orientation of the interface. Many choices are possible; some are demonstrated 
in [1] and [6]. 

Since the interface is not sharp but is rather smeared over one to three 
cells (like shocks in compressible flows), local grid refinement is important 
for an accurate resolution of the free surface. The refinement criterion is, 
however, simple: cells with 0 < C < 1 need to be refined. 

The discretized equation for C has the same form as all other equations and 
can be solved using the same linear equation solver. The iteration loop within 
one time step is extended for solving the equation for C after the pressure
correction equation is solved; the rest of the sequential solution algorithm 
remains the same. 

4 Application examples 

Several examples of application of the two methods described above can be 
found in [1] and [7] (sloshing, slamming, flow around ships); there, the ac
curacy of the methods was also analysed by performing a systematic grid 
refinement. It was shown that, when both methods are applicable, they are 
of nearly the same accuracy. We present here briefly results from some com
putations of flows relevant to process engineering which can only be computed 
by an interface-capturing method. 
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4.1 Flow in an Open Reservoir 

In the first example we consider a plane (2D) reservoir which is initially full of 
water at rest. The width of the reservoir is 0.2 m and the height is 0.1 m. The 
water starts suddenly flowing in through a bottom opening whose width is 
10% of the reservoir width; the upward inlet velocity is 1 m/s. Computation 
is performed using time steps of 0.2 ms. 

H 

(b) 

(c) (d) 

Fig. 2. Computation of flow in an open reservoir. (a) Part of the numerical grid. 
(b) Pressure distribution after 0.3 s. (c) Volume fraction after 0.2 s. (d) Volume 
fraction after 0.3 s (water is dark) 

The inflow causes water to flow over the edge of the reservoir. The in
coming jet creates a strong vortex at the sudden expansion, which travels 
upward towards the free surface; it can be seen in Fig. 2 as a low-pressure 
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region. The free surface rises substantially above the jet as the time goes 
on. The liquid film falling down the outer reservoir wall is accelerated due 
to gravity and becomes thinner. Space does not allow for a detailed analysis 
of this time-dependent flow; Fig. 2 is meant to indicate the capability of the 
interface-capturing method to handle this relatively difficult problem. 

4.2 Sloshing in a Tank 

In this example we demonstrate the possibility to compute flows involving 
more than two fluids with free surfaces using interface-capturing methods. At 
the initial time instant all fluids are at rest and occupy the space indicated in 
Fig. 3 (a); black indicates the heaviest and white the lightest fluid. This initial 
composition can not be preserved due to different fluid densities (1000 kg/m3 

the heaviest, 1 kg/m3 the lightest), so they start moving. Figure 3 (b) shows 
the distribution of fluids shortly after the beginning of the simulation: the 
heaviest fluid tends to settle at the bottom of the tank, pushing other fluids 
up. After a while all motions die out and the fluids settle according to the 
stable stratification (heaviest at the bottom, lightest at the top; Fig. 3 (d)). 
This is a rather hard test for the discretization of the transport equation for 
volume fraction c: common differencing schemes lead to a substantial mixing 
of the species, while HRIC managed to keep them separated all the time, in 
spite of vigorous sloshing. 

a) b} c} 

Fig. 3. Computation of sloshing with four fluids in a tank. (a) Initial distribution 
of fluids (black: heaviest, white: lightest). (b) Distribution of fluids shortly after 
the start of the simulation. (c) Distribution of fluids at the end of simulation 

4.3 Curtain Coating 

Coating is an important area of engineering activity in which muiticomponent 
flows with free surfaces occur. We show below an example of computing 
curtain coating flow at Reynolds-number Re = 2 and capillary number Ca 
= 10. The substrate is moving with 1 mls and the film thickness is 0.1 
mm. The liquid is issuing from a slot 0.1 mm wide and located 1 mm above 
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the substrate; its exit velocity is also 1 m/s. After a while a steady flow is 
established, as shown in Fig. 4 (a). When the Reynolds-number is increased, 
the liquid begins to accumulate at the upstream side, flowing partly against 
the substrate movement. For Reynolds-numbers above five, the flow becomes 
unsteady and three-dimensional. Figure 4 (b) shows the shape of the liquid 
curtain and film at one instant of time for Re = 10, Ca = 10. Other kinds 
of coating flows (roll-coating, slot-coating etc.) can also be computed using 
interface-capturing methods. 

(a) (b) 

Fig.4. Computation of curtain coating flow. (a) Liquid distribution at Ra = 2, 
Ca = 10. (b) Liquid distribution at Ra = 10, Ca = 10 
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Abstract. The formation of syngas (H2 and CO) from methane in a rhodium 
coated monolith is studied as an example for the simulation of reactive flow in a 
partial oxidation reactor. A tube wall catalytic reactor, which serves as a model 
for a single pore of the monolithic catalyst, is simulated. The simulation is carried 
out using a two-dimensional flow field description coupled with detailed reaction 
mechanisms for surface and gas phase chemistry. The reactor is characterized by 
competition between complete and partial oxidation of methane. At atmospheric 
pressure, the complete oxidation products C02 and H20 are formed on the cat
alytic surface in the entrance region of the catalytic reactor. At higher pressure, 
gas phase chemistry becomes important, resulting in an additional formation of 
these complete oxidation products further downstream and a decrease in syngas 
selectivity. 

1 Introduction 

The partial oxidation of methane, the main component of natural gas, in short 
contact time reactors has recently been shown to offer a promising route to 
convert natural gas into syngas (H2 and CO) which subsequently can be 
converted to higher alkanes or methanol [1,2]. The catalytic reactors such 
as foam or extruded monoliths, wire gauzes, or sintered spheres, are coated 
with noble metals such as platinum and rhodium and can be run almost 
adiabatically with a residence time of approximately one millisecond. The 
short contact time guarantees a very high throughput using a small amount 
of catalyst and low energy and capital costs. The combustion products, CO2 
and H20, are formed beside of syngas. This highly exothermic combustion 
reaction provides the heat to operate the reactor auto-thermally at over 1000 
K. Aside from this heat release effect, CO2 and H20 however are waste 
products of the process. 

The industrial application needs the reactor to operate at elevated pres
sure, but high pressure experiments in conventional laboratories are expen
sive and dangerous because the very reactive mixture may explode. Hence, 
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detailed modeling and simulation will help to understand the complex inter
actions between reactive flow and catalytic surface and can also be used to 
explore reactor conditions which are beyond available experimental facilities. 

In this study, the partial oxidation of methane in a tubular reactor with 
a rhodium catalytic surface is studied at atmospheric and elevated pressure. 
We use detailed models for the transport and both the gas phase and surface 
reactions. The competition between partial oxidation, forming the desired 
products H2 and CO, and complete oxidation, forming CO2 and H 20, are 
discussed. In contrast to a former study [4], the adsorption of H, 0, and OH 
radicals on the catalyst is taken into account in the present work. 

2 Numerical Model 

The numerical simulation is based on the CFD code FLUENT [3]. The code 
is well established and can easily be used to set up fluid flow problems and 
to solve them. However, modeling of detailed chemistry in current versions is 
limited because of a maximum number of reactions and difficulties to handle 
stiff chemistry. Furthermore, FLUENT's surface reaction model does not take 
the surface coverage into account. Therefore, we coupled the FLUENT code to 
external subroutines that model detailed gas phase and surface chemistry [4]. 
In this model, the state ofthe catalytic surface is described by its temperature 
and the coverages of adsorbed species which vary in the flow direction. 

Sketches of laboratory-scale short contact time reactor and tubular reac
tor model are shown in Fig. 1. This tubular reactor serves as a model for 
a single pore of the monolithic catalyst. Typical pore diameter varies be
tween 0.25 and 1 mm, while the length of the catalytic part of the reactor 
is typically 1 cm. In these small diameter channels the flow field is always 
laminar. Experimental measurements indicate only small temperature gradi
ents over the catalyst for situations studied in this work. In the simulation, 
the catalytic wall is assumed to have a constant temperature. An adiabatic, 
chemically inert wall, 1 cm in length, is used in the model to simulate the 
experimentally used heat shields in front of and behind the catalytic section. 

The tube wall catalytic reactor is described by the two-dimensional con
servation equations using cylindrical geometry where the axial direction, z, 
and the radial direction, r, are the independent variables. At the tube center
line, a symmetry boundary condition is applied at which all variables have a 
zero normal gradient, except the velocity component normal to the bound
ary. This normal velocity vanishes at the symmetry boundary. A structured 
grid is used for the simulation; the grid must be very fine around the cata
lyst entrance to resolve the flow field. The total number of grid points varied 
between 103 and 104 depending on reactor diameter and external conditions 
such as temperature. The number of computational cells with surface reaction 
boundaries varied between 30 and 100. 
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Fig. 1. Sketches of a laboratory-scale reactor (top) and the tubular reactor model 
representing a single pore of the monolith (bottom). 

3 Chemical Reaction System 

The formation of syngas from methane/oxygen mixtures on noble metal cata
lysts is characterized by the competition between a complete oxidation chan
nel globally written as 

L1 HR = - 890 kJ /mol 

and a partial oxidation channel written as 

L1 HR = - 36 kJ/mol . 

Appropriate catalytic material and residence time must be chosen to 
achieve high syngas selectivity. Rhodium coated foam catalysts with a resi
dence time of approximately one millisecond are capable of producing high 
syngas selectivity (2:90%) with a high methane conversion (2:90%) [2]. 

The oxidation of methane can occur both on the surface and in the gas 
phase. It is generally assumed that the influence of gas phase chemistry on 
the overall conversion can be neglected at atmospheric pressure because the 
residence time is on the order of one millisecond, a time which is too short 
to ignite the mixture homogeneously. Furthermore, the radicals formed in 
the gas phase may recombine on the surface of the small diameter channel 
inhibiting a chain branching reaction. However, an increasing role of gas phase 
chemistry is expected with increasing pressure. 

The gas phase reaction scheme is based on an elementary-step mechanism 
developed for hydrocarbon oxidation by Warnatz et al. [5]. This mechanism 
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is reduced by calculation of a homogeneous reactor under given conditions in 
order to keep the 2-D simulation tractable. The reduction results in a mech
anism containing 164 reactions among 22 chemical species. The kinetic data 
of the pressure dependent reactions are chosen according to the reactor pres
sure. The crucial steps of the gas phase conversion of methane under given 
conditions are as follows: Hydrogen abstraction from the methane molecule, 
mainly by H, 0, and OH radicals, which leads to CH3 radicals. These rad
icals will either be oxidized to CO and CO2 via intermediates or they can 
recombine to C 2H6 . Ethane can subsequently be dehydrogenated to ethy
lene. A radical pool must be established before gas phase conversion is fast 
enough to compete with catalytic conversion. Because of the fast complete 
oxidation channels, gas phase reactions are expected to decrease syngas selec
tivity. Aside from this decrease in reactor performance, gas phase chemistry 
has the potential of flames and explosions and must be understood from a 
reactor safety point of view. 

The surface chemistry model is based on the reaction mechanism devel
oped by Hickman and Schmidt [1 J for high-temperature partial oxidation of 
methane in a short contact time reactor with a Rh coated foam monolith. 
This mechanism assumes dissociative methane and oxygen adsorption, for
mation of CO, CO2 , H2, and H20 via OH, and desorption of products. All 
reaction steps are reversible except methane adsorption and CO2 desorption. 
It is assumed that oxygen is adsorbed non-competitively with other species 
whereas all other species are adsorbed competitively. More details such as 
reaction order can be found in the original work [1 J. We extended this mech
anism by three reactions being the adsorption of H, 0, and OH radicals. The 
sticking coefficients for these steps are assumed to be unity. 

4 Results and Discussion 

The simulation of the following case will be discussed as an example of cat
alytic syngas formation in a partial oxidation reactor: a methane/oxygen 
mixture (volumetric ratio 1.8, 30% nitrogen dilution) flows at a uniform inlet 
velocity of 1 m/s and at 298 K into a cylindrical tube 3 cm in length with a 
diameter of 0.5 mm as sketched in Fig. 1. The 1 cm long catalytic wall has 
no temperature gradient in the axial direction. The catalyst is assumed to be 
a film on the wall. The wall is assumed to be adiabatic and chemically inert 
before and after the catalytic section. The conditions are close to experiments 
carried out by Bodke and Schmidt [2], in which a 65 ppi Rh/a-Ab03 foam 
monolith was used as catalyst. An auto-thermal reactor temperature of 1073 
K was measured by a Pt/Pt-13%Rh thermocouple with an accuracy of 150 
K and no axial temperature gradients are reported. The total pressure now 
is 1.4 bar. 

Figure 2 shows the calculated mass fractions of the reactants CH4 and O 2 
and the main products CO2, H20, CO, and H2 as a function of position in 
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Fig. 2. Mass fraction of CH4 , O2 , CO2, H20, CO, and H2 as a function of position 
in the reactor. 

the reactor. The catalytic part of the tubular reactor is between 0 and 10 mm 
axial position (z) and the radial position (r) is set to zero at the tube axis so 
that the catalytic wall is at r = 0.25 mm. The flow direction is from left to 
right. Methane oxidation starts directly at the catalyst entrance where large 
radial and axial gradients are formed. At the catalyst exit, however, there is 
still some methane left, the methane conversion being 90.1 %. In contrast to 
methane, oxygen is completely (99.96%) consumed in the catalytic reactor. 

The formation of hydrogen and carbon monoxide as the desired products 
and the formation of water and carbon dioxide as the undesired products 
compete at the catalyst entrance. The strong radial profiles indicate that 
methane is almost completely oxidized by surface reactions. In the beginning 
the oxygen concentration is large enough to quickly produce a significant 
amount of CO2 and H20 leading to steep radial concentration gradients of 
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these species. One millimeter downstream from the catalyst entrance, the 
complete oxidation channels practically extinguishes, although there is still 
a considerable oxygen in the gas phase. In this region oxygen is completely 
used for CO formation. It should be mentioned that the formation of syngas 
exceeds the formation of the combustion products even in the first part of 
the catalytic monolith. The higher diffusion coefficient of hydrogen compared 
to that of carbon monoxide leads to smaller radial gradients of H 2 . 
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Fig. 3. Surface coverage as a function of the axial position (z) in the reactor. The 
axial position is zero at the catalyst entrance. 

The role of gas phase chemistry in the overall conversion at atmospheric 
pressure, 1.4 bar, is revealed by a comparison of a simulation with only surface 
chemistry and a simulation with both surface and gas phase chemistry. Both 
simulations do not show any significant differences in total conversion and 
selectivity or in species concentration profiles. The number of radicals such 
as OH being 10-10 is too low to initiate gas phase conversion. Hence, gas 
phase chemistry does not play a significant role for syngas formation on Rh 
in the reactor at atmospheric pressure in the present model. 

The calculation of surface coverage as a function of the axial position in 
the reactor is shown in Fig. 3. In the catalyst entrance region, the major 
surface species are CO(s), H(s), and O(s). In this region, the oxygen concen
tration is still large, explaining the CO2 and H20 formation. CO(s) is formed 
very fast from C(s) after dissociative methane adsorption. The rate-limiting 
step for water production is the OH(s) formation because OH(s) immediately 
leads to water due to the high hydrogen coverage, H(s). This fast OH(s) con-
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sumption also results in a OH(s) coverage being lower than 10-7 . The acti
vation energy for C02 formation is similar to that of OH formation which 
results in the production of CO2. Farther downstream, the oxygen coverage 
rapidly decreases, and therefore, any adsorbed oxygen is consumed by CO(s) 
formation which desorbs before it can be completely oxidized. 

The straight channel geometry is obviously a simplification of a foam 
monolith where the pores vary in diameter and length and may be connected. 
Furthermore, the surface reaction mechanism was established by fitting the 
experimental results to a one-dimensional model which neglects transport 
effects [1]. However, the calculated selectivities (C and H atom based, re
spectively) and conversion agree quite well with the experimental data: CH4 

conversion is 90.1 % (experiment: 88.9%), O2 conversion 99.96% (100%), H2 
selectivity 90.6% (91.0%), CO selectivity 95.5% (93.5%). The calculated tem
perature of the catalytic part of the reactor wall is 1070 K, which is deter
mined from conversion and selectivity assuming a global adiabatic process. 

The industrial application of short contact time reactors depends on the 
possibility of running the reaction at higher pressures. In laboratory exper
iments, measurements of the pressure dependence are limited due to safety 
and costs. Hence, the following simulation explores pressure conditions which 
are beyond available experimental facilities. Now, the reactor pressure is 10 
bar, all other conditions are taken from the atmospheric pressure simulation 
as discussed above. The temperature of the catalytic wall is kept constant at 
1070 K. Figure 4 exhibits gas phase profiles of CH4 , CO2, CO, and OH mass 
fraction, all of them occur in surface and gas phase reactions as well. The 
reactor is not long enough for complete conversion of methane. There also is 
still a radial gradient of CO near the exit of the catalytic part of the reactor 
(z = 10 mm). In the catalyst entrance region, the complete oxidation takes 
place on the surface as already shown for atmospheric pressure. However, the 
formation of the combustion products continues behind this entrance region 
mainly due to gas phase reactions as shown for CO2. The influence of the 
gas phase chemistry can also clearly be seen from the fact that the CO2 for
mation continues behind the catalytic section of the reactor (z ~ 10 mm). 
OH radicals are an important precursor of complete oxidation of methane. 
They can not only be formed on the surface and consequently desorb into 
the gas phase, but also adsorb on the surface and recombine there. Figure 
4 reveals that the catalytic surface (0 mm :::; z ~ 10 mm) acts as a sink for 
OH radicals which partly suppressed gas phase reactions. In comparison to 
the former study [4], where adsorption of 0, H, and OH were not taken into 
account, the present model decreases the influence of gas phase chemistry. 

Summarizing, gas phase reactions lead to an increase of undesired com
plete oxidation products at a pressure of 10 bar. A comparison between 
the full (surface plus gas phase reactions) simulation and one, which ne
glects gas phase reactions, reveals a decrease of syngas selectivity of only 
1 % to 3%. However, homogeneous reactions are expected to become more 
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and more significant at even higher pressure of 20 - 30 bar at which an in
dustrial application should be operated. The surface chemistry of radicals, 
adsorption/recombination versus formation/desorption, plays an important 
role. Therefore, more reliable kinetics data of radical surface reactions are 
necessary to quantitatively understand reactor performance at high pressure. 
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~ 
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Fig. 4. Mass fraction of CH4 , C02, CO, and OH as a function of position in the 
reactor at 10 bar. 
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Abstract. Efficiency of high-order essentially non-oscillatory (END) approxima
tions of conservation laws may be drastically improved if ideas of multiresolution 
analysis are taken into account. These methods of data compression not only re
duce the necessary amount of discrete data but can also serve as tools in detecting 
local low-dimensional features in the numerical solution. We describe the math
ematical background of the generalized multiresolution analysis as developed by 
Abgrall and Harten in [2,5,6). The functional analytic background is ultimately 
reduced to matrix-vector operations of linear algebra. We consider the important 
case of multiresolution analysis of cell average data which is used in finite volume 
approximations. 

1 Introduction 

One of the most important tasks of Computational Fluid Dynamics (CFD) 
is the design of highly accurate, robust and efficient numerical methods for 
the simulation of compressible fluid flow. 
The most sophisticated numerical methods combining accuracy with robust
ness are finite volume approximations based on ENO recovery procedures, 
see for example [1,7,8]. These methods are a priori not very efficient since 
all of the flow field is treated with the same expensive algorithm: stencil se
lection, ENO recovery, solution of local Riemann problems, although this is 
only required across and close to shocks and contact discontinuities. Here the 
idea of the generalized multiresolution analysis (MRA) starts: The function 
or the discrete data is analyzed by decomposing it into different scale com
ponents. If some of the scale coefficients fall below a certain tolerance they 
are neglected which corresponds to data compression. The main advantage 
in comparison with wavelets is the ability to handle unstructured grids. 
The mathematical background of the generalized multiresolution analysis can 
be found in [4]. Section 2 is concerned with the main body of this work, the 
description of MRA for cell averages on unstructured grids. Numerical results 
computed with the tools of section 2 are presented in section 3. More detailed 
information about the work and more numerical results can be found in [4]. 
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2 Multiresolution of cell averages on unstructured 
grids 

2.1 Volume agglomeration and multiresolution 

We consider a triangulation ilk of a bounded domain {l C IR2 where we 
assume the elements {If E ilk to be bounded by polygons and furthermore 
that 

Nk 

{l = U {If, 
i=l 

i.e. a{l is also assumed to be polygonal. We call the elements {If the cells of 
the triangulation {lk. 
On each of the cells we consider linear functionals 

which are referred to as cell averages. A sequence of triangulations {{lk }t=o 
is defined by volume agglomeration following the algorithm described in [4]. 
In general two to four cells are agglomerated. The algorithm makes sure that 
the form of the cells is close to a circle. 
We end up with a sequence {{lk}t=o in which no is the finest and ilL the 
coarsest triangulation, i.e. N k +1 < N k • We now localize our point of view: The 
multiresolution analysis on the whole triangulation can be entirely described 
if we look on the local problem of the agglomeration of q fine cells {If E 
nk . _ 1 . t 11 nk+l nk+l 
Jt ,Z - , ... , q, In 0 one coarse ce Hj E H . 

2.2 Restriction and prolongation 

The (nested) discretization 'Dk on the q cells {If is described by 

'D U .- (-uk -uk)T _. vk E mq _. Vk k .- l' ... , q -. Jl\). -. • 

The representation DZ+ 1 of the local restriction operator is defined by 

Since the prolongation is the right inverse of the restriction we are looking for 
a mapping Pt+l : IR ----- IRq, such that the right inversity of the prolongation 
to the restriction operator 

D k+1 pk 1 k k+l = 
holds true. 
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Lemma 1. A necessary and sufficient condition for P/:+1 := (7rf, ... , 7r;)T 
to be the representation of a prolongation operator is 

q 

L l.nfl7rf = I.nJ+1I· 
i=l 

From this observation it is easy to construct a variety of recovery operators 
'Rk+1. 

2.3 Sophisticated recovery operators 

More sophisticated classes of recovery operators can be found in polynomial 
recovery procedures used in ENO methods, see [1,7,8]. 
Here, a polynomial 7rj of certain degree is computed on the coarse grid such 
that the recovery condition 

holds. For the sake of simplicity the superscripts 'k' and 'k + l' for 7rj and 
'iij, respectively, are neglected. 
Now a recovery operator can be defined by means of 

It is shown in [4] that the property of Lemma 1 is fulfilled. 
At no point reference was made to the polynomial structure of 7rj. Thus, 
any recovery function 7rj on .nJ+l respecting the recovery condition defines 
a valid prolongation operator. For example polynomial recovery algorithms 
described in [1,7,8] belong to this category. 
However, in this work polynomial recovery is implemented as follows. If a := 
(ai, (2) denotes a multiindex we want to compute quadratic polynomials on 
the coarse grid. Let v denote the number of neighboring cells of .nJ+1 and 
their neighboring cells. We then require 

< A(~i+l),7rj > = 'iij 
< A(.ni +1),7rj > = 'iii ,i = 1, ... , v. 

(2) 

to hold for a second degree polynomial7rj(x) = Llal~n aa(x-bj ),,'. Note that 

bj denotes the barycenter of .nJ+1. We always try to compute a quadratic 
polynomial. However, if v is too small (this may happen at a few places at 
the boundary of the domain) we confine ourselves to a linear polynomial. 
In general, the system (2) will be overdetermined since v is larger than six 
almost everywhere. Solving (2) with a least squares approach results in a 
polynomial with < A(.n7+1),7rj >=1- 'iii,i = j,1, ... ,v, in general. Thus, we 
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have to enforce the conservation ofthe cell average on n;+1 by solving instead 
the system 

,i = 1, ... ,v 

for a polynomial ifj sligthly modified to ensure the recovery condition (1). A 
detailed description can be found in [4]. 

3 Numerical results 

The test case presented here was carried out using the numerical solution 
of the double Mach reflection on a wedge by the WENO (weighted ENO) 
scheme; for a complete description see [3]. The sequence of coarser grids was 
computed using the agglomeration algorithm described in [4]. Further tests 
were analyzed in [4]. 

By storing the coefficients of the prediction errors that do not fall below 
a certain tolerance c we restricted the discrete cell data from the finest to 
the coarsest grid. Thus, only the data on the coarsest grid and the remaining 
coefficients of the prediction errors after restriction had to be stored. We 
reconstructed the data from the coarsest to the finest grid in consideration 
of the remaining prediction error coefficients. 

Note that not the scale coefficients, but rather the prediction errors were 
calculated and truncated. The computation of the scale coefficients is only of 
theoretical interest in the case of data compression: 

• For computing the scale coefficients, a system of linear equations has to 
be solved for each coarse cell with sums of fine cell areas as matrix entries. 
This leads to a 1jh2 scaling that can hardly be handled on unstructured 
grids. This results in scale coefficients of different order of magnitude 
than the prediction errors. Thus, it is not recommendable to truncate 
the scale coefficients, because in this way the prediction errors cannot be 
sufficiently controlled. 

• The computation of the scale coefficients does not reduce the required 
memory in all cases: Consider a coarse cell and its four fine cells. The 
calculation leads to a presentation of the errors with three scale coef
ficients. However, if there are only one or two prediction errors, more 
memory can be saved without operating with the scale coefficients. 

Two different compression rates were calculated. These rates indicate the 
percentage storage saved in comparison to the storage of all coefficients of the 
prediction errors and the data on the coarsest grid (1. rate) and the storage 
of the data on the finest grid (2. rate), respectively: 
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1. Compression rate: 

100 _ 100· (I{all cells of all grids}I-I{pred. errors < e}1) 
I {all cells of all grids} I 

2. Compression rate: 

100 _ 100· (I{ all cells of all grids} I - I {pred. errors < e}l) 
I {all cells of the finest grid} I 

In addition, the L 1- and Loo-errors were calculated, as given in table 1. 
Inspection of the table also reveals that a sequence of five and nine grid lev
els was used, respectively, with e being e = 10-2 ,10-3 and 10-4 . The level 
dependent ek are defined in [4]. 

Test case: Numerical solution of a WENO scheme 

The finest grid on the wedge contains 63497 cells which corresponds to 
h = 1/120, the fifth 1607, and the ninth 39 cells. 

In this test case many prediction errors had to be stored even on the finest 
grid which is clearly seen in figure 1. The first column of the figure shows the 
isolines of the cell data reconstructed locally on each cell. The errors shown 
right of the isolines refer to the transition from the function on the left to the 
one plotted below. Nevertheless this yields rather good compression rates of 
75.67% and 60.27%, respectively, with e = 10-2 • With decreasing e the com
pression rates decrease dramatically: Setting e = 10-4 the 2. rate amounts 
to 0.97%. Thus, in this case the effort of the multiresolution algorithm does 
not remunerate. The comparison of the compression rates indicates that ap
plication of all nine grids is not recommendable. In all cases the usage of five 
grids leads to similar compression rates as application of nine grids. 

# level £-var L1-error Loo-error 1. cpr.-rate 2. cpr.-rate 
10 2 2.22e-03 2.93e-02 75.67% 

5 10-3 1.37e-04 2.47e-03 53.17% 
10-4 3.96e-06 2.1Oe-04 39.36% 
10 2 2.80e-03 3.00e-02 75.89% 

9 10-3 1.68e-04 3.04e-03 53.27% 
10-4 4.86e-06 2.12e-04 39.49% 

60.27% 
23.53% 
0.97% 
60.25% 
22.96% 
0.23% 

Table 1. Numerical solution of a WENO scheme: errors and compression rates 
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4 Conclusions 

We have presented a fairly general theory of generalized multiresolution anal
ysis based on the work of Harten and Abgrall. Our central interest is in the 
analysis of discrete data from Computational Fluid Dynamics and hence the 
multiresolution of cell averages appears to be the main topic. All operations 
can be broken down to simple matrix-vector arithmetic. 
In particular, the representation of the scale coefficients is done with the help 
of basis matrices (not presented here, see [4]). A generally applicable agglom
eration algorithm for arbitrary triangulations was given and a reliable and ro
bust prolongation procedure on unstructured grids was developed. Numerical 
experiments document the ability of the algorithms described to accurately 
detect discontinuities and to allow massive data compression. 
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Abstract. In this paper a brief review will be presented on the application of 
Computational Fluid Dynamics (CFD) to the field of Chemical Reaction Engineer
ing (CRE) with emphasis on multiphase flow due to its practical importance. The 
theoretical framework will be briefly discussed together with available computa
tional strategies for dispersed multiphase flows. Finally some typical results will be 
presented for one particular class of mutiphase flow. 

1 Introduction 

In the last few decades Computational Fluid Dynamics (CFD) has become 
a very powerful and versatile tool for the analysis and solution of problems 
which are of considerable interest to the chemical engineer. Due to ongoing 
developments in both numerical algorithms for fluid flow and computer hard
ware it can be anticipated that this tool will become increasingly important 
for the analysis and improvement of existing process equipment and design 
of new process equipment. 

2 Theoretical framework 

For each continuous phase k present in a multiphase system consisting of 
N phases, in principle the set of conservation equations for mass, momen
tum and thermal energy can be applied. If one or more of the N phases 
consists of solid particles, the Newtonian conservation laws for linear and 
angular momentum should be used instead. The resulting formulation of a 
multi phase system will be termed the local instant formulation. Through the 
specification of the proper initial and boundary conditions and appropriate 
constitutive laws for the viscous stress tensor the hydrodynamics of a multi
phase system can in principle be obtained from the solution of the governing 
equations. However, for most systems of practical interest the analysis of mul
tiphase systems on basis of the local instant formulation is intractable, even 
for existing and near-future super-computers, and consequently some kind of 
simplification must be made. 

F. Keil et al. (eds.), Scientific Computing in Chemical Engineering II
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2.1 Eulerian approach 

The aforementioned simplification can be achieved through a continuum 
mathematical description of the multiphase system. The derivation of the 
continuum equations is usually based on spatial averaging techniques where 
the point-hydrodynamic variables are replaced by local averaged variables. 
For non-reactive multiphase isothermal systems involving laminar flow the 
conservation equations for mass and momentum are respectively given by: 

a N_ 
at (PkUk) + (V . PkUkUk) = -ek Vp - (V . ekTk) + L M kl + Pkg (2) 

1=1 

where Pk, Uk, ek and Tk represent respectively the macroscopic density, veloc
ity, volume fraction and viscous stress tensor of the kth phase, p the pressure, 
M kl the interphase momentum exchange term between phase k and phase 1. 

2.2 Eulerian-Lagrangian approach 

In multi phase systems involving one or more dispersed phases an alterna
tive to the aforementioned complete continuum representation is possible by 
adopting a Lagrangian description for these phases. The advantages of this 
mixed Eulerian-Lagrangian approach are its greater generality and flexibil
ity with respect to the incorporation of microscopic transport phenomena 
whereas its relatively high (compared to completely Eulerian approaches) 
computational load constitutes its most important disadvantage. Sokolichin 
et al. (1997) have compared the Euler-Euler versus the Euler-Lagrange ap
proach for dispersed gas-liquid two-phase flow and found only identical results 
in case proper numerical schemes for the convective transport terms were 
employed in their Euler-Euler model. If a Lagrangian description is adopted 
to represent the dispersed phase, for each individual particle (or bubble or 
droplet) an equation of motion is solved: 

d ,,
dt (m/iii) = L.. Pi (3) 

where mi, Vi represent respectively the mass and velocity of the ith particle 
and L Pi the sum of the forces acting on the ith particle. Forces due to 
gravity, drag, virtual mass, vorticity in the continuous phases and electrical 
forces can be included in this term. The particle position vector is calculated 
from: 

d -x·-v· dt ,- , (4) 

The solution of differential equations (3) and (4) can be obtained with stan
dard numerical integration techniques. Depending on the volume fraction 
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of the dispersed phase one-way coupling or two-way coupling between the 
dispersed phase and the continuous phase prevails. In systems involving (tur
bulent) multiphase flow at very small volume fraction of the dispersed phase, 
say smaller than 10-6 , one-way coupling may be assumed. At such low vol
ume fractions the effect of the particles on the turbulence structure in the 
continuous phase is negligible while particle-particle interactions (i.e. colli
sions) do not playa role. For systems with higher volume fractions (10-6 to 
10-3 ) the turbulence structure of the continuous phase is influenced by the 
dispersed phase while particle-particle interaction can still be neglected and 
two-way coupling between the phases has to be accounted for. With respect 
to the effect of the dispersed phase on the turbulence structure it can be men
tioned that the ratio of the particle response time Tp and the Kolmogorov 
time scale TK determines whether the particles will enhance the production 
rate of turbulence energy (Tp/TK > 100) or increase the dissipation rate of 
turbulence energy (Tp/TK < 100). For still higher volume fractions of the dis
persed phase particle-particle interaction (i.e. collisions) becomes important 
and four-way coupling has to be accounted for. In this case an integrated 
modelling approach is required combining features of Molecular Dynamics 
(MD), to effectively deal with the huge number of particle-particle and/or 
particle-wall collisions, and Computational Fluid Dynamics (CFD) to obtain 
the velocity distribution in the continuous phase (see section 4). 

3 Computational strategies for the Eulerian 
Lagrangian approach 

For dispersed multiphase flow roughly speaking three different situations and 
corresponding computational strategies can be distinguished (also see Figure 
1 ): 

case a case b case c 

Fig. 1. Different situations that can be distinguished in modeling dispersed multi
phase flow. 

a) dilute flows where on the average less than one particle is present in a 
computational cell. 
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b) dense flows where a relatively high number of particles are present in a 
computational cell. 

c) dilute or dense flows where a particle contains a large number of compu
tational cells. 

where it should be mentioned that the dispersed phase could also consist 
of drops or bubbles which could, in principle, be deformable. The situation 
for case a) arises when suspensions are relatively dilute and the particles 
are small. Depending on the exact value of the volume fraction of the dis
persed phase one-way coupling or two-way coupling prevails (Pan and Baner
jee (1996a». With one-way coupling particles are being moved in response to 
the fluid motion without feeding bac effects to the continuous phase whereas 
in two-way coupling feedback effects are taken into account. As discussed 
in detail by Pan and Banerjee (1996a) care must be taken to correctly im
plement two-way coupling. For two-way coupling, different computational 
strategies are used depending on the fact whether there is only one particle 
in a computational cell or many. In case b) we deal with dense flows and in 
our computational strategy four-way coupling has to be accounted for since 
there is not only mutual interaction between the suspended particles and the 
continuous phase but also particle-particle interactions (i.e. collisions). The 
example presented in section 4 belongs to this class of multiphase flow. In 
case c) the relative size of the particles (with respect to the computational 
cells) is large enough that they contain many hundreds or even thousands of 
computational cells. It should be noted that the geometry of the particles is 
not exactly represented by the computational mesh and special, approximate 
techniques (i.e. body force methods) have to be used to satisfy the appro
priate boundary conditions for the continuous phase at the particle surface 
(see Pan and Banerjee (1996b». Despite this approximate method, the em
pirically known dependence of the drag coefficient versus Reynolds number 
for an isolated sphere could be correctly reproduced using the body force 
method. Although these computations are at present limited to a relatively 
low number of particles they clearly have their utility because they can pro
vide detailed information on fluid-particle interaction phenomena (Le. wake 
interactions) in turbulent flows. 

4 Results 

In this section a few illustrative computational results will be presented which 
have been obtained for dispersed gas-liquid two-phase flow. For this type of 
two-phase flow Delnoij et al. (1997) developed a detailed hydrodynamic model 
based on a mixed Eulerian-Lagrangian approach. Their model describes the 
time-dependent motion of small, spherical gas bubbles in a bubble column 
operating in the homogeneous regime where all relevant forces acting on the 
bubble (drag, virtual mass, lift and gravity forces) were accounted for. Di
rect bubble-bubble interactions were accounted for via an interaction model 
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which resembles the collision approach followed by Hoomans et al. (1996) to 
model gas-fluidized beds. Delnoij et al. investigated the effect of the bubble 
column aspect ratio on the prevailing flow structure and compared their com
putational results with experimental data reported by Chen et al. (1989). In 
Table 1 the important parameters used in their numerical simulations are 
summarized. Chen et al. reported a transition in the gas-liquid flow pattern 
in case the aspect ratio of the column changed from two to four. For an aspect 
ratio of two the Gulfstream type of liquid circulation was predicted whereas 
for an aspect ratio of four a highly dynamic liquid flow pattern with multi
ple vortices was computed. From computer animations Delnoij et al. could 
observe that these vortices were generated at the free surface. Furthermore 
these vortices were found to be positioned staggered with respect to each 
other in the column. In part these computational results were supported by 
Chen's findings. The only major difference with the experimental observa
tions of Chen et al. was the fact that the aforementioned transition already 
occurred at an aspect ratio of one. This discrepancy is most likely due to 
the two-dimensional nature of the model developed by Delnoij et al. As an 
illustration in Figure 2 a few plots of instantaneous bubble configurations 
and liquid phase velocity fields are shown for bubble columns with an aspect 
ratio of 2.0 (top) and 7.7 (bottom). From this figure it can be clearly seen 
that the flow structure is significantly affected by the column aspect ratio. 

5 Conclusions and future research 

The variety and degree of complexity of systems encountered in industrial 
practice demands for an integrated modelling approach where models with 
increasing degree of sophistication should be used to feed models which in
voke sub-models with a strong empirical base. For dispersed multiphase flows 
mixed Eulerian-Lagrangian models offer the possibility to develope closure 
laws which can subsequently be used in a multi-fluid framework suited for the 
simulation of macroscopic systems of interest. In this connection also the Lat
tice Boltzmann method and Stokesian dynamics should be mentioned which 
offer great potential for simulation of concentrated suspensions in which hy
drodynamic interaction has to be accounted for. Turbulence modelling of 
multiphase flow systems requires major attention in the near future. Also 
the development of closure laws for phenomena taking place in the vicinity 
of interfaces such as coalescence, break-up and accumulation of impurities 
should be considered in more detail. Once these requirements have been met, 
in principle it would be possible to predict a.o. flow regime transition and the 
spatial distribution of the phases with confidence which is of utmost impor
tance to the chemical engineer dealing with the design of (novel) multiphase 
reactors. 
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Fig. 2. Effect of bubble column aspect ratio LID on the flow structure (top: LID = 
2.0, Bottom LID = 7.7). The reference vector corresponds to a liquid phase velocity 
of 1.0 m/s. 
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Table 1. Parameter values used in the numerical simulations of [2]. 

Column dimensions 

Width 0.1750 m 

Height 

- LjD = 1.0 0.1750 m 

- LjD = 2.0 0.3500 m 

- LjD = 4.8 0.8400 m 

- LjD = 7.7 1.3475 m 

- LjD = 11.4 1.9950 m 

Superficial gas velocity 0.035 mjs 

Physical properties (air-water) 

- Density liquid 1000 kgjm3 

- Viscosity liquid 0.001 kgj(m.s) 

- Density Gas 1.2 kgjm3 

- Bubble diameter 0.002 m 

Number of computational cells 

in lateral direction 20 

Number of computational cells 

in vertical direction 

- LjD = 1.0 20 

- LjD = 2.0 40 

- LjD = 4.8 96 

- LjD = 7.7 154 

- LjD = 11.4 228 

Time step 0.005 s 
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Notation 

D Lateral dimension,m F\ Force acting on 
ith particle, kg.m/82 

9 Gravitational force per L Vertical dimension, m 
unit mass, m/82 

mi Mass of ith particle, kg M kl Momentum source term 
due to interaction between 
phase k and phase 1, kg/(m2 .82 ) 

p Pressure, Pa t Time, 8 

u Velocity, m/8 Vi Velocity of itn particle, m/8 
Greek symbols 
E: Volume fraction p Density, kg/m" 
T Stress tensor, Pa Tp Particle response time, 8 

TK Kolmogorov time scale, 8 

SubscrIpts 
i Particle index number k Referring to k 

phase in multi phase system 
K Kolmogorov p Particle 
Superscripts 
I T Transpose 1- Vector quantity 
Operator 
IV' Gradient IV'. Divergence 
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Abstract. Especially the scale up of analytical chromatographic columns for prepar
ative purposes in combination with complex separation conditions leads to non
trivial problems. CFD-Simulation together with basic experiments is an efficient 
tool to clear up and to optimise the multiple coherent processes in fixed bed 
columns. For detailed examinations of the inner column effects a three dimen
sional model for a fixed bed chromatographic column was developed by using the 
commercial CFD software package FL UENTT M. Based on the results of the CFD
Simulation we want to present the interdependence between the column diameter 
and the height of a theoretical plate [HETPj. Furthermore we will specify the ef
fect of the inlet and outlet distributors (frits) on the HETP. In our simulations we 
could show the possibility to optimize the separation performance of the column 
by sub cooling the feed below the temperature of the column wall. 

1 Introduction 

When using large-diameter high-performance liquid chromatography columns, 
factors such as fluid dynamic effects at the inlets and outlets [1,2]' tempera
ture distribution effects [2-6] and heterogeneity of the packed bed [7-9] play 
an important role. Because of these reasons the scale up becomes a non
trivial process [9,10J. In this paper the results of the distribution simulation 
of a non retarded substance will be shown by using a Computational Fluid 
Dynamics (CFD) software package. This model is based on following assump
tions: isothermal conditions and a homogenous fixed bed. Under the above, 
columns with length of 25 cm and diameter of 1 cm, 5 cm and 10 cm were 
simulated. Further, the frit quality was defined and the results of varying it 
were examined. As the second step, the energy balance including the pressure 
loss as a source term and a temperature dependent viscosity were taken into 
consideration. Like in a real column it could be shown that a temperature 
difference between the column wall and the inlet stream leads to a change 
of the radial and axial distribution of the tracer. Based on this effect it's 
possible to predict an optimal process temperature difference to maximise 
the separation performance of the column. Based on the simulation data the 
separation performance was analysed by using the method of moments [2,9]. 

F. Keil et al. (eds.), Scientific Computing in Chemical Engineering II
© Springer-Verlag Berlin Heidelberg 1999



392 M. Lisso et al. 

As a numerical expression of the separation performance, the number of the
oretical separation units (NTU) of the integral tracer profiles at the outlet 
just beyond the column were compared. 

2 Modelling and Simulation 

The simulations were conducted under the following assumptions: 

• Laminar Flow 
• No adsorption 
• Homogenous distribution of the fixed bed inside of the column 
• Axially symmetrical features of the fixed bed 

The Momentum Balance was solved to calculate the velocity field inside of 
the column. For this matter the Navier Stokes Equation was extended in the 
radial and axial directions by a pressure loss term Eq. (1) ( Darcy's law). 

f)p = -~W 
f)z a 

(1) 

Earlier experiments have proved the validity of Eq.(l) that states that the 
pressure loss is a linear function of the viscosity and velocity in a fixed bed. 
Further the viscosity was implemented as a second order function of the 
Temperature to depict the interaction between the Energy Balance and the 
Momentum Balance. The degree of freedom a in Eq. (1) was used to adapt 
the special features of the considered fixed bed. To determine a experimental 
data of the pressure loss of a 6 cm x 21.7 cm column were used [11]. The 
model of the frit was also based on the extended Navier Stokes equation. The 
axial value of a for the frit was determined by experimental data too. For this 
the pressure loss at the same column like above, with frits, but without fixed 
bed was measured [11]. The frit quality Q Eq. (2) was changed by varying 
the ratio of the radial to the axial a-value in the range of 2 to 400. 

(2) 

First experimental results showed that the range of technical frits is be
tween 20 and 300. The quality Q of metal web frits was up to 10 times higher 
compared to sintered frits. The thickness of the frit remained constant at 
5 mm in all simulations. This model aims to examine the effect of varying 
the boundary conditions (BC) at the column wall on the simulated tracer 
profiles. Here the different BCs are defined by Eq. (3) and (4) which were 
implemented and the results compared. 

~~lr=R = 0 
(3) 

(4) 
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Other effects on the band spreading like microscopic velocity distributions, 
the eddy-diffusion and so on were considered in the component balance equa
tion by using axial and radial dispersion coefficients besides the convection 
term. Similar to the component balance the energy balance considered the 
convection term, the conductivity term and the pressure loss over the col
umn as a source term. To calculate the fluid dynamic transportation process 
the commercial software package FLUENT! was used. A structured grid was 
generated to simulate the columns of sizes 1 cm x 25cm; 5 cm x 25 cm and 
10 cm x 25 cm. The lengths of the inlet pipe and the outlet pipe were kept 
constant at 1 cm, at the two ends of the column. The following parameter 
studies were used to examine the effect on the macroscopic velocity field, on 
the tracer distribution and on the separation performance: 

1. Different column diameters with a constant frit quality for an isothermal 
column 

2. Different frit qualities with a constant column diameter for an isothermal 
column. 

3. Effect of the temperature difference between the inlet stream and the 
column wall on the separation performance. 

The procedure of simulation was as following: 

1. Calculate the stationary solution of the momentum balance. The velocity 
was set to zero as an initial condition. 

2. Calculate the stationary solution of the energy balance. The temperature 
inside the column was set to the same temperature of the column wall as 
an initial condition. 

3. Dynamic simulation of the tracer transportation inside of the column. 
The unleaded column was used as an initial condition for the component 
balance equation 

To validate the simulation results the radial tracer distributions were quali
tatively compared with tracer profiles in a real column. 

3 The Velocity Field 

The stationary solution of the Mo
mentum balance leads to the velocity 
distribution of the column. As a result 
the columns can be subdivided into flow direction 

three zones: an inlet zone, an outlet Fig. (1) Simulation results of velocity zones in 
HPLC-Columns 

zone and a central zone fig. (1), which 
is not influenced by the effects of the 
in- and outlet. For this zone the result of the calculation was a plug flow 
profile of the axial velocity across the whole cross section of the column. The 

1 Trademark of FLUENT INC. 
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difference between the theoretical average velocity and the plug-flow velocity 
was observed to be below O.1the velocity profile is a function of the axial and 
radial co-ordinate in the inlet and outlet zone. 

A very important factor for the separation performance of a column is 
the length of the inlet and outlet zone. It effects the curvature of the tracer 
profile in the column. In conclusion it leads to a remixture near the outlet 
and to a decrease in the separation performance. 

The following criterion was defined to determine the end of the inlet zone: 
• The whole axial velocity field had to be situated in a small stripe of 

±0.5% around the average axial velocity. 

The effect of the column diameter on the length of the inlet zone is shown in 
the Fig. (2). 

Effect of the column diam
eter on the length of the inlet 
zone with a constant frit qual
ityat Q = 40 

The increase in the length of 
the inlet zone was much more, 
when the column diameter was 
changed from 5cm to 10 em than 
from 1cm to 5cm. As a conse
quence the curvature of the ra
dial tracer distribution profiles 
increased non linearly too. 

7.0 

0.0 

5 .• 

4.0 

3 .• 

2.0 

1 .• 

2 3 ... 5 e 7 8 $ 10 

Column DI_me«er (em] 

Fig. (2) Effect of the column diameter on the 
length of the inlet zone with a constant frit 
quality at Q = 40 

4 Influence of the BC at the Column 
Wall on the Velocity Field 

The effect of changing the BOs defined by the Eqs. (3) and (4) on the simu
lated tracer profiles was examined. Henceforth two simulations with the same 
numeric and fluid dynamic parameters but different BOs were carried out. 
Based on the simulation results the retention time and the HETP distribu
tion at different locations inside and at the outlet just beyond the column 
were calculated to examine the effect of changing BOs. It was observed that 
the retention times arrived at by using Eq. (3) were always marginally higher. 
The above is the result of smaller cross flow area and the resultant higher 
axial velocity achieved by applying Eq. (4). Since HETP is a function of the 
retention Time, similar differences in the values of the HETP were also ob
served. In conclusion it can be said that the effect of changing BOs at the 
column wall on simulated tracer profile can be ignored provided there are 
enough grid points in the radial direction. For the following calculations we 
used 4 grid points per mm in the radial direction, 2.8 grid points per mm for 
the frit and 1.46 grid point per mm for the fixed bed in the axial direction. 
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5 Qualitative Validation of the Simulation Results 

The qualitative judgements 
of the simulation results are based 
on [2J which used actual exper
iments. Fig. (3) illustrates the 
experimental results of four trac
ers profiles passed through an 
isothermal column with a diam
eter of 6 cm. 

The direction of the velocity 

Fig. (3) Distribution of four tracers passing through 
a real column [2) 

field in Fig. (3) goes from left towards right. The following qualitative features 
are to be observed: 

1. The tracer profiles are parabolic. 

2. The band spread increases as it passes through the column. 

3. At the end of the column first the core of the tracer breaks through the 
outlet pipe, followed by the outer radial zones. 

4. The change of the curvature of the profile is negligible as it passes through 
the column. 

5. Near the column wall no increase in the band spread was observed in 
comparison to the band spread along the radial axis of the column. 

A. Brandt's paper also concluded that the effect of the heating of the 
column core by flow friction on the tracer profile is several times less than 
the inlet and outlet effects [2J. Based on the observations 1 to 5, a few more 
criteria for simulation modelling and the validation of the simulation results 
may be derived. As mentioned in point 5, the column wall doesn't have any 
effect on the curvature of the tracer profile inside of the column. Further there 
is no maldistribution near the wall because of unequal packing like in fixed 
beds with bigger particle diameters. It may be concluded that the simulation 
results are independent of the Be at the column wall. Based on point 4, the 
assumption of a homogenised fixed bed and an axially symmetrical distribu
tion in the model is in agreement with the reality. The covered axial way of 
the tracer inside the column can be calculated as a integral of the local axial 
velocity. In a parabolic velocity field the differences between covered axial 
distance would increase for different radial co-ordinates wich increase with 
time. As a result the curvature of the profile would increase also. This reflec
tion contradicts point 4 of the observations. But the same reflection with a 
plug flow profile of the axial velocity fulfils point 4. So it can be concluded 
that the plug flow profile obtained as a result of the simulation inside the 
column corresponds with a real chromatography column. 
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6 Simulation Results by Varying the Column Diameter 

In the following section the simulated tracer profiles which were obtained 
by columns of different diameters namely 1 cm, 5 cm, and 10 cm will be 
discussed. 

In Fig. (4) the simulated tracer 
profiles inside the columns with 
diameters of 1 cm, 5 cm and 10 
cm are shown. The flow direc
tion is again from left to right. 
The frit quality Q remained con
stant at 40. The tracer profiles 
have been recorded at a normal
ized retention time of 0.17, 0.5 
and 1.0 after the injection ofthe 
tracer. For all simulated tracer 
profiles the points 1 to 5 were 
observed to have met. A com-

k-I .. 

k - IO<. 

)) 1m )} 

0.11 

)) ) 
0.' 10 

TIl!!! 

Fig. (4) Simul ... d trac ... proIil •• ofa column with 
dianeters ofl em, 'em and lOcm 

parison of the simulation results leads to the following conclusions: 

• The curvature of the profiles increased as the diameter of the column 
increased because of the increase of the inlet zone length in the bigger 
columns . 

• At the outlet, the depth of the curvature of the profiles in the bigger 
columns and the larger frit diameter leads to a bigger band spreading 
and a longer tailing in the integral tracer profile behind the column. This 
phenomena is represented in Fig. (5). 

Fig. (5) Effect of the column diameter on the integral tracer profiles in the 
outlet of the column Based on the integral tracer profiles the NTU were 
calculated. The percentage change of NTU was related to the results of the 
1 cm column and can be seen in Fig. (6) . 

..... vaI T .... er p,..m •• II lain. the Calttm .. ... 

U II 1\ tJ u ---Fig. (5) Effect of the column diameter on the 
iotep tracer profiles in the outlet oftbe column 

10 1 
, Z , 4 , • 1 • , 10 

Column DI_t.r lem) 

Fig. (6) Change oflbe NTU by different Diameters 

As the diameter increased from 1cm to 5cm, the NTU decreased by 10% 
and by 35% when the diameter increased from 1 cm to 10 cm. Moreover the 
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increase in the depth of the curvature of the peak profiles in bigger columns 
leads to a larger tailing of the integral tracer profile and a decrease in NTU 

7 The effect of the frit quality on the performance of 
the column 

Simulation studies were made to examine how the changes in the frit quality 
effected the performance of the column. 

The ratio of the radial to the axial pressure loss factor Q Eq. (2) is one of 
the important factors to examine the distribution characteristics of the frit. 
This ratio Q was changed in the range of 400 to 2 to examine the influence 
of the frit quality on the performance of a 5 em x 25 em column. Based on 
experiments the ratio Q of real frits varies between 30 and 400 depending on 
the kind of frits. 

Fig. (7) show the effects of the frit quality on simulated tracer profiles for 
a Q of 400, of 40, of 4 and of 2. 

In general the decrease of Q leads to a stronger parabolic tracer profile 
with a deeper curvature. This effect is strongly non linear and in the lower 
range of Q the tracer profiles are dominated by the frit. The effect on the frit 
quality on the percentage change of the NTU is shown in Fig. (8). 

To calculate the percantage differences all values were compared to the 
results of the simulation with a Q of 400. Further it shows that Q in the range 
of 40 and 4 has a much stronger influence on the overall NTU and asymmetry 
of the integral tracer profile at the outlet pipe just beyond the column than 
the Q in the range of 400 and 40. 

)) )} )" I 
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Fig. (7) Effect on the &it quality Q of simulated 
tracer profiles in a Scm x 25 cm column 
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Fig. (8) Effect ofthe frit quality on the NTU 
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8 Maximisation of the Separation Performance of a 
Column by using an Optimal Temperature Difference 
between the Inlet Stream and the Column Wall 

Since 1956 [12,13] it is well known, that the temperature field effects the ve
locity field and the concentration distribution in a HPLC-Column, because of 
interactions between the temperature and the viscosity. It was prooven, that 
these interactions can be used to influence the curvature of the radial tracer 
profiles and thus to maximize the separation performance. The velocity pro
files by subcooling the feedstream of the columns for different temperatures 
DT is shown in Fig. (9). 

• z."C 
.~ "< 

.u"" , .,"C 

Fig. (9) Effect of coolins tbe reedstream 00 tbe 
radial velocity profile in tbe middle oflbe column 

Fig. (10) Comparision oftra<:er profiles as they pass 
through the column of an isothermal column aod of 
a cooled inlet stream 

These marginal velocity differences lead to changes in the curvaturs of the 
radial tracer profiles as they pass through the column Fig. (10). 

Depending on the temperature difference, this effect led to a slow down 
of the core and an acceleration of the margins of the radial tracer profile. As 
a result, the remixing decreased and the performance of the column could be 
maximised Fig. (11). 

As can be seen in Fig. (11), the NTU can be improved by approximately 
20%. To predict the optimal temperature difference it is also necessary to 
consider the adsorptive interaction of the components. 
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Fig. (11) Effect oflbe Temperature Difference on 
theNTU 
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9 Summary and Outlook 

Based on CFD simulations, the effect of the column diameter and the frit 
quality on the performance of a chromatographic column was examined. To 
evaluate the influence of the parameter variations, the NTU of the integral 
tracer profile in the outlet tube just beyond the column were calculated. Based 
on experiments qualitative features were derived to validate the simulation 
results. 

The results showed that the axial velocity profile in the central zone of an 
isothermal column almost corresponds to the plug flow profile. The velocity 
distribution in the inlet and outlet zones of the column is a function of the 
column diameter and the frit quality. 

An increase in the column diameter leads to a decrease of the NTU. 
Especially here the transition from a column diameter of 5 cm to 10 cm leads 
to a higher reduction than the transition from 1 cm to 5 cm. So the scale up 
behaves non linear. 

To judge the effect of the frit quality on the column performance, the 
ratio of radial to axial pressure loss factor was changed. As a result this 
ratio emerged as an important specification for the distribution and collection 
quality of the frit. Significantly in the high radial pressure range, the small 
changes in the pressure loss factor have a strong influence on the performance 
of the column. 

CFD-simulations can be used to predict optimal process conditions for 
preparative columns for example by changing the temperature differences 
between the column wall and the inlet stream. In the above case the opti
mal temperature difference led to an approximate 20% improvement of the 
separation performance. 

In conclusion CFD simulation is a highly efficient tool to carry out pa
rameter studies and to develop strategies for the scale up and optimisation 
of preparative chromatography. 

Financial support for this project from the Friedrich Flick Forderstiftung 
is gratefully acknowledged. 

References 

1. B. Coq, G. Cretier, J. L. Rocca: " End-Effects and Band Spreading in Liquid 
Column Chromatography"; Jour. of Chrom.; 178 (1979); 41 - 46 

2. Dr.-Ing. A. Brandt: "Untersuchung der Temperaturabhangigkeit der Trennleis
tung in der Fliissig-Chromatographie mit praparativer Zielsetzung"; PhD-Thesis 
at the TU Berlin 1997 

3. O. Dapremont, G.B. Cox, M. Martin, P. Hilaireau, H. Colin: "Effect of radial 
gradient of temperature on the Performance of large-diameter high-performance 
liquid chromatography columns 1. Analytical conditions", J Jour. of Chrom A; 
796 (1998); 81-99 



400 M. Lisso et al. 

Symbols 
D Dispersion mi Mass of the component 
p Pressure Q Factor to define the 

frit quality 
r Radial coordinate R Column radius 
t Time T Temperature 
[2mm] ,,1,T Temperature difference between v Dynamic viscosity 

Feed and Column wall 
w Velocity z Axial coordinate 
Greek Letters 
c¥ Pressure loss factor O'rad Pressure loss factor 

in the radial direction 
C¥ax Pressure loss factor p density 

in the axial direction 
Abbreviations 
[2mm] BC Boundary Conditions HETP Height Equal of 

a Theoretical Plate 
NTU Number of Theoretical Plates 

4. T. Yun, P. Sajonz, Z. Bensetiti, G. Guiochon: "Influence of the heat of adsortion 
on elution band profiles in nonlinear liquid chromatography"; Jour. of Chrom 
A; 760 (1997); 3-16 

5. A. Brandt, G. Mann, W. Arlt: "Temperature Gradients in Preparative high
performance liquid chromatography columns"; Jour. of Chrom A, 769 (1997); 
109-117 

6. A. Brandt, G. Mann, W. Arlt: "Enhancement of the separation efficiency in 
preparative high-performance liquid chromatography columns"; Jour. of Chrom 
A, 796 (1998); 223-228 

7. T. Yun, G. Guiochon: "Visualisation of the heterogeneity of column beds"; Jour. 
of Chrom A, 760 (1997); 17-24 

8. T. Farkas, J. Q. Chambers, G. Guiochon: "Column efficency and radial homo
geneity in liquid chromatography"; Jour. of Chrom A, 679 (1994); 231-245 

9. F. G. Lode, A. Rosefeld, Q. S. Yuan, T. W. Root, E. N. Lightfoot: "Refining the 
scale-up of chromatographic separations"; Jour. of Chrom A, 796 (1998); 3-14 

10. Ch. Heuer, P. Hugo, G. Mann, A. Seidel-Morgenstern: " Scale up in preparative 
chromatography", Jour. of Chromo A, 752 (1996); 19-29 

11. A. Brandt, Schering AG: " Personal correspondence" 
12. H. L. Toor: Ind. And Eng. Chemistry, 48(5) (1956) 
13. I. Halasz, R. Endele, K. Unger: " Jour. of Chrom.", 112 (1975); 37 



On Projection-Based Time-Splitting Schemes 
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Abstract. The simulation of chemically reacting flows in specific situations is a 
basic instrument to predict and understand complex flow phenomena that arise in 
natural sciences (e.g., salt distributions in oceans and related flow structures) as 
well as in engineering sciences (e.g., the optimization of crystal growth processes in 
semiconductor industries). 

Due to the huge computational effort that is needed in implicit algorithms, this 
motivates to develop new, less expensive algorithms which can even be implemented 
on workstations, while giving reasonably accurate solutions. In this contribution, 
a combination of the well-known projection methods of Chorin and Van Kan with 
a semi-explicit time-discretization strategy is proposed. A convergence analysis is 
given to justify this approach. 

1 Introduction 

Chemically reacting flows are described by means of the conservation prin
ciples for momentum, mass and energy. If we consider a bounded domain 
n c JRd, d = 2,3 where the incompressible reacting fluid is in and observe 
its behavior for a period of time [0, tM+d, the dynamics can be described by 
the following system of equations, 

Ut - PrLJ.u + (u· \i')u + \i'p = faCT), divu = 0, 
N 

T t - LJ.T + (u· \i')T = - LhiWi({Yi}~l,T), (1) 
i=l 

i = 1, ... ,N. 

Here, the reacting incompressible flow is modeled by coupling the Navier
Stokes equations for the fluid flow with reaction-diffusion equations for chem
ical reactions, using Boussinesq approximation, see [5]. This model is widely 
used in the control of manufacturing processes, like chemical vapor deposi
tion process modeling for semiconductor materials, and we refer to [4] for 
an abundant list of references in engineering literature. - For simplicity, we 
impose the following initial and boundary value data for the problem under 
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consideration, for i = 1, .. , N, 

u(t)lan= 0, 

u(O) = un, 

T(t)lan= 0, Yi(t)lan= 0, 

T(O) = To, Yi(O) = Yi,o, 
(2) 

In the presented model, Pr is the Prandl number, and Le the Lewis number, 
which both scale different diffusive and the convective characters of the quan
tities in the equations. p = p(x, t) is the scalar pressure and u = u(x, t) E lRd 

the solenoidal velocity field. According to the Boussinesq model, the flow is 
driven by the buoyant forcing term fo(T), which is an affine function of the 
temperature T = T(x, t). Finally, the N-tuple {Yi}~l determines the mass 
fractions Yi = Yi(x, t) of N species indexed by i that constitute the chem
ically reacting fluid flow. Because of the mass conservation principle, there 
holds 0 :::; Yi :::; 1, and 

N N 

LYi = 1, LWi =0, v (x, t) E [l x [0, tM+1), 
i=l i=l 

where Wi denotes the net production/removal rates of species i, for 1 :::; 
i :::; N. The value hi is the enthalpy of the species i divided by its molecu
lar weight, i.e., a measure of the amount of heat that is contained in species i. 

Chemical reactions between the diverse species are described by means of 
the Arrhenius model, in which the Wi takes the form 

m; N 

Wi({Yi}~l,T) = LAje-Ej/RoT II C?,k. (3) 
j=l k=l 

Some parameters are involved in this relation: the frequency factors A j , the 
activation energies E j , and the universal gas constant Ro. Ci denotes the 
concentration of the i-th species, i.e., the mass fraction Yi divided by the 
molecular weight. The 1/j,k are nonegative integers, where at least one of the 
1/j,k is nonzero, for k = 1, ... , N, and each j. 

The goal of this paper is to propose time-splitting schemes in order to 
reduce the computational effort that is necessary for a fully implicit time
discretization. In the latter case, the coupling of the diverse functions in the 
'flow part' and the 'chemical part' finally leads to large discretization matri
ces that limit the flexibility of a fully implicit discretization approach, due to 
restricted computational resources. Second, in order to make sure that the 
discretization is stable, the finite element discretization pairing for the veloc
ity and pressure fields has to satisfy the LBB-condition of Ladyszhenskaya, 
Babuska and Brezzi, cf. [1]. In addition to these difficulties, the nonlinear 
parts that are given by the reaction terms and the convective terms have to 
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be properly discretized. 

Apart from standard notation for Sobolev spaces and norms, we make 

frequent use of the shorthand notations dtc/>m+l := -k{ 4>m+l-1r }, Jjm+l/2 := 
1 = 1 --:-'m+l/2 -m-l/2 
2"{4>m+l +4>m}, 4> := 2"{4> +4> } and Tm+l := min{l,tm+l} in 
the remainder of the work. In the following, C denotes a generic constant 
that depends on the given data of the problem but is independent on the 
time-step k > O. 

2 A first order time-splitting scheme based on Chorin's 
projection method 

In order to reduce the computational effort in a significant way, a splitting 
scheme is proposed subsequently that decouples the computation of iterates 
of velocity field and pressure function, temperature and N mass fraction func
tions at each iteration step. For the present iteration step, stiffness matrices 
can then be constructed from the knowledge of the velocity field, temper
ature and mass fractions from the previous step, and the new iterates for 
these quantities can then be calculated in parallel. Moreover, velocity field 
and pressure iterates can be computed in a decoupled manner through the 
projection method of Chorin, see [2,3]. The scheme SI then reads: 

Given {um Tm {ym}N } determine {um+l pm+l Tm+l {ym+l}N } E 
, , t t= 1 , '" 1, '1.= 1 

(Hl> n H2) x HI/IR x (HJ n H2) x I1~1 (HJ n H2) in the following way: 

1. Start with uO = un, TO = To, {1"i°}:1 = {Vi,O}:I' Then, the following 
steps determine the iterates for m ::::: 0. 

2. Find um +l that solves 

~{um+l _ urn,} _ PrLlum+1 + (um . V')um+l = fo(T m ), 

3. Determine the tuple {um+l ,pm+l} that solves the system 

~ {um+1 _ um+l } + V'pm+l = ° 
divum +1 = 0, u m +1 1 ·n=O 

aD ' 

4. Compute Tm+l that is the solution of 

N 

~ {Trn+l - Trn} - LlTm+1 + (um . V')Trn+l = - L hi W i ( {1"irn}~I' rrn +1 ), 

i=1 

5. The N-tuple {1"im +1 }~1 is governed by 

~{yrn+l _ yrn} _ 2.- Llym+1 + (um. V')ym+l = w({ym+l}N Tm) k t t Le t t t t t= 1, , 
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with k > 0 being the time-step. - Note that all iterates at each time-step 
can be computed in a fully decoupled manner. Furthermore, we can benefit 
from this approach by parallelizing the computation at each iteration step. 
step 3. projects the guess um+! into the space of solenoidal functions, J o, 
um+! := PJo um+!, and can be reformulated in the following way. Applying 
the div-operator amounts to solving a Laplace-Neumann problem for the 
pressure iterate, 

_Llpm+! = -~divum+1 
k ' 

<:I m+11 -0 
UnP an-' 

followed by an algebraic update for the present solenoidal velocity field, 

(4) 

This decoupling strategy in the computation of the velocity field and pressure 
iterates has been proposed by Chorin and is known as a first order projec
tion scheme for solving the incompressible Navier-StQkes equations, see [2,3]. 
Now, owing to (4), scheme S1 implies a pressure-stabilization effect which 
allows to apply even finite element pairings (for a wide range of parameters 
{ k, h} corresponding to time and spatial discretization) that do not satisfy 
the LBB-constraint, see [1]. - Subsequently, we are interested in approxima
tion properties of this scheme. The following convergence results have been 
verified in [7]. 

Theorem 1. Suppose that the given data of the problem (1), (2) are suffi
ciently smooth. For sufficiently small time-steps k ::; kO(tM+1), the solution 
{ um, pm, Tm, {}~m }~1} of scheme S1 then satisfies 

max {/lu(tm) - umll + Tmllp(tm) - pm /l_1 + /IT(tm) - Tmll 
OsmsM+1 

N 

+ L /lYi(tm) - y:m+!11 + Jk(llu(tm) - u m l11 + Fmllp(tm) _ pmll 
i=1 

N 

+ IIT(tm) - T m /l 1 + L IIYi(tm) - y:mlh) } ::; Ck, 
i=1 

for sufficiently small time-steps k ::; kO(tM+1). 

Note that the error statements for the pressure iterates in the norm 
£00(0, tM+1; £2) show lower order of convergence, compared to those for the 
remaining quantities. This reflects arising boundary layers in the structure 
of the error function tm f-+ {p(tm) - pm} that are due to the prescription of 
unphysical, homogeneous pressure data in (4) for the iterates pm. This fact 
is well-understood in the context of the Navier-Stokes equations, see [9,6] 
for further details on this. In particular, optimal convergence behavior for 
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iterates of the pressure function in the scheme can be recovered on compact 
sub domains w of D, i.e., for each wee D, there holds 

(5) 

provided dist(aw, aD) = 0(1), see [9,6J. 
However, this perturbation of iterates for the pressure function also affects 

those for the gradients of the velocity field, and the question is whether there 
is also a crucial impact from the projection step 3. on gradients for the iterates 
that represent concentration and temperature. These quantities are expected 
to be of interest in applications when studying chemical reactions, and we 
therefore address this question here. Surprisingly, it turns out that the answer 
depends on the dimension d of the problem in a crucial way. In fact, in the 
case d = 3 there is a significant impact on the temperature approximation 
and the mass fractions, that is caused by the projection step 3., whereas it is 
negligible in the 2D case. 

Corollary 1. (see [7]) Suppose that the conditions of Theorem 1 are valid. 
Then, the iterates {Tm, {Yr}~d satisfy the improved estimates 

1. in two space dimensions (i.e., d = 2), for all, > 0, and lim,,->o C" = exx 

N 

max vr;;;{IIT(trn) - Trnl1 1 + '" IIYi(tm) - ~rnlll} S; C,k 1-", O<rn<M ~ 
- - i=l 

2. in three space dimensions (i.e., d = 3): 

N 

max vr;;;{IIT(trn) - Trnl1 1 + '" IIYi(tm) - ~mlll} S; Ck3 / 4 . O<m<M ~ 
- - i=l 

3 A second order time-splitting scheme based on the 
Van Kan method 

In the previous section, we discussed a projection method of first order for 
chemically reacting flows. Although slight deficiencies are detected in Corol
lary 1, this projection-based time-splitting scheme seems to be a good com
promise of computational effort and desired accuracy, see Theorem 1. 

In order to improve the accuracy of the method, a higher order projec
tion based time-splitting scheme can be designed in a way that the basic 
discretization via Crank-Nicolson is combined with the second order projec
tion method of Van Kan, [10J. The scheme S2 then reads as follows: 

Given approximations {um - 1 um um- 1 urn pm-l pm Trn-l Tm {ym-l}N 
" " " "1, 1=1' 

{Y;m }~l} of velocity, pressure, temperature and mass fraction functions, 
which are evaluated at time t = tm-l and t = tm , determine { um+ 1, U m+ 1, pm+ 1, 

Tm+l, {~m+l }~l} which is the solution of the following system, for a pa
rameter {3 > ~: 
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1. Start with UO = Uo, TO = To, ~o = }i,o, 1 ~ i ~ N, and Ilpo - p(O)lll ~ 
Ck. Then, the following steps determine iterates, for m 2: O. 

2. Find um+l that solves 

~{um+1 _um} _ 4PrLl{um+1 +um } +N1({Um-iH=o,{um+l-1H=0) 

+ (~- [3)\1pm + ([3 - ~ )\1pm-1 = fo(~Tm _ ~Tm-l). 
2 2 2 2 

3. Determine {um+l ,pm+1} that solves the system 

divum +1 = 0, 

4. Compute Tm+l that is the solution of 

~{Tm+l_Tm} - 4 Ll{Tm+1 +Tm} +N2({Um-lH=o,{Tm+l-1H=0) 

N 
= _ "h.w.(~{ym}N _ ~{ym-1}N F+l/2) 
~ , '2 ' ,=1 2' ,=1' . 
i=l 

5. The N-tuple ym+l := {~m+1}:1 is governed by 

~ {ym+1 _ ym} _ _ 1_Ll{ym+1 + ym} + jJ; ({um-i}l {ym+1-i}1 ) 
k' , 2Le' , 3 l=O', l=O 

= W.({'Y."+l/2}N ~Tm _ ~Tm-l}) 
" ,=1' 2 2 . 

In this formulation, the nonlinear mappings M("')' for j = 1,2,3, stand 
for a second order discretization of the nonlinear convective terms, with the 
possibility of varying explicit or implicit discretizations in the leading first 
part. The first argument in M (" .) has to be divergence free in order to assure 
the stability of the method. Thus, iterates enter into the first argument that 
are already computed from the projection step 3. before. This is stated in 
the way M (., .) = Nj (PJo ', .). - For the purpose of this presentation, we set 
N(-,·) = N j (-, .), for j = 1,2,3, with 

N( {qr-1H=0, {1jJm+l-1H=0) = [{ ~¢m - 4¢m-l} . \1]7V'+1/2. (6) 

The application of this mapping in the algorithm allows for the possibility to 
compute iterates in each iteration cycle in parallel. 

Remark 1. The scheme needs to be modified for the case m = O. For this 
th t · t' h·ft d . . 1" c ("':;'1/2 n)"':;'1/2 case, e convec lve erm lS once s 1 e to lts lmp lClt wrm, u . v U + 

1 (d' "':;'1/2)"':;'1/2 d h h' [3 0 h d . 2' IV U U ,an t e c Olce = suppresses t e secon pressure term ln 
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the momentum equation. To preserve second order of convergence, the right 
-1/2 

hand side in step 2. has to be replaced by fo(T ), and correspondingly the 
right hand sides of the steps 4. and 5. by their implicit forms. This amounts 
to a coupling of the total scheme S2 in the first step. 

As it is known from the studies of the Van Kan method in [6]' this method 
only performs in an optimal way in case certain (regularity) conditions are 
satisfied by the solution; on the other hand, there exist modifications of this 
projection method that can even handle general flow constellations with opti
mal approximation properties, see [6] on this matter. The following theorem 
is verified in [8]. 

Theorem 2. Suppose that the given data of (1), (2) as well as its solution 
(compatibility condition) are sufliciently smooth and that the initial step is 
modified according to Remark 1. Then, the following error bounds are valid 
for the solution {um+1, pm+1, Tm+1, ym+1} of scheme S2, for sufliciently 
small time-steps k :S kO(tM+1), 

l~~~M {T~~1/21Iu(trn+1/2) - urn+1/ 211 + IIT(trn+1/2) - r+ 1
/

2
11 

N 

+ L IIYi(trn+1j2) _ y:,,+1/2 11 

i=l 

( 
-rn 1/2 ) -rn + k Ilu(trn+1/2) - u1 111 + Tm _ 1/ 21Ip(tm+1/2 - Ii II 

N 

+ IIT(tm+1/2) - Tilt + L IIYi(tm+1/2) - y~IIt)} :S Ck2(1 + log~), 
i=l 

Remark 2. In fact, to prove that the compatibility condition for given initial 
and boundary data as well as right hand sides in (1) is valid for a given fluid 
flow problem is a delicate problem in general, and we refer the interested 
reader to [6], e.g., for further details on this. 

As we already know from the discussion of the first order projection-based 
scheme in section 2, the character of the time-splitting scheme Sl as a pro
jection method is the reason for slightly suboptimal convergence results for 
gradients of temperature distribution and gradients of mass fraction func
tions. The same phenomenon can be observed for scheme S2. 

Corollary 2. (see [8]) Suppose that the conditions of Theorem 2 are valid. 
Then, the iterates {Trn+1, {~rn+1 }~1} satisfy the improved estimates 

1. in two space dimensions (i.e., d = 2), for all "( > 0, and lim-y-+D C-y = 00: 
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2. in three space dimensions (i.e., d = 3): 

4 Conclusion and Outlook 

Two time-splitting schemes have been proposed in this contribution that are 
based on projection schemes. These methods are suitable for parallelization 
and allow for an easy implementation and low computational storage re
quirements. The presented results show optimal behavior of convergence for 
quantities of interest. As it turns out, the projection methods that are in 
use in both schemes cause a slight perturbation to the scheme that is only 
significant in the 3D case. This negative effect can be avoided if modified pro
jection methods are used like the Chorin-Uzawa scheme, instead of Chorin's 
method, that is exempted from this deficiency, see [6,7]. 
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Abstract. The dissociated and partially ionized gas flows past the blunt-nosed 
bodies are considered with the nonequilibrium gas-phase chemical reactions taken 
into account. Implicit numerical method for such flow problems has been developed 
to obtain the steady-state solution of the Navier-Stokes equations. The solution 
could be achieved using the full diffusion statement of the problem (full model) or 
the chemical partial equilibrium model (simplified model). The model of chemical 
partial equilibrium has been worked out for the problems when chemical reactions 
have significantly different rates. Applicability range and efficiency of simplified 
model are estimated. The comparisons between the results obtained using the full 
model and the simplified model are analyzed. It is demonstrated that the chemical 
partial equilibrium model is applicable for simulation of the hypersonic flow fields 
over blunt bodies with a nose radius of more than several centimeters on the part 
of the reentry trajectory in the Earth's atmosphere. 

1 Introduction 

The multicomponent gas flows past blunt-nosed bodies entering planetary 
(Earth's and Martian) atmospheres at hypersonic velocities are accompa
nied by reactions whose rates differ widely, i.e. chemical partial equilibrium 
sets in. For instance, as a reentry vehicle with 1 m characteristic radius en
ters the Earth's atmosphere at 5-8 km/s velocities and 50-80 km altitudes, 
the gas-phase exchange reactions proceed quite fast in the disturbed region, 
while the dissociation rates are finite. The motion of a reentry vehicle with 
a small blunted nose along a gliding trajectory in the Martian atmosphere 
is another example. At altitudes exceeding 35 km the ionized mixture flow 
past a landing module cannot be considered as chemical equilibrium. So the 
associative ionization reactions are close to equilibrium, while the O2 , N2 and 
C2 molecules dissociate either slowly or with finite rate. 

The model of chemical partial equilibrium has been developed for the 
above-mentioned flows. In this model the part of differential diffusion equa
tions is degenerated into algebraic relations of the chemical equilibrium con
straint conditions. The number of such equations is equal to the number of 
fast independent chemical reactions. The chemical production sources on the 
right-hand sides of the remaining diffusion equations of new unknown func
tions (,slow' variables) do not contain terms connected with fast reactions. It 
permits to overcome the stiffness problem. 
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2 Numerical Method 

The finite-volume implicit numerical method is developed to solve the two
dimensional time-dependent Navier-Stokes (NS) equations in the conserva
tion form. It is assumed that the flux vector could be split into 'viscous' and 
'inviscid' parts. The solution of the Riemann problem of heat-conducting gas 
with frozen chemical composition has been obtained to calculate the 'invis
cid' fluxes. The spatial derivatives in the 'viscous' terms are approximated 
with second-order accuracy. Piecewise-parabolic distribution of the physical 
variables over the network cells and 'minmod' limiters lead to TVD-scheme 
of second-order accuracy. Finite-difference equation set is resolved by the 
sweep method along the lines normal to the surface and the Gauss-Zeidel 
iteration procedure. Coordinate--oriented differences are introduced in the 
implicit part of the finite-difference operator in accordance with the signs of 
eigenvalues of Jacobi matrices in convective terms. 

3 Chemical Partial Equilibrium Flows 

A chemically reacting gas mixture is considered with N species and R reac
tions taken into account. Let's carry out an analysis of dimensionless rates 
(Damkohler numbers) of chemical reactions written in the following form: 

N N 

L v~jAi = L v~jAi' j = 1, ... ,R 
i=1 i=1 

1 T (P )"';'-1 Dmj = - = - = Tkr . - , 
egj Tgj J m 

N 

v~1 = '""" V". 
J ~ OJ 

i=1 

Here Dmj, T, Tgj, krj , p, and m are, respectively, the Damkohler number, 
characteristic gasdynamic and chemical times, reverse reaction rate constant 
of jth reaction, the density, the average mass. The corresponding mass pro
duction rate of species Ai is the following: 

R 
pmi L Vj 

Wi = -- r ij -, 
m e· 

j=l 9J 

Here Kcj , mi are the equilibrium constant of jth reaction and the ith species 
mass, respectively. 

Let's suppose the reactions proceed in a mixture with significantly dif
ferent rates. Let r f and r s be the numbers of fast (corresponding to small 
egj) and slow (egj ;::: 1) independent reactions (rf < r, rf + rs = r). Rf and 
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Rs = R - Rf are the total numbers of fast and slow reactions, respectively. 
Note that the system of r stoichiometrically independent reactions is cho
sen in such a manner that the number of fast independent reactions r f be 
maximum, and the 'slow reactions' imply the reactions which proceed either 
slowly or at finite rates. 

We present €gj as €gj = €. (€gj/ €) for fast reactions (j ::; Rf). Here 
€ «: 1 and (€gj/ €) rv 1. Then vector of chemical production rates w = 
(WI, ... ,wr)T has a form: 

y =!!... {~YI}, 
m y2 

y/=_1_Vj (j=Rf +1, ... ,R) 
€gj 

The first components in Y correspond to the fast reactions. Let's construct 
the matrix of stoichiometric coefficients r following the same pattern and 
divide it into blocks: 

r= rankr = r 

The matrix r is constructed in such a manner, that the rank r ll = rf. As 
rf < r the blocks r ll and r21 are linearly dependent. Thus they are related 
by certain matrix A: 

Let's transform the vector of mass concentrations of reaction products and 
chemical elements c = (CI, ... , Cr , c;+l' ... ' cN_2)T using the matrix A: 

Here Ne is the number of chemical elements. Matrix T has the constant 
components. The unit matrices E I , E 2 , E3 have dimensions rf x rf, rs X r s, 
(Ne-2) x (Ne-2). The component form of transformation is the following: 

rf 
f_ Ci 8 L Ci Cz u· - -, U/ = - ali - + -, 
• m, m m • i=l i I 

(ali)=A, i=l, ... ,rf, l=rf+1, ... ,r, k=r+1, ... ,N-2 
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The new variables uj are named 'slow' variables. The diffusion equations for 
the products and elements could be transformed in the following schematic 
representation as a results of left multiplication on TM-I : 

cCul = wi, 

CUB = w B, 

Cuz =0 

wi = r ll yl + crI2 y2 

w 8 = (r22 - Ar12) y2 

(1) 

(2) 

(3) 

Here C is the Navier-Stokes differential operator. Note, that w 8 depends on 
the chemical production rates of 'slow' chemical reactions only. 

The fast reactions are considered as equilibrium ones in the model of 
chemical partial equilibrium. Then the vector equation (1) is degenerated into 
the algebraic system of equations of the equilibrium constraint conditions for 
r I fast independent reactions if c --t 0: 

Vi = 0, i=I, ... ,rl (4) 

The diffusion equations (2) and (3) are unchanged, because they involve no 
small parameters. 

So initial system of diffusion equations is replaced by the diffusion equa
tions for the 'slow' variables (2), the chemical elements (3) and the equilib
rium constraint conditions (4). The obtained equation system contains rl 
differential equations less then initial one. Moreover it is less stiff due to the 
new chemical production sources of the diffusion equations for 'slow' variables 
which don't contain terms connected with fast reactions. 

4 Results and Discussion 

The model of chemical partial equilibrium was used for the numerical simu
lation of hypersonic viscous multicomponent gas flows past a blunt bodies in 
the framework of the boundary layer equations on stagnation streamline [1]. 
The flow conditions corresponded to proceeding along the part of the reen
try trajectory of the 'Space Shuttle' vehicle (5th flight, H = 50 - 70 km). 
II-species air model with 49 chemical reactions was considered. The prelim
inary analysis of the Damkohler numbers and the comparison between the 
obtained numerical solutions of the full diffusion problem and the simplified 
model demonstrated that it was enough to enter only one 'slow' variable in 
the considered case: 

uf = Co + CN + 2 (CNO+ + Cot + CNt ) + 3 (CO+ + CN+ ) (5) 
mo mN mNO+ mot mNt mo+ mN+ 

Let's call the approach using one 'slow' variable (5) as the 'first model'. 
In the present paper applicability of the chemical partial equilibrium 

model is analyzed under the similar conditions in the framework of the full 
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NS equations. Note that the numerical simulation of a hypersonic flow in the 
framework of the full NS assumes deriving the solution in a whole disturbed 
region over the body including the shock wave structure. An analysis of the 
Damkohler numbers for such conditions does not permit to limit by one 'slow' 
variable. It is connected with the strong chemical nonequilibrium in the re
laxation zone near the smeared bow shock wave. In this case the whole group 
of chemical reactions being fast in the boundary layer passes into category 
'slow' ones, and the maximal number of independent fast reactions decreases 
by unit. Because of this, the second 'slow' variable linearly independent with 
the first one is introduced: 

(6) 

This approach using two 'slow' variables is named the 'second model'. It 
means that instead of 8 stiff diffusion equations of reaction products one 
can use only two nonstiff diffusion equations for the above-proposed 'slow' 
variables during a numerical simulation. 

For a comparison between the results obtained in the framework of the 
NS equations using the full diffusion model, and the NS equations using the 
simplified models the calculations of flowfield over a 90-deg spherical segment 
were carried out. 

Here, some trajectory points are chosen from numerous calculation results. 
The resultant profiles plotted against the dimensionless normal to the surface 
coordinate yare represented by symbols for the full model, by dashed lines 
the first model, and by solid lines for the second model. 

Figs. 1,2 and Fig. 3 presents the flow calculation results for the 50 cm 
and 5 cm sphere radii, respectively. Free stream conditions are: H = 61.9 km, 
Poo = 0.998.10-4 kg/m3 , Voo = 6.19 km/s (Figs. 1,2), and H = 74.9 km, 
Poo = 0.392· 10-4 kg/m3 , and Voo = 7.17 km/s (Fig. 3). Data in Figs. 1,2 
and Fig. 3 correspond respectively to the stagnation streamline (8 = 0°) and 
the line with 8 = 80°, respectively. Wall is assumed to be noncatalytic with 
Tw = 1350°K. 

Let's remark that the distributions of gasdynamic parameters agree very 
closely for all considered models. However the first model produces the con
centrations of dissociated air components differing from 'exact' ones. The 
second model provides results with reasonable accuracy. Equilibrium results 
given by square markers (Fig. 2) show that flow is far from the complete 
equilibrium. 

So with the increase of the sphere radius the solutions obtained using the 
full model and the approach of the chemical partial equilibrium are brought 
closer together still further. As size of a body is about several centimeters, 
the distributions of the gasdynamic parameters remain close to each other 
for all three models, while in the values of concentrations and heat fluxes 
distinctions are observed (Fig. 3). 
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Fig. 1. H = 61.9 km, R = 50 em, stagnation streamline 
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Fig. 2. H = 61.9 km, R = 50 em, stagnation streamline 
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Fig. 3. H = 74.9 km, R = 5 em, e = 80° 
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Distributions of the heat fluxes are identical for the 50 cm radius sphere 
for all considered models (Fig. 4). For the first and full models distinction 
in the heat fluxes is observed for smaller sphere radius (several centimeters). 
Note that the skin friction coefficients along body surface agree very closely 
for all models. 

o. .. ~ ~ (b) 

P.~ 
-~ 

0.03 

(0) 0-~ 

0.00 
o fl 90 

Fig. 4. (a) H = 74.9 km, R = 50 em, catalytic surface. (b) H = 54 km, R = 5 em, 
noncatalytic surface 

Some calculations were carried out using the equilibrium radiative wall 
conditions. Fig. 5 presents the temperature along the surface at one trajectory 
point. Results for all models are close to each other. 

T:::ttJ~"'''' 1100 

1<)0 

fJ .. 

Fig. 5. H = 85 km, R = 50 em, noncatalytic surface 

5 Conclusions 

Finally, it should be stated that the above-proposed efficient numerical me
thod for solution of the supersonic flows past blunted bodies has been de
veloped in the framework of Navier-Stokes equations with nonequilibrium 
chemical reactions taken into account. The applicability of the chemical par
tial equilibrium model is shown over wide ranges of free stream parameters, 
including flows past reentry modules on parts of their reentry trajectories in 
the Earth's atmosphere. 
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Abstract. A new formulation to solve for the barely implicit pressure correction 
equation of FCT-transport routines by a HOC-scheme will be given. The way it 
is to be implemented will be presented and the gain will be emphasised. Exam
ple calculations on one- and two-dimensional transient flow will be shown with 
the intention to map the unstable pool flame behaviour. The resulting irradiation 
intensities on an adjacent body will be depicted. 

1 Introduction 

Every single day chemical and petrochemical industry is handling a multi
tude of combustible fluids while large amounts of them have to be safely 
stored and shipped. During the past, cases of involuntary release occurred 
repeatedly. Occasionally, the resulting spills or pools did ignite, leading to a 
unconfined non premixed pool flame. As a consequence, pyrolytic and com
bustion products did disperse, spreading their (toxic) danger to mankind and 
environment. Also, the thermal radiant impact on the surrounding could pro
voke major damage to adjacent installations or even lead to further ignition. 

Current static empirical models do make use of measured mean radiative 
intensities and geometric shape assumptions to estimate radiation by a sur
face emissive power (SEP) of a flame, accounting for different pool diameters 
and fuels [1] or even not. But this kind of modelling fails to represent the de
pendence of radiation on the inhomogeneous distribution of temperature and 
combustion products. Moreover, a dynamic behaviour is an inherent prop
erty of a fire plume such that time averaging is an unappropriated approach. 
Both types of instabilities, the gravity-driven Rayleigh-Taylor as well as the 
shear-layer dependent Kelvin-Helmholtz one [2], respectively, will always be 
present leading to a transient spatial development of all field variables of the 
flame. Thus, transient calculations should be applied. 

Usually, flame field models of fire plumes found on the gas dynamic equa
tions including diffusive phenomena and additional sub-models to incorpo
rate source terms. The integration effort to deal with all physical quantities 
involved, high resolution in multidimensional space and instationary calcu
lation is still to high to work on today's computer architectures. In order 
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to reduce the computational cost, measurements have to be taken. E. g., 
instead of primitive variables, some authors employ Zeldovich-properties on 
species, temperature or specific volume in their calculation [3,4]. But a crucial 
point in the application to compressible, slow flows is to remove the Courant
Friedrich-Levi-(CFL)-condition on the integral time-step by implicit repre
sentation. Patnaik et al. [5] provided a way to preserve the positivity of the 
nonlinear explicit FCT-algorithm [6] by treating not every quantity implicit, 
but rather adding just one extra equation to the explicit scheme. A new pro
cedure to solve for this equation is focused here, after radiative transport 
and its flow field coupling to account for the effects of inhomogeneous ab
sorption ,emission and scattering through VISTA [7] are described. Then, a 
two-dimensional example calculation is given. 

2 Radiation 

In VISTA, a one-dimensional radiative transport equation 

471" 

dI Ksca J ( ) -d = -Kabs I + Kernh - Ksca I + -- I n dn 
s 4~ 

(1) 

D=O 

balances the radiant intensity along a ray's direction ds and provides a basis 
of the prediction of radiation transmitting a participating media. The terms 
in (1) stand for (from left to right) weakening due to absorption (index abs), 
amplification due to (black body) emission (index em), weakening due to 
scattering (index sea) and amplification due to (coherent) scattering into 
the ray's direction, respectively. Knowing each coefficient Kabs, Kern, Ksca 
in (1) as a function of the local position in space enables us to account 
for inhomogeneous distributions of combustion products and temperature, 
respectively. A series of rays is emitted from single points on a cylindrical 
surface area in a certain distance around the centreline of the flame. The 
ray directions divide the hemispherical angle around each point. Summing 
up every ray's intensity change at a discrete local control volume yields the 
energy source due to radiation, q~:, for coupling with the fluid energy balance. 

In general, if soot is present in the transmitted media, one will have to 
distinguish between it's solid body and the radiant characteristics of a gas. 
Following Kirchhoff's law, Kabs = Kern is assumed and like in [7] for small 
soot particles (particle parameter less then 0.4) the relations are applied 

KH2 0+C02 = 0.1(XH2o + Xco2) 

Ksoot = 266constjvT 

Koverall = Kabs,tot = KH20+C02 + Ksoot 

(2a) 

(2b) 

(2c) 

Finally, irradiation intensities hitting a surface at a specified distance of 
the flame centre can be computed at any time from radiative data derived as 
above. 
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3 Fluid Transport 

In flame calculation one may solve for the conservation equations of mass 
(p ~ density), momentum pv, energy E and species nk of a compressible 
gaseous mixture under gravity g 

8p 
- = -V'. (pv) 
8t 

8pv - = -V'. (pvv) - V' P - V' . T + g (p - Poo) 
at 

E Nsp 

[} '"" '" III at = -V'. «E + P)v) - V'. Ii - LV'· (rPkhk) + qre + qra 
k=l 

(3a) 

(3b) 

(3c) 

(3d) 

where T, Ii, rPk represent the diffusive fluxes of momentum, heat and species, 
respectively, with volumetric sources of (single step [7]) reaction heat q:~, 
radiative heat q:~ and species production Wk. Soot is treated according to 
Mass as in [7]. The energy density and ideal gas relations for the internal 
energy change de = pCvdT and the pressure P read 

1 
E = e + -pv· V 

2 

dP = h -l)de 

(4) 

(5) 

Expressing the time derivatives of (3a)-(3c), once in an explicit and again 
in an implicit manner, it is possible to render an equation for the pressure 
correction up of the BIC-FCT-algorithm [5] in the form 

(6) 

with D, band f being functions of the flow field variables P, E, v, p at the 
beginning of and after one explicit time step, respectively. To complete this 
implicit procedure removing the CFL-restriction on the time increment, after 
each integral step the e and v have to be updated by their contribution 
resulting from up. 

4 High Order Compact-(HOC)-Pressure Correction 

Problems do arise with pressure correction equations in flame calculation 
where high temperatures T or rather gradients V'T do appear [3,9]. E. g. 
for ideal gases D may be seen as depending on T alone. Hence, the inhomo
geneous Laplace term renders non-zero first order terms in the convection
diffusion form of (6) which might spoil ellipticity and perturbes the problem. 
This can lead to unstably growing errors if no measurements are taken. Equa
tion (6) is an inhomogeneous elliptic linear source problem which could be 
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seen as a convection-diffusion equation with linear source term , too, if the 
Laplace-term would be differentiated. Doing so and normalising by D, the 
central discretisation of (6) in two dimensions reads 

while 8x and 8; symbolize the usual first and second order central differencing 
operators, respectively. Taylor series expands show, that the truncation error 
Rerr,ij for a grid spacing h is given by 

Rerr,ij = ~~ [2 (C~:: +d~::) - (~~: + ~::) Lj + O(h4). (8) 

Dropping the truncation error in (7) leads to the usual central O(h2)-dis
cretization (CDS) providing a 5-point stencil as a local operator. A box
discretisation of (6) was used in [9) to be solved by MGRID [8)' a multigrid 
method using bilinear or quadratic inter-grid relations, respectively. Again, 
a 5-point stencil with a O(h2)-representation results. On the other hand, the 
FCT-routines are designed to be four order accurate in phase errors. Not to 
disturb the approximation, 4th-order discretisation should be applied to (6). 
Two additional support points can be used achieve O(h4). The disadvantage 
of this 9-point-(5 x 5)-local operator in two dimensions arises from a greater 
bandwidth w of the resulting system matrix (and thus w 2 more elimination 
work as in the 5-point stencil) and difficulties at the boundaries. 

A high order compact (HOC) formulation of the local operator, i. e. a 
9-point-(3 x 3)-stencil could avoid this effect. This formulation of (6) will 
be obtained if the the third and fourth order derivates in leading term of 
the truncation error (8) can be expressed by O(h2 )-representations. Indeed, 
this is possible through rearranging (6) itself for the second order term in 
x and again in y and then derivating again. Inserting into (8) and (7) after 
rearranging finally yields 

-Etj8~Up,ij - Eljr5~up,ij + Cij8xu p,ij + C~8yUij + GijUp,ij (9) 

- ~2 [8~8~uP,ij _ c8~8xuP,ij _ d8~8yuP,ij - Bij8y8xup,ij J = Fi,j + O(h4) 

with 

h2 

+ 12 [C~ - 28xCij - 9ij J (lOa) 

h2 

+ - [d~ 0 - 28 do 0 - 9 0 oJ 12 >J y >J >J (lOb) 
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(lOe) 

(10f) 

(lOg) 

It may be seen from (10f) that the right hand side of (6) has to be uti
lized in the neighbourhood of the evaluation point as well in order to achieve 
the high order of approximation. Equations (9) and (lOa)-(10g) do reduce 
to the discrete relations given in [13] if g would identically vanish. In (lOe) 
c5~9ij, c5x 9ij ~ 0 even if bin (6) will be a constant. In case of constant coeffi
cients p, = ch/2, v = dh/2 the equations above read in stencil form 

1 

6h2 

1 ( 0 I-v 0 ) 
- 1+p, 8 1-p, 8<p 
12 0 1 + v 0 

(11) 

which is directly identified with the" Mehrstellen-Verfahren" of Collatz [14] 
if p, = v == O. Contrasting the central difference way this formulation is 
unconditionally non-oscillatory [13]. Asymptotic E-stability for 9 == 0 has 
been analysed by Kouatchou [10]. 

The given procedure facilitates the employment of the so called "black 
box" multigrid solver MGD9V (d. e.g. [11]), which makes use of a discrete 
(3 x 3)-molecule. In addition, applying galerkin coarse grid correction and 
due to it's matrix dependent prolongation and restriction operators it is well 
suited for systems derived from inhomogeneous elliptic equations, even if 
dominant convection would be present. Also, it would not violate the local 
peclet condition on the coarser grid levels. Finally, it is about four times 
faster in comparison to Bi-CGSTAB [12] on the aquifer problem proposed 
by van der Vorst [11]. 

5 Examples 

Typically, equation (6) exhibits a convection dominated behaviour at a reac
tion zone. To examine the phenomenon one may imagine an ideal gas mix
ture who's coefficient D is proportional to the temperature T. An, indeed, 
coarse approximation of a flame reactive zone could be obtained by choos
ing a one-dimensional Gaussian profile from the flame centre outward, e.g. 
D(x) = e(O.5Rex2). In addition, let b(x) = D(x), <p(x) = (2 + Re x 2 ) eX. 

Therewith, the one-dimensional equivalent to (6) is given by 

-u~ - Re x u~ + Up = cp (12) 
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Fig. 1. Convergence 
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(12): Absolute error 
measured at x=O.25 
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different values of the 
parameter Re. m stands 
for the convergence rate 

Imposing Dirichlet boundaries on (12) up(O) = 1, up(l) = 0, yields the 
exact solution up(x) = (1 - x)ex . Numerical solution shows that the error of 
CDS is hardly sensitive to increasing convection Re contrasted by HOC (Fig. 
1). Nevertheless, a convergence rate m = 4 of the HOC-scheme means that 
it is preserving the O(h4)-approximation even on high convection values for 
variable coefficients (Fig. 1). This encourages to stop an iterative solution 
process for a given desired accuracy ace on the same grid already at 

aCCHOC = ..jacccDs (13) 

in case of HOC-approximation. Compared to the O(h4)-5-point discretisa
tion of the one-dimensional advection case posed in [5] the amount of work 
to compute the system matrix from the coefficients in (6) is about the same 
(No. of products, ratio: HOC/5-point =21/20, No. of sums, ratio: HOC/5-
point=17/16 ). Thus, a gain in the HOC case comes from solving a tridiagonal 
matrix versus a pentadiagonal one. The reduction of the bandwidth w will 
take more effect in two-dimensional problems, where the bandwidth of a 
HOC-scheme N xN -system matrix is about 8 times smaller than that of a 
non-compact O(h4)-discretisation, where 

2N+3 
s= 4N+l (14) 

As a two-dimensional example, an axially symmetric simulation on a part 
of a sooty nonpremixed flame of 0.1 m in diameter was performed on a 64 x 64 
fixed condensed grid over a puffing cycle (frequency ~ 6.28-1 [15]). There
fore, radial profiles of the density, momentum, energy and species were swept 
along the flame axis as an initial condition. A potential vortex was imposed 
to the undisturbed flame structure. As an important species with respect to 
radiation, Fig. 2 shows the evolution of soot at 4 stages. The resulting instan
taneous irradiation a body receives, located at a distance of a pool diameter 
from the flame axis is shown in Fig. 3. Due to mixing processes, relative dis
placement of soot and temperature extrema, over- and undershoots do occur 
in comparison with the undisturbed profile at the beginning (Fig. 3). 
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6 Conclusions 

The presented HOC-formulation of the pressure correction equation in the 
BIC-FCT algorithm enables the employment of the problem adapted multi
grid method MGD9V. A faster flame code with better resolution of the reac
tion zone is achieved, providing a tool to analyse transient flame behaviour 
as well as dynamic radiant environmemenal impact. 
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