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 PREFACE     

     For more than a decade, Linux has been the most popular choice for server technol-
ogy, embedded systems, or research work in the networking domain. It slowly gained 
momentum beginning with the student community and slowly reaching researchers 
and the corporate world. Networking, when combined with Linux, gives birth to an 
innovative product line, be it in the high - end telecom sector, data centers, or embed-
ded systems, and so on. 

 In 1996, I was introduced to Linux while doing my fi rst assignment on TCP/IP 
socket programming. At that time, I had a very little knowledge about a server 
program using a unique port number to register itself with the system or a client 
program using the same port number to communicate with the server. I also had 
little knowledge of an IP address that is fed to the client program to identify the 
host. I then set myself to learn about how all that was made possible. 

 Much information needed to be explored at that time, such as system calls, 
protocols, Linux kernel, drivers, and kernel framework that supports the stack, and 
so on. Slowly, I explored the Linux kernel and user – land program interaction with 
that kernel by writing new system calls and kernel modules. 

 This learning process began with the  TCP/IP Illustrated, Volume 1  by the honor-
able Richard Stevens. But it continued to be really diffi cult to map the protocol 
with the implementation on Linux because there was so little documentation, and 
available books provided hardly any information. So, I decided to dive deep into 
the jungle of the huge source base to fi nd out how the stack is implemented. Finally, 
I got hooked to the socket and VFS layer to understand how socket layer is linked 
to the VFS layer. Then slowly I was pointed to the TCP layer and the fi rst routine 
that interfaces TCP protocol to send out data. Then the journey of documenting and 
experimenting with the TCP/IP stack began. When the documentation had grown 
big enough, the idea of making it available to the Linux community emerged. But 
writing a book was beyond my strength and it was too much work, requiring a lot 
of time and dedication. But I was determined to expose the complex topic to the 
Linux community to whatever extent I could even if it demanded many require-
ments. The absence of detailed, leveled documentation or a book that would have 
made the subject easier to understand, forced me to think about the topic. The idea 
of writing a book was supported when I received acceptance on the subject from 
IEEE Computer Society Press and John Wiley & Sons. 

 Working on the book along with offi ce work became diffi cult so I searched for 
a co - author who would help cover some of the topics. After a long struggle, I con-
vinced M. Ajaykumar Venkatesulu to be my co - author and work on a giant and 
most complex routing subsystem and QOS. 
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 This text tries to cover almost all the aspects of TCP/IP stack and supporting 
kernel framework. The idea is to present the topic in a way that dilutes its complex-
ity so that it can be easily understood. To understand TCP/IP implementation on 
any OS, we need to understand the kernel frameworks that support the stack. On 
Linux, these frameworks include VFS layer, socket framework, protocol layer, 
timers, memory management, interrupt handling, softIRQ, kernel threads, kernel 
synchronization mechanism, and so on. This is the kernel perspective of the stack. 
Apart from this, we also need to know the basics of the communication protocol 
and application interfaces (system calls) to open TCP communication sockets and 
the client – server program. This knowledge is helpful as a reference for experienced 
professionals and for students willing to learn the complex subject and contribute 
to the Linux community. 

 This book is written for the Linux kernel 2.4.20. The newest kernel version 2.6 
does not have much variation as far as the TCP/IP stack is considered. Kernel 
version 2.4 is the most widely accepted kernel in the Linux world. Version 2.6 spe-
cifi c changes will be discussed in subsequent revisions of the book.  

  AUDIENCE 

 The book is targeted for large cross section of audience: 
  Researchers at Worldwide Premier Institutes.  Researchers who work on various 

aspects of the TCP/IP stack fi nd BSD the most suitable networking OS. But BSD 
is not a popular choice in the corporate world. So, the next most popular choice of 
researchers is the Linux OS and improvement of the TCP/IP stack performance on 
this OS. Networking is currently the most popular fi eld for research because of 
growing usage and popularity of the Internet. Mostly, researchers prefer an OS with 
commercial viability that can run on cheap hardware. 

  Academia.  Advanced academic degree projects, such as MS, M. Tech., B. Tech. 
and PG, are mostly done on Linux because it was the fi rst UNIX - like OS available 
with fairly good documentation and stability. In the networking area, students 
usually choose Linux over TCP/IP for their project work. The project may require 
modifying the router or TCP performance, implementing some new TCP/IP RFC, 
network drivers, implementing secured IP layer, or improving scalability factor to 
handle network traffi c. 

  Corporations.  For the most part, the corporate world has widely accepted Linux 
as the base OS for networking products. Many companies are developing network 
products, such as IP security, QOS (class - based routing), developing routers, band-
width management products, cluster servers and many more, which require modify-
ing the TCP/IP stack or writing a new module altogether that fi ts into Linux TCP/IP 
stack somewhere. Linux is not only popular as an open system but is also a major 
choice for embedded products or real - time OS. These embedded products are 
mostly developed for networking domains such as routers, embedded web servers, 
web browsers, and so on. 

  Entrepreneurs.  New ideas keep popping up which need to be turned into prod-
ucts. With the Internet gaining popularity, many ideas have been born to develop 
networking products. Linux is once again the most popular choice for development 
among entrepreneurs. 
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  The Open Source Community.  Because of the growing popularity of Linux and 
Internet technologies, many fresh college graduates or even software professionals 
want to contribute to Linux networking capabilities. Their goal is to make Linux 
more powerful, stable, secure, and full of network capabilities in order to meet cor-
porate requirements in every possible way. Many professionals want to contribute 
to Linux networking capabilities but don ’ t fi nd enough time to get acquainted with 
its networking stack and the kernel framework. 

  Defense Organizations.  There is a growing popularity of Linux as network OS 
in defense organizations with increasing military adoption of Linux IP security with 
some modifi cations for secured military network transactions. 

 All these audiences require a thorough knowledge of Linux TCP/IP stack and 
kernel framework for networking stacks. To understand TCP, IP, BSD sockets, fi re-
wall, IP security, IP forwarding, router network driver, complete knowledge of how 
networking stack implementation and design work is needed. If IP security or fi re-
wall implementation is wanted, then knowledge of how the packet is implemented 
in Linux, how and where packet is passed to the IP layer, how the IP processes the 
packets and adds headers, and fi nally how the IP passes the packet to the device 
driver for fi nal transmission is needed. Similarly, implementation of the QOS or 
some modifi cations in the existing implementation is needed, knowledge of Linux 
routing table implementation, packet structure, packet scheduling and all related 
kernel frame work including network soft IRQs is required. So, anything and every-
thing that requires modifying the Linux network stack or adding a new feature to 
the stack, requires complete knowledge of the design and implementation of Linux 
TCP/IP stack.  

  ORGANIZATION OF THIS BOOK 

 This book completely explains TCP/IP protocol, its design, and implementation in 
Linux. Basically, the book begins with simple client – server socket programs and 
ends with complex design and implementation of TCP/IP protocol in Linux. In 
between, we gradually explain the different aspects of socket programming and 
major TCP/IP - related algorithms. These are: 

   Linux Kernel and TCP/IP Application Interfaces :  Chapter  1  covers the Linux 
kernel basics and we kick start with kernel interfaces (system calls) to use TCP/IP 
protocol stack for communication. 

   Protocols:   Chapter  2  covers TCP/IP protocols and supporting protocols such as 
ARP and ICMP. We cover some of the major RFCs with illustrations to acquaint 
the reader with the protocols so that it will be easy to map Linux implementation 
on Linux in further chapters. 

   Sockets:   Chapter  3  explains the implementation of BSD socket implementation 
in the Linux kernel. Here we discuss in detail how socket layer is hooked to VFS 
layer and how various protocols are hooked to BSD socket. 

   Kernel Implementation of Connection Setup:   Chapter  4  explains the client –
 server application with the help of the C program. We explain the complete process 
of connection setup with the help of tcp dump output in different chapters. We cover 
kernel implementation of system calls used by application program to implement 
client – server interaction. We see how connections are accepted on the server side 
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and at the same time, learn how the server program registers with the kernel to bind 
to a specifi c listening port. 

   Linux Implementation of Network Packet:   Chapter  5  explains sk_buff which 
represents network packet on Linux. We explain important routines that manipulate 
sk_buff. 

   Movement of Packet Across the Layers:   Chapter  6  covers the complete TCP/IP 
stack framework, showing how the packet is generated and trickles down the 
network stack until it is out of the system. Similarly we explain the complete path 
taken by a packet received from the device to reach the owning socket, covering 
complete kernel framework that implements TCP/IP stack on Linux. 

   TCP recv/send:   Chapters  7  and  8  address TCP receive/send implementation and 
cover all the aspects related to TCP receiving and sending data. We also explain the 
TCP segmentation unit when an ICMP error (mss change for the route) is received 
by the TCP. There is a small description of how urgent data are processed. 

   TCP Socket Timers and Memory Management:   The kernel keeps track of 
memory consumed by a connection at the socket layer so that a single - socket con-
nection is not able to hog all the system memory because of a misbehaving applica-
tion. We also try to collapse sequential buffers in the receive queue when the 
application is not reading enough fast and socket has exhausted its quota. This 
aspect of memory management is covered in Chapter  9 . TCP is an event - driven 
protocol. TCP implements timers to track loss of data, to send delayed ACKs, to 
send out zero window probes, and so on. Chapter  10  addresses all these aspects. 

   TCP State Machine:   Chapter  11  covers TCP core processing, such as reception 
of packets, sending ACKs, sliding window protocol, Nagle ’ s algorithms, scheduling 
of delayed ACK ’ s, processing of out - of - order segments, processing SACK, D - SACK, 
and so on. The tcp_opt object represents state machine implementation on Linux. 
Chapter  12  covers TCP congestion control algorithms implementation. 

   Netlink Sockets:   User – land applications, such as netstat and iproute, and routing 
protocol daemons use special netlink sockets to update/read routes and confi gure 
QOS in the kernel. We cover netlink sockets in Chapter  13 . 

   IP Layer and Routing Table Implementation:   Chapter  14  covers implementa-
tion of routing table (FIB) on Linux. We also explain different aspects associated 
with routing, such as multipathing, policy routing, and so on. This chapter also 
explains the different kernel control paths that update kernel routing tables and 
route cache management. 

   IP QOS:   IP in today ’ s network is an advanced topic and is used for different 
services in the public network. Linux implements QOS very cleanly and we discuss 
PFIFO and CBQ queuing discipline implementation in Chapter  15 . 

   Netfi lter Framework:   Linux provides extensions to the TCP/IP stack by way of 
the netfi lter framework. These extensions can be fi rewall, masquerading, IP security, 
and so on. Chapter  16  covers netfi lter hooks at different layers in the stack and also 
netfi lter implementation. 

   SoftIRQ Implementation for Scalability:   Network frames are received in 
the kernel memory in the interrupt handler code but complete processing of the 
packets can ’ t be done in the interrupt handler. Linux associates softIRQ, one each 
for reception and transmission of packets for processing of packets. Chapter  17  
explains net softIRQ framework with the help of illustrations. This chapter com-
pletely explains the high scalability of Linux on SMP architecture in handling 
network traffi c. 
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   Link Layer and DMA Ring Buffers:   Chapter  18  covers link layer(device driver) 
processing of packets. Design and working of DMA ring buffer for reception and 
transmission are also addressed and are explained with the help of a device driver 
and interrupt routines for a real device. 

   Debug TCP/IP Stack:   Debugging the TCP/IP stack is discussed in Chapter  19 . 
The lkcd (linux kernel crash dump) debugger is used to illustrate the debugging 
technique, peeking into different kernel data - structures associated with TCP/IP 
stack.  

  LEVEL OF DISCRIPTION 

 As outlined here, we have touched upon critical portions of the implementation that 
are required to understand core TCP/IP stack and kernel framework. Each chapter 
begins with a chapter outline and ends with a summary that highlights important 
points. Source - level explanations with diagrams are provided where ever required. 
Important routines are explained line - by - line. Code snippets are provided for all 
those routines with line numbers and fi les of code snippet. Sometimes routines are 
so big that they are split into different code snippets. Routines that are called from 
the main routines are explained in different sections. If the called routine is a couple 
of lines long, there is no separate section for those routines. Line number and code -
 snippet number (cs - ) are provided with the explanation to assist understanding. 
When the routines are very big in size, notifi cation is provided at the beginning of 
the section stating,    see cs  •  • . •  • , unless mentioned ; this means that where ever line 
numbers are mentioned, we need to see the code snippet mentioned at the start of 
the section. 

 In the explanation if we encounter some concept that is already explained in 
some other section, a cross reference to that section is provided, as  see Section     •  • .
 •  •     . Cross references are provided because the subject is interrelated, for example 
while explaining queuing of incoming TCP packet, we refer to sockets receive 
buffer. If we have exhausted the receive socket buffer, we need to call routines to 
collapse receive queue to make space for the new TCP data segment. For this we 
may need to refer to a section from the TCP memory management chapter. We have 
explained major data structures with signifi cance separately. Where ever that has 
not been done, fi elds of those data - structures are explained as and when they appear 
in the routines. 

 Examples and illustrations are provided where ever it is required to make 
subject easier to understand. For example, diagrams to link various kernel data 
structures are drawn to illustrate connection requests in the SYN queue. Then we 
illustrate shifting of connection requests from SYN queue to accept queue when a 
three - way handshake is over with the help of diagrams. All these illustrations assist 
in visualizing the complex data structures and scenarios.  

   S ameer  S eth  
  Bangalore, India  
  September 2008         
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 INTRODUCTION     

     Internetworking with Linux has been the most popular choice of developers. Not 
only in the server world where Linux has made its mark but also in the small embed-
ded network OS market, Linux is the most popular choice. All this requires an 
understanding of the TCP/IP code base. Some products require implementation of 
fi rewall, and others require implementation of IPSec. There are products that 
require modifi cations in the TCP connection code for load balancing in a clustered 
environment. Some products require improving scalability on SMP machines. Most 
talked about is the embedded world, where networking is most popular. Real - time 
embedded products have very specifi c requirements and need huge modifi cations 
to the stack as far as buffer management is concerned or for performance reasons. 
All these require a complete understanding of stack implementation and the sup-
porting framework. 

 As mentioned above, some of the embedded networking products require a 
minimum of the code to be complied because of the memory requirements. This 
requirement involves knowledge of source code organization in the Linux source 
distribution. Once we know how the code is distributed, it becomes easier to fi nd 
out the relevant code in which we are interested. 

 Mostly all the networking application work on very basic client – server 
technology. The server is listening on a well - known port for connection requests 
while the client is sending out connection request to the server. Many complex 
arrangements are made for security reasons or sometimes for load balancing to the 
client – server technology. But the basic implementation is a simple client – server 
program in which the client and server talk to each other. For example, telnet or 
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ftp services are accessed through the inet program which hides all the details of 
services. There are many tunable parameters available to tune your TCP/IP con-
nections. These can be used to best tune the connection without disturbing overall 
system wide tuning. 

 Most of the network applications are written to exchange data. Once a connec-
tion is established, either (a) the client sends data to the server or (b) data fl ow in 
the opposite direction or may fl ow in both directions. There are different ways to 
send and receive data over the connection. These different techniques may differ 
in the way that application blocks once the socket connection either receive or send 
data. 

 In the entire book we discuss only TCP and no other transport protocol. So, 
we need to understand the TCP connection process. TCP is a connection - oriented 
protocol that has a set process for initializing connections, and similarly it has a set 
process for closing connection cleanly. TCP maintains state for the connection 
because of handshakes during connection initiation and closure processes. We need 
to understand the TCP states to completely understand the TCP connection 
process. 

 In this chapter we will present an overview of how the TCP/IP protocol stack 
is implemented on Linux. We need to understand the Linux operating system, 
including the process, the threads, the system call, and the kernel synchronization 
mechanism. All these topics are covered though not in great detail. We also need 
to understand the application programming interface that uses a TCP/IP protocol 
stack for data transmission, which is discussed. We discuss socket options with 
kernel implementation. Finally, we discuss the TCP state, which covers a three - way 
handshake for opening connection and a four - way handshake for connection 
closure.  

  1.1   OVERVIEW OF  TCP / IP   STACK  

 Let ’ s see how the TCP/IP stack is implemented on Linux. First we just need to 
understand the network buffer that represents the packet on Linux.  sk_buff  repre-
sents the packet structure on Linux (see Fig.  1.1 ).  sk_buff  carries all the required 
information related to the packet along with a pointer to the route for the packet. 
 head ,  data ,  tail , and  end  point to the start of the data block, actual start of data, end 

    Figure 1.1.     Network buffer,  sk_buff .  
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of data, and end of data block, respectively.  skb_shared_info  object is attached at 
the end of the  sk_buff  header which keeps additional information about paged data 
area. The actual packet is contained in the data block and is manipulated by data 
 &  tail pointers. This buffer is used everywhere in the networking code as well as 
network drivers. Details are discussed in Chapter  5 .   

 Now we will have a look at how the stack is implemented in Linux. We will fi rst 
start with down - the - stack processing of the packet from the socket layer to the 
driver layer and then move up the stack. We will take an example of sending TCP 
data down the stack. In general, more or less the same stack is used for other trans-
port protocols also, but we will restrict our discussion to TCP only. 

  1.1.1   Moving Down the Stack 

 When an application wants to write data over the TCP socket, the kernel reaches 
the socket through VFS (see Fig.  1.2 ).  inode  for the fi le of the type socket contains 
a socket object, which is the starting point for the networking stack (see Section  3.2  
for more details). The  socket  object has a pointer to a set of operations specifi c to 
the socket type pointed to by fi eld  ops . Object  proto_ops  has a pointer to socket -
 specifi c operations. In our case, the socket is of type INET, so  send  systemcall ends 
up calling  inet_sendmsg()  inside kernel via VFS. The next step is to call a protocol -
 specifi c send routine because there may be different protocols registered 
under INET socket (see Section  3.1 ). In our case, transport later is TCP, so 
 inet_sendmsg()  calls a protocol - specifi c send operation. The protocol - specifi c 
socket is represented by a sock object pointed to by the  sk  fi eld of the  socket  object. 
A protocol - specifi c set of operation is maintained by a  proto  object pointed to 
by  prot  fi eld of  sock  object.  inet_sendmsg()  calls a protocol - specifi c send routine, 
which is  tcp_sendmsg() .   

 In  tcp_sendmsg() , user data are given to a TCP segmentation unit. The segmen-
tation unit breaks big chunks of user data into small blocks and copies each small 
block to  sk_buff . These sk_buffs are copied to the socket ’ s send buffer, and then 
the TCP state machine is consulted to transmit data from socket send buffer. If the 
TCP state machine does not allow sending new data because of any reasons, we 
return. In such a case, data will be transmitted later by a TCP machine on some 
event which is discussed in Section  11.3.11 . 

 If the TCP state machine is able to transmit  sk_buff , it sends a segment to the 
IP layer for further processing. In the case of TCP,  sk Æ tp Æ af_specifi c Æ queue_xmit  
is called, which points to  ip_queue_xmit() . This routine builds an IP header and 
takes an IP datagram through the fi rewall policy. If the policy allows, an IP layer 
checks if NAT/Masquerading needs to be applied to the outgoing packet. If so, a 
packet is processed and is fi nally given to the device for fi nal transmission by a call 
to  dev_queue_xmit() . Device refers to a network interface, which is represented by 
 net_device  object. At this point, the Linux stack implements QOS. Queuing disci-
plines are implemented at the device level. 

 Packet ( sk_buff ) is queued to the device according to their priority levels and 
queuing discipline. Next is to dequeue the packet from the device queue, which is 
done just after queuing  sk_buff . The queued packet may be transmitted here, 
depending on the bandwidth for the packet ’ s priority. If so, the link layer header is 
prepended to the packet, and the device - specifi c hard transmit routine is called to 
transmit the frame. If we are unable to transmit the frame, the packet is requeued 
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    Figure 1.2.     TCP packet moving down the protocol stack.  



on the device queue and Tx softIRQ is raised on the CPU adding device to the 
CPU ’ s transmit queue. Later on when the TX interrupt is processed, frames are 
dequeued from the device queue and transmitted.  

  1.1.2   Moving Up the Stack 

 Refer to Fig.  1.3  for the fl ow of packet up the stack. We start with the reception of 
packets at the network interface. Interrupt is generated once the packet is com-
pletely DMAed on driver ’ s Rx ring buffer (for details see Section  18.5 ). In the 
interrupt handler, we just remove the frame from the ring buffer and queue it on 
CPU ’ s input queue. By CPU I we mean the CPU that is interrupted. It is clear at 
this point that there is per CPU input queue. Once the packet is queued on the 
CPU ’ s input queue, Rx NET softIRQ is raised for the CPU by call to  netif_rx() . 
Once again, softIRQ ’ s are raised and processed per CPU.   

 Later when Rx softIRQ is processed, packets are de - queued from CPU ’ s receive 
queue and processed one - by - one. The packet is processed completely until its des-
tination here, which means that the TCP data packet is processed until the TCP 
data segment is queued on the socket ’ s receive queue. Let ’ s see how is this process-
ing done at various protocol layers. 

  netif_receive_skb()  is called to process each packet in Rx softIRQ. The fi rst step 
is to determine the Internet protocol family to which a packet belongs. This is also 
known as packet protocol switching. We send the packet to the raw socket in case 
any raw socket is opened for the device. Once the protocol family is identifi ed, 
which in our case is IP, we call the protocol handler routine. For IP, this is the 
 ip_rcv()  routine.  ip_rcv()  tries to de - NAT or de - masquerade the packet at this point, 
if required. The routing decisions are made on the packet. If it needs to be delivered 
locally, the packet is passed through fi rewall policies confi gured for the locally 
acceptable IP packets. If everything is OK,  ip_local_deliver_fi nish()  is called to fi nd 
the next protocol layer for the packet. 

  ip_local_deliver_fi nish()  implements INET protocol switching code. Once we 
identify the INET protocol, its handler is called to further process the IP datagram. 
The IP datagram may belong to ICMP, UDP, and TCP. 

 Since our discussion is limited to TCP, the protocol handler is  tcp_v4_rcv() . 
The very fi rst job of the TCP handler is to fi nd out socket for the TCP packet. This 
may be a new open request for the listening socket or may be another packet 
for the established socket. So here, various hash tables are looked into. If the 
packet belongs to the established socket, the TCP engine processes the TCP 
segment. If the TCP segment contains in - sequence data, it is queued on the socket ’ s 
receive queue. If there are any data to be sent, they is sent along with the the ACK 
for the data arrived here. Finally, when application issues read over the TCP socket, 
the kernel processes the request by providing data from the socket ’ s receive 
queue. 

 The Linux stack maps to the OSI networking model (see Fig.  1.4 ).     

  1.2   SOURCE CODE ORGANIZATION FOR  L  INUX  2.4.20 

 Figure  1.5  shows the kernel source tree.   
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    Figure 1.3.     TCP packet moving up the stack.  
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  1.2.1   Source Code Organization for Networking Code 

 Figure  1.6  shows the kernel networking source tree.     

  1.3    TCP / IP   STACK  AND KERNEL CONTROL PATHS 

 In this section we will see how TCP data are being processed by the Linux kernel. 
In totality, we will see different  kernel control paths  and  processor context  that are 
involved in packet processing through the kernel. When the process writes data 
over the TCP socket, it issues write/send system calls (see Fig.  1.7 ). The system call 
takes the process from the user land to the kernel, and now the kernel executes on 
behalf of the process as shown by the solid gray line. Let ’ s determine the different 
points in the kernel where the kernel thread sending TCP data on behalf of the 
process preempts itself.   

           Kernel Control Path 1.     In this kernel control path, the kernel thread processes 
TCP data through the complete TCP/IP stack and returns only after transmitting 
data from the physical interface.  

  Kernel Control Path 2.     This kernel control path processes data through TCP/IP 
stack but fails to transmit data because the device lock could not be obtained. In 

    Figure 1.4.     Linux network stack and OSI model.  
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    Figure 1.5.     Kernel source tree.  
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    Figure 1.6.     Kernel networking source tree.  
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this case, the kernel thread returns after raising Tx softIRQ. SoftIRQ processing is 
deferred to some later point of time which will transmit data queued up on the 
device. See Section  17.1  for details on softIRQ processing.  

  Kernel Control Path 3.     This kernel control path processes data through the 
TCP layer but is not able to take it further because the QOS policy is not allowing 
further transmission of data. It may happen that either someone else is processing 
the queue on which packet is queued or the quota for queue is over. In the later 
case, a timer is installed which will process the queue later.  

  Kernel Control Path 4.     This kernel control path processes data through the 
TCP layer but cannot proceed any further and returns from here. The reason may 
be that the TCP state machine or congestion algorithm does not allow further 
transmission of data. These data will be processed later by the TCP state machine 
on generation of some TCP event.  

  Kernel Control Path 5.     This kernel control path may execute in interrupt 
context or kernel context. Kernel context may come from softIRQ daemon, which 
runs as kernel thread and has no user context. Kernel context may also come from 
kernel thread corresponding to user process which enables softIRQ on the CPU by 
call to  spin_unlock_bh() . See Section  17.6  for more detail. This kernel control path 
processes all the data queued by control path 2.  

  Kernel Control Path 6.     This kernel control path executes as a high - priority 
tasklet that is part of softIRQ. This may also be executed in interrupt context or 
kernel context as discussed above. This processes data queued by control path 3.  

  Kernel Control Path 7.     This kernel control path executes as softIRQ when 
incoming TCP packet is being processed. When a packet is received, it is processed 

    Figure 1.7     Packet transmission via different kernel control paths.  



by Rx softIRQ. When a TCP packet is processed in softIRQ, it may generate an 
event causing transmission of pending data in the send queue. This kernel control 
path transmits data that are queued by control path 4. 

 On the reception side, the packet is processed in two steps (see Fig.  1.8 ). An 
interrupt handler plucks received a packet from the DMA ring buffer and queues 
it on the CPU - specifi c input queue and raises Rx softIRQ. Rx softIRQ is processed 
at some later point of time in interrupt context or by softIRQ daemon. The TCP 
data packet is processed completely by Rx softIRQ until it is queued on the socket ’ s 
receive queue or is eaten up by the application. The TCP ACK packet is processed 
by a TCP state machine, and softIRQ returns only after action is taken on the events 
generated by the incoming ACK.        

  1.4    L  INUX  KERNEL UNTIL VERSION 2.4 IS NON - PREEMPTIBLE 

 Let ’ s defi ne the term  preemptive  fi rst and then we will move ahead with its effect 
on the Linux kernel. Preemption in general means that the current execution 
context can be forced to give away CPU for some other execution context under 
certain conditions. Now we will say that what is so great about it is that it is hap-
pening on any multitasking OS. On a multitasking OS, many user land processes 
run on the CPU one at a time. These processes are assigned quota and continue to 
occupy CPU until they have exhausted their quota. Once the quota for the currently 
running process is over, it is replaced by some other runnable process on the CPU 
even if the former was already executing by the kernel scheduler. So, we can say 
that the process was preempted here. Very true, the user land process is preempted 
to fairly give other processes a chance to run on the CPU. We are not discussing 
scheduling with respect to real - time processes and are discussing only normal prior-
ity processes that are scheduled based on a round - robin scheduling policy. This way 
kernel preempts the user land process. 

 What we would like to know in this section is very different from what has been 
discussed so far. We want to know how a kernel can be preemptive. Let ’ s suppose 

    Figure 1.8.     Packet reception and different kernel control paths.  
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that some kernel control path is being executed on the CPU and it is looping into 
infi nite loop by mistake. Can a kernel preempt itself to get out of the infi nite loop 
and give a CPU to some other runnable process. ( Note:  I ’ m taking an example of 
infi nite loop inside the kernel just to explain the term preemption, but the intent 
here is very different. Normally, a kernel code does not end up in this situation). 
Kernel control path gives away CPU to other burnable process by calling scheduler. 
We must fi rst know what event causes a running process to preempt. This is done 
by the timer interrupt which is raised on the CPU at some defi nite time interval and 
is nonmaskable. This interrupt does all the necessary calculation determine the 
duration of the current execution context on the CPU. If it has expired its quota, it 
sets a  ‘ scheduling needed ’  fl ag for the process. While returning from the interrupt, 
this fl ag is checked but only if we were interrupted in the user mode (which essen-
tially means that the CPU was executing user land code when the timer interrupt 
occurred). 

 Control is passed to an assembly code at line 256 in cs  1.1  when we are return-
ing from the interrupt. Line 257 fi rst gets the pointer to a current process (kernel 
thread corresponding to the user land process) in ebx%. At line 259, we get EFLAGS 
for the current process from the stack pointer (%esp) and save this to eax%. At 
line 260, we get a code segment byte from the stack pointer and save it as a byte in 
eax%. At line 261, we check if the execution mode was within the kernel or user 
land at the time when the CPU was interrupted. This can be verifi ed from the code 
segment that is copied to eax% at line 260. If the CPU was executing in the kernel, 
we jump to  restore_all  at line 263. restore_all will switch to the execution context 
within the kernel by loading register values saved at the stack and will start execut-
ing from where it was interrupted. If we were interrupted in the user land, control 
is passed to  ret_from_sys_call. re_from_sys_call  does lots of checks; for example, if 
there is a pending signal for the current process, reschedule is needed, and so on, 
and takes appropriate action. If the current process has not consumed its time slice, 
it will continue to execute in the user land; otherwise, some other runnable process 
will be given the CPU.   

    cs 1.1.     Return from interrupt.  



 As shown in Fig.  1.9a , we switch to kernel mode to handle interrupts. We 
have shown timer interrupt in particular, but it may also happen that some 
other interrupt may also cause the current user process to give away CPU to some 
other process. For example, network interrupt may cause some process to wake 
up that is waiting for data over the connection. Since I/O intensive processes 
always have a higher priority over the CPU intensive processes, network interrupt 
carrying data may cause current process to give CPU to the process waiting for I/O 
over this connection. In the case where the current process has not consumed its 
time slice, it will continue to run on the CPU in case it has not received any kill 
signal.   

 Figure  1.9b  shows that when a timer interrupt happens with CPU executing in 
the kernel, control is passed to the interrupted kernel path that was being executed 
at the time of interrupt. This allows the kernel to complete its execution before it 
can return to the user space. This design makes sure that the kernel will continue 
to run unless it kernel gives away CPU (by calling schedule()). Nothing can force 
kernel to give way CPU for any thing else other than interrupts/exceptions. The 
simple reason for this is data consistency, and this causes the Linux kernel to be 
non - preemptible. For example, if by mistake any buggy driver causes a kernel to 
execute an infi nite loop, the single CPU system will be frozen forever.   

 In short, the Linux kernel 2.4 and below are not designed for real - time require-
ments as there may be huge latencies introduced because of a non - preemptive 

    Figure 1.9a.     Interrupt happened while executing in the user space.  
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kernel. An attempt is made to make Linux kernel 2.6 onwards preemptible, though 
not completely. We will see this in the next revision of the book. 

  1.4.1   System Call on  L  inux  

 In this section we will learn implementation of system call on Linux system running 
on Intel X86 architecture. Any Unix system implements a system call so that user -
 level application programs can request kernel services. Let ’ s take the simple example 
of an open system call. When an application wants to open a fi le for read and write, 
the very fi rst step is to issue an open system call. Just like regular fi les, Pipe, fi fo, 
socket, device, and so on, are also treated as special fi les on the Unix systems and 
will use an open system call for further I/O. 

 Why do we need kernel services to open a fi le? This is required because fi le -
 system - specifi c information is maintained in the kernel. File - system - specifi c data 
structures are maintained in the kernel and is accessed only in the processor privi-
leged mode; the reason for this is consistency and uninterrupted execution. Every 
care is taken inside the kernel to maintain data consistency by very careful program-
ming where an execution of code can be made uninterrupted by blocking maskable 
interrupts. Also, kernel is non - preemptive. So we are assured that even if the kernel 
is interrupted by some high - priority interrupt, the processor returns its control to 
the point in the kernel where it left. The kernel control path can itself give away 

    Figure 1.9b.     Interrupt happened while executing in the kernel space.  



CPU, and no one can force it to preempt. One of the most important reasons for a 
fi le system to be inside the kernel is that it is not an independent subsystem. The 
fi le system code has to interact with other subsystems such as virtual memory, 
network, device controllers, paging, and scheduling; all these subsystems cannot 
afford to run in the user land because of the reason mentioned above. 

 So, for execution of the system, a call takes place inside the kernel (see Fig. 
 1.10 ). The processor has to switch from user mode to privileged mode to access 
kernel code and data structure. This is done by software interrupt 0x80, which is 
generated by the open library routine. The system call number is loaded in  eax , and 
arguments are loaded on  ebx ,  ecx ,  edx , registers. The processor determines kernel 
stack for the process from by loading ss and eps registers. The user context is saved 
on the stack by the processor control unit. Once this is done, control is passed to 
the system call handler.   

 The system call handler looks into the system call table  sys_call_table , which 
indexes system call handling routine vectors based on system call number. Control 

    Figure 1.10.     System call implementation on Linux.  
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is passed to the system - call - specifi c routine; and after execution of system call, the 
return value is stored in  eax .  

  1.4.2   Adding New System Call 

 Let ’ s see how we can we add a new system call to the system. To add a new system 
call, a new number is associated with the system call, and the system - call - specifi c 
handler should register with the system. System call numbers are listed in  include/
asm - i386/unistd.h  fi le as macro __NR_ sys , where  sys  is the name of the system call 
(see Fig.  1.11 ). In this fi le we need to add one more line for the new system call.   

 The next step is to write system call routine in appropriate fi le in the available 
in kernel source tree. For example if the system call is specifi c to scheduling, it 
should be added to  kernel/sys.c . Conventionally, the name of the routine should 
start with sys_. Once a system call number and system - call - specifi c routine are 
added to a kernel source, we need to add the system call routine to the system call 
table by using macro SYMBOL_NAME(). A new line should be added to fi le  arch/
i386/kernel/entry.S  (see Fig.  1.12 ). The line for the new system call should be added 
exactly to the sys_call_table at the line number matching the system call number. 
So, it is always better that a system call number for the new system call should be 
the next available number, and the entry for this system call should come at the end 
of the  sys_call_table  table. The kernel is compiled and a new kernel is placed in the 
correct location.   

 How do we access the new system call from application program. So, we can 
use syscall() or syscall * () system calls to invoke our system call. To syscall(), we 

    Figure 1.11 .     System - call - associated number.  

    Figure 1.12.     System call table in the kernel.  



need to pass the system call number corresponding to the new system call registered. 
If we use syscall() interface, we can ’ t pass any arguments to our system call. If our 
system call takes one argument, we can use syscall1(), for two arguments we can 
use syscall2(), and so on; we can pass four arguments using these interfaces. 

 Let ’ s see how syscall1 is implemented (see Fig.  1.13 ). This is implemented as a 
macro in  /usr/include/asm/unistd.h . It can take one argument arg1. The macro breaks 
into an inline assembly code that generates software interrupt int 0x80 at line 293. 
Line 294 indicates that the result needs to be stored in  eax% . There are two inputs: 
eax% contains a system call number that is combined as (__NR_##name) at line 
294, and ebx% contains the value of the fi rst argument for the systemcall.     

  1.5    L  INUX  PROCESS AND THREAD 

 Each user land process has an associated task_struct object associated with it in the 
kernel. The process has two modes,  user  and  kernel . The user land context is dif-
ferent from the kernel context, where each one has different code, data, and stack 
segment registers. Each process has user mode and kernel mode stack. The kernel 
mode stack is an 8   K memory block, which has  task_struct  object at the end of the 
stack (see Fig.  1.14 ). The application runs in user mode and uses a user mode stack 
until it makes a system call when it switches from user mode to kernel mode where 
it starts using kernel mode. See Section  1.4.1  for more details.   

 Each process has a unique process ID by which it is identifi ed in the system. 
 task_struct  object contains the entire information about the process, including hard-
ware context. Some of this process - specifi c information is fi le system information, 
fi le table, signal handling, memory management, and so on. Each process has a 
kernel level thread associated with it which is seen by the scheduler as scheduling 
entity. This thread is represented by  task_struct  object. The kernel maintains a 
doubly linked link list of  task_object  corresponding to all runable processes in the 
system. 

  1.5.1     fork ()  

 New processes can be created by calling  fork() . It inherits all the property of the 
parent process and shares VM, open fi les, and so on. Initially, user stacks for child 
and parent are shared; but as the stack grows for the child, it gets its own copy of 

    Figure 1.13.     Implementation of syscall1.  
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the stack via a COW (copy - on - write) mechanism. Child created by fork has separate 
 task_struct  object and different kernel mode stack. Fork internally uses a clone to 
create a new process. The exec * () family of system calls is used to replace an exist-
ing process with a new process.  

  1.5.2   Thread 

 A thread on Linux can be user level or kernel level. User level threads are ones 
that are scheduled in the user land by libraries. The kernel has no idea about these 
threads, and there is only one kernel thread for all the threads which corresponds 
to the process which has created these threads. Kernel level threads are much like 
Linux processes. These are also called lightweight processes (LWPs). Each thread 
created by the process has a corresponding kernel level thread and is treated as a 
scheduling identity by the kernel (see Fig.  1.15 ). Each thread is scheduled irrespec-
tive of every other thread for the process. So, there is much better control as far as 
a blocking system call is concerned. The only thing that differentiates it from a 
normal process is its lightweight.   

 Threads share virtual memory, signals, and open fi les with its parent. But each 
of them has separate process IDs. A clone system call can be used to create LWPs 
for the process. Clone fl ags to create LWPs are 

   •      CLONE_VM  
   •      CLONE_FS  
   •      CLONE_FILES  
   •      CLONE_SIGHAND  
   •      CLONE_THREAD    

 The pthread library creates kernel threads for the process. LWPs created by 
using a clone systemcall with the above fl ags have separate process IDs. The option 

    Figure 1.14.     Kernel mode stack for the process.  



 m  of  ps  command can show all the threads corresponding to the process. In one 
example, I creates a program to spawn kernel level threads using  pthread_create() . 
The ps command is used to display all the threads for the process as shown in 
Fig.  1.16 .    

  1.5.3   Kernel Threads 

 In this section we will discuss the threads that are created inside the kernel and not 
by user land processes. Kernel threads are the same as the one created by the user 
land applications in the way they both use a clone kernel interface and both have 
a separate kernel mode stack. Kernel threads are created by making a call to 
 kernel_thread() . Kernel threads have no user context because they are not associ-
ated with any user process. A kernel thread executes in a user kernel address space 
and does not have an address space of its own, unlike a user process. A kernel 
thread is not interrupted by any one once it starts executing. It can yield CPU by 
itself by going to sleep. These threads are very much visible using a  ps  command 
and can be recognized by the name because they start with a  k  — for example,  ksoft-
irqd ,  kfl ushd , and so on. These threads either wake up on expiry of the timer by 

    Figure 1.15.     Process, LWPs, and kernel thread.  
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themselves or are woken up by some other thread inside the kernel and are sched-
uled by the kernel as usual. 

 Let ’ s take an example of  ksoftirqd  kernel thread to illustrate kernel 
threads. Soft IRQ are also processed by kernel daemons in case there is a lot to 
be processed by softIRQs; this is mostly true in the case of network packet 
processing. Softirq daemons are created per CPU in routine  spwan_ksoftirqd()  (see 
cs  1.2 ).   

  kernel_thread()  is called in a loop 402 – 410 to create one kernel thread per CPU. 
The routine that needs to be executed as a kernel thread is passed as a fi rst argu-
ment to  kernel_thread() ; that is,  ksoftirqd  and second argument is CPU ID. Let ’ s 
see why we pass CPU ID when we are creating a kernel thread. The name of the 
kernel thread is stored in current → comm. Since softirq daemons are per CPU, the 
name of each daemon contains a CPU number (see cs  1.3 , line 375). This name of 

    Figure 1.16.     ps output showing process and associated threads (LWPs) created using a clone 

interface.  

    cs 1.2.      spwan_ksoftirqd() .  



kernel softirq daemon appears with the name  ksoftirqd_CPU0  on running  ps  
command as shown in Fig.  1.17 .   

 softIRQ daemon is awakened by using interface  wakeup_softirqd() . This routine 
gets access to softIRQ thread for the CPU by calling  ksoftirqd_task()  at line 55. 
 ksoftirqd_task()  is a macro that accesses thread information from CPU - specifi c 
structure by using another macro  __IRQ_STAT  (see cs  1.4 ).   

 Once  ksoftirqd_task()  gets softIRQ thread for the CPU, it checks if it is not 
already in running state (cs  1.5 , line 57). If not already scheduled, it is woken up by 
a call to  wake_up_process()  at line 58. This routine changes the state to  TASK_
RUNNING  and puts the thread on the kernel run queue.     

    cs 1.3.      ksoftirqd() .  

    Figure 1.17.     ps output shows kernel thread as  ksoftirqd_CPU0 .  
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    cs 1.4.      ksoftirqd_task() .  

    cs 1.5.      wakeup_softiqd() .  
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  1.6   KERNEL SYNCHRONIZATION MECHANISM 

 The Linux kernel implements many synchronization mechanisms that are applic-
able in different situations on different kernel control paths. Some of these synchro-
nization mechanisms are 

   •      Semaphore  
   •      Atomic operations  
   •      Disabling interrupts locally or globally  
   •      Spin locks    

 The above synchronization mechanisms work on different principles, but the 
aim is to synchronize access to kernel global data structures across different kernel 
control paths and also across CPUs. Different kernel control paths are discussed in 
Section  1.3 , but let us summarize here: 

   •      Kernel path executing system call on behalf of process  
   •      Kernel path executing interrupt routine  
   •      Kernel path executing softIRQ.    

 Let ’ s see what synchronization mechanism could be best used for different 
kernel control paths. Spin lock is the most commonly used synchronization mecha-
nism in different fl avors. We will discuss this in more detail in shortly. Let ’ s see how 
semaphore is implemented, and let ’ s discuss its usage. 

  1.6.1   Semaphore 

 A semaphore is used to synchronize access to global data structure in an asynchro-
nous way. When many kernel control paths want to acquire a kernel resource, only 
one gets the lock and the rest are put to sleep until the lock is released by the one 
that is acquired.  down()  and  up()  are the two routines that manipulate semaphores. 
When the kernel control path wants to acquire a semaphore, it calls  down() . If we 
are the fi rst one to acquire semaphore, we change the state of the semaphore and 
get access to the shared resource. If somebody has already acquired the semaphore, 
the caller has to wait on a semaphore wait queue until it is woken up by the control 
path that has acquired it.  up()  routine is called by the kernel control path to release 
the semaphore, and it also wakes up all the processes waiting on a semaphore wait 
queue. 

 The best example that explains the usage of a semaphore is page fault. Process 
address space may be shared by many threads (LWPs) or a child process. It may 
happen that page fault occurs while executing for the code area or stack area. In 
this case, a page fault handling routine takes a semaphore for its kernel address 
space ( current → mm → mmap_sem ). Then it starts to fi nd the cause of fault and tries 
to get the missing page and map it to the process page table. In the meantime, some 
other thread which is sharing the address space of the process which is already in 
the process of fi nding page for the faulting address also faults. In this case, the 
thread that has faulted later will go to sleep on  mm → mmap_sem  and will be woken 
up once the page fault handler returns for the process that faulted fi rst.  



  1.6.2   Atomic Operations 

 This is mainly used to synchronously access a memory region when two or more 
kernel control paths are trying to access them simultaneously. There are instructions 
that may require us to test and modify a bit atomically (without being interrupted 
by interrupts) on the CPU. On SMP machines, such instructions appear to be non-
atomic as both the CPU ’ s read the same value in a given memory location in two 
simultaneous read cycles. If the 0 value in the memory location means acquire the 
lock, both will acquire the lock and will wait for the big blast. On an SMP machine, 
these instructions should be preceded by lock instruction to lock the memory bus 
by any CPU until atomic instruction is executed completely.  

  1.6.3   Spin Lock 

 The third and most commonly used synchronization technique used everywhere 
inside the kernel is  spin locks . It is used to synchronize data access when kernel 
control paths on two or more CPUs try to access the same memory region simulta-
neously. It differs from a semaphore in the way that the semaphore freezes the 
process that wants to acquire the semaphore when it is already acquired. Spin lock, 
on the other hand, does not put the process to sleep that wants to acquire the spin 
lock when it is already acquired. Instead, it executes a tight loop spinning around 
the lock each time atomically testing the lock, also called busy - wait loop. If it fi nds 
that the lock is released, it tries to acquire it atomically. Spin lock makes use of 
atomic instructions. Whichever CPU succeeds in acquiring the lock fi rst gets it, and 
others continue to move in a tight loop and this continues. 

 Spin locks have an edge over semaphores because we save a lot of time in 
context switching when the process trying to acquire a lock is put to sleep by the 
semaphore. Critical section in the kernel is refereed to code that modifi es/accesses 
global data - structures accessed from a different kernel control path. Critical sec-
tions should be protected by locks. Locks held for a longer time cause other kernel 
control paths to paths to wait for a longer time causing a performance hit. A critical 
section of the kernel code is executed for a much shorter period of time. If the time 
required in context switching is much more than the time spent in executing a criti-
cal region, semaphores penalize the performance extensively. In such cases, waiting 
on a busy loop to acquire the lock gives a much better performance. Not only this, 
there are other reasons to use spin lock on SMP machine instead of semaphores for 
serialized access of global data. For example, data that are shared between a kernel 
control path and an interrupt cannot be protected by a semaphore because it could 
freeze the system by calling a schedule in interrupt routine (hypothetical case). In 
the same way, a spin lock cannot be used for serialized access of data shared 
between interrupt and kernel control path on a single CPU machine. This would 
cause the machine to freeze because the tight loop in the interrupt routine would 
never let us come out of it when a spin lock is already acquired by the other kernel 
control path. For this reason, we acquire a spin lock with local interrupts disabled 
when data are shared between kernel control path and the interrupt routine. This 
doesn ’ t stop interrupts from occurring on other CPUs, which is OK because they 
will wait in a tight loop until we release the lock. Maskable interrupts are disabled 
locally by using the macro  local_irq_disable()  and are enabled by using 
 local_irq_enable() . 
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 A spin lock can also be used to serialize data shared between the kernel control 
path, softIRQ also. In such cases, two macros can be used to disable and enable 
soft IRQ; these are  local_bh_disable  and  local_bh_enable , respectively. Check 
Section  17.2  for details. 

 Different fl avors of spin_locks are shown in Figs.  1.18  and  1.19 . In some cases 
we need to store EFLAGS for the CPU before disabling interrupts locally to restore 
it once we enable interrupts once again as interrupts are handled in nested fashion. 
Nested interrupt handling means that an interrupt is raised when another low - 
priority interrupt is already being handled on the CPU. We do this because we are 
not sure whether interrupts were enabled at the time we disabled them. This means 
that IRQs may already have been disabled by an upper layer before we are going 
to disable them.   

 In such cases,  spin_lock_irqsave()  and  spin_unlock_irqrestore()  are used to 
serialize data access between kernel control path and interrupt.  spin_lock_irq()  and 
 spin_unlock_irq()  are used simply when we want to serialize access of data shared 
between kernel and interrupt.  spin_lock_bh()  and  spin_unlock_bh  are used to seri-
alize access of data shared between kernel and softIRQ. 

 Similarly, we have the same fl avors of spin locks for reader and writer locks, 
which we won ’ t discuss here in much detail. Read spin lock allows multiple readers 
to get access to the shared data, whereas writer lock exclusively allows only a single 
writer to access the resource. When writer lock is acquired, no one including the 
reader is allowed access to the resource.   

  1.7   APPLICATION INTERFACES FOR  TCP / IP  PROGRAMMING 

 In this section we will see various interfaces that are provided to the user applica-
tion to write a client – server program. All networking applications are based on 
client – server technology other than multicasting and broadcasting applications. 
There may be variants to the outlook of these applications, but basically the under-
lying functionality remains the same. Normally, a server is a program that provides 

    Figure 1.18.     Interface to acquire spin lock.  

    Figure 1.19.     Interface to release spin lock.  



a known service to the client program. The example is telnet, FTP, http, and so on. 
Client and server are in some kind of understanding with each other for all such 
services. But there is one thing in common in all the programs: client – server tech-
nology. In all the cases, a server has established its identity, which is known to the 
client. The client sends out a request to the server for the service, which in turn 
offers its services once they are connected to each other. We fi rst discuss simple 
server application and then client application and see how they use TCP protocol 
over IP to communicate with each other. 

  1.7.1   Server Application 

 A server program has to provide its identity to the client programs by way of listen-
ing on a specifi c port. Port is a unique number that identifi es a connection or specifi c 
services on a given host. When we say identifying specifi c connection on specifi c 
port it means that the server application needs to register its service with the kernel 
by way of port number. When we request a kernel to register our service, a unique 
port number is provided by server application to the kernel to associate its services 
with this number. 

 This port number should be known to the client application so that it can send 
its request to the host machine running this service. Let ’ s see what all interfaces are 
providing to hook its services with specifi c port number and register its service with 
the kernel. 

 We want to start service using TCP transport protocol (see Fig.  1.20 ). The fi rst 
step is to make a  socket()  system call at line 25. The socket is a framework to com-
municate with the network protocol within the kernel. This call opens a socket in 
the kernel. The arguments to the socket call are AF_INET and SOCK_STREAM. 
This means that we want to open an internet family socket of type STREAM refer-
ring to TCP. The socket initializes INET socket - specifi c data structures and also 
TCP protocol - specifi c data structures and a set of operations. It links the socket 
with the VFS, which is then associated with the fi le descriptor and returned to the 
application. Now using this fi le descriptor, the server can request to kernel any 
operation on the socket.   

 The next step is to bind the socket with a specifi c port number by making the 
 bind()  system call at line 33. This is the way we are requesting a kernel to allocate 
a specifi c port number to its service. Here comes the concept of socket address 
whose C equivalent is  sockaddr_in . This has two fi elds: port number and IP address. 
If the host machine has more than one interface, an application can request a kernel 
to bind the socket with a given interface or with all the available interfaces. This 
means that application may want to accept connection requests from only one 
interface or from all the available interfaces. In the former case, the  sin_addr  fi eld 
of the socket address is initialized to the specifi c IP address and the same fi eld needs 
to be initialized to INADDR_ANY in the latter case, line 31. Since this is INET 
address family, the  sin_family  fi eld of the socket address is initialized to AF_INET. 
The port number to which we want to glue the services is initialized at line 32. The 
socket address is now ready for registration as object  sockaddr_in . 

 The socket address is passed to  bind()  call. If the return value is less than zero, 
the socket could not be bound to the given port number because there may be any 
reason, including the fact that a port number may already be allocated to some 
other services. Otherwise, we got the port number that was requested. 
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    Figure 1.20.     Server program.  



 Next is to request the kernel to start the accepting the connection, which is done 
by making a call to  listen()  at line 37. A listen call will actually start the services for 
the server application. Now the kernel will start accepting connection a request for 
the socket. A second argument to  listen()  call is to accept a queue length for the 
listening socket. All the established connections for the socket sit in this queue to 
be accepted. Connection requests can come faster than they can be accepted by the 
application. For this reason we need a queuing mechanism to buffer a pending con-
nection on the busy server. 

 The fi nal step is a call to  accept()  systemcall at line 40.  accept()  call is made in 
an infi nite loop. This call blocks until a new connection is available from the accept 
queue. As soon as a new connection is available, application is awakened and new 
connection is returned to the application associated with the fi le descriptor associ-
ated with the new socket connection. 

 The returned value of the accept call is associated with a new connection and 
can be used for communication between two ends. This opens a new channel 
between the two ends and is differentiated from all other connections for the same 
service using a remote port and an IP address. For each connection, a remote port 
number or a remote IP address will be unique. 

 Our serve program forks a new process for the newly accepted connection by 
a call to  fork()  at line 43.  fork()  syscall returns with value zero in the child process. 
In the parent process, it returns childs PID. This way we start services in the child 
thread in while loop 47 – 61. We are blocked to read data over the socket by a call 
to  read()  at line 53. Once it has read data over the socket, it writes received data 
back to the sender at line 56 by a call to  write() . A child thread closes a listening 
socket at line 48 because additional reference was held on the listening socket when 
we were waiting on accept in parent. Parent thread closes a new socket at line 62. 
In the next section we will see what the client program does.  

  1.7.2   Client Application 

 A client program has to be sure of the server it needs to contact. To contact the 
server, it has to know two things about the server: 

   •      Port number of the server at which it is listening  
   •      IP address of the host machine where this server is running    

 Refer to Fig.  1.21  for a client program. The socket address consisting of these 
two information C equivalent of socket address is  struct sockaddr_in , as discussed 
in Section  4.2 . First we make  socket()  call at line 27 to open TCP socket.  sin_addr  
fi eld is initialized to the IP address of the server and  sin_port  fi eld is initialized to 
port number of the listening server at lines 39 and 42, respectively. Next we make 
a call to  connect()  at line 43, to which we pass the socket address of the server. We 
pass the socket descriptor to the  connect()  on which the connection is to be estab-
lished. The kernel fi nds route for the destination (server) and then initializes the 
connection process. Once the connection is established, the connect returns.   

 Once  connect()  returns, we are ready to communicate with the server using  read 
 &  write  calls using a socket descriptor. In the while loop 47 – 56, we are reading one 
line from the standard input (keyboard) at line 49 and writing it over the socket by 
a call to write at line 51. Just after writing data over the socket, we are waiting to 
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    Figure 1.21.     Client program.  



read data over the socket by a call to read at line 54. Data received are printed at 
line 59. The server returns whatever it has read over the socket, which is read by 
the client and displayed at standard output. This makes an echo server.  

  1.7.3   Socket Options 

 Sockets can be tuned as per the requirements by an applications. This facility can 
save us from tuning the entire system where different applications have different 
requirements. For example, telnet connection requires setting a KEEP_ALIVE 
timer for the TCP connection between telnet server and client. This facility is 
required because telnet connection can be open for months without any activity. 
With  KEEP_ALIVE  socket option, the server can probe client to fi nd out if it is 
alive. On the other hand, FTP doesn ’ t need this option. 

    setsockopt () .     There are many socket options that can be used to tune different 
TCP connections. s etsockopt()  is an interface that is provided to the application to 
set socket options for a given connection without disturbing global settings (see Fig. 
 1.22 ). Arguments to the system call are as follows: 

   s :     This is the socket descriptor as returned by the socket.  
   optname :     This is the name of the socket option that needs to be tuned.  
   optval :     This is the value of the socket option to be set.  
   optlen :     This is the length of the optional value that is passed to the kernel to 

mark the end of option length. The reason is that optlen is a pointer to 
void.       

    getsockopt () .      getsockopt()  is an interface provided to get the value of socket 
option (see Fig.  1.23 ). The arguments are the same as they are for  setsockopt() , with 
the difference being that they are used to fetch the value of the socket options.     

  1.7.4   Option Values 

    SO _ DEBUG  .     This turns on debugging at various protocol layers. This may be 
useful when we want to track allocation of buffers, traversal of packets on the stack, 
behavor of TCP algorithms, and so on. If the socket debug option is enabled, the 
 SOCK_DEBUG  macro prints messages on reception of bogus ACK for the byte 
that is not yet sent (line 1908, cs  1.6 ).   

    Figure 1.22.      setsockopt() .  

    Figure 1.23.      getsockopt() .  
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 The  SOCK_DEBUG  macro uses the kernel  printk()  interface to write debug 
messages. These messages can be seen through  dmsg  command or from fi le  /var/
log/messages . We can see that  SOCK_DEBUG  fi rst checks if debug option is on for 
the socket ( sk → debug ) at line 468 (cs  1.7 ).  sk → debug  is set by the application using 
 setsockopt()  interface.    

   SO _ BROADCAST .     This enables sending of broadcast messages, if this is sup-
ported by the protocol. Broadcast is not supported by TCP. Only UDP and raw 
socket support broadcast. In  udp_sendmsg() , if the route is of type broadcast 
( RTCF_BROADCAST ), it can send broadcast messages only if socket option 
enables ( sk → broadcast ) is set (line 525, cs  1.8 ).    

    cs 1.6.      tcp_ack() .  

    cs 1.7.      SOCK_DEBUG() .  

    cs 1.8.      udp_sendmsg() .  



   SO _ REUSEADDR .     Whenever any server application wants to bind to a port 
which is already in use by some other application on the same machine, this option 
may allow us to use the same port number under certain conditions. This option 
sets the  reuse  fi eld of the  sock  object. 

  tcp_v4_get_port()  is called inside the kernel through a bind path when 
application wants to bind to a specifi c port. We traverse through the bind hash list; 
and if we fi nd port already occupied and  sk → reuse  is set more than 1 (line 250, cs 
 1.9 ), we can directly use the port. Otherwise, if the value of  sk → reuse  is set to 1 
(line 252, cs  1.9 ), it has to go through some additional checks before getting the 
port.    

   SO _ KEEPALIVE .     This option enables a heartbeat mechanism for TCP connec-
tion. An application like telnet may be active for months, where one end never 
knows about the other end when connections are ideal. It may happen that the one 
end has gone down, in which case the other end will never know. Half - connection 
will unnecessarily be open, thereby occupying resources. This option keeps sending 
messages to the other end once connection is idle for some time. In return, the 
sending end expects acknowledgment. If acknowledgments are not received, the 
connection is closed after a certain number of retries. 

 When the option is enabled,  tcp_set_keepalive()  is called to set the keepalive 
timer for TCP, and  sk → keepopen  is set to 1.  tcp_set_keepalive()  resets the keepalive 
timer in case it is not already set; this is done by calling  tcp_reset_keepalive_timer()  
(see cs  1.10 , line 568).    

   SO _ LINGER .     The linger option is to enable a TCP socket to provide enough 
time to send unsent data in the send queue when a socket is closed by an applica-
tion. We provide a timeout value with this option so that the kernel hangs on for 
this much time before closing the socket. In this time, the TCP gets enough time to 
fl ush all the data to the receiver. If timeout is not provided, the kernel waits until 
all the data are fl ushed out. 

 This option sets  sk  → linger to 1, and sk → lingertime is set to a timeout value 
provided by user application. When an application issues a  close()  syscall an INET 
socket,  inet_release()  is called. If a linger option is set, a linger timeout value is taken 

    cs 1.9.      tcp_v4_get_port() .  

APPLICATION INTERFACES FOR TCP/IP PROGRAMMING 31



32 INTRODUCTION

from  sk → lingertime  (cs  1.11 , line 463). Finally, a protocol - specifi c close routine is 
called with a linger timeout value at line 465 (see cs  1.11 ).   

 In  tcp_close() , we check the timeout value passed as an argument to the routine. 
If set, the kernel puts the process to sleep before by calling  add_wait_queue()  at 
line 1978 (see cs  1.12 ). By the time we request a timeout, all data would have been 
fl ushed. Once we have performed the timeout, the socket is closed.    

   SO _ OOBINLINE .     This option is related to a TCP urgent byte. If the option is 
set, the TCP urgent byte is received inline; otherwise, it is received on different 
channel as out - of - band data. The option sets  sk → urginline  to 1.  sk → urginline  is 
discussed in much detail in Section  8.3.2 .  

   SO _ SNDBUF .     This option sets send buffer size for the socket,  sk → sndbuf . This 
value puts a limit on the total amount of memory allocated for the send buffer. In 

    cs 1.10.      tcp_set_keepalive() .  

    cs 1.11.      inet_release() .  



case the segments get acknowledged, they stay in the send buffer and account for 
the send buffer consumption. 

  tcp_memory_free()  is called when application data are written over the TCP 
socket to check if we have enough space in the send buffer for application data. If 
this returns TRUE, we can queue new data to socket ’ s send buffer, otherwise not 
(see cs  1.13 ).    

   SO _ RCVBUF .     The option is the same as  SO_SNDBUF  with the difference that 
this option sets an upper limit on the receive buffer,  sk → rcvbuf . In  tcp_data_queue() , 
we check if allocated memory for receive socket buffer is more than socket send 
buffer limit at line 2571 (cs  1.14 ). If the condition is true, we try to squeeze some 
memory from the receive queue by calling  tcp_prune_queue()  at line 2573.    

   SO _ DONTROUTE .     This option is mainly used by RAW sockets or UDP sockets 
and sets  sk → localroute  to 1. If this option is enabled, the normal routing policy is 
disabled for the outgoing packet. The packet will be routed only if the destination 
is directly connected to the network.  

   SO _ RCVTIMEO .     This sets the timeout value for the socket that specifi es the 
maximum amount of time the process should be blocked for an incoming event such 
as the following: 

   •      Accept blocked for new connection on listening socket.  
   •      Read is blocked to receive data on the connected socket.    

    cs 1.12.      tcp_close() .  

    cs 1.13.      tcp_memory_free() .  
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  sock_rcvtimeo()  returns a value of timeout for blocking sockets, (see cs  1.15 ).   
  tcp_recvmsg()  calls  sock_rcvtimeo()  at line 1488 (cs  1.16 ) to get a timeout value 

for the socket. Once requested data are not available,  tcp_data_wait()  is called at 
line 1639 (cs  1.16 ) with a timeout value returned by  sock_rcvtimeo() . This puts the 
process to sleep until timeout occurs or until data are received, whichever happens 
fi rst.    

   SO _ SNDTIMEO .     This option is similar to  SO_RCVTIMEO  except that this sets 
a timeout for receiving events on the socket. This sets a value of  sk → sndtimeo . 

    cs 1.14.      tcp_data_queue() .  

    cs 1.15.      sock_revtimeo() .  

    cs 1.16.      tcp_recvmsg() .  



  sock_sendtimeo()  returns a timeout value as sk → sndtimeo for blocking sockets 
(see cs  1.17 ).   

  tcp_sendmsg()  calculates records timeout value at line 1025 (cs  1.18 ) by 
call to  sock_sndtimeo() . If it fails to allocate memory for copying new data into 
a network buffer (line 1068, cs  1.18 ), it has to wait for memory by calling  wait_
for_tcp_memory()  until it times out or memory is available, whichever happens 
fi rst.      

  1.8   SHUTDOWN 

 The client – server program may be sending and receiving data from both the ends 
because TCP is a fully duplex stream protocol. It may happen that one end doesn ’ t 
want to send or receive any more data because it is already done. In such a case, it 
will close that end of the socket. If any activity happens on that end further, the 
socket will throw an error saying that operation is not permitted. The  shutdown()  
function shall cause all or part of a full - duplex connection on the socket to be shut 
down. 

 The  shutdown()  function takes the following arguments (Fig.  1.24 ).   

    cs 1.17.      sock_sndtimeo() .  

    cs 1.18.      tcp_sendmsg() .  
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      socket .     This is a fi le descriptor associated with the socket.  

   how .     This specifi es what action needs to be taken. The values are as follows: 

   SHUT _ RD .     This disables reading of any more data over the socket. TCP 
may be accepting data, but the application is not allowed to read data over 
the socket.  

   SHUT _ WR .     This disables writing of data over the socket. When application 
wants to send data over the socket after write side is shut down, the socket 
throws an error to the application, indicating that a pipe is broken.  

   SHUT _ RDWR .     This disables further send and receive operations.      

  1.8.1   Kernel Shutdown Implementation 

 Let ’ s see how shutdown is implemented in the kernel.  sk → shutdown  fl ags shutdown 
events. There are two fl ags here: 

   •       SEND_SHUTDOWN , set to disable send events.  
   •       RCV_SHUTDOWN , set to disable receive events.     

  1.8.2   Send Shutdown 

 When an application wants to send a message after the send side of the socket 
is shut down,  tcp_sendmsg()  handles the situation.  sk  → shutdown has  SEND_
SHUTDOWN  bit set for the socket in this case. An error is initialized to  E_PIPE  
at line 1042, cs  1.19 . At line 1043 we check the shutdown fl ag. If the  SEND_SHUT-
DOWN  bit is set, we go to error handling at line 1202. It is rare that any data are 
copied to the application buffer. I mean that it is rare that shutdown is called from 
application when the kernel is in the process of reading data from the socket buffer. 
So, we move to error handling at line 1205. Here we do some cleanup operation 
and then return error number which is set to E_PIPE.    

  1.8.3   Receive Shutdown 

 When an application wants to receive data over a TCP socket, a kernel calls  tcp_
recvmsg() . Error number is initialized to  ENOTCONN . We read data in do - while 
loop 1502 – 1703, cs  1.20 . In the process, we check if a shutdown bit is set for the 
socket at line 1568. If so, we break. We do a cleanup operation and then return the 
value of copied, which may be a positive value if there was any data copied from a 
receive buffer or 0 if there was nothing copied from the receive buffer. It doesn ’ t 
return an  E_PIPE  error instead 0. Zero return value to the application means that 
nothing was there to be read from the socket.     

    Figure 1.24.      shutdown() .  

int shutdown(int socket, int how);



    cs 1.19.      tcp_sendmsg() .  

    cs 1.20.      tcp_recvmsg() .  
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  1.9    I / O  

 In this section we discuss different system calls on Unix systems that deal with I/O. 
Our discussion will be more focused on the feature that system call adds to I/O 
activities. These system calls can be used to receive or send normal -  or high - priority 
data over the socket. 

  1.9.1     read ()  

 This is the simplest system call to read data over the socket. We specify a 
socket descriptor as a fi rst argument, address of the location where data should 
go as a second argument, and number of bytes to be read in the buffer as a 
third argument (see Fig.  1.25 ). The system call can a block or return immediately, 
depending on whether the socket is blocking or nonblocking. By default, it is block-
ing. If the socket is blocking, read blocks in case its request is not satisfi ed 
completely.    

  1.9.2     write ()  

 This is simplest system call to send data over the socket (see Fig.  1.26 ). Arguments 
are same as that for the read; the difference is that instead of reading, this will write 
data. The blocking and non - blocking nature is the same as that for read.    

  1.9.3     recv ()  

 This system call would receive data over the socket with some added control (Fig. 
 1.27 ). The fi rst three arguments are the same as that for read, with an additional 
fourth argument as control  fl ags . With the additional fl ag, we can just peek for the 
data or can receive TCP urgent data as out - of - band data. In the latter case, the 
process will never block even if the socket is blocking.    

    Figure 1.25.      read() .  

    Figure 1.26.      write() .  

    Figure 1.27.      recv() .  



  1.9.4     send ()  

 This system call would send data over the socket with some added control (Fig. 
 1.28 ). This is the same as recv, with the difference being that this is used for sending 
data instead of receiving data. The fl ags argument has the same meaning as it is for 
recv.    

  1.9.5     select ()  

 The select system call offers more features with added complexity (Fig.  1.29 ). The 
added feature is to do I/O multiplexing demultiplexing. With the system calls dis-
cussed so far, we can do I/O only on a single socket descriptor or fi le descriptor. 
With select, we can block on multiple events for different descriptors. The events 
are read, write, and exception. For each event, we have pointer to  fd_set  object. We 
can mark the bit corresponding to the fi le/socket descriptor in  fd_set  object. We do 
this by using macro  FD_SET() . We pass pointers to  fd_set  for each event to select. 
The fi rst argument to select is a maximum fi le descriptor number that will be one 
more than the highest number received as the fi le/socket descriptor for the process. 
We can also provide a timeout value as the fi fth argument. Once select returns, the 
return value indicates the number of events that has occurred. We need to check 
each event by using macro  FD_ISSET  on each descriptor to check which event has 
occurred. For example, if there are data to be read on the socket and we want this 
event to be notifi ed, select returns with bit set for read event.  FD_ISSET()  for readfs 
event will return 1 for the descriptor that received data.     

  1.10    TCP  STATE 

 TCP is a state - oriented protocol. Each TCP session maintains a state of its own. 
The state of the TCP connection is a kind of marker for the protocol which decides 
the behavior of the protocol at any given point of time. Each state will have a pre -
 decided set of rules that need to be followed strictly. Specifi c events can change the 

    Figure 1.28.      send() .  

    Figure 1.29.      select() .  
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state of the protocol, which in turn changes the next course of action. Any diversion 
from the current course of action may lead to major failures caused from breaking 
protocol. As we see later in the discussion, there is a way in which a connection 
needs to be established initially between two TCP peers. If the protocol is not 
followed as expected, the two ends keep on exchanging the connection - specifi c 
packets forever, thereby causing a lot of damage to the system as well as to network 
resources. 

 Let ’ s see what these TCP states are. We divide the discussion into three differ-
ent categories, depending on the stage of the TCP connection: 

  1.     Connection initiation (active and passive)  
  2.     Established connection  
  3.     Connection closure (active and passive)    

 Connection initiation ( three - way handshake ) is illustrated in Fig.  1.30 . We have 
already discussed the client - server program in Section  1.7 . We take the same 
example and see what happens when a client is trying to send a connection request 
to the server.   

 On a time - line diagram, the connection initiation would be as shown in Fig. 
 1.31 . Connection initiation is started by the client, which invokes connect system 
call. So, a client sends SYN packet to the server at time  10:07:35.210908 . The server 
responds to the connection request by ACKing (acknowledging) the SYN. Finally, 
the client acknowledges the SYN/ACK by sending the fi nal ACK. From Fig.  1.30 , 

    Figure 1.30.     TCP three - way handshake.  

    Figure 1.31.     Time - line diagram for 

three - way handshake.  
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it is worth noting that some information is exchanged between the peers in initial 
SYN and SYN/ACK packets. The information contains TCP options. Please refer 
to Section  2.2  for detailed information about protocol headers. Let ’ s see how the 
client and server side TCP state changes with each event.   

 Figure  1.32  shows the transition of TCP states at client and server when some 
event triggers. First look at client side states: 

   •      Initially, the client ’ s TCP is in a CLOSED state when it sends out SYN packet 
to the server. This SYN packet is a connection request to the server from 
client. Here the client is supposed to be doing active open.  

   •      After the client has sent out the SYN packet (connection request), its state 
changes from CLOSED to SYN_SENT.  

   •      Now the client waits for the server to send ACK for the SYN sent. Once the 
client receives ACK for the connection request, its TCP state changes from 
SYN_SENT to ESTABLISHED.      

 Handling error at client end. If the client receives an RST (reset) packet in reply 
for the initial SYN sent, its state changes to CLOSED. 

 Let ’ s look at the server side TCP state transition: 

   •      At the server side, we have a listening socket. So, the initial TCP state at the 
server side is LISTENING.  

   •      The server receives connection request for the LISTENING socket — that is, 
the fi rst SYN packet from the client. The server sends out an SYN/ACK 
packet in response to the client ’ s connection request. The server side TCP 
state doesn ’ t change because the connection request is still pending to be 
completed until the server receives the fi nal ACK from the client. This 

    Figure 1.32.     TCP states during three - way handshake.  
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connection request remains open until the fi nal ACK is received from the 
client and is queued in the SYN queue for the listening socket. No new socket 
is created at this point in time.  

   •      The fi nal ACK is received from the client. So the three - way handshake is 
completed here. A new socket is created for the connection request, which is 
in the SYN_RECV state. Before any event occurs, the socket is further pro-
cessed and its state is changed to ESTABLISHED because both sides have 
agreed completely for this connection and negotiation is completed between 
client and server.    

 Once the connection is in an established state, both ends can exchange data 
until one of the ends decides to close the connection. Let ’ s see what happens when 
one of the ends does an active close. The client is 192.168.1.4 and the server is 
moksha. The client sends 100 bytes of data to the server and then does an active 
close to the connection. Figure  1.33  shows the tcpdump output of the life cycle of 
the TCP connection.   

 We have already discussed three - way handshake, so we won ’ t discuss packets 
1, 2, and 3. Packet 4 is 100 bytes of data from a client which is ACKed (acknowl-
edged) by a server in packet 5. Thereafter, the client closes the connection and 
hence sends FIN packet (packet 6) with 1 byte of data. The server acknowledges 
byte 101 in packet 7 and then sends out an FIN packet with 1 byte (packet 8). 
Finally, the client that did the active close gets a fi nal FIN with ACK from the server. 
The client sends the fi nal ACK to the server. Now we see how the state of TCP 
connection changes with each event during close. 

 Let ’ s see how the state transition happens at the two ends of the TCP connec-
tions. We take the same example where the client is writing data to the server; and 
after the write of 100 bytes is over, the client closes the connection (Fig.  1.34 ). 
From Fig.  1.35  we can see that once the client does an active close, it sends out a 
FIN segment to the other end and its state changes from ESTABLISHED to FIN_
WAIT1. So, the FIN_WAIT1 state indicates that FIN still needs to be acknowl-
edged. At the server side, FIN is received so it knows that that the client wants to 
close the connection in a normal way. On reception of FIN for the connection, 
the state of server side TCP changes from ESTABLISHED to CLOSE_WAIT. In 
response to the FIN received, the server can do two things here: 

    Figure 1.33.     Complete life cycle of TCP connection.  

1    09:46:52.920305 192.168.1.4.33002 > moksha.5000:S 2135112431:2135112431(0) win 49640

<mss 1460,nop,wscale 0,nop,nop,sock OK> (DF)

2    09:46:52.920364 moksha.5000 > 192.168.1.4.33002:S 4191973139:4191973139(0) ack 213511243 2 win 5840

< mss 1460,nop,sock OK,nop,wscale 0> (DF)

3   09:46:52.920556 192.168.1.4.33002 > moksha.5000: ack 1 win 49640 (DF)

4   09:46:52.920774 192.168.1.4.33002 > moksha.5000: P 1:101(100) ack 1 win 49640(DF)

5   09:46:52.920802 moksha.5000 > 192.168.1.4.33002: ack 101 win 5840(DF)

6   09:46:52.920840 192.168.1.4.33002 > moksha.5000: F 101:101(0) ack 1 win 49640(DF)

7   09:46:52.956438 moksha.5000 > 192.168.1.4.33002: ack 102 win 5840(DF)

8   09:46:52.768805 moksha.5000 > 192.168.1.4.33002: F 1:1(0) ack 102 win 5840(DF)

9   09:46:52.769001 192.168.1.4.33002 > moksha.5000: ack 2 win 49640(DF)



    Figure 1.34.     Four - way connection closure process.  

FIN

Client (active close)

09:46:52.920840

09:46:52.956438

09:47:32.768805

09:47:32.768805

CLOSED
CLOSED

LAST_ACK

FIN_WAIT1

FIN_WAIT2

TIME_WAIT

CLOSE_WAIT

ESTABLISHED
ESTABLISHED

FIN/ACK

ACK

ACK

Server (passive close)

    Figure 1.35.     TIME_WAIT2 state is skipped as ACK is piggybacked with FIN segment.  

FIN

Client (active close)

CLOSED
CLOSED

LAST_ACK

FIN_WAIT1

TIME_WAIT

CLOSE_WAIT

ESTABLISHED
ESTABLISHED

FIN/ACK

ACK

Server (passive close)

  1.     It sends out ACK in reply to the FIN received from the client  &  send out 
FIN segment as another packet (Fig.  1.34 ).  

  2.     It sends out FIN with ACK (Fig.  1.35 ).      

 In the former case, the state of the server side TCP doesn ’ t change after it has sent 
out ACK. But the client is actually waiting to receive a FIN segment from the server. 
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The client receives ACK from the server in response to its FIN. This event changes 
the client side TCP state from FIN_WAIT1 to FIN_WAIT2. So, the FIN_WAIT2 
state indicates that FIN has been acknowledged but is waiting for the FIN segment 
from the peer. In the latter case, the FIN_WAIT2 state is skipped at the side that 
has done an active close. Finally, the server sends out a FIN segment to the client 
so that the server side TCP state changes from CLOSE_WAIT to LAST_ACK, 
which means that now the server is waiting for the fi nal ACK from the client that 
would be acknowledgment for the server side of FIN. On reception of FIN from 
the server, the client sends out a fi nal ACK to the server and the server goes to the 
TIME_WAIT state. The server receives the fi nal ACK form the client and goes to 
the CLOSED state. Now when does the client close the connection that is in the 
TIME_WAIT state? 

      TIME _ WAIT .     The TCP side that has done an active close goes to the TIME_
WAIT state fi nally before going to the CLOSED state. It remains in the TIME_
WAIT state for some defi nite time which we discuss later before it goes to the 
CLOSED state. It is primarily because this side of the TCP connection is the last 
to send out the ACK segment to the peer. After sending out the fi nal ACK, it has 
to wait to make sure that the fi nal ACK is received by the peer. It might happen 
that the fi nal ACK is lost and the peer retransmits the FIN once again, thinking 
that its FIN is lost because it has not received the fi nal ACK. So, someone has to 
be there at the active close end to respond to such retransmissions. If the TIME_
WAIT state does not exist and the active close end does not bother to wait any 
longer for the fi nal ACK segment status, it might mess up the closing process 
because a response to the retransmitted fi nal FIN from the passive close end will 
be an RST segment. 

 This is one of the reasons that we need to have the TIME_WAIT state for the 
TCP that did the active close. 

 Other reasons are more obvious which might happen rarely but nevertheless 
cannot be ignored. Suppose the server does an active close and does not go into the 
TIME_WAIT state. In the meantime, the client crashes and reboots. Immediately 
after reboot, the client tries to connect to the server using the same port number 
that it used for the previous connection. It gets the connection. The two ends start 
communicating with each other. The sequence number used by the client in the 
current connection overlaps with the previous connection by coincidence. If there 
is some TCP segment from the previous connection held with some router and it 
reaches the server (delayed segment), that this is surely to cause a mess up with the 
data integration. If we wait here in the TIME_WAIT state, the server refuses the 
connection request from the client because it fi nds a TCP connection for the qua-
druplet (local IP, local port, remote IP, and remote port) which is in the TIME_
WAIT state. Make sure that no connection is established with the client using a 
port number for which the TCP connection exists in the TIME_WAIT state, thus 
avoiding any unforeseen disaster. 

 Consider another case where a client does an active close and does not go into 
the TIME_WAIT state. In this case, it might reuse the same port as used by the 
previous connection to connect to the server. This may again cause the same 
problem. This problem may be curbed if the client has entered the TIME_WAIT 
state. Some of the implementations may allow reuse of the port that is already in 
use by a TCP that has entered TIME_WAIT state by deciding on the sequence 



number for the new connection. Here we need to make sure that the new connec-
tion gets the sequence that will never overlap with the sequence number from the 
previous connection. So, in case the new sequence number obtained is overlapping 
with the previous connection that has gone into the TIME_WAIT state, we add a 
number to the current selected sequence number that makes it greater than the 
maximum sequence used by the previous connection and reuse the port (RFC 1185). 
This makes the connection unique, and delayed segment if any from the previous 
connection can be taken care of. Please refer to Section  4.6.7  for implementation 
of the logic in Linux. 

 Now we should be wondering for how long the connection should go into the 
TIME_WAIT state? RFC 793 states some of the fi xed values for the TIME_WAIT 
state duration. Any fi xed values for this may cause overestimating or underestimat-
ing the values. For example, if we are in a local subnet and we go into the TIME_
WAIT state for a fi xed duration of 1 minute, this causes an unnecessary wait period 
because any delayed segment from the last connection will not get held up for so 
long. On the other hand, if we keep the TIME_WAIT duration on the lower side 
(few seconds), and the destinations are many routers away (say internet), we might 
end up waiting for the disaster to happen. So, we need to decide upon TIME_WAIT 
duration dynamically for each connection, depending on how many routers a packet 
has to pass to reach to the destination. This is decided by the number of hops. So, 
 msl  (maximum segment lifetime) is the correct parameter to decide upon the 
TIME_WAIT duration.  msl  is the maximum lifetime of the segment in the internet 
after which it should be discarded. So, this is updated at equal intervals and aver-
aged out each time because for the same destination, routes may differ at different 
times. The msl for the packet is a function of the hops fi eld in the IP header. For 
more details refer to Section  2.11 .   

  1.10.1   Partial Close 

 Until now we have seen the case where data fl ow is in one direction and the end 
that is sending data initiates the close when it has sent all the required data. Now 
we will look at the case where the connected TCP ends are sending data whereby 
each end can notify its peer that the data transfer is over from their side. This means 
that application can do partial close from its end when it thinks that it is done with 
sending all the data it had and we will see how the other end is notifi ed in such 
case. 

 We take an example where both client and server are sending data to each 
other. The TCP end that is done fi rst with sending all its data will close the write 
end of the socket. It means that it won ’ t send any more data to its peer. At the same 
time it can still continue to receive data from its peer until the peer closes its write 
side. We take client and server programs that will use shutdown. 

 A client issues a connect to the server; and after getting connected, it enters a 
loop where it issues three writes of 1024 block of data over the TCP connection to 
the server and then does a partial close to close its write end. At the same time it 
continues to receive data from the server until the server is done. Finally, the client 
doesn ’ t issue any close on the socket. The client does close the write end of its side 
by issuing shutdown() with the  SHUT_WR  option. 

 The server accepts the connection request from the client by issuing  accept()  
and gets a new socket for this connection. It then enters a loop for fi ve iterations 
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of data transfer. At each iteration it reads data; and if the read returns 0, it knows 
that the client will send no more data. So, it doesn ’ t issue any additional reads. At 
the same time it continues to send data in a block of 1024 bytes. After issuing 5 
writes of 1024 bytes each, the server issues a close from its side, which is an indica-
tion for the client that the server is done with sending data. After this close, both 
ends are done and fi nally the sockets at both client and sever close the connection 
fully. 

 Let ’ s study the whole phenomenon of data transfer and TCP signaling with the 
help of the tcpdump output when the client and the server are transacting data. 
Figure  1.37  is the tcpdump output for the entire transaction until both the ends are 
fi nally closed. The client is 192.168.1.4 and the server is moksha. The fi rst three 
packets are nothing but a three - way handshake when the connection is initiated. 
Packets 4 and 5 are a fi rst write of 1024 bytes issued by client and acknowledgment 
for this write from server. Packets 6 and 7 are a repeat of packets 4 and 5; but this 
time, write is issued from the server side, and this write is acknowledged by the 
client. This continues to happen from both the ends until the client and server have 
issued three writes and received acknowledgment for all the writes (until packet 
12). Packet 13 can be seen as a client sending FIN to the server. This means that 
after the third write is over, the client has closed its write end by issuing shutdown. 
This shutdown generates FIN from the client ’ s side TCP. Packets 14 and 15, each 
consisting of a 1024 - byte block, are writes issued by the server. After these two 
writes, the server decides to close the connection. So, FIN is combined with the fi nal 
TCP data segment; that ’ s why FIN appears in packet 15. The client acknowledges 
the FIN segment, and the connection is closed at both ends. 

 Let ’ s map the transaction to the time - line diagram (Fig.  1.36 ).    

    Figure 1.36.     Time - line diagram for client that issues shutdown on write.  
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  1.10.2    tcpdump  Output for Partial Close       

16. 11:00:21.632744 192.168.1.4.34289 > moksha.5000: ack 5122 win 49640 (DF)

15. 11:00:21.630925 moksha.5000 > 192.168.1.4.34289:FP 4097:5121(1024) ack 3074 win 14336 (DF)

14. 11:00:21.630857 moksha.5000 > 192.168.1.4.34289: P 3073:4097(1024) ack 3074 win 14336 (DF)

13. 11:00:21.629451 192.168.1.4.34289 > moksha.5000: F 3073:3073(0) ack 3073 win 49640 (DF)

12. 11:00:21.628420 moksha.5000 > 192.168.1.4.34289: P 2049:3073(1024) ack 3073 win 14336 (DF)

11. 11:00:21.627284 192.168.1.4.34289 > moksha.5000: P 2049:3073(1024) ack win 49640 (DF)

10. 11:00:21.626389 192.168.1.4.34289 > moksha.5000: ack 2049 win 49640 (DF)

9. 11:00:21.625390 moksha.5000 > 192.168.1.4.34289: P 1025:2049(1024) ack 2049 win 11264 (DF)

8. 11:00:21.625369 192.168.4.34289 > moksha.5000: P 1025:2049(1024) ack 1025 win 49640 (DF)

7. 11:00:21.624478 192.168.1.4.34289 > moksha.5000: ack 1025 win 49640 (DF)

5. 11:00:21.623414 moksha.5000 > 192.168.1.4.34289: ack 1025 win 8192 (DF)

6. 11:00:21.623443 moksha.5000 > 192.168.1.4.34289: P 1:1025(1024) ack 1025 win 8192 (DF)

4. 11:00:21.623359 192.168.1.4.34289 > moksha.5000: P 1:1025(1024) ack 1 win 49640 (DF) 

3. 11:00:21.622448 192.168.1.4.34289 > moksha.5000: ack 1 win 49640 (DF)

2. 11:00:21.622255 moksha.5000 > 192.168.1.4.34289: S 1884652429:1884652429(0) ack 960507179 win 5840
< mss 1460, nop, nop, sack OK, nop, wscale 0 > (DF)

1. 11:00:21.622198 192.168.1.434289 > moksha.5000: S 960507178:960507178(0) win 49640<mss1460, nop,
wscale 0, nop, nop, sack OK > (DF)

    Figure 1.37.     tcpdump output to illustrate TCP shutdown process.  
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  1.11   SUMMARY 

 When an application sends out TCP data, the application ’ s associated kernel thread 
may return after transmitting data completely. TCP data may be queued at different 
levels such as socket ’ s send queue, device queue (TOS), and CPU output queue. 
This data are transmitted asynchronously by kernel timers or Tx softIRQ. 

 TCP data are processed in two steps: The packet is queued to CPU ’ s input 
queue and is processed completely later on by Rx softIRQ. SoftIRQ may execute 
in interrupt context or may also be executed by a kernel thread. 

 A network - specifi c kernel code can be found under  net  directory of the kernel 
source tree. An IPv4 - specifi c code can be found under  ipv4  subdirectory of  net . A 
packet - scheduling - specifi c code can be found under  sched  subdirectory of  net  
directory. 

 Linux kernel 2.4 and below are non - preemptive kernels; as a result, they are 
not suitable for real - time applications that require low latencies and timeliness for 
execution. 

 A system call is implemented by raising soft interrupt  int 0x80 . This interrupt 
switches from user to kernel mode and switches processor privilege to super - user 
mode where kernel code and data structure can be accessed on behalf of applica-
tion. A kernel searches  sys_call_table  to execute systemcall.  sys_call_table  maps a 
system call number to systemcall callback routines. 

 Each Linux process has a kernel thread and kernel mode stack. A processor 
switches to kernel mode stack when the process enters a kernel via systemcall. The 
kernel thread is a scheduling entity for the kernel. The pthread library on Linux 
creates an LWP for the process. These LWPs share resources with the parent 
process including process address space. All the lightweight processes (LWP) as 
scheduling entities inside the kernel. 

 Threads created in the kernel cannot be preempted unless they yield on their 
own. Kernel threads can be seen with ps command and usually start with the letter 
k, like  kfl ushd . 

 Linux implements atomic operations, semaphores, and spin locks as a synchro-
nization mechanism. Spin locks are the most extensively used synchronization 
mechanism to synchronize data access between two CPUs, kernel control path and 
softIRQs, kernels, and interrupts and have a performance edge over semaphores. 

 Applications communicate over the TCP/IP protocol by way of client – server 
technique. These programs use a socket interface to open connection and commu-
nicate over the socket using different I/O interfaces provided to the application 
programs. 

 TCP is a connection - oriented protocol that maintains state. To start a connec-
tion, TCP completes a three - way handshake and attains an established state. TCP 
closes connection cleanly by way of a four - way handshake. It maintains state at each 
step of connection initiation and connection closure stages and defi nes action for 
each state.    
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 PROTOCOL FUNDAMENTALS     

     The TCP/IP protocol suite works on an OSI networking model. Each layer has its 
own functionality defi ned very clearly. TCP is a transport layer protocol, and IP is 
a network layer. TCP manages connection and data integrity, whereas IP is respon-
sible for delivery of data to the correct destination. The link layer manages the 
transmission and reception of frames by converting digital data into signals and 
converting signals into digital data. The physical medium actually carries all the data 
and control signals in the form of voltage or waves. 

 Irrespective of physical medium or the link layer, TCP and IP core functionality 
remain unchanged even though TCP may tweak around with congestion algorithms 
for wireless mediums. TCP functionality can be divided into two parts: connection 
management and reliable data transfer. TCP connection management is discussed 
in detail in Section  4.4 . TCP is a heavyweight protocol that requires acknowledg-
ment of each byte it has transmitted for reliability. This may overload the network 
in case a huge number of small packets are generated. Then there are situations 
where loads of data need to be transmitted with maximum throughput utilizing 
maximum network bandwidth. There may be situations where packets get lost 
because of network congestion. In all these different situations, TCP is adaptive 
and alert and takes corrective action to minimize losses and maximize throughput. 
TCP also uses extensions to normal protocol for enhanced performance and 
reliability. 

 IP, on the other hand, carries TCP data over the internet. IP has many function-
alities such as routing, sending back error message to the originator, packet encryp-
tion decreption, NAT, masquerading, and so on. Routing is the most basic 
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functionality that IP offers. There are thousands of routers that make up the inter-
net. Routing information is maintained by each router and is updated regularly 
with the help of routing daemons implementing routing protocols. IP also needs to 
take care of the erroneous situations such as packets never reaching the destination 
and living in the internet forever. The frame size that can be transmitted over a link 
is limited by the physical capability of the medium and is called MTU. This limit 
may vary over the internet. Packets bigger than the MTU for the link are frag-
mented by IP which are reassembled at the fi nal destination. Errors are inevitable 
is such a vast internet, and ICMP is widely used in the internet to report common 
errors. 

 In this chapter we learn all about TCP/IP protocols in much detail.  

  2.1    TCP  

 TCP is a connection - oriented communication protocol. It maintains the state of the 
connection at any given point of time. The behavior of TCP protocol changes with 
change in the state. There is a well - defi ned set of actions for each TCP state which 
is followed to maintain the integrity of the connection between the two ends. The 
connection is initiated by exchanging a set of messages between the two ends, and 
the same way connection is closed. We learn more about it in the later chapters. 
TCP is considered as a reliable protocol because it keeps account of each byte of 
sent data received by the other end. Any loss of data is detected and is dealt with 
care by TCP. Since TCP is a connection - oriented protocol, each end needs to take 
care of the other end to better understand each other ’ s problem. Any shortage of 
resources in terms of memory/CPU at one end is communicated to the other end 
so that the other end takes corrective action to slowdown the rate of data transac-
tion. This avoids the duplication of efforts and unnecessary network traffi c. For 
doing this, TCP implements the sliding - window algorithm, which we will study in 
this chapter. TCP not only sends/receives data reliably but also works out the best 
way to avoid any duplication of efforts because of loss of data. So, it works in con-
junction with the network layer to fi nd out the network traffi c situation. Depending 
on the traffi c conditions, TCP makes a decision on whether to send data in smaller 
or bigger chunks. This is known as the congestion control mechanism. Without this 
provision, TCP would end up increasing network congestion in the case of heavy 
network traffi c and at the same time reduce the throughput when network has high 
bandwidth to accommodate high data transfer rate. There are many algorithms 
designed for congestion control which we discover in this chapter. All this makes 
TCP a more reliable, more stable, and more controlled protocol to be used most 
extensively in the internet technology. 

  2.1.1    TCP  Header 

 The TCP segment contains a TCP header and the TCP data (payload). The header 
contains protocol control information, connection - specifi c information and fi eld to 
validate integrity of the TCP header. Normally, the TCP header is 20 bytes long (Fig. 
 2.1 ), but there are TCP options in the header which makes TCP header length vari-
able. We will discuss fi elds of the TCP header in the fi rst 20 bytes, and then we will 
discuss TCP options.   



TCP 51

    Figure 2.1.     TCP header.  
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  Port Numbers.     TCP connection is identifi ed by a quadruplet — that is, destina-
tion IP, destination port, source port, and source port. The fi rst two fi elds of the TCP 
header contain source port (0 – 15 bits) and destination port (16 – 31 bits) numbers, 
each of 16 bits. These port numbers uniquely identify sockets at each TCP - connected 
end.  

  Sequence Number.     This is a 32 - bit (32 – 63) fi eld in the TCP header. Sequence 
number indicates the offset of the fi rst byte in the byte stream that the sending TCP 
intends to send in the current TCP segment to the receiving TCP. This doesn ’ t refl ect 
the number of bytes transmitted by the sending TCP. The sequence number in the 
header fi eld is an offset from the initial sequence number selected for a given con-
nection. So, offset is the actual indication of the number of bytes already transmitted 
by the sending TCP +1. The initial sequence number, ISN, is generated at each end 
of the connecting TCP ends. The ISN is unique for a given connection. The primary 
reason to keep it unique for a given connection is to avoid any misunderstanding 
any delayed TCP segment from the previous connection as part of the new connec-
tion that is reincarnated of the previous connection. Please refer to Section  2.8.4  
(TCP close) for more details. SYN and FIN segments are considered to carry one 
byte. This fi eld gets rolled over after reaching 2 32     −    1. Sequence number helps in 
maintaining TCP data integrity and identifying the retransmissions that will be dis-
cussed later in this chapter.  

  Acknowledgment Number.     This is a 32 - bit (64 – 95) fi eld in the TCP header. 
TCP is a reliable protocol, so it needs to keep track of each byte transmitted/
received. Acknowledgment number helps TCP doing this. The receiving TCP 
acknowledges the last byte in the stream of bytes received from the sender. Suppose 
the sender sends  n  bytes of data with the sequence number  s . On reception of this 
TCP segment, TCP acknowledges with acknowledgment number  n   +   s    +   1, which 
means that it has received  n  bytes of data and now it is waiting for the  n    +   1 byte. 
Out - of - sequence TCP segments are not acknowledged until the gap is fi lled. For 
example, if the sending TCP sends out three TCP segments of 10, 20, and 30 bytes 
of data in the same sequence and all the segments reach the destination except for 
a segment with 20 bytes of data which is lost, the receiver TCP acknowledges only 
10 bytes of data. Because of this, the sending TCP will eventually come to know that 
one of the segments is lost and thus it will retransmit those segments. At the same 
time, duplicate TCP segments are also not acknowledged. We will take the same 
example to explain the phenomenon. If, because of some reason, the segment with 
20 bytes is not lost but is stuck at some router on its way to the destination and is 
released after the sender has already retransmitted this segment and receiver has 
acknowledged all the three segments, the segment is either discarded or is replied 
back with latest acknowledgment number.  

  Header Length.     This is 4 - bit fi eld in the TCP header. TCP header is normally 
20 bytes without any TCP options. With the TCP options in place we never know 
the exact length of the TCP header. For the same reason we have the fi eld. The fi eld 
indicates the number of words that comprise of TCP header. So, the maximum TCP 
header length that we can have is restricted to 60 bytes.  
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  Unused Field.     A 6 - bit fi eld (100 – 105) is still unused and is saved for future 
use.  

   TCP  Flags.     This is a 6 - bit fi eld in the TCP header. Each bit in this fi eld repre-
sents a TCP fl ag. These fl ags are in the order URG|ACK|PSH|RST|SYN|FIN. 

   URG :     This indicates that there is an urgent pointer set and we need to check 
urgent pointer fi eld to fi nd the address of the urgent pointer.  

   ACK :     This indicates that this TCP segment is acknowledgment by the sender. 
If this fi eld is set, we check the acknowledgment number fi eld of the TCP 
header. Except for the fi rst SYN segment, all the TCP segments have this 
fi eld set because we are losing nothing by doing this.  

   PSH :     This indicates that the sender wants these data to be consumed on priority 
basis.  

   RST :     This indicates that the sender wants to close the connection without any 
formal handshake. This bit is set by the TCP when it wants to inform the 
other end that the TCP segment is no more valid. For example, if the host 
receives a connection request for which it doesn ’ t have any listening socket, 
it generates an RST TCP segment in response.  

   SYN :     This indicates that the TCP segment is being exchanged between the two 
ends trying to synchronize at the time of connection initiation.  

   FIN :     This indicates that one of the TCP wants to close the connection.     

  Window Size.     This is a 16 - bit fi eld in the TCP header. TCP detects resource 
crunch of its peer with the help of this fi eld and acts accordingly. The fi eld indicates 
the receive buffer size available at any point of time. The receive buffer is consumed 
when data are received and is vacated as these data are processed and are consumed 
by the application. If the application is not able to consume the data from the receive 
buffer as fast as it is received, the receive buffer gets full and eventually the window 
size also reduces to 0. When the sender gets this information, it stops sending any 
more data until further notice of window size is advertised by the receiving end. 
Each TCP peer declares its window size at the time of synchronisation (connection 
initiation). We take this up in Section  2.6  (sliding window).  

  Checksum.     This is a 16 - bit (128 – 143) fi eld in the TCP header. This is the fi eld 
used by the receiver to verify that the TCP segment it has received is exactly the 
one sent by the valid sender. This covers the TCP header and the payload. This way 
we make sure that the correct TCP segment is being received. This is calculated with 
the following algorithm: Take TCP header   +   payload as a stream of a 16 - bit word. 
Sum up all 16 - bit words and take 1 ’ s complement of this number. This is the fi nal 
TCP checksum. At the receiving end, the same thing is repeated. The fi nal value 
obtained at the receiving end should be all 1 ’ s in 16 - bit number 2 16     −    1.  

  Urgent Pointer.     This is a 16 - bit (144 – 159) fi eld in the TCP header. This is the 
offset from the sequence number in the current TCP segment where the urgent data 
reside and need to be processed at the earliest. This fi eld is set only if the URG fl ag 
is set in the TCP header. This is discussed in Section  11.7 .    
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  2.2    TCP  OPTIONS ( RFC  1323) 

 At the time when TCP was fi rst designed, future requirements were not very well 
defi ned. So, TCP was designed in a very fl exible way by introducing options in addi-
tion to the basic functionality in order to keep the basic functionality untouched 
when additions are made to it. Basic TCP works fi ne with fi rst 20 bytes of informa-
tion provided in the TCP header. There are continuous efforts to enhance the per-
formance and reliability of TCP with time. RFC 1323 and 793 provide specifi cations 
and need for the TCP options in detail. In this section we will cover only the descrip-
tion of the TCP options, and details will be covered in the later sections. Extended 
TCP header with options would be more than 20 bytes and less than 60 bytes as 
shown in Fig.  2.2 . Four - bit length fi eld in the TCP header indicates the total length 
of the TCP header. So, if the value of the fi eld is greater than 20, it means we need 
to check for additional TCP options.   

 There is a standard format for TCP optional header to properly identify the 
options. The basic format of the TCP options header contains three fi elds (Fig. 
 2.3 ): 

   •      Kind  
   •      Length  
   •      Value   

   Kind:     This fi eld identifi es the TCP option. Each option is assigned a specifi c 
number.  

  Length:     This indicates the length of the TCP optional header.  
  Value:     This contains the actual TCP option value.      

 There are two special formats for TCP options: 

   •      End of Option List.     This is a 1 - byte fi eld with value 0. It indicates that there 
are no more options.

   
kind = 0

   

    Figure 2.2.     TCP header with options.  

    Figure 2.3.     TCP option format.  



   •      No Operation.     This is a 1 - byte fi eld with value 1. It indicates that there is no 
option here. It is used to pad the fi elds for memory alignment purposes.

   
kind = 1

     

  2.2.1   mss Option 

 Maximum segment size (mss) is a mere refl ection of maximum size of the TCP 
payload that can be accepted by the remote host. mss is a function of the maximum 
transmission unit (MTU), which is a property of the link layer. So, TCP has to work 
in coordination with the IP layer to arrive at this value. It is the IP layer which fi nds 
out the lowest MTU for the internet path (MTU discovery, RFC 1191). RFC 793 
specifi es that standards to arrive at the send and receive mss for TCP. The mss option 
is always exchanged with the TCP SYN segment at the time of connection initializa-
tion. The idea of exchanging mss information is to improve the performance of TCP. 
In the case where sending TCP can send more than the receiving end can accept, 
the IP datagram will be fragmented at the IP layer. Each fragment is now transmit-
ted with the header overhead consuming the bandwidth. If any of the fragment is 
not received or lost, the entire TCP segment needs to be retransmitted hitting the 
throughput. On the other hand, if the sender TCP is generating smaller TCP seg-
ments with default mss (536 bytes) where it is capable of sending bigger segments 
and the other end is also capable of receiving bigger TCP segments, TCP will be 
operating at lower throughput and hence low performance. Format for the mss 
option is shown in Fig.  2.4 .    

  2.2.2   Window - Scaling Option 

 RFC 1323 provides specifi cation for the Window scaling option. Window size is 
exchanged between connected TCP peers at the time of synchronization. It indicates 
the receive buffer size of the receiving TCP end. The window size in the TCP header 
is a 16 - bit fi eld. Any TCP can advertise a maximum of 2 16  bytes (i.e., 65,536), even 
though it has more resources. In Section  2.7  we will study how window size plays 
role in deciding throughput of the TCP. In short, lower window sizes will restrict 
TCP throughput to lower value with high rtt and high bandwidth networks. With 
the window - scaling option, TCP can advertise window sizes as high as 30 bits in size. 
The format for the option is shown in Fig.  2.5 . It is a 3 - byte header identifi ed by 
kind with value 3. The value in the window - scaling header is a shift count by which 
the actual window size in the TCP header should be left shifted to get the fi nal 
window size. For example, if the shift count is 2 and the actual window size from 
the TCP header is 2 16 , the fi nal window size will be calculated as

    Figure 2.4.     mss option format.  
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   Final window size = <<( ) ( ) >> −( )( )2 2 2 16 216 16     

 which makes the new window size as 2 18 . Now that the window size cannot exceed 
2 31 , the value of the shift count in the window - scaling option should not exceed 
14.  

  2.2.3   Timestamp Option 

 TCP needs to accommodate more changes with fast changing network speeds to 
maintain high performance and reliability as well. Timestamp option is used for both 
improving the reliability and performance. RFC 1323 provides specifi cation for the 
timestamp TCP options. TCP uses this option to average out rtt for the entire life 
cycle of the TCP connection. At the same time, this option is used to implement the 
PAWS algorithm for reliability. PAWS stands for  protection against wrapped sequence 
numbers . TCP data corruption may occur if the delayed TCP segment is confused 
with the in - sequence segment when the sequence number has wrapped in the case 
of high speed of networks. The timestamp option is helpful in detecting such delayed 
TCP segments. Figure  2.6  shows the format of the timestamp optional header.   

 The timestamp option is identifi ed by kind as 8, and the total length of the 
timestamp option is 10. There are two timestamp fi elds, each of size 4 bytes. The TS 
value contains the sender TCP ’ s timestamp, and the TS echo reply contains the value 
of the sender ’ s timestamp (TS value fi eld) copied by the receiver in the ACK 
segment. 

 The timestamp option is agreed upon at the time of connection initialization. 
The fi rst SYN packet must contain this option, if the connection initiator wants 
timestamp option. SYN/ACK should contain this option if: 

  1.     It has received the timestamp option in the SYN segment and it supports the 
timestamp option.  

  2.     It has not received any timestamp option from the connection initiator but 
it wants the timestamp option to be active for the connection.    

 The calculation is simple: The sender sends out its timestamp in the TS value fi eld, 
and the receiver copies this value in the TS echo reply fi eld while ACKing this 
segment. The original sender calculates tss by taking the difference of the current 
timestamp and the timestamp in the TS echo reply fi eld of the ACK segment.  

    Figure 2.5.     Window scaling option format.  

    Figure 2.6.     Timestamp option format.  



  2.2.4   Selective Acknowledgment Option 

 Receiver TCP acknowledges every in - sequence data segment in a normal way as 
explained in Section  2.3.1 . There is a provision in the TCP to identify any out - of -
 sequence data segment (RFC 793). On reception of any out - of - sequence data, the 
receiving TCP gets an indication of a lost segment probably due to the network 
congestion. In that case, it acknowledges the last in - sequence segment arrived. On 
reception of such a sender, the TCP gets an indication of data loss and it knows that 
data segments beyond acknowledged sequence number are lost; then it retransmits 
the entire data from the sequence number identifi er in the acknowledgment fi eld 
of the receiver, even though unacknowledged data segments are queued up at the 
receivers end. This causes a drop in the TCP ’ s performance because it has to retrans-
mit entire data beyond the last acknowledged sequence number. RFC 1072 specifi es 
standards to selectively acknowledge the lost data with selective acknowledgment 
TCP option. The option supplements the existing acknowledgment fi eld in the TCP 
header. If the receiver fi nds a hole in the received TCP segments, it sends the last 
in - sequence TCP segment received in the acknowledgment fi eld in the TCP header 
and then sends the fi rst offset of the fi rst byte received as out - of - sequence TCP data 
segment with length of the data segment received as TCP - selective acknowledgment 
option. So, sender TCP knows which data segment is lost and it retransmits only 
those segments. For example, receiver TCP received in - sequence data segments until 
sequence number  X  and then received the next data segment starting at sequence 
number  X   +   n  of length  m  bytes. So, there is a hole of  n  bytes in the stream of data 
received starting from sequence number  X . This is reported to the sender by the 
way of selective acknowledgment option. The receiver sends ACK for last in -
 sequence data  X    +   1, and in the selective acknowledgment header it sends  X   +   n  
with block length of  m . So, the sender knows that it has to retransmit the blocks of 
data of length  m  bytes that start from sequence number  X   +   n . The selective acknowl-
edgment TCP option should be exchanged at the time of connection synchroniza-
tion (in SYN packets). If either of the peers doesn ’ t support this option, the 
SACK - permit option is discarded for the connection. The SACK - permit option has 
a format shown in Fig.  2.7 .   

 Once both the sides agree for the selective acknowledgment option, the receiv-
ing TCP can send SACK whenever it receives out - of - sequence data in the format 
shown in Fig.  2.8 . The kind for the SACK option is 5 and its length is variable, which 
means it can hold information about more than one hole in the stream of bytes 
received. There are two fi elds for each SACK block that will have information about 
one out - of - sequence segment. 

    Figure 2.7.     SACK option type 8 length.  

    Figure 2.8.     SACK option format.  
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  Start Sequence:     This is the start sequence number of the contiguous blocks of 
data segment received (SACK block).  

  End Sequence:     This is the end sequence of the contiguous block of data segment 
received (SACK block).      

 There may be many such TCP SACK blocks selectively acknowledging noncontigu-
ous data blocks, with each block having in - sequence data. For a better understand-
ing of the SACK option, lets take small example where sender TCP has sent 12 data 
segments each of length 1   k. Figure  2.9  shows the queuing of the segments at the 
receiving end with some of the intermittent segments missing.   

 s1, s2, s3, and s4 are the only segments that have arrived in sequence. After 
segments s5 and s6 are missing, then we have segments s7 and s8 contiguous seg-
ments; later on, we have s9, s10, and s11 segments missing so that we have segment 
12. With this scenario we have SACK enabled, and the receiver will send the TCP 
segment with the SACK header option as shown in Fig.  2.10 .  L  and  R  are the left 
and right end of the SACK blocks.  l  and  r  are the left and right edge of each 
segment.   

 This way the sender will come to know about the missing TCP segments and 
will retransmit blocks s5, s6, s9, s10, and s11. If the SACK option was not there, the 
sender would probably retransmit all the TCP segments starting from s5 through 
s12.   

  2.3    TCP  DATA FLOW 

 TCP is a reliable transport protocol whose main functionality is to make sure that 
the data integrity is maintained and also that it is sending data to the correct recipi-
ent. There are different algorithms that TCP uses in different situations to ensure 
high throughput, but data integrity is maintained by one basic algorithm. A very 
basic algorithm used by TCP to ensure data integrity is  acknowledgment for every 
Byte of data . In this section we will discuss (a) the acknowledgment scheme used 
by the TCP and (b) other algorithms used for improved effi ciency. Discussion is 
based on the assumption that there is no data loss and network congestion. 

  2.3.1    ACK ing of Data Segments 

 The sender TCP expects acknowledgment for each byte of data it has sent to the 
receiving TCP. Even the SYN/FIN TCP segments carry one byte of data. The TCP 

    Figure 2.9.     Segments received out - of - order.  

    Figure 2.10.     SACK block generated for out - of - order segments in the example.  



header has two fi elds —  sequence number and acknowledgment number  — which are 
used by the acknowledgment scheme to maintain data integrity. The TCP treats user 
data as a  stream of bytes  and associates a number with each data byte, known as 
 sequence number . By  stream of Bytes , we mean that no matter how and in what 
format user application writes data over the TCP socket, the TCP arranges them in 
the stream of bytes in the same sequence as they were written by the user applica-
tion. For example, an application sends 10 bytes of data in three consecutive writes 
of 4 bytes, 2 bytes, and 4 bytes, respectively, as shown in Fig.  2.11 . Each byte is rep-
resented as w x b y  where  x  represents write number and  y  represents the order 
number of each byte in which they are written by the application on each write. 
After three writes by the application, the TCP write buffer will have all these data 
as a stream of 10 bytes as shown in Fig.  2.12 . These bytes may be transmitted by the 
TCP as blocks of contiguous bytes, which means that this stream of bytes can be 
transmitted as blocks of 2 bytes, 3 bytes, 2 bytes, and 3 bytes, respectively, as shown 
in Fig.  2.13 .       

 Thus, the application may have written a 4 - byte integer or a 2 - byte short or a 
character, but it makes no difference for the TCP. Ultimately, all the user data are 
arranged as a stream of bytes and are transmitted by the TCP in the same order in 
which they are arranged in the stream of bytes but in different chunks. The TCP 
makes sure that each and every byte of data in the stream of bytes reaches the peer 
in the same sequence as they are arranged at its end. If an application is writing an 
integer or a short, it should not forget to convert them into network byte order 
because byte ordering matters here. So also the other side of the TCP socket must 
read those integers after converting them into the host byte order. Essentially, the 
TCP has two buffers: send buffer and receive buffer. Data written by an application 
is fi rst copied to the TCP send buffer, and then the TCP makes a decision on how 
to transmit that data. Similarly, data received by the TCP are copied to the receive 

    Figure 2.11.     Representation of data in 

host - byte order.  

    Figure 2.12.     Data organized in TCP stream of bytes.  
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buffer, and the application reads data in whatever chunks of bytes from TCP ’ s 
receive buffer. Figure  2.14a  shows how data written by user application are buffered 
into TCP send buffer before transmitting it. The segmentation unit then takes some 
bytes from the send buffer, and then it generates TCP segments and sends them to 
the next layer for processing. The length of each segment depends on different 
parameters which we discuss later. The TCP data are received in a similar way. TCP 
segments are received by the lower layers and then sent to the TCP segmentation 
unit, which will extract payload from the segments and place it in the TCP ’ s receive 
buffer. Now it is up to the application to read the data from TCP ’ s receive buffer 
as a different block of data (see Fig.  2.14b ). So, essentially there is TCP send and 
receive buffer per connection.     

 Thus, we have learned how a TCP treats user data as a stream of bytes. Now 
we will see how a TCP sequence number is associated with each byte in the stream 
of bytes to be transmitted. At the time of connection initialization, each TCP end 

    Figure 2.13.     Transmission of data from TCP 

stream of bytes.  

    Figure 2.14a.     TCP segmentation UNIT.  



gets the sequence number called the initial sequence number. The very fi rst byte 
(sent as a SYN TCP segment) is associated with the Initial sequence number. In 
Fig.  2.15 , we can see an association between the sequence number and the stream 
of user data bytes. Since the SYN segment is always considered to carry one byte 
of data (different from user data), the fi rst byte of the user data is associated with 
the sequence number ISN (initial sequence number)   +   1. According to this associa-
tion, the  n th byte of the user data is associated with the sequence number ISN   +    n    +   1 
as shown in Fig.  2.15 . We will see this phenomenon with the help of client – server 
program. The client  parikrama  sends a connection request to the server  moksha  
and waits to read data from the server. The server sends 8 bytes of data in one 
chunk and then closes the connection. tcpdump output is captured to study the 
sequence number associated with the user data and acknowledgments. Figure  2.16  
shows  tcpdump  output of data transaction.  tcpdump  uses the S option to print abso-
lute sequence numbers rather than relative sequence numbers. So, the sequence 
number output format will be  fi rst_byte:last_byte(number_of_bytes) , where  fi rst_byte  
is the sequence number associated with the byte in the stream of bytes which the 
sender intends to send,  last_byte  is the sequence number associated with the last 
byte in the sequence of bytes that sender intends to send (excluding last_byte), and 

    Figure 2.14b.     TCP assembly unit.  

    Figure 2.15.     TCP sequence number association with stream of bytes.  
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 number_of_bytes  is the number of bytes of user data that the sender intends to send 
in the current TCP segment. The fi rst three packets are three - way handshake 
synchronization packets exchanged between client and server at the time of con-
nection initialization. In the fi rst packet, the client sends a SYN segment with ISN 
as 2020749023 and 0 bytes of user data, as is obvious from the format 2020749023:2
020749023(0). In the second packet, the server responds with an acknowledgment 
to the client ’ s SYN segment with its ISN as 738652172 (0 bytes user data) and its 
acknowledgment number as 2020749024 (ACK 2020749024). Even though the client 
sent 0 bytes of user data, the server responds with acknowledgment of clients 
ISN   +   1. Acknowledgment number, as explained earlier, is the next byte in the 
stream of bytes that receiver is expecting, which means that the SYN segment is 
supposed to carry one byte of data and is well agreed upon between the two con-
nected TCP ends. Similarly, the third packet from the client acknowledges the 
server ’ s SYN segment with acknowledgment number 738652173.     

 In the fourth packet, we can see that the server sends out the fi rst eight bytes 
of user data where the fi rst byte is associated with sequence number 738652173 and 
not 738652172 (ISN for the server). So the client acknowledges 8 bytes of user data 
in the fi fth packet with acknowledgment number 738652181, which means that the 

    Figure 2.16.     Sequence of packets exchanged when TCP sends 8 bytes of data over the 

connection.  



client is expecting the 9th byte associated with sequence number 738652181. The 
sixth packet is a FIN segment from the server because it has no more data to send 
to the client. Once again we can see that sequence number is 1+ sequence number 
associated with the last byte of the user data (738652180) with 0 bytes of user data. 
738652181 is the acknowledgment number from the client in packet 5, which the 
server sends in the FIN segment, which means that the client is expecting a byte 
associated with sequence number 738652180. If the server doesn ’ t send a FIN 
segment with sequence number 738652180, the client would consider this as a bogus 
packet and reject it because it is expecting a byte with sequence number 738652181. 
So, now it is self - explanatory why the FIN segment is considered to carry one byte 
of data. The acknowledgment number is the same as it was in the last segment from 
the server because the client has not sent any data. The seventh packet from the 
client is an acknowledgment for the FIN segment from the server with acknowledg-
ment number as 738652182, which means that the client is expecting the next byte 
with sequence number 738652181 from the server. The eighth packet is the FIN 
segment from the client to the server when it closes the connection from its side. 
We can see that the client ’ s sequence number is 2020749024, which is ISN   +   1; this 
is acknowledgment from the server to the client so far and 0 bytes of user data 
(2020749024:2020749024(0)). At the same time, it acknowledges the byte associated 
with sequence number 738652182 because the server has not sent any data after the 
FIN segment. The fi nal and ninth packet is an acknowledgment for the FIN segment 
from the client to the server with acknowledgment 2020749025. This means that the 
server has received the byte associated with sequence number 2020749024 and is 
expecting the next byte associated with sequence number 2020749025, indicating 
that the FIN segment from the client to the server is considered to contain one byte 
of data. 

 From the above discussion, we have seen how the sequence number is associ-
ated with the user data (stream of bytes for TCP) with the relationship between the 
TCP sequence numbers and the acknowledgment numbers. We have also learned 
that there is an acknowledgment for each byte of data sent to maintain data integrity 
at each TCP connected ends. We will view the acknowledgment scheme from a 
different angle to have better insight into it. We will see how TCP data are buffered 
at the receiving and the sending TCP ends with the help of the same example and 
how sequence number and acknowledgment numbers are advanced when data are 
sent or received (see Figs.  2.17a  –  17i ). 

  1.     Client has sent the SYN segment to the server:  

    Figure 2.17a.     SYN sent by client.  
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    Figure 2.17b.     SYN ACK ’ ed by server.  

    Figure 2.17c.     SYN ACK ’ ed by client.  

    Figure 2.17d.     8 - bytes transmitted by server.  

  2.     Server ACKs client ’ s SYN with the SYN segment:  

  3.     Client acknowledges server ’ s SYN segment:  

  4.     Server sends 8 bytes of user data:  



    Figure 2.17e.     8 - bytes ACK ’ ed 

by the client.  

    Figure 2.17f.     FIN sent by 

the server.  

  5.     Client acknowledges 8 bytes of data from the server:  

  6.     Server sends the FIN segment because it is over with sending data and is 
closing its end:  

  7.     Client ACK ’ s the FIN segment from the server and one additional byte 
associated with the FIN segment:  

    Figure 2.17g.     FIN 

ACK ’ ed by the client.  
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    Figure 2.17h.     Client send ’ s FIN.  

    Figure 2.17i.     Server ACK ’ s fi nal FIN.  

  8.     Client sends the FIN segment when it closes its end:  

  9.     Server acknowledges the FIN segment from the client:                      

 We have seen the sequence number – ACKnowledgment scheme used by the 
TCP to ensure data integrity. In short, every byte is associated with a sequence 
number. Even SYN/FIN segments are supposed to carry one byte of data that is 
not mixed up with the user data. Every segment sent needs acknowledgment from 
the receiver, with an acknowledgment number indicating the sequence number 
associated with the byte in the stream - of - bytes which the receiver wants to receive 
next. This model ensures complete data integrity between the sender and the 
receiver TCP ends. The TCP sends the next block of data (data segment) only when 
it receives ACK for the last data segment. Each segment contains an ACK fi eld set 
other than the fi rst SYN segment because it has nothing to ACK. 



 This was the very basic TCP functionality. Until now, we have considered only 
one end sending data to the receiver. We will see in the next section how TCP can 
enhance its performance when both ends are sending data.   

  2.4   DELAYED ACKNOWLEDGMENT 

 Until now, we have seen a very basic ACKing scheme that TCP implements to 
maintain data integrity. Now let ’ s look at the case where we need to maintain data 
integrity along with the improved effi ciency. Here we will consider data fl ow in both 
the directions. The best example would be an interactive TCP session where each 
byte of data typed needs to be echoed like telnet, rlogin, and so on. If we use the 
same ACKing scheme as discussed for such interactive sessions, let ’ s see what 
happens. 

 Figure  2.18  shows the condition where character  ‘ e ’  is typed at the command 
line telnet client. The TCP segment is generated to transmit character  ‘ e ’  to the 
server. Segment 2 is acknowledgment from server for reception of character  ‘ e ’ . 
Segment 3 carries character  ‘ e ’ , which is an echo of the last byte sent by the client. 
Segment 4 is an acknowledgment for segment 3. So, we see that there is an acknowl-
edgment for every data segment that TCP receives. With this kind of acknowledg-
ment scheme, we know that we are ensuring data integrity but at the same time we 
also know that for each byte of data typed in at the client, we are generating four 
segments. Each segment carries at least 50 bytes of header (20 bytes TCP, 20 bytes 
IP, 10 bytes MAC). So, there is overhead of network traffi c and resource utilization 
associated with each segment at each TCP end. If we can reduce the number of 
segments generated for each byte typed in by the telnet client, we can make the 
TCP work more effi ciently. The TCP makes this possible by introducing the  delayed 
acknowledgment  scheme. With this scheme, the TCP waits for some time to acknowl-
edge the received data segment so that it can send some data along with the 
acknowledgment if any data are available by that time. Let ’ s look at the same 
example when delayed acknowledgment is implemented by TCP. The TCP registers 
a delayed acknowledgment timer with the system after it receives any data segment 
from the other end. By registering timer, I mean to say that every OS implements 
timer interrupts that are generated after every fi xed time interval (mainly imple-
mented for time - slicing the runable processes). There is a list of tasks that need to 

    Figure 2.18.     Four TCP segments generated to echo a 

character.  
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be performed by the system when this timer interrupt comes. So, we register our 
task with the timer interrupt and we specify the delay in multiples of time interval 
at which the timer interrupt occurs. Every time a timer interrupt occurs, it checks 
every registered task if its time has expired. So, all those tasks are executed whose 
time has expired. Thus, the delayed acknowledgment timer is registered such that 
it is performed whenever the next timer interrupt comes. So, the acknowledgment 
timer may expire any time between 0 and  t  time units, where  t  is the time interval 
at which the timer interrupt comes. In short, delayed acknowledgment can be gener-
ated anytime between 0 and  t  time units after it is registered. Suppose that  t  is 
200   ms; the TCP can generate acknowledgment for the received data segment any 
time between 0 and 200   ms with the delayed acknowledgment in action.   

 Now we must be thinking as to why we need this delayed acknowledgment 
scheme as we are delaying the ACK which slows down the entire process. But it is 
the other way around. With the delayed acknowledgment, the TCP tries to send 
the data ready to be sent along with the ACK for the last data segment received. 
In our example, the TCP receives data and puts it in the receive buffer. Telnet 
application reads the data and writes it back to the TCP ’ s send buffer (see Fig.  2.19 ). 
This happens very fast, in case the server is not heavily loaded. So, by the time the 
server ’ s delayed acknowledgment timer expires, the echoed data is there in the 
TCP ’ s send buffer. Like this, the ACK is piggybacked along with the data to be 
sent. Here, we can see that the echo of character  ‘ e ’  generates only three segments, 
which is less by 1. To continue with this, we can see that the client has generated a 
data segment for character  ‘ c ’  after sending ACK for the data segment 2, which 
means that client side TCP did not have any data in its send buffer by the time the 
delayed acknowledgment timer expired. This may be because there was no input 
from the keyboard by the time the timer expired. This scheme works fi ne as long 
as we limit ourselves to high - speed networks such as LAN. We are sending out data 
when they are available. It is just that we are delaying ACK for any data received 
so that we can piggyback the ACK along with any data to be sent. If any data are 
available even when there is time for TCP ’ s delayed ACK timer to expire, we send 
it. So, essentially this scheme will generate a large amount of segments carrying one 
byte of data in the interactive sessions such as telnet, rlogin, and so on. In the case 
of WANs or slow networks, a large number of data segments carrying small payloads 

    Figure 2.19.     Delayed ACK is piggybacked with data 

segment.  



might cause problems of network congestion. For this reason, we slightly 
refi ne the scheme for slow WANs, which we discuss in the next section.    

  2.5   NAGLE ’ S ALGORITHM ( RFC  896) 

 A delayed acknowledgment scheme helps in reducing the number of small packets 
by piggybacking the ACKs along with the data to be sent in the same direction, 
delaying the acknowledgments. This scheme still doesn ’ t prevent a large number of 
segments to be generated carrying one byte of payload in the case of interactive 
sessions. This would surely cause problems in slow networks. To overcome this issue, 
Nagle ’ s algorithm was introduced; it says that no data would be sent out until we 
have an unacknowledged data, which means that all the data that need to be sent 
out are collected until the time we receive an ACK for the last sent data. So, all the 
data are now sent out in one data segment. This makes the entire process self - 
clocking. In the slow networks where the ACKs are received after a long delays, 
we collect a lot of data and send them all in one segment. On the other hand, in 
fast networks we receive ACKs very fast and hence we can send large number of 
packets with smaller payloads very fast. This algorithm is self - adjusting in the sense 
that it adjusts itself according to the network conditions and automates the data 
transfer rates. From Fig.  2.20  we can see that when ACK for data segment is 
received, we have collected three characters and hence send all of them in one data 
segment. With Nagle ’ s algorithm in action, we still have delayed ACK timer appli-
cable. Consider a case where ACK is received for the last data segment in Fig.  2.21  
and there are no data to be sent out. So, the client waits for some data input before 
it acknowledges the echoed data (segment 2).     

 At the client ’ s end, there was no data to be sent when the delayed ACK timer 
expired, which generated ACK segment (segment 3). We then send the next char-
acter  ‘ c ’  because TCP sends out data (segment 4) when they are there in the send 
buffer because there is no unacknowledged data. We receive acknowledgment for 
segment 4 (character  ‘ c ’ ) in segment 5. We send out characters  ‘ h ’  and  ‘ o ’  together 
in segment 6 which are collected in the TCP ’ s send buffer by the time the ACK for 
character  ‘ c ’  is received in segment 5 following Nagle ’ s algorithm. 

 We will compare the behavior of TCP with Nagle ’ s algorithm in place over LAN 
and WAN. Tcpdump output shown in Fig( 2.22 ) is taken from the telnet session over 

    Figure 2.20.     Fewer number of small segments generated with 

Nagle ’ s algorithm.  
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LAN( moksha   =   client, parikrama   =   server ). We are doing nothing but typing some 
characters at the telnet prompt which are echoed back from the server. We can see 
that TCP is following Nagle ’ s algorithm completely because data are sent only when 
we get back ACK for unacknowledged data. We can see one more thing here that 
delayed acknowledgment timer expiring at the client end. Segments 3, 6, 9, 12, and 
19 are simply ACKs from the client moksha to the server parikrama because the 
delayed acknowledgment timer has expired before any data are available to be sent 
(there is no input from the keyboard when the delayed acknowledgment timer 
expired). Let ’ s look at Fig.  2.22 , which shows the tcpdump output taken from telnet 
session over WAN. The telnet client and the server are 9 hops apart.   

 We see here how Nagle ’ s algorithms work effectively with slow networks. The 
tcpdump data are collected at the server, and we can see an average RTT of 350   ms 
(see Fig.  2.23 ). We type in a character at the telnet client, and packet 1 is generated. 
Packet 2 is an ACK for 1 and also contains an echo of character contained in 
segment 1. Then we proceed with the subsequent characters until segment 5, which 
is an ACK for character echoed by the server in segment 4, is generated. Most prob-
ably segment 5 is generated because of the delayed acknowledgment timer. Segment 
5 doesn ’ t contain any data, which means that no data were available by the time 
the delayed ACK timer expired. We proceed once again by typing in a character 
and generating a packet for each character (segments 6, 7, 8, and 9) probably 
because only one character is typed in by the time the ACK for the last unacknowl-
edged byte appears. But here onwards we increased our typing speed and see that 
instead of 1, we are sending 2, 3, 5, and 7 characters in segments 10, 12, 14, and 16, 
respectively. So, by the time our ACK are received, we have collected more data to 
be transmitted and we transmit them as one segment instead of generating one 
segment per character. So Nagle ’ s algorithm is helpful in slow networks where we 

    Figure 2.21.     Packets exchanged on slow WAN with Nagle ’ s 

algorithm enabled.  



    Figure 2.22.     TCP dump output for telnet session on slow WAN.  

    Figure 2.23.     TCP dump output for telnet session on slow WAN.  
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are automatically controlling the traffi c depending on the network characteristics. 
In this example, we didn ’ t get to see the network characteristics changing like con-
gestion because RTT is more or less the same. But have tried to explain how a large 
number of small segments containing one character can be avoided with the help 
of Nagle ’ s algorithm.    

  2.6    TCP  SLIDING WINDOW PROTOCOL 

 As of now, we have seen the TCP algorithms associated with the interactive sessions 
such as telnet and rlogin in fast and slow networks. We were concerned with a small 
amount of data transfer per segment in our discussions until now. Let ’ s see how a 
TCP behaves when an application wants to send bigger chunks of data. When an 
application is sending bulk data, TCP has to take into account some additional TCP 
header fi elds to decide upon the data transmission rate. We will see how ACKs are 
generated in a different way and how TCP controls data transmission rates in our 
current discussion in the case of bulk data transfer. We introduce here one more 
TCP parameter,  window size , which is a part of the TCP header, and see how it 
helps the sender TCP to understand the receiver ’ s resource constraints based on 
which sender controls the data transmission rate. If we just recall from the previous 
discussion regarding window size, we know that it is the indication of resource avail-
able at the receiver TCP end. First we will see how window size and TCP ’ s receive 
buffer are associated and then move along with the actual discussion. 

 Consider a situation where bulk data are fl owing in one direction in a high -
 speed network. Now from Figs.  2.14a  and  2.14b  we know that when application 
writes data over TCP socket it is not directly transmitted to the receiver. The TCP 
fi rst copies the data to the send buffer for various reasons — for example, waiting for 
an ACK (Nagle ’ s algorithm). In the same way, receiver TCP gets data from the TCP 
segments and puts it in its receive buffer. Further application reads the data from 
TCP ’ s receive buffer when it has chance. If we don ’ t have send and receive TCP 
buffer arrangements, there are great chances of a TCP connection hogging resources 
such as memory, CPU, and network bandwidth starving other connections from 
using the resources. With the TCP buffers in place, it is clear that the sender can 
send data in two cases (given that other conditions are favorable for data transmission) —  

  1.     There are data ready to be sent in sender TCP ’ s send buffer.  
  2.     There is space in the receiver ’ s TCP receive buffer.    

 As discussed earlier, receiver TCP puts data in its receive buffer before applica-
tion can read it. Once an application has read data from TCP ’ s receive buffer, space 
is created to accommodate more data. In short, at any given point in time, receiver 
TCP can receive maximum data bytes restricted to the space in its receive buffer. 
On the other hand, space in the receiver buffer is created only when the application 
reads the data from the receive buffer. If the receiver ’ s receive buffer is full, no 
more data will be accepted from the sender, and the sender has to wait until the 
space is available in the receiver ’ s receive buffer. The question is, How does the 
sender know about the availability of space in the receiver ’ s receive buffer? 
The TCP exchanges this information using TCP ’ s header fi eld  window size . Each 
TCP segment carries this information irrespective of whether it is a data segment 



or not. Let ’ s look at this example with the help of an example where the server is 
sending bulk data in a chunk of 1   kB to the client continuously. Client application 
is programmed not to read any data sent by the server. This is done deliberately to 
explain the concept of the TCP ’ s window size and also the fl ow control imposed by 
the TCP ’ s window size. As we have already learned, the application writes data 
over a TCP socket that goes into the TCP ’ s send buffer. The TCP reads the data 
from the send buffer and sends it in small segments. At the other end, the TCP gets 
these data segments, extracts data from the segments, and puts them in the receiv-
er ’ s TCP receive buffer. Finally, an application reads in data from the TCP ’ s receive 
buffer and makes space for more data to be stored in the TCP ’ s receive buffer. We 
will see how the receiver TCP ’ s receive buffer information is passed on to the sender 
TCP and then how the sender TCP reacts to the changing receiver buffer size. 

 Network activity for bulk data transfer from server to client is captured using 
tcpdump. The captured data are shown in Figs.  2.24a  and  2.24b . Packet ’ s 1 – 3 are the 
initial SYN segments exchanged between client and server as part of the TCP con-
nection initiation handshake. The client sends  mss  as a TCP option (1460) and also 
the initial window size (5840). Similarly, segment 2 is again a SYN segment from 
the server with  mss  (1316) TCP option and the initial window size (5216). Window 
size advertised by the client in the SYN segment is nothing but the size of its receive 
buffer (5840 bytes) and similarly for the server. We will concentrate only on the 
client ’ s window size because it is at the receiving end and the server is only sending 
data and not receiving any data from the client.     

 Server application writes 1024 bytes of data at a time, but we can see that TCP 
is generating a TCP data segment of 1304 bytes. This is because it waits until we 
have data equal to maximum segment size from the application in its send buffer. 
Server side TCP has an  mss  from the client which is less than its own  mss , but still 
the TCP data segment is never found to have data more than 1304 bytes ( < 1316, 
client ’ s  mss ) in the entire session. This is because the IP would have found out some 
intermediate router whose MTU (maximum transmission unit) is such that an  mss  
of 1304 comes into picture. So, we can see that the server can send 5840 bytes of 
data without receiving any acknowledgment from the receiver at this point in time. 
The server keeps on sending data segments of 1304 bytes and receives acknowledg-
ment for each data segment. We can see that the client is advertising increased 
window size each time with the reception of data, and this seems to be slightly con-
fusing. When the client has advertised its window as 5840, how can it advertise 
window size 7842 after the reception of 1304 bytes of data which remains in its 
receive buffer (because the application is not reading data). This is because TCP 
can receive data more than the initially advertised window size. But by advertising 
small window size initially, it is imposing control on the rate of data fl ow from the 
sender. When the receiving TCP senses no congestion in the network, it gradually 
increases the window size until it fi nally reaches the actual window size. Actually, 
this is congestion control mechanism. The client continues to increase its window 
size until the client has sent 19,560 bytes of data (packet 32). At this point in time, 
the client ’ s window size has increased to 45,640. It means that the client has 19,560 
bytes of data in its receive buffer and still it can receive 45,640 bytes of data, which 
means that total receive buffer size of the client is 45,640   +   19,560   =   65,201 bytes. 
Thereafter (packet no.  ≥ 34) we can see the window size decreasing on reception of 
each data segment. The decrease in window size is exactly equal to the number of 
bytes received. This is because client application is not reading any data from TCP ’ s 

TCP SLIDING WINDOW PROTOCOL 73



74 PROTOCOL FUNDAMENTALS

    Figure 2.24a.     TCP dump output for bulk data transfer (application not reading data from socket 

buffer).  



    Figure 2.24b.     Receive buffer is full, zero - window is advertised (segment 82).  

receive buffer. The client continues to accept data until it has space in its receive 
buffer. We can see the client ’ s window size diminishing as follows: 15,648 (seg 65), 
11,736 (seg 69), 9128 (seg 72), 6520 (seg 75), 2608 (seg 79), and 0 (seg 82). Segment 
82 is an ACK from the client for reception of 65,200th byte with window size of 0. 
After this we can see that the server is not able to send any data to the client because 
the window size advertised by the client is 0, which means that there is no space in 
the client ’ s receive buffer. The server cannot send anymore data until the client 
advertises a positive window size. 

 So, we have seen from the above example how sender TCP uses window size 
information from the other end (receiver TCP) to adjust its data transmission rate. 
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Let ’ s now see the TCP sliding window protocol in completeness. Window size is the 
indication of the available space in the receiver TCP ’ s receive buffer to the sender 
TCP. Sender TCP can always send data equal to the last advertised window size by 
the receiver TCP. The ACK for the reception of the data segment from the receiver 
TCP will have a new window size, and the sender will use this new value of window 
size to transmit more data. We will learn that it is not only the window size but also 
the acknowledged sequence number from the receiver that will fi nally decide the 
rate at which the sender can transmit data. 

 The sliding window protocol is demonstrated in Fig.  2.25 . We will learn how the 
window slides when data are transmitted by the sender TCP and it receives acknowl-
edgment for the sent data. Each block represents 1   Kbyte of data. We consider here 
that the receiver TCP has provided maximum receive buffer size because window 
size and sender TCP is transmitting 1   Kbyte of data per segment. Gray - colored 
blocks shows the window size at any given point in time. The sender TCP maps the 
receiver ’ s window size to a stream of bytes ready to be sent in its send buffer as 
shown in Fig.  2.25a . In Fig.  2.25a  the window size advertised by the receiver is 
12   Kbytes, which means that the receiver TCP ’ s receive buffer is 12   Kbytes long. The 
arrow always points to fi rst unacknowledged byte in the senders stream of bytes. 
We take the absolute byte number with respect to the ISN (initial sequence number) 
to map each byte. So, the fi rst byte is mapped to ISN   +   1. From Fig.  2.25a  it is clear 
that at this point in time the sender TCP has not sent any data and the send window 
starts from ISN   +   1. We know that sender TCP can send 12   Kbytes of data at this 
point of time. Let ’ s see what happens when sender TCP transmits the fi rst segment. 
Figure  2.25b  shows that gray blocks cover only the 11 - Kbyte portion of the send 
buffer. The left end of the send window is shifted by 1   Kbyte toward the right, which 
means that after sending the fi rst segment, sender TCP can only send 11   Kbytes of 
data. The arrow still points to ISN   +   1 because the sent data are still unacknowl-
edged. Next we receive acknowledgment for the fi rst data segment. The receiver 
sends an acknowledgment for the fi rst data segment with a window size of 12   K, 
which means that the application at the receiver ’ s end has read all 1   Kbyte of data 

    Figure 2.25a.     No data is sent (window   =   12   k).  

    Figure 2.25b.     1   k data is sent none ACK ’ ed (window   =   11   k).  



from the receiver ’ s buffer before it sends the acknowledgment. So, the right end of 
the send window is shifted by 1   Kbyte toward the right (Fig.  2.25c ). Once again the 
sender knows that it can send 12   Kbytes of data and the sender sends next three 
consecutive data segments; the situation is shown in Fig.  2.25d . Next, the sender 
receives acknowledgment for the second and third data segments sent a the window 
size of 11   K (see Fig.  2.25e ), which means that the sender still can send 11   Kbytes of 
data. But this time the right end of the window is shifted toward the right by 2   Kbyte 
because the fourth data segment is still unacknowledged. The arrow is now pointing 
to ISN   +   1   +   3   K. Next, the sender transmits another consecutive fi fth and sixth data 
segments. The left end of the window is shifted to the right by 2   Kbyte (see Fig. 
 2.25f ). Finally, the sender receives acknowledgment for fourth, fi fth, and sixth data 
segments with window size of 12   K. At this point in time, we have no unacknowl-
edged data, so the right end of the window is shifted by 3   Kbyte towards the right 
while the left end remains unchanged with the arrow now pointing to ISN   +   1   +   6   K 
(see Fig.  2.25g ).               

 Let ’ s see, in different situations, how the left and right ends of the window move 
in different situations. Window size may increase or decrease in different situation. 

    Figure 2.25c.     All (1   k) data is ACK ’ ed (window   =   12   k).  

    Figure 2.25d.     4   k data is rent, only 1   k ACK ’ ed (window   =   9   k).  

    Figure 2.25e.     4   k data Sent, only 5   k ACK ’ ed (window   =   11   k).  

    Figure 2.25f.     6   k data Sent, only 3   k ACK ’ ed (window   =   9   k).  

    Figure 2.25g.     All 6   k data ACK ’ ed (window   =   12   k).  
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The window size may increase because the right end of the window moves toward 
the right side while the left end remains intact. There is no chance that the left end 
moves toward the left because the position of the left end is pointing to the location 
in the stream of bytes, which is either acknowledged or unacknowledged. If left end 
moves toward the left, it means that the TCP is by some means deleting the existing 
data, which is highly impossible. 

 The TCP send window can increase because the right side of the send window 
can move toward the right while the left end remains intact. This may happen 
because the receiver TCP can increase the receive buffer size at any point in time 
because of two reasons. First, application can increase the receive buffer size at any 
point of time using socket options. Second, the application has read some data from 
TCP ’ s receive buffer which has created some space in the receiver TCP ’ s receive 
buffer to accommodate more data. So, the receiver TCP advertises its increased 
window size whenever it so happens. 

 Figure  2.26a  shows the situation where the receiver TCP ’ s receive buffer is full 
because the application is not able to read data. The receive buffer is seen to be 
12   Kbytes long (each block shown is 1   Kbyte long). Furthermore, application is 
scheduled and starts reading data. It reads 2   Kbyte of data so that it creates 2   Kbyte 
of space in the receive buffer (see Fig.  2.26b ). When this space is created, TCP 
advertises a new window size to the sender. This is just an example, but there are 
RFC defi ned to decide the condition when the new window size should be 
advertised.     

 Let ’ s consider a case for decreasing window sizes. The window size may decrease 
in a normal way when the rate at which data transmission is greater than the rate 
at which data is read by the application. In such cases the receiver TCP ’ s receive 
buffer keeps fi lling and available space in the receive buffer goes down. In such 
cases the right end of the sender ’ s window will remain intact but the left end will 
keep moving toward the right. 

 As shown in Fig.  2.27a , the receiver TCP has received two segments each of 
1   Kbyte but application has not read the data. So, the window size advertised at this 
point of time is 10   Kbytes along with the ACK. Figure  2.27b  shows that two more 
data segments each of 1   Kbyte have arrived and the data are collected in the receive 
buffer. So, total space occupied by the data in the receive buffer is 4   Kbyte, which 
application has not read yet. Thus, the TCP advertises window size of 8   Kbyte along 

    Figure 2.26a.     Receive buffer is full.  

    Figure 2.26b.     Application needs 2   k bytes from socket receive buffer.  



with the ACK. Another way that the sender ’ s window size decreases is that the left 
end remains intact and the right end moves toward the left. This may happen in the 
case where the receiving TCP shrinks its receive buffer because of scarcity of the 
available resources.      

  2.7   MAXIMIZING  TCP  THROUGHPUT 

 Until now we discussed the effect of window size on the bulk data transfer, and we 
have seen that the TCP ’ s throughput depends on (a) the rate at which the applica-
tion sends data, (b) the receiver ’ s window size, and (c) the rate at which the applica-
tion reads data from the receiver TCP ’ s receive buffer. We have not considered the 
network characteristics on TCP ’ s throughput. We will introduce two more parame-
ters that will have an effect on the TCP ’ s throughput. These parameters are  band-
width  offered by the physical layer and the  rtt  (round trip time). 

 Life is not that easy when it comes to packets traveling over the internet. We 
never know what path the TCP segment is taking, and this is not under our control. 
We may reach the router, which is heavily loaded where the queue is full and there 
is no space for the new packet which might result in dropping the packet. On the 
other hand, it may so happen that we may reach the network, which is operating at 
a very high speeds. In short, the packet might pass through high - speed or low - speed 
network segments, which is not predictable in advance to the TCP before it injects 
the next packet in the network. With the existing sliding window protocol scheme 
which we just covered in our previous section, we know that once the sender has 
knowledge of the receiver ’ s window size, it will start transmitting data without caring 
for acknowledgments for those segments until it knows that the window size of the 
receiver ’ s window size is a positive nonzero number. All this occurs without the 
knowledge of the network characteristics. If the receiver ’ s window size is too big 
but the network is slow, the sender continues to transmit data segments that might 
get lost on the way leading to retransmissions of lost segments and hence might 
introduce performance issues. Keeping this in mind, some modifi cations are made 
to the existing sliding window protocol which would impose restriction on the rate 
at which data should be transmitted from the sender TCP initially. This restriction 
is gradually relaxed with the reception of acknowledgments for the transmitted 

    Figure 2.27a.     2   k data in socket receive buffer.  

    Figure 2.27b.     4   k data in socket receive buffer.  
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segments. This way the sender TCP takes the defensive side initially and gradually 
reaches the data transmission rates that would utilize full network capacity. A self -
 clocking mechanism is introduced which says that the rate at which data are to be 
transmitted should depend on the rate at which acknowledgments are received. The 
rate at which acknowledgment for a segment is received makes a sender guess the 
network characteristics or the processing speed of the receiver. The slowest node in 
the path of the packet decides the speed at which it travels. It may be some inter-
mediate router, network speeds, or the processing speed of the receiver. But for the 
sender it does not matter which is the slowest. The time taken to receive an acknowl-
edgment for a segment is known as round - trip time or rtt. 

 This algorithm is implemented by introducing a new parameter at the sender 
side, namely, the congestion window. The congestion window is initialized to 1   mss 
(maximum segment size) received from the receiver when the connection is initial-
ized. The sender at any point in time can send data which is minimum of the conges-
tion window and the window size advertised by the receiver. The sender sends fi rst 
a TCP data segment of size 1   mss. Once it receives acknowledgment for this segment, 
it increases the congestion window by 1   mss. So, the congestion window size at the 
sender now becomes 2   mss. When it receives acknowledgment for the subsequent 
segments, the congestion window is incremented by 1   mss. This way the sender 
increases its congestion window size exponentially as follows: Initially, the sender 
can send only 1   mss byte of data. After reception of acknowledgment for the fi rst 
segment, it increases its congestion window by 2   mss. On reception of acknowledg-
ment for these two segments (second and third segments), it increases the conges-
tion window size to 4   mss. It can now send 4   mss bytes of data. It can now send four 
segments, each carrying 1   mss bytes of data. On reception of acknowledgment for 
these four segments, it can increase its congestion window size to 8   mss. So, the 
congestion window is increasing exponentially as 1, 2, 4, 8, 16,  …  times until it satu-
rates the network. Let ’ s see how it actually happens with the help of an example. 

 In Fig.  2.28a  –  e , we illustrate the relation between send congestion window, 
window advertised by the sender, and segments acknowledged. When the connec-
tion is just established, we can see that the congestion window is 1   mss and the 
receiver window is 12   mss as shown in Fig.  2.28a . So, one segment s1 is transmitted; 
and until it is acknowledged, the situation will remain the same as shown in Fig. 
 2.28a . Once s1 is acknowledged, the congestion window is incremented by 1 but the 
receiver ’ s window remains unchanged. So, we can transmit two more segments as 
shown in Fig.  2.28b . s2 and s3 are transmitted and the situation remains unchanged 

    Figure 2.28a.     Congestion window when no data is sent.  



    Figure 2.28b.     Congestion window when 1 segment is ACK ’ ed.  

    Figure 2.28c.     Congestion window incremented to four when three segments are ACK ’ ed.  

    Figure 2.28d.     Congestion window incremented to fi ve after four segments are ACK ’ ed.  

    Figure 2.28e.     Congestion window is more than the send window (saturation point).  

until they are acknowledged. Figure  2.28c  shows the situation where both segments 
are acknowledged and the congestion window is incremented to 4. Segments are 
transmitted when the congestion window allows them. For example, when acknowl-
edgment for s2 is received, congestion window is incremented by 1 and becomes 3, 
which means that we can send two more segments at that point in time since s3 is 
still unacknowledged. Figure  2.28c  is the snapshot at the time when s2 and s3 are 
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acknowledged; and by the time the acknowledgment for s3 arrives, s4 and s5 may 
have been transmitted.           

 In this way, when the acknowledgment for s4 has arrived, the congestion window 
is incremented to 5, which means that segments s5 – s9 can be transmitted, whereas 
the send window advertised allows segments up to s16 to be transmitted as shown 
in Fig.  2.28d . We keep on transmitting segments until we receive acknowledgment 
for s12. The congestion window is incremented to 13 in this situation whereas the 
send window advertised by the receiver is still 12 as shown in Fig.  2.28e . In this situ-
ation, we can transmit only 12 segments because the receiver ’ s buffer has taken over 
the congestion window here and transmission is limited by the receiver ’ s buffer size 
at this stage. This way initially the congestion window limits the transmission rate 
because in this period we are accessing a network congestion state whereas the 
receiver ’ s window allows a higher transmission rate. Slowly we realize that the 
network has high capacity and allows a higher transmission rate. But the receiver ’ s 
window becomes the limitation because we can ’ t transmit more than a receiver can 
accommodate because this violates the sliding window protocol. This initial stage of 
slowly incrementing congestion with reception of acknowledgment is called the 
slow - start phase.  

  2.8    TCP  TIMERS 

 A TCP generates asynchronous events, which is the reason we need timers to detect 
the faults. For example, we send out data and wait for data to be acknowledged. 
This is an asynchronous event. In the similar way, we may wait for the receiver to 
open a window, which is again an asynchronous event. There are many other events 
that are generated by a TCP. For all these we need timers to detect timeouts. We 
don ’ t discuss these timers much in detail here because they are discussed in Chapter 
 10 . 

  2.8.1   Retransmission Timer 

 Whenever a TCP sends out data, it needs to make sure that the data have reached 
the receiver properly. For that it has to set a timer for the fi rst data segment that is 
transmitted. Once the ACK is received for the data, this timer is reset for the next 
data segment that was transmitted. The timer would expire after an interval that is 
decided by the round - trip time RTT for the route. RTT is the time taken by a data 
segment to be acknowledged, which is calculated using the TCP timestamp option. 
If the timer expires, we can expect loss of all the segments in the last window trans-
mitted and we start transmitting segments one - by - one from the last window. In this 
case we enter the loss state and slowdown rate of data transmission as we can sense 
network congestion. Sometimes the RTT changes due to change in route or change 
in transmission medium; in this case, packets may get delayed and timeout may 
occur spuriously (check RFC 3522). RFC 2988 specifi es how effective RTO calcula-
tion can be done. 

 Just to illustrate the retransmit timeout example,  tcpdump  output is taken from 
a connection that was made to experience timeout in Fig.  2.29 . The receiver (pari-
krama) was unplugged from the network and the sender (moksha) continued to 
send data. We have skipped the three - way handshake from the output. It is clear 



that segment 1 containing 1448 bytes of TCP payload is transmitted with sequence 
space [1013601, 1015049]. Segment 2 containing 1448 bytes is transmitted with 
sequence space [1015049, 1016497]. Segment 3 is retransmission of segment 1 since 
this segment is not yet acknowledged and retransmit timer expired (check the 
sequence space of segment 3). In the same way, segments 4, 5, 6, and 7 are retrans-
missions of segment 1, which is not acknowledged. If we look at the time stamp of 
retransmissions, it is more or less exponentially increasing. The time interval for 
retransmissions are 219,920, 440,012, 879,989, 1,760,014, and 3,519,988   ms, respec-
tively. This does not go exactly with an exponential increment of RTO because 
timers are high - priority tasklets and are executed when timer interrupt occurs. 
Timer interrupt happens at fi xed frequency. So, the timer boundaries won ’ t match 
exactly with the RTOs.    

  2.8.2   Persistent Timer 

 The TCP has its own fl ow control mechanism which is controlled by the buffer size 
at the receiving end. The sender TCP gets an idea of the amount of data to be 
transmitted from the window size advertised by the receiver. At the receiving end 
the data gets queued on the receive buffer, until it is consumed by the application. 
If the sender is sending data at a much faster rate than it can be read by the applica-
tion, data will keep on queuing on the receiving TCP ’ s receive socket buffer. It may 
also happen that there is no space left out in the receiving TCP ’ s socket buffer. At 
this point in time, the receiving TCP advertises a zero window. When the sender 
gets zero window indication, it applies fl ow control on data and stops sending any 
more data until the receiver opens a window. 

 In this situation, whenever the application reads data from the receiving TCP ’ s 
socket buffer, it generates space in the receive buffer for more data. In this process, 
the receiving TCP sends an ACK with a nonzero window. There is a probability that 
this ACK gets lost and the sender never gets the window open indication. In this 
case there would be a deadlock between the two TCP ends because the receiver 
thinks that it has already sent a window open segment and the receiver will send 
data whenever it has something, whereas the sender is waiting for a window open 
advertisement from the receiver, which it never gets. 

 To tackle this situation, the sender TCP sends out a zero - window probe that is 
exponentially backed off by way of the persistent timer. This timer sends out the 
next sequence number with no data. Linux sends out one sequence number smaller 
than what it has transmitted last. This timer is explained with the help of an example. 
The sender TCP sends out data in a chunk of 1448 bytes (mss for the connection). 

    Figure 2.29.     Retransmission of TCP segments for TCP dump output.  
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The application at the receiving end does not issue any read on the socket. So, all 
the data gets queued on the receiving TCP ’ s socket buffer.  tcpdump  output is taken 
for this connection as shown in Fig.  2.30 . Stage comes when the receiver ’ s buffer is 
full; it advertises zero window (packet 2). Packet 3 is the fi rst zero - window probe, 
and the sequence number it sends is not shown in the output. The fi rst probe is 
immediately acknowledged by the receiver (i.e., packet 4). The next probe is sent 
after 500   ms as packet 5. Subsequent probes are sent at an interval of 1000   ms 
(packet 7), 2000   ms (packet 9), 4000   ms (packet 11), 8000   ms (packet 13), and 
16,000   ms (packet 15), respectively. This shows that the window probe timer fi res 
with timeout value exponentially backed off.    

  2.8.3   Keepalive Timer 

 There are many situations where the connection is alive for ages without either 
ends communicating. For example, there may be a telnet session open for many 
days without a client issuing any command to the server. In this situation, how will 
either end know that the connection at the other end is alive because the connection 
at one end may remain open even when the other end has crashed or rebooted? 
The server sends out the fi rst pure ACK segment after the connection is in an idle 
state for a certain fi xed time. This is implemented with the help of keepalive 
timer. 

 Once the connection is in an idle state, a timer is fi red and a pure ACK segment 
is sent out to the peer. If we get a response for the ACK, the other end is still alive 
and in this case we rest the keepalive timer to fi re after a connection is found in an 
idle state for a certain duration. In case the we don ’ t get a response for the ACK 
segment sent by the keepalive timer, the timer is reset with timeout exponentially 
increased. This continues until we have exhausted maximum re - tries. There are dif-
ferent system - wide confi gurables related to the timer that can be tuned to get the 
most optimum results. 

 Socket option SO_KEEPALIVE can be used to enable keepalive timer for the 
connection. This can be tried as an exercise.  

    Figure 2.30.     Zero - window probe timer for TCP dump output.  



  2.8.4    TIME _ WAIT  Timer 

 When the TCP does an active close on the socket, it does a four - way hand shake to 
cleanly close the connection. It sends the FIN and receives ACK for the FIN. Then 
the peer (doing passive close) sends a FIN segment that is acknowledged by this 
end. Once a fi nal FIN is acknowledged by the TCP doing active close, it remains in 
the TIME_WAIT state to deal with the following situations: 

   •      The fi nal ACK may get lost.  
   •      There may be reincarnation of the connection in case the peer crashes and 

reboots very fast.    

 The socket remains in this situation until the TIME_WAIT period has elapsed 
which is usually 2 * MSL (maximum segment lifetime). Each implementation has its 
own way of calculating the MSL value. As soon as the socket enters the TIME_
WAIT state, the TCP sets the TIME_WAIT timer for the socket that expires after 
given time and fi nally closes the socket. Until then, the connection remains locked 
from both ends, meaning that the tuple source/destination IP address and port 
numbers are locked for this duration. Both TCP ends can ’ t use these port numbers 
for a new connection until the timer expires and the socket is removed from the 
TIME_WAIT state.   

  2.9    TCP  CONGESTION CONTROL 

 The TCP is a reliable protocol that keeps track of data that have reached the other 
end with the help of acknowledgment for every byte of data received by the peer. 
The TCP can sense network congestion by way of retransmit timer timing out and 
reception of duplicate acknowledgments. There are different ways of handling these 
situations. If the retransmit timer expires, it is an indication of complete loss of data 
transmitted in the last window because a timer is set when the fi rst data segment 
from the last window is transmitted (given that we have not timed out spuriously). 
In this case we need to transmit all the data from the last window and we start with 
retransmitting the fi rst segment in the retransmit timer. If we receive duplicate 
acknowledgments, it is an indication that some packet is lost and we transmit a lost 
segment (given that there is no reordering of segments in the network). This is also 
called an early detection of loss, and the corrective action is fast retransmit and fast 
recovery. There are two TCP congestion state variables: 

  1.     Congestion window  
  2.     Slow - start threshold    

 When the TCP enters the loss state, we revert to slow start where the congestion 
window is initialized to 1 and slow - start threshold is initialized to half of the conges-
tion window or 2 (whichever is greater). In the slow start phase, the rate of data 
transmission depends on the rate at which acknowledgments are received. We con-
tinue to send out lost segments at an exponentially increasing rate starting with one 
segment. This continues until the congestion window reaches the slow - start thresh-
old. Thereafter, congestion avoidance takes over. In the congestion avoidance phase, 
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the congestion window is incremented per RTT and does not depend on the rate 
at which acknowledgments arrive. We do this because it is the last congestion 
window that got us into a loss state by saturating the network. Considering that we 
were doing a slow start at the time we entered the loss state, the congestion avoid-
ance should take over from the window prior to one that caused loss of data (half 
of the congestion window that got us into loss state). That is the reason we set the 
slow - start threshold to half of the congestion window at the time we encountered 
loss. 

 In case we detect loss because of reception of three duplicate ACKs, initialize 
the slow - start threshold to half of the congestion window at that point in time and 
initialize the congestion window to slow - start threshold plus 3 (for three duplicate 
ACKs). The reason is that we know that data are still fl owing between the two ends 
and it is just that one segment is lost. So, we don ’ t touch the transmission rate, but 
the rate at which congestion window is incremented further will be function of RTT 
(linear with respect to RTT). This will help control the rate of data transmission 
further. Specifi cation is provided in RFC 2581 and RFC 2001.  

  2.10    TCP  PERFORMANCE AND RELIABILITY 

 Extensions to the TCP is introduced to give it better reliability and for high perfor-
mance. At the time when the TCP was in the development phase, the internet was 
not all that powerful. But room was left for any extensions required for the TCP in 
the future, depending on the requirement. These extensions are implemented with 
the help of options in TCP header. These are already discussed in Section  2.2 ; in this 
section we will see how they enhance TCP features. 

  2.10.1    RTTD  

 rtt ( round - trip time ) is one of the very critical parameters that decides the perfor-
mance of TCP. Sending TCP needs an acknowledgment for each byte of data trans-
mitted. If it doesn ’ t get an acknowledgment for the sent TCP within a specifi c time, 
it needs to retransmit that segment, assuming that the segment is lost. The time to 
retransmit the TCP segment is based on rtt. If rtt is underestimated for slow net-
works, we may end up retransmitting TCP segments even when the original TCP 
segment or its ACK is on the fl ight. This is wastage of bandwidth and additional 
overhead of generating a packet and transmitting it. Moreover, entering into a 
congestion state involves lowering of data transmission. If we are falsely entering 
into a loss state, TCP throughput is hampered severely, whereas if the rtt is over 
estimated for high - speed networks, we end up retransmitting TCP segments after a 
long delay even if the data are lost, resulting in slow recovery form losses, thus 
hitting the performance.  

  2.10.2    SACK / DSACK  

 SACK is selective acknowledgment and DSACK is duplicate SACK. SACK gives 
useful information in the case of reordering or loss of one or more segments. 
Without SACK enabled, we get to know that segments have reached out - of - order 
with the help of duplicate acknowledgments. But this information is incomplete to 



predict the network congestion state. We don ’ t know which TCP segments have 
reached the other end. This is important information as far as reordering of 
segments is concerned. Based on reordering length, we start fast retransmit fast 
recovery on the connection. By default, reordering length is three. With SACK 
information available we can exactly calculate reordering length from the lowest 
and highest sequence spaces that have been selectively acknowledged (FACK). 
Based on this information, we can avoid false retransmissions by starting the fast 
retransmit and fast recovery phase. With the SACK information available, we know 
exactly what to retransmit in the fast retransmit and fast recovery phase. Because 
we already know which segments have reached the other end safely, we transmit 
only the holes. DSACK is just an extension of SACK where DSACK is generated 
when both the original and retransmission reach the receiver. This gives us an indi-
cation that we have falsely entered into the fast retransmission and fast recovery 
phase because the packet got delayed in the network or because of excessive reor-
dering. With the DSACK options available, we may be able to detect false entry 
into the congestion state and may recover fast.  

  2.10.3   Window Scaling 

 The receiving TCP advertises window size, which is the size of the receive buffer; 
this is limited to a 16 - bit value in the TCP header. The sender transmits at the rate 
which is determined by two factors: congestion window and the receiver ’ s buffer 
space. A 16 - bit window becomes a bottleneck for TCP throughput in two cases: 

  1.     With high - speed networks and Long Fat Networks where bandwidth is huge, 
we can transmit data at the speed of few gigabytes per second.  

  2.     The receiver has a huge buffer space for the incoming data.    

 In the above two cases, even though network capacity is too much and resources 
available with the receiver is too high, the sender can ’ t do much because the window 
advertised by the receiver is limited. 

 A new extension to the TCP allows the receiver to increase the limit on the 
allowable window. This way the sender can have the maximum advantage of the 
above two conditions and transmit data at a maximum rate improving TCP 
throughput.   

  2.11    IP  (INTERNET PROTOCOL) 

 This protocol carries the entire Internet traffi c. IP is a stateless and connectionless 
protocol, which means that neither end maintains any state for the IP datagram sent 
and received. The IP datagram may take any path to reach the destination. The IP 
datagram hops from router to router to reach its fi nal destination. Each router will 
have entry for the next hop for the IP datagram. The datagram is queued on the 
routers outgoing interface queue in case there is traffi c for the link. It may also 
happen that the router crashes or the queue for the outgoing interface is full. In 
both the cases, the packets are dropped. 

 Other than IP carrying internet traffi c, it has many roles to play such as routing, 
quality of service, congestion reporting using an IP ECN fl ag, and soon. In this 
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section we will have a brief overview of the protocol with some examples illustrating 
routing table, network interface, and  traceroute . 

  2.11.1    IP  Header 

 The IP header has fi xed as well as optional fi elds. The fi xed header is 20 bytes long 
and the rest is optional (see Fig.  2.31 ). Later in the discussion, we will determine the 
total header length. We will discuss these fi elds one by one.   

         ver .     This is a 4 - bit fi eld indicating the version of IP. As of now we have only 
two versions, 4 and 6.  

   hlen .     This is a 4 - bit fi eld indicating the header length of IP datagram including 
IP options. The number in the fi eld is the count of 32 - bit words that make an IP 
header. For example, if the length of the IP header is 20 bytes, this fi eld will have 
value of 5. This limits the length of the IP header to 15 32 - bit words, that is, 60 
bytes.  

   TOS .     This is an 8 - bit fi eld indicating the class to which an IP datagram belongs. 
There are different type of applications using internet resources. Each application 
has different requirements as far as network resource usage is concerned. Some 
applications require reliability more than speed, whereas others would like to mini-
mize delay. All this is controlled per packet and queuing discipline at each router. 
In the internet IP packet hop from router to router. Depending on the packet type, 
router needs to queue the packet in such a way that the required target is achieved. 
Each packet should contain information about the queuing discipline based on 
which router will queue it on different queues. This information is available in TOS 
fi eld of the IP header and details are mentioned in RFC 1349.  

   total   len .     This is a 16 - bit fi eld and indicates total length of the IP datagram in 
bytes. This is required for may reasons like data integrity and marks the end of the 
IP datagram. If the total length is included in the IP checksum, we are sure what 
we have received is complete. Because the packets are fragmented by any interme-
diate router, this fi eld is also modifi ed and so also IP checksum. The Ethernet frame 

    Figure 2.31.     IPV4 header format.  



has a lower limit on the size. If the length of an IP datagram falls below this 
minimum frame length, the Ethernet will pad the frame to make minimum frame 
length. If we don ’ t have this fi eld, the IP payload will be misinterpreted because of 
extended padding.  

   ID .     This is a 16 - bit fi eld that uniquely identifi es a packet on the destination 
host. The ID fi eld has a role to play in fragmentation and reassembly. When IP 
datagram is fragmented, this fi eld uniquely identifi es each fragment.  

    fl g  .     This is a 3 - bit fl ag fi eld in the IP header. As of now, these fl ags are used 
mostly for fragmentation and reassembly units. 

   •      The zeroth bit is not yet used.  
   •      The fi rst bit indicates whether the packet should be fragmented. If set, the IP 

datagram won ’ t be fragmented by any router.  
   •      The second bit indicates whether we have more fragments for the IP data-

gram. When an IP datagram is fragmented by any intermediate router, this 
bit is set for all the fragments except for the last fragment.     

   frag   offset .     This is a 13 - bit fi eld and is used by the fragmentation and assembly 
unit to mark the offset in the original IP datagram for the fragment. With the help 
of this fi eld, the assembling unit places all the fragments in order.  

   TTL .     This is an 8 - bit fi eld keeping  time - to - live  information.  time - to - live  is a 
maximum number of hops (routers) that a packet is supposed to take before 
it should be dropped. This fi eld is decremented by 1 by each router. We never 
know what route a packet takes. It may happen that the broken route causes a 
packet to hop in a loop. In such cases, this fi eld avoids the packet to hang out in the 
internet forever. The maximum number of hops that an IP datagram can have is 
254.  

   prot .     This is an 8 - bit fi eld indicating protocol number. As such, an IP datagram 
is just a traffi c carrier over the internet. It may carry TCP, UDP, ICMP, and IGMP 
data. At the receiving end, this fi eld is used to multiplex packet to the next protocol 
layer.  

   checksum .     This is a 16 - bit fi eld containing checksum for the IP header including 
optional fi eld. This checksum is calculated as follows: 

   •      Dividing the entire IP header as 16 - bit words.  
   •      Sum up these 16 - bit words.  
   •      Calculate the 16 - bit 2 ’ s complement of the sum.    

 At the receiving end, the entire IP header is once again divided as 16 - bit words and 
summed up. The result of the sum should have all the bits set. If not, the IP header 
is considered corrupted. Since the IP header is modifi ed at each hop as the TTL 
fi eld is modifi ed, the IP checksum is recalculated. RFC 1071 illustrates better ways 
to calculate the IP checksum.  
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   src   addr .     This is a 32 - bit fi eld containing an IP address of the generator of the 
IP datagram. This fi eld is modifi ed by masquerading/NAT software when a packet 
from a private network is forwarded to the internet by the gateway.  

   dst   addr .     This is a 32 - bit fi eld containing an IP address of the host for which 
packet is destined. Once again this fi eld is modifi ed by the gateway when packet 
coming from public network is destined for the host in the private network 
(de - masquerading/de - NAT).      

  2.12   ROUTING 

 An IP datagram reaches its destination by hopping through a series of routers 
in the internet, which means that each router needs to have information about the 
next hop router and the outgoing interface for the packet. Each router maintains 
a table of all the possible routes through all the available links. This table is 
called routing table. A route can be added manually by using a  route  command. 
In the complex internet, a router may go down and come up and there is 
nothing certain. So, having static routing entries will not help much. Thus, there is 
a provision for modifying a routing table dynamically. This can be done by routing 
daemons that implement various routing protocols. The neighboring routers may 
broadcast their routing tables to all others in the domain or the router may query 
a routing table from the neighboring routers. Whichever way it is, routing informa-
tion is made available to the routers and then the best route for a given destination 
is added to the routing table. The following routing protocols are most widely 
used: 

   •      Routing Information Protocol (RIP)  
   •      Open Shortest Path First (OSPF)  
   •      Border Gateway Protocol (BGP)    

 The Routing decision is done in three steps: 

   •      Compare the IP address of the packet with the destination fi eld of the routing 
table. If an entry exists in the routing table, we use that route.  

   •      If the fi rst test fails, we compare the subnet ID of the packet with the destina-
tion fi eld using a subnet fi eld in the routing entry. If the subnet ID matches, 
we use this route.  

   •      If both tests fail, we simply use the default route for the packet for the routing 
decision.     

  2.13     netstat   

 On Unix systems, the  netstat  command is used to display a kernel routing table. 
Figure  2.32  shows the kernel routing table from  netstat  command. The output of the 



netstat command is taken on Linux, where we have default static kernel routing 
entries. It shows three entries: 

   •      192.168.1 network, line 26  
   •      Loopback 127.0.0.1, line 27  
   •      Default gateway, line 28      

 We will see how we can differentiate between three types of routes from the route 
fl ag. Following are the routing fl ags as shown in the  netstat  output: 

   U       Indicates route is  ‘ up ’ .   
   G       Route is to a gateway.   
   H       Route is to a host and not a network.   
   M       Table entry is modifi ed by ICMP redirect message.   
   D       Route was created dynamically or by ICMP redirect.     

 There are three rows for each routing table entry in the  netstat  output. There is 
much more associated with each routing entry, but seven main entries are displayed 
here. The fi rst entry at line 26 is for subnet 192.168.1.0, which means that any packet 
destined for subnet 192.168.1.0 should use interface eth0. Only subnet ID will be 
compared for this entry, which can be obtained by ANDing IP address with the 
 Genmask  entry (255.255.255.0). If the subnet ID of the packet matches the  Destina-
tion  entry (192.168.1.0), why do we say that we need to compare the subnet ID of 
the packet for this entry? The reason is that the routing fl ag is set to  U. U  means 
that the route is up and nothing more. 

 The next entry is for a loopback entry (127.0.0.1), which is a special case. Any 
packet that is destined for 127.0.0.1 is sent to a loopback interface ( lo ). Here only 
subnet ID is compared because the  U  fl ag is set for the route. The third entry is for 
a default route.  Destination  and  Genmask  are set to all 0 ’ s here because it is a default 
route and will unconditionally route any packet that comes to this stage. We can see 
that Gateway is set to 192.168.1.1, meaning that packets should be sent to this 
machine for the next routing decision using eth0 as an outgoing interface. We can 
also see that the fl ag is set to  UG , meaning that the route is UP and  G  indicates 
that the route for gateway. When the  G  fl ag is set, the packets need to be sent to 
the gateway machine for routing decisions. So, the destination hardware address 
in the link layer header is set to that of the router instead of the hardware address 
of the destination IP.  

    Figure 2.32.     Netstat output for host pointing to default Gateway.  
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  2.14     traceroute   

 In this section we will see how packets hop in the internet to reach a fi nal destina-
tion. We will use a network utility  traceroute  to see how a packet is traversing 
through the internet. We will discuss the mechanism used by  traceroute  in the 
next section.  traceroute  reports three round trip times for each router. I have an 
internet connection at home connected through a DSL router with IP address 
192.168.1.1. 

 The First line of  traceroute  output shows that a route is being traced for 
 mail.yahoo.com  with IP address 209.191.92.114 (see Fig.  2.33 ). The maximum number 
of hops for this destination is set to 30. Every line shows three round trip times 
from each router. We can see that as we are moving away from the host machine 
toward a destination, rtt is incrementing. Everything is ok until we reach the 19th 
entry. We can see that each time three different routers are being reported. This 
happens because the 19th hop packet ends up at three different routers. This may 
happen because the routing table at the 18th hop may have an updated entry at 
three different times. Once again we can see something different at line 23, which 
is three stars. This means that the traceroute has timed out and didn ’ t get a response 

    Figure 2.33.      Traceroute  output.  



from the router. The router may not respond or the response is blocked by a 
router.   

  2.14.1     traceroute   Mechanism 

  traceroute  uses the ttl (time - to - live) fi eld of IP to get this wonder done. In Section 
 2.11.1  we discussed that there is maximum number of hops that an IP datagram can 
take before being dropped, which is decided by a  ttl  fi eld.  traceroute  starts with ttl 
value of 1 and increments this value by 1 for each hop. This fi eld is decremented by 
one at each router and if the value reduces to zero, the router sends back a  ‘ time 
exceeded in transit ’  ICMP message to the originator of the IP datagram. 

 We collected  tcpdump  of the  traceroute  program discussed in Section  2.14  (see 
Fig.  2.34 ). First line shows that a UDP packet destined for  login.mud.yahoo.com  of 
length 40 bytes with ttl set to 1 is transmitted. The second line is the return of ICMP 
message from the very fi rst router (DSL router). Similarly, lines 3 – 6 are repeated. 
Similarly, for the next hop the ttl fi eld is set to 2 at line 7. We get an ICMP message 
from the second router  ABTS - KK - Dynamic - 001.96.167.122.airtelbroadband.in.  We 
need not mention that the same thing is repeated until we get to the fi nal 
destination.     

  2.15    ICMP  

 ICMP stands for as internet control messages protocol. This is a general - purpose 
protocol carrying control messages. These control messages can be an error message 
from a router, such as  ‘ network unreachable ’  or  ‘ fragmentation not allowed, ’  or 
TCP/UDP error messages such as  ‘ port unreachable ’  and many other messages. 
There are numerous utilities like  ping  that also use ICMP. 

 An IP datagram carries an ICMP message. Whenever an ICMP message is 
generated to report some error, an IP header is built for the return path of the IP 
datagram from the IP datagram. An ICMP header is added to this IP datagram, and 
this datagram is transmitted. Figure  2.35a  shows an ICMP message that contains 20 
bytes of IP header built from the original IP datagram that caused ICMP message 
generation followed by ICMP message. The ICMP message format is shown in Fig. 
 2.35b . It has three fi elds: 

   type .     this is 8 - bit number which classifi es the ICMP messages.  
   code .     this is 8 - bit number which differentiates ICMP messages in each class.  
   checksum .     this is a 16 - bit fi eld that covers ICMP message. Algorithm is same 

as discussed in Section  2.11.1 .        

 Type and code are specifi ed in RFC 792. 
 The contents of an ICMP message in a data fi eld varies with type and code fi eld. 

For example, when an ICMP error message is generated for a TCP/UDP port that 
is unreachable, the data fi eld contains 8 bytes from the IP datagram payload that 
generated an ICMP message. So, the originator fi nds out that the TCP/UDP socket 
for which the ICMP message is generated as the fi rst 8 bytes includes destination 
and source port numbers for these two protocols.  
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    Figure 2.34.     TCP dump ouput for  traceroute .  

    Figure 2.35a.     ICMP packet.  



  2.16     ping   

  ping  is a general network utility that is used to check the network connectivity of 
any host. It uses echo ICMP messages for request and reply. The ICMP echo 
message format is shown in Fig.  2.36 .   

  type  is set to 8 for an ICMP echo request and 0 for an ICMP echo response. 
  code  is set to 0. 
  checksum  is computed as mentioned in Section  2.11.1 . 
  identifi er  is 16 - bit fi eld that identifi es each echo reply uniquely. We may run 

many  ping  programs in parallel, in which case a reply for each ICMP request is 
identifi ed by this fi eld. 

  sequence number  is incremented for each ICMP echo request; on reception of 
ICMP, an echo reply sequence number is checked. If they match with the current 
sequence number,  timestamp  is used to calculate rtt. 

 Figure  2.37  shows typical output of the  ping  program. We send 56 bytes of ICMP 
data to  parikrama . Each line of output is displayed once we get a reply for the ICMP 
echo request. Each ICMP echo reply is 64 bytes of length, and each line of output 
shows sequence number ( icmp_seq ), ttl is set to 255 (infi nite life time), and time is 
rtt calculated from  timestamp  echoed in ICMP reply. At the end of the output is the 
total statistics for the ICMP echo program. It shows that packets were transmitted 
and received, there was no packet loss, total time spent is 5055   ms, and fi nally rtt 
observed as minimum, maximum, average, and mean deviation over the entire  ping  
program is printed.   

 Figure  2.38  shows snoop output of the  ping  program. Moksha is pinging pari-
krama and ID is unique for each ICMP packet (i.e., 950). The sequence number for 
which snoop output is shown is 4. The fi rst ICMP echo request is sent with type 8, 
and fi nally we get a response for the ICMP request with type 0. Code is 0 for both 
request and reply. An ICMP message is encapsulated in the IP datagram with a 
protocol fi eld of IP datagram set to 1.    

    Figure 2.35b.     ICMP message format.  

    Figure 2.36.     ICMP header format for echo request - reply message.  
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    Figure 2.37.     TCP dump output for output of ping program.  

    Figure 2.38.     Snoop output for ping request.  



  2.17    ARP / RARP  

 ARP is an address resolution protocol that is designed for link layer addressing. 
RFC 2176 defi nes specifi cs about the protocol in detail. In this section we will discuss 
specifi cally about Ethernet technology and IP. In an IP over an Ethernet link, there 
are one or more IP addresses associated with one Ethernet network interface. Each 
Ethernet interface has a specifi c address. 

 In the Ethernet network, when we need to send a packet to a specifi c host whose 
IP address is known, ARP is generated to know the hardware address associated 
with the IP. ARP is hardware broadcast to the network and is replied by the host 
whose IP address matches the IP address in the ARP packet. An ARP packet is 
encapsulated in the link layer frame and is then broadcast, which means that the 
destination hardware address of ARP frame should be set to all  f . The destination 
protocol address in the ARP header is set to a known IP address. 

 RARP is the reverse of ARP, where we want to know the IP address corre-
sponding to the Ethernet address. In this case, a destination hardware address in 
the ARP header is set to a known hardware address. The RARP server replies the 
query. The RARP may be generated by a host to know its own IP address and is 
mostly used by network booting clients. Note that the RARP server should be 
within the same subnet as the requesting host because the RARP request is a 
broadcast that doesn ’ t go over the router. 

 The packet format for ARP and RARP is shown in Fig.  2.39 . 

   hardware   type .     This is a 16 - bit fi eld that indicates the link layer identity for 
which ARP/RARP is generated. For Ethernet, this fi eld is set to 1. For 
RARP, this fi eld is set to 0x8035.  

   protocol   type .     This is a 16 - bit value that is the identity for the network layer 
protocol that is associated with the hardware address. For IP, this value is 
0x0800.  

   hardware   addr   len .     This is an 8 - bit fi eld containing the length of the hardware 
address. For Ethernet, the hardware address length is 6 bytes.  

   proto   addr   len .     This is an 8 - bit fi eld that contains the length of the protocol 
address associated with the hardware. In the case of Ipv4, this value is 4 
bytes.  

    Figure 2.39.     ARP header format.  
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   operation   code .     This is a 16 - bit value that indicates the operation to be per-
formed on the ARP packet. Since the same packet format is used for request 
and replies, this fi eld identifi es whether this is an ARP request or reply. For 
an ARP request and replies the values are 1 and 2, respectively. For an RARP 
request and replies the values are 3 and 4, respectively.  

   sender   hardware   addr .     This is the hardware address of the originator of the 
request/response. This will be 6 bytes long in the case of the Ethernet.  

   sender   protocol   addr .     This is the address of the protocol address of the sender. 
This will be 4 bytes long in the case of Ipv4.  

   destination   hardware   addr .     This is the hardware address of the destination host. 
This will be 6 bytes long in the case of the Ethernet. Thus will be set to the 
hardware address of the host for which IP is not known in the case of RARP. 
This fi eld is fi lled by the replier of the ARP request.  

   destination   protocol   addr .     This is the protocol address associated with the des-
tination hardware address. In the case of ARP, this fi eld is set to the protocol 
address (IPv4 address) for which the hardware address is not known. This 
fi eld is fi lled by the replier of the RARP request.      

 Fig.  2.40  shows a snoop output of ARP request. The destination address in the 
Ethernet header is set to all  f ’ s.  The Ethernet type in the Ethernet header is set to 
0x806, which is ARP. The ARP header HARDWARE type is set to 1, which is 
Ethernet. The protocol for which ARP is generated is set to 0x0800 for IP. The hard-
ware address length is 6 bytes (Ethernet address), and protocol address length is set 
to 4 bytes (IP address). Opcode is 1, which is an ARP request. The last four lines are 
the hardware address and the IP address of the sender; the target hardware address 
is null because this needs to be found out for target protocol address 192.168.1.8.    

    Figure 2.40.     Snoop output for ARP request.  



  2.18   SUMMARY 

 TCP is a connection - oriented stream protocol. It makes sure that every byte sent is 
received at the other end by means of an ACKing mechanism. 

 TCP implements Nagle ’ s algorithm for small packets. 
 A delayed acknowledgment scheme reduces load on the network by piggyback-

ing data along with the ACK segment. 
 The TCP sliding window protocol is implemented for bulk data transfer. It takes 

an advertised window and a congestion window in consideration for rate of data 
transmission at any point in time. 

 TCP extensions like SACK, timestamp, mss, and window scaling provide 
enhanced performance as well as reliability. 

 TCP congestion control algorithms use two TCP state variables to control the 
rate of data transmission: send congestion window ( cwnd ) and slow - start threshold 
( ssthresh ). 

 The IP is a stateless protocol that carries most of the internet traffi c. 
 An IP datagram is routed through the internet by hopping one router at a 

time. 
 Every router maintains a routing table that keeps all the information about the 

next route for a given destination. 
 The  netstat  command is used to display a kernel routing table. 
  traceroute  is a powerful utility to trace the route that a packet is taking to reach 

a destination. 
 The internet uses ICMP messages to report errors. 
 ARP/RARP are protocols designed to resolve a hardware address from a pro-

tocol address and vice versa.    
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 KERNEL IMPLEMENTATION OF SOCKETS     

     Linux supports different communication protocols that fi t into the OSI model. The 
BSD socket is an interface to different protocol families. The BSD - compatible 
sockets have a uniform socket interface between the user process and the network 
protocol stacks in the kernel. The BSD socket is a framework to the different fami-
lies of socket that Linux supports. The BSD socket concept is very similar to the 
VFS (virtual fi le system) layer, which is just a framework that provides a common 
interface to various different fi le systems/pipe/devices/sockets to the user without 
user knowing how things are organized inside the kernel. This way different proto-
col families are supported by Linux, and their services are accessable to the user 
using a common socket interface. For example, the protocol modules are grouped 
into protocol families such as PF_INET, PF_IPX, PF_PACKET and socket types 
such as SOCK_STREAM or SOCK_DGRAM, as shown in Fig.  3.1 .   

 There are some standards laid out by the BSD socket framework which need 
to be followed by each protocol family. These standards are nothing but a set of 
functions such as create, bind, listen, accept, connect, read, write, ioctl, setsockopts, 
getsockopts, and so on, and are data - structure - specifi c to the protocol family/type. 
Each protocol family and their types need to register with the kernel BSD socket 
framework to provide its service to the user. 

 The  socket()  systemcall is the common interface to the BSD socket. User appli-
cation lets the BSD socket framework know which protocol family/type/protocol it 
is interested in by way of passing arguments to the  socket()  systemcall. These param-
eters will be used by the BSD socket layer to set up the appropriate protocol stack, 
which suits user requirement, inside the kernel without the user knowing how it is 
happening. In this chapter we get to know about the BSD socket interface, the VFS 
layer, and how sockets of different protocol families are plugged into the BSD 
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socket within the kernel. The discussion will be based mainly on PF_INET (specifi c 
to ipv4) protocol family sockets here. Various important functions and data struc-
tures related to the PF_INET protocol family are explained.  

  3.1   SOCKET LAYER 

 The BSD socket is associated with sock structure, which contains fi elds specifi c to 
the protocol family and type. Fields in the sock data structure point to protocol -

    Figure 3.1.     Socket architecture.  
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 family - specifi c data. These are a protocol - specifi c set of functions (struct inet_
protosw contains the set of functions), control fl ags, and pointers to data containing 
protocol - specifi c information. There are some standard interfaces provided to the 
user to set up the protocol stack and initialize the connection for the client/server. 

 The  socket()  systemcall just identifi es the set of functions for each protocol 
family and type and accordingly initializes the socket and sock data structures. 
There are set of functions that need to be called to set up the complete stack for 
the given protocol family and initialize the connection. These functions are  bind(), 
listen(), accept(), connect() , and so on. These functions are very specifi c to the pro-
tocol family and type. These functions are registered at system initialization time 
using sock_register() function.  

  3.2    VFS  AND SOCKET 

 Let ’ s examine the kernel data structures and functions related to the socket layer. 
 sys_socket()  is the function called in the kernel when user application makes a call 
to  socket()  systemcall. The arguments to the  socket()  systemcall (to  sys_socket() ) is 
protocol, family, and type. These arguments passed to  socket()  systemcall is used 
by the socket framework to decide the protocol stack to setup.  sys_socket()  does 
nothing more than calling  sock_create()  to initialize the socket and sock structure 
for the protocol family and links the socket with the VFS by calling 
 sock_map_fd() . 

 For association of VFS and socket, refer to Fig.  3.2 . Each process has a fi le table 
that can be accessed from an  fd  fi eld of object  fi les_struct. fd  is a double pointer of 
type  fi le . Each open fi le for the process has an associated  fi le  object linked with fi le 
descriptor.  fi le  objects are indexed into a fi le table with an associated fi le descriptor. 

    Figure 3.2.     Socket accessed through process fi le table.  
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The  fi les  fi eld of  task_struct  objects for the process is a pointer to an object of type 
 fi les_struct . The  f_dentry  fi eld of  fi le  object is a pointer to a  dentry  object. The  d_
inode  fi eld of  dentry  object is a pointer to an inode object associated with the fi le. 
An  inode  object is a common for any fi le type. A socket is also considered as a 
special kind of fi le that is identifi ed by an  i_sock  fi eld of  inode  object.  u  is union for 
all types of fi le supported by VFS subsystem. A  socket  object can be accessed from 
a  socket_i  fi eld of union  u .   

 From here our job is very easy because socket -  and protocol - specifi c informa-
tion is available once we have access to a  socket  object. A socket has a pointer to 
a sock object that has a pointer to a protocol - specifi c set of operations pointed to 
by a  prot  fi eld. 

  sock_create()  fi nds the  create()  function specifi c to the protocol family and calls 
it to initialize the sock structure associated with the BSD socket.  net_families[]  is 
the array of type struct  net_proto_family  that is indexed by a protocol family. This 
structure contains two main fi elds:

  int     family   
  int    ( *  create )( struct socket  * sock, int protocol )  

 The  ‘ family ’  fi eld contains the protocol family, and the  ‘ create ’  fi eld is a function 
pointer that points to the socket create function specifi c to the protocol.  net_fami-
lies[]  contains  net_proto_family  data for the registered protocol family. The  sock_
register()  function gets the registration of  net_proto_family  done for the protocol 
family as shown in cs  3.1 . For the INET family, the  inet_family_ops  is registered.   

 From now onward, everything will be very much specifi c to the protocol family. 
So, I ’ ll take the  PF_INET  socket type to explain the socket layer everywhere until 
it is mentioned. Thus,  sock_create()  fi nds the entry of the  PF_INET  protocol family 

    cs 3.1.      sock_register() .  



in  net_families[] . If  net_families[family]  is not NULL, call the  ‘ create ’  function 
specifi c to this protocol family  net_families[family] → create (sock, protocol). We 
need to allocate a new socket structure and set its  ‘  sock → type  ’  fi eld to the protocol 
family type  ‘ type ’  passed as an argument to the  socket()  systemcall. For PF_INET 
protocol family, the  ‘ create ’  function pointer is pointing to  inet_create() . This func-
tion initializes the sock structure, which keeps information very specifi c to the IP 
protocol.  

  3.3   PROTOCOL SOCKET REGISTRATION 

 We fi rst need to fi nd out the element in list head array  inetsw[SOCK_MAX]  con-
taining entry for  sock → type  (initialized in  sys_socket() ).  inetsw  is the array initial-
ized at the time of system initialization and is indexed by socket type. 
 inet_register_protosw()  is the function called to register inet sockets. There is a static 
array of type  inet_protosw  (Fig.  3.3 )  inetsw_array[]  which contains information 
about all the inet socket types as shown in Fig.  3.5 . The  Inetsw[]  array is populated 
at the system initialization time reading information for inet sockets from  inetsw_
array[]  (see cs  3.2 ). So, fi nally all the inet socket types that are registered with the 
system have their entries in  inetsw[] , which can be done by calling  inet_register_
protosw()  (see cs  3.3 ). The following code samples in cs  3.2  and cs  3.3  show the 
registration of sockets.   

    (Here we check if we want to register the already registered socket type. In the case where 
a socket is already registered, we can ’ t override the entry if the socket is marked as per-
manent answer → fl ags is set to INET_PROTOSW_PERMANENT. In the case where 
this fl ag is not set, we can have multiple entries for the same socket type and only the 
one which is at the beginning of the list will be considered for this socket type, which 

    Figure 3.3.      struct inet_protosw .  
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    cs 3.2.      inet_init() .  

    cs 3.3.      inet_register_protosw() .  



means that the overriding entry will be in effect until this entry is removed so that the 
original behavior of the socket comes into effect.)    

 One thing worth noting here is that so far there is only one protocol per socket 
type at the system initialization time. Since all the entries in  inetsw_array[]  have a 
fl ag set to  INET_PROTOSW_PERMANENT , we cannot override the behavior of 
any of the inet sockets in the current implementation. 

 We have seen how the  inet_protosw  structure for each socket type is registered 
with the system and they can be accessed while opening a socket by the socket layer. 
Let ’ s see how the sock structure is initialized using the information in the  inetsw[]  
array element for this socket type and how sock is linked to socket structure.  

  3.4     struct inet _ protosw     

   list :     This is a pointer to the next node in the list.  
   type :     This is the socket type and is a key to search entry for a given socket and 

type in  inetsw[]  array.  
   protocol :     This is again a key to fi nd an entry for the socket type in the  inetsw[]  

array. This is an L4 protocol number (L4 → Transport layer protocol).  
   prot :     This is a pointer to struct proto. This structure contains a set of functions 

that are very specifi c to the IP protocol (like TCP/UDP). These functions 
are  close(), connect(), accept(), bind(), setsockopts(), getsockopts(), recvmsg(), 
sendmsg() , and so on. For example, tcp_prot corresponds to  SOCK_STREAM  
and  udp_prot  corresponds to  SOCK_DGRAM . This way we are interfacing 
an IP protocol block with the socket layer with the help of struct proto, which 
will be discussed later.  

   ops :     This is a pointer to the structure of type  ‘  proto_ops  ’ . This structure con-
tains a set of functions very specifi c to a protocol family. This structure con-
tains a similar set of functions as  ‘  struct proto  ’  but it operates at the socket 
level. For example,  inet_stream_ops  corresponds to  SOCK_STREAM  and 
 inet_dgram_ops  corresponds to  SOCK_DGRAM . The sequence goes like 
this: Once any socket - related systemcall is made, fi rst it has to make a cor-
responding function call from a  ‘  proto_ops  ’  structure, and the then corre-
sponding IP - protocol - specifi c function is called from a  ‘  proto  ’  structure.     

  3.5   SOCKET ORGANIZATION IN THE KERNEL 

 As shown in Fig  3.4 . when user application makes a systemcall on socket, kernel 
fi rst invokes a corresponding function from socket - layer - specifi c operations for the 
protocol family from  sock → ops , and subsequently it calls a corresponding function 
from IP - protocol - specifi c operations from  sk → prot . There may always not be one -
 to - one correspondence for each systemcall between  sock → ops  and  sk → prot . For 
example, there is no corresponding  tcp_listen()/tcp_bind()  when there is  inet_listen()/
inet_bind() . This is because bind and listen is managed by a BSD socket layer and 
is not very specifi c to the IP protocol layer. The  inet_protosw  structures initialized 
for different socket TYPE for  PF_INET  family are shown in Fig.  3.5 .   
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    Figure 3.4.     Accessing a protocol - specifi c socket through a BSD socket.  

 At this point in time, we are in  inet_create() , where we are able to fi nd out the 
appropriate entry for protocol type in the inetsw[] array. The structure  inet_protosw  
contains all the information for a specifi c IP protocol. For ease of further socket 
operations, we won ’ t always refer to the  net_protosw  entry in inetsw; instead we 
store all this information in the sock and socket structure for the current socket. 
Now we go about initializing the sock structure fi elds for this IP protocol under 
consideration.  

  3.6   SOCKET 

 We will be discussing the fi elds of the socket structure every now and then. So, they 
are brought together here, as shown in Fig.  3.6 . 

   state :     This fl ied describes the connection status of the socket.      

  There are fi ve states for the BSD socket :

   SS_FREE     (sock is not yet allocated)  
   SS_UNCONNECTED     (sock is allocated but is not yet connected)  
   SS_CONNECTING     (sock is in the process of connecting)  
   SS_CONNECTED     (already connected to sock)  
   SS_DISCONNECTING     (in the process of disconnecting)  



    Figure 3.5.     Inet protocol family base.  

   fl ags :     These fl ags refl ect the resource status for a given socket and is associated 
with the receive and send buffer (space availability).    

  These fl ags are : 

   SOCK _ ASYNC _ NOSPACE .     This is the set when there is no space available to 
write data on the socket because the send buffer is full. This is also used with 
asynchronous operations.  

   SOCK _ ASYNC _ WAITDATA .     This is set when the recv buffer is full for a 
given socket and there is no space to accommodate anymore data in the 
receive queue. This is used with asynchronous operations.  
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   SOCK _ NOSPACE .     This fl ag is set when there is no space available to write 
data over the socket synchronously; sendbuf is full here.  

   ops :     This is the pointer to the proto_ops structure containing the set of func-
tions specifi c to protocol family as explained earlier.  

   inode :     This is the pointer to the inode associated with this socket. Hook to 
VFS.  

   fasync _ list :     This is the pointer to  ‘ struct fasync_struct, ’  which is a list of all those 
async threads waiting for resources to be available on the socket. Basically, 
threads wait for send and recv buffers to make space available for the new 
data.  

   fi le :     This is the back pointer to the fi le structure associated with the socket. 
Figure  3.2  explains the link between socket and VFS.  

   sk :     This is a pointer to the sock struct associated with the BSD socket very 
specifi c to the IP protocol. We will be discussing the sock structure very 
shortly.  

   wait :     This is the pointer to the wait  ‘ Q ’  for any asynchronous threads waiting 
for some event on the socket.  

   type :     This is the number that is associated with the IP protocol. This was 
explained earlier.     

  3.7     inet _ create   (see cs  3.4 ) 

 Initialize the BSD socket state to indicate that it is still unconnected ( sock → state   =  
 SS_UNCONNECTED ). BSD socket (on Linux represented by struct socket, 
Fig.  3.6 ) maintains its own state which corresponds to the actual state of the con-
nection and will be discussed later.   

    Figure 3.6.     struct socket, representing the BSD socket on Linux.  



    cs 3.4.      inet_create() .  
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  3.7.1   Sock 

 Memory for  ‘ sk ’  (sock structure) is allocated initially and then the fi elds are initial-
ized. We discuss some of the main fi elds of sock structure which are initialized here 
and will carry the discussion of sock structure further. 

   ops :     The fi eld of socket structure  ‘ sock ’  is initialized to  ‘ ops ’  fi eld of  ‘ answer ’ . 
As discussed earlier, this contains a set of functions that are specifi c to the 
 PF_INET  protocol family.  

   prot :     The fi eld of sock structure  ‘ sk ’  is initialized to IP - protocol - specifi c opera-
tions from answer → prot as discussed earlier.  

   reuse :     This fi eld is initialized to 1, in the case where the fl ag fi eld of  inet_protosw  
for this IP protocol is set to  INET_PROTOSW_REUSE . This fi eld indicates 
whether the local port associated with the socket can be shared in certain 
conditions. These conditions are mentioned in  include/net/tcp.h fi le .  

   num :     If  sock → type  is set to  SOCK_RAW , we initialize num fi eld to protocol 
number (which is nothing but the protocol fi eld in  inet_protosw ; in the case 
of  SOCK_RAW , this is set to  IPPROTO_IP ).  

   destruct :     This fi eld contains the pointer to the function  inet_sock_destruct() , 
which is called for cleanup operations on the socket when it is destroyed.  

   family :     This is the protocol family associated with the socket. For the inet 
family, it is initialized to  PF_INET .  

   protocol :     This is the IP protocol number associated with the socket. This is 
passed as an argument to the  inet_create() . The fi eld also corresponds to the 
protocol fi eld of the  inet_protosw  structure for this IP protocol type.  

   backlog _ recv :     This fi eld is initialized to the  ‘  backlog_recv  ’  function from the 
 ‘  prot  ’  fi eld of this sock structure initialized earlier, depending on the IP pro-
tocol type. At this point in time, it looks like this function processes the 
backlog list of the socket; let ’ s see later.  

   sport :     Source port for this socket. This fi le is initialized to  ‘ num ’  in the case 
where  ‘ num ’  is already initialized (only in case or raw sockets). Finally it is 
linked to the protocol hash chain  sk → prot → hash() .  

   protinfo :     This is a fi eld that contains information specifi c to the protocol. Some 
of these fi elds are initialized here, which will be discussed later.    

 Discuss the other fi elds in the sock structure. Also discuss  sock_init_data()  and 
 sk → prot → init() , though not in detail. 

  sock_init_data()  initializes the rest of the fi elds of sock structure associated with 
the IP protocol. We will get to know the signifi cance of these fi elds shortly. 

 Let ’ s see what fi elds  sock_init_data()  initializes. 
 Initialize the queues for sock structure:  receive_queue, write_queue , and  error_

queue . These are queue heads of type sk_buff_head (Fig.  3.7 ), called  skb_queue_
head_init() . This function will initialize prev  &  next fi eld to point to queue head, 
initialize qlen to 0, and initialize the spinlock for the queue. 

   prev   &   next :     These fi elds point to the previous and next elements of the queue 
(of type  sk_buff ).  

   qlen :     This fi eld indicates the number of elements in the queue.  



   lock :     This is a spinlock lock to protect the members of  sk_buff_head . We need 
to hold the lock before inserting/deleting the node from the queue and 
updating the  ‘ qlen ’  fi eld.      

 Now let ’ s look at what receive_queue, write_queue, and error_quque point 
to. 

   receive _ queue :     This fi eld points to the queue of incoming packets (received 
packets sk_buff).  

   write _ queue :     This fi eld points to the queue of the outgoing packets (packets to 
be sent out).  

   error _ queue :     This fi eld is rarely used to point to the queue of defective 
packets.    

 Call  init_timer()  to initialize  ‘  timer  ’  fi eld (of type  timer_list ) of  sock  structure. 
This fi eld points to  timer_list , which contains a list of timers to be fi red at different 
times specifi c to this socket. 

   allocation :     This fi eld contains the policy using which memory for  sk_buff  for 
this socket needs to be allocated. For this case, this fi eld is initialized to 
 GFP_KERNEL .  

   rcvbuf :     This fi elds contains the number indicating a maximum limit for the 
receive buffer at any point in time. This is initialized to  sysctl_rmem_default  
and can be changed using  setsockopts() . This value is checked whenever we 
are want to allocate memory for an incoming packet. If the limit has been 
reached, a new buffer is not allocated until the receive_queue is consumed. 
This restricts the socket from consuming the entire system memory when the 
packets are fl ooding in for a given socket.  

   sndbuf :     Same as  recvbuf , but it is used to limit the send buffer size. The value 
is initialized to  sysctl_wmem_default , which can be changed using 
 setsockopts() .  

   state :     This is the state of the socket for a protocol — in this case the socket state 
for the TCP connection. This is initialized to  TCP_CLOSE  since there is no 
connection on this socket at this point in time. The rest of the states for TCP 
socket are shown in Fig.  3.8 .      

    Figure 3.7.      sk_buff list head .  
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 These states of TCP socket defi ne the stages in which the current TCP connec-
tion is involved. Some of the states are clients and the others are servers. It will be 
discussed later when we explain the connection initiation and closure. 

   sock :     This fi eld points to the socket stucture for this sock structure.    

 If there is a BSD socket associated with this sock structure, we also initialize 
the following fi elds: 

   type :     This is same as the type of fi eld for the BSD socket structure initialized 
earlier (IP protocol type).  

   sleep :     This is the same as the wait queue fi eld ( sock → wait ) of the BSD socket 
structure for this sock.  

   sk :     This is a pointer to the sock structure for the BSD socket structure corre-
sponding to this sock, which is just initialized in  inet_create() .  

   dst _ lock :     This is the lock to protect the destination cache ( sk → dst_cache of type 
dst_entry ) for this socket. It is initialized here.  

   callback _ lock :     This is the lock to protect (socket, sleep, dfead fi eld of sock 
structure, and sk fi eld of the associated BSD socket structure). It is initialized 
here. Basically, these fi elds are used to attach/detach an IP protocol socket 
with the process context. So, using the lock we can synchronize the attach-
ment/detachment of the IP protocol socket with the process (socket struc-
ture). If the socket structure is delinked with the sock structure and vice 
versa, the process context is lost for further protocol communicationn from 
and to the process but the IP protocol is still alive.  

   state _ change :     This is a callback function which is initialised to  sock_def_wakeup . 
This function is called whenever some event occurs on the IP protocol socket 
which changes the state of the socket.  

    Figure 3.8.     TCP state.  



   data _ ready :     This is a callback function called whenever data are available on 
the socket. This function wakes up all the processes waiting for the data on 
sockets wait  ‘ Q ’   sk → sleep   &  also sends appropriate signals to the processes 
waiting on the async list of the parent BSD socket ( sk → sock → fasync_list ).  

   write _ space :     This is the callback function called when somehow write space is 
available on the socket, which means that space is available on the write  ‘ Q ’ . 
This function pointer is initialized to  sock_def_write_space . This callback 
function should wake up all the processes waiting on the socket ’ s wait  ‘ Q ’  
for the space to be available on the send  ‘ Q ’  and also sends appropriate 
signals to the processes waiting on the async list of the parent BSD socket 
( sk → sock → fasync_list ).  

   error _ report :     This is a function pointer to the callback function that is called 
whenever some error is reported on the socket to report the socket state to 
all the processes waiting on sockets wait  ‘ Q ’  (sleep) and sends appropriate 
signal to all the processes in the parent socket ’ s  ‘ fasync_list ’  list. This is 
initialized to the  sock_def_error_report .  

   destruct :     This is a function pointer to the callback function whenever socket is 
being destroyed. This is initialized to sock_def_destruct. Finally, this can 
point to a protocol - specifi c destruct function ( inet_sock_destruct()  in case 
 PF_INET  protocol family).  

   peercred :     This structure is used to identify the ownership of the socket. This 
fi eld is mainly used in the case of UNIX domain sockets. In general the fi elds 
of peercred structure are initialized to 0, 1, and  – 1; but in the case of UNIX 
domain sockets, the fi elds of peercred structure are initialized to  current →
 pid, current → euid , and  current → egid .  

   rcvlowat :     This fi eld is just an indication that the receive buffer has reached the 
low water mark. This helps in making decisions when to process the receive 
queue and stuff. The rest will be explained later.  

   rcvtimeo :     This fi eld keeps the value of the maximum timeout for any blocking 
event on the IP protocol socket. It may be a timeout value when we are 
blocked to receiving TCP data or when we are blocked to accept TCP con-
nections. Initialized to  MAX_SCHEDULE_TIMEOUT .  

   sndtimeo :     The same as rcvtimeo, but in the opposite direction. It may be a 
timeout value when we are blocked to send TCP data (waiting for memory 
to be available for sending data when send  ‘ Q ’  is full and there is no memory 
available to accommodate more send data) or when we are blocked to make 
TCP connections (client is waiting for acknowledgment of connect request). 
Initialized to  MAX_SCHEDULE_TIMEOUT .    

 The rest of the fi elds of the sock structure are initialized at later - stage connec-
tion setup steps. We will discuss them as they come. 

 Finally,  sk → prot → init  is called to initialize some more fi elds of sock structure 
and also protocol - specifi c fi elds. In the case of TCP, this is  tcp_v4_init_sock() . We 
will discuss this function in detail here; the sock structure contains transport - 
protocol - specifi c information in the fi eld  tp_pinfo  (Fig.  3.9 ).   

 Get an IP - protocol - specifi c information fi eld from a sock structure (in case of 
 PF_INET, SOCK_STREAMS , it will be  sk → tp_pinfo.af_tcp ). We initialize some of 
the fi elds of  tcp_opt  structure for this socket. Initialize  ‘  out_of_order_queue  ’  ( tp →
 out_of_order ) member for the  tcp_opt . This is the queue of  sk_buff  containing out -
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 of - segment data for the tcp connection. Initialize tcp timers for the socket, call 
 tcp_init_xmit_timers() . Let ’ s see what it does. There are a minimum of three events 
associated with any TCP connection for which a timer needs to be fi red: 

   •      Retransmit event.  
   •      Delayed acknowledgment (in case we are waiting for any data to be sent to 

the other end). This timer will be fi red at a specifi ed time after a packet is 
received from the other end.  

   •      Keep event alive. (This timer is fi red if the KEEPALIVE option is set for the 
socket. This end of the connection will keep on sending probe packets to the 
other end when the connection is idle for some time. The timer that does the 
probe is fi red.)   

    tp → retransmit_timer.function  is initialized to  tcp_write_timer() .  
   tp → delack_timer.function  is initialized to  tcp_delack_timer() .  
   tp → timer.function  is initialized to  tcp_keepalive_timer() .    

 The data fi eld for all the timers ( struct timer_list ) is initialized to a pointer to 
sock for this socket. 

   tp → pending and tp → ack.pending  are initialized to 0.  
   tp → pending  indiates that one of the timers is pending.  
   tp → ack.pending  fi eld indicates the state of  ACK  packet. There are three states 

for the  ACK  packet:  
   TCP_ACK_SCHED    =   ack is scheduled.  
   TCP_ACK_TIMER    =   timeout for delayed ack timer is scheduled.  
   TCP_ACK_PUSHED    =   ack is forced in emergency case.    

 Call  tcp_prequeue_init()  to initialize fi elds of the ucopy member of the  tcp_opt 
structure . (Discussed in Chapter 8) 

    Figure 3.9.     Union for transport layer specifi cs.  



 Initialize retransmit timeout ( tp → rto ) for the TCP socket to 
 TCP_TIMEOUT_INIT . 

 Initialize fi elds related to (mean deviation) rtt measurement in  tcp_opt  
structure ( tp → mdev ) to  TCP_TIMEOUT_INIT . 

 Initialize fi elds of  tcp_opt  structure related to congestion control and slow start 
algorithms. Some of these fi elds are: 

   tp → snd_cwnd    =   2 (sending congestion window size)  
   tp → snd_ssthresh    =   0x7fffffff (slow start threshold; this should be half of conges-

tion window size but not less than two segments )  
   tp → snd_cwnd_clamp    =   ~0 (upper limit for congestion window, tp →

 snd_cwnd)  
   tp → mss_cache    =   536 (cached effective maximum segment size for he 

connection).  
   tp → reordering   =   sysctl_tcp_reordering  (3). This fi eld is used in detecting false 

retransmits. This value indicates maximum number of duplicate  ‘ ACKS ’  
received before fast retransmit can start.  

   sk → state  is set to  TCP_CLOSE  as there is still no connection open for this 
socket.  

   sk → write_space  is set to  tcp_write_space() . This is a callback function used by 
TCP to wake up the processes waiting for write space to be available on the 
send queue, when  ‘ ACKS ’  are received and they can free the  sk_buffs  on 
the send queue.  

   sk → use_write_queue . This fi eld indicates that someone needs to write to the 
queue. More will be explained later.  

   tp → af_specifi c  is initialized to  ipv4_specifi c  containing set of functions specifi c 
to TCP. Will discuss more about it later.  

   sk → sndbuf  is initialized to  sysctl_tcp_wmem[1]  (16K). This is the maximum 
memory that can be allocated for the send buffer at any point of time, and 
this value can be changed by  setsockopts() .  

   sk → rcvbuf  is initialized to  sysctl_tcp_rmem[1]  (87,380 bytes). This is the 
maximum memory that can be allocated for the receive buffer at any point 
of time, and this value can be changed by  setsockopts() .    

 tcp_sockets_allocated increment this global variable by 1. This variable 
keeps the count of the number of sockets open in the system at any point in 
time. 

  End of   tcp_v4_init_sock()  .  
  End of   inet_create()      

 Until now, we have seen that various fi elds of structures socket, sock, and tcp_
opt are initialized in  inet_create() . We have an IP - protocol - specifi c set of operation 
set for the PF_INET socket and have also initialized some of the protocol - specifi c 
fi elds in sock structure and tcp_opt structure. We will now see the steps involved 
at the server and client end to set up a TCP connection. Thereafter, we move to a 
discussion on  bind(), listen() , and  accept()  systemcalls on the server side and 
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 connect()  on the client side. For PF_INET sockets, this will be  inet_bind(), inet_
listen(), inet_accept() , and  inet_connect()  functions inside the kernel.   

  3.8   FLOW DIAGRAM FOR SOCKET CALL 

 Figure  3.10  shows fl ow of control for socket implementation in the kernel. We have 
shown major routines called by sys - socket().    

  3.9   SUMMARY 

 There are two levels of socket abstraction. At the top is the BSD socket layer 
defi ned as  struct socket  and then protocol - specifi c socket defi ned as  struct sock . 

   sock_register()  is an interface to register BSD sockets for different net families. 
For INET family,  inet_family_ops  of type  net_proto_family  is registered.  

   net_families  is a global array to indexed on net family number. Net family 
sockets are registered with this table.  

    Figure 3.10.     Flow for socket system call.  



   inet_register_protosw()  is an interface to register protocols supported by the 
INET family. These protocols are TCP, UDP, and RAW.  

   inetsw_array  is a global table that registers the INET family protocols, object 
of type  inet_protosw .  

   inet_stream_ops  is set of operations for INET stream BSD socket, and  tcp_prot  
is a protocol - specifi c set of operations TCP socket.    

 Init routine for inet family type registered using  sock_register()  initialises BSD 
socket and also protocol specifi c socket when application makes  socket()  call. We 
pass to  socket() , protocol family as well as protocol type e.g., to create TCP socket 
net family is PF_INET and type is SOCK_STREAM. 

 A socket is accessed by application using descriptors the same way that fi les are 
accessed.  Socket()  call creates a socket and links it with VFS. The inode for the 
socket has a socket object embedded in it, and the socket object also has a back-
pointer to the inode it belongs to. An entry is created in a processes fi le table for 
the socket ’ s inode.    
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 KERNEL IMPLEMENTATION OF 
 TCP  CONNECTION SETUP     

     TCP connection involves a client and server side setup for the two ends to commu-
nicate. In Chapter  2  we have seen how we make two ends communicate over TCP 
using a client – server model. So, just to recapitulate, the client has to make two sys-
temcalls,  socket()  and  connect() , to connect to the server. The server has to make 
arrangements to create a listening socket so that the client can generate request to 
connect to this socket. To make such an arrangement, the server has to make four 
systemcalls:  socket() ,  bind() ,  listen() , and  accept() . We also saw the signifi cance of 
each systemcall. From an application point of view, it is all very simple but in this 
chapter we will see what these systemcalls do inside the kernel. In this chapter, we 
will study the implementation of each systemcall in the kernel. This covers the major 
data structures associated with the TCP connection in the Linux kernel. 

 In Chapter  3 , we saw what happens when we make a socket systemcall. We 
pass  protocol family  and  type  to  socket() , and this does all the initial setup that 
involves initializing BSD and protocol socket operations. This involves initializing 
 socket  and  sock  structures. Now we need to do the rest of the work on the socket, 
which is already initialized by a call to  socket()  for client and server in different 
ways. 

 In this chapter we will study the details of the kernel data structures associated 
with TCP connection setup on both client and server side. The chapter covers the 
details of port allocation by the server when we call  bind() . This also details how 
the confl icts are resolved when the server generates a request for specifi c port allo-
cation. We will study the SYN queue design where the open connection request for 
the listening socket fi rst sits until the connection is completely established (three -
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 way handshake is over). We will also see how the open connection request is moved 
from the SYN queue to the accept queue when the TCP connection is established. 
Finally, we will see how the established connections are taken off the accept queue 
by making  accept()  call. Similarly, we will see how the client generates a connection 
request to the server (sends SYN segment to the listening server). In this chapter 
we will not cover the IP and link layer details (which will be discussed in later 
chapters) but will surely cover everything that is associated with the client – server 
connection setup in the kernel.  

  4.1   CONNECTION SETUP 

 Before two ends start communicating using TCP/IP protocol stack, each end needs 
to do some initial setup which requires the following: 

   •      Asking the kernel to allocate some resources to setup this connection.  
   •      Informing the kernel regarding existence of this connection.    

 Until now we have been discussing some initial setup inside the kernel to initialize 
BSD socket  &  IP - protocol - specifi c data structures. This initial setup is done when 
user application invokes socket() systemcall. This is the very fi rst step involved to 
setup socket connection on both the server and client side. As discussed before, 
socket() systemcall requires arguments that are used to identify the protocol family 
and IP protocol type so that kernel can initialize a set of operations and data struc-
tures corresponding to the protocol. Finally, the kernel returns a fi le descriptor 
associated with the socket to the user application. This fi le descriptor is used further 
to identify this BSD socket by the kernel when application sends further requests 
to the kernel to do some more initialization for the connection. The initial setup 
done inside the kernel (linking of various kernel and socket data structures) after 
issuing socket() systemcall from the user application is shown in Chapter  3 . All the 
TCP client and server discussions make use of  ‘ C ’  programs and are defi ned in 
Chapter  2 , unless specifi ed. 

  4.1.1   Server Side Setup 

 Server application has to seek a series of kernel services to let the kernel apprise 
the existence of the socket. This is done with the help of invoking systemcalls from 
the application in the same sequence (see Fig.  4.1 ): 

   •      Socket  
   •      Bind  
   •      Listen  
   •      Accept      

 We have already seen how the socket() systemcall acts inside the kernel to initialize 
socket and sock data structures and a socket/protocol - specifi c set of operations 
based on the protocol - family - type argument passed to the systemcall. After this 
systemcall returns to the application, only socket - specifi c data structures are initial-
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    Figure 4.1.     Sequence of systemcalls to be issued by server application.  

ized. The server needs to do something more than this because it has not yet regis-
tered its identity with the system. 

 A server application is recognized on the system based on the port number 
(sometimes IP address also) associated with the server. So the server application 
by some means needs to request the kernel that it needs to associate itself with 
specifi c port (IP address in some cases). Application does this by invoking  bind()  
systemcall. After  bind()  returns to the application, we are still not ready as a server. 
We have just gotten ourselves registered with the kernel but can ’ t serve any client 
request. At this point in time, we need to do some basic confi guration for the socket, 
which means that we need to tell the kernel how many connection requests a kernel 
should keep in the backlog queue for this socket if the server is not able to handle 
that many requests at any given point in time. This is done by invoking  listen()  sys-
temcall. After  listen()  returns to the server application, we are still not ready to 
serve any client request because the server application still needs to request the 
kernel that now kernel should start accepting the client request. For this server 
invokes  accept()  systemcall. By doing this, kernel initializes some socket -  and 
protocol - specifi c data structures and actually registers the services of the application 
with the system.  accept()  systemcall blocks forever until it gets a request for a new 
connection from the client. Once the connection request is received,  accept()  sys-
temcall returns with a new fi le descriptor associated with the new connection. The 
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server uses the fi le descriptor returned by  accept()  systemcall to communicate 
with the client. We will now see what the kernel does when we invoke these 
systemcalls.  

  4.1.2   Server Side Operations 

 Figure  4.1  shows the sequence of systemcalls to implement TCP server program. If 
also provides short description on functionality provided by each systemcall.   

  4.2   BIND 

 As discussed before,  socket()  systemcall only creates space for the socket in the 
kernel. This socket still has no identity and is capable of nothing at this point in 
time.  bind()  systemcall creates an identity for the socket and is the next step 
to create the server application. Each open socket needs to be identifi ed uniquely 
in the system. For that we have concept of socket address.  Bind()  takes this 
socket address as one of its argument and kernel associates this address with the 
socket.  ‘ C ’  structure that represents this socket address is  ‘ struct sockaddr ’  (see Fig. 
 4.2 ). 

   sa _ family :     This stores the protocol family number associated with the socket 
that we have already discussed earlier.  

   sa _ data []:     This array contains data very specifi c to the protocol. In the case of 
the PF_INET protocol family, this array contains {port number, IP address 
( struct in_addr )}.      

 Since we have been discussing mainly the IP protocol, the  ‘ C ’  structure that repre-
sents the socket address for IP protocol ( PF_INET  family) is  ‘ struct sockaddr_in ’  
(see Fig.  4.3 ). A socket address is defi ned by a combination of three things: 

   sin _ family :     This is an address family ( PF_INET  for IP protocol).  
   sin _ port :     This is a 16 - bit number that is used to distinguish between sockets for 

same protocol family.  
   sin _ addr :     This is a 32 - bit number that represents an IP address. In the case of 

server application, this is generally set to  INADDR_ANY , which means that 
if the server has many interfaces (physical/virtual), it can accept connections 
from any of those. Server applications can restrict connections from any 

    Figure 4.2.      ‘ C ’  structure representing socket address.  



specifi c interface by specifying an IP address corresponding to that interface 
in the  sockaddr_in  structure while binding the socket. This way the kernel 
allows a single port number to be used by different server applications 
accepting connections from mutually exclusive interfaces (having different 
IP addresses).      

  4.2.1   Data Structures Related to Socket  BIND    

   tcp_hashinfo   
   tcp_bind_hashbucket   
   tcp_bind_bucket      

  4.2.2   Hash Buckets for  tcp  Bind 

     •       tcp_ehash = tcp_hashinfo.__tcp_ehash  (Fig.  4.4 )  
   •       tcp_bhash = tcp_hashinfo.__tcp_bhash  (Fig.  4.5 )  
   •       tcp_listening_hash = tcp_hashinfo.__tcp_listening_hash  (Fig.  4.6 )       

  4.2.3     tcp _ ehash   

 Figure  4.4  illustrates snapshot of hash table for sockets in established state. First 
half of the hash table is reserved for established sockets and rest for sockets in 
TIME_WAIT State. This hash table is discussed later in the chapter.  

  4.2.4     tcp _ listening _ hash   

 Figure  4.5  illustrates snapshot of hash table hashing all the sockets in TCP_LISTEN 
STATE in the system. Listen hash table is discussed later in the chapter.  

  4.2.5     tcp _ bhash   

 Figure  4.6  illustrates snapshot of hash table hashing sockets based on the post to 
which they are bound bind hash table is discussed later in the chapter.  

    Figure 4.3.     Socket address for IP.  
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    Figure 4.4.     System - wide hash chain for sockets having states  > = TCP_ESTABLISHED  &  &   <  

TCP_CLOSE.  

  4.2.6     tcp _ hashinfo   

 This structure manages the tcp bind hash bucket. The members of  tcp_hashinfo  are 
as follows: 

   struct   tcp _ ehash _ bucket   * __ tcp _ ehash :     This is a list of all the sockets with com-
plete identity. With a complete identity, it means that the socket state should 
be  

  1.      > =  TCP_ESTABLISHED   
  2.      <   TCP_CLOSE       



 The fi rst half of the table is for sockets not in  TIME_WAIT , and the second 
half is for  TIME_WAIT  sockets only within the socket state boundary mentioned 
above. The collision hash chain is linked by next and pprev fi elds of sock 
structure. 

   struct   tcp _ bind _ hashbucket   * __ tcp _ bhash :     This is the hash bucket that hashes 
entities containing information about all the port numbers that are already 
in use. The elements in the hash table are hashed based on the local port 
number.  

   int  __ tcp _ ehash _ size :     This is the size of the  tcp_ehash  table.  
   int  __ tcp _ bhash _ size :     This is the size of the  tcp_bhash  table.  
   struct   sock   * __ tcp _ listening _ hash [ TCP _ LHTABLE _ SIZE ]:     This is hash table 

containing all the sockets in  TCP_LISTEN  state. Sockets are hashed in the 
table based on local port number. The collision hash chain is linked by next 
and pprev fi elds of sock structure.  

    Figure 4.5.     System - wide hash chain for all listening sockets having states == TCP_LISTEN.  
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    Figure 4.6.     System - wide hash table that links all the sockets which are bound tot one or the 

other port.  

   rwlock _ t  __ tcp _ lhash _ lock :     This lock protects  __tcp_lhash_users  and also the 
 __tcp_ehash  table.  

   atomic _ t  __ tcp _ lhash _ users :     This variable is used to synchronize the readers/
writers of  __tcp_listening_hash . This member is incremented every time the 
process wants to acquire reader/writer lock for the  tcp_listen_hash  list. This 



is decremented when we release the lock; and if the value comes down to 0, 
we wake up all the processes waiting to acquire the lock.  

   wait _ queue _ head _ t  __ tcp _ lhash _ wait :     This is a wait Queue for the readers/
writers of  __tcp_listening_hash .  

   spinlock _ t  __ tcp _ portalloc _ lock :     This is lock used to synchronize access of 
global variable  tcp_port_rover  and  tcp_bhash  hash table. This lock should be 
held when we are requesting a local port to bind a socket.     

  4.2.7     tcp _ bind _ hashbucket   (See Figure  4.6 ) 

 This describes the hash bucket and consists of two members: 

   spinlock _ t   lock :     This is a lock to protect the collision hash chain  chain .  
   tcp _ bind _ bucket   *  chain :     This is the element of the collision hash chain for the 

bind hash bucket.     

  4.2.8     tcp _ bind _ bucket   

 This structure keeps information about the port number usage by sockets and the 
way the port number is being used. The information is useful enough to tell the new 
binding socket whether it can bind itself to a particular port number that is already 
in use. The data structure also keeps track of all the socket ’ s that are associated with 
this port number. 

   unsigned   short   port :     This is the port number associated with  tcp_bind_bucket . 
Whenever a socket wants to bind itself to some port which is not in use, we 
allocate a new tcp_bind_bucket structure, assign the port number in question 
to  port , and hash it in the  tcp_bind_hashbucket .  

   signed   short   fastreuse :     This is the fl ag that indicates whether the port number 
that is already in use can be reused by a new socket. Whenever a new socket 
requests to allocate a port number to it, we check if the port number is 
already in use by some other socket. So, we check  tcp_bind_hashbucket  for 
the entry associated with a port number. Now if we have requested to bind 
the socket with the port number for which hash entry exists, we check for 
the  fastreuse  fl ag. If this fl ag is set, we are sure that we can bind the socket 
with the associated port number and add the socket to the  owner ’ s  list. In 
short, if the  fastreuse  fl ag is set, we have all the sockets in the  owners  list, 
which are as follows:  
  1.     These sockets are bound to the same TCP port but on different network 

interfaces. We can have server applications listening on the same post but 
different IP address confi gured on different interfaces.  

  2.     Or all the sockets have a  reuse  fl ag set and are not listening sockets, which 
means that for all the sockets in the owners list the following conditions 
should be met:

   sk → reuse  &  &  sk → state != TCP_LISTEN     

  3.     Or all the sockets are bound to the same port using same interface, but 
the  recv_saddr  for all the sockets is different.    
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   struct   tcp _ bind _ bucket   *  next :     This is the next node in the tcp - hash - bucket col-
lision chain, for which associated port numbers hash to the same values.  

   struct   sock   *  owners :     This is the list of the sockets that are using same port 
number. These are linked by the following members of the sock structure: 

   1.     sk → bind_next  
  2.     sk → bind_pprev  
  3.     sk → prev    

  struct tcp_bind_bucket  *  * pprev:     This is the address of the location that contains 
address of current  tcp_bind_bucket  node.     

  4.2.9     bind ()  

 Systemcall accepts three arguments returned by socket() systemcall: 

   socket descriptor  (fi le descriptor)  
   socket address  (struct  sockaddr_in )  
   address length     

 Since  socket()  systemcall has already associated the fi le descriptor with the socket, 
this descriptor will be used by the application further to identify this socket. When 
bind() systemcall is invoked, the kernel calls the  sys_bind()  function. Let ’ s see what 
this function does.  

  4.2.10     sys _ bind ()  

 sys_bind() is the function called inside the kernel with three arguments 
(Fig.  4.7 ). 

   fd :     This is the socket fi le descriptor returned by socket call.  
   umyaddr :     This is the socket address to which we want to bind the socket.  
   addrlen :     This is the socket address length.      

 First, we do a lookup for the socket associated with the socket descriptor. This socket 
descriptor is nothing but the fi le descriptor, and it links a socket with the VFS as 
shown in Fig.  4.2 . So, we call  sockfd_lookup()  with the socket descriptor.  

  4.2.11     sockfd _ lookup ()  

 First the kernel needs to get the  fi le structure  from the current process ’ s fi le table. 
We call  fget()  to do this.  

    Figure 4.7.     Entry point for bind sys call in the kernel.  



  4.2.12     fget ()  

 Get hold of  fi les  member for the  current  process (current → fi les). Now the fi le 
descriptor (socket descriptor here) is indexed into the  fd  array, member of the 
fi les_struct structure, for the current process. Before accessing an element of the 
array  fd  ( current → fi les → fd[fd] ) corresponding to the socket descriptor, we need to 
make sure that the socket descriptor is well below the maximum number allocated 
to the fi le descriptor; until now, we did it by calling  fcheck() :

   if (fd  <  fi le → max_fds)    

 If the  above  condition is true, we return the fi le structure corresponding to the 
socket descriptor from the fi le table:

   current → fi les → fd[fd].    

 Now, increment the reference count ( fi le → f_count ) of the fi le structure returned by 
 fcheck() . Return the fi le structure. 

  End  of   fget ().     Get hold of the inode associated with the socket descriptor, 
 fi le → f_dentry → d_inode . Now we need to check if the inode represents a socket. This 
can be confi rmed if  inode → i_sock  is set. If the above is true, get the socket structure 
associated with this inode, call  socki_lookup(). socki_lookup()  returns socket struc-
ture, which is part of the  union u  of the  inode structure 

   inode → u.socket_i .   

 Return socket structure ( inode → u.socket_i) .  

  End of  sockfd _ lookup ().     Once we get the socket associated with the socket 
descriptor from s ockfd_lookup() , we copy - in the socket address from user space to 
kernel space and fi nally call the bind function specifi c to the protocol family:  sock →
 ops → bind() . In the case of  PF_INET  protocol family, this function corresponds to 
 inet_bind() .   

  4.2.13      inet_ bind ()  

 This internally calls a bind function specifi c to IP protocol with  fd  replaced with 
corresponding  socket . This is protocol - specifi c:

   sock → sk → prot → bind() .   

 As we have already seen in our earlier discussion for  SOCK_STREAM ,  sock → sk →
 prot  is initialized to  tcp_prot . We don ’ t have any bind function specifi c to  SOCK_
STREAM (in tcp_prot) . So we move ahead with some sanity check on the socket 
address passed as an argument to the function. Then we need to check the IP address 
type in the socket address. To get the IP address type (to which application has 
requested to bind the socket), we call  inet_addr_type() . Based on that, we see how 
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decisions are made.  sysctl_ip_nonlocal_bind  is a control parameter that controls the 
 ‘ binding behavior ’  of the sockets. If the control parameter is set, it means that we can 
bind our socket to any IP address, which includes  nonlocal  types also. 

  Nonlocal  IP addresses are those that are external. This means that it can be a 
gateway address or a direct route. Any interface that gets IP addresses dynamically, 
is directly connected to the gateways of different networks, and acts as gateway for 
the host is considered as a nonlocal IP. For example, PPP, PLIP, SLIP, and so on, 
interfaces get IP addresses that are nonlocal because they get an IP addresses 
dynamically only when the link between the two ends is up and the IP address 
assigned to the interface belongs to the network between the two ends. In the case 
where  sysctl_ip_nonlocal_bind  is not set, we can allow the socket to bind to only 
those IP addresses that fall in the following categories: 

   INADDR_ANY  = address to accept any incoming message  
   RTN_LOCAL  = accept locally  
   RTN_MULTICAST  = multicast route.  
   RTN_BROADCAST  = accept locally as broadcast and send as broadcast.    

 Now we are left with one class of IP address to which a socket is not allowed 
bind if  sysctl_ip_nonlocal_bind  is not set. This is  RTN_UNICAST  indicating that 
the IP is a gateway or a direct route. Once we have checked the validity of the IP 
address to which socket needs to be bound, we go ahead with some more checks. 
Get the port number from the socket address ( addr → sin_port ). Here we check if 
the port number requested is reserved for privileged applications. Ports 0 – 1023 are 
reserved for applications running as a super - user. The following conditions does the 
check:

   snum  <  PROT_SOCK  &  &  !capable(CAP_NET_BIND_SERVICE)    

 Now the nonprivileged application can also have permissions to avail some of 
the super - user facilities. We can check this capability of the current process by 
calling  capable()  and passing capability number to it. The process structure has a 
capability - related fi eld, current → cap_effective, which keeps information about the 
capabilities that a current process possesses. We are capable of binding the socket 
to the privileged port. So, we move ahead with some more sanity checks. We check 
if we are binding the same socket once again. The following check does the same:

   (sk → state != TCP_CLOSE) || (sk → num != 0)    

 Until now, the socket state is unchanged because we don ’ t have any activity on it 
(we see this in later discussions when the socket state changes from TCP_CLOSE 
to something else). If the socket state shows that it is in any state, it means that we 
have already bound the socket before and are trying to bind it once again (by 
mistake). At this point of time,  sk → num  is set to a value greater than 0 only in case 
of  SOCK_RAW . We are discussing  SOCK_STREAM , for which we have not yet 
allocated  sk → num . So if the value is set, we have entered the wrong code path. Now 
we assign values to source address for this socket. There are two fi elds in  sock struc-
ture  associated with the source address. These are: 



   sk → rcv_saddr   
   sk → saddr   
   sk → rcv_saddr . This is a source address used by hash lookups, and  sk → saddr  is 

used to transmit (source address for IP headers). These are initialized to an 
IP address specifi ed in socket address ( addr → sin_addr.s_addr ). In the case 
where the socket ’ s IP address is of type multicast or broadcast, we set  sk →
 saddr  to 0 (which means that the sending device address is used in such 
cases).    

 The next step is to fi nd out whether we are allowed to bind to specifi ed port 
(address already being used by another socket). Call  get_port()  specifi c to the pro-
tocol  sk → prot → get_port() . This is  tcp_v4_get_port()  from  tcp_prot  (set of protocol 
operations specifi c to  SOCK_STREAM ). 

  1.      > =  TCP_ESTABLISHED   
  2.      <   TCP_CLOSE      

  4.2.14      tcp_ v 4_ get _ port ()  

 Arguments passed to this function is  sock structure  associated with the socket and 
the  port number  to which a socket needs to be bound. If the port number specifi ed 
is 0 in the socket address, we are asking the kernel to fi nd a free port number and 
allocate it to the socket. Here we need to select a free local port within the range 
specifi ed by  sysctl_local_port_range[2]  (1024 – 4999). This range can be changed by 
using  sysctl. tcp_portalloc_lock  is a global lock that serializes the port allocation. So, 
we need to hold the lock here before accessing any of these global variables associ-
ated with port allocation. These are 

   cp_port_rover   
   tcp_bhash   
   tcp _ port _ rover :     This is another variable that keeps the last port number allo-

cated to the socket.  
   tcp _ bhash :     This is a global hash bucket containing information about all the 

allocated port numbers and related information. This is a macro that accesses 
 __tcp_bhash  member of global variable  tcp_hashinfo  (of type  struct tcp_
hashinfo ),  tcp_hashinfo.__tcp_bhash .    

 Starting from  tcp_port_rover , we check for all the available free ports within 
the max local port value stored in  sysctl_local_port_range[1] .

   rover = tcp_port_rover;    

 We access the hash chain head corresponding to each port number from  tcp_bhash  
hash table (see cs  4.1 ).   

 Before accessing the collision hash chain, we need to hold the chain lock 
( head → lock ).

   spin_lock( & head → lock);    
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 Now we traverse each element of the collision hash chain using the  next  member 
of the chain element ( struct tcp_bind_bucket ). For each element we try to match the 
current port number with the port number corresponding to the hash chain 
element.

   if (tb → port == rover)    

 If we fi nd that none of the elements ( tb ) corresponds to the selected port number 
( rover ) in the current hash collision chain, we move on to the next port number 
(++ rover ) and start over again. Otherwise, we get out of the loop and release the 
global lock  tcp_portalloc_lock . We are here because of two reasons: 

  1.     Either we have exhausted the entire port numbers (all are in use)  
  2.     Or we have found one unused port number.    

 In the former case we return the error, whereas in the latter case we need to create 
an entry in the hash table  tcp_bhash  for the new port number allocation. Here we 
store the allocated port number in the global variable  tcp_port_rover  and initialize 
 tb  (element of the collision hash list) to NULL because we need to create a new 
entry later. 

 In the case where the application has specifi ed the port number to which it 
wants to bind the socket, we get hold of the collision hash - chain element corre-
sponding to the port number from the  tcp_bhash[]  hash table. We traverse through 
each element of the collision hash chain and try to match each element ’ s port 
number with the port number in question. If we are able to fi nd the matching entry, 
we know that the port is already in use. Nevertheless, we don ’ t give up here because 
if we are able to satisfy certain conditions, we can reuse the ports. If we are here, 
we know that 

  1.     either we have gotten an available free port number  
  2.     or gotten the requested port number which is not in use  
  3.     or gotten the requested port number which is already in use.    

 For cases 1 and 2, we need to create a new hash entry in the  tcp_bhash  table. We 
allocate new  struct tcp_bind_hashbucket , initialize all the fi elds of the allocated 
structure. We link the current hash - chain element to the head of the list using  next  
and  pprev  members of the  tcp_bind_bucket  structure. Now we need to initialize the 
 fastreuse  member of the the element. We have already discussed this fl ag in detail, 
and now we see how to initialize. In the following case, we set this fl ag ( tb →
 fastreuse ): 

  1.      reuse  fl ag is set for the current socket ( sk → reuse == 1 )  
  2.     and current socket is not in listen state ( sk → state != TCP_LISTEN )    

    cs 4.1.      tcp_v4_get_port() .  



 Otherwise, this fl ag remains 0. This means that the socket can only be allowed to be 
reused if the owning socket allows it to be reused ( sk → reuse == 1 ) and it is not in 
the listening state ( sk → state != TCP_LISTTEN ). 

 We have not yet updated the  owners  fi eld of the new element and so also the 
 num  fi eld of the socket (associate the port number with the socket). For this we call 
 tcp_bind_hash (). This function links the current socket with the owner ’ s fi eld of the 
hash bucket element with the help of the  sk → bind_pprev  and  sk → bind_next  fi elds. 
For case 3, we have already found  tb  corresponding to the port number which is 
requested by the application, in which case we have reached here with  tb != NULL . 
In this case we need to make some checks before proceeding further. We need to 
check whether 

  1.     the current socket allows sharing of port number  
  2.     the current socket qualifi es for binding to the port already in use.    

 The former can be verifi ed by checking the  reuse  fi eld of the socket ( sk → reuse ). If 
this is set to 1, we are sure that it is passed. For the latter case, we need to check 
two things: 

  1.      tb → fastreuse  for  tb  found from the tcp collision - hash chain.  
  2.     state of the current socket ( sk → state ).    

 If  tb → fastreuse  is set to 1, it means that all the sockets (in the  tb → owners  list) still 
allow some others to use it for binding.  sk → state  for the current socket should not 
be set to  TCP_LISTEN , which means that the current socket is not in the listening 
state. 

 If case 3 passes, we go ahead and bind the port with the current socket and link 
the socket with the tcp bind hash bucket, we call  tcp_bind_hash() . In case we fail, 
we still have a chance to bind the socket with the port already in use. We can still 
bind this socket to the given port if  tcp_bind_confl ict()  fi nds it appropriate.  

  4.2.15     tcp _ bind _ confl ict ()  

 This function traverses through the entire list of sockets in the  tb → owners  and do 
the following checks:

   sk2 = tb → owners      

  1.     First we check whether the current owner socket is bound to a different 
interface (IP address) from the interface to which new socket wants to bind 
(see cs  4.2 ). If this they are different, we move on to the next socket ( sk2 = 
sk2 → bind_next ) in the list and repeat the same step.  

  2.     If the above condition passes, we check whether the current owning socket 
is a listening socket (see cs  4.3 ). If it is not so, we move on to the next socket 
( sk2 = sk2 → bind_next ) in the owner ’ s list and start over from the step 1.  

  3.     If the above condition passes, we check whether the IP address to which new 
socket wants to bind to is different from the IP address to which the current 
owning socket is bound on the same physical interface and also the two IP 
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addresses are not INADDR_ANY (see cs  4.4 ). If the condition is true, we 
come out of the loop. Otherwise, we move on to the next owning socket ( sk2 
= sk2 → bind_next ) and start over all again from step 1.      

 If we have come out of the loop, it may be because of the two reasons: 

  1.     We have exhausted all the owning sockets ( sk2 == NULL )  
  2.     We have found at least one owning socket that is bound to ( sk → state == 

TCP_LISTEN ) the same port number, IP address ( sk → rcv_saddr ), and 
interface to which the new socket wants to bind.    

 In the former case, there won ’ t be any confl icts and we can bind the new socket to 
the requested port number and thus we link the new socket in the owner ’ s list; call 
 tcp_bind_hash() . In the latter case, we have confl icts because of which we cannot 
bind the socket to the requested port. 

 We return from  tcp_bind_confl ict()  with the indication that we can reuse the 
port number because the confl icts are resolved. Now we need to modify the  fastreuse  
fl ag for the bind hash bucket ( tb → fastreuse ). If the current socket doesn ’ t allow us 
to reuse the port ( sk → reuse == 0 ) and tb → fastreuse is nonzero (possible values are 
 − 1 or 1), we reset  tb → fastreuse , which means that neither the listening nor the con-
necting socket can use this port number. We carry out all the activities in the func-
tion with local bottom - half disabled, because some new connection request may 
also access the tcp bind hash table as we will see later. 

    cs 4.2.      tcp_bind_confl ict() .  

    cs 4.3.      tcp_bind_confi lict() .  

    cs 4.4.      tcp_bind_confi lict() .  



  End of  tcp _ v 4_ get _ port ().     We return to  inet_bind()  with the error code. If 
we check that the error has occurred, we return with the error code  EADDRI-
NUSE . If we have come until this point, it means that the socket is successfully 
bound to the requested port. We need to update certain fi elds of the socket 
structure. 

  3.     If the new socket is not binding to  INADDR_ANY ( sk → rcv_saddr != NULL ), 
we need to set  SOCK_BINDADDR_LOCK  bit of  sk → userlocks  fl ag. This 
indicates that that we are bound to a specifi c IP address and are not receiving 
connections from any IP address.   

    •      If the new socket has gotten the valid port number to bind to without any 
confl icts, we set the  SOCK_BINDPORT_LOCK  of  sk → userlocks  fl ag.  

   •      We update the source port of the socket ( sk → sport ) of the socket with the 
requested port number.  sk → sport = htons(sk → num), sk → num  is assigned 
value in the function  tcp_bind_hash()  called from  tcp_v4_get_port() →
 inet_bind() .  

   •      As of now we don ’ t know the destination port ( sk → dport ) and IP address 
( sk → daddr ), which is known only when we get a request for new connection 
for this bound socket. So we initialize them to 0.  

   •      Initialize  sk → dst_cache  to  NULL . This fi eld is related to the destination route 
cache and we will discuss it later.     

  End of  inet _ bind ().     If this passes, we are successful in getting the requested 
port number which is already in use; otherwise we fail. The complete fl ow of bind() 
is shown in Fig.  4.8 .      

  4.3   LISTEN 

 Here we need to tell the kernel that we are willing to accept the connections. At 
the same time we need to confi gure the socket as to how many socket connections 
the kernel should keep in the backlog queue before it starts rejecting the new con-
nection request. The backlog queue for listening sockets may fi ll up for two 
reasons: 

   •      In case the kernel is not able to process the request.  
   •      In case the application has not invoked  accept()  systemcall.    

 Once the backlog queue is full for the socket, the kernel rejects/drops the request. 
In the latter case, it sends a message to the client with error code 
 ECONNREFUSED . 

  listen()  systemcall accepts two arguments: 

  1.     Socket descriptor (ret urned by  socket()  systemcall).  
  2.     Number and length of the backlog queue.    

 Let ’ s see what happens inside tke kernel when we invoke  listen()  systemcall. 
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  4.3.1     sys _ listen ()  

 sys_listen() is called inside the kernel with the following arguments (Fig.  4.9 ): 

   fd :     This is the socket fi le descriptor on which listen operates.  
   backlog :     This is the length of the backlog queue to handle accepted connection 

requests for the listening socket.      

 First we try to get the sock entry corresponding to the socket descriptor,  sockfd_
lookup() . This function was explained earlier. Do some sanity check for length of 
the backlog queue (should not be more than  SOMAXCONN ). We are now ready 

    Figure 4.8.     Code fl ow for bind process.  

    Figure 4.9.     Kernel interface for listen systemcall.  



to put this socket to listening state for which we need to initialize some of the 
members of the  sock structure  and protocol - specifi c data structures, which informs 
the kernel that we are willing to accept the connections and have confi gured the 
connection backlog queue. We call the protocol - specifi c listen function fi nally. This 
is  sock → ops → listen() . For the  PF_INET  protocol family,  sock → ops  is set to  inet_
stream_ops . So, we are calling  listen()  function from  inet_stream_ops ,  inet_listen() .  

  4.3.2     inet _ listen ()  

 We carry out some sanity checks here like the socket should be in close or listen 
state,  TCP_CLOSE  or  TCP_LISTEN.  In the latter case, we should be allowed only 
to adjust the connection backlog Queue length ( sk → max_ack_backlog ). Otherwise 
we do something more to put the socket to listening state. In the case where the 
socket is currently in  TCP_CLOSE  state, we call  tcp_listen_start() .  

  4.3.3     tcp _ listen _ start ()  

 Here we initialize some of the fi elds of following structures: 

  a.      sock   
  b.      tcp_opt   
  c.      tcp_listen_opts    

    sk  →  max _ ack _ backlog :     This is the maximum length of the connection backlog 
queue. This is initialized to 0.  

   sk  →  ack _ backlog :     This indicates the number of connection requests currently 
in the connection backlog queue. This value is incremented whenever a new 
connection is accepted. A check is made with  sk → max_ack_backlog  before 
the new connection is accepted. Initialize accept queue for the socket, (see 
cs  4.5 ).      

 An open connection backlog Queue or accept Queue is maintained by  tcp_opt  
structure  sk → tp_pinfo.af_tcp , with the help of two different members  accept_queue  
and  accept_queue_tail . Queue points to struct  open_request  which we discuss little 
later. Allocate space for struct  tcp_listen_opt  and initialize the members. 

 Initialize syn queue access lock, (see cs  4.6 ). This lock protects sockets SYN 
QUEUE which contains list of connection requests.   

    cs 4.5.      tcp_listen_start() .  

    cs 4.6.      tcp_listen_start() .  
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   SYN   QUEUE .     Precisely speaking, this is the new request created by the kernel 
when the SYN packet arrives for the listening socket. This list is maintained by 
socket ’ s  sk → tp_pinfo.af_tcp → listen_opt  member of type struct  tcp_listen_opt . Let ’ s 
discuss  tcp_listen_opt  structure.    

   max _ qlen _ log .     This keeps the number that indicates the maximum number of 
SYN connection requests for a listening socket. Whenever, the kernel receives a 
SYN packet for a listening socket, the  qlen  fi eld is checked against the max_queue_
len fi eld of this structure. If the former is greater than the latter, we drop the current 
connection request. Otherwise we increment  qlen  by 1 and add this open connection 
request to the SYN queue hash table.  

   qlen .     This is the counter that keeps track of the number of open connection 
requests in the SYN queue. This fi eld is incremented whenever we add a new con-
nection request to the listening sockets SYN queue.  

  qlen_young.     This is the counter that keeps track of the number of number of 
open connection requests in the SYN queue, which are still young. The fi eld is 
incremented by 1, whenever a new open connection request is added to the SYN 
queue. It is decremented by 1, whenever TCP needs to retransmit the SYN/ACK 
packet for any of the open connection requests in the SYN queue because it has 
not received the ACK for the SYN/ACK packet already sent for any reason. Basi-
cally, the policy is to still drop any new connection request based on the young 
connection requests in the following case: 

   •      SYN queue can accommodate more open connection requests in the SYN 
queue ( tcp_synq_is_full()  == 0),   and    

   •      Accept queue is full ( tcp_acceptq_is_full()  != 0)  and  SYN queue still contains 
more than one young connection request ( tcp_synq_young()   >  1).     

   syn _ table .     This is the SYN queue hash table that hashes all the open connec-
tion requests (of type  struct open_requests ) for the listening socket. These requests 
are hashed based on destination port and destination IP (client ’ s port and IP which 
generated the connection request). The  SYN  queue hash collision chain for  syn_
table  is linked by  dl_next  fi eld of  open_request  struct. Call  tcp_delack_init() . 

 Now we need to set the  max_queue_len  for the  tcp_listen_opt  structure just 
allocated for this listening socket. This value is set based on the global variable 
 sysctl_max_syn_backlog  (which is system confi gurable and is initialized to 256 for 

    Figure 4.10.     Structure used by listening socket.  



machines    > =   256   MB). The value of the fi eld should not exceed log 2  of the value 
stored in global variable  sysctl_max_syn_backlog  (see cs  4.7 ).   

 Initialize listen_opt member of socket ’ s sk → tp_pinfo.af_tcp with the tcp_listen_
opts structure just allocated and initialized with the SYNQ lock just initialized  tp →
 syn_wait_lock . 

 We have already made all the required changes to the socket to get it to the 
listen state. We are still not in the listen hash table,  tcp_listening_hash , because we 
are still not in the  TCP_LISTEN  state. We set the socket state to  TCP_LISTEN  
state (see cs  4.8 ).   

 Now we need to check if we are still eligible to use the same port to which we 
earlier bound this socket. There is a window between the  bind()  and  listen()  calls 
form an application when two threads can race to bind two sockets to the same 
port. After both the threads are bound to the same port (both the sockets are in 
the bind hash list,  tcp_bhash ), one of the sockets makes the socket port not reusable 
(resets sk → reuse for itself) and gets into the  TCP_LISTEN  state. The other thread 
now enters the  listen()  systemcall and gets into this part of the code. So, once again 
it needs to make sure whether it can use the same port that it requested earlier. So, 
it checks this by calling  sk → prot → get_port()  (tcp_v4_get_port()), which returns 0 
if still this socket can use the same port ( sk → num ) to which it was bound. If we 
can ’ t use the port, return 1. Otherwise if that is the case, we set sport for the socket 
( sk → sport ) and hash this socket to the listen hash table  sk → prot → hash().  This 
function points to  tcp_v4_hash()  in the case of  TCP  (see cs  4.9 ).  tcp_v4_hash()  
hashes the socket to the listen hash table,  tcp_listening_hash  (Fig.  4.5 ), with the local 
bottom half - disabled. The socket is linked in the listen hash collision chain using 

    cs 4.7.      tcp_listen_start() .  

    cs 4.8.      tcp_listen_start() .  

    cs 4.9.      tcp_listen_start() .  
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 sk → next  and  sk → pprev  pointers. The hash function,  tcp_sk_listen_hashfn() , uses 
 sk → num  to calculate the hash value.    

   END  of  tcp _ listen _ start ().     we return from  tcp_listen_start() , either with error 
code set or successfully putting the socket in the listening state. In the case where 
the socket is successfully put to the listening state, we need to set  max_ack_backlog  
fi eld of the socket to the value passed as an argument to the  listen()  (see cs  4.10 ).    

   END  of  inet _ listen ().     The complete fl ow of listen() is shown in Fig.  4.11 .     

  4.3.4   Listen Flow 

 Figure  4.11  shows fl ow of control for listen implementation of TCP/INET socket in 
the kernel. Here we show maps routines that are called from sys_listen() for details, 
see Section  4.3.3 .  

  4.3.5     struct open _ request   

 The structure keeps account of all the open connection requests which are not yet 
accepted by the application (see Fig.  4.12 ). There is one open_request for each 
connection request for a listening socket. When the connection request arrives, a 
new structure is allocated and various fi elds of this structure are initialized. Most 
of the fi elds are initialized from tcp and ip header fi elds of the SYN connection 
request and are very specifi c to the connection. These are explained ahead. The 
structure is hashed in the listening sockets syn Queue  sk → tp_pinfo.af_tcp → listen_
opt → syn_table  according to the port number of the connection requester (see Fig. 
 4.17 ). The SYN/ACK packet is sent to the connection originator (client). When the 
fi nal ACK is received for the SYN/ACK packet associated with this connection 
request, a new socket is created which is marked to be in the TCP_ESTABLISHED 
state because a three - way handshake is over for this connection. Most of the fi elds 
of the new socket are duplicated from the parent socket except for the fi elds that 
are very specifi c to the connection. Now the  open_request  node is moved from Syn 
queue to the listening sockets (parent) accept queue (see Fig.  4.18 ). Since the new 
connection is not yet accepted, it remains in the accept queue and no I/O occurs 
over the connection from our end. Now let us discuss struct open_request. 

   dl _ next :     This is the pointer to the next link in the  SYN  queue collision hash 
table for the listening socket.  

   rcv _ isn :     This is the initial sequence number taken from the SYN packet received 
as connection request.  

   snt _ isn :     This is the initial sequence number calculated at the listening socket 
end. This is calculated each time a new connection request is received. The 

    cs 4.10.      inet_listen() .  



value is sent in SYN/ACK reply as part of the TCP header ’ s sequence 
number fi eld.  

   rmt _ port :     This is the port number of the other end of the TCP connection, 
which has generated the connection request. The value is taken from the 
TCP header of the SYN packet received as connection request.  

   mss :     This is the maximum segment size used for the TCP connection. The value 
is taken from either the TCP mss options (of SYN packet received) or the 
 tcp_opt  structure ( tp → user_mss ), whichever is smaller.  

   retrans :     This fi eld is incremented whenever the SYN/ACK packet is retransmit-
ted for the received SYN connection request. It keeps track of the number 

    Figure 4.11.     Code fl ow for the listen process.  
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of retries attempted to get ACK for the SYN/ACK packets sent. When 
maximum attempts are tried, the connection request is dropped.  

   snd _ wscale :     This 4 - bit fi eld is the window scaling value received from the 
sender. It is taken from TCP options for the SYN packet received as a con-
nection request. Stored in  tp → snd_wscale . All this if window scaling option 
is set in TCP header options.  

   rcv _ wscale :     This 4 - bit fi eld is the window scaling value to be sent to the other 
end of the TCP connection, which has generated the connection request. This 
is done only if the window scaling option is set in TCP header options.  

   wscale _ ok :     This 1 - bit fi eld is set if the window scale option is set for the SYN 
TCP header (packet received as a connection request).  

   tstamp _ ok :     This 1 - bit fi eld is set if the timestamp option is set for the SYN TCP 
header (packet received as a connection request).  

    Figure 4.12.     Linux representation of open connection request.  



   sack _ ok :     This 1 - bit fi eld is set if the SYN bit is set in the TCP header for the 
packet received as a connection request.  

   ecn _ ok :     This 1 - bit fi eld is set if the ECN option is set for the SYN TCP header 
(packet received as a connection request) and our side of the TCP is confi g-
ured to use this option.  

   acked :     This 1 - bit fi eld is set if the SYN/ACK packet is sent for the received 
connection request SYN packet.  

   rcv _ wnd :     This is the receive window size offered fi rst time in the SYN/ACK 
packet.  

   ts _ recent :     This is set to the timestamp received in the SYN connection request 
packet, in the case where the timestamp option is set in the TCP header 
option.  

   expires :     This is the timeout value for the TCP when it should attempt retrans-
mit if it doesn ’ t receive any ACK for the SYN/ACK sent to the connection 
originator.  

   sk :     This is the pointer to the newly created socket for the new connection 
request (struct open_request is created for this socket). The fi eld is initialized 
to NULL when open_request is created for the new connection request and 
the request is in the syn queue. When the new socket is created and the 
open_request is transferred to the accpet queue, the fi led is initialized to the 
newly created socket.  

   af :     This is a union of two pointers for IPv4/v6 - specifi c information. In the case 
of Ipv4, this is a pointer to  struct tcp_v4_open_req . There are three fi elds for 
this structure.  

   loc _ addr :     This is the IP address for which connection request has arrived. It is 
taken from the destination IP address (fi eld) of the IP header for the packet 
received as a connection request.  

   rmt _ addr :     This is the IP address of the originator of the connection request. It 
is taken from the source (IP address) fi eld of the IP header for the packet 
received as a connection request.  

   opt :     This is the IP header options obtained from the IP header of the SYN 
connection request packet.      

 This way we have seen that when the  listen()  systemcall returns to the application, 
the socket is in a TCP_LISTEN state and all required settings are done by the kernel 
to accept connections for this listening socket, though still not fully functional. For 
doing this, the kernel has to associate and initialize tcp_listen_opt and open_request 
structures with the socket. Since this is a listening socket and is recognized as accept-
ing connection requests by the kernel, any new connection for this socket is queued 
up in the syn queue (sk → tp_pinfo.af_tcp → listen_opt →  syn_table ) until a three - way 
hand shake is not completed as shown in Fig.  4.17 . Once the TCP three - way hand-
shake is over, we remove the open_request node from the syn queue and place it 
in the socket ’ s accept queue ( sk → tp_pinfo.af_tcp → accept_queue ) as shown in Fig. 
 4.18 . All the open requests in the accept queue are associated with a new socket 
( req → sk != NULL ) and are in a TCP_ESTABLISHED state. The socket associated 
with the open requests in the accept queue are detached from the parent socket 
and inherit most of the properties of the parent except for the one ’ s very specifi c 
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to the connection. TCP - related information (sk →  tp_pinfo.af_tcp, tcp_opts ) is also 
initialized for this socket, with most of the fi elds inherited from the parent socket 
except for the new connection - specifi c fi eld. Since this is not a listening socket, the 
listen - specifi c fi eld of the tcp_opt structure for the new socket (sk → tp_pinfo.af_
tcp → listen_opt) is set to NULL and at the same time accept queue ( sk → tp_pinfo.
af_tcp → accept_queue ) is also intialized to NULL. The new socket is hashed in the 
tcp_ehash table. At the same time the new socket is associated with the owner ’ s list 
of the bind hash bucket that is hashed according to the port number(sk → num). 
There will be many such entries in the owner ’ s list of the tcp - bind - hash bucket, but 
a socket for a specifi c connection is identifi ed by a quadruplet (dst IP, dst port, local 
IP, local port). This way, a child socket gets its separate identity and can operate as 
a separate communication channel irrespective of its parent socket. Let ’ s see how 
this new socket in the TCP_ESTABLISHED state, associated with the open request 
that is still in the accept queue, is not fully functional. We know that the all the initial 
handshakes for the TCP connection are done between the client and the server, and 
the client here knows that it has reached the correct destination and a communica-
tion channel is set up between the two peers. 

 We see the behavior of the server side socket toward the new connection 
request when it arrives for the socket that is not completely accepting the connec-
tions. Here we see how the connection requests are accepted when 

   •      The socket is bound to a port but is not yet in a  ‘ listening ’  state.  
   •      The socket is in a  ‘ listening ’  state but are not yet accepted.    

 We explain this with the help of  ‘ tcpdump ’  output for the connection requests 
initiated by the client for the server that is not yet completely accepting the con-
nections. We use same client and server application program examples defi ned in 
Chapter  2 . 

   •       The socket is bound to a port but is not yet in a  ‘ listening ’  state : This means 
that the server application has invoked  bind()  but has not yet invoked  listen()  
systemcall (see Fig.  4.13a ).  tcpdump  for the above setup is shown in Fig.  4.13b . 
Client (192.168.1.3) sends a connection request to the server (SYN packet # 
3). The server side TCP replies with an RST packet (#4).  

   •       The socket is in a  ‘ listening ’  state but is not yet accepting the connection : This 
means that the server application has invoked  bind() , l isten()  but has not yet 
invoked  accept()  systemcall as shown in Fig.  4.14a . Let ’ s see how server side 
TCP responds to this connection request. To study this, a small experiment 
was conducted where a client tries to connect to the server that has done listen 
on the socket but has not yet invoked  accept() . From the tcpdump output (see 
Fig.  4.14b ) for this connection request, we can see that the three - way hand-
shake takes place between the two ends, packets 1, 2, and 3. The client writes 
data over the socket in blocks of 50   k at a time. The client side TCP splits these 
data in small chunks of 1460 bytes (limited by MTU), packets 4 and 7. The 
server acknowledges those and the client keeps on sending data until the 
server acknowledges the last sent data (packet 73, 73,360 bytes) with the 
window size of 0 (packet 74). The client gets an indication that it doesn ’ t need 
to send anymore data to the server until the server advertises nonzero positive 
window size.      



    Figure 4.13a.     Client initiated connection request for a nonlistening socket.  

    Figure 4.13b.     Client – server interaction for Fig.  4.13a .  

    Figure 4.14a.     Client generates connection request for nonaccepting listening sockets.  

 This indicates that the serve side receive buffer has gotten full and that it cannot 
accommodate any more data. All this is happening because there is no one to 
consume the data in the server ’ s receive buffer. The only way these data are con-
sumed is when it is read by an application. Since the server application has not yet 
accepted the connection fully by issuing accept(), the client can get connected to 
the server and do very limited one - way data transfer from client to server. But this 
study tells that the even though the connection request is in the accept queue in the 
established state, the TCP connection is fully functional between the two ends, but 
the absence of read/write at the server end makes this socket connection a very 
limited one - way channel from client to server.  

  4.3.6   Accept Queue Is Full 

 When there is no space in the accept queue to accommodate the new connection 
request, we can still accommodate the request in the SYN queue which has no 
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limitation on the queue length because of the conditions (see cs  4.11 ) that need to 
be satisfi ed in  tcp_v4_conn_request() . Even if the accept queue is full, we can accept 
the new connection request and queue it in the SYN queue, in case there are no 
young connections not yet ACKed (see cs  4.12 ).   

  tcp_synq_young()  gets the value of  sk → tp_pinfo.af_tcp.listen_opt → qlen_young , 
which indicates the number of requests in the SYN queue that are not yet ACKed. 
If there is congestion, this would be more than 1, otherwise no problem. We can still 
have an entry for a new connection request in the SYN queue even if the SYN 
queue and accept queues are full. Now the SYN queue keeps on growing because 
the accept queue is full; and when the ACK for any new connection request in the 
SYN queue is received, we cannot unlink this request from the SYN queue and link 

    Figure 4.14b.     One - way communication from client → server is possible for nonaccepting listen-

ing sockets.  



it with the accept queue. In such cases,  tcp_v4_syn_recv_sock()  returns NULL to 
 tcp_check_req(). tcp_check_req()  fi nds that the return value is NULL, and it sets 
 req → acked  to 1 and returns NULL. Nothing happens now. It is the job of the SYN/
ACK timer to take care of all such open requests in the SYN queue of the listening 
socket which cannot be processed further at this point of time. The SYN/ACK timer 
is implemented as  tcp_synack_timer() . It is fi red after some time interval and checks 
if any connection request is old enough to be removed from the SYN queue (see 
cs  4.13 ).   

 From cs  4.13  (line #515) it is clear that SYN/ACK is sent to the peer by calling 
 req → class → rtx_syn_ack() , untill we have exhausted the  max_retries  number of 
tries. Since we have already received ACK for the given connection request,  req →
 acked  is always set. By default,  max_retries  is initialized by the  sysctl_tcp_synack_
retries  control parameter which is set to TCP_SYNACK_RETRIES (5). So, the 
server sends 5 SYN/ACK to the peer (connection initiater) before it removes the 
connection request from the SYN queue. 

 The  tcpdump  output in Fig.  4.15  shows how the server generates SYN/ACK 
packets for a connection request which cannot be accommodated in the accept 
queue. This was all about the role of  listen()  systemcall. We have seen how the 
connection request is generated and new sockets are created for the connection 
requests and associated with the same. There are various queues for connection 
requests depending on the state of the three - way handshake. We have also seen the 
behavior of TCP at the stage when the  listen()  is called, but the established socket 
is not yet accepted by the server application. We now move on to  accept()  system-
call, which is the last step to complete the server application. We have not yet dis-
cussed the way connections requests are dealt by TCP at the functional level inside 
the kernel. We will discuss it later.   

 We need to explain TCP socket multiplexing. This explains how sockets are 
fi nally identifi ed by the TCP subsystem when a packet is received by the TCP layer. 

    cs 4.11.      tcp_v4_conn_request() .  

    cs 4.12.      tcp_v4_conn_request() .  
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 __tcp_v4_lookup_established()  does a lookup for all the established socket connec-
tions in the  tcp_ehash  table. The Quadruplet destination port, destination address, 
local port, and local address are used to identify the socket for each packet (Fig. 
 4.16 ).    

  4.3.7   Established Sockets Linked in    tcp_ehash     hash  Table 

 Figure  4.16 , illustrates the snapshot of tcp_ehash table which hashes system wide 
sockets in TCP_ESTABLISHED and TIME_WAIT state.  

  4.3.8   State of the Connection Request when the Three - Way 
Handshake Is Still Pending 

 Figure  4.17  illustrates snap shot of a listening socket. It shows how accept queue 
and SYN queue are implemented for the listening socket. Open requests in SYN 
queue (Syn_table) in the SYN - RECU state are discussed in Section  4.4 .  

    cs 4.13.      tcp_synack_timer() .  



  4.3.9   State of the Connection Request when the Three - Way 
Handshake Is Completed 

 Figure  4.18  shows a snapshot of listening sockets SYN queue and accept queue when 
three - way handshake is completed for open requests. Req. 1 is moved from SYN 
queue to accept queue when three way hand shake is completed for open request 
req. 1. (Compare with Fig.  4.17 ; see in Section  4.4 ).   

  4.4.   CONNECTION REQUEST HANDLING BY KERNEL 

 Here we discuss how the connection requests for the listening sockets are handled 
by the kernel. We only discuss the functional details and not the TCP - protocol -

    Figure 4.15.     Server sends out 5 SYN/ACK segments before it assumes that the connection -

 request should be dropped.  
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 specifi c details. Any connection request is handled by the kernel in two steps 
because of the nature of the TCP protocol. 

   •      SYN Queue Processing: In fi rst step, the connection request is received by 
the kernel which is put in the SYN queue of the listening socket. The kernel 
sends SYN/ACK for this connection request and waits for ACK to last SYN/
ACK for the connection in the SYN queue.  

   •      Accept Queue Processing: In the second step, once the ACK for the SYN/
ACK is received by the kernel for the connection in the SYN queue, a new 
socket is created for the connection request and the connection request is 
removed from the SYN queue of the listening socket. The connection request 
is put into the accept queue for the listening socket.    

 Let ’ s see how the fi rst SYN packet for the connection request is handled by the 
kernel. Refer to function  tcp_v4_conn_request(). tcp_v4_rcv()  is the interfacing 
function that processes the packets for TCP.  sk - buff  represents a packet on Linux 
which is passed to the routine for TCP Processing.  sk_buff  contains header and data 
information for the packet. We discuss more about it later, but for now we should 
stick with the fact that  sk_buff  represents the IP packet. Pull down the TCP/IP 
header from  sk_buff  and extract four fi elds from the header: destination port, des-
tination IP, source port, source IP. This quadruplet is required to identify the socket 
for the packet, if any. Now we call  __tcp_v4_lookup()  to identify the socket. This 
function looks into the various hash tables for the socket. The hash tables that are 

    Figure 4.16.     System - wide hash list for established sockets.  



searched are  tcp_ehash  and  tcp_listening_hash  in the same order by calling functions 
 __tcp_v4_lookup_established()  and  tcp_v4_lookup_listener() , respectively. As we 
have already discussed, these two hash tables are in Section  4.2.2 , so we move ahead. 
Assuming that we already have a listening socket for this (application has invoked 
 listen()  successfully), we fi nd the listening socket in the  tcp_listening_hash  table. We 
move on to the  tcp_v4_do_rcv()  for further processing of the connection request. 

    Figure 4.17.     Open connection request waiting in SYNQ until the three - way handshake is 

over.  
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    Figure 4.18.     Connection request converted into established socket and placed in to accept 

queue after the three - way handshake is over.  

Here we do some sanity checks on the TCP header and fi rst check the socket state. 
Since we are concerned with the listening socket, we enter into the block to process 
the socket with the  TCP_LISTEN  state. We call  tcp_v4_hnd_req()  for further pro-
cessing.  tcp_v4_hnd_req()  looks for any connection connection request in the SYN 
queue of the listening socket ( sk → tp_pinfo.af_tcp → listen_opt → syn_table ). If the 
connection request is found, we create a new socket for this connection and return 
the pointer to the new socket in case this is not a duplicate SYN packet and is proper 



SYN/ACK for the connection request identifi ed. Otherwise, if any connection 
request for this SYN packet is not found in the SYN queue, we search the  tcp_ehash  
table (see Fig.  4.16 ) for any possibility of established socket for the current connec-
tion request. This is done because the packet may be a duplicate of the original 
connection request that is already in the established state now. If nothing is found, 
we return the same socket pointer that was identifi ed for the packet. From here we 
can separate the two steps discussed above. 

  4.4.1    SYN  Queue Processing 

 If this is the original SYN packet (connection request),  tcp_v4_hnd_req()  returns 
socket pointer which was identifi ed. So we move on to further process the connec-
tion request and call  tcp_rcv_state_process() . This does various sanity checks on the 
TCP headers; and if it fi nds that things are OK and we are processing a listening 
socket, we call a connection request function specifi c to the protocol,  tp → af_
specifi c → conn_request() , for further processing. This function is part of  ‘  struct tcp_
func ’   registered with  tp → af_specifi c  at the time of  socket()  call for the TCP protocol 
in  tcp_v4_init_sock()  to  ipv4_specifi c . This function  tp → af_specifi c → conn_request()  
in our case points to  tcp_v4_conn_request(). tcp_v4_conn_request()  checks if the 
SYN queue is full for the listening socket by calling  tcp_synq_is_full() . If it is full, 
it drops the request and returns error; otherwise, it goes ahead and checks the accept 
queue for the listening socket by calling  tcp_acceptq_is_full (). If the accept queue 
is full, we can still accept the new connection, in case we don ’ t have a large number 
of connection requests for which the fi nal SYN is not yet received for the SYN/ACK 
it last sent because of which TCP is fi ring SYN/AC retransmissions for the listening 
socket. We check the SYN/ACK retransmissions by calling  tcp_synq_young() . If 
everything is OK, we go ahead and create an open connection request for the new 
request, initialize open_request structure for the new open request, send SYN/ACK 
response for the connection request, and add the new connection request in SYN 
queue of the listening socket by calling  tcp_v4_synq_add() . Now we are waiting in 
the SYN queue of the listening socket for the fi nal ACK to complete the TCP con-
nection process and return to  tcp_v4_do_rcv() .  

  4.4.2   Accept Queue Processing 

 Let ’ s consider a situation where we have already queued up a connection request 
in the SYN queue and already transmitted a SYN/ACK response for this connection 
request. We are waiting to get the fi nal ACK for the connection request. We receive 
the fi nal ACK for the connection request and we enter the same code path  tcp_v4_
rcv() → tcp_v4_do_rcv() → tcp_v4_hnd_req() . In this case we have a connection 
request queued up in the SYN queue of the listening socket. So we move on to 
fi nally process the connection request for which the fi nal ACK is received call  tcp_
check_req(). tcp_check_req()  does a lot of sanity checks on the packet headers 
received because we don ’ t know the fl ags set in the TCP header until now. If we 
get the retransmitted SYN packet for the same connection, we once again generate 
the SYN/ACK packet. We also make checks for any malicious third - party involve-
ment as the originator of the packet. So, we do window size comparison from the 
original packet and current packet; if there is a great difference, we drop the request 
but send the ACK. If the sequence number for the ACK received is not 1 more 
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than the sequence number of the fi rst SYN packet, just mark an indication to the 
calling function that the RST needs to be sent. Similarly, make checks on the TCP 
header fl ags. If they are not ACK but are RST or SYN, we make a decision appro-
priately. Finally, we have passed all the tests and the ACK is proper, so we need to 
process the connection request further. We call the  syn_rcv_sock()  function specifi c 
to the protocol. As mentioned earlier, this function is part of  ‘  struct tcp_func ’   reg-
istered with  tp → af_specifi c  at the time of  socket()  call for the TCP protocol in  tcp_
v4_init_sock()  to  ipv4_specifi c . This function  tp → af_specifi c → syn_rcv_sock()  in our 
case points to  tcp_v4_syn_recv_sock(). tcp_v4_syn_recv_sock()  creates a new socket 
for the connection request as the three - way handshake is over and both the ends 
of the connection have verifi ed their identities. The new socket is created only if 
accept queue is not full. Status f the accept queue is checked by calling  tcp_acceptq_
is_full() . In case the accept queue is full, we still have the connection request in the 
SYN Queue so that later when the fi nal ACK is once again received for this con-
nection and the accept Queue is not full we can accept the connection. If the accept 
queue for the socket is not full we go ahead with initialising the new socket. Most 
of properties are inherited to the socket from the listening socket and rest of the 
fi elds specifi c to the connection are initialised from the tcp/ip header. We call  _tcp_
v4_hash()  to hash the newly created socket on  tcp_ehash  table (see Fig.  4.4 ). So we 
return to  tcp_check_req()  where the connection request is unlinked from the SYN 
queue and is added to listening accept queue. New socket just created is in  TCP_
SYN_RECV  state. We return from with new socket pointer form  tcp_v4_hnd_req () 
to  tcp_v4_do_rcv() . Form  tcp_v4_do_rcv()  we call  tcp_child_process()  to do some 
more processing on the newly created socket.  tcp_child_process()  calls  tcp_rcv_
state_process()  in case we have no user for the socket ( child → lock.users == 0 ). In 
 tcp_rcv_state_process()  we once again do some sanity checks on the TCP fl ags and 
initialise TCP options for socket ’ s tcp_opt structure ( sk → tp_pinfo.af_tcp ) extracted 
from TCP header options fi eld by calling  tcp_fast_parse_options() . 

 Finally change the state of the socket to  TCP_ESTABLISHED  state. We queue 
the  sk_buff  to sockets receive queue by calling  tcp_data_queue()  so that process can 
be notifi ed of the reception of the data. Finally we return to the  tcp_child_process() . 
We did the entire processing for the socket with the socket lock held and bottom 
half disabled as bottom half may change the state of the process while processing. 
Complete fl ow of the connection request handling by kernel is shown in Fig.  4.19 .    

  4.4.3   Flow Control for Handling a New Connection Request 

 Figures  4.19a  and  4.19b  show fl ow control for TCP connection request handling 
implementation in the kernel. Here we show major routines that implement con-
nection handling which is discussed in Sections  4.4.1  and  4.4.2 .   

  4.5   ACCEPT 

 As we have already learned from our previous discussion,  listen()  systemcall makes 
the TCP socket accept connections, but the socket is not yet fully functional. The 
listening socket accepts connections and puts it in the accept queue once the three -
 way handshake is completed between the two ends of TCP. The sockets in the 
accept queue are in the established state. Now the server application has to pick up 



    Figure 4.19a.     Code fl ow for handling a connection.  
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the established connection requests in the accept queue one - by - one and provide a 
unique identity to each socket so that the socket can start communication with its 
peer as an independent channel. The  sock  structure for each connection request is 
associated with the BSD socket and is mapped in the fi le table of the process. Doing 
this application invokes  accept()  systemcall.  accept  is issued from the server applica-
tion to start accepting an open connection request from the accept queue, Figure 
 4.1 .  accept()  systemcall returns to the application with a new socket descriptor that 
is used by the server to communicate with the peer or the originator of the connec-
tion. Here we discuss what happens inside the kernel when an application invokes 
 accept()  systemcall. sys_accept() is called inside the kernel with the following 
arguments:  

    Figure 4.19b.     Code fl ow for handing a connection request.  

  Kernel interface for accept.  

   fd :     fi le descriptor of the listening socket.  
   upeer :     socket address  (s   truct sockaddr  *   )  of the remote end of the connection 

which needs to be fi lled by the kernel and send back to the application.  



   upeer _ addrlen :     address length of the socket address.  
   sys _ accept ().     This identifi es the bsd socket associated with the parent socket 

(listening socket) using the socket fi le descriptor (fd) passed as an argument 
to the  accept()  by calling sock  fd_lookup() . Let ’ s see how  fd_lookup()  works: 
It gets a  struct fi les_structure  table for the  current  process, which maintains 
the account of all the open fi les for the current process; this is  current → fi les . 
max_fds fi eld of the fi le table, f iles → max_fds , indicates the maximum number 
allocated as a fi le descriptor to the current process ’ s open fi les at any point 
of time. It makes a sanity check on the listener socket fi le descriptor to make 
sure that it doesn ’ t exceed  fi les → max_fds . If  fd  is well below  fi les → max_fds , 
we get the fi le structure, which is fd ’ th element of the fi le array  fd, fi les →
 fd[fd] , which is the fi le structure for the listener socket fi le descriptor in 
question here. The process fi le table,  current → fi les , is accessed with fi le table 
lock ( current → fi les → fi le_lock ) acquired. The BSD socket associated with the 
socket fi le descriptor can be obtained from the fi le structure just gotten from 
the  inode  associated with the  fi le  structure,  fi le → f_dentry → d_inode . We also 
need to make sure that the inode is associated with the socket. This can be 
done by checking  i_sock  fi eld of the  inode, inode → i_sock . If the fi eld is set, 
the  inode  represents  socket . Now socket is part of the this  inode  and can 
gotten from  inode → u.socket_i . Links between fi le, inode, and socket are 
shown in Fig.  4.21 .      

 So. we return to  sys_socket()  and we have the gotten the  socket  structure associ-
ated with the listening socket. We need to create a new socket for the new connec-
tion request and associate the socket with the VFS in the similar way as it was done 
for the listening socket (see Fig.  4.20 ). Allocate new socket structure for the new 
connection by calling  sock_alloc() . This function allocates a new socket inode and 
initializes inode and socket fi elds associated with the socket inode with default 
values as shown in cs  4.14 .   

 The  socki_lookup()  function returns the socket fi elds associated with the  inode, 
inode → u.socket_i.  This inode is marked to be associated with no device  NO_DEV; 
i_sock  fi eld of the  inode  is also set to represent a socket  inode . The socket ’ s inode 
is made to point to the inode, and the socket state is set to  SS_UNCONNECTED  
as the socket is in the process of being connected. The new socket should inherit 
some of the properties of the parent (listening) socket. So the  type  and  ops  fi elds 
are duplicated from the parent socket to the new socket. Call the inet - specifi c accept 
(sock → ops → accept), inet_accept(), which puts up the connection request in the 
parent sockets accept queue and associates it with the new socket just created in 
the following way. 

  4.5.1     inet _ accept ()  

 This calls a protocol - specifi c  accept  function ( sk → prot → accept ),  tcp_accept() . Let ’ s 
see what  tcp_accept()  does. It holds the socket lock and does the entire operation; 
before returning, it releases the lock. It checks for the state of the parent (listening) 
socket. It should be in the  TCP_LISTEN  state. If not so, it returns with error. 
Now get hold of the  tcp_opt  structure for the parent socket,  sk → tp_pinfo.af_tcp . 
This structure keeps a pointer to the accept queue (pending connection request 
queue; see Fig.  4.18 ). Check if there is any pending connection request in the accept 
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queue,  tp → accept_queue . If  tp → accept_queue  is NULL, there is no pending connec-
tion request. So we need to wait on parent sockets wait - queue( sk → sleep ) by calling 
 wait_for_connect () until we have at least one new connection request in the accept 
queue, or we timeout if the socket is blocking; otherwise we return. If we are here, 
we have at least one pending connection request in the accept queue so we process 
it. Access fi rst element from the queue,  tp → accept_queue.  Remove the request from 
the accept queue and decrement the counter of the parent socket, which indicates 
the number of pending connection requests in the accept queue,  sk → ack_backlog . 
Get the connection  sock  structure from the connection request structure,  req → sk , 
and free the connection request structure (struct open_request req). The new tcp 
socket should not be in the syn receive state ( sk → state != TCP_SYN_RECV ). 
Return the new tcp socket to  inet_accept() . We are back in inet_accept() with either 
error or pointer to a new socket. If error is encountered, we return the same; oth-
erwise we further process the new tcp socket and associate the  TCP  socket with the 
BSD socket. Hold lock on the new  TCP  socket and associate the new  TCP  and  BSD  
sockets by calling  sock_graft()  (see cs  4.15 ). It initializes the  sleep  fi eld of the TCP 

    cs 4.14.      sock_alloc() .  



socket with the  wait  fi eld of the BSD socket, which means that the wait queue for 
both the BSD and TCP sockets is the same for a connection. Initialize the  sk  fi eld 
of the BSD socket to point to the TCP socket and initialize the socket fi eld of the 
TCP socket to point to the BSD socket, as shown in cs  4.15 . In the process, we hold 
the bottom half lock during the entire process because the socket structure is acces-
sible from the bottom half.   

 Change the state of the BSD socket to connected,  newsock → state = 
SS_CONNECTED .  

  4.5.2   Linking of Inode and Socket Data Structures when the Three -
 Way Handshake Has Completed and Is Accepted by Application 

 Return to  sys_socket()  with pointer to the new BSD socket in the connected 
state. 

 Untill now we have linked socket inode, BSD socket, and TCP socket as shown 
in Fig.  4.20 . Now we need to associate fi le structure with the socket inode and index 
it into the process fi le table,  current → fi les → fd[] . We call s ock_map_fd()  to get this 
done. The function fi rst fi nds out the unused fi le descriptor by the process by calling 

    cs 4.15.      sock_graft().   

    Figure 4.20.     New socket is created (but not linked in process fi le table) for the connection that 

has just a completed three - way handshake.  
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 get_unused_fd() . This makes use of three fi elds of the  current → fi les  fi le table  open_
fds, max_fdset, and next_fd , where  open_fds  is the bitmap for the fi le descriptors 
which are allocated,  max_fdset  is the maximum number that can be allocated as fi le 
descriptors at any point in time, and  next_fd  is the next number that is to be allo-
cated as fi le descriptor, and this fi eld is incremented by 1 whenever a new fi le 
descriptor is allocated. The logic is to start searching from the  next_fd  bit in the 
memory region starting from the address pointed by  open_fds  and fi nd the bit 
number which is not set. That bit number is the next fd to be allocated. The bit is 
then set. This fd is returned by  get_unused_fd() . We return to s ock_map_fd()  with 
the allocated fi le descriptor fd. Now we need to allocate the fi le structure and link 
it with the socket inode. This is done by calling  sock_map_fd() . The function allo-
cates fi le structure and dentry structure, initializes fi elds of the fi le and dentry 
structures, links dentry structure with the fi le and socket inode, and returns fi le 
structure, as shown in cs  4.16 .   

 We have done most of the work until here by linking the socket with the VFS. 
The last step is to index the fi le structure for the socket inode in the process fi le 
table,  current → fi les → fd[] , at  fd  ’ th element. This is done by calling  fd_install() . This 
function is passed the  fd  &  fi le  structure just allocated, and it does the indexing of 
the fi le in the process fi le table:

   current → fi les → fd[fd] = fi le;    

 The fi le table lock,  current → fi les → fi le_lock , was held while doing this.  sock_
map_fd()  returns with the fi le descriptor allocated to  sys_accept() , and  sys_accept()  
returns from kernel to user application which had invoked  accept()  systemcall with 
the fd for the new connection. After return from  accept() , we have the process fi le 
table as shown in Fig.  4.22 . So, server application can use the new  fd  returned by 
 accept()  to communicate with the client and things continue like this.    

  4.5.3   Linking of VFS and Socket Data Structures in the Kernel 
when a New Connection is Established 

 Figure  4.21  illustrates snapshot of the kernel data - structures that link socket layer 
with VFS. New socket is linked with VFS only when application has accepted the 
socket connection. 

 Flow control for accept() is shown in Fig.  4.23 .    

  4.5.4   File Table Entry of a New Accepted Connected Socket 

 Figure  4.22  shows snap shot of the process fi le table when a new socket connection 
is accepted by the application. Since socket is considered as a special fi le by unix, it 
can be accessed using socket descriptor in the same way regular fi les are accessed. 
This is possible because socket is also linked to process fi le table.  

  4.5.5   Flow Control for Accepting New Established Connections 

 Figure  4.23  show fl ow of control for TCP/INET accept implementation in the 
kernel. It shows major routines called from sys - accpt().   



  4.6   CLIENT SIDE SETUP 

 At the client end we need to do a little work to get connected to the server (see 
Fig.  4.24 ). The client should only have information about the server ’ s IP and the 
service port number to get connected to the server. The client can do this by invok-
ing the following systemcalls in sequence: 

  Socket  
  Connect      

    cs 4.16.      sock_map_fd().   
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    Figure 4.21.     Connection is accepted by the listening socket from the accept queue and is linked 

to process fi le table.  

 We have seen how a socket systemcall works in our earlier discussions. We pass on 
port number and IP address information about the server as an argument to the 
connect systemcall. By default, connect() is blocking. So if the connection is estab-
lished with the server successfully, connect() returns with proper error code and we 
can use the fi le descriptor returned by socket() systemcall to communicate with the 
server. In the clients case, the kernel doesn ’ t need an application to specify any port 
number for client application. Instead, the kernel assigns any unprivileged free port 
to the client by which the client socket will be recognized by the system. In our 
further discussions we see how all this happens inside the kernel. First we discuss 
the server and client steps involved for connection setup and then explain in detail 
the arrangements done by the kernel at each step of connection setup. 

  4.6.1   Client Side Operations 

 Figure  4.24  shows sequence of systemcalls to implement client program. It also 
describes functionality of each system call in short.  

  4.6.2   Connect 

 We need not worry about the socket systemcall here because it has already been 
discussed. We look at how connect works.  connect()  systemcall is invoked from the 
application and is called within the kernel as  sys_connect() . Connect has to do a lot 
of work before it sends out a connection request to the server. 

  sys_connect()  accepts three arguments:  

  Kernel interface for connect.  

   fd :     This is the socket fi le descriptor returned by the socket call.  
   umyaddr :     This is the socket address to which we want to bind the socket.  
   addrlen :     This is the socket address length.    



    Figure 4.22.     Linking of various data structures when a connection request is accepted by a lis-

tening socket.  

          sys _ connect () .     This fi rst fi nds out the socket associated with the socket fi le 
descriptor  fd  by calling  sockfd_lookup() . This function was explained earlier in 
Section  4.2.11 . Once we have a socket from  sockfd_lookup() , we need to copy the 
socket address from user space to kernel space by calling  move_addr_to_kernel() . 
We now call a connect function specifi c to the  inet  address family,  sock → ops →
 connect() . This is  inet_stream_connect() .  
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    Figure 4.23.     Code fl ow for accept process.  

    Figure 4.24.     Client side sequence of systemcall made to generate a connection request.  



    inet _ stream _ connect ().      It does some sanity check on the address family of the 
socket address. If things are OK, we move ahead and check the state of the socket 
( sock → state ). Any state other than  SS_UNCONNECTED  is unacceptable for 
processing. Socket states  SS_CONNECTED  or  SS_CONNECTING  means that 
connect is called twice on the socket. If the socket state is  SS_CONNECTED , we 
make some more checks on the state of the TCP specifi c socket associated with 
the BSD socket ( sock → sk → state ). It should not be  TCP_CLOSE . We call TCP -
 specifi c connect now, pointed to by  sk → prot → connect() . This function is 
 tcp_v4_connect() .     

  4.6.3     tcp _ v 4_ connect ()  

 This fi rst gets the pointer to the TCP - specifi c data structure ( tcp_opt ) associated 
with the socket ( sk → tp_pinfo.af_tcp ). Do some sanity checks on the socket address 
family and the address length. One of the many things that the connect needs to do 
is to defi ne the route and get the available port for the connecting socket. We will 
see how this is done. 

        Getting Route Information.     We get the routing information from two 
parameters: 

  1.     Source address  
  2.     Next hop address    

 The default next hop is set to the destination address provided in the socket address. 
If the  ip_options  structure ( sk → protinfo.af_inet.opt ) is initialized for the socket and 
 srr  fi eld of this structure is set, the next hop is taken from  sk → protinfo.af_inet.opt →
 faddr . We call  ip_route_connect()  to get the route for the destination address. The 
function returns routing information in the  struct rtable .     

  4.6.4     ip _ route _ connect ()  

 This fi lls in the  ‘  struct rtable  ’  for the destination route, depending on the source 
address and the interface being used for the destination. It calls  ip_route_output() , 
which calls  ip_route_output_key(). ip_route_output()  initializes  ‘  struct rt_key  ’  for the 
routing table search. It fi nally passes the key to.  

  4.6.5   Flow Control for Generating a Connection Request 

 Figures  4.25a  and  4.25b  show the fl ow of control for INET/TCP connect implemen-
tation in the kernel and major routines called from sys_connect.   

  ip_route_output_key(). struct rt_key  has four fi elds: destination IP, source IP, TOI 
(type of service), and outgoing interface number. All routing entries for the system 
are hashed in the global table  rt_hash_table[] . This is an array of  ‘  struct rt_hash_
bucket  ’  (see Fig.  4.26 ).   

 The member  chain  of  ‘  struct rt_hash_bucket  ’  points to the hash collision chain, 
and  lock  is the lock to protect the hash collision chain  chain . If we fi nd the entry 
for a given destination in the routing hash bucket, we use that or else we try to 
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    Figure 4.25a.     Code fl ow for connect process.  

make a new entry for the routing hash bucket by calling  ip_route_output_slow() . 
We return to  tcp_v4_connect() . 

   End of  ip _ route _ connect () .     If  ip_route_connect()  returns    <    0, it means that 
we could not get a route for the destination and hence we return from here. We 



    Figure 4.25b.     Code fl ow for connect process ( continued ).  

    Figure 4.26.     Routing table hash bucket.  
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have gotten the routing entry for the destination, and we still need to do some sanity 
checks on the routing fl ag. If the routing fl ag ( rt → rt_fl ags ) is set to  RTCF_MULTI-
CAST  or  RTCF_BROADCAST , we return error, which means that our destination 
is multicast or broadcast and we want to connect only to such unicast addresses. We 
now update the sockets destination cache fi eld ( sk → dst_cache ) with the value 
obtained from the routing table entry ( rt → u.dst ). Initialize some of the fi elds of the 
sock structure. Initislize source address ( sk → saddr ) to  rt → rt_src  in case the source 
address is not set. Initialize destination address ( sk → daddr ) to either the address 
passed in the socket address or from the routing table entry just found ( rt → rt_dst ). 
Initialize the destination port ( sk → dport ) to the port number in the socket address 
( usin → sin_port ). Initialize some of the fi elds of the tcp_opt structure for the socket 
( sk → tp_pinfo.af_tcp ). Set the socket state to  TCP_SYN_SENT . We have not yet 
allocated the local port for the socket, so call  tcp_v4_hash_connect()  to allocate the 
free port for the socket and associate the socket with the appropriate hash list.   

  4.6.6     tcp _ v 4_ hash _ connect ()  

 This functions more or less like  tcp_v4_get_port() , which is called to bind a socket 
to a specifi c port when  bind()  systemcall is invoked. A couple of things change 
here: 

  1.     We are not requesting for a particular port number.  
  2.     We have different view for reusage of port numbers.    

 If  sk → num  is not set, it means that we are looking for any available free port that 
can be used or reused.  sk → num  is not set. 

 Most of the time  connect()  is called without  sk → num  set, which means that we 
are not looking for any specifi c port but instead any available port to which the 
connecting socket can bind. So, we need to search the tcp - bind - hash bucket list for 
each port number starting from  tcp_port_rover , which keeps the last port allocated 
to anyone on the system. The logic to traverse the tcp - bind - hash bucket is the same 
as discussed in Section  4.2.14 :  tcp_v4_get_port() . 

 We get hold of a hash bucket for each port number and traverse through the 
hash chain until we get hold of the available port number. While traversing through 
the collision chain of tcp - bind - hash bucket for each port, we make the following 
checks, if the matching port number is found ( tb → port == rover ): 

  1.      tb → fastreuse  > = 0 .  
  2.     Check the established hash,  tcp_ehash , table for any matching quadruplet 

(source IP, destination IP, source port, destination port).    

 If a matching port number is not found ( tb → port != rover) , we move on to the 
next element in the hash collision chain. We repeat this until we have traversed the 
entire list. If we don ’ t fi nd any entry with matching port number, we come out of 
the collision chain travers loop and create a new bucket for this port number by 
calling  tcp_bucket_create() , and we set fastreuse fl ag ( tb - fastreuse ) to  − 1 and come 
out of the main loop. We are able to fi nd the hash bucket with a matching port 
number. 



 We go to the next port number in case we fi nd condition 1 satisfi ed. This way 
we are ensuring that we are not allocating any port number to the connecting socket, 
which is already in use by the listening socket whether or not the listening socket 
wants to share the port number. If the only connecting socket is already using the 
port number, it would set the  tb → fastreuse  to  − 1. If condition 1 fails, we can still 
consider the reuse of the port number, if one or more connecting sockets are 
associated with it. If condition 1 is false, we move ahead to check whether we are 
qualifi ed to reuse this port number to check condition 2. For that we call 
 __tcp_v4_check_established() .  

  4.6.7    __ tcp _ v 4_ check _ established ()  

 This function is called with the local bottom half disabled, because the bottom 
halves may get scheduled on different CPU and modify the  tcp_ehash  table. We 
fi rst get the hash number from the combination of  sk → rcv_saddr, sk → daddr, sk →
 dport , and selected local ports by calling  tcp_hashfn() . Sockets are hashed in the 
 tcp_ehash  table using the above quadruplet where source IP is  sk → rcv_addr  and 
not the  sk → saddr . We try to fi nd the hash bucket from the hash number obtained 
(see cs  4.17 ). First try to search all the sockets in TIME_WAIT state. This is the 
second half of the tcp_ehash table and can be accessed as shown in cs  4.18 .   

 We actually need to check each socket in the chain pointed to by skp and fi nd 
out any possibility of reusing the port. The fi rst check is to match the quadruplet 
and the interface used by the two sockets. For doing this, we call use macro  TCP_
IPV4_MATCH().  If they match,  TCP_IPV4_MATCH() returns TRUE and  we 
move ahead to check if still we can reuse the port. The next step is to check the 
timestamp when the FIN was received from the peer. We consider the case, only if 
the FIN segment reception time is more than 1 second old (we need to justify this). 
We know that the socket that does an active close (sends fi rst FIN) gets into the 
TIME_WAIT state after receiving FIN from the other end and after it has sent the 
fi nal ACK. Please refer to Section  2.8.4  for TIME_WAIT state. If we have already 
received the FIN from the peer,  tw → ts_recent_stamp  is set to the system time at the 
time when FIN tcp segment was received. If timestamp is more than 1 seconds old, 
we can consider the socket to use the port number. Otherwise we return with failure 
code. Suppose we pass here, we need to initialize the sequence number which is 
such that it should never overlap with the sequence number from the last connection 
(see cs  4.19 ). The reason for this is that the reception of any packet hanging in the 
net from the last connection should not cause any damage to the new connection 

    cs 4.17.      __tcp_v4_check_established() .  

    cs 4.18.      __tcp_v4_check_established() .  
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(like data integration problem or resetting of connection). Now we break from the 
loop and go ahead with other initializations.   

 Considering that we could not get the requested port number after completely 
searching TIME_WAIT socket list, we search  tcp_ehash  table for all the sockets in 
TCP_ESTABLISHED state using the port in question. We traverse through the list 
of sockets in the chain ( head → chain ), where  head  is pointer to tcp_ehash bucket. 
Once again, in each iteration we compare the quadruplet and the interfaces which 
are associated with the sockets by calling  TCP_IPV4_MATCH() . If the function 
returns FALSE, we are not eligible to use the port number and hence return. 

 If we get here, the socket is qualifi ed to use the port number. Hence we need 
to initialize some of the socket fi elds and also need to do some cleanup stuff. We 
obtained the port, so initialize the socket fi elds (see cs  4.20 ).   

 Add the socket to the head of the  tcp_ehash  table (see cs  4.21 ).   
 If we obtained the hash bucket from TIME_WAIT socket list, we need to 

cleanup time - wait related links (see cs  4.22 ). Now remove the TIME_WAIT socket 
from the TIME_WAIT bucket, and fi nally remove this socket from the  tcp_ehash  
and  tcp_bhash  tables (see cs  4.23 ). We have obtained the requested port and done, 
so return from    __tcp_v4_check_established()   .   

    cs 4.19.      __tcp_v4_check_established() .  

    cs 4.20.      __tcp_v4_check_established() .  

    cs 4.21.      __tcp_v4_check_established() .  

    cs 4.22.      __tcp_v4_check_established() .  



 We need to explain the relation between sock and tcp_tw_bucket structures. 
Also explain the linking of TIME_WAIT sockets (sk → next_death and sk → pprev_
death). We return to  tcp_v4_hash_connect() . If we obtain the port for the socket, 
we come out of the main loop; otherwise we iterate the loop once again with next 
port number. 

 We have come out of the loop, which means that either we obtained the avail-
able free port number or shared port number. We carry out searching process with 
lock for the hash bucket held and bottom half disabled. We need to link the socket 
to the hash bucket owners ’  list (see cs  4.24 ).   

 We need to assign the selected port number to the socket ( sk → sport ) and hash 
the socket in the  tcp_ehash  table in case the new hash bucket is created; otherwise 
this fi eld is assigned value in  __tcp_v4_check_established()  (see cs  4.25 ). Condition 
cs  4.26  should be true if new hash bucket is allocated for the socket, because this is 
the only socket in the owners ’  list of the hash bucket, and we return from here.   

 Let ’ s see the case where the port number was specifi ed ( sk → num != 0 ) get the 
pointer to the hash bucket for the port number (see cs  4.27 ). Hold the lock for the 
tcp hash bucket ( head → lock ) and now check if the socket is the alone socket in the 
hash bucket pointed to by  sk - prev  (see cs  4.28 ).   

    cs 4.23.      __tcp_v4_check_established() .  

    cs 4.24.      tcp_v4_hash_connect() .  

    cs 4.25.      tcp_v4_hash_connect() .  

    cs 4.26.      tcp_v4_hash_connect() .  

    cs 4.27.      tcp_v4_hash_connect() .  
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 If that is the case, we can safely allocate the port to us and then return. Now 
we wonder how  sk → prev  has the  tcp_ehash_bucket  allocated to it. This is possible 
because the application has already set the  sk → num  by calling  setsockopts()  if it 
wants the connecting socket to bind to a specifi c port. We just need to call  __tcp_
v4_hash()  to associate the socket with the  ehash_list  table. If we are not able to 
satisfy the above condition, we need to walk through the tcp_ehash table to resolve 
any confl icts for the port sharing  __tcp_v4_check_established() . If we get the 
requested port number, then  __tcp_v4_check_established()  returns success, which is 
returned to  tcp_v4_connect() . 

  END OF  tcp_v4_hash_connect()     

 We return to  tcp_v4_connect()  with either success or failure. If we fail to get the 
port number, then we return; otherwise we continue with connecting process. Until 
now we got the route to destination, and obtained the local port number, and we 
have initialized remote address, remote port, local address, and local address fi elds 
of the socket. We have already initialized most of the fi elds of the socket and tcp_
opts for the socket with default values. The rest of the fi elds will be initialized when 
we a receive a response from the peer. We need to get the initial sequence for our 
end of the TCP connection; call  secure_tcp_sequence_number() . The function calcu-
lates sequence number based on quadruplet, system time, and some random number. 
Linux implementation follows RFC 793 as close as possible for system time issues. 
Get the packet ID counter based on the initial sequence number and the jiffi es (see 
cs  4.29 ).   

 Now since the initial setup is done, we need to generate a SYN packet and give 
it to the IP layer for further processing. We call  tcp_connect()  for doing this.  

  4.6.8     tcp _ connect ()  

 The fi rst step is to do some more initializations of some of the fi elds of  tcp_opt  very 
specifi c to TCP protocol. These fi elds are related to mss, window size, mtu, and so 
on; for this we call  tcp_connect_init() . The function also clears up retransmission -
 related fi elds in  tcp_opt  structure. Now we allocate the  sk_buff  structure (cs  4.30 ), 
which represents a packet on Linux (please refer to Chapter  5  for  sk_buff ).   

 Make room to store tcp header, i.e. Adjust the buffer data pointer to point to 
the location where the TCP header should go (see cs  4.31 ). Initialize the  cb  fi eld of 
 sk_buff  (see cs  4.32 ). This fi eld can contain any private data to be used by different 

    cs 4.28.      tcp_v4_hash_connect() .  

    cs 4.29.      tcp_v4_hash_connect() .  



protocol layers. TCP keeps per packet control information here and is known as a 
control buffer for TCP. The control buffer is represented by  struct tcp_skb_cb . The 
control buffer is provided with the following information: 

   •      TCP fl ag is set to TCPCB_FLAG_SYN  
   •      Sequence number  
   •      Timestamp  
   •      ACKing information      

 We are also intializing tcp_opt fi elds related to sequence number such as  snd_nxt, 
pushed_seq and retrans_stamp . Our job is done, and we will queue the  sk_buff  at 
the head of the socket ’ s write queue (see cs  4.33 ). Keep account of memory usage 
of the socket as a result of the  sk_buff  queuing (see cs  4.34 ).  sk → wmem_queued  
keeps account of how much memory is allocated for the write queue, and  skb →
 truesize  is the memory allocated for the  sk_buff  and the memory block allocated 
for  sk_buff  data. sk → forward_alloc keeps check on the total memory usage by 

    cs 4.30.      tcp_connect() .  

    cs 4.31.      tcp_connect() .  

    cs 4.32.      tcp_connect() .  

    cs 4.33.      tcp_connect() .  
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socket. So, we update both here in tcp_charge_skb() (see cs  4.35 ). We need to trans-
mit this  sk_buff  for further processing; call  tcp_transmit_skb() . We don ’ t pass the 
sk_buff just allocated to the function, but we pass just the clone of it. By clone it 
means that the new sk_buff structure is allocated and not the  sk_buff  data part. So, 
we have a new  sk_buff  structure that has a copy of the original sk_buff except for 
the data that is shared between the two. The new  sk_buff  is not owned by the 
socket.    

  4.6.9     tcp _ transmit _ skb ()  

 This function is used to transmit the packets passed to it.  sk_buff  to be processed 
by the function don ’ t have headers initialized, so it is the primary job of the functon 
to build the TCP header before transmitting it to the next layer for processing. First 
we want to know what TCP options are supported by protocol and gather that 
information from system control global variables  sys_ctl *  . Accordingly, we increase 
the TCP header size to accommodate each option. Once we have the fi nal TCP 
header size, we can adjust the sk_buff data pointer to point to the position where 
the TCP header should start. Finally, get the pointer to the data location (see cs 
 4.36 ).  skb → h.th  is the header fi eld for the packet which points to transport layer 
(TCP in our case) header. Build header from information provided in  sock, tcp_
skb_cb  (control buffer) and  tcp_opt  structures. Associate sk_buff with the socket 
and modify the memory usage for the socket (see cs  4.37 ). We use functions specifi c 
to the inet family to build checksum and transmit the packet ( sk_buff ) for further 

    cs 4.34.      tcp_connect() .  

    cs 4.35.      tcp_charge_skb() .  

    cs 4.36.      tcp_transmit_skb() .  

    cs 4.37.      tcp_transmit_skb() .  



processing by the next protocol layer (IP). These functions are registered by the 
socket.  tcp_opt ’ s  fi eld  af_specifi c  points to set of functions specifi c to ipv4/tcp and 
are pointing to i pv4_specifi c . So we call  tp → af_specifi c → send_check  pointed to by 
 tcp_v4_send_check()  is called to compute TCP checksum and fi nally  tp → af_
specifi c → queue_xmit  pointed to by  ip_queue_xmit()  is called to transmit the packet 
to IP layer for further process the packet. We wait here until we return from  ip_
queue_xmit(). tcp_transmit_skb()  returns with the error code set. 

  END OF  tcp_transmit_skb()       

 We are back to  tcp_connect()  and now set SYN retransmit timer for retransmitting 
SYN if SYN/ACK is not received (see cs  4.38 ). 

  Return from  tcp_connect()   
  END OF  tcp_connect()       

 We are back to  tcp_v4_connect()  from where we just return with the error code 
set. 

  END OF  tcp_v4_connect()     

 We are back to  inet_stream_connect() , and here we set the socket state to connecting 
in case we get a success error code (see cs  4.39 ). Now we wait until we time out or 
we get the connection (three - way handshake is over) (see cs  4.40 ).  inet_wait_for_
connect()  makes the process sleep in socket ’ s wait queue (sk → sleep) in INTER-
RUPTABLE state (which means process can be aborted anytime while waiting for 
connect to get over). The process goes to sleep until 

  1.     it is woken up by the soft IRQ on reception of SYN/ACK packet for the 
SYN,  

  2.     timeout occurs, or  
  3.     we receive ICMP error message.      

 If we don ’ t encounter any error,  inet_wait_for_connect()  returns TRUE. If no signal 
is received by the current process, we receive some response from the peer. At this 
point in time, we are either connected or we received an error message about con-
nection not established. We check this from the sock state (see cs  4.41 ).   

    cs 4.38.      tcp_connect() .  

    cs 4.39.      inet_stream_connect() .  
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 If we get connected, the socket state is set to  SS_CONNECTED , and we return 
from here. 

  END OF  inet_stream_connect()     

 We are back to  sys_connect() . We return from here to the user application which 
invoked  connect()  systemcall with the error code set. 

  END OF  sys_connect()     

 Figures  4.25a  and  4.25b  explain the complete fl ow for connect().   

  4.7   SUMMARY 

 Protocol - specifi c operation on the socket is accessed from  prot  fi eld of the sock 
object. For the INET stream protocol, this is fi eld is initialized to  tcp_prot . 

 The  tcp_hashinfo  object has pointers to different hash tables for bind, estab-
lished, and listening sockets. 

  tcp_bhash  is an object of type  tcp_bind_hashbucket  pointing to bind hash table. 
This table is hashed based on the port number sockets are bound to them. The hash 
function takes post number as input to identity hash bucket for the socket in the 
table. 

  ehash  is object of type  tcp_ehash_bucket  points to established hash table. Hashed 
on the destination and source port/IP. 

  tcp_listening_hash  is a hash table of sock objects hashing all the listening sockets. 
Hashed on the listening port number. 

    cs 4.40.      inet_stream_connect() .  

    cs 4.41.      inet_stream_connect().   



  tcp_bind_confl ict()  checks for any confl icts related to allocation of port. 
  tcp_port_rover  stores the last allocated port number. 
  tcp_listen_opt  is an object that keeps information about all connection requests 

for a listening socket. 
  syn_table  fi eld of  tcp_listen_opt  object of type  open_request . This hashes in all 

the connection requests for the listening socket. 
 Once a three - way handshake is over, the connection request is moved from 

listeners SYN queue to accept queue,  tp → accept_queue . 
  sock  and  tcp_opt  objects are initialized for the new connection in the accept 

queue. 
 Once an application accepts a connection request in the accept queue, a BSD 

socket is created for the new connection and is associated with VFS. 
  __tcp_v4_lookup_established()  searches for established connections in the  ehash  

table. 
  tcp_v4_lookup_listener()    searches for listening sockets in the  tcp_listening_hash  

hash table.    
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   sk _ buff   AND PROTOCOL HEADERS     

     sk_buff is the network buffer that represents the network packet on Linux TCP/IP 
stack.  sk_buff  has three components: sk_buff, and linear - data buffer, and paged -
 data(struct  skb_shared_info ). When  sk_buff  is requested, we pass it the length of 
the linear data area. There are fi elds in the  sk_buff  which are pointers to transport 
layer, network layer, and link layer headers. Before passing on the  sk_buff  (network 
packet) to next protocol layer for processing, we make the data fi eld of  sk_buff  to 
the start of next protocol layer header. The next protocol layer maps the data buffer 
pointed to by data fi eld of  sk_buff  to the protocol header structure for that layer 
and accesses that protocol header. In the same way we construct the protocol 
headers for the outgoing packet. In this chapter we will see how protocol headers 
are built for the outgoing packets and extracted from the incoming packets. 

 We study various fi elds of  sk_buff  structure and functions manipulating head, 
tail, end, data, and len fi elds of  sk_buff . We will study the data_len fi eld of  sk_buff  
and functions manipulating it. We need to study struct  skb_shared_info  and how it 
is used. Then we move down to descriptions of various functions specifi c to cloning 
and queuing  sk_buff . 

 sk_buff contains linear and nonlinear data portions. Linear data are repre-
sented by the data fi eld of  sk_buff . Normally, we allocate one page of linear data 
only for IP segments that can be accommodated in a single page. In the case where 
the total IP segment length is more than one page, we have two options. First is to 
have a linear data area of length which can accommodate the entire segment, and 
second is to have a paged data area for the rest of packet (linear data   =   1 page and 
(IP segment — 1 page) length of IP segment in a paged data area of  sk_buff ). The 
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latter is performed only if the output device ’ s DMA channel doesn ’ t support the 
scatter – gather technique. This chapter discusses the structure of the paged data area 
of sk_buff and discusses the routines to manipulate it. 

 There is also a provision to link all the fragments of the IP datagram in the case 
where the original datagram is fragmented by some intermediate router. Linux 
sk_buff has a pointer to such a fragmentation list which has all the IP fragments 
arranged in the same order. We study the sk_buff fragment list as part of  struct 
skb_shared_info  in this chapter. 

 We will study how the protocol headers are built as a packet (sk_buff) traverses 
down the protocol layers for transmission. At the same time we will also study how 
protocol headers are extracted by protocol layers as the packet ( sk_buff ) moves up 
the layers by manipulating  sk_buff  data fi eld. This will make the  sk_buff  concept 
very clear as a Linux network buffer.  

  5.1   STRUCT   sk _ buff   

  sk_buff  structure represents a packet on Linux. It consists of three segments: 

   •       sk_buff  structure, which is also referred to as a  sk_buffer  header  
   •      Linear data block containing data  
   •      Nonlinear data portion represented by  struct skb_shared_info     

 The  sk_buff  structure contains fi elds that contain pointers to protocol - headers - 
specifi c data structures. Then there are fi elds that contain some control information 
for each protocol which may be used to build headers and also can also be used to 
decide the next action to be taken based on specifi c events. Some fi elds contain the 
IP checksum and also the next protocol information. We have some fi elds that 
manipulate actual packet data.  sk_buff  also contains information about the device 
from where the packet has arrived and about the device from where it has to leave 
the system. Whenever a new packet needs to be transmitted ot received over the 
interface, a new  sk_buff  structure is allocated along with the data block, and data 
are copied to the  sk_buff  and then only the packet is processed further. Each  sk_buff  
for a connection may have some fi elds in common, but the others may differ. 
Depending on requirements, we can clone  sk_buff  (separate copy of  sk_buff  struc-
ture but sharing same data blocks) or make an exact copy of the  sk_buff  (duplicating 
the  sk_buff  with a separate copy of the data block). Let ’ s look at the sk_buff struc-
ture in detail. Figures  5.1a  and  5.1b  have the defi nition of  sk_buff  struct. Let ’ s look 
at each fi eld in the sk_buff structure: 

   next   and   prev :     These fi elds link the related  sk_buffs  together. For example, 
when a packet is fragmented, each fragment of the original packet is linked 
through the  next  fi eld. (We will further discover why these two fi elds are 
placed at the start in the same order, maybe to align it with  sk_buff_head .)  

   list :     This is pointer to the queue (struct  sk_buff_head ) or list on which this 
 sk_buff  is currently placed.  

   sk :     Pointer to the socket to which this packet ( sk_buff ) belongs.  
   stamp :     This is the fi eld keeping the timestamp of the point when the packet is 

transmitted or received.  
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    Figure 5.1a.     Network buffer — Linux implementation of packet.  
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   dev :     This is the pointer to the device,  struct net_device , through which the packet 
is received or transmitted. The net_device keeps information about the 
network interface (data link layer) and operations specifi c to the device.  

   union   h :     This is a union of pointers to different transport layer headers. This 
fi eld points to the offset in the packet data that is the start of transport layer 
header.  

   union   nh :     This is a union of pointers to different network layers headers 
supported by Linux. It points to the offset in the packet data that is the start 
of the network layer header.  

   union   mac :     This is a union of pointers to different mac layer headers supported 
by Linux. It points to the offset in the packet data that is the start of the mac 

    Figure 5.1b.     Network buffer — Linux implementation of packet ( continued ).  
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layer header. We will see how these fi elds are made to point to the appropri-
ate locations in the packet data so that they correctly access the start of the 
protocol headers.  

   dst :     This points to dst_entry structure, which keeps the information about the 
route for a given destination and also some information specifi c to the 
network characterstics for a given connection such as pmtu, rtt, and so on; 
we study more about it in Section  14.8 .  

   cb :     This fi eld keeps control information specifi c to the protocol. This may be 
used independently by each protocol layer. If we want to keep the same 
information across the layers, we can clone sk_buff. The socket layer can 
map these data to  struct inet_skb_parm , and tcp can map this buffer to  struct 
tcp_skb_cb.  We will see the usage in later sections.  

   len :     This fi eld keeps the total length of the data associated with the sk_buff 
(packet length at any point of time).  

   data _ len :     This fi eld is used only when we have nonlinear data (paged data) 
associated with the  sk_buff . This fi eld indicates the portion of the total packet 
length that is contained as paged data, which means that the linear data 
length will be  skb → len     −     skb → data_len . We will discuss more about it in 
Section  5.2 .  

   csum :     This is the checksum of the protocol at any point in time. Discuss more 
about it later.  

   cloned :     This fi eld keeps information that the  sk_buff  is the cloned one or the 
original one.  

   pkt _ type :     This fi eld contains information about the type of the packet. The 
types generally are multicast, broadcast, loopback, host, other hosts, 
outgoing and so on; we will come to know more about it later.  

   ip _ summed :     This fi eld indicates whether the driver calculated the IP checksum 
for us.  

   priority :     This fi eld keeps information about the queuing priority of the packet. 
This is based on the TOS fi eld of the IP header.  

   users :     This fi eld keeps account of number of references to the  sk_buff .  
   protocol :     This fi eld keeps the information of the next layer protocol and is set 

when a packet is processed by the current protocol layer.  
   security :     This keeps the security level for the packet. We discuss it in more 

detail later.  
   truesize :     This fi eld keeps the information about the total memory allocated for 

this buffer. This includes the  sk_buff  structure size   +   the size of the data 
block allocated for this  sk_buff .  

   head :     This fi eld points to the start of the linear data area (fi rst byte of the 
linear - data area allocated for the  sk_buff ).  

   data :     This fi eld points to the start of the data residing in the linear - data area. 
The data residing in the linear - data area may not always start from the start 
of the linear - data area pointed to by head because of the reasons that we 
discuss in Section  5.4.2 .  

   tail :     This fi eld points to the last byte of the data residing in the linear - data 
area.  
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   end :     This fi eld points to the end of the linear - data area and is different from 
 tail . The end of the data residing in the linear - data area may not always be 
at the end of the linear - data area, so we have  tail . With this fi eld we make 
sure that we don ’ t use more than what is available.      

 Head, data, end, and tail fi elds manipulate the linear area, and we will see it in 
the latter part of the discussion. Whenever we allocate a new sk_buff, we provide 
the size of the linear - data area. At the same time, we initialize the four fi elds of 
sk_buff to point to linear - data area in appropriate positions. Figure  5.2  shows the 
position of four fi elds when a new sk_buff is allocated. We can see that when we 
request sk_buff for a given length  len  of linear - data area, we have fi elds of sk_buff 
set appropriately. We can also see the addition area reserved for  struct skb_shared_
info  at the end of the linear data area. This structure is shared across the sk_buff 
clones.    

  5.2   STRUCT   skb _ shared _ info   (Fig.  5.3 ) 

 This structure contains information about the nonlinear data area for the  sk_buff . 
By nonlinear area, it means that the data contained by the  sk_buff  are just more 
than that can be accommodated in the linear data area. The data contained in the 
nonlinear data area is continuation of the data from the offset pointed to by  end  
fi eld of the  sk_buff . The total length of the data is contained in linear and nonlinear 
data area. The total length of the  sk_buff  data is stored in  len  fi eld, and the length 
of the nonlinear (paged) data area is stored in  data_len  fi eld of  sk_buff ; please refer 
to Fig.  5.4 . The paged - data area is possible only if DMA allows scatter – gather 
operations on the physically scattered pages. 

    Figure 5.2.     sk_buff when it is 

just as returned by skb_allocr().  



   dataref :     This keeps the account of number of references for  skb_shared_info  
object.  

   nr _ frags :     This fi eld keeps the number of paged fragments for the  sk_buff . It is 
an indication of the number of elements in the  frags[]  array containing paged 
data for  sk_buff .  

   frag _ list :     This fi eld keeps the pointer to the list of  sk_buffs  representing the 
fragments for the original packet ( sk_buff , to which the  frag_list  belongs). 
We will see in the next section the live example explaining the fi eld. If the 
original packet is fragmented, all the  sk_buffs  representing those fragments 
will be linked in this list and the total length of the original  sk_buff  is the 
sum of the lengths ( skb → len ) of each fragment in the frag_list list including 
the length of the original sk_buff. Please refer to Fig.  5.5 .  

   frags :     This fi eld is the array of fragments containing the paged data for the 
sk_buff. The paged data are represented by struct  skb_frag_struct . The length 
of data contained in the paged area (represented by  frags[] ) is the sum of 
the number of bytes contained in each page fragment (frags[i]  →  size) and is 
stored in  data_len  fi eld of  sk_buff .       

  5.3     sk _ buff   AND  DMA  —  SKB _ FRAG _ STRUCT  

 This structure is a descriptor for each paged fragment containing paged data for the 
 sk_buff . 

   page :     This fi eld is a pointer to the page structure containing paged data for the 
fragment. Each page fragment contains a maximum of one page of data. 

    Figure 5.3a.     Structure at the end of linear - data area containing  sk_buff  fragment info and 

nonlinear data info for  sk_buff .  

    Figure 5.3b.     Structure, keeping information of nonlinear data for  sk_buff .  
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    Figure 5.4.     Paged data area organization for  sk_buff .  

The kernel virtual address to which this page is mapped can be obtained 
 page_address() .  

   page _ offset :     This fi eld is the offset for the page that points to the start of the 
data in this page.  

   size :     This fi eld is the total length of data contained in the page pointed by  page  
fi eld.    

  5.3.1    DMA  and Fragmented   sk _ buff   Containing Paged Data 

 Figure  5.4  shows linking of kernel data - structures to implement pagedata area for 
sk_buff.  

  5.3.2     sk _ buff   and  IP  Fragmentation 

 Figure  5.5  shows linking of sk_buff ’ s to implement IP fragmentation. 



 We can use a paged data area for  sk_buff  only if DMA supports the scatter – gather 
process on physically noncontagious pages. The fi ne example to understand the 
usage of the paged - data area is  tcp_sendmsg() . If we look at this function, it is clear 
under what conditions we are making use of paged - data area. While allocating 
sk_buff, we need to actually decide on the length of the linear data area depending 
on whether DMA supports scatter – gather for physically noncontiguous pages. To 
decide on this, we call  select_size()  to get the size of the linear data area for the 
 sk_buff. select_size()  checks if DMA supports scatter – gather (see cs  5.1 ).   

    Figure 5.5.     Fragmentation and paged data area for  sk_buff.   

    cs 5.1.      select_size() .  
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 If the above is true, we try to allocate one page of data for the linear - data area, and 
the rest of the data goes as a paged - data  area where one page is allocated per  sk_
buff  fragment for subsequent data. If the scatter – gather is not supported, we try to 
allocate contiguous physical memory to accommodate entire sk_buff data in the 
linear - data area.  

  5.3.3      sk_buff    and Fragmentation 

 A good example to understand the usage of  frags_list (skb_shinfo(SKB) → frag_list)  
is  ip_frag_reasm() . The function is called when we have received all the fragments 
for the original packet. All the fragments for the original packet are linked together 
by  skb → next  in a chain of sk_buff pointed by  qp → fragments . The packet fragments 
are arranged in the list in proper order. The list of fragments is pointed to by 
 head → next  where head is the fi rst  sk_buff  in the list (the fi rst packet in the list). 
The  head → next  is copied to list head ’ s frag_list (cs  5.2 ).   

 Now head ’ s len, data_len, csum, and truesize fi elds are updated to represent 
the complete packet including all the fragments that belong to the original packet 
(see cs  5.3 ).     

  5.4   ROUTINES OPERATING ON   sk _ buff   

 Let ’ s look at the routines operating on  sk_buff . Later on we will see how these 
routines are used in actual practice. First we will look at the routines that manipu-
late the linear - data area. 

  5.4.1     alloc _ skb ()  

 This function allocates a new  sk_buff . We pass on the length of the data area and 
the mode of memory allocation. Data area is the block of memory allocated for the 
 sk_buff  where the packet is constructed. End of the linear data area is reserved for 

    cs 5.2.      ip_frag_reasm() .  

    cs 5.3.      ip_frag_reasm() .  



structure that keeps information of the paged - data area and fragments associated 
with the  sk_buff . So, we allocate a  sk_buff  head and the data area of length  ‘ len ’  
bytes. The position of head, data, tail, and end pointers are shown in Fig.  5.6  when 
the  alloc_skb()  returns. We can see that the tail room is equal to the length of the 
data block requested for  sk_buff  just after allocation. Head room and data length 
are zero.    

  5.4.2      skb_ reserve ()  

 This function changes head and tail room for the sk_buff. It is called mostly to 
reserve space for the protocol headers. We pass length of the headroom we need 
to reserve for the protocol headers (Fig.  5.7 ). Whenever  sk_buff  is allocated to send 
a new TCP data, it allocates data space for the user data, protocol headers, and the 

    Figure 5.6.     Status of  sk_buff  after it is allocated.  

    Figure 5.7.     Status of  sk_buff  after call to  skb_reserve() .  
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 skb_shared_info . When we are constructing a packet, we reserve the maximum 
length that could be occupied by the protocol headers as headroom. Since there are 
some optional fi elds in the TCP/IP protocol headers, we allocate the tailroom as 
the sum of maximum header lengths (including all the optional header fi elds) of the 
protocols. For example, if we look at  tcp_alloc_pskb() , it is clear that total data 
length allocated for  sk_buff  is requested length   +   MAX_TCP_HEADER. MAX_
TCP_HEADER is the sum of maximum length of TCP header(64)   +   maximum 
length of IP header(64)   +   Maximum length of link layer(LL_MAX_HEADER) 
(see cs  5.4 ).    

  5.4.3      skb_ put ()  

 The routine is used to manipulate  sk_buff ’ s  linear data area. The function reserves 
space for the segment data at the end of the linear data area,  skb → tail . We record 
 sk_buff ’ s  original  tail  fi eld at line 788 (cs  5.5 ). At line 790, the  tail  fi eld is incremented 
by requested length. Modifi ed tail fi eld expands  sk_buff ’ s  total length, so we incre-
ment the  skb → len  by requested length at line 791. A sanity check is done at line 
792 to make sure that the tail has not gone past the end of the linear data area 

    cs 5.4.      tcp_alloc_pskb() .  

    cs 5.5.      skb_put() .  



( skb → end ). If everything is OK, we return the original reference to  sk_buff ’ s tail  
fi eld 795.   

 In most of the cases, user data go here or we can say that TCP/UDP payload 
is copied in here. It creates space for the segment payload (see Fig.  5.8 ). The dotted 
blue line in Fig.  5.8  shows the original position of the  skb → tail , which is returned 
to the caller when  sk_buff ’ s  length was  l o  . After call to  skb_put() , the solid gray line 
is the fi nal position of  sk_buff ’ s  tail fi eld and the total  sk_buff ’ s  length becomes  l o    
 +    l r  . Tail room is reduced by  l r  . The caller directly uses the returned pointer to copy 
data.   

 The good example to explain this is  skb_add_data()  called from  tcp_sendmsg() . 
Here we fi rst check how much space is available at the tail end at line 1080 (cs  5.6 ) 
by calling  skb_tailroom() . If some space is available, we fi nd out if current request 
can be satisfi ed with the available tail room at line 1082.  skb_add_data()  is called 
at line 1084 to copy the data to the  sk_buff  linear data space. In  skb_add_data()  we 
call  csum_and_copy_from_use()  to copy data to  sk_buff . The second argument is 
the location to where the data should be copied.   

 We call skb_put()(cs  5.7 , line 985), which returns us the exact location in the 
 sk_buff  linear data area where the data should be copied (original location where 
skb → tail was pointing).    

    Figure 5.8.     Status of  sk_buff  after call to  skb_put() .  

    cs 5.6.      tcp_sendmsg() .  
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    cs 5.7.      skb_add_data() .  

  5.4.4      skb_ push ()  

 This function manipulates the  data  fi eld of  sk_buff  and acts only on linear data area. 
It pushes the  data  fi eld closer to the head by the number of bytes provided as an 
argument to the function. The headroom is reduced by the number of bytes that 
data length has increased. Data fi eld is deducted by length requested at line 817, cs 
 5.8 . This shift of  data  fi eld toward  head  causes overall  sk_buff  length to expand by 
the length requested so we increment  sk_buff  length at line 818. We do a sanity 
check at line 819 to make sure that the data fi eld has not one past start of the buffer 
(line 819). If things are correct, reference to a data pointer is returned to the 
caller.   

 Figure  5.9  shows how a data fi eld is manipulated by calling  skb_push(). l  o  was 
 sk_buff ’ s  original length with a data fi eld pointer represented by a dotted black line. 
 l r   is the length requested by the caller of  skb_push() . After  sk_buff  is processed by 
 skb_push() , the total length of linear data area becomes  l r     +    l o  , and a data pointer 
is represented by a solid black line.   

 This is mainly called when we want to send a packet. The packet contains data 
and protocol headers. We need to add data, and each protocol layer will add its 
header as it passes through different layers. So, the topmost layer adds data and 
then its header. We have seen functions that will create headroom and the room 
for the user data. We create headroom by calling  skb_reserve()  and then room for 
user data by calling  skb_put() . We copy user data in the data area pointed to by 

    cs 5.8.      skb_push() .  



 skb → data . Now it is the chance to add the protocol header just before the start of 
user - data. For a more detailed example, refer to Section  5.5.1 .  

  5.4.5     skb _ pull ()  

 The routine pulls down the data pointer by number of bytes specifi ed as an argu-
ment to the function and returns the new data pointer. This manipulates  sk_buff ’ s  
linear data area by modifying its data fi eld. It reduces  skb → len  by the number of 
bytes requested hence increasing headroom for  sk_buff ’ s  linear data area. Let ’ s look 
at the implementation. First we do some sanity check on the requested length. If it 
is more than the total  sk_buff ’ s  length, we need to return NULL, indicating no 
action was taken (cs  5.9 , line 846). If we can process the request,  __skb_pull()  is 
called at line 848.   

  __skb_pull()  does the actual processing as requested by the caller. It reduces 
 sk_buff ’ s len  fi eld by the number of bytes requested because the request is to shrink 
the linear data area at line 827, cs  5.10 . Next we make sure that the total length, 
just calculated at line 827, has not gone below the linear data area  length(skb →
 data_len) . If things are good, we increment the data pointer by the length of data 
requested at line 830 and return it to the caller.   

    Figure 5.9.     Status of  sk_buff  after call to  skb_push() .  

    cs 5.9.      skb_pull() .  
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 The routine is mostly used to access protocol headers when the packet arrives. 
Let ’ s look pictorially as to what happens when sk_buff is processed by  skb_pull() (see 
Fig.  5.10 ). Originally,  sk_buff ’ s  total length ( skb → len ) was l 0  and  data  fi eld is rep-
resented by a solid black line. Length requested to  skb_pull()  is l r  and fi nal  data  
fi eld is represented by dotted black lines. The reference to data fi eld represented 
as a dotted black line is returned by  skb_pull()  to its caller fi nally. For a more 
detailed example, see Section  5.6 .     

  5.5     sk _ buff   BUILDS PROTOCOL HEADERS AS IT TRAVERSES DOWN 
THE PROTOCOL LAYERS 

  5.5.1   Tcp Header Is Added to    sk_buff    

 We need to pre - pend the TCP header to sk_buff ’ s data area just before the TCP 
payload. The situation is similar to Fig.  5.11  where we have copied  l d   length ( skb →
 len ) of data starting at  skb → data . Now we need to add a TCP header before a TCP 
payload — that is, before  skb → data . TCP calls  tcp_transmit_skb()  to build a TCP 
header for the TCP segment. First it calculates the TCP header length, taking into 
consideration options that is used for current TCP connection. Once this is done, 

    cs 5.10.      __skb_pull() .  

    Figure 5.10.     Status of  sk_buff  after call to  skb_push() .  



we call skb_push() to allocate room for the TCP header. This moves data toward 
the head by a number of bytes required for the TCP header as shown in Fig.  5.11 . 
Now  skb → h.th  is made to point to  skb → data  (returned by  skb_push() ) in cs  5.11 , 
line 226. We access the  skb → data  memory region as if it were  struct tcphdr  and 
initialize the fi elds of the  struct tcphdr .    

  5.5.2   Ip Header Is Added to   sk _ buff   

 Now the packet containing a TCP header and a TCP payload is passed to the IP 
layer. IP creates its own header and adds it to the beginning of the packet (before 
 skb → data ). The example we take here is  ip_build_and_send_pkt() . This function 
builds an IP header for the packet and sends it to the link layer. The IP options are 
already processed before we come here. So, we calculate the fi nal IP header length 
and then call  skb_push()  to allocate space for IP header. This function returns the 
 skb → data  pointer. 

 We construct an IP header at the location pointed to by  skb → data  and fi nally 
make  skb → nh.iph  point to  skb → data  (line 147, cs  5.12 ) as shown in Fig.  5.12 , which 

    Figure 5.11.     Status of  sk_buff  after TCP header is added to the outgoing packet.  

    cs 5.11.      tcp_transmit_skb() .  
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means that a reference of the location for the start of an IP header is stored in 
 skb → nh.iph  for later use and at the same time we have reference to the TCP header 
with sk_buff as  skb → h.th .    

  5.5.3   Link Layer Header Is Added to   sk _ buff   

 Until now we have added the transport layer header and the network layer header 
to the packet. It is the turn of the link layer to add its header. Considering that it 
is an ethernet frame, we will take the example of the  eth_header()  (see cs  5.13 ).   

 This routine pushes the data fi eld by  ETH_HLEN  bytes toward the head as 
shown in Fig  5.13 . We access the location pointed to by  skb → data  as the start of 
the ethernet header and build the header in this location. Finally the packet is ready 

    cs 5.12.      ip_build_and_send_pkt() .  

    Figure 5.12.     Status of  sk_buff  after IP header is added to the outgoing packet.  



    cs 5.13.      eth_header() .  

to be transmitted. The total length of packet that will be transmitted is the area 
covered between  skb → tail  and  skb → data  in case we don ’ t have any paged data 
area.     

  5.6.      sk _ buff   EXTRACTS PROTOCOL HEADERS AS IT TRAVERSES UP 
THE PROTOCOL LAYERS WHEN A PACKET ARRIVES 

  5.6.1    sk_buff  Is Made to Point to a Datalink Layer Header Which 
Will Be Processed by Dalalink Driver 

 When a new packet arrives, a new  sk_buff  is allocated with the data buffer equal 
to the packet size.  sk_buff ’ s  data fi eld points to the start of the packet (ethernet 
header) as shown in Fig.  5.14 . We will once again traverse from the link layer to 
the transport layer to look at how  skb_pull()  does the job of striping the protocol 
headers when the packet moves through different protocol layers. It is the job of 
the link layer driver to fi nd out the next protocol layer from its header and then 
appropriately manipulate the pointers. Let ’ s have a look at one of the Ethernet 
driver ’ s receive routine  e100_rx() . It gets the pointer to the received packet in the 
ring buffer and fi nds out the next layer protocol from the ethernet header fi eld. It 
calls  eth_type_trans(). eth_type_trans()  pulls the data fi eld of  sk_buff  to point to the 
IP header by pulling it down by the length of the ethernet header. This is done 
before the  sk_buff  is queued in the IP backlog queue. So just before queuing the 
 sk_buff  in the IP backlog queue, it looks as shown in cs  5.14 .    

    Figure 5.13.     Status of  sk_buff  after link 

layer header is added to the outgoing 

packet.  
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  5.6.2     sk _ buff   Is Made to Point to an ip Layer Header Which Will Be 
Processed by an IP Layer 

 Now the  sk_buff  is taken off the IP backlog queue and processed by the routine 
 netif_receive_skb()  that pulls  sk_buff  from the backlog queue. Here nh.raw is made 
to point to the data fi eld of the  sk_buff . So, we can directly access IP header 
as nh.iph (see cs  5.15 , line 1435). So, the fi nal  sk_buff  picture will look like 
Fig.  5.15 .    

  5.6.3     sk _ buff   Is Made to Point to a tcp Layer Header Which Will Be 
Processed by a tcp Layer 

 Finally, an IP layer routine  ip_local_deliver_fi nish()  processes the packet for the 
next protocol and pulls the data fi eld of  sk_buff  by the length of the IP header 
(including IP options) to point to the transport protocol header (see cs  5.16  line 
227). So, fi nally the  sk_buff  is passed to the transport layer handler with h.th 
pointing to start of the transport layer header as shown in Fig.  5.16 .   

 Finally, the transport layer needs to process the transport header packet. This 
is done in  tcp_v4_do_rcv() . If the connection is found to be established and we have 

    Figure 5.14.     Status of  sk_buff  when 

new packet arrives on the interface, data 

points to start of data link header.  

    cs 5.14.      eth_type_trans() .  



    cs 5.15      netif_receive_skb() .  

    Figure 5.15.     Linklayer has processed the 

packet and passes it to the network layer 

after making data point to start of 

network header.  

    cs 5.16.      ip_local_deliver_fi nish() .  

    Figure 5.16.     Network layer has 

processed the packet and has passed it 

to the transport layer after making data 

point to start of transport layer header.  
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    cs 5.17.      tcp_rcv_established() .  

data in the TCP segment, we need to copy the data to the user application by calling 
 skb_copy_datagram_iovec()  from the offset l d  t  h  starting from  skb → data . If because 
of some reason, we are not able to copy data to the user application, we just pull 
the data fi eld of the  sk_buff  by the length of the TCP header (including options) 
and queue it in the receive queue of the socket (see cs  5.17 , line 3343). If the  sk_buff  
is queued in the socket ’ s receive buffer, the  sk_buff  looks as shown in Fig.  5.17 .   

 We need to look at the other routines related to  sk_buff  like clone and paged 
 sk_buff , which is an exercise until the next release of the book is available.   

  5.7   SUMMARY 

  sk_buff  is a socket buffer header that represents a packet on Linux. Separate 
memory is allocated to store  sk_buff  data pointed to by  head  fi eld of  sk_buff.  

 Data area of  sk_buff  is divided into two parts: 

   •      Linear data area manipulated by  head  and  end  fi elds of  sk_buff .  
   •      Paged data area managed by  skb_shared_info  object located at the end of the 

linear data area.    

 One page is allocated at a time to  skb_shared_info . There is a limitation on number 
of pages allocated to paged data area. This restriction may cause a performance 

    Figure 5.17.     Transport layer has pro-

cessed the packet and passed the data to 

the socket layer after making data point 

to the transport payload.  



issue when we can ’ t use the scatter – gather capability of the network controller in 
the case where complete segment can ’ t be fi t into paged data area. In such cases a 
big chunk of memory is allocated to linear data area, which is an expensive 
process. 

  skb_shared_info  also manages IP fragments. 
  sk_buff  has a back pointer to the socket to which it belongs. It can traverse 

anywhere in a stack with an identity. 
  skb_pull()  removes data from the head of a buffer by moving the  data  pointer 

of  sk_buff  up in the memory, thereby creating head room. A routine is used to strip 
protocol headers as a packet moves up the stack. 

  skb_push()  pushes a  data  pointer of  sk_buff  down in the memory, thereby 
reducing head space. This routine is used to build a protocol header when a packet 
is moving down the stack. 

  skb_reserve()  reserves header room by moving  data  and  tail  pointers of  sk_buff  
up in the memory by a given length.    
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 MOVEMENT OF   sk _ buff   
ACROSS PROTOCOL LAYERS     

     In this chapter we focus on the movement of sk_buff across protocol layers and 
discussion of only a TCP/IP over an ethernet link layer, which means the major 
kernel path through which  sk_buff  passes while in the transmission and reception 
process. We discuss the design of a TCP/IP stack here. In this chapter we see how 
fi rewall hooks are inserted and the way in which we fi nd the route for the destina-
tion packet. We see how we attach an outgoing device with  sk_buff , depending on 
the route. We cover ARP resolution for the outgoing packet in the chapter. At the 
same time we see how the incoming packet( sk_buff ) traverses through the protocol 
layers. We need to see how  sk_buff  is processed in the network layer. In the IP layer 
we need to fi nd a route for the packet, depending on the source and destination IP. 
If the packet needs to be forwarded, it will be routed through different path to the 
outgoing interface; otherwise it will be delivered locally. The IP layer has to process 
the packet to fi nd out the next transport layer and send it to the transport layer for 
further processing. Finally, the transport layer has to demultiplex the packet and 
fi nd out the socket to which the packet belongs. The idea is to discuss the how the 
packet is delivered to the next layer for processing when the packet is going up/
down the TCP/IP stack. We discuss the TCP/IP stack in brief and focus on the design 
of the stack implementation on Linux. The details of each is covered in individual 
chapters. 

 The entire discussion is divided into the following layers: 

   •      Socket layer  
   •      TCP layer  
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   •      IP layer  
   •      Link layer  
   •      Packet scheduling layer, Qdisc  
   •      softIRQ framework  
   •      Transmission/reception     

  6.1   PACKET TRAVERSING DOWN THE  TCP / IP  STACK 

 This section addresses how the fi rst packet for a given connection traverses down 
the TCP/IP stack when it has no information about the route and the outgoing 
device. Then we will see how the packet is generated and trickles down the protocol 
layers when we write data over the connected socket. In this section we will not 
discuss anything specifi c about TCP and IP processing but just the kernel framework 
that implements the network protocol. 

 When an application wants to connect to the server, it issues a connect on the 
server with the destination socket address as an argument to the connect systemcall. 
The socket address for inet protocol should contain a port number and an IP 
address. So, the connect only knows the port number of the service and the IP 
address of the host where the server needs to be contacted. Let ’ s see step by step 
how we go about initializing the connection. The fi rst thing that we need to do is 
to fi nd the route for the given destination IP address. Here we check the kernel 
routing table for the destination IP address. If we don ’ t get a valid route for the 
destination, we return error. There needs to be only one outgoing interface for a 
given route. If we have a valid route to a given destination, it should also contain 
information about the outgoing device. We cache the route along with the outgoing 
device with the connecting socket. Now we need to initialize ARP - specifi c informa-
tion for the outgoing device if required. Since only Ethernet devices require such 
information and our discussion contains such a device, we need to initialize ARP 
information for the outgoing device and cache them. Outgoing interfaces such as 
PPP or PLIP don ’ t require ARP to be initialized. Until now we have gotten the 
route for our destination in the connecting socket ’ s cache. Data fl ow for packet 
down the TCP/IP stack is shown in Fig.  6.1(a)  through  6.1(b) .   

      TCP  Layer.     The next step is to build a TCP SYN packet for the destination as 
a fi rst step to establish a connection. The TCP header is built for the SYN packet 
and and send it to the IP layer for building an IP header and further processing. 
The IP layer fi rst checks if the cached route is still valid for the outgoing packet. If 
it is not valid, we once again try to get the valid route for the outgoing packet. This 
may happen because the route may have changed from the time we fi rst found the 
route for the destination by the routing daemon because of failure in the link.  

   IP  Layer.     So, we once again repeat the steps for the new route; that is, we ini-
tialize the outgoing device for the route and also the ARP - specifi c information is 
initialized. If we are here, we have all the route specifi c information and we can go 
ahead with packet processing. We now build an IP header, and the IP layer does 
processing on the packet if required. Now we need to fi nd out if there is a fi rewall 
policy that doesn ’ t allow the packet to be sent out. If everything is OK, we do IP 
checksum for the packet just formed and place it on the IP header in the checksum 



slot. We do IP checksum here because the outgoing device may have changed and 
packet might need to be fragmented here. The next step is to masquerade the packet 
or do any modifi cations on the packet such as encryption and encapsulation packet 
(IPSec), if required. This is implemented by the way of a netfi lter hook post route 
operation.  

  Link Layer.     If everything is OK, we also build a link layer header because here 
we have a fi nal valid output device for the packet. We can build a link layer header 
only if we have a hardware address for the destination IP. If this destination hard-
ware is not yet known, we send out an ARP request now and get the hardware 
address for the destination IP in the ARP reply. We need to place it on the device 
queue for fi nal transmission.  

  Packet Scheduler.     We de - queue the packet from the device queue (this may 
not be the packet we just queued on the device queue because there may already 
be frames queued on the device). We try to transmit the packet by programming a 
device DMA for the current frame. Otherwise we requeue the packet on the device 
queue, queue the device on the CPU, and raise Tx IRQ on the CPU and return. 
When Tx softIRQ comes on the CPU, it just dequeues the packet from the device 
queue and starts transmitting it. Tx interrupt is raised after the packet is successfully 
transmitted. The packets ( sk_buff ) that are transmitted successfully are freed in the 
Tx interrupt. 

 In our last discussion we saw how the fi rst - time connection setup is done which 
caches in important information such as route, device, and ARP. Now we will see 
how subsequent packets ( sk_buff ) are generated when we write data over the TCP 
socket.  

  Socket Layer.     This is to discuss how a cached route is used by all the subse-
quent packets generated for the established connection. This will be explained by 
taking an example of TCP write over an established socket. We need to fi nd a socket 
for the corresponding socket descriptor. Using fi le inode and private data, we can 
fi nd the socket. Now we write data over connected sockets. When an application 
writes some data over the connected socket, the TCP either copies the data on last 
partial packet ( sk_buff  which is not yet full) or creates a new packet ( sk_buff  ).  

   TCP  Layer.     Once the data are copied to the  sk_buff , we need to consult the 
TCP state machine to check if we can send the packet now or wait for some event 
to occur before we can send it out. In case we are the only packet and are allowed 
to send the packet now, we will build the TCP header and send it to the IP layer. 
Otherwise, we queue the packet at the end of the the TCP send buffer queue. After 
queuing the packet on the TCP send buffer queue, we check if we need to send out 
the fi rst packet on the send buffer. If so, we need to dequeue the fi rst packet from 
the send buffer build the TCP header and give the packet to the IP layer for further 
processing. We initialize the TCP retransmit timer.   

  6.1.1   Path of Packet Traversal from Socket Layer to 
Device for Transmission 

 Figures  6.1(a)  and  6.1(b)  describes the date fl ow diagram for processing data down 
the stack. It describes how data is processed from socket layer to device layer unless 
transmitted, discussed in Section  6.1 .  
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    Figure 6.1a.     Packet traversal down TCP/IP.  

  6.1.2   Kernel Path for  TCP  Packet Traversing Down the Stack 

 The outgoing packet ( sk_buff ) gets most of the information about route and next 
protocol layer from the  sock  structure.  sock  structure is initialized once and has all 
the information about the connection. Each outgoing packet gets all the required 
information from sock structure. With the help of an example, we will see how the 



TCP packet is getting ready to be transmitted over IP network when it is built from 
scratch right from its allocation until it is transmitted out of the system. Each pro-
tocol has to add its header to the outgoing packet. The hardware layer adds infor-
mation to the header which is more or less the same for all the outgoing packets 
for a given destination. The IP layer keeps information about the route to the des-
tination. The IP header keeps information about the source and destination end 
points only, but the route will actually decide which interface it has to be transmit-
ted. Once we know the route to the destination, we need not worry about the route 
for any future outgoing packets on this specifi c connection until that specifi c route 
is modifi ed. Route - specifi c information is stored in  struct dst , which has a pointer 
to the outgoing device as well. It is only the TCP layer whose header fi elds may 
change for each outgoing packet because it depends very much on the events and 
not on a one - time initialization. For TCP, most of the protocol - specifi c information 
is stored in a  tcp_opt  structure, which is linked with the sock structure as  sk → tp_
pinfo.af_tcp . Once the initial setup is over at the time of the connection setup, pro-
tocol layers use the same set of information for building protocol headers and 
maintaining the protocol state throughout the connection. Network interface is 
defi ned by  struct net_device . This structure keeps device - specifi c information and 
also hardware - specifi c operations such as transmission and reception callback rou-
tines. In the case of the Ethernet framework, we have  struct neighbor  that is respon-
sible for doing ARP and RARP. Neighbor framework manages the RARP/ARP 
table. 

 In this chapter we will take a simple example of initiating TCP/IP connection 
over the Ethernet interface. In this process we will go through the entire setup of 
the connection, which includes the setup for transport, the network, and the link 
layers. In Chapter  4  we discussed the fl ow of connect systemcall, but that was very 

    Figure 6.1b.     Packet traversal down TCP/IP stack.  
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much related to the socket connect describing TCP ports allocation and stuff. Here 
we will discuss connect from the point of view of kernel framework required to send 
the fi rst packet out to the destination when we know nothing about the route and 
the outgoing device. Also, this discussion describes the entire path for the packet 
from the time it is generated until it is transmitted. We will see how a packet is built 
using the information stored in sock structure (at the time of connection setup) as 
it passes through different protocol layers. We will not discuss any protocol - specifi c 
details here but only the TCP/IP stack major functionality so that we need not 
wonder every time as to how are we getting any specifi c information. All the details 
about the protocols will be covered in the specifi c chapters. Flow of packet down 
the TCP/IP stack in kernel 2.4.20 is shown in Fig.  6.3 .   

  Socket Layer.     When an application wants to do a connect on a given TCP 
socket, it passes the socket address,  struct sockaddr , to the kernel. Inside the kernel 
we make protocol - specifi c connect calls  inet_stream_connect() , which calls  tcp_v4_
connect()  for TCP. The socket over which we are we are trying to do a connect has 
no idea of the route or outgoing device for the destination at this point of time. 
Without route to the destination, the fi rst SYN packet can ’ t be sent anywhere. Let ’ s 
see how we fi nd out route specifi c information to route the very fi rst packet. Once 
we have route information, we cache it with the socket for the connection so that 
we need not repeat the same step to fi nd a route for each outgoing packet each 
time.  

   IP  Layer Routing.     In  tcp_v4_connect()  we start with  ip_route_connect()  that 
gets us route to the destination to which application wants to send connection 
request. Application passes sock address of the remote services. Based on the des-
tination IP address, we fi nd the route which contains information like outgoing 
device and the routines that will push the packet through the stack. This calls  ip_
route_output() , which will generate key for route entry search. Key is defi ned as 
 struct rt_key  that contains four fi elds: 

   •      Destination IP (is must)  
   •      Source IP (optional)  
   •      Output interface (optional)  
   •      Type of service (IP option and is optional)    

 The kernel routing table is cached in  rt_hash_table[] . The hashing function has 
four inputs mentioned above. The route is defi ned as  struct rtable , which has two 
parts: 

   •      struct dst_entry  
   •      Search key and fi elds for the route    

  dst_entry  object contains route - specifi c information such as the following: 

   •      It contains a pointer to an outgoing interface ( net_device  object).  
   •      It contains a pointer to a neighbour object that manages ARP/RARP for the 

destination IP.  



   •      It also caches in hardware - specifi c routines and address.  
   •      It caches some of the path - specifi c protocol parameters like MSS, congestion 

window, reordering, and so on, so that it can be used by many TCP connec-
tions using the same route.    

 If we are able to fi nd an entry in the kernel route cache, we return with the 
object  rtable  for the destination. If not, we need to look into the FIB table, which 
is a database for all the routes. All the routing information is a stored FIB database 
because the kernel routing cache is usage - based. Other than boot time entries, all 
other entries will be added and removed depending on the usage. We call  ip_route_
output_slow()  to build routing information from FIB entries, if at all it exists.  fi b_
lookup()  is the routine that gets us the information about the route; based on the 
results, we create a new routing entry in the kernel routing cache. Object  rtable  is 
created for the new routing entry and is cached with  rt_hash_table[]  by calling 
 rt_intern_hash() . 

 If it is Ethernet link and unicast packet, we resolve ARP for the destination. To 
associate the route with ARP, we need to initialize neighbor object for the route. 
We call  arp_bind_neighbor()  from  rt_intern_hash()  to resolve ARP for the destina-
tion.  arp_bind_neighbor()  looks up for cached neighbour entry in the global table 
 arp_tbl  by calling  __neigh_lookup_errno() . If we get the entry from the cache, we 
return it and link it with the route for the connection (object  dst_entry ). Otherwise 
we create a new entry by calling  neigh_create()  from  __neigh_lookup_errno()  and 
hash it in the  arp_tbl  table. The hash function takes two inputs in this case: 

  1.     Gateway address for the route  
  2.     The outgoing device    

 Later in the discussion, we will see how to resolve ARP for the destination. 
 The route is returned to  tcp_v4_connect()  and is cached with the socket by 

calling  __sk_dst_set() . This routine makes  sk → dst_cache  point to  dst_entry  object.  

   TCP  Layer.     The next step is to create SYN segment and transmit it. This is done 
in  tcp_connect() . Here we initialize sequence numbers and queue the SYN segment 
in the socket ’ s send queue. Finally, we call  tcp_xmit_skb()  to build a TCP header 
and push the packet to the IP layer for further processing. From here onwards, the 
path for the SYN packet and the TCP data packet will be the same. The TCP calls 
the internet address family - specifi c callback routine  tp → af_specifi c → queue_xmit  to 
pass the packet on to the next layer. This is initialized to  ip_queue_xmit() .  af_specifi c  
fi eld of  tcp_opt  object is initialized at the time of socket initialization in  inet_create()  
by a call to  sk → prot → init , which is nothing but  tcp_v4_init_sock() . For TCP it is 
initialized to an  ipv4_specifi c  containing a set of operations specifi c to TCP - IP.  

   IP  Layer.      ip_queue_xmit()  checks if the route cached with the socket to the 
destination is valid by calling  __sk_dst_check() . The route may have become obso-
lete because the packet was queued in TCP ’ s transmit queue. If the route is no 
longer valid, we will try to fi nd a new route for the destination by calling  ip_route_
output() . This routine goes through the same cycle of fi nding the route as discussed 
earlier. Once we have a valid route, we build an IP header and pass the IP datagram 
to be screened through the netfi lter  NF_IP_LOCAL_OUT  using  NF_HOOK  
macro.  
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  Netfi lter Hook.     This framework implements fi rewall and extensions to the 
TCP/IP functionality. Here we will pass a packet to the netfi lter hook to check if 
there is any fi rewall rule that is set for the packet generated locally. If so, a further 
decision is made based on the target set for the rule. Otherwise a callback routine 
passed to the hook will be executed, if we get clean chit. The callback routine in 
this case is  ip_queue_xmit2() . 

  ip_queue_xmit2()  is an intermediate routine before we pass on the packet from 
the IP layer to the packet scheduler. The routine is called both for locally generated 
packets and for a forwarded packet. It does some routine checks such as header 
room in the buffer. In the case where the header room is less than the size of the 
hardware address, we need to reallocate the buffer for the packet. This may happen 
because the routine for the destination has changed. We also compare the size of 
IP datagram against the current PMTU here. If the datagram size is found to exceed 
the PMTU, we need to fragment the packet. If the don ’ t fragment bit is set for IP 
datagram, we need to send an ICMP message to the source TCP by calling  icmp_
send() . If we are allowed to fragment the packet, it is split into fragments by calling 
 ip_fragment() . It is always preferable to ask TCP to resegment the packets instead 
of IP fragmenting it because one fragment loss means that the whole packet will be 
discarded.  ip_fragment()  splits the packet into smaller sizes and transmits them one 
by one by calling the callback routine registered with the socket  skb → dst → output . 
This points to  ip_output() . 

 In case we don ’ t need to fragment the packet, we get an IP for the packet and 
add an IP checksum to the header by calling  ip_select_ident()  and  ip_send_check() , 
respectively. We add an IP checksum here for the obvious reason that we may 
expect PMTU changed at this point. An output routine for the connection is called 
to push the packet further down the stack,  skb → dst → output  (=  ip_output() ).  

  Netfi lter Hook.      ip_output()  effectively applies NAT on the packet, if NAT 
needs to be applied to the packet in case the kernel is compiled with the NAT 
option. If not, we directly call  ip_fi nish_output() . Once again,  ip_fi nish_output()  
does nothing additional but sends packet to netfi lter check post to check if any post 
routing rule is applicable using macro NF_HOOK. Postrouting fi ltering may be 
required for IP Masquerading, NATing, Redirection, Ipsec, and so on. If so, the 
packet is modifi ed and processed further by the target. If no rule applies, the call-
back routine  ip_fi nish_output2()  is called to push the packet down the stack.  

   ARP  and Neighbor Framework.      ip_fi nish_output2()  needs to fi nd out the 
hardware address for the destination IP in the case where a link layer being used 
in Ethernet. This is required to build a link layer header. If we already have the 
destination hardware address resolved, the packet is passed to the packet scheduler 
for transmission. We make a decision based on hardware caches for the route. If 
the route ’ s hardware cache ( skb → dst → hh ) is initialized, the hardware address is 
resolved. Otherwise we may need to search in the ARP table for the destination IP 
entry. Neighbor framework manages and implements ARP/RARP on Linux. 

 In the case where the hardware cache (object hh_cache) is not initialized for 
the route, we call neighbour ’ s output routine  dst → neighbor → output  (=  neigh_
resolve_output() ) to resolve the hardware address. Neighbour operations are initial-
ized at the time when the neighbour object is created in  neigh_create() . Its output 
routines are initialized by calling a constructor routine specifi c to the neighbor table, 



 tbl → constructor  (=  arp_constructor() ). This initializes the neighbor ’ s set of opera-
tions ( neigh → ops ) to  arp_generic_ops.  

  neigh_resolve_output()  is called to get a hardware address for the destination 
IP by issuing an ARP request.  __neigh_event_send()  is ultimately called down the 
line to initiate an ARP request in case we have not already resolved the ARP 
request or we are already in the process of probing (check fl ags in  neigh_event_
send() ).  __neigh_event_send()  checks the fl ag and if it fi nds that the neigh entry is 
neither STALE nor is it in the process of sending ARP request, it calls  neigh → ops →
 solicit (=  arp_solicit() ) to initiate arp request.  arp_solicit()  internally calls  arp_send()  
that build ARP header and broadcasts the request. It also starts timer,  neigh_timer_
handler() , for the neighbor entry. This timer will manage IP datagrams that are 
queued up in the  neigh → arp_queue  queue waiting for ARP reply. Timer retransmits 
ARP request and set ’ s timer once again to probe ARP request once again. 

 In the case where we have already sent out an ARP request, the IP datagram 
is queued in the  neigh → arp_queue  queue and return. 

 We receive ARP replies in the protocol handler  arp_rcv() . The ARP packet is 
processed in  arp_process() . If the reply is valid,  neigh_update()  is called that will 
ultimately send out all the IP datagrams that are queued in the ARP queue for the 
neighbour,  neigh → arp_queue,  using  skb → dst → neighbor → output (=  neigh_resolve_
output() ) callback routine. 

 Let ’ s return to  neigh_resolve_output() . Once we have the hardware address 
updated in the neighbor and our hardware cache ( dst → hh ) for the route is not 
updated, we do that by calling  neigh_hh_init() . We build a link layer header for the 
IP datagram by calling the hardware - specifi c routine  dev → hard_header . Finally, 
send the packet to the packet scheduler  neigh → ops → queue_xmit  (=  dev_queue_
xmit() ) for transmission. 

 Once the hardware cache for the route in initialized, the next packet for the 
route can be sent out to the packet scheduler directly in  ip_fi nish_output2()  by 
directly calling dst → hh → output (=  dev_queue_xmit() ) for transmission.  

  Packet Scheduler and Hard Transmission.      dev_queue_xmit()  is a routine that 
checks if the packet has fragmented data and the device doesn ’ t understand scatter –
 gather; in this case it tries to linearize the packet data by calling  skb_linearize() . 
Also it checks if the IP checksum is not yet done; if the device is not capable of 
doing that, it does the IP checksum. Finally it queues the packet on the device queue 
( dev → qdisc ) by calling  enqueue()  routine specifi c to the scheduler. Scheduler is 
defi ned by  Qdisc  object and its queue is pointed by  q  fi eld. The generic enqueue 
routine for the device is  pfi fo_enqueue() . 

 Once we have a queued packet on the device queue, we need to wake up the 
device by calling  qdisc_run() . In case device is already running, we need not worry 
and just return because somebody is already processing packet ’ s from the device 
queue. Else, we need to process packets from the device queue by calling  qdisc_
restart() . This routine will start dequeuing packets on the device queue by calling 
the dequeue callback routine specifi c to the device discipline. The default dequeue 
routine for the device is  pfi fo_dequeue() . 

  pfi fo_dequeue()  dequeues one packet at a time from the device queue and 
calls the hard transmit routine for the device ( dev → hard_start_xmit ) if nobody has 
held the lock. In case somebody has held the lock and it is not us, we requeue the 
packet on the device queue by calling the  requeue()  callback routine from queue 
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operations ( q → ops ) and fi nally call  netif_schedule()  to schedule the device for 
transmission.  

   NET   soft  IRQ .      netif_schedule()  schedules the device on the CPU output queue, 
 softnet_data[cpu].output_queue , and raises the transmit soft IRQ( NET_TX_
SOFTIRQ ) by calling  cpu_raise_softirq() . Later on when the Tx softIRQ is pro-
cessed, the same dequeue routine for the device is called that will start processing 
packets queued on the device queue for fi nal transmission. 

 Figure  6.2  shows link between the sock,  sk_buff ,  dst_entry ,  net_device , neigh-
bour, Qdisc and queue once it is ready for transmission.      

  6.2   ROUTED PACKET READY FOR TRANSMISSION 

 Figure  6.2  illustrates linking of kernel data - structures that links sk_buff, with route, 
outgoing device, CPU queue, arp table, queuing descipline queue etc.  

  6.3   KERNEL FLOW FOR A PACKET MOVING DOWN THE STACK 

 Figures  6.3(a)  through  6.3(c)  show fl ow of control to send TCP data down the stack. 
It shows major routines called to process data - through different layers unless trans-
mitted. It also shows locations of queue moving down the stack where packets can 
be queued before transmission this queue is discussed in section  6.1.2 .  

  6.4   PACKET TRAVERSING UP THE  TCP / IP  STACK 
(see Figs.  6.4a  –  6.4b ) 

 We start with the explanation of the reception process fi rst. We have a fl ow diagram 
that indicates queuing of sk_buff at various stages when it is traversing up the stack 
from reception to the fi nal socket ’ s receive buffer. We divide the entire discussion 
into various stages explaining each step such as packet reception, soft IRQ process-
ing, IP reception, fi rewall check, routing entry initialization, forwarding processing, 
local delivery, TCP entry point, backlog queue, prequeue, out - of - order - queue, 
socket receive queue, and so on. Data fl ow for the packet traversing up the stack 
is shown in Fig.  6.4(a)  through  6.4(b) .   

     Packet Reception and  DMA .     When a packet is completely DMAed in the ring 
buffer, receive interrupt is generated to remove the packet from the DMA ring 
buffer. The interrupt handler removes the packet from the DMA ring buffer and, 
after doing some sanity checks on the packet, queues it on per CPU receive  queue . 
Once the packet is queued, it raises the Rx soft IRQ.  

   R  x   SOFT   IRQ .     On return from the interrupt, we check if there is any soft IRQ 
to be processed. Since we just raised the Rx soft IRQ, it will be processed now. In 
Soft IRQ, Packet is completely processed through L3, L4 layer and packet is deliv-
ered to the Socket layer. The action is to remove the packet from CPU ’ s input queue 
and fi nd the next protocol layer (from the link layer header) to which the packet 
should be given for processing. Here the protocol switcher does the job of fi nding 



the correct protocol layer. We will narrow down the discussion to TCP - IP protocols. 
The IP receive routine is called to process the packet.  

  Prerouting Netfi lter Hook.     Just at the entry, the IP enforces the netfi lter hook 
before the route is fi nalized for the packet. The prerouting hook takes care of NAT/
IP Masquerading issues, Ipsec, and so on. Netfi lter framework provides extended 
functionality to the TCP/IP stack. Once we pass through the fi lter, we need to fi nd 
the route for the packet.  

   IP  Layer.     We try to determine the route for the packet. The packet may be 
destined for some other host in which it needs to be forwarded. In the case where 
the packet needs to be delivered, we need to fi nd the next protocol layer to 
which the packet needs to be delivered. In the case of forwarding, we need to decre-
ment the hop count for the packet; and if the hop count becomes zero, the packet 

    Figure 6.2.     Linking of route - specifi c data structures when the packet is fi nally routed and ready 

for transmission.  
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needs to be dropped. In the case the link that the forwarded packet needs to take 
is the Ethernet and the destination is not directly connected to the link, the link 
layer address needs to be changed to that of the next hop.  

  Local Input Netfi lter Hook.     In the case where the packet needs to be delivered 
locally, we fi rst need to pass the packet through the netfi lter hook for the incoming 
packet. We need to check if the packet is acceptable or any fi rewall policy would 
reject the packet.  

    Figure 6.3a.     Flow of packet down a TCP/IP stack in kernel 2.4.20.  



    Figure 6.3b.     Flow of packet down a TCP/IP stack in kernel 2.4.20 ( continued ).  
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   TCP  Layer.     Once the packet is accepted, we need to check which protocol layer 
the packet belongs to. Protocol switcher once again does the job for us and fi nds 
out appropriate protocol specifi c handler. We call the protocol handler routine to 
process the packet. For the TCP, we check if this is a new connection request for 
any of the listening sockets or packet for already established connections. We have 
different hash tables for listening sockets and established connections. Once we 
have found the socket for the packet, we need to take appropriate action. In case 
this is a new connection request, we need to create a new request and send out 
SYN - ACK and wait for the fi nal ACK. In the case of an established connection, 

    Figure 6.3c.     Flow of packet down a TCP/IP stack in kernel 2.4.20 ( continued ).  



we can either queue the packet on the backlog queue or just process it depending 
on whether the socket is being used by somebody or not. If we are queuing the 
packet in the backlog queue, the packets will be processed once the socket is 
released by the user. 

 In TCP processing, if we have TCP data in the new packet, either (a) we can 
directly copy it to the user buffer or (b) the data segment is queued in the socket ’ s 
receive queue. TCP options are processed, and fi nally any pending outstanding data 
are sent along with the ACK for the new data or ACK may be delayed depending 
on conditions. If we receive out - of sequence data, ACK with SACK is sent out 
immediately. 

 Data that are queued in the receive buffer is eaten up by the application when 
it issues  recv  over the connected socket. Once the application has read data, it sends 
ACK in the case where ACK is pending or when the window is opened because 
space is generated in the receive buffer. Urgent byte is an exception and can be 
received as out - of - band data or can be read inline.   

  6.4.1   Path of Packet Traversal from Device (Reception) to 
Socket Layer 

 Figure  6.4(a)   &   6.4(b)  describes data fl ow diagram for processing data up the stack. 
It shows the processing of packet right from data reception stage at device layer 
through different protocol layers until it reaches the socket layer.  

  6.4.2   Kernel Path for  TCP  Packet Traversing Up the Stack 

 In this section we will see how the packet is handled inside the kernel while travers-
ing up the stack. We will see entry points into a different kernel framework that 
implements the stack. Then we will have entry points into different protocol layers 
using a protocol switcher. There will be a short description for each entry point 
regarding its functionality. Flow of packet up the stack in kernel 2.4.20 is shown in 
Figs.  6.5(a  –  d) .   

  Packet Reception.     Receive interrupt for the NIC is generated once the packet 
is completely received through the DMA channel into the memory. Interrupt han-
dling is a controller - specifi c process, but the common part in the reception of the 
packet is to pull out the packet from the DMA ring buffer. After doing some sanity 
check on the hardware header, place the packet on CPU ’ s input queue,  softnet_
data[this_cpu] → input_pkt_ queue. This is per CPU queue designed to achieve better 
scalability on SMP architectures. We don ’ t process the packet in the interrupt 
routine; otherwise the interrupt will be blocked for a long time. Instead we raise 
net Rx softIRQ, which will process the packet later. This is done by calling 
 netif_rx() .  

   S  oft  IRQ .     SoftIRQ is processed in various places: 

  1.     Just after we returned from the interrupt in interrupt context.  
  2.     SoftIRQ daemon running per CPU.  
  3.     Whenever softIRQ on the CPU is enabled.    
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    Figure 6.4a.     Traversal of a packet up the TCP/IP stack.  



    Figure 6.4b.     Traversal of a packet up the TCP/IP stack ( continued ).  

 In the case where net Rx softIRQ is enabled,  net_rx_action()  is called just after we 
return from the interrupt. This will start processing the packet received in the CPU ’ s 
input queue. The packet is processed completely in softIRQ. Even though we are 
in interrupt context, the interrupt for the controller is enabled so that NIC can 
continue to receive packets and queue them on CPU ’ s input queue. Processing of 

PACKET TRAVERSING UP THE TCP/IP STACK 221



222 MOVEMENT OF sk_buff ACROSS PROTOCOL LAYERS

the packet starts with the protocol switching section where we fi nd out which pro-
tocol will handle the packet.  

  Packet Switcher.      netif_receive_skb()  is called to process the packet, which 
fi nds out the next protocol layer to which the packet would be delivered. The pro-
tocol family of the packet is extracted from the link layer header. In our case, this 
will be IP. All the protocols supported by Ethernet technology are registered with 
the Ethernet framework by calling  dev_add_pack (). Object of type  packet_type  is 
linked with the following: 

  1.     The list  ptype_all  in case the handler supports all protocol families.  
  2.     The hash table  ptype_base [] for every other protocol family supported by the 

Ethernet framework.    

 In the case of IP,  ip_packet_type  is registered with the Ethernet framework 
(cs  6.1 ). Its corresponding receive routine is  ip_rcv() . For IP, the receive handler is 
registered when we initialize the protocol in  ip_init() (cs  6.2 ). I hope we register 
ourselves with  ptype_all , while snooping the interface to receive all the packets 
received over the interface. Packets of all types are handled by those handlers listed 
in the list  ptype_all  fi ltered on the basis of the network interface from where packets 
are received.   

 Once we have sent the packet to the handlers listed in  ptype_all  in  netif_receive_
skb() , we check the actual protocol that needs to be delivered to the packet by tra-
versing through the hash table  ptype_base . This is a table of length 15. The key to 
match the entry is the packet protocol as mentioned in the Ethernet header. The 
packet is fed to the IP handler callback routine  ip_rcv()  for further processing.  

   IP  Layer.      ip_rcv()  is an entry point for IP packets processing. It fi rst checks if 
the packet we have is destined for some other host ( PACKET_OTHERHOST ). 

    cs 6.1.      ip_packet_type  object to register an IP packet handler.  

    cs 6.2.      ip_init() .  



This may happen in the case where the interface is in the promisc mode. In such 
cases we just drop the packet. 

 We check the sanity of the IP header and checksum the packet by calling  ip_
fast_csum() . Before even fi nding the route for the packet, we pass it through netfi lter 
hook  NF_IP_PRE_ROUTING . Here the packet may be de - masqueraded or 
decrypted(IPSec) or NAT may be applied to the packet. The next step is to fi nd 
the route for the packet. We call ip_route_input(), where  kb  → dst is initialized. This 
routine checks kernel routing table  rt_hash_table . If there is no entry for the packet, 
FIB is consulted and the route is built. If the packet needs to be forwarded, the 
input routine is  ip_forward() ; otherwise it will be  ip_local_deliver() . 

  ip_forward()  decrements ttl in the IP header by 1 and checks if the packet needs 
to be discarded (in case ttl becomes zero). If the next hop is the gateway that is 
connected through the Ethernet link, the destination hardware address is changed. 
The packet is then scanned through the netfi lter hook  NF_IP_FORWARD .  ip_
send()  is called to check if the packet needs to be fragmented. If so, it fragments 
the packet by calling  ip_fragment() , which sends out each fragment through the 
packet output path  ip_fi nish_output() . If no fragmentation is required,  ip_send()  
sends the packet through the output path  ip_fi nish_output() . 

 In the case where the packet needs to be delivered locally,  ip_local_deliver()  is 
called for further processing. This routine fi rst checks if this is a fragment of IP 
datagram from the IP header. If so, it calls  ip_defrag()  to process the fragment.  

   IP  Fragment Handling.     This routine calls  ip_fi nd()  to check if we have already 
received other fragments for the packet. The kernel maintains the hash table to 
manage fragmented IP datagrams  ipq_hash . Fragments are hashed in the table 
based on destination, source IP address, packet ID, and protocol.  struct ipq  manages 
fragmented IP datagrams. All the received fragments of IP datagram are linked in 
the  fragments  fi eld of this object. If we fi nd an entry for the received fragment in 
the  ipq_hash  table and this is the last fragment for the IP datagram,  ip_frag_reasm()  
is called to reassemble all the received fragments. Otherwise just queue the new 
fragment by calling  ip_frag_queue() . The fragmentation handling unit installs a 
timer for each IP fragment that will expire after a certain time, if the complete 
packet is not assembled.  ip_expire()  is the timer callback routine initialized when 
the fi rst fragment of the IP datagram is received and the new  ipq  object is created 
in  ip_frag_create() . This routine sends out an ICMP message to the originator of 
the message that fragmentation – reassembly has timed out. 

 Coming back to  ip_local_deliver() , if we obtained a full datagram or the frag-
ment receive completed the IP datagram, we need to screen the packet through the 
netfi lter hook NF_IP_LOCAL_IN. Here we check if there is any fi rewall rule to 
reject the received datagram. If the policy accepts the datagram,  ip_local_deliver_
fi nish()  is called to fi nd the next protocol to which the packet should be 
delivered.  

   INET  Protocol Packet Switcher.     We have come here from the IP layer. So, 
the next protocol switcher scans the datagram ’ s protocol identifi er through all L4 
layer protocols that are supported by IP. The IP header for the received packet 
contains a protocol identifi er fi eld that corresponds to the next protocol layer to 
which the packet belongs ( skb → nh.iph → protocol ). There is a list of protocols that 
are supported by the IP and that are registered with the system.  inet_add_protocol()  
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is called to register INET protocol handlers with the IP. This routine adds the object 
of type  inet_protocol  to the global protocol table  inet_protos . Protocol fi eld in the 
 inet_protocol  fi eld is matched against the protocol fi eld in the IP header to fi nd 
protocol handler for INET protocols. 

 For INET - TCP, UDP, and ICMP, protocol handlers are registered in  inet_
init() (cs  6.3 ). There are other INET protocols registered which we won ’ t discuss 
here. For TCP, the protocol handler is  tcp_protocol , which has a pointer to receive 
handler,  tcp_v4_rcv()  (see cs  6.4 ).   

 For TCP we fi nd the receive handler routine as tcp_v4_rcv(), which is called 
from  ip_local_deliver_fi nish() . Raw sockets are registered with the  raw_v4_htable  
table. If we fi nd any raw socket registered for the INET protocol to which the packet 
belongs, we pass a copy of the packet to raw socket by calling  raw_v4_input() . 
Libpcap opens a raw socket to capture IP packets.  

   TCP  Layer.      tcp_v4_rcv()  is the entry point for the TCP layer. First some of the 
fi elds from the TCP header are copied to the socket buffer (sk_buff), and the TCP 
checksum is done on the TCP header. We try to fi nd out the socket to which the 
packet belongs by calling  __tcp_v4_lookup() . This routine tries to fi nd out if the 
packet belongs to an established connection where we try to match the source/
destination IP and the source/destination port of the packet with the sockets in the 
established state. Established state sockets are maintained in the hash table  tcp_
ehash .  __tcp_v4_lookup_established()  searches for sockets in the established and 
time - wait state. If we don ’ t fi nd any socket in the established state here, we might 
have gotten a new connection request for any listening socket. For this we search 
for a listening socket with port numbers the same as the destination port in the lis-

    cs 6.3.     inet_init().  

    cs 6.4.     Object  inet_protocol  to register the TCP packet handler.  



tening socket ’ s hash table  tcp_listening_hash . The search for listening socket ’ s is 
carried out in  tcp_v4_lookup_listener() . 

 If we fi nd the listening socket for the new request, we create a new open request, 
send SYN - ACK, and wait for fi nal ACK by calling  tcp_v4_hnd_req()  from  tcp_v4_
do_rcv() . If the socket for the packet is in an established state, we either queue the 
packet in a backlog queue by calling  sk_add_backlog()  (if the socket is already in 
use by someone) or process the packet by calling  tcp_rcv_established()  from 
 tcp_v4_do_rcv().  

  tcp_rcv_established()  processes the TCP segment. If we received in - sequence 
data in the packet, it is queued in the socket ’ s receive buffer ( sk → receive_queue ); 
or if the application is waiting for data, it is directly copied to user buffer. If we 
receive out - of - order data, it is queued in  tp → out_of_order_queue . If there are any 
data pending to be transmitted, we send them here along with the ACK for the new 
data.  

  Socket Layer.     If we queued data in the receive queue, it is read by application 
when it issues  recv() . Kernel routine to read data from TCP socket is  tcp_recvmsg() . 
Data are read from the receive queue, and prequeue and socket buffers are freed. 
If we have an opened window, we send out an ACK immediately in this routine.    

  6.5   KERNEL FLOW FOR PACKET MOVING UP THE STACK 

 Figures  6.5(a)  through  6.5(d)  show fl ow control that implements packet processing 
while traversal up the stack from device layer to the socket layer. It shows major 
routines that are queues, called to process packets up the stack. It also shows imple-
mented at various points while traversing up the stack where packets can be queued 
before reaching socket layer or before being forwarded. This is discussed in Section 
 6.4.2 .  

  6.6   SUMMARY 

 The packet fl ows up the stack in three stages to reach from device to socket 
queue: 

  1.     Network controller Rx DMA ring  
  2.     CPU input queue,  softnet_data[cpu_id] → input_pkt_queue   
  3.     Socket queue,  sk → rcv_queue     

 Packet fl ows down the stack in three stages to reach from socket layer to 
device: 

  1.     Socket send queue,  sk → write_queue   
  2.     Device queue,  dev → q   
  3.     Network controller DMA Tx ring buffer.    

 Linux implements per CPU softIRQ for transmission and reception of packets. 
Packets are received and queued on the CPU ’ s input queue. Rx softIRQ, NET_RX_
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    Figure 6.5a.     Flow of a packet up a TCP/IP stack in kernel 2.4.20.  



    Figure 6.5b.     Flow of a packet up a TCP/IP stack in kernel 2.4.20 ( continued ).  
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    Figure 6.5c.     Flow of a packet up a TCP/IP stack in kernel 2.4.20 ( continued ).  

SOFTIRQ is raised on the CPU for further processing of the packet by a call to 
 netif_rx() . On the SMP architecture, Rx softIRQs can be run parallelly on each CPU, 
thereby providing better scalability. On the transmission side, Tx soft IRQ, NET_
TX_SOFTIRQ, is raised if we are not able to transmit the packet. Tx soft IRQ will 
be executed in the future and will start transmission of the packet queued on the 
device. 

 Received packets are processed completely in Rx softIRQ until it reaches the 
socket layer. 



    Figure 6.5d.     Flow of a packet up a TCP/IP stack in kernel 2.4.20 ( continued ).  

 Callback routine to Rx softIRQ is  net_rx_action() , whereas for Tx softIRQ it 
is  net_tx_action() . 

 When the packet is going down the stack, it is the job of the routing engine to 
associate the outgoing device with the packet, which is done by calling  ip_route_
output() . Similarly, when the packet is received, routing is taken by calling 
 ip_route_input() . 

 Ethernet protocol switching is done in  netif_receive_skb() , where we get the 
handler for next protocol layer. INET protocol layer switching is done in 
 ip_local_deliver_fi nish() . 

 The entry point for the TCP protocol is  tcp_v4_rcv() . The socket for the TCP 
packet is identifi ed in  __tcp_v4_lookup() .  tcp_rcv_established()  is the entry point 
for established sockets. 

 TCP packets are processed with the socket lock ( sk → lock.slock ) held. 
 Extension to the IP stack is provided with the help of netfi lter hooks. NF_IP_

PRE_ROUTING and NF_IP_POST_ROUTING are two hooks that can be used 
by Ipsec, IP masquerading, and NAT modules. 

  neighbour  framework implements ARP. The object of type  neighbour  is associ-
ated with the route and the  net_device  object. There is one  net_device  object per 
physical network interface. 

  dev_queue_xmit()  routine is called to queue the packet on the device queue 
when the packet leaves the IP layer.    
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  TCP  SEND     

     TCP is a reliable protocol and applies fl ow control on the data being transmitted. 
It treats data as a stream of bytes and associates each byte with a sequence number. 
It requires each byte to be acknowledged. For fl ow control, TCP applies a sliding 
window protocol and congestion control algorithms. TCP has to consult the link 
layer and restricts the maximum size of the frame it can transmit from the interface. 
This restricts the maximum size of the segment that TCP can produce. TCP needs 
to discover the minimum transmission unit across the path that the packet takes to 
reach the destination. This is because If some link at an intermediate router offers 
a lower MTU than our interface MTU, the packet will be fragmented at the router, 
thereby hindering TCP and network performance. 

 Application needs not know anything about how data are sent to the peer. It 
just writes data in chunks over the TCP socket, and the rest is taken care of by the 
TCP segmentation unit. When data reach the TCP layer, they then break a big 
chunk into small units each of 1   mss size and queue them on the socket ’ s send queue. 
Then we apply certain algorithms like Nagle ’ s algorithm, sliding window protocol, 
and congestion window to check if the new segment can be transmitted. 

 We will fi rst explain how TCP segmentation unit with and without scatter –
 gather DMA support. Then we learn about the policies to trigger transmission of 
segments. We will see how Nagle ’ s algorithm is implemented to avoid transmission 
of small segments. There are different congestion control algorithms implemented 
in the core of TCP state machine that need to be taken into consideration here 
before we can transmit new buffer. Also, we will learn how a sliding window protocol 
is implemented. The process involved is explained in Figs.  7.5 (a)  and  7.5 (b) .  
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  7.1    TCP  SEGMENTATION UNIT FOR SENDING DATA 

 In this section we will see how the big chunk of data to be sent over the socket 
requested by the user is broken into small segments by the segmentation unit. We 
will also see how the segmentation unit works when DMA supports the scatter –
 gather technique. See Figs.  7.6 (a)  and  7.6 (b)  for the fl ow control diagram. 

  7.1.1   Functioning of Segmentation Unit without Scatter – Gather 
Support (see cs -  7.1  and cs -  7.4 ) 

 When an application wants to write data over a TCP socket, fi nally  tcp_sendmsg()  
is called inside the kernel. The segmentation unit works on the basic principle of 
breaking a big chunk of data into small chunks of 1   mss each. So, the fi rst thing we 
do is get the cached in mss by calling  tcp_current_mss()  at line 1035. Next we get 
the number of the user buffers and the pointer to the user buffer at line 1038 and 
1039, respectively. There are essentially two loops used to implement segmentation. 
The outer loop accesses the next user buffer in each iteration, and the inner loop 
generates segments from each user buffer. In the outer loop we access a pointer to 
the user buffer to be segmented and the length of the buffer at lines 1047 and 1048, 
respectively. We iterate in the inner loop until the entire buffer is used by the seg-
mentation unit to generate segments.   

 Let ’ s look at the implementation of the segmentation unit — that is, inner loop 
1052 – 1184. Since we want to generate segments of 1   mss size, we fi rst check if there 
is any partial segment in the transmit queue ( sk → write_queue ). By partial segment, 
I mean that the size of the segment is less than 1   mss. With this logic, a new segment 
is generated only after the existing segment is fully loaded. So, we always check the 
last segment in the queue to be partial at any point of time. The last segment for 
the socket can be accessed from the  prev  fi eld of the queue head since it is a doubly 
linked link list, line 1055. We fi rst check if there is any segment at the head of the 
transmit queue pointed to by  tp → send_head . If this value is NULL, there is no point 
checking for partial segment because we know that the  prev  accessed at line 1055 
is a back pointer to the transmit queue itself. 

 If the transmit queue is not empty, we check if the last segment in the queue is 
partial (length of the segment is less than the current mss) at line 1058. If we don ’ t 
fi nd a partial segment in the transmit queue, we need to create a new segment for 
the user data. 

 Before allocating memory for a new segment, we fi rst check if the socket ’ s 
quota for the send buffer has exceeded its limit by calling  tcp_memory_free() . If 
we have enough memory,  tcp_alloc_pskb()  is called to allocate a new buffer for 
the TCP segment. If our hardware is aware of the scatter – gather technique, we 
allocate a buffer that fi ts into a single page. Otherwise, we get a buffer of length 
1   mss (buffer that can hold 1   mss of TCP payload). In the case of a memory short-
age, we need to wait for memory to be available, line 1069. Otherwise we queue 
the new segment at the tail of the transmit queue by calling  skb_entail()  (see Section 
 7.2.15  for more detail). Actually, Linux implements a transmit and retransmit queue 
as a single queue ( tp → write_queue ).  tp → send_head  marks the start of the transmit 
queue. 

 From line 1076, the code is common for both cases: 



    cs 7.1.      tcp_sendmsg() .  
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   •      We created a new segment.  
   •      We found partial segment in the transmit queue.    

 If the space found to exist in the selected segment is smaller than the data to be 
copied, we make an adjustment at line 1077. Next we check if any is space available 
in the linear area of the selected buffer. Now why do we make this additional check 
here when we know that for a new segment will have tail room? We do this test 
only for the case where we have identifi ed a partial segment in the transmit queue. 
Even if it is a partial segment, we need this check because we might have paged 
data area for the partial segment. If our interface implements the scatter – gather 
technique, the segment extends to the paged data area when the linear data area is 
full (linear data area is limited to a single page for such cases). If there is room in 
the linear data area and the data to be copied are more than the space available, 
we make an adjustment at line 1083. Now we are ready to copy data to the identi-
fi ed segment by calling  skb_add_data()  at line 1084. We need to update TCP with 
the new data added to the send queue. We update write sequence ( tp → write_seq ) 
with the amount of data added to the write queue at line 1156. We also need to 
update the end sequence number of the segment to complete the sequence space 
covered by the segment at line 1157. Shift the user buffer pointer to point to the 
location where we need to start copying next at line 1159 and also update number 
of bytes copied at line 1160. If we have copied the entire data from the user buffer 
at line 1161, we try to send out the segment queued in the transmit queue by calling 
 tcp_push()  at line 1189. We release the socket user status and return the number of 
bytes. 

 In case we have not copied the entire user buffer to the socket buffer, we check 
if the segment we are working on is still partial or we are sending an OOB message 
at line 1164. If any one of the cases is TRUE, we would like to continue to iterate 
once again. In case the segment is still partial, we need to make it full. This will be 
the situation when we are fi lling paged data area because we are allocating 1 page 
per iteration. In the case of the OOB fl ag set, we will get out of the loop in the next 
iteration and get into  tcp_push()  where urgent data will be processed. 

 In case we have a full - sized segment at line 1164, we check if we need to force 
a push fl ag on the last segment in the transmit queue by calling  forced_push()  at 
line 1167. In case we need to tell the receiver to push data to the application at the 
earliest, mark the push sequence number as a write sequence number by calling 
 tcp_mark_push()  and call  __tcp_push_pending_frames()  at line 1169 to start trans-
mitting pending segments in case we satisfy Nagle ’ s algorithm, congestion window 
and send window. If we can ’ t force the data to be pushed and there is only one 
segment in the transmit queue (line 1170),  tcp_push_one()  is called to push the 
segment from the transmit queue. We continue with segmentation for the rest of 
the user data by iterating in the inner loop.  

  7.1.2   Segmentation without Scatter – Gather Support 

 The application has written X bytes of data: 1   mss   =   X   +   Y bytes. These segments 
are not yet transmitted because of any of the reasons which failed the send test. We 
generate two sk - buff ’ s, one buffer is full and the other one is partially fi lled (see Fig. 
 7.1 ).    
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  7.1.3   1   mss of Data Written over the Socket 

 The application has written 1   mss of data. First the partial segment is fi lled to make 
it full - sized. Next we allocate one more segment to copy the rest of the X bytes. 
The send head is still pointing at segment 2, which is yet to be transmitted. (See Fig. 
 7.2 .)     

  7.2   SEGMENTATION WITH SCATTER – GATHER TECHNIQUE 
(E.g., Fig.  7.4 , see cs  7.1  and cs  7.4  unless mentioned) 

 Until now we have seen how segmentation works for buffers with linear data area 
only where the interface is not scatter – gather capable. Now we extend our discus-
sion to paged data area in segmentation. Our discussion starts from line 1086, where 
we come because there is no space left in the linear data area of the buffer and still 
the segment is seen as partial. This may happen because of two reasons: 

   •      Our hardware is scatter – gather capable.  
   •      Hardware doesn ’ t implement the scatter – gather technique, which means that 

we can have data only in a linear - data area. In such cases, we allocate a big 
chunk of linear - data area of 1   mss. The only possibility to reach here is change 
of mss. Mss for the segment has gone up since a partial segment was created. 
Only in this case would we have allocated 1   mss of memory for a linear - data 
area where mss has now increased and the segmentation unit does not real-
locate linear data area.    

    Figure 7.1.     X bytes of data copied to socket buffer linear area.  
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 So, we get ready for processing page data area. We get number of fragments already 
allocated for the buffer from  skb_shinfo(skb) → nr_frags  at line 1088. Current page 
that is partially fi lled can be accessed macro TCP_PAGE at line 1089 and offset 
within the page can be accessed from macro TCP_OFF at line 1090. 

 TCP_PAGE and TCP_OFF accesses  sndmsg_page and sndmsg_off  fi eld of 
object  tcp_opt  for the connection (cs  7.2 ). Later in the discussion we will see when 
are these fi elds are initialized. Next, we check if data can be added to the existing 
partially fi lled page for the paged data area by calling  can_coalesce() . If we can 
coalesce and we still have space left in the last modifi ed page, we set a mark that 
new data should be merged to the last modifi ed page. If we can ’ t merge data with 
the existing page, we check if we can allocate another page. If the number of pages 
allocated has exceeded the limit for the buffer (=  MAX_SKB_FRAGS ) or we are 
allocating the fi rst page and our hardware is not capable of scatter – gather, we need 
to allocate a new TCP segment CSK-buff. When our hardware is scatter – gather 
capable but current mss is so large that it can ’ t be accommodated in a single 
segment, this is a cause for a network performance issue because we are not able 
to send full - sized segment because of buffer design limitation. This probably happens 
because mss has increased since the buffer was allocated. During buffer allocation, 

    Figure 7.2.     1   mss of data copied to socket buffer linear area.  

    cs 7.2.     Macros used for paged data area management.  
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we check if our hardware is scatter – gather capable; if it is capable, we also check if 
a full - sized segment can be accommodated in a single buffer (check select_size(), 
Section  9.1.1 .). If so, we go for paged data area. Otherwise, we allocate a big chunk 
of memory that can accommodate full - sized segment. The other condition at line 
1096 checks if we are allocating a page for the fi rst fragment of the paged data area; 
if our interface is non scatter – gather, we need to allocate a new segment. This condi-
tion also arises from the fact that mss has changed since the buffer was allocated.   

 If we are not allowed to merge or we do not need to create a new segment, we 
check if the page TCP_PAGE() points to a valid page at line 1103. We may have 
a valid page that is FULL, because of which we are here. So, we check if the page 
is FULL at line 1108. If so, we release the page and initialize TCP_PAGE to NULL 
at line 1110 because the page is already full and we can ’ t modify it anymore. If we 
didn ’ t fi nd the page that can be modifi ed, try to allocate a page by calling  tcp_alloc_
page()  at line 1116. This looks like another performance hit where we need to allo-
cate 1 page of memory for each PAGE_SIZE of user data, which is an expensive 
operation. If we fail to allocate a page, we wait for memory to be available. Other-
wise, we are ready to copy data to the newly allocated page. 

 We are here either because we found a partial page in which case we merge 
data to the existing page or we have allocated a new page. We adjust the bytes to 
be copied to the space available in the page at line 1122. We copy data to the page 
by calling  tcp_copy_to_page() . We also update buffer fi elds specifi c to length and 
account for memory used to copy user buffer to the segment. 

 After copying data to the page, we need to update fragment information. In 
the case where we have merged data to the existing page, the last fragment ’ s size 
needs to be updated at line 1139. In the case where we have allocated a new page 
to copy data, a new descriptor needs to be initialized.  fi ll_page_desc()  is called to 
initialize the descriptor at line 1141. We access a fragment from the index passed to 
the routine at line 764 (cs  7.3 ).  page, page_offset , and  size  fi elds are initialized. 
 page_offset  is set to 0 here as an offset for partial page is maintained by  TCP_OFF  
macro.  size  is the number of bytes copied to the page. Finally,  nr_frags  is incremented 
by 1 at line 768 (cs  7.3 ) because a new fragment is active now.   

 We need to hold an additional reference on the page by calling  tcp_get()  at line 
1143 as it is being referred by  TCP_PAGE  macro. In the case where TCP_PAGE 
is not yet initialized and we have not fi lled the entire page, TCP_PAGE is initialized 
to point to the partial page at line 1146. Finally, TCP_OFF is initialized to point to 
a location where we need to copy the next byte in the page at line 1150. 

    cs 7.3.      fi ll_page_desc().   
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    cs 7.4.      tcp_sendmsg().   
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  7.2.1   Segmentation with Scatter – Gather Support 

 Application has written X   +   1 page bytes of data over the socket where mss   =   X   +  
 Y   +   (1 page) bytes (Fig.  7.3 ). Assume that the segment has not transmitted for some 
reason.    

  7.2.2   Application Writes  Y  Bytes over the Socket 

 Application has written Y bytes of data over the socket. Since the existing segment 
is partial, we allocate a new page for the next fragment in the paged data area to 
copy Y bytes (Fig.  7.4 ). Now we have a full - sized segment that is ready to be 
transmitted.    

  7.2.3     can _ coalesce ()  

 We have exceeded the number of fragments total allocated for a buffers ’  paged data 
area. We have a pointer to the buffer, a pointer to the page, and an offset passed 
as an argument to the routine. The caller wants to check if the page and offset as 
accessed from TCP_PAGE and TCP_OFF, respectively, are from the fragment last 
modifi ed. We check the availability of space in the last modifi ed fragment because 
we don ’ t move to the next fragment until the current fragment is partially fi lled. 
The last modifi ed fragment can be accessed from total the number of fragments 
allocated. At line 754 (cs  7.5 ), we access the last modifi ed fragment. Next we compare 
the fragment page and offset with the page and offset passed as an argument.    

    Figure 7.3.     X bytes   +   (1 page) of data copied to a paged data area.  
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  7.2.4     tcp _ copy _ to _ page ()  

 The routine is called to copy data from a user buffer from a specifi ed offset within 
the page and account for the memory usage by the socket buffer. We add the amount 
of coped bytes to total and paged area length of the buffer at line 
969 – 970 (cs  7.6 ). So also we account for the overall memory usage by the buffer 

    Figure 7.4.     Data copied to a paged data area.  

    cs 7.5.      can_coalesce().   
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( skb → truesize ). Account for the overall memory allocated for the socket ’ s send 
buffer and account for the memory taken from the socket ’ s memory pool at line 
973.    

  7.2.5     tcp _ mark _ push ()  

 This sets a PSH fl ag for the  sk_buff  and at the same time updates the push sequence 
with the latest write sequence (cs  7.7 ). We mark byte as PUSHED in the case where 
we have written more than half of the so far maximum window size from the last 
byte marked as pushed, or in the case where we have one full - sized TCP segment 
ready for transmission.    

  7.2.6     forced _ push ()  

 This checks if we have written out more than half of the maximum window size ever 
advertised by the peer.  tp → write_seq  indicates the sequence number of the unsent 
byte on the TCP stream.  tp → pushed_seq  is the sequence number associated with 
the byte in the TCP stream that was last marked pushed (cs  7.8 ). This forces the last 
segment to be sent out in the window to have a PSH fl ag set indicating the receiver 
to read all the data it has received so far if it has not yet done that.    

    cs 7.6.      tcp_copy_to_page().   

    cs 7.7.      tcp_mark_push().   
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  7.2.7     tcp _ push ()  

 The routine is called when we are either writing OOB data or we have consumed 
user buffer completely. We fi rst check if there is anything to transmit (line 809). The 
fi rst buffer of the send queue ( sk → write_queue ) is made to point  tp → send_head , 
which means that the next TCP segment that is not yet transmitted is pointed to by 
 tp → send_head . Now we check if we need to mark the PUSH fl ag for the TCP buffer. 
We mark the buffer as PUSH if the application has no more data to send or if we 
have written more than half the maximum receive window size observed so far since 
the last PUSHed byte (line 811, cs  7.9 ). Call forced-PUSHed to check this. The 
receive - window is advertised by the receiver of the TCP data; the sender TCP keeps 
track of this window. If so, we mark the last byte as PUSHed and also set the PUSH 
fl ag for the TCP segment (line 812). Now we call  tcp_mark_urg() . This routine just 
checks if we are writing an OOB data. If so, we set the TCP in urgent  mode  ( tp →
 urg_mode  indicates that TCP connection is in urgent mode and it gets reset when 
we get ACK for the urgent byte). Now we initialize the urgent pointer for the urgent 
byte to  tp → write_seq  ( tp → snd_up  contains the sequence number of the send urgent 
pointer byte in the stream of TCP data). We initialize the send urgent pointer to the 
sequence number of the last byte written because we write only 1 byte as OOB data 
and we don ’ t wait for any more data when we need to send urgent data. So, the 
urgent sequence number will be same as the sequence number of the last written 
byte. We fi nally set a URG fl ag for the TCP buffer (line 813). We are not discussing 
any urgent mode here, so we won ’ t discuss more about it here. Now we call  __tcp_
push_pending_frames()  at line 814 to try to send segments pending to be transmitted 
in the socket ’ s write queue.    

    cs 7.8.      forced_push().   

    cs 7.9.      tcp_push().   
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  7.2.8    __ tcp _ push _ pending _ frames ()  

 This routine does all the work required to transmit TCP buffers queued up in the 
send queue so far. So, the fi rst thing we check here is whether we have anything to 
transmit in the write queue (line 1247, cs  7.10 ). If the send queue is not empty, we 
call  tcp_skb_is_last()  (line 1248). This routine checks if we are the last and only 
buffer in the write queue. If this is not the last buffer in the write queue, we force 
Nagle ’ s algorithm to be disabled (line 1249). This is because nothing can be added 
to the packet that needs to be transmitted fi rst so we make sure that we can transmit 
the segment. In the case where there is only one segment, let Nagle ’ s algorithm 
decide whether to transmit the packet now. Now we call  tcp_snd_test()  to make all 
the possible tests to check if we can transmit any unsent segment. If the test fails, 
we can ’ t transmit any more data currently. In the case where the test passes, we call 
 tcp_write_xmit()  to try to send out segments to the allowable limits. In the case 
where both routines fail, we are not able to send out any new data. We check if the 
receiver has advertised zero - window and we need to reset the window probe timer 
by calling  tcp_check_probe_timer()  at line 1252.    

  7.2.9     tcp _ snd _ test ()  

 This make all the possible tests to checks whether we can transmit segments in the 
transmit queue now. We make the following checks: 

   •      Are we sending a segment without violating Nagle ’ s algorithm?  
   •      Do we need to send out an urgent byte?  
   •      Are packets in fl ight greater than the current congestion window?  
   •      Are we sending a FIN segment?  
   •      Are we sending an out - of - window data?    

 If Nagle is enabled, we don ’ t have to send out an urgent byte and Nagle ’ s algo-
rithm doesn ’ t allow us to send out new data, and we defer transmission of segments. 
If we are not violating Nagle ’ s rule or we are in an urgent mode, continue with other 

    cs 7.10.     __ tcp_push_peding_frames().   
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checks to transmit a new segment.  tcp_nagle_check()  is called to check if Nagle is 
not violated. If any of the above - mentioned conditions is TRUE, we next check if 
the congestion window allows us to send out more segments.  packets_in_fl ight()  
counts those segments that are transmitted but not yet ACKed and are neither 
SACKed nor considered lost. These segments are considered to be consuming the 
network resources. If the count exceeds the congestion window (line 1220, cs  7.11 ), 
we are fully utilizing the network resources for the connection. So, we can ’ t send 
more, otherwise, we may end up congesting the network. FIN segment is an excep-
tion. Even if the connection is fully utilizing network resources, we can send out a 
FIN segment. The last check is to fi nd out if we are not sending data out of the 
receivers window at line 1222. When we receive ACK for the new in - sequence data, 
window shifts toward right.  tp → snd_una  is updated to the acknowledged sequence 
number when we get ACK for new data and  tp → snd_wnd  is updated to window 
advertised by the receiver. So, the check reduces to the end sequence number of 
the segment being transmitted should not exceed end sequence number of the right 
edge of the send window.    

  7.2.10     tcp _ nagle _ check ()  

 The very fi rst check we make here is whether TCP segment is partial,  skb → len  <  
mss  (line 1180, cs  7.12 ). If this condition fails it means that we have complete 
segment ready to be transmitted so we don ’ t make more checks are return FALSE 
to  tcp_snd_test() . Else we check if this is a FIN segment (line 1181). If it is a fi n 
segment, we return FALSE to  tcp_send_test() . Else we move on to the next check 
for TCP cork (line 1182). If we have set cork on the socket we return TRUE (When 

    cs 7.11.      tcp_snd_test().   

    cs 7.12.      tcp_nagle_check().   
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we set cork on the socket stream, we can ’ t send any TCP data until we release the 
cork). Otherwise we move on to the next check for Nagle ’ s. If Nagle is not enabled, 
we return FALSE to  tcp_send_test()  (line 1183). Otherwise we move on to the next 
check to see if there are any packets which are sent out but not yet acknowledged 
(line 1184). If we have nothing unacknowledged, we just return FALSE. Otherwise 
we move on to the next check, which is to check if we have unacked small segments. 
For this we call  tcp_minshall_check()  (line 1185).    

  7.2.11     tcp _ minshall _ check ()  

 This checks if tp → snd_sml (end sequence number of the last partial TCP segment, 
 skb → len  <  mss ) is less than or equal to the last unacknowledged byte (tp → snd_una). 
If not, we return FALSE (line 1159, cs  7.13 ), which means that we return FALSE 
if we have no unacknowledged small segments so far. Otherwise we still have an 
unacknowledged small segment. Now we check if we have not yet sent the small 
packet. If not yet sent ( tp → snd_sml  >  tp → snd_nxt ), we return FALSE. Otherwise 
we return TRUE (line 1160). There is SWS avoidance from the sender side to avoid 
sending too many small segments.    

  7.2.12     tcp _ write _ xmit ()  

 Here we try to process all the TCP segments queued up at the socket ’ s write 
queue one by one. For this we need to make a check for each segment to determine 
whether we can send it out or not. The next packet to send out can be accessed 
from  tp → send_head  (line 566, cs  7.14 ). At the same time we check if we can transmit 
this segment now by calling  tcp_snd_test () (line 567). If we can send the segment 
now, the next thing we check is whether we have segment length more than 
the current mss. We may have changed the route to the destination. If segment 
length is more than the current segment, we fragment the segments further by 
calling tcp_fragment() (line 568 – 571) to avoid IP fragmentation, which is a heavy 
process. We discuss  tcp_fragment()  some time later. In case we need to fragment 
the segment, we come out of the loop (line 566 – 580). Otherwise we are all set to 
transmit the segment by calling  tcp_transmit_skb() . We always pass a clone of the 
TCP segment to  tcp_transmit_skb()  and not the original  sk_buff  (line 574). The 
reason is that we want to maintain the original TCP buffer until it is ACKed. We 
will drop the reference for  sk_buff  once it is transmitted out of the hardware device. 
 tcp_transmit_skb()  actually builds TCP header, sends it to the IP layer for process-
ing, and puts the fi nal IP datagram on the device queue for hardware transmission. 
If this TCP segment could not be sent out successfully, we come out of the loop 
(line 566 – 580). Otherwise we need to update the send queue information and the 

    cs 7.13.      tcp_minshall_check().   



246 TCP SEND

TCP state machine variables and move on to process the next segment in the write 
queue.   

 If the segment is transmitted successfully, we update the send head to point to 
the next segment to be transmitted by calling  update_send_head()  at line 577. Now 
we need to update TCP variables that keep information of any small segments 
that are sent out recently by calling  tcp_minshall_update()  at line 578. If the most 
recent transmitted TCP segment had length less than the current mss,  tp → snd_sml  
is updated to the end sequence number of that small segment (cs  7.15 ). This is 

    cs 7.14.      tcp_write_xmit().   

    cs 7.15.      tcp_minshall_update().   
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used to check if we are transmitting a larger number of smaller segments while 
sending out the segments while Nagle is enabled (check  tcp_nagle_check() ). We 
have completely processed one TCP segment and sent it out. Now once again check 
if there is a TCP segment to be sent out (line 566). If we have consumed all the 
TCP segments in the write queue ( tp → send_head == NULL ), we come out of the 
loop.    

  7.2.13     update _ send _ head ()  

 Here we update the  tp → send_head  to the next sk_buff in the write queue (line 50, 
cs  7.16 ). If we have just transmitted the last sk_buff in the write queue, we set tp →
 send_head to NULL (line 51 – 52). Now we update the TCP variable that keeps 
account of what needs to be sent next, tp → snd_nxt. tp → snd_nxt is updated with 
the end sequence number of the segment just transmitted (line 53). TCP also keeps 
track of a number of packets that are sent out but are yet to be ACKed ( tp →
 packets_out ). So, we increment  tp → packets_out  by one. If this is the fi rst packet to 
be sent out or the fi rst packet out and there is no outstanding ACKs ( tp → packets_
out  is decremented by one once an ACK for the segment is received), we set the 
retransmission timer for the packet just send out. If we are sending out the TCP 
segment when we already have unACKed segments in the queue, we don ’ t update 
the TCP retransmission timer because the retransmission happens for any one 
segment for the TCP and this is the very fi rst unACKed segment.    

  7.2.14     tcp _ push _ one ()  

 This routine is called to send once we have a full - sized segment ready for transmis-
sion and we have only one segment in the transmit queue. It calls  tcp_snd_test()  to 
check if we can transmit the TCP segment right now (line 338, cs  7.17 ). We have 
already discussed the function in much detail before. We disable Nagle here because 
we don ’ t have any unACKed segment here because this is the only segment in the 
write queue. If we are allowed to transmit the segment, we directly call  tcp_
transmit_skb() , which builds the TCP/IP header and puts the IP datagram on the 
device queue for transmission. We initialize the send head (line 342) to NULL 
because this was the only segment in the write queue. Next we assign the end 
sequence number of the segment to the tp → snd_nxt (next byte to be sent, line 343). 

    cs 7.16.      update_send_head().   
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Finally, if this is the only unACKed segment sent out, we reset the retransmit timer 
for this segment.    

  7.2.15     skb _ entail ()  

 We initialize the start and end sequence for the segment to sequence number of the 
next unwritten byte, the reason being we don ’ t know how much will be copied into 
the buffer. So, the end sequence number for the segment will be initialized only 
after we have copied data to the buffer. The buffer fl ag is initialized to  TCPCB_
FLAG_ACK  because every TCP segment carries a minimum ACK fl ag. We queue 
the segment to the tail of the transmit queue at line 790. We then account for the 
socket memory allocated for the buffer by calling  tcp_charge_skb()  at line 791. If 
this is the fi rst segment queued in the transmit queue, the send head ( tp → send_head ) 
is inititialized to point to this segment at line 793.     

    cs 7.18.      skb_entail().   

    cs 7.17.      tcp_push - one().   



  7.3   SENDING  OOB  DATA 

 Whenever we want to send out urgent byte, we do it by calling  send()  with  MSG_
OOB  set in the user application. So, essentially we write only one byte as OOB data. 
In  tcp_sendmsg()  we write 1 byte either to existing segment or new segment and 
then continue in a loop at line 1165 (cs  7.4 ). we get out of inner loop here because 
seglen has become zero here because we had only 1 byte of data to copy. For the 
same reason, we get out of the outer loop because we had only 1 byte of data to 
copy. We call tcp_push() at line 1189 (cs  7.4 ) with fl ag set to  MSG_OOB . From 
 tcp_push()  we call  tcp_mark_urg()  which in turn checks if  MSG_OOB  fl ag is ON. 
If that is the case, we set urgent mode ( tp → urg_mode ), set urgent pointer ( tp →
 snd_up ) to write sequence ( tp → write_seq ) and set URG fl ag for the TCP segment. 
Now urgent pointer will be set for all those segment ’ s which are yet to be transmit-
ted and for which following condition satisfy

   sequence number urgent pointer sequence number xffff>= >= + 0   

 All those segments for which urgent pointer lies within start sequence number and 
0xffff offset from the start sequence number for the segment, will have urgent 
pointer set ( tcp_transmit_skb() , line 248). 

 We clear an urgent mode at the sender side in  tcp_clean_rtx_queue()  in 
case the segment for which urgent pointer is set is ACKed, and the ACKed segment 
contained marked urgent pointer, we clear the urgent mode at line 1781 (see 
Section  11.4.6 ). While building header for the TCP segment in  tcp_transmit_skb() , 
we check if urgent mode is ON at line 247 (cs  7.19 ). We also check if the 
urgent pointer lies within the valid sequence range for the outgoing data segment 
at line 248 ( tcp_transmit_skb() ). If both of the above conditions satisfy, we set an 
urgent fl ag in the current segment ’ s TCP header and also set the current urgent 
pointer.    

    cs 7.19.      tcp_transmit_skb().   
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    Figure 7.5a.     Data fl ow of the TCP send process.  

  7.4   FLOW FOR  TCP  SEGMENTATION UNIT AND SEND PROCESS 

 Figures  7.5a  and  7.5b  are the data fl ow diagram for the processing of TCP data by 
segmentation unit. It describes how data is processed through segmentation unit, 
write queen and TCP state machine to send it down the stack. It also describes 
processing of urgent TCP data.    

  7.5   FUNCTIONAL LEVEL FLOW FOR SEGMENTATION AND 
SEND MECHANISM 

 Figures  7.6a  and  7.6b  show fl ow of control to implement processing of TCP data in 
the kernel. It shows major routines that are called to implement send side TCP data 
processing.    



    Figure 7.5b.     DATA fl ow of TCP send process ( continued ).  

  7.6   SUMMARY 

 TCP sends out data in chunks of 1   mss. Maximum segment size is based on MTU, 
which is a link layer characteristic and can be retrieved from  tcp_current_mss() . 

  tcp_alloc_pskb()  allocates a new buffer for TCP data, and its minimum size is 
1   mss or one page in case scatter – gather is supported. 

  skb_entail()  queues up packet on the transmit buffer and also accounts for 
allocated buffer memory. 

 In the case where scatter – gather is supported by a network controller and mss 
is more than a single page, data are copied to  sk_buff ’ s  paged data area. There is a 
limitation on the number of pages allocated to  sk_buff ’ s  paged area. A segmentation 
unit looks slightly underperforming as far as memory allocation is concerned here. 
If the connection has very high mss with scatter – gather - capable NIC, we won ’ t be 
able to take advantage of scatter – gather technique in the case where mss exceeds 
the limit imposed by number of pages that can be allocated to single  sk_buff . Also, 
if the mss increases when we have partial segment in the transmit queue, we can ’ t 
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    Figure 7.6a.     Functional fl ow of TCP send process.  



    Figure 7.6b.     Functional fl ow of 

TCP send process ( continued ).  

reallocate memory for the partial segment to accommodate more data as per new 
mss. This would cause underperforming TCP. 

  tcp_push_one()  tries to transmit one segment in the write queue.  __tcp_push_
pending_frames()  tries to transmit more than one segment queued up in the write 
queue. 

  tp → send_head  points to fi rst segment in the write queue that needs to be trans-
mitted next. This fi eld marks the start of the transmit queue and separates it from 
the retransmit queue. 

  tcp_send_test()  implements all the sender side algorithms like Nagle ’ s algo-
rithm, sliding window protocol, and congestion window test. 

  tcp_mark_urg()  checks if we need to send out an urgent byte and sets TCP fl ag 
to indicate an urgent byte.                                                               

SUMMARY 253



255

8

TCP/IP Architecture, Design, and Implementation in Linux. By S. Seth and M. A. Venkatesulu
Copyright © 2008 the IEEE Computer Society

  TCP  RECEIVE     

     Application reads may request a kernel to receive normal or urgent data from a 
TCP socket. Kernel socket implementation has to differentiate between the two 
different types of requests. When an application wants to receive an urgent byte as 
OOB data, it has to take care of reading it at an appropriate time; otherwise, there 
is a chance of losing it. 

 TCP treats data as a stream of bytes. Only those bytes that are received in 
sequence are queued by a TCP receive buffer. Out - of - sequence data go into a sepa-
rate queue, and data from this queue can ’ t be considered to serve an application 
request. 

 Kernel processing of TCP data received can be divided into two parts. If an 
application is blocked to read data and in - sequence data are received, TCP directly 
copies data to a user buffer. The other way is to queue in - sequence data to a socket ’ s 
receive queue, and the application request is served from the receive queue. The 
kernel implements the queuing mechanism for the received TCP segments, and 
there are more than one queue implemented. 

 In this chapter we will learn all about processing TCP data and about the design 
of receive queues. TCP data include normal and urgent data. We will learn about 
the queuing mechanism of TCP segments and about the processing sequence of the 
queues. We will also get to see how data are read from the socket buffers. There is 
a section that explains the receive mechanism from paged buffers as well. Then we 
have section on how an urgent byte is received both as inline and OOB data. There 
is a section that explains a blocking mechanism to receive data. Complete processing 
of receiving TCP data is explained in Figures  8.14(a)  through  8.14(f) .              
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  8.1   QUEUING MECHANISM 

 In this section we will see all the queues that exist for the incoming TCP packets. 
What is the design point of view to have all those queues, and in what sequence are 
they processed? There are three queues to receive incoming TCP segments: 

   •      Backlog queue ( sk → backlog )  
   •      Prequeue queue ( tp → ucopy.prequeue )  
   •      Receive queue ( sk → receive_queue )    

  sk → receive_queue  contains processed TCP segments, which means that all the pro-
tocol headers are stripped and data are ready to be copied to the user application. 
 sk → receive_queue  contains all those data segments that are received in correct 
order. TCP segments in the other two queues are the ones that need to be 
processed. 

 Packets intended for TCP are fi rst processed by  tcp_v4_rcv()  (cs  8.1 ). Here we 
need to make a decision on whether the packet needs to be processed or needs to 
be queued in either  backlog  or  prequeue  queues. We fi rst hold a socket spin lock 
at line 1766. The bottom half is already disabled when this routine is entered 
because it is called from NET softIRQ. Next we check if any body is already using 
the socket at line 1768. sk → lock.users is one in case somebody is using the socket. 
The socket is in use when we are reading/writing/modifying the socket. If the socket 
is already in use, we fi rst try to queue the TCP packet in the prequeue queue by 
calling  tcp_prequeue()  at line 1769. If for some reason we are not able to queue the 
TCP packet in a prequeue queue, we directly process the segment by calling  tcp_
v4_do_rcv()  at line 1770. In our discussion, we are assuming that the socket is in an 
established state. So, the packet will be processed by calling  tcp_rcv_established()  
from  tcp_v4_do_rcv()  (cs  8.1 ).   

  8.1.1   Processing in   tcp _ rcv _ established ()  

 Let ’ s see how a TCP data packet is processed in  tcp_rcv_established()  (cs  8.2 ). We 
will not learn the entire processing of the data segment here, but only the data 

    cs 8.1.      tcp_v4_rcv() .  
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processing and queuing mechanism. First we look for the possibility of copying data 
directly to the user buffer. If that is not possible, we will strip the TCP header and 
queue the data segment in the receive queue.   

 There are certain conditions that need to be satisfi ed before we can copy TCP 
data directly to the user buffer. These are: 

   •      The current process ( current ) should be the one that installed the receiver 
( tp → ucopy.task ) at line 3301. It means that the chances of data being copied 
from softIRQ are very low because an interrupt can come anytime and it is 
not guaranteed that the same process may be running on the CPU that 
installed the receiver.  

   •      (The copied sequence ( tp → copied_seq ) should be the same as the sequence 
number that is expected next ( tp → rcv_nxt ) at line 3302, which means that no 
outstanding data are there in the receive queue to be processed.  

   •      TCP data contained in the segment should be maximum, equal to the length 
requested by the user ( tp → ucopy.len ) at line 3303. We do only one thing out 
of two: either copy data to the user buffer or queue the buffer to the receive 
queue. We don ’ t queue a partially read segment on the receive queue; other-
wise it will add further complexity and increase calculations.  

    cs 8.2.      tcp_rcv_established() .  
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   •      The fi nal condition is that the routine should be called from socket user 
context. This will make sure that the data can ’ t be directly copied to the user 
buffer from interrupt context (softIRQ), because  tcp_v4_rcv()  adds the TCP 
packet to the backlog queue in case somebody is already using the socket. So, 
we are sure that TCP data can be copied directly to the user buffer only from 
process context.    

 If all the above conditions are satisfi ed, we call  tcp_copy_to_iovec()  to copy TCP 
data from the packet being processed to the user buffer. This will also add copied 
length to  tp → ucopy.len  and  tp → copied_seq . We also update  tp → rcv_nxt  to the end 
sequence of the processed packet at line 3319. 

 If we are not able to copy data to the user buffer because of any of the condi-
tions above failing, we will queue a data segment at the end of the receive queue 
by calling  __skb_queue_tail()  at line 3344. We queue the buffer after stripping the 
TCP header so that we directly point to the data in the TCP segment. Update  tp →
 rcv_nxt  as the end sequence of the segment.  

  8.1.2     tcp _ prequeue ()  

 The routine is called when we receive a TCP packet from  tcp_v4_rcv() . This routine 
is called to queue a TCP packet in the prequeue queue, in the case where the 
receiver is installed by some user process (line 1328, cs  8.3 ).  tp → ucopy.task  points 

    cs 8.3.      tcp_prequeue() .  
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to the process that installed the receiver (for more details see Section  8.2 ,  tcp_
recvmsg() ). We are called only if no one is using the socket currently, which essen-
tially means that some user process wants to receive data and we are waiting for 
data over the socket. We can queue a TCP packet here only in one situation — that 
is, when we are waiting for a socket ’ s wait queue in  tcp_data_wait()  called from 
 tcp_recvmsg() .   

 First we queue a TCP packet on prequeue,  tp → ucopy.prequeue , and account 
for the memory allocated by the user buffer (tp → ucopy.memory) at line 1329 – 1330. 
We actually don ’ t process the TCP packets in the prequeue in the interrupt context 
(done usually in process context). But in the extreme case, where memory con-
sumed by user buffer has stuck the upper limit ( sk → rcvbuf ) at line 1331, we need 
to process TCP segment ’ s from the prequeue. We process all the segment in the 
prequeue one by one by calling callback routine  sk → backlog_rcv , line 1337 – 1338. 
 backlog_rcv  points to  tcp_v4_do_rcv().  The situation may arise in the case where 
packets are coming fast enough and the receiving process is not getting scheduled 
to process the prequeue. This is when we queue the fi rst TCP segment on the 
preqeue (line 1343), the receiving process is woken up by calling  wake_up_inter-
ruptale() . In the case where we are queuing the fi rst TCP segment on the prequeue, 
the delayed ACK timer is reset in the case where ACK is not already scheduled to 
three - fourths of the minimum RTO value. We do this because we process the pre-
queue queue in the delay ACK timer if the application is not able to do it fast 
enough. We return values indicating whether we are able to queue the TCP segment 
on the prequeue.  

  8.1.3   Processing of Queues (see  cs   8.4a  and  cs   8.4b  
unless mentioned) 

 TCP queues are processed mainly in two places: 

   •      delay ACK timer,  tcp_delack_timer()   
   •       tcp_recvmsg() , when the application wants to receive data over the socket        

 Let ’ s see how the queues are processed in  tcp_recvmsg() . We process the queues 
as a user of the socket. We become a socket user by calling  lock_sock()  at line 1480 
(cs  8.4a,b ). Before entering tcp_recvmsg(), we can have data in the receive queue 
only. The reason for this is that the receiver is not installed for the socket, because 
of which the packets won ’ t go into prequeue. Even if someone were holding the 
socket ’ s user status because of which the packets were queued into a backlog queue, 
those packets would have been processed while the socket ’ s user status is released. 
When the backlog queue is processed without the receiver being installed, the pro-
cessed TCP data packets are queued into the receive queue. In the case where no 
one had socket ’ s user status before entering this routine, all the segments received 
will be processed by  tcp_v4_rcv()  and the processed data packets will be queued in 
the receive queue. 

 So, the order will be to fi rst process a receive queue. In the receive queue, only 
TCP data segments go which are received in order. We eat up data from the TCP 
receive queue in the loop 1524 – 1545. If we fi nd the segment of our interest at line 
1539, we consume data by jumping to a location and once again enter the same 
loop. Once we have completely processed a receive queue and we have copied the 
requested data, we return at line 1550. 
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    cs 8.4a.      tcp_recvmsg() .  
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 In case after completely processing a receive queue we could not satisfy an 
application request, we need to wait for some more data to arrive before we can 
return. So, we install a receiver at line 1590. Since this is the fi rst time we have come 
here, we need to initialize  tp → ucopy  object. Structure ucopy is embedded in the 
 tcp_opt  structure and contains details of the user buffer.  prequeue  is a pointer to 
the queue where the TCP packets go when there is no socket user but receiver is 
installed.  task  is a pointer to the process that has installed the receiver. Using this 
fi eld, we avoid copying data in a user buffer directly from interrupt context. i ov  is 
the pointer to the user buffer where data should be copied.  memory  keeps account 
of the amount of memory consumed by the buffers queued in the  prequeue  queue. 
 len  is the number of bytes we are interested in. 

 We initialize  task, iov , and  len  fi elds of the  ucopy  object (cs  8.5 ). Next we check 
if there are any packets in the prequeue to be processed at line 1628. In the fi rst 
iteration we should not see any packets in this queue because the receiver is just 
installed and we are still the user of the socket.  In tcp_v4_rcv()  we queue packets 
on this queue only if no one is using the socket and a receiver is installed.   

    cs 8.4b.      tcp_recvmsg()  ( continued ).  
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 Next we check if we have copied the requested data at line 1634. If so, we just 
release the socket ’ s user status by calling  release_sock()  at line 1636 and then try to 
get the socket ’ s user status by calling  lock_sock()  at line 1637. We do this because 
this will cause all the packets queued on the backlog queue to be processed in 
release_sock(). All the packets arrived until the call to  release_sock()  will be queued 
on the backlog queue in  tcp_v4_rcv()  because socket is being used. We leave the 
routine after processing packets in the backlog queue this way even after all our 
requests are satisfi ed. 

 In the case where we have not copied all the data requested, we wait for data 
to be available by calling  tcp_data_wait()  at line 1639. We wait here until woken up 
due to the arrival of TCP packet for the socket or we experience timeout. On return 
from tcp_data_wait(), we might have packets in the prequeue (for more details see 
Section  8.1.4 ,  tcp_data_wait() ). The next step after waiting will be to test if the we 
have installed a receiver at line 1732. Since we are discussing the reception of data, 
this will always be non - NULL and will point to the process that wants to receive 
data. In the case where TRUNCATE fl ag is set, we don ’ t have this set, but we don ’ t 
care. So, the fi rst check is made for the possibility of direct consumption of data 
during processing of packets. How is this possible? We may have copied data to the 
user buffer while releasing the socket ’ s user status by calling  release_sock()  in  tcp_
data_wait() . Because a backlog queue will be processed here and since socket user 
status is retained by us, any TCP data packet processed will directly copy data in 
the user buffer in  tcp_rcv_established() . If we have copied data to the user buffer, 
 tp → ucopy.len  will be decremented by copied length in  tcp_rcv_estbalished()  and we 
need to account for the copied data at line 1649 – 1650. 

 Next we check whether we can process a prequeue queue. Here we need to 
check for two conditions: 

   •      Is there anything in the receive queue to be processed (line 1653)? If some-
thing is there in the receive queue to be processed,  tp → rcv_nxt  will be differ-
ent from the  tp → copied_seq ; see Section  11.8 ,  tcp_rcv_established() . If data 
are directly copied to the user buffer, the above two fi elds will have the same 
value.  

   •      Is there anything in the prequeue to be processed (line 1654)?    

 To process the messages in the prequeue, there should be nothing in the receive 
queue to be eaten up; otherwise, things will mess up. We can have packets in the 
pre - queue to be processed at this point because of the small window between releas-
ing and holding socket user status during which the receiver is already installed (see 

    cs 8.5.     Data structure to manage user buffer for copying tcp data.  
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Section  8.1.4 ,  tcp_data_wait() ). But, how do we have a situation where we have 
packets in the prequeue along with TCP data in the receive queue? In the small 
window when we have released socket ’ s user status, we start queuing packets in the 
prequeue. On arrival of the fi rst entry in the prequeue, we kick off a delay ACK 
timer in  tcp_prequeue()  called from  tcp_v4_rcv() . If the delay ACK timer fi res 
before we get the CPU, packets from the prequeue will be processed and all the 
data segments will be queued in the receive queue (as we are in the interrupt 
context). The delay ACK timer proceeds only if there is no user of the socket. After 
the prequeue is processed in the delay ACK timer, there can still be some time 
before we get the CPU and get the socket ’ s user status. In this duration, packets 
arriving for the socket will be queued on the prequeue. 

 In the case where we are able to process packets on the prequeue because there 
was nothing in the receive queue to be processed, tcp_prequeue_process() is called 
to process the prequeue at line 1656. If there are any data segments on the pre-
queue, data will be directly copied to the user process in tcp_recv_established() 
because we are the process who has installed a receiver as with the socket ’ s user 
status on. Next we account for the copied data at line 1660 – 1661 and continue. 

 In case we are not able to process the packets on the prequeue because of 
pending data to be processed in the receive queue, we continue at line 1671. We 
repeat the processing from the start of the processing of the receive queue at line 
1523. Consume all the data from the receive queue and we still fall short of data 
requested by the user; we will come to line 1628 from where we jump to line 1655 
to process the prequeue. In the case where we have satisfi ed the request from the 
user by processing the receive queue and we still have packets in the prequeue, we 
process the prequeue before leaving the routine at line 1738 by calling  tcp_pre-
queue_process() . This will process all the data segments in the pre - queue and queue 
them in the receive queue. This makes sure that the next time we enter  tcp_
recvmsg() , the sequence of queue processing is maintained; that is, receive queue 
then prequeue and then backlog queue.  

  8.1.4     tcp _ data _ wait ()  

 The routine is called when we want to wait for data to arrive over a socket. We add 
wait queue to the socket ’ s wait queue  sk → sleep  and set the process state to  TASK_
INTERRUPTIBLE  at line 1348 (cs  8.6 ). We set the SOCK_ASYNC_WAITDATA 
fl ag for the socket, which means that the socket is waiting for data to arrive asyn-
chronously. Now we release the socket ’ s user status by calling  release_sock()  at line 
1351. As explained in Section  8.1.8 , this will process all the TCP packets queued in 
the backlog queue. Now we check if the receive queue is empty at line 1353. Until 
releasing the socket ’ s user status, whatever packets arrive will be queued in the 
backlog buffer in  tcp_v4_rcv() . If the backlog queue was not empty and we received 
TCP data segments, they will be queued in the receive buffer. So, the receive buffer 
will not be empty in this case and we try to get the socket ’ s user status for the process 
by calling lock_sock() at line 1356. Clear the SOCK_ASYNC_WAITDATA fl ag 
for the socket, remove the process from socket ’ s wait queue at line 1359, set process 
state to TASK_RUNNING, and return.   

 In the case where there was nothing in the backlog queue or there were no TCP 
data segments by the time we released the socket ’ s user status, we need to wait 
until data arrive by yielding our position at line 1354. We will be awakened either 
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whenever the TCP packet arrives or when we experience timeout. In either case, 
we just return from the routine. 

 There is a small window between releasing the socket ’ s user status and reacquir-
ing it at line 1356 where the current process is not the user of the socket. If no other 
process is using the socket in this duration, all the TCP packets intended for the 
socket will be queued in the prequeue queue because the receiver is installed.  

  8.1.5     tcp _ prequeue _ process ()  

 The routine is called from process context, and is called from tcp_recvmsg() when 
we want to process packets queued in the prequeue (cs  8.7 ). We process packets in 
the prequeue with local bottom - half disabled. Disabling of the bottom - half is not 
required here because we already have acquired the socket ’ s user status. Once the 
socket is in use, incoming TCP packets will be queued in the backlog queue. By 
disabling the local bottom half, we are actually deferring the processing of packets 
on the current CPU because they are processed in NET softIRQ.    

    cs 8.6.      tcp_data_wait() .  

    cs 8.7.      tcp_prequeue_process() .  
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  8.1.6     lock _ sock ()  

 The routine is called when someone wants to read/modify/write to the socket. This 
macro grants socket user status to the caller. It holds socket spin lock  sk → lock.slock  
and checks if somebody is already using the socket at line 787 (cs  8.8 ). If so, it has 
to wait for the user of the socket until it releases the user status by calling  __lock_
sock()  at line 788. Once  __lock_sock()  returns, it means that someone has released 
the socket user status ( sk → lock.users == 0 ). We are still holding the socket spin 
lock, so we become a user of the socket at line 789. At last we release the socket 
spin lock.    

  8.1.7    __ lock _ sock ()  

 The routine essentially waits for the socket ’ s lock wait queue ( sk → lock.wq ) until it 
is awakened by someone who releases the socket ’ s user status (cs  8.9 ). By doing 
this, we loop forever by doing the following steps in each iteration: 

  1.     Set the status of the current task to  TASK_UNINTERRUPTABLE  at line 
847.  

  2.     Release socket ’ s spin lock at line 848.  
  3.     Call  schedule()  to preempt the current process at line 849.  
  4.     We return from schedule only after someone wakes us up (the one who 

releases hold on the socket user status,  release_sock() ).  

    cs 8.8.      lock_sock() .  

    cs 8.9.      __lock_sock() .  
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  5.     If the socket user status is still available, we break from the loop at line 852. 
Otherwise we iterate in a loop. Once someone holding the socket user status 
releases it, it wakes up everyone waiting for the status. Whoever gets CPU 
fi rst will get the status, and the rest of them will once again wait until the 
next release.      

 Once we are out of the loop, we set the task status as TASK_RUNNING and 
remove the process from the socket ’ s wait queue at line 855.  

  8.1.8     release _ sock ()  

 This macro is called when the user of the socket wants to release the user status on 
the socket. Hold the socket spin lock and fi rst check if the backlog queue is empty 
at line 795. We need to check this because when the socket is in use, the incoming 
TCP packets in  tcp_v4_rcv()  are not processed immediately but are queued in the 
backlog queue. These packet ’ s should be processed when the user of the socket is 
releasing the status. This way we maintain the order of packet processing. After 
holding the socket user status, no new TCP packet is processed until the socket user 
status is released by the process. 

 In the case where the backlog queue is not empty, we need to process all the 
TC packets queued in the backlog queue by calling  __release_sock()  at line 796 (cs 
 8.10 ). Once we have processed the backlog queue, the socket user status is released 
at line 797. If we have any processes queued in the socket ’ s wait queue,  sk → lock.
wq , we wake up all the processes sleeping on this wait queue by calling  wake_up()  
at line 798. Release socket ’ s spin lock and return.    

  8.1.9    __ release _ sock ()  

 We process the TCP packets on the backlog queue here. The idea is to process the 
backlog queue until it is empty. We can ’ t process the TCP packet with the socket 
lock held, so while processing the packet ’ s from the queue we release the socket 
lock. We have two loops to implement the idea. The outer loop is iterated until we 
have empty backlog queue. The inner loop processes one packet at a time from 
the backlog queue until all are processed by calling  sk → backlog_rcv, 
tcp_v4_do_rcv() . 

 The fi rst time we enter the routine, we detach the chain of packets from the 
queue at line 860 and then enter the inner loop after releasing the socket lock at 

    cs 8.10.      release_sock() .  



line 864 (cs  8.11 ). Once all the packets in the chain are processed, we come out of 
the inner loop, hold the socket lock, and check if there is any packet in the backlog 
queue to be processed at line 875. If there is anything to be processed, we detach 
the chain at line 863 and proceed further to process the chain. We make this check 
at the end of the outer loop because there is a window between the socket spin lock 
being held and released. In this duration if the packets arrive, they will be queued 
in the backlog queue in  tcp_v4_rcv()  because the socket is still in use by the current 
process processing the backlog queue.     

  8.2   PROCESSING OF  TCP  DATA FROM THE RECEIVE QUEUE 
(see  cs   8.12a  and  8.12b  unless mentioned) 

 In the previous section we saw how queues are designed to work such that TCP 
data integrity is maintained and we leverage prequeue design to copy data effi -
ciently to the user buffer. In this section we will learn how data are copied from the 
receive queue and the processing of receive buffers. This section covers only normal 
data receive, and Section  8.3  will cover urgent byte processing.     

 To copy data from socket buffer to the user land, we rely on the following 
fi elds: 

  1.      tp → copied_seq  is the sequence number of the byte that is copied to the user 
land. This is updated whenever we copy data to the user buffer in  tcp_
recvmsg()  and also in  tcp_copy_to_iovec()  when data are directly copied to 
user buffer.  

  2.      skb → len  is the length of the socket buffer (TCP payload).  
  3.      TCP_SKB_CB(skb) → seq  is the sequence number corresponding to the fi rst 

byte of the socket buffer.    

    cs 8.11.      __release_sock() .  
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 We are interested in all those bytes that are received in - sequence. Each byte has 
a sequence number associated with it. Data segments queued in the receive 
queue have no hole is the sequence space. Moreover, each segment has its own 
sequence space — that is, start and end of the data sequence numbers. So, we can 
exactly know how much is copied and what needs to be copied. Even in the case of 
overlapping sequence spaces of the segments, we have no problem because each 
byte is marked with sequence number and we can avoid copying common data 
twice. 

 In this section we will see how data are copied from the socket buffer to the 
user buffer. In this discussion we assume that all the data we are interested in comes 
from the receive queue. We will have examples with paged and linear data sections 
each. When we enter tcp_recvmsg(), the copied sequence number is marked at line 
1494 (cs  8.12a ). Next we need to fi nd out the segment that contains the byte that 
corresponds to sequence number next to the copied sequence in the receive buffer 
in a loop 1524 – 1545. For each buffer we calculate the offset within the buffer from 
the copied sequence and the start sequence number for the buffer at line 1536. If 
the offset is smaller than the length of the buffer, we have the buffer, line 1540. 
Otherwise we move on to the next buffer at line 1544. We copy data from the buffer 
by jumping to line 1673. 

 We found the buffer from where we need to copy data, and now we need to 
fi nd how much data need to be copied from the buffer from the total length of the 
buffer and the offset within the buffer at line 1675. If the length requested by the 
user application is less than the number of unread bytes within the buffer, we adjust 
the number of bytes that can be copied at line 1677. Now we are ready to copy data 
with the offset and number of bytes from an identifi ed buffer by calling  skb_copy_
datagram_iovec()  at line 1697. We don ’ t know if the data need to be copied from 
the linear data area or paged data area or from fragments. This part is taken care 
of by  skb_copy_datagram_iovec() . We will learn more about it in Section  8.2.2 . We 
have already read data from the buffer and now need to account for the same. So, 
we increment the copied sequence by the number of bytes read at line 1706, the 
total number of bytes copied to the user buffer, and the number of bytes remaining 
to be copied at lines 1707 – 1708. We check if complete buffer is consumed at line 
1715 (cs  8.12b ). If we still have data left in the buffer, it means that the number of 
bytes requested has been served and we need to return because the outer loop 
condition will fail at line 1730. In the case where the application has requested more 
data and the buffer just read couldn ’ t satisfy the request, we move on to the next 
buffer by iterating through the outer loop. In this case, we have consumed the entire 
data from the current buffer and need to unlink it from the receive buffer by calling 
 tcp_eat_skb()  at line 1721. Once we come out of the loop after reading in all the 
requested by the application, we have actually created some space in the socket ’ s 
receive buffer for more data to be received. In this case, we need to advertise the 
new window to the sender. We may be opening a window here, so we should notify 
the sender which must be waiting to send in data. For this we call  cleanup_rbuf()  
at line 1756. 

  8.2.1     cleanup _ rbuf ()  

 This routine is called to check if we can send an ACK after application has read 
data from the socket buffer. First we check if the ACK was scheduled by calling 
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 tcp_ack_scheduled()  at line 1291 (cs  8.13 ). If so, we can send ACK under following 
conditions: 

  1.     Is the ACK blocked at line 1293? This may happen if the delayed ACK timer 
was intercepted by us as we are holding user status. Since we are called from 
 tcp_sendmsg()  holding user status, if the delayed ACK fi res, ACK will be 
blocked. So, before releasing socket ’ s user status, we are called. It is our job 
to send out blocked ACK in such cases.  

  2.     We have not ACKed data of length greater than 1   mss at line 1295.  tp → rcv_
wup  is synced with tp  → rcv_nxt  only when we send ACK.  

  3.     When we have emptied the receive buffer, and there is data fl ow only in one 
direction ( tp → ack.pingpong  is not set).      

 In the case where none of the above conditions is TRUE, we still can send out an 
ACK if we have read some data because we might be opening the window. If the 
receive side of the socket is not shut down (we won ’ t receive any data in this case) 
and the application has read some data before coming here (line 1316), we check 
if the window has opened. We get the last advertised window from  tcp_receive_
window()  at line 1317. Next we check if twice of the window advertised is smaller 
than the window clamp (line 1320), and we calculate the new window by calling  __
tcp_select_window()  at line 1321.This routine will take into consideration space 
available in the receive buffer. If we have read enough data from the socket buffer, 
the window to be advertised will increase considerably. In the case where the new 
window calculated is more than twice of the window advertised last (line 1328), we 
need to send an ACK. This condition also satisfi es the condition where the window 
is opened from zero. 

 We send an ACK by calling  tcp_send_ack()  at line 1333 if any of the conditions 
discussed above is satisfi ed.  

    cs 8.12b.      tcp_recvmsg()  ( continued ).  



  8.2.2     skb _ copy _ datagram _ iovec ()  

 The routine is called to copy data from a socket buffer to a user buffer. We are 
passed a socket buffer ( sk_buff ) from where data need to be copied (offset within 
the buffer), a user buffer where data should be copied, and the length of data to be 
copied. The buffer is divided into two parts: 

  1.     Linear data area  
  2.     Paged data area or shared data area    

 First we read data from the linear data area and then get data from the paged data 
area. We fi rst calculate linear data area length at line 208 (cs  8.14 ).  skb → len  is the 
total length of the buffer, and  skb → data_len  is the total length of the paged data 
area. If our offset is within the paged data area, we call  memcpy_toiovec()  at line 
214 to copy data from a given offset into the buffer to the user buffer. In the case 
where our request is satisfi ed from the linear data area, we return at line 216 – 217. 
If more data are requested, paged data are looked into for more data. We increment 
the offset by the amount of data copied at line 218.   

 Let ’ s see how we get data from the paged data area. A number of fragments in 
the paged data area are stored in  skb_shinfo(skb) → nr_frags. skb_shinfo()  is a 

    cs 8.13.      cleanup_rbuf() .  
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    cs 8.14.      skb_copy_datagram_iovec() .  



macro that accesses the end of the linear data area where the  skb_shared_info  object 
for the buffer exists. For more details on  skb_shared_info  object, see Section  5.2 . 
Each fragment is represented as an  skb_frag_t  object containing a pointer to the 
page ( frag → page ), offset within the page ( frag → page_offset ) and length of each 
fragment ( frag → size ). There is an array of  skb_frag_t  objects,  skb_shinfo(skb) →
 frags  containing fragments. Data are stored sequentially in the successive elements 
of the array  skb_shinfo(skb) → frags . 

 So, we traverse through all the fragments in a loop 222 – 247 to copy data until 
either the required data are copied or we have consumed all the data from the paged 
area. We use the same logic to fi nd out whether the offset lies in the given fragment 
as we use for the linear data area. Offset and length of the fragment are calculated 
with respect to the base of the linear data area. For this reason, when we switch 
from linear to paged data area, the offset is recalculated as the amount of data 
copied from the linear data area at line 218. For each fragment we fi rst calculate 
the total length of the buffer including the fragment at line 227. Next, we check if 
there is anything that can be copied from current fragment at line 228. In the case 
where we have already copied entire data from the current fragment, the new length 
is calculated as the cumulative length of the current fragment starting from the 
linear data area at line 246 and we access the next fragment from the array. 

 If we have data to be copied from a fragment and the number of bytes remain-
ing in the page to be copied is more than the requested length, we adjust the amount 
that can be copied to the requested length at line 235. Next we access virtual address 
of the page for the fragment at line 236. We now copy number of required bytes 
from the page offset ( frag → page_offset ) starting from page virtual address to the 
user buffer by calling  memcpy_toiovec()  at line 237. If we have copied the entire 
data, return at line 243. Otherwise we calculate the new offset at line 244 by adding 
the copied length to it and start all over again. 

 In the case where we have fragmented buffer (IP datagram was received as 
fragments) and we have consumed all the data from paged data area, fragments 
( skb_shinfo(skb) → frag_list ) of the buffer will contain rest of the data. Overall 
length of the main buffer is the sum of the lengths of all the fragments including 
itself. So, we fi nd out if the next offset lies in any of the fragments while traversing 
the fragment list, line 252 – 268. once we fi nd the fragment, we call  skb_copy_data-
gram_iovec()  recursively at line 261 and process the linear and paged data section 
of each fragment in the same way as we did for the main buffer.  

  8.2.3   Reading Data from Receive Buffer without Paged Data Area 

 Let ’ s take an example of how we consume data from the receive buffer. We 
assume that the buffers in the receive buffer contain only linear data area and are 
not fragmented. Let ’ s assume that we have received two full - sized segments as 
shown in Fig.  8.1 . The application issues three reads of size  X  bytes,  n  bytes, and 
( n    −    X ) bytes, respectively. Let ’ s see what happens to the buffers in the receive 
queue.    

  8.2.4     X   Bytes Requested from the Application 

 After the fi rst read of  X  bytes, the receive buffer will be as shown in Fig.  8.2 . Since 
complete data from the fi rst buffer is not completely consumed, it remains in the 
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    Figure 8.1.     2   mss of data to read from the receive buffer.  

    Figure 8.2.      X  bytes copied to the application buffer.  



queue. From the sequence number and sequence space of the buffer, we can fi nd 
out the exact byte from where we need to start reading next.    

  8.2.5   1    mss    =     n   Bytes Requested from the Application 

 In the second read, application requests for  n  bytes (=1   mss) of data. At this time 
we have completely consumed fi rst buffer in the receive queue, so it unlinked from 
the queue. Only ( n    −    X ) bytes are remaining in the second buffer on the receive 
queue (Fig.  8.3 ), which will be consumed in the third read.    

  8.2.6     n      −      X   Bytes Requested from the Application 

 The receive queue as seen after the third read of ( n    −    X ) bytes is shown in Fig.  8.4 . 
Here copied sequence is same as receive next because all the data in the receive 
queue are consumed.    

  8.2.7   Consumption of Data from a Paged Buffer 

 In this example we see how data are copied from the buffer with a paged data area. 
Suppose we have a total of  n    +   2 pages of data from the buffer.  n  bytes come from 
the linear data area and two pages come from the paged data area as shown in 

    Figure 8.3.     1   mss data copied to the application buffer.  
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    Figure 8.4.     Complete data from a socket buffer are copied to a user buffer.  

Fig.  8.5 . The application issues 2 reads of  n  bytes and 1 page each. Let ’ s see how 
data is copied in this case.    

  8.2.8     n   Bytes Requested by the Application 

 After the fi rst read of  n  bytes, the picture of the buffer will be as shown in Fig.  8.6 . 
These bytes are consumed from the linear data area.    

  8.2.9   One Page of Data Requested by the Application 

 In the second read of one page, the buffer looks like as shown in Fig.  8.7 . The next 
read will start from the beginning of the next page.     

  8.3    TCP  URGENT BYTE PROCESSING 

 A TCP urgent byte can be read in two different modes: 

  1.     Inline  
  2.     Out - of - band    



    Figure 8.5.     Data in a linear and paged data area of socket.  

 The default mode for a socket to receive an urgent byte is out - of - band. Out - of - band 
data are a socket level abstraction and have nothing to do with TCP byte - of - stream. 
In both the cases, the TCP transmits and receives an urgent byte as normal data. 
Once the urgent byte is received, it depends on the mode of reception of an urgent 
byte from where the urgent byte will be read. See cs  8.15  for all the codes referring 
to  tcp_recvmsg() .   

  8.3.1   Urgent Byte Read as  OOB  Data 

 If an application wants to read an urgent byte as out - of - band data, it needs to issue 
 recv()  with an MSG_OOB set. There are ways to inform the application that the 
urgent data have arrived. It is up to the application to handle such events at the 
proper time and take the appropriate action to read the urgent byte. In the case 
where urgent byte is read inline, we don ’ t need to issue  recv()  with an MSG_OOB 
fl ag set because it is read from the stream of bytes directly.  tcp_recvmsg()  is called 
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    Figure 8.6.      n  bytes of data copied from a linear data area.  

in the kernel to read an urgent byte. We start with reading an urgent byte as out -
 of - bound data by calling  tcp_recv_urg()  at line 1768 in  tcp_recvmsg() .  

  8.3.2     tcp _ recv _ urg ()  

 The very fi rst thing we check here is whether we have any urgent byte to be read. 
For this we check three conditions at line 1224 (cs  8.15 ): 

  1.     If the  sk → urginline  fi eld is set, it means that we are supposed to read an 
urgent byte inline. This is the wrong request to read an urgent byte.  

  2.     If the above fails, we need to check if  tp → urg_data  are still set, which means 
that we may have an urgent byte to be read. If not set, we just return with 
an error number set. We will see later that if an application reads past an 
urgent pointer mark without reading an urgent byte, that urgent byte is lost. 



So, it is up to the application to read an urgent byte at the appropriate 
time.  

  3.     If  tp → urg_data  is nonzero, we need to check if a TCP_URG_READ bit is 
set. If this fl ag is set, it means that an urgent byte is already read. So, we 
return with an appropriate error number set. A misbehaving application 
might issue more than one  recv()  for one urgent data notifi cation.    

 Next we do some socket - related checks and check if the urgent data validity 
fl ag, TCP_URG_VALID, is set. This fl ag is set when we receive an urgent byte in 
 tcp_urg()  (see Section  11.7 ). If so, we read an urgent byte stored in the lower 8 bits 
of  tp → urg_data . If we are just peeking urgent data, we won ’ t set TCP_URG_READ 
fl ag set. Otherwise we clear everything and set the read fl ag indicating that the 
urgent byte is already read. If the number of bytes to be read is more than 1 and 
the message is not to be truncated, we read one byte of data in the user buffer at 
line 1242. Note that even with the MSG_PEEK fl ag set, we can read an urgent byte 

    Figure 8.7.     One page of data copied from a paged data area.  
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but do not set the TCP_URG_READ fl ag because the subsequent  recv()  will 
consume the urgent byte.  

  8.3.3   Urgent Mode Processing and Reading an Urgent Byte as 
Inline Data (see  cs   8.12a  and  8.12b  unless mentioned) 

 We remain in urgent mode until we read the data past an urgent pointer mark. We 
do this in a normal data receive path in  tcp_recvmsg() . Here we will see what 
happens when an urgent pointer is marked and we are reading normal data. In this 
section we will also see how a TCP urgent byte is read when we are receiving an 
urgent byte as inline data. From cs  8.12(a)  and  (b)  (see  tcp_recvmsg() ) we are trying 
to read data from a socket ’ s receive buffer. There are two loops here, and the outer 
loop (lines 1502 – 1730) makes sure that we get the amount of data requested wherein 
we may have to wait for the data or process the data from the prequeue, and it also 
does the job of copying data to a user buffer and performing processing related to 
urgent data. The inner loop (1524 – 1545) looks if there is any data to be read from 
a socket ’ s receive buffer and if any data are to be read from the buffer, it provides 
us the buffer ( sk_buff ) from where data need to be copied (1539). It makes use of 
 tp → copied_seq  (line 1494) to fi nd the buffer from where the requested data need 
to be copied to the user buffer.  tp → copied_seq  is the sequence number of the last 
byte in the stream of bytes which has been copied to the user buffer. We get the 
difference of the copied sequence and the start sequence number of the buffer as 
an offset in the buffer. If the offset is more than the buffer length, we have already 

    cs 8.15.      tcp_recv_urg() .  



copied the entire buffer so we move on to the next buffer. Once we have found the 
buffer, which means that the offset is less than the buffer length, we try to process 
the required data from the buffer in the outer loop by jumping to line 1673. 

 In the outer loop, we fi rst check whether we have any valid urgent pointer at 
line 1507. In the case where we have valid urgent pointer, set ( tp → urg_data ). We 
discontinue reading any more data in the case where we have read some normal 
data and have already copied data ( tp → copied_seq ) pointed to by an urgent pointer 
mark ( tp → urg_seq ). Linux implementation supports both theories of urgent byte, 
where one says that an urgent byte is one byte ahead of the urgent pointer mark 
and the other one says that an urgent byte is exactly pointed to by an urgent pointer 
mark. We make these adjustments only at the time of reception of an urgent pointer 
(see Section  11.7.1 ). So, at this time we need not worry about any theory and con-
sider that an urgent byte is pointed to by one byte ahead of an urgent pointer. If 
we have read a byte pointed to by an urgent pointer ( tp → urg_seq ), the next byte 
to be read is the urgent byte. So, if we are reading normal data, we will continue to 
read until we have read data up to an urgent pointer mark ( tp → urg_seq ) and return 
to the application even if more data are requested. The application can then check 
if an urgent pointer mark has reached. If so, an application can issue  recv()  of 1 
byte to read in urgent byte. So, the condition at line 1507 makes sure that we should 
continue to read normal data until an urgent pointer mark and then stop. If we are 
entering the loop for the fi rst time and next byte to be read is urgent byte, we go 
ahead and read it. 

 Let ’ s discuss what happens when application issues read for normal data where 
urgent byte has already been received. Once we fi nd a buffer that contains the next 
byte to be read, we jump to line 1673. First we check how much is already being 
read in the buffer at line 1675. Let ’ s assume that the urgent byte also lies in the 
same buffer (see Fig.  8.8 ).   

 Suppose an application issues a read of  n  bytes of normal data. The fi rst byte 
is found to exist in the buffer as shown in Fig.  8.9 . Our request can be satisfi ed by 
this buffer alone. We check if urgent data exist at line 1680. If the urgent data exist, 
we try to fi nd out the offset of the urgent byte with respect to the sequence number 
corresponding to the last read byte. In the case where the urgent byte offset is more 
than the number of normal bytes that an application has requested, we just read 
the requested number of bytes and return it to the application as shown in Fig. 
 8.10 .   

 In the case where an application has requested number of bytes beyond the 
urgent pointer mark and the current buffer can satisfy the request, we return the 
number of bytes until an urgent pointer mark (line 1692). Figure  8.11  and Figure 
 8.12  show a buffer state just after we return to the application. A good application 
design should try to sense an urgent data mark and then issue a read of 1 byte of 
data to read an urgent byte. Otherwise, we check if the next byte to be read is 
pointed to by an urgent pointer mark (a copied sequence is the same as an urgent 
pointer mark). If that is the case, the next byte to be read is an urgent byte. We 
take two different paths from here, depending on whether the socket is set to receive 
an urgent byte as out - of - band data ( sk → urginline  not set) or as inline data.     

 In the case where an urgent byte is received as out - of - band data,  sk → urginline  
is not set. We know that the next byte is an urgent byte, and we skip reading the 
urgent byte. We will read the urgent byte from a different channel. In this case, we 
increment the copied sequence ( tp → copied_seq ) by 1 at line 1685. Next we check 
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    Figure 8.8.     Urgent byte is received.  

    Figure 8.9.     Urgent byte is covered by the sequence space of data requested by the 

application.  

    Figure 8.10.     Application is returned data until an urgent pointer.  



    Figure 8.11.     Application has read data past an urgent pointer.  

if the user has requested more than 1 byte, and we go ahead by reading the required 
number of bytes and skipping the urgent byte (line 1697) and then process the TCP 
urgent state at line 1710. In the case where the user has requested for only one byte, 
nothing needs to be copied to the user buffer and we jump to line 1710 for further 
processing of an urgent state. 

 An urgent byte is received inline. We don ’ t skip an urgent byte and start reading 
the requested number of bytes starting from the next byte — that is, urgent byte. If 
 tp → urginline  is set, a good application design will request only 1 byte of urgent byte 
once it senses that the next byte to be read is an urgent byte. 

    Figure 8.12.     Application is returned data until an urgent pointer.  
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 The next step is to process a TCP urgent state starting at line 1710. Since we 
have already read an urgent byte as shown in Fig.  8.11 , we need to reset the fl ags 
related to an urgent state. We check the following: 

  1.     If urgent data are valid ( tp → urg_data  is nonzero).  
  2.     If an urgent byte has been read ( tp → copied_seq    >    tp → urg_seq ).    

 An urgent mode for the connection, once we have read data past an urgent byte, 
will be as shown in Fig.  8.13 . If both of the above conditions are TRUE,  tp → urg_
data  is reset and then we check if we can get back to the fast path of TCP processing. 
If we entered a slow path just because a new urgent pointer was received, a fast 
path will be enabled here.     

  8.4    DATA  FLOW DIAGRAM FOR RECEIVING DATA OVER 
THE  TCP  SOCKET 

 Figures  8.14(a)  through  8.14(f)  show data fl ow diagram to implement reception of 
TCP data at the socket layer. They describe processing of different receive queues 
and also reception of TCP urgent data.  

    Figure 8.13.     Application is returned data until an urgent pointer.  



    Figure 8.14a.     Receive process.  
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    Figure 8.14b.     Receive process ( continued ).  



    Figure 8.14c.     Receive process ( continued ).  
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    Figure 8.14d.     Receive process ( continued ).  



    Figure 8.14e.     Receive process ( continued ).  
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    Figure 8.19.     Receive process ( continued ).  

  8.5   SUMMARY 

 Incoming TCP data segments are processed from three different queues in the fol-
lowing order: 

   •      Receive queue ( sk → receive_queue )  
   •      TCP prequeue ( tp → ucopy.prequeue )  
   •      Backlog queue ( sk → backlog )    

 A backlog queue is processed when we release a socket ’ s lock by calling 
 release_sock() . 

 TCP segments are queued in the queue holding a socket spin lock by calling 
 bh_lock_sock()  in  tcp_v4_rcv() . 

 TCP segments are processed from the queue after locking the socket by calling 
l ock_sock()  in  tcp_recvmsg() . 

  tp → copied_seq  is a sequence number associated with the byte in the TCP 
stream of bytes until data are copied to the application buffer. 

  tcp_data_wait()  is called to wait for TCP data when the socket is blocking. 
  sk → urginline  is a fl ag that indicates whether we are receiving a TCP urgent byte 

as out - of - band data or inline. 
  tp → urg_seq  stores an urgent byte as well as fl ags associated with urgent data 

processing. In the case where we are receiving a TCP urgent byte as OOB data, it 
is read from here. 

  tcp_recv_urg()  is called to receive an urgent byte in the case where we are 
receiving an urgent byte as OOB data. 

  tcp_eat_skb()  is called to release a socket buffer from a receive queue once all 
the data from the buffer are already copied to a user application. 

  cleanup_rbuf()  is called to check if ACK needs to be generated once data are 
read. This is required in the case where we have an opened window because an 
application has consumed data from the receive queue.                                                                                 
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  TCP  MEMORY MANAGEMENT     

     Each TCP socket has send and receive buffers of fi xed size. The reason for fi xing 
buffer size is to allow each connection to fairly use system resources. If there was 
no limit on the size of the socket buffers, one connection on which data are com-
municated at a very fast rate would have left other connections starving for memory. 
Data from receive buffer are consumed when application issues receive a request 
on the TCP socket. Similarly, data from the send buffer is consumed only when 
data are ACKed. 

 TCP applies fl ow control on the connection when any of the buffers is full. 
Because of the difference rate of consumption of data and rate of arrival of data, 
we need a buffer. Linux does not allocate memory for socket buffers in one go. 
Memory is allocated in small chunks so that on every allocation we will can keep 
track of memory usage by socket and also overall system - wide memory usage by 
TCP. We will see how a socket ’ s send and receive side buffer management is done 
in the current discussion.  

  9.1   TRANSMIT SIDE  TCP  MEMORY MANAGEMENT 
(see  cs   9.1  unless mentioned) 

 When we need to send out data over a TCP socket, new buffer needs to be allocated 
containing data. This buffer in Linux is represented by  struct sk_buff . It contains 
complete TCP packet information as well as pointer to TCP payload. In this section 
we will see how memory is allocated for TCP buffer in  tcp_sendmsg() . We will also 
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check how a socket blocks in the case where memory is not available for the new 
buffer and how the sleeping socket is awakened when the memory is available. See 
Figure  9.1  for overview of send side TCP memory management memory.   

 When there is no partial packet at the head of the transmit queue, we need to 
allocate a new buffer ( sk_buff  object) to send out requested data over the socket, 
lines 1057 – 1058 (cs  9.1 ). In this case, the fi rst thing that we do is check if the TCP 
memory quota is over for the socket by calling  tcp_memory_free()  at line 1064 
(cs -  9.1 ). 

 The routine (cs -  9.2 ) checks if memory allocated for a socket ’ s write buffer ( sk →
 wmem_queued ) is less than the maximum limit on the send buffer ( sk → sndbuf ). If 
the condition is TRUE, we can allocate memory for the new send buffer; otherwise 
we need to wait for TCP memory to be available. The reason for nonavailability of 

    cs 9.1.      tcp_sendmsg().   
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    Figure 9.1.     TCP memory management for send buffer.  
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memory is that the socket buffers in the write queue are either not transmitted or 
not acknowledged. In this case we jump to line 1175, set  SOCK_NOSPACE  fl ag 
for the socket, and wait for memory to be available by calling  wait_for_tcp_memory()  
at line 1180. We call  tcp_alloc_pskb()  to allocate memory for the socket send buffer. 
In the case where hardware is not capable of doing scatter – gather DMA( NETIF_
F_SG  bit is not set for  sk → route_caps ), this will allocate memory for a TCP payload 
of size 1 mss. Otherwise, if the hardware is scatter – gather - enabled and the paged 
area of single sk_buff can accommodate 1 mss of data, this routine should allocate 
1 page of memory. Otherwise, it should allocate memory for the complete 1 mss as 
a linear data area. See Section  9.1.1  for more details on  select_size() . In the case 
where  tcp_alloc_pskb()  fails to allocate a buffer of required length, we need to wait 
for memory to be available at line 1180 by calling  wait_for_tcp_memory() . This 
memory requirement is different from the requirement at line 1065, which is because 
the socket ’ s send buffer is already full. In case, buffer is allocated successfully, we 
need to account for allocated memory for the write side socket by calling  skb_
charge()  from  skb_entail()  at line 1071.   

 In the case where the hardware interface is capable of doing scatter – gather 
DMA, we don ’ t allocate a big chunk of memory for linear data area to copy the 
entire 1 mss of data. If data require more than 1 page of space, pages are allocated 
as per the requirement in the paged date area (see Section  5.1 ). For this we call 
 tcp_alloc_page()  at line 1116. If we fail to allocate the page here, we need to wait 
for memory by jumping at line 1180. 

  9.1.1      select_ size ()  

 The size passed to  tcp_alloc_pskb()  is the one returned by  select_size()  (cs  9.3 ). We 
fi rst take mss value as stored in  tp → mss_cache . In the case where the NETIF_F_SG 
bit is not set for sk → route_caps (hardware is capable of doing scatter – gather), we 
calculate the length of the buffer; that is, 1 page — ( MAX_TCP_HEADER    +   size of 
object  skb_shared_info)  by using macro  SKB_MAX_HEAD  (cs  9.4 ).  MAX_TCP_
HEADER  is the maximum number of bytes occupied by TCP   +   IP   +   link layer 
headers along with options (cs  9.5 ). The end of the linear area of  sk_buff  should 
contain object  skb_shared_info . So,  SKB_MAX_HEAD  macro called at line 1001 
should return the actual TCP payload bytes that can be accommodated within a 
page.   

 Continuing with  select_size()  at line 1003, we check if the space left in a page 
can make a full - length TCP segment. If yes, it means that a complete segment can 
be accommodated in a single page. Otherwise, mss is big enough to be accommo-
dated in a single page and we need to allocate pages in paged data area of sk_buff 
to make a full segment. We can allocate maximum up to ( MAX_SKB_FRAGS     −    1) 
pages for a single  sk_buff . If our mss can be accommodated in a a single sk_buff ’ s 

    cs 9.2.      tcp_memory_free().   
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paged data area, we return bytes returned by  SKB_MAX_HEAD  as pages can be 
allocated for the rest of the data. Otherwise, complete mss is returned wherein we 
need to allocate a big chunk of memory for  sk_buff ’ s  linear area. In a nut shell, 
 select_size()  returns 1 page of data in case our hardware is capable of doing scatter –
 gather, given that the complete segment can be accommodated in paged area of 
single  sk_buff . In all other cases, 1 mss is returned for the linear data area of 
 sk_buff .  

  9.1.2     tcp _ alloc _ pskb ()  

 This routine returns buffer ( sk_buff ) with pointer to the linear data area of size as 
requested. First we call  alloc_skb()  with linear data area length that is split as size 
of TCP payload ( size )   +    MAX_TCP_HEADER  at line 1712 (cs  9.6 ). If we are able 
to allocate  sk_buff  with the required length of linear data area, we need to check 
if our quota allows us to do that.  skb → truesize  contains the total length of memory 
allocated for this buffer, which includes (size of  sk_buff  object   +   length of linear 
data area). We will learn this in the next section. Next we will check if memory to 
be forward allocated for the socket is more than total size of the buffer allocated 

    cs 9.3.      select_size().   

    cs 9.4.     Calculation of memory size for  sk_buff.   

    cs 9.5.     Maximum header size for a TCP packet, taking into account TCP/IP options and link layer 

header length.  
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( skb → truesize ) at line 1716. If not, we need not worry and return a buffer at line 
1719. Otherwise, we check if we can allocate required amount of memory for the 
buffer by calling  tcp_mem_schedule()  at line 1717. In the case where we are able to 
allocate memory for the buffer, we return the pointer to the allocated buffer. Learn 
more about scheduling of memory in Section  9.1.6 .   

 In the case where we are not able to allocate memory for the buffer, we need 
to enter a TCP memory pressure zone by calling  tcp_enter_memory_pressure()  and 
also call  tcp_moderate_sndbuf()  to moderate our send buffer at line 1724. We enter 
memory pressure to globally let all the users of TCP sockets in the system know 
that we have memory crunch and need to wait until we memory is available. We 
moderate out send buffer so that we wait for memory to be available before even 
trying so hard ( tcp_memory_free()  should fail, Section  9.1 ).  

  9.1.3     alloc _ skb ()  

 The routine can also be called from interrupt context. So, we need to check if it is 
called from interrupt context and  __GFP_WAIT  fl ag is set. If so, we should disable 
the fl ag because we can ’ t sleep in interrupt context; otherwise it will freeze the 
system. First, we try to allocate a buffer head ( sk_buff  object) from the pool by 
calling  skb_head_from_pool()  at line 180 (cs  9.7 ). We keep some of the freed  sk_
buff ’ s  in this pool so that we don ’ t need to knock at the cache for getting sk_buff 
object, which is expensive. If we fail here, we allocate  sk_buff  from cache at line 
182. If we don ’ t get an  sk_buff  object from cache, we return NULL. We now allocate 
a memory chunk requested for the linear data area of  sk_buff  object by calling 
 kmalloc()  at line 189. If we succeed in getting the memory chunk, we initialize a 
 truesize  fi eld of  sk_buff  to the size of memory block requested   +   size of  sk_buff  
object at line 194. Next we make the head of the buffer point to the start of the 
memory chunk at line 197. We do other initializations here, but it is of no relevance 
to the topic.    

    cs 9.6.      tcp_alloc_pskb().   
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  9.1.4     tcp _ alloc _ page ()  

 This routine is called when we want to allocate a page for a TCP buffer (paged area 
of  sk_buff  object). This is called from  tcp_sendmsg()  at line 1116. We fi rst check if 
we have already consumed all the forward allocated memory ( sk → forward_alloc ) 
at line 1736 (cs  9.8 ). We allocate memory in multiples of page size. We learn more 
about sk → forward_alloc in Section  9.1.6 . We try to look for the possibility of allo-
cating the single page memory quota for our socket by calling  tcp_mem_schedule()  

    cs 9.7.      alloc_skb().   

    cs 9.8.      tcp_alloc_page().   
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at line 1737. If permission is granted, alloc_page() is called to allocate a single page 
of memory.   

 In the case where we are not allowed additional page quota or a new page could 
not be allocated, we know that there is memory pressure. So, we call  tcp_enter_
memory_pressure()  to declare socket users that there is memory crunch for TCP 
memory pool. We also try to moderate the send buffer size so that we may not have 
to come along so far next time.  

  9.1.5     skb _ charge ()  

 Whenever we allocate a buffer ( sk_buff ) to send data over the socket, this routine 
is called to account for memory used by a socket.  sk → wmem_queued  is the amount 
of memory used by the socket send buffer queued in the transmit queue and are 
either not yet sent out or not yet acknowledged (cs  9.9 ). We add the size of the 
buffer to  sk → wmem_queued . We also decrement socket ’ s  forward_alloc  fi eld by the 
size of the buffer. We allocate memory in multiple pages in  tcp_mem_schedule() . 
Whenever we free a socket buffer, this fi eld is incremented by size of the socket 
buffer. More details are given in Section  9.1.7 .    

  9.1.6     tcp _ mem _ schedule ()  

 We are called whenever the forward allocated memory is exhausted, which means 
that the requirement of memory for a new socket buffer is less than the total 
memory currently available in the socket ’ s quota ( sk → forward_alloc ). We are called 
from memory allocation routines such as  tcp_alloc_page(), tcp_alloc_pskb() , and so 
on. We get the size of buffer to be allocated. This routine does all the required 
checks before actually allocating memory for the socket ’ s buffer. These checks will 
be system - wide TCP memory pressure, socket ’ s memory quota, and so on; and if 
all the condition ’ s are satisfi ed, we get the requested quota. 

 First we round off the memory requirements to multiple of  TCP_MEM_
QUANTUM  size (1 page) by using macro TCP_PAGES at line 289 (cs  9.10 ). This 
provides us the number of pages that we need to allocate. So, we add total memory 
calculated to sk → forward_alloc at line 291. Add total memory allocated to a global 
TCP memory pool,  tcp_memory_allocated , at line 292. Now we check if the total 
memory allocated via the TCP memory pool has exceeded the lower limit on the 
TCP memory pool ( sysctl_tcp_mem[0] ) at line 295. If the memory pool is not 
exceeded and memory pressure is indicated, we put off memory pressure at line 
297. If memory allocated to TCP is underutilized, we should remove TCP memory 
pressure and we reach the requested memory quota.   

    cs 9.9.      tcp_charge_skb().   
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    cs 9.10.     tcp_mem_schedule().  

 If total memory allocated for the TCP pool has exceeded the higher limit 
( sysctl_tcp_mem[2] ), we enter memory pressure by calling  tcp_enter_memory_
pressure()  at line 303. This routine sets  tcp_memory_pressure  to 1, in case it is not 
already set. We need to suppress allocation at this condition because we cannot 
utilize all the available memory for TCP socket requirement. So, we jump to line 
327. If we have come here for send buffer memory requirements, we still have a 
chance to allocate memory. For this we fi rst try to moderate send buffer size by 
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calling tcp_moderate_sndbuf(). If we are able to shrink the same, we make sure 
that next attempt to send tcp data will block for memory as tcp_memory_free() fails 
and we return success  .  .  .  Finally we reclaim whatever memory we allocated at the 
entry.  sk → forward_alloc  and  tcp_memory_allocated  are subtracted by the amount 
allocated, because we could not succeed. 

 In case we have not reached a hard limit, we check if we are entering a pressure 
zone at line 308. If so, we just mark TCP memory pressure by calling  tcp_enter_
memory_pressure() . In this case, we can allocate memory if the socket ’ s buffer limit 
has not reached. If we have come here for receive buffer requirement and receive 
buffer memory allocated so far, ( sk → rmem_alloc ) is below receive allocation limits 
for the socket ( sysctl_tcp_rmem[0] ), and we got the allocation approved (line 312). 
If we are here for send buffer requirements and send buffer allocated so far, ( sk →
 wmem_queued ) is below send buffer allocation limit ( sysctl_tcp_wmem[0] ), and we 
got our allocation approved (line 315). In both cases if we fail because we have 
reached the memory allocation limits, we still have a chance to get our allocation 
approved in the following circumstances: 

  1.     There is no memory pressure or,  
  2.     If we consider the average memory consumed by each allocated socket in 

the system ( tcp_sockets_allocated ) the same as memory consumed by this 
socket ( sk → wmem_queued    +    sk → rmem_alloc    +    sk → forward_alloc ), the 
total memory consumed should not exceed the hard limit for TCP memory 
allocation ( sysctl_tcp_mem[2] ).    

 If any of the above conditions is TRUE, we can still get approval for the 
memory requirements. Otherwise we will dishonor the request.  

  9.1.7     tcp _ free _ skb ()  

 This routine is called whenever we are freeing  sk_buff  allocated for TCP sockets. 
For example, we call this when a TCP segment in the retransmit queue is acknowl-
edged. Here we set  queue_shrunk  fi eld of  tcp_opt  object to 1 so that if there is a 
memory requirement for send buffer, we can wake up the socket as soon as we call 
 tcp_data_snd_check()  next (see Section  11.3.11 ). The  queue_shrunk  fi eld indicates 
if some memory is released because write queue has shrunk. Next we decrement 
the memory allocated for send buffer by size of buffer being freed at line 1674 and 
also increment forward allocated memory ( sk → forward_alloc ) by size of the buffer 
being released; this memory goes in the socket ’ s pool (cs  9.11 ). Finally we call  __
kfree_skb()  to release the socket by calling the destructor routine for the buffer. 
For send buffer, this destructor routine is  sock_wfree() .    

  9.1.8     sock _ wfree ()  

 This is a destructor routine for send buffer and is a common routine for any type 
of socket. It is called when the buffer ( sk_buff ) is being freed. It decreases total 
write memory allocated ( sk → wmem_alloc ) by size of the buffer. If confi gured, we 
wake up the socket by calling sk → write_space (= sock_def_write_space() ) at line 652 
to wake up the socket, in case it is waiting for memory requirements for send 
buffer.    
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  9.1.9     tcp _ write _ space ()  

 This is a callback routine for write side TCP socket called whenever write queue is 
shrunk (send buffers are freed). Since write queue has shrunk (TCP segments are 
being acknowledged), there may be chance that the socket may be waiting for 
memory availability to write data over the socket. So, we call this routine to check 
if the write queue has shrunk enough to wake up the socket waiting for memory. 
The condition here is that the total memory left to completely exhaust the write 
socket buffer (returned from  tcp_wspace() ) should be at least equal to half of 
the memory allocated for the write socket buffers ( sk → wmem_queued ), line 468 
(cs  9.13 ).   

    cs 9.11.      tcp_free_skb().   

    cs 9.12.      sock_wfree().   

    cs 9.13.      tcp_write_space().   
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 If the condition is TRUE and some process is waiting for socket ’ s wait queue 
(line 471), we wake up the process by calling  wake_up_interruptable()  at line 472 
because memory is now available.  tcp_wspace()  returns the amount of space left in 
the write queue to complete exhaust the send quota.  tcp_min_write_space()  returns 
half of the space occupied by the write queue (cs  9.14 ).    

  9.1.10      tcp_ mem _ reclaim ()  

 This routine is called to reclaim the memory allocated for the socket ’ s memory pool 
to TCP memory pool if the forward allocated memory for the socket is more than 
a unit of TCP memory allocation (1 page). It may happen that a lot of memory is 
being allocated for the socket ’ s send buffer and the socket ’ s memory pool is not 
being reused because a huge number of segments are transmitted before any one 
is acknowledged (high send window). Once all of these segments are acknowledged, 
the socket ’ s memory pool ( sk → forward_alloc ) becomes huge even if it not being 
utilized fully, also consuming a huge amount of memory from a system - wide common 
TCP memory pool causing memory pressure (cs  9.15 ). So, frequently we need to 
check if we can reclaim memory from a socket ’ s memory pool. This routine is called 
from timer callback routines such as tcp_delack_timer(), tcp_write_timer(), and so 
on.    

  9.1.11    __ tcp _ mem _ reclaim ()  

 In the case where the socket ’ s memory pool contains more than a unit of TCP 
memory allocation ( TCP_MEM_QUANTUM ), we return a number of pages con-
tained in the socket ’ s memory pool from global TCP memory pool ( tcp_memory_
allocated ), line 346 (cs  9.16 ). This will make availability of TCP memory globally. 

    cs 9.14.      tcp_min_write_space().   

    cs 9.15.      tcp_mem_reclaim().   



TRANSMIT SIDE TCP MEMORY MANAGEMENT 303

Next we keep a number of bytes, if at all left, within a page in the socket ’ s memory 
pool, line 347. If there is a memory pressure and the total memory allocated from 
global TCP memory pool is less than the lower limit on the memory allocation 
( sysctl_tcp_mem[0] ), we release memory pressure at lines 348 – 350.    

  9.1.12     wait _ for _ tcp _ memory ()  

 This routine is called when we need to wait for memory to be available for a send 
socket buffer. We call this routine in two cases: 

   •      Either socket send buffer quota is full ( sk → wmem_queued    > =   sk → sndbuf ).  
   •      There is memory pressure and we have not exhausted our send buffer 

quota.    

 Let ’ s see how it works. We check if the routine is called because we could not allo-
cate a quota for the socket because of memory pressure. The fact that the socket ’ s 
send buffer quota is not yet exhausted is an indication of this, line 695. If that is the 
case, we need to set a new timeout value at line 696, so that we can wait for some 
time for some more free memory to be available with the system. Next we loop 
until one of the events happens: 

   •      The socket encounters an error or the send side of the socket has been shut 
down, line 704 (cs  9.17 ).    

   •      The timeout value has expired, line 706. In the fi rst iteration we can get out 
of the loop if we are nonblocking.  

   •      We obtained a signal. We check this by calling  signal_pending()  at line 708. 
We may get a signal because of which we are awakened from sleep.  

   •      We obtained the socket ’ s send buffer quota and we are not waiting for system 
to free more TCP memory, line 711. If we are called because the socket ’ s send 
buffer was exhausted and now  tcp_memory_free()  returns TRUE, it means 
that the send buffer quota is now available. In this case, we should not wait 
for VM timewait. In the case where we had come here because the system 
memory in general is not available but the socket ’ s send buffer quota exists, 
we should at least wait until VM timeout occurs so that some system memory 
is freed by now. VM timeout is calculated at line 696.    

    cs 9.16.      __tcp_mem_reclaim().   
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    cs 9.17.      wait_for_tcp_memory().   



 In each iteration, set the current task state to  TASK_INTERRUPTIBLE , line 702. 
We set  SOCK_NOSPACE  fl ag for the socket, line 714. Next we need to wait for 
memory to be available at line 717 in any of two cases: 

   •      The socket ’ s send buffer quota is exhausted.  
   •      We have come here because of system memory crunch and our VM timeout 

is not exhausted.    

 If any of the above cases is TRUE, we call  schedule_timeout()  to wait for speci-
fi ed time, line 718. We don ’ t hold a socket lock while going to sleep, so we release 
the socket lock at line 716. Once we are awakened because of timeout or we got a 
signal or somebody woke us up because the socket ’ s send buffer has shrunk, we 
hold the socket ’ s lock at line 719 and proceed. 

 When we return from  schedule_timeout()  and VM timeout is set, we need to 
recalculate the timeout value. In case we are interrupted,  schedule_timeout()  returns 
the time left in expiry of scheduled timeout. We reset VM timeout at line 728. If 
we are not woken up because of signal, we might have timed out or we are woken 
up because some one released TCP memory and woke us up. In the second itera-
tion, we will block only if TCP memory crunch still exists (tcp - memory - free() 
returns FALSE) because VM timeout will be reset in fi rst iteration in any case. In 
all the cases, we break from the loop. We come out of the loop, so we should set 
ourselves to the  TASK_RUNNING  state and remove ourselves from socket ’ s wait 
queue,  sk → sleep , at lines 733 – 734. In case of the nonblocking systemcall or if we 
have timed out, we set the error number to EAGAIN at line 741. In case the send 
side of socket has shut down, we set the error number to  EPIPE  at line 738. In case 
we are interrupted because of signal, we set the error number to  ERESTARTSYS  
or  EINTR  depending of whether we were blocked forever or not, line 744.   

  9.2   RECEIVE SIDE  TCP  MEMORY MANAGEMENT 

 In this section we will see how memory is managed for receive socket buffers. We 
take a snapshot of  tcp_rcv_established()  to learn about socket buffer memory man-
agement. When we get a data segment, it gets processed in  tcp_rcv_established() . If 
we got a data segment containing new data and data could not be copied to the user 
buffer, we need to queue it in the receive queue ( sk → receive_queue ). For queuing 
the received segment, we will consume the socket ’ s resources such as memory. The 
socket ’ s receive buffer quota should be accountable for queuing the received 
segment. Refer Fig.  9.7  for overview on receive side TCP memory management.   

 First we check if the memory requirement for the current segment (including 
size of  sk_buff ) can be satisfi ed from the already allocated socket ’ s pool of memory 
( sk → forward_alloc ) at line 3337 (cs  9.18 ). If not, we need to allocate a fresh quota 
for socket ’ s memory pool, which we discuss later. In case we are able to satisfy the 
buffer requirement from the already allocated socket ’ s memory pool, we queue the 
received buffer by pulling off the  data  fi eld to point to the start of TCP payload in 
 sk_buff . The buffer is queued up in the socket ’ s receive_queue at line 3344. Next 
we account for the queued segment by calling  tcp_set_owner_r()  at line 3345.   

  tcp_set_owner_r()  is called to account for the new segment queued to the 
socket ’ s receive buffer. We associate buffer with the socket at line 1760 (cs  9.19 ). 

RECEIVE SIDE TCP MEMORY MANAGEMENT 305



306 TCP MEMORY MANAGEMENT

Destructor callback routine for the buffer is initialized to  tcp_rfree()  at line 1761. 
Next we account for memory allocated for the new receive buffer at line 1762.  sk →
 rmem_alloc  contains total memory allocated for the socket ’ s receive buffer so that 
we can keep check on total allocation for the socket ’ s receive queue. We take this 
fi eld into account while advertising the receive window. Since memory allocated for 
the buffer is taken from the socket ’ s memory pool ( sk → forward_alloc ), we need to 
account for it at line 1763.   

 Continuing with our discussion, we may face a condition where the socket ’ s 
pool of memory is below the memory requirements for queuing a new buffer while 
processing a received segment in tcp_rcv_established(). In this case the segment is 
processed in  tcp_data_queue() . In case we have received in - sequence or out - of -
 order data segment, memory management is done in the same way if the segment 
needs to be queued. For in - sequence data received, processing is done at lines 

    cs 9.18.      tcp_rcv_established().   

    cs 9.19.      tcp_set_owner_r().   



2569 – 2578; for an out - of - order data segment, it is done at lines 2644 – 2657 (cs 
 9.20 ).   

 Let ’ s see how we proceed when the socket ’ s memory pool is exhausted and we 
need to allocate a fresh quota pool for the socket from global TCP memory pool. 
First we check if total memory allocated for receive side socket buffer ( sk → rmem_
alloc ) has exceeded the limit ( sk → rcvbuf ). The situation arrives when: 

   •      The application is not getting the chance to read data queued up at the sock-
et ’ s receive queue.  

   •      We have received a huge amount of out - of - order segments.    

 In the above case, we have a different strategy to manage some memory from 
the socket ’ s pool. Now, we will look at a simpler case where the socket ’ s receive 
buffer is still not full but the socket ’ s pool of forward allocated memory is exhausted 
such that a new segment can ’ t be accommodated. In this case, the condition at line 
2571 fails and we call  tcp_rmem_schedule()  at line 2572 (cs  9.20 ). 

  tcp_rmem_schedule()  checks if memory required for the received buffer ( skb →
 truesize ) is available from the socket ’ s memory pool ( sk → forward_alloc ), line 2516 
(cs  9.21 ). In our case, we have come here because the socket ’ s memory pool has 
become exhausted. In this case, we try to allocate memory to the socket ’ s memory 
pool from the global TCP memory pool by calling  tcp_mem_schedule() . For more 

    cs 9.20.      tcp_data_queue().   
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details on  tcp_mem_schedule() , see Section  9.1.6 . Let ’ s return to our discussion at 
line 2572 (cs  9.20 ). We got the requested memory for the receive buffer to the 
socket ’ s memory pool from the TCP global memory pool. So, we need to account 
for the receive buffer by calling  tcp_set_owner_r()  at line 2576.   

  tcp_set_owner_r()  is called to account for read side socket buffer memory. We 
fi rst associate the received buffer with the socket at line 1760 at cs  9.19 . The destruc-
tor callback routine is initialized to  tcp_free() , which will be called when the buffer 
is freed. We need to account for allocated memory toward the read side buffer 
allocation ( sk → rmem_alloc ) at line 1762. We allocate this memory from the socket ’ s 
memory pool ( sk → forward_alloc ), so we need to account for the socket buffer 
allocated. 

 Continuing with our discussion on  tcp_data_queue() , what do we do if our read 
side memory quota is full, which means that the condition at line 2571 is TRUE? 
We call  tcp_prune_queue()  to check if we can squeeze in a receive queue and an 
out - of - order queue to generate some space for the arrived buffer. In the worst case 
we may also discard segments received out - of - order in order to generate space for 
the new in - sequence received data. 

  9.2.1     tcp _ prune _ queue ()  

  tcp_prune_queue()  is called when socket has exhausted its quota of receive buffer. 
The idea is that we can still try to generate some space out by collapsing queues. If 
we have come here because our quota for the receive buffer has exhausted (line 
2878, cs  9.22 ), we try to increase the quota for the receive buffer and also pull up 
the receive window by calling  tcp_clamp_window() . The quota for the receive 
window can be increased in case we don ’ t have memory pressure as far as the TCP 
memory pool is concerned. See Section  9.2.2  for details on  tcp_clamp_window() . 
On the other hand, if we have come here because of TCP memory pressure, we 
reduce receive a slow - start threshold to a minimum of 4 mss. We do this in order to 
restrict the window advertised to the sender to low value so that it can ’ t transmit a 
huge amount of data. See Section  11.3.7  for more details.   

 Next we try to collapse an out - of - order queue by calling  tcp_collapse_ofo_
queue()  at line 2883. Here we try to collapse a contiguous block of received segments 
based on some conditions. For more details see Section  9.2.3 . Next we try to gener-
ate some space out by squeezing the receive queue ( tp → receive_queue ) at line 2884 
by calling  tcp_collapse() . If We have come here because of memory pressure, it 
means that we may still have a quota in the socket ’ s memory pool. In the case where 
the socket ’ s memory pool has enough memory but not enough for the caller, we try 
to release some memory from the socket ’ s memory pool to the global TCP pool. 
We do this because the caller tries to allocate memory to the socket ’ s memory pool 
from the global memory pool on return. 

    cs 9.21.      tcp_mem_schedule().   



    cs 9.22.      tcp_prune_queue().   

 The next step is to check if we have generated some space after all the efforts. 
If so, we return at line 2890. Otherwise we have one more way of fi nding some space 
for the new arrival. We try to release buffers from an out - of - order queue by calling 
 __skb_queue_purge()  at line 2898, in case there are any. If SACK is enabled, we try 
to reset the SACK state by calling  tcp_sack_reset()  at line 2906. In this case, the 
next ACK will not have any SACK information and the peer should sense this and 
clear all the segments marked SACKed in its retransmit queue. We check if we have 
some space after purging an out - of - order queue at line 2910. If we succeed, return. 
Otherwise we badly failed after all the efforts, so we disable a fast path by resetting 
prediction fl ags at line 2920. It means that when the next segment arrives, it neces-
sarily has to take a slow path in  tcp_recv_established() .  

  9.2.2     tcp _ clamp _ window ()  

 The routine is called when the socket ’ s receive side memory is exhausted com-
pletely, which means that the memory allocated for the receive side socket buffers 
( tp → rmem_alloc ) has exceeded the maximum limit on the allocation ( tp → rcvbuf ). 
This may happen because of two reasons: 

  1.     Out - of - order segments have arrived eating up the receive buffer quota.  
  2.     Application is not reading data.    
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 Both of these can in some proportion cause the socket to hit a memory bound. We 
fi rst try to see if an out - of - order segment has contributed to memory consumption. 
So, we walk down the out - of - order queue ( tp → out_of_order_queue ) at lines 322 –
 324 (cs  9.23 ) and calculate the total memory occupied by TCP data. Next we check 
if the memory is consumed by an out - of - order queue, and we try to increase the 
quota for the receive buffer. The reason for this is that the segments may be reor-
dered in the network, thereby causing segments to reach out - of - order. So, we try 
to stretch the quota for the receive buffer because the missing segments may appear 
any time that may cause an application to read the entire data. We can increase the 
quota on the receive buffer under the following conditions: 

  1.     Receive buffer quota is below  sysctl_tcp_rmem[2] , which means that we have 
not yet come here for the socket.  

  2.     Receive buffer lock is not held (it is held when the socket buffer is being 
modifi ed by the user).  

  3.     TCP memory pressure does not exist.  
  4.     Total memory allocated through the TCP memory pool ( tcp_memory_

allocated ) is below lower limits ( sysctl_tcp_mem[0] ).      

 If all the above condition ’ s apply, we raise the quota on the receive buffer to 
 sysctl_tcp_rmem[2]  at line 334. 

    cs 9.23.      tcp_clamp_window().   



 If the memory bound has come because application is not consuming TCP data, 
we don ’ t try increasing the quota on the receive buffer. The reason for this is either 
lack of resources or misbehaving application. 

 Next we check if the total memory allocated for the receive buffer is still exceed-
ing the quota. The condition may be false in the case where we got chance to raise 
the quota on the receive buffer to  sysctl_tcp_rmem[2] . If so, we return. Otherwise, 
we try to reduce the window clamp and receive a slow - start threshold value. The 
window clamp puts a cap on the window size advertised, and a slow - start threshold 
value puts a limit on the window to be advertised at any instance (see Sections  11.3.7  
and  11.3.5 ). 

 We fi rst calculate the total TCP data stuck in an out - of - order segment and the 
receive queue (application window) at line 337. If the memory allocated for received 
buffers has reached double the limit on the receive quota ( tp → rcvbuf ), we half the 
total TCP data received at line 339. We modify the window clamp to the minimum 
of current window clamp and application window calculated only if there was no 
contribution from an out - of - order queue, line 345. The receive slow - start threshold 
value is calculated as the minimum of window clamp and twice mss (advertised at 
the time of three - way handshake).  

  9.2.3     tcp _ collapse _ ofo _ queue ()  

 Routine is called to collapse an out - of - order queue whenever memory quota for 
the receive queue is full to make some space for the newly arrived data segment. 
The idea is to fi nd out buffers containing contiguous data and pass the chain of 
buffers to  tcp_collapse()  to try to collapse buffers in the chain. Let ’ s see how we 
fi nd segments with contiguous sequence space. 

 We start with the fi rst buffer of the out - of - order queue and record the start and 
end sequence for this buffer at line 2835 – 2836, which will be the collapsible sequence 
space. We mark this buffer as the head of the chain at line 2837. Now we enter the 
loop 2839 – 2860 to start processing an out - of - order queue to fi nd out contiguous 
buffers. 

 In each iteration we do the following: 
 We get a pointer to the next buffer in the queue at line 2840. Next we check if 

we need to collapse the chain. We do so in the following situation (we do all the 
checks with respect to the buffer accessed at line 2840): 

  1.     If this is the last buffer in the queue at line 2844.  
  2.     If the buffer comes after a hole in the TCP sequence space, line 2845. This 

can be detected from the sequence space for the segment being processed.  
  3.     If the start sequence of the segment is more than the end of sequence space 

recorded so far.  
  4.     If the hole is detected at the end of the current buffer — that is, the end 

sequence of the buffer is more than the start sequence recorded so far.    

 In the case where none of the conditions satisfy, the current buffer is contiguous 
with the buffer ’ s inspected so far. So, we need to inspect the next buffer. Before 
doing that, we need to check if we need to expand the sequence space for collapse. 
So, we modify the collapsible start sequence to the start sequence of the buffer 
just inspected, in the case where the start sequence of the buffer is less than the 
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collapsible start sequence recorded so far at lines 2855 – 2856 (cs  9.24 ). If the end 
sequence of the buffer is beyond the end sequence recorded so far for collapse, we 
record the end sequence for the buffer as a new value for the collapsible end 
sequence, lines 2857 – 2858.   

 In the case where we fi nd the gap in the sequence space — that is, one of the 
condition ’ s TRUE at lines 2844 – 2846 — we need to try to collapse the buffers 
between start and end sequence space recorded so far. The fi rst buffer is the one 
marked as head, and the last buffer is the one just inspected. We call  tcp_collapse()  
at line 2847. Once we return from  tcp_collapse() , we need to mark new head as the 
one just inspected because it will be the start of the new chain of buffers after the 
gap. The new collapsible sequence space is taken from the head of the buffer, and 
we start over again in the loop trying to fi nd the new gap.  

  9.2.4     tcp _ collapse ()  (see  cs   9.26 , unless mentioned) 

 In this routine we try to merge those segments, which are as follows: 

    cs 9.24.      tcp_collapse_ofo_queue().   



  1.     Bloated segments where TCP data are very less as compared to total buffer 
size.  

  2.     Overlapping of segments.      

 New buffers are created with size ( skb → truesize ) of around one page. Data 
from overlapping/bloated segments are copied into buffers of size one page. This 
will save us a lot of memory and will make room for a new segment when the receive 
queues are full. Let ’ s see how this is achieved. 

 We would like to merge all the segments between a specifi ed sequence space. 
So, start sequence, end sequence, start buffer, and the end buffer are fed to the 
routine by the caller. The chain of buffers passed to the routine don ’ t have any holes 
in it. 

 We start with fi nding a segment that can be the starting point for the collapse 
process. Start traversing the list starting from the start buffer toward the end in the 
loop 2741 – 2767. The fi rst condition we check is the segment we are not interested 
in. In the case where the end sequence of the segment is before the start sequence 
we are interested in (line 2743), we remove the buffer from the queue and continue 
with the next buffer in the list. 

 Next we check for the buffer that can be the start of a collapse operation. For 
a segment to be collapsed, the following conditions should be satisfi ed: 

  1.     The segment should not be tagged as SYN/FIN, line 2757.  
  2.     The segment should be bloated, line 2758.  
  3.     The segment should be overlapping with the previous segment, line 2759.  
  4.     The segment is overlapping with the next segment, lines 2760 – 2761.    

 We don ’ t collapse the SY/FIN segment because it will add complexity to the 
situation later. By bloated segment we mean that the overall size of the buffer is 
much higher in comparison to the TCP payload it carries. s kb → truesize  is the total 
memory allocated for the buffer which accounts for buffer header ( sk_buff  object) 
and the number of bytes allocated for buffer data (containing actual packet). If the 
size as returned by  tcp_win_from_space()  is greater than the length of the TCP 
payload ( skb → len ), we consider this as bloated. On my machine,  tcp_win_from_
space()  returns three - fourths of the value passed to the routine as  sys_tcp_adv_win_
scale  is set to 2 (cs  9.25 ).   

 I think we have sysctl_tcp_adv_win_scale to compensate for the  sk_buff  header 
which accounts for the total receive memory usage. When the buffer is queued in 
any of the receive queues (including out - of - order queue), skb → len sums to the 

    cs 9.25.      tcp_win_from_space().   
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length of the TCP payload as all the headers are stripped by this time. So, the fi nal 
equation sums to the following: If three - fourths of the total memory allocated by 
the buffer is greater than the total TCP payload the buffer carries, a big proportion 
of memory allocation has come from infrastructure overhead, that is, buffer head 
( sk_buff ). In this case we try to collapse this segment. 

 The next case is overlapping segments. It may happen that the segments queued 
do overlap. Overlapping segments have common data and also have the packet 
header overhead, which also contributes to memory consumption. Each TCP 
segment queued in the receive queue amounts for sk_buff overhead and memory 
occupied by protocol headers which is no more required. 

 Let ’ s say in the fi rst iteration of the loop we didn ’ t get any of the segments sat-
isfying the criteria to be considered as a collapsible segment. We move on to the 
next segment at line 2766; before doing so, we replace our start sequence with the 
end sequence of the buffer being examined at line 2765. This is to detect overlap-
ping; moreover, we can ’ t collapse the segment that contains the start sequence 
number from the previous segment. 

 Let ’ s assume we fi nd a segment that is considered collapsible, so we break from 
the loop at line 2762. First we check that the buffer we are currently pointing to 
should not be SYN/FIN or the last segment in the chain to be examined at line 2768. 
We break from the loop only under two conditions: Either we have reached the 
end of the chain or we have found the collapsible buffer. If the buffer is found to 
have a SYN/FIN fl ag outside the loop, it necessarily means that this is the last buffer 
in the chain to be examined. 

 If we have found the collapsible segment, next we start with the process to col-
lapse the buffers in the loop 2771 – 2819. The fi rst thing we do at the start of the loop 
is to allocate a new buffer with true size of one page irrespective of the size of the 
segment being collapsed. For doing this, we actually need to calculate the exact size 
that should be passed to  alloc_skb() . To  alloc_skb() , we should pass the total length 
required for storing protocol headers (TCP   +   IP   +   link layer) and TCP payload. 
The routine itself allocates space for  skb_shared_info  at the end of the linear data 
area as shown in Fig.  9.2 . We also want to restrict the total memory allocated for 
the buffer to be within one page, that is,  skb → truesize  to be one page. For this we 
need to calculate the header length for the collapsible segment as the rest of the 
parameters are fi xed.  skb_headroom()  will actually return us the size occupied by 
the protocol headers at line 2773. Now we can calculate the total length that should 
be requested to  skb_alloc() . Since we want total allocation for the buffer to not to 
exceed one PAGE, we calculate the size of the linear data area to be one PAGE 

    Figure 9.2.     Memory layout of network buffer.  



(size of  sk_buff    +   protocol header length   +   size of  skb_shared_info ), lines 2774 –
 2775. Since we have already calculated protocol header length, we pass the length 
of the linear data area as calculated above   +   protocol header length to  skb_alloc() . 
So fi rst we try to fi ll a new segment by copying data from collapsed segments and, 
once the segment is full, allocate new buffer in the same way as described above. 
In this loop we will cover all the segments until the end of sequence space has 
reached.   

 Once we have allocated a new buffer, the next step is to copy data from the 
collapsed buffers. First, reserve space to copy protocol headers at the head of the 
linear data area by calling  skb_reserve()  at line 2785. Now copy the header from an 
identifi ed buffer to the new buffer at line 2786. We initialize certain sk_buff pointers 
that point directly into the linear data area to the start of protocol headers, lines 
2787 – 2789. Copy the TCP control block at line 2790. Initialize the start and end 
sequence as a start sequence number for the new buffer at line 2791, and insert a 
new buffer prior to the buffer identifi ed to be collapsed at line 2792. Next we 
account for the memory allocated for the new buffer from the socket ’ s memory 
pool by calling  tcp_set_owner_r() . 

 Next we need to copy the TCP payload from the collapsed buffers to the new 
buffer. We continue to copy data from the collapsed buffers to the new buffer until 
there is no space left in the new buffer. So, we may have  n  buffers collapsed to a 
single new buffer or  n  buffers collapsed to new  m  buffers where  n    >    m . We can save 
on buffer head overhead (sk_buff) and also on overlapping segments. The loop 
where we copy data to the new buffer is lines 2796 – 2818. We fi rst take the offset 
into the segment that needs to be collapsed from the start sequence number that 
needs to be collapsed at line 2797. 

 Next we calculate the total data that need to be copied from the segment from 
the start sequence number for data to be copied and the end sequence number for 
the segment at line 2798. If there are data from the collapsible segment to be copied, 
we take minimum of the data left in the collapsible segment for copying and space 
available in the new segment at line 2802. Next we copy data by calling  skb_copy_
bits()  at line 2803. The third argument to  skb_copy_bits()  is a function call that will 
make room for new data to be copied in the new buffer and return the pointer to 
the location where data should go ( skb → data ). Increment the end sequence for the 
new buffer to indicate the sequence space it covers at line 2805. Account for the 
number of bytes copied at line 2806 and increment the start of the sequence number 
that needs to be copied next at line 2807. Next we check if all the data from the 
collapsible segment are copied at line 2809. If so, we need to unlink the copied col-
lapsible segment from the chain and take the get next collapsible buffer for copying 
data. So, we call  __skb_unlink()  to remove the copied buffer from the chain at line 
2811 and point to the next collapsible buffer at line 2814. If the new buffer has a 
SYN/FIN tag set or it is the last segment in the chain (line 2815), we stop there. 

 Just to explain how it works, we can assume that there are  ‘ n ’  buffers passed 
to tcp_collapse() each of size TCP payload X bytes. New buffer generated to replace 
the collapsed ones can accommodate 2X bytes of TCP payload. Also assume that 
none of the buffer ’ s have sequence spaces overlapping and there is no gap in the 
sequence spaces of the buffers. Figure  9.3  shows four buffers with contiguous TCP 
sequence spaces and rest of them are not shown. In Fig.  9.4 , we have gone through 
fi rst iteration and have copied the header from the fi rst buffer in the new buffer and 
X bytes from the collapsed buffer to the new buffer. In Fig.  9.5 , we have copied 
data from the second collapsible buffer into the new buffer. Now the new buffer is 
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    cs 9.26.      tcp_collapse().   



    Figure 9.3.     There are four buffers in the receive queue when we need to collapse the queue.  

    Figure 9.4.     The new buffer is allocated and the fi rst buffer is copied to the new buffer.  

full and for the third buffer we have once again allocated a new buffer and copied 
the header from the third buffer into the new buffer. Once we have copied the TCP 
payload from the fourth buffer to the second new buffer, the fi nal picture is as shown 
in Fig.  9.6 . So, four segments are collapsed to two segments eliminating the overhead 
of two buffer heads.    

  9.2.5    __ skb _ queue _ purge ()  

 This routine is called to destroy the chain of buffers. It is mainly called to destroy 
an out - of - order queue when facing an acute shortage of resources. __skb_dequeue() 
returns the head of the chain and also removes the buffer from the chain (cs 
 9.27 ).     
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    Figure 9.5.     Data from two adjacent buffers are accommodated to a single page of the new 

buffer.  

    Figure 9.6.     Finally we have two new buffers replacing four old buffers after collapsing the 

queue.  



    cs 9.27.      __skb_queue_purge().   

  9.3   FREEING OF MEMORY ALLOCATED TO A RECEIVE BUFFER 

 Memory is returned to the socket ’ s memory pool when data are read from the 
receive queue in  tcp_recvmsg()  by calling  tcp_eat_skb() . This routine frees the 
buffer by calling  __kfree_skb() , which calls the destructor callback routine of the 
receive buffer,  tcp_rfree()  (cs  9.28 ). In this routine, we deduct the size of the buffer 
( skb → truesize ) from the total allocated memory for a read side socket buffer ( sk →
 rmem_alloc ). This will make room for one more data segment in the receive queue. 
Next we return memory associated with the buffer to the socket ’ s memory pool 
( sk → forward_alloc ) at line 359.    

  9.4   SYSTEM - WIDE CONTROL PARAMETERS ARE WORTH NOTICING 
WHEN IT COMES TO  TCP  MEMORY MANAGEMENT   

     tcp_ memory _allocated   :     This is the total memory allocated to the TCP sockets 
system - wide.  

     sysctl_ tcp _ mem [0] :     Memory allocated for TCP socket buffers is within limit, 
 tcp_memory_pressure  is reset.  

     sysctl_ tcp _ mem [1]:      Under pressure. Pressure starts when overall TCP memory 
allocated just reaches this limit. We set global variable  tcp_memory_pressure  
to indicate that TCP memory pressure has begun.  

     sysctl_ tcp _ mem [2]:      We have reached hard limit with  tcp_memory_pressure  set. 
When overall TCP memory allocated has reached this limit, we start sup-
pressing allocation of memory for TCP socket buffers.  

     tcp_ memory _ allocated  :     Each time we allocate memory quantum for TCP 
socket buffers,  tcp_memory_allocated  accounts for the memory allocated for 
socket buffer (TCP payload   +    sk_buff ).  

    cs 9.28.      tcp_rfree().   
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    Figure 9.7.     TCP memory management for a receive buffer.  



     sysctl_ tcp _ rmem [0]:      Per socket lower limit on the total memory allocated for 
TCP read side. If  sk → rmem_alloc  goes beyond this limit, we can allocate 
additional memory for the read side only if the pressure is not there or if 
the total TCP memory allocated limit has not been reached (check 
 tcp_mem_schedule() ).  

     sysctl_ tcp _ rmem [1]:      Per socket medium limit (default value of  sk → rcvbuf ) on 
the total memory allocated for the TCP read side, check  tcp_v4_init_sock()  
when socket is initialized.  

     sysctl_ tcp _ rmem [2]:      Per socket upper limit on the total memory allocated for 
a TCP socket read side buffer (upper cap on  sk → rcvbuf ). Check  tcp_fi xup_
rcvbuf() and tcp_clamp_window() .  

     sysctl_ tcp _ wmem [0]:      Per socket lower limit on the total memory allocated for 
the TCP write side. If  sk → wmem_queued  goes beyond this limit, we can 
allocate additional memory for write side only if the pressure is not there or 
if the total TCP memory allocated limit has not been reached (check 
 tcp_mem_schedule() ).  

     sysctl_ tcp _ wmem [1]:      Per socket medium limit (default value for  sk → sndbuf ) 
on the memory allocated for the TCP write side, check  tcp_v4_init_sock()  
when socket is initialized.  

     sysctl_ tcp _ wmem [2]:      Per socket upper limit on the total memory allocated for 
TCP socket write side buffer (upper limit on  sk → sndbuf ).     

  9.5   SUMMARY 

 Memory for socket buffers is allocated in multiples of TCP_MEM_QUANTUM in 
 tcp_mem_schedule() . 

  tcp_memory_allocated  is a system - wide memory quota for TCP sockets. 
 Quota for send buffer and receive buffer can be increased, depending on total 

memory usage by TCP sockets system wide. 
 Segments in out - of - order queue also account for a socket ’ s receive buffer 

quota. 
 Once the receive bugger is full, the TCP tries to generate some space by squeez-

ing in receive queue and out - of - order queue in  tcp_collpse() . If it is not able to 
generate space even after purging queues, the new data segment is dropped. 

 If the write is blocking and enough memory is not available to queue new data, 
 wait_for_tcp_memory()  blocks the process until memory is available to write new 
data. 

 Once data in the transmit queue are ACKed,  tcp_write_space()  tries to wake 
up the process sleeping in  wait_for_tcp_memory()  to start queuing new data.    
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  TCP  TIMERS     

     TCP is an event - driven state machine. Events happen asynchronously and we can ’ t 
keep on looping to wait for an event to happen. Sometimes we need to wait for a 
small period of time to expire after which we can send ACK for better network 
utilization. On the other hand, we need to keep track of losses that are signaled 
when certain time lapses and we don ’ t get an event. TCP has to take care of the 
data fl ow, depending on the resources advertised by the receiver. In the case where 
the sender fi nds that the receiver is falling short of resources, it needs to put a brake 
on the fl ow of data and keep tracking the event when it can send data again. There 
are a times when we need to check if the peer is still connected and our connection 
is still active where TCP connections are on for days (like telnet). New connection 
requests are queued up in a SYNQ until it is accepted. In the case where the accept 
queue is full and the application is not accepting new connections, we need to 
remove requests from the queue on timely basis. All these functionalities require a 
timely probe into the matter so that the proper action can be taken at right time. 
For this we need a timer to be introduced in TCP implementation. Let ’ s take each 
TCP timer one by one to see their functioning and importance. TCP specifi cations 
recommend the following timers for functioning of the reliable transport protocol: 

   •      Retransmit timer  
   •      Delayed ACK timer  
   •      Zero window probe timer (persistent timer)  
   •      Keep - alive timer  
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   •      TIME_WAIT timer  
   •      SYN - ACK timer (timer for listening sockets)    

 Retransmit timer, delayed ACK timer, and zero - window probe timer are imple-
mented as part of a core TCP state machine. Keepalive timer is implemented to 
manage established connections. TIME_WAIT timer is implemented to manage 
connections that are closed and waiting for 2 * MSL time to expire. SYN - ACK timer 
is implemented to manage new connection requests. There are three routines pro-
vided by TCP to manage its timers: 

   •       tcp_reset_xmit_timer()   
   •       tcp_reset_keepalive_timer()   
   •       tcp_clear_xmit_timers()    

 tcp_reset_xmit_timer()  is a common routine to reset time for TCP state machine 
timers. As the name suggests,  tcp_reset_keepalive_timer()  is an interface to reset time 
for connection managing timers like keep - alive and syn - ack timers.  tcp_cleat_xmit_
timers()  is called to clear/remove any of the installed TCP timers. 

 In this chapter we discuss various TCP timers and their implementation on 
Linux. We will try to explain the timers with the help of examples for better under-
standing. First there will be short description of how timers on Linux are imple-
mented, and then we will take up one timer at a time.  

  10.1   TIMERS IN LINUX 

 Linux implements timers as  struct timer_list . It has three members:  expires  stores 
the number of clock ticks after which the timer should fi re,  data  contains any argu-
ment to be passed to the timer callback routine, and  function  is actually a callback 
routine to the timer that is actually executed when the timer expires (cs  10.1 ).   

  list  is the pointer to the list head on which this timer should sit.  timerlist_lock  
is a global timer lock to access the timer list. There are a set of routines to manipu-
late timers. We will discuss some of them here. 

  10.1.1     mod _ timer()   

 Whenever we want to modify expire time for the timer, we call  mod_timer()  (cs 
 10.2 ). We hold a global timer spin lock  timerlist_lock  to modify the  expires  fi eld for 

    cs 10.1.      timer_list  object to register timer with kernel.  



the timer. Call  detach_timer()  to detach the timer from the global list if already 
installed. Thereafter,  internal_add_timer()  is called to add a timer to the global list. 
 internal_add_timer()  has its own algorithm to fi nd an appropriate global list to add 
the timer, depending on the expiry time for the timer. Once we get the pointer to 
the global list, we add the timer to the list by calling  list_add() .    

  10.1.2     detach _ timer ()  

 This routine detaches the timer from the global list in case it is already installed. 
We call routine  timer_pending()  to check if the timer is already installed on the 
global list (cs  10.3 ). The next fi eld of the timer ’ s list head is NULL in the case where 
the timer is not installed. If it is installed, we call  list_del() , which detaches the timer 
from the global list of timers.    

  10.1.3     del _ timer ()  

 Whenever we want to cancel timer, we fi rst check if timer is already installed or not 
by calling  timer_pending() . In the case where we fi nd that the timer is already 
installed, we call  del_timer()  to remove the timer from the list. We once again hold 
global spin lock  timerlist_lock  to detach timer from the global list. We call  detach_
timer()  to detach the timer from the global list and initialize  next  and  previous  fi eld 
of the timer ’ s list head to NULL, line 224 (cs  10.4 ).    

    cs 10.2.      mod_timer() .  

    cs 10.3.      detach_timer() .  
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  10.1.4   When Are Timer Routines Executed? 

 Timer interrupt fi res every 10   ms — that is, one tick. This interrupt raises soft Inter-
rupt to process timers by calling mark_bh() from do_timer(). To mark_bh() we pass 
offset in the bh_task_vec[]. mark_bh() calls tasklet_hi_schedule() to schedule the 
tasklet pointed to by bh_task_vec [TIMER_BH]. Here we fi rst check if the tasklet 
is not already scheduled. In the case where it is not already scheduled, we schedule 
it by calling __tasklet_hi_schedule() (cs  10.5 ). This ensures that one tasklet is sched-
uled on only one CPU and that also the same tasklet cannot be scheduled on the 
same CPU twice. This will schedule the timer tasklet on the CPU currently being 
executed on. The tasklet is added to per CPU list tasklet_hi_vec[cpu].list and sub-
sequently HI_SOFTIRQ softirq is raised. On returning from timer interrupt, 
do_softirq() is executed, which will check for softirq ’ s to be processed. Here, HI_
SOFTIRQ is processed, which will also process  tasklet_hi_vec  list for that CPU. This 
list includes TIMER_BH tasklet, which gets executed as  timer_bh(). run_timer_list()  
is called from  timer_bh()  to execute all the timers from the global list which have 
expired.     

  10.2    TCP  RETRANSMIT TIMER 

 The timer is part of the TCP state machine to detect network congestion/loss of 
data. TCP maintains data integrity by sending out ACK for every byte of data that 
is received. The receiver doesn ’ t remove transmitted data from the retransmit queue 

    cs 10.4.      del_timer()   

    cs 10.5.      __tasklet_hi_schedule() .  
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until it gets ACK for the transmitted data. So, the sender is not expected to wait 
forever to receive ACK for the transmitted data. The sender calculates RTO (retrans-
mission timeout) based on RTT (round - trip time) calculated from timestamp options 
in the ACKing segment (check RFC 2988 and RFC 1323). When the fi rst segment 
from the window is transmitted, we set a retransmit timer to expire after the RTO 
time interval. This is to make sure that we get an ACK within RTO time from the 
time when segment is transmitted. In case we don ’ t get ACK, the retransmit timer 
would expire and signaling that all the data within the window is lost. So, our job 
will be to start transmitting lost segments starting from the head of the retransmit 
queue. This may happen because of network congestion causing some intermediate 
router to drop packets. 

  10.2.1   When Do We Set Retransmit Timer? 

 We set a retransmit timer when we are transmitting the fi rst packet in the current 
window.  packets_out  is a fi eld in the TCP state machine  struct tcp_opt  structure 
which keeps track of the packet ’ s transmitted but not yet ACKed. We increment 
this fi eld whenever we transmit a new segment. Just after transmitting a segment, 
we check if this fi eld is zero. If so, we start the retransmit timer to expire after  tp →
 rto  ticks. 

 We can see that  update_send_head()  resets the retransmission timer for the fi rst 
segment (lines 54 – 55, cs  10.6 ). This routine is called from  tcp_write_xmit()  after it has 
successfully transmitted a segment. We transmit a segment by calling different rou-
tines like  tcp_send_skb() ,  tcp_push_one() , and  tcp_connect() , and in each of these 
routines we make the same check and, if required, we reset the retransmit timer.    

  10.2.2   When Do We Reset or Cancel Retransmit Timers? 

 We need to reset a retransmit timer on each ACK we receive that advances a send 
window in  tcp_ack_packets_out()  called from  tcp_ack() → tcp_clean_rtx_queue()  (cs 
 10.7 ). RFC 2988 recommends that on reception of each ACK acking new data, we 
should reset the retransmit timeout to a new value of RTO. This gives some advan-
tage to the remaining segments in the sense that their timeout is incremented by 
the time lapsed since the time they were transmitted. In the case where all the seg-
ments are ACKed, we remove retransmit timer by calling  tcp_clear_xmit_timer()  at 
line 1726. Otherwise we reset timer by calling  tcp_reset_xmit_timer()  at line 1728. 
This is the only place when we clear retransmit timer since we know that we are 
not waiting for any more ACKs.   

    cs 10.6.      update_send_head() .  
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 When we are retransmitting segments during loss - recovery process, we reset the 
retransmission timer in the case where we are retransmitting the fi rst segment on 
the retransmit queue in  tcp_xmit_retransmit_queue() . We set the retransmit timer 
for the very fi rst unacknowledged segment; and since the fi rst segment that is being 
retransmitted is lost we need to reset retransmit timer. 

 Let ’ s see what happens when the retransmit timer expires. The timer expires 
because we have not gotten ACK for the very fi rst segment transmitted in the 
current window. So, we consider all the segments in the current window which are 
not yet SACKed/lost as lost. We need to reduce the rate of transmission to avoid 
any more losses by performing slow - start. Finally we retransmit the head of the 
retransmit queue. 

 The retransmit timer not only takes care of retransmissions but also needs to 
adjust timeout values, reset routes, check if the number of retries has exceeded limit, 
and so on. Let ’ s see what all it does. If no packets are transmitted, just return because 
we have nothing to retransmit at line 324 (cs  10.8 ). Next we check if the socket is 
still alive and not in the SYN_SENT/SYN_RECV state and if somehow the send 
window is closed, we need to timeout the connection in case we have not received 
any ACK from the peer for more than TCP_RTO_MAX. In case the socket is not 
timed out, we enter the loss state by entering slow - start (call  tcp_enter_loss() ), 
retransmit the head of the retransmit queue at line 347 (cs  10.8 ), and then invalidate 
the destination by calling  __sk_dst_reset() . The reason for fi nding an alternate route 
for the connection may be that we are not able to communicate with the peer 
because of which we may not be able to get window updates. Then we reset the 
retransmit timer doubling timeout by jumping to line 406 (cs  10.8 ).   

 Next we check if we have actually exhausted all our retries by calling  tcp_write_
timeout()  at line 352. tp → retransmits keeps account of the number of times we have 
tried retransmitting a lost segment. We have four system - wide control parameters 
here to timeout a connection: 

   •       sysctl_tcp_retries1   
   •       sysctl_tcp_retries2   
   •       sysctl_tcp_syn_retries   
   •       sysctl_tcp_orphan_retries    

sysctl_tcp_retries1 is the maximum number of retries after which we need to check 
if the intermediate router has failed. If the number of retransmits exceeds this value, 
route - specifi c negative_advice routine is called ( dst → ops → negative_advice() ) from 

    cs 10.7.      tcp_ack_packets_out() .  
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 dst_negative_advice() . In the case of Ipv4, this is  ipv4_negative_advice() , which sets 
 sk → dst  to NULL in case the route has become obsolete or the destination has 
expired.  rt_check_expire()  is run as a periodic timer for routing entries cached with 
the kernel to check old not - in - use entries. 

  sysctl_tcp_retries2  is the maximum number of retries the segment should be 
retransmitted after which we should give up on the connection. 

    cs 10.8.      tcp_retransmit_timer() .  
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  sysctl_tcp_syn_retries  is the number of retries allowed to retransmit a SYN 
segment after which we should give up. 

 For an orphaned socket (that is detached from the process context but exists 
to do some cleanup work), we have some more hard rules for number of retries. 
The maximum number of retries for an orphaned socket is  sysctl_tcp_orphan_retries . 
Still we need to kill an orphaned socket in two cases even if it has not exhausted 
its retries (check  tcp_out_of_resources() ): 

  1.     Total number of orphaned sockets has exceeded the system - wide maximum 
allowed number ( sysctl_tcp_max_orphans ).  

  2.     There is acute memory pressure ( tcp_memory_allocated    >   
 sysctl_tcp_mem[2] ).    

 If we are here at line 375 of cs  10.8 , we have not exhausted our retries. We need to 
call  tcp_enter_loss()  to enter into the slow - start phase (see Section  10.2.3 ). Thereaf-
ter, we try to retransmit the fi rst segment from the retransmit queue at line 377 
(cs  10.8 ). In case we fail to retransmit here, the reason for failure is local congestion. 
In this case, we don ’ t back off the retransmit timeout value. We reset the retransmit 
timer with a minimum timeout value of  tp → rto  and  TCP_RESOURCE_PROBE_
INTERVAL . Since we need to probe availability of local resources more frequently 
than RTO, that is why we want the tcp retransmit timer to expire fast so that we 
can retransmit the lost segment. 

 If we are at line 403 of cs  10.8 , we have retransmitted the lost segment (head 
of the retransmit queue) successfully. We increment  tp → back_off  and  tp → retrans-
mits  by one. Even though we are not using the value of  tp → back_off  here, it is 
required by the zero - window probe timer. We take timeout value as minimum of 
 tp → rto  and  TCP_RTO_MAX  and store this value in  tp → rto  (RTO can ’ t exceed 
beyond  TCP_RTO_MAX ). Finally we reset the retransmit timer to expire at the 
backoffed value of RTO,  tp → rto , by calling tcp_reset_xmit_timer() at line 408 of cs 
 10.8 . We now check if the maximum number of retries has exceeded the limit to 
reset route, at line 409. If so, we reset the route for the connection so that on next 
retransmit we are able to fi nd a new route for the connection because the current 
route may be causing a problem. 

 While retransmitting a segment, we store the retransmission timestamp in  tp →
 retrans_stamp  for the very fi rst segment retransmitted. We also increment  tp →
 retrans_out  and  tp → undo_retrans  by 1 every successful retransmission.  tp → retrans_
out  is to keep track of the number of segments retransmitted, and tp → undo_retrans 
is to catch the number of D - SACKs which is required to check unnecessary 
retransmissions.  

  10.2.3     tcp _ enter _ loss ()  

 We call  tcp_enter_loss()  to tag the lost segment from the current window and also 
reduce the rate of transmission of data by performing slow - start (cs  10.9 ). Let ’ s see 
how is it done. We do reduce slow - start threshold only if it is not done in the current 
window, which means that within a window if multiple losses take place, we won ’ t 
reduce the slow - start threshold every time. We reduce slow - start threshold to half 
of the congestion window for the reason that during slow - start we increment the 
congestion window by 1 every time we receive an ACK. So, the increment is expo-
nential every RTT. If the current congestion window caused packet loss, we need 
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to go back to the previous congestion window that provided an acceptable rate of 
data transmission. So, we divide the current congestion into two halves: The fi rst 
half is for slow - start because it was in the previous congestion window, and the 
second half is for slow transmission of data (where congestion window is incre-
mented every RTT). This will get us better congestion control in the second half 
session that got us into trouble. That is the reason we don ’ t decrease slow - start 
threshold value twice for the same window. We just start with one congestion 
window every time we sense a loss through retransmission timer fi ring. Conditions 
to decrement slow - start threshold are as follows: 

  1.     The TCP state should be less than disorder, which is nothing but open. If we 
are entering into the loss state from the open state, we have not yet reduced 
the slow - start threshold for the window of data.  

    cs 10.9.      tcp_enter_loss() .  
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  2.     If we have entered the loss state with all the data pointed to by tp → high_seq 
acknowledged. Once again it means that in whatever state we are (other than 
open state), all the data from the window that got us into the state, prior to 
retransmission timer expiry, has been acknowledged.  

  3.     If the above two conditions fail, we still have one more condition that can 
demand reducing the slow - start threshold: If we are already in the loss state 
and have not yet retransmitted anything. The condition may arise in case we 
are not able to retransmit anything because of local congestion.      

 In case any of the above conditions is TRUE, we store the current slow - start thresh-
old in  tp → prior_ssthersh  in case our current state is CWR or recovery. Otherwise 
we store three - fourths of the current cwnd or slow - start threshold, whichever is 
maximum at line 985. Slow - start threshold is set to half of the current congestion 
window by calling  tcp_recalc_ssthresh()  at line 986. Next we set send the congestion 
window to 1, and this fi nally completes the slow - start phase. We clear all the coun-
ters related to retransmissions by calling  tcp_clear_retrans()  at line 992, because we 
are going to do fresh calculations in the next step. 

 In case the second argument to  tcp_enter_loss()  is not set, we push  tp → undo_
marker  so that we are eligible for undoing from the loss state. We set this argument 
only when we are called from  tcp_check_sack_reneging()  because the reason for 
entering into loss state is entirely different here. The reason is that whatever out -
 of - order segments have reached the receiver are discarded by the receiver and we 
need to retransmit all the data within the window once again. So, it is not the con-
gestion state but the receiver ’ s mismanagement that causes us to enter into the loss 
state. So, we cannot undo from the loss state. 

 Next we traverse the retransmit loop (lines 999 – 1012). First we check if any of 
the segments was retransmitted when we are entering into the loss state. In case 
something was already retransmitted, we unset tp → undo_marker, the reason being 
that we will never know if the Ack for packet appears from the retransmission or 
the original transmission. In the case where we get an ACK for retransmitted 
segment that is misinterpreted as an ACK for original segment and we undo from 
the loss state, this will be misleading (see Section  12.6.8 ). If the tp → undo_marker 
is unset, we are not eligible for undoing from the loss state. Next we check for the 
segment tags. In case the second argument for the routine  tcp_enter_loss()  is set, we 
just don ’ t care for SACKed segments and mark all the segments as lost (line 1004), 
the reason being that we set the second argument only when we are called from 
 tcp_check_sack_reneging()  where we know that all the out - of - order segments are 
discarded by the receiver. Otherwise we increment the counter for each SACKed 
segment we encounter, line 1009. We also set  tp → facked_out  to the total segment 
traversed whenever we come across SACked segment at line 1010. 

 We need to recalculate left out segments by calling tcp_sync_left_out() because 
all the counters were reset by call to  tcp_clear_retrans() . Next we calculate reorder-
ing length to a minimum of current reordering length ( tp → reordering ) and  sysctl_
tcp_reordering(3) . Set TCP state to loss at line 1016. Mark the highest sequence 
number transmitted so far as  tp → high_seq  at line 1017. Set  TCP_ECN_QUEUE_
CWR  for the TCP because we have just reduced C(ongestion) W(indow) by calling 
 TCP_ECN_queue_cwr()  at line 1018. The next new data segment that the sender 
sends will have a CWR bit set in the TCP header informing the receiver that it has 
reduced its congestion window.  
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  10.2.4     tcp _ retransmit _ skb ()  

 We need to explain that during retransmissions we adjust the segment length. In 
the case where the PMTU has changed and our segment length is more than the 
mss, we need to repacketize all the segment ’ s by calling  tcp_fragment()  at line 834. 
This is a very common case, where we check if mss is changed before transmitting 
any segment (check  tcp_write_xmit() ). On the other hand, if the segment length of 
the retransmitted segment is less than 1   mss, we try to collapse the adjacent segment 
with the current segment in question to generate a full - length segment by calling 
 tcp_retrans_try_collapse()  at line 848 (cs  10.10 ). The following conditions should 
be satisfi ed to collapse the adjacent segments in the retransmit queue (lines 
842 – 846): 

  1.     The segment being retransmitted should not be SYN segment.  
  2.     The length of the current segment is lesser than half of current mss.  
  3.     The adjacent segment to be merged should not be a new segment; that is, it 

should be from the retransmit queue.  
  4.     Both segments should not contain any paged data.  
  5.     The system should allow us to collapse the segments; that is,  sysctl_tcp_

retrans_collapse  should be set.      

    cs 10.10.      tcp_retransmit_skb() .  
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 We store the timestamp of the retransmitted segment in the TCP control block, 
 TCP_SKB_CB(skb) → when  at line 870, which means that the timestamp is not 
retained from the original transmission. Once we have transmitted the segment 
correctly, we tag the segment as transmitted ( TCPCB_RETRANS ) at line 886 and 
also account for retransmission ( tp → retrans_out ) at line 887. We increment tp →
 undo_retrans by 1 to account for D - SACKs at line 893.  

  10.2.5     tcp _ retrans _ try _ collapse ()  

 Here we try to merge the current retransmitted segment with the next segment in 
the retransmit queue by calling  tcp_retrans_try_collapse()  (cs  10.11 ).   

 The very fi rst condition to continue with the merger is that both segments 
(retransmission and next segment) should not be in use at line 698, which means 
that the original transmission should not be there in the IP or device queue pending 
for transmission. If that is the case, TCP ’ s data integrity will not be maintained. If 
the original segment (not yet transmitted) and the merged segment reach the 
receiver in the same sequence, data in the second segment will be discarded because 
of the same sequence number (considering retransmission). This can be checked 
from  tcp_cloned() . 

 The next condition that disqualifi es us from merging is that the next segment 
to be merged should not have been SACKed already at line 703. We can merge the 
two segments only if the receivers ’  window allows it to happen. If the merged data 
exceeds total available space in the receive  buffer  ( tp → snd_wnd ), we can ’ t merge 
the two segments (line 707). Next we need to check if not enough tail room is avail-
able in the buffer being retransmitted to accommodate data from the next buffer 
(check being made at line 714) or if the sum of payload for both segments is exceed-
ing the current mss. If any of the mentioned conditions is TRUE, we can ’ t merge. 
We exit in case the former condition is TRUE because we are not going to add any 
data to the paged area nor are we going to reallocate memory in the linear area to 
accommodate new data (expensive operation). In case the latter condition is TRUE, 
we exit because we can ’ t transmit more than mss. 

 If all the above - mentioned conditions are satisfi ed, we are eligible for merger. 
We fi rst unlink the next segment from the retransmit list at line 719. If the next 
segment is hardware check - summed, we need to forcefully mark the original segment 
as hardware check - summed at line 722. In case the  CHECKSUM_HW  fl ag is not 
ON for the segment, we copy data from the next segment to the one being retrans-
mitted at line 725 and also recalculate the checksum for the new data being copied 
at line 726. The CHECKSUM_HW fl ag is enabled for segments containing paged 
data, and here we are not dealing with any paged data. It appears that if we come 
here and the CHECKSUM_HW fl ag is ON, we are in trouble. 

 Next we update the sequence space of the merged segment (retransmit) by 
initializing the end sequence number from the next segment at line 730. We also 
merge control fl ags ( TCP_SKB_CB(skb) → fl ags ) of both the segment ’ s at lines 
733 – 734. Because the next segment being merged may contain PSH/FIN fl ags that 
should be set out for the new merged segment. If the segment being merged (next 
segment) was retransmitted, we need to account for it by decrementing the retrans-
mission counter by 1 at line 741. This is because we are removing the segment and 
the merged segment is not yet retransmitted. We also account for the lost counter 
in the case where the segment being removed is marked lost at line 743, the reason 
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being the same because the segment does not exist anymore and the new merged 
segment is not yet considered lost. In the case of Reno implementation, if our SACK 
count is nonzero, we decrement the SACK count by 1 ( tp → sacked_out ) at line 748. 
This is a special case of Reno where we SACKed counters but no segment is marked 
SACKed because SACK information is drawn from duplicate ACKs. If our FACK 

    cs 10.11.      tcp_retrans_try_collapse().   
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count is a positive nonzero value, we just decrement it by 1 because one segment 
is removed from the retransmit queue (line 756). The unlinked segment is freed at 
line 757, and the packet count is decremented by 1 at line 758 for the obvious 
reasons.  

  10.2.6     skb _ cloned ()  

 Whenever we transmit a segment, we clone it by calling  skb_clone()  and transmit 
the cloned segment. When we clone a segment, the  sk_buff  header is copied com-
pletely. The data part is shared here. The paged data are not copied; only the header 
part of paged data is copied. Since  ‘ struct  skb_shared_info  ’  lies at the end of  sk_buff , 
we need not copy it explicitly. We increment  skb_shinfo(skb) → dataref  by 1 when 
we are cloning  sk_buff . When we check if the sk_buff is cloned, we check two fl ags 
in skb_cloned(): 

   •       skb  →  cloned   
   •       skb_shinfo(skb)  →  dataref     

 Once a segment is transmitted,  skb → cloned  is set, which will always be set even if 
the  sk_buff  is transmitted. But additional  skb_shinfo(skb) → dataref  will be decre-
mented by 1 once sk_buff is transmitted by calling  skb_release_data() . So,  ck_buff  
is considered cloned if the transmitted data are actually transmitted and are not 
queued up in the transmit queue or IP queue for transmission.   

  10.3   ZERO WINDOW PROBE TIMER 

 The receiver TCP advertises zero window whenever its receive buffer is full. This 
happens mainly because the application is not able to read the data fast enough to 
make room for the new TCP data in the socket ’ s receive buffer. Whenever an 
application reads data from the receive buffer, it checks if enough space is generated 
in the receive buffer to advertise the new window to the sender. If so, it sends out 
an ACK segment advertising the new window. If this segment is lost, there will be 
deadlock between the sender and the receiver if the data are fl owing only in one 
direction. To avoid this, the sender implements a zero window probe timer, also 
called a persistent timer to probe if the peer has opened window. It sends out 1 byte 
of data along with the zero - window probe. The macro defi ned for the persistent 
timer is 

   TCP_TIME_PROBE0    

[ Note : How probes are sent,  tcp_xmit_probe_skb() : While sending out a probe 
segment, we don ’ t queue up the probe segment and we send out sequence number 
that is one less than the last sent sequence number. In the case of urgent data, we 
send out two zero - length segments: one with sequence number same as Unacked 
sequence containing sequence number for the urgent byte (just urgent pointer) and 
the other one with sequence number UNA  –  1. In both cases, the outgoing packets 
are not accounted for in packet count (tp → packets_out)]. 



  10.3.1   When Is the First Time Probe Timer Installed? 

 When we try to transmit a new segment, a check is made whether we can send out 
a new segment or not. There may be so many factors to decide on whether we can 
send out a new segment or not. One of the reasons can be that a window advertised 
by the receiver does not allow to receive any more data. We make these checks in 
many places when we want to send out new segments:  __tcp_push_pending_frames()  
and  tcp_data_snd_check(). __tcp_push_pending_frames()  is called when we write 
data over the socket from an application in order to push out segments in the trans-
mit queue.  tcp_data_snd_check()  is called when we receive a segment from the peer. 
The segment may be an ACK or DATA/ACK segment. While processing the received 
segment before sending out an ACK, we check if there are any data to be transmit-
ted in the queue. If the data exist, we call  tcp_data_snd_check()  to piggyback data 
along with the ACK in  tcp_rcv_established() . 

 These routines check if we can send out a new segment. If not, we call  tcp_
check_probe_timer()  to check if the receive window is the cause that is not allowing 
us to send out new segments.  tcp_check_probe_timer()  checks if no outstanding 
unacknowledged data ( !tp → packets_out ) and no timer is installed ( !tp → pending ) at 
line 1227 (cs  10.12 ). From timers here we mean only retransmit and window probe 
timer ’ s only. If there are no outstanding data that are unacknowledged, it means 
that only one condition can prevent more data to be pushed: a zero window adver-
tised by the receiver. There is a common callback routine for retransmit timeout 
timer and zero - window probe timer. If a retransmit timer is already installed, it 
means that we are already probing a zero window because all the data are ACKed 
and there is nothing to be transmitted (possibility of retransmit timeout timer 
installed is ruled out). If the above two conditions are TRUE, we reset the zero -
 window timer with a timeout value of  tp → rto  at line 1228.    

  10.3.2   When Is the Probe Timer Canceled for the Connection? 

 We receive a window update from the receiver whenever the application reads data 
from a socket ’ s receive queue and enough space is available in the receive buffer 
to accommodate at least 1   mss of data. Another way we can receive window update 
information is in response to the zero - window probe. While processing incoming 
ACK in  tcp_ack()  at line 1944 of cs  11.26 , we just check if the valid ACK has come 
with no outstanding unacknowledged data. If that is the case, we know that this may 
be window update or ACK resulting from a zero - window probe. We just jump to 
line 1968 to process the window update. We fi rst clear the probe count ( tp → probes_
out ); furthermore, if any new segment is pending for transmission at line 1975 ( tp →
 send_head != NULL ), we call  tcp_ack_probe()  for further action (cs  11.26 ).  

    cs 10.12.      tcp_check_probe_timer() .  
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  10.3.3     tcp _ ack _ probe ()  

 This checks if the next segment to be transmitted is within the window opened by 
the peer at line 1825 (cs  10.13 ). If the end sequence of the head of the transmit 
queue ( tp → send_head ) is within the opened window sequence space, we can stop 
the zero - window probe by calling  tcp_clear_xmit_timer()  at line 1827, which means 
that the receiver has enough room to accommodate all the data in the head of the 
transmit queue in its receive buffer. On the other hand, if the end sequence is 
beyond the opened window as shown by dotted lines in Fig.  10.1 , the receiver still 
doesn ’ t have enough space to accommodate all the data from the head of the trans-
mit queue. So, we continue with the zero - window probe timer by resetting the timer 
with timeout value governed by  tp → rto  and  tp → backoff . Here, we don ’ t have a 
backoffed timeout value for TCP state machine which means that we are not 
backing off retransmittion time out as  tp → rtof   &   tp → backoff  are not changed (line 
1832). So, next zero - window - probe will not be backed off. Normally when a retrans-
mission timer fi res, the next retransmission timer is set to expire after twice the 
current timeout so that we don ’ t retransmit too fast and worsen the congestion state. 
This is known as exponential backoff of RTO.    

  10.3.4   How Does the Window Probe Timer Work? 

 A single - timer callback routine,  tcp_write_timer() , exists for both a retransmit timer 
and a window probe timer.  tcp_write_timer()  checks what routine to call, depending 

    cs 10.13.      tcp_ack_probe() .  

    Figure 10.1.     The   window has opened enough to transmit new data.  



on  tp → pending  fl ag. Very obviously, only one timer can be installed at any given point 
of time — that is, either retransmit or window - probe timer. When the window - probe 
timer expires, we call  tcp_probe_timer()  to transmit a zero - window probe segment.  

  10.3.5     tcp _ probe _ timer ()  

 Here we do some cleanup checks and also resource management for the window 
probe timer. First we check if we have any unacknowledged data. If  tp → packets_out  
is more than one, it means that we have transmitted some new segment after a 
zero - window probe timer was installed. This indicates that a window opened and a 
new segment got transmitted before the window probe timer could be canceled. The 
second condition we check here is whether we have any new segment to be trans-
mitted. In this case again there is no point in having a window probe timer installed 
if there are no new data to be transmitted. In both the cases, we return without 
proceeding any further from line 279. 

 Next we check if the socket associated with the connection is already dead at 
line 299. If so, we need to check if the connection needs to be dropped because we 
can ’ t allow the socket already detached from the application to hang on for a long 
time, thereby eating up resources. We call  tcp_out_of_resources()  to check if we can 
drop the connection immediately (for details on the routine, see Section  10.2.2 ). If 
the TCP socket is already in the dead state, we impose an additional penalty on the 
dead socket, that depends on the total number of orphaned sockets in the system. 
Which means that the dead connection should be closed in case there is no activity 
on the connection for a long time so that we are unnecessarily not utilizing resources. 
Otherwise, we check if the number of probes ( tp → probes_out ) already sent out has 
exceeded the system - wide control probe parameter ( sysctl_tcp_retries2 ). If so, we 
just drop the connection by calling  tcp_write_err()  at line 309 (cs  10.14 ). If we still 
have another chance,  tcp_send_probe0()  is called to send out a zero - window probe 
at line 312.    

  10.3.6     tcp _ send _ probe 0()  

 The routine tries to send out new data in case the window is opened by calling  tcp_
write_wakeup() . If a new segment is transmitted out, it is only because the window 
has opened enough. In this case,  tp → packets  will never be zero. Once again, if there 
is no segment in the transmit queue to be transmitted, there is no need to process 
the timer further. So, if a new segment is transmitted after a call to  tcp_write_
wakeup()  or there are no new data to be transmitted ( tp → send_head equal to 
NULL ), we just return without processing any further. 

 If we are here, it means that we have not transmitted any new segment because 
the window has not opened. So, we are able to either transmit a window probe or 
not. If we are able to send out a window probe, just backoff RTO, increment the 
probe counter and reset the window probe timer to a new backoffed timeout value 
(lines 1433 – 1437, cs  10.15 ). Otherwise there was internal congestion at the driver 
level, so we reset the window probe timer to a minimum of  TCP_RESOURCE_
PROBE_INTERVAL  and current backoffed RTO at line 1447.    

  10.3.7     tcp _ write _ wakeup ()  

 This routine checks if the receiver has advertised enough window to transmit new 
data and transmits the new segment if permitted. First we check if the connection 
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    cs 10.14.      tcp_probe_timer() .  

    cs 10.15.      tcp_send_probe0() .  



has already been closed at line 1375 (cs  10.16 ); if so, we return. We do the next check 
here: 

  1.     if there is no new segment to be transmitted at line 1379 ( tp → send_head 
equal to NULL ).  

  2.     If the above is FALSE, then we need to check if the window advertised by 
the receiver is big enough to transmit out new data at line 1380 (start 
sequence of segment    <     SND.WND   +   SND_UNA ). Zero - window scenario at 
the render is shown in Figure  10.2 .      

 If both of the above conditions satisfy, we calculate the size of the window that is 
opened at line 1383, shown as the shaded area in Fig.  10.3 . Next we check if we 
need to fragment the segment to be transmitted. We need to fragment the segment 
in two cases: 

    cs 10.16.      tcp_write_wakeup() .  
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  1.     The window opened is less than the segment length, line 1392.  
  2.     The length of the segment is more than the current mss, line 1393.      

 In both cases, we fragment the segment into two parts. The segment is split: One 
part is equal to a minimum of window opened and current mss, and the other part 
contains the rest of the data. We call  tcp_fragment()  to fragment the segment. We 
set PUSH fl ag ( TCPCB_FLAG_PSH ) for the segment ’ s control block. We then 
transmit the new segment at the head of the transmit queue at line 1401. In case 
we are able to transmit the segment properly,  update_send_head()  is called to 
update  tp → send_head  at line 1403. 

 In case the window has not yet opened as shown in Fig.  10.2 , we just need to 
transmit a zero - window probe segment. We have two situations here. These are with 
and without urgent mode. Without urgent mode, we just transmit the window probe 
by calling  tcp_xmit_probe_skb() . The sequence number sent out with this probe is 
one less than the unacknowledged sequence number in order to get fast ACK. With 
the urgent mode on, we transmit one more segment along with the probe segment. 
We send out one additional segment having an urgent fl ag set with a pointer to 
urgent data. This segment contains a sequence number that is equal to the unac-
knowledged sequence number (see line 1367 of  tcp_xmit_probe_skb() ).     

  10.4   DELAY  ACK  TIMER 

 TCP implements two modes of ACKing. These are: 

  1.     Quick ACK  
  2.     Delayed ACK    

    Figure 10.2.     The window has not opened to transmit new data.    

    Figure 10.3.     The window has opened enough to transmit new data.  



 In some cases we need to ACK quickly so that the sender continues to pump in 
more data with the reception of ACK, because each ACK for new data increments 
the congestion window by one segment. Other cases where we need to ACK quickly 
is when we receive an out - of - order segment or when the gap in the received data 
is fi lled. In both cases we need to inform the sender about the event; otherwise in 
the former case, the sender may experience timeout unnecessarily entering into the 
loss state. In the latter case, the sender may continue to retransmit segments unnec-
essarily adding to network congestion. These are some of the reasons why we need 
quick ACKing. There are reasons for delayed ACKing also. In some cases we have 
an interactive session like telnet, rlogin, and so on, where each character typed 
needs to be echoed back. In such cases, if we generate ACK for each segment 
(containing one character), it will generate a huge number of segments in the 
network. In this case we delay ACK so that either the echoed character is piggy-
backed along with the ACK or some more characters are received before we can 
send out an ACK. In such cases, delayed ACK will save us a lot of ACK segments 
unnecessarily loading the network. Linux maintains all the ACK - related informa-
tion with the help of  struct ack  (cs  10.17 ), which is embedded as part of  struct tcp_
opt. Pending  fi eld indicates the state of the ACK at any given point of time. There 
are three TCP ACK states as shown in (cs  10.18 ).  TCP_ACK_SCHED  indicates 
that the ACK is scheduled,  TCP_ACK_TIMER  indicates that the delayed ACK 
timer is already set, and the  TCP_ACK_PUSHED  fl ag indicates that the ACK is 
already pushed and needs to be sent out at the earliest.   

    cs 10.17.        to  ‘ struct ack ’  implement ack management    .  

    cs 10.18.      ACK fl ags .  
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  10.4.1   When Is the  ACK  Scheduled? 

 ACK is scheduled whenever we get data from the peer. We set the  TCP_ACK_
SCHED  fl ag by calling  tcp_schedule_ack() . (cs  10.19 ). We schedule ACK whenever 
we receive data in  tcp_event_data_recv()  called from  tcp_rcv_established()  and  tcp_
data_queue() . Then we directly schedule ACK whenever we receive  out - of - order 
segment, retransmitted segment, zero - window probe, out - of - window data, or partial 
segment  in all these events detected in  tcp_data_queue().     

  10.4.2   How and When Is the  ACK  Segment Sent? 

 There are a number of places where we need to make a decision whether to send 
segment immediately or to delay it. We can schedule an ACK by calling  tcp_sched-
ule_ack()  but can ’ t force an ACK based on the fl ag. There are certain conditions 
based on which we can send and ACK or delay it further. The simplest case we take 
here is from  tcp_rcv_established()  (cs  10.20 ). Whenever we receive in - sequence data 
in  tcp_rcv_established() , we copy data directly to the user land process or queue it 
in a receive buffer. In case an application has read all the data that has arrived, we 
enter into block 3360 – 3364. In this case we check if we are in quick ack mode by 
calling  tcp_in_quickack_mode() . See Section  10.4.3  for quick ACK mode.   

 If we are in quick ACK mode, ACK is generated immediately by call to  tcp_
send_data()  at line 3361. In case we are not in quick ACK mode, we delay ACK for 

    cs 10.19.      tcp_schedule_ack() .  

    cs 10.20.      tcp_rcv_established() .  



some more time by calling  tcp_send_delayed_ack()  (see Section  10.4.6 ). We delay 
ACK so that we can send out cumulative ACK for some more segment ’ s that arrive 
quickly or it may wait for some data to be written so that data can be piggybacked 
along with the ACK. 

 In the case where data are not consumed by the application and it is queued 
up in the receive queue, we call __tcp_ack_snd_check() to do some more aggressive 
checking to send out an ACK. Please see Section  10.4.4 . In the case where we have 
received out - of - window data, retransmission, out - of - order segment, or urgent 
pointer, we take slow path. In slow path, we check if ACK needs to be sent at line 
3440 after processing the received segment. The ACK may be scheduled when we 
are here, but whether we need to delay it or send an ACK immediately will be 
checked by calling  tcp_ack_snd_check() . For more details see Section  10.4.5 .  

  10.4.3   Quick  ACK  Mode 

 In quick ACK mode, we check two fi elds from  struct ack. Pingpong  is set in case 
TCP connection is interactive like telnet, rlogin, and so on. In the case of interactive 
session, we don ’ t ACK immediately because of the reason explained in Section  2.4 . 
We enter quick ACK mode when we don ’ t want to delay the ACKs such as out - of -
 order segments are received, segment fi lls hole in the received data, and so on. We 
call  tcp_enter_quickack_mode()  to enter quick ACK mode. We reset  pingpong  fi eld 
and also initialize  quick  fi eld of  struct ack. quick  fi eld indicates the number of quick 
ACKs that we can send in a row and is decreased by one whenever an ACK is sent 
out by calling  tcp_dec_quickack_mode()  from  tcp_transmit_skb() . So, we are in 
quick ACK mode if pingpong is reset and we still have quick ACK quota ( tp → ack.
quick    >    0 ) (cs  10.21 ).    

  10.4.4    __ tcp _ ack _ snd _ check ()  

 In this routine we make some checks before we conclude whether to delay an ACK 
or to send it immediately. We can send an ACK immediately under the following 
conditions: 

  1.     If the ACK is pending for more than full - segment - sized data.  tp → rcv_wup  is 
updated to  tp → rcv_nxt  when we send an ACK. If the difference of these two 
fi elds is more than received mss, ACK is pending for more than 1 mss of data. 
Along with this condition, we also need to have enough space in the receive 
buffer such that the window we are going to advertise is more than the last 
window (lines 3010 – 1014, cs  10.22 ). The latter condition ensures that fast 

    cs 10.21.      tcp_in_quickack_mode() .  
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ACKs should be sent out only if we have enough space in the receive buffer, 
because the rate at which new segments are transmitted depends on the rate 
at which ACKs are received. In the case where we have less space in the 
receive buffer because the application is reading slowly, we delay the ACK 
slightly so that the application gets enough time to read data in the receive 
queue before which new data should not arrive and fi ll the receive buffer. In 
this case, we are an eligible candidate for generating immediate ACK.    

  2.     We have out - of - order data that can be detected from  tp → out_of_order_
queue ( != NULL ) at line 3019. It means that we should generate an ACK 
immediately in order to tell the other end that we have received the segment 
out of order so that it should not experience timeout.  

  3.     We are in quick ACK mode, if  tcp_in_quickack_mode()  returns TRUE at line 
3016. See Section  10.4.3 .    

 If any of the above conditions is TRUE, we call  tcp_send_ack()  to immediately 
generate an ACK; otherwise we call  tcp_send_delayed_ack()  in order to defer ACK 
for some more time.  

  10.4.5     tcp _ ack _ snd _ check ()  

 We call this routine in the slow path after processing the incoming segment just to 
check if ACK needs to be sent out from  tcp_rcv_established() . Here, we fi rst check 
if the ACK is scheduled. In case we got out - of - sequence data or retransmissions, 
ACK will be scheduled in  tcp_data_queue()  and we can send out an ACK segment 
here. Before this routine is called, we call  tcp_data_snd_check()  to check if there 
are any new data to be sent out. If new data are transmitted here, we have already 
ACKed the incoming segment. So, the ACK signal that was set in  tcp_data_queue()  
will be reset and ACK need not be generated separately. 

    cs 10.22.      __tcp_ack_snd_check().   



 If the ACK is not scheduled, we just return. Otherwise, we we need to make 
some more checks before we conclude whether an ACK should be sent out. So, we 
call  __tcp_ack_snd_check()  with a second argument as 1 (cs  10.23 ). This value signals 
that we should not ignore the possibility of an out - of - order segment being received, 
in which case we need to send out an ACK immediately (for details see Section 
 10.4.4 ).    

  10.4.6     tcp _ send _ delayed _ ack ()  

 In this routine we fi rst try to adjust delay ACK timeout, depending on: 

  1.     Current timeout,  tp → ack.ato   
  2.     Smoothened rtt  
  3.     Whether the ACK is in pingpong mode    

 In the case where the pingpong mode is on, we keep a lower limit on the maximum 
allowable timeout (HZ/5) as pinpong is enabled for interactive session. In the case 
where echo does not happen fast enough, we need not wait long enough to send 
the ACK back. Once we have smoothened the timeout value, we calculate timeout 
with respect to jiffi es (number of ticks since the machine has booted) at line 1282. 
Next we check if the delayed ACK timer is already installed at line 1285. The reason 
for this may be: 

  1.     The delayed ACK timer fi red and got blocked because the socket was in use 
by some other thread (tp → ack.blocked is set) when the timer expired last. 
For details, see Section  10.4.8 .  

  2.     We got here much before the installed timer would expire.    

 In the latter case, if very little time is left for the installed timer to expire, we send 
out the ACK immediately. In the former case, we should process delayed ACK at 
the earliest because we already missed the delayed ACK timer for the reason that 
the socket was in use by someone else. If any of the above condition ’ s is TRUE, 
we call  tcp_send_ack()  to send an ACK immediately at line 1290 and return (cs 
 10.24 ).   

 If both condition ’ s are false, we need to reset delay ACK timer for which we 
are called. If the above calculated timeout is more than the current timeout ( tp →

    cs 10.23.      tcp_ack_snd_check() .  
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 ack.timeout ), we take the the current delay ACK timeout at lines 1294 – 1295. The 
reason for this is that we are here with the timer already installed, so we should 
expire as per the schedule. Next we set  TCP_ACK_SCHED  and  TCP_ACK_TIMER  
fl ags related to delayed ACK at line 1297. We set these fl ags here unconditionally 
because we don ’ t know if the timer was already installed when we entered the 
routine. Next we modify a delayed ACK timer with the new timeout value by calling 
 mod_timer()  at line 1299. We hold a socket reference by calling  sock_hold()  at line 
1300 in case  mod_timer()  returns 0.  mod_timer()  returns zero only if the timer was 
not already installed or had already expired. If it is already installed, the socket ’ s 
reference is already held by the timer. The reference on the socket is released in 
the delay ACK timer routine which we are going to discuss next. We hold reference 
to socket so that the socket should not be destroyed before the timer expires.  

  10.4.7     tcp _ delack _ timer ()  

 This is a callback routine for Delay ACK timer. We hold socket ’ s spin lock and fi rst 
check if the socket is already in use mainly because somebody is already accessing 
socket ( sk → lock.users != 0 ) at line 216. If the socket is already being accessed 
somewhere else, we just set a blocked fi eld at line 218 to indicate that the delay 
ACK timer was blocked because of a socket in use. We modify delay ACK timer 
with expiry time of  TCP_DELACK_MIN  at line 220. If the timer was not already 
installed, we need to hold additional reference on the socket by calling sock_hold() 
at line 221. We now release the socket lock and return. 

    cs 10.24.      tcp_send_delayed_ack() .  



 In the case where the socket is not in use, the fi rst thing we do is claim some 
memory for the socket by calling  tcp_mem_reclaim()  from TCP memory pool. For 
more detail, see Section  9.1 . We do some clean checks such as if the socket is already 
closed or  TCP_ACK_TIMER  is not set at line 227. If any of these conditions is 
TRUE, we return. If we got fi red before the expire time set for the timer at line 230, 
we modify the timer to the current timeout ( tp → ack.timeout ) value. If required, hold 
additional reference on the socket and return. 

 We are ready to handle delay ACK timer now. So, the fi rst thing we do is to 
clear the  TCP_ACK_TIMER  bit, which indicates that the timer is installed. Next 
we check if the there is anything queued up in TCP ’ s prequeue. This may happen 
because when an incoming segment is being processed in  tcp_v4_rcv() , we fi rst try 
to queue the segment in TCP prequeue by calling  tcp_prequeue() . In case this is the 
fi rst segment in the queue, we wake up the thread blocked to read data from the 
socket and also install delayed ACK in case ACK is not already scheduled. In case 
the timer fi res before the sleeping thread gets the processor, we will process the 
prequeue fi rst and then send the cumulative ACK. In case we have segments to be 
processed in the prequeue, they are processed in loop 242 – 243 by callback routine 
 sk → backlog_rcv() , which is nothing but  tcp_rcv_established() . 

 While processing segment ’ s in the prequeue, we might have already sent out 
ACK. So, next we check if the ACK is already scheduled at line 248. If we are in 
interactive session (pingpong mode is turned off), we just infl ate ACK timeout ( tp →
 ack.timeout ) by backing off current timeout but not more than retransmission 
timeout at line 251. On the other hand, if it was interactive session and we have 
timed out, it means that we have not yet transmitted anything after we received 
data for a long time. For example, if this happens with telnet, rlogin server side TCP 
sessions and we have not echoed the characters typed from the client end TCP fast 
enough, we should leave pingpong mode of ACKing. Next thing we do is to send 
an ACK by calling  tcp_send_ack()  at line 259 (cs  10.25 ). We do some cleanup work, 
release lock on the socket by calling  bh_unlock_sock() , release additional hold on 
the socket by calling  sock_put() , and leave.    

  10.4.8     tcp _ reset _ xmit _ timer ()  

 This a common routine to reset timers for RTO, window probe, and delayed ACK 
timer. The second argument to the routine is the kind of timer, and the third argu-
ment is the expire time in ticks. The very fi rst action we take here is that if the 
timeout passed to the routine is more than maximum RTO, we reduce it to TCP_
RTO_MAX. Depending on the TCP timer, we take further action in the switch 
case. For RTO and window probe timers the callback routine is same, that is,  tcp_
write_timer() . Timer request for both these timers is processed in lines 876 – 879. We 
differentiate between these timers from  tp → pending  fi eld. We set this fi eld accord-
ing to the timer type at line 876. Now we store the expiry time for the timer in  tp →
 timeout  in  jiffi es  (clock ticks) at line 877. Next we call  modify_timer()  to reset the 
timer with an expiry value as  tp → timeout . If the timer is not already installed, we 
need to hold the reference for the socket at line 879 (cs  10.26 ).   

 Delay ACK timer is slightly different from these two timers in a way that we 
don ’ t initialize  tp → pending  fi eld here. Instead we just set  TCP_ACK_TIMER  bit 
in  pending  fi eld of  struct ack . Timeout for the delay ACK is set in  tp → ack.timeout  
fi eld. All the ACK status is maintained in  struct ack , embedded in  struct tcp_opt .  
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    cs 10.25.      tcp_delack_timer() .  



  10.4.9     tcp _ write _ timer ()  

 This is a callback routine for RTO and window probe timers. We process the timer 
with socket lock held by calling  bh_lock_sock() . Next we check if the socket is being 
accessed by some other thread ( sk → lock.users != 0 ). If so, we don ’ t continue with 
processing of the timer; instead we defer the timer by  HZ/20  ticks by calling  mod_
timer()  at line 424 (cs  10.27 ). We need to hold the additional reference on the socket 
in case the timer was not already installed at line 425 and return.   

 Next we check if the socket is closed or no timer is pending ( tp → pending == 
0 ) at line 429. If any of these conditions is TRUE, we return. If the timer has expired 
prematurely, line 432, we reset the timer with expiry time of  tp → timeout  ticks. Hold 
an additional reference on the socket in case timer is not already installed at line 
434 and return. 

 If we are here, it is time to execute the TCP timer. Either RTO or window probe 
timer has timed out. tp → pending fi eld stores the timer event — that is, which timer 
has expired. Depending on the pending timer, we call callback routine. On every 
exit from the timer callback routine, we release the socket lock and also release an 
additional reference on the socket by calling  bh_unlock_sock()  and  sock_put() , 
respectively.  

    cs 10.26.      tcp_reset_xmit_timer() .  
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  10.4.10     tcp _ clear _ xmit _ timer ()  

 This is a common routine to cancel TCP timers. The second argument to the routine 
is the timer that needs to be canceled. For RTO and window probe timers we clear 
 tp → pending  fi eld at line 834 (cs  10.28 ). Additionally, we can remove a timer from 
the list if it is installed (timer_pending() returns TRUE) and delete the installed 
timer by calling  del_timer() . If we delete a timer here, the additional reference 
placed on the socket should be released here by calling  __sock_put() . We delete the 
timer from the global lost only if  TCP_CLEAR_TIMERS  is defi ned. In the case of 
delayed ACK timer, we need to reset two fi elds tp → ack.pending and tp → ack.
blocked at lines 843 – 844. The rest of the deletion of the timer process is the same 
as explained for the RTO timer above.     

    cs 10.27.      tcp_write_timer() .  



  10.5   KEEPALIVE TIMER 

 The keepalive timer is used by TCP to probe the peer when there is no activity over 
the connection for a long time. This timer is used by interactive TCP connections 
where the connection may be in an idle state for a long time — for example, telnet, 
rlogin, and so on. Connections need to probe their peers by sending a TCP segment. 
The segment is sent with sequence number 1 less than the the highest acknowledged 
sequence number. When this segment reaches the other end, it should generate an 
ACK immediately thinking that it was retransmission. Once the ACK to the kee-
palive probe is received, we are sure that the peer is alive; otherwise we know that 
there is a problem. Let ’ s see how this timer is implemented in Linux. 

  10.5.1   When Is Keepalive Timer Activated? 

 On Linux, the keepalive timer implements both a SYN ACK timer and a keepalive 
timer. This means that for any of these timers, we reset the same timer, that is,  tp →
 timer . In this section we will only focus on the keepalive timer. The timer is started 
when a new connection is established in  tcp_create_openreq_child() , only if the 
KEEP ALIVE option ( tp → keepopen ) is enabled for the socket. This is done when 
an application issues the SO_KEEPALIVE socket option on the socket. This option 

    cs 10.28.      tcp_clear_xmit_timer() .  
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is not enabled by default, which also means that the keepalive timer is not enabled 
for all the TCP connections by default.  

  10.5.2   How Is the Timer Reset? 

 The timer is reset by calling  tcp_reset_keepalive_timer() , which kicks off the keepal-
ive timer registered as  tp → timer  for the TCP connection. This timer is initialized as 
 tcp_keepalive_timer  in  tcp_init_xmit_timers()  at the time of opening a socket.  

  10.5.3     tcp _ keepalive _ timer ()  

 Let ’ s see how the keepalive timer functions. It fi rst looks for the user of the socket. 
If so, we need to let the user of the socket complete its task and defer execution 
of the timer at some later time. We reset keepalive timer by calling  tcp_reset_
keepalive_timer()  to expire after  HZ/20  ticks at line 584, release socket hold and 
leave (cs  10.29a ). The keepalive callback routine can act as a  SYN - ACK  timer by 
calling  tcp_synack_timer()  at line 589 to manage incoming connection request (dis-
cussed in Section  10.6.3 ), in case it is a listening socket. Next we check if the socket 
is in the  FIN_WAIT2  state, and the socket is already closed at line 593. If that is 
the case, we call  tcp_time_wait()  in case we have not expired  TCP_TIMEWAIT_
LEN  number of ticks. Otherwise if we have expired, we send out reset on the con-
nection and remove the connection from our end. TIME_WAIT timer will be 
discussed in Section  10.7.2 .   

 Next we check if the keepalive connection is not enabled (tp → keepalive) or 
the connection is in the closed state at line 606. If any of the conditions is TRUE, 
we release socket lock and return. We send the keepalive probe only if the segment 
has been idle for some time. So, next we check if any data segment was transmitted 
which is still unacknowledged ( tp → packets_out  is nonzero) or if there is anything 
in the send queue that needs to be sent next ( tp → send_head != NULL ) at line 612. 
If any of these conditions is TRUE, we reset the keepalive timer by calling tcp_
reset_keepalive_timer() at line 642, release the socket lock, and leave (cs  10.29b ).   

 If we are here, we are eligible for sending out the keepalive probe if the time 
has actually expired. First we calculate the time elapsed since the last segment was 
received at line 615. Next we compare if the time since last segment was received 
has exceeded the probe time interval at line 617.  keepalive_time_when()  gets us 
probe time interval. The keepalive probe time interval is  tp → keepalive_time  in case 
it is set using socket options; otherwise it is  sysctl_tcp_keepalive_time . If the timer 
has not expired, we calculate the next expiry as the time left for the keepalive timer 
to expire at line 635 and would reset the probe timer to expire in the near future. 
Otherwise, if the time has actually expired, the next check would be to see if the 
number of unacknowledged probes has exceeded the limit at lines 618 – 619. We 
increment  tp → probes_out  whenever the probe is sent out (is discussed ahead), and 
the counter is reset when we get an ACK when no outstanding unacknowledged 
data are there in the queue (see Section  10.4 ). If we have exceeded probe limits, 
the reset segment is sent out by calling  tcp_send_active_reset()  and the connection 
is closed, lines 620 – 621. In this case, we release the socket lock and leave. 

 If we have not exceeded the limit on the number of unacknowledged probes, 
we call  tcp_write_wakeup()  to send out a probe (see Section  10.3.7 ). If the probe 
segment is transmitted successfully, we increment the probe counter by 1 at line 625. 



    cs 10.29a.      tcp_keepalive_timer() .  
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    cs 10.29b.      tcp_keepalive_timer()  ( continued ).  

Get the probe interval by calling  keepalive_intvl_when() . In the case where the 
probe interval was not transmitted successfully, we need to send it at the earliest. 
So, the expiry time for the keepalive timer is reduced to  TCP_RESOURCE_
PROBE_INTERVAL  at line 631, because we are not able to transmit because of 
lack of resources. Next we call tcp_mem_reclaim() to reclaim some memory. We do 
this here because if our connection has consumed its quanta of memory allocated, 
the next processing of the incoming segment will take it to the slow path. So, we do 
this check in advance here. Next we call tcp_reset_keepalive_timer() at line 642 to 
reset the keepalive probe timer to whatever expiry time we have calculated above. 
We release the socket lock and leave.   

  10.6    SYN  -  ACK  TIMER 

 There is a timer maintained by Linux to manage connection requests that are not 
being accepted for a given period of time. The entire idea of having this timer is 
that if we are not able to accept more connections (accept queue is full) because 
the application is not able to get CPU or it is busy doing something else, we need 
to manage the connection request. There are two main cases where connection 
requests need to be managed: 

  1.     Established connections are not being accepted because the accept queue is 
full and the application is not accepting new connections.  

  2.     We don ’ t get ACK for the SYN - ACK we sent; that is, the third step in the 
three - way handshake is not completed.    

  10.6.1   When Is the  SYN  -  ACK  Timer Activated? 

 The timer is activated when we get a connection request and there is no pending 
connection request in the listening socket ’ s SYN queue to be processed.  lopt → qlen  
is the counter that is incremented by 1 whenever a new connection requested arrives 



by calling  tcp_synq_added()  (cs  10.30 ). Whenever the new connection moves from 
SYN queue to accept queue after three - way handshake, the counter is decremented 
by 1 by calling  tcp_synq_removed() . In  tcp_synq_added()  we call  tcp_reset_
keepalive_timer()  when we are processing the fi rst connection request when no 
request is pending in the SYN queue to be processed.    

  10.6.2   When Is the  SYN  -  ACK  Timer Stopped? 

 The SYN - ACK timer stops when we fi nd that the queue length ( lopt → qlen ) is zero, 
which means that there is no open request pending on the listening socket. So, all 
the open requests are now established and accepted since the SYN - ACK timer was 
reset. Whenever the connection requested is moved from SYN queue to accept 
queue after the three - way handshake is over, we decrement the counter by 1. If the 
counter becomes zero, we cancel the SYN - ACK timer in  tcp_synq_removed()  by 
calling  tcp_delete_keepalive_timer()  at lines 1606 – 1607 (cs  10.31 ).    

 In the case where SYN - ACK is not retransmitted even once, the connection 
request is considered young.  

  10.6.3     tcp _ synack _ timer ()  

 In the case where the SYN queue is more than half - fi lled, we try to reserve half of 
the space for the young requests. Requests are young until they are retransmitted. 
The idea of SYN queue management is to keep most of the young entries and 
remove old ones from the queue which have been there for quite some time and 

    cs 10.30.      tcp_synq_added() .  

    cs 10.31.      tcp_synq_removed() .  
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have not yet been accepted or acknowledged. For this we have a timer per listening 
socket that expires after a given time interval  TCP_SYNQ_INTERVAL . The value 
is  HZ/5 ; that is, the timer expires fi ve times per second. The individual entries in the 
SYN queue has its own expiry as  req → expires . The timeout value for each request 
increases exponentially on each expiry.  req → retrans  counter is incremented by 1 
every time SYN - ACK is retransmitted. Retransmission may happen because of two 
reasons: 

  1.     The three - way handshake is over but there is no space in the accept queue 
for the new connection. In this case,  req → acked  is set.  

  2.     The fi nal ACK is not received for the request, which may be due to the SYN -
 ACK being lost, the fi nal ACK being lost, or the peer not responding, and so 
on. In this case,  req → acked  is not set.    

 The very fi rst retransmission converts a young request into a matured one, and 
 lopt → qlen_young  is decremented by 1. 

 Let ’ s see how the idea is implemented. First we check if the SYN queue for the 
listening socket is more than half - fi lled at line 492 (cs  10.32 ).  lopt → max_qlen_log  is 
log base 2 of the maximum queue length. If the result of division of  lopt → qlen  by 
2 ( lopt Æ max_qlen_log  - 1 )  is a nonzero positive number, it means that our SYN queue is more 
than half full (equivalent to expression at line 492). For example, if  lopt → max_qlen_
log  is 6, it means that the maximum queue length is 64. If the queue length is divided 
by 2 4  and the integral result is nonzero, it means that the queue length is minimum 
32, which is half of 64.   

 So, once we are halfway through the queue length, we enter the block 492 – 501 
to calculate the number of retries for the old entries which are not yet acknowl-
edged.  thresh  is a local variable that is equal to the  max_retries  storing value that 
indicates a maximum number of retries for the retransmission, after which we 
should drop the connection request. We traverse in a loop 495 – 500, until  thresh  is 
greater than 2. In each iteration we decrement  thresh  by 1 and divide the number 
of young entries by 2. We also break from the loop when the length of the queue 
becomes less than the number of young entries in any iteration. This means that the 
higher the number of young entries, the lower the number of iterations we go 
around the loop and thus higher the  thresh . The fi nal value of  thresh  will decide as 
to how many times old unacknowledged connection requests in the SYN queue 
should be retransmitted before we drop those unacknowledged connection 
requests. 

 The maximum number of retries by default is the  sysctl_tcp_synack_retries  
system - wide control parameter. The user can also set this value for the listening 
socket by using socket options  TCP_SYNCNT . The fi nal value of maximum number 
of retries for the SYN queue requests is decided by the socket option  TCP_DEFER_
ACCEPT.  At line 504, maximum retries is set to  tp → defer_accept , which is set by 
using the TCP_DEFER_ACCEPT socket option. 

 Next we need to calculate the total number of hash table entries be examined. 
There may be hundreds of requests in the SYN queue and we can ’ t examine each 
open request every time that the SYN - ACK timer expires. So, we calculate a budget 
at line 506 which takes into account the HASH table size for the SYN queue, 
the time before which a new entry in the SYN queue should not be examined 
( TCP_TIMEOUT_INIT ) and the time period for the SYN - ACK timer 
( TCP_SYNQ_INTERVAL ). 



    cs 10.32.      tcp_synack_timer() .  
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 We examine entries in the SYN queue table in a clock - arm manner. We have 
already calculated the number of hash table entries to be examined, so we start from 
the zeroth hash table entry and cover a number of hash table entries calculated 
above. We fi nally store the hash table index in lopt → clock_hand once we have 
exhausted our budget. Thus the next time the SYN - ACK timer expires, we start 
from the same hash table entry from where we left, line 507. 

 The clock works as shown in Fig.  10.4 . If the length of the hash table is  n    +   1 
and the fi xed budget is 4, fi rst processing will start from the zeroth entry. After pro-
cessing, the clock arm will point to the fourth entry in the hash table. This value is 
stored in the clock arm  lopt → clock_hand . The next time the SYN - ACK timer 
expires, we start from where  lopt → clock_hand  points. In each round all the requests 
in the collision list of the hash table entry is examined. If the hash function is not 
proper, we may have an uneven length of collision list in the each entry.   

 So, the number of requests examined on every timer expiry will be very much 
different. But the timer interval is so small (HZ/5) that each entry is examined at a 
very high rate. 

 We have two loops to examine entries in the SYN queue. The outer loop (509 –
 542) advances us in the SYN queue hash table. The inner loop (511 – 538) takes us 
through each element in the hash collision list. In each iteration of the outer loop, 
we point to next entry in the hash table at line 510, where an increment is done at 
the end of the loop at line 540. Let ’ s look at what is the inner loop is doing. We 

    Figure 10.4.      SYN ACK  timer schedule.  



traverse through the collision list by accessing  dl_next  fi eld of request structure. First 
we check if the request has timed out from  req → expires  at line 512. 

   •      Next we check if the number of retransmissions for the request has not 
reached  thresh  calculated above at line 513.  

   •      If it has exceeded (above condition fails), we once again check if the request 
being examined is already acknowledged (three - way handshake is over). We 
may have such requests in the SYN queue because the accept queue has 
overfl own. We have a slightly different criterion for such requests. The 
maximum number of retries for already acknowledged requests is decided by 
either a user - defi ned value ( tp → defer_accept, tp → syn_retries ) or a system -
 wide control parameter  sysctl_tcp_synack_retries .    

 If any of the above conditions is TRUE, we try to retransmit the SYN - ACK by 
calling the  rtx_syn_ack()  routine for the request, which is  tcp_v4_send_synack()  at 
line 515. In case we are able to retransmit SYN - ACK successfully, we increment 
the retransmit counter for the request at line 518. If this was the fi rst retransmission 
for the request, we decrement the Young request counter by 1 at line 519 because 
this request has now matured. We calculate the next examination time for the 
request as exponentially incremented  TCP_TIMEOUT_INIT  or  TCP_RTO_MAX , 
whichever is minimum at line 520. We set this timeout value for the request at line 
522 and continue with the next element in the hash collision list. 

 If both conditions mentioned above fail, it means that the request has timed 
out in all the respects. We need to remove the connection from the hash collision 
list. We do this with  syn_wait_lock  held for the connection at line 528 – 530. Since a 
request has been dropped, we need to decrement the SYN queue length by 1 at line 
531. If the request just dropped was young (req → retrans equal to 0), we decrement 
the young request counter by 1 at line 533. Next we free the open request by calling 
tcp_openreq_free() and continue with the next request in the collision list. 

 Once we have exhausted the budget, we come out of the outer loop and record 
the next hash table entry in lopt → clock_hand at line 544. If we still have requests 
in the SYN queue, we reset the SYN - ACK timer by calling  tcp_reset_keepalive_
timer()  at line 547 and return. The callback routine for the SYN - ACK timer is the 
same as that for the keepalive timer.   

  10.7    TIME _ WAIT  TIMER 

 When the TCP connection enters the TIME_WAIT state, it needs to wait for 2 
MSL seconds before the connection is completely dropped. The reason is to avoid 
any misunderstanding of the segments from this connection (delayed in the network) 
with the segments from the new reincarnation of the connection. So, we need to 
keep the old connection in TIME_WAIT state for the duration until we can expect 
that delayed segments from this connection can appear. 

  10.7.1   When Do We Trigger   TIME _ WAIT   Timer? 

 We trigger the  TIME_WAIT  timer by calling  tcp_time_wait()  when we are closing 
the connection in  tcp_fi n()  &  tcp_close() . When we doing active close and receive 
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FIN/ACK from the peer, we enter into  TIME_WAIT  state and here we call  tcp_
time_wait()  to schedule expiry of the  TIME_WAIT  socket.  

  10.7.2     tcp _ time _ wait ()  

 When we are entering into the  TIME_WAIT  state, we need to wait for 2 MSL 
seconds before we can destroy the connection completely. Linux implements this 
by having a list of time - wait socket entries in the form of  struct tcp_tw_bucket . Each 
socket that goes into the  TIME_WAIT  state has a corresponding  tcp_tw_bucket  
object. A list of time - wait buckets is maintained, and timers are triggered to fi re at 
the appropriate time to examine time - wait buckets and destroy them. In this section 
we will see how all this is achieved. 

 Linux has two approaches to process  TIME_WAIT  sockets, depending on the 
time - wait period. We can have either a fi xed period (considered as 2 * MSL) or a 
variable waiting period calculated on the basis of the connection ’ s RTO. This deci-
sion is made based on two factors: 

  1.     Whether recycling of the  TIME_WAIT  socket is allowed ( sysctl_tcp_tw_
recycle  is enabled).  

  2.     We can remember the timestamp from the most recent segment that is seen 
from the destination (peer for the connection going into the  TIME_WAIT  
state).    

 In case both of the above conditions are TRUE, we just call  tcp_v4_remember_
stamp()  to check if the peer information exists in the global list. If it exists, we have 
timestamp information maintained that can be used to catch duplicate/retransmit-
ted/delayed segments from the original connection in case a new reincarnation of 
the connection happens fast. We can enter the recycle mode for this time - wait 
socket, line 353. 

 Next we check if total number of time - wait buckets allocated ( tcp_tw_count ) 
has reached the limit,  sysctl_tcp_max_tw_buckets , at line 355. If we have reached 
the limits, we don ’ t register the socket in the  TIME_WAIT  state and close the con-
nection. Otherwise, we allocate the  tcp_tw_bucket  object at line 356 and copy rele-
vant information from the sock object to the  tcp_tw_bucket  object. We calculate 
RTO as 3.5  tp → rto  at line 359. This will be used as expiry time in case the time - wait 
socket is eligible for recycling. Next we need to join the  TIME_WAIT  socket in 
the bind - hash list and remove the socket from established list by calling 
 __tcp_tw_hashdance() . 

 Next we make sure that timeout for expiry of the time - wait socket is not less 
than the 3.5 RTO calculated, line 397 – 398. If we are eligible for the recycle mode, 
 tw → timeout  is set to 3.5 RTO, line 401. Otherwise, expiry time for the time - wait 
socket is set to  TCP_TIMEWAIT_LEN  at line 405. Now we need to schedule the 
time - wait socket by calling  tcp_tw_schedule() . The fi xed TIME_WAIT period, 
 TCP_TIMEWAIT_LEN , considered by Linux is 60   sec (cs  10.33 ).    

  10.7.3     tcp _ tw _ schedule ()  

 This routine is called to schedule the time - wait socket. The idea is to calculate the 
appropriate slot for the time - wait socket based on timeout ticks. Each slot is 



processed at equal time intervals. If we get the fi rst slot, it means that we should be 
placed in the very next slot from the current scheduled slot that is going to expire 
fi rst. First we calculate the slot for recycle mode; and if the value exceeds the recycle 
mode limit, we switch to non - recycle mode. The recycle mode timer expires every 
2  TCP_TW_RECYCLE_TICK   ticks, which means that two consecutive slots will be processed 
at an interval of 2  TCP_TW_RECYCLE_TICK   clock ticks in recycle mode. So, we calculate 
the slot for the recycle mode at line 529 (cs  10.34 ), where we round up the timeout 
value to a multiple of 2  TCP_TW_RECYCLE_TICK   and divide the fi nal value by 2  TCP_TW_

RECYCLE_TICK  . We hold global time - wait lock,  tw_death_lock , at line 531 because we 
are going to manipulate the global time - wait chain. We fi rst check if the time - wait 
bucket is already scheduled. If  pprev_death  fi eld of the time - wait bucket is non -
 NULL, we are already linked in the global list. In this case, we remove the bucket 
from the list, lines 534 – 539. We decrement  tcp_tw_count  because we are going to 
reschedule it, which is going to increment the counter by 1. If the bucket was not 
already scheduled, we hold an additional reference on the bucket because we should 
not destroy the time - wait bucket before the timer expires. Next we check if the slot 
calculated based on recycle ticks is more than maximum slots held by the recycle 
time - wait table,  TCP_TW_RECYCLE_SLOTS . Let ’ s see how recycle and non -
 recycle time - wait timers are processed.    

  10.7.4   Nonrecycle Mode (see  cs   10.34  unless mentioned) 

 This may happen when our timeout value is too high with the recycle mode or we are 
in the nonrecycle mode. In this case we take slow timer path. In the slow timer path, 
we expire for consecutive slots at fi xed timer interval — that is,  TCP_TWKILL_
PERIOD  as shown in Fig.  10.5 .  TCP_TWKILL_PERIOD  is calculated by dividing 
time - wait length (60   sec) by total number of slots,  TCP_TWKILL_SLOTS . If our 
timeout value for expiry of this time - wait bucket is more than  TCP_TIMEWAIT_
LEN , the time - wait bucket should occupy the last slot with respect to the current 
scheduled slot,  tcp_tw_death_row_slot , at line 546. Otherwise, we calculate the slot 
as dividing a rounded up timeout value to  TCP_TWKILL_PERIOD  by  TCP_
TWKILL_PERIOD  at line 548. In any case, the slot should not go beyond  TCP_
TWKILL_SLOTS . Next we calculate the slot with respect to the current scheduled 
slot,  tcp_tw_death_row_slot , at line 553. We keep the pointer to the entry in the  tcp_
tw_death_row[]  table corresponding to the slot calculated above at line 554.  tcp_tw_
timer  is the timer for nonrecycle mode operation. The timer is triggered when the fi rst 
time - wait bucket entry arrives. Once the timer is triggered, it will continue to fi re at 
equal intervals of  TCP_TWKILL_PERIOD  clock ticks (cs  10.35 ) for each slot irre-
spective of whether the slots have entries scheduled for it. The timer stops only when 
there is no entry in any of the slots and the tcp_tw_count has come down to zero. For 
more details see Section  10.7.6 , which discusses  tcp_tw_timer  timer  .   

    cs 10.33.     Time - wait timer frequency for any slot in the nonrecycle mode.  
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    cs 10.34.      tcp_tw_schedule() .  



 Let ’ s take an example for the slot calculation with slow timers. We take two 
timeout values  − 20   Hz ticks (20   sec) and  TCP_TIMEWAIT_LEN . The slow timer 
fi res after every  TCP_TWKILL_PERIOD  ticks, that is, 7   sec (7 - Hz clock ticks). The 
fi rst timeout value will be rounded off to multiple of 7 and then divide it by 7 to get 
the slot. We get slot 3 according to the above calculation for a timeout value of 
20   sec. Since the current slot ( tcp_tw_death_row_slot ) is 2, our time - wait bucket 
should go in slot 6 as shown in Fig.  10.6 . In the case where the timeout was greater 
than or equal to  TCP_TIMEWAIT_LEN , we would have taken the last slot with 
respect to the current slot (i.e., slot 1) because the clock hand moves ahead by 1 
slot on each expiry of the timer and the timer fi res at an equal interval of  TCP_
TWKILL_PERIOD  ticks.    

  10.7.5   Recycle Mode (see  cs   10.34  unless mentioned) 

 In the recycle mode we have 32 slots, 0 – 31. The timer in this case can be 
scheduled to fi re at any time that is a multiple of 2  TCP_TW_RECYCLE_TICK   as shown 

    Figure 10.5.     Time - wait timer schedule for the non - recycle mode.  

    cs 10.35.     Time - wait timer frequency.  
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    Figure 10.6.     Time - wait timer in slot 6 is scheduled with respect to slot 1.  

in Fig.  10.7 . There are 32 slots, and each slot is processed at equal intervals of 
2  TCP_TW_RECYCLE_TICK  . TCP_TW_RECYCLE_TICK is calculated as defi ned in 
cs  10.36 . It depends on Hz which is frequency of times Interrupt.   

 The timer used for processing of recycle mode time - wait sockets is  tcp_twcal_
timer . Hash bucket for this mode is  tcp_twcal_row[TCP_TW_RECYCLE_SLOTS] . 
The scheme used here is slightly different from the one used for the non - recycle 
mode. Here we are allowed to modify expiry time for the timer whenever a new 
time - wait entry arrives. In the case where there is no entry in the time - wait hash 
bucket,  tcp_twcal_hand  is set to  − 1. Once the fi rst entry arrives, we do the 
following: 

   •       tcp_twcal_hand  is set to 0, line 559.  
   •       tcp_twcal_jiffi e  is another global variable that keeps the value of  jiffi es  when 

the fi rst entry arrives, line 560. This is used to compare with the expiry time 
of each slot. Will learn more in Section  10.7.7  that explains  tcp_twcal_tick() .  

   •      Timer expiry time is set as  jiffi es    +   slot * 2 TCP_TW_RECYCLE_TICK   , line 561.  jiffi es  
contains number of clock ticks since the machine was booted. Even though 
this is the fi rst entry that may go in any slot including 0, our arm ( tcp_twcal_
hand ) is pointing at slot 0. We will see how this is taken care of in the timer 
routine.  

   •      Next we trigger the timer by calling  add_timer()  at line 562.    

   In the case where we are going to add new a time - wait socket entry when the entries 
already exist — that is, the timer is already scheduled, we just check if the time 



remaining for the timer to expire is more than the expiry time for our new time - wait 
entry at line 564. If that is the case, we reschedule the timer at line 564 by calling 
 mod_timer()  and set expiry time from new time - wait entry. If this is the case, a new 
entry would have gone into the slot that appears prior to current scheduled slot. So, 
the very next timer will process the slot corresponding to the new entry, and the 
current scheduled slot will be processed in the subsequent timers (explained with 
the help of Fig.  10.7 ). Next we calculate the new slot with respect to the current 
slot,  tcp_twcal_hand , at line 566. For example, Fig.  10.8  shows that a new time - wait 
timer is added in slot 16 with respect current slot 0.   

 Next we add the new time - wait to the selected slot in the appropriate hash 
bucket using the  next_death  and  pprev_death  fi eld of the  tcp_tw_bucket  object, lines 
571 – 574. We increment  tcp_tw_count  by one. In the case where this is the fi rst time -
 wait socket entry, we trigger  tcp_tw_timer  timer irrespective of timer mode. We 
release the global time - wait lock,  tw_death_lock  and leave.  

  10.7.6     tcp _ twkill ()  

 This is the timer callback routine for the  tcp_tw_timer  timer used for processing of 
time - wait sockets in the non - recycle mode. In the non - recycle mode, we have a timer 
that fi res at equal time intervals of  TCP_TWKILL_PERIOD  to process each slot 
(cs  10.37 ). The timer fi res for the slot irrespective of whether we have any time - wait 
sockets being there for that slot or not. We hold the  tw_death_lock  lock to access 
each bucket in the hash bucket collision list. With the  tw_death_lock  lock held (line 
443), we check if there is no time - wait sockets to be processed in any of the slots at 
line 445. If so, we just return without rescheduling timer. This is one of the places 
where we stop the timer for the nonrecycle mode.   

    cs 10.36.     Logarithm of time - wait timer frequency depending on CPU frequency.  
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    Figure 10.7.     Time - wait timer slots for the recycle mode.  

    Figure 10.8.     New time - wait timer is added to slots 16 with respect to slot 0  .  



    cs 10.37.      tcp_twkill() .  

 We are here because the time - wait bucket is not empty. But we don ’ t know 
whether the current slot being processed has any entry to be processed. We start a 
loop here to process entries in the current slot, pointed to by  tcp_tw_death_row[tcp_
tw_death_row_slot] . Entries are accessed in the collision chain using the  next_death  
fi eld of the  tcp_tw_bucket  object. Once we have gotten the node to be processed 
( tcp_tw_bucket  object) from the chain, we release the  tw_death_lock  lock at line 451. 
With this design of holding and releasing the lock for each node access, we can have 
 tcp_tw_schedule()  continue to do its job while the slot is being processed because 
there is a single lock for any time - wait table access. Next we unlink the time - wait 
socket from the time - wait hash table,  tcp_ehash , and also from bind hash bucket, 
 tcp_bhash , by calling  tcp_timewait_kill() . We release an additional reference on 
the time - wait bucket while unlinking it from a different time - wait hash table in 
 tcp_timewait_kill().  The additional reference was put on the time - wait socket when 
it was linked to these hashes by a call to  __tcp_tw_hashdance()  in  tcp_time_wait() . 
Next we release one more reference on the time - wait bucket at line 454. This refer-
ence was put on the socket while adding in  tcp_tw_schedule()  when we are linking 
time - wait socket to the time - wait table slot. Counter is incremented every time to 
keep track of the number of sockets killed from the slot. This will help us in making 
a decision to stop the timer further down the line. 

 Once we have processed all the time - wait sockets in the slot, we calculate the 
next slot to be processed at lines 460 – 461.  tcp_tw_death_row_slot  moves like arm of 
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a clock in one direction as shown in Fig.  10.9 . The slot wraps around itself once it 
has reached the maximum value of 7. Next we check if there are any more entries 
in the time - wait table to be processed over all at line 463. We do this by subtracting 
killed counter from  tcp_tw_count . If entries exist, we reschedule  tcp_tw_timer  timer 
to expire after the  TCP_TWKILL_PERIOD  clock ticks. In the case where the next 
slot is empty, we don ’ t care and we schedule the timer to process the next slot 
pointed to by  tcp_tw_death_row_slot . This way we maintain simplicity of processing 
the slots at the correct time without too much manipulations at the cost of the timer 
fi ring unnecessarily for the slot that has nothing to be processed. But we never know 
if something can be added to the current slot before it is being processed in the next 
timer event after  TCP_TWKILL_PERIOD  clock ticks. Release the time - wait lock 
and return.    

  10.7.7     tcp _ twcal _ tick ()  

 This is a timer callback routine for  tcp_twcal_timer  timer used in the recycle mode. 
This timer works slightly different from  tcp_tw_timer . With this design, the timer is 
set to expire only for the slot at a minimum distance from the current scheduled 
slot. In  tcp_tw_schedule()  we can see that if the timer is already scheduled and   that 
the new entry that needs to be scheduled earlier than the time left in expiry of the 
scheduled timer is more than the current entry, we reschedule the timer to expire 
early to process the latest entry. So, the chances of multiple nonvacant slots being 
processed on a single timer event are much lower. There is a boundary line case 
where the new entry arrives just at the boundary of 2  TCP_TW_RECYCLE_TICK   ticks where 
the condition mentioned above is not satisfi ed (time left for timer to expire is equal 
to 2  TCP_TW_RECYCLE_TICK   ticks). In this case we miss our opportunity to reschedule the 

    Figure 10.9.     Movement of time - wait slot clock arm to point to the current slot being 

processed.  



timer but place the new entry in the slot. In this case, both slots will be processed 
when the next timer expires. 

 Let ’ s see how the idea is implemented. We have two global variables here: 

   •       tcp_twcal_hand   
   •       tcp_twcal_jiffi e     

 When the fi rst entry is added to the hash table,  tcp_twcal_jiffi e  is set to  jiffi es  
and  tcp_twcal_hand  is set to slot zero. Suppose the fi rst entry is added to slot 20, 
depending on the timeout value as shown in Fig.  10.10 (left). Since this is the fi rst 
entry, all the slots will be vacant and will be pointing to NULL. The timer is set to 
expire at 20 *  2  TCP_TW_RECYCLE_TICK   ticks. In this case, when the timer fi res, let ’ s see 
how loop 596 – 622 (cs  10.38 ) works. The loop does 32 iterations. In each iteration 
it checks if the current time is more than the time stored in  tcp_twcal_jiffi e . In the 
fi rst iteration, we will surely have a value in  tcp_twcal_jiffi e  less than current time 
since  tcp_twcal_jiffi e  stores the value of  jiffi es  when the fi rst entry went into slot 20. 
At the end of each iteration we add 2  TCP_TW_RECYCLE_TICK   ticks to the value stored in 
 tcp_twcal_jiffi e  because in each iteration we are moving to process the next slot, and 
the time period to process subsequent slots is 2  TCP_TW_RECYCLE_TICK   ticks. In the fi rst 
iteration we pass the test, and so we are all set to process slot 0. This part is same 

    Figure 10.10.     Time - wait timer added to slot 21 in nonrecycle mode.  
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as the one explained in section  10.6.3 , where we traverse through the collision hash 
list (lines 600 – 607) by accessing the  next_death  fi eld of object  tcp_tw_bucket . In each 
iteration we call  tcp_timewait_kill()  to unlink the time - wait socket from the time -
 wait hash table and from the bind hash table. Thereafter, we call  tcp_tw_put()  to 
release an additional reference held on the time - wait bucket in  tcp_tw_schedule() . 
Finally we increment the killed counter by 1 in order to keep track of the number 
of entries in the time - wait table subsequently.   

    cs 10.38.      tcp_twcal_tick() .  



 In this case, slots 0 – 19 are empty (no entries for time - wait buckets). So, until 
the 20th iteration, we simply increment the slot number at line 621 and add time 
period (2  TCP_TW_RECYCLE_TICK   ticks) to the value stored in  tcp_twcal_jiffi e  at line 620 
and do nothing. The condition at line 597 is TRUE until the 20th iteration because 
the timer has expired after 20 *  2  TCP_TW_RECYCLE_TICK   ticks since the entry was received. 
Once we are at the 20th iteration, we process all the time - wait entries in the 20th 
slot. In the next iteration, we fi nd that the value of clock ticks has exceeded the 
current value of  jiffi es . So, we enter the else part (lines 608 – 619). Since this is the 
fi rst time we have entered this block, we store the number of ticks calculated at the 
end of each iteration in  tcp_twcal_jiffi e  and store the value of slot 21 (next to slot 
processed recently) in  tcp_twcal_hand . 

 Next we check if the current slot has any entries, line 615. If there are entries 
in the slot, we schedule the timer to expire after 2  TCP_TW_RECYCLE_TICK   ticks (since 
value of ticks calculated until now at line 620 is  jiffi es    +   21 *  2  TCP_TW_RECYCLE_TICK   
ticks). And we leave. In the next timer,  tcp_twcal_hand  will be pointing to the 21st 
slot as shown by dotted lines in Fig.  10.10 (right). In our case, all the slots from 21 
to 31 are empty. So, in each iteration we enter the else part (lines 608 – 619) and fi nd 
that there is nothing in the slot to be processed. We come out of the loop and set 
tcp_twcal_hand to  − 1 at line 623;  − 1 signifi es that there is no entry in the time - wait 
table. In this case,  tcp_twcal_hand  &  tcp_twcal_jiffi e  will be reinitialized in 
 tcp_tw_schedule() . 

 In the above case, if the 20th and 24th slots had entries, the fi nal scene would 
have been (as shown in Fig.  10.11 ). 

    Figure 10.11.     After processing timers from slot 20, we need to process slot 24.  
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   •       tcp_twcal_hand  would be pointing to the 21st slot.  
   •      The timer would be set to expire after 4 *   2TCP_TW_RECYCLE_TICK    ticks.  
   •       tcp_twcal_jiffi e  would be set to current value of  jiffi es .      

 With this kind of setup, if we get time - wait socket entries for slot 22 or 23 before 
the clock passes the 21st slot, the timer can be rescheduled with a new expiry time 
to process the closest slots fi rst.  

  10.7.8    __ tcp _ tw _ hashdance ()  

 This routine is called when a connection moves into the  TIME_WAIT  state. In this 
case, we need to link the  TIME_WAIT  socket to the bind - hash table, unlink it from 
the established state, and link it in the time - wait hash table. The socket is already 
hashed in the bind hash table  tcp_bhash[]  using socket ’ s  num  fi eld. We get the head 
of the hash table entry at line 310 (cs  10.39 ) in order to hold the bind hash spin lock 

    cs 10.39.      __tcp_tw_hashdance() .  



at line 311. When we are binding the socket to a port, we make  sk → prev  point to 
the bind bucket,  tcp_bind_hashbucket  object, which corresponds to its entry in the 
bind hash collision list. We link object  tcp_tw_bucket  with the chain of sockets ( tb →
 owners ) associated with the  tcp_bind_bucket  object, lines 314 – 317. Next we need to 
remove the socket ’ s entry from the established list. For this we need to hold the 
established hash table head lock. We get access to the established hash list lock by 
accessing  tcp_ehash_bucket  object corresponding to the socket. This index in the 
 tcp_ehash[]  table is stored in the socket ’ s  hashent  fi eld, line 302. We hold the estab-
lished hash table head lock at line 320 and now unlink the socket from the hash 
table,  tcp_ehash[] , lines 323 – 329. The socket is linked through the  next  and  pprev  
fi eld in the established collision hash chain. Next we need to link the socket in the 
time - wait hash bucket. There is no separate bucket for time - wait sockets; instead, 
the bucket is a part of the tcp_ehash[] table. The lower half of the  tcp_ehash[]  is 
used for time - wait sockets. So, to access the head of the hash bucket, we just need 
to add  tcp_ehash_size  to the head of the established hash bucket, line 332. The socket 
is linked through next and pprev fi eld in the time - wait hash collision chain, lines 
334 – 337.     

  10.8   SUMMARY 

  struct timer_list  is the object that is initialized to register timer. 
  mod_timer() and del_timer()  are the interfaces provided by the Linux kernel to 

manipulate timers. 
  mark_bh()  is called to raise  HI_SOFTIRQ  softIRQ from the timer interrupt 

and schedules the timer tasklet for which the callback routine is  timer_bh() . 
  tcp_reset_xmit_timer()  is a common timer callback routine to register retrans-

mit, zero - window probe, and delayed - ACK timer. 
  tcp_reset_keepalive_timer()  is an interface to reset the keepalive timer. 
  tcp_clear_xmit_timers()  is an interface to clear TCP timers. 
  tcp_ack_packets_out()  resets retransmit to expire after RTO when new data are 

ACKed in  tcp_ack() . 
  tcp_delack_timer()  is a callback routine for the delayed - ACK timer. 
  tcp_retransmit_timer()  is a callback routine for the retransmit timer. 
  tcp_check_probe_timer()  is called to reset the zero - window probe timer in case 

we are not able to transmit new data and we have no unacknowledged data. The 
routine is called from  __tcp_push_pending_frames()  and  __tcp_data_snd_check() . 

  tcp_probe_timer()  is a callback routine to handle zero - window probe. 
  tcp_synq_added()  is called to register the SYNQ timer for a new connection 

request. SYNQ timer is implemented as part of the keepalive timer. The keepalive 
timer callback routine calls  tcp_synack_timer()  in case the socket is in the listen 
state. 

  tcp_time_wait()  is a callback routine for the time - wait timer. 
 The  TIME_WAIT  timer operates in two modes: recycle and nonrecycle mode. 

Those  TIME_WAIT  connections are processed in the recycle mode, for whom the 
last received timestamp information is available in a peer list. 

 In the non - recycle mode, the time - wait timer fi res at a fi xed interval of  TCP_
TWKILL_PERIOD  ticks, whereas in the recycle mode the timer fi res in multiples 
of 2  TCP_TW_RECYCLE_TICK   ticks.                                                                                                               
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  TCP  CORE PROCESSING     

     TCP is a full duplex stream protocol where data can fl ow in both directions. Each 
side has to apply fl ow control. When a TCP segment is received, it may contain data 
or may be plane ACK. If it contains data, it may be in - sequence data or out - of - order 
data. If it is in - sequence data, it is queued on the socket ’ s receive queue or is imme-
diately consumed by the application. In case we received new data, ACK may be 
generated immediately or delayed slightly so that combined ACK for more than 
one data segment can be generated together. 

 Before sending out an ACK, we need to check what information we have gotten 
from the peer. We need to process ACK generated by the peer. This includes the 
processing of (a) TCP options such as SACK and DSACK (b) advertised window, 
and (c) TCP fl ags such as ECE and CWR. The timestamp option is processed to 
calculate RTO and also to check against PAWS. The ACK sequence number will 
provide information about what data have reached the receiving TCP in - sequence. 
We update our retransmit queue based on this information and also update the 
congestion window. This information along with the advertised window will be used 
to make a decision on whether we can transmit new data. 

 SACK/DSACK and ACK sequence number will be used to sense congestion. 
If we sense congestion or early loss of data, the congestion control algorithm can 
be applied. 

 If the TCP urgent fl ag is set, we need to enter the urgent mode until we receive 
an urgent byte. In case we received out - of - order segments, an immediate ACK needs 
to be scheduled in order to let the sender TCP know about it at the earliest. If we 
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have received an ACK segment without any data, it may be a window probe or 
because the peer has an opened window. 

 Once the incoming ACK is processed, TCP needs to check if any data are 
pending to be transmitted. It needs to check if new data can be transmitted. If the 
congestion window and the window advertised allow us to transmit new data, we 
transmit data from a transmit queue. This will require calculation of the window to 
be advertised. If data are transmitted here, an ACK for any new data that has arrived 
will also be sent out along with data. 

 In this chapter we will discuss how incoming TCP segments are processed. It is 
this place where we receive and queue TCP data. We process TCP options here and 
sense the state of the peer as well as state of the network. We do receive socket 
buffer management here when our socket ’ s memory pool runs out of stock. We 
process ACK for the incoming segments. The decision on whether to update window 
advertised by the sender is made here. SACK processing and the cleaning of 
the retransmit queue are done here based on ACKed segments. On the basis of the 
received segment size, we grow the send window size here to be advertised to the 
peer. We will see how this is done. Congestion control algorithms are implemented 
here, and they are discussed separately in a different chapter. But we will see under 
what conditions decisions are made to divert our path to congestion state processing. 
We now try to send out any data that need to be sent out in the transmit queue 
along with the ACK for the received data. Once we have processed incoming 
segment, we check if the ACK needs to be sent out immediately or deferred.  

  11.1    TCP  INCOMING SEGMENT PROCESSING 

 In this section we will see how the incoming segment is processed. A single point 
entry to process TCP segments is  tcp_rcv_established() . Linux has two approaches 
to process incoming TCP segment: fast and slow path. In fast path we do minimal 
processing such as processing incoming data, sending ACK/data, and storing a time-
stamp received from the peer, whereas in the slow path we take care of out - of - order 
segments, PAWS, socket ’ s memory management, urgent data, and so on. Linux 
manages to differentiate between the two modes of processing by implementing a 
prediction fl ag. The prediction fl ag is the fourth word of the TCP header, which 
includes TCP header length, fl ags, and advertised window. 

  11.1.1   Prediction Flags 

 When we are processing a TCP segment in  tcp_rcv_established()  at line 3241 of cs 
 11.7 , we check if the fast path is enabled. The fast path usually is an indication of 
the following: 

  1.     Either the data transaction is taking place in only one direction (which means 
that we are the receiver and not transmitting any data) or in the case where 
we are sending out data also, the window advertised from the other end is 
constant. The latter means that we have not transmitted any data from our 
side for quite some time but are receiving data from the other end. The 
receive window advertised by the other end is constant.  

  2.     Other than PSH|ACK fl ags in the TCP header, no other fl ag is set (ACK is 
set for each TCP segment). The PSH fl ag is just an indication from the sender 
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to read data fast and has nothing to do with anything special. This means that 
if any other fl ag is set such as URG, FIN, SYN, ECN, RST, and CWR, we 
know that something important is there to be attended and we need to move 
into the SLOW path.  

  3.     The header length has changed. If the TCP header length remains unchanged, 
we have not added/reduced any TCP option and we can safely assume that 
there is nothing important to be attended, if the above two conditions are 
TRUE.    

 This fl ag is 32 bits long and contains the fourth word of the segment ’ s TCP header as 
shown in Fig.  11.1 , where HL is the header length in number of words. From the TCP 
header, we can directly get this value. Directly access the fourth word of the TCP 
header by using macro  tcp_fl ag_word . If we AND this value with  MASK TCP_HP_
BITS , we can get the prediction fl ag (cs  11.1  –  11.3 ).  TCP_RESERVED_BITS  in 
network byte order is 0x0000000F. We ignore the PSH fl ag in the header prediction 
because it does not require any attention. So,  MASK TCP_HP_BITS  in network 
byte order becomes  ∼ 0x0000080F, which is 0xFFFFF7F0 shown in Fig.  11.2 .    

  11.1.2   Building Prediction Flags 

 When we enter into the fast path, the prediction fl ag is built into  tp → pred_fl ags . We 
call  __tcp_fast_path_on()  to do this (cs  11.4 ). Let ’ s assume we are on X86 platform, 
we fi rst build prediction fl ag in host byte order and then convert it to network byte 
order and store it in  tp → pred_fl ags  (26 is because of  − 2 bits for dividing header 
length by 4 because the last 4 bits of the tcp header ’ s fourth word contains header 
length in number of words), shown in Fig.  11.3a , b .   

 In network byte order,  tp → pred_fl ags  will be fi nally as shown in Fig.  11.3b .  

    Figure 11.1.     Fourth word of TCP header is directly taken as a prediction fl ag in network byte 

order.  

    cs 11.1.     Prediction fl ags related macro and data structure.  

    cs 11.2.     Macro to build prediction fl ags.  
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  11.1.3   Condition to Enable the Fast Path 

 When the fast path is on,  tp → pred_fl ags  will be nonzero; otherwise it will be set to 
zero. We check certain conditions before moving into the fast path. These condi-
tions are checked in  tcp_fast_path_check()  under the following conditions (cs  11.5 , 
cs  11.6 ): 

   •      If there is anything in the out - of - order queue, line 947  
   •      If our receive window is not zero, line 948  

    cs 11.3.     TCP fl ags and macro to access header length from TCP header (all in network byte 

order).  

    cs 11.4.      __tcp_fast_path_on().   

    Figure 11.2.     TCP_HP_BITS in network byte order, 0xFFFFF7F0.  

    cs 11.5.      tcp_fast_path_check().   
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    Figure 11.3a.     Calculation for building prediction fl ags  tp → pred_fl ags .  

    Figure 11.3b.     Calculation for building prediction fl ags  tp → pred_fl ags (continued) .  

    cs 11.6.      tcp_fast_path_on().   
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   •      If we are not running out of memory, line 949  
   •      If we have not received any urgent pointer, 950       

  11.1.4   When to Enable the Slow Path 

 Whenever we want to be processed in a slow path, the slow path is enabled by 
resetting  tp → pred_ fl ags. This is done when the following events occur: 

   •      We receive an out - of - order data segment in  tcp_data_queue() , line 2651 (cs 
 11.44 ). We do it here because subsequent segments need to be processed in 
the slow path in  tcp_data_queue() .  

   •      We run short of memory and start dropping packets in our call to  tcp_prune_
queue() , line 2920 (cs  9.22 ). We do this because we have memory crunch and 
sub sequent data packets will be dropped. If we don ’ t enable the slow path 
here, the data packet will enter the fast path fi rst in  tcp_rcv_established() . 
When it fi nds that the socket ’ s memory pool is empty, the slow path will be 
entered anyway.  

   •      We get urgent pointer in  tcp_urg_check() , line 3117. Urgent data are 
handled in the slow path in  tcp_rcv_established()  by calling  tcp_urg()  at line 
3434 (see Section  11.7.1 ).  

   •      Our send window drops down to zero in  tcp_select_window() , line 172 (cs 
 11.18 ). In this case, we may get an out - of - window segment, which is handled 
in the slow path in  tcp_data_queue() .  

   •      The path is enabled for the new connection.     

  11.1.5   When to Enable the Fast Path 

 By enabling the fast path, we mean that we are setting tp → pred_fl ags from TCP 
header of the incoming segment under the conditions mentioned in Section  11.1.3  
by calling  tcp_fast_path_check() . The routine is called from three places: 

   •      When we have read past an urgent byte in  tcp_recvmsg() , line 1713. We 
have gotten an urgent byte and we remain in the slow path mode until we 
receive the urgent byte because it is handled in the slow path in 
 tcp_rcv_established() .  

   •      When the gap is fi lled in  tcp_data_queue() . This may create some space in the 
receive buffer as the gap in received data is fi lled and we could have read data 
from the socket buffer. The slow path set due to receive memory crunch will 
be treated here.  

   •      When the sender has updated its window in  tcp_ack_update_window()  (see 
Section  11.4.4 ). We do this because the window advertised in the incoming 
segment has changed because of which we have entered the slow path (assum-
ing that nothing in the prediction fl ag has changed). If we don ’ t set fresh pre-
diction fl ags with the new advertised window, the next segment having the 
same send window will unnecessarily enter the slow path. By syncing predic-
tion fl ags on fi rst detection of the send window, we avoid subsequent packets 
being handled in the slow path given that nothing in the prediction changes 
after that.     
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  11.1.6   Points to Remember about Prediction Flags   

   1.     We start with the slow path fi rst and once we receive the fi rst segment, while 
processing the ACK received in  tcp_ack() , we enter into the fast path by a 
call to  tcp_fast_path_check()  in case the advertised window has changed 
from the previous value (cs  11.26 ).  

   2.     Once we enter the fast path, the advertised window and the TCP header 
length are recorded in  tp → pred_fl ags  as explained in Section  11.1.2 . We 
ignore the PSH fl ag and also the ACK fl ag. The PSH fl ag does not indicate 
any noticeable change at the other end. All the TCP segments will have an 
ACK fl ag set except for the very fi rst SYN segment sent out. In case any of 
the fl ags other than PSH and ACK is set, we will go process the segment 
through the slow path. May not enter slow path. If we get urgent fl ag set, 
we enable slow path (check  tcp_urg_check() ).  

   3.     In the case where the receive window has changed, once again we take the 
slow path. This may or may not enable the slow path for the connection. 
Only the send window change alone does not qualify to enable the slow 
path. Since the send window has changed, we may have gotten a zero 
window or the other end might have opened the window; all these are 
special cases and are handled in the slow path.  

   4.     In the case where the header length changes, it may mean that some option 
has changed (either withdrawn or introduced). It may also mean that we 
have gotten SACK blocks, in case SACK is supported.  

   5.     Even if we have prediction fl ag intact, we can enter into the slow processing 
path in case out - of - order is received. In this case, we enable the slow path 
also in  tcp_data_queue()  (cs  11.44 ).  

   6.     In case we receive the prediction fl ag intact and also no hole is seen in the 
data received, we can still enter into slow path processing in case we don ’ t 
receive timestamp option or we sense PAWS.  

  7.     We enable the slow path on other occasions where we fall short of memory 
for socket receive buffer and fail to make room for the new received TCP 
segment even after pruning the receive queues in  tcp_prune_queue() . We 
allocate memory in advance for the receive socket in the slow path by 
calling  tcp_data_queue() .  

   8.     One more occasion where we enable slow path is when we are advertising 
0 window in  tcp_select_window()  (cs  11.18 ). Out - of - window data are being 
processed in the slow path in  tcp_data_queue() .  

   9.     The slow path is enabled because of reception of an urgent pointer and also 
because of reception of out - of - order segments. We need to disable the slow 
path once we have read urgent byte and also when we have fi lled the gap 
in the received data. We try to undo the slow path once we have read past 
an urgent byte in  tcp_recvmsg()  at line 1713. We also try to disable the slow 
path once we receive a fi lled gap in the received data in  tcp_data_queue() , 
line 2598 (cs  11.44 ).  

  10.     The slow path is enabled when data are fl owing in only one direction; that 
is, we are a receiver and not sending any data. In this case, since the window 
advertised will always be constant and the rest of the fl ag remains unchanged, 
we will be in the slow path.      
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  11.2   FAST PATH PROCESSING (see cs  11.7  and cs  11.8  
unless mentioned) 

 We discuss fast path processing of a received segment in  tcp_rcv_established() . All 
the bits in the prediction fl ags should match TCP_HP_BITS bits in the TCP header 
of the received segment to enter fast path processing, line 3241 (cs  11.7 ). Once we 
have entered the slow path mode, prediction fl ags (tp → pred_fl ags) are set to zero. 
So in that case, none of the TCP_HP_BITS will match from the TCP header. 
Another necessary condition for entering the fast path is that the segment should 
be received in sequence, line 3242. If both of the above conditions are TRUE, we 
enter the fast path to process the segment. We check if the timestamp option is 
enabled in the TCP header at line 3251. If so, we access the end of the TCP header 
that should be the start of TCP timestamp option, 3252. If the code for the TCP 
timestamp option is incorrect, we will be processed in the slow path at line 3257. 
Otherwise we store the value of the received timestamp in  tp → rcv_tsval  and the 
echoed timestamp in  tp → rcv_tsecr  at lines 3261 – 3263. If the new timestamp received 
is less than the timestamp recorded earlier in tp → ts_recent, we need to process this 
situation in the slow path (line 3267) looking for the possibility of PAWS.   

 Next we check for a corrupted TCP header or TCP segment without any data. 
If the length of the TCP segment is just equal to the header length (line 3278), we 
can record received timestamp by calling  tcp_store_ts_recent()  only if no ACK is 
pending at line 3286. We will echo the timestamp from the very fi rst segment 
received, in case more than one segment is cumulatively acknowledged as a result 
of delayed ACK. This done so that the peer should calculate RTO taking delayed 
ACK into account (RFC 1323). We process incoming ACK by calling  tcp_ack()  at 
line 3290 and try to send any pending data in the transmit queue by calling  tcp_
data_snd_check()  at line 3292. Otherwise if the segment length is smaller than the 
minimum header length, there is an error. 

 In case we have received data, we fi rst try to consume data if the receiver is 
installed by calling  tcp_copy_to_iovec()  at line 3307 (discussed in much detail in 
Section  8.2 ). In this case, we try to record timestamp received only if no ACK is 
pending at line 3316. Record the next sequence number to be received in  tp → rcv_nxt  
from the end sequence of the received segment at line 3319. If we are not able to 
consume data, we try to queue it in the receive queue at line 3344 only if we have 
enough memory available in the socket ’ s memory pool. Otherwise we try to get 
some memory into the socket ’ s memory pool by entering the slow path at line 3338. 
Here also we record timestamp received, if no ACK is pending at line 3335. 

 We have consumed or queued up received data, and now we need to schedule 
ACK and also adjust the delayed ACK interval based on how fast we receive data. 
We also need to do a calculation for the receive window depending on the segment 
size received. All this is done by calling  tcp_event_data_recv()  at line 3349 (cs  11.8 ). 

 Next we check if new data are acknowledged at line 3351. If so, we process the 
incoming ACK by calling  tcp_ack()  at line 3353 with FLAG_DATA set.  tcp_ack()  
will remove acknowledged segments from the retransmit queue generating space in 
the transmit queue. So, we call  tcp_data_snd_check()  to check if the socket is under 
memory pressure. If the socket is waiting for memory to be available, it wakes up 
the socket and fi nally it tries to send out any data in the transmit queue. 

 If we are able to transmit data in  tcp_data_snd_check() , any pending ACK for 
the received data would have already been sent out. But nothing is guaranteed at 



    cs 11.7.      tcp_rcv_established().   
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this point; that is, we are not sure that we are able to transmit new data. So, we check 
if ACK is still scheduled for the received data by calling tcp_ack_scheduled() at line 
3355. If no ACK is scheduled, we are done. If we have copied received data to the 
user buffer, just free the buffer at line 3371. Otherwise, we have queued data in the 
receive queue and we need to wake up socket sleeping to receive more 
data by calling  sk → data_ready  (=  sock_def_readable() ) at line 3373. If ACK is 
scheduled, then we need to make a decision on whether we need to send an ACK 
immediately or defer it, depending on many factors (lines 3359 – 3367). This is dis-
cussed in great detail in Section  10.4  (TCP timer chapter).  

  11.3   SLOW PATH PROCESSING (see cs  11.10  unless mentioned) 

 Slow path processing starts from line 3379. First we do some sanity check. If the 
length of the segment is less than the header length as specifi ed in the TCP header 
fi eld or if the checksum is incorrect as indicated by  tcp_checksum_complete_user()  
at line 3379, we discard the segment. Next we do a PAWS check against wrapped 
timestamps. For this we fi rst parse TCP options by calling  tcp_fast_parse_options()  
at line 3385. If the timestamp option is present, we will proceed with the PAWS 
check; otherwise we proceed with slow path processing. When a timestamp option 
is present, we call  tcp_paws_discard()  at line 3386 to check if the packet can be dis-

    cs 11.8.      tcp_rcv_established().   



carded because PAWS has failed (see Section  11.3.13  for details). In the case where 
it is an RST segment, we will process the segment even if PAWS has failed but won ’ t 
process the segment further otherwise. Next we check if the segment maintains 
sequence number integrity by calling  tcp_sequence() .   

  11.3.1    tcp_sequence()  

 This checks if we have gotten a data segment that is completely acknowledged and 
we have all the bits from the segment already with us, line 2188.  tp → rcv_wup  is 
synced with  tp → rcv_nxt  when we are sending an ACK in  tcp_select_window() . If the 
end sequence of the segment is below  tp → rcv_wup , we should not accept this 
segment. We have already sent an ACK for all the data up to  tp → rcv_wup . The 
second check we do here is that the start sequence of the segment should not be 
beyond the sequence number corresponding to the end of the receive window, 2189, 
which essentially means that the segment should not be out of window with respect 
to the acknowledged data. In this case we send a duplicate ACK (with DSACK) by 
calling  tcp_send_dupack()  at line 3411 (cs  11.10 ), if it is not RST segment and discard 
the packet. The sequence fi eld for the RST segment should not be out - of - window, 
nor should it correspond to an already acknowledged sequence number (refer to 
RFC 793).   

 Now we are sure that the sequence fi eld is valid for the segment and PAWS is 
also acceptable. If the segment has an RST bit on, we reset our side of connection 
without any formal TCP closing process by calling  tcp_reset()  at line 3416 (cs  11.10 ) 
and stop processing the segment any further.  tcp_reset()  wakes up any process 
waiting for socket ’ s sleep queue and closes the TCP connection. 

 Now we check if the timestamp from the segment can be recorded as the most 
recent timestamp from the peer by calling  tcp_replace_ts_recent()  at line 3420 (cs 
 11.10 ).  

  11.3.2    tcp_replace_ts_recent()  

 This should make sure that we are not keeping a timestamp from out - of - order seg-
ments. Start of the sequence space for the segment should be maximum equal to 
the byte already acknowledged ( tp → rcv_wup ), line 2110 (cs  11.11 ). If the timestamp 
from the segment is more than the current recorded timestamp ( tp → ts_recent ), then 
we directly replace it with the new timestamp by calling  tcp_store_ts_recent()  at line 
2120. Otherwise if the timestamp is less than the recorded timestamp, we need to 
check if the time elapsed since the timestamp was recorded is more than 24 days. 
If so, we replace the recorded timestamp with the one from the segment because 
the recorded timestamp is too old.   

    cs 11.9.      tcp_sequence().   
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    cs 11.10.      tcp_rcv_established().   

 Continuing with  tcp_rcv_established()  at line 3422, if it is not an RST segment 
and has a SYN bit set, we need to handle it only if the sequence number is not less 
than the next expected sequence number, line 3422. This might happen because of 
retransmission of the SYN segment from the side that got a connection request, 
where both the original and retransmission reached the other end consecutively. If 



the sequence number is less than the next expected sequence, we need to reset the 
connection because the peer may be buggy or we can sense some kind of attack. 
The SYN segment, even if retransmitted, will never have two different sequence 
numbers and no SYN bit will be set in more than one segment other than retrans-
mission. The situation arises where the originator of the connection receives SYN/
ACK (entered established state) and transmitted a fi nal ACK which reached the 
other end slightly late. The other end retransmitted the segment because it didn ’ t 
receive the fi nal ACK. 

 Next we need to process incoming ACK by calling  tcp_ack() , line 3431. The 
routine does some sanity checks on the ACK sequence, updates the send window, 
clears ACKed data from the retransmit queue, processes SACK information, 
manages the congestion window, and clears/resets the zero - window probe timer (see 
Section  11.4  for more details). 

 Once we have processed incoming ACK, we check if an urgent bit was set in 
the segment and need to process it if it exists; call  tcp_urg()  at line 3434. Here we 
check if we have gotten the urgent pointer. In the case where we have gotten the 
urgent pointer, we remain in urgent mode until we read data past the urgent pointer. 
For details see Section  11.7 . 

 Now, process data in the segment by calling  tcp_data_queue() . We may have 
entered the slow path because the socket ’ s pool has exhausted its quota of memory, 
and we have gotten an out - of - order segment. Both cases are handled in  tcp_data_
queue() . If some data segment arrives that fi lls the hole, we take care of this situation 
here. Duplicate segments, out - of - window segments, and retransmissions are also 
handled here. We also set D - SACK in case the SACK option is enabled and we get 
duplicate segments. For more details see Section  11.8 . 

 Check if any data are pending to be transmitted by calling  tcp_data_snd_check()  
at line 3439. Since we might have ACKed some data increasing the congestion 
window, try to send data pending to be transmitted in the transmit queue. ACK of 
data in the retransmit queue may have generated some space in the socket ’ s send 
buffer, and we try to wake up the process waiting for memory to be available in the 
write queue. See Section  11.3.11  for more details. 

 Finally, check if ACK is scheduled by calling  tcp_ack_snd_check()  at line 3440. 
If required, we need to send out any ACK for the received data; otherwise we start 
a delay ACK timer to defer sending ACK. We do this after sending out data at line 
3439. If data are transmitted in  tcp_data_snd_check() , we have already piggybacked 
pending ACK along with the data. In that case, there won ’ t be any ACK 
scheduled.  

    cs 11.11.      tcp_replace_ts_recent().   
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  11.3.3    tcp_event_data_recv()  

 The routine is called whenever we receive in - sequence data to take certain actions. 
These actions are as follows: 

   •      Schedule ACK.  
   •      Measure receive mss up until now. That is the size of the TCP payload of the 

received packet.  
   •      Calculate a new delay ACK period based on the rate at which a data segment 

arrives.  
   •      Grow a receive window based on the size of the received TCP segment.      

  tcp_schedule_ack()  is called to schedule ACK for the received data sometime in the 
future or immediately at line 364. We call  tcp_measure_rcv_mss()  to cache in 
the maximum length of the TCP segment so far received. This will be used to cal-
culate receive window size later. Next we calculate the delay - ACK timeout value 

    cs 11.12.      tcp_event_data_recv().   



( tp → ack.ato ). In case we have not yet initialized it (very fi rst segment has arrived), 
we initialize it to TCP_ATO_MIN and also initialize quick ack counter ( tp → ack.
quick ) by calling  tcp_incr_quickack() . This makes sure that we send out ACKs faster 
in the beginning because rate of transmission will depend on the rate of data being 
ACKed in the slow - start phase. If this is not the fi rst data packet we have received, 
we need to calculate delay - ACK timeout based on the frequency at which data 
segments arrive. If data packets have arrived after more than RTO value, it may 
be because we have an opened window. In this case, we need to ACK quickly 
because the sender would like to push data quickly. 

 If our segment size is above 128 bytes, we need to check the possibility of 
incrementing the receive window by calling  tcp_grow_window()  at line 399. Linux 
adopts a strategy of forcing a slow start from the receiver ’ s end. Since the sender 
can send a minimum of the congestion window and the advertised window, the 
receiver takes advantage by slowly incrementing the receive window. The idea is 
not only to reduce congestion in the network but also to take care of the receive 
buffer management. Consider a case where the sender is sending data in small 
chunks at high speed, and the application is not able to read data at such highspeed. 
In this case, data segments will be queued up on the receive queue causing receive 
queue to get full. If segments are so small that buffer overhead is eating up most 
of the space in the receive queue, a very small proportion of receive buffer space 
is used by data. In this case we need to prune the queue to generate some space in 
the receive queue, which is an expensive process. So in order to avoid pruning the 
queue too often, we manipulate the receive window to be advertised to the sender 
based on the size of the received data segment. We do this in  tcp_grow_window() . 
If the sender is sending small segments, we don ’ t increment the receive window so 
that the sender cannot transmit at a very high rate and the application can get a 
chance to read data from the queue.  

  11.3.4    tcp_incr_quickack()  

 Quickack counter is required to make a decision on whether we can send ACK 
immediately or defer it so that we can cumulatively send out ACK for more than 
one data segment received. This counter is decremented whenever a segment is 
transmitted (other than SYN segment) in  tcp_transmit_skb() . We calculate a quick 
ACK counter based on the receive window and segment size received at line 159 
(cs  11.13 ). We do this because on an average (receive window/segment size), a 
number of segments can be sent out by the sender at any given point of time. Quick 

    cs 11.13.      tcp_incr_quickack().   
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ACK count is just half of the number of such segments, meaning that one ACK 
can be sent out per two data segments received. The rest of the calculations show 
that quick ACK can assume a minimum 2 value and a maximum  TCP_MAX_
QUICKACKS  value.    

  11.3.5    tcp_grow_window()  (see cs  11.14  unless mentioned) 

 When we receive a data segment, we need to calculate a receive window that needs 
to be advertised to the sender, depending on the segment size received. The idea 
is to avoid fi lling the receive buffer with too many small segments when an applica-
tion is reading very slowly and packets are transmitted at a very high rate, thus 
avoiding pruning of queues to make space in the receive queue.  tp → window_clamp  
is the maximum window that can be advertised and  tp → rcv_ssthresh  is the slow - start 
threshold for the receiver side (cs  11.14 ).  tp → rcv_ssthresh  functions very much 
similar to send congestion window. On reception of data segment from the sender, 
this value is recalculated based on the size of the segment, and later on this value 
is used as upper limit on the receive window to be advertised. The idea is not to 
use a complete receive buffer space to calculate the receive buffer. We reserve some 
space as an application buffer, and the rest is used to queue incoming data segments. 
An application buffer corresponds to the space that should compensate for the 
delay in time it takes for an application to read data from the socket buffer. If the 
application is reading more slowly than the rate at which data are arriving, data will 
be queued in the receive buffer. In order to avoid queue getting full, we advertise 
less receive window so that the sender can slow down the rate of data transmission 
and by that time the application gets a chance to read data from the receive buffer. 
We are advertising a receive window smaller than the space available in the receive 
buffer because of the application buffer space.  tcp_win_from_space()  returns us the 
value taking into account application space (cs  11.15 ). If  sysctl_tcp_adv_win_scale  
is set to 2, one - fourth space will be reserved for user application for the reason 
explained above.   

    cs 11.14.      tcp_grow_window().   



 We try to increment  tp → rcv_ssthresh  here whose effect will be seen while calculat-
ing a receive window in  tcp_select_window() . The following conditions should be 
satisfi ed to qualify for increase in an  tp → rcv_ssthresh : 

  1.      tp → rcv_ssthresh  should not have exceeded a maximum limit out on the 
receive window ( tp → window_clamp ), line 244.  

  2.      tp → rcv_ssthresh  has not yet exceeded the space available in the receive 
buffer as returned by the  tcp_space() , line 245. tcp_space () returns total 
space available in socket ’ s receive buffer (cs -  11.16 ).  

  3.     There should not be memory pressure, line 246. TCP enters into memory 
pressure when total memory allocated for TCP socket system exceeds a limit. 
In this case there is a chance that we may start pruning receive queues or 
start dropping packets, if the rate of data consumption by the application is 
lower than the rate of data being queued. So, we avoid increasing  tp → rcv_
ssthresh  in case of memory pressure.      

 If all the above conditions are TRUE, we are an eligible candidate to increment  tp →
 rcv_ssthresh . Next we check if the buffer is bloated at line 252. By bloated buffer we 
mean that the actual proportion of TCP data in the total size of the buffer is much 
lower, which effectively means that we have received a very small segment. If the 
buffer is bloated, most of the space will be taken away by the buffer head and we 
may need to prune the queues. If not bloated, we increment  tp → rcv_ssthresh  by 
twice the advertised mss. Otherwise we check for the possibility of incrementing tp →
 rcv_ssthresh, depending on the degree of bloating of the segment with respect to the 
space available in the receive buffer by calling  __tcp_grow_window()  at line 255.  

  11.3.6    __tcp_grow_window()  (see cs  11.17  unless mentioned) 

 We check the degree of bloat of segment with respect to the space available in the 
receive buffer. First we take half of the available space and true size of the buffer 
after taking an application buffer into account from both the buffers. We continue 
to loop until one of the conditions becomes true: 

    cs 11.15.      tcp_win_from_space().   

    cs 11.16.      tcp_space().   
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   •      tp → rcv_ssthresh is less than the total receive buffer space available, line 
230.  

   •      Total space occupied by buffer is at max equal to the segment length, line 
231.      

 In each iteration we reduce total space available in the receive buffer and buffer 
size to half of the value. If we come out of the loop because the fi rst condition 
becomes FALSE, we should not increment the receive window, the reason being 
that the buffer overhead is too huge to be accommodated in the available space. In 
a simpler way we can say that the degree of bloat is so much (very small segment) 
that even if we continue decrementing total space available and total buffer size by 
the same proportion, buffer overhead is too high even when total apace available 
in the receive buffer is less than the window to be advertised. 

 If the loop is exited because of later condition is TRUE, it means that buffer 
overhead is bearable because the segment length is good enough to be accommo-
dated in the receive buffer. In this case, we may increment receive buffer by twice 
the maximum segment length seen so far.  

  11.3.7   How Do We Calculate Window to Be Advertised 

 We calculate receive window in  tcp_select_window() . As discussed in Section  11.3.9 , 
we know that there are two factors that decide on the receive window. They are 
 tp → window_clamp  and  tp → rcv_ssthresh . The role of these two parameters is already 
discussed in Section  11.3.9 , so it won ’ t be repeated here. On reception of the data 
segment, we calculate  tp → rcv_ssthresh  and we use the parameter here to calculate 
the receive window. 

 First we get the current window from  tcp_receive_window()  at line 150 (cs 
 11.18 ). We calculate the new window based on the space available in the receive 
buffer, the upper limit on the receive window ( tp → window_clamp ), and  tp → rcv_
ssthresh  by calling  __tcp_select_window() . If the new window calculated is less than 
the current window, the new window is raised to the current window. We do this 
because the advertised window should not be allowed to shrink. The new window 

    cs 11.17.      __grow_tcp_window().   



as returned by  __tcp_select_window()  is 0, in case free space has fallen below 1   mss. 
But we can ’ t advertise the zero window abruptly. In such cases, the current window 
as returned by  tcp_receive_window()  will get us the exact window to be advertised. 
Similarly, when a small window is opened (less than 1   mss), we don ’ t advertise it 
unless a minimum 1   mss of window is opened.  __tcp_select_window()  takes care of 
this scenario (cs  11.18 ).    

  11.3.8    tcp_receive_window()  

 This is calculated as the last advertised window minus unacknowledged data length. 
 tp → rcv_wup  is synced with next byte to be received ( tp → rcv_nxt ) only when we 
are sending ACK in  tcp_select_window() . If there is no unacknowledged bytes, the 
routine returns the exact receive window advertised last (cs  11.19 ).    

  11.3.9    __tcp_select_window()  

 We are called to calculate the new window to be advertised. The new window is 
calculated on the basis of 

    cs 11.18.      tcp_select_window().   

    cs 11.19.      tcp_receive_window().   
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  1.     The mss received so far ( tp → ack.rcv_mss )  
  2.     The total space in the socket ’ s receive buffer obtained from 

 tcp_full_space()   
  3.     The space available in the receive buffer from  tcp_space()   
  4.     tp → rcv_ssthresh    

  tp → window_clamp  is the upper limit on the total space in the receive buffer. 
We get the full space available in the socket ’ s receive buffer at line 655 (cs  11.20 ). 
If the highest mss observed so far is higher than the maximum space in the socket ’ s 
receive buffer, we need to slash mss to the maximum buffer size at line 659. We have 
to do this because our receive buffer should at least have space to receive a full - sized 
segment. Next we check if our receive buffer is half full, line 661. If so, we disable 
quick ACK mode at line 662. The reason is that we don ’ t want to acknowledge data 
very fast to restrict the rate of data transmission by the sender so that the applica-
tion gets enough time to eat up data in the receive buffer and leave enough space 
for the new data. If there is a memory pressure, we once again want to keep the 
advertised window tight. So, we restrict  tp → rcv_ssthresh  to be maximum four times 
advertised MSS at line 665. By doing this we are not shrinking the window but 
simply restricting the receive window to not to increase beyond its current value. If 
the new window calculated is less than the current window,  tcp_select_window()  
takes the last advertised window as the current receive window. If the free space 

    cs 11.20.      __tcp_select_window().   



available is less than the highest mss observed so far, we return 0. Next we check if 
the free space is more than  tp → rcv_ssthresh  at line 671. If so, we adjust free space. 
This is the place where we are restricting the receive window to have a maximum 
value of  tp → rcv_ssthresh . If the current window offered is within 1   mss of the free 
space (current window is greater than free space minus mss and also less than free 
space), we don ’ t update the receive window at line 683. Otherwise the new window 
is taken as free space calculated above rounded to mss, line 684.    

  11.3.10    tcp_space()  

 Free space in the receive buffer is available from  tcp_space()  (cs  11.21 ).  sk → rmem_
alloc  is the amount of memory allocated for the socket ’ s receive buffer, and  sk →
 rcvbuf  is the upper limit on the socket ’ s receive buffer size. We take the application 
buffer into account as discussed in Section  11.3.5 .    

  11.3.11    tcp_data_snd_check()  

 We are called to check if there are any data to be transmitted from the transmit 
queue while processing the incoming segment. We are called before sending an 
ACK so that we can piggyback ACK along with the data segment. We fi rst check 
is there are any data to be transmitted by accessing the head of the transmit queue 
( tp → send_head ) at line 2995. If there is nothing in the queue, we just check if some 
space is generated in the write queue by calling  tcp_check_space()  at line 2999. We 
do this check here because we have just processed incoming ACK; and if new data 
are acknowledged, space is generated in the write queue. If space is generated in 
the write queue, we may need to wake up the socket sleeping on memory require-
ments in the write path. tcp_check_space() takes care of doing all this. 

 If there are any data to be transmitted, we try to transmit it by calling  __tcp_
data_snd_check()  at line 2998 (cs  11.22 ).    

    cs 11.21.      tcp_space().   

    cs 11.22.      tcp_data_snd_check().   
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  11.3.12    __tcp_data_snd_check()  

 We are called to check the possibility of transmitting any segment in the transmit 
queue. We make the following checks before the segment may be transmitted: 

  1.     The segment should be within the window, line 2987 (cs  11.23 ).  
  2.     Packets that are transmitted but have not yet left the network should be less 

than the congestion window, line 2988.  
  3.     Nagle ’ s algorithm is not violated.      

 If the above conditions are TRUE,  tcp_write_xmit()  is called to transmit any pending 
segment ’ s in the write queue.  tcp_write_xmit()  once again makes all the necessary 
checks for all the segments in the transmit queue before transmitting them. If we 
fail to transmit segments because of any reason, we check if we need to start a zero -
 window probe timer by calling  tcp_check_probe_timer() .  

  11.3.13    tcp_paws_discard()  (see cs  11.24  unless mentioned) 

 This routine is called to carry out the PAWS test against the timestamp value from 
the TCP segment. If the timestamp value from the TCP segment ( tp → rcv_tsval ) is 
less than the timestamp stored last ( tp → ts_recent ). We should carry out PAWS test. 
(Check Section  11.2  for details on timestamps.) This code follows the PAWS speci-
fi cation as mentioned in RFC 1323. The following conditions should be satisfi ed for 
the segment not to be discarded: 

  1.     The difference between the timestamp value obtained in the current segment 
and last seen timestamp on the incoming TCP segment should be equal to 
 TCP_PAWS_WINDOW  (= 1), which means that if the segment that was 
transmitted 1 clock tick before the segment that reached here earlier TCP 
seq should be acceptable. It may be because of reordering of the segments 
that the latter reached earlier.  

  2.     If the fi rst condition passes and the timestamp difference is more than 1, we 
need to check if the 24 days have elapsed since last time timestamp was 
stored, line 2169.  tp → ts_recent_stamp  is updated whenever we update  tp →
 ts_recent  in  tcp_store_ts_recent() . If last timestamp recorded is 24 days old, 
we discard further PAWS test and process the segment. For machine with 

    cs 11.23.      __tcp_data_snd_check().   



1 - ms frequency, it will take approximately 24 days for timestamp value to 
wrap up.  

  3.     If 24 days have not elasped, we need to still look for a more strict condition 
before which a segment can be considered to have failed PAWS. We check 
if this segment is not going to make any changes to the sequence or update 
window. For this we call  tcp_disordered_ack() . For a segment to pass the 
PAWS check, this routine should return TRUE, line 2170.      

 The routine  tcp_disordered_ack()  checks if the ACK is harmless as far as PAWS 
is concerned (cs  11.25 ). The PAWS check passes in the following situations: 

  1.     The segment doesn ’ t carry any data and it is pure ACK in correct order, line 
2154. The start sequence should be the same as the end sequence number 
and should also be the same as the next sequence number expected.  

  2.     The ACK should not acknowledge any new data and at the same time should 
not acknowledge any old data. It should be a duplicate ACK, line 2157. 
Duplicate ACKs carry a valid timestamp.  

  3.     ACK does not update the window, line 2160.  
  4.     The timestamp received is within the replay window, line 2163.      

 In all we can say that this segment is a duplicate ACK that may carry D - SACK 
information.   

    cs 11.24.      tcp_paws_discard().   

    cs 11.25.      tcp_disordered_ack().   
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  11.4   PROCESSING OF INCOMING  ACK  (see cs  11.26  
unless mentioned) 

 We process an incoming ACK in  tcp_ack()  while processing an incoming segment 
in  tcp_rcv_established() . We will be updating retransmit queue by cleaning ACKed 
data. We update TAGS on the socket buffers based on the SACK information we 
get with the ACK. Based on the SACK information, we calculate lost/left - out seg-
ments. We update the send window conditionally in this routine. Congestion is 
sensed based on the SACK information or duplicate ACK, and accordingly we 
update the congestion window and also process the congestion state. In case we 
have already entered the congestion state, all the required processing is done in this 
routine. Let ’ s see how all this is implemented.   

 We reject any ACK processing if we have gotten ACK for something that has 
not been transmitted yet ( tp → snd_nxt ) at line 1908 (cs  11.26 ). Similarly, if we have 
gotten an ACK for data that are already acknowledged ( tp → snd_una ) at line 1911, 
we won ’ t process it but we may have gotten D - SACK/SACK information that we 
would like to be processed. So, we process SACK/D - SACK blocks in case they exist 
at line 1981 by calling  tcp_sacktag_write_queue() . 

 Next we will try to update the send window advertised with the ACK segment. 
If we are processing the segment in the FAST mode and new data are acknowledged 
(line 1914), we immediately update the  tp → snd_wl1  to the sequence number of the 
segment by calling  tcp_update_wl()  at line 1919.  tp → snd_w1  is updated whenever 
we update the send window. We don ’ t update the send window ( tp → snd_wnd ) here 
because it has not changed; otherwise we would have been processing the segment 
in the SLOW path (check prediction fl ags in Section  11.2 ). Even though we have 
not updated the send window, still  tp → snd_wl1  could have changed because the left 
edge of the window might have advanced toward the right. It is just that send 
window has remained the same.  tp → snd_una  is updated to the acknowledged 
sequence at line 1920. 

 If either we are processing in the FAST mode or we have not acknowledged 
any new data, some additional checks need to be done before updating the send 
window. In this case, we check if the ACK segment being processed carries data at 
line 1925. If so, we update fl ag  FLAG_DATA  that will be used later to detect a 
dubious ACK (duplicate ACK) because we don ’ t know if the window is going to 
be updated or new data are ACKed in this path. Next we would like to check if 
the send window has changed and whether we need to update it by calling 
 tcp_ack_update_window() . 

 Next, we check if there are any SACK blocks; if so, they need to be processed 
by calling  tcp_sacktag_write_queue()  at line 1933. The routine does all the necessary 
calculations to process SACK blocks. We also catch D - SACK in this routine. From 
the SACK block information we can have a fair estimation of packets that have left 
the network. Not only this, we can sense the state of the network congestion and 
guess reordering length using FACK. 

 Next we set the ECE fl ag at line 1936, in case the ECE bit is set in the TCP 
header. This is an indication from the peer that it has sense congestion at one of the 
intermediate routers. So we should reduce the transmission rate before we congest 
the network. 

 If we have nothing unacknowledged (line 1944), we have a pure ACK for the 
zero - window probe sent by us or which might be generated by the peer when it 
opened the window. In this case, we handle this situation by calling  tcp_ack_probe()  



    cs 11.26.      tcp_ack().   
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at line 1975. The routine checks if the enough window is opened to transmit a 
segment; if so, we clear off the zero - window probe timer. Otherwise we reset the 
zero - window probe timer with timeout exponentially backed off. When we return 
to  tcp_rcv_established() , a subsequent call to  tcp_data_snd_check()  will start trans-
mitting the segments in case enough window is opened and will also wake up the 
socket if it is blocking. 

 Until this point, we have processed SACK, recorded the send window, and 
updated the last acknowledged byte. We now need to clean up the retransmit queue 
by removing acknowledged segments from the queue. We do this by calling  tcp_
clean_rtx_queue()  at line 1950. This routine processes tags on the segments being 
acknowledged and so adjusts counters that keep account of retransmitted segments, 
sacked - out segments, lost segments, and fi nally unacknowledged segments. Since the 
routine modifi es an unacknowledged segment counter, we need to record a number 
of segments on the fl ight prior to arrival of this segment by calling  tcp_packets_in_
fl ight()  at line 1947. This is required to decide if we have acknowledged new data 
to detect partial ACK in case we are operating in the congestion state. Prior packets 
in fl ight is also required to calculate the next congestion window. 

 Next we check for any congestion indications at line 1952. We check if the ACK 
is dubious by calling  tcp_ack_is_dubious() . This routine checks if we are about to 
enter the congestion state or are already in the congestion state. The next course of 
action will depend on the congestion state of the connection. In case ACK is not 
dubious, things are very straightforward and we need not take any special care and 
should look at the possibility of incrementing the send congestion window if we 
have ACKed new data. So, we have two checks at line 1959: 

  1.     Is new data acknowledged?  
  2.     Have we been utilizing the network at its full capacity?    

 If the number of segments transmitted is equal to the congestion window, the network 
is being utilized at its full capacity. We check this by comparing packets in fl ight prior 
(calculated at line 1947) to the segment being processed against the current send 
congestion window ( tp → snd_cwnd ). In case we get a cumulative ACK for more than 
one data segment transmitted, the rate of increment of the send congestion window 
will not be as fast as the increment in case each data segment is ACKed separately. 
Cumulative ACK for multiple segments indicates that more data segments have left 
the network. For the same congestion window we can send out more data, and the 
case looks similar to the network bandwidth being underutilized because ACKs are 
not generated at the same rate at which data are being transmitted. 

 If both the conditions are TRUE, we call  tcp_cong_avoid()  to check if we can 
increment the congestion window further, depending on whether we are doing  slow -
 start  or  congestion avoidance . 

 In case we are dubious (see Section  11.4.2 ), we need to make one additional 
check along with the two tests performed for the nondubious case before we can 
try increasing the congestion window. We call  tcp_may_raise_cwnd()  to check the 
following conditions: (cs  11.27 ): 

  1.     We may not have the ECE fl ag set in the TCP header of the ACKing segment. 
If it is already set, our congestion window should be below the slow - start 
threshold ( tp → snd_ssthresh ) at line 1845.  



  2.     We should not be in either the recovery ( TCP_CA_Recovery ) or the conges-
tion window reduction state ( TCP_CA_CWR ).      

 In case the ECE fl ag is set, we are advised to slow down transmission rate. If 
we are in CWR state, we are once again advised not to increase the rate of data 
transmission because there may local congestion at the device driver level or we 
might have gotten the ECE fl ag set in the TCP header. If we are doing fast recovery 
(TCP_CA_Recovery), priority should be given to lost segments fi rst and then we 
should try to transmit new segments. The current congestion window is assumed to 
have saturated the network in the fast recovery state, so we try to be conservative 
about congestion window. 

 If the ACK is dubious, we also need to do congestion state congestion process-
ing by calling  tcp_fastretrans_alert() . As already discussed, we may have sensed 
congestion or may be in the congestion state, and both these situations are handled 
in  tcp_fastretrans_alert() . We handle fast - transmissions fast - recovery, partial ACK, 
reneging of SACK, and so on, in this routine. For more details, see Section  12.1 . 

  11.4.1    tcp_packets_in_fl ight()  

 This routine gives us a fair estimation of the packets that are still in fl ight at any 
point of time (cs  11.28 ). By packets in fl ight, we mean that the segments have not 
left the network. How do we know this? We know the number of segments that are 
transmitted and are not yet acknowledged as  tp → packets_out . Then we know the 
number of segments that have reached the other end but not in order with the help 
of SACK blocks as  tp → sacked_out . If a loss is sensed, we have a rough estimate of 
lost segments as  tp → lost_out . If there are no sudden spikes in RTT or network 
reordering doesn ’ t increase abruptly, our loss estimation is correct. The number of 
segments that have left the network are the ones that are either SACKed or con-
sidered LOST. Then we have retransmitted segments as  tp → retrans_out . When a 
segment is considered lost, we don ’ t decrement  tp → packets_out  for the lost segment 
but instead compensate for lost segment by incrementing the lost count  tp → lost_out . 
So, we balance the number of segments in fl ight. Once we retransmit this segment, 

    cs 11.27.      tcp_may_raise_cwnd().   

    cs 11.28.      tcp_packets_in_fl ight().   
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one extra segment is pumped in the network which is consuming network resources. 
That is why we consider  tp → retrans_out  while calculating packets in fl ight.    

  11.4.2    tcp_ack_is_dubious()  

 Here we have three checks to confi rm that either we are already in the congestion 
state or have sensed congestion: (cs  11.29 ): 

  1.      FLAG_NOT_DUP  fl ag set by the current ACK. This indicates if we have a 
duplicate ACK.  

  2.      FLAG_CA_ALERT  fl ag set by the current ACK. This indicates if we need 
to be at alert because we have sensed congestion.  

  3.     TCP state at present should not be set to open (TCP_CA_Open). We are 
already in one of the congestion states.      

   FLAG_NOT_DUP   is defi ned as the combination of three fl ags: (cs  11.30 ): 

  1.     FLAG_DATA  
  2.     FLAG_WIN_UPDATE  
  3.     FLAG_ACKED =  FLAG_DATA_ACKED|FLAG_SYN_ACKED       

 If any of the above fl ags is set, we need to check for other conditions that we will 
discuss later. If none of the above is set, we have gotten a duplicate ACK. The 
reasons for this are as follows: 

  1.      FLAG_DATA  is set if we have gotten DATA. Even though we did not 
acknowledge any new data, this should not be considered as duplicate ACK 
with  FLAG_DATA  set. A simple example is to consider data fl owing only in 
one direction where we are the receiver. In this case we will always get the 
same ACK sequence number because we are not sending anything. We can ’ t 
consider all the ACKs as duplicate.  

    cs 11.29.      tcp_ack_is_dubious().   

    cs 11.30.     Incoming ACK fl ags.  



  2.      FLAG_WIN_UPDATE  is set if either peer ’ s receive window has either 
changed or it has acknowledged new data. The duplicate ACK we are discuss-
ing is the one that is generated once an out - of - sequence segment has been 
receive by the peer. Since this out - of - sequence segment doesn ’ t shift the left 
edge of the window toward the right, it won ’ t change its receive window. If 
the segment doesn ’ t acknowledge new data and doesn ’ t carry any new data 
but it changes the send window, it can be considered as window update from 
the peer and not as duplicate ACK.  

  3.      FLAG_ACKED  is set if new data are ACKed or we got SYN segment. In 
both the cases, this can ’ t be considered as duplicate ACK.    

   FLAG_CA_ALERT   has two parts,  FLAG_DATA_SACKED  and  FLAG_
ECE . If any of these fl ags are set, we need to take action because we have sensed 
congestion. 

  FLAG_DATA_SACKED  is set when we get SACK blocks. This is an indica-
tion that segments have reached the receiver out - of - order. This may be because of 
reordering of segments or because some segment is lost. We need to be watchful 
here. 

  FLAG_ECE  is set when we get the ECE fl ag set in the TCP header. The other 
end received an indication from one of the intermediate routers about the conges-
tion state at that router. The router may be loaded heavily and about to drop 
packets. In this situation it sets the EC fl ag in the IP header of the packet that is 
directed for the receiver. The receiver turns the ECE fl ag in the TCP header to 
indicate the sender of the congestion state. We need to take action to reduce the 
transmission rate in such condition. 

 If none of the above - mentioned conditions satisfy, we consider ACK as dubious 
only if we are already in a congestion state; that is, TCP state is anything other than 
 TCP_CA_Open .  

  11.4.3    tcp_cong_avoid()  

 This routine implements a congestion control algorithm during slow start and fast 
retransmission. In Section  10.2.3  (explaining slow start) and Section  12.5.5  (explain-
ing fast retransmission), we can see that whenever we sense congestion, we adjust  tp →
 snd_ssthresh  and  tp → snd_cwnd  as explained by Jacobson (SIGCOM 88).  tp → snd_
ssthresh  is slow - start threshold. Once the send congestion window ( tp → snd_cwnd ) 
exceeds this value, we enter into the recovery state where the rate of increment of the 
congestion window is a function of RTT and not number of ACKs returned, whereas 
before the congestion window exceeds the slow - start threshold, we are into slow - start 
algorithm where congestion window increases exponentially with RTT (increments 
by 1 with reception of each ACK). In ideal conditions, calculation shows that when 
we are operating at full network capacity, we can send out segments equal to the 
congestion window without waiting for ACK for any of these segments. In such case, 
the rate at which segments are ACKed per RTT is equal to the congestion window. 
Once we have recovered from the congestion state, we call  tcp_undo_cwr()  where we 
set ssthresh to the value prior to entering the congestion state. 

 The very fi rst condition that we check here is if we are in the slow - start phase 
(line 1701). If so, we increment the congestion window by 1 only if the send conges-
tion window clamp ( tp → snd_cwnd_clamp ) is not exceeded. Initially, ssthresh is set 
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to a very high value, so the congestion window keeps increasing until we experience 
congestion (loss of segments or duplicate ACKs). At this point we recalculate 
ssthresh to half of the congestion window or 2, whichever is higher (see Section 
 10.2.3 ). If both conditions are TRUE, we increment the congestion window by 1 
(line 1704, cs  11.31 ).   

 In case we have entered the recovery state, which means that the send conges-
tion window has exceeded the slow - start threshold (lines 1706 – 1715), Linux takes 
the path of the incrementing congestion window per  ‘  current congestion window  ’  —
 that is,  tp → snd_cwnd , the number of ACKs received. This is because the congestion 
window is assumed to be saturating the network at any given point of time by 
making full utilization of the available network bandwidth under a given network 
congestion state. Each time we receive an ACK, we do the following: 

  1.     We check if the counter ( tp → snd_cwnd_cnt ) is equal to the current conges-
tion window.  

  2.     If 1 is FALSE, we increment the the congestion window counter ( tp → snd_
cwnd_cnt ) (line 1714).  

  3.     Otherwise we are ready to increment the congestion window only if we are 
not exceeding the cwnd clamp (line 1710). If we pass this post, increment the 
congestion window and reset the congestion window counter (line 1712).     

  11.4.4    tcp_ack_update_window()  

 We fi rst check if the window can be updated by calling  tcp_may_update_window() . 
If the window is allowed to be updated, we set the fl ag  FLAG_WIN_UPDATE  at 
line 1872 (cs  11.32 ). Since the window is being updated, we record the sequence 
number of the segment in  tp → snd_wl1  by calling  tcp_update_wl() . If the new window 
advertised is more than the recorded send window, we sync up the send window at 
line 1876. In this case, we also check if we need to switch to FAST path by calling 
 tcp_fast_path_check()  (see Section  11.1.3  for details on PATH). We do it here 
because the window has changed and if are already in FAST path, prediction fl ag 

    cs 11.31.      tcp_cong_avoid().   



needs to be initialized as it takes the window into account. If the new window 
advertised is more than the largest window seen so far, we sync up  tp → max_window . 
Finally, the acknowledged sequence number is synced up at line 1890.    

  11.4.5    tcp_may_update_window()  

 We can update the window under the following conditions (RFC 793, p. 72): 

  1.     If new data are acknowledged, line 1855 (cs  11.33 ).  
  2.     If the fi rst condition fails, the sequence number of the segment should be 

higher than the sequence number last recorded ( tp → snd_wl1 ) when the 
window was updated, line 1856. The reason for this check is that it gives an 
indication of the latest scenario at the other end as it carries new data with 
respect to the segment that updated the window last.  

    cs 11.32.      tcp_ack_update_window().   

    cs 11.33.      tcp_may_update_window().   
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  3.     If both condition fail, we check if the sequence number of the segment is 
same as  tp → snd_wl1 , but the window advertised is more than the last recorded 
send window ( tp → snd_wnd ), line 1857. This condition may arise because the 
peer has opened the window.      

 We don ’ t update the window in the case where the sequence is less than the  tp →
 snd_wl1  because the segment may have arrived out - of - order and have an incorrect 
window. This segment was transmitted prior to the one that has updated the window 
last, so we discard the window update in this case.  

  11.4.6    tcp_clean_rtx_queue()  

 The routine is called while we are processing incoming ACK (cs  11.34 ). The routine 
removes the acknowledged segment from the retransmit queue. If the segment is 
tagged as SACKED, retransmitted, or lost, the routine updates counters specifi c to 
SACKed - out segments, lost segments, and retransmitted segments associated with 
the segment.   

 In this routine we traverse through each segment in the write queue until we 
fi nd a segment beyond  tp → snd_una  (line 1749).  tp → snd_una  is already updated to 
the next unacknowledged byte before we are called. Next we need to check if data 
were ACKed or if it was a SYN segment that was ACKed. Since we have ACKed 
some data, we are here. If it is a SYN segment that is ACKed, it is ok since SYN 
carries one byte. Otherwise we have ACKed data. In both the cases we set FLAG. 
The next step is to process the tag on the segment. 

 If the segment is tagged, fi rst we check if the segment was ever retransmitted. 
If so, we set the FLAG_RETRANS_DATA_ACKED fl ag; and at the same time if 
the segment is tagged as retransmitted,  tp → retrans_out  is decremented by 1 (lines 
1767 – 1770). Otherwise if the segment was never retransmitted and RTT is not yet 
recorded (line 1772), we calculate RTT based on the current timestamp and the 
time recorded when the segment was transmitted. We don ’ t calculate RTT for 
retransmitted segment (line 1773). If the segment was SACKed out, we need to 
decrement the SACK counter (line 1775). If the segment is marked lost, the lost 
counter is decremented by 1. If this segment is marked to contain an urgent pointer, 
we check if the urgent mode is set (see Section  11.7.1 ). If set, we check if the segment 
covers the urgent pointer (lines 1779 – 1780). If both are true, an urgent byte is 
ACKed and we unset the urgent mode. 

 Otherwise the segment that is ACKed was not tagged (neither retransmitted 
nor SACKed, and neither was marked lost) and we have not yet calculated RTT, 
and we can record RTT (line 1784). Next we check if the segments are FACKed 
out, and we decrement the FACKed segments by 1 (line 1786). Decrement a number 
of transmitted packets by 1. Remove the ACKed segment from the retransmit queue 
by calling (line 1788). 

 The next step is to estimate RTO based on either TCP timestamp option or the 
new rtt calculated above. This is done by calling  tcp_ack_update_rtt() . We have three 
fi elds, which are used to calculate RTO: 

  1.      tp → srtt  smoothened RTT. On reception of RTT value each time, we calculate 
the error based on the srtt and the new value. It is calculated as 7/8(srtt)   +  
 1/8 (new value).  



    cs 11.34.      tcp_clean_rtx_queue().   

  2.      tp → mdev . This is the mean deviation in calculation of RTT, and once again 
it is calculated as 3/4 (mdev)   +   1/4 of new deviation.  

  3.      tp → rttvar  is called a variant in the rtt calculation.    

 Finally, RTO is calculated as

   1 8 smoothened RTT variance RTT( ) +   
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 Finally, we need to adjust the retransmit timer depending on whether we still have 
unacknowledged packets ( tp → packets_out   > 0) by calling  tcp_ack_packets_out() . If 
we have acked all the data, the retransmit timer should be stopped (line 1726, cs 
 11.35 ). Otherwise we should set the retransmit timer to the current value of RTO 
for the next segment to be ACKed (line 1728).   

 We return the fl ags set in the routine that will be used later to determine the 
course of action.   

  11.5   PROCESSING OF  SACK  BLOCKS 

 When we receive an ACK, we need to process SACK blocks if the TCP sack option 
is enabled and we have received SACK blocks.  TCP_SKB_CB(skb) → sacked  is ini-
tialized to offset corresponding to the start of the SACK option in the TCP header 
for the segment received. This is done while processing optional fi elds in the TCP 
header in  tcp_rcv_established()  by a call to  tcp_fast_parse_options() . Let ’ s see how 
SACK blocks received are processed by calling  tcp_sacktag_write_queue()  from 
 tcp_ack() . 

  11.5.1    tcp_sacktag_write_queue()  (see cs  11.36  to 
cs  11.41  unless mentioned) 

 We get access to SACK information as shown in Fig.  11.4 . Before we are called from 
 tcp_ack() , we have already updated the unacknowledged byte fi eld in the TCP state 
machine ( tp → snd_una ). But we have stored the unacknowledged byte fi eld to be 
used further to fi nd out duplicate ACKs and ACKs for very old segments. 

  0   =   SACK option.  
  1   =   total length of the SACK optional fi eld.      

 Our consideration here is that the segments which are still in the fl ight may be 
reordered. So, we store  tp → packets_out  for further use. If none of the segments 
were SACKed out prior to arrival of this segment, we initialize FORWARD 
ACKed ( tp → fackets_out ) segment count to 0 at line 773. The reason is that forward 
ACKed segments are calculated based on the latest SACK information (Mathis, 
 1996 ). This will give the latest picture of the network congestion at any given point 
of time. 

 In the Fig.  11.5 , we have four SACKed segments, but the number of FACKed 
segments is 12. We process all the SACK blocks associated with the arrived ACK. 

    cs 11.35.      tcp_ack_packets_out().   



There may be D - SACK blocks or SACK blocks which may have SACKed new data. 
We need to update the state of each individual segment in the retransmit queue. We 
may have a new SACK block that has selectively ACKed a never retransmitted 
segment or a retransmitted segment or lost segment. The SACK block may have 
fi lled the GAP that causes the right edge of the window to move toward the right. 
We may end up modifying FACK information in the TCP state machine. We may 
sense reordering of segments in case we get a SACK block that fi lls up a never 
retransmitted old hole. And we update reordering information here. D - SACK is 
also an indication of segment reordering. D - SACK is generated when the receiver 
receives a segment that is partly or completely received as out - of - order segment 
and resides in out - of - order queue. Hole is created in sending TCP sequence space 
when we get SACK block as a result of packet re - ordering or loss of segments.   

 The very fi rst thing that we do here is to check if we got D - SACK (duplicate 
SACK). The information about D - SACK is stored in the fi rst block SACK block. 
RFC 2883 says that D - SACK is generated in the case where the receiver receives 
the following: 

  1.     A segment that advances the right edge of the window toward the right such 
that it covers the hole and spans across the segment in the out - of - order queue 
as shown in Fig.  11.6 .  sb0 s   <  tp → snd_una  (or sequence number of the ACKing 
segment), line 787 (cs  11.36 ).    

  2.     A segment that may not advance the right edge of the window, but the new 
segment is completely covered by the existing segment in the out - of - order 
segment and the new segment may also span across multiple segments in the 

    Figure 11.4.     Organization of SACK blocks in TCP header.  

    Figure 11.5.     SACKed segments.  

PROCESSING OF SACK BLOCKS 411



412 TCP CORE PROCESSING

    Figure 11.6.     SACKed segments covered by 

ACK.  

    cs 11.36.      tcp_sacktag_write_queue().   



out - of - order queue as shown in Fig.  11.7  (see Section  11.8 ).  sb0 s   > = sb1 s   &  &  
sb0 e   < = sb1 e   (lines 791 – 793).      

 In both of the above cases, we enable D - SACK option for the TCP connection ( tp →
 sack_ok ) and we set a duplicate SACK fl ag. 

 Next we check if the D - SACK is generated for the data that are already ACKed 
because the retransmitted segment reached before the original segment was ACKed 
or vice versa. In this case the end sequence of the SACK block should be within 
the ACKed sequence prior to arrival of this segment, and the end sequence should 
also be after the  tp → undo_marker  (which is set to  tp → snd_una  when we enter the 
recovery phase and  retransmit  data, lines 801 – 803). We will decrement  tp → undo_
retrans  by 1 in such a case because D - SACK is generated because of retransmission 
of the segment after we entered the recovery/loss state. In all, it means that D -
 SACK is generated because of retransmission of a segment that was considered lost 
when we entered the recovery phase. But the segment reached the receiver later 
because of reordering.  tp → undo_retrans  keeps account of number of retransmitted 
segments (see Section  10.2.4 ). We never know when the duplicate segment reaches 
the receiver. 

 Finally we check if we got ACK for too old data (line 810); that is, ACK 
acknowledges one window of old data. This ACK segment might have got stuck in 
the network for sometime before it reached before we got ACK for the latest data 
that are received in sequence. In this case we discard the SACK because the SACK 
information   may be too old to consider and return. 

  tp → undo_retrans  is also related to  tp → undo_marker  in the way that whenever 
D - SACK is generated, we check if the end of the SACK is after  tp → undo_marker . 
If so, D - SACK is because of the retransmitted segment that was assumed lost 
wherein the original segment arrived late at the receiving end. When DSACK is 
received, we need to decrement the  tp → undo_retrans  if the end sequence of the 
SACK block is not higher than the ACK sequence prior to the arrival of the 
segment being processed and at the same time higher than  tp → undo_marker , which 
means that D - SACK is generated because of the retransmission due to current 
congestion state as  tp → undo_marker  is set once we enter congestion state.  tp →
 undo_retrans  helps in detecting false retransmits in recovery/loss state. Isis also 
helpful in detecting spurious RTO. 

  tp → retrans_out , on the other hand, takes care of the retransmitted segments 
marked as lost. This will be helpful in detecting partial ACKing in the congestion 
state. With the help of these two fi elds, we can always know what amount of 
reordering is happening in the network. 

 We check if we have received SACK for the data that were transmitted ahead 
of  tp → high_seq. tp → high_seq  is set to the highest sequence number that has been 
transmitted at that point of time when we enter loss or recovery state. It may happen 
that the congestion window allows us to transmit more data before we enter the 
OPEN state. In such a case, we may transmit data with sequence higher than  tp →
 high_seq  in recovery state. 

    Figure 11.7.     New SACK 

block covered by already 

SACKed segments.  
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 If we get a SACK that covers  tp → high_seq , we consider that some data are lost 
here (line 815, cs  11.37 ). Otherwise we would have gotten ACK for the entire data 
transmitted so far, if SACK blocks are generated because segments got reordered 
in the network instead of getting lost. We set a data loss fl ag in this case and will 
check later if we actually lost any data or not. Let ’ s see how the SACK blocks arrived 
with the TCP segment processed. Here we traverse the entire retransmit queue for 
each SACK block (loops 818 – 910). The segments in the retransmit queue may 
already be tagged. These segments are marked either retransmitted, SACKed, lost, 
or none of these. 

  1.     If the segment was retransmitted, it is marked as  TCPCB_RETRANS .  
  2.     If the segment is SACKED, it is marked as  TCPCB_SACKED_ACKED .  
  3.     If the segment is LOST, it is marked as  TCPCB_LOST .      

 The next step will be to fi nd out the segment which is covered by the current 
SACK block. It may also have happened that the SACK block is generated for the 
segment that is already ACKed as part of in - sequence data. We will sense reordering 
for the case where a new SACK block is generated for never retransmitted data or 
a D - SACK block is generated. Finally we tag the segments in the retransmit queue 

    cs 11.37.      tcp_sacktag_write_queue().   



according to the new events. Components of a TCP state machine related to 
re ordering of segments, FACKed out segments, and SACKed out segments are also 
modifi ed accordingly. 

 We will examine each segment in the out - of - order queue for every SACK block 
in the following way: 

 The segments in the retransmit queue are arranged in order of increasing start 
sequence number. So, if we fi nd that the end sequence of the SACK block is below 
the start sequence of the segment, we just skip through this SACK block and move 
on to the next SACK block (line 825). If not so, the SACK block is covered by at 
least one of the segments in the retransmit queue. This condition will make us tra-
verse all those segments in the retransmit queue which are within the end sequence 
of the SACK block. 

 Each time we iterate through the inner loop for a given SACK block, we incre-
ment the FACK count by 1 (line 828). This way we can keep account of the FACKed 
segments while processing each SACK block. We will retain the FACK count from 
the SACK block that forwards ACK ’ s highest sequence number. 

 We check if the SACK block completely covers the segment. If so, we mark the 
segment as within SACK. One SACK segment may cover more than one segment 
in the case where more than one contiguous (but not in - sequence) segment reaches 
the receiver. We will process each segment that is covered by the SACK block 
one - by - one. 

 If the current segment is within the SACK block and the SACK block is marked 
as a duplicate SACK, we check if the segment under consideration is marked 
as retransmitted (line 835). If all the conditions are true and the end sequence 
number of the segment is after the undo mark,  tp → undo_marker  (line 836). We 
need to account for the retransmitted segment that caused D - SACK by decrement-
ing  tp → undo_retrans . An end sequence of the segment occurring after an undo 
marker means that the segment was retransmitted after TCP entered loss/recovery 
state. 

 Next we check if the current segment is ACKed by the received segment (line 
840). If so, we will check if this was result of reordering or not. If the segment is 
ACKed, we check if the segment was retransmitted (line 841). If so, we check if it 
is a duplicate SACK; this segment is covered by the SACK (line 842), and the 
segment is also marked as being SACKed previously. In this case we encountered 
reordering. We record reordering as a minimum of reorder segments and forward 
ACKed segments (line 844). Reordering segments is initialized to packets sent out 
but not yet ACKed ( tp → packets_out ). Otherwise if the segment was not retrans-
mitted and the segment under consideration was not SACKed, it means that the 
hole was fi lled because the segment arrived late out - of - order. If FACK count at this 
point is less than the FACK recorded earlier, we update the FACK count. In this 
case, we continue with the next segment in the retransmit queue. Since a segment 
is ACKed completely, we will remove this from the retransmit queue in 
 tcp_clean_rtx_queue() . 

 We are here because the current segment under examination is not ACKed. The 
next step is to check if the current segment was retransmitted and probably the 
retransmission is also lost. At the time of retransmission, in  tcp_retransmit_skb() , 
we store the sequence number to be transmitted next in  TCP_SKB_CB(skb) →
 ack_seq . This will help us detect if the retransmissions are lost in case the TCP has 
entered the RECOVERY state. In case we enter the LOSS state, all those segments 
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which are not yet SACKed are marked as lost in  tcp_enter_loss()  but we are not 
sure of LOST segments in the case of the RECOVERY state. 

 If the SACK block ends after the highest sequence number to be transmitted 
next was marked at the time when the segment was retransmitted, it means that 
some data were pushed ahead of  tp → snd_nxt  and are also SACKed. If this is the 
case, we are alarmed of this retransmission being lost. We just mark the end sequence 
of the SACK block here, and later we may need to check which segments need to 
be marked as lost based on the marked sequence number (line 859, cs  11.38 ). At 
this point we need to check if the segment being examined is covered by the SACK 
block (line 830). If segment is not covered by the SACK block, we continue with 
the next segment (line 861). Otherwise we will process the SACK further.   

 Now there are two possibilities: Either the segment under examination is already 
SACKed or not. If the segment is already SACKed, we check if the current block 
is a duplicate SACK; and if the segment that is covered by the duplicate SACK is 
marked retransmitted, we update reordering based on segments FACKed so far for 
this SACK block (lines 896 – 897, cs  11.39 ). Otherwise the segment being examined 
is SACKed. If this segment was retransmitted, we update loss and retransmit counts 
only if the segment is already marked as lost. We also update the segment TAG by 
clearing retransmit and loss fl ags in this case. The reason for doing this is that if the 
segment is not marked lost, we may have retransmission in the fl ight for which we 
may get D - SACK later when we decrement  tp → retrans_out  by 1 at line 908.   

    cs 11.38.      tcp_sacktag_write_queue().   



 Otherwise we check if the segment was never retransmitted (line 897). If so, it is 
time to update reordering only if the FACK count for this segment is less than the 
number of segments forward ACKed prior to arrival of the ACK segment. The 
condition at line 880 is probably because we try to check here that the current 
segment is lower in order (fack_count) than the previously highest - order SACKed 
segment ( tp → facked_out ). If the new SACKed segment is marked lost, we clear the 
lost fl ag for the segment and also adjust the counter for lost segments (lines 883 –
 885). We need to TAG the new SACKed segment as SACKed (line 889) and incre-
ment the counter that is specifi c to SACKed out segments by 1 (line 891). If the 
new segment FACKs a higher number of segments than recorded previously, we 
update the FACKed segments (line 893 – 894). 

 Next we check if the SACK block under consideration is D - SACK; if the 
segment covered by this block was retransmitted ( TCPCB_SACKED_RETRANS  
fl ag is set), we clear the retransmit tag and decrement the retransmit counter by 1. 

 Reordering length is the number of segments between the segments SACKed/
ACKed with the highest sequence number ( tp → facked_out ) and the lowest sequence 
number (reord). That is why we are marking the minimum of the fack_count and 
previously recorded reorder. Finally, when we update reordering by calling  tcp_
update_reordering() , we just pass FACKed - out segments ( tp → facked_out )    −    reord  
 +   1, where  ‘ reord ’  is calculated as segment lowest in the sequential order SACKed/
ACKed so far which is recorded whenever we receive D - SACK or receive SACK 
for the hole which was never retransmitted.   

  11.6   REORDERING LENGTH 

 The fi rst SACK arrives and SACK ’ s seventh segment is in the retransmit queue; 
FACK should be set to the segment SACKed.  tp → fackets_out  will be set to 7 as 

    cs 11.39.      tcp_sacktag_write_queue().   

REORDERING LENGTH 417



418 TCP CORE PROCESSING

shown in Fig.  11.8 . We can ’ t detect reordering at this stage until we receive another 
SACK block or any D - SACK block.   

 The second SACK block arrives and SACK ’ s second segment that is already in 
the retransmit queue.  tp → fackets_out  is still set to 7. But now we have knowledge 
of reordering taking place in the network. Segments 2 and 7 are reordered and all 
other segments in between are also reordered in the network. So, reorder length in 
this case becomes 6 as shown in Fig.  11.9 .   

 The third SACK block arrives SACKing segment 9 in the retransmit queue. 
Since the new segment SACKed is beyond the last FACKed segment, it means that 
this segment has arrived in order with respect to segments 6 and 7. This SACK 
indicates that the segment high in order so far has reached the receiver, which means 
that the FACKed segment should be updated to the new SACKed segment.  tp →
 fackets_out  is set to 9, whereas reorder length updated as the new segment arrives 
as 8.   

 The next step is to spot those retransmitted segments in the retransmit queue 
which should be assumed lost. In the case where we are in the recovery state and 
we have a SACK block that covers the sequence number to be transmitted next 
( tp → snd_nxt ) when the segment was retransmitted, the segment should be consid-
ered lost if not SACKed and not already marked lost. We mark such an event while 
processing the SACK block at line 859. The reason for this is that we may transmit 
the segment beyond the marked high sequence ( tp → high_seq ) when we enter the 
recovery stage if the congestion window allows. We may have entered the recovery 
state because of excessive reordering. If the SACK block is received covering a high 
sequence, it is assumed that the holes are lost. This is illustrated in Fig.  11.11a  –  d .   

 In this phase, we traverse through all the segments in the retransmit queue until 
(line 924, cs  11.40 ) we get a segment whose start sequence is beyond the lost retrans-
mit mark (marked at line 859). We won ’ t consider those segments (line 926) which 
have been just ACKed (will be removed from the queue in the next step). We will 
consider only those segments that are marked as retransmitted (line 927) because 
we want to check here if the retransmissions are lost. The very fi rst thing we check 
here is that is the lost - retransmit mark is beyond the highest sequence mark recorded 
at the time of segment retransmission. If not so, we are not an eligible candidate to 
be assumed as lost. Otherwise we proceed further only in two cases. 

    Figure 11.8.     Reordering length 

is with single SACK block.  

    Figure 11.9.     Reordering length 

is calculated on arrival of 

second SACK block.  

    Figure 11.10.     Reordering 

length is adjusted according to 

the new SACK.  



    Figure 11.11a.     Tracking lost retransmits.  

    Figure 11.11b.     Tracking lost 

retransmits ( continued ).  

    Figure 11.11c.     Tracking lost 

retransmits ( continued ).  

    Figure 11.11d.     Tracking lost 

retransmits ( continued ).  

  1.     The FACK is enabled for the connection (line 929).  
  2.     The lost retransmit mark is beyond the reordering limits for this segment, 

which essentially means that the SACKed block covers the segment that is 
beyond tolerant estimated reordering ( tp → reordering ) with respect to the 
highest sequence mark for the segment. We can ’ t consider so much reorder-
ing, and the segment should be considered lost in case it not already SACKed 
(line 930). Segments 1, 2, and 3 are retransmitted, and they record the highest 
sequence to be transmitted at the time of transmission.      

 Segment ’ s 1, 2, and 3 are retransmitted and segment 8 is transmitted (forward 
transmission). We get the SACK block for segment 8. In the case of FACK enabled, 
all those segments which are not marked LOST or are not SACKed and are retrans-
mitted are marked LOST (i.e., segments 1, 2, and 3). For both cases, we clear the 
retransmit fl ag for this segment (line 931) and decrement the retransmit counter 
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    cs 11.40.      tcp_sacktag_write_queue().   

(line 932). And fi nally if the segment is not already marked lost or SACKed (line 
934), we mark the segment as lost (line 936) and increment the lost counter (line 
935). In the case where FACK is not enabled and reordering length is default 3 
segments, we will not have marked any of the segments as lost. 

 We need to update the left - out segments based on new SACKed segments and 
lost - out segments. At last we update the reordering level. We update  tp → reordering  
only if the lowest observed reordered segment is not the same as total FACKed - out 
segment (highest reorder segment), which means that we know that there is nothing 
to update. Update re - ordering, in case we sense reordering and are not in LOSS 
state (cs -  11.41 , line 946). In the state of loss, we are not sensitive to reordering 
because we have already reduced the congestion window to control congestion. 
Reorder length is calculated as the number of FACKed segments    −    the reorder 
segment that SACKed the hole closest to the ACKed sequence number or any such 
D - SACK block   +   1. 

 This updates the  tp → reordering  fi eld in case the new value of reordering is more 
than the existing value. Reordering is being used in the recovery state to assume 

    cs 11.41.      tcp_sacktag_write_queue().   



retransmit lost or to enter recovery state from other states. We need this fi eld to 
guess lost segment in  tcp_update_scoreboard() . 

  tp → fackets_out  and  tp → reordering  together can be used to guess lost - out seg-
ments. Reordering takes into account the lowest SACKed - out segment and the 
highest SACKed - out segment ( tp → facked_out ), and the rest of the segments from 
the start of the retransmit queue are processed to be marked as lost in  tcp_update_
scoreboard() . Since reordering length ( tp → reordering ) takes into account the highest 
and lowest SACKed segments, we assume that the segments that are missing in 
between these two may appear some time in the future out - of - order. In  tcp_update_
scoreboard()  we try to mark the lost segments based on FACKed - out segments and 
reordering in case SACK is enabled. Thus, during the loss and recovery stage, we 
can retransmit only those segments which are marked lost by calling  tcp_xmit_
retransmit_queue()  and at the same time we can transmit unsent segments in the 
retransmit queue (beyond  tp → high_seq ) if the congestion window allows.  

  11.7   PROCESSING  TCP  URGENT POINTER (see cs  11.42  
unless mentioned) 

 We check if there are any urgent data to be processed in the slow path. We call tcp_
urg() to process urgent data. As far as urgent data processing is concerned, specifi ca-
tion says that we may or may not get an urgent byte with the segment containing an 
urgent pointer and an urgent fl ag set. The urgent pointer is a 16 - bit number that is 
offset in the TCP segment (containing urgent pointer) starting from fi rst byte of the 
TCP payload. It means that the urgent pointer points to the byte in the TCP data 
stream treated as an urgent byte. We may get an urgent pointer and urgent fl ag in the 
segment providing information about the urgent byte coming ahead. An urgent byte 
may be present in the same segment or in the segments to follow. We remain in the 
urgent mode until we receive an urgent byte. Once we have received a TCP urgent 
byte, the urgent mode is turned off. We process an urgent byte in the slow path, so 
the slow path is set once we receive the urgent pointer.  tcp_urg()  is called in  tcp_rcv_
established()  (line 3434, cs  11.10 ) to process urgent data.   

 If we have a new urgent pointer, an URG fl ag will be set in the TCP header. 
Let ’ s hope we got the new urgent pointer, so we call  tcp_check_urg()  at line 3127 
(cs  11.42 ) to process the urgent pointer. We may have have URG fl ags set in the 
TCP header because of two reasons: 

   •      It is a duplicate urgent pointer because urgent data are yet to be received.  
   •      A new urgent pointer is received.    

  tcp_check_urg()  makes all the necessary checks and either copies the urgent 
byte to the user space or wants us to do that. It also sends  SIGURG  to the process 
that is receiving urgent data. For details see Section  11.7.1 . Now we need to check 
if the urgent byte has arrived along with the segment containing an urgent pointer 
(lines 3131 – 3134). If we have received an urgent byte, the  TCP_URG_VALID  bit 
is set for  tp → urg_data  and the urgent byte is stored in the  tp → urg_data  at line 3138. 
The  TCP_URG_VALID  fl ag means that the urgent byte is valid and is ready to be 
read.  tp → urg_data  is a 16 - bit fi eld where the higher 8 bits are used as control fl ags 
for urgent data and the lower 8 bits are used to store the urgent byte as shown in 
Fig.  11.12 .   
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 Finally we wake up the process waiting on the socket ’ s wait queue and the 
process polling exception event on the socket. 

  11.7.1    tcp_check_urg()  

 We are called when a new urgent pointer is signalled on incoming TCP segment. 
We need to clear any unread out - of - band urgent byte to make room for new OOB 
urgent byte. Linux implements both versions of the tcp urgent pointer. Some imple-
mentations assume that the TCP urgent byte is pointed by an urgent pointer, and 
the others consider the urgent byte to be one byte ahead of the urgent pointer. If 
 sysctl_tcp_stdurg  is set, an urgent byte is just one byte ahead of an urgent pointer. 
In the other case, an urgent byte is just the byte pointed to by an urgent pointer. 
This the reason why we decrement the urgent pointer by 1 here in the latter case 
(line 3054). Next we calculate the urgent pointer because what we get in the TCP 
header as an urgent pointer is the offset with respect to the sequence number of 
the segment containing an urgent pointer (see Fig.  11.13 ).   

 If we received an urgent pointer that is already being read, just ignore it (line 
3058). The second thing we need to check here is if we received an urgent pointer 

    cs 11.42.      tcp_urg().   

    Figure 11.12.      Urgent fl ag tp →
 urg_data.   

    Figure 11.13.     Accessing 

urgent byte in sequence of 

bytes.  



for the data that have already been received in sequence before (line 3071, cs  11.43 ). 
This may happen in the case where we receive a segment having an urgent pointer 
pointing to a segment present in an out - of - order queue. This may be buggy imple-
mentation in the sending TCP.   

 Next we check if we received a duplicate urgent pointer. This may happen in 
the case where there are many segments yet to be transmitted in the write queue 
when an urgent byte is written. This urgent byte is not sent immediately but is sent 
out in correct order, but the urgent pointer is sent out in the segments that are sent 
out prior to the segment containing an urgent byte. 

 We are here because we received a new urgent pointer. So, we need to inform 
to the application that urgent data are received, and it must read the urgent byte at 
the earliest. So, we send out SIGURG to the application and also wake up any 
process polling for the urgent data (lines 3079 – 3085). 

    cs 11.43.      tcp_check_urg().   
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 Next we check if an urgent byte is not yet read but it has been received and 
valid when the urgent byte is not received as inline data: 

  1.     Urgent byte is not yet read ( tp → urg_seq == tp → copied_seq ).  
  2.     Urgent data are still valid ( tp → urg_data  != 0).  
  3.     We are not reading urgent data as inline ( sk → urginline  is not set).  
  4.     We have already received an urgent byte ( tp → copied_seq != tp → rcv_nxt ). 

Since case 1 is TRUE, we have received data beyond urgent pointer.    

 If all the above conditions are TRUE, we need to increment the tp → copied sequence 
by 1. If the urgent byte to be read is the last byte of the fi rst segment in the receive 
queue or is in the next segment, we remove the fi rst segment from the queue. We 
do this for the reason that we want to void reading an urgent byte from the receive 
queue accidently in normal read when we are receiving an urgent byte as out - of -
 band data in  tcp_recvmsg()  (explained in Section  8.2 ). If OOB urgent byte is the 
last byte in the fi rst TCP segment and we have read entire data in this segment until 
last byte, we should remove this segment. 

 Normally, an urgent byte is either the last byte of the segment or the only byte 
in the segment because as soon as we write an urgent byte, we can either append 
data to the existing segment and try to transmit it at the earliest or create a new 
segment and try to transmit it at the earliest. But this does not guarantee that an 
urgent byte should be at the end of the segment or is the only segment in the 
segment. This is because if we are not able to send urgent byte in the segment con-
taining an urgent pointer, urgent byte is sent in one of the subsequent TCP seg-
ments. There may be data pending to be transmitted when urgent byte is queued 
in by the sender. In such case sender will signal urgent pointer in all the TCP 
Segment, unless urgent byte is transmitted. 

 Now we update the urgent data fl ag to  TCP_URG_NOTYET , meaning that the 
urgent byte is yet to be read. Next we set the urgent pointer to  tp → urg_seq . We 
need to disable the FAST mode (line 3117) because the urgent pointer is processed 
in the slow path ( tp → pred_fl ags  is reset). 

 From here we return to  tcp_urg()  with the new urgent pointer set and  tp →
 urg_data  set to  TCP_URG_NOTYET  in case a new urgent pointer has arrived. 
Otherwise, no new urgent pointer has arrived (it may be a duplicate urgent 
pointer).   

  11.8   PROCESSING DATA SEGMENTS IN  SLOW  PATH (see cs  11.33  to 
 11.46  unless mentioned) 

  tcp_data_queue()  is the routine called to process any data segment in the slow path. 
This routine is called from tcp_rcv_established() at line 3437 (cs  11.10 ). This routine 
does the following: 

   •      It processes the data segment received in sequence.  
   •      It gets the memory to the socket ’ s memory pool from the TCP global pool or 

by pruning receive queues.  
   •      It processes data segments from the out - of - order queue in case a new data 

segment fi lls the gap.  



   •      It queues data in out - of - order segments in the ofo queue.  
   •      It processes SACK/DSACK to be sent to the receiver in case SACK is enabled 

and we receive out - of - order segments.      

 Let ’ s see how is this implemented. We discuss  tcp_data_queue()  in this section 
(cs  11.44 ). First we check how in - sequence data are processed. Then we look at 
processing of out - of - order segments and processing of SACK information. We fi rst 
check if there are no data to be processed in the segment at line 2528. If so, we don ’ t 
process the segment. We do processing of in - sequence data segments in the same 
way as we did in  tcp_rcv_established() . We don ’ t process the incoming timestamp 
here because it is already done by the caller. We copy data to the user buffer by 
calling  skb_copy_datagram_iovec()  at line 2560 in case the reader is installed and 
we are the one who installed it.   

 If we are not able to copy in - sequence data to the user buffer for any reason, 
we need to queue it in the socket ’ s receive buffer at line 2577. What additional we 
do in this path before queuing is to check if the socket ’ s memory pool is exhausted 
and we need to allocate more. If so, we try to allocate more memory to the socket ’ s 
buffer pool by calling  tcp_rmem_schedule()  at line 2571. In case we are still not able 
to allocate memory,  tcp_prune_queue()  is called to squeeze out some memory by 
pruning the receive queue/out - of - order queue. 

 The rest of the operations are the same as we did in  tcp_rcv_established() . 
 One additional check that we do in this path while processing in - sequence data 

segment is to check if the new segment has fi lled the gap in the received data 
sequence space. Segments received out - of - order are queued in the out - of - order 
queue ( tp → out_of_order_queue ). If the new segment fi lls the hole such that some of 
the segments can be removed from the out - of - order queue, we check this possibility 
by calling  tcp_ofo_queue()  at line 2586. We generate DSACK in the case where new 
segments cover partially or fully any segment in the out - of - order queue. In the case 
where all the gaps in the out - of - order queue are fi lled, we need to send immediate 
ACK by disabling the pingpong mode. We do this so that the sender should stop 
retransmitting; as with Reno implementation, we have no idea of how many seg-
ments are lost. We need to adjust the SACK list because some of the SACK blocks 
are eaten up by the  tcp_ofo_queue() . So, we call  tcp_sack_remove()  at line 2596. 

 We also check if the FAST path can be enabled by calling  tcp_fast_path_check()  
at line 2598. We do it here because all the segments from the out - of - order queue 
might have got processed as the hole is fi lled due to arrival of new segment. 

 In this part we covered how incoming data segments are processed in SLOW 
path when the segment has arrived in - sequence. Now let ’ s see if we have received 
out - of - order. We will start from line 2607 (cs  11.45 ) where we check for retransmis-
sion. If the end sequence of the segment is not beyond the last in - sequence byte 
received so far ( tp → rcv_nxt ), it is a retransmission. In this case, we need to generate 
DSACK as per the specifi cation by calling  tcp_dsack_set()  at line 2610. The sender 
keeps track of the false recovery mode or spurious retransmissions through DSACK 
received. We need to send an ACK at the earliest to let the sender know that it can 
repair its state, if it mistakenly sensed congestion. We call  tcp_enter_quickack_
mode()  to disable delayed ACK and schedule ACK. Once we return to  tcp_rcv_
established()  from here, ACK will be sent out by call to  tcp_ack_snd_check() . We 
don ’ t proceed further in this case.   

 Next we check if the segment is out of window at line 2621.  tcp_receive_window()  
returns the current advertised window. In this case we need to ACK quickly and 
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    cs 11.44.      tcp_data_queue().   



    cs 11.45.      tcp_data_queue().   
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discard the segment. The sender may be misbehaving or we might have gotten 
urgent data or this may be a zero - window probe. Next we check if we received a 
partial segment at line 2626. We check only if the start sequence of the segment is 
below the sequence of the last byte received in - sequence, but we don ’ t check for 
the end sequence. The reason is that we have already done that check at line 2607. 
Since some portion of the sequence space for the segment is already received, we 
need to generate DSACK for the overlapping segment at line 2632. We also need 
to check if our receive window is zero. If so, we schedule ACK in quick ACK mode 
and discard the segment. Otherwise, we need to receive this data segment as a 
normal in - sequence segment and queue it on the receive queue being processed at 
line 2570. If we are still processing a data segment, it is because we received an out -
 of - order segment. This segment needs to go into out - of - order queue ( tp → out_of_
order_queue ). We fi rst check if enough memory is available to queue the new 
segment, lines 2644 – 2646. If we fail here, the segment is dropped. 

 Otherwise we process the out - of - order segment further. We force the SLOW 
processing path by disabling the prediction fl ag at line 2651. The reason is under-
standable because we have received an out - of - order segment, and all the subsequent 
data segments should be processed in the SLOW path. Only in the SLOW path do 
we process the fi lling of holes in the received sequence space. We are already in the 
quick ACK mode and we also schedule ACK at line 2652 so that ACK should be 
sent at the earliest. We should be able to send immediate ACK in case an out - of -
 order segment is received at the earliest so that the sender is notifi ed of loss and 
congestion. Charge socket receive buffers for the memory consumed by the new 
out - of - order segment by calling  tcp_set_owner_r()  at line 2657. 

 Now we start the process of fi nding the right place for the segment in the out -
 of - order queue. If this is the very fi rst segment to go into the queue (line 2659), we 
initialize the fi rst SACK block  tp → selective_acks[0]  and also the SACK - related 
fi elds for the connection (lines 2661 – 2667). Finally, queue the data segment in the 
out - of - order queue at line 2668. If we are not the fi rst one to go on the queue, we 
need to fi nd the proper position to insert the segment, depending on the sequence 
space of the segment. If we already have sk_buff in the out - of - order queue, we have 
many possibilities. We will check these one by one: 

  1.     If the sequence space of the new segment starts beyond end sequence of the 
last segment in the out_of_order queue, queue it after the last segment in 
the out - of - order queue at line 2657. Either the new segment can expand 
the existing SACK block or we need to create a new SACK block. We will 
fi rst try to look at the possibility of expanding the existing SACK block. We 
check if the new segment arrived is in - sequence with the last segment in the 
out - of - order queue, line 2674. If so, we need to check if we need to create 
new SACK block for the new segment.  

  2.     If there is no SACK block ( tp → num_sacks = = 0 ), line 2677, there can be a 
situation where we have sk_buffs in the out - of - order queue still  tp → num_
sacks  be 0. The reason for this is that there can only be four SACK blocks 
at any given point of time (RFC - 2018 requirements). Only the latest SACK 
blocks are listed in  tp → selective_acks , and rest are discarded. This does not 
mean that the segments corresponding to the older SACK blocks are also 
discarded. It may happen that some of the GAPS get fi lled because of which 
 tp → num_sacks  has come down to 0. This does not mean that all the gaps are 



fi lled, so we may have  tp → num_sacks  to drop down to 0 with segments still 
there in the out - of - order queue (see Sections  11.8.4  and  11.8.5 ).  

  3.     The last segment in the out - of - order queue is not the latest one to arrive, line 
2678. Since the SACK block corresponding to the latest out - of - order segment 
sits at the start of the SACK block array (RFC - 2018 requirements),  tp →
 selective_acks[0] , we check if that is expandable.    

 If any of the above conditions is TRUE, we need to create a new SACK block 
for the new segment, for which we call  tcp_sack_new_ofo_skb()  at line 2724. For 
details, check Section  11.8.1 . Otherwise we expand the latest SACK block at line 
2682. 

 If we are at line 2687 (cs  11.46 ), we need to fi nd the right place for the new 
segment in the out - of - order queue because the new segment was not in - sequence 
with the last segment in the out - of - order queue. Segments in the out - of - order queue 

    cs 11.46.      tcp_data_queue().   
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are arranged in the order of their sequence spaces. We start traversing the list in the 
reverse order, which means starting from the segment with a higher sequence 
number toward the lower ones in the order (traversing prev link in the list), loops 
2687 – 2690. We break if (a) we fi nd a segment with start sequence number at the 
maximum same as sequence number of the new segment or (b) we have traversed 
the entire list. 

 We would like to check if the new segments partially or fully overlap with any 
of the existing segment. This may happen as a result of retransmissions when both 
the original transmissions and retransmissions reach the receiver. Excessive reorder-
ing of segments in the network may result in this kind of scenario. In overlapping 
segment case, we are not at the end of the queue and the start sequence number of 
the new segment lies between the start and end sequence of the segment already 
in the queue. In case we have traversed the entire queue, the sequence space for 
the new segment is highest of all the queued segments. So, this new segment will be 
queued at the tail of the out - of - order queue, line 2708. 

 We can have a combination of any of the following scenarios: 

  1.      Queue(seq)  <  new_seg(seq)  <  Queue(end_seq)   
  2.      Queue(seq) = new_seg(seq)  <  Queue(end_seq)   
  3.      new_seg (end_seq)  < = Queue(end_seq)   
  4.      new_seg(end_seq)  >  Queue(end_seq)   

  A. If conditions 1, 2, and 3 are TRUE, the new segment is completely covered 
by one of the segments in the out - of - order queue (Fig.  11.14 ). In this case, we set 
the DSACK by calling  tcp_dsack_set()  and we free the new segment, line 2698. If 
the SACK block corresponding to the selected segment exists in the queue, we need 
to shift the SACK block at the head of the SACK array,  tp → selective_acks[0] , as 
per RFC 2883 (see Fig.  11.15  b). Otherwise we need to create a SACK block with 
the sequence space of the new segment. We call  tcp_sack_new_ofo_skb()  to manip-
ulate the SACK array.      

 This is a duplicate segment, and the list need not be manipulated because all 
the bits in the new segment are already present. We only need to update DSACK 
information and create a new SACK block with the same start and end sequence 
as of the new segment. 

 B. If conditions 1 and 4 is true, the new segment partially overlaps the segment 
in the queue (Fig.  11.16 ). In this case we set a duplicate SACK by calling  tcp_dsack_
set()  with sequence space of the new segment at line 2698. We insert the new 
segment just after the identifi ed segment.   

    Figure 11.14.     DSACK block.  



 In the above case, we never know how many segments are being covered by 
the new segment. So, we traverse the segments ahead of the overlapping segment 
to check this in the loop, lines 2711 – 2720. We remove the segments that are covered 
by the new segment and also modify DSACK block. 

 C. If conditions 2 and 4 are true, new segment completely covers the identifi ed 
segment in the queue (Fig.  11.17 ). In this case we are sure that the identifi ed segment 
needs to be removed from the queue because all the bits are covered by the new 
segment. We insert the new segment ahead of the identifi ed segment, line 2795. We 
try to remove all the segments in the queue which are covered by the new segment 
ahead in loop 2711 – 2720. Finally, add the new SACK block to  tp → selective_ack[] . 
We will see if the duplicate SACK is generated for this case.   

 We don ’ t fi nd any overlapping segments for the new segment, and the new 
segment should be added just after the identifi ed segment at line 2708. We are here 
after queuing the new segment in its proper place on the out - of - order queue. We 

    Figure 11.15.     Generating DSACK blocks.  

    Figure 11.16.     DSACK blocks generated in case new out - of - order segment spans across several 

segments in an out - of - order queue.  
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have queued the new segment in the list in the correct place — that is, just after the 
segment whose initial sequence number is below the initial sequence number of the 
new segment. But we don ’ t know about the end sequence number of the new 
segment whether it spans across a few segments ahead of it. Now we need to check 
for all that segments those are covered partially/fully by the new segment as they 
need to be removed. 

 We traverse the list from the position where we have inserted the new segment 
in forward direction (accessing  skb → next ) in loop 2711 – 2720. The list is traversed 
until either (a) we have traversed the entire list (line 2711) or (b) the new segment 
extends into the next segment, line 2712. If these two conditions are not TRUE, the 
new segment does not cover the next segment in the list completely (line 2713). 

 In each iteration, we remove the segment that is being covered by the new 
segment at line 2717 and also extend DSACK information at line 2718. Here 
DSACK is extended until the end of the segment being covered. Once we get a 
segment that is partially covered by the new segment, DSACK is extended until the 
end of the new segment and we break. 

 Let ’ s take an example where we received a new out - of - order segment [seq n , 
end_seq n ] when we already have segments in the out - of - order queue as shown in 
Fig.  11.18 . The segment fi nds its place after segment [seq 1 , end_seq 1 ] in the out - of -
 order queue as seq 1  <  seq n  as shown in Fig.  11.19 . Segment [seq 2 , end_seq 2 ] is com-
pletely covered by the new segment, so it is removed from the out - of - order queue 
as shown in Fig.  11.20 . DSACK generated for the new segment is shown in 
Fig.  11.21 .   

 The last step to process D - SACK is to call  tcp_sack_new_ofo_skb()  from tcp_
data_queue() at line 2729. We need to reorganize SACK information. If we already 

    Figure 11.17.     DSACK blocks generated in case new out - of - order segment completely covers 

segment in out - of - order queue.  

    Figure 11.18.     New segment covers segment 1 and segment 3 partially and segment 3 fully.  



have SACK block adjacent to the sequence space of the DSACK block generated 
for the new overlapping segment, we need to bring it to the beginning of the SACK 
array. Otherwise we need to create one. This is done in  tcp_sack_new_ofo_skb() . 

  11.8.1    tcp_sack_new_ofo_skb()  

 We are called from tcp_data_queue() after the new segment has found its place in 
the out - of - order queue. We need to generate a SACK block for the new segment 
that can be an extension of any of the existing SACK block. If the new segment has 
overlapping sequence space with any of the existing segments in the out - of - order 
queue, we have already generated DSACK for this segment before being called. In 
this case we check if there exists any of the SACK blocks adjacent to the sequence 
space of the DSACK generated. Since SACK blocks are arranged in  tp → selective_
acks[]  in the order they have arrived, so we need to search for all the SACK blocks 
in the array in loop 2405 – 2414 (cs  11.47 ). If we fi nd a SACK block with sequence 
space overlapping with the sequence space of DSACK at line 2406, the sequence 
fi eld of the SACK block is extended to take care of DSACK sequence space in 
 tcp_sack_extend()  itself. We need to get the identifi ed SACK block to the top of the 
SACK list ( tp → selective_acks[0] ) in loop 2408 – 2409. We look at the possibility of 
eating up SACK blocks covered by the new SACK block by calling  tcp_sack_
maybe_coalesce()  at line 2411 and then returning  .   

    Figure 11.19.     Position os new segment in out - of - order queue.  

    Figure 11.20.     Segment 2 is eaten by new segment.  

    Figure 11.21.     DSACK generated for the new segment.  
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 In case we are not able to fi nd any SACK block of interest, a new SACK block 
is generated matching the DSACK sequence space, lines 2432 – 2433, and is placed 
at the top of the SACK array. We can ’ t send more than four SACK blocks. So we 
need to remove the furthest SACK block from the array in case we are going to 
add a fi fth SACK block. Since the new SACK block needs to be added at the top 
of the array, we generate space for it in a loop 2427 – 2428 by shifting the SACK 
blocks toward the end of the array by one position traversing the array in the reverse 
direction. 

 For the example considered in Section  11.8 , SACK blocks are arranged as 
shown in Fig.  11.22 a. After call to  tcp_sack_maybe_coalesce()  SACK blocks are 
arranged as shown in Fig.  11.22 b. Segment [seq 1 , end_seq 1 ] and segment [seq 3 , end_
seq 3 ] are partially covered but [seq 1 , end_seq 1 ] is fully covered. So, it reduces to one 
extended SACK block [seq 1 , end_seq 3 ].    

  11.8.2    tcp_sack_maybe_coalesce()  

  tcp_sack_maybe_coalesce()  is used to see if the new extended SACK block extends 
into any of the existing SACK block region (cs  11.48 ). If that is the case, all those 

    cs 11.47.      tcp_sack_new_ofo_skb().   



    Figure 11.22.     Organization of SACK blocks after new out - of - order segmentarrived.  

SACK blocks are removed from the selective ACK array and is coalesced with the 
new extended SACK block. We check if the fi rst SACK block overlaps with any of 
the existing SACK block (in the outer loop 2365 – 2377) at line 2366. We traverse 
through the SACK blocks starting from the second SACK block. If we fi nd any of 
the SACK blocks being overlapped with the new SACK block (zeroth SACK 
block), we need to remove the SACK block from the array by shifting the SACK 
block by one position toward the beginning (loop 2374 – 2375). The removed SACK 
block is already merged with the new SACK block (zeroth SACK block) by calling 
 tcp_sack_extend()  at line 2366, if the sequence spaces overlap.    

  11.8.3    tcp_sack_extend()  

 tcp_sack_extend() tries to fi nd the possibility of extending the SACK block if the 
sequence space provided to the routine overlaps with the SACK block. We are 
extending the SACK block with respect to the sequence space, provided that the 
following conditions are satisfi ed at line 2299: 

   •      The start of the sequence space is at maximum equal to the end sequence of 
the SACK blocks.  

   •      The start sequence of the SACK block is at maximum equal to the end of the 
sequence space.    

 If either of the conditions is FALSE, we will have a hole in the sequence space. 
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 Next we check if the left edge or the right edge of the SACK block can be 
extended, depending on the new sequence space lines 2300 – 2303. 

  1.     sequence space [seq, end_seq] that can ’ t be extended using tcp_sack_extend() 
with the SACK block(sp) as there is a hole in the sequence spaces and the 
SACK block, refer Fig.  11.23 .    

  2. sequence space [seq, end_seq] that can be extended using tcp_sack_extend() 
with the SACK block(sp) as the sequence spaces and the SACK block are 
overlapping (see Fig.  11.24 ).         

  11.8.4    tcp_ofo_queue()  

 This routine checks if the new in - sequence data segment received fi lls the hole in 
the received out - of - sequence data so far (cs  11.50 ). It checks sequence spaces of the 

    cs 11.48.      tcp_sack_maybe_coalesce().   

    cs 11.49.      tcp_sack_extend().   



    Figure 11.23.     Sequence spaces are not overlapping, not eligible for SACK extension.  

    Figure 11.24.     Overlapping sequence spaces, eligible for SACK extension.  

    cs 11.50.      tcp_ofo_queue().   
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segments in the out - of - order queue. If we have fi lled a hole, all the in - sequence data 
are transferred from the out - of - order queue to the receive queue. One thing that 
we need to remember is that the new in - sequence data segment that fi lls the hole 
is already processed and  tp → rcv_nxt  is also modifi ed to point to the end of this 
segment before we are called.   

 We loop in 2485 – 2511 until we have traversed all the segments in the out - of -
 order queue or we fi nd another hole in the sequence space (line 2486). We unlink 
all those segments from the out - of - order queue which are covered partially or fully 
by tp → rcv_nxt and place them the receive queue. In each iteration, we update tp →
 rcv_nxt to the end sequence of the segment which is moved from the out - of - order 
queue to the receive queue at line 2508 because this is the sequence number 
received in - sequence so far. If the new segment doesn ’ t cover any of the segment 
in the out - of - order queue but just fi lls the gap at the boundary, we need not process 
DSACK. If the new segment partially or fully covers any of the out - of - order seg-
ment ’ s sequence space, the condition at line no 2489 will be true. Once again, we 
check if the out - of - order segment is covered fully; if so, the condition at line 2491 
will be true and we set the end of the DSACK block to the end of the segment. 
DSACK mark is set to the end of the segment just to make sure that in the next 
iteration we make correct judgment about the DSACK. We call  tcp_dsack_extend()  
to either initialize DSACK block if it does not exist else extend the same. In case 
we have overlapping out - of - order segments, in the next iteration we will once again 
have to extend DSACK. In this case, DSACK will be generated for which the end 
sequence will be within the ACK sequence, which is a valid case. 

 Finally we remove all those segments partially or fully covered by the new 
segment from the out - of - order queue (line 2506) and queue them in the receive 
queue (line 2507). In both examples explained below, we have the following SACK 
and DSACK blocks before we reorganize SACK blocks in  tcp_sack_remove(). tcp_
sack_remove()  is called immediately after this routine to remove any SACK blocks 
that are covered by  tp → rcv_next . 

 Let ’ s see how it works with the help of an example. If we have two segments 
received out - of - order as shown in Fig.  11.26 . Sequence space for the received data 
is shown in Fig.  11.25 . There is only one segment in the receive queue as shown in 
Fig.  11.27 . We take two different examples where different scenarios are presented 
in a way that a hole is fi lled by a new segment and how DSACK is generated.   

 We get segment that partially covers segment [seq 1 , end_seq 1 ] as shown in Fig. 
 11.28 . such that seq 1   < =  tp → rcv_nxt   <  end_seq 1 . Once we have gone through process-
ing in  tcp_ofo_queue() , the receive queue looks as shown in Fig.  11.29 . This queue 
will have overlapping segments since we don ’ t do any truncation in this routine. The 
receive routine takes care of this while reading data. The out - of - order queue will 

    Figure 11.25.     Sequence space for received out - of - order segments.  



    Figure 11.26.     Out - of - order segments.  

    Figure 11.27.     Segment is receive 

queue.  

    Figure 11.28.     New ACK partially covers a segment in an out - of - order queue.  

    Figure 11.29.     Out - of - order queue after queuing a new segment.  

be left with only one segment [seq 2 , end_seq 2 ] because it is not being covered by 
 tp → rcv_nxt  as shown in Fig.  11.30 . The fi nal sequence space is shown in Fig.  11.31 .   

 Next we take an example of the case where the new in - sequence data segment 
fully covers the segment as shown in Fig.  11.32 . The sequence spaces before we enter 
the routine are  

   tp → rcv_nxt   >  end_seq 1   
  n   =    tp → rcv_nxt     −    end_seq 1    
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 Here, segment [seq 1 , end_seq 1 ] is covered completely by the new segment so it is 
removed from both the queues as all the bits are already there in the receive queue 
as shown in Fig.  11.33 . The out - of - order queue will have only one segment in the 
queue [seq 2 , end_seq 2 ] as shown in Fig.  11.30 . The fi nal sequence space will show 
only one hole as shown in Fig.  11.34 .   

 In both cases, the DSACK block will be same because the specifi cations say so. 
The DSACK block should be completely covered by a big SACK block, and 
minimum their boundaries should match exactly. See Fig.  11.35 .    

    Figure 11.30.     Only one segment 

is left in an out - of - order queue 

as an in - sequence segment is 

moved to receive queue.  

    Figure 11.31.     Sequence space after shuffl ing 

of a segment from an out - of - order queue to 

a receive queue.  

    Figure 11.32.     New ACK covers the sequence space of one segment completely in the out - of -

 order queue.  

    Figure 11.33.     New segment is queued on the receive queue.  



    Figure 11.34.     Sequence space after the new 

segment is moved to receive queue.  

    Figure 11.35.     SACK blocks adjusted to 

accommodate DSACK block because of 

segment received overlapping with 

segment in out - of - order queue.  

  11.8.5    tcp_sack_remove()  

 We are called from  tcp_data_queue()  after a hole in the sequence space of the 
received data is fi lled by a new data segment. In this process we have removed some 
of the segments from an out - of - order queue to the receive queue. We need to modify 
SACK blocks in this case. Here we look out for the SACK blocks which are covered 
by  tp → rcv_nxt . This is the only place where we check if SACK information needs to 
be reset because we might have removed all the segments from the out - of - order 
queue as the hole is being fi lled (lines 2447 – 2451, cs  11.51 ). We return if the out - of -
 order queue is empty after resetting the SACK state. We traverse all the SACK 
blocks currently active for the session (loop 2453 – 2469). Those SACK blocks that are 
fully covered by the latest event of packet arrival need to be removed. If the start 
sequence of the SACK block is covered by tp → rcv_nxt, the end sequence necessarily 
has to be covered also. We take care of this aspect in  tcp_ofo_queue() . If we fi nd one 
such SACK block, we remove it by left - shifting all the SACK blocks one position 
starting from the SACK block next to the one that has been identifi ed until the end 
of the SACK block array (loop 2462 – 2463). Finally, we sync up the SACK count in 
case any SACK block has been removed, and we also update effective number of 
SACK blocks (considering DSACK) at lines 2471 – 2472. An effective number of 
SACK blocks ( tp → eff_sacks ) is used to build a SACK block in the TCP header.   

 If we consider the example in Section  11.8 , the fi nal SACK blocks will have a 
SACK block with sequence space [seq 1 , end_seq 1 ] removed. The reason for this is 
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that the SACK block is covered entirely by  tp → rcv_nxt  because the new data 
segment fi lled the hole. Figure  11.36  is the scene of SACK blocks before we are 
called, and Fig.  11.36 b is after the SACK block [seq 1 , end_seq 1 ] is removed.     

  11.9   OVERVIEW OF CORE  TCP  PROCESSING 

 An overview of core TCP processing is presented in Fig.  11.37 .    

  11.10   SUMMARY 

  tp → pred_fl ags  is the way to implement SLOW and FAST paths for TCP packet 
processing. It takes into account TCP header length, fl ags (other than ACK/PSH), 
and window advertised. This makes life simpler in a fast path when we have data 
fl ow only in one direction and we do minimum processing to process data and send 
back ACK and escape so many conditional checks. 

 tp → ucopy manages a user buffer and keeps information about the details such 
as 

   •      Pointer to the thread that wants to read data from TCP socket  
   •      Pointer to user buffer  
   •      Length of data to be read in the user buffer    

    cs 11.51.      tcp_sack_remove().   



 TCP data are directly copied to the user buffer if they are received in - sequence 
and if a receiver is installed for the socket and we are processing the packet in a 
user context. 

 The TCP timestamp option is used to check PAWS in  tcp_paws_discard() . 
 The new timestamp from the arrived segment is replaced by the older one after 

all the conditions applied in  tcp_replace_ts_recent() . 
 Incoming ACK is processed in  tcp_ack() . It processes the following: 

   •      Acknowledgment sequence number to clean up retransmit queue  
   •      SACK/DSACK blocks  
   •      ECE fl ags  
   •      Duplicate ACKs  
   •      Congestion control    

 Incoming SACK/DSACK are processed in  tcp_sacktag_write_queue() . 
  tcp_packets_in_fl ight()  gives a number of packets that are considered consum-

ing network resources. This is a simple calculation based on the total number of 
packets transmitted minus the number of packets that have left the network (lost  
 +   SACKed). 

  tcp_clean_rtx_queue()  removes segments from the retransmit queue which have 
been ACKed. 

  tcp_cong_avoid()  calculates congestion window depending on whether we are 
in a slow - start phase or in congestion recovery. 

  tcp_ack_probe()  checks if we need to stop probing timer. 
  tcp_urg()  processes TCP urgent data if there is any in the segment being 

processed. 
  tcp_data_queue()  takes care of out - of - order segments and is also called to 

manage a socket ’ s memory pool. 

    Figure 11.36.     SACK blocks adjusted to follow the DSACK format.  
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    Figure 11.37.     Core TCP processing.  

  tcp_data_snd_check()  transmits any data that are pending in the transmit queue 
and that the congestion state allows. This is called once an incoming segment is 
processed completely. 

  tcp_ack_snd_check()  sends out ACK if any ACK is pending. This is called after 
the call to  tcp_data_snd_check() ; othewise we may end up sending two segments —
 ACK and data segments — separately.    

                                                                                                                                                                                             



445

12

TCP/IP Architecture, Design, and Implementation in Linux. By S. Seth and M. A. Venkatesulu
Copyright © 2008 the IEEE Computer Society

  TCP  STATE PROCESSING     

     Sender TCP sends a data segment and it expects ACK for the sent data. The rate 
of transmission of data increases with the ACK received because the congestion 
window increases exponentially in the slow - start phase. We keep increasing the data 
transmission rate until we saturate the network by utilizing full network capacity. 
On further increasing the transmission rate, we may see one of the intermediate 
routers dropping packets because it is not able to handle it. In an ideal condition, 
this causes all the packets transmitted within the window to be dropped as they are 
all transmitted in a row. TCP comes to know about the loss when it doesn ’ t get ACK 
for the fi rst segment transmitted in the current window and it times out. We need 
to start retransmission of the lost segments in such a case and slow down the rate 
of data transmission. 

 Above is one of the examples of congestion. There are different situations 
where we can sense congestion. One of the algorithms where we can detect early 
congestion is fast recovery and fast retransmission. With this algorithm, we can 
detect loss much before we experience timeout by counting duplicate ACKs. 

 Using an ECN (explicit congestion notifi cation) bit in the IP header, one of the 
intermediate routers can tell the receiver TCP about the congestion it is encounter-
ing. This is a proactive approach from the router to notify TCP much in advance 
about the congestion state. The receiver TCP then sends a congestion notifi cation 
to the sender by setting an ECE fl ag in the TCP header. This way the sender TCP 
reduces the rate of data transmission which can save us from loss due to a packet 
being dropped at the router facing congestion. 

 There are certain smart algorithms designed that will detect false retransmis-
sions in the case of both (a) fast retransmission and fast recovery and (b) RTO. With 
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the help of these algorithms, we can get better network performance when we enter 
into the loss state because packets are being delayed in the network or ACKs get 
lost. 

 In this chapter we are going to see handling of the TCP congestion state. We 
will see under what conditions we enter and exit the TCP congestion state. Then we 
will also learn how we control data transmission and retransmission in the conges-
tion state. We will cover the calculation of reordering length and logic of the retrans-
mission of lost segments. Complete congestion control logic is implementation in 
 tcp_fastretrans_alert() . We divide the routine into different sections: 

   •      Processing in the TCP congestion state  
   •      Processing exit from the congestion state     

  12.1   OVERVIEW OF STATE PROCESSING 
(see  cs   12.1  unless mentioned) 

 Let ’ s start with  tcp_fastretrans_alert() . We call this routine  from tcp_ack()  on recep-
tion of an ACK segment after processing the ACKed segment and the SACKed 
segment only when the ACK is found dubious (see Section  11.4.2 ). It simply means 
that we enter here when we sense congestion for the fi rst time or to process TCP 
already in the congestion state (other than OPEN state). We implement the follow-
ing algorithms in this routine: 

  1.     False retransmissions  
  2.     Recovery from a different congestion state  
  3.     Sensing a false congestion state due to delay in transmission of packets  
  4.     Recovering to an open state from all the congestion states here    

 We mark the segment as duplicate (line 1494, cs  12.1 ) only if its ACK sequence 
number is the same as the previously ACKed sequence number and any of the bits 
in  FLAG_NOT_DUP  is not set for this segment (see Section  11.4.2 ).   

 We need to complete the preliminary work before processing TCP states. We 
check if all the packets sent out are ACKed by the segment being processed at line 
1498. In such cases, the SACK count is also reset because Reno implementation sim-
ulates SACKed segments based on duplicate ACKs. In the case where SACK is sup-
ported, we account for the SACK count once a SACKed - out segment is ACKed 
in - sequence (see Section  11.4.6 ). But in the case of Reno, segments are never marked 
SACKed out so we take care of the Reno Sack count here. In the case where the 
SACK count is zero, the FACK count should also necessarily be to zero (line 1502) 
because the FACK count is derived only if at least one segment is SACKed out. 

 Irrespective of whichever state we are currently in, if an ECE fl ag is found in 
the TCP header, we reset a prior slow - start threshold at line 1507. The reason for 
this is congestion that is sensed by one of the intermediate routers. If we don ’ t do 
this and we are about to undo from a non - open state, we may end up increasing the 
congestion window to a very high value in  tcp_undo_cwr() , thereby aggravating the 
congestion conditions. 

 In the case where the SACK count is nonzero, we check for reneging SACKs. 
We check this by calling  tcp_check_sack_reneging() . Reneging SACK means that 
we need to destroy all the SACK information so far sent by the receiver because 



either the receiver is buggy or the receiver is not able to handle out - of - order 
segments correctly because of any reason. 

 Next we check if DATA is actually lost in the case where the  FLAG_DATA_
LOST  fl ag is set. This fl ag is set in  tcp_sacktag_write_queue()  when we get SACK 
that covers  tp → high_seq . We enter  tcp_sacktag_write_queue()  only if SACK is 
enabled and we received a SACK block. If we are in the congestion state and we 
receive a SACK block that covers  tp → high_seq , it means that the new segment 
transmitted after the lost segment was retransmitted got SACKed. This gives us 
indication that the new segment reached before the retransmitted segment reached 
the receiver. In this case, we can assume that the data in the window are lost. We 
check for some more conditions here before declaring that the data are lost. 

   •      The very fi rst condition we check here is if in - sequence data acknowledged 
so far is below  tp → high_seq , which means that the segment covering  tp →
 high_seq  has reached the receiver as an out - of - order segment that has been 
SACKed (line 1515).  

   •      We are in any congestion state other than an OPEN state at line 1516. It may 
happen that TCP has entered into the congestion state incorrectly because of 
either reordering or fast RTO. In such cases, we are able to undo from the 
congestion state with  tp → high_seq  already set. In this case, we may have 
condition at line 1515 true with condition at line 1516 false.  

    cs 12.1.      tcp_fastretrans_alert() .  
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   •      Finally we check if the number of FACKed segments is greater than the reor-
dered segments at line 1517. This surely means that some of the segments at 
the start of the retransmit queue can be considered lost. The segments that 
need to be marked lost are all those segments from the beginning of the queue 
which are not yet SACKed.    

 If all the above conditions are TRUE, we are in a non - open state and 
have SACKed  tp → high_seq , and facked - out segments are more than the reordering 
count. In such cases, we try to mark all those retransmitted segments from the 
start of the retransmitted queue as lost until we fi nd the fi rst SACKed segment. This 
is because the reordering length is the difference between the facked - out segments 
and the position of the fi rst SACKed - out segment lower down the order in the 
retransmit queue (see Section  11.6 ). Call  tcp_mark_head_lost()  at line 1518. This is 
a special case where we may need to mark the head lost because it may happen that 
we are not already in the fast retransmit mode. With the indication of a SACK block 
covering  tp → high_seq , we can start fast retransmit and we don ’ t cover this case 
anywhere. 

 At line 1530 (see  fast_netrans_alert() ), check if we can undo from any of the 
congestion states in case we have ACKed data beyond  tp → high_seq . While entering 
into any state other than  TCP_CA_Open , we mark highest sequence number so far 
transmitted as  tp → high_seq . 

 If we have come to the next stage, it means that either we are unable to undo 
from congestion states or we are going to enter any of the non - open states other 
than loss state. Whether we received a duplicate ACK or received an ACK for the 
new data, for any state, processing is done here. We get TCP states processed beyond 
line 1569 (cs  12.5 ). 

 If we are at line 1631 (cs  12.8 ), it means that we have entered the recovery state 
( TCP_CA_Recovery ) or we were already in this state. The fi nal step is to estimate 
the number of segments lost based on the reordering or number of duplicate seg-
ments received (in the case of Reno) by calling  tcp_update_scoreboard()  and then 
fi nally we need to retransmit the lost segment (i.e., fast retransmission). In the case 
where the congestion window allows transmission of new data and we have new 
segments to be transmitted in the write queue, we can do so. The SACK option 
provides much better control on the choice of segments that need to be retransmit-
ted because we know the exact holes in the data segments received by the receiver. 
We also moderate the congestion window each time we come here.  

  12.2    TCP  STATES 

 The following TCP states are processed here: 

   •       TCP_CA_CWR   
   •       TCP_CA_Disorder   
   •       TCP_CA_Recovery   
   •       TCP_CA_Loss     

 We will cover the processing of each state one at a time. 
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  12.2.1     TCP _ CA _ CWR   

 This is set by calling  tcp_enter_cwr()  under the following conditions: 

        Driver Senses Local Congestion.     This TCP state indicates that the congestion 
window has been reduced. Mainly the reason is that the device is congested. The 
device is not able to transmit a segment because of huge traffi c for this packet 
priority at the device level.  

  We Received an  ECE  Flag Set in a  TCP  Header.     The other reason this TCP state 
is entered is when we get a TCP segment that has an ECE (explicit congestion echo, 
RFC - 3168) fl ag set. A receiver TCP sets this fl ag in the TCP header when it receives 
a CE segment (indication of congestion in the IP header, set by any of the routers 
on the way). On reception of a TCP segment with an ECE fl ag set, ACK is consid-
ered dubious because  FLAG_CA_ALERT  includes an ECE fl ag. Suppose we are 
in an open state when we got a TCP segment with an ECE fl ag set, and we enter 
 tcp_fastretrans_alert()  from  tcp_ack() . Here we need to process OPEN state; and if 
we have not sensed any congestion, we call  tcp_try_to_open() . Here we call  tcp_
enter_cwr()  to enter into the  TCP_CA_CWR  state.  

   ICMP  Resource Quench Is Received over the Connection.     The error message is 
generated by the router to the source of the packet in case it is about to drop the 
packet. This ICMP message is outdated, but some of the router implementations still 
support it.  RFC 1122  suggests that on reception of such an error message, TCP is 
supposed to back off the congestion window in order to slow down the transmission 
rate. Instead of resorting to a slow start, Linux enters into the recovery state by 
simply setting a slow - start threshold to half of the congestion window. We handle the 
ICMP resource quench error in tcp_v4_error() by calling tcp_enter_cwr(). Section 
 12.2.2  explains what happens when we enter the TCP_CA_CWR state in terms of a 
congestion window, a slow - start threshold, and a highest sequence mark.     

  12.2.2   Undoing from   TCP _ CA _ CWR   

 We process the  TCP_CA_CWR  state in  tcp_fastretrans_alert()  and exit the conges-
tion state only if we get ACK for the last byte transmitted at the time of entering 
the CWR state line 1541 (cs  12.2 ). 

 We adjust the send congestion window to a minimum of current congestion 
window and slow - start threshold value by calling  tcp_complete_cwr() . We don ’ t 
increment the congestion window on reception of ACK in case we are in the CWR 
state because of a restriction imposed by  tcp_may_raise_cwnd() . We will see in a 
later section that the congestion window can be reduced on reception of ACK in 
this state (until we ACK  tp → high_seq ). We return to the open state at line 1543 
(cs  12.2 ) and go ahead for next step of processing open state.     

  12.3   PROCESSING OF DUPLICATE/PARTIAL  ACK  S  IN 
RECOVERY STATE 

 We receive a duplicate ACK; and if it is Reno implementation, we call  tcp_add_
reno_sack()  to increment SACK count emulated for Reno at line 1573 (cs  12.5 ). We 
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also check if the reordering length needs to be modifi ed because of the duplicate 
ACK received. tcp_check_reno_reordering() is called from tcp_add_reno_sack(). 
The idea to check reordering is simple. If the sum of lost and sacked segments is 
more than the packets transmitted, it means that some of the segments that were 
considered lost and retransmitted were actually not lost but instead reached late. 
This happened because of reordering of segments. In this case the original transmis-
sions and the retransmissions both got received, and duplicate ACK was generated 
for both. 

 In the case where sacked - out segments have exceeded our expectations at line 
1195 (cs  12.21 ), we adjust the sacked - out segments as the difference between packets 
transmitted and lost segments at line 1196. Then we call  tcp_update_reordering()  to 
update the reordering length to a number of packets transmitted in the current 
window at line 1197 (cs  12.21 ). In Reno, we have no idea which segment caused the 
generation of duplicate ACK and we are equating packets sacked and packets lost 
to exceed the total length of the transmission; we need to assume that the entire 
transmission is reordered. 

 If we are at line 1574 (cs  12.5 ), it is because we received ACK paritially for new 
data. We will try to remove Reno SACKs in case of Reno implementation by calling 
 tcp_remove_reno_sacks()  at line 1577 (cs  12.5 ). The number of segments ACKed is 
calculated based on number of packets transmitted ( tp → packets_out ) before and 
after arrival of the ACK at line 1575 (cs  12.5 ). When new data are ACKed,  tp →
 packets_out  is decremented by the number of segments covered by the new ACK 
sequence number in  tcp_clean_rtx_queue() . 

 We check if we can undo from received partial ACK by calling  tcp_try_undo_
partial()  at line 1578 (cs  12.5 ). We check if the partially ACKed data exist because 
of original transmission and not retransmission. We don ’ t switch to an open state 
here but only revert to a congestion state prior to entering congestion in case we 
received ACK for original transmissions. The return value of  tcp_try_undo_partial()  
will decide if we want to mark more segments as lost and carry on with retransmits 
later at line 1634 (cs  12.8 ). TRUE return value is considered similar to duplicate 
ACK because duplicate ACK will force  tcp_update_scoreboard()  to be called later 
at line 1632 (cs  12.8 ). 

  12.3.1     tcp _ remove _ reno _ sacks ()  

  tcp_remove_reno_sacks()  recalculates SACKed - out segments based on the ACK we 
received. Since Reno implementation can ’ t see what all the segments have reached, 
it assumes that each duplicate ACK means that a segment has reached the receiver 
after the hole. If SACK count is  n , it means that  n     −    1 segments after one hole has 

    cs 12.2.      tcp_fastretrans_alert() .  
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reached the receiver (Fig.  12.1 ) when the reality may be very different. If we have 
ACKed  n    +   1 segments, where  n  is the number of sacked - out segments (duplicate 
ACKs), Reno SACK counter is reset because all the sacked out segments are 
covered by the ACK (line 1217, cs  12.3 ).   

 Otherwise if segments covered by ACK is less than SACKed - out segments, we 
decrement the SACKed - out segments by ACKed segments  − 1 (1 for hole) at line 
1219. In the above example if fi ve segments are ACKed, then the scenario would 
be as shown in Fig.  12.2 .   

 Finally, we update Reno reordering length by calling  tcp_check_reno_reorder-
ing()  at line 1221 in  tcp_remove_reno_sacks()  as explained in Section  12.6.7 .  

  12.3.2     tcp _ try _ undo _ partial ()  

 Here, we don ’ t want to leave recovery and enter an open TCP state because of the 
partial ACK. In the case of Reno implementation or with SACK, if the FACKed - out 
segment is greater than reordering length, we want to mark new segments as lost 
for retransmission by calling  tcp_update_scoreboard()  because partial ACK has 
fi lled up some of the holes. That is the reason why we set the fl ag if any of the above 
two cases is true. If we received partial ACK because the packet got delayed and 
reached the receiver before the retransmitted segment could reach, we will try to 

    Figure 12.1.     Reno SACK simulation.  

    Figure 12.2.     Partial ACKing causes recalculation of SACK.  

    cs 12.3.      tcp_remove_reno_sack() .  
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slightly improve the condition by opening a congestion window to increase the fl ow 
of data transmission. If the ACK covers all the retransmitted segments, it shouldn ’ t 
necessarily mean that retransmitted segments fi lled the hole. It may also happen 
that the original packets that reached the receiver prior to retransmissions got 
delayed. Is such cases we are able to undo in case we received partial ACK. It may 
also happen that only a few of the retransmitted segments got covered by the ACK. 
If all the retransmitted segments got ACKed,  tp → retrans_out  should be zero and 
we reset a retransmit timestamp at line 1405 (cs  12.4 ). We update the reordering 
length because some of the SACKed - out segments are eaten up by the ACK by 
calling  tcp_update_reordering()  at line 1407. Then we call  tcp_undo_cwr()  with a 
second argument as 0. It means that we can set a congestion window to the value 
prior to entering the congestion state but can ’ t set ssthresh to the value prior to 
entering congestion. This means that we can inject more segments into the network, 
but the rate of increment of the congestion window will be 1 per RTT. Since we are 
able to undo from partial ACK, we can expect more segments to be delayed in the 
network. That is the reason we don ’ t want to retransmit more segments but can 
either transmit new segments or do forward retransmissions (reset fl ag) at line 1417. 
We return the fl ag at line 1419. We return TRUE in case we are not able to undo 
from partial ACK, and Reno Implementation or Facked out segments are more than 
current reorder length (line 1398). Otherwise we return FALSE. Reno implementa-
tion does not take care of SACK, with SACK implementations, we can predict 
reordering of Segments in the network and congestion state. This is the reason we 
return TRUE for every partial ACK for Reno implementations. Reno is highly 
sensitive to Partial ACKs because SACK implementation Provides much closer 
estimate of re - ordering.     

  12.4   PROCESSING OF DUPLICATE/PARTIAL  ACK  s  IN LOSS STATE 

 When we enter a loss state, we assume that all the segments from the last window 
which are not already marked either lost or SACKed are lost. In most of the cases 

    cs 12.4.      tcp_try_undo_partial() .  



when a retransmit timer times out, either we have lost all the segments from the 
last window or we are experiencing  spurious retransmission  assuming that all the 
packets are following the same path. But rate of transmission can be infl ated with 
loss state with Reno implementation. We enter loss state when: 

  a.     The retransmit timer times out by calling  tcp_enter_loss()  from 
 tcp_retransmit_timer() .  

  b.     We get SACK reneging SACK by calling  tcp_enter_loss()  from  tcp_check_
sack_reneging() . Here we are not sure of the SACK state of the receiver, so 
we discard all the data transmitted within the last window and enter into a 
loss state.  

  c.     PMTU has changed and needs to do a path MTU discovery and needs to 
retransmit everything that is not marked SACK/lost by calling  tcp_simple_
retransmit()  from  do_pmtu_discovery() . In this case we enter into a loss state 
but without reducing the congestion window to 1 but reduce the slow - start 
threshold to half of the congestion window, which means doing congestion 
avoidance. We don ’ t want to undo from the loss state here until we get ACK 
for  tp → high_seq  because the idea here is to just reduce the rate at which the 
congestion window should be increased on arrival of ACK.    

 We enter a loss state mostly when the retransmit timer expires — that is, when we 
don ’ t get ACK for the very fi rst segment transmitted in the current window within 
RTO time (see Section  10.2.2 ). Here we consider that all the segments that were 
transmitted within the window are lost and we transmit only the head of the retrans-
mit queue. When we get an ACK, we will know exactly as to what action should 
be taken depending on whether we received a duplicate ACK or ACK for the data 
that we retransmitted. In case we receive ACK for the retransmitted segment, it 
means that the loss is proven and we continue retransmitting lost segments. Or we 
receive partial ACK from the original segment, and we know that the packet got 
delayed in the network. In these cases, we undo from the loss state and in case of 
SACK implementation we enter into the open state, which may fi nally fall into the 
recovery phase. With Reno implementation, we continue with the loss state until 
 tp → high_seq  is ACKed (cs  12.5 ). We call  tcp_try_undo_loss()  to check partial 
ACKing in the loss state at line 1584. If we are able to undo, we return only if TCP 
state has not opened (cs  12.5 , line 1589). If the TCP state has opened, because of 
partial ACK we may look for the possibility of entering into the recovery state and 
we proceed with default processing of the TCP state at line 1592 (cs  12.5 ).   

  12.4.1     tcp _ try _ undo _ loss ()  

 Let ’ s see what happens when we receive duplicate ACK/partial ACK as a result of 
original segment reaching the receiver slightly late. Let ’ s take each case 
one - by - one: 

  1.     In the case where none of the segments was lost when the retransmit timer 
fi red, this happened because the packet got delayed in the network or there 
was a sudden spike in RTO. Here we retransmit the lost segment (head of 
the list) and wait for the fi rst ACK. We received an ACK that ACKs the head 
of the list from the window at the time when we enter the loss state. But the 
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ACK was generated for the original transmission and not for the retransmit-
ted segment which we can detect from the echoed timestamp. In this case we 
are able to undo from the loss state because the original transmission suc-
ceeded. In the case of Reno implementation, we don ’ t exit the state until we 
ACK something more than  tp → high_seq .  

  2.     In the case where packets are being routed through different internet paths, 
some of the packets are dropped and others are delayed, thus leading to 
retransmission timeout. In this case, out - of - order segments may reach the 
receiver generating duplicate ACKs (with SACK, in case SACK is enabled). 
In such cases, we know that all the segments from the last window is not lost 
and we should undo from the loss state. In such cases, we can exit from the 
loss state only in the case where SACK is enabled; otherwise we exit the state 
only when  tp → high_seq  is ACKed. RFC 1323 specifi es that the timestamp 
echoed with the duplicate ACK generated for out - of - order segment is from 
the segment that was last received in - sequence.    

 Under the above - mentioned situations,  tcp_may_undo()  returns TRUE. Let ’ s see 
what happens when we undo from loss state. We clear the  TCPCB_LOST  bit from 
each segment in the retransmit queue (loop 1427 – 1429, cs  12.6 ). This means that 
none of the segment is considered lost, and the loss counter is reset at line 1431. 
We also recalculate the segments that have left the network because they comprise 
two components: lost segments and SACKed segments. Since the lost - out segments 
equal zero, we initialize left - out segments to sacked - out segments. The number of 
retransmissions is zeroed out here at line 1435. If our TCP is Reno implementation, 
we will wait until  tp → high_seq  is acknowledged. Otherwise we enter the open state 

    cs 12.5.      tcp_fastretrans_alert() .  



because SACK implementations have good control over the congestion state. We 
may enter the recovery state depending on the number of segments SACKed out 
immediately.    

  12.4.2     tcp _ check _ sack _ reneging ()  

 This routine checks if we need to destroy all the SACK block received from the 
peer because it may be buggy. If so, we need to enter into the loss state because all 
the SACKed segments are marked lost. The indication is that the fi rst segment in 
the write queue is marked as SACKed at line 1032 (cs  12.7 ). This should never be 

    cs 12.6.      tcp_try_undo_loss() .  

    cs 12.7.      tcp_check_sack_reneging() .  
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the case because if the fi rst unACKed segment in the write queue has reached the 
receiver, then it should be ACKed as in - sequence data. If this segment is SACKed, 
it means that this in - order segment is still lying in the out - of - order queue even 
though there is no hole in the data received prior to this segment. In this case, we 
mark all the segments in the retransmit queue as lost by calling  tcp_enter_loss()  at 
line 1035. We refer to this routine with the second argument as 1, which means that 
we want to mark all the segments in the retransmit queue as lost and at the same 
time we don ’ t initialize  tp → undo_marker. tp → undo_marker  remains uninitialized, 
which means that we don ’ t want to undo from the loss state because we know that 
something is messed up at the receiver and so far it is not able to handle unacknowl-
edged segments properly and we need to retransmit all of them once again. We start 
the slow - start algorithm here. Transmit the fi rst segment in the retransmit queue at 
line 1037 and reset the retransmit timer at line 1038.     

  12.5   DEFAULT PROCESSING OF  TCP  STATES 
(see  cs   12.8  unless mentioned) 

 For default processing of TCP states we have a common code. We come here in case 
TCP has entered any of the congestion state and we received got an ACK for data 
that are below  tp → high_seq  (recorded at the time when we entered congestion 
state) under different conditions for each TCP state. We also enter here in case we 
are in the OPEN state and we received a fi rst duplicate ACK. We will discuss pro-
cessing of each state separately. Here we will discuss only the default processing of 
TCP state. We refer to cs  12.8 , line 1593 – 1634.   

 In case it is Reno implementation, we need to update the Reno SACK in case 
we have received a duplicate ACK. In case we have ACKed new data, we need to 
reset Reno SACK counters. Since Reno implementation has no idea which segment 
has reached the receiver out - of - order, it just increments the SACK counter on 
reception of every consecutive duplicate ACK by calling  tcp_add_reno_sack()  at 
line 1597. Similarly, it resets the SACK counter when new data are ACKed by calling 
 tcp_reset_reno_sack()  at line 1595. This way Linux TCP implementation simulates 
SACK for SACKless Reno implementation. 

 In case we have reached the default processing of TCP state and we have 
ACKed the new data line 1594, we reset Reno SACK information by calling  tcp_
reset_reno_sack()  (cs  12.9 ).   

 The next step is to check if we can undo from disorder state ( TCP_CA_Disor-
der ), which means that we have just sensed reordering but have not entered the 
recovery state. In this case we try to undo DSACK by calling  tcp_try_undo_dsack()  
at line 1601. It may happen that we received acknowledged  tp → high_seq  and recov-
ered from congestion to the OPEN state without undoing from the congestion state. 
So  tp → undo_marker  and  tp → undo_retrans  will still be nonzero. This means that we 
may still have retransmissions in the network which may reach the destination later 
generating DSACK. If we received a duplicate ACK containing DSACK from the 
window that got us into the congestion state causing  tp → undo_retrans  to become 
zero, we try to undo congestion window reduction. It means that the original trans-
missions for all the retransmitted data during the congestion state have reached the 
receiver generating DSACK. So, our retransmission was false. We won ’ t leave the 
current state (i.e.,  TCP_CA_Disorder ) but will reset the congestion state variables 



values that were set prior to entering the congestion state. We leave the  TCP_CA_
Disorder  state only when something above  tp → high_seq  is acked. 

 The next step is to see if we need to enter the fast - retransmission fast - recovery 
state ( TCP_CA_Recovery ). We check all the conditions to enter into the recovery 
state by calling tcp_time_to_recovery() at line 1603. We are here only if we have 
entered  tcp_fastretrans_alert()  in any of the four states: 

    cs 12.8.      tcp_fastretrans_alert() .  

    cs 12.9.      tcp_reset_reno_sack() .  
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  1.      TCP_CA_Open   
  2.      TCP_CA_Disorder   
  3.      TCP_CA_CWR   
  4.      TCP_CA_Loss     

 We discuss these once we discuss the processing of these states. If  tcp_time_to_
recover()  returns TRUE, it is an indication that we are entering into a fast - retrans-
mit fast - recovery state ( TCP_CA_Recovery ). In the case where the routine returns 
FALSE, we can ’ t enter into the recovery state. So, we check the possibility of enter-
ing the disorder or CWR state by calling  tcp_try_to_open() . The TCP disorder state 
indicates that packets are getting reordered in the network or we may have just 
recovered from the congestion state but are not yet completely undone (see Section 
 12.6.3 ). Before entering into the recovery state, we always fi rst enter into the dis-
order state. The disorder state is an initial indication of congestion as explained in 
Section  12.6.3 , where we discuss how we enter into the disorder state. 

 In the case where  tcp_time_to_recover()  returns TRUE, it is time to enter the 
fast - recovery state ( TCP_CA_Recovery ). Starting from line 1615, we mark  tp →
 high_seq  to the next sequence number to be transmitted ( tp → snd_nxt ).  tp → prior_
ssthresh  is reset here because we set it once again only if we have not received con-
gestion notifi cation. We set  tp → undo_marker  to the fi rst unacknowledged sequence 
number.  tp → undo_retrans  is set to  tp → retrans_out. tp → retrans_out  may be set while 
entering the recovery state in case we have undone from the loss state because of 
duplicate ACKs generated as a result of an out - of - order segment from the window 
that got us into the congestion state. Or we may have exited the loss state on recep-
tion of a partial ACK from the original transmission, and we can catch DSACKs 
from this window now. 

 The next step is to set  tp → prior_ssthresh  to the current value as returned by 
 tcp_current_ssthresh()  at line 1622.  tp_current_ssthresh()  returns maximum of  tp →
 snd_ssthresh  or three - fourths of the current congestion window. This is recorded so 
that we can revert to these values in case we are able to undo from this state (false 
entry into congestion state by calling  tcp_undo_cwr() ). Next is to bring down the 
value of the slow - start threshold, which is standard practice. We set the slow - start 
threshold to half of the congestion window or 2, whichever is maximum. 

 Call  TCP_ECN_queue_cwr()  to set the  TCP_ECN_QUEUE_CWR  fl ag, ensur-
ing that we send out the CWR bit with the new data segment to inform the other 
end that we have a reduced congestion window. 

 We are here if we have just entered the recovery state or we received a partial 
or duplicate ACK in the recovery state. In the next step we will see how we mark 
lost segments, and then we will learn how we select segments to be retransmitted 
starting from line 1631. We call  tcp_update_scoreboard()  to update lost segments 
within the window in two cases: 

  1.     If the segment we are processing is a duplicate ACK.  
  2.     In the case where the head of the segment has timed out and  tcp_head_

timedout()  returns TRUE (see Section  12.5.2 ).    

 In the case where we received a duplicate ACK, we may have updated reordering 
and also Facked out segments. We may need to update lost - out segments here for 



retransmission. Also, in the case where the head of the segment is timing out and 
we have entered into the recovery state because of this reason (see Section  12.5.2 ), 
we need to mark the head lost. Let ’ s see how we mark segments lost in  tcp_update_
scoreboard()  in Section  12.5.4 . 

 Next is to reduce the congestion window in case we have just entered the recov-
ery state or are processing ACK in the recovery state by calling  tcp_cwnd_down() . 
For each duplicate ACK that we receive in the recovery state, we make room for at 
least one segment to be transmitted or retransmitted. Even for Reno, we count each 
duplicate ACK as a sacked - out segment. The left - out segment will be incremented 
by 1.  tcp_cwnd_down()  initializes cwnd to a minimum of congestion window and 
packets in fl ight   +   1, making room for transmitting or retransmitting one segment. 
If SACK is implemented, we know exactly which segment to mark lost and retrans-
mit, but in the case of Reno implementation we just retransmit segments from the 
head of the list one at a time. 

 Next we call  tcp_xmit_retransmit_queue()  at line 1634 to initiate retransmission 
of the segments marked as lost. We may also do forward retransmissions here. Let ’ s 
see how  tcp_xmit_retransmit_queue()  works in Section  12.5.5 . 

  12.5.1     tcp _ time _ to _ recover ()  (see  cs   12.10  unless mentioned) 

 This routine checks we need to enter the recovery state.  tp → lost_out  is incremented 
in  tcp_mark_head_lost()  even if we are in a disorder state or an open state. This 
happens in  tcp_fastretrans_alert()  when a  FLAG_DATA_LOST  fl ag is set. Other-
wise there is no other way we call  tcp_time_to_recover()  with  tp → lost_out  more than 
zero (cs  12.10 ). We might have entered  tcp_fastretrans_alert()  in any of the conges-
tion states as stated above, but we may leave the congestion state and enter the 
open state (because of  tp → high_seq  being ACKed).   

    cs 12.10.      tcp_time_to_recover() .  

DEFAULT PROCESSING OF TCP STATES 459



460 TCP STATE PROCESSING

 If no segment is marked lost, the next condition we check here is the number 
of Facked - out segments that have exceeded reordering length. See Section  11.6  to 
know more about reordering length. If the condition is true, it means that some of 
the segments at the beginning of the retransmit queue are considered lost because 
the rest of them covered by reorder length are considered as being reordered in the 
network and will appear sooner or later. In the case of SACK implementation, we 
exactly know FACKed - out segments, but in Reno implementation we hardly have 
an idea of it. So, we consider only SACKed - out segments (number of duplicate 
ACKs   +   1) as FACKed - out segments in Reno implementation (line 1046, cs  12.11 ). 
We add one because we consider one segment lost at the head of the retransmit 
queue in the case of Reno Implementation. This a classic rule to enter into the fast -
 retransmit fast - recovery state where if we get three duplicate ACKs, we consider 
the head of the list as lost and retransmit the head of the list. With FACK/SACK, 
we know exactly what is lost and how much to transmit that we see later.   

 Next we check if the head of the retransmit queue has timed out by calling 
 tcp_head_timedout()  at line 1166. The retransmission timer is reset on reception of 
each ACK. The packet should be ACKed within an estimated RTO. If the time for 
the packet exceeds RTO, it is another way to signal early retransmission. 

 If we are at line 1172, we have not entered fast - recovery state because of the 
following: 

  1.     No packet is lost.  
  2.     Head if the transmit queue has not timed out.  
  3.     Facked segments has not exceeded reordering length.    

 We still can enter into the fast - recovery state. We have reordering length calcu-
lated from the SACK information calculated from the last window. In the current 
window, in this case, we may be misled and can detect congestion here. In the case 
where the number of packets sent out ( tp → packets_out ) is less than the reordering 
length and the SACKed out segments are more than the maximum of half the 
number of the packets transmitted so far and  sysctl_tcp_reordering  (line 1173), we 
can enter into the recovery state if there is nothing to be sent out ( tcp_may_send_
now()  returns FALSE, line 1174).  

  12.5.2     tcp _ head _ timedout ()  

 We try to fi nd out if the head of the retransmit queue is not ACKed even after it 
has elapsed more than RTO since it was transmitted. Timestamp is stored in each 
segment (skb → when) when it is transmitted in  tcp_transmit_skb() . When we receive 
ACK for a segment, we set a retransmission timeout timer for the next segment in 

    cs 12.11.      tcp_fackets_out() .  



 tcp_ack() → tcp_ack_packets_out() . The timeout value for the retransmission timer 
is set to  tp → rto , even though the next segment was transmitted much earlier. So, 
timeout for the next segment is slightly overestimated by time lapsed since it was 
transmitted and the ACK for the previous segment arrived. We can detect early 
timeout for the retransmit queue head by calling  tcp_head_timedout() . The routine 
checks if the time lapsed since the head of the retransmit queue was transmitted 
has exceeded the RTO. The retransmit timer won ’ t fi re for the next segment (head 
of the retransmit queue) even if the segment has elapsed more than RTO ( tp → rto ) 
because the retransmit timer is started only after the ACK for the previous segment 
was received (cs -   12.12 ). But, early indication of timing out from  tcp_head_
timedout()  can save us from entering into the loss state in the case where the 
segment is slightly delayed in the network, which is very expensive. In this routine 
we check if there are any segments which are transmitted (tp → packets_out    >    0). If 
so, we check if the head of the list has timed out by using the buffer ’ s timestamp 
stored at the time when it is transmitted ( TCP_SKB_CB(skb → when )) (cs -   12.12 , 
line 1051). If the head of the retransmit queue has timed out, we enter into the 
fast - recovery state.    

  12.5.3     tcp _ try _ to _ open ()  (see  cs   12.13  unless mentioned) 

 The routine checks if we need to enter into the CWR state or the disorder state. 
We adjust the congestion window for these states by trying to bring it down as we 
need to keep congestion under control to avoid serious loss. We are called only in 
open, C(ongestion)W(indow)R(eduction), and disorder TCP states. So, we initialize 
 tp → left_out  to  tp → sacked_out  at line 1452 because nothing is marked lost in these 
states. If  tp → retrans_out  is set to zero,  tp → retrans_stamp  is set to zero. It may 
happen that we have left the congestion state without undoing from the state. If we 
come here just after entering the open state from the congestion state, we will try 
to reset  tp → retrans_stamp  in case  tp → retrans_out  is set to zero at line 1455. We 
enter into the open state from the congestion state only after all the retransmitted 
segments are ACKed. So,  tp → retrans_out  should become zero. In such cases, we 
should try to reset  tp → retrans_stamp  because it records the timestamp of the fi rst 
retransmitted segment. If we don ’ t do this here, and the very next instance we need 
to retransmit the segment, we will still have the older value in  tp → retrans_stamp  
and will not set the new value (check  tcp_retransmit_skb()  at line 890). This may 
provide us wrong results in case we are detecting false retransmissions in  tcp_may_
undo(). tp → retrans_stamp  is useful to check false retransmission (see Section 
 12.6.8 ). 

    cs 12.12.      tcp_skb_timedout() .  
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 Next is if ECE fl ag is set, we enter into the CWR state here by calling  tcp_enter_
cwr() . This is the place where we can enter into the CWR state in case we received 
an ECE fl ag set in the packet being processed currently. Here, we reduce the slow -
 start threshold to half of the congestion window or minimum 2 and the send conges-
tion window is reduced to a value so that we should be able to send a maximum of 
one segment.  tp → undo_marker  is not set because we are sure that we are not 
retransmitting anything in this state ( tp → undo_marker  should be set to undo from 
the congestion state; refer to  tcp_may_undo() ). If we are not retransmitting any-
thing, we should not expect any test for false retransmissions and delayed packets. 
Check Section  12.2.1  for details on entering the CWR state. 

 The next action will be based on the TCP state. As stated earlier, we are here 
only in three TCP states:  TCP_CA_Open, TCP_CA_CWR , and  TCP_CA_Disorder . 
We may have entered the CWR state in this routine itself because of the ECE fl ag 
set. If the CWR state is set, we just call  tcp_cwnd_down()  to simply try to reduce 
the congestion window on the reception of every second ACK. In  tcp_cwnd_down()  
we also try to keep the congestion window such that at the most one new segment 
can be transmitted which is calculated as  packets_in_fl ight()    +   1. Otherwise if the 
congestion window is less than the number of packets in fl ight   +   1, we wait for more 
segments to be ACKed before we can transmit any new segment. 

 If the TCP state is other than  TCP_CA_CWR , then, we are processing either 
the  TCP_CA_Open  state or the TCP_CA_Disorder state here. If we have entered 
 tcp_fastretrans_alert()  in the open state, it may be because we received the fi rst 
duplicate ACK. In such cases,  tp → left_out  will be a nonzero positive number because 
it is set to the number of SACKed - out segments. In Reno implementation, SACKed -
 out segments are emulated as duplicate ACKs. 

 We may have entered  tcp_fastretrans_alert()  with the TCP state as a loss and 
have just left these states (because  tp → high_seq  is ACKed with this segment). In 
this case, if we are not able to undo from the congestion states,  tp → undo_retrans  
and  tp → undo_marker  will still be set to the congestion state value. 

 In both of the above cases, we just set the TCP state to disorder at line 1466 (cs 
 12.13 ). Next we check if the state is something other than  TCP_CA_Open  (can only 
be a disorder state), We set the state to the disorder state and set  tp → high_seq  to 
the highest sequence number transmitted so far at line 1470. Finally, we call  tcp_
moderate_cwnd()  to slow down the rate of transmission. By calling  tcp_moderate_
cwnd() , we actually restrict ourselves to sending out a maximum of three new 
segments from here. This way we enter into the disorder state.   

 In the case where we are already in the disorder state and received an ACK, 
we just call  tcp_moderate_window()  to bring down the transmission rate and do 
nothing.  

  12.5.4     tcp _ update _ scoreboard ()  (see  cs   12.14  unless mentioned) 

 In the case where FACK is implemented, we take difference of FACKed - out segment 
and disorder length to estimate the lost segments. Otherwise we assume that only 
the head of the retransmit queue is lost. In the example shown in Fig.  12.3 , 12 seg-
ments are transmitted in a window and out of 12 segments, only 3 segments are 
SACKed, that is, s4, s8, and s12. In this case, the FACK count is 12 and the reorder 
length is 9 — that is, number of segments covered between highest and lowest 
SACKed segments (see Section  11.6 ). So, the number of segments that will be 



marked as lost in this window when we call  tcp_update_scoreboard()  will be 3, that 
is, s1, s2, and s3.   

 In the case where SACK is not supported or it is Reno implementation, we have 
little or no idea of reordering and the segments that have reached the receiver. So, 
in this case we mark only one segment at the head of the retransmit queue as 
lost. 

 We call  tcp_mark_head_lost()  to mark the segments lost. The second argument 
to the routine is the number of segments to be marked lost, and the third argument 
is the highest sequence that marks the right edge of the window. Beyond this 
sequence number, we should not consider any segment as lost. For details on  tcp_
mark_head_lost()  see Section  12.6.11 . 

 In the case where head of the retransmit queue has timed out, we check for 
each segment in the retransmit queue which has timed out in loop 1272 – 1278 (cs 
 12.14 ). If the segment is found to have timed out and it has not yet been retransmit-
ted or SACKed out or marked lost ( TCPCB_TAGBITS  for the segment is not set), 

    cs 12.13.      tcp_try_to_open() .  

    Figure 12.3.     Partial ACKing causes recalculation of SACK.  
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we mark the segment as lost and increment the lost counter. This is just a proactive 
approach or a protective way to sense any congestion and retransmit at least one 
segment so that the retransmit timer does not experience timeout and we can avoid 
the loss state. Finally, we calculate the segments that have left the network by calling 
tcp_sync_left_out() at line 1279 since we have sensed lost segments.    

  12.5.5     tcp _ xmit _ retransmit _ queue ()  (see  cs   12.15  
unless mentioned) 

 As discussed above, on reception of each duplicate ACK or if the head of the 
retransmit queue has timed out, we update lost segment information. First we 
consider normal retransmissions based on the number of segment ’ s marked lost 
( tp → lost_out ). Thereafter we need to make a decision between forward retransmis-
sion and transmitting new segments in case we still have enough congestion window 
to pump out more segments.   

 If  tp → lost_out  is some positive number, we traverse through the retransmit 
queue (lines 919 – 941, cs  12.15 ) and for each segment in the retransmit queue we do 
the following things: 

  1.     Check if the congestion window is greater than packets in fl ight at line 922. 
If so, we can pump out more segments in the network; otherwise we 
return.  

  2.     Check if the segment is marked lost at line 925. If it is marked lost, we try 
to retransmit this segment only if the segment is not yet SACKed or retrans-
mitted at line 926. If the error code returned from  tcp_retransmit_skb()  
is nonzero, there was some problem and the segment could not be 

    cs 12.14.      tcp_update_scoreboard() .  



    cs 12.15.      tcp_xmit_retransmit_queue() .  
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retransmitted. In that case, we just return and don ’ t try for the second time. 
In case we are able to retransmit the segment and this was the fi rst segment 
in the write queue, we reset the retransmit timer at lines 934 – 935, the same 
as we do for plane transmission of a segment where we set the retransmit 
timer for the fi rst segment and we reset the retransmit timer once some data 
gets ACKed. Next is to decrement the lost segment count. If the count is 
zero, we come out of the loop at lines 938 – 939; otherwise we traverse in the 
loop for the next segment.    

 The above was retransmission on demand, and now we check for the possibility 
of forward retransmission — that is, those segments that are not yet SACK/
retransmitted/lost. Here we also have the choice of transmitting new data segments 
that are not yet transmitted. We are allowed to do forward retransmissions only if 
we are in the recovery state and not in the loss state, line 947. The reason for this 
is that the loss state indicates acute congestion as packets are getting dropped by 
some intermediate router and we assume that all the segments in the window being 
lost. So we want to transmit very limited segments in a controlled way in a loss state. 
Another reason is that we may expect original retransmissions reaching the receiver, 
causing partial ACKing or duplicate ACKs that may get us out of the loss state. 
One more reason we keep retransmitting slowly is that we may have entered the 
loss state because of false retransmissions. 

 We are an eligible candidate for forward retransmission only if SACK is imple-
mented, else return (line 951). The reason for this is that we have a fair idea of which 
segments to transmit and have controlled retransmissions with SACK in place. 

 While in forward retransmission, Linux has a choice of retransmitting un -
 ACKed segments from the current window or transmitting new segment. Linux 
prefers transmitting new data segments once it has retransmitted marked lost seg-
ments in case congestion window allows. First we check if there are any new seg-
ments to be transmitted by calling  tcp_may_send_now()  at line 961. This should 
ensure that there  tp → send_head  is non - NULL and that all other conditions are also 
satisfi ed related to Nagles, algorithm, the congestion window, and the receiver ’ s 
window. If for any reason we are not able to transmit a new segment, we try to 
retransmit segments from the retransmit queue which are not marked as Lost/Sack/
retransmitted. We traverse through the queue in the loop 966 – 984. We make the 
same checks as in the loop 934 – 935. The only difference is that there we knew the 
exact number of segments and we don ’ t try for anything above the specifi ed number 
of segments. Here, we look for the possibility of transmitting segments that are 
covered by FACKed - out segments, the condition at line 967.  

  12.5.6     tcp _ packet _ delayed ()  (see  cs   12.23 ) 

 From this logic we can conclude that we can undo from loss state as soon as we get 
a duplicate ACK from the window that got us into congestion because the time-
stamp echoed will always be less than the timestamp for the fi rst retransmitted 
segment. We get back to the congestion state prior to entering the congestion state, 
but we exit the loss state only if SACK is supported over the connection; otherwise 
we remain in the loss state even with a high rate of data transmission. We undo from 
the recovery state only if we received an ACK that ACKed full (tp → high_seq) or 
partial (current tp → snd_una is higher than the value before the ACK being pro-



cessed arrived) data but not from retransmission but from original transmissions 
(tp → retrans_stamp    >    tp → rcv_tsecr). For the same reason,  tcp_try_undo_recovery()  
is called only when we get partial/full data ACKed, whereas  tcp_try_undo_loss()  is 
called irrespective of the fact that we obtained a duplicate ACK or data ACKed in 
 tcp_fastretrans_alert() .   

  12.6   PROCESSING OF  TCP  NON - OPEN STATES WHEN  ACK  ED  
BEYOND   tp  →  high _ seq   (see  cs   12.19 ) 

 The fi rst thing we check here is if we have entered this routine in the open state. If 
so, we should not have any retransmissions pending ( tp → retrans_out  should be 
zero). We enter into the congestion state once we have retransmitted a segment 
because of any reason. In the open state since there are no retransmissions, we need 
not have the  tp → retrans_stamp  set. So, we reset it here at line 1529. This is impor-
tant because we may be sensing congestion and may need to retransmit segments. 
If  tp → retrans_stamp  is set, we won ’ t be able to record retransmission timestamp for 
our fi rst retransmission (check tcp_retransmit_skb()) and this will mislead us in 
detecting false retransmissions. 

 If we have not entered the routine in the open state, we check if we can exit 
from any of the congestion states. We exit the congestion state if  tp → high_seq  
(highest sequence number transmitted when we enter the congestion state, i.e., 
 tp → snd_nxt ) recorded at the time of entering the congestion state has been ACKed 
at line 1530. In the case where  tp → high_seq  is ACKed with the segment being pro-
cessed, we have different processing for each TCP congestion state. Let ’ s look at 
them one - by - one. 

  12.6.1     TCP _ CA _ L  oss   

 When we enter the loss state, all the transmitted segments within the window which 
are not SACKed out are marked lost (see Section  10.2.2  for retransmission timer). 
In the case of Reno implementation, all the segments within the window are marked 
lost because we have no idea which segment is SACKed. We mark the highest 
sequence number that is transmitted in  tp → high_seq  at the time we enter the loss 
state. We leave the loss state when  tp → high_seq  is ACKed. This is because we would 
like to be in the congestion state until all the data within the window at the time of 
entering the congestion state has reached the receiver in correct order. Thereafter 
we can start pushing out data gradually in the network. So, no new data are pumped 
in the network until  tp → high_seq  is ACKed. We need to reset  tp → retransmits  
(number of attempts to retransmit the same segment without getting ACK) here. 
We check if we can undo from the recovery state by calling  tcp_try_undo_recovery() . 
In  tcp_try_undo_recovery()  we fi rst check if we did false retransmission because of 
underestimated RTO or packets getting late in the fl ight by calling  tcp_may_undo() . 
If it returns TRUE, we undo from the state by calling  tcp_undo_cwr() . The routine 
reverts the congestion variables back to the value that was set prior to entering 
congestion state (see Section  12.6.10 ) and reset  tp → undo_marker . Whether we can 
leave the congestion state will depend on the TCP implementation and sequence 
number ACKed. With Reno implementation, we don ’ t want to leave the loss state 
until something above  tp → high_seq  is ACKed to avoid false fastretransmissions. 
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This is very well documented in RFC 2582. The idea is that we may have retransmit-
ted three segments after entering the loss state. When those segments reach the 
receiver, it will generate a duplicate ACK when those segments are already there 
in the out - of - order queue. In the case of Reno implementation, we have no idea of 
SACK/DSACK, so these duplicate ACKs should not be confused with the fast -
 recovery state we wait for until something above the high sequence is ACKed. New 
data (above  tp → high_seq ) are transmitted only after we have retransmitted all the 
lost segments and the congestion window allows us to do so. So, new data ACKed 
means that we have already ACKed new data that are beyond the window that 
moved us into the congestion state. In this case, we just moderate the congestion 
window and continue to send out new segments in the loss state until something 
beyond  tp → high_seq  is ACKed. The reason that we are doing this in the loss state 
is that there may be reordering taking place in the loss state also that may lead to 
retransmission of segments causing false fast recovery when the retransmitted seg-
ments cause duplicate ACKs when  tp → high_seq  is ACKed. 

 In the case of SACK implementation, we exit the congestion state (loss) as soon 
as we ACK  tp → high_seq  because the duplicate ACK for the above - explained case 
will carry DSACK and will differentiate these duplicate ACKs from fast recovery. 
In the case where we are not able to exit the loss state, we return with TCP_CA_Loss 
state; otherwise we need to process the open state further.  

  12.6.2     TCP _ CA _ CWR   

 The following two fl ags are used to exchange ECN information: 

   •       TCP_ECN_QUEUE_CWR   
   •       TCP_ECN_DEMAND_CWR     

 ECN - related information is maintained in the  tp → ecn_fl ags  fi eld. How does ECN 
work? Whenever an ECN fi eld is set in an IP header (set by the intermediate 
router), the receiver TCP sets an ECE fl ag in the TCP header. The ECN fi eld is 
checked by calling  TCP_ECN_check_ce() . The routine is called from  tcp_event_
data_recv()  and  tcp_data_queue() . An ECN fl ag is checked by calling  INET_ECN_
is_ce (TCP_SKB_CB(skb) → fl ags). It checks if the fl ag ’ s zeroth and fi rst bits are set. 
If so, a TCP_ECN_DEMAND_CWR bit is set for  tp → ecn_fl ags . Now it means that 
the receiver is demanding a CWR bit in the TCP header. If the  TCP_ECN_
DEMAND_CWR  bit is set in  tp → ecn_fl ags , we set an ECE fl ag in the next TCP 
segment that is transmitted by calling  TCP_ECN_send()  in  TCP_ECN_send() . 

 Once the sender receives the TCP segment with an ECE fl ag set (check is made 
in  TCP_ECN_rcv_ecn_echo()  called from  tcp_ack() ), we enter into the  TCP_CA_
CWR  state by calling  tcp_enter_cwr()  called from  tcp_try_to_open()  in case we are 
in an open state or a disorder state but not in any other TCP state. From  tcp_enter_
cwr()  we call  TCP_ECN_queue_cwr()  to set a  TCP_ECN_QUEUE_CWR  bit in 
 tp → ecn_fl ags  fi eld. In the very next new data segment that we transmit, we check 
if we need to set a CWR fl ag in the TCP header by calling  TCP_ECN_send()  from 
 tcp_transmit_skb() . In  TCP_ECN_send() , we check if the new data segment is being 
transmitted at lines 52 and 53 and if the  TCP_ECN_QUEUE_CWR  bit is set (cs 
 12.16 ). If so, we set the CWR fl ag in the TCP header and also clear the  TCP_ECN_
QUEUE_CWR  bit in  tp → ecn_fl ags  so that every time we don ’ t send out the TCP 



segment with a CWR fl ag set. The receiver checks for a CWR fl ag in the TCP header 
by calling  TCP_ECN_accept_cwr()  from  tcp_data_queue() ; because an additional 
fl ag is set in the TCP header, it will take a slow path and  tcp_data_queue()  will be 
called. Here we make a check if CWR fl ags is set. Once we have received CWR for 
the ECE fl ag, we clear off the  TCP_ECN_DEMAND_CWR  bit (cs -  12.17 ). It means 
that our ECE request is being heard by the sender, and it has reduced its congestion 
window to slow down the rate of data transmission and no more TCP segments will 
be sent out with ECE fl ags set.   

  Important:  When we enter the CWR state by calling  tcp_enter_cwr() , we adjust 
the congestion window to a minimum of current congestion window and (packets 
in fl ight   +   1), which means that at the most we can send only one new segment until 
segments in fl ight are ACKed. We don ’ t leave this state until something higher than 
 tp → high_seq  (recorded at the time of entering TCP CWR state) is ACKed. The 
CWR state is maintained only for a single window of TCP data. Once data above 
 tp → high_seq  are ACKed, we leave the CWR state to enter the open state and also 
adjust the congestion window to a minimum of slow - start threshold and congestion 
window. We need to wait for anything above  tp → high_seq  to be ACKed in order to 
make sure that the CWR bit has reached the receiver. The CWR bit is sent in the 
very next new segment after we have received an ECE bit from the receiver. When 

    cs 12.16.      TCP_ECN_send() .  

    cs 12.17.      TCP_ECN_accept_cwr() .  
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we receive an ECE bit, we enter into the CWR state setting  tp → high_seq  to  tp →
 snd_nxt . So, the next new segment carrying data beyond  tp → high_seq  will contain 
a CWR bit. If we leave the state without the receiving end receiving data segment 
with CWR bit, it may cause a problem because the sender has exited from the CWR 
state but has not received a CWR bit. This will cause every ACK to carry an ECE 
bit set from the receiver once again, causing the sender to enter into CWR state. 
In case nothing above  tp → high_seq  is ACKed, we don ’ t leave the CWR state and 
continue our processing in default processing of a TCP state by calling  tcp_try_to_
open()  (only if we don ’ t enter into the recovery state). 

 For  TCP_CA_CWR  state processing in  tcp_try_to_open() , we always try to 
adjust CWR such that at the most we can send out only one segment on reception 
of ACK. The congestion window is adjusted to the minimum of congestion window 
and (packets in fl ight   +   1) by calling  tcp_cwnd_down() .  

  12.6.3     TCP _ CA _ D  isorder   (see  cs   12.19  unless mentioned) 

 We acknowledged all the data that were transmitted until we enter the disorder 
state, so we need to take action. As explained in Section  12.5.3 , we enter the disorder 
state in two cases in routine  tcp_try_to_open() : 

  1.     From the open state when we receive fi rst the duplicate ACK.  
  2.     When we exit the congestion state (loss) and enter the open state on ACKing 

 tp → high_seq  but without undoing from congestion. This means that  tp →
 undo_retrans  and  tp → undo_marker  are set with a TCP open state, which 
means that we are not reverting back to the congestion state prior to entering 
the congestion. With SACK implementation, we can still get DSACK for the 
retransmissions which will indicate if the congestion state was entered 
incorrectly.    

 In the latter case, we know that retransmissions are still there in the fl ight and can 
expect them in the form of DSACK. So, in case we get ACK for  tp → high_seq  in 
the disorder state, we call  tcp_try_undo_dsack()  at line 1548 to check if we received 
DSACK that clears off  tp → undo_retrans  fi eld. 

 The next step is to check if we can undo from the disorder TCP state. There 
are three conditions to exit the disorder state: 

  1.     Is  tp → undo_marker  reset?  
  2.     Is it Reno implementation (SACK is disabled)?  
  3.     If condition 2 is false, have we received ACK for data above  tp → high_seq .    

 If we have entered the disorder state from the open state without  tp → undo_marker  
set (reception of the fi rst duplicate ACK) or call to  tcp_try_undo_dsack()  might 
have cleared  tp → undo_marker . In the case where  tp → undo_marker  is set, we can 
still enter the open state in case this is Reno implementation because we have 
nothing like DSACK to catch. Still we can undo from the disorder state in the case 
where SACK is implemented and we have ACKed something above  tp → high_seq  
because this makes sure that all the data from the window at the time of entering 
the congestion state have reached the receiver properly. In the case where we are 
entering open state, we reset  tp → undo_marker . 



 Once we have exited the disorder state, we process open state in default pro-
cessing of TCP states as mentioned in Section  12.5 . In case we are in the  TCP_CA_
Disorder  state and could not ACK  tp → high_seq  the processing of ACK received 
takes place in default processing of the TCP state as described in Section  12.5 . Pro-
cessing takes place in  tcp_try_to_open()  in case we are not entering into the fast -
 recovery state. We just call  tcp_moderate_cwnd()  to reduce the congestion window 
to slow down the rate of data transmission to send a maximum of three new seg-
ments and return.  

  12.6.4     tcp _ try _ undo _ dsack ()  (see  cs   12.18 ) 

 This routine is called to check if the DSACK is received that may open the TCP 
state. If so, we are able to undo from the congestion state prior to entering the 
recovery state. On reception of each DSACK within the window,  tp → undo_retrans  
is decremented by 1 (see Section  11.5.1 ).   

 We call  tcp_undo_cwr()  to get us back to the congestion state prior to entering 
congestion by adjusting  tp → snd_ssthresh  and  tp → snd_cwnd . This is to increment 
the rate of data transmission. We reset  tp → undo_marker , which is a clear indication 
that we can no longer undo from the congestion state for a current window.  

  12.6.5     TCP _ CA _ R  ecovery   (see  cs   12.19  unless mentioned) 

 We have acknowledged all the data that were transmitted until the time we entered 
the recovery state. So, we process the recovery state between lines 1558 and 1564. 
In case we have ACKed  tp → high_seq  in the recovery state, we reset  tp → sacked_out  
in the case of Reno implementation. This is done because we have ACKed all the 
data within the window transmitted at the time when we entered the recovery state. 
Reno emulates duplicate ACKs as SACKed - out segments. Duplicate ACKs were a 
result of data loss or reordering of segments within the window marked by  tp →
 high_seq . Once we ACK tp → high_seq, should reset the SACK counter because 
SACK implementation will automatically have the SACK count set to 0 as all the 
holes in the window are fi lled when we ACK  tp → high_seq . In Reno implementation, 
we need to reset the SACK counter here because there is no way we can detect the 
fi lling of holes. Next we check if we can try undo recovery by calling  tcp_try_undo_
recovery() . Here we check if our retransmission was false by calling  tcp_may_undo() . 
If so, we revert back to the congestion variables that were set prior to entering 
congestion state by calling  tcp_undo_cwr()  and we reset  tp → undo_marker . Irrespec-

    cs 12.18.      tcp_try_undo_dsack() .  
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tive of whether we are able to undo from the recovery state, the next step is for 
exiting the recovery state. In the case of Reno implementation, we should ACK 
something beyond  tp → high_seq  to exit the recovery state. This is done in order to 
avoid entering a false fast - recovery state in case the retransmissions for segments 
below  tp → high_seq  generate duplicate ACKs. In the case of SACK/DSACK imple-
mentation, DSACKs are generated for each such duplicate ACKs, so we need not 
worry and exit the recovery state as soon as  tp → high_seq  is ACKed. In the latter 
case we are not able to exit the recovery state, so we moderate the congestion 
window by calling  tcp_moderate_cwnd()  to slow down the data transmission rate 
until we get ACK beyond  tp → high_seq . In the case where we exit the recovery state, 
the next step is to continue processing for the open state; otherwise we return with 
the recovery state from the routine.    

  12.6.6     tcp _ add _ reno _ sack ()  

 Reno implementation does not have any idea of any out - of - order segments that are 
received by the peer. We try to simulate SACK - out segments from the duplicate 
acknowledgments we receive. This makes our work simpler by having a common 

    cs 12.19.      tcp_fastretrans_alert() .  

net/ipv4/tcp_input.c tcp_fastretrans_alert()..... cont 

1527     if (tp->ca_state == TCP_CA_Open) { 
1528         BUG_TRAP(tp->retrans_out == 0); 
1529         tp->retrans_stamp = 0; 
1530     } else if (!before(tp->snd_una, tp->high_seq)) { 
1531                 switch (tp->ca_state) { 
1532                 case TCP_CA_Loss: 
1533                         tp->retransmits = 0; 
1534                         if (tcp_try_undo_recovery(sk, tp)) 
1535                                 return; 
1536                         break; 
1537 
1538                 case TCP_CA_CWR: 
1539                         /* CWR is to be held something *above* high_seq 
1540                          * is ACKed for CWR bit to reach receiver. */ 
1541                         if (tp->snd_una != tp->high_seq) { 
1542                                 tcp_complete_cwr(tp); 
1543                                 tp->ca_state = TCP_CA_Open; 
1544                         } 
1545                         break; 
1546 
1547                 case TCP_CA_Disorder: 
1548                         tcp_try_undo_dsack(sk, tp); 
1549                         if (!tp->undo_marker || 
   .... 
1552                             IsReno(tp) || tp->snd_una != tp->high_seq) { 
1553                                 tp->undo_marker = 0; 
1554                                 tp->ca_state = TCP_CA_Open; 
1555                         } 
1556                         break; 
1557 
1558                 case TCP_CA_Recovery: 
1559                         if (IsReno(tp)) 
1560                                 tcp_reset_reno_sack(tp); 
1561                         if (tcp_try_undo_recovery(sk, tp)) 
1562                                 return; 
1563                         tcp_complete_cwr(tp); 
1564                         break; 
1565 }



routine for SACK as well as Reno implementations. In  tcp_add_reno_sack()  we 
increment the SACK counter ( tp → sacked_out ) by 1, and we call  tcp_check_reno_
reordering()  in order to check if we need to update the Reno reordering length. 
Finally we call  tcp_sync_left_out()  at line 1207 (cs  12.20 ) to update the segments 
that have left the network that is the sum of SACKed - out and lost - out segments. 
We do it here because we have a new Reno SACK.    

  12.6.7     tcp _ check _ reno _ reordering ()  

 The routine tries to calculate the reordering length for Reno implementations 
where we have no idea of out - of - order segments received by the peer. Normally, 
with SACK implementation, we can calculate the reordering length from SACK 
block highest and lowest sequence spaces. With Reno, we have no such case. Reor-
dering can be observed only if we receive more than expected duplicate ACKs. This 
may happen in case the lost segment reaches the receiver out - of - order after we have 
already retransmitted it. In such cases, we get a duplicate ACK for the retransmitted 
segment which will be one more than expected. We can safely assume this as reor-
dering. In such cases where the sum of SACKed - out segments and lost segments is 
more than the segments so far transmitted within the window (line 1195, cs  12.21 ), 
we need to update reordering length as the number of packets transmitted but not 
yet ACKed within the window ( tp → packets_out ) by calling  tcp_update_reordering()  
at line 1197.    

  12.6.8     tcp _ may _ undo ()  (see  cs   12.22  unless mentioned) 

 The routine checks if we can revert back to the open state because we may have 
entered the congestion state incorrectly. When the TCP enters into any state other 

    cs 12.20.      tcp_add_reno_sack() .  

    cs 12.21.      tcp_check_reno_reordering() .  
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than open because of congestion, we record the highest sequence number transmit-
ted so far ( tp → high_seq ), the slow - start threshold and congestion window are 
adjusted to slow down the rate of transmission of segments, and we record the slow -
 start threshold prior to entering the congestion state. We record  tp → high_seq  so 
that once this sequence is acknowledged, we can try to undo from the congestion 
state.   

 Undoing from state means that if we were misled into the congestion state 
because of a packet delayed in the network, reordering of segments, and under-
estimated RTOs, we can resume the same state as it was before. After entering into 
congestion state, we may retransmit segments marked lost. We can sense undoing 
from the state in case we fi nd that the original transmissions are succeeding. We do 
this by calling  tcp_may_undo() . 

 We check that if  tp → undo_marker  is set, this is set to unACKed sequence 
number ( tp → snd_una ) when we enter the congestion state. If this fi eld is set, we 
know that we are eligible for undoing from the congestion state. We proceed further 
to check if we can undo from the congestion state. Next we check is whether  tp →
 undo_retrans  is 0. If this fi eld is zero, it means that either we have not retransmitted 
anything or whichever segment was retransmitted has been DSACKed, indicating 
that the original segments were not lost and they also reached the destination along 
with the retransmitted segments. It may also happen that the ACKs to the segment 
transmitted earlier were lost and when we retransmitted them, we got DSACKs for 
those retransmitted segments. If  tp → undo_retrans  is nonzero, it means that we have 
retransmitted something. We check if packets got delayed in the network but reached 
the destination by calling  tcp_packet_delayed() .  

  12.6.9     tcp _ packet _ delayed ()  (see  cs   12.23  unless mentioned) 

 We undo from the congestion state only if we got DSACKs for all retransmitted 
segments ( tp → undo_retrans  equal to 0) or our original transmissions successfully 
reached the receiver ( tcp_packet_delayed()  returned TRUE because  tp → rcv_tsecr   
  <     tp → retrans_stamp ). 

    cs 12.22.      tcp_may_undo() .  

    cs 12.23.      tcp_packet_delayed() .  



   tp → retrans_stamp   →  is the timestamp when the fi rst segment was 
retransmitted.  

   tp → rcv_tsecr   →  is the echoed timestamp from the receiver.      

 If  tp → rcv_tsecr     <     tp → retrans_stamp , it means that the echoed timestamp was from 
the original transmission because the retransmission timestamp is higher than the 
echoed timestamp. If the echoed timestamp was greater than the timestamp of the 
fi rst retransmission, it means that the retransmission has fi lled the hole. To under-
stand which timestamp is echoed in the case of reordering, just check RFC 1323. 
According to this document, we echo the timestamp from the last segment that 
advanced the left window in case we receive an out - of - order segment. When a 
segment arrives that fi lls a gap, we echo back the timestamp from this segment. The 
reason for this is that the segment that fi lls the gap represents the true congestion 
state of the network. See Section  11.8 .  

  12.6.10     tcp _ undo _ cwr ()  

 In case we are about to undo from any of the non - open (congestion) states, we may 
revert back to the congestion state prior to entering the congestion state. There are 
two congestion state variables: slow - start threshold and congestion window. We 
record the slow - start threshold value before entering the congestion state in  tp →
 prior_ssthresh , and the slow - start threshold is initialized to half of the congestion 
window at that time. While undoing from the congestion state, we call  tcp_undo_
cwr()  to revert back to the original congestion state, in case the prior threshold 
recorded in  tp → prior_ssthresh  is greater than the current slow - start threshold value. 
Since half of the congestion window was recorded in the slow - start threshold ( tp →
 snd_ssthresh ), we initialize the congestion window to the maximum of current con-
gestion window and double the slow - start threshold value (line 1337) since during 
the congestion state the congestion window may have increased to a high value if 
the number of packets in fl ight is too high at the time of congestion. This will 
increase the data transmission to a very high value. If the prior slow - start threshold 
is zero, we don ’ t revert back to the slow - start threshold value recorded prior to going 
into the congestion state, and the congestion window is initialized as a maximum of 
current congestion window and a slow - start threshold value (line 1344, cs  12.24 ).   

 Finally, we try to moderate congestion window in case we have reverted back 
to the congestion window prior to congestion. This may infl ate the congestion to a 
very high value, suddenly causing a burst of packets in the network diffi cult to 
handle. We call  tcp_moderate_cwnd() . It may happen that all the ACKs from the 
last window were lost and on reretransmission after we got ACK for all the data, 
thereby causing congestion window to grow up to very high value. This may cause 
a burst of segment to be transmitted. The congestion window is initialized to a 
minimum of current congestion window and packets in fl ight   +   maximum burst 
(cs -  12.25 ). Linux assumes maximum burst to be 3, which means that even with 
delayed ACK, it can send out a maximum of 3 segments.    

  12.6.11     tcp _ mark _ head _ lost ()  

 This routine is called to mark a specifi ed number of segments lost starting from the 
head of the retransmit queue. The number of segments is the minimum of the 
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    cs 12.24.      tcp_undo_cwr() .  

number of segments as specifi ed by the caller and  tp → high_seq  recorded so far 
(line 1241, cs  12.26 ). The segments are marked lost only if they are neither 
SACKed/retransmitted or not already marked lost (lines 1243 – 1246). Finally, we 
need to synchronize the segments that have left the network by calling 
 tcp_sync_left_out()     

    cs 12.25.      tcp_moderate_cwnd() .  

    cs 12.26.      tcp_mark_head_lost() .  



  12.6.12     tcp _ sync _ left _ out ()  

 This routine is called when we need to update segments that have left the network 
(cs  12.27 ). This is required when we have updated SACKed - out segments or lost - out 
segments. In the case where SACKed - out segments have exceeded the number of 
segments already transmitted minus the number of segments considered lost, we 
need to equate the SACKed - out segments to the difference of these two (line 1101). 
This may happen in the case of Reno SACK implementation, where every duplicate 
ACK is considered to be a SACKed - out segment. The duplicate ACK may also be 
generated from retransmits failing the packet conservation law. Finally, the number 
of segments that have left out the network is calculated as the sum of the number 
of segments lost out and the number of segments SACKed.     

  12.7   SUMMARY 

 In this chapter we have seen how  tcp_fastretrans_alert()  implements the logic of 
TCP congestion state enter and exit logic. There are four TCP congestion states that 
are processed: 

   •       TCP_CA_CWR , congestion window reduction. This is set because of local 
congestion or we received a TCP segment with an ECE fl ag set.  

   •       TCP_CA_Disorder . TCP enters this state when it senses congestion for the 
fi rst time because of SACK blocks or duplicate ACK. TCP enters this state 
before entering recovery.  

   •       TCP_CA_Recovery . TCP enters the recovery state when we get an early 
indication of congestion because of duplicate ACKs and the retransmission 
head timing out.  

   •       TCP_CA_Loss . TCP enters the loss state when we experience timeout or we 
reject all the SACK blocks in  tcp_check_sack_reneging()  as the receiver has 
destroyed its out - of - order queue.    

 The two congestion state variables are implemented as follows: 

   •       tp → snd_cwnd , which is send side congestion window that is manipulated by 
different congestion control algorithms and rate at which ACK is received.  

   •       tp → snd_ssthresh , which is sender ’ s slow - start threshold to mark the start of 
the recovery algorithm.  

    cs 12.27.      tcp_sync_left_out() .  
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   •       tp → high_seq  is used as an exit condition when TCP has entered any of the 
congestion state.  

   •       tcp_may_undo()  is used to detect false entry into the congestion state and 
spurious RTO.  

   •       tcp_xmit_retransmit_queue()  implements the fast retransmission algorithm.  
   •      Linux simulates Reno SACK by incrementing the SACK count on reception 

of duplicate ACK.  
   •       tcp_update_scoreboard()  implements logic of updating lost segment based on 

FACK count for SACK implementation.       
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 NETLINK SOCKETS     

     This chapter starts with the introduction of netlink sockets and the different types 
of protocol families supported. Then gives a detailed explanation of how netlink 
sockets are registered at boot time. In addition, we will explain how the kernel and 
user netlink sockets are created. Then we see the details of netlink data structures 
and the format of netlink packet. Finally we will go through the details of how a 
netlink user and a kernel socket interact.  

  13.1   INTRODUCTION TO NETLINK SOCKETS 

 Netlink is a bidirectional communication method for transferring the data between 
kernel modules and user space processes. This functionality is provided using the 
standard socket APIs for user space processes and an internal kernel API for kernel 
modules. 

 The supported netlink families are as follows: 

   •       NETLINK _ ROUTE :     It is used for queueing disciplines, to update the IPV4 
routing table.  

   •       NETLINK _ SKIP :     Reserved for ENskip.  
   •       NETLINK _ USERSOCK :     Reserved for user mode socket protocols.  
   •       NETLINK _ FIREWALL :     Receives packets sent by the IPv4 fi rewall code.  
   •       NETLINK _ TCPDIAG :     TCP socket monitoring.  
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   •       NETLINK _ NFLOG :     Netfi lter/iptables ULOG.  
   •       NETLINK _ ARPD :     To update the arp table.  
   •       NETLINK _ ROUTE6 :     To update the IPV6 routing table.    

     Why Netlink Sockets? 

     •      Netlink sockets support multicast, and one process can multicast messages to 
a netlink group of addresses.  

   •      They provide BSD socket - style APIs.  
   •      Netlink sockets are asynchronous, and they provide queuing of messages for 

socket.  
   •      For any new feature support, only the protocol type has to be implemented.       

  13.2   NETLINK SOCKET REGISTRATION AND INITIALIZATION AT 
BOOT TIME 

 At boot time when the netlink module (net/netlink/af_netlink.c) gets loaded, the 
 module_init  function calls the  netlink_proto_init()  initialization routine (cs  13.1 ).   

 In the  netlink_proto_init()  routine, the  sock_register()  function gets called at 
line 1013 with  ‘  netlink_family_ops  ’  as parameter. 

  ‘  netlink_family_ops  ’  is of type  net_proto_family  struct, and in case of 
netlink protocol it is defi ned as shown in cs  13.2 , where  PF_NETLINK  is the family 
of protocol type.  netlink_create  is the create function for the socket of 
 PF_NETLINK .   

 The main purpose of the  sock_register()  function is to advertise the protocol 
handler ’ s address family and have it linked into the socket module (cs  13.3 ).   

    cs 13.1.      Netlink_proto_init ( ) .  

    cs 13.2.      Netlink_proto_family .  
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 At line 1630 (cs  13.3 ) the  sock_register()  checks for the socket system call pro-
tocol family entry in the  net_families  table and at line 1631 it inserts the protocol 
family entry in the  net_families  table (in this case it is a netlink protocol). 

 The  net_families  table is an array of  struct net_proto_family  pointers where all 
the protocol families are registered,  net_families  is defi ned as shown in cs  13.4  where 
NPROTO is the manimum number of protocol that can be registered. It ’ s value is 
set to 32 in kernel.    

  13.3   HOW IS THE KERNEL NETLINK SOCKET CREATED? 

 At Linux booting when the CPU subsystem is up and running and memory and 
process management works, the function  do_basic_setup()  does network initializa-
tion by calling the function  sock_init()  at line 541 as shown in cs  13.5 .   

 The  sock_init()  function initializes all the address (protocol) families at lines 
1677 and 1678 (cs  13.6 ). Here we are interested in the initialization of the protocols 
module, particularly about the netlink protocol. For initializing the netlink protocol 
there is a function called  rtnetlink_init()  which gets called at line 1717 to initalize 
and create the kernel netlink socket.   

 The  rtnetlink_init()  creates a netlink socket in the kernel for handling the user 
requests (cs  13.7 ). It calls the routine  ‘  netlink_kernel_create  ’  with parameters such 
as  NETLINK_ROUTE  and  rtnetlink_rcv  function pointer at line 523.   

    cs 13.3.      sock_register ( ) .  

    cs 13.4.      net_families .  

    cs 13.5.      do_basic_setup ( ) .  
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 The  netlink_kernel_create()  function fi rst allocates a socket by calling the routine 
 sock_alloc()  at line 715. Then it initializes the socket type to  SOCK_RAW  at line 
718 (cs  13.8 ).   

 At line 720 the kernel netlink socket is created by calling the function  netlink_
create()  and then initializes the sock struct pointer sk to point to the socket object 
of socket struct at line 724 which is dynamically allocated in the  netlink_create()  
function. Also it initializes the  data_ready  function pointer of sock struct to point 
to the  netlink_data_ready()  function, and then it checks if there is a second input 
parameter is passed; if yes, then it initializes the  af_netlink → data_ready  function 
pointer to the second input parameter at line 727, which is  rtnetlink_rcv  for netlink 
protocol. Finally, it adds the entry of this socket in  nl_table  (see Section  13.5 ) by 
calling the routine  netlink_insert  at line 729.  

  13.4   HOW IS THE USER NETLINK SOCKET CREATED? 

 The user space netlink socket is created by the socket() system call, for example,

  fd   =   socket(AF_NETLINK, SOCK_RAW, protocol);  

where  AF_NETLINK  is the address family and the  SOCK_RAW  is socket type. 
 The following protocol families are supported by the netlink socket: 

   NETLINK_ROUTE   
   NETLINK_FIREWALL   
   NETLINK_ARPD   

    cs 13.6.      sock_init ( ) .  

    cs 13.7.      rtnetlink_init ( ) .  



   NETLINK_IP6_FW   
   NETLINK_NFLOG   
   NETLINK_ROUTE6   
   NETLINK_TAPBASE   
   NETLINK_TCPDIAG   
   NETLINK_XFRM     

     Here We Will Discuss the  NETLINK _ ROUTE  Protocol.     The  NETLINK_
ROUTE  protocol is used for updating the routing table, to link parameters for 
setting up network interfaces, to address for setting up ip address for network inter-
face, for queuing disciplines, for traffi c classes, for setting up of fi lters for traffi c 
classes, for neighbor setups, and for setting up of rules for the routing. It controls 
the Linux networking routing system. 

 For example, the user command used for updating the routing table is  ‘ ip, ’  and 
that for the queuing discipline and traffi c classes is  ‘ tc ’  using NETLINK sockets 
for the  NETLINK_ROUTE  protocol.  

   LINK  Parameter Messages.     The LINK messages allows a  NETLINK_ROUTE  
protocol user to set and retrieve information about the network interfaces on the 
system. It consists of the following message types: 

   RTM_NEWLINK   
   RTM_DELLINK   
   RTM_GETLINK      

    cs 13.8.      netlink_kernel_create ( ) .  
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  The  ADDR  Messages.     The ADDR messages allows a  NETLINK_ROUTE  
protocol user to set/unset the IP address on the network interface on the system. It 
consists of the following message types: 

   RTM_NEWADDR   
   RTM_DELADDR   
   RTM_GETADDR      

  The  ROUTE  Messages.     The ROUTE messages allow a  NETLINK_ROUTE  
protocol user to update the routing table. It consists of the following message 
types: 

   RTM_NEWROUTE   
   RTM_DELROUTE   
   RTM_GETROUTE      

  The  QDISC  Messages.     The QDISC messages allows a  NETLINK_ROUTE  
protocol user to add/delete the qdisc to the queuing discipline of the system. It 
consists of the following message types: 

   RTM_NEWQDISC   
   RTM_DELQDISC   
   RTM_GETQDISC      

  The  CLASS  Messages.     The CLASS messages allow a  NETLINK_ROUTE  
protocol user to add/delete a class to the qdisc of the queuing discipline of the 
system. It consists of the following message types: 

   RTM_NEWCLASS   
   RTM_DELCLASS   
   RTM_GETCLASS      

  The  FILTER  Messages.     The FILTER messages allows a  NETLINK_ROUTE  
protocol user to add/delete a fi lter to the class of qdisc of the queuing discipline of 
the system. It consists of following message types: 

   RTM_NEWFILTER   
   RTM_DELFILTER   
   RTM_GETFILTER     

 The socket() is a system call which is then resolved in the kernel. It calls the  sys_
socketcall() , which in turn calls  sys_socket() ;  sys_socket()  calls the  sock_create() , and 
based on the family in this case it is netlink; and  sock_create()  calls the netlink_
create. This function creates the socket and initializes the operations of protocol 
performed with socket. It initializes the  sock → ops  to be   & netlink_ops , where 
 netlink_ops  is a list of function pointers for various operation to be performed on 
netlink sockets (cs  13.9 ).      



  13.5   NETLINK DATA STRUCTURES 

  Kernel Data Structures  

   •       nl_table   
   •       rtnetlink_link     

  13.5.1     nl _ table   

  nl_table  is an array of pointers to sock structures (socket linked list). Its size is set 
to  MAX_LINKS  (32). It is defi ned in kernel as shown in cs  13.10 . Each element of 
 nl_table  array represents a NETLINK protocol family — for example,  NETLINK_
ROUTE , NETLINK_FIREWALL, and so on, as shown in Fig.  13.1  and each 
NETLINK protocol family contains a pointer to the socket (struct sock) linked list. 
The  nl_table  is looked up based on the protocol when there is a communication 
between user and kernel space for the netlink socket; and based on the protocol, 
the socket (struct sock) linked list is searched for sock that has the same pid with 
the current process. Once the sock struct is found in the sock list for the protocol 
in the  nl_table , then it enqueues the skbuff (contains netlink packet) into the sock ’ s 
receive queue.    

    cs 13.9.      netlink_ops .  

    cs 13.10.      nl_table .  
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  13.5.2     rtnetlink _ link   

  rtnetlink_links  is defi ned as an array of pointers to  rtnetlink_link  data structure (cs 
 13.11 ). Each  rtnetlink_link  data structure corresponds to a rtnetlink command — for 
example,  RTM_NEWQDISC , which is a command for adding a new qdisc. Here the 
 rtnetlink_link  is shown in cs  13.12 . 

   doit :     pointer to a function which will be called based on the command in the 
control message.  

   dumpit :     pointer to a function to clear data after completion of command or on 
error.      

 Each entry in the  rtnetlink_links  table corresponds to a particular family such 
as  AF_NETLINK . 

 The  rtnetlink_link  data structure contains the doit and dumpit function pointers 
(Fig.  13.2 ). The  rtnetlink_links  table gets initialized while registering the  net_device  
if  CONFIG_NET_SCHED  is defi ned in the case of queueing discipline.   

 The  rtnetlink_links  gets initialized in  pktsched_init()  from  net/sched/sch_api.c  in 
the case of queuing discipline (cs  13.13 ).   

 In  pktsched_init ( ) , at line 1167 we declare a data structure  rtnetlink_link  and 
then directly assign the global  rtnetlink_links  table address based on the address 

    Figure 13.1.      nl_table data structure .  

    cs 13.11.      rtnetlink_links .  

    cs 13.12.      rtnetlink_link .  



family (used as an index for the array) at line 1180. Here the address family is  PF_
UNSPEC . The  rtnetlink_links  global table is viewed as a two - dimensional array, its 
row corresponds to family, and each column on a row corresponds to command 
( struct rtnetlink_link ) in that family. Then based on the type — for example,  RTM_
NEWQDISC  (which acts as command for adding the new qdisc) — the doit function 
pointer of struct  rtnetlink_link  for  RTM_NEWQDISC  type points to function  tc_
modify_qdisc( )  at line 1187. Similarly from lines 1188 to 1194, based on other type 
the doit and dumpit function pointer gets initialized for struct  rtnetlink_link  
(command). 

 Similarly the queuing discipline fi lter function pointers for adding fi lter to the 
class are initialized in function  tc_fi lter_init()  (cs  13.14 ).   

 We can see that for adding/deleting/getting the fi lter doit function pointers are 
initialized to  tc_ctl_tfi lter ()  function at lines 441 – 443. 

    Figure 13.2.      rtnetlink_links  and  rtnetlink_link  data structure.  

    cs 13.13.      pktsched_init ( ) .  
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 In case of the routing, this table is defi ned as  inet_rtnetlink_table  and it gets ini-
tialized as part of  inet_init() . For routing,  inet_rtnetlink_table  is declared as in net/
ipv4/devinet.c as shown in cs  13.15 .     

  13.6   OTHER IMPORTANT DATA STRUTURES 

  13.6.1     struct nlmsghdr   

 The nlmsghdr is a standard message header for each message sent or received for 
the netlink protocol (cs  13.16 ). 

   nlmsg_len  is the length of total amount of data in the message including the 
header itself.  

    cs 13.14.      tc_fi lter_init ( ) .  

    cs 13.15.      inet_rtnetlink_table .  



   nlmsg_type  defi nes the format of the data which follow the netlink header.  
   nlmsg_fl ags  defi nes various control fl ags.  
   nlmsg_seq  is used by a process that creates the netlink request messages to 

correlate those requests with their responses.  
   nlmsg_pid  is the sending process PID.       

  13.6.2     struct msghdr   

 The msghdr data structure contains the netlink message that will be passed to the 
kernel (cs  13.17 ).  msg_iov  is a pointer of type iovec, where iovec is as shown in cs 
 13.18 .   

    cs 13.16.      nlmsghdr .  

    cs 13.17.     msghdr.  

    cs 13.18.     iovec.  

OTHER IMPORTANT DATA STRUTURES 489



490 NETLINK SOCKETS

 The iovec structure consists of two elements: the pointer to data and the length 
of the data. 

   iov_base  points to the netlink packet (netlink message header plus data).  
   iov_len  contains the length of this packet to be passed to the kernel.      

  13.7   NETLINK PACKET FORMAT 

 Figure  13.3  shows the format of the netlink socket in the case of queuing disciplines. 
The parameters have to be fi lled in the above format before passing the netlink 
socket in the kernel. Based on the parameters, the appropriate action is performed 
by the spefi c kernel module.   

 In the case of the routing table, only the struct tcmsg is replaced by the rtmsg. 
So the netlink packet for the queuing discipline consists of 

  struct nlmsghdr: netlink message header.  
  struct tcmsg: for setting up classes, qdisc type, and fi lters.  
  struct rtattr and attributes (parameters to be passed to buffer)     

    Figure 13.3.     Netlink packet format.  

  13.8   NETLINK SOCKET EXAMPLE —  tc  COMMAND FOR 
Adding a qdisc 

 In this section we see how the netlink socket is used in  ‘ tc ’  command implementa-
tion, e.g., tc qdisc add dev etho root handle 1   :   0 cbq bandwidth 10   mbit. 

  13.8.1    tc  Command Flow in User Space for Adding a qdisc 

 Figure  13.4  shows tc command user space fl ow diagram. Here we are not covering 
details about the tc command user space fl ow. From Fig  13.4 , it ’ s clear that how 



request and msghdr structures are allocated. After allocating these structures 
 sendmsg() sys_call  get invoked and enters the kernel mode with request and msghdr 
details.    

  13.8.2    tc  Command in Kernel Space 

 In this section the details about TC command implementation in kernel space are 
outlined. 

  13.8.2.1     sys _ sendmsg  ( ) .     This function gets invoked in kernel space for a 
 sendmsg()  systen call. The main parameter to  sys_sendmsg()  is struct msghdr 
msg. The msg struct includes a pointer to the netlink packet (struct req). The 

    Figure 13.4.     tc command user space fl ow diagram.  
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 sys_sendmsg ()  creates a new data structure of the same type as struct msghdr msg 
from user space. The new data structure is declared as  msg_sys  at line 1350. 

 Then at line 1354 using  copy_from_user , copy each element from the user space 
msg struct to the kernel space new data structure  msg_sys . The iovec element of 
 msg_sys  contains a pointer to the netlink packet which will be verifi ed and copied 
by calling the  verify_iovec ( )  function at line 1376. Finally, the  sock_sendmsg  is 
invoked at line 1403 with argument  msg_sys  passed to it (cs  13.19 ).    

  13.8.2.2     sock _ sendmsg  ( ) .     The  sock_sendmsg( )  declares a data structure 
 scm_cookie  at line 503 (cs  13.20 ). Its main purpose is to hold information about the 
socket control messages (uid, gid, pid, etc., of the process). This  scm_cookie  data 
structure is initialized by calling the function  scm_send( )  at line 505. And fi nally 
the function pointer  sendmsg  at line 507 is invoked; here the operation pointer 
points to the  netlink_ops  data structure, and the sendmsg in  netlink_ops  points to 
 netlink_sendmsg . So  netlink_sendmsg  is invoked.    

  13.8.2.3     netlink _ sendmsg  ( ) .     In  netlink_sendmsg  a new  sk_buff skb  is allo-
cated at line 600 for copying the netlink data. Then at line 618 (cs  13.21 )  memcpy_
fromiovec ( )  copies the  msg → msg_iov  (message buffer), which contains the pointer 

    cs 13.19.      sys_sendmsg ( ) .  

    cs 13.20.      sock_sendmsg ( ) .  



to netlink packet to the  sk_buff  skb ’ s data area. After copying the netlink packet 
to  sk_buff , at line 625 or 627  netlink_broadcast( )  or the  netlink_unicast( )  with skb 
as main parameter is called based on the value of dstgroups (which checks for mul-
tiple process broadcast or for the single process).    

  13.8.2.4     netlink _ unicast  ( ) .     The  netlink_unicast ( )  gets the socket ’ s protocol 
from the sock structure (passed as a parameter  ssk → protocol ) at line 412 (cs  13.22 ). 
Then it calls the function  netlink_lookup()  to fi nd the corresponding linked list from 
the global netlink table (i.e., nl_table). After getting the corresponding linked list, 
it then searches the linked list for the sock struct with the same pid. Then based on 
the mode defi ned when the socket was created, it calls the  add_wait_queue( )  to put 
the current process into the socket ’ s wait queue and set the process ’ s state to 
 TASK_INTERRUPTIBLE . Again, it continuously checks for the state for running 

    cs 13.21.      netlink_sendmsg ( ) .  

    cs 13.22.      netlink_unicast ( ) .  
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the current process; and if there is no overload, it then changes the current process 
state to  TASK_RUNNING  at line 450. Finally, at line 463 enqueues the  sk_buff  to 
the socket ’ s receive queue and calls the function  sk → data_ready(sk_len)  at line 464. 
This function pointer is initialized to  netlink_data_ready( )  function (see Section 
 13.3 ).    

  13.8.2.5     netlink _ data _ ready  ( ) .     The  netlink_data_ready( )  again invokes 
the  data_ready  function pointer of rtnetlink socket, which is  rtnetlink_rcv( )  function 
at line 690 (cs  13.23 ).    

  13.8.2.6     rtnetlink _ rcv  ( ) .     The  rtnetlink_rcv ( )  dequeues each skbuff from 
the socket ’ s receive in a while loop at line 443 (cs  13.24 ) and calls the function 
 rtnetlink_rcv_skb ( )  at line 444 for each  sk_buff  for processing the data.    

  13.8.2.7     rtnetlink _ rcv _ skb  ( ) .     The  rtnetlink_rcv_skb( )  typecasts the  skb →
 data  pointer at line 405 (cs  13.25 ) to struct nlmsghdr, which is the netlink header 
structure. This  skb → data  is the starting address of the netlink packet (see Section 
 13.7  for more information). Then  rtnetlink_rcv_skb ()  calls the function  rtnetlink_
rcv_msg()  with netlink header struct as one of the parameters at line 411.    

    cs 13.23.      netlink_data_ready ( ) .  

    cs 13.24.      rtnetlink_rcv ( ) .  



  13.8.2.8     rtnetlink _ rcv _ msg  ( ) .     The  rtnetlink_rcv_msg ( )  fi rst extracts the 
type and family of the netlink socket at lines 289 and 299 (cs  13.26 ) from the netlink 
packet(nlh) passed as an input parameter to this function. The doit and dumpit 
function pointers are stored in the  rtnetlink_link  in the  rtnetlink_links  table. Family 
and type were setup in the tc (user space code of tc). Finally, based on the family 
row and type column, the doit function is called at line 378. In this case for adding 
a qdisc, the  tc_modify_qdisc( )  function is called. Similarly, for adding a fi lter in that 
case, doit will point to  tc_ctl_fi lter ; and for deleting/or getting the qdisc, doit will 
point to the  tcl_get_qdisc( )  function.      

    cs 13.25.      rtnetlink_rcv_skb ( ) .  

    cs 13.26.      rtnetlink_rcv_msg ( ) .  
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    Figure 13.5.     TC command fl ow in kernel 

space.  

  13.9   FLOW DIAGRAM FOR  tc  COMMAND IN KERNEL SPACE 

 Figure  13.5  shows the TC command fl ow in kernel space. For more details refer to 
Section  13.8.2.2 .    

  13.10   SUMMARY 

 What happens in user space? 

  1.     It creates a netlink socket and binds it to the address structure.  
  2.     It allocates the request message.  
  3.     It allocates a message structure msg.  
  4.     It calls system call sendmsg.    



 What happens in kernel space? 

  1.     The received msg structure and the necessary data structure gets copied to 
kernel space by  copy_from_user  and verify iovec.  

  2.     It creates  sk_buff  and uses  memcpy_from_iovec  to copy the msg ’ s iovec to 
the data area of  sk_buff .  

  3.     It searches the  nl_table  with the sock that has the same pid as the current 
process.  

  4.     It enqueues the  sk_buff  in the socket ’ s receive queue and then dequeues 
each  sk_buff  in the receive queue.  

  5.     It extracts the family and type from the  sk_buff ; and based on the family and 
type values, it checks the  rtnetlink_link  table for calling the appropriate doit 
function, which takes the appropriate actions.       
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  IP  ROUTING     

     The Internet is designed to communicate between any two networks that don ’ t have 
any idea about each other ’ s location. The unit of information carrier in the Internet 
is a packet that contains an Internet protocol header that carries enough informa-
tion for the packet to take it to its destination. So far, we learned about the transport 
layer protocol that carries information enough to identify the consumer of the 
Internet data at the two ends of the connection. But it says nothing about what path 
the packet is taking in the Internet to reach the destination or what path should be 
taken by the packet to reach the destination. 

 The Internet is a huge and complex web of networks interconnected with each 
other. There is a basic Internet backbone that connects the networks useful for 
providing services at the periphery of the Internet backbone. These periphery net-
works are either Internet consumers or services provided over the Internet. Each 
host providing service over the Internet has a unique I(nternet)P(rotocol) address 
that should be known to all the consumers of the service to avail it. It is diffi cult to 
remember the IP address of each host on the Internet providing service, so these 
IP addresses are mapped to the names. These names are called domain names and 
are resolved by D(omain)N(ame)S(ervice). So, to cut it short we can say that to 
reach a specifi c host on the Internet, we need to know the Fully Qualifi ed Domain 
Name of the host. DNS will resolve the domain name and get a corresponding IP 
address. This is all about how hosts on the Internet are identifi ed. But the question 
still remains as to how these hosts are reached from anywhere in the Internet. We 
will not go into the details of DNS functionality but will be focused on understand-
ing the Internet. 
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 Figure  14.1  shows how the Internet is designed. It has mainly two components 
namely, router and network. Two different networks are connected via a router, and 
two or more than two routers are also connected to each other directly. Note that 
all the entities in the Internet are public and can be seen by every other entity in 
the Internet. The packet that traverses between the two networks may take different 
routes at the same time, depending on the intermediate router confi guration. The 
packet is routed out of the network through the router, also called gateway. The 
gateway will have information about its next hop (router) which is stored in 
the database maintained by the routing subsystem also called as routing table. Once 
it knows the route for the packet (next hop), it also knows from which interface it 
can reach the next hop. The packet is transmitted out of the interface to reach the 
next hop. Once the packet reaches the next hop, the routing table is consulted on 
that router to fi nd the next hop if that is not the fi nal destination for the packet. So, 
this way each router knows the next hop for the packet and if the route to the des-
tination is not found in the routing table, the packet is dropped. Let ’ s consider an 
example of a packet starting from network n1 and destined for network n5. The 
packet can take two different paths, namely, [r5, r6, r7] and [r1, r2, r3, r4]. The 
path taken may depend on different factors router confi guration and link status at 
different routers. We will discuss this later.   

 The routing table can be built mainly in two different ways. One is statically, 
which is done at the system boot - up time and by the administrator by issuing com-
mands such as  ifconfi g, route , and so on. Another way to add an entry to the routing 
table is dynamically, which is done by routing daemons. Routing daemons are mainly 
very much dominant in the Internet backbone, where different routers need to tell 
each other ’ s neighboring router about its routing table. Or routers can also demand 
a certain part of the routing table from neighboring routers, and all this is done by 
routing daemons that understand routing protocols. There are various routing 

    Figure 14.1.     Internet with complex web of routers and networks.  



protocols such as RIP (routing information protocol), OSPF (open shortest path 
fi rst), BGP (broader gateway protocol), and so on. 

            RIP .     With RIP, each router broadcasts information about the neighboring 
network to all the other networks linked with the router. Among other information, 
the most important is the network ID, netmask, and the distance of the network 
from the router (hop count). This way, each neighboring router will have its routing 
table updated for all remotely connected networks. RFC  1388  covers the specifi cation 
for the protocol.  

   OSPF .     RIP has some shortcomings as regards to the information it provides 
and also the features. This protocol provides information about the link status of 
each connected network to every other network it is directly connected to. This way 
it is very effective as far as recovery of routes is concerned. For example, if a link 
to a specifi c network goes down, there may be some other link which may get us to 
that network. Not only this, it also provides information about different routes based 
on TOS. Most importantly, OSPF is multicast, as compared to broadcast, which 
brings down network load. The specifi cation is covered by RFC  1247 . 

 Today ’ s Internet is very different from the Internet at the time it was just intro-
duced. Many more features are added to make on - demand services available on the 
Internet. The Internet is fair to each of its users as long as resource allocation is 
concerned. But nowadays, Internet service providers are providing on - demand 
services. With the introduction of multimedia and application requiring a huge 
bandwidth, the Internet resources need to be shared fairly among the consumers of 
high and nominal bandwidth based on demand. 

 With these features, ISPs can pump out data at a higher rate for the high - 
bandwidth consumers based on demand. Among many features, some of them 
added to the routing subsystem are 

   •      Policy routing  
   •      TOS    

 In the current chapter, we will discuss all these features along with the routing 
concepts and its implementation in detail.      

  14.1   ROUTING 

 When a packet is generated locally or is received from any of the interfaces, it has 
to consult a routing subsystem for the routing decisions based on the destination IP 
address. The route basically decides on the outgoing interface to which the packet 
should be transmitted so that the packet is closer to its destination. This is the very 
basic functionality of the routing subsystem. If the route is defi ned for the packet, 
it is routed via a defi ned interface for the route; otherwise the packet is dropped 
and an ICMP message is sent to the originator of the packet. 

 Routing works on very simple rules, which are defi ned as follows: 

  1.     First try to fi nd out matching entry for complete destination IP address of 
the packet.  
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  2.     If there is no match found, then all the network entries are matched against 
the destination IP address.  

  3.     If there is no matching network found for the destination, we take the default 
route in case any exist.    

 The above is a very basic type of routing. An example of a routing table is 
covered in Section  14.2 , which explains how to interpret  netstat  output.  ‘  netstat  - nr  ’  
reads kernel routing table entries and displays them.  ifocnfi g  output shows confi gu-
ration of the network interface. It shows all the physical and virtual interfaces con-
fi gured for the interface. The physical interface is confi gured with the netmask and 
IP address. There can be multiple IP addresses assigned to the physical interface. In 
doing so, we are creating virtual interfaces associated with each IP address. The 
virtual interfaces can be confi gured for eth0 as eth0:1, eth0:2, and so on. The purpose 
of having multiple IP address confi gured for the same NIC is that we can remain 
connected to different subnets on the same physical network. 

 Routing entries have following basic entities:

  Network    Gateway    Interface  
  192.168.1.0/24    0.0.0.0    eth0  
  192.168.1.1    0.0.0.0/0    eth0  

 Network means the network we are trying to match, gateway is the next hop 
gateway to reach the network, and interface is the network interface through which 
we can reach the network. There are fl ags and metrics associated with each entriy, 
and they are used to identify the route. These are discussed in Section  2.13 . In the 
above example, 192.168.1.0/24 means network 192.168.1 with netmask of 24 bits 
(255.255.255.0). This network is directly reachable via interface eth0 because gateway 
entry for this is 0.0.0.0. So, all the packets destined for the 192.168.1 network will 
be routed via eth0. How do we know that a packet is destined for a specifi c network? 
We use the network fi eld of the entry (i.e., 192.168.1.0/24) to fi nd this out. If the 24 
most signifi cant bits of a packet ’ s destination IP match the network ID for the route 
(i.e., 192.168.1), the packet is destined for network 192.168.1. 

 Another entry is 0.0.0.0/0, which means that this is a default route. If none of 
the entries in the table match against the destination IP address for the packet, this 
entry will be used to route the packet. For this entry, the destination network is 
0.0.0.0 and the netmask is 0 bit (0.0.0.0), which means that the destination is not at 
all matched for the packets using this route. But there is a gateway fi eld set for the 
default entry which is reachable through interface eth0. This essentially means that 
destination is not reachable directly and will use default gateway 192.168.1.1 to 
further route the packet. In other words, gateway for the default entry is also called 
next hop for the route. So, the packets using this route will have destination IP 
address as it is, but the destination link layer address will be that of the default 
gateway (192.168.1.1). 

 As shown in Fig.  14.2 , there are hosts H1, H2, H3, H4, and so on, on the network 
192.168.1.0/24, and each one of them will have the two routing entries: one for the 
local network and the other one for default gateway. The GW is the default gateway 
with IP 192.168.1.1. The default gateway will have minimum of two interfaces: one 
connected to the network 192.168.1.0/24 and the other one connected to the Internet 
(via ISP). GW will route all the packets destined for the Internet through the second 
interface PPP0 (dial out connection to the ISP).   



 To further explain routing decisions, let ’ s take a simple example where a packet 
is generated for host 192.168.1.3 from host 192.168.1.2. The routing table at 
192.168.1.2 is consulted, which fi rst looks if there is any entry for destination host. 
This means that it checks if any entry exists with matching host 192.168.1.3. Since 
no such entry exists, it will check if there is any entry with matching network ID. 
An entry for network 192.168.1.0/24 matches network ID for the destination 
192.168.1.3. So, this route is picked up and the packet is transmitted out through 
interface eth0. 

 In another example, there is a packet that is destined for 192.168.2.3 and is 
generated from 192.168.1.2. First the matching entry for destination IP 192.168.2.3 
is searched in the routing table. Since it does not exist, we check if there is any 
matching entry for the destination network ID. There is only one entry for the 
network in the routing table, that is, 192.168.1.0/24. The destination network for the 
packet does not match this entry. So, fi nally the default route is selected to route 
this packet through interface eth0. In this case, the packet is sent to the default 
gateway 192.168.1.1 to fi nally route the packet in its fi nal destination. In this case, 
the destination link layer address in the Ethernet frame is that of the default 
gateway (192.168.1.1) rather than the destination IP (192.168.1.2). 

 The above example explains very simple confi gurations. There may be complex 
scenario where we may end up having thousands of entries in the routing table. The 
routing table may not be statically confi gured but may be updated dynamically by 
the routing daemons. But whatever be the case, the routing decisions are based on 
the very simple three rules as stated above. There are many features added to the 
routing subsystem some for enhancing performance and others for on - demand 
services.  

  14.2   POLICY - BASED ROUTING 

 As discussed until now, the packets reach their destination in the Internet based on 
the routing information (next hop) at each router. This is the simplest way to see 
the packet traversing through the Internet. With the advancement and on - demand 
usage of the Internet services, there is something more required other than just 
routing the packet correctly to its fi nal destination. For example, in demand - based 
Internet services, one user may require a high bandwidth for streaming multimedia 
whereas another user just needs enough bandwidth to browse through the Internet. 
If we take another example, it may be for security reasons that we would like to 
separate out routes for a different cadre of employee for the same/different services. 

    Figure 14.2.     Network segment pointing to default gateway to access internet.  
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All these requirements need adding a new feature to the routing subsystem which 
will route packets based on certain policies. 

 Current implementation on Linux takes into account the following criteria to 
build a policy to route a packet that has originated from the system locally or that 
has originated elsewhere (forwarding). List the entities used to build policy to route 
a packet: 

  Destination Net  ID .     This is derived from the source IP and by applying an 
appropriate netmask to it.  

  Source net  ID .     This is derived from the destination IP and by applying an 
appropriate netmask to it.  

   TOS .     The IP header has a type - of - service fi eld that is used by the routers to 
queue the packet in different queues to achieve differential services.  

  Forward Mark.     In the case where multiple routing tables are confi gured on the 
system, the packets are marked by the routing subsystem to use a specifi c 
route. We take this also into consideration while setting policy for the route 
( CONFIG_IP_ROUTE_FWMARK ).  

  Incoming Interface.     This is the interface from which the packet is arrived (in 
case of packets to be forwarded). This allows us to provide differential 
services for packets arriving from different networks.  

  Class  ID .      CONFIG_NET_CLS_ROUTE.     

 Figure  14.3  illustrates a typical example of routing policy confi gured on router 
R1 to divert intranet traffi c through different routers R2  &  R3. It may be confi gured 
because of resource utilization or security reasons.   

 For confi guring policy - based routing we use the  “ ip rule ”  command. The rule 
option consists of a selection criteria based on which we use the routing table from 
the multiple routing tables. 

 Here we are adding the ip rule for the following: 

  1.     The packets with source address  ‘ ipaddr1 ’  should use the routing table 1 (dev 
is eth0).  

  2.     The packets with source address  ‘ ipaddr2 ’  should use the routing table 2 (dev 
is eth1).    

    Figure 14.3.     Traffi c an R1 is routed through routers R2 and R3 based on policy.  



 Policy routing acts as a load balancing for the outgoing packets. 
 First we start with adding the default route to the routing tables 1 and 2: 

  1.     # ip route add default via  ‘ ipaddr1 ’  dev eth0 tab 1.  
  2.     # ip route add default via  ‘ ipaddr2 ’  dev eth1 tab 2.    

 Then add the policy rule to the routing table based on the source address: 

  1.     # ip rule add from  ‘ ipaddr1 ’  tab 1 priority 500.  
  2.     # ip rule add from  ‘ ipaddr2 ’  tab 2 priority 600.    

 Here the ip rule command confi gures the routing table selection based on the source 
ipaddress. Check Sections  14.11  and  14.12.8  for more details.  

  14.3   MULTIPATHING 

 There may be situations where we can have multiple gateways to the public network 
from the local network. For example, we can have multiple connections to the ISP 
from a single host that is acting as a gateway for the private network, which means 
that we have many alternatives to reach the public network. One of the reasons for 
having this kind of setup is to make arrangements for higher availability of the 
Internet for the private network. If one of the ISPs goes down, the public network 
may still be available via another ISP. When all the ISPs are up, we need to make 
arrangements to distribute the load fairly across different ISP connections. It is up 
to the administrator to setup distribution of load across all the connected ISPs. The 
algorithm to distribute load across multiple gateways is implemented as part of 
multipathing in a routing subsystem. 

 We have discussed a simple example where we have multiple connections to 
ISP for the outgoing Internet traffi c where we can use multipathing to our advan-
tage. There may be other examples where we can use the same concept to balance 
load. One example is if we have certain service running on different hosts connected 
to a single host acting as load balancer. Any traffi c bound to this service will go 
through the load balancer, which in turn will have multipathing confi gured to 
distribute incoming traffi c to different servers, hence balancing loads (Fig.  14.5 ). 
Similarly, we can have multipathing confi gured on the router to better distribute 
traffi c across different links for the same route (Fig.  14.4 ).   

  CONFIG_IP_ROUTE_MULTIPATH  is a kernel option to confi gure 
multipathing. 

   fi b_select_multipath()  (See cs  14.2  unless mentioned) is called from  ip_route_
output_slow()/ip_route_input_slow()  to select a default gateway from multi-
ple gateways when the kernel is compiled with the  CONFIG_IP_ROUTE_
MULTIPATH  option. As shown in Figure  14.6  multipathing parameters are 
embedded in fi b_nh (nexthop) object entries for each gateway.  

   fi   →  fi b_power   →   cumulative power allocated to all the nexthop entries.   
   nh  →  nh_power  →   individual power allocated to each next hop entry 

(consumable).   
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    Figure 14.4.     GW does multipathing.  

    Figure 14.5.     Multipathing and policy - based routing.  

   nh  →  nh_weight  →   static weight assigned to each hop entry. Power to each entry 
is assigned this value when they are exhausted.       

 The algorithm works like this: If the complete power of the route is not exhausted 
( fi  → fi b_power   >  0), we need to select one of the gateways from the list of entries 
for the route. Here we are not very sure which gateway entry we are going to select 
because it will not depend on the power left with the entry. Selection of entry is 
based on the initial power calculated, which is given as (line 980)

   jiffi es % fi  → fi b_power   



 jiffi es  is a system variable that is incremented on each clock tick and rolls over 
when it attains 2 32  on a 32 - bit machine. So, the value of the calculated weight is 
always between 0  −   fi  → fi b_power . So, we never know what value the weight will 
have. 

 We try to match the entry with weight, more than or the same as the weight 
calculated (loop 982 – 992). If we received the match, we use the gateway associated 
with the entry to route packets for the requested route. If the power of this entry 
is not exhausted and the route is alive, we have selected this entry (line 983). In this 
case, we decrement the power for the entry (line 985), decrement the cumulative 
power for the route (line 986), and assign the index corresponding to the selected 
next hop entry to the result (line 987) and return. 

 In case, the weight calculated is more than the weight of the entry, the weight 
is subtracted from the current entries ’  weight, and the next entry is checked against 
the new reduced weight. Like this the search goes on until we fi nd the suitable entry 
with weight more than (or equal to) the calculated weight. With this algorithm, we 
get either fair selection or in worst cases the reverse case also. In the worst case, the 
entry with the lowest weight may fi rst get exhausted and then the entries with higher 
values may get selected. The other extreme would be that higher weights may get 
exhausted before the lower - powered entries because we are calculating weight 
randomly (see Fig.  14.7 ). We manipulate the next hop entries with  fi b_multipath_
lock  lock held.   

 We need to check how the entries are arranged in the list (are they according 
to the weights?). 

 Once the entire power for the route gets exhausted ( fi  → fi b_power  == 0), the 
fresh allocation takes place (lines 960 – 973). Here we go through the list of entries 
and add the individual power of each entry ( nh → nh_power ) in case the entry is not 
dead (line 962). We also replenish the power of each entry at line 963. Once we have 
come out of the loop, the cumulative power calculated is assigned to the route ’ s 
power (line 966). 

       change _ nexthops ().      This macro traverses through the nexthop entries for the 
route. The  fi b_nh  fi eld of the  fi b_info  object points to the list of nexthop entries of 

    Figure 14.6.      fi b_info and fi b_nh  objects 

designed for multipathing.  
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type  fi b_nh . The  fi b_nhs  fi eld of the object  fi b_info  indicates the maximum number 
of nexthop entries (cs  14.1 ).    

    endfor _ nexthops ().      This macro just ends the loop by closing braces.  

    FIB _ RES _ NH .      Once nexthop is selected for the route, it is accessed using macro 
 FIB_RES_NH  later to build the routing cache entry (cs  14.3 , Fig.  14.7 ).      

    cs 14.1.      Declaration of nexthops.   

    Figure 14.7.     Selection of nexthops with multipathing enabled.  



    cs 14.2.      fi b_select_multipath ().   

    cs 14.3.      FIB_RES_NH.   

  14.4   RECORD ROUTE OPTIONS ( RFC  791) AND 
PROCESSING BY LINUX STACK 

 As discussed in Section  14.1 , the routing subsystem bothers only about the next hop 
for the given destination. It selects the best possible route for the given destination, 
in case there are many choices. So, it is always left to the routing subsystem to decide 
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on the next hop router for the given destination. But, there is a feature extended to 
the IP wherein the user can supply its own build chain of next hops to reach a speci-
fi ed destination. On the other hand, the IP option is provided which can record the 
next hop value at each router that a packet reaches. The usage of these options is 
not well - defi ned, but to me it looks like these options are mainly used for network 
diagnostics purposes. For example, traceroute uses a strict - route - record option to 
determine routes taken by a packet to reach a specifi c destination. The proper ICMP 
error code is returned in case the strict - record - route option is set and the next hop 
is unknown at any point of time. 

  14.4.1   Record Routing 

 The IP option requires that each router should record its address when reached by 
the packet. This way we get a complete list of routers when the packet reaches its 
fi nal destination. This list of routers is copied back to the IP datagram in reply to 
the IP datagram that has recorded the route so that the originator of the packets 
gets the route to the destination. 

 The format for the record - route option is shown in Fig.  14.8 . 

  Zeroth byte contains opcode for record route, that is, 0   x   7.  
  First byte is the total length of the record - route option data.  
  Second byte contains the offset from the start of the record - route option where 

the next entry should be copied. The router will need this fi eld to copy the 
IP address when the option is set.      

 There can be a maximum of nine entries that can be recorded using this 
option.   

  14.5   SOURCE ROUTING 

 This option entitles the originator of the IP datagram to specify its own route for a 
given destination, which essentially means that the user will provide an IP layer with 
complete set of next hops (in the correct sequence) which the IP datagram should 
follow to reach the destination. It is similar to the record - route option except that 
the list of next hops is specifi ed by the originator of the datagram and is not recorded 
by the intermediate routers. If it is found that any of the routes as mentioned in the 
list of next hops is not reachable at any point of time, an ICMP error message is 
returned to the originator of the IP datagram. There are two options here. 

  14.5.1   Strict Record Routing 

 When this option is set in the IP datagram, the router has to strictly follow the same 
path as specifi ed by the list of next hops. This means that if the next hop router is 

    Figure 14.8.     Format for record - route option.  



not found at any intermediate router, the datagram will be dropped and the ICMP 
error message will be returned to the originator. The message format is the same 
for the option as described in Fig.  14.8 . The opcode for the option is 0x89 and it can 
have maximum of nine next hop values. The ptr fi eld is modifi ed by each router to 
point to the next value in the list so that the next router uses this fi eld to identify 
the next hop for the packet.  

  14.5.2   Loose Record Routing 

 The option is similar to a strict - route option except that the IP datagram is allowed 
to take different paths while traversing between the two consecutive next hops as 
mentioned in the option list. This essentially means that any of the next hops speci-
fi ed in the list may not be directly reachable but is surely reachable. The opcode for 
the option is 0x83 and can have a maximum of eight entries. Ptr is used in the same 
way as it is done for strict - route option.  

  14.5.3    SRR  Processing Implementation 

 In  ip_rcv_fi nish() , we fi rst process IP options from the IP header  ip_options_
compile() . If SRR/LSRR is set in the IP header,  opt → srr  will be set to point to the 
start of the SRR option in the IP header. We fi rst check if the SRR option is sup-
ported by the interface on which the packet is received by using macro  IN_DEV_
SOURCE_ROUTE  at line 353 (cs  14.4 , cs  14.5 ). If the option is not supported for 
either IP or the incoming interface, we drop the packet; otherwise we call  ip_
options_rcv_srr()  to further process the SRR option.   

    cs 14.4.      ip_rcv_fi nish ().   
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  14.5.3.1     ip _ options _ compile ().      This is a routine that is called from  ip_rcv_
fi nish() , where IP options are processed from the received packet. The  IPOPT_
SSRR, IPOPT_LSRR  and  IPOPT_RR  record - route options are identifi ed from the 
IP header here, and a sanity check is made against the format for these options. 

 If the record - route options are identifi ed, the  rr  fi eld of the  ip_options  object is 
made to point to the start of the option string in the IP header. If we have not 
reached the end of the list or the packet has not reached the fi nal destination, the 
 is_changed  and  rr_needaddr  fi elds of the  ip_options  object are set. These fi elds will 
be used later by the forwarding subsystem will see later. We will copy the IP address 
of the next hop in the IP header location as specifi ed by the  ptr  fi eld of the option 
and increment the  ptr  fi eld to point to the next copy location. 

 If any of the source - route option is identifi ed,  srr  fi eld of the  ip_options  object 
is made to point to the start of the option string in the IP header. If the strict - route 
option is set, the  is_strictroute  fi eld of the  ip_options  object is also set here which 
will be used later by the forwarding subsystem. 

  Note:   PACKET_HOST  means that the packet belongs to the host (i.e., US) and it is a 
unicast packet. In a promiscuous mode, the Ethernet driver collects all the packets which 
don ’ t even belong to us and sends it to the IP layer for further processing. In the case where 
the packets don ’ t belong to us, those are marked by the Ethernet driver as  PACKET_
OTHERHOST  in  eth_type_trans() . These packets are dropped by the IP layer in  ip_rcv() . All 
those packets which belong to us are not marked as PACKET_HOST and  skb → pkt_type  
remains zero, which means that any packet for which  pkt_type  is zero belongs to us 
( PACKET_HOST ). 

 [ IPCB  macro provides a pointer to IP control block pointed to by cb fi eld of skb. This 
fi eld can be used by any protocol layer for option processing. In the case of IP, this control 
block is mapped to  struct inet_skb_parm . To access IP options from IPCB, we need to access 
 opt  fi eld of struct  inet_skb_parm . The Opt fi eld is embedded type  ip_options  in  struct 
inet_skb_parm .]  

  14.5.3.2     ip _ options _ rcv _ srr ().      In lines 582 – 587 the route is calculated for the 
source and destination IP addresses for the packet before the routine is called (cs 
 14.6 ). So, the route checked here is for the packet destination. If the route type is 
 RTN_UNICAST , it means that the destination IP does not belong to any of the IP 
confi gured for the host. In the case of the strict route, this is not acceptable. The 
packet at each step should reach the exact destination as specifi ed by the destination 
IP in the packet. In the case of the loose record route option, we may reach the 
destination (specifi ed by destination IP in the IP header) through one or more hops. 
That is the reason why even if the route for the destination is not the local host (line 
582), we consider this packet if the packet has a loose record route option set (line 
583); otherwise we discard the packet sending an ICMP message to the originator 
of the packet.   

    cs 14.5.      IN_DEV_SOURCE_ROUTE.   



    cs 14.6.      ip_options_rcv_srr ().   
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 In loop 591 – 613, we are traversing through list of next hops listed in the strict 
route IP options pointed to by  skb → nh.raw + opt → srr . We do some sanity checking 
on the srr string, if the format is not proper, the ICMP message is generated for an 
improper parameter (line 593). nexthop is copied from srrptr, which is offset into 
the srr option string pointing to the nexthop router (line 596). We check routing 
entry for the next hop by calling  ip_route_input()  at line 600. On return, route is 
either defi ned or not. If not, an error is returned; otherwise we get a valid entry that 
is updated in the dst fi eld of skb. We need to make checks here on the type of route 
that is associated with the nexthop selected at line 602. If the route is not unicast 
(directly connected or gateway) and at the same time is also not a route for the 
local machine ( RTN_LOCAL ), it means that the route is invalid. It means that the 
we have not reached the destination, nor can we reach the next hop router directly 
from any of the interfaces confi gured on the host. We return with an error here. In 
the case where one of the conditions is false — that is, either the route is a directly 
connected one or we are the ones that the next hop points to — we will proceed 
further. Further, we make a check if the route for the next hop selected points to 
us at line 608. If so, we continue with the nexthop search jumping to the next entry 
in the srr option string and copy the current next hop as pointed to by SRR pointer 
to the destination address in the IP header. If not, we got the nexthop to route the 
packet to its next destination. We return with  srr_is_hit  and  srr_is_changed  set if we 
have not reached past the end of the list (line 617). If one of the nexthop from the 
SRR list is successfully found, the dst fi eld of skb will be pointing to the route that 
will be used later to route the packet by the forwarding module.  

  14.5.3.3     ip _ forward _ options ().      This routine is called from  ip_forward_
fi nish() , which is the fi nal call by a forwarding subsystem while forwarding a packet. 
 ip_forward_options()  needs to update some of the fi elds in the IP header options 
based on the IP options processed in  ip_options_compile()  when the datagram is 
received. We will check how SRR and RR - related options are processed here. In 
 ip_options_rcv_srr()  we found out the route for the packet in case the SRR option 
is set. Also for the RR option, we did most of the processing in  tcp_options_compile() . 
For the RR I option, we try to modify the IP address recorded so far for the current 
hop (in  ip_options_compile() ) depending on the IP addresses of the forwarding 
interface as permitted by scope of the IPs confi gured on the interface. We do this 
to take care of the administrative scopes of the IP address as set for the interface 
and also to record actual nodes from where the packet is forwarded with an SRR/
RR option for the IP set. Similarly, for the SRR IP option, we do the same and also 
modify the pointer to the next hop as to be seen by the next hop router. 

 At line 523, we access IP options then we access routing table information at 
line 525 and fi nally we access the IP header for the packet at line 526 (cs  14.7 ). The 
 rr_needaddr  fi eld of the  ip_options  object is set only if RR option is set in  ip_
options_compile() . We call  ip_rt_get_source()  at line 530 to copy the appropriate 
source address in the location specifi ed by the pointer for RR option. The pointer 
for the RR option is already modifi ed to point to the new location to copy the next 
hop router in  ip_options_compile() . At line 533 we check if  srr_is_hit  fi eld of  ip_
options  object is set. This is set in  ip_options_compile  in the case where SRR option 
in the IP header is set. If this fi eld is set, we try to loop through the next hop list 
starting from the location as specifi ed by the pointer to SRR option (lines 538 – 546). 
In each iteration we try to match the next hop route entry in the SRR list with the 



destination IP address for the route set for the packet in  ip_options_rcv_srr() . If a 
match is found and is not the last entry (line 547), we try to replace the entry in the 
SRR list for the current router with the IP address of the forwarding interface as 
permitted by the scope value by calling  ip_rt_get_source()  at line 549. At line 550, 
we modify the destination fi eld of the IP header from the destination IP address in 
the routing entry. At line 551, the SRR pointer is modifi ed to point to the next loca-
tion as seen by the net hop router where the packet is being forwarded.   

 The processing of the SRR option is shown in Fig.  14.9 . The packet originating 
from host H1 has an SR set with a list of next hops R1, R2, R3,  …  , Rn and a pointer 
set to 3 (fi rst next hop in the list). When the packet emerges from the fi rst router 
R1 from the interface with IP IP1, this IP is recorded, replacing R1 in SRR option 
fi eld. The pointer is incremented to point to the next hop, that is, R2. This repeats 
as the packet emerges from each router, and fi nally we have a list of IP addresses 
of the forwarding router interfaces replacing the IP addresses of the routers speci-
fi ed by the end user. This list is copied in the reply so that the originator of the 
packet knows exactly how the packet has traversed.    

    cs 14.7.      ip_forward_options.   
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  14.5.3.4     ip _ rt _ get _ source ().      In this routine we try to get the source IP 
address for the interface used by the selected route and return it to the caller. If an 
incoming interface is not provided (line 1168), the source IP for the interface is just 
the source IP as specifi ed by the route itself. Otherwise we try to look up the routing 
table using a key for the route to fi nd out the preferable source IP address for the 
route, and we call  fi b_lookup()  at line 1170. In case the result indicates that the route 
is of type NAT, we need to fi nd the NATed source address for the packet by calling 
 inet_select_addr()  for a given gateway with universal scope at line 1173. Otherwise, 
we try to get the most preferable source IP address for the interface used by the 
route using macro  FIB_RES_PERFSRC  (cs  14.8 , cs  14.9 ). If the preferred source is 
set for the route ( fi b_prefsrc ),  else __fi b_res_prefsrc()  is called to the return source 
with universal scope (using outgoing interface and the gateway information).   

    Figure 14.9.     Packet with SRR IP option being modifi ed as it emerges from each router 

interface.  

    cs 14.8.      FIB_RES_PREFSRC.   



 If no results are returned by the route lookup,  inet_select_addr()  is directly 
called at line 1180 to fi nd the source IP with universal scope (also using gateway 
information for the route) for the route. We do this because there may be a different 
source IP confi gured for the interface for administrative reasons. Finally we copy 
the identifi ed source address to return to the caller at line 1182.    

  14.6   LINUX KERNEL IMPLEMENTATION OF ROUTING TABLE 
AND CACHES 

 Let ’ s start with the fl ow of how the routing table and routing caches are maintained 
by the kernel. 

 We will draw a diagram of how routing tables are updated, how they are 
accessed, and different paths in the linux kernel. Also, we will explain the relation 
between routing table and the routing cache (Fig.  14.10 ).    

  14.7   ROUTING CACHE IMPLEMENTATION OVERVIEW 

 The routing cache is the fastest caching method for fi nding the route (Fig.  14.11 ). 
The FIB also offers a method to fi nd the route, but the lookup time is greater and 
for each single packet to run a FIB query impacts the performance, whereas the 
routing cache reduces the lookup time for fi nding the route information.   

 A single routing cache is shared in the case where multiple routing tables are 
confi gured for policy routing. The routing cache keeps every route that is in use or 
used recently in a hash table. It also maintains timers and counters to remove the 
route that is no longer in use. 

    cs 14.9.      tp_rt_get_source.   
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    Figure 14.10.     Route cache and FIB.  

    Figure 14.11.     Routing cache implementation overview.  



 The routing cache is a single hash table which includes the cache entries. cs  14.10  
shows that the routing cache hash table is an array of  rt_hash_bucket  structures.   

 Each  rt_hash_bucket  structure contains the chain element and the read/write 
spin lock. The chain element includes the list of ratable structures that represent the 
cache entries. 

 When an IP layer wants to fi nd a route, based on the hash value it goes to the 
proper  hash_bucket  and searches the chain of cached routes for the match. If a 
match is not found, then the FIB is accessed to fi nd the match. 

 The routing cache is initialized in  ip_rt_init()  function called by  ip_init ()  
fucntion. The size of the routing cache hash table depends upon the physical memory 
in the system. At boot time a message is displayed which displays the size of the 
hash table. 

 The  rt_hash_bucket  is selected based on the hash value, which is a combination 
of source, destination, and TOS values. 

 The routing cache in IP is defi ned in kernel as a pointer called  rt_hash_table , 
which points to a single array of  rt_hash_bucket  structures. 

  14.7.1   Routing Cache Data Structures 

    struct rt _ hash _ bucket .      This structure contains a list of rtable and a read – write 
lock for accessing the rtable from the list (cs  14.11 ). 

  Chain:     This includes the list of rtable structures that represent the routing table 
entries.  

  Lock:     Read/write spin lock for accessing the routing cache entries.       

    struct rtable  .     An rtable data structure is used to store a routing table entrry 
in the routing cache. It represents each destination route entry in the routing cache 
(cs  14.12 ).   

       union  { dst _ entry dst ;  rtable   *  rt _ next ;} u .      Both  dst  and   * rt_next  are used concur-
rently. The  dst  next pointer and   * rt_next  points to the same memory location. Here 

    cs 14.10.      rt_hash_bucket declaration.   

    cs 14.11.      rt_hash_bucket.   
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the pointer to the next rtable can be accessed as either a pointer to a destination 
cache entry through  dst  or a routing table entry pointer through  rt_next . The union 
is used to embed the  dst_entry  structure into the rtable structure.The socket buffer 
 sk_buff  for an outgoing packet contains a pointer to the destination cache entry; 
this  dst  would also be used as a pointer to the routing cache entry for the packet. 
This cache entry is sometimes used to decide to send the packet to the destination 
by avoiding lookup into global routing tables.  

    rt _ fl ags .      This contains routing cache fl ags (can also be used in a routing table). 
This fl ag value is used to determine the accessibility or reachability of the destina-
tion route. It can be any of these fl ags shown in cs  14.13 . Important fl ags from above 
list are: 

   RTCF _ DEAD :     Indicates that the route is dead.  
   RTCF _ ONLINK :     Indicates that the destination route is locally reachable 

network.  
   RTCF _ BROADCAST :     Indicates that the destination route is a broadcast 

route.  
   RTCF _ MULTICAST :     Indicates that the destination route is a multicast route.  
   RTCF _ LOCAL :     Indicates that the destination is a local route.       

    cs 14.12.      rtable.   



    rt _ type .      This is a type of route that indicates whether the route is UNICAST, 
MULTICAST, and so on, and specifi es whether the route is for a single destination 
or for all destinations or to a group of machines in a network. It can be any of the 
routes listed in cs  14.14 .    

    rt _ src  and  rt _ dst .      The source and the destination address.  

    rt _ gateway .      Address of next hop gateway.  

    rt _ key .      Key used for searching the cache entry for destination route.  

   _ u 32  rt _ spec _ dst .      Specifi c destination for the use of UDP socket users to set 
the source address.  

    cs 14.13.      IPV4 routing cache fl ags.   

    cs 14.14.      Route types.   
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   _  u 32  rt _ src _ map   and  _  u 32  rt _ dst _ map .      Used for the NAT if confi gured in 
kernel.  

    peer .      This is a pointer to  inet_peer  structure, which is used to store the informa-
tion related to the recent communication to the remote host. This is  ‘ Long - Living 
IP Peer Information. ’     

    struct dst _ entry .      This structure contains protocol - independent destination 
cache defi nitions and pointers to the destination - specifi c input and output functions 
and data.   

       next .      Pointer to the next  dst_entry  instance from the list for same route cache 
hash table ’ s bucket.  

    cs 14.15.      dst_entry.   



    refcnt .      Reference count to keep track for entries in use or deleted.  

    use .      Number of times this entry has been used.  

    dev .      Pointer to the egress device to be used for packet transmission to reach 
the next destination.  

    lastuse .      Timestamp to indicate when this entry was used last time. This fi eld is 
useful for the garbage collector ro clear the dst structs that are not in use.  

    expires .      Timestamp to indicate when this entry would expire.  

    pmtu .      Max packet size for this route.  

    neighbor .      Pointer to the ARP cache neighbor structure for this route.  

    hh .      Pointer to a hardware header cache.  

   ( *  input ).      Pointer to the post routing input function for this route.  

   ( *  output ).      Pointer to the output function for this route ( dev_queue_xmit() ).  

    ops .      Pointer to an operational structure of  dst  that is  dst_ops  struct that contains 
family, protocol, and operational functions for the route cache.  

    tclassid .      Used in class - based queueing discipline for queueing of the packets; 
represents a classid.      

  14.8   MANAGING ROUTING CACHE 

 As discussed in Section  14.6 , whenever a new route is created, there is a route cache 
miss. When a Linux machine is acting as a router, it gets a huge number of packets 
with different origins and destinations. This may cause a huge number of entries in 
the routing table. These entries take up a huge amount of system memory. This 
requirement raises the need to clean up the kernel routing cache on a regular basis. 
The entries in the routing cache are added for each new route but are not destroyed 
as soon as the connection associated with the packet is closed or the incoming 
packet for which an entry is made is already processed. We need to cache entries 
in the kernel routing cache for some time so that we can reuse it for connections/
packets using the same route. The sole aim of having a routing cache table is to save 
a huge amount of time creating routing entry by re - using entries already created 
for the route. But what about stale entries in the cache or entries that are no longer 
in use? To manage such unused entries, a routing subsystem introduces timers that 
will be fi red periodically to check if there are any entries that are no longer in use 
or have become stale and will remove those entries from the routing cache. 

 For every packet that enters the system whether originated locally or from a 
different host, the route needs to be defi ned. The route is created based on various 
criteria from the information available in the kernel FIB (see Section  14.12.3 ). This 
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routing entry is cached for all the packets/connections that need to be routed using 
the same route. When a connection is established for the fi rst time, the route cache 
is consulted fi rst to check if the entry is cached in for the route by calling  ip_route_
output_key()  (cs  14.16 ). This routine traverses the chain of routing entries to fi nd 
out if they have hit the cache (loop 2007 – 2025). In each iteration we check the entry 
for matching route key (lines 2008 – 2016). If we miss the cache, FIB is consulted to 
build a routing entry for the requested route by calling  ip_route_output_slow () (line 
2028) which will fi nally add an entry to the cache. If we hit the cache, the following 
action is taken: 

  1.      lastuse  fi eld of the routing entry (object  dst_entry ) is updated with current 
value of  jiffi es  (line 2017).  lastuse  fi eld of the route indicates when was the 
routing cache entry last hit. This value indicates how old the entry is as in 
when it was last used.  

  2.      dst_hold()  is called for the route at line 2018 to increment reference count 
for the routing cache entry. This value indicates the number of references to 
the cached routing entry. The cached entry can be destroyed only if the there 
is no one referencing the cached entry; that is, nobody is using the cached 
entry.  

    cs 14.16.      ip_route_output_key ().   



  3.      __use  fi eld of the object  dst_entry  is incremented by one. This fi eld is not used 
while destroying the cached routing entry and should not be confused with 
reference count( __refcnt ). This is incremented whenever there is a cache hit 
for the entry and is used for statistical purpose. Similarly, on line 2020 we 
update statistical data for the cache hit on the CPU.      

  14.8.1   Routing Cache for Local Connections 

 Let ’ s have a look at how the routing cache is consulted when a TCP connection is 
initiated. The  tcp_v4_connect () routine is called within the kernel when a new TCP 
connection request is made from the user application (cs  14.17 ). It calls  ip_route_
connect()  at line 773 to get route for the destination. If route for the destination is 
found, it is returned as fi rst argument to the routine; otherwise error is returned. 
The simple step to get routing information is to fi rst check the kernel routing cache 
and if an entry does not exist, build new routing entry from the information pro-
vided in FIB and cache it in kernel routing cache.  ip_route_connect()  does some 
sanity checks and calls  ip_route_output_key()  to search kernel routing cache for the 
routing entry requested for the connection. If the routing entry is found in the cache, 
we hold reference for the routing entry as explained in Section  14.12.2 . We cache 
the routing information for the socket by calling  __sk_dst_set()  at line 783. This 
routine makes a  dst_cache  fi eld for the socket (sock object), to point to the new 
route ( dst_entry  object). The route information will be used for all the packets sent 
out on this socket connection.   

 Whenever a packet is sent out over the socket connection, cached in route 
information is checked for its validity in  ip_queue_xmit()  (cs  14.18 ). Before the 
packet is processed by the IP layer,  __sk_dst_check()  is called at line 354. This 
routine returns NULL in the case where the cached routing entry is marked obso-
lete; otherwise it returns a value cached in by the socket (pointed to by  sk → dst_
cache ) at the time of connection setup in  tcp_v4_connect() . In case the route is 
obsoleted, we call  ip_route_output()  to build routing entry for the destination at line 
367. We cache in the new routing entry with the socket by calling  __sk_dst_set()  at 
line 371. The routing entry is also pointed to by each outgoing packet, and this is 
done by calling  dst_clone()  at line 374.  dst_clone()  increments the reference count 
of the routing entry ( dst_entry  object) so that it should not be destroyed before the 
packet is fi nally sent out.    

    cs 14.17.      tcp_v4_connect ().   
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  14.8.2    __ sk _ dst _ check ()  

  __sk_dst_check()  checks if the route exists (dst != NULL) and is obsolete ( dst →
 obsolete   >  0) at line 1100 (cs  14.19 ). If both are TRUE, it calls a check routine specifi c 
to IP version. In case of Ipv4, this routine points to  ipv4_dst_check() . This routine 
just calls  dst_release()  to decrement the reference count of the  dst_enrty  object and 
returns NULL. Essentially we call  ipv4_dst_check()  only if the route has become 
obsolete, and in that case the reference count for the route is decremented by 1 
because we are not referring to this routing entry anymore ( sk → dst_cache  is set to 
NULL at line 1101. In Section  14.8.3 , we will see under what conditions the routing 
entry is marked obsolete.    

    cs 14.18.      ip_queue_xmit ().   

    cs 14.19.      __sk_dst_check ().   



  14.8.3   Link Failure and Reporting to Routing Subsystem 

 In this section we will see how the routing cache entry is invalidated when link 
failure associated with the route is indicated. The fi nal step in packet transmission 
is to build a link layer header. For this, the hardware address corresponding to the 
destination IP should be made available. The neighboring subsystem is consulted to 
resolve the hardware address. It sends out an ARP request and queues the packet 
in its queue. A timer is installed for this ARP request so that we can check the ARP 
results asynchronously.  neigh_timer_handler()  is the routine that is run when the 
neighbor timer expires (cs  14.20 ). In this routine we check if we have exhausted the 
maximum number of retries to send out ARP requests without getting ARP reply 
at line 650. If so, we will do error handling for each queued packet on the neighbor 
queue waiting for ARP resolution in a loop 663 – 667. We call neighbor - specifi c 
error handling routine,  neigh → ops → error_report , at line 665. This points to 
 arp_error_report() .   

  arp_error_report()  calls a routine to free  sk_buff  and also makes sure that the 
routing entry associated with the packet is removed from the system at the earliest 
by calling  dst_link_failure() .  

    cs 14.20.      neigh_timer_handler ().   
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  14.8.4     dst _ link _ failure ()  

 This gets reference to the  dst_entry  object from the  dst  fi eld of the packet (line 142) 
(cs  14.21 ). Next we check if this fi eld is not NULL and link failure operation specifi c 
to the route ( dst → ops → link_failure !=NULL ) is defi ned at line 143. If so, we make 
a call to link a failure routine for the route at line 144. For Ipv4, this operation is 
defi ned as  ipv4_link_failure() .    

  14.8.5     ipv 4_ link _ failure ()  

 This routine sends out an ICMP error message to the originator of the packet 
reporting error  ‘ destination not reachable. ’  The routing entry for the packet is 
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referred to at line 1140 (cs  14.22 ). If it exists, the route is all set to be expired at the 
earliest by calling  dst_set_expires()  at line 1142. The timeout value we are providing 
is 0, which means that we want this route to expire whenever the next routing cache 
timer is run (see Section  14.8.10  for more details).    

  14.8.6     dst _ set _ expires ()  

 We fi rst calculate the expiry value relative to the current value of  jiffi es  at line 149 
(cs  14.23 ). The sanity check at line 151 to keep a minimum value of expiry to 1 

    cs 14.21.      dst_link_failure.   

    cs 14.22.      ipv4_link_failure ().   

    cs 14.23.      dst_set_expirese ().   



because of the requirements in the routing cache timer (Section  14.8.10 ). Next we 
check if the expiry of route is set to 0 or the route is set to expire at a much later 
time than the value calculated above (line 154). In any case, we set the value of the 
routes expiry to the value calculated at line 149. I suppose that a zero value of the 
routes expiry means that the route should never be destroyed.    

  14.8.7   Routing Cache for the Incoming Packets 

 The routing subsystem is consulted for every incoming packet in the same way it is 
done for outgoing packet. We need to know if the incoming packet needs to be 
delivered locally, needs to be forwarded, is a multicast or a broadcast packet, and 
so on. All this information is available from the routing entry corresponding to the 
packet, and a further course of action is decided based on this information. 

  ip_route_input()  is called from  ip_rcv_fi nish()  to get routing information for the 
packet (cs  14.24 ). First the hash bucket is identifi ed for the packet, and then the 
collision list for the bucket is traversed (loop 1648 – 1665) to match the routing entry. 
Once we have the matching routing entry for the packet, the  lastuse  fi eld of the 
 dst_entry  object is updated to value of  jiffi es  at line 1657. This value indicates when 
the entry was last used, and we can see the details in Section  14.8.11 . Next we incre-
ment the reference count for the routing entry by calling  dst_hold()  at line 1658. We 
do this to avoid destruction of the routing entry before the packet is either sent out 
of the system or delivered locally. Usage count of the routing entry is incremented 
for kernel statistics at line 1659, and a hit count for the routing entry on the CPU 
is incremented at line 1660 for kernel stats. The  dst  fi eld of the packet is made to 

    cs 14.24.      ip_route_input ().   
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point to the routing entry ( dst_entry  object) at line 1662 for further processing by 
the IP layer. In the case where the routing entry is not found in the kernel routing 
cache, we call  ip_route_input_slow() .    

  14.8.8   Routing Cache Timer 

 As mentioned earlier, we need to keep a constant eye on the routing cache entries 
as they grow in size on a busy system making a huge number of network connec-
tions per seconds or a busy router. A single routing table entry in FIB may lead to 
hundreds of kernel routing cache entries. Each connection to different hosts on the 
remote network (single routing table entry in FIB) will have one routing cache entry. 
The routing entries in the kernel routing cache may be lying unused for a long time, 
taking up system memory. To manage these situations, a timer is installed to monitor 
routing cache entries at some preset time intervals. 

 There are two system - wide timers related to routing cache management: 

   •       rt_periodic_timer   
   •       rt_fl ush_timer     

  rt_fl ush_timer  and  rt_periodic_timer  timers are initialized at the system bootup time 
in routine  ip_rt_init() , but only an  rt_periodic_timer  timer is installed at line 2525 
(cs  14.25 ). The timer routine for  rt_periodic_timer  and  rt_fl ush_timer  are  rt_check_
expire  and  rt_run_fl ush , respectively. We discuss these timers in detail in the sections 
that follow.    

  14.8.9     rt _ periodic _ timer   

 As the name suggests, this is a periodic timer that is kicked off at the boot - up time 
when a routing subsystem is initialized. Once started, this timer will never stop but 
may not necessarily happen at fi xed frequency. In this section we will see the role 
of this timer and how it calculates the next expiry time. 

 The routine registered to execute when this timer fi res is  rt_check_expire() . The 
routine checks for all those routing entries in the cache which have expired by this 

    cs 14.25.      ip_rt_init e ( ) .  



time. Expired entries are removed from the kernel routing cache so that it should 
not be used any more. Later in this section we will see what to do with the expired 
entry. First we will learn how to identify the expired routing entries in the cache. 

  1.      lastuse  fi eld of the  dst_entry  object (embedded in rtable object) is used to 
identify if the routing entry has expired. As discussed in Section  14.12.2 , this 
fi eld is updated with the value of  jiffi es  whenever there is cache - hit for route 
lookup in  ip_route_output_key()/ip_route_input() . In the timer, we check the 
value of  expires  fi eld of  dst_entry  object to identify the expired entry.  

  2.      expires  fi eld of the  dst_entry  object is set to the value (with respect to  jiffi es ) 
that indicates the number of clock ticks, after which this entry should be 
removed from the routing cache.  expires  fi eld is set by call to  dst_set_expires()  
whenever we want to remove the entry forcefully even if the entry is in use 
and has not yet aged.    

  rt_hash_log  is the base 2 logarithm of  rt_hash_mask , where  rt_hash_mask  is the 
number of buckets in the routing cache,  rt_hash_table . Calculation of  ‘ t ’  doesn ’ t 
make any sense because it is not used anywhere. It is used just to calculate the 
number of times the outer loop should be traversed, which is never less than the 
number of hash buckets in the  rt_hash_table . The outer loop 376 – 407 starts at a 
fi xed value of  ‘ t ’  that is  ip_rt_gc_interval * 2  rt_hash_log  (cs  14.26 ). In each iteration,  ‘ t ’  is 
decremented by  ip_rt_gc_interval  until  ‘ t ’  becomes zero. This essentially means that 
the loop will iterate for number of turns that equals number of hash buckets in the 
routing hash table  rt_hash_table . Instead,  rt_hash_mask  could have been used to do 
this. If there are huge number of entries, the outer loop is terminated when the next 
timer interrupt has fi red, in which case  jiffi es   >  now will be true at line 405.   

 We start from the next routing cache hash bucket entry from where we left last 
(line 380). When we are entering the routing for the fi rst time, it will be the zeroth 
hash bucket. The reason for this is that  rover  is a local variable that is declared 
 ‘ static ’  (line 371). We grab the lock for the hash bucket at line 383 and start travers-
ing the routing entries in the hash bucket in the inner loop 384 – 401. Once we have 
traversed all the entries in the hash bucket, the lock is released at line 402. If another 
timer interrupt has happened while we are here processing routing caches, the value 
of  jiffi es  would have incremented by 1. So, the condition at line 405, if TRUE, indi-
cates that we have spent the entire time between two clock ticks in this routine. We 
stop processing in this case; otherwise for a system with huge number of entries in 
the routing hash table, CPU will always be busy processing routing caches. When 
we are leaving the routine (outer loop),  rover  is set to the current hash bucket at 
line 408 and a timer is reset to fi re after  ip_rt_gc_interval  ticks from now at line 
409. 

 Processing within the inner loop (381 – 401) will do all the expiry check for each 
routing entry in the hash bucket. First check is whether the expiry fi eld of the  dst_
entry  object is set. This is set in case we want to forcefully remove the routing cache 
entry from the system (by call to  dst_set_expires() ) — for example, when link failure 
is detected. When the entry has expired (condition at line 387 is FALSE), we delink 
the current routing entry at line 399 and free the current entry at line 400 by a call 
to  rt_free() . Otherwise the entry has not expired (condition at line 387 is TRUE), 
the timeout value is halved at line 388, and we move to the next entry (line 389). 
The reason why we half the timeout value here for the next entry here is because 
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the routing entries are organized in the hash bucket chain in the order they arrive. 
The old entries can be found at the head and latest entries at the tail. The reason 
for this kind of arrangement is that when a new entry is entered, it is checked against 
all the entries in case the matching entry already exists. In this process we reach the 
end of the chain where the new entry is inserted (check  rt_intern_hash() ). 

 In the case where the expire fi elds of the  dst_entry  object are not set, we are 
not forcing the entry to expire but still the entry can be removed from the system 
depending on its age and value. We call  rt_may_expire()  at line 392 to check expiry 
of the routing entry with respect to its age. We pass two timeout values to this 
routine: The second argument (fi rst timeout value) is the reduced timeout value for 
the much latest entries, and the third argument (second timeout value) is the fi xed 
timeout value  ip_rt_gc_timeout . In section  14.8.11 , we will see how these two values 
are used. If the route is not in use,  rt_may_expire()  returns an indication to remove 
the entry from the cache in case the entry is at least  ip_rt_gc_ timeout ticks old. If 

    cs 14.26.      SMP_TIMER_NAME ( ) .  



the entry has not expired, we half the timeout value for the very latest entries and 
move on to the next routing entry (line 393 – 394). If both the tested conditions fail, 
we need to remove the entry from the routing cache as the route has expired.  

  14.8.10     rt _ may _ expire ()  

 This routine makes various checks on the routing cache entry regarding its expiry. 
First we check if anybody is referencing the routing entry (reference count for the 
entry) at line 352 (cs  14.27 ). If the route is being used, we don ’ t check anything else 
and just return failure. Next is to check if expiry for the route is set (forceful removal 
of the route) at line 356. If so, the expiry check is made with current  jiffi es  value to 
see if we have expired. In case we have expired, we return success (indicating expiry 
of the entry). In case it is not forced expiry for the entry or the entries forced expiry 
has not timed out, we need to do some more expiry checks. Now we calculate the 
age of the route using lastuse fi eld of  dst_entry  object (line 359), which is updated 
whenever there is a cache hit. If the age of the entry has not expired as per the fi rst 
timeout considered (line 361), the route can still be removed. In this case we check 
if the entry can be cleaned fast by calling  rt_fast_clean(). rt_fast_clean()  checks if 
this is multicast/broadcast route (cs  14.28 , line 337) and if we are not the latest entry 
in the chain ( rth → u.rt_next != NULL) .   

 If any of these conditions is FALSE,  rt_may_expire()  returns false, if the entry 
has not aged. If either entry has expired against the fi rst timeout value (age    >    tmo1) 
or  rt_fast_clean()  returns TRUE, the route can still be valid. Here we need to check 
for another set of conditions at line 362. If the route has not expired against the 
second timeout value (age    ⇐    tmo2), we call  rt_valuable()  to check if the route is 
valuable.  rt_valuable()  checks if expiry time is set for the route and some other 
conditions which are of less relevance. If the route is valuable and the route has not 
timed out, we keep it. Else we return TRUE if any of the conditions at line 362 is 

    cs 14.27.      rt_may_expire ( ) .  
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FALSE. In any case, if route has timed out against second timeout value provided 
to the routine, we return TRUE. 

 [ Note : In the case where we are called from rt_check_expire(), the second argument is  ip_
rt_gc_timeout . If the route times out against  ip_rt_gc_timeout  and the route is not in use, the 
route is removed from the cache.]  

  14.8.11     dst _ free ()  

 The routine is called to free the  dst_entry  object and also to free any resources 
associated with it. First we check if the entry is obsolete and is already there on the 
garbage list ( dst_garbage_list ) at line 118 (cs  14.29 ). If so, we just return at line 119. 
If we are not on the garbage list, next check is for the references to this routing 
entry. If someone is already using the routing cache entry ( dst → __refcnt   >   0 ), we 
will defer freeing of the cache entry by calling  __dst_free()  at line 124. In case no 
one is referring to the routing cache entry, we will free the  dst_entry  object by calling 
 dst_destroy()  at line 121 and return.    

    cs 14.28.      rt_fast_clean ( ) .  

    cs 14.29.      dst_free ( ) .  



  14.8.12    __ dst _ free ()  

 The routine puts routing cache entry ( dst_entry  object) on the garbage list to be 
freed asynchronously by the  dst_gc_timer  timer. We hold  dst_lock  to manipulate 
 dst_garbage_list . In case there is no interface device ( dst → dev ) associated with the 
route or the associated interface is down (line 126, cs  14.30 ), we set input and output 
routine associated with the route to  dst_discard  and  dst_blackhole , respectively. We 
do this to ignore any packets that are sent or received using the route. We set an 
obsolete fi eld to 2 at line 130, indicating that the entry is already on the garbage list. 
Next we add the route at the start of the garbage list using the next fi eld of the 
 dst_entry  obect (line 131 – 132). It means that the latest entries reside at the head of 
the list.   

 Whenever a new entry is made to the garbage list  dst_garbage_list  (check  __
dst_free() ),  dst_gc_timer_inc  is reinitialized to  DST_GC_INC  (5   Hz) and  dst_gc_
timer_expires  is initialized to  DST_GC_MIN  (1   Hz) and  dst_gc_timer  timer is set to 
expire after one second by calling  add_timer() , in case there was no fresh entry in 
the garbage list which has even expired once. If there is even one entry on the 
garbage list which has expired even once,  dst_gc_timer_inc  would always be more 
than  DST_INC_MIN  (check Section  14.8.15 ).  

    cs 14.30.      __dst_free ( ) .  
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  14.8.13     dst _ destroy ()  

 This is the routine that is fi nally called to free the route and associated resources 
when the route has expired and there is no one referring this route. The  hh_cache  
object contains cached - in hardware (NIC) - related information for the route. If 
nobody is referring to the cached object (line 150, cs  14.31 ), free it at line 151. If 
there is ARP associated with the route ( dst → neighbour ), just free it by calling 
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 neigh_release()  at line 155. This frees the  neighbour  object and also the resources 
associated with it, in case we were the ones last referring it. The destroy method of 
 dst  operations is called to destroy the  dst_ops  object at line 161. If there is an inter-
face associated with the route ( dst → dev ), we decrement the reference count on the 
device by calling  dev_put()  at line 162. If we are the last one to refer the device, it 
is unregistered from the system and freed.  dst_entry  object is returned to the cache 
from where it was allocated at line 167.    

  14.8.14     dst _ run _ gc ()  

 This routine is run whenever  dst_gc_timer  expires. It checks if any routing entry on 
the  dst_garbage_list  needs to be destroyed. If any such entry is found,  dst_destroy()  
is called to free the routing entry ( dst_entry  object) and also any resources associ-
ated with it. 

 First we try to acquire  dst_lock  by a call to  spin_trylock()  at line 49 (cs  14.32 ). 
If we could not get the lock, we reset the timer ( dst_gc_timer ) to expire after one -
 tenth of a second at line 50 and return. Otherwise, we delete the timer and move 
ahead to manipulate the garbage list. The list ( dst_garbage_list ) is traversed in the 
loop 57 – 65. For each entry we check if the reference count has become zero at line 
58. If somebody is already referring to the routing entry, we move to the next entry 
and continue (line 59). Otherwise, we remove the entry from the list at line 63 
(remember  dstp  is double pointer) and call  dst_destroy()  at line 64 to free the  dst_
entry  object. Once we have traversed the entire list, we check if there is any entry 
left on the list at line 66. If there is nothing left in the  dst_garbage_list, dst_gc_timer_

    cs 14.31.      dst_destroy ( ) .  



inc  is initialized to  DST_GC_MAX  (120   Hz   =   150   sec) at line 67 and the timer is not 
restarted.   

  dst_gc_timer_expires  keeps the value of next expiry of the  dst_gc_timer  timer 
and can assume a maximum of  DST_GC_MAX  (120   Hz   =   120   sec). If there is any 
entry still on the list which is being referred, expiry time of the timer is incremented 
by  DST_GC_MAX  (5   Hz   =   5   sec) at line 70.  dst_gc_timer_inc  is incremented in 
multiples of  DST_GC_INC  (5   Hz) every time  dst_gc_timer  timer expires, in this case. 
 dst_gc_timer  is installed with the new calculated value of  dst_gc_timer_expires  at 
line 78. Now we release  dst_lock  at line 81 and return.  

  14.8.15   Interface down and   rt _ fl ush _ timer   

  rt_fl ush_timer  is used for the forced fl ush of a routing cache because of any reason 
such as interface down, routing table is fl ushed, and so on;  rt_run_fl ush  is a routine 

    cs 14.32.      dst_run_gc ( ) .  
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installed for  rt_fl ush_timer  timer. Let ’ s look at the functionality of  rt_fl ush_timer . 
We initialize  rt_deadline  to 0 and we will see later (Section  14.8.17 ) how the value 
of  rt_deadline  does matter. We traverse through all the bucket in the routing cache 
bucket in the outer loop (lines 424 – 435, cs  14.33 ).  rt_hash_mask  is the number of 
buckets in the kernel routing hash table  rt_hash_table . This value is calculated in 
 ip_rt_init()  at kernel boot - up time where resources are allocated for routing caches. 
If there are any routing entries in the hash bucket (line 427, cs  14.33 ), the chain is 
detached at line 428. We release the hash bucket lock at line 429 and traverse the 
routing entries chain in the inner loop (lines 431 – 434). We call  rt_free()  for each 
routing entry ( dst_entry  object) in the chain to free these entries one at a time. This 
way complete routing cache is fl ushed.    

  14.8.16     rt _ cache _ fl ush ()  

 When a network interface card is brought down or it comes down,  fi b_inetaddr_
event()  is called as notifi er callback routine registered for the device. We call  rt_
cache_fl ush()  with a negative argument when the  NETDEV_DOWN  tag is set. In 
this section we will see how  rt_cache_fl ush()  works and under what conditions it 
will start the  rt_fl ush_timer  timer. 

 We record current  jiffi es  at line 444 (cs  14.34 ) and also mark if we are being 
called from soft IRQ at line 445.  in_softirq()  returns the softIRQ counter on the 
current CPU. If it is nonzero positive value, it means that the current CPU is pro-
cessing softIRQ from where we are being called. If delay from the caller is a negative 
value, we set it to a minimum delay value of  ip_rt_min_delay  (=   2   sec). We try to 
acquire the  rt_fl ush_lock  lock after making sure that the softIRQ is disabled locally 
at line 450.   

    cs 14.33.      SMP_TIMER_NAME ( ) .  



 If the timer is already installed, we delete it by a call to  del_timer()  at line 452. 
In case there was no timer installed, we move to line 469. Here we check if the delay 
provided by the caller is zero or a negative value. The logic says that if no timer was 
installed, we need to urgently fl ush the routing cache only if the delay provided is 
zero. In this case, we directly call  rt_run_fl ush() . Remember that  rt_run_fl ush()  is 
the callback routine for the  rt_fl ush_timer  timer. In this case, we directly fl ush the 
routing cache and return. Otherwise, if timer is not installed and the delay provided 
was negative or more than 0, we need to freshly install the timer at line 478. 

 If the  rt_fl ush_timer  timer was installed and the delay provided by the caller is 
a positive value and  rt_deadline  is also a positive value, we try to recalculate the 
delay (expiry time for the  rt_fl ush_timer ). All these conditions being TRUE means 
that the timer was installed and the route cache has not been fl ushed.  rt_run_fl ush()  
can be called from an outside  rt_fl ush_timer  from  rt_cache_fl ush(). rt_deadline  is 
zero only when  rt_fl ush_timer  is being run or has just run before we came here 
because it is reset in  rt_run_fl ush() . We calculate timeout value from the value of 
 rt_deadline , which was set when the timer was last installed from this routine. 

 If we are not called from soft IRQ (timer) and timeout is not very huge (line 
462), we set timeout to 0. If the delay provided is more than the timeout value 

    cs 14.34.      rt_cache_fl ush ( ) .  
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calculated so far, we set delay to the value of timeout at line 466. If  rt_deadline  is 
zero, it means that either  rt_fl ush_timer  has already expired or it was never installed 
and the route was never fl ushed. In this case,  rt_deadline  is set to  ip_rt_max_delay  
ticks with respect to current  jiffi es . If someone tries to fl ush caches with negative or 
positive delays and nobody has fl ushed the routing caches since we have installed 
the timer, the new delay will be calculated for that timer based on  rt_deadline  value 
set here.   

  14.9   IMPLEMENTATION OVERVIEW OF FORWARDING 
INFORMATION BASE ( FIB ) 

 The Forwarding Information Base (FIB) represents the internal routing structure 
in the kernel. It contains the routing information (Fig.  14.12 ). When the IP layer 
sends the request for identifying the route for the destination address and if the 
entry is not found in the routing cache, then the IP layers does the FIB lookup with 
most specifi c zones and searches the table until it fi nds a match. When it fi nds the 
match, the FIB updates the routing cache with the match so that the next time the 
IP layer can fi nd the route in the routing cache.   

 Structure  fi b_table  represents the routing table in the kernel. This is defi ned as 
an array variable; as illustrated in cs  14.35 . This  fi b_table  structure contains a pointer 
to the  fn_hash  structure which contains a table of  fn_zone  structures. One zone for 
each bit in the netmask (i.e., 32 Zones) and each zone can have entries for networks 
or hosts which can be identifi ed by the number of bits. For example, a netmask of 
255.255.0.0 has 16 bits, and this will correspond to zone 16; also a netmask of 
255.255.255.0 has 24 bits and corresponds to zone 24.   

 Each  fn_zone  structure also contains a pointer to the hash table of nodes rep-
resented by the  fi b_node  structure. The  fi b_node  structure contains the pointer to 
the  fi b_info  structure which contains the actual data of an routing table entry. If 
several routing table entries have the same hash value, then the corresponding  fi b_
node  structures are linked in the linear list. 

  14.9.1     struct fi b _ table   

 The  fi b_table  structure represents a routing table (cs  14.36 ). It contains a table 
identifi er and pointers to routing table functions (lookup, insert, delete, hash, etc.). 
It also contains a hash table structure which has a pointer to zone structures.   

          tb _ id  .     This is a table identifi er. There are up to 255 different routing tables that 
can be created. Each routing table in the system is identifi ed by table identifi er. By 

    cs 14.35.      Declaration of fi b_table .  



    Figure 14.12.     FIB implementation overview.  

default there are two tables: local and main. Identifi ers for local and main tables are 
255 and 254.  

    tb _ stamp  .     This is an unused element.  

    fi b _ table  .     This structure contains function pointers to create/delete/lookup, and 
so on, for entries in the routing table.  
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    tb _ lookup () .     This is a routing table lookup for matching a key — that is, for 
searching a particular route (destination) from the routing table. This function 
pointer gets initialized in the  fi b_hash_init ( )  function and points to the  fn_hash_
lookup( )  function.  

    tb _ insert  .     This inserts/updates the entries in the routing table. This function 
pointer gets initialized in  fi b_hash_init ( )  function and points to the  fn_hash_insert 
( )  function.  

    tb _ delete  () .     This deletes entries from the routing table. This function pointer 
gets initialized in the  fi b_hash_init ( )  function and points to the  fn_hash_delete ( )  
function.  

    tb _ dump () .     This dumps the contents of a routing table. This function pointer 
gets initialized in the  fi b_hash_init ( )  function and points to the  fn_hash_dump ( )  
function.  

    tb _ fl ush  () .     This frees the entries in the table (i.e., the  fi b_info  structures) if the 
 RTNH_F_DEAD  fl ag is set. This function pointer gets initialized in the  fi b_hash_
init ( )  function and points to the  fn_hash_fl ush ( )  function.  

    tb _ select _ default  () .     This selects one route from several existing default routes.
This function pointer gets initialized in the  fi b_hash_init ( )  function and points to 
the  fn_hash_select_default ( )  function.  

    cs 14.36.      fi b_table .  



    tb _ get _ info  () .     Output entries in the /proc/net/route format. This function 
pointer gets initialized in the  fi b_hash_init ( )  function and points to the  fn_hash_
get_info ( )  function.  

    tb _ data [0] .     This is a variable - sized area for which memory is allocated along 
with  fi b_table struct. tb_data[0]  contains a pointer to the FIB hash table ( fn_hash ). 
This  fn_hash  structure has an  fn_zone  structure table that contains pointers to the 
zones based on the netmasks and the zone list.     

  14.9.2     struct fn _ hash   

 The  fn_hash  structure consists of an array of pointers to  fn_zone  structures, where 
each  fn_zone  structure represents a zone (collection of routes) for the same netmask 
length and a pointer to the zones list (cs  14.37 ).   

          fn _ zone [33] .     This is an array of pointers of type  fn_zone  struct; it contains a 
pointers to the table of zones where each  fn_zone  structure represents a zone 
(collection of routes) for same netmask length.  

    fn _ zone _ list  .     This is a pointer to the fi rst non - empty zone with more specifi c 
netmask (i.e., longest netmask length) in the zones list; that is, it points to the head 
of the list fron the active zones list.     

    cs 14.37.      fn_hash .  
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  14.9.3     struct fn _ zone   

 This represents an active zone for the same netmask length, and it contains hashing 
information and a pointer to the hash table node (cs  14.38 ). It manages all the 
entries for the same netmask.   

          fz _ next  .     This is a pointer to the next non - empty zone in the zones list. The head 
of the list is kept in the  fn_zone_list  fi eld of the  fn_hash  structure.  

    fz _ hash  .     This is a pointer to the hash table of nodes for this zone, where the 
hash table of nodes is an array of  fi b_node  structures which represent a single route 
entry for the routing table. This hash table is organized based on the key value (dst 
address, netmask, tos, etc.).  

    fz _ nent  .     This is the number of routes (nodes, i.e.,  fi b_node  structs in hash table) 
in this zone.  
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    fz _ divisor  .     This is a hash divisor (number of buckets in the hash table). Nor-
mally, this value will be 0xf except for prefi x (netmask) length 0. If netmask length 
is 0, the  fz_divisor  value is 1.  

    fz _ hashmask  .     This is a bit mask used to mask the hash value for indexing in 
the hash table bucket to select the  fi b_node ’ s  list for traversing. Normally, this value 
is 0xf.  

    fz _ order  .     This is the fi xed prefi x length for this zone (bit length of the 
netmask).  

    fz _ mask  .     This is a zone netmask. There are total 32 zones for a  fi b_table , and 
each zone has a specifi c netmask. This fi eld contains the zone netmask.     

  14.9.4     struct fi b _ node   

 This represents a single (destination) route entry from the routing table; it describes 
each host network route (cs  14.39 ).   

          fn _ next  .      fi b_node  structures are organized in a hash table. This is a pointer to 
next  fi b_node  from the  fi b_node ’ s  list in a single bucket of a hash table.  

    fn _ info  .     This structure contains protocol -  and hardware - specifi c information for 
the  fi b_node  structure; it also maintains common features of the routes.  

    fn _ key  .     This structure contains a destination network prefi x (hash table key —
 least signifi cant 8 bits of the destination address).  

    fn _ type  .     This fi eld represents a type of address.The signifi cance of this fi eld is 
that it indicates whether a destination is a single machine, all machines, or a group 
of machines in a network. It can be any of the values of UNICAST, BROADCAST, 
MULTICAST, LOCAL, and so on, listed in cs  14.40 .    

    cs 14.38.      fn_zone .  



    fn _ scope  .     This fi eld represents a scope of this route. The signifi cance of this fi eld 
is that it indicates the distance to a destination host or network. It can be any of the 
values listed in cs  14.41 .    

    fn _ state  .     This fi eld stores fl ags for  fi b_node ; they can be either of two fl ags, 
namely,  FN_S_ZOMBIE  or  FN_S_ACCESSED , where  ZOMBIE  nodes are con-
sidered nonusable, and it is likely that deleted routes or dead  interface.ACCESSED  
nodes are usable nodes and are currently active.     

    cs 14.39.      fi b_node .  

    cs 14.40.      Route types .  

    cs 14.41.      Route scopes .  
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  14.9.5     struct fi b _ info   

 This contains protocol -  and hardware - specifi c information which basically defi ne a 
destination route (cs  14.42 ).   

          fi b _ next  and  fi b _ prev  .     This points to the  next  and  prev fi b_nodes  from the  fi b_
node  ’ s list in a single bucket of the hash table.  

    fi b _ treeref  .     Reference count to track the number of  fi b_node  structures holding 
a reference on this  fi b_node  instance.  

    fi b _ clntref  .     Reference count to track number of successful routing lookups.  

    fi b _ dead  .     Indicates route entry is removed from the table.  

    fi b _ fl ags  .     Represents any of  RTNH_F_DEAD, RTNH_F_PERVASIVE , and 
 RTNH_F_ONLINK  fl ags. Of these  RTNH_F_DEAD  is currently in use and indi-
cates that nexthop is dead (used by multipath only).  

    fi b _ protocol  .     This identifi es the source of the route — that is, the protocol that 
installed the route. The possible values for this fi eld are listed in cs  14.43 .    

    fi b _ prefsrc  .     This contains the preferred source address. This is selected either 
by the user while confi guring the route or by calling the function  inet_select_
addr ( ) .  

    cs 14.42.      fi b_info .  



    fi b _ priority  .     This indicates the priority of the route: The smaller the value, the 
higher the priority. Default value is 0 when not set.  

    fi b _ power  .     This fi eld is used only when multipath routing is enabled in kernel.  

    fi b _ nh [0] .     This element is an  fi b_nh  structure array that contains information 
about the output interface used and the next hop along the route. Several equivalent 
routes get the same destination in FIB query; this array represents these routes.  

    fi b _ nhs  .     This represents the number of entries in  fi b_nh[0] . The value of this 
fi eld is greater than one only when multipath routing is enabled in the kernel.     

  14.9.6     struct fi b _ nh   

 This contains the pointer to the net device and the next hop gateway for this route. 
Apart from this, it contains more information required for multipath routing and 
the class used for queueing if class - based queuing is activated (cs  14.44 ).   

    cs 14.43.      Fib protocols .  

    cs 14.44.      fi b_nh .  
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          nh _ dev  .     This is a pointer to the  net_device  structure.  

    nh _ scope  .     This is the scope of the route used to get to the next hop (for more 
inforamtion on scopes refer routing scopes section).  

    nh _ fl ags  .     This represents any of the  RTNH_F_DEAD, RTNH_F_PERVASIVE , 
and  RTNH_F_ONLINK  fl ags. Of these,  RTNH_F_DEAD  is currently in use and 
indicates that nexthop is dead (used by multipath only).  

    nh _ weight  and  nh _ power  .     This is used only when multipath routing is confi g-
ured in kernel.  

    nh _ oif  .     This is the output interface id to be used — that is, the index of the 
interface.  

    nh _ gw  .     IP address of the next router.  

    nh _ tclassid  .     This is used in a class - based queueing discipline for queueing of 
the packets, and represents a classid.     

  14.9.7     struct fi b _ rule   

 This data structure represents the rule or policy defi ned by the user for selection of 
the routing table from the multiple routing tables in the system (cs  14.45 ). This is 
used only if policy routing is confi gured in the kernel.   

    cs 14.45.      fi b_rule .  



          r _ next  .     This is the pointer to the next  fi b_rule  in the global list of rules maintained 
by the kernel. By default, this global list has a local, main, and default rule.  

    r _ clntref  .     This is the reference count of the rule instance being used.  

    r _ preference  .     This is the priority of the rule. The three default rules in the 
system — that is, local, main, and default rules have 0, 0x7ffe, and 0x7fff — are assigned. 
 local_rule  value 0 has the highest priority. The user can assign the priority to the 
rule using ip rule command or if it is not asssinged by the user, then kernel will 
assign the priority that is one less than priority of the last added rule.  

    r _ table  .     This is the routing table to be used for fi nding the destination route if 
this rule is applied to the packet.  

    r _ action  .     This fi eld contains the policy action type, and there are fi ve types of 
policy actions. They are  RTN_UNICAST, RTN_NAT, RTN_UNREACHABLE, 
RTN_BLACKHOLE , and  RTN_PHOHIBIT . If the type is  RTN_UNICAST, 
RTN_NAT , then we have a matching rule; otherwise, for any other policy action 
we return error.  

    r _ dst _ len  and  r _ src _ len  .     This stands for length of destination and source IP 
address, in terms of bits.  

    r _ src  and  r _ srcmask  .     This stands for source IP address and netmask.  

    r _ dst  and  r _ dstmask  .     This stands for destination IP address and netmask.  

    r _ fl ags  .     This is currently not in use.  

    r _ tos  .     This is the IP header ’ s TOS fi eld value.  

    r _ ifi ndex  .     This represents the output interface id.  

    r _ ifname [ IFNAMSIZ ] .     This represents the name of the device.  

    r _ tclassid  .     This is used in class - based queueing discipline for queueing of the 
packets, represents a classid.  

    r _ dead  .     This fi eld value is 0 when the rule is available.      

  14.10   ADDING NEW ENTRY IN ROUTING TABLE USING ip 
COMMAND ( RT  NETLINK INTERFACE) 

 Routing tables can be updated from the user space using the RT Netlink interface. 
For more details on how RT Netlink works, refer to the netlink chapter (Chapter 
 13 ). 

 Here we will see details about the only two options of the  ‘ ip commnad ’  and 
the kernel functions invoked when these options are used — that is, for updating the 
routing table and adding a new rule (policy) for a new routing table. 
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  1.     ip route option  
  2.     ip rule option    

 For more details refer to the Linun manual page for  ‘ ip command. ’  
 The following functions are registered in net/ipv4/devinet.c : inet_rtnetlink_

table[]: 

  1.      inet_rtm_newroute()   
  2.      inet_rtm_delroute()   
  3.      inet_dump_fi b()     

 Any of these functions are invoked when the ip command is run from the user space 
with route option for adding, deleting, and displaying routing table. 

  1.      inet_rtm_newrule   
  2.      inet_rtm_delrule   
  3.      inet_dump_rules     

 Any of these functions are invoked when the ip command is run from the user space 
with a rule option for adding new rule either new or existing routing table. 

  14.10.1   What Happens When the ip Command Is Run with a 
Route Option for Adding an Entry in the Routing Table? 

 The RT Netlink interface uses the netlink packet for communication with the 
kernel. When the ip command is run with the  ‘ route add ’  option to update the 
routing table, a netlink packet is created in the user space; and when this packet 
reaches the kernel, the doit function in the  inet_rtnetlink_table  indexed by  RTM_
NEWROUTE  is called (see Chapter  13  for more details) and the function  inet_rtm_
newroute()  gets invoked.  

  14.10.2     inet _ rtm _ newroute  ()  

 This function adds a new route to the FIB. 
 The main input parameters passed to this function are  sk_buff  struct, netlink 

header nlmsghdr struct, and the pointer to the optional data (user arguments) of 
type void which can be typecasted to FIB internal interface struct  kern_rta  through 
struct rtattr (for more details on struct rttr, see Chapter  13 ). 

 So at line 369 (cs  14.46 ) we are assigning the optional arguments pointer to 
struct rttr, and at line 370 the  NLMSG_DATA  (for more details on  NLMSG_DATA  
see Chapter  13 ) macro takes you to the start of the rtmessage (struct rtmsg) in the 
netlink packet.   

 At line 372 the  inet_check_attr()  function loops through the optional parameter 
list and creates an array of parameters consisting of only the data; this is later type-
casted to struct  kern_rta , which is an FIB internal interface. Then at line 375 we call 
the function  fi b_new_table () , which allocates memory for  fi b_table  and initializes 
the function pointers by calling the function  fn_hash_init () . And fi nally at line 377 
if  fi b_table  is returned by  fi b_new_table() , then  fn_hash_insert()  gets called since 
 tb → tb_insert  is initialized to  fn_hash_insert()  in the  fn_hash_init ()  function. 



 The  fn_hash_insert()  function adds a new entry into the routing table. 
 Here the important data structures for interaction between user space and 

kernel for adding the routing table entry or adding a new rule to the routing 
table: 

  1.     struct rtmsg  
  2.     struct  kern_rta      

  14.10.3     struct rtmsg   

 This structure is used for representing the user arguments set through the command 
line for adding a new routing entry in the routing table (cs  14.47 ).   

          rtm _ family  .     This contains information about the supported address family, for 
example,  AF_INET  (IP protocol).  

    cs 14.46.      inet_rtm_newroute ( ) .  

    cs 14.47.      rtmsg .  
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    rtm _ dst _ len  and  rtm _ src _ len  .     This represents the number of bits used to create 
a 32 - bit or smaller netmask for  AF_INET  addresses for both source and destination 
addresses.  

    rtm _ tos  .     This is a ToS fi eld in the IP header.  

    rtm _ table  .     This contains routing table ID.  

    rtm _ protocol  .     This refers to the routing message protocol — for example, 
 RTPROT_UNSPEC, RTPROT_KERNEL , and so on.  

    rtm _ scope  .     This refers to the route message scope — for example,  RT_SCOPE 
UNIVERSE , and so on.  

    rtm _ type  .     This refers to the type of the route — for example,  UNICAST , and so 
on.  

    rtm _ fl ags  .     Any of these three values —  RTM_F_NOTIFY  — notify the user route 
change.  

    RTM _ F _ CLONED  .     This route is cloned.  

    RTM _ F _ EQUALIZE  .     This route is not implemented yet.     

  14.10.4     struct kern _ rta   

 This data structure represents the FIB internal values. It is used for assigning the 
values to the FIB data structures whenever there is an update to the routing table 
(cs  14.48 ).   

          rta _ dst  .     This is the destination address.  

    rta _ src  .     This is the source address.  

    cs 14.48.      kern_rta .  



    rta _ iif  .     This is the input internal network interface.  

    rta _ oif  .     This is the output network interface.  

    rta _ gw  .     This contains gateway IP address.  

    rta  -  prefsrc  .     This is the preferred source address (used by RFC 1122 as part of 
UDP multihoming).     

  14.10.5     fn _ hash _ insert  ()  

 This function is called for adding/inserting route information in the fi b table. The 
 fi b_table  pointer and the netlink message parameters (main structures are struct 
rtmsg and struct rta) are passed to this function. It starts with extracting the indi-
vidual parameters from the netlink message struct and then checks if the zone is 
already existing; if not, then it allocates and initializes the new zone by calling the 
function  fi b_new_zone()  at line 455 (cs  14.51 ). 

 After assigning the new zone, new hash key value is generated by using the 
destination and the netmask value by calling the function  fz_key()  at line 464. 

 The function  fz_key()  builds the hash key by AND - ing the destination address 
with the zone ’ s netmask (cs  14.49 ). Now before getting the hash index from the hash 
table,  fi b_info  struct is allocated and initialized in  fi b_create_info()  at line 467.   

 The zone - specifi c  fz_hash  table is a table of  fi b_node  structures as shown in Fig 
 14.13 . We have seen that the memory is already allocated for  fz_hash  table in  fi b_
new_zone() . By using the hash key, we can get the hash table index from the  fz_hash  
table at line 477 by calling the function  fz_chain_p()  (cs  14.50 ) and then check for 
the  fi b_node  list using the hash index.   

 The function  fz_chain_p()  calculates the hash index from  fz_hash  table by 
calling the function  fn_hash ()  based on the key value and returns a pointer to 
pointer to the  fi b_node  for that hash index. 

    cs 14.49.      fz_key ( ) .  

    Figure 14.13.      fz_hash pointer .  
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 Using the new  fi b_node  list address from the hash index returned by  fz_chain_
p() , scan the list to check that the destination address (hash key) is already 
existing. 

 There are four cases to check for scanning the list: 

  1.     Scan the list to fi nd the fi rst route with the same destination at line 483 (cs 
 14.51 ).  

  2.     If  ‘  CONFIG_IP_ROUTE_TOS  ’  is defi ned, then scan the list to fi nd route 
with the same destination and tos at line 492.  

  3.     If any of the above scan checks returns  fi b_node  for the hash key, then check 
for the state of the  fi b_node  for ZOMBIE at line 500. If the state is ZOMBIE, 
then delete the old  fi b_node  and insert the new  fi b_node in fi b_node_list .  

  4.     If  fi b_node  state is not ZOMBIE, then scan the list with an additional check 
for the  fi b → priority  of  fi b_node  at line 511; and again if such a key exists, 
then replace the  fi b_node  with the new one.      

 (ZOMBIE nodes are considered nonusable and are likely to be deleted routes or 
a dead interface.) If this is a new entry, then all the scan checks will fail and fi nally 
the memory for the new entry ( fi b_node ) is allocated at line 564 from the  fi b_node  
cache. Then this new entry ( fi b_node ) will initialize to type, tos, scope values and 
the  fi b_info  pointer from line 570 to line 576. 

 And fi nally this new entry ( fi b_node ) is inserted into the  fi b_node_list  at line 
584.  

  14.10.6     fn _ new _ zone ()  

  fn_new_zone()  basically gets the struct  fn_hash  pointer and the destination address 
bit length as parameters. It starts with allocating and initializing the new zone struct 
( fn_zone ) at line 229 and then checks for the destination address bit length at line 
234. If bit length is zero, then the hash table will have a single entry and the divisor 
in this case will be 1. For any bit length apart from zero, the hash table will have 16 
entries and the divisor in this case will be always 16. After calculating the hash table 
size for the zone, it then allocates and initializes  fz → fz_hash  table space for this 
zone at line 241. Next assign the bit length (netmask length) value to the  fz → order  
and  fz → mask  with the netmask for this zone at lines 247 and 248. 

 Before inserting this new zone into the zones list, we need to identify the fi rst 
non - empty zone with more specifi c netmask (i.e., longest netmask length). The sig-
nifi cance for doing this is that the lookup algorithm used to fi nd the route from the 
routing table is the longest prefi x match (LPM), which starts the lookup with the 
zone having the longest prefi x (netmask) length. 

    cs 14.50.      fz_chain_p ( ) .  



  14.10.6.1   Why  LPM  Algorithm for Routing Table Lookup?     IP performs 
the steps in following order to fi nd the destination route in its routing table: 

  1.     It searches for a matching host address (IP address).  
  2.     It searches for a matching network address.  
  3.     It searches for a default entry (The default entry is a network address with 

0).    

    cs 14.51.      fn_hash_insert ( ) .  
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 A matching host address (host ’ s IP address) is always used before matching a 
network address. If both host address and network address are not matched, then 
we use the default entry (default route) which is a network address with ID 0 for 
which a default gateway address is defi ned in the routing table. 

 The  fn_zone[33]  array fi eld of the  fn_hash  struct of  fi b_table  maintains a list of 
zones based on the netmask length, and each zone represents each bit in the 
netmask (32 - bit). 

   fn_zone[0]  represents the default entry (default route).  
   fn_zone[32]  represents the more specifi c route.    

 At lines 251 and 252 (cs  14.52 ) we identify the fi rst non - empty zone with the 
longest netmask length based on the  fz → fz_order  value. Then we check if the new 
zone ’ s netmask length is greater than the found longest netmask length zone. It is 
then that we insert the new zone as the longest netmask length after this found 
longest netmask length zone and initialize the  fn_zone_list  to this new zone at lines 

    cs 14.52.      fn_new_zone ( ) .  



257 and 258. The  fn_zone_list  contains the earlier longest netmask length 
zone. Otherwise, if the new zone ’ s netmask is less than the found longest netmask 
length zone, then we insert the new zone before the found longest netmask length 
zone at lines 260 and 261. Finally at line 263 we add this new zone to the table ’ s 
zone list.     

  14.10.7     fi b _ create _ info ()  

 The main parameters passed to this function are the  rtmsg  struct and the  kern_rta  
struct (netlink message). It starts with allocating the memory for the  fi b_info  struct 
at line 446 (cs  14.53 ). Here the total memory allocated to  fi b_info  is size of  fi b_info  
and the size of  fi b_nh  with number of elements ( fi b_nh ) required for this  fi b_info . 
The  fi b_nh  struct is one of the elements (declared as array) of  fi b_info  struct, and 
it should be allocated at the end of  fi b_info  struct so that the memory will be con-
tiguous. After allocating the memory, the  fi b_info  struct elements are initialized 
based on the values in  rtmsg  and the  kern_rta  struct.    

    cs 14.53.      fi b_create_info .  
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  14.11   WHAT HAPPENS WHEN THE ip COMMAND IS RUN WITH A 
RULE OPTION FOR ADDING AN ENTRY IN THE ROUTING TABLE? 

 The RT Netlink interface uses the netlink packet for communication with the 
kernel. When the ip command is run with a  ‘ rule add ’  option to update the new 

    Figure 14.14.      fn_hash_insert ( )  fl ow.  

  14.10.8     fn _ hash _ insert  ()  

 Fig  14.14  shows the  fn_hash_insert()  fl ow diagram for more details refer to Section 
 14.10.5 .     



routing table (created by using ip route command prior to adding new rule) or 
existing routing table, the netlink packet is created in the user space; and when this 
packet reaches the kernel, the doit function in the  inet_rtnetlink_table  indexed by 
 RTM_NEWRULE  is called (see Chapter  13  for more details) and the function 
 inet_rtm_newrule()  gets invoked. 

  14.11.1     inet _ rtm _ newrule ()  

 This function adds a new rule or policy to the new or existing routing table. 
 The main input parameters passed to this function are  sk_buff  struct, netlink 

header  nlmsghdr  struct, and the pointer to the optional data (user arguments) of 
type void which can be typecasted to the FIB internal interface struct  kern_rta  
through struct  rtattr  (for more details on struct rttr refer Netlink chapter), at line 
164 (cs  14.54 ) we are assigning the optional arguments pointer to struct  rttr  and at 
line 165  NLMSG_DATA  (for more details on  NLMSG_DATA  see Chapter  13 ) 
macro takes you to the start of the rtmessage (struct  rtmsg ) in the netlink packet.   

 Any ip rule can be added to the routing table. For example, a rule can be that 
packets coming from  ‘ this ’  source address should use  ‘ this ’  routing table for lookup. 
At line 176 we get the routing table id which signifi es that a new ip rule is going to 
be added to this routing table. If routing table id is unspecifi ed, then we allocate a 
unique new table id at line 180 by calling the function  fi b_empty_table ( ) . Then 
allocate a new  fi b_rule  struct at line 186 for defi ning the new rule for the routing 
table and initialize it at line 189. 

 Now we copy the user data to the newly allocated the  fi b_rule  structure. The 
user data are source address, destination address, gateway address, type of address, 
fl ags.table id, and so on. 

    cs 14.54.      inet_rtm_newrule ( ) .  
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 The most important data is the priority that would be assigned to the  fi b_rule 
r_preference  fi eld at line 208. Its signifi cance is that it plays an important role in 
deciding the position for this new  fi b_rule  in the global list of  fi b_rules  defi ned in 
the kernl. If a network interface is provided, we get the  net_device  pointer before 
copying the device pointer in the  fi b_rule . Finally, copy the fl ow id (realm) used in 
the queueing discipline for identifying the class is copied at line 221 (cs  14.55 ).   

 After copying the user data into the new  fi b_rule  struct now, this new rule has 
to be added into the  fi b_rules  global list maintained by the kernel. By default, there 
are three rules in the system local, main, and default rules. The priority of these rules 
are 0, 32766, and 32767. This list is sorted in increasing order based on the priority 
(0 is the highest priority rule). Any new rule added would be inserted between the 
 loca_rule  and the  main_rule . We do this by getting the address of the global  fi b_rules  
list at line 224 (cs  14.56 ). Before traversing through this list for inserting a new rule, 
if priority ( r_preference ) is provided by the user, then we check at line 235 if there 
is any rule which has a priority value greater than this new rule, if it is then we insert 
this new rule before tht rule in the rules. If the priority value is not provided by the 
user at line 225, then before checking the condition at line 235 we decide the priority 
value for this new rule at line 230 and then continue to traverse the list and insert 
this new rule.    

    cs 14.55.      inet_rtm_newrule ( ) (continued) .  



  14.11.2    FIB  Initialization 

 Linux supports 255 routing tables, and each routing table is identifi ed by the table 
id. By default, local (id   =   255) and main (id   =   254) tables are used. If policy routing 
is defi ned, multiple tables can be confi gured and used for the route lookup. If policy 
routing is not confi gured, then only the local and main routing tables are used and 
the lookup to fi nd the route is done only in these tables. The local table has the 
highest precedence. Figure  14.15  shows the details about FIB initialization.   

    cs 14.56.      inet_rtm_newrule ( ) (continued) .  

WHAT HAPPENS WHEN THE ip COMMAND IS RUN WITH A RULE OPTION FOR ADDING AN ENTRY 561

    Figure 14.15.     FIB initialization fl ow diagram.  



562 IP ROUTING

 The local table consists of routes to local and broadcast addresses. This table is 
maintained by the kernel automatically. Any routing lookup request has to go 
through the local table fi rst, and the signifi cance of this table is to determine whether 
a packet has to be delivered locally or has to be forwarded. The local table is 
searched fi rst for any routing lookup request, and this saves lookup time if the 
packet has to be delivered locally and there is no need to search other tables. The 
contents of the local table can be viewed by running the command: 

   # ip route show table local     

 The main table consists of all the normal routes, and these routes are inserted 
by the  ‘ ip route ’  command when no other table is mentioned. This can be manually 
confi gured, and the kernel uses this table to calculate the routes to destination. The 
contents of the local table can be viewed by running the command: 

   # ip route show table   
   #route  - n   
   #netstat  - nr     

 The  inet_init ( )  function called by socket.c on kernel starup is responsible to set the 
IP module up by invoking the function  ip_init ( ) . 

 The  ip_init ( )  function initializes the IP subsytem and registers the packet type 
and the subprotocol initializers. To initialize the routing subsystem, it invokes the 
function  ip_rt_init ( ) . 

 The  ip_rt_init ( )  function does the two important initializations to the routing 
code: 

  1.     It sets up the routing cache (defi nes the size of the cache and the memory 
allocation, starts the cache - related timers, etc.)  

  2.     It calls the function  ip_fi b_init ( ) , which initializes the default routing tables 
(FIB for IPV4).    

 The  ip_fi b_init ( )  function checks if  CONFIG_IP_MULTIPLE_TABLES  (Policy 
Routing) is defi ned in the kernel. If the policy routing is defi ned in the kernel, then 
the  fi b_rules_init ( )  function is invoked to set up the policy - based routing; otherwise, 
it calls the  fi b_hash_init ( )  function to set up the default routing tables (local and 
main table only) which are defi ned globally. 

  14.11.2.1     fi b _ hash _ init  ( ).      This function initializes and allocates a  fi b_table  
in the kernel. A FIB slab cache is allocated at line 899 (cs  14.57 ), from which  fi b_
node  structures will be allocated for various FIB entries. Then a new  fi b_table  is 
allocated at line 904. At least two  fi b_table  instances are present in the kernel; if 
policy routing is enabled, then there are more instances of  fi b_table  in the kernel 
for different routing tables. After allocating the  fi b_table , we initialize the various 
fi eld of  fi b_table .   

 First the  tb_id  fi eld is set to the table number at line 908, which is passed as an 
input parameter. Then we set the various function pointers in the  fi b_table  struct to 
point to the  fn_hash_lookup,fn_hash_insert , and so on, functions from lines 909 to 
914. Finally the  tb_data  fi eld of  fi b_table  is initialized using the memset at line 918. 
This fi eld is an anonymous pointer and is further used to point to an  fn_hash  struct 
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which contains array of  fz_zone  struct, and this in turn contains an array of  fi b_node  
hash structures.  

  14.11.2.2     fi b _ rules _ init  ( ).      This function registers the callback function  fi b_
rules_event ( )  (cs  14.58 ). The rules list is already statically linked, and it doesn ’ t do 
any intializations.   

 The  fi b_rules_event ( )  function is invoked whenever a new network device is 
registerd or unregistered. The  fi b_rules_attach ( )  and  fi b_rules_detach ( )  functions 
are called for all rules to correct all the ifi ndex entries to any event of register or 
unregister network device.    

  14.12    FIB  TRAVERSAL FLOW DIAGRAM 

 Figure  14.16  shows details about destination route lookup for the outgoing packet. 
The destination route lookup is done fi rst in route cache if it ’ s not found then search 
the FIB detabase.   

  14.12.1     ip _ route _ output ()  

 The main arguments to  ip_route_output  (cs  14.59 ) function is the source and desti-
nation address, tos, and the output interface. It initializes the  rt_key  structure with 

    cs 14.57.      fi b_hash_init ().   
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    cs 14.58.      fi b_rules_event().   

the saddr, daddr, tos, and oif values at line 143 and calls the function  ip_route_
output_key()  for getting the routing cache entry.    

  14.12.2     ip _ route _ output _ key  ()  

 The  rt_key  struct is passed as an argument to this function from  ip_route_output() .
This  rt_key  struct is used to fi nd the hash index for  rt_hash_table  so that the appro-
priate chain from  rt_hash_bucket  of routing entries are searched. At line 2004 (cs 
 14.60 ) it calls the  rt_hash_code()  function to calculate the hash value. Once the hash 
value is returned from  rt_hash_code() , then at line 2006 it acquires the  rt_hash_ table 
lock for reading the entries from  rt_hash_table  for comparison with the hash key.   

 The hash value returned from  rt_hash_code  is used to search the appropriate 
hash queue from  rt_hash_table  to fi nd an entry that matches the key with respect 
to destination  &  source address and tos  &  oif values (if  CONFIG_IP_ROUTE_

    cs 14.59.      ip_route_output ().   



FIB TRAVERSAL FLOW DIAGRAM 565

FWMARK  is enabled in the kernel, then the mark value is also used for matching 
the key, i.e., at line 2007 to 2011). 

 If an entry is found for the input key from hash queue of  rt_hash_table , then 
since we are going to use this routing cache entry, so at line 2017 the routing cache 
entries ’  last time of use should be updated so that the garbage collection routine 
for cleaning the entries from the chain should be aware of this. And  dst_hold()  is 
called at line 2018, and this function simply increments the reference count so that 
this can ’ t be deleted if its in use. Finally at line 2022,  * rp is set to this found entry 
from the chain and then returns. 

 If the matching key is not found from the  rt_hash_table  — that is, the condition 
fails at line 2008 — then we exit from the loop and fi nally call the function  ip_route_
output_slow  at line 2028, which uses the FIB to construct the new routing entry.  

    Figure 14.16.      FIB traversal fl ow diagram.   
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  14.12.3     ip _ route _ output _ slow  ()  

 This function is a major route resolver. The input parameters to this function are 
routing key ( rt_key  struct) and a pointer to pointer of type struct rtable. The main 
functionality of this function is to search the FIB database based on the input 
routing key; and if the match entry is found, then create a new route cache entry. 
The new route cache entry is returned as a pointer and stored in  *  * rp, which is an 
input parameter of type struct rtable. 

 It mainly delivers an IP packet locally or to a remote destination. Any IP packet 
created by the host system must have an source address; so whenever a packet is 
transmitted, the destination should know the source of the received packet to send 
a reply back to the source. 

 The main signifi cance of this routine is that it checks for the IP source address 
and selects the egress device for the packet transmission. It checks for both the IP 
source address and egress device. If the source address is given, then it selects the 
egress device by doing local routing table lookup; or else if the egress device is 
already known, then it selects the source address based on the egress device. Finally, 
if the route lookup is successful for the IP packet, then it creates and initializes a 
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new route cache table entry and inserts it into the route cache. It also identifi es 
whether the packet is of multicast, broadcast, or unicast type. It also provides 
support for multipath routing if confi gured in kernel for the next hop selection, or 
it selects the default gateway for the next hop. Multicast routing is also supported 
if defi ned in kernel. 

 The key (struct  rt_key ) and res (struct  fi b_result ) are two important local vari-
ables at lines 1707 and 1708 (cs  14.61 ), where the struct  rt_key  contains information 
about the destination, source, input, and output interface, the tos, and the forwarding 
mark. The  ‘ key ’  variable is of type struct  rt_key , gets initialized to values pointed by 
oldkey, which is also of type struct  rt_key , and is passed as an input parameter. The 
 ‘ res ’  variable is of type struct  fi b_result , which is later passed as an input parameter 
to  fi b_lookup ()  function and gets the route information required. It is also used to 
build the new routing cache entry, where the  fi b_result  struct contains information 
about the route — that is, prefi xlen, next hop details, scope of route, and type of 
address. The input parameter  ‘ oldkey ’  contains the information about the route, and 
the  ip_route_output_slow ( )  starts with copying the values from oldkey to local 
variables for building the new search key.   

 At line 1717, before assigning the  oldkey → tos  value, we are checking whether 
the fl ag  RTO_ONLINK  is set or not, where  ‘  RTO_ONLINK  ’  is used to indicate 
that the destination is no more than one hop away and reachable via a link layer 
protocol. This fl ag is important for scope value of the new key element of struct  rt_
key . From lines 1718 to 1722, new key values of key variables are getting assigned 
from the input parameter oldkey; that is, fi rst the destination and source address 
are copied into the new search key, followed by the tos value and the output 
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interface identifi er. Initially the input interface identifi er is pointed to the loopback 
device at line 1721 and at line 1724; if  CONFIG_IP_ROUTE_FWMARK  is defi ned, 
then the new mark (netfi lter) value is assigned to key.fwmark. The value of key.
scope at line 1726 depends on the fl ag  ‘  RTO_ONLINK . ’  If  RTO_ONLINK  fl ag is 
set, then the scope of the route must be  RT_SCOPE_LINK ; otherwise it is  RT_
SCOPE_UNIVERSE . The key.scope indicates the distance to the destination IP 
address (local network, host, universe, etc.). For more information on scopes, see 
Section  14.12.7 . Then the  fi b_info  pointer is initialized to NULL at line 1728. If 
policy routing is defi ned in the kernel  ‘  CONFIG_MULTIPLE_TABLES , ’  then the 
fi brule struct (i.e., res.r) at line 1730 is initially set to NULL. 

 Here we check for the source address from the search key at line 1733 (cs  14.62 ). 
As mentioned earlier, any IP packet must have the source address so that the des-
tination can send back the reply. If we have the source address at line 1733, then 
we need to test whether this is of type MULTICAST, BADCLASS, or ZERONET 
at line 1735, and any source address cannot be of these types. If there is any chance 
of either of these types occurring, then we return the error to the caller by jumping 
to the label out at line 1738.   

 Then we need to check if this source address is one of our local addresses that 
is assigned to one of the network interfaces of the system. So we call the function 
 ip_dev_fi nd ( )  at line 1741 to identify the interface with this source address. This 
function returns the pointer to the  net_device  struct associated with the source 
address; that is, we get the network interface from which the packet has to be trans-
mitted. For more information on  ip_dev_fi nd , refer to Section  14.12.4 . 

 At lines 1753 and 1754, the egress device is not provided by the search key and 
the destination is multicast or a limited broadcast address (cs  14.63 ). If the destina-
tion is a multicast address, then a group of hosts or systems on the same subnet or 
different subnet (or WAN) can receive the packet, whereas in the case of broadcast 
packets they can be received by all the hosts on the subnet. So here the source 
address plays an important role in communication since the destination can be a 
group of hosts or all the hosts in the link. This is the case of the special hack as per 
the comments in the code at lines 1755 – 1769, which gives more details about this 
hack. So the check is made at lines 1753 and 174 for this case. If the condition at 
lines 1753 and 1754 is true, then the output interface identifi er of the new search 
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key is the output interface associated with the device returned by the  ipdev_fi nd 
( )  function as explained earlier. So it uses the returned  net_device  from the  ip_dev_
fi nd ( ) . Then it jumps to the label  make_route . Here the packet can be routed 
without doing the  fi b_lookup  since we have all the routing information.   

 Finally, release the device by calling the  dev_put ( )  function and set the  dev_out  
to NULL at line 1775. This is the case where an output interface is provided, so we 
check for the source address; if it is not provided, we get the source address. If the 
output interface identifi er is specifi ed in the search key, then we get the  net_device  
by calling the function  dev_get_by_index ( )  at line 1778 (cs  14.64 ). If the returned 
value is NULL, then jump to label out and return error at line 1781. The function 
 __in_dev_get( )  returns the void   * ip_ptr  element of the  net_device  structure at line 
1782; if not, the device is released and an error is returned. The  ip_ptr  element points 
to the instance of  in_device  struct. This  in_device  struct contains the important 
element  ifa_listof type in_ifaddr  struct, which is an IP ifaddr chain (list of struct 
 ifa_list ). This is important that each physical  net_device  on the system may be 
assigned alias IP addreses and labels (eth0:0, eth0:1, etc.)   

 If the destination is a local multicast address, then a group of hosts or systems 
on the same subnet can receive the packet, whereas in the case of broadcast packets 
they can be received by all the hosts on the subnet. The source address is required 
here before transmitting these types of packets since it is the important key for the 
communication because the destination can be a group of hosts or all the hosts in 
the link. 

 So if the destination is the local multicast or the broadcast address at line 1787 
and if the source address is not provided in the key but output interface identifi er 
is specifi ed, then we retrieve the source address of the output device by calling the 
function  inet_select_addr ( )  (for more information on  inet_select_addr , see Section 
 14.12.6 ). The scope here is  RT_SCOPE_LINK  (for more information on scopes, see 
Section  14.12.7 ). The reason for link scope is that the local multicast, broadcast, and 
limited broadcast destinations are on the same subnet. Here the destination address 
is with scope  RT_SCOPE_LINK , so we have the route information and hence it 
jumps to label  make_route  without doing the route lookup at line 1791. 
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 If the source address is not specifi ed in the search key at line 1793 and then if 
it is for the general multicast (can be same subnet or on WAN), then we retrieve 
the IP source address by calling the function  inet_select_address ( )  (for more infor-
mation on  inet_select_addr , see Section  14.12.6 ) using the key scope as an input 
parameter. Otherwise, if the destination address is not specifi ed, then the scope 
 RT_SCOPE_HOST  is passed as an input parameter to  inet_select_address ( )  to get 
the source IP address for the output device. 

 This is a case wherein the destination address is not specifi ed in the search key. 
If it is not specifi ed, then we assign the source address from the search key as the 
destination address at line 1804 (cs  14.65 ). If the source address from the search key 
is also NULL, then both the destination and source address is set to the loopback 
address at line 1806. Then release the device line 1808 and use the loopback device 
at line 1809 for sending packets to this machine. The type of the address is  RTN_
LOCAL , and it fi nally jumps to the label  make_route  without doing the route 
lookup because it is not required since it is for a local machine.   

 The function  fi b_lookup()  is invoked at line 1817 (cs  14.66 ) to resolve the des-
tinations address by fi nding a specifi c route. A more detailed description about  fi b_
lookup  is explained in Section  14.12.8 .   

 In the case where  fi b_lookup()  fails here, it falls into the block at line 1818. If 
an output interface is specifi ed by the search key at line 1819, then it is still possible 
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to send the packet. First it checks for the source address from the key; and if it is 
not provided, then it gets the source address of the device by invoking the function 
 inet_select_addr ( )  at line 1839. Here the assumption is made that the destination 
address is on the link, hence the scope  RT_SCOPE_LINK . The type of the address 
is set to  RTN_UNICAST  at line 1841. Then it jumps to the label  make_route  at line 
1842. If the egress device is not provided by the key (i.e., condition at line 1844 
becomes false), then release the device by calling the  dev_put ( )  function and set 
the  dev_out  to NULL at line 1845 and set the error to destination unreachable and 
then jump to label out at line 1847. 

 The variable res has type  fi b_result  struct, and it is updated and returned by the 
fi b_lookup ( ) function. Here we are checking the address type for  RTN_LOCAL  
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at line 1854 (cs  14.67 ).  RTN_LOCAL  fl ag indicates that the packet is routed 
locally.   

 If the source address is not specifi ed in the search key, then we assign the source 
address from the search key as the destination address at line 1856 (source address 
and destination address are same). Then release the device at line 1860 and use the 
loopback device at line 1859 for sending packets to this machine. Release the refer-
ence to the  fi b_table  by calling the  fi b_info_put ( )  function.  RTCF_LOCAL  is an 
indication that the route is specifi c to the local IP address. For the routes that are 
destined to or originate from one of local interfaces, the routes have an  RTCF_
LOCAL  bit set. Finally, jump to the label  make_route . 

 The multipath route selection happens only when the multipath support 
( CONFIG_IP_ROUTE_MULTIPATH ) is enabled in the kernel. If the multipath 
support is enabled in the kernel, then we check to see if the  fi b_lookup ( )  function 
returns to the route with more than one next hop (routers), that is,  res.fi  → fi b → nhs  
 > 1. And also check for the if egress device is not provided with the search key. If 
both these conditions are true, then only the  fi b_select_multipath ( )  functions gets 
called to select the route from the multiple routes. For more information on mul-
tipath routing see Section  14.3 . 

 The default route selection happens only if the prefi x length (netmask) of the 
route is 0; that is, the route returned by  fi b_lookup ( )  and the type of the address 
is  RTN_UNICAST  and also the egress device in not provided by the search key. If 
these three conditions are true at line 1874, then only the  fi b_select_default ( )  func-
tion is invoked at line 1875 (cs  14.68 ) to select the right default gateway. The input 
parameters to the  fi b_select_default ( )  function are search key, and the  fi b_result  
struct was returned by the  fi b_lookup ( )  function.   

 A check is made if the source IP address is still NULL at line 1877. If it is NULL, 
then the  FIB_RES_PRESRC  macro is used to get the IP address at line 1878. The 
 FIB_RES_PRESRC  macro retrieves the source IP address from the  fi  → fi b_prefsrc 
fi eld  of the  fi b_info  struct fi eld. If this fi b_info fi eld is also NULL, then the  inet_
select_address ( )  function is invoked to get the source IP address from the 
 net_device . 
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 Finally, release the  net_device  if  dev_out  is holding it at line 1881 and then 
set the  dev_out  using macro  FIB_RES_DEV  (from  fi b_info  struct of  fi b_result 
struct ) at line 1882. Also set the value of  key.oif  using the  dev_out  ’ s ifi ndex at line 
1884. 

 Here fi rst we are checking if the source address is LOOPBACK, and the 
selected the output device has an  IFF_LOOPBACK  fl ag set at line 1887 (cs  14.69 ). 
If not jump to label e_inval at line 1888 and return error.   
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 Then check for the following: 

  1.      key.dst  == 0XFFFFFFFF at line 1890; if it is, then set the type of address to 
 RTN_BROADCAST .  

  2.     The destination address is multicast at line 1892; if it is, then set the type of 
address to  RTN_MULTICAST .  

  3.     If the destination address is BADCLASS or ZERONET at line 1894, then 
jump to label  e_inval  and return error.    

 If the  res.type  (type of address) is  RTN_BROADCAST  at line 1900, then the  fi b_
info  struct associated will be released at line 1903 by calling the function  fi b_info_put 
( ) . 

 If the  res.type  is  RTN_MULTICAST , then check the multicast list of the  net_
device  by acquiring  inetdev_lock . 

 The  function __in_dev_get( )  returns the void   * ip_ptr  element of the  net_device  
structure. The  ip_ptr  element points to the instance of  in_device  struct. This  in_device  
struct contains the important element  mc_list  of type  ip_mc_list struct . To check the 
destination, the IP address is multicast and the function  ip_check_mc ( )  is 
invoked. 

 Allocate the memory for the rtable struct  rth  (route cache entry) at line 1923 
(cs  14.70 ).   

 Then copy most of the elements of the oldkey structure from line 1928 to 1933 
(cs  14.71 ), which is used to create route the key - for - key struct embedded in rtable 
struct  rth . The  rth → key  struct will be used in subsequent route cache olookups and 
must match the input key.   

 Then copy the elements used to route the packet to  rt_fi elds  of the route cache 
element from line 1943 to 1947. These are the elements that are actually used in 
building and routing the packet. Setup the function that will be used to transmit the 
packet at line 1949. 

 The output function used to transmit the packets is set to  ip_output ( )  at line 
1949 (cs  14.72 ).   

 Then check for the fl ags at line 1953 for local delivery and line 1957 for multicast 
that this route is terminating on the local machine or different and based on that 
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    cs 14.71.      ip_route_output_slow () (continued).   
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set the  ip_function  for delivery of packets. In case of local delivery of packets the 
output function is set to  ip_local_deliver ( )  and for the multicasting the output 
function is set to  ip_mc_output ( )  function. 

 The  CONFIG_IP_MROUTE  option at line 1963 is enabled in kernel if the 
machine acts as a router for multicast destination addresses.   

 The  rt_set_nexthop()  at line 1978 sets the next - neighbor parameters including 
pmtu. 

 And fi nally fi nd the hash code value by calling the function  rt_hash_code()  at 
line 1982. This hash code value is used by the function  rt_intern_hash()  at line 1983 
to search in the respective hash queue of  rt_hash_table . The rp parameter passed to 
 ip_route_output_slow  as the location at which a pointer to a new route cache entry 
should be returned.  

  14.12.4     ip _ dev _ fi nd  ( )  

 The  ip_dev_fi nd ( )  function returns the network device confi gured within this 
machine for the source IP address provided as input parameter to this function. It 
starts with initializing the  rt_key  struct at line 151 (cs  14.74 ). The only fi eld used 
here for the  rt_key  struct is the  dst  element. The input source IP address is copied 
to the  dst  fi eld of the  rt_key  struct before doing the lookup in the local table at line 
152. If the policy routing ( CONFIG_IP_MULTIPLE_TABLES ) is defi ned in the 
kernel, then initially we set the  fi b_rule  struct to NULL at line 154.   

 Then we proceed with the local table lookup to fi nd the source address with 
the network device. The local table here consists of local and broadcast address 
information within this machine. The lookup routine called through the function 
pointer  tb_lookup  at line 157 is  fn_hash_lookup ( )  (for more information on lookup, 
see Section  14.12.8.1 ) function. After successful local table lookup, the most impor-
tant check is made at line 160 for the routing type of the source address found. If 

    cs 14.73.      ip_route_output_slow () (continued).   



FIB TRAVERSAL FLOW DIAGRAM 577

it is not  RTN_LOCAL  type, otherwise this is a invalid entry in the table. The 
 RTN_LOCAL  signifi es that the address found is confi gured on the local interface 
of the system. 

 If the routing type of the source address from local table lookup is  RTN_
LOCAL , then get the reference to the  net_device  by calling the macro  FIB_RES_
DEV  at line 162. Finally, increment the use count in the  net_device  struct at line 164 
and return the  net_device  pointer at line 168 before releasing the reference in the 
 fi b_table  by calling the function  fi b_res_put ( )  function.  

  14.12.5    __ in _ dev _ get  ( )  

 The function  __in_dev_get( )  returns the void   * ip_ptr  element of the  net_device  
structure (cs  14.75 ).   

    cs 14.74.      ip_dev_fi nd ().   
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 The  ip_ptr  element points to the instance of  in_device  struct. This  in_device  
struct contains the important element  ifa_list  of type  in_ifaddr  struct which is an IP 
ifaddr chain (list of struct  ifa_list ) (Fig.  14.17 ). This is important that each physical 
 net_device  on the system may be assigned alias IP addresses and labels (e.g., eth0:0, 
eth0:1, and so on).    

  14.12.6     inet _ select _ addr  ( )  

 This function (cs  14.76 ) selects the IP address (i.e., source IP) confi gured on the 
network device. If there are multiple IP addresses confi gured on the device, it selects 
the appropriate IP address based on the inputs provided. Why source address 
selection?   

 For any IP packet created on the host system, it has to select the some source 
address before sending that packet to the destination address. This source informa-
tion is important for the destination system to know from where the packet has 
arrived, so that it can deliver a reply to the source. If source information is not pro-
vided to the destination system, then half of the communication will never arrive 
and the reply is lost. 

 Linux selects the source address using the following rules: 

   •      The application may be already using the socket, so the source address is 
already selected or may request the source address using  bind ( )  call.  

   •      It performs route lookup to fi nd the destination route. If the destination route 
is found, then it checks the src parameter from the route; if it is not found, 
then the kernel selects this source address for communication.  

   •      If application or route lookup doesn ’ t provide the source address, then the 
kernel searches the list of IP addresses confi gured for the network interface. 

    Figure 14.17.      ifa_list and mc_list.   
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Here the  inet_select_addr ( )  function comes into the picture, it performs the 
lookup into the list of address confi gured on the interface and selects the 
appropriate IP address.    

 The Network Interface Card (NIC) can be confi gured for a single IP address or 
multiple IP addresses. If multiple addresses are set for a NIC, then some of the 
addresses are called primary while others are called secondary. Each IP address 
confi gured on the NIC must have a netmask; either this is provided by the user while 
confi guring the IP address or the system would assign the default netmask based 
on the IP address class. 

 A single subnet or multiple subnets can be confi gured on the NIC, and each 
subnet would have multiple addresses. The distinction between the primary and sec-
ondary addresses can be automatically done by the system. The fi rst address confi g-
ured on the subnet is the primary address, and thereafter any IP address confi gured 
is called a secondary address. For example, if there are three subnets confi gured for 
the NIC, there are three primary addresses, and each subnet would have one primary 
address and the rest of the addresses of the specifi c subnets are called a secondary 
address. The interface can have many primary and secondary addresses. 

 A system can be confi gured with a single interface or multiple interfaces, and 
any of the interfaces in turn can be confi gured with a single IP address or multiple 
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IP addresses with different subnets. The selection of the IP address is straightfor-
ward in the case of a single IP confi gured on the interface. 

 The input parameters to the  inet_select_addr ( )  function are the  net_device  
pointer, IP address (not local to the system), and the scope. If the input IP address 
is zero, then any primary address confi gured on the ingress device would be selected. 
The selection of the source IP address from multiple IP addresses confi gured on the 
ingress device is based on the input scope provided and the location of the destina-
tion address. Selection based on the scope is important here since the destination 
has to in turn reply to the source with the same scope. 

 The scope can be  RT_SCOPE_LINK/HOS/SITE/UNIVERSE . 
 The  in_device  instance has the list of IP addresses confi gured on the  net_device . 

We get the pointer to the  in_device  instance at line 724 (cs  14.76 ). Then using the 
kernel provided macro  for_primary_ifa , we browse through the list of IP addresses 
confi gured for the  net_device . The  for_primary_ifa  macro is used to search the  ifa_
list in_device  instance of the network device. 

 Here the scope plays an important role in selecting the source IP address. This 
function selects an ingress address with a scope the same as or smaller than the 
scope of the destination address. If the scope of the ingress address is greater than 
the scope of the destination address, we skip that address and continue the search 
at line 732. Another option is to search all interfaces for an address with an appro-
priate scope at line 758.  

  14.12.7     ROUTE _ SCOPES   

 The scope of a route is used to fi nd out much precisely the route for a given desti-
nation. fi elds  fn → fn_scope  and  key → scope  are compared in  fn_hash_lookup()  to 
check if an entry found satisfi es the scope criteria. For higher values of scope, we 
need to fi nd a more specifi c route for the destination. For lower values of scope, the 
routes belong to a destination network. 

 The scopes are listed in cs  14.77 . 

   RT_SCOPE_HOST  indicates that the destination address is for the local 
host.  

   RT_SCOPE_LINK  indicates that the destination address is for the local 
network.  

    cs 14.77.      rt_scope_t.   
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   RT_SCOPE_NOWHERE  indicates that there is no route to the destination 
address.  

   RT_SCOPE_SITE  indicates an interior route within the site.  
   RT_SCOPE_UNIVERSE  indicates that the destination address is not directly 

connected and it is more than one hop away.   

  Important Routing Control Flags 
   RTCF_LOCAL  is an indication that the route is specifi c to the local IP address. 

For the routes that are destined to originate from one of local interfaces, 
routes have  RTCF_LOCAL  bit set.  

   RTCF_MULTICAST  is an indication that the route is to the multicast 
address.  

   RTCF_BROADCAST  is an indication that the route is to the broadcast 
address.  

   RTCF_ONLINK  is an indication for a locally rechable destination.   

  Important Routing Types 
   RTN _ UNICAST :     Route is a gateway or direct route.  
   RTN _ LOCAL :     Route is a local address.  
   RTN _ BROADCAST :     Accepts packets locally as broadcast, send packet as 

broadcast.  
   RTN _ MULTICAST :     Indicates that this is a multicast route.       

  14.12.8     fi b _ lookup ()  

 There are two versions of  fi b_lookup ( ) : 

 1. If policy routing is not enabled, then the following version of  fi b_lookup ( )  
gets invoked. The  fi b_lookup()  function gets  struct rt_key  and  fi b_result  as input 
parameters. It calls the function pointer  tb_lookup  for both local and main table at 
lines 157 and 158 to fi nd the destination match entry either in the local table or in 
the main table. This  tb_lookup  function pointer is resolved to  fn_hash_lookup()  
function. This  fn_hash_lookup_function()  returns 0 on success and nonzero on 
failure. The lookup returns network unreachable error at line 159 only when didn ’ t 
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get any match from either of the tables. The local table has precedence over the 
main table.   

 The lookup here consists of only two tables, namely, local and main tables. If 
policy routing is defi ned in the kernel, several routing tables can be confi gured. 

 2. If policy routing ( CONFIG_IP_MULTIPLE_TABLES ) is defi ned in the 
kernel, then the version of  fi b_lookup  shown in cs  14.79  gets invoked.   

 In the case of policy routing (for detailed information see Section  14.2 ), several 
routing tables are confi gured and we can defi ne a rule to select a particular routing 
table based on the packet routing requirement.  

  What Is This Rule? 

 In the case of nornal routing for a single routing table, the routing decisions are 
based on the destination address. With policy routing confi gured, including destina-
tion address, we can also use the source address, tos fi eld, and iptables marking 
(fwmark) as parameters to defi ne a rule for packet. This rule based on these param-
eters is used to select the routing table. Each rule has a unique priority, and this 
priority rules list is searched for the given rule. The rules list is sorted in increasing 
order based on the priority. 

 There are three default rules in the system without any confi guration added by 
the user: 

  1.      local_rule   
  2.      main_rule   
  3.      default_rule     
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    local _ rule  :     The priority of this rule is 0 and it is the highest priority. Whenever 
the rules list is searched to match the given rule, this rule always matches for any 
rule and it does lookup in the local routing table. So if there are any packets for a 
local system, it doesn ’ t require any further routing decisions. The local table is 
maintained by the kernel for local and broadcast addresses.  

    main _ rule  :     The priority of this rule is 32766, and this is the main routing table 
in the system and it always matches and searches the route.  

    default _ rule  :     The priority of this rule is 32767, and this rule is at the end of 
the rules list. 

 Any user added rule is inserted between the local and main rule. 
 The global variable  fi b_rules  points to the rules list in the system. Before search-

ing this rules list, we need acquire a  ‘  fi b_rules_lock  ’  at line 321, which is an rwlock 
and protects the  fi b_rules  list of  fi b_rule  data structures. Then the for loop is used 
to search the given rule of the packet from the rules list; and if there is a match for 
the given rule of the packet, we can continue to fi nd the routing table based on the 
policy action defi ned in the matched rule; otherwise, if there is no match, continue 
the search in the rules list (cs  14.80 ).   

 Once a matching rule for the packet is found from the  fi b_rules  list, the match-
ing rule ( fi b_rule  struct) has the policy action fi eld; based on this action, we decide 
the policy type. 

 There are fi ve policy types: 

  1.      RTN _ UNICAST :     Based on the rule, a specifi c routing table lookup is done 
to fi nd the route for the packet.  

  2.      RTN _ BLACKHOLE :     The packet is discarded and no feedback is given.  
  3.      RTN _ UNREACHABLE :     The packet is discarded and the destination 

network is unreachable.  

    cs 14.80.      fi b_lookup () (continued).   
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  4.      RTN _ PROHIBIT :     The packet is discarded and the communication is not 
allowed.  

  5.      RTN _ NAT :     This is used for status network address translation (NAT).    

 If the policy type is  RTN_UNICAST , then fi nd the routing table based on the 
table id ( r → r_table ) from the matched rule ( fi b_rule ) by calling the function  fi b_
table_get ( )  at line 352 (cs  14.81 ); lookup is done for that table to fi nd the route. 
Other policy types lead to error.   

 The lookup function here is the  fn_hash_lookup ( ) . This function is a registered 
handler to the  tb_lookup  function pointer, and this is done in the function  fi b_hash_
init ( ) . If the lookup is successful, then we initialize the  res → r  ( fi b_rule  of  fi b - result 
struct ) to the policy (matched rule from the fi b rules list) and then increment the 
count to keep track of the number of refrences to the  fi b_rule  struct (matched rule) 
at line 358. Finally release the  fi b_rules_lock  at line 359 and return 0 to the caller 
function.  

  14.12.8.1     fn _ hash _ lookup  ( ) .     The  fn_hash_lookup( )  function is used for 
routing table lookup, to match and fi nd a destination route for the packet. The main 
function does the lookup in a single routing table at a time by acquiring the proper 
locks to read the table information. 

 Input parameters to this function are as follows: 

   tb :     routing table to search for fi nding the destination route for the packet.  
   key :     search key used for lookup in the table.  
   res :     route lookup is successful and then  res  is intialized to route information.    

    cs 14.81.      fi b_lookup () (continued).   



  tb → tb_data  pointer at line 273 (cs  14.82 ) is a pointer to the associated FIB hash 
table ( fn_hash ) of the routing table ( fi b_table ). Before doing any lookup operation 
in the routing table, we need to acquire a  ‘  fn_hash_lock  ’  lock in shared mode at line 
275.  ‘  fn_hash_lock  ’  is a read – write spin lock ( rwlock ).   

 The lookup algorithm is based on the LPM (Longest Prefi x Match) algorithm. 
This algorithm is used to fi nd the most specifi c route for the destination. Each 
routing table ( fi b_table ) contains a associated pointer to FIB hash table ( fn_hash ), 
and this FIB hash table contains a array of fi b zones ( fz_zone ) and a pointer to the 
fi b zones list ( fn_zone_list ). Based on the netmask (prefi x) length which is 32 bits, 
for each bit of the netmask there is a zone associated with it; this is the reason why 
 fz_zones[33]  is defi ned in  fn_hash  struct. Each element of this zones array repre-
sents a single zone. The  fn_zone_list  pointer points to the longest netmask zone. 
Hence the LPM algorithm starts the search with the longest netmask zone to fi nd 
the more specifi c route for the packet (closer to the fi nal destination).   

  Why  LPM  Algorithm for Routing Table Lookup? 

 IP performs the steps in the following order to fi nd the destination route in its 
routing table: 

   •      Searches for a matching host address (IP address)  
   •      Searches for a matching network address  
   •      Searches for a default entry (the default entry is a network address with 0)    

 A matching host address (host ’ s IP address) is always used before matching a 
network address. If both host address and network address are not matched, then 
we use the default entry (default route), which is a network address with ID 0 for 
which a default gateway address is defi ned in the routing table. 

    cs 14.82.      fi b_hash_lookup ().   
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   fn_zone[0]  represents the default entry (default route).  
   fn_zone[32]  represents the more specifi c route.    

 This is achieved by using the for loop at line 276, which loops over the zones 
list starting with the longest netmask to fi nd the more specifi c route. Before starting 
the search into the zone, using the search key ’ s destination, a test key is built by 
AND ’ ing the destination address with the zone ’ s netmask. This is done by calling 
the function  fz_key( )  at line 278. This test key is used for the lookup into the  fi b_
node  chain (cs  14.83 ).   

 Each zone has a pointer to the hash table ( fz_hash ). This hash table ’ s each 
bucket points to the  fi b_node  list. To calculate which bucket of the hash table to be 
searched  fz_chain( )  function is called at line 280. This is again a one more for loop 
to traverse through the  fi b_mode  list based on the bucket returned by the  fz_chain
( )  function (cs  14.84 ).   

 The  fz_chain( )  function calculates the the hashing value to get the hash table 
bucket for accessing the  fi b_node  list by calling the function  fn_hash( ) . 

 The  fn_hash( )  function calculates the hash value by AND ’ ing the ket.datum 
(after performaing the shift operations) value with the  fz_hashmask  (0xf) to get a 
hash table bucket. The hash table consists of the 16 buckets, and that ’ s the reason 
why the  fz_hashmask  value is always 0xf(15) (cs  14.85 ).   

 On returning to the  fn_hash_lookup( ) , the fi rst step in the inner loop after 
getting the  fi b_node  list to traverse is to compare the test key built by the  fz_key
( )  function with the key ( f → fn_key , which is an address) from the  fi b_node  list. This 
is done by calling the function  fn_key_eq( )  at line 281 (see cs  14.86 ).   

 If the  fn_key_eq( )  function returns true — that is, the key value are matching —
 then we continue to check whether the matched  fi b_node  is a valid one; if the  fn_

    cs 14.83.      fz_key().   

    cs 14.84.      fz_chain ().   



    cs 14.85.      fn_hash().   

    cs 14.86.      fn_key_eq ().   

key_eq( )  function returns false — that is, the keys are matching — then the function 
 fn_leq_key( )  is called at line 282 to check whether the test key value is greater than 
that of the key value from the  fi b_node ; if it is, we continue to search the next 
 fi b_node  — otherwise we come out of the inner for loop. This is because the  fi b_nodes  
on the list are sorted in decreasing order by prefi x. 

 If the control reaches at line 287 and if the  CONFIG_IP_TOS  is defi ned in the 
kernel and if the tos value of the  fi b_node  is not equal to the tos value of the key, 
the match is discarded and the search continues.  fi b_node  state information is 
checked for ACCESSED or ZOMBIE. 

 ZOMBIE nodes are currently not in use and related to deleted routes or dead 
interfaces. If the state is ZOMBIE at line 293, then we discard the search and con-
tinue. The  fi b_node  scope should be at least equal to or greater than the key node 
scope; if it is less than the key scope, then the match is discarded at line 296 and the 
search continues. 

 The  fi b_semantic_match( )  is called at line 298 is to check the usability of the 
matched  fi b_node . It represents an acceptable route, the next hop is alive or not, 
and the output interface mentioned in the search key is the same as the one associ-
ated with the next hop. If any of these are not correct  fi b_semantic_match( ) , then 
return error. If there are no errors, then we initialize the  fi b_result  struct (res) with 
the  fn_type, fn_scope , and  fz → fz_order  and then jump to the label out at line 303 
and release the  fi b_hash_lock  before returning the err at line 312 (cs  14.87 , 
Fig.  14.18 ).     
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    cs 14.87.      fi b_hash_lookup () (continued).   

    Figure 14.18.      fn_hash table.   



  14.13   SUMMARY 

 IP routing decides the best possible route for a packet transfer between 
computers. 

 The IP layer handles the routing between computers. 
 The two main functionality of the IP routing are: 

  1.     Forwarding of the IP packets in routers.  
  2.     Identifying the best possible routes for transport of each packet between 

networks.    

 Linux uses the following tables for routing: 

  1.     Forwarding Information Base (FIB): contains and keep tracks of every 
known route.  

  2.     Routing cache: faster cache for destinations that are currently in use.  
  3.     Neighbor table: keeps track of computers that are physically connected to a 

host.    

 Different types of routing supported in Linux are: policy - based routing, multipath 
routing, source routing, and record routing.    
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  IP  QUALITY OF SERVICE IN LINUX 
( IP   Q  O  S )     

     In this chapter we are going to discuss the  pfi fo_fast  and cbq queueing disciplines; 
 pfi fo_fast  is the default qdisc for the linux and is classless queueing discipline, 
whereas the cbq qdisc is not the default qdisc for linux, needs to confi gured by 
user, and is a class - based queueing discipline. We explain in detail the data structures 
for Qdisc (Queueing Discipline) and then the implementation details of  pfi fo_fast  
qdisc and the CBQ qdisc. Also we will see in detail how to confi gure CBQ — that 
is, overriding default qdisc, confi guring CBQ classes for handling traffi c, and 
creating fi lters for the classes. In addition to this, we will also see types of fi lters 
confi gurable for classes and discuss implementation details of u32 and route fi lters. 
Finally, we will look at the details of how  cbq_enqueue  and  cbq_dequeue  are 
implemented.  

  15.1   INTRODUCTION 

 The basic functionality of quality of service (Queueing Discipline) in Linux is to 
decide how the input network packets will be accepted in order and what bandwidth 
rate and make a decision on when and how the output network packet is arranged 
in queues and transmitted at allocated bandwidth rate. It basically administers the 
bandwidth based on the application requirements. 

 In Linux, a  “ qdisc ”  represents a queueing discipline. The default qdisc attached 
to the network interface for linux is  “  pfi fo_fast_qdisc  ” ; this qdisc can be replaced 
based on the requirement for other types of queueing discipline. 
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 Following are the types of the queueing discipline supported in Linux: 

  1.     First In, First Out (FIFO)  
  2.     Priority FIFO (PFIFO)  
  3.     Token Bucket Flow (TBF)  
  4.     Asynchronous Transfer Mode (ATM)  
  5.     Random Early Detection (RED)  
  6.     Stochastic Fair Queueing (SFQ)  
  7.     Class - Based Queueing Discipline (CBQ)  
  8.     Generalized RED (GED)  
  9.     Diff - Serv Marker (DS_MARK)  
  10.     Clark – Shenker – Zhang (CSZ)     

  15.2   BASIC COMPONENTS OF LINUX TRAFFIC CONTROL 

     •      Queueing Discipline  
   •      Classes  
   •      Filters/Classifi ers  
   •      Policing    

           Queueing Discipline.     Each network device on Linux has a queueing discipline, 
which controls how the network packets are enqueued and dequeued before 
transmission (Figs.  15.1  –   15.3 ).      

  Classes.     Classes are supported by only class - based queueing discipline. We can 
divide the network traffi c based on fi lters (IP address, TCP/IP port, etc.) for classi-
fi cation into different classes before transmission, and each class will be scheduled 
for dequeuing a packet based on the priority.  

    Figure 15.1.     Block diagram of Linux traffi c control.  



  Filters.     Filter organize the packets into different classes based on the certain 
parameters (IP addr, TCP/IP port, etc.).  

  Policing.     After the enqueueing of the network packets, the packets can be 
policed for letting the packets go, dropping of the packets and the packets can go 
but mark them.        

  15.3   LINUX IMPLEMENTATION OF   pfi fo _ fast   qdisc   

  pfi fo_fast qdisc  is the default qdisc for all the network interfaces on the Linux 
system.  pfi fo_fast  queueing discipline can be replaced by any other queueing disci-
pline for the Linux system (Fig.  15.4 ).   

  pfi fo_fast  contains three different FIFO queues (different bands) for enqueue-
ing of the packets based on the priority. The highest - priority packet goes into FIFO 
0, and this highest packet is dequeued fi rst before handling any packets in FIFO 1 
and FIFO 2. Similarly, packets in FIFO 1 are considered fi rst before any packets 
handling in FIFO 2. 

    Figure 15.2.     pfi fo_fast queueing discipline in Linux (default queueing discilpline in Linux).  

    Figure 15.3.     Cbq queueing discipline in Linux.  
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  pfi fo_fast  is not user - confi gurable because it it hardwired by default. The packet 
priorities are assigned by the kernel and mapped to the appropriate band (FIFO) 
based on the TOS octet of the packet (priomap) (Fig.  15.5 ).   

 For packets enqueueing and dequeueing, the  pfi fo_fast  qdisc uses the  pfi fo_fast_
enqueue()  and  pfi fo_fast_dequeue()  functions. 

 The four TOS bits are defi ned as follows:

  Binary    Decimal    Meanings  

  1000    8    Minimize delay  
  0100    4    Maximize throughput  
  0010    2    Maximize realiability  
  0001    1    Minimize monetary cost  
  0000    0    Normal service  

    Figure 15.4.      pfi fo_fast  qdisc implementation overview.  



 Figure  15.6  illustrates the TOS fi eld in detail:   
 The precedence bits and their possible values are as follows: 

   000  (0): Routine  
   001  (1): Priority  
   010  (2): Immediate  
   011  (3): Flash  
   100  (4): Flash override  
   101  (5): Critical  
   110  (6): Internetwork control  
   111  (7): Network control    

 Now the TOS bits: 

  Delay:     When set to  ‘ 1, ’  the packet requests low delay.  
  Throughout:     When set to  ‘ 1, ’  the packet requests high throughput.  

    Figure 15.5.      pfi fo_fast  priority bands.  

    Figure 15.6.     TOS fi eld.  
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  Reliability:     When set to  ‘ 1, ’  the packet requests high reliability.  
  Cost:     When set to  ‘ 1, ’  the packet has a low cost.  
   MBZ :     Checking bit.    

 This following table from RFC 1349 explains how applications might use the 
TOS bits:

  TELNET    1000    (minimize delay)  
  FTP  
     Control    1000    (minimize delay)  
     Data    0100    (maximize throughput)  
  TFTP    1000    (minimize delay)  
  SMTP  
     Command phase    1000    (minimize delay)  
     DATA phase    0100    (maximize throughput)  
  Domain Name Service          
     UDP Query    1000    (minimize delay)  
     TCP Query    0000      
     Zone Transfer    0100    (maximize throughput)  
  NNTP    0001    (minimize monetary cost)  
  ICMP  
     Errors    0000      
     Requests    0000 (mostly)      
     Responses     < same as request >  (mostly)      

  15.4   QUEUEING DISCIPLINE DATA STRUCTURE 

  15.4.1    struct Qdisc  

  struct Qdisc  data structure represents a qdisc for the traffi c queueing discipline 
and is attached to the net device (cs  15.1 ). This qdisc is responsible for the traffi c 
control (packets queueing) before sending to the network interface of the Linux 
system. 

   enqueue :     Function pointer pointing to the enqueuing function of the queuing 
discipline. The default function is  pfi fo_fast_enqueue()  if no other queueing 
discipline is confi gured. The main purpose of the enqueue function is to 
enqueue an  sk_buff  in the proper queue of the scheduler.  

   dequeue :     Function pointer pointing to the dequeuing function of the queueing 
discipline. The default function is  pfi fo_fast_dequeue() . The main purpose is 
to dequeue the packet from the highest - priority non – empty queue.  

   ops :     Each queueing discipline has a set of functions to control its operation, 
and the  Qdisc_ops  data structure contains all these control functions.  

   next :     The Linux net device structure maintains the  qdisc_list  to link all the 
queueing disciplines which are used for the device ’ s queueing. Here the next 
pointer is pointing to the next queuing discipline supported by the device.  

   handle :     There are more than one instance of queueing disciplines in the kernel, 
and each instance of queuing discipline is identifi ed by the 32 - bit number. 
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handle represents this 32 - bit number (consists of major and minor number, 
minor number is always zero) .  

   q :     Represents the head of the queue.  
   dev :     Points to the net device.  
   stats :     Represents the statistics — that is, number of enqueued bytes and packets, 

packets dropped, and so on.  
   data :     This is a place holder. In the case of default  pfi fo_fast , this points to an 

array of  sk_buff_head  structures; for CBQ, this points to the  cbq_sched_data  
data structure which contains classes for different queues.       

  15.4.2    struct Qdisc_ops  

  struct Qdisc_ops  data structure provides the set of control functions for various 
operations to be performed on the queueing discipline. 

   next :     points to next  Qdisc_ops  to link all the queuing discipline operation that 
has registered in the kernel.  

   cl _ ops :     This is a class operation data structure  Qdisc_class_ops  which provides 
a set of functions for a particular class.  

   id :     Char array contains the identity of the queueing discipline (e.g., pfi fo, cbq, 
etc.).      

 The function pointers to the queueing discipline are as follows: 

   enqueue ():     Function pointer pointing to the enqueueing function of the queue-
ing discipline.  

    cs 15.1.      Qdisc  data structure.  
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   dequeue ():     Function pointer pointing to the dequeuing function of the queue-
ing discipline.  

   requeue ():     If the packet was dequeued to send but it fails for unknown reason, 
then the requeue function puts back the packet back to the queue at the 
same place whereit had been before.  

   drop ():     Removes the packet from the queue and drops it.  
   reset ():     Resets the queueing discipline back to the initial state.  
   init ():     Initialize new queueing discipline.  
   destroy ():     Destroys the resources used during initialization of the queuing 

discipline.  
   change ():     Changes values of the parameters of a queueing discipline.  
   dump ():     Shows the statistics of the queueing discipline.     

  15.4.3    struct Qdisc_class_ops  

 This is a class operation data structure that provides a set of control functions for 
a particular class (cs  15.3 ). 

   graft :     Functionality is to attach a new queueing discipline to a class and return 
the previously attached queueing discipline.  

   leaf :     Returns a pointer to the queueing discipline of class.  
   get :     Returns the internal ID of the class.  
   put :     Invoked when a class returned by the get is dereferenced.  
   change :     Changes the properties of the class, also used for creating new 

classes.  
   delete :     Deletes a class.  

    cs 15.2.      Qdisc_ops  data structure.  
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   walk :     Iterated over all classes of a queueing discipline, used to obtain diagnostic 
data for all classes.  

   tcf _ chain :     Returns a pointer to the list of fi lters for a class, used to manipulate 
the fi lter list.  

   bind _ tcf :     Binds an instance of a fi lter to the class.  
   unbind _ tcf :     Removes an instance of a fi lter from the class.  
   dump _ class :     Returns stats for a class.       

  15.4.4     struct   cbq _ class   

  struct cbq_class  data structure represents a traffi c class for the cbq queueing disci-
pline for scheduling a packet based on the bandwidth allocated for the class 
(cs  15.4 ).   

    cs 15.3.      Qdisc_class_ops  data.  

    cs 15.4.      cbq_class  data structure.  



600 IP QUALITY OF SERVICE IN LINUX(IP QOS)

 Here we will discuss important fi elds of the  cbq_class : 

   next :     Points to the next class in the class tree (hash table link).  
   next _ alive :     cbq scheduling algorithm maintains a list of active traffi c classes for 

scheduling the class based on the priority. This fi eld will point to the next 
class with backlog of packets from the list of active classes.  

   classid :     Every class in the cbq queueing discipline is represented by an id. This 
fi eld contains a unique id for a cbq class.  

   priority :     This fi eld contains the class priority which is used in scheduling a cbq 
class.  

   priority 2:     This fi eld contains the class priority to be used after the overlimit. A 
cbq class is of three types: overlimit, underlimit, and at limit. Depending on 
the usage of the class in cbq scheduling function, a class is classed overlimit, 
underlimit, and at limit based on the allocated bandwidth.  

   ewma _ log :     The fi eld is used for calculating the idle time calculation required in 
cbq scheduling function.  

   allot :     Specifi es how many bytes a qdisc can dequeue during each round. This 
is reconfi gurable and depends on the weight fi eld of the  cbq_class  struct 
(cs  15.5 ).  

   quantum :     Specifi es the allotment per weighted round robin based on the band-
width assigned for the class.  

   weight :     If the  cbq_class  has more bandwidth than other classes in the queue, 
then the weight fi eld is used for the high - bandwidth class to send more data 
in one round than the others.  

   tparent :     points to the parent of the  cbq_class  tree (cs  15.6 ).  

    cs 15.5.      cbq_class  data structure ( continued ).  

    cs 15.6.      cbq_class  data structure ( continued ).  



   borrow :     This fi eld indicates if the child class can borrow the bandwidth from 
the parent class. If it is NULL, then class is bandwidth - limited and not able 
to borrow bandwidth from parent class.  

   siblings :     Points to the siblings class.  
   children :     Points to the children class.  
   level :     Level of the class in the class tree (cs  15.7 ).  
   defi cit :     This fi eld is used in the round - robin process of the scheduling. This fi eld 

contains a saved defi cit value if the allocated bytes are not sent in the same round, 
and this defi cit value will be used for the next round.            

  15.5   tc USER PROGRAM AND KERNEL IMPLEMENTATION DETAILS 

 The tc is a user program which overrides and updates the default queueing discipline 
in Linux. It uses a netlink as communication channel for interaction between user 
space and kernel. It adds the new queuing discipline, traffi c classes, fi lters, and 
so on. 

 Here we will discuss the CBQ queueing discipline. 
 How is tc used? 
 From command prompt:

  # tc qdisc add dev eth1 root handle 1: cbq bandwidth 
10   Mbit cell 8   avpkt 1000   mpu 64   

 The above tc command adds the new cbq queueing discipline. 
 For more details on tc command fl ow and how the doit function pointer is 

invoked, see Chapter  13 . 
 The doit function pointer points to  tc_modify_qdisc()  in the case of adding  qdisc  

to queueing discipline (cs  15.8 ).   

  15.5.1     tc _ modify _ qdisc ()  

 This function fi rst calls the  dev_get_by_index()  function to fi nd out the network 
interface device at line 604. The argument to the  dev_get_by_index()  is  tcm → tcm_
ifi ndex , which is specifi ed at the command prompt. 

  dev_get_by_index() , based on the argument (ifi ndex), searches for an interface 
and returns the pointer to the device. 

    cs 15.7.      cbq_class  data structure ( continued ).  
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 Then  tc_modify_qdisc()  checks for the  tcm → tcm_parent  value at line 607. If it ’ s 
not equal to  TC_H_ROOT , it calls the functions  qdisc_lookup()  and  qdisc_leaf()  at 
lines 610 and 612 for fi nding out the parent qdisc and band qdisc. If  tcm → tcm_parent  
is equal to the  TC_H_ROOT , then the band qdisc points to the device ’ s  qdisc_sleep-
ing  at line 614. 

 After this,  tc_modify_qdisc()  checks for the  tcm → tcm_handle  value at line 624. 
If it is not empty, then it calls the function  qdsic_lookup()  at line 630 to search for 
the band qdisc q with dev and  tcm → tcm_handle  as the arguments (cs  15.9 ). If it 
doesn ’ t fi nd the band qdisc, then it jumps to  create_n_graft  label at line 631; other-
wise, it jumps to the label graft at line 640.   

 At  create_n_graft  label line 690 the kernel fi rst checks for the  nlmsghdr →
 nlmsg_fl ags  has its  NLM_F_CREATE  bit set to 1 (cs  15.10 ). If it is set to 1, then it 
checks for INGRESS or EGRESS before calling the  qdisc_create()  at lines 694 or 
696 which allocates and initializes the new qdisc.   

 Again at graft label line 700, the  qdisc_graft()  function is called at line 703; it 
sets the dev ’ s  qdisc_sleeping  to the new queueing discipline and sets  dev → qdisc  to 
 noop_qdisc , and it reactivates the device at the end and returns the old queueing 
discipline oqdisc. 

 If there is no error, the graft fi nally calls  qdisc_notify()  function at line 712 and 
sends the message(skb) to the user space.  

  15.5.2     qdisc _ create ()  

 Based on the kind of qdisc by looking at the TCA_KIND - 1 entry in the argument 
tca at line 390, it searches for the queueing discipline by name by calls the function 
 qdisc_lookup_ops()  (cs  15.11 ). Then it allocates space for the queuing discipline 

    cs 15.8.      tc_modify_qdisc() .  



    cs 15.9.      tc_modify_qdisc()  ( continued ).  

    cs 15.10.      tc_modify_qdisc()  ( continued ).  
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qdisc where size is equal to the size of Qdisc with additional space for the Qdisc 
private data structure and fi nally initializes the Qdisc queue by calling the function 
 skb_queue_head()  at line 427.   

 At line 432, it initializes the Qdisc operational ( sch → ops ) pointer which sets up 
queueing discipline operations such as enqueue, dequeue, and device at lines 433,434, 
and 435 (cs  15.12 ). Finally, it calls the  ops → init  function pointer and in this case it 
is pointing to  cbq_init()  function.    

  15.5.3     cbq _ init ()  

 This function is responsible for initializing the cbq queueing discipline. It sets up 
the classid of class at line 1422 (cs  15.13 ), priority at line 1427, siblings link at line 
1421, and so on, and then creates a default qdisc for the queueing discipline by 
calling the function  qdisc_create_dfl t() . By default, the type of qdisc is pfi fo.    

  15.5.4     qdisc _ graft ()  

 The arguments to the  qdisc_graft()  are dev, p, clid, q  &  old, where p is the parent 
queueing discipline, clid is the class ID, q is the band queueing discipline, and old_q 
is the old queueing and is set to NULL. 

 The basic functionality of the  qdisc_graft()  is to graft qdisc  “ new ”  to class 
 “ classid ”  of qdisc  “ parent ”  or to device  “ dev. ”   qdisc_graft()  fi rst checks whether the 
parent queueing discipline p is empty or not at line 358 and then it calls the function 
 dev_graft_qdisc()  at line 360 or 362 based on the EGRESS and INGRESS; other-
wise it calls the  get()  from the parent queueing discipline ’ s class operation set at 
line 370 (cs  15.14 ).    

    cs 15.11.      qdisc_create() .  



  15.5.5     dev _ graft _ qdisc ()  

 This fi rst deactivates the device by calling the  dev_deactivate()  function at line 305, 
and then it checks for the INGRESS or EGRESS (cs  15.15 ). If it is EGRESS, then 
set the old  qdisc_sleeping  to an oqdisc variable. Then it checks whether the supplied 
new queueing discipline is empty or not. If it is empty, set the new queueing disci-
pline to  noop_qdisc . Then it sets the dev ’ s  qdisc_sleeping  to the new queueing dis-
cipline and set  dev → qdisc  to  noop_qdisc  and reactivate the device at the end and 
return the old queueing discipline oqdisc.       

  15.6   THE tc COMMANDS FOR CREATING CLASS HIERARCHY 
FOR  CBQ    

  # tc class add dev eth0 parent 1:0 classid 1:1 cbq bandwidth 10   Mbit rate 10   Mbit 
allot 1514 cell 8 weight 1   Mbit prio 8 maxburst 20   avpkt 1000  

    cs 15.12.      qdisc_create()  ( continued ).  

    cs 15.13.      cbq_init() .  
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    cs 15.14.      qdisc_graft() .  

    cs 15.15.      dev_graft_qdisc() .  



  # tc class add dev eth0 parent 1:1 classid 1:2 cbq bandwidth 10   Mbit rate 3   Mbit 
allot 1514 cell 8 weight 100   Kbit prio 3 maxburst 20   avpkt 1000 split 1:0  

  # tc class add dev eth0 parent 1:1 classid 1:3 cbq bandwidth 10   Mbit rate 7   Mbit 
allot 1514 cell 8 weight 800   Kbit prio 7 maxburst 20   avpkt 1000 split 1:0    

 In this case the doit function pointer (more details on how it is assigned are given 
above) from  rtnetlink_rcv_msg()  would point to  tc_ctl_tclass() , and this function gets 
invoked when the tc command for creating class is executed. 

 For more details on tc command fl ow  &  how the doit function pointer invoked, 
see Chapter  13 . 

  15.6.1     tc _ ctl _ tclass ()  

 This function fi rst calls the  dev_get_by_index()  function to fi nd out the network 
interface device at line 852 (cs  15.16 ). The argument to the  dev_get_by_index()  is 
 tcm → tcm_ifi ndex , which is specifi ed at the command  prompt..dev_get_by_index()  
based on the argument (ifi ndex) searches for an interface and returns a pointer to 
the device.   

  dev_get_by_index()  based on the argument (ifi ndex) searches for an interface 
and returns a pointer to the device. 

 Then based on the  tcm → tcm_parent  value, it determines whether the class is 
root (which has no parent) or the class is node in hierarchy and locates the qdisc 
by calling the function  qdisc_lookup()  at line 895 and then checks whether it sup-
ports a class or not at line 899. 

 If yes, it then checks for the classid at line 904 based on the value set at the 
command prompt. If the classid is zero and equal  TC_H_ROOT , then it is a parent 
class; otherwise, it ’ s a child class. 

 Next it calls the function  cbq_get()  at line 911 which tries to get the class by 
calling the function  cbq_class_lookup() , which checks if class already exists with the 
same classid or not; if yes, it returns the class or the returns NULL. 

  tc_ctl_tclass()  calls the function  cbq_change_class  ( cops → change ) at line 939. 
Finally, the  tc_ctl_tclass()  calls the  tclass_notify()  function and sends the message 
(skb) to the user space. Fig.  15.8  shows the fl ow diagram for  tc_ctl_tclass() .    

  15.6.2     cbq _ change _ class ()  

 The main functionality of this function is to 

   •      Allocate memory for the  cbq_class  data struct.  
   •      Initialize all the class elements based on the arguments.  
   •      Link the class in the hierarchy by calling the function  cbq_link_class .    

 The memory for the new class is allocated and initialized at line 1914s and 191 and 
then creates a default qdisc for this class by calling the function at line 1921 (cs 
 15.17 ). It sets up the classid of class at line 1923, class parent at line 1924, and qdisc 
at line 1925. The allot and quantum values of the class are set at lines 1926 and 1927, 
which are used in  cbq_dequeue()  function for scheduling this class and the siblings 
link at line 1932.     
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    Figure 15.7.      tc_modify_qdisc  fl ow diagram.  



    cs 15.16.      tc_ctl_tclass() .  

    cs 15.17.      cbq_change_class() .  
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  15.7   FILTERS 

 The main function of fi lters is to assign the incoming packets to classes for a qdisc. 
The classifi cation of packets are based on the IP address, port numbers, and 
so on. 

 Types of Filters 

   •      RSVP  
   •      U32  
   •      Route   
   •      Police  
   •      Estimator  
   •      Firewall - based    

 We will discuss only the U32 and route fi lters. 
 How do we set fi lters using route and U32? 

  # tc fi lter add dev eth0 parent 1:0 protocol ip prio 100 route or  
  # tc fi lter add dev eth0 parent 1:0 protocol ip prio 100 u32    

    Figure 15.8.      tc_ctl_tclass  fl ow diagram.  



 In this case the doit function pointer (more details on how it is assigned are 
given above) from  rtnetlink_rcv_msg()  would point to  tc_ctl_tfi lter() , and this func-
tion gets invoked when the tc command for setting fi lters is executed. 

 For more details on tc command fl ow and how the doit function pointer is 
invoked, see Chapter  13 . 

  15.7.1     tc _ ctl _ tfi lter ()  

 The main functionality of the  tc_ctl_tfi lter()  is to add/delete/change/get the fi lter. 
The main message argument for the  tc_ctl_tfi lter  is the struct  nlmsghdr , which 
embeds another message struct  tcmsg  at line 121 (cs  15.18 ). The message provides 
the three important types of information ( tcm_info ): node ’ s protocol (minor part 
of  tcm_info ), fi lter ’ s node priority (major part of  tcm_info ), and the parent ID 
( tcm_parent ).   

  tc_ctl_tfi lter  fi rst identifi es the device by calling the function  _dev_get_by_index()  
using the  tcm_ifi ndex  value at line 146 (cs  15.19 ), and then we do the lookup for the 
qdisc by calling the function  qdisc_lookup()  for the queueing discipline using the 
parent ID ( tcm_parent ). Then using the  tcf_chain  of the queuing discipline class 
operation at line 168, we identify the queueing discipline fi lter list. After that we 
check for the fi lter by traversing the list using the loop at lines 174 – 183, if not found, 
then we create/allocate a new fi lter node.   

 After traversing the fi lter list, if the fi lter node is not found, then it creates/allo-
cates a new fi lter node at line 199 and initializes the fi lter node operation structure 
 tp_ops  at line 201 by calling the  tcf_proto_lookup_ops()  function using the optional 
argument struct rtattr  *  * tca (cs  15.20 ). Then using the fi lter node operation, struct 
values initialize the fi lter node from lines 220 – 226.   

 The main data structures initialized are  tcp_proto  and  tcf_proto_ops . 

   •      First, struct values initialize and assign the fi lter type to the new fi lter node 
operation pointer ( tcf_proto_ops   * ops) by calling the function  tcf_proto_
lookup_ops()  whose functionality is to fi nd a classifi er type by string name.  

    cs 15.18.      tc_ctl_tfi lter() .  
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    cs 15.19.      tc_ctl_tfi lter()  ( continued ).  

    cs 15.20.      tc_ctl_tfi lter()  ( continued ).  



   •      The queuing discipline pointer points to the queueing discipline associated 
with this fi lter.  

   •      The classifi er function pointer points to the classify function in its fi lter 
operation.  

   •      The classid is assigned to the ID of the queueing discipline.  
   •      Then the classid calls the init function to initialize the rest of the fi lter 

structure.    

 And fi nally the classid calls the change function of fi lter either  u32_change  or 
 route4_change . Fig  15.9  shows the fl ow diagram for  tc_ctl_tfi lter() .     

    Figure 15.9.      tc_ctl_tfi lter()  fl ow diagram.  
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  15.8   u32 FILTER IMPLEMENTATION 

 In u32 fi lters the classifi cation of packets is done based on the destination IP, desti-
nation TCP/IP port, source IP address, source TCP/IP port, TOS byte, and protocol 
(Fig.  15.10 ).   

 Commands for Setting  u32_fi lter  

  /root/work/iproute/iproute2 - ss050607/tc/tc fi lter add dev eth1 parent 1:0 proto-
col ip prio 1 u32 match ip dst 192.168.2.101 match ip sport 23 0xfff fl owid 
1:2  

  /root/work/iproute/iproute2 - ss050607/tc/tc fi lter add dev eth1 parent 1:0 proto-
col ip prio 1 u32 match ip dst 192.168.2.102 match ip sport 80 0xfff fl owid 
1:3    

    Figure 15.10.     u32 fi lter implementation overview.  



  15.8.1     u 32_ change ()  

 The  u32_fi lters  are stored in hash tables, the data structure defi ned for the hash 
table is struct  tc_u_hnode  at line 502, and the key nodes for storing the information 
for fi lters are defi ned as struct  tc_u_knode  at line 503 (cs  15.21 ). Then defi ne a key 
struct (i.e., struct  tc_u32_key ) at line 504 which is used to hold information about 
the fi lter type (i.e., IP address info, TCP/IP port, etc.).   

 The rtattr struct contains information about the tc command arguments for 
setting the fi lter parameters at lines 505 – 506, and the struct  tc_u_common  which 
holds a pointer for the queuing discipline type is defi ned at line 501. 

 The if condition at line 523 becomes true if a new hash node is required. Based 
on the divisor value at line 524, a new hash node for the struct  tc_u_hnode  is allo-
cated at line 535 and initialized at line 538 (cs  15.22 ).   

 Then the new hash node ’ s  tp_c  pointer is initialized at line 539 to point to the 
 tc_u_common tp_c  which contains information of the queuing discipline type and 
the ref count is set to 0 at line 540. 

 The divisor and the handle value is set at lines 541 – 542 based on the tc user 
arguments. Finally the hlist (hash list) of struct  tc_u_common  is updated with the 
new hash node at line 544. 

 The if condition at line 549 will be true if a new hash key node is required (cs 
 15.23 ). It starts with getting the value of ID of the  tc_u_hnode  for adding the new 
hash key node to the specifi c node of the hnode hash table. Then next it gets the 
information about the struct  tc_u32_sel  and its associated keys from the table entry 
 TCA_U32_SEL  at line 578.   

 Then u32_change() allocates the memory for the new hash key node at line 579. 
The memory space allocated depends on the number of keys specifi ed in  tc_u32_
key → nkeys  and initializes this memory at line 582. After the memory allocation, 
memcpy will be called at line 583 to copy the contents of  TCA_U32_SEL  to the 
keys of the new key node. Next the  tc_u_node  (ht) and the handle are assigned to 
the new key node at lines 584 – 585. 

 Finally the function  u32_set_params()  is called at line 586 to set the class - specifi c 
information inside the new key node.   

    cs 15.21.      u32_change .  
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    cs 15.22.      u32_change()  ( continued ).  

    cs 15.23.      u32_change()  ( continued ).  

  15.9   ROUTE FILTER IMPLEMENTATION 

 Here the classifi cation of packets is based on the routing tables. Based on the infor-
mation in the routing table, a route fi lter is set for a specifi c destination (Fig. 
 15.11 ).   



  Route Filter Commands  
  [root@localhost root]# ip route add 192.168.2.101 via 192.168.2.100 realm 2  
  [root@localhost root]# ip route add 192.168.2.102 via 192.168.2.100 realm 3  
  [root@localhost root]# tc fi lter add dev eth1 parent 1:0 protocol ip prio 100 

route to 3 fl owid 1:3  
  [root@localhost root]# tc fi lter add dev eth1 parent 1:0 protocol ip prio 100 

route to 2 fl owid 1:2    

    Figure 15.11.     Route fi lter implementation overview.  
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  15.9.1     route 4_ change ()  

 The struct rtattr at lines 373 – 374 contains the different types of command arguments 
(information) for setting the fi lter parameters for route (cs  15.24 ). The main data 
structure for the route fi lters is the struct  route4_head  at line 370, which is initialized 
to point to the queuing discipline type. Then the struct  route4_fi lter  and the  route4_
bucket  are declared at lines 371 – 372.   

 The  route4_head  data structure contains the hash table of type struct  route4_
bucket , and this  route4_bucket  data structure again maintains a table for struct 
 route4_fi lter . 

 The  rtattr_parse()  function at line 381 is called to sort out the arguments from 
the command arguments from  struct rtattr  and arrange this specifi c information in 
the form of a table. Then it checks for whether the struct  route4_head  is NULL; if 
sturct route4_head is NULL, then route4_change() allocates the memory space for 
the struct  route4_head  at line 414 and initializes this memory space at line 417 (cs 
 15.25 ). It also allocates the memory space for the struct  route4_fi lter  at line 424 and 
initializes it at line 428.   

 The  TCA_ROUTE4_TO  table entry of  struct rtattr  contains information for the 
realm id, and this is getting assigned to the (struct  route4_fi lter )  f → id  at line 437 (cs 
 15.26 ). Then it checks for the classid entry in the arguments table; and if the classid 
entry available, the  TCA_ROUTE4_TO  entry assigns this classid to the  f → res.
classid , where  res  is of type struct  tcf_result  which contains information for the 
class.   

 Using the  f → handle  value, to_hash() calculates the index for the  route4_bucket  
table by calling the function  to_hash()  at line 475 (cs  15.27 ). Then it checks whether 
the entry at the index it is NULL; if it is null, the  f → handle  value allocates the 
memory space for the struct  route4_bucket  and initializes at lines 478 – 481. Finally, 
it inserts the allocated  route4_bucket  entry into the table  head → table[h1]  at line 
484. Again,  route4_change()  calculates the indexing value for the  route4_bucket  
table by calling the function  from_hash()  at line 490. Using the index value returned 
by from_hash() route4_change() calculates the address of the  route4_bucket  table 
entry where the  route4_fi lter  gets assigned at line 506.     

    cs 15.24.      route_change() .  



    cs 15.25.      route_change()  ( continued ).  

    cs 15.26.      route4_change()  ( continued ).  

  15.10   ENQUEUE 

 The enqueue function enqueues a packet ( sk_buff ) in the scheduling queue of the 
queuing discipline. 

 When the enqueue function is called, the  dev_queue_xmit()  function from the 
IP layer calls the enqueue function at line 1028 (cs  15.28 ) of the queuing discipline. 
The default function is called  pfi fo_fast_enqueue()  if the default queuing discipline 
is not overridden by another queuing discipline.   

 Here we are discussing the  cbq_enqueue()  function for the CBQ queuing 
discipline. 
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  15.10.1     cbq _ enqueue ()  

 The arguments passed to the  cbq_enqueue()  function are  struct sk_buff  (packet to 
be queued) and the  struct Qdisc  (device qdisc). The kernel represents each class by 
a unique internal classid for identifying the classes. The  cbq_enqueue()  function fi rst 
calls the  cbq_classify()  function at line 397 with a buffer skb and a pointer to Qdisc 
(scheduler) as arguments (cs  15.29 ). The  cbq_classify()  function ’ s main purpose is 

    cs 15.27.      route4_change() .  

    cs 15.28.      dev_queue_xmit() .  



to identify the class by applying the fi lters that are already set for enqueuing the 
packets in proper identifi ed queue; and if the fi lter matching is successful, the  cbq_
classify()  returns the class for enqueuing the packets. Then it checks for the class 
at line 404 and calls the enqueue function of the queueing discipline owned by that 
class at line 408; and if the enqueuing of the packet is successful, then it updates 
the queue length at line 409, updates the packet statistics at lines 410 and 411, and 
marks the top level of the class tree by calling the function  cbq_mark_toplevel()  at 
line 412. Finally, it activates the class for scheduling purpose at line 414 by calling 
the function  cbq_activate_class() .    

  15.10.2      cbq_ classify ()  

 The  cbq_classify()  function fi rst checks if  skb → priority  (prio) points to one of the 
classes at lines 253 and 254 and calls the function  cbq_class_lookup()  (cs  15.30 ). If 
it is pointing to one of the classes, then it returns a class to the calling enqueue 
function.   

 If class is not found based on the  skb → priority , then  cbq_classify()  checks for 
the  fi lter_list  and calls the  tc_classify()  function at line 265 for fi nding the class - based 
on the fi lter parameter (IP addr, TCP/IP source port, etc.). The  tc_classify  is a func-
tion pointer that points to the classify function of the fi lter based on the fi lter type 
(e.g.,  u32_classify()  in the case of u32 fi lters,  route4_classify()  in the case of route 
fi lters, ets.).  

  15.10.3   Overview of   cbq _ enqueue ()  

 Figure  15.12  shows  cbq_enqueue()  fl ow diagram.     

    cs 15.29.      cbq_enqueue() .  
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  15.11   OVERVIEW OF LINUX IMPLEMENTATION OF  CBQ  

 Fig  15.13  is an overview of CBQ implementation in Linux.    

  15.12     cbq _ dequeue ()  

 The Class - based Queueing (CBQ) mechanism divides the network link ’ s bandwidth 
within different multiple classes and provides a link - sharing approach by using the 
same physical (network) link. The traffi c classes within the CBQ mechanism has 
different priorities; and based on the priority, each class within the CBQ framework 
is scheduled for packet transmission. 

 The main blocks for the CBQ dequeueing mechanism are shown in Fig.  15.14 . 
The mechanism consists of 

  1.     General scheduler  
  2.     Link – sharing scheduler  
  3.     Estimator      

 The classifi er part in Fig.  15.14  for each arriving packet provides a classifi cation 
based on the IP addr, source, or destination port, and so on, and puts the arriving 
packet into the appropriate class using the cbq enqueue mechanism. 

    cs 15.30.      cbq_clasify() .  



    Figure 15.12.      cbq_enqueue()  fl ow diagram.  

    Figure 15.13.     CBQ implementation.  
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    Figure 15.14.     CBQ block diagram.  

     General Scheduler.     The CBQ general scheduler uses a modifi ed weighted 
round - robin (WRR) scheduling algorithm. CBQ maintains a circularly linked list 
of active classes and, based on the priority the WRR schedules a class for packet 
transmission. A class is active only if it has packets for transmission. Each class is 
allocated a quantum of bytes for one round. After the class has transmitted the 
allocated bytes, it then moves on to the next active class in the circularly linked 
list.  



  Link – Sharing Scheduler.     The link - sharing algorithm ’ s main functionality is to 
check the status of each class and distribute the excess bandwidth based on the 
class ’ s idle time. 

 Estimator.     The estimator is used to measure the bandwidth used by the class. 
For this it uses certain parameters of the class to determine the bandwidth con-
sumed. It used the idle and avgidle parameters of the class. Where the idle param-
eter is the interpacket time (gap between two packets) and the avgidle parameter 
value determines whether the class is overlimit, underlimet, and at limit. This value 
is calculated using the Exponential Weighted Moving Average (EWMA) 
function. 

  1.     A class is overlimit when it uses more than its allocated bandwidth.  
  2.     A class is underlimit when it uses less than its allocated bandwidth.  
  3.     A class is at limit when it uses equal to its allocated bandwidth.    

 Class - based queueing is arranged in a hierarchical manner (Fig.  15.15 ). The top of 
the hierarchy is the root qdisc class that defi nes the total bandwidth for the entire 
hierarchy of the classes. This bandwidth is further divided into the hierarchy for the 
other classes. 

    Figure 15.15.     CBQ example.  
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 CBQ assigns priority for the each class in the hierarchy; and based on the prior-
ity, a class will get a chance to send the packets to the interface. Also, a CBQ class 
can be confi gured to borrow bandwidth from its parent, if the parent has excess 
bandwidth.     

  15.12.1   From   net / dev / core . c   

 Figure  15.16  shows a data fl ow diagram for CBQ enqueing and dequeing process.    

  15.12.2     qdisc _ run ()  

 After successfully enqueueing the packet in the appropriate class of the CBQ hier-
archy, the function  dev_queue_xmit()  calls the  qdisc_run()  function. 

 The  qdisc_run()  function basically checks at lines 439 – 440 for  qdisc_restart(dev)  
until there are no more packets in the output queue or until the network 
device does not accept any more packets — that is,  !netif_queue_stopped(dev)  
(cs  15.31 ).   

 The  qdisc_restart(dev)  function is responsible for getting the next packet from 
the queue of network device, using qdisc of the device and sending it by calling the 
function  hard_start_xmit() .  

    cs 15.31.      qdisc_run() .  

  15.12.3     qdisc _ restart ()  

 This function is responsible for getting the next packet from the queue of 
network device using the qdisc of the network device. It starts with calling the 
dequeue function of the device at line 83, which is a function pointer, that is,  q →
 dequeue(q) . In this case it is initialized to the  cbq_dequeue()  function and it gets 
called. This  cbq_dequeue()  function gets the next packet from the appropriate class. 
If the packet is successfully dequeued and to send this dequeued packet from the 
class to over the wire, the  cbq_dequeue()  function invokes the net device ’ s  hard_
start_xmit()  function. If the packet is transmitted successfully by the device ’ s  hard_
xmit()  function, then it returns  − 1 at line 100 to  qdisc_run()  and again the loop in 
 qdisc_run()  continues to dequeue the next packet from the class (cs  15.32 ). If the 
 hard_xmit()  fails or the dequeue function is failed, then in both the cases the packet 
is requeued in the queue and, using  NET_TX_SOFTIRQ , is raised in  net_if_sched-
ule()  at line 137 for transmission of the packet when  do_softirq()  function is 
invoked.    



    Figure 15.16.     CBQ enqueing and dequeing fl ow.  

  15.12.4     cbq _ dequeue ()  

 The argument passed to the  cbq_dequeue()  function is the qdisc of the net device. 
When this function gets invoked for the fi rst time before starting the dequeueing 
of packet from the queue, it gets the current (start) time using the macro  PSCHED_
GET_TIME  at line 995 (cs  15.33 ). Then it checks to determine the transmitting class 
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    cs 15.32.      qdisc_restart() .  

    cs 15.33.      cbq_dequeue() .  



(i.e.,  q → tc_class ); initially this condition at line 998 is false since this will be set in 
the  cbq_dequeue_prio()  function after selecting the transmitting class from the 
active classes list. If the transmitting class ( q → tx_class ) is set, then it invokes the 
function  cbq_update() , which basically calculates the CBQ parameters (idle and 
avgidle) that will be used to identify whether the transmitting class is using the link 
for transmission based on the allocated bandwidth rate. It decides this based on 
factors such as whether the class is overlimit or underlimit or is at limit. The class 
is overlimit if it is transmitting the packets faster than the allocated bandwidth, it is 
at underlimit if it is transmitting slower than the allocated rate and has more 
backlog, and it is at limit if it is transmitting at the allocated rate.   

 Basically,  cbq_update()  does the following: 

  1.     It calculates the interdeparture time (using the timer) between successive 
packets and subtracts from it the allocated interdeparture time for the class 
( cl → last ) to get the idle time. This idle time is defi ned as the difference 
between the desired time and the measured actual time between the most 
recent packet transmissions for the last two packets sent from this class.  

  2.     Then it computes the avgidle time using the exponentially weighted moving 
average of idle, where the avidle is defi ned as average of the idle and where 
avgidle  < 0, =0, and  > 0 defi ne whether the class is overlimit, at limit, and 
underlimit, respectively.    

 Based on this avgidle value,  cbq_update  decides whether the class is overlimit, 
underlimit, or at limit and checks whether class can borrow bandwidth from a parent 
or wait for a certain time before for transmitting a packet to achieve proper link 
sharing. Then the  cbq_dequeue  calls the function  cbq_dequeue_l()  for selecting the 
proper class from the active list at line 1019.  

  15.12.5     cbq _ dequeue _1()  

 This function calculates the activemask value at line 976 based on the  q → activemask  
value which is set in the function  cbq_activate class()  when the class is enqueued in 
 cbq_enqueue()  function. This value is required for getting the prio value at line 978 
for indexing into the active classes queue list and calls the function  cbq_dequeue_l()  
at line 980 function to schedule the class based on the prio value (cs  15.34 ).    
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    cs 15.35.      cbq_dequeue_prio() .  

  15.12.6     cbq _ dequeue _ prio ()  

 This function is responsible for selecting the class from the active list and runs the 
class with allocated bytes. Based on the prio passed from the  cbq_dequeue_l()  func-
tion, it selects the class at lines 874 – 875 (cs  15.35 ).   

 The  cbq_dequeue_prio()  uses a weighted round robin for active classes where 
each class is allocated a quantum of bytes for one round. So under certain circum-
stances, a class may transmit more or less than its quantum in a round; we keep 
track of its defi cit so that the allocation of that class in the next round could be 
adjusted accordingly. 

 The quantum required for every class is calculated in function  cbq_normalize_
quanta()  based on the class ’ s weight, allot, and quanta which are set by the user 
arguments. 

 Before starting the round, check for whether the class is underlimit at line 885; 
if it is, then jump to label  skip_class  (cs  15.36 ). If not, check for the defi cit value of 
the class; and if it is less than 0, then jump to label  next_class  at line 886; otherwise 
continue and call the dequeue function of the class ’ s queueing discipline at line 897, 
which is by default the  pfi fo_dequeue()  function. It checks whether the dequeue 
function of the class returns  sk_buff  or not at line 903. If  sk_buff  is returned, then 
it returns the skb to the calling function  cbq_dequeue_l()  at line 925; but before 
that, it again checks for the defi cit value of the class at line 920.     

 The  skip_class  label basically checks for whether a class is empty or is penalized 
at line 928; if it is penalized, then it unlinks the class from the active list and returns 
NULL.   

 The  next_class  label changes the next round for the next class from the active 
list and if the while conditions at lines 961 – 962 fail, then it returns NULL to the 
calling function  cbq_dequeue_l()  and then  cbq_dequeue_l()  also returns NULL to 
the calling function  cbq_dequeue()  (cs  15.39 ).   

 If skb is not returned from  cbq_dequeue_l() , then  cbq_dequeue()  checks whether 
the  q → toplevel  is equal to  TC_CBQ_MAXLEVEL  and also whether it is time for 
past perfect; if it is, then it comes out the infi nite loop at line 1046; otherwise, it 
continues by setting the top level and the time. This happens when the class is 
overlimit or the top level class is inhibited from borrowing. If there are still packets 
in the scheduler at line 1055, then the watchdog timer is started for scheduling 
the packets and fi nally returns the NULL to the calling function  qdisc_restart()  
(cs  15.40 ).   



    cs 15.36.      cbq_dequeue_prio()  ( continued ).  

    cs 15.37.      cbq_dequeue_prio()  ( continued ).  

    cs 15.38.      cbq_dequeue_prio()  ( continued ).  
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    cs 15.39.      cbq_dequeue_prio()  ( continued ).  

    cs 15.40.      cbq_dequeue()  ( continued ).  

 The summary of the  cbq_dequeue  process is that each class is not allowed to 
send at length; they can only dequeue an allocated amount of data during each 
round. Using a weighted round robin, it decides which of its classes will be allowed 
to send. First it considers the highest - priority class for transmission of packets 
and will continue to do so until there are no more packets, and then it considers 
lower - priority classes. It also checks for the whether a class is overlimit,underlimit 
or is at limit and based on this schedules other classes.   



  15.13   SUMMARY 

 The basic principle of Qos is to decide at what rate input/output packets would be 
received/transmitted based on the available network speed. In Linux, the default 
qdisc attached to the network interface for Linux is  “  pfi fo_fast_qdisc  ” ; this qdisc 
can be replaced based on the requirement for other types of queueing discipline. 
The class - based queueing discipline allows us to shape the link speed between dif-
ferent types of subclasses to achieve the quality - based transmission and to make 
use of the allotted bandwidth for reception/transmission.    
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  IP  FILTER AND FIREWALL     

     In the age of computer networking and internetworking in a broader sense, the 
computer is exposed to all sorts of invasions. Private networks and individuals are 
connected to the public Internet for one or the other requirements. This kind of 
access invites malicious ideas for attacks for the sole purpose of intruding the com-
puter or the network. The reason for intrusion may be anything from getting private 
information of the organization to just block the network. These will have a serious 
effect on the business. Attacks from outside the network were the cause of concern. 
There are other issues like providing access to a specifi c service to a known host 
when your services are known to many others. For example, when a machine is 
connected to the Internet, we get a public IP address. If I run a web site on a public 
machine and I need to update certain scripts on the server, only my machine should 
be given access to use telnet or ftp services and no others. Also within an organiza-
tion if we want certain groups not to access the Internet, we should be allowed to 
do that. On the routers we would not like to pass certain types of traffi c to be 
routed. 

 All the above situations are handled by fi rewall software that can be installed 
on a single point of entry/exit on the network. The fi rewall mainly works on the 
three directions of traffi c movement: 

   •      Incoming traffi c  
   •      Outgoing traffi c  
   •      Forwarded traffi c    
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 The fi rewall has a chain of rules to be applied for a specifi c traffi c. It can be 
confi gured to accept/reject traffi c to and from specifi c IP, as well as traffi c bound to 
specifi c ports. The fi rewall can also be confi gured to block ICMP messages. 

 This kind of facility not only blocks traffi c from an unwanted source to enter/
exit the network but also restricts specifi c network services from limited/known 
hosts. 

 In this chapter we are not going to discuss any fi rewall confi guration. We will 
have an overview of the fi rewall framework. We will see the point of entry into the 
fi rewall when a packet arrives and leaves the host. We will also cover two different 
implementations: 

   •      ip chains  
   •      ip tables     

  16.1   NETFILTER HOOK FRAMEWORK 

 Linux installs fi rewall check posts at various points in the packet traversal path in 
both directions. These check posts are known by the term netfi lter hooks and is 
defi ned as a macro  NF_HOOK . It checks if any fi rewall hook is registered for a 
specifi c check and the protocol family to which the packet belongs. If so, we 
need to go through all the fi rewall checks points registered by calling  nf_hook_
slow() . The routine makes a decision about what to do with the packet, depending 
on the fi rewall policy. It may accept the packet or reject it. In the case where there 
is no fi rewall registered for the HOOK type, we will call a callback routine  okfn  
passed as a parameter to the macro that will take the packet forward for further 
processing (cs  16.1 ). The framework not only supports fi rewall check posts but can 
also be used to add features to the IP stack such as NAT/Masquerading, IP sec, and 
so on.   

 Global table  nf_hooks  is a two - dimensional array of list of registered fi rewall 
checks for each hook and protocol family (cs  16.2 ). NRPROTO is a protocol family 
and  NF_MAX_HOOKS  is the maximum hooks that each protocol family can have. 
We will restrict our discussion to the Internet protocol family  PF_INET .   

    cs 16.1.     Macro that implements netfi lter hooks.  

    cs 16.2.     Registered netfi lter hooks are linked with  nf_hooks .  
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 Each hook corresponds to a check post while the packet is traversing through 
the stack (cs  16.3 ).   

            NF _ IP _ PRE _ ROUTING .     This is a fi rewall hook applied for NAT/masquerading. 
Before incoming packets are routed, we need to alter the destination in the case 
where masquerading/NAT is applied to the connection; otherwise we may end up 
delivering the packets locally. If the rule does not allow us or we don ’ t fi nd any 
translation for the destination, we should drop the request. This is actually done for 
the very fi rst packet, and the result is used for the rest of the connection. Not only 
NAT/Masquerading but also IPsec modules can have processing done here on this 
hook.  

   NF _ IP _ POST _ ROUTING .     This is a fi rewall hook applied for NAT/masquer-
ading to alter the source of the packet. The NAT server needs to replace the source 
IP address of the originator with the IP address of the interface directly connected 
to the Internet and also the source port (to distinguish the connection). NAT may 
alter the source IP address only with the available public IP address. So, this fi rewall 
checks if we can do this and does the alteration if allowed; otherwise, it rejects the 
packet. This is done after routing decisions are made for the outgoing packet. Not 
only NAT/Masquerading but also IPsec modules can have processing done here on 
this hook.  

   NF _ IP _ LOCAL _ IN .     This is a fi rewall hook applied to the packets which are 
destined for us; that is, the packet needs to be delivered locally. We do this check 
after routing decisions are made that the packet needs to be delivered locally. The 
fi rewall checks if the packets needs to be received for specifi c port (network ser-
vices) from a given source.  

   NF _ IP _ LOCAL _ OUT .     This is a fi rewall hook for all packets generated 
locally for transmission. The post is installed just after the routing is done for the 
packet.  

   NF _ IP _ FORWARD .     This is a fi rewall hook for the packets that needs to be 
forwarded through different interface. This hook is installed for the packets that 
arrive at one interface and needs to be transmitted through different interface. The 
Linux machine should be acting as a router for this hook to be in place.      

    cs 16.3.     Netfi lter hook numbers.  
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  16.2   NETFILTER HOOKS ON  IP  STACK 

 In this section we will see where on the IP stack we have fi rewall check posts installed. 
First we will discuss the path for packets generated locally and then we will discuss 
the incoming packets. Netfi lter posts on an IP stack are shown in Fig.  16.1 . We will 
keep it very simple to just show a minimal number of netfi lter entries.   

  16.2.1   Hooks for Outgoing Packets 

 After being processed by the higher protocol layers (TCP/UDP), packets need to 
fi nd a route to the destination. A packet is sent to the IP layer, where a route is 

    Figure 16.1.     Firewall hooks installed on IP stack.  



found for the packet and an IP header is built based on the routing information. 
This is done in  ip_queue_xmit()  (cs  16.4 ). Once a header for IP is built, the packet 
is screened by the fi rewall hook  NF_IP_LOCAL_OUT . At this point in time, we 
need to check if the packet from source port/IP is allowed to be routed through the 
path. We also check whether we can send out packets to a given destination and 
also make a request for a service running on the specifi ed destination. If the hook 
fails to acknowledge the packet, it is dropped.   

 If we are through with the fi rst check post, we need to go through one more 
check post fi nally before putting the packet on the device queue for fi nal transmis-
sion. This one is generally used for the NAT/Masquerading purpose but can also be 
used by IPsec modules to have their own hooks installed here. This check is done 
in  ip_fi nish_output()  (cs  16.5 ).   

 If the fi rewall policy allows, we fi nally transmit the segment. Otherwise we drop 
the segment at this level.  

  16.2.2   Hooks for Incoming Packets 

 Once the packet is received and is identifi ed as IP datagram, the  ip_rcv()  routine 
handles this (cs  16.6 ). It does all the sanity checks on the IP header and fi nally sends 
the packet through the very fi rst fi rewall hook  NF_IP_PRE_ROUTING . Here we 
can perform NAT/Masquerading - related demultiplexing. Also, this can be used to 
implement IP sec.   

 Once we are through with the hook, the next step is to check if the packet needs 
to be delivered locally or it needs to be forwarded. If the packet belongs to the local 
process, it needs to go through another hook  NF_IP_LOCAL_IN  that is installed 

    cs 16.4.      ip_queue_xmit() .  

    cs 16.5.      ip_fi nish_output() .  
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in  ip_local_deliver()  (cs  16.7 ). Here we may have fi rewall fi lters based on source and 
destination IP/port.   

 In case the received packet needs to be forwarded, the situation is handled by 
 ip_forward()  (cs  16.8 ). Here IP fi rewall rules will be installed to check if the packet 
is allowed to be routed. If allowed, it needs to go through one more hook  NF_IP_
POST_ROUTING . We treat forwarded packets as if they are generated locally 
before transmitting it over the wire. This is required because the packet may require 
NATing/Masquerading. Also, if all the packets being forwarded through this router 
needs to be encrypted, we take care of it in the  NF_IP_POST_ROUTING  hook.     

  16.3   OVERVIEW OF NETFILTER HOOKS ON LINUX  TCP  -  IP  STACK    

  16.4   REGISTRATION OF NETFILTER HOOKS 

 Until now we have seen how netfi lter hooks are installed on the IP stack. We need 
to know how these fi rewall hooks work. These hooks are fi rst registered from the 

    cs 16.6.      ip_rcv() .  

    cs 16.7.      ip_local_deliver() .  

    cs 16.8.      ip_forward() .  



modules that implement them. The interface to register hooks is  nf_register_
hook() (cs  16.9 ). We need to hold  BR_NETPROTO_LOCK  write lock to register 
the hook. As discussed in Section  16.1 ,  nf_hooks  is a global table that registers hooks 
for a different protocol family.   

 We need to register object  nf_hook_ops  as a netfi lter hook. We will look at the 
structure later, but fi rst we will see what the registration routine does. Object  list_
head  is embedded in  nf_hook_ops  object. We have more than one netfi lter hook 
registerd for a given hook type and protocol family. These hooks are linked through 
the chain  nf_hooks[pf][hooknum] , where  pf  is the protocol family and  hooknum  is 
the hook type that we will discuss in Section  16.5.3  for IP. We insert a hook in the 
chain according to the hook priority defi ned by the  priority  fi eld of object  nf_hook_
ops . We loop through each entry in the chain; and once we fi nd a hook with priority 
higher than the priority of the hook being registered (line 68, cs  16.9 ), we insert the 
hook prior to that hook in the list. Lower value of  priority  means higher priority, 
line 71 (cs  16.9 ). 

 The hooks are arranged in the chain according to their priority. Packets are 
passed through each hook in the order that they are arranged in the chain, which 
means that packet is passed through the highest - priority hook fi rst and then pass 
through lower - priority hooks. The reason for this is the order in which certain tasks 
need to be performed. It is not necessary that hooks with all the priority mentioned 
in cs -   16.10  is part of same hook type. But hooks with priorities  NF_IP_PRI_CONN-

    cs 16.9.      nf_register_hook() .  

    cs 16.10.     Netfi lter hook priorities.  
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TRACK and NF_IP_PRI_NAT_DST  can be registered for the same hook number 
and protocol family, which means that they can exist in the same chain arranged 
according to their priority. The hook with priority  NF_IP_PRI_CONNTRACK  will 
be the fi rst to be processed because it tracks the connection for the NAT packet; 
and then the hook with priority  NF_IP_PRI_NAT_DST  (cs -   16.10 ) is processed, 
which modifi es the destination of IP datagram for NAT.    

  16.5   PROCESSING OF NETFILTER HOOKS 

 In Section  16.1  we discussed the macro NF_HOOK. Macro acts as entry point to 
netfi lter hook processing for a packet. We check if the entry for a particular hook 
type and protocol family exists in the  nf_hooks  global table, and we go through each 
hook that is registered for the hook type by calling  nf_hook_slow() . 

  16.5.1     nf _ hook _ slow ()  

 In this routine we do some sanity check on the packet buffer  (sk_buff)  and IP 
header. We call  nf_iterate()  at line 483 (cs -  16.11 ) to process the packet through all 
the registered hooks. The routine returns the verdict that indicates what do do with 
the packet. If the verdict is  NF_DROP , it means that the packet was rejected by 
one of the hooks. So, we drop the packet. If the verdict is  NF_ACCEPT , our packet 

    cs 16.11.      nf_hook_slow() .  



is accepted by all the hooks registered and we need to proceed further by making 
a call to the callback routine  okfn  at line 492.    

  16.5.2     nf _ iterate ()  

 This routine processes the packet through all the registered hooks, lines 347 – 372. 
In each iteration, the callback routine for the hook is used to process the packet, 
line 349 (cs  16.12 ). The  hook  fi eld of the object  nf_hook_ops  points to the callback 
routine. The result of the hook processing is the verdict that decides what action 
needs to be taken next. If the verdict at any stage is  NF_QUEUE, NF_STOLEN  or 
 NF_DROP , we return with these values to the caller, which means that the decision 
of higher - priority hooks will be considered fi nal. 

   NF_QUEUE  means that the hook wants the packet to be queued for asynchro-
nous processing later.  

   NF_STOLEN  means that the hook has already processed the packet and it need 
not go through rest of the hooks.  

   NF_DROP  means that hook has rejected the packet.      

 The processing is aborted as soon as we need to drop the packet as it is rejected 
by high - priority hook. We continue to process the hooks, if hooks in each iteration 

    cs 16.12.      nf_iterate() .  
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keeps accepting the packet. If the verdict is NF_REPEAT, we need to repeat 
processing the packet through the same hook.  

  16.5.3     struct   nf _ hook _ ops   

 This structure defi nes the netfi lter hook (cs  16.13 ). 

   list  is the embedded structure that links the hook to the chain of hooks regis-
tered for same protocol family and hook type in global array  nf_hooks .  

   pf  is the protocol family for which the hook should be applied.  
   hooknum  is the type of hook — for example,  NF_IP_POST_ROUTING .  
   priority  is the priority associated with the hook. It decides the position of the 

hook in the chain and the order in which the hook will be processed in the 
chain.        

  16.6   COMPATIBILITY FRAMEWORK 

 Ipchains is an old - style fi rewall that works with a compatibility framework which 
allows only a single fi rewall installed using this framework. The framework is called 
compatibility. It requires a compat module to be installed on the system. The com-
patibility framework requires a fi rewall to register itself by calling  register_fi rewall()  
(cs  16.14 ).   

 The object of type  fi rewall_ops  needs to be registered with the compat frame-
work. The global variable fwops is made to point to the the registered fi rewall  fi re-
wall_ops  object at line 62 (cs  16.14 ). The check at line 57 (cs  16.14 ) makes sure that 
only a single fi rewall can be registered with the framework.  fi rewall_ops  has pointers 
to set of callback routines that implement fi rewall check posts for minimum entry, 
exit, and forwarding points. 

 The compat framework registers a single set of hooks for any fi rewall registered 
with it.  NF_IP_PRE_ROUTING, NF_IP_POST_ROUTING , and  NF_IP_
FORWARD  are processed using a single point of entry,  fw_in() . They all have the 
same priority, that is, NF_IP_PRI_FILTER. The required functionality for each of 
these hooks is separately handled in  fw_in() , depending on the hook type. The 
 NF_IP_LOCAL_IN  hook is handled separately by  fw_confi rm(). fw_confi rm()  is 
used to track connections for the received in the case of masqueraded packets. 

    cs 16.13.     netfi lter hook operations registered with netfi lter framework.  



 Later we will see in  fw_in()  that  NF_IP_PRE_ROUTING  maps to an incoming 
check post,  NF_IP_POST_ROUTING  maps to an outgoing check post, and 
forwarding is as usual. According to current netfi lter hook arrangements on the 
IP stack,  NF_IP_PRE_ROUTING  is the fi rst check post for the packets entering 
the system and  NF_IP_POST_ROUTING  is the fi nal check post for the packets 
leaving the system. (cs -  16.15 )   

 If hooks only from compat framework are installed, we will have all the fi ltering 
done for incoming packets before routing decisions are taken and for the outgoing 
packets after routing is done, whereas we see that the fi ltering of packets is done at 
a much different stage, with the latest hooks depending on whether it needs to be 
delivered locally or needs to be forwarded. 

  16.6.1      fw_ in ()  (see cs  16.16  unless mentioned) 

 This is a callback routine to execute netfi lter hooks registered with a compat fi rewall 
framework. This is a common routine for incoming, outgoing, and forwarding hooks. 
Depending on the hook type, fi rewall - specifi c input, output, and forwarding routines 
are called to execute the hook. If we are processing an  NF_IP_PRE_ROUTING  
hook for the registered fi rewall, then the  fwops → fw_input  input callback routine is 
used to process the hook (line 111, cs  16.16 ). For an  NF_IP_POST_ROUTING  
hook, an  fwops →   an  fw_output  output callback routine is used to process the hook 
(line 126). For an  NF_IP_FORWARD  hook, an  fwops → fw_forward  forward 
callback routine is used to process the hook (line 120).   

    cs 16.14.      register_fi rewall() .  

    cs 16.15.      Compat netfi lter hooks .  
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    cs 16.16.      fw_in() .  



 These routines will return the fi nal verdict as to what action should be taken 
on the packet after the packet is screened through the fi lters. The verdict is also 
known as a target for the fi lters. Let ’ s see how verdicts are processed. 

   FW _ REJECT .     This verdict is set when the packet is rejected by the fi rewall 
policy. This verdict is similar to a drop where the packet is dropped except we try 
to send out an ICMP error message if the route for the source of the packet is 
known, line 155. If the route is not set for the packet, we try to get a route by calling 
 ip_route_input()  at line 153.  

   FW _ ACCEPT  and  FW _ SKIP .     These verdicts are interpreted in the same way. 
 FW_SKIP  means that we should move to the next rule. Sometimes a hook may 
return this verdict. In this case, we need to perform some more tasks. If the hook 
for which we came here is  NF_IP_PRE_ROUTING , we have received a packet and 
may need to demasquerade before we can send this to IP layer for routing by calling 
 check_for_demasq()  at line 163. We also need to check if the connection was redi-
rected by calling  check_for_redirect()  at line 164. For redirected connections we 
maintain a table of all the connection that maps original tuple source IP/source 
port/destination port/ destination IP with new source IP/port. For the received we 
check if it belonged to a redirected connection by checking the entry in the table. 
If so, we need to change the destination port/IP before we go for routing for the 
incoming packet for this redirected connection. 

 In case we are processing an  NF_IP_POST_ROUTING  hook, we need to do 
the reverse of what we did for hook  NF_IP_POST_ROUTING . If the packet 
belongs to a redirected connection, the source IP/port needs to be changed in the 
IP/TCP headers with the new values by calling  check_for_unredirect() .  

   FW _ MASQUERADE .     Linux implements masquerading through a netfi lter 
because it is an extended feature of an IP stack. The fi lter may require packets going 
through a certain interface to be masqueraded. So, we masquerade the connection 
here by calling  do_masquerade()  at line 176 only if the we are processing an  NF_
IP_FORWARD  hook. The routine checks if we are already part of the connection 
or we need to create a new masqueraded connection. It would return its own verdict 
for the packet.  

   FW _ REDIRECT .     Once again redirection of connections is also done using a 
netfi lter framework. For a compat framework, we need to redirect a connection if 
the policy for the rule is set to  FW_REDIRECT . 

 The default case is to drop the packet.    

  16.7   IP CHAINS 

 Ipchains is a fi rewall implementation that works with a compat framework. The 
scope of the discussion is limited to design and implementation of ip chains. We 
won ’ t discuss how rules are set by the user land. A fi rewall is registered with the 
compat framework when an ipchains module is initialized by calling  register_
fi rewall()  at line 1740 (cs  16.17 ).   
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  ipfw_ops  is an object that implements an ip chain fi rewall. There are three routines 
registered for ipchain (cs  16.18 ): 

   •       ipfw_forward_check()  implements a forward hook.  
   •       ipfw_input_check()  implements a hook for incoming traffi c.  
   •       ipfw_output_check()  implements a hook for outgoing traffi c.      

  ip_fw_check()  is a common routine called from all these registered routines with 
specifi c netfi lter hook numbers. 

  16.7.1   Filtering with Ipchains 

 The way ipchains works is that it has a chain of fi lter rules that is traversed for the 
packet. If the packet matches any of these rules, it may require the packet to be 
passed through a different chain of rules as specifi ed by the target for that rule. 
Once the packet has passed through the entire chain of rules in the branched chain, 
it needs to continue with the fi rst chain of rules from where it branched. 

 Let ’ s take an example of how rules are traversed and how we reach the fi nal 
target for an IP packet. Suppose we get a TCP packet with destination port X2 and 
destination IP a.b.c.d and we need to process it through the fi rewall rule as shown 
in Fig.  16.2 . The packet enters chain C0 for screening. It doesn ’ t match rule 1. It is 
screened through rule 2. Since this is a TCP packet, R2 matches. The target for this 
rule is chain C1. We need to be screened through each rule in the chain C1. The fi rst 
rule of C1 does not match, so we move down to the next rule R2 in same chain. 
Rule R2 also does not match, so we need to jump to chain C0 back and start our 

    cs 16.17.      ipfw_init_or_cleanup() .  

    cs 16.18.     Firewall operations registered with a compat framework.  



screening from R3. R3 matches because we are a TCP packet with destination port 
X2. The target for this rule is chain C2. We need to screen the packet through rules 
in chain C2. The fi rst rule in C2 matches the packet, and the target for this is 
REJECT. So, further screening of the packet is stopped and we reject the packet 
outrightly.    

  16.7.2   Ipchain Chain of Rules 

  ip_fw_chains  points to the head of the list for different ipchain fi rewall hooks. The 
ipchain fi rewall chain of rules is defi ned as  struct ip_chain . There are three different 
chains for each fi rewall hook. These are defi ned as  IP_FW_INPUT_CHAIN  for 
incoming packets,  IP_FW_FORWARD_CHAIN  for forwarded packets, and  IP_
FW_OUTPUT_CHAIN  for outgoing packets (cs  16.19 ). Only input chain points to 
the head of the list rest can be accessed by  next  fi eld of object  ip_chain . Implemen-
tation of  ipchain  rules and chains is shown in Fig.  16.3 .    

  16.7.3     struct   ip _ chain   

 This is the main table that defi nes fi lter rules for a specifi c hook (cs  16.20 ). Each 
fi rewall hook will have one  ip_chain  object. It has following fi elds: 

    Figure 16.2.     Ipchains rules and target.  

    cs 16.19.     Firewall chains for ipchain framework.  
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   label  is the name of the hook to which this object belongs. Rule for any table 
is modifi ed by using this label.  

   next  is a pointer to the table for next fi rewall hook.  
   chain  is an object of type  ip_fwkernel . This object defi nes rules for the hook.  
   refcount  is the reference counter for the hook. Each hook is registered indi-

vidully and may be referred in many places. So, we need to keep track of the 
references for the object so that we unregister only when reference count 
drops down to 0.  

   policy  is the default policy for the hook.  
   recent  points to the end of the object  ip_chain . An object of type  ip_reent  is 

attached to the end of this structure. There one  ip_reent  object per CPU.       

  16.7.4     struct   ip _ fwkernel   

 This object defi nes packet fi lter rules (cs  16.21 ). There is a chain of such rules for a 
hook linked by the  next  fi eld of the structure. 

   ipfw  is the object of type  ip_fw . This structure contains the information about 
the fi lter rule.  

   branch  is a pointer to an object  ip_chain . Whenever a rule matches, this fi eld 
decides about the next rule for the packet.  

   simplebranch  just tells what to do in case the branch is not set and we match 
the rule. The value indicates either to branch off the chain or proceed with 
the next rule in the chain.  

    cs 16.20.     Ipchain main table.  

    cs 16.21.     Ipchain fi lter rule.  



   ip_counters  points to the end of the object  ip_fwkernel . At the end of this struc-
ture we have storage for an  ip_counters  object.      

 This is one per CPU for better cache locality. The object keeps account of the 
number of packets fi ltered and the number of bytes in each IP datagram.  

  16.7.5     struct   ip _ reent   

 This structure keeps the back pointer to the chain and the rule whenever we branch 
off from the current chain (cs  16.22 ). Ths is required to jump back to the previous 
chain once all the fi lter rules are covered in the branched chain. This object is stored 
at the end of the object  ip_chain , and it exists per CPU for cache locality purpose. 

   prevchain  is the back pointer to the chain from where we have branched.  
   prevrule  is the pointer to the next rule that needs to be accessed on the chain 

from where we have branched after we jump back to that chain.       

  16.7.6     struct   ip _ fw   

 This structure keeps all the required information for the fi lter rule to be matched 
(cs  16.23 ). 

   fw_dst  &  fw_src  are destination and source IP addresses.  
   fw_smsk  &  fw_dmsk  netmask for source and destination IP addresses.  

    cs 16.22.     Back pointer management for ipchains.  

    cs 16.23.     Packet match for rule.  
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   fw_proto  is the protocol fi eld in the IP header, that is, TCP/UDP.  
   fw_spts  is the range of source port addresses to match.  
   fw_dpts  is the range of destination port addresses to match.  
   fw_redirect  is the port to which the packet is redirected in case it is 

required.  
   fw_vianame  is the name of the interface to be matched for the fi rewall 

rule.  
   fw_invfl g  is the fl ag per match entities that inverse the match rule. For example, 

if the match rule says anything other than source IP, a.b.c.d will have the fl ag 
on for source ip.  

   fw_fl g  is the fl ag to indicate special match entities that are not mentioned in the 
structure, such as match SYN packet, rule for fragment, and so on.       

  16.7.7   Organization of Tables in Ipchains 

 Figure  16.3  represent kernel data structures that are linked together to implement 
ip chains fi lters.   

    Figure 16.3.     Ipchains fi lter rules and chains.  



  16.8   HOW IS THE PACKET FILTERED WITH IPCHAINS 

 In Section  16.7.2  we saw that there are three netfi lter hooks registered by ip chains 
to fi lter incoming, outgoing, and forwarded packets. A common routine that handles 
fi ltering in all three cases is  ip_fw_check() . This is the place where the packet is 
passed through all the fi lters, and the fate of the packet is decided. Let ’ s see how 
this is done. 

  16.8.1     ip _ fw _ check ()  

 We have a packet to be fi ltered and the hook - specifi c fi lter chain passed to this 
routine. We need to keep a scanning packet until we fi nd a target for the fi lter rule 
or we have ended scanning all the rules. We access the fi lter rule chain at line 713 
(cs  16.24 ). There are two loops. 

   •      The outer loop keeps us iterating (line 714 – 787) until we fi nd the fi nal target 
or we have completed the entire search and no target is found, condition at 
line 787.  

   •      The inner loop loops through the fi lter rule chain and comes out only if we 
have found a matching rule or no matching rule is found and we have com-
pleted scanning through all the rules, lines 716 – 731.      

 Before processing the chain of rules, we need to do some groundwork like 
extracting IP address, port numbers, fl ag fragments, SYN segments, and so on. 

  Processing in Inner Loop.     We traverse through the fi ler rules in the current 
chain. In each iteration, we match fi lter rules by calling  ip_rule_match()  at line 718. 
If we don ’ t match the rule, we move on to the next rule in the chain by accessing 
 next  fi eld of the object  ip_fwkernel . We come out of the loop only if we have covered 
the entire chain or we matched the rule. 

 If we have come out of the loop because we have been scanned through the 
entire chain of rules and we didn ’ t match any of the rules, then we need to check 
if the chain we are processing is the one we have branched to. In case this is a 
branched chain, the  prevchain  fi eld of  reent  object for current CPU must hold a 
valid back pointer to the chain from where we jumped (line 772). We need to jump 
back to the previous chain (line 775) and start from the rule next to the one where 
we left the chain (line 774). We reset the pointer to the previous chain in this case 
at line 776. Now we continue traversing the chain of rules from the previous chain 
as usual in the inner loop. In the case where the pointer to previous chain is not 
set, we are in the root chain. In this case, we take the default policy set for the chain 
as the fi nal verdict, line 779. We account for the packet count and length of IP 
datagram scanned through the chain, lines 781 – 782. We come out of the outer loop 
after complete scanning. 

 In case we have come out of the loop because we found matching rule for the 
packet, we need to fi nd target for the the rule for further processing. If a  branch  
fi eld is set, we need to jump to that chain for further processing (line 756). The next 
rule to be scanned on the chain is taken from the branched chain (line 757). We 
also need to store the back pointer to the current chain and next rule to be scanned 
on the current chain in the  reent  object of the branched chain, lines 752 – 754. We do 
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    cs 16.24.      ip_fw_check() .  



this so that if none of the rules match in the branched chain, we need to return to 
the chain from where we branched off and start scanning the next rule in the chain 
from where we left. In case  branch  is not set, we check from the  simplebranch  fi eld 
what to do next. If this fi eld is set to  FW_SKIP , we may need to skip to the next 
fi lter rule in the chain. If the value is set to  FW_SKIP+1 , we need to branch off from 
the current chain at line 764, which means that we should stop scanning the current 
list so either we branch or stop scanning further. For any other value, we just need 
to check if we need to exit further scanning. We clear back pointer information for 
the CPU slot from the current chain at line 766.   

  16.8.2     ip _ rule _ match ()  

 The rule matching is done here (cs  16.25 ). Object  ip_fwkernel  is the rule structure 
containing all the rules to be matched. Macro FWINV is one smart way to handle 
inverse rules. The inverse rules signifi es  anything other than the match . The  fw_invfl ag  
fi eld of object  ip_fwkernel  has one bit for each inverse rule entity. FWINV does 
both inverse and simple matching. The result of match is passed to the macro which 
is XORed with the inverse bit for the entity. If the inverse fl ag for that bit for the 
entity is set, the result of the match is inversed; otherwise it remains the same. If 
any of the rule doesn ’ t match, we return.   

 First we start with matching source and destination IP/network IDs at line 295. 
If the mask is set to all 1s, we are exactly matching the IP address, otherwise we 
compare the network IDs. Next we do wild matching for the interface name whose 
packet is used only if the wild card fl ag ( IP_FW_F_WILDIF ) is set for the match 
at line 313. If the fl ag is not set, we do exact matching of the interface name at line 
322. If the rule is set for the fragment ( IP_FW_F_FRAG  fl ags is set), we return if 
the packet is not fragmented at line 339. If the rule is set to test SYN packet ( IP_
FW_F_TCPSYN  fl ag is set), we test it only if the packet is not fragmented, line 344. 
If the rule is set to fi lter a higher - layer protocol ( fw_proto  is set), we need to check 
the port against the port range set for TCP/UDP.  port_match()  matches the port 
only if the packet is not fragmented because only the fi rst fragment contains the 
protocol header while the rest will contain only data. Otherwise, protocol port is 
matched against the port range specifi ed in  fw_dpts  and  fw_spts  fi elds of object 
 ip_fwkernel .   

  16.9   IPTABLES 

 Iptables is designed keeping in mind many of the shortcomings of ipchains. The 
scope of the discussion is limited to design and implementation of ipchains. We won ’ t 
discuss how rules are set by the user land. We won ’ t discuss here all those features 
but look at the design and implementation of iptables in the kernel. 

  1.     The current design of ip tables is independent of any compat framework, 
which means that it doesn ’ t need to be registered with the compatibility 
framework.  

  2.     Memory management of the iptables is much better than those of ipchains.  
  3.     Filter rules are traversed in a much more effi cient way than ipchains.  
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    cs 16.25.      ip_rule_match() .  



  4.     Per CPU fi lter tables have better cache locality and hence faster memory 
access, leading to faster processing.    

  16.9.1   Registration of Iptables Hooks 

 Iptables directly registers its default hooks and need not register itself with the 
compat framework. By default, it registers three hooks for local delivery, locally 
generated traffi c, and forwarded traffi c.  ipt_ops  array lists these hooks.  ipt_hook()  
is a common hook callback routine for both locally delivered and locally generated 
outgoing traffi c. The callback routine for forwarding a hook is  ipt_local_out_hook()  
(cs  16.26 ). When we look at these routines, a common routine used to fi lter the traffi c 
is  ipt_do_table() .   

 These hooks are registered when the  iptables  module is initialized by calling 
 nf_register_hook() . Each table associated with the iptables is registered with the 
iptables framework using  ipt_register_table(). ipt_tables  is the list head for all the 
tables registered with the iptables, which means that we can have different modules 
register their tables with iptable framework. It looks like management of fi lter tables 
for all those modules compatible with iptables is centralized and becomes simpler. 
 packet_fi lter  is a master table used to traverse through the fi lter rule.     

  16.10   IPTABLES FILTER RULES AND TARGET ORGANIZATION 

 A complete overview of iptables table organization is shown in Fig.  16.4 .   

    cs 16.26.     Netfi lter hooks for iptables.  

    cs 16.27.      init()  routine for iptables module.  
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  16.10.1     struct   ipt _ table   

 This is the table header that keeps pointers to the tables and gives an identity to 
the table. This is the structure that is registered with the iptable framework and is 
linked into  ipt_tables  (cs  16.28 ). 

   list  links the table with  ipt_tables  list.  
   name  is the name of the table.  
   table  is a pointer to the object that keeps complete information about the table 

and hook entries. The table is built from the information available in this 
object. Table is built in  ipt_register_table() .  

   valid_hooks  is a fi eld holds bits corresponding to the hooks supported by the 
table.  

   lock  is a read – writer spin lock held when we are accessing the table. For fi ltering 
we hold reader lock. While modifying we need to hold writers lock.  

   private  is a pointer to object  ipt_table_info  that keeps complete information 
about the hook entry tables.  

   me  points to the module to which the table belongs; otherwise this is NULL.       

  16.10.2     struct   ipt _ table _ info   

 This structure keeps complete information about the table (cs  16.29 ). Tables are 
appended to the end of the object, and the table is replicated one per CPU for better 
cache locality. Then it has pointers to traverse the fi lter chain and manipulate the 
jumps. 

   size  is the size of the table. Since there is one copy of table per CPU, the size 
of each table should be the same.  

   number  is the total number of ipt rule entries in the table.  
   initial_entries  is the total number of entries at the time of initializing the table.  

    cs 16.28.     Main table for iptable framework.  



   hook_entry  has an offset for each hook entry in the table. This is initialized at 
the time of registering the table in  translate_table()  by calling 
 check_entry_size_and_hooks() .  

   underfl ow  is the base entry points for each hook that contains standard targets. 
If all the rules are scanned through and no target is found, we come back to 
the base hook entry point for a standard target.  

   entries  is the base of per CPU tables. When a new table is registered, the space 
for a hook entry table is allocated at the end of this object. If it is an SMP 
machine, the total space allocated is the  size of the table  times the number 
of CPUs (see Fig.  16.4 ).      

 cs  16.30  shows total space allocated at the time of registering new table is for 
object  ipt_table_info    +    size of the table  times number of CPUs at line 1388. So, object 
 ipt_table_info  and entry tables are at contiguous memory location. Entry table is 
copied at the end of the object  ipt_table_info  (line 1395), and later it will be repli-
cated for each CPU. The new table is inserted in the list  ipt_tables  at line 1433.   

 cs  16.31  shows the table being replicated for each CPU in the loop 869 – 873. 
 translate_table()  is called from  ipt_register_table() . We already have one copy of the 
table at the base of the table ( newinfo -  > entries ) before being called. So, we start 

    cs 16.29.     Table information for iptable chains.  

    cs 16.30.      ipt_register_table() .  
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    Figure 16.4.     Iptables fi lter rules and chains.  

replicating the table from  newinfo → entries  to the location that is a multiple of size 
of the table from the base of the table for each CPU (line 870). The size of the table 
is an SMP cache aligned at a 128 - byte boundary for fast access of the table entry 
points.   



 cs  16.32  shows the way that  hook_entries  and underfl ows array are initialized. 
The creater of the table knows how the rules entry are organized for each hook. So, 
it supplies the offset for each hook entry points and also the offset for the standard 
target entry points for each hook. From  translate_table()  a macro  IPT_ENTRY_
ITERATE  is used to traverse through the entire table entries. For each entry, 
 check_entry_size_and_hooks()  is called to check if the user supplied values for entry 
points are correct (lines 759 and 761). If they are correct, we store the value in the 
table information base (line 760 and 762). Each time we are called, we have a pointer 
to the next entry in the table. The difference of the table base and the entry point 
is the offset of the entry from the table base.    

  16.10.3     struct   ipt _ entry   

 This is the entry point for the rule chain (cs  16.33 ). It contains a series of match 
rules objects of type  ipt_entry_match  at the end of the object  ipt_entry  to be matched. 
If we fi nd the packet that matches the rule for the  ipt_entry  object, then we traverse 
through specifi c fi lter rules attached to the end of the  ipt_entry . Finally we have a 
target at the end of the  ipt_entry  object as a whole ( ipt_entry , including all the fi lter 
rules) (see Fig.  16.4 ). 

    cs 16.31.      translate_table() .  

    cs 16.32.      check_entry_size_and_hooks() .  
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   ipt_ip  contains all the general information about the packet we are interested 
in. It keeps all the information about the packet we are interested in, along 
with data on interfaces, protocol, fl ags, and so on, in the same way object  ip_
fw  for ipchains. We have much better control on the interface wildcard check 
here using outiface_mask/iniface_mask fi elds, check  ip_packet_match() . Once 
we fi nd the packet of interest, we can proceed with more specifi c fi lter rules 
at the end of the  ipt_entry  object.  

   nfcache  is the cache fl ags used for tracking connections and also for fragmented 
packets.  

   target_offset  is the offset for the target object,  ipt_entry_target , for the rule chain 
from the beginning of the  ipt_entry  object. This object is located at the end 
of the  ipt_entry  object. Since the size of the ipt_entry object is not known 
because of the number of fi lter rules of type  ipt_entry_match  attached to its 
tail, we need to have this offset to reach the target.  

   next_offset  is the offset of the next table entry with respect to the current entry 
where the next rule chain is located. The reason is that  ipt_entry  has variable 
length because of its variable tail length.  

   comefrom  stores the back pointer to the chain from where we branched off.  
   counters  is used to keep account of the byte count and number of packets 

fi ltered.  
   elems  is the head of the specifi c rule chain for the match entry. We add fi lter 

rules — that is, objects of type  ipt_entry_match  at the tail of  ipt_entry  object 
that can be accessed using  elems  fi eld.       

  16.10.4     struct   ipt _ entry _ match   

 This object contains information about protocol - specifi c matches (cs  16.34 ). It is 
divided into three parts: 

  1.     The user part that contains the name of the match such as  ‘ TCP, ’   ‘ UDP, ’  and 
 ‘ ICMP. ’  Then it contains the length of the match size. The match size is the 

    cs 16.33.     Chain entry point for rules.  



size of the object that defi nes the match for the match name. This is required 
when the user wants to add a protocol - specifi c rule for a specifi c match name 
such as tcp, udp, and so on.  

  2.     Kernel part, which contains size of the match which is same as the one for 
the user part and the pointer to the object.  ipt_match  contains a pointer to 
callback routines to process the match for the rule and to check the validity 
of the rule when the new rule is added. For each match name, its correspond-
ing  ipt_match  object should be registered with the iptable framework.  ipt_
match  maintains a list where each registered entry gets linked.  

  3.     Data that contains a user - specifi ed rule to be matched. This is appended at 
the tail of the object  ipt_entry_match . For example for TCP, data should 
point to an object of type  ipt_tcp . Similarly, for udp and icmp the matching 
object is  ipt_udp  and  ipt_icmp , respectively.       

  16.10.5     struct   ipt _ tcp   (cs  16.35 ) 

 The object contains information about the entities to be matched for TCP - specifi c 
fi lters. 

   spts  is the source port range to be matched against source port in the TCP 
header.  

   dpts  is the destination port range to be matched against destination port in the 
TCP header.  

   option  is a fi eld checks for any TCP options that are present in the TCP header 
such as SACK, timestamp, and so on.  

   fl g_mask  &  fl g_cmp  are related to TCP fl ags in the header.  
   invfl ags  is used to inverse the search pattern. Check  tcp_match()  for more 

details (cs  16.35 ).       

    cs 16.34.     Match information for rule.  
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  16.10.6     struct   ipt _ entry _ target   

 This is the same as  ipt_entry_match  the only difference is that this object contains 
all the information specifi c to the target for the match rule.  

  16.10.7     struct   ipt _ standard _ target   

 This structure is used as a standard target by the search rule. It is used either to 
jump to different chain of rules or when we encounter the end of the search. If the 
 verdict  fi eld is  IPT_RETURN , we need to go back from the inbuilt chain to the 
standard targets. If the verdict fi eld is some positive nonzero number, it means that 
we need to branch to a new chain for the next fi lter chain screening.     

  16.11   ORGANIZATION OF FILTER RULES AND TARGET FOR IPTABLES 

 Figure  16.4  shows kernel data structures that implement ip table fi lters. Filter tables 
are replicated pes CPU for performance guin.  

  16.12   FILTERING PACKETS WITH IPTABLES 

 As discussed in Section  16.9.1 , we have three basic fi lter hooks for incoming, outgo-
ing, and forwarded packets. Callback routines that do fi lter processing in all three 
cases internally call  ipt_do_table() , which implements fi ltering logic. In this section 
we will discuss fi ltering logic implemented by iptables. 

  16.12.1     ipt _ do _ table ()  (see cs  16.38a  and cs  16.38b  
unless mentioned) 

 This fi lters the packet through all the possible rules for the hook. Once we fi nd an 
entry for the packet, we do more specifi c fi ltering at the protocol level if required. 

    cs 16.36.      standard target for chain .  

    cs 16.35.     Match for TCP - specifi c rule.  



Once the packet matches all the set rules, we fi nd out the target for the fi lter rule. 
The target may be another entry for rule matching, in which case we remember the 
back pointer to the current chain of entries in case we need to return to the current 
chain. If the target provides us with a fi nal verdict, we stop further fi ltering and 
return with the verdict. In the case, where we don ’ t fi nd any rule for the packet, 
standard targets will return appropriate verdicts. The last chain entry for the hook 
should contain a wild card match that should accept any packet; otherwise we won ’ t 
be able to come out of the loop. We reach the end chain only if the packet did not 
match any of the entry - level fi ltering rule.   

 We hold the table read lock before we start the fi ltering process at line 289. 
Hook entry tables are based at the end of the object  ipt_table_info . Since this table 
is replicated for each CPU, we need to access the base of the table for our CPU slot 
(cs  16.37 ).  cpu_number_map()  gets us our CPU number. Since the size of each table 
is the same (stored in  size  fi eld of object  ipt_table_info ), the offset of the table base 
for current CPU can be accessed from macro  TABLE_OFFSET.    

 Adding the offset of the table base for current CPU with location of the table 
base for the table will yield the location of the table base for current CPU, line 291 
(cs  16.38a ). Next is to fi nd out entry point for the hook in the table. The offset for 
each hook entry is provided in the  hook_entry  fi eld of the object  ipt_table_info . This 
hook entry offset is with respect to the current CPU ’ s table base at line 294. Offset 
for standard targets for the hooks can be accessed by using  underfl ow  fi eld of object 
 ipt_table_info . It contains an offset for standard targets for each hook from the table 
base. We keep record of standard target entry (line 310) so that we can jump to this 
entry when required. Now we are all set to start the fi ltering process for our 
packet. 

 We iterate in a loop (line 312 – 397) until we get the fi nal verdict. The verdict 
may be from standard targets or target set for the rule chain. In the loop we fi rst 
try to fi nd if the packet is the one we are interested in by the fi rst round of screening 
 ip_packet_match() . This has a rule to match IP address, network IDs, incoming/
outgoing interface, fragments, and upper layer protocol for the packet. The rule 
is accessed from the  ip  fi eld of the entry object ( it_entry ). If our packet didn ’ t match 
the current rule, we check with the next chain rule for the hook that can be accessed 
from the  next_offset  fi eld of current  ipt_entry  object (line 395, cs  16.38b ). 

 In the case where we match the entry, the packet needs to be scanned through 
more specifi c fi lters for this entry using macro  IPT_MATCH_ITERATE . These 
fi lters are the objects of type  ipt_entry_match  containing fi lter rule and are located 
at the end of the object i pt_entry . These fi lters contain a match specifi c to an upper 
layer protocol such as TCP/UDP/ICMP. If we are able to match all the fi lter rules, 
we need to fi nd the target for the rule. Otherwise we move on to the next entry that 
can be accessed by the  next_offset  fi eld (line 395). 

 If all the fi lter rules match, we need to fi nd the target for the match entry by 
calling  ipt_get_target()  at line 327. The  target_offset  fi eld is offset to the target for 
the entry with respect to entry object (cs  16.39 ). From the target pointer, we access 

    cs 16.37.     Offset used to access per CPU table.  
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    cs 16.38a.      ipt_do_table() .  



    cs 16.38b.      ipt_do_table()  ( continued ).  

    cs 16.39.      ipt_get_target() .  

a target that may be a specifi c target for the rule or standard target. We need stan-
dard targets in case none of the rule match or we need to branch to some different 
chain for fi lter. Standard targets will have  verdict  fi eld in addition to target object 
( ipt_entry_target ). One more thing, standard targets will not have  target  callback 
routine initialised for its  ipt_target  object. We check iftarget for the match is standard 
target at line 330. If so, we need to work upon the  verdict  fi eld for the standard 
target for next course of action. If the verdict is a negative value, there can be two 
possibilities: 

  1.     We got fi nal verdict.  
  2.     The verdict is  IPT_RETURN .      

 In the former case, we return with this fi nal verdict. In the latter case, we need 
to get back to the standard target by back jumping to the standard target for the 
hook entry. We traverse the back path by having one  back  pointer that keeps the 
pointer to the location where we branched last. The next back pointer for the next 
level of back jump is stored in the  comeback  fi eld of the  back  entry. In this case, 
we jump to entry pointed to by  back  at line 340 and store the back pointer to the 
next back jump using the offset stored in the  comeback  fi eld of the current  back  
pointer. 

 In the case where the verdict is a positive nonzero value, it means that we may 
be asked to branch off from the current chain to the different entry point or to the 
next entry in the current chain. In the former case, we simply use  next_offset  fi eld 
of the object to locate the next entry. In the latter case, we need to store the pointer 
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to the next entry in the current chain in the back pointer before we branch off (line 
353). This is required in the case where none of the rules match in the branched 
chain, in which case we need to start matching from the next entry in the current 
chain. Also we need to store the current back pointers ’  offset for the current chain 
in  comefrom  fi eld of the next entry (line 350) as  back  pointer is modifi ed now. We 
start traversing the new branched - off chain. 

 In the case where the target is nonstandard, we have a target callback routine 
set for the target that we call at line 364. The return value of the target will return 
either the fi nal verdict or  IPT_CONTINUE . In the former case, we return with the 
routine with the verdict. Otherwise we continue with the next entry in the chain.  

  16.12.2     IPT _ MATCH _ ITERATE   

 This macro takes us through the list of protocol - specifi c rules for the hook entry. 
These match rules are located at the end of the object  ipt_entry . A target is located 
at the end of list of protocol - specifi c rules. We start accessing fi rst rule at an offset —
 that is, size of the object  ipt_entry , line 305 (cs  16.40 ). In each iteration we calculate 
offset for the next rule entry by adding size of the current rule, line 307. We iterate 
in the loop until we reach the start of the target for the hook entry, line 306. For 
each rule, we use a function pointer to process the fi lter rule at line 310. If we match 
the current rule, we continue to match the next rule; otherwise we return on the 
fi rst mismatch (line 311).     

  16.13   SUMMARY 

 In the above discussion we saw that a netfi lter framework is used to implement 
fi rewall in Linux. We use not only fi rewall but also netfi lter hooks to implement any 
extension to the IP stack such as IP sec, connection tracking, IP masquerading, NAT, 
redirection, and so on. 

    cs 16.40.      IPT_MATCH_ITERATE() .  



 An entry point to the netfi lter hooks is NF_HOOK macro. The TCP/IP stack 
for Linux 2.4 kernel implements the netfi lter hook entries for both the up and down 
stacks. The two hooks for outgoing packets are as follows: 

   NF_IP_LOCAL_OUT  applies fi lter rules for outgoing packets.  
   NF_IP_POST_ROUTING  implements IP masquerading, IP Sec, and so on.    

 The two hooks for incoming packets are as follows: 

   NF_IP_LOCAL_IN  applies fi lter rules for incoming packets, and this hook is 
applied after the kernel has routed the packet for local delivery.  

   NF_IP_PRE_ROUTING  is a hook that is applied prior to routing as soon as 
packet enters IP layer. It may be required by IP Sec, IP Masquerading, NAT, 
and so on.    

 Compat provides a netfi lter framework with which only one fi rewall can 
be registered with the kernel. The object of type  fi rewall_ops  is registered using a 
 register_fi rewall()  using compat framework. Ipchain is designed to work with 
compat framework. 

 Iptables is not compatible with compat framework. Netfi lter hooks are regis-
tered using  nf_register_hook() . It registers an object of type  nf_hook_ops  for a 
specifi c hook type. Registered hooks are linked in global hash table  nf_hooks . 

 To register an Ipchain table, an  ipt_register_table()  interface is provided. It 
registers an object of type  ipt_table  with global list  ipt_tables . 

 Iptable is much faster as and has many advanced features as compared to 
Ipchains. Iptables maintains per CPU fi lter tables that get a much better perfor-
mance because of cache locality.    
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 NET  SOFT  IRQ      

     Interrupts processing is divided into two parts. The minor part is done in the inter-
rupt handler, and the major part or lower half is deferred further to be processed 
at safe time with minimum possible delay. This is done to avoid longer interrupt 
latency. The Interrupt is disabled, while the interrupt handler is in action. Once the 
interrupt processing is over, the interrupt is enabled. If we take a long time in the 
interrupt handler, interrupt latency will be high. 

 Earlier Linux kernel versions 2.2 and below implemented the bottom - half 
framework to handle a major portion of interrupt handling. It used to work well 
with a single CPU machine because it would hold the big bottom - half lock to the 
execute the bottom half. With SMP machines, this framework would give serialized 
access to the execute bottom half on each CPU because we need to hold lock to 
execute bottom halves. The framework could not scale on SMP machines. 

 To improve scalability of bottom - half execution, the framework is modifi ed to 
scale better on SMP machines. The new framework is called softIRQ. SoftIRQs are 
designed to run parallelly on more than one CPU. Also, the same softIRQ can run 
parallelly on different CPUs at the same time. SoftIRQs can be raised indepen-
dently on each CPU because data on which they operate are also maintained per 
CPU. 

 Each interrupt event does not have a separate softIRQ. There are two network 
softIRQs, one each for Tx and Rx interrupts. Other interrupt events register their 
bottom - halves as either high - priority or low - priority tasklets. There are two soft-
IRQs for high priority and low priority, one for each tasklet. A tasklet has the 
characteristic of being executed only on one CPU at a time, which means that a 
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specifi c tasklet can run on one CPU at a time. In the current chapter, we will learn 
more about softIRQs and their execution.  

  17.1   WHY NET  SOFT  IRQ  S , AND HOW DO WE RAISE THEM? 

 Once a packet needs to be transmitted or received, how will that be done? Let ’ s 
take the cases one - by - one. First we take the case of transmission on an SMP machine 
with two CPUs. 

  17.1.1   Transmission 

 Two frames need to be transmitted parallelly from the same interface. One kernel 
control path gets the device lock and comeback after transmitting the frame. In the 
meantime, the other kernel control that also has to transmit a frame on the same 
outgoing interface can either wait or loop until it gets the device lock. This brings 
in performance issues. If the kernel returns because some other CPU is transmitting 
the frame, it drops the packet and goes away, in which case the higher layer once 
again has to build the entire packet and then retransmit it. If the other kernel control 
path waits for the device lock to be freed in a loop, this again will waste CPU cycles 
on the other CPU. On SMP architecture, this kind of arrangement will heavily penal-
ize the system and will certainly slow down the system at medium outgoing network 
traffi c. What if we can queue - up the frames to be transmitted in some queue and 
defer the processing of the frame transmission for some later point of time in the 
near future as shown in Fig.  17.1 ?    

  17.1.2   Reception 

 In the case of reception, we take an example where we have a single interface. We 
receive one frame. In the interrupt handler we need to do a lot of jobs such as pulling 
out a frame from a device DMA buffer, fi nding out the next protocol layer, process-
ing the packet at each protocol layer, and fi nally delivering data or control message 
to the socket layer. All this takes a lot of time. We can ’ t spend a long time in the 
interrupt handler because it increases the latency of the network interface. In this 
duration, whatever frames we receive over the interface are dropped. So, the inter-
rupt handler should be as fast as possible doing a minimum amount of work. What 

    Figure 17.1.     Tx net softIRQ.  
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if we can just pull out the frame in the kernel buffer from device DMA buffer and 
queue it for later processing? The received frame can be scheduled for later process-
ing by the protocol layers, and we can return from the interrupt quickly as shown 
in Fig.  17.2 .   

 In our last discussion we saw the need for deferred processing of frames in the 
case of both reception and transmission. This deferred processing is done by sched-
uling the packets to be processed by raising net softIRQs. For reception and trans-
mission we have separate IRQs that are mutually exclusive. The concept is the same 
as that of the bottom half until kernel 2.2. The disadvantage with the bottom half 
was that the bottom - half execution was serialized across CPUs. One bottom half 
could be executed on only one CPU. With softIRQs, that limitation has gone and 
now we can run the same bottom half on multiple CPUs and there need not be any 
global lock acquired for doing that, which means that any softIRQ can run parallelly 
on different CPUs. With this design of concurrency in running net softIRQs on dif-
ferent CPUs, great network performance is gained on SMP architectures. 

 Net softIRQs can be raised for transmit or receive by a call to  raise_softirq() . 
For each softIRQ registered with the system, we have a bit assigned to it. For trans-
mit softIRQ we have  NET_TX_SOFTIRQ , and for receive softIRQ we have  NET_
RX_SOFTIRQ  bits, respectively (see cs  17.1 ). SoftIRQs are per CPU. Different 
softIRQs can be scheduled on different CPUs independent of each other.   

 We call  raise_softirq()  with the corresponding bit for the softIRQ. We need to 
raise IRQ for current CPU so we call  cpu_raise_softirq()  (see cs  17.2 ).  cpu_raise_
softirq()  actually raises softIRQ with the help of macro __cpu_raise_softirq() (see 
cs  17.3 ). This sets the bit in the CPU - specifi c structure fi eld corresponding to the 
softIRQ. We access a CPU - specifi c fi eld by calling  softirq_pending()  for the CPU 
(see cs  17.4 ).  softirq_pending()  accesses  __softirq_pending  fi eld of cpu - specifi c 

    Figure 17.2.     Rx net softIRQ.  

    cs 17.1.     SoftIRQ supported by 2.4 kernel.  
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structure  irq_cpustat_t  (see cs  17.6 ) with the help of macro  __IRQ_STAT()  (see 
cs  17.5 ). We have an array of structure  irq_cpustat_t  one element per CPU (see 
cs  17.6 ).   

 Finally we can say that we set bit corresponding to the softIRQ in  __softirq_
pending  fi eld of structure  irq_cpustat_ t corresponding to the current CPU (nothing 
but  irq_stat[CPU].__softirq_pending ).  irq_stat  is an array of type  irq_cpustat_t  one 
per CPU (cs  17.7 ).   

    cs 17.2.      raise_softirq() .  

    cs 17.3.      __cpu_raise_softirq() .  

    cs 17.4.      softirq_pending() .  

    cs 17.5.      __IRQ_STAT() .  

    cs 17.6.      irq_cpustat_t .  



          irq _ cpustat _ t   .      This structure keeps status information and does accounting for 
any CPU. It keeps account of an event that occurred on the CPU at any given point 
of time, and at the same time it keeps a pointer to the kernel thread that is 
responsible for processing softIRQs on the CPU. Let ’ s look at the fi elds of this 
structure (see cs  17.6 ): 

   __softirq_pending :     This fi eld keeps information about any pending softIRQs 
on the current CPU. Each bit in this fi eld corresponds to a specifi c IRQ. If 
the fi eld assumes a positive value, some softIRQ is pending to be processed. 
Thereafter we need to check the bit fi eld.  

   __local_irq_count :     This keeps the number of IRQs raised on this CPU.  
   __local_bh_count :     This keeps the number of times that bottom halves were 

executed.  
   __syscall_count :     The keeps the number of system calls that were made on the 

CPU.  
   __ksoftirqd_task :     This keeps the pointer to the  ksoftirqd  daemon ’ s  task_struct  

structure responsible for processing softIRQ on the current CPU.    

 If we are raising softIRQ from interrupt or bottom half, we need not wakeup 
daemon processing softIRQ for the CPU. Otherwise we should wake it up in  cpu_
raise_softirq()  (see lines 127 – 128 in cs  17.8 ). We will see the reason for this condi-
tional waking up of the daemon in the next section.        

  17.2   HOW ARE  SOFT  IRQ  S  PROCESSED, AND WHEN? 

 SoftIRQ is processed in function  do_softirq().  This function is called from many 
places in the kernel. This function returns if we are calling it from interrupt mode 
(cs  17.9 , lines 68 – 69). Somebody may accidently call  do_softirq()  from an interrupt 
handler or a bottom half. If it is called from an interrupt handler, the whole purpose 
of having deferred processing via softIRQ is defeated because an interrupt handler 

    cs 17.7.      irq_stat .  

    cs 17.8.      cpu_raise_softirq() .  

HOW ARE SOFTIRQS PROCESSED, AND WHEN? 675



676 NET SOFTIRQ

will take a lot of time and latency again will be too high. In the case where it is 
called from a bottom - half handler, it will become recursive and may overfl ow the 
kernel stack. It uses macro  softirq_pending()  to check if any softIRQ is pending on 
the CPU (see cs  17.9 , line 73). If softIRQ is pending, we duplicate the bits corre-
sponding to the active softIRQs locally and start processing them one - by - one (cs 
 17.9 , lines 88 – 93). After processing all the active softIRQs, we check if any softIRQs 
(other than just processed) was raised in the meantime when the active softIRQs 
were being processed (cs  17.9 , lines 97 – 101). If yes, we process them once again. If 
the same softIRQs were raised which are already being processed, we schedule them 
to be processed by  softirqd  daemon at some later point of time because we don ’ t 

    cs 17.9.      do_softirq() .  



want to be stuck here long while depriving other kernel paths and application of 
CPU resources (cs  17.9 , lines 104 – 105).   

 Let ’ s see how this is implemented. There are two local variables that will be 
used: 

  Pending  
  Mask    

  Pending  stores the bit pattern for all the softIRQs that are currently active, and 
 mask  is just a complement of  pending . Now before starting to execute softIRQ 
handler for the raised softIRQs, we have  pending and mask  variables initialized to 
appropriate values and  irq_stat[cpu]. __softirq_pending  is set to zero. We check all 
the bits in  pending , until it has processed all the active softIRQs. We do this by 
left - shifting  pending  by 1 in each iteration (cs  17.9 , line 92). We continue looping, 
until  pending  in nonzero. 

 Once we have processed all the active softIRQs, we again check if any softIRQs 
was raised in the meantime (cs  17.9 , line 97). We need to check if the new softIRQ 
raised is one of those that are not processed just now. Since  mask  has all the bits 
reset corresponding to the softIRQs that are just handled. If we AND mask with 
 pending , now it gives us positive number only if any softIRQs is raised which is 
surely not being processed currently (cs  17.9 , lines 88 – 93). In this case, we once again 
go through the loop cs  17.9 , lines 88 – 93. Otherwise if we have IRQs pending 
( pending   >  0), it is one of those which are just processed. In this case we wake up 
 softirqd  for this CPU to process these softIRQs at later point of time. This is done 
in order to provide proper CPU share to user land applications because kernel is 
not preemptible. SoftIRQs take longer to complete than IRQ. If the interrupts are 
coming at higher rate, we will be spending more time in softIRQs handling. 

 We manipulate  irq_stat[cpu].__softirq_pending  by disabling IRQ on the local 
CPU by calling  local_irq_save()  and  local_irq_disable()  (see lines 71 and 95 on cs 
 17.9 ). After we have manipulated, we enable IRQs on the local CPU by calling 
 local_irq_enable()  and  local_irq_restore()  (see cs  17.9 , lines 84 and 108). We do this 
because  irq_stat[cpu].__softirq_pending  is modifi ed in the interrupt handler. 

 We process softIRQ with bottom half disabled by calling  local_bh_disable()  
(see cs  17.9 , line 79). This increments  irq_stat[cpu].__local_bh_count  by one. We do 
this because other kernel control paths on this CPU should not be able to process 
softIRQ. There is one way this could happen. For example, one kernel control path 
is executing  do_softirq() , and an interrupt is raised. Interrupt is handled and while 
returning from interrupt in  do_IRQ() , we may call  do_softirq()  if any soft IRQ is 
pending (refer cs  17.10 , lines 654 and 655).   

 If we disable the bottom half while processing softIRQs in  do_softirq() , we are 
making sure that it won ’ t be executed while returning from  do_IRQ() . Even if it 
enters  do_softirq()  while returning from  do_IRQ() , it won ’ t proceed further because 
 in_interrupt()  will always return a positive value. 

  do_softirq()  is called when we 

   •      Return from interrupt in  do_IRQ()  (cs  17.10 ). We have just returned from an 
interrupt routine, and there is a chance that some softIRQ is raised as most 
of the interrupt work is done in bottom half now implemented as softIRQ. 
That is the reason why we check here. There may be a chance that softIRQ 
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on the local CPU is disabled because of any valid reason. In this case, any 
softIRQ will not be processed even if raised.  

   •      Enable local bottom halves locally by calling  local_bh_enable() . There are 
many situations where softIRQs need to be disabled locally because we are 
manipulating some data that are being accessed in softIRQ without disabling 
IRQ. We just increment local bottom - half counters when we disable softIRQ, 
which means that interrupts are allowed on local CPU. If this is not done, we 
may get an interrupt that executes softIRQ on return from interrupt and we 
are gone. This disabling of softIRQ avoids dead locks on SMP architecture 
and freezing single CPU machine because there may be a situation where the 
same lock needs to be acquired by kernel path and softIRQ. If we don ’ t 
disable softIRQ and interrupt happens when some kernel control path is 
holding a lock, which is showed with softIRQ that gets processed as a result 
of interrupt, we end up in a deadlock. With SMP architecture, we are not 
avoiding softIRQ to run on some other CPU which is OK as far as deadlock 
is concerned. Once we are done with the execution of a critical code in the 
kernel, we enable the bottom half. Here we decrement the local bottom - half 
count; and if it has become zero, we execute softIRQ by calling  do_softirq() . 
This way we can have nested disabling of bottom half. The outermost enabling 
of softIRQ will cause the processing of pending softIRQ. One small example 
is that we lock a socket with the bottom half - disabled, referred to as  lock_
sock() . This is required because tcp handler  tcp_v4_rcv()  is run in the bottom 
half that also wants to acquire a socket lock (bh_lock_sock()).     

  17.3   REGISTRATION OF  SOFT  IRQ  S  

 Each softIRQ is associated with specifi c bit in  irq_stat[cpu].__softirq_pending . In 
our current discussion design, we have  struct softirq_action  that represents softIRQ. 
 softirq_ action has two fi elds,  action  and  data  (see cs  17.11 ).  Action  is the function 
pointer to the soft IRQ handler, and  data  holds the argument to the handler  action . 
We have an array of  struct softirq_action , named  softirq_vec  (see cs  17.12 ). Each 
element in the array corresponds to one softIRQ. As of kernel 2.4.20, we have only 
four softIRQ as shown in cs  17.1 . Array index in  softirq_vec  corresponds to bit 
number associated with each softIRQ. For example,  TASKLET_SOFTIRQ  is 
assigned a third bit and it has a fourth element in  softirq_vec  associated with it. With 
this design, we need not do searching for a softIRQ handler while processing soft-
IRQs. We just traverse through all the bits in the 32 - bit variable  pending . In each 
iteration we move one bit toward MSB and check if the bit is set. If the bit is set, it 

    cs 17.10.      do_IRQ() .  



means that the softIRQ corresponding to this bit number is raised and needs to be 
processed. So, we call a softIRQ handler corresponding to softIRQ from  softirq_vec , 
which is  softirq_vec[iteration].action(). Iteration  is nothing but the number of times 
we have traversed in the loop to fi nd this bit set.   

 We register softIRQ handler by calling  open_softirq() . It makes entry for the 
softirq handler in  softirq_vec[32]  corresponding to the soft IRQ bit (see cs  17.12 ). 

 We register net soft IRQs for Rx and Tx in  net_dev_init()  by calling  open_
softirq()  (see cs  17.13  and cs  17.14 ).    

  17.4   PACKET RECEPTION AND DELAYED PROCESSING BY RX  SOFT  IRQ  

 When a frame is completely received at the network interface in its DMA buffer, 
Rx interrupt for the device is raised. It is the job of the Rx handler to pull the frame 
out of the Rx DMA buffer and send it to the upper layer for processing. The Rx 

    cs 17.11.      softirq_action .  

    cs 17.12.      softirq_vec .  

    cs 17.13.      open_softirq() .  

    cs 17.14.      net_dev_init() .  
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handler should not take much time for processing the packet. So, it just queues it 
on the CPU specifi c  soft_net  ’ s input queue  softnet_data[this_cpu] → input_pkt_queue  
(by calling  netif_rx() ) and schedules the device associated with current CPU ’ s soft 
net queue ( softnet_data[this_cpu] → blog_dev ) for later processing by calling  netif_
rx_schedule() . This raises net Rx softIRQ,  NET_RX_SOFTIRQ  on the CPU that 
will process the received packet at later point in time. The complete process of 
packet reception and scheduling it for delayed processing is shown in Fig.  17.3 .  do_
softirq()  is the function that is called to process all the raised softIRQ. It may be 
called when we return from interrupts or is called from  softirqd  daemon.   

 Let ’ s see what does  netif_rx_schedule()  do. It calls  netif_rx_schedule_prep()  to 
check if the device is already scheduled or is off (see cs  17.15 ). Here we check if 
device is in running state (dev → state should be set to __LINK_STATE_START) 
and it is already not scheduled (dev → state should not be set to  __LINK_STATE_
RX_SCHED ). If both are true,  netif_rx_schedule_prep()  returns true (see cs  17.16 ). 
There is only one net device per CPU which is scheduled to process received packet. 
This is a special and hypothetical device  softnet_data[this_cpu] → blog_dev .   

 If the device  softnet_data[this_cpu] → blog_dev  is already scheduled, we don ’ t 
schedule it once again and then we return. Otherwise we need to schedule it by 
calling  __netif_rx_schedule() . 

  __netif_rx_schedule()  fi nds the current CPU ID (refer cs  17.17 , line 729). It adds 
the net device, passed as an argument to the function ( softnet_data[this_cpu] →
 blog_dev ), to the CPU ’ s soft net poll list ( softnet_data[cpu].poll_list ) (see cs  17.17 , 

    Figure 17.3.     Processing of packets with softIRQ framework.  



line 733). If the device ’ s quota is consumed (cs  17.17 , line 734), we increment the 
existing quota by default ( dev → weight ). Otherwise we reinitialize the device quota 
to default. The device quota limits the number of packets that a Rx softIRQ can 
process on a given CPU in one go. We will see how the device quota plays a role 
when we discuss  net_rx_action()  later. Finally we raise net Rx softIRQ on the CPU 
by calling  __cpu_raise_softirq() . On a single CPU machine with multiple network 
interfaces, all the incoming packets on different devices are queued up on the same 
CPU ’ s  softnet_data[this_cpu] →  input_pkt_ queue. Whatever be the case, there is 
only one poll device per CPU ( softnet_data[cpu].poll_list ), which is on the CPU ’ s 
poll list no matter which interface has received the packet. The picture looks very 
similar to what is shown in Fig.  17.4 .   

 On SMP machines, there is a per CPU device poll list, and packets from same 
device may be queued up on different CPU ’ s  softnet_data  input queue; or if there 
are more than one network device, the packets from different devices may be 
queued up on different CPU ’ s  softnet_data  input queues as they appear on the 
interface. This is shown in Fig.  17.5 .    

    cs 17.15.      netif_rx_schedule() .  

    cs 17.16.      netif_rx_schedule_prep() .  

    cs 17.17.      __netif_rx_schedule() .  
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    Figure 17.4.     Packets being queued on CPU input queue.  

    Figure 17.5.     Packets being queued on per CPU input queue.  

  17.5   PROCESSING OF NET  R  X   SOFT  IRQ  

 Net Rx softIRQ is processed in  do_softirq() . Handler for net Rx softIRQ is  net_rx_
action() . Let ’ s see how  net_rx_action()  works. The main job of this routine is to pull 
the device from soft net poll list and start processing the packets one - by - one on the 



CPU ’ s soft net input queue until we have exhausted our quota of time or number 
of packets processed. 

 We need to get CPU ID (cs  17.18 , line 1560). The next step is to get the  softnet_
data  array element for the CPU (cs  17.18 , line 1561). We initialize other variables 
related to quota. Budget is initialized to  netdev_max_backlog. netdev_max_backlog  
is a global variable initialized to 300 (see cs  17.19 ).  start_time  is initilaized to current 
CPU ’ s  jiffi es  (cs  17.18 , line 1562). We disable IRQs on the local CPU before access-
ing the poll list and jiffi es (cs  17.18 , lines 1566 – 1574). Interrupts are disabled because 
 jiffi es  is modifi ed in timer interrupt, and the poll list is modifi ed in the Rx interrupt 
for the NIC. We check if we have exhausted the budget allocated for processing Rx 
softIRQ (cs  17.18 , line 1571). If yes, we still have some more devices in the poll list 

    cs 17.18.      net_rx_action() .  
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to be processed. We reschedule the device to be processed at a later time by raising 
softIRQ, enabling local IRQs, and returning (cs  17.18 , line 1596 – 1600).   

 We access the next device from the poll list after enabling IRQ on the local 
CPU (cs  17.18 , line 1576). We check the quota for the device. If we have exhausted 
the quota, we disable interrupts on the local CPU, remove the device from the poll 
list, add it to the end of the poll list, manipulate the device quota (see cs  17.18 , lines 
1578 – 1585), and start all over again with the next device in the poll list (see cs  17.18 , 
line 1568). If we have not exhausted our quota ( dev → quota  >  0 ), call  dev → poll() . 
This points to  process_backlog()  by default and we are going to discuss it in the 
next section. If  dev → poll()  returns 0, we move on to the next device in the poll list; 
otherwise we once again repeat cs  17.18 , lines 1578 – 1585. 

 We have exhausted all the devices on the poll list, enabled local IRQs, and 
returned (see cs  17.18 , lines 1592 – 1594). 

  process_backlog()  is routine called to process the queued packets on the CPU ’ s 
 softnet_data  input queue. This is called when net softIRQ for Rx is processed in 
 net_rx_action() . We pass net device queued up in the softnet_data ’ s poll list for the 
CPU. The idea is to process as many packets queued up at the softnet_data  input_
pkt_queue  as permitted by time or the quota. We calculate the quota for the packet 
processing as minimum of the budget passed and the device ’ s quota (see cs  17.20 , 
line 1499). We get hold of the  softnet_data  queue to be processed for the current 
CPU (see cs  17.20 , lines 1500 – 1501). We store the current value of jiffi es in local 
variable (see cs  17.20 , line 1502) for further calculating time spent.   

 Now we are all set to process packets one - by - one from the CPU ’ s backlog 
queue  softnet_data[this_cpu] → input_pkt_queue . First we disable IRQs on the local 
CPU and try to pull out the next packet to be processed (see cs  17.20 , lines 1508 –
 1509). We disable IRQ before accessing  softnet_data[this_cpu] → input_pkt_queue  
for the CPU because this queue is accessed from the Rx interrupt handler for the 
device. If no packets are there in the backlog queue for processing, we need to pack 
up (see cs  17.20 , lines 1510 – 1511). If we need to pack up, which means we have 
consumed all the packets in the backlog queue on the CPU, device ’ s quota and 
 budget  (passed as an argument to the routine) are decremented by number of 
packets processed (see cs  17.20 , lines 1541 – 1542). We now delete the device from 
the CPU ’ s poll list and clear the schedule bit for the device (refer cs  17.20 , lines 
1544 – 1545). We clear it because it has been removed from the CPU ’ s poll list. Next 
time a packet arrives and IRQ is raised on this CPU, we once again schedule the 
device on the CPU ’ s poll list and set  __LINK_STATE_RX_SCHED  bit for the 
device. 

 If we still have packets in the backlog queue, we dequeue it from the  softnet_
data[this_cpu] →  input_pkt_queue  queue with IRQ disabled. We enable local IRQ 
and send the packet for further processing by calling  netif_receive_skb()  (see cs 
 17.20 , lines 1512 – 1516).  netif_receive_skb()  actually processes the packet until the 
end of the last protocol before returning. For example, if this is a data packet for 
some TCP connection, it needs to be processed by an IP layer and then a TCP layer 

    cs 17.19.     Maximum packets that can be queued on CPU input queue before throttling.  



    cs 17.20.      process_backlog() .  

and fi nally return. We increment the local variable  work , which indicates the number 
of packets processed inside this function at any given point of time (see cs  17.20 , 
line 1520). Now we check if we have already exhausted the quota or time allocated 
for processing backlog packets (see cs  17.20 , line 1522).  Work  indicates the number 
of packets just processed, and  quota  is the maximum number of packets that can 
be processed; if  work  has exceeded  quota  or if  jiffi es - start_time  is more than 1, it is 
time to just return.  jiffi es - start_time  gives us an indication of how much time is spent 
processing the backlog queue; this value more than 1 means we are at least allowed 
to process the backlog packets for at least 1  jiffi es , which means until the time 
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another time interrupt is raised. In case we have exhausted our quota or time, we 
will not remove the device from the CPU ’ s poll list and will not reset the schedule 
fl ag for the device; we just update devices quota ( dev → quota ) and the  budget  and 
return  − 1. This is required because if we have other devices in the CPU ’ s poll list 
to be processed and we have quota left for backlog processing on the CPU,  net_rx_
action()  the calling function will know it with the help of  budget  argument passed 
to this routine.  budget  is a global quota whereas  dev → quota  is quota per device, 
which means that if there are many devices queued up in the CPU ’ s poll list, each 
device will be allowed to process packets as per each device quota because we are 
taking a minimum of the device ’ s quota and the global quota (cs  17.20 , line 1499). 
Each time we call  process_backlog() , we may or may not consume the current 
device ’ s quota but we return with global quota decremented by the number of 
packets it has processed until now in  net_rx_action() . If for the current device we 
have not processed all the packets in  process_backlog() , we just requeue this device 
at the end of the poll list; otherwise it is removed from the poll list (cs  17.18 , lines 
1578 – 1581). 

 To  summarize , we will continue to process backlog packets in  net_rx_action()  
until either  we have consumed global quota  or the  next timer interrupt has occurred . 
In  process_backlog() , we continue to process packets until we have consumed the 
 global quota or the device ’ s quota, whichever is smaller , or until the  next timer inter-
rupt has occurred . This way,  net_rx_action()  works together with  process_backlog()  
to process backlog packets. Thus with the help of global and device quota, we are 
able to give enough time for net Rx softIRQ to process backlog queues without 
completely hogging CPUs at heavy network traffi c. The quota system doesn ’ t keep 
the system busy processing backlog queue even if the backlog queue keeps on 
growing on a given CPU while we are still processing it in  net_rx_action() . The 
current design of backlog queues per CPU allows us to get network packets for the 
same device being queued on different CPU ’ s backlog queues and to get processed 
by respective CPU ’ s net Rx softIRQs as shown in Fig.  17.6 .    

  17.6   PACKET TRANSMISSION AND  S  OFT  IRQ  

     •      We need to explain the need for Tx net softIRQ.  
   •      Explain the queuing of packet for transmission.  
   •      Flow of packet transmission.  
   •      Tx net softIRQ.    

 In this section we will study how the complete packet is queued up for transmis-
sion on the device queue, and fi nally they are dequeued and actually transmitted 
over the wire. Why do we need softIRQ in the case of transmission? The answer is 
that we cannot always ensure that a device is ready for transmitting a packet over 
the wire. The same device cannot be accessed by two or more CPUs to transmit 
frames simultaneously. The hardware needs to be accessed serially for transmitting 
frames. On SMP machines, if each CPU is running the same driver code to access 
the hardware device to transmit frame, other CPUs either will need to wait or will 
need to return back with the indication that the packet could not be transmitted. 
This will hit the performance badly. So, in order to solve this issue on SMP machines, 
we just requeue the frame on the device ’ s queue, schedule the device on CPU ’ s 



output queue, and raise Tx IRQ on the CPU for later processing of the frames as 
shown in Fig.  17.1  (Section  17.1.1 ). The same device may be queued on different 
CPUs to be processed by Tx softIRQs raised on each of those CPU. The design of 
Tx softIRQ makes sure that only one CPU will be allowed to process one device ’ s 
queue at any given point of time. We will see later in this chapter how we achieve 
this. 

 We will start our discussion for packet transmission at the level where a com-
plete packet is formed and is ready for transmission. This packet is fi rst queued with 
the device ’ s queue, and then the device queue is processed one - by - one for fi nal 
transmission. In our discussion we will also see how we take the path of Tx softIRQ 
for delayed processing of the device output queue. We will start from  dev_queue_
xmit() . A complete frame is received by this routine. This frame is queued onto a 
device ’ s queue by using device queuing routines specifi ed in structure Qdisc ( dev →
 qdisc ). Queue manipulation routines are initialized in a Qdisc structure for the 
device. 

 We need to hold a queue lock for the device (see cs  17.21 , line 1026) with the 
bottom half disabled for an enqeuing packet on the device queue. This is done 
because the device queue is accessed from a Tx softIRQ that we will see in a short 
while from now. Now we call an  enqueue  function specifi c to the algorithm used for 
the outgoing packet ( dev → qdisc → enqueue() ). Here, we have queued the packet for 
transmission and we are not discussing algorithm for queuing, and this will be dis-
cussed in Chapter  15 . The next step is to dequeue the packet from the device queue 
one - by - one and process them on this CPU. We call  qdisc_run()  to process the 
packets queued on the device queue (see cs  17.21 , line 1031). This is done with queue 

    Figure 17.6.     Two packets from the different devices being received on different CPUs.  
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lock held so that no two CPUs should start processing the same device parallely. 
We just unlock the device queue after return after from qdisc_run() and return from 
 qdisc_run() . We need to know how  qdisc_run()  works.   

 In  qdisc_run()  we continue to loop until the device is not closed (cs  17.22 , line 
439) and we can process some more packets in the device ’ s queue (cs  17.22 , line 
440). Let ’ s see how exactly  qdisc_restart()  works to process the packets on the device 
queue. Get the pointer to the Qdisc structure for the device (cs  17.23 , line 79). This 
can be accessed as  dev → qdisc . Use a dequeue function specifi c to the queuing algo-
rithm selected for the outgoing packet by calling  q → dequeue()  (cs  17.23 , line 83) to 
get the next packet out of the queue. If we have processed all the packets, we return 
with the queue length (cs  17.23 , line 140). Otherwise we have to process the next 
packet pulled from the device queue for transmission. The fi rst step is to grab a 
device transmit lock (cs  17.23 , line 84). At this point in time, we already have a 
device queue lock held so now we release the queue lock as we already have 
a packet from the device queue (cs  17.23 , line 89). The next step is to check if the 
device is put off (cs  17.23 , line 91). In the case where it is not put off, we call a device 
transmit routine specifi c to hardware to start packet transmission (cs  17.23 , line 95). 
If we are able to transmit the packet successfully, we enter the block (cs  17.23 , lines 

    cs 17.21.      dev_queue_xmit() .  

    cs 17.22.      qdisc_run() .  



96 – 100). Here, we set the lock owner to  − 1 (cs  17.23 , line 96) because it is always 
set to a valid CPU ID that has held the lock (cs  17.23 , line 86). We need to set this 
fi eld in order to track if the buggy driver is trying to hold the device transmit lock 
twice on the same CPU. Next we release the device transmit lock (cs  17.23 , line 97), 
hold the device queue lock, and fi nally return  − 1. This returns to  qdisc_run() , where 
it once again calls  qdisc_restart()  because of the condition.   

 There may be error conditions such as the following: 

   •      We could not get the device transmit lock because some other CPU already 
has it.  

   •      We are not able to transmit the packet.    

    cs 17.23.      qdisc_restart() .  
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 In both the cases we will stop the processing of transmission on the device and 
schedule the device for later processing on the CPU by raising net Tx softIRQ. In 
the latter case we need to reset the lock owner to nobody ( − 1), release the device 
transmit lock, and hold the device queue lock (cs  17.23 , lines 105 – 107). In case we 
are not able to get the device transmit lock, we check if the lock is held by the same 
CPU on which the driver is being executed currently (cs  17.23 , line 117). If that is 
the case, we release the  sk_buff  and return  − 1 so that we can continue processing 
the next packet in the queue. If this is not the case, we need to requeue the packet 
on the device queue, schedule the device for later processing by raising net Tx 
softIRQ on the CPU, and return 1 (cs  17.23 , lines 136 – 138). This time we return 1 
so that  qdisc_run()  should break from the loop and return, because we have already 
scheduled the device for later processing that will take care of all the packets queued 
up on the device when softIRQ for Tx is executed. 

 Let ’ s see how do we schedule device for later processing in  netif_schedule() . It 
checks if the device is still on. If it is on, it calls  __netif_schedule()  to actually sched-
ule the device for later processing (cs  17.24 , lines 530 – 531). The complete fl ow of 
the packet transmission process is shown in Fig.  17.7 .   

 In  __netif_schedule()  fi rst we check if the device is already scheduled on any 
CPU (cs  17.25 , line 516). If already scheduled, don ’ t do anything and just return 
because we have already queued the packet on the device queue which is already 
being run on this or any other CPU and will process our packet. If the device is not 
already scheduled, we fi nd out the CPU on which we are running, disable local IRQs 
(cs  17.25 , lines 518 – 520) and proceed further. Queue the device on the CPU ’ s output 
queue linked through  dev → next_sched  (cs  17.25 , lines 521 – 522). Now we raise net 
Tx softIRQ on local CPU to process the packets ( sk_buff ) queued on this device 

    cs 17.24.      netif_schedule() .  

    cs 17.25.      __netif_schedule() .  



    Figure 17.7.     Packets being transmitted using Tx softIRQ framework.  

(cs  17.25 , line 523). Enable interrupts on the local CPU. We disable interrupts on 
local CPU to access  softnet_data[cpu].output_queue  because the device may be 
scheduled from from Tx interrupts also (see e100tx_interrupt() in arch/cris/drivers/
ethernet.c). Our job is done here, and we have already scheduled the device to 
process our packet sooner in the future and we return from here. Let ’ s wait for Tx 
net softIRQ to start processing the device queue. The outgoing packet ( sk_buff ) is 
queued on the device queue, and this device is queued on CPU ’ s output queue for 
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deferred processing by softIRQ; the entire arrangement looks as shown in Fig. 
 17.8 .   

 Net Tx softIRQ callback routine is  net_tx_action() . Let ’ s see what this routine 
does. We will always process  output_queue  of the CPU on which soft IRQ is raised. 
The fi rst thing it does is to get the CPU ID (cs  17.26 , line 1337). The next thing we 
check is the completion queue,  softnet_data[cpu].completion_queue . This queue has 
a list of all the packets ( sk_buffs ) that are already processed (transmitted). Once 
the packet is transmitted,  sk_buff  corresponding to the packet is queued in this 
 completion_queue  on the CPU (for example, look at  e100tx_interrupt()  in arch/cris/
drivers/ethernet.c). If there are any  sk_buff ’ s  on the  completion_queue  of the CPU, 
we dequeue them and free them one - by - one (cs  17.26 , lines 1347 – 1353). One thing 
worth noticing here is that the  completion_queue  is detached from the CPU with 
IRQ disabled on the local CPU (cs  17.26 , lines 1342 – 1345). Local IRQ is disabled 
because the list is modifi ed inside the Tx interrupt handler (look at the same 
example  e100tx_interrupt() ). The next step is to process the  output_queue  on the 
CPU,  softnet_data[cpu].output_queue . If there are devices to be processed on the 
 softnet_data[cpu].output_queue , we will start processing them one - by - one (cs  17.26 , 
lines 1356 – 1378). The fi rst thing that we do here is detach the device list from the 
CPU ’ s  output_queue  with local IRQs disabled (cs  17.26 , lines 1359 – 1362). The reason 
for disabling the IRQ ’ s on local CPU is already explained above. Now we start 
processing each device on the  output_queue  one - by - one (cs  17.26 , lines 1364 – 1378). 
For each device on the list, we will repeat steps as explained ahead. We clear the 
schedule status for the device as it is being processed (cs  17.26 , line 1369). This is 

    Figure 17.8.     Packets queued on device transmit queue.  



    cs 17.26.      net_tx_action() .  

done so that if any packet arrives for transmission on some other CPU, it can be 
queued on the device queue and the device can be scheduled for processing on that 
CPU. This way we can have the same device being processed on different CPUs, 
whichever has the slightest chance of running it. At the same time, the same device 
cannot be processed on the different CPUs parallelly as  dev → xmit_lock  takes care 
of this. The entire arrangement of the devices being queued on different CPU ’ s 
output queue on the SMP machine is shown in Fig.  17.9 . We try to get the device ’ s 
queue lock before calling  qdisc_run()  on the device. This is because other CPUs 
may also be trying to access the same device for processing or adding  sk_buffs  on 
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    Figure 17.9.     Packets being transmitted from different devices using Tx softIRQ framework on 

SMP machine.  



    Figure 17.10.     Packets being transmitted using Tx softIRQ framework on SMP machine.  

the device queue, and only one CPU may get access to device queue. The device 
queue lock will be released in  qdisc_restart()  after dequeuing the fi rst packet for 
transmission. So, if we get the queue lock, we call  qdisc_restart()  to process the next 
packet ( sk_buff ) on the device queue (cs  17.26 , lines 1371 – 1373). Otherwise we 
schedule the device for later processing by raising softIRQ on this CPU (cs  17.26 , 
line 1375). A block diagram for the transmission process on SMP machines is shown 
in Fig.  17.10 .    
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  17.7   SUMMARY 

 Linux kernel 2.4 supports four inbuilt softIRQs: 

   •       HI_SOFTIRQ , for high - priority tasks (e.g., timer tasklet).  
   •       NET_TX_SOFTIRQ , for network transmit interrupt.  
   •       NET_RX_SOFTIRQ , for network Rx interrupt.  
   •       TASKLET_SOFTIRQ , for low - priority tasks.    

 SoftIRQs can be scheduled and run parallelly on different CPUs. 
 SoftIRQs are executed on return from interrupt in  do_IRQ() . 
 SoftIRQs can be disabled locally by calling  local_bh_disable() . Interrupts may 

occur while softIRQs are being disabled on the CPU. These softIRQs are executed 
when softIRQs are enabled in  local_bh_enable() . 

 SoftIRQs are designed to be disabled and enabled in nested fashion. 
  raise_softirq()  is an interface provided to schedule softIRQ on current CPU. 
  softirq_open()  is an interface provided to register softIRQ. An object of type 

 softirq_action  needs to be provided along with a softIRQ number to register 
softIRQ. 

  softirq_vec  is an array of type  softirq_action  that registers softIRQ. 
 There is one kernel daemon running per CPU to execute softIRQ. 
 After all is said and done, there seems to be a small issue as far as network 

softIRQ is concerned. If two consecutive TCP data packets are received for the 
same connection but interrupted different CPUs, we are not very sure which packet 
will be processed fi rst with the current softIRQ. If the order in which these packets 
are processed is reverse of the order in which they are transmitted, to TCP they 
have arrived out - of - order. This penalizes the TCP performance because ACK is 
generated immediately on reception of an out - of - order segment. In a more adverse 
situation, more than three packets may get reordered and may cause false entry into 
a fast - recovery and fast retransmission state.    
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 TRANSMISSION AND 
RECEPTION OF PACKETS     

     We will discuss the reception and transmission of packets on the network cards that 
are DMA - capable. The intent is not to discuss hardware functioning; we will just 
see how DMA descriptors are initialized and designed to receive and transmit 
network packets. In our discussion we will take an example of an ether network 
driver that has DMA capability and then discuss the topic. We will study the design 
of network  DMA ring buffers  that are programmed for a network card for the 
reception and transmission of packets. We will discuss the interrupt handlers for the 
reception and transmission of packets where the ring buffers Rx and Tx are manipu-
lated. In the case of reception, the packet is pulled out of the next DMA buffer 
marked for reception and sent to the next protocol layer for processing, and the 
next DMA descriptor pointer is advanced in DMA ring buffer for next reception. 
In the case of transmission, the functionality is slightly different. Tx interrupt is 
generated after the complete packet is transmitted and we release  sk_buff  in Tx 
handler. Let ’ s see how it all happens. 

 Network adapters that don ’ t have DMA capability work on the simple principle 
of frame transmission and reception. Once a complete frame is received in the 
device ’ s Rx buffer, it generates an Rx interrupt. The interrupt handler routine takes 
the packet out of the device queue and copies it to the network buffer. This network 
buffer is then passed to higher protocol layers for further processing raising the net 
Rx softIRQ. On the transmit side, we copy a complete frame in device Tx buffer 
which is then programmed to start transmission if it is not already started. Once a 
complete frame is transmitted, a Tx interrupt is generated which would then free 
the buffer.  
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  18.1    DMA  RING BUFFERS FOR TRANSMISSION AND 
RECEPTION OF PACKETS 

 DMA buffer descriptors for the network device are initialized at the time of device 
initialization when the driver module is loaded. For receiving, DMA buffer descrip-
tors are initialized with DMA buffer allocated for each DMA descriptor. For trans-
mission, only DMA buffer descriptors are initialized without a DMA buffer allocated 
for a DMA buffer descriptor. Now the device registers are programmed to use the 
initialized DMA buffer descriptors for Rx and Tx DMA buffers. Each DMA buffer 
descriptor has the physical address of the DMA buffer (where the network packets 
are actually stored) and certain control fl ags. A DMA buffer descriptor also has 
physical address of the next DMA buffer descriptor. We always use a physical 
address when doing DMA transfer because it doesn ’ t know anything about the 
kernel virtual addresses. It does a frame transfer from the device to the DMA 
memory without interference of CPU.  

  18.2   PACKET RECEPTION PROCESS 

 On a DMA - capable network card, we program Rx DMA descriptors for network 
device. These descriptors are used by the device to store frames received on a 
network card by using DMA transfer. When a complete frame is received in the 
kernel memory, it is stored in the device ’ s Rx DMA buffer pointed to by the next 
available DMA buffer descriptor. Once a complete frame is received using a device 
DMA transfer in the DMA buffer, the device raises the Rx interrupt for the device. 
Rx interrupt pulls out the frame from the DMA Rx ring buffer and advances the 
next pointer to point to buffer in the next descriptor from where next frame is to 
be read. In the next section we will see how the interrupt handler knows which 
DMA buffer in the Rx ring needs to be pulled out (see Fig.  18.1 ).   

 An Rx interrupt handler queues the packet on an element of array  softnet_data  
corresponding to the CPU ( queue → input_pkt_queue ) on which interrupt has 
occurred by a call to  netif_rx() . The device on which the packet is received is also 
queued up on a current CPU ’ s  softnet_data  poll list ( softnet_data[cpu].poll_list ). A 
network Rx soft interrupt is raised on the current CPU. This soft interrupt will be 
processed on the same CPU. Any packet is queued on any single CPU ’ s  softnet_data  
array element corresponding to the current CPU ( softnet_data[current_cpu] →
 input_pkt_queue ), and there is no chance of two CPUs processing the same packet. 
Even though the same device may be queued on different CPU ’ s softnet queues, 
there won ’ t be any synchronization required to process these devices on different 
CPUs via Rx softIRQ. 

  18.2.1   Flow of Packet Reception with  DMA  

 Figure  18.1  illustrates the process of reception of packet from network interface 
into DMA ring buffer. Complete process is explained in Section  18.2 .  

  18.2.2   Reception Ring Buffer 

 On complete reception of the frame in the DMA buffer, an Rx interrupt for device 
is raised. Received frames will be queued up in the next available DMA ring 
buffer: 



   •      An interrupt is already being processed at the time when the complete frame 
is received in the DMA buffer.  

   •      A device is programmed to generate an interrupt on reception of more than 
one complete frames.    

 Let ’ s look at it with the help of an example. Ring buffer for Rx is initialized as 
shown in Fig.  18.2 . No packet is received at this point of time. Three pointers are 
initialized by the driver to keep track of where in the ring buffer the next frame 
should be taken off and also to track the end of the ring.  next  points to the DMA 
descriptor from where next frame to be received,  prev  points to the DMA descriptor 
from where frame was last received, and  last  points to the end of the ring buffer.   

 Figure  18.3  represents a scenario of Rx ring buffer when two frames are received 
but interrupt is not generated.  next  has moved clockwise by two descriptors. There 
is a difference between the  next  pointer and the location where the next frame is 
received by NIC.  next  is the location from where the next frame is to be processed 
by the Rx interrupt. The latter is advanced by the DMA engine logic to point to 
the next buffer in the ring once it has received a full frame.   

 Figure  18.4  represents a scenario where Rx interrupt is generated and the fi rst 
frame is processed from the Rx ring buffer.  next  and  prev  pointers move by one 
unit in an anti - clockwise direction. The position of  last  will remain unchanged. The 
position of  last  changes only when we have processed half of the ring buffer with 
respect to the  last  pointer. We will see this later. On the same Rx interrupt event, 

    Figure 18.1.     Network frame is received into kernel memory and processed further.  
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all the frames in the Rx ring buffer will be processed. So, both of the frames are 
processed by one interrupt event, and the fi nal scenario after the interrupt handler 
returns is shown in Fig.  18.5 . It looks like the Rx ring buffer has moved two units 
in a clockwise direction, with  last  pointing to the end of the ring buffer.     

  18.3   PACKET TRANSMISSION PROCESS 

 We start our discussion from the point in the stack where IP datagram is ready to 
be transmitted. The outgoing device for the datagram is known, and it is queued 
on a devices queue. The device is scheduled to transmit a packet on its queue. The 
packet scheduler for the device removes a packet from the device queue one - by - one 

    Figure 18.2.     DMA Rx descriptors initialized and no packet is received.  

    Figure 18.3.     Two packets are received but interrupt is not yet generated.  
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and tries to transmit them by making a call to a device - specifi c hardware transmit 
routine. The hardware transmit routine builds a link layer header to the IP datagram 
and programs the next available DMA Tx ring buffer to point to the frame to be 
transmitted. If no error occurs in the hardware transmit process until now, the 
packet will be transmitted. Once the packet is transmitted, the device ’ s DMA 
controller generates an interrupt to let the kernel know the status of the frame 
transmission. In the Tx interrupt handler, we will free the buffer just transmitted 
and also adjust the pointer to the fi rst descriptor in the Tx ring that needs to be 
transmitted next (see Fig.  18.6 ).   

    Figure 18.4.     Interrupt is generated and fi rst packet from ring buffer is processed.  

    Figure 18.5.     Both the packets in the ring buffer are processed on one interrupt event.  
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 The packet that needs to be transmitted is pointed to by the next available Tx 
DMA descriptor. Once the packet is transmitted, the next descriptor is advanced 
to point to the next available DMA Tx descriptor. If the DMA Tx ring buffer is 
full, we stop the device to stop further scheduling of packets. The device queue is 
enabled in the Tx interrupt handler when the packets from the DMA Tx ring buffer 
are transmitted. We try to free all the buffers that have been transmitted success-
fully but not yet been removed from the DMA Tx ring buffer. 

  18.3.1   Flow of Packet Transmission with  DMA  

 Figure  18.6  illustrates process involved in transmission of packet by programming 
transmit DMA ring buffer for the interface card. Complete process is explained in 
Section  18.3 .  

  18.3.2   Transmission Ring Buffer 

 Tx ring buffers are initialized at the time of device initialization. The device keeps 
three pointers to manage the Tx ring buffer: 

   •       next  points to the DMA descriptor in the Tx ring buffer where next frame for 
transmission should go.  

   •       fi rst  points to the DMA descriptor in the Tx ring buffer which is fi rst to be 
transmitted.  

   •       last  is the last descriptor in the DMA Tx ring buffer to be transmitted.    

 The left side of the ring in Fig.  18.7  represents a situation when the Tx ring 
buffer is initialized. One frame is queued to the controller ’ s Tx ring buffer, and  next  
is modifi ed to point to the next buffer in the Tx ring where the next frame for 
transmission should go (see right side of the ring in Fig.  18.7 ). The frame is just 
queued up in the device ’ s transmit ring buffer and not yet transmitted. Two more 
frames are queued up in Tx ring buffer before they all are transmitted. The left side 
of the Tx ring buffer as shown in Fig.  18.8  is the scenario just before transmission 
of the frame starts.  next  points to the fourth buffer where the next frame for trans-
mission should be queued.  last  points to the third frame that is last in the Tx ring 
buffer to be transmitted. A single frame is transmitted and the scenario of the ring 
buffer is shown in the right side of Fig.  18.8 .  fi rst  has moved three positions clock-
wise, whereas  next  points to the location where the next frame to be transmitted is 
pointing. This means that there are no more frames to be transmitted.   

 The next step is to generate a Tx interrupt once frames are transmitted. Here 
we try to free the buffer ’ s queue up in the Tx DMA buffer. We start freeing buffers 
from the location pointed to by  fi rst  and traverse the ring buffer until we reach the 
 next  pointer or the device pointer (pointing to the next buffer to be transmitted), 
whichever comes fi rst. The DMA controller Tx pointer advances itself by one unit 
in an anti - clockwise direction to point to next frame to be transmitted in the ring 
buffer on transmission of the frame. The right ring in Fig.  18.9  shows that scenario 
when two buffers from Tx ring buffers are freed, and Fig.  18.10  shows the fi nal 
position of buffer pointers after all the buffers in Tx ring buffer are freed on the 
same interrupt event.    
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  18.3.3   Transmission Ring Buffer 

 Figure  18.7  to Figure  18.10  illustrates processing of packets in transmit DMA ring 
buffers for transmission. We can see the status of DMA ring buffers after packet 
transmission. Complete process is explained in Section  18.3.1 .   

    Figure 18.6.     Process of packet transmission.  
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    Figure 18.7.     Single frame queued to a network controller that is not yet transmitted.  

    Figure 18.8.     All three frames queued on a Tx ring buffer are transmitted using DMA engine 

but interrupt not yet generated.  

  18.4   IMPLEMENTATION OF RECEPTION AND 
TRANSMISSION OF PACKETS 

 We will take an example of an ETRAX network controller to explain DAM ring 
buffers and frame reception and transmission process. From cs  18.5 , we can see that 
at the time of device initialization, we initialize Tx and Rx ring buffers. These 
buffers are actually queues used by the device to buffer packets to transmit and 
receive. There may always be a chance that the rate at which packets are being 
received is less than the rate at which they are pushed to the higher layers for pro-
cessing. On the other hand, many connections may be sending packets for transmis-
sion. If there is no concept of device transmit buffers, we may end up dropping 
packets when the outgoing traffi c is too high over a given device. These Tx and Rx 



buffer descriptors are of type  etrax_dma_descr  as shown in cs  18.1 . The DMA 
transmit ring buffer is named as  TxDescList  of size  NBR_OF_TX_DESC.  Similarly, 
we have receive DMA ring buffer named as  RxDescList  of size  NBR_OF_RX_
DESC . We will see in the later section how these tables are used to implement ring 
buffer.   

  18.4.1     struct   etrax _ eth _ descr   

 This object is used by the driver to implement DMA ring buffers (cs  18.2 ). It has 
two parts: 

    Figure 18.9.     Tx interrupt generated and two buffers in the Tx ring buffer and freed from the 

ring.  

    Figure 18.10.     On return from the Tx interrupt, all three buffers in Tx ring buffer are freed.  
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   descr  object is a DMA controller structure that implements a rig buffer on the 
hardware.  

   skb  is a network buffer that has a pointer to the complete frame.       

  18.4.2     struct   etrax _ dma _ descr   

 This object is a DMA controller structure and implements a ring buffer on the 
hardware. We program a DMA controller ring buffer for the Tx/Rx by just initial-
izing this object. The descriptor contains DMA status and control fl ags along with 
the fi elds that manage the DMA buffer (cs  18.3 ). 

   sw _ len .     This is the length of the DMA buffer (containing data) that is pointed 
to by this DMA desctiptor ( buf  fi eld).  

   c trl  .     This fi elds contains the control information (fl ags) for the DMA channel. 
These control fl ags are specifi ed in cs  18.4 . We will discuss them as and when 
they are referred.  

   next .     This fi eld points to the next descriptor in the DMA ring buffer list. cs  18.5  
explains how a ring buffer is created.  

   buf .     This fi eld points to the start of the DMA buffer for this descriptor. This 
fi eld points to the DMA location where data for transmission to device or 
reception from device is actually located.  

    cs 18.1.     Ring buffers for Rx and Tx.  

    cs 18.2.     DMA buffer descriptor for driver.  

    cs 18.3.     DMA buffer descriptor for network controller.  



    cs 18.4.     DMA buffer descriptor control/status fl ags for network controller.  

   hw _ len .     This fi eld contains hardware length for the DMA data. This is different 
from  sw_len  as because it may contain some hardware control bytes also 
indicating the end of a frame.  

   status .     This fi eld contains the status/control fl ags for the DMA descriptor on 
the controller. For example, the status may be set to  d_eop , which indicates 
that the descriptor is pointing to the DMA buffer that is the last packet 
package in the case where a large packet is divided into many small packages. 
cs  18.4  shows the bits that are used as status/control fl ags.       

  18.4.3   Initialization of Device 

 At the time of module initialization for the Ethernet device, we do certain initializa-
tions, some of which are generic to an Ethernet protocol in general while others 
are specifi c to the network controller type.  etrax_ethernet_init()  is a routine called 
to initialize the device.  ether_setup()  is called to initialize very generic callback 
routines and fl ags related to the Ethernet protocol. These routines are related to 
caching and building of an Ethernet header. 

 Next we initialize receive and transmit ring buffers from DMA descriptors. A 
ring buffer in the hardware is implemented by programing a DMA controller rep-
resented by  struct etrax_dma_descr . We build the entire chain of DMA descriptor 
linked with the next fi eld of the DMA descriptor ( etrax_dma_descr  object).  etrax_
dma_descr  is a DMA controller structure. The very fi rst descriptor is written into a 
hardware - controller - specifi c location that implements the ring buffer. Once the fi rst 
DMA descriptor is processed, the controller loads the next descriptor from the  next  
fi eld of the structure and moves ahead in the ring buffer. So, we just need to build 
Rx and Tx DMA descriptor chain and write the head of the chain in the hardware 
logic that implements the ring buffer. Flags of the DMA descriptor take care of the 
rest.  

  18.4.5   Initialization of  DMA  Transmit Ring Buffers 

 From the example of the Ethernet driver (cs  18.5 , lines 418 – 426), we see that Tx 
DMA descriptors are initialized when the module is initialized. This is an array of 
 TxDescList  of type  etrax_eth_descr  of size NBR _OF_TX_DESC . These descriptors 
implement Tx DMA ring buffers for transmission of network packets. We see that 
consecutive elements of the array are linked together by a  descr  fi eld (of type 
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 etrax_dma_descr ) using its  next  fi eld. This arrangement makes the array  TxDescList  
look like a singly linked circular link list. None of the fi elds of the DMA descriptor 
and object  etrax_dma_descr are  initialized in the case of Tx because they are initial-
ized when the frame needs to be transmitted. 

 The last thing that we need to do is to initialize the variables  myNextTxDesc, 
myLastTxDesc , and  myFirstTxDesc  for the device (cs  18.6 ).  MyNextTxDesc  points 
to the descriptor where the next frame for transmission needs to go. The next com-
plete frame from the higher protocol layer will be pointed to by the  MyNextTxDesc. 
MyLastTxDesc  is the last descriptor in the DMA descriptor ring buffer that points 
to a frame transmitted last. The  d_eol  control bit is always set for this descriptor 

    cs 18.5.      etrax_ethernet_init().   



( myLastTxDesc → descr.ctrl ).  MyFirstTxDesc  points to the fi rst packet that needs to 
be transmitted. So, fi nally after the Tx descriptor is initialized, it will be arranged as 
shown in Fig.  18.14 .    

  18.4.6   Initialization of  DMA  Receive Ring Buffers 

 Once again from the example of Ethernet driver (cs  18.5 , lines 401 – 411), we see 
that Rx descriptors are initialized at the time of module initialization. This is an 
array of  RxDescList  of type  etrax_eth_descr of length NBR_OF_RX_DESC . These 
descriptors manage DMA storage for the reception of network packets. We see that 
consecutive elements of the array are linked together by  next  fi eld of the  descr  fi eld 
(of type  etrax_dma_descr ) of each array element. We initialize  skb  fi eld of each 
descriptor to point to  sk_buff  of buffer size  MAX_MEDIA_DATA_SIZE . Network 
buffers are initialized for receive DMA descriptors because the received frames are 
directly DMAed in these buffers. 

 This arrangement makes the array  RxDescList  look like singly linked circular 
link list. This way we have built a DMA ring buffer for the reception of packets. 
The last thing that we need to do is to initialize the variables  myNextRxDesc, 
myLastRxDesc , and  myPrevRxDesc  for the device (cs  18.7 ).  MyNextRxDesc  points 
to the next descriptor from where the next frame is read by the interrupt handler, 
which means that it points to the next packet that is received and is yet to be taken 
off the device ’ s DMA queue for processing.  MyLastRxDesc  is the last descriptor in 
the DMA ring buffer. The  d_eol  control bit is always set for this descriptor 
( myLastRxDesc → descr.ctrl ).  MyPrevRxDesc  always points to the descriptor that 
is processed last, which means that it marks the end of the descriptor in the ring 
buffer. Finally, after the Rx descriptor is initialized, it will be arranged as shown 
in Fig.  18.11 .     

  18.5    R  X  INTERRUPT FOR RECEPTION OF PACKETS 

  e100rx_interrupt()  is the interrupt handler for the reception of packets. This inter-
rupt comes when we have completely received one frame in the device ’ s DMA ring 

    cs 18.6.     Buffer pointers for Tx ring buffers.  

    cs 18.7.     Buffer pointers for Rx ring buffers.  
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buffer managed by a DMA descriptor for Rx as shown in Fig.  18.11 . We need to 
get this packet out of the DMA buffer and process it further. To receive the frame 
in the DMA ring buffer, we need to program the device DMA to tell it the location 
of the Rx DMA descriptor. We do this while opening the device in  e100_open()  (cs 
 18.8 ).  R_DMA_CH1_FIRST  is made to point to location of the next Rx DMA 
descriptor initialized to  myNextRxDesc . When a complete frame is received in the 
DMA Rx buffer, the frame is stored in the buffer pointed to by  R_DMA_CH1_
FIRST.  After the reception of a packet, the DMA engine advances  R_DMA_CH1_

    Figure 18.11.     Rx ring buffer initialized.  



FIRST  to point to the next Rx DMA descriptor in the Rx ring buffer pointed to by 
 myNextRxDesc → descr.next  as  R_DMA_CH1_FIRST  stores the physical address of 
the location where  myNextRxDesc  points to. We fi rst check if  R_DMA_CH1_FIRST  
is the same as  myNextRxDesc . If that is the case, we have should stop processing 
as there is nothing left in the Rx ring buffer. If they are not same, we have something 
and we proceed ahead to get the frame out of the Rx DMA buffer by calling  e100_
rx()  (cs  18.9 , line 1004). We continue to check if we have another packet to process 
in the while loop lines 1000 – 1015. Each frame in the Rx ring buffer is processed 
here.   

  18.5.1    R  x   DMA  Buffer Initialized 

 Figure  18.11  illustrates how device DMA structures implementing Rx DMA ring 
buffer are linked on initialization. Section  18.5  explains the process in detail.  

  18.5.2     e 100_ rx ()  

 This routine is called to pull off the next received frame from Rx DMA buffer 
pointed to by  myNextRxDesc . We read the frame length from  myNextRxDesc →
 descr.hw_len . If the frame length is more than a certain threshold,  RX_COPY-

    cs 18.8.      e100_open().   

    cs 18.9.      e100rx_interrupt().   
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BREAK,  we pull off  sk_buff  from DMA ring buffer to the upper protocol layers 
for processing. We allocate a new network buffer to replace the old buffer in the 
DMA ring buffer and initialize a DMA descriptor at lines 1146 – 1147 (cs  18.10 ). 
Otherwise we make a copy of the  sk_buff  from DMA descriptor ( myNextRxDesc →
 skb ) and pass a new network buffer to the upper layer for processing at line 1140. 
In the former case, we are reducing the burden of copying a large datagram, hence 
saving some CPU cycles in processing the frames. In the latter case, we are saving 
the allocation of DMA buffers, which is expensive in terms of both size of the buffer 
and size of the DMA tag.   

 We fi ll  dev  and  proto  fi elds of  sk_buff  to indicate the next protocol layer to 
which the packet belongs by calling  eth_type_trans() . Send the packet to upper 
layers for further processing by calling  netif_rx() . We discuss more about it later. 

    cs 18.10.      e100_rx().   



Lastly, myPrevRxDesc is made to point to  myNextRxDesc,  and  myNextRxDesc  
is advanced to point to the next descriptor in the Rx DMA ring buffer,  myNextRx-
Desc → descr.next  (lines 1158 – 1159). If we had three packets already queued on the 
DMA ring buffer before an Rx interrupt was generated in Fig.  18.12 , the fi nal 
picture of the Rx DMA descriptors after the fi rst packet is processed will be as 
shown in Fig.  18.13  when the frame pointed to by  myNextRxDesc  is taken out of 
the Rx descriptor list for further processing by the higher - layer protocols.   

 If we have processed  RX_QUEUE_THRESHOLD  number of frames so far 
with respect to the current last descriptor pointed to by  myLastRxDesc , we need to 
release the ring buffers. By releasing ring buffers, it means that new frames should 
be allowed to be stored in DMA ring buffers beyond the last descriptor because 
they are no longer in use. Every time a new frame is processed from the DMA ring 
buffer, the descriptor previous (myPrevRxDesc) is made to point to the processed 
descriptor. So, the previous descriptor should be marked as the end of the ring 
buffer by setting  d_eol  fl ag for this descriptor, lines 1164 – 1170.  

  18.5.3    R  x  Descriptors After Reception of Three Packets in  DMA  
Buffer Before  R  x  Interrupt Being Raised 

 Figure  18.12  illustrates the state of Rx DMA ring buffer after the reception of three 
packets. These packets will be processed from ring buffer only when Rx interrupt 
is generated. MyNextRxDesc and myPrevRxDesc are pointing to element in the 
Rx Ring buffer that needs to be processed fi rst more is discussed in Section 
 18.5.2 .  

  18.5.4    R  x  Descriptors After First Packet Is Pulled Out of DMA 
Buffer and Given to  OS  in  R  x  Interrupt Handler 

 Figure  18.13  illustrates the shapshot of Rx DMA ring buffer when fi rst packet is 
pulled out of the Rx DMA ring buffer for processing in Rx interrupt handler. 
MyNextRxDesc points to the next descriptor to be processed. MyPrevRxDesc still 
points to fi rst descriptor because discuss need to free processed buffers tasting from 
here. See Section  18.5.2  for details.   

  18.6   TRANSMISSION OF PACKETS 

  18.6.1     e 100_ send _ packet ()  

  e100_send_packet()  is the interface routine registered for sending a frame over the 
wire. This is the fi nal step in packet transmission down the stack. This routine pro-
grams the device ’ s DMA channel to point to the packet frame to be transmitted 
and then start the channel. So, make the next available DMA descriptor in the Tx 
ring buffer,  MyNextTxDesc , point to the network buffer just poured in from the 
network stack (cs  18.11 , line 946). Call  e100_hardware_send_packet()  to initialize 
the rest of the fi elds of  MyNextTxDesc  descriptor and start DMA channel. Now we 
advance next descriptor in the Tx ring buffer to point to the next descriptor in the 
ring buffer (line 952). Figure  18.15  represents the scenario where two packets are 
queued up in the DMA channel to be transmitted.  MyFirstTxDesc  points to the fi rst 
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    Figure 18.12.     Three packets already queued on Rx ring buffer.  



    Figure 18.13.     One packet taken out of Rx ring buffer for processing.  
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DMA descriptor which is yet to be processed,  myLastTxDesc  points to the last 
DMA descriptor that is the last in the Tx ring buffer that needs to be transmitted, 
and  MyNextTxDesc  points to next DMA descriptor that is unused and can be used 
for queuing the next packet that needs to be transmitted.   

 We check if the DMA ring buffer is full at line 955.  MyNextTxDesc  points to 
the fi rst frame to be processed, and  MyNextTxDesc  is the descriptor that is used to 
queue the next frame to be transmitted; and if both of them point to the same loca-
tion, it means that the device queue is full. In this case, we put off the device by 
calling  netif_stop_queue()  at line 959 so that no more frames should be accepted by 
the device. We see in a later section that once the frames are transmitted, the Tx 
interrupt wakes up the device queue to start accepting more packets from the upper 
layer for transmission. Otherwise we check if we need to do the cleanup operation 
on the DMA ring buffer that is already processed. This may be required if Tx inter-
rupt is not yet generated after frames in the Tx ring buffer are actually transmitted. 

    cs 18.11.      e100_send_packet().   



The  R_DMA_CH0_FIRST  macro points to the descriptor that is yet to be processed 
in the ring buffer. So we will always know which DMA descriptor is being processed 
currently and will not free the  sk_buff  associated with this DMA descriptor and 
beyond this descriptor. We traverse through the Tx DMA ring buffers until the end 
and check if the frame pointed to by the DMA is already processed, line 963. If it 
being processed, we just free the  sk_buff  associated with the DMA descriptor. 

  myFirstTxDesc  is advanced to point to the next descriptor in the ring buffer.  

  18.6.2    T  x   DMA  Ring Buffer Descriptor After Initialization 

 Figure  18.14  illustrates the snapshot of transmit DMA ring buffer just after it is 
initialized details are coversed in Section  18.6.1 .    

  18.6.3     e 100_ hardware _ send _ packet ()  

 The  e100_hardware_send_packet()  routine is called from  e100_send_packet()  to 
initialize some of the fi elds of the  MyNextTxDesc  descriptor and start the DMA 
channel to trigger transmission. We initialize the length and frame to be transmitted 
for the current DMA descriptor (pointed to by  MyNextTxDesc ), line 1391 (cs  18.12 ). 
Mark this descriptor as the last descriptor in the Tx ring buffer for transmission; 
the  d_eol  control bit is set for this descriptor at line 1392. Provide the physical 
address of the frame buffer to be transmitted to the current descriptor at line 1391. 
We do this because the DMA engine doesn ’ t go through the kernel VM subsystem. 
The control bit of the last descriptor is modifi ed to indicate that it is not the last 
descriptor in the Tx ring buffer, line 1396. The last descriptor pointer,  myLastTx-
Desc , is made to point to the current descriptor (line 1397) because this points to 
the last buffer in the TX ring buffer to be transmitted. Restart the DMA channel 
to start transmission at line 1400.    

  18.6.4   There Are Two Packets in Device ’ s  DMA   T  x  Ring Buffer 
to Be Transmitted 

 Figure  18.15  illustrates the snapshot of the transmit DMA ring buffer when two 
packets are queued in the ring buffer for transmission. These packets are yet to be 

    cs 18.12.      e100_hardware_send_packet().   
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    Figure 18.14.     Tx ring buffer initialized.  



    Figure 18.15.     Two packets queued on Tx ring buffer for transmission.  
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transmitted. MyFirstTxDesc points to the fi rst descriptor to be processed and 
MyLastTxDesc points to the last description to be processed in the ring buffer. 
These are used by the driver to know start and end of the descriptor to be processed 
in the ring buffer.  

  18.6.5     e 100 tx _ interrupt ()  

  e100_send_packet()  queues up the frame for transmission, and it programs the 
DMA channel to start transmission of the frame. We have registered the Tx inter-
rupt handler for the device which will be executed at the time when complete DMA 
transfer for one frame is completed. In the Tx interrupt handler we will check how 
many DMA descriptors are already processed (number of frames already transmit-
ted). The  e100tx_interrupt()  routine is registered as an interrupt handler for Tx. We 
acknowledge the interrupt at line 1037. We iterate between lines 1035 – 1053 until 
either of the following occurs: 

   •      We have reached the end of the list. In this case,  myFirstTxDesc  is the same 
as  myNextTxDesc .  

   •      We are pointing to the DMA descriptor that is being currently processed by 
the DMA engine  R_DMA_CH0_FIRST .    

 In each iteration we advance  myFirstTxDesc  to point to the next descriptor in the 
Tx ring buffer, line 1052 (cs  18.13 ). In each iteration, we free the  sk_buff  associated 

    cs 18.13.      e100tx_interrupt().   



with the DMA descriptor. The scenario looks very much like Fig.  18.16  after the 
fi rst frame is transmitted and the Tx interrupt is generated. We also take care of 
the device that is stopped because the DMA ring buffer is full. Since we are releas-
ing processed buffers in the Tx interrupt, we check if the device needs to be started 
by calling  netif_queue_stopped()  at line 1047. In case we fi nd that the device is 
stopped, try to wake up the device to accept more packets for transmission by calling 
 netif_wake_queue()  at line 1050.    

  18.6.6   First Packet from the  DMA  Queue Is Transmitted and Second 
One Is yet to Be Transmitted; After Interrupt Is Generated, 
Transmitted Buffer Is Freed 

 Figure  18.16  illustrates snapshot of the transmit DMA ring buffer when fi rst DMA 
descriptor is processed. The transmitted buffer is freed in the Tx interrupt handler. 
MyFirstTxDesc and myLastTxDesc point to same descriptor that is the only one to 
be processed in the ring buffer. Details are covered in Section  18.6.5 .   

  18.7   SUMMARY 

 Each network interface is defi ned by  struct net_device . This structure has callback 
routines specifi c to hardware such as transmission building headers. When the 
module is installed for the network card, the  net_device  object is initialized with 
device - specifi c callback routines and certain parameters in the init routine. Tx and 
Rx DMA ring buffers for the network controller are also initialized. When the 
device is opened, DMA memory allocation, IRQ number, and interrupt handlers 
are registered with the kernel. 

 In this chapter we learned about Rx and Tx ring buffer design and functioning. 
The DMA ring buffers logic is implemented on the DMA - capable NIC. We just 
program it to point to the fi rst DMA descriptor in the DMA descriptor ring. The 
DMA buffer for an Rx ring is preallocated, and its length is the maximum frame 
length that we can receive on the interface. 

 In the above discussion we learned the process of reception and transmission 
of packets over the Ethernet interface. The packet is received in a DMA buffer 
registered for reception, and the interrupt handler for the receive pulls out a frame 
from the Rx ring and is queued on a per CPU input queue and the softIRQ is raised 
by calling  netif_rx() . The Rx softIRQ pulls out a packet from the CPU input queue 
and gives it to the upper layer for further processing. The DMA controller can be 
programmed to generate an interrupt on reception of more than one frame. 

 Packet transmission takes a simple path. An IP datagram is queued on the 
device queue and then the device scheduler is run to dequeue the device. Packets 
are then processed by a device - specifi c hard transmit routine where a link layer 
header is added to the IP datagram and a frame is added to the DMA Tx ring buffer. 
A DMA controller is then programmed to start the transmission. Once the packet 
is transmitted, a Tx interrupt is generated. A single Tx interrupt can be generated 
for multiple transmissions. 

 An added functionality that the DMA - enabled NIC provides helps in enhanc-
ing I/O performance. For example, an Rx interrupt is generated when the frame is 
completely received in the kernel memory with a DMA - enabled NIC. Otherwise, 
we need to copy a frame from the device queue into kernel memory in the interrupt 
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    Figure 18.16.     Tx interrupt is generated and the fi rst packet on the Tx ring buffer is freed.  

handler. This saves us a huge number of CPU cycles. While transmitting, we need 
not copy the frame to the device queue. With an DMA - enabled NIC, transmission 
is simplifi ed and once again saves us CPU cycles. We program NIC DMA with the 
address of the network buffer, and the rest is taken care of by the DMA engine 
itself.                                                                   
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   lkcd   AND DEBUGGING  TCP / IP  STACK     

     There are different debuggers available to debug a Linux kernel such as  kdb, gdb, 
lkcd , and so on.  lkcd  is a Linux kernel crash dump analyzer. This tool can generate 
kernel crash dumps and can save it on the specifi ed location, and the crash can be 
used to analyze the cause of kernel crash. We can ’ t do much as far as step debug-
ging on a live system is concerned, for which  kdb  or  gdb  can be used. But  lkcd  can 
be used on the live kernel memory to analyze kernel data structures. 

 In this chapter an attempt is made to familiarize the reader with lkcd and how 
it can be used to peep through the kernel data structures related to TCP/IP stack. 
We take small examples related to TCP connections, add a new route (QOS), and 
try to peep through the related data structures to see how changes are taking place. 
Because of lack of resources and time, performance - related tests and tools could 
not be illustrated. But one can get an idea and feel of various aspects of TCP/IP 
stack debugging after the discussion. 

 I ’ d say that the best way to debug is to build a kernel module that records the 
statistics for a given connection, route, interrupt, or any subsystem and report it 
whenever requested. For example, I may need to analyze the complete history 
related to reception and transmission of packets for a given connection by a TCP 
state machine. I may write a kernel module to record certain TCP state machine 
variables such as congestion window, slow - start threshold, receive and send buffer 
space, timestamp, send window, rto, and so on, for each packet that is transmitted 
and received. This statistics can be collected at the end of the connection for analy-
sis. Many such ideas can be implemented to make life easier to test and analyze the 
behavior of TCP/IP protocol and related framework in different situations. 
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 We won ’ t discuss confi guration and features of  lkcd  in our current discussion 
but will discuss only the relevant stuff related to the topic. This will be peeping into 
different kernel data structures and some analysis. The rest is left to the practice 
and imagination of the reader.  

  19.1    lkcd  SOURCE AND PATCHES 

 We can get an  lkcd  source from sourceforge.net.  kerntypes  is a database of kernel 
data structures which is generated when lkcd is built. The path of  kerntypes  and a 
system map fi le are arguments to the  lcrash . The following command can start the 
lcrash program on the kernel crash dump: 

   lcrash   kerntypes core - fi le system.map    

 lcrash  can also be used on the live system by running the following command: 

   lcrash   kerntypes /dev/mem system.map    

 kerntypes  generated by default may not contain stub for all the kernel subsystems 
data structures. SG has developed a tool to generate a stub for all kernel data types. 
We need to build a kernel in the debug mode and run  dwarfextract  binary to build 
a kerntypes fi le in the following way: 

   dwarfextract - p vmlinux kerntypes    

Type in the modules you will need to add to the  kerntypes  with  dwarfextract  - c 
or  - C. 

  kerntypes  comes with the 7.0.1 - 27 version of  lkcdutils  and is found under lkcdu-
tils/dwarf/dwarfdump directory. 

 All this is for  lkcd  utilities. We also need to confi gure a kernel with frame 
pointer options and build a kernel with an  lkcd  patch. For kernel 2.4 a patch can 
be found at 

   http://lkcd.sourceforge.net/    

User documentation for an lcrash can be found at 

         lkcd.sourceforge.net/doc/ lcrash .pdf 

 Complete information about lcrash can be found at 

   http://www.faqs.org/docs/Linux-HOWTO/Linux-Crash-HOWTO.html      

  19.2   TOUCHING THE SOCKET 

 In this section, we will see how we can access a socket structure inside the kernel 
when an application opens a TCP socket. In Chapter  3  we have discussed about 



how kernel data structures are linked through VFS layer to get to reach socket. Just 
to refresh our memories, a socket is treated just like any other fi le, and an applica-
tion can access a socket using fi le descriptors. An entry goes in the process fi le table 
when we open a socket. Let ’ s fi rst see how can we access a process fi le table 
(Fig.  19.1 ).  lcrash  is run on live memory ( /dev/mem ), and a simple application is run 
that opens a TCP socket ( INET_STREAM ).   

 We start an  lcrash  program as mentioned in Section  19.1 . The socket program 
for which we need to fi nd socket in the kernel is  client_do_nothing . First we fi nd 
out the  task_struct  object for the process associated with our program  client_do_
nothing . We run  ps  command at  lcrash  command line interface at line 2 in Fig.  19.1  
to identify our process inside the kernel. The next step is to fi nd the fi le table for 
the process.  fi les  fi eld of the  task_struct  object points to the fi le table, which is object 
of type  fi les_struct . Using a print command at line 5, we get the address of the fi le 
table. Now we dump  fi les_struct  object with the given address at line 8. The  fd  fi eld 
of the  fi les_struct  is an array of pointer to a  fi le  object, one for each open fi le for the 
process. We found the fi le table, and the next step is to identify our socket fi le 
descriptor from the fi le table.   

 We dump 10 words (32 - bit) from the address of  fd  at line 26 as shown in 
Fig.  19.2 . The fi rst three entries point to standard input, standard output, and stan-
dard error. The third entry points to the fi le opened by the process. Since our 
program has opened only one socket, the fourth entry should correspond to the 
socket. Let ’ s examine this. 

 We will examine the fourth entry in the open fi le descriptor table. The fourth 
entry is pointer to  fi le  object. We want to get to the  inode  object for this fi le. First 
we access  dentry  object for the fi le that is pointed to by  f_dentry  fi eld of the  fi le  
object at line 32, Fig.  19.3 .  inode  object is pointed to by the  d_inode  fi eld of the 
 dentry  object at line 35. We have the address of the  inode  object for the fourth entry 

    Figure 19.1.     Accessing process fi le table.  

    Figure 19.2.     Dump of pointers to fi le objects corresponding to open fi les for the process.  

TOUCHING THE SOCKET 725



726 lkcd AND DEBUGGING TCP/IP STACK

in the process fi le table at line 36. First we check whether the  inode  corresponds to 
the socket from the  i_sock  fi eld. Since this fi eld is set, we are sure that the fourth 
entry corresponds to the open socket.   

 The next step is to fi nd the socket object corresponding to the inode. Since the 
inode is a common interface provided by VFS for any type of fi le,  u  is the union of 
all types of fi le - specifi c objects supported by Linux. For the socket  inode , there is a 
socket object as part of the  inode  union  u . This object is pointed to by the  socket_i  
fi eld of the  inode  union in Fig.  19.4 , and we dump socket object at line 41. The state 
of the socket is connected, as is obvious from line 43. The socket has a back pointer 
to the  inode  object at line 46 and to the  fi le  object at line 48, which are very much 
tallying.   

 We have come to the BSD socket object. The s k  fi eld of the BSD socket object 
points to protocol - specifi c socket. In the next section we are going to examine a 
TCP socket object. The BSD socket keeps account of the connection and links the 
protocol - specifi c socket with the VFS and the process. The protocol - specifi c socket, 
pointed to by  sk , is actually responsible for doing protocol - specifi c operations and 
for managing the protocol - specifi c state and the data for the connection.  

  19.3   LOOKING INTO THE RECEIVE SOCKET BUFFER 

 From the previous section, we extend our discussion to one step ahead. The applica-
tion is receiving data in chunks of 18 bytes, and the data is  ‘  I got your message . ’  
This application has not issued any  recv()  syscall to read data from the socket ’ s 
receive buffer. So, we get a chance to peep through the socket ’ s receive buffer 
dumped in Fig.  19.5 .   

    Figure 19.3.     Reaching inode entry from fi le object.  

    Figure 19.4.     Accessing socket object from inode.  



 Since the application is not reading data over the socket, all the socket buffers 
will get piled up on the socket receive queue. So, we can see 48 socket buffers 
queued up at a receive queue at line 66 in Fig.  19.5 . These buffers are linked by 
 next  and  prev  fi eld of the  sk_buff_head  object. We pick up the fi rst buffer from the 
receive queue and see what ’ s is in it from Fig.  19.6 .   

 When the buffer is queued on the sockets ’  receive queue, the protocol headers 
are already stripped. So, the  data  fi eld of the buffer ( sk_buff ) will be pointing to the 
TCP payload. The pointer to the  data  fi eld is accessed at line 72. We dump 18 bytes 
from the location pointed to by the  data  fi eld at line 75. We can see that the buffer 
contains same data —  ‘ I got the message ’  — at lines 76 – 77. 

  19.3.1   Route Information in   sk_buff   

 Each network buffer that traverses up the stack contains route information once it 
is routed. This will contain all relevant information about the route. The incoming 
packet may need to be forwarded. In this case, all the information about the outgo-
ing interface, along with other information about the route, is cached with the buffer 
itself. The information is available with a  dst  fi eld of  sk_buff  which is of type  dst_
entry . We get the address of cached route information in  sk_buff  at line 82 in 
Fig.  19.7 . This has a pointer to  net_device  object pointing to an outgoing interface 
pointed to by  dev  fi eld. We get a pointer to an outgoing interface at line 85. Next I 
cross - checked whether the interface is reported correctly by printing the name of 
the interface at line 87. The interface reported was correct, that is, eth0.     

  19.4   PEEP INTO SEND SOCKET BUFFER 

 Whenever we write data over the socket, it fi rst goes into the socket send buffer 
and is then transmitted from the send buffer. This is required for so many reasons, 
such as we may want to queue data for the socket even if we are not able to transmit 

    Figure 19.5.     Socket receive buffer.  

    Figure 19.6.     Network buffer ( sk_buff ) content.  
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it at once. Then we need to queue the transmitted segment until it is ACKed. The 
data are removed from the send socket buffer as soon as data are ACKed. We 
learned in Section  7.1  that the data from the application are broken into smaller 
segments before transmission. So, we will examine the send buffer of the socket 
where the application wrote data in small chunks of 1 mss size so that data are not 
overlapping. In every write, the application fi lls the buffer of 1 mss with the next 
alphabet. Let ’ s examine these buffers. 

 Figure  19.8  shows the complete path for reaching a socket ’ s send buffer 
( sk → write_queue ). The experiment is very simple where client and server programs 

    Figure 19.7.     Route information for network buffer,  sk_buff .  

    Figure 19.8.     Access socket send buffer.  



are running on two different hosts within LAN. We will be examining the socket ’ s 
send buffer and the send head ( tp → send_head ). Since there is no congestion and 
data are transmitted at high rate in LAN, packets are transmitted as soon as they 
are queued on the socket ’ s send queue. The data segments on the socket ’ s send 
queue are removed as soon as they are ACKed. Data are ACKed so fast in the LAN 
environment that however fast we examine the send buffer, there won ’ t be anything 
there to be examined. For the same reason, we tried a trick of unplugging the receiv-
ing end from the network for some time. In this duration, packets won ’ t be ACKed 
and we can easily examine the socket send buffer.   

 We fi nd a socket for the connection at line 377 in Fig.  19.8  for which an expla-
nation is already provided in Section  19.2 . Next we dump the send queue ( sk →
 write_queue ) for the buffer at line 398. We can see that two packets are queued on 
the send queue at line 402. At this point, the send head points to the next packet 
to be transmitted. This should point to the segment pointed to by  prev  in the  sk →
 write_queue  because the fi rst segment pointed to by the  next  fi eld of  sk → write_queue  
is already transmitted; and because the retransmit timer fi red, it has already been 
retransmitted. This is clear from lines 407 – 408 in Fig.  19.9 . Just after examining the 
socket ’ s send buffer, the receiver was plugged once again and all the data in the 
send queue were transmitted and ACK. So, a snapshot of the socket ’ s send queue 
dumped at line 414 shows that there is no segment in the queue for transmission in 
Fig.  19.9 . In this case, the send head points to NULL, which is not shown here.   

 Once again, the same step is repeated and the receiver is unplugged from the 
network. We fi nd there are two segments in socket ’ s send buffer in Fig.  19.10  at line 
427. We examine the contents of these segments. The  data  fi eld of the buffer points 
to the start of the data because no header is built at this point. Since the application 
is writing data in chunks of 1 mss, we don ’ t see any overlapping of data in the seg-
ments. The fi rst segment contains all  k  ’ s dumped at line 436, and second segment 
contains all  j  ’ s dumped at line 443.    

  19.5    TCP  SEGMENTATION UNIT 

 In this section we will see how a segmentation unit tries to make a full - length 
segment in the case where an application sends data for transmission and there 
exists a partial segment at the tail of the send queue. By full segment we mean 1 
mss segment. The experiment is the same as explained in Section  19.4 . The only 
difference is that instead of the application sending data in chunks of 1 mss, it is 

    Figure 19.9.     Send head pointing to next segment to send.  
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    Figure 19.10.     Examining data in the socket send buffers.  

sending data in much smaller chunks. The application writes 18 bytes of data each 
time the receiver is unplugged from the network. 

 The process to fi nd a socket is the same as discussed in Section  19.2 . We fi nd a 
socket for our connection at line 123 in Fig.  19.11 . We can see that there are two 
segments in the send queue at line 158. The fi rst segment pointed to by the  next  
fi eld of  sk → write_queue  is already transmitted; and because of timing out, it is 
retransmitted as well. So, this segment contains only 18 bytes of data indicated by 
the  len  fi eld of  sk_buff  dumped at line 154. The length of the next buffer in the send 
queue is dumped at line 165 and shows 342. On examining data in the buffers, it is 
found that the fi rst one contains  ‘  I got the message  ’  data (line 159) and the second 
buffer has the same data appended many times (line 168). Since the application is 
writing 18 bytes of data ( ‘  I got the message  ’ ) each time, TCP ’ s segmentation unit 
appends data to the buffer at the tail of the send queue since it is partial and is not 
creating new segment for each write. Once the other end is connected to the 
network, we can see that these two segments are transmitted and all the subsequent 
segments contain only 18 bytes of data because they are transmitted because soon 
as they are queued.    

  19.6   SEND CONGESTION WINDOW AND   ssthresh   

 In this section we will see how a congestion window changes with ACKs received 
when we send data in bulk. A simple experiment is carried out to check this behav-
ior. First we sent out one data segment at an interval of 1 second; in another 
program, 20 full - sized segment were sent out in the burst, and this is repeated at an 
interval of 10 seconds. The socket for the connection is accessed at line 620 
in Fig.  19.12 . The send congestion window ( snd_cwnd ) and the send slow - start 



    Figure 19.11.     Filling of partial segments to make it complete by segmentation unit.  
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threshold ( snd_ssthresh ) are state variables for TCP, as part of the  tcp_opt  object. 
The initial value of the congestion window is set to two (line 653), and the slow - start 
threshold is set to a very large value (line 655).   

 In the fi rst experiment where an application was sending 1 mss of data at an 
interval of 1 second, it was observed that the congestion window remained constant 
at two. The reason for this observation is that the congestion window is increased 
only if we are using a network at full capacity offered at any point in time. In this 
case the application sends out the next chunk of data only after ACK for the fi rst 
chunk of data is received. So, we are not saturating the network enough with our 
data transmission rate. 

 In the second experiment, an application is sending data in a burst of 20 full -
 sized segments. The application is stuffi ng in enough data to the TCP socket buffer 
so that next the data are ready by the time ACK for the fi rst data segment is 
received. In this case we can expect an exponential rise in the congestion window. 
Since the application is sending data in bursts, we can ’ t guarantee all the data from 
an application to be sent to the socket before it is scheduled out. Let ’ s see whether 
there is an exponential rise in the congestion window. Two snapshots are taken after 
the application sends out a burst of 20 full data chunks in 20 writes in Fig.  19.13 .   

 After the fi rst burst is sent out, the congestion window is incremented to 8 
where we are expecting some higher value. The reason for this is cumulative ACKs. 
The receiver is sending cumulative ACKs for 4, 3, and 2 data segments, which is 
not certain. Then we may not have data ready in the socket ’ s send queue at the 
time when ACKs arrive because the application may have scheduled out without 
sending out a complete burst of 20 full - sized data chunks in 20 writes. One can try 
out a small program that sends out a big data chunk of 20 mss in one write. Probably 
this may give us some higher value of congestion window at the end of full transmis-
sion of data.  

    Figure 19.12.      snd_cwnd  &  snd_ssthresh.   



  19.7   RETRANSMISSIONS AND ROUTE 

 A simple experiment was conducted to check how a number of retransmissions and 
routing information for the connection are related. Normal TCP connection is 
established and the peer is unplugged from the network. The application continues 
to send out data. Since we are on LAN, RTO will be much less. By the time we 
check the probe using lcrash, the number of retransmissions reaches 10 as shown 
in Fig.  19.14 , line 901. In this case, we have already retransmitted a segment 10 times 
and are still not able to get an ACK. The route for the connection has vanished for 
the socket, line 910. In the retransmit timer callback routine, we call  tcp_write_
timeout()  to check whether it is time to check the route for the connection. First we 
check whether the number of retransmits has exceeded  sysctl_tcp_retries1 . If so, we 
need to check the route for the connection if it is valid. Here we call  dst_negative_
advice() , which will update the route for the connection ( sk → dst_cache ). If the 
number of retransmits has exceeded  sysctl_tcp_retries2 , we need to close the con-
nection. The values of these two control parameters are checked out by using  fsyms 
lcrash  command as shown in Fig.  19.15 . We have exceeded  sysctl_tcp_retries1  which 
is 3, we check route for the connection. The route is found to be invalid because 
the destination is unreachable since the peer is not in the network. So, the socket ’ s 
route cache is made NULL by call to  ipv4_negative_advice() .    

  19.8   PEEPING INTO CONNECTION QUEUES AND  SYN  QUEUES 

 In this section we will see how connections are accepted and queued on the differ-
ent queues for a listening socket. The listening socket has two queues which is dis-
cussed in great detail in Section  (4.4) . These queues are accept queue and SYN 
queue. New requests are queued on the SYN queue; and once they are established, 
it is dequeued from the SYN queue and are queued on the accept queue. The 
number of requests that can be queued on the accept queue is defi ned by backlog 
parameter to the  listen()  system call, and by default it is 5. 

    Figure 19.13.      snd_cwnd  &  snd_ssthresh .  

    Figure 19.14.      Number of retransmissions and routing information .  
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 A simple server program is written which is run on the machine on which  lcrash  
is run to examine connection queues for the listening socket. The length of the 
accept queue is set to 1 from application using  listen()  syscall. From the other 
machine in the network, a number of connection requests are sent for this listen 
socket. We will examine both the accept queue and the SYN queue for this 
scenario. 

 An accept queue for the listening socket is pointed to by  accept_queue  fi eld of 
 tcp_opt  object. SYN queue queues all the open requests and is pointed to by the 
 syn_table  fi eld of the  tcp_listen_opt  object. The server program is running as  server_
do_nothing , and it doesn ’ t issue accept syscall. We get hold of the listening socket 
at line 231 in Fig.  19.16 . The state of the socket is unconnected, line 233.   

 Since the socket is in the listening state, 11 connection requests are issued for 
the listening socket. We examine the  tcp_listen_opt  object for the listening socket 
pointed to by the  listen_opt  fi eld of the  tcp_opt  object. We get hold of  tcp_listen_opt  
object at line 281 in Fig.  19.17 . It has queue management parameters and the SYN 
queue has table  syn_table  of type  open_request . The new connection request goes 
in this table fi rst. Once the three - way hand shake is over, a new socket is created 
for the connection request and the request is moved to the accept queue. If the 
accept queue is full, the connection request may be retained by the SYN queue so 
that later when connections are accepted from the accept queue, the established 
connections can make their way into the accept queue.   

 A snapshot of the connection requests shown in Fig.  19.17  indicates that there 
are a total of nine requests queued up in the SYN queue (line 287). None of these 
requests are young (line 288), which means that all the requests in the SYN queue 
have retransmitted SYN - ACK at least once. This may happen in two cases: 

   •      SYN - ACK is not getting ACKed.  
   •      The accept queue is full with Partial Connections (three - way TCP handshake 

not yet over).    

    Figure 19.15.     Retransmissions tries control parameters.  



 The timer is set to expire periodically once there is any connection request in 
the SYN queue. It removes old entries from the SYN queue once the entry has 
expired.  syn_table  is the actual SYN queue of  open_request . We can see all nine 
entries in the SYN queue. Let ’ s examine one of these in Fig.  19.18 . The  open_request  
object contains all the information for the connection request that is contained in 
the SYN segment. These will be TCP options, initial sequence number of both the 
ends, window size, and so on; the  acked  fi eld at line 341 indicates that the request 
has not yet received the fi nal ACK for the SYN sent. If this fi eld is set and the 
request is still on the SYN queue, it means that we accept that the queue is full, 
because of which we are here.   

 Let ’ s see the status of the accept queue. We set the accept queue length to 1, and 
for that reason the maximum number of requests that can be queued on the accept 
queue is 2. The fi rst request on the queue is examined at line 256. The  dl_next  fi eld 
is non - null, which means that there is one more request queued on the accept queue. 
The  dl_next  fi eld of the next request is NULL, which we have not shown here. The 
 Sk  fi eld points to the socket created for this request because the three - way hand-
shake for the connection is over and the connection is in an established state.    

  19.9   ROUTING AND  IP  Qos lcrash STEPS 

  19.9.1   lcrash Steps for Default Queueing Discipline 
in Linux  ( pfi fo _ fast )  

 In this section we will see the data structures for the queueing discipline, as well as 
how the default Linux queueing discipline is set up. Linux uses  pfi fo_fast  as the 

    Figure 19.16.     Reaching listening socket.  
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    Figure 19.17.      SYN Queue table.   

    Figure 19.18.     Open request entry in the SYN queue.  



default queueing discipline for enqueueing the packets before transmitting them to 
the interface. 

 First we can fi nd out the  net_device  structure for the interface from Fig.  19.20 . 
For this, we get the address of the  dev_base  list using the fsym command in lcrash 
at line 14 where the  dev_base  symbol is a list that contains the  net_device  for each 
network interface in the system. Then we can walk through the  dev_base  list to fi nd 
out the required  net_device  struct. In our case we are looking for eth1 network 
device, so we walk through the device list. We can see this from lines 20 – 27, and 

    Figure 19.19.     Established connection in the accept queue.  

    Figure 19.20.     Examine net_device objects in the system.  
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fi nally we print the  net_device  struct for the required device at line 28. Basically we 
are looking for the qdisc data structure address from the  net_device  struct, which is 
at line 184. The qdisc data structure of the  net_device  represents the queueing 
discipline for that network interface.   

 Using the qdisc object address from the  net_device  struct here, we are 
checking the enqueue fi eld, which is a function pointer, this got initialized to the 
 pfi fo_fast_enqueue( )  function when the Linux system booted up. This function gets 
called for enqueueing the packets. From Fig.  19.21  we access the qdisc object and 
then check the value for the enqueue fi eld at line 228. Then, using this address of 
the enqueue fi eld, we check for which function is pointing to the enqueue fi eld at 
line 261.   

 The data fi eld from the qdisc object in Fig.  19.21  is an anonymous pointer 
which is a place holder for the private data structures of the queueing discilpline. 
In the case of default  pfi fo_fast  queueing discipline, this data fi eld points to the 
array of  sk_buff_head  structures. Basically, this contains the three different FIFO 
queues (different bands) for enqueueing the packets based on the priority: FIFO 0, 
FIFO 1, and FIFO 2. In the next section, we will see how we can access these 
FIFOs. 

 For accessing the array of the  sk_buff_head  objects for qdisc from Fig.  19.22 , 
we fi rst get the size of Qdisc struct at line 268 which is 0x5c bytes. The data fi eld of 
the qdisc object contains the private data structures of the queueing discilpline, in 
this case it is an array of three  sk_buff_head  data structures. To access the fi rst 
element of the array, we use the sizeof value of the qdisc object (i.e., 0x5c) as an 
offset from the base address of the qdisc object. After adding this offset value to 
the base address of the qdisc object at line 278, we can acccess the fi rst  sk_buff  head 
struct (FIFO 0) for the  pfi fo_fast  queueing discilpline.   

 For accessing the next element of the array, we calculate the size of the  sk_buff_
head  struct, which is 0   x   0c bytes. By adding this value to the base address of the 
 sk_buff_head  array, we get the second the  sk_buff_head  structure (FIFO 1 ) at line 
297. Then again adding the size two  sk_buff_head  structures to the base address of 
the  sk_buff_head  array, we get the third  sk_buff_head  structure (FIFO 2 ) at line 
306 from Fig.  19.23 .     

    Figure 19.21.     Examine enqueue and dequeue call back routine for Qdisc.  



  19.10    CBQ  (CLASS - BASED) QUEUEING DISCIPLINE lcrash STEPS 

 In this section we are going to see the data structures for the CBQ queueing disci-
pline in lcrash.
  Commands for Setting Up  CBQ  Queueing Discipline 

    # tc qdisc add dev eth1 root handle 1: cbq bandwidth 10   Mbit cell 8 avpkt 1000 
mpu 64  

  # tc class add dev eth1 parent 1   :   0 classid 1   :   1 cbq bandwidth 10   Mbit rate 10   Mbit 
allot 1514 cell 8 weight 1   Mbit prio 8 maxburst 20 avpkt 1000  

  # tc class add dev eth1 parent 1   :   1 classid 1   :   2 cbq bandwidth 10   Mbit rate 2   Mbit 
allot 1514 cell 8 weight 100   Kbit prio 3 maxburst 20 avpkt 1000  

  # tc class add dev eth1 parent 1   :   1 classid 1   :   3 cbq bandwidth 10   Mbit rate 8   Mbit 
allot 1514 cell 8 weight 800   Kbit prio 5 maxburst 20 avpkt 1000    

 We will check the CBQ confi guration for u32 and route fi lters separately. The 
next section starts with how u32 fi lters are confi gured. (see Figure  19.24 )  

  19.11    U 32 FILTERS 

  Commands for Setting Up  u 32 Filters 
     # /root/work/iproute/iproute2 - ss050607/tc/tc fi lter add dev eth1 parent 1   :   0 pro-

tocol ip prio 1 u32 match ip dst 192.168.2.101 match ip sport 23 0xfff fl owid 
1   :   2  

    Figure 19.22.     Examine sk_buff ’ s queued on Qdisc.  
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    Figure 19.23.     Examine sk_buff ’ s Queued on Qdisc (contd.).  

  # /root/work/iproute/iproute2 - ss050607/tc/tc fi lter add dev eth1 parent 1   :   0 pro-
tocol ip prio 1 u32 match ip dst 192.168.2.102 match ip sport 80 0xfff fl owid 
1   :   3    

 Here the fi lter is set up for traffi c classes — that is, class 2 and class 3. 
 If the destination is IP 192.168.2.101 and the source port is 23, then the packet 

that matches this specifi cation must be queued in class 2. 

    Figure 19.24.     CBQ setup  .  



 If the destination is IP 192.168.2.102 and the source port is 80, then the packet 
that matches this specifi cation must be queued in class 3. 

 First we can fi nd out the  net_device  structure for the interface from Fig.  19.25 . 
For this, we get the address of the  dev_base  list using the fsym command in lcrash 
at line 53, where  dev_base  symbol is a list that contains the  net_device  for each 
network interface in the system. Then we can walk through the  dev_base  list to fi nd 
out the required  net_device  struct. In our case we are looking for eth1 network 
device, so we walk through the device list. We can see this from lines 59 – 65, and 
fi nally we print the  net_device  struct for the required device at line 67. Basically we 
are looking for the qdisc data structure address from the  net_device  struct, which is 
at line 223. The qdisc data structure of the  net_device  represents the queueing dis-
cipline for that network interface. In this case it is the CBQ queueing discipline.   

 Using the qdisc object address from the  net_device  struct here, we are checking 
the enqueue fi eld, which is a function pointer; this got initialized to the  cbq_enqueue
( )  function when the Linux system booted up. This function gets called for enqueue-
ing the packets. From Fig.  19.26  we access the qdisc object and then check the value 
for the enqueue fi eld at line 267. Then using this address of the enqueue fi eld, we 
check for which function is pointing to the enqueue fi eld at line 300.   

 The data fi eld from the qdisc object in Fig.  19.26  is an anonymous pointer which 
is a place holder for the private data strucutures of the queueing discilpline. In 
the case of CBQ queueing discipline, this data fi eld points to the  cbq_sched_data  

    Figure 19.25.     Access qdisc fi eld for net_device object.  
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structure. Basically, the  cbq_sched_data  struct contains the information about the 
classes setup,  fi lter_list  confi gured for the classes, and so on. 

 The  cbq_sched_data  struct contains the information about the classes in CBQ. 
We can see from Fig.  19.27  that it contains an array of classes ( cbq_class  struct) 
which are confi gured for CBQ queueing discipline. In this case we confi gured a 
parent qdisc class 1   :   0 at line 309; this parent qdisc class has a child class 1   :   1 at line 
310, and this child class has again two child classes 1   :   2 and 1   :   3 at lines 311 and 312. 
The basic structure for this hierarchy is shown in Fig.  19.24 .   

 Then we can see the fi lter is set for this class hierarchy. At line 401 the  fi lter_list  
fi eld of  cbq_sched_data  struct contains the address of the root data structure of the 
u32 fi lter. 

 To see the information in the  cbq_class  structure, we just checked the parent 
qdisc class information in Fig.  19.28 . We can see the classid of the class at line 476 and 

    Figure 19.26.     Examine enqueue routine for Q discipline.  

    Figure 19.27.     Access list of classes for cbq queueing discipline.  



then the priority of the class at line 477; and we can also see if this class has any 
children or not at line 499, qdisc for the class at line 500, and fi nally the  fi lter_list  at 
line 526.   

 Using the  fi lter_list  address from the parent qdisc class, we check the root data 
structure for fi lter which is  tcf_proto  structure in Fig.  19.29 .   

 This structure contains the information about which type of fi lter is confi gured. 
In this case it is u32 fi lter. This we have verifi ed by checking the function pointer 
classify at line 553 and then checking the symbol at this address, which is  u32_clas-
sify()  function at line 562. Then using the root fi eld value, we check the  tc_u_hnode  
structure at line 571 which maintains a table of  tc_u_knode  structure at line 578 for 
each u32 fi lter. 

 Using the address of the fi rst entry from the ht[ ] table of the  tc_u_hnode  struct, 
we check the  tc_u_knode  struct at line 595 in Fig.  19.30 . This tc_u_knode struct 
contains the address of next knode struct at line 597. The struct  tcf_result  at line 
601 contains the information about the class for which the fi lter is set. The struct 
 tc_u32_sel  at line 606 contains the information about the number of fi lters set at 
line 609 and about the  tc_u32_key  struct for each fi lter at line 615.   

 Using the sizeof value for struct  tc_u_knode.sel  (exact offset of struct  tc_u32_sel  
in struct  tc_u_knode ) and the sizeof value for struct  tc_u32_sel , we check the exact 
values of keys array of struct  tc_u_knode . nkeys from Fig.  19.30  represents the 
number of elements for keys array. In this case, one for IP addr and the other for 
sport. So we check the fi rst element of keys array, which is a struct  tc_u32_key  at 
line 673 for IP addr and then again at line 681 for sport in Fig.  19.31 .   

 We repeated the same procedure as above for checking the u32 fi lter data 
structure for class 1   :   3 in Figs.  19.32  and  19.33 .    

  19.12   ROUTE FILTERS 

  Commands for Setting Up the Route Filter 
     [root@localhost root]# ip route add 192.168.2.101 via 192.168.2.100 realm 2  
  [root@localhost root]# ip route add 192.168.2.102 via 192.168.2.100 realm 3  

    Figure 19.28.     Examine cbq - class object.  
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    Figure 19.29.     Access tc_u_hnode object from tcf_proto pointer.  

  [root@localhost root]# tc fi lter add dev eth1 parent 1   :   0 protocol ip prio 100 
route to 3 fl owid 1   :   3  

  [root@localhost root]# tc fi lter add dev eth1 parent 1   :   0 protocol ip prio 100 
route to 2 fl owid 1   :   2    

 Here we are setting up the route fi lter based on the destination IP addresses 
192.168.2.101 and 192.168.2.102. If the destination of the packet is 192.168.2.101, 
then this packet is enqueued in class 2. If the destination of the packet is 
192.168.2.102, then this packet is enqueued in class 3. 

 We are using the ip and tc commands for setting up the route - based fi lter for 
each class. 

 The ip command will update the forwarding information base (FIB) database 
with the realm setting for the class. 

 The tc command will update the route fi lter data structure with the classid for 
the particular realm.  



    Figure 19.30.     Access fi lter key for class 1   :   2.  

  19.13   FIB TABLE lcrash OUTPUT FOR SETTING UP THE REALM 
USING  ip  COMMAND 

 From Fig.  19.34 , fi rst we fi nd out the address of the  fi b_tables  global variable, which 
is defi ned as an array of  fi b_table  struct. Using the fsym command at line 48, we get 
the address of  fi b_tables . Then using this address, we dump the 255 words (32 - bit) 
to get the address of  fi b_table , which is a default routing table when the system 
comes up. At location 255 from the dumped output, we get the address of  fi b_table  
at line 118. Using print command at line 119, we print the contents of the  fi b_table . 
We can see the table id at line 121, and then we can see the insert function pointer 
pointing to function address at line 124; in this case it is pointing to fn_hash_insert() 
function this we can see at lines 133 – 136. The data pointer of fi b_table struct at lines 
130 is a place holder for private data structures of FIB database. This data pointer 
is pointing to the fn_hash struct of the FIB database which contains information 
about the different zones.   

 Using the size of the struct  fi b_table , which is 0 × 24 bytes, we print the contents 
of  fn_hash  structure (data fi eld of  fi b_table  struct) at line 139 in Fig.  19.35 .  fn_hash  
struct contains array of  fn_zone  structures and the  fn_zone_list . Each element in 
the  fn_zones  array represents each bit in the netmask (32 - bit) fi eld. We added the 
realms using 32 - bit netmask values, so the 32nd element of the  fn_zones  array con-
tains the address of  fn_zone  structure for this entry of the routing table at line 
174.   
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    Figure 19.31.     Examining fi lter keys for class 1   :   2.  

 Next we print the contents of fn_zone struct at line 179 in Fig.  36 . The  fn_zone  
struct contains a pointer to the hash table at line 182, a hash table divisor value at 
line 184, a hashmask for the hash table indexing at line 185, an order of the hash 
table at line 186, and the netmask of the zone at line 187.   

 Then using the pointer address of the  fi b_node  hash table, we dump the 16 
words (32 - bit) to get the address for the  fi b_node  struct, which contains the  fn_info  
struct that represents the routing table entries. Here the array of  fi b_node  is initial-
ized and contains the  fi b_node  addresses at 12th and 15th index of the array. We 



    Figure 19.32.     Access fi lter key for class 1   :   3.  

    Figure 19.33.     Examining fi lter keys for class 1   :   3.  

start with the fi rst  fi b_node  address from the array at line 195. The  fi b_node  struct 
contains the address of  fn_info  struct at line 198. Then the key value is the destina-
tion address at line 200. Also we can fi nd the values of tos, type, scope, and state 
at lines 202 – 205. 
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    Figure 19.34.     Examining fi b_tables.  

    Figure 19.35.     Examining fn_hash object from fi b_table.  



    Figure 19.36.     Examining fi b_node object from fn_zone.  

 Then using the  fn_info  address from the  fi b_node  struct in Fig.  19.37  at line 208, 
we print the contents of the  fn_info  struct. The  fn_info  struct contains another data 
structure  fi b_nh  at line 235, which has the routing table entries, and the fi eld  fn_nhs  
value at line 232 informs about how may  fi b_nh  struct entries are present in the 
array of  fi b_nh  table at line 234.   

 And fi nally we print the contents of the  fi b_nh  struct from the array of  fi b_nh  
table at line 248 using the sizeof value of  fi b_info  struct to get the exact offset from 
the base address of  fi b_info  struct. The  fi b_nh  struct contains the information for 
the  net_device  at line 250 and contains fl ags, scope, weight, and power at lines 
251 – 254. 

 The realm value that we set from the command line is at line 255, and the 
gateway address is at line 257. 

 To check the realm value for class 2 again, the same procedure as above is 
followed. We can the see Fig.  19.38  to check the realm value for class 2.    

  19.14   lcrash OUTPUT FOR SETTING UP ROUTE FILTER 
USING  tc  COMMAND 

 First we can fi nd out the  net_device  structure for the interface from Fig.  19.39 . For 
this, we get the address of the  dev_base  list using the fsym command in lcrash at 
line 63, where  dev_base  symbol is a list that contains the  net_device  for each network 
interface in the system. Then we can walk through the  dev_base  list to fi nd out the 
required  net_device  struct. In our case we are looking for the eth1 network device, 
so we walk through the device list. We can see this from lines 69 – 76, and fi nally we 
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print the  net_device  struct for the required device at line 77. Basically, we are 
looking for the qdisc data structure address from the  net_device  struct, which is at 
line 233. The qdisc data structure of the  net_device  represents the queueing disci-
pline for that network interface.   

 Using the qdisc object address from the  net_device  struct in Fig.  19.40 , we are 
checking the enqueue fi eld, which is a function pointer; this got initialized to the 
 cbq_enqueue( )  function when the Linux system booted up. This function gets called 
for enqueueing the packets. From Fig.  19.39  we access the qdisc object and then 
check the value for the enqueue fi eld at line 277. Then using this address of the 
enqueue fi eld, we check for which function is pointing to the enqueue fi eld at line 
310.   

 The data fi eld from the qdisc object in Fig.  19.40  is an anonymous pointer which 
is a place holder for the private data strucutures of the queueing discilpline. In the 
case of CBQ queueing discipline, this data fi eld points to the  cbq_sched_data  struc-
ture. Basically, the  cbq_sched_data  struct contains the information about the classes 
setup,  fi lter_list  confi gured for the classes, and so on. 

    Figure 19.37.     Accessing fi b_nh object from fi b_info for realm 3.  



 The cbq_sched_data struct contains the information about the classes in CBQ. 
We can see from Fig.  19.40  that it contains an array of classes ( cbq_class  struct) 
which are confi gured for CBQ queueing discipline. In this case we confi gured a 
parent qdisc class 1   :   0 at line 319; this parent qdisc class has a child class 1   :   1 at line 
320, and this child class has again two child classes 1   :   2 and 1   :   3 at lines 321 and 322. 
The basic structure for this hierarchy is shown in Fig.  19.24 . 

    Figure 19.38.     Accessing fi b_nh object from fi b_info for realm 2.  
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    Figure 19.39.     Access qdisc object for net_device.  

    Figure 19.40.     Accessing cbq_class objects for queue discipline.  



 To see the information in the  cbq_class  struct, we just examined the parent 
qdisc class information in Fig.  19.41   . We can see (a) the classid of the class at line 486, 
(b) the priority of the class at line 487, and (c) whether this class has any children or 
not at line 509, (d) the qdisc for the class at line 510, and (e) the  fi lter_list  at line 
536.   

 Using the  fi lter_list  address from the parent qdisc class, we check the root data 
structure for the fi lter, which is  tcf_proto  struct in Fig.  19.41 . 

 This structure contains the information about which type of fi lter is confi gured. 
In this case, it is route fi lter. We have verifi ed this by checking the function pointer 
classify at line 563 and then checking the symbol at this address, which is  route4_
classify()  function at line 573. 

 The  route4_head  data structure contains the hash table of type struct  route4_
bucket , and this  route4_bucket  data structure again maintains a table for 
 route4_fi lter . 

    Figure 19.41.     Examining tcf_proto object for class1   :   0.  
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    Figure 19.42.     Examining route4_fi lter for class 1   :   2.  

 Using the root fi eld value from  tcf_proto  struct, we can see the contents of 
 route4_head  data structure at line 579 in Fig.  19.42 . This  route4_head  data structure 
maintains a hash table. From lines 666 – 667 we can see the values for new  route4_
bucket  structure for class 2 and class 3.   

 Based on the address at line 666, we can see the contents of  route4_bucket  
struct at line 924 which again maintains a table of  route4_fi lter  struct. This 
 route4_fi lter  struct contains the information about the class. The  tcf_result  struct 
contains the information about the class address and the class id at lines 969 and 
970. 

 Figure  19.43  shows the lcrash output for the class 3 route fi lter; again the same 
procedure as explained above is followed.    



    Figure 19.43.     Examining route4_fi lter for class 1   :   3.  

  19.15   NETLINK DATA STRUCTURE 

  19.15.1     nl _ table   

  nl_table  is an array of pointers to sock structure. Each element of  nl_table  array 
represents a NETLINK protocol family — for example,  NETLINK_ROUTE, 
NETLINK_FIREWALL , and so on. From Fig.  19.44  we can see how we got the 
pointer address to the  nl_table  lines 42 – 45. Then by derefrencing the pointer address 
we get the fi rst sock element of the  nl_table . Here we are just checking the sock 
structure for the  data_ready  function pointers and to which function it is pointing.    

  19.15.2     rtnetlink _ link   

  rtnetlink_links  is defi ned as an array of pointers to  rtnetlink_link  data structure. Each 
 rtnetlink_link  data structure corresponds to a rtnetlink command — for example, 
RTM_NEWQDISC, which is a command for adding new qdisc. Figure  19.45  shows 
the lcrash steps for accessing the  rtnetlink_links  table.     
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    Figure 19.44.     Examine nl_table.  



  19.16   SUMMARY 

  lcrash  is a very powerful tool to analyze Linux crash dumps. 
  dwarfextract  is lcrash utility to generate kerntypes for the complete set of kernel 

datatypes. This comes with the 7.0.1 - 27 version of  lkcdutils . 
  fsyms  command can be used to get the address for kernel global symbols. 
 Double pointers can be dereferenced by using the  dump  command as is shown 

in Fig.  19.2 , where a fi le table is dumped. 
 Kernel data structures are complex in nature and they need to be very clearly 

traversed in small steps as is illustrated in different sections.                                                                                                   

    Figure 19.45.     Examine  & rt_netlinkLinks.  
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 NEXT EDITION      

  KERNEL 2.6 DESCRIPTION 

 This chapter discusses TCP/IP implementation on kernel 2.6. There are not many 
changes as far as basic framework and design are concerned. TCP/IP stack imple-
mentation has evolved over the period and with every release. These changes will 
be with respect to the performance enhancement or introduction of new features 
or congestion control algorithms. For example, in 2.6 there is a new feature added 
from 2.6.18 onward to DMA TCP data to the user buffer ( CONFIG_NET_DMA ). 
This is also called receive offl oading, where copying of socket data from the kernel 
to the user buffer is done by programing the DMA channel, hence saving a lot of 
CPU cycles by offl oading the job to the DMA engine; this is also known as I/OAT 
DMA. This feature requires some modifi cations to the device layer, the TCP layer, 
and the socket layer, which will be discussed in detail. 

 Kernel is preemptive though not completely preemptive. There are preemption 
points within the kernel where high - priority tasks can cause the kernel to preempt. 
When we enter a critical region within the kernel, we disable preemption; and while 
exiting, we enable kernel preemption. While enabling preemption, we check whether 
rescheduling is required. If so, a scheduler is called. The scheduler checks whether 
the preempting thread has higher priority than the currently running thread. If so, 
it preempts the kernel; otherwise, not. This topic is discussed in detail.  
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   UDP  

 We have not discussed UDP sockets from the point of view of application and 
kernel implementation. We will see how basic UDP client and server program is 
written. Since UDP is a connectionless protocol, it does not need to initiate and 
close connection for every interaction between the two ends. The client just needs 
to know the port number and the IP address of the server to which it sends a 
message, and that is it. The life cycle of the UDP connection involves just sending 
a message to the server, and the server needs to take action. The UDP echo client –
 server application requires two packets to be exchanged between the client and the 
server. One UDP packet is sent from the client to the server, and the other packet 
is an echo message back from the server to the client. If it were TCP, three packets 
are required to initiate the connection, minimum three packets for closing the con-
nection and 2 packets for echo request and response. So, a total of minimum eight 
packets are required in the case of TCP to complete an echo request and a response 
connection life cycle. But UDP is an unreliable protocol unlike TCP, which keeps 
account of each byte received at the other end. In all, UDP is a lightweight protocol 
and is used for a very different type of communication. 

 In the next revision we will discuss different aspects related to the UDP proto-
col and will also discuss kernel implementation of UDP sockets. We will see how 
UDP packets are handled by the kernel. Then we will see how a socket is recognized 
corresponding to the UDP packet — that is, what hash tables are looked up for UDP 
connections.  

  MULTICASTING AND BROADCASTING 

 Until now we have seen connections that send and receive packet to and from a 
single host. There are different applications that have the requirement of sending 
a message from one point to many hosts in or even outside the network. For 
example, when a diskless client is booting, it needs to know about its own IP address. 
In such cases, it sends out a broadcast RARP message to all the hosts in the subnet. 
The machine that knows its IP address will respond and sends back a unicast reply 
to the originator of the machine. There are many different applications that require 
messages to be sent out to multiple hosts, and this is possible because of the broad-
casting technique. The UDP protocol supports the broadcasting of messages while 
TCP doesn ’ t. 

 In the similar way, there are requirements that require sending messages to 
multiple hosts but not all hosts in the subnet. This is also possible with the help of 
the multicasting technique. This requires multicast message receivers to register 
themselves with the kernel to receive multicast messages destined for specifi c mul-
ticast addresses. The biggest example is the SAP or routing daemons. Once again, 
UDP supports multicasting and TCP doesn ’ t because the latter is a connection - ori-
ented protocol, which means that the two ends are fi xed. 

 We will discuss broadcast and multicasting on UDP protocol, how Ethernet 
addresses are mapped to multicast addresses, and how applications register with the 
kernel to receive messages destined for specifi c multicast address.  
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  FRAGMENTATION AND REASSEMBLY 

 We have already discussed fragmentation and reassembly in this version of the book 
but not in much detail. In the next version we will see complete implementation of 
fragmentation and reassembly unit.  

   IP  FORWARDING 

 Forwarding is functionality implemented at the router. Linux can act as a fully 
functional router. Link layer header modifi cations may be required before forward-
ing a frame to the outgoing interface. In the next version we will see at what point 
we come to know that the packet needs to be forwarded, and we will learn how to 
handle those packets.  

  ADDING NEW INTERFACE 

 We will learn how  ifconfi g  works within the kernel and how to interact with the 
network devices. We will also learn how to confi gure virtual interfaces for the single 
physical network interface.  

   I  pv 6 

 Ipv6 will be explained in complete totality, and its implementation in the kernel 
will be covered comprehensively.         



763

 BIBLIOGRAPHY     

TCP/IP Architecture, Design, and Implementation in Linux. By S. Seth and M. A. Venkatesulu
Copyright © 2008 the IEEE Computer Society

       Maurice J.   Bach  ,  Design of the UNIX Operating System ,  Prentice - Hall ECS Professional , 
 Englewood Cliffs, NJ ,  1986 .  

    Christian   Benvenuti  ,  Understanding Linux Internals , O ’ Reilly,  2005 .  
    Daniel P.   Bovet   and   Marco   Cesati  ,  Understanding the Linux Kernel ,  Second Edition ,  O ’ Reilly , 

 2003 .  
  Intel  ®   64 and IA - 32,   Architectures Software Developer ’ s Manual  , Vol. 3A:  System Program-

ming Guide .  
    Mike   Fisk   and   Wu - chun   Feng  ,   Dynamic Adjustment of TCP Window Sizes  , Los Alamos 

Unclassifi ed Report LA - UR  00 - 3321 ,  2000 .  
    Matthew   Mathis   et al.,  Forward Acknowledgment: Refi ning TCP Congestion Control ,  Pitts-

burgh Supercomputing Center, ACM ,  1996 .  
    W. Richard   Stevens  ,  TCP/IP Illustrated , Vol.  1 : The Protocols,  Addison - Wesley ,  Reading, MA , 

 1994 .  
    W. Richard   Stevens  ,  Advanced Programming in the UNIX Environment ,  Addison - Wesley , 

 Reading, MA ,  1992 .  
    Richard   Stevens  ,   Bill   Fenner  , and   Andrew M.   Rudoff  ,  Unix Network Programming , Vol.  I , 

 Prentice - Hall, India ,  2005 .  
    Richard   Stevens  ,  Unix Network Programming , Vol.  II ,  Prentice - Hall, India ,  2002 .  
   RFC   1388 :   G.   Malken   et al.,  RIP version 2 Carrying Additional Information ,  1993 .  
   RFC   1247 :   J.   May   et al.,  OSPF version 2 ,  1991 .  
   RFC   1349 :   P.   Almquist  ,  Type of Service in the Internet Protocol Suite ,  1992 .  
   RFC   1122 :   R.   Braden  ,  Requirement for Internet Hosts — Communication Layer ,  1989 .  
   RFC   2018 :   M.   Mathis   et al.,  TCP Selective Acknowledgement Options ,  1996 .  
   RFC   1323 :   V.   Jacobson   et al.,   TCP Extensions for High Performance  ,  1992 .  
   RFC   2581 :   M.   Allman   et al.,   TCP Congestion Control  ,  1999 .  
   RFC   2582 :   S.   Floyd   et al.,   The NewReno Modifi cation to TCP ’ s Fast Recovery Algorithm  , 

 1999 .  
   RFC   2883 :   S.   Floyd   et al.,   An Extension to the Selective Acknowledgement (SACK) Option 

for TCP  ,  2000 .  
   RFC   2988 :   V.   Paxson   et al.,   Computing TCP ’ s Retransmission Timer  ,  2000 .  
   RFC   4138 :   P.   Sarolahti   et al.,   Forward RTO - Recovery (F - RTO)  ,  1995 .  
   RFC   3522 :   Reiner   Ludwig   et al.,   The Eifel Detection Algorithm for TCP  ,  2003 .  
   RFC   791 :   Internet Protocol  ,  1981 .  
   RFC   793 : Transmission control protocol,  1981 .  
    Pasi   Sarolahti  et al ., FRTO — A New Recovery Algorithm for TCP Re - transmission Timeouts, 

University of Helsinki, 7C - 2002 - 07,  2003 .  



764 BIBLIOGRAPHY

  WEBSITES 

    Werner   Almesberger  , Linux Network Trac Control  |  Implementation Overview,  www.sim-
pleweb.org/bibliography/articles/general/alm9904.pdf .  

  Differentiated Services on Linux,  http://diffserv.sourceforge.net/ .  
    S.   Floyd   and   V.   Jacobson  , References On CBQ (Class - Based Queueing),  http://ftp.ee.lbl.gov/

fl oyd/cbq.html .  
    Netlink Sockets   Tour  ,  http://www.skyfree.org/linux/kernel_network/netlink.html .  
    Kernel   Korner   — Why and How to Use Netlink Socket,  http://www.linuxjournal.com/

article/7356 .  
  tc - cbq - details(8) Linux man page,  http://linux.die.net/man/8/tc-cbq-details .  
  Linux 2.4 Advanced Routing HOWTO,  http://www.linuxdocs.org/HOWTOs/Adv-Routing-

HOWTO.html#toc8 .  
  Lcrash Howto,  http://lkcd.sourceforge.net/ .  
   http://devresources.linux-foundation.org/dev/iproute2/download/ , iproute2 (tc) source.  
   http://lxr.linux.no/ , Linux source.  
   http://www.kerne.l.org/ , download Linux source.  

   http://lkcd.sourceforge.net/ , lcrash.   

 



765

INDEX

Page numbers followed by f indicate fi gures

estimator, 625–626
general scheduler, 624
link-sharing scheduler, 625
from net/dev/core.c, 626
qdisc_restart(), 626–627
qdisc_run(), 626

CBQ queuing discipline Icrash STEPS, 739
Class-based Queuing (CBQ), 622
Client side setup, 164f

client side operations, 164
connect, 164–167, 165f, 166f
fl ow control for connection request, 

167–170, 168f, 169f
ip_route_connect(), 167
tcp_connect, 174–176, 175f
tcp_transmit_skb(), 176–178
tcp_v4_check_established(), 171–174
tcp_v4_connect(), 167
tcp_v4_hash_connect(), 170–171

Compatibility framework
FW_ACCEPT and FW_SKIP, 647
fw_in(), 645–647
FW_MASQUERADE, 647
FW_REDIRECT, 647
FW_REJECT, 647

Connection queues, 733–735
Connection request handling, 151–154, 

152f, 154f
accept queue processing, 155–156
fl ow control for handling a new 

connection request, 156
SYN queue processing, 155

Connection setup
BIND, 124–125, 124f
bind(), 130
end of fget(), 131
end of inet_bind(), 137
end of sockfd_lookup(), 131

TCP/IP Architecture, Design, and Implementation in Linux. By S. Seth and M. A. Venkatesulu
Copyright © 2008 the IEEE Computer Society

A
Accept systemcall, 157–159, 157f, 158f

fi le table entry, 162
fl ow control, 162–163
inet_accept(), 159–161, 160f, 161f
inode and socket data structures linking, 

161–162
VFS and socket data structures linking, 

162
Application interfaces for TCP/IP

client application, 27–29, 28f
option values

SO_BROADCAST, 30
SO_DEBUG, 29–30, 30f
SO_DONTTROUTE, 33
SO_KEEPALIVE, 31, 32f
SO_LINGER, 31–32
SO_OOBINLINE, 32
SO_RCVBUF, 33
SO_RCVTIMEO, 33–34, 34f
SO_REUSEADDR, 31
SO_SNDBUF, 32–33
SO_SNDTIMEO, 34–35, 35f

server application, 25–27, 26f
socket options, 29

ARP/RARP, 97–98, 97f, 98f

B
Basic implementation, 1–2
BGP. See Border Gateway Protocol
Border Gateway Protocol (BGP), 90

C
CBQ. See Class-based Queuing
CBQ_dequeue(), 623f, 624f

cbq_dequeue(), 627–629
cbq_dequeue1(), 629
cbq_dequeue_prio(), 629–632



766 INDEX

EWMA. See Exponential Weighted 
Moving Average

Exponential Weighted Moving Average 
(EWMA), 625

F
FIB. See Forwarding Information Base
FIB TABLE Icrash OUTPUT, 745–749, 

746f, 747f, 748f
Filters, 615–616

route fi lter implementation, 617f
route4_change(), 618–619

tc_ctl_tfi lter(), 613f, 611613
types of, 610
u32_change(), 615–616
u32 fi lter implementation, 614f

Forwarding Information Base (FIB), 540
Fragmentation and reassembly, 761

I
ICMP, 94f

ping, 95–96, 95f, 96f
Icrash output for route fi lter, 749–755, 750f, 

751f, 752f, 753f, 754f
Ikcd source and patches, 724
INET_CREATE, 111f
I/O

read(), 38, 38f
recv(), 38, 38f
select(), 39, 39f
send(), 39, 39f
write(), 38, 38f

IP chains
defi nition of, 647
fi ltering with Ipchains, 648–649, 649f
Ipchain rules chains, 649
IP tables

fi ltering packets, 664–668
fi lter rules, 657–658
ipt_do_table(), 664–668
ipt_match-iterate, 668
registration of, 657
struct ipt_entry, 661–662
struct ipt_entry_match, 662–663
struct ipt_entry_target, 664
struct ipt_standard_target, 664
struct ipt_table, 658
struct ipt_table_info, 658–661, 660f
struct ipt_tcp, 663–664

packet fi ltering
ip_fw_check(), 653–655
ip_rule_match(), 655

struct ip_chain, 649–650

Connection setup (cont’d)
end of tcp_v4_get_port(), 137
fget(), 131
hash buckets for tcp Bind, 125
inet_bind(), 131–133
related data structures, 125
server side operations, 124
server side setup, 122–124, 123f
sockfd_lookup(), 130
sys_bind(), 130
tcp_bhash, 125–126
tcp_bind_bucket, 129–130
tcp_bind_confl ict(), 135–136, 136f
tcp_bind_hashbucket, 129
tcp_ehash, 125
tcp_hashinfo, 126–127, 127f
tcp_listening_hash, 125
tcp_v4_get_port(), 133–135

Core TCP processing, 444f

D
Data fl ow diagram, 284f–290f
Data segments processing, 424–433

DSACK block and, 430, 430f, 431f
implementation, 425
tcp_ofo_queue(), 436–441, 437f, 439f, 

440f
tcp_sack_extend(), 435–436
tcp_sack_maybe_coalesce(), 434–435
tcp_sack_new_ofo_skb(), 433–434
tcp_sack_remove(), 441–442

Delay ack timer
ACK segments ending of, 344–345
quick ACK mode, 345
scheduling of, 344
tcp_ack_snd_check(), 346–347
_tcp_ack_snd_check(), 345–346
tcp_clear_xmit_timer(), 352–353
tcp_delack_timer(), 348–349
tcp_reset_xmit_timer(), 349–351
tcp_send_delayed_ask(), 347–348
tcp_write_timer(), 351–352

Duplicate/partial ACKs in loss state
tcp_check_sack_reneging(), 455–456
tcp_try_undo_loss(), 453–455

Duplicate/partial ACKs in recovery state
tcp_remove_reno_sacks(), 450–451
tcp_try_undo_partial(), 451–452

E
Enqueue

cbq_classify(), 621
cbq_enqueue(), 620–621



INDEX 767

struct ip_fw, 651–652
struct ip_fwkernel, 650–651
struct ip_reent, 651
table organization in, 652f

IP forwarding, 761
IP (Internet protocol)

IP header
checksum, 89
dst addr., 90
fl g., 89
frag offset, 89
hlen, 88
ID, 89
prot., 89
src addr., 90
TOS, 88
total len, 88
TTL, 89
ver., 88

Ipv6, 761

K
Keepalive timer

activation of, 353–354
resetting of, 354
tcp_keepalive_timer(), 354–356

Kernel 2.6 description, 759
Kernel fl ow, 214, 216f
Kernel synchronization mechanism

atomic operations, 23
semaphore, 22
spin lock, 23–24, 24f

Kernel version 2.4, 11–14, 13f, 14f
new system call addition, 16–17, 17f
system call on Linux, 14–16, 15f

L
Length reordering, 417–421, 418f
Linux implementation of CBQ, 623f
Linux process and thread

fork(), 17–18, 18f
kernel threads, 19–21, 20f, 21f
thread, 18–19, 19f

Linux traffi c control
basic components of, 592, 592f
classes, 592
fi lters, 593
policing, 593
queuing discipline, 592

Listen systemcall, 138f
accept queue is full, 147–150, 148f, 149f
connection request with complete three-

way handshake, 151

connection request with pending three-
way handshake, 150–151

END of inet_listen(), 142
END of tcp_listen_start(), 142
established sockets linked in tcp_ehash 

table, 150
inet_listen(), 139
listen fl ow, 142
max_qlen_log, 140
qlen, 140
qlen_young, 140
struct open_request, 142–147, 143f, 144f
SYN QUEUE, 140
syn_table, 140–141
sys_listen(), 138–139
tcp_listen_start(), 139–142

M
Multicasting and broadcasting, 760

N
Nagle’s algorithm (RFC 896), 69–71, 69f, 

70f, 71f
Netfi lter hook framework, 636–637
Netfi lter hooks on IP stack

hooks for incoming packets, 639–640
hooks for outgoing packets, 638–639, 

638f
nf_hook_slow(), 642–643
nf_iterate(), 643–644
processing of, 642
registration of, 640–642
struct nf_hook_ops, 644

Netlink data structure
nl_table, 755, 756f
rtnetlink_link, 755

Netlink sockets
CLASS massages, 484
data structures

nl_table, 485–486, 486f
rtnetlink_link, 486–488
struct msghdr, 489–490, 490f
struct nlmsghdr, 488–489

FILTER messages, 484–485
fl ow diagram for TC command, 495–496, 

496f
introduction of, 479–480
kernel netlink socket, creation of, 

481–482
netlink packet format, 490
QDISC messages, 484
registration and initialization, 480–481
ROUTE messages, 484
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Netlink sockets (cont’d)
socket example

TC command fl ow in user space, 
490–491, 491f

TC command in kernel space, 491–495
user netlink socket, creation of

ADDR messages, 484
LINK parameter messages, 483

Net SoftIRQ, 672f
irq_cpustat_t, 675
packet reception, 679–679, 680f, 682f
packet transmission, 686–695, 687f, 691f, 

692f, 694f, 695f
processing of, 675–678, 682–686
reception, 672–675
registration for, 678–679
transmission, 672
variables for, 677

New interface, addition of, 761

O
OOB data, sending of, 249–250
Open Shortest Path First (OSPF), 90, 501
OSPF. See Open Shortest Path First

P
Packet reception

DMA ring buffers and, 698
fl ow of, 698
process of, 698
reception ring buffer, 698–700, 700f

Packet transmission, 701f
device initialization, 707
DMA receive ring buffers initialization, 

709
DMA transit ring buffers initialization, 

707–709
e100_hardware_send_packet(), 717
e100_rx(), 711–713
e100_send_packet(), 713–717, 714f, 715f
e100tx_interrupt(), 720–721
fl ow of, with DMA, 702
implementation of reception, 704–705, 

705f
Rx descriptors, 713
Rx DMA buffer initialization, 711
Rx interrupt and, 709–711, 710f
struct etrax_dma_descr, 706–707
struct etrax_eth_descr, 705–706
transmission ring buffer, 702, 703f
Tx DMA ring buffer initialization, 717, 

718f, 719f

Packet traversing
APR and neighboring framework, 

212–213
INET protocol packet switcher, 223–224
IP layer, 206–207
kernel path for TCP, 209

IP layer, 211–212
IP layer routing, 210–211
netfi lter hook, 212
packet scheduler and hard 

transmission, 213
socket layer, 210
TCP layer, 211

link layer, 207
packet reception, 219
packet scheduler, 207
from socket layer to device, 207–208, 

208f
socket scheduler, 207
TCP layer, 206, 207
up the TCP/IP stack, 220f, 221f

from device to socket layer, 219, 220f, 
221f

IP fragment handling, 223
IP layer, 215–216, 222–223
kernel path for TCP, 219–225
local input netfl iter hook, 216
packet reception, 214
packet switcher, 222
pre-routing netfl iter hook, 215
Rx SOFT IRQ, 214–215
Socket layer, 225
SoftlRQ, 219–220
TCP layer, 218–219, 224–225

PFIFO_FAST QDISC implementation, 
593–596, 594f, 595f

Processing TCP urgent pointer
tcp_check_urg(), 422–424

Protocol socket registration, 105f, 106f, 
105107

Q
Qdisc. See Queuing Discipline
Queuing discipline data structure

struct cbq_class, 599–601
struct Qdisc, 596–597
struct Qdisc_class_ops, 598–599
struct Qdisc_ops, 597–598

Queuing Discipline (Qdisc), 591
Queuing mechanism

lock_sock(), 265
_lock_sock(), 265–266
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processing in tcp_rcv_established(), 
256–258

queue processing, 259–263, 260f, 261f
release_sock(), 266
_release_sock(), 266–267
tcp data processing, 269f, 270f

cleanup_rbuff(), 268–270
data from receive buffer, 273
1mss = n Bytes requested, 275
n Bytes requested, 276
n-X bytes requested, 275
one page requested, 276
paged buffer, 275–276, 275f
skb_copy_datagram_iovec(), 271–273, 

272f
X bytes requested, 273–275, 274f

tcp_data_wait(), 263–264, 264f
tcp_prequeue(), 258–259
tcp_prequeue_process(), 264–265

R
Receive side TCP memory management

general discussion, 305–308
_skb_queue_purge(), 317–319, 318f
tcp_clamp_window(), 309–311
tcp_collapse(), 312–316, 314f, 316f
tcp-collapse_ofo_queue(), 311–312
tcp_prune_queue(), 308–309

Retransmission and route, 732
RIP. See Routing Information Protocol
Routed packet, 214, 215f
Route fi lters, 743–745, 744f
Routines operating on sk_buff

alloc_skb(), 190–191, 191f
skb_pull(), 195–196
skb_push(), 194–195, 195f
skb_put(), 192–194, 193f
skb_reserve(), 191–192

Routing
general description of, 501–503
multipathing, 505–509, 506f, 507f

change_nexthops(), 507–508, 508f
endfor_nexthops(), 508
FIB_RES_NH, 508–509

netstat, 90–91, 91f
policy-based routing, 504–505, 504f
record route options, 509–510
record routing, 510
routing cache data structures

struct dst_entry, 522–523
struct rtable, 519–522
struct rt_hash_bucket, 519

routing cache implementation, 517–519, 
518f

routing protocols, 90
source routing

loose record routing, 511
SRR processing implementation, 

511–517
strict source routing, 510–511

traceroute, 92–93, 92f
Routing and IP Qos Icrash STEPS

steps for default queuing discipline, 735–
738, 736f, 737f

Routing cache
cache timer, 530
dst_destroy(), 535–536
dst_free(), 534–535
_dst_free(), 535
dst_run(), 536–537
fi b_create_info(), 557–558
FIB initialization, 562f

fi b_hash_init(), 562–563
fi b_rules_init(), 563

FIB overview, 540, 541f
FIB traversal fl ow diagram

fi b_lookup(), 581–582
fn_hash_ookup(), 584–585
_in_dev_get(), 577–578
inet_select_addr(), 578–579
ip_dev_fi nd(), 576–577
ip_route_output(), 563–564
ip_route_output_key(), 564–566, 565f
ip_route_output_slow(), 566–576

fn_hash_insert(), 553–554, 553f, 558f
fn_new_zone(), 554–555
for incoming packets, 529–530
inet_rtm_newroute(), 550–551
inet_rtm_newrule(), 559–560
interface down and rt_fl ush_timer, 

537–538
link failure

dst_link_failure(), 527
dst_set_expires(), 528–529
ipv4_link_failure(), 527–528

for local connections, 525–526
LPM algorithm and table lookup, 

555–557
management of, 523–525
new entry addition, 549–550
route scopes

control fl ags, 581
types, 581

rt_cache_fl ush(), 538–540
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Routing cache (cont’d)
rt_may_expire(), 533–534
rt_periodic_timer, 530–533
rules for, 583
_sk_dst_check(), 526–527
struct fi b_info, 546–547
struct fi b_nh, 547–548
struct fi b_node, 544–545
struct fi b_rule, 548–549
struct fi b_table, 540–543
struct fn_hash, 543
struct fn_zone, 543–544
struct kern_rta, 552–553
struct rtmsg, 551–552

Routing Information Protocol (RIP), 90, 
501

Routing table, Linux kernel 
implementation, 517

S
Sack blocks, processing of

tcp_sacktag_write_queue(), 410–417, 
411f, 413f

Segmentation, functional level fl ow, 252f, 
253f

Segmentation with scatter-gather 
technique, 235–239, 236f

with scatter-gather support, 239, 239f
Y bites and

can_coalesce(), 239–240
forced_push(), 241–242
skb_entail(), 248
tcp_copy_to_page(), 240–241
tcp_mark_push(), 241
tcp_minshall_check(), 245
tcp_nagle_check(), 244–245
tcp_push(), 242–243
tcp_push_one(), 247–248
_tcp_push_pending_frames(), 243
tcp_snd_test(), 243–244
tcp_write_xmit(), 245–247
update_send_head(), 247

Send congestion window and ssthresh, 
730–732, 731f

Send socket buffer, 727–729, 728f
Shutdown

kernel shutdown implementation
receive shutdown, 36–37, 37f
send shutdown, 36

values, needed for, 36
Sk_buff and 

DMA-SKB_FRAG_STRUCT
DMA and sk_buff, 188f

sk_buff and fragmentation, 190
sk_buff and IP fragmentation, 189f

Sk_buff Builds protocol headers
IP header, 197–198, 198f
link layer header, 198–199, 199f
tcp header, 196–197, 197f

Sk_buff Extracts protocol headers
datalink layer point, 199–200
IP layer header, 200
tcp layer header, 200–201, 201f

Sock, 112–118, 113f, 114f, 116f, 118f
Socket, touching of, 724–726, 725f
Socket buffer, 726–727, 727f
Sockets

SOCK_ASYNC_NOSPACE, 109
SOCK_ASYNNC_WAITDATA, 109
SOCK_NOSPACE, 110
states of BSD socket, 108

Sockets, kernel implementation of, 101–
102, 102f, 107–108, 108f

Source code organization, 5–7, 6f, 7f
SRR processing implementation

ip_forward_options(), 514–516
ip_options_compiled (), 512
ip_options_rcv_srr(), 512–514
ip_rt_get_source(), 516–517

State processing
overview of, 446–448

Struct skb_shared_info, 186–187
Struct sk_buff, 182–186, 183f

structure of, 182–186
Syn-ack timer

activation of, 356–357
cancellation of, 357
tcp_synack_timer(), 357–361, 360f

Syn queues, 733–735
System-wide control parameters, 329–321

T
TC command in kernel space

netlink_data_ready ( ), 494
netlink_sendmsg ( ), 492–493
netlink_unicast ( ), 493–494
rtnetlink_rcv ( ), 494
rtnetlink_rcv_msg ( ), 494
rtnetlink_rcv_skb ( ), 494
sock_sendmsg ( ), 492
sys_sendmsg ( ), 491–492

TCP
congestion control, 85–86
data fl ow

ACKing of data segments, 59–67, 60f, 
61f, 63f, 64f, 65f, 66f
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delayed acknowledgment, 67–69, 67f, 
68f

header, 51f
acknowledgment number, 52
checksum, 53
header length, 52
port numbers, 52
sequence number, 52
TCP fl ags, 53
unused fi eld, 53
urgent pointer, 53
window size, 53

options, 54, 54f
mss option, 55, 55f
selective acknowledgment option, 57–

58, 57f
timestamp option, 56
window-scaling option, 55–56, 56f

performance and reliability
RTTD, 86
SACK/DSACK, 86–87
window scaling, 87

sliding window protocol, 72–79, 74f, 75f, 
76f, 77f, 78f

timers
keepalive timer, 84
persistent timer, 83–85, 84f
retransmission timer, 88–83
TIME_WAIT timer, 85

TCP incoming segment processing, 378–
379, 383

fast path enablement
processing of, 384–386
timing of, 382

prediction fl ags
building of, 383
important points, 383

prediction fl ags, building of, 378–380
processing of incoming ACK, 400–402
slow path enablement, 383

processing of, 386–387
tcp_ack_is_dubious(), 404
tcp_ack_update_window(), 406–407
tcp_clean_rtx_queue, 408–410
tcp_cong_avoid(), 405–406
tcp_data_snd_check(), 397–398
_tcp_data_snd_check(), 398
tcp_event_data_recv(), 390–391
tcp_grow-window(), 392–393
_tcp_grow_window(), 393–394
tcp_incr_quickack(), 391–392
tcp_may_update_window(), 407–408
tcp_packets_in_fl ight(), 403–404

tcp_paws-discard(), 398–399
tcp_receive_window(), 395
tcp_replace_ts_recent(), 387–389
tcp_select_window(), 395–397
tcp_sequence(), 387
tcp_space(), 397
window calculation, 394–395

TCP/IP stack overview
INET socket in, 3
kernel control paths and, 7–11
kernel networking source tree, 9f
kernel source tree, 8f
packet moving down protocol stack, 3, 

4f
packet moving up protocol stack, 5
packet reception, 11f
sk_buff, 2f, 3

TCP retransmit timer
resetting and cancellation, 327–329
setting of, 327
skb_cloned(), 336
tcp_enter_loss(), 329–332
tcp_retransit_skb(), 333–334
tcp_retrans_try_collapse(), 334–336

TCP segmentation unit, 729–730, 730f
functioning of, 232–233, 233f, 238f
segmentation without scatter-gather 

support, 234
TCP states

categories of, 40
complete life cycle, 42f
connection closure, 40
connection initiation, 40
default processing, 456–459
established connection, 40
four-way connection closure, 43f
non-open states when acked beyond

tcp_add_reno_sack(), 472–473
TCP_CA_CWR, 468–470
TCP_CA_Disoder, 470–471
TCP_CA_Loss, 467–468
TCP_CA_Recovery(), 471–472
tcp_check_reno_reordering(), 473
tcp_mark_head_lost(), 475–477
tcp_may_undo(), 473–474
tcp_packet_delayed(), 474–475
tcp_sync_left_out(), 477
tcp_try_undo_dsack(), 471
tcp_undo_cwr(), 475

partial close, 45–47, 46f
TCP_CA_CWR, 449
tcp_head_timeout(), 460–461
tcp_packet_delayed(), 466–467
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TCP states (cont’d)
tcp_time_to_recover(), 459–460
tcp_try_to_open(), 461–462
tcp_update_scoreboard(), 462–464
tcp_xmit_retransit_queue(), 464–466
three-way handshake, 40f, 41f
TIME_WAIT, 44–45
undoing from TCP_CA_CWR, 449

TCP throughput, maximizing of
bandwidth, 79
congestion window, 80f, 81f
rtt (round trip time), 79

TC user program
cbq_init(), 604
commands for hierarchy creation

cbq_change_class(), 607–610
tc_ctl_tclass(), 606–607

dev_graft_qdisc(), 605
qdisc_create(), 602–604
qdisc_graft(), 604–605
tc_modify_qdisc(), 601–602

Timers in Linus
detach_timer(), 325
mod_timer(), 324–325
time routines execution, 326

Timers in Linux
del_timer(), 325–326

Time_wait timer
activation of, 361–362
non-recycle mode, 363–364, 365f
recycle mode, 365–367, 366f
tcp_time_wait(), 362
tcp_twcal_tick(), 370–374, 371f, 373f
_tcp_tw-hashdance(), 374–375
tcp_twkill(), 367–370, 368f
tcp_tw_schedule(), 362–363

Transit side TCP memory management, 
291–294, 293f

alloc_skb(), 296–297
select_size(), 294–295
skb_charge(), 298
sock_wfree(), 300–301
tcp_alloc_page(), 297–298
tcp_alloc_pskb(), 295–296
tcp_free_skb(), 300
tcp_mem_reclaim(), 302
_tcp_mem_reclaim(), 302–303
tcp_mem_schedule(), 298–300
tcp_write_space(), 301–302
wait_or_tcp_memory(), 303–305, 304f

U
UDP, 760
U32 fi lters, 739–743, 740f, 742f
Urgent byte processing, 277f

byte read as OOB date, 277–278
reading as inline data, 280–284, 282f, 

283f, 284f
tcp_recv_urg(), 278–280, 279f

V
VFS and socket, 103–105, 103f, 104f

Z
Zero window probe timer

cancellation of, 337
function of, 338–339, 338f
installation of, 337
tcp_ack_probe(), 338
tcp_probe_timer(), 339
tcp_send_probe0(), 339
tcp_write_wakeup(), 339–342




