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Preface

My father showed me a comet through his binoculars after dinner one day when

I was 6. I saw it suspended in space, hung among the stars of the Big Dipper, a

white, ghostly wisp from somewhere distant. I knew the planets moved around the

Sun. I had heard about comets. But to actually see one was breathtaking, different. It
was not a picture. It was there. It was silent and mysterious, seemingly from another

time. Years later, when I was a middle-school student in Florida, our school

librarian displayed a copy of Newton’s Principia prominently on a stand in the

library. It was laid open to some pages of intriguing, complex-looking geometrical

drawings, including a dramatic illustration of a comet. I had no real comprehension

of the strange book’s contents, but was drawn to flipping through its pages every

time I passed by it. In there, I had been told, was the first real explanation of how

things in the sky moved. I later learned how the riches in that book, first published

in the late 1680s, really did open the door to understanding celestial phenomena.

It was a revelation to discover that things I saw in the sky could be known in a

completely new way, through the language of mathematics.

The universe we inhabit can be known on many levels even to those who have

never seen a country-dark sky. No words can adequately convey the ethereal

majesty of comet Hale-Bopp’s twin tails seen from the pitch-dark skies of

Haleakala, in Maui, but the mathematics of its motion are also fascinating and

beautiful, and last well beyond the actual experience. The motions of the bodies in

our solar system are a phenomenon of a more abstract kind, most accessible through

the figures and operations of mathematics. One can try to describe the movements

of the celestial bodies in language, and many have written wonderfully poetic

descriptions of heavenly phenomena. But to begin to understand how it all works,
one needs to penetrate into the core of things, into masses, forces, and accelerations,

which describe quantitatively how bodies affect each other even over staggeringly

huge distances. It is not widely appreciated that with modest familiarity with the

tools of high-school mathematics, one may gain surprisingly clear insight into the

mysteries of celestial motions. It is a deep and rich world of sublime, subtle

relationships. Some of them, like Kepler’s Harmonic Law, are especially beautiful,

echoing the harmonies in the physical world. With the language of mathematics,
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one can more deeply appreciate the workings of creation in a way unknown to those

who do not take the trouble to learn it. After a while, the relatively few key

equations become as familiar as old friends. And one does not have to take anyone

else’s word for how it all fits together: it does. One can see for oneself how gravity

works and bodies move by doing the manipulations and the calculations. It is the

next best thing to being there!

It is one purpose of this book to convey the power of simple mathematics to tell

fundamental things about nature. Many people, for example, know the tides are

caused by the pull of the Moon and to a lesser extent the Sun. But very few can

explain exactly how and why that happens. Fewer still can calculate the actual pulls

of the Moon and Sun on the oceans. The book attempts to show this with simple

tools. The book endeavors to cross disciplines to provide context – history, astron-

omy, physics and mathematics – and effort has been made to explain things

frequently passed over or taken for granted in other books. It does not purport to

be a comprehensive textbook or tome on every aspect of classical celestial mechan-

ics. Rather, it samples key areas of interest and invites further inquiry. The

emphasis is on intuitive appreciation rather than rigor. The book hopefully will

lead readers to investigate the fundamentals of mass and motion on their own, and

to puzzle through the problems that Newton and others faced in trying to make

sense of why things move as they do. It is also hoped that the book will encourage a

sense of wonder at the beauty of the physical world and an appreciation of the

brilliant minds who struggled to comprehend and express it in almost equally

beautiful mathematics.

The focus of the book is Newton’s, rather than Einstein’s, gravity. In other

words, it deals with classical mechanics, which originated in the seventeenth

century and which remains the basis for the core problems of celestial mechanics

today. It therefore does not treat the curved spacetime of Einstein’s General Theory

of Relativity. There is nothing in the book about the behavior of masses at relativ-

istic speeds, black hole physics, or other aspects of Einstein’s geometrical view of

gravity.

The book has three main characteristics that define it:

First, it concentrates strongly on the historical development of the mathematics

and science of orbital motion, beginning with Galileo, Huygens, Kepler, and

Newton, each of whom is prominently represented. Quotes and problems from

Galileo’s Dialogs Concerning Two New Sciences, Huygens’s The Pendulum
Clock, and particularly Newton’s Principia should help the reader get a little bit

inside the minds of those thinkers and see the problems as they saw them, and

experience their concise and typically eloquent writing.

Second, it is problem based: it uses concrete, hopefully interesting problems and

case studies to teach and illustrate. This method is critical for a hands-on

understanding of this topic. Many of the problems use actual historical data,

and results are compared with those obtained using modern data and methods.

To underscore the relevancy of the original thinking on these issues, modern

problems dealing with near Earth asteroids, NASA missions, and newly
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discovered dwarf planets are set next to historical problems that deal with the

same mathematical or physical principles. Emphasis is on problems with dra-

matic interest and power of illustration.

Third, its mathematics is the simplest possible. The math is generally at the high-

school or early college level (algebra and the most basic geometry and a little

trigonometry), with detailed explanations of the methods needed to solve the

problems and understand the concepts. Calculus is the standard method for

presenting this subject in most textbooks, and it produces quick, concise results.

But it does not necessarily follow that calculus is needed for those results, or that

a calculus-based presentation is the most intuitive vehicle for a beginner learning

the fundamentals. I use methods and derivations that have appeared to be the

most intuitively comprehensible, with stress on practical application. The sur-

prise is how deeply one can dive with only the most basic mathematics and

an intuitive grasp of the physics. This having been said, certain fundamental

pre-calculus concepts involving limits introduced by Newton in his Principia
are dealt with in this book, and should help one who has not had calculus get a

foothold on the subject.

I wish to acknowledge two people who were the guiding lights for me in working

on this book. The first is my father, who, when he was alive, always encouraged my

interest in science, even to the point of driving me on my birthdays when I was a

young boy to any observatory of my choice in the West. The other is my wife,

Kathy, whose has given total support for this project even as it emerged from

preparing casual collections of class notes to the far greater and more taxing

commitment of a book. I am also very grateful for her editorial good judgment on

the random questions that I would pose to her.

I also wish to thank the editors at Springer for their excellent editorial

suggestions that have helped add clarity in many places in the book.

Portland, Oregon, USA Douglas W. MacDougal
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Chapter 1

Introduction: The Twin Mysteries of Mass

The Quality of Inertia

Imagine a mass of any size, such as a bowling ball, bike, or boat, and a place where

there are no obstacles or inducements to its movement. In this perfectly level place

there is no friction to slow it, and no wind to propel it. Under such ideal conditions,

any material thing will resist movement solely in proportion to its mass. Even in our

non-ideal world where friction exists, we perceive this relationship. We cannot flick

a bowling ball into motion with our fingers. To start someone on a swing takes an

initial hard push, but then it is easier. We cannot even slide a large and slippery

block of ice across the floor without some effort to get it going. Its heftiness alone

makes it hard to move. As experience shows, the larger the object, the greater is the

required effort. This resistance to movement has the name inertia. Likewise when a
thing is moving it can be hard to stop, and the faster it moves the tougher it is to

brake it. We feel the hard work needed to slow a gently rolling car, and the impact

on our hands of catching a fast-pitched ball can be painful. The lighter the object,

the easier it is to slow it down. It is easier to slow a drifting canoe than a large boat.

These too are the effects of inertia. To move or stop anything, then, takes effort, or

force. It takes force to overcome inertia to get something to move. But once

moving, it takes force to stop it. Any change of motion requires force to make it

happen: force in the direction of motion or braking. To go from stop; to stop from

go: change in motion is called acceleration. Acceleration means change of speed.

To drive from 10 mph to 20 requires acceleration. Once I am at that speed, I am no

longer accelerating. When I brake to slow back to 10 mph, or stop, I am

decelerating. Or I could say I have negative acceleration. So it is right to say that

I encounter inertia when I accelerate or decelerate. The engine has to power up, to

apply force to the wheels, to get me going, to accelerate me. The brake exerts a

strong force of resistance on the wheels and car to slow me down, more so on a

heavy car than a bike.

The most perfect expressions of the classical concepts of inertia are found in

the famous three laws of motion of Isaac Newton (1642–1727), which we will
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to the Mechanics of the Universe, Undergraduate Lecture Notes in Physics,
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discuss in Chap. 5. If a thing is moving, it will tend to keep moving; if it is stopped,

it tends to stay stopped (the gist of his First Law). And the amount of force it takes

to move (or stop) a thing – to accelerate or decelerate it where friction is ignored,

depends only on its mass (the essence of his Second law). In fact, if one pushes on

a mass, it so resists the push of my hand as to push my hand back with equal force

(his Third Law). These are the inherent, inertial qualities of mass, so far as we

know, everywhere in the universe.

Mathematically, the Second Law is expressed like this: F ¼ ma, where force

equals mass times acceleration. In words, it takes force to accelerate a mass.

To achieve a certain acceleration, the quantity of force needed to overcome inertia

depends only on the amount of mass being accelerated. Again, to go anywhere from

rest (that is, to accelerate), a force must be applied in the direction of motion.

Increasing the force in a given direction increases the velocity – accelerates it – in

that direction until the force is no longer applied, whereupon (in a place void of

resistance) it will continue at the velocity it had when the force ceased. A constant

force in one direction will yield a constant acceleration in that direction: indeed, in

that circumstance, the velocity will continue to increase – it will keep gaining speed

– in direct proportion to the time. Similarly, force in the opposite direction will

cause acceleration in the opposite direction, such as the case of the Apollo lunar

landers decelerating before touchdown on the Moon.

Straight-Line Motion

Once inertia is overcome and a mass is induced by some force to move, the mass

will continue to move forever in a straight line unless something changes its state.

We are used to air resistance slowing things down. But in space, a mass in motion

will continue in motion in a straight line at the same velocity it started with unless

something – another mass or masses (large, small or particulate), slows it down or

speeds it up. This again is the nature of inertia. The Voyager and Pioneer spacecraft,

launched decades ago, are still sailing silently through space. They glide without

power, and long ago left our solar system. They will go forever in a straight line,

unless eons from now impacts or the attractions of other bodies deflect that course.

The concept of eternal straight-line motion is completely different from Aristotle’s

idea of motion. He believed that a thing continues to move until it loses its

“impetus.” A projectile would therefore fall abruptly to Earth when it suddenly

lost its impetus during its flight. One can see his influence in oddly asymmetric

diagrams of cannonball trajectories in books on military artillery written two

millennia later, in the early 1600s.

Aristotle of course had no concept of outer space or vacuums. But through

experiment and insightful analysis of the motion of rolling balls, Galileo Galilei

was close to discovering Newton’s First Law. He knew that rolling balls starting

from equal heights and falling along smooth planes at any angle would reach the

bottom of the slope with the same velocity.

2 1 Introduction: The Twin Mysteries of Mass
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Nomatter the inclination of the plane, a ball released from the same height would

attain the same velocity at the bottom. Moreover, under these theoretical friction-

free conditions, he deduced that the ball would rise to the same place at the top of

another plane set at the same angle. Galileo was reinforced in these conclusions by

his observation of pendulums, which he noticed swung to the same height on the

other side of the swing no matter how far the pendulum is pulled back, save only a

small portion it might lose from friction in passing through air.

The next step is to imagine the second plane slanted more toward the horizontal

on each try. The ball, still tending to attain its original height (in a theoretical

friction-free environment), will roll and roll to whatever distance necessary until it

does. Finally, make the second ramp horizontal, and the ball will roll forever.

Galileo did not know about the laws of conservation of energy and momentum

that would be formulated in the future, but his intuition was keen. It was left to

Newton to realize that the inertial tendency of a body in motion to remain in motion

was what kept the moons and planets in their orbits.

Forces in Combination

Several forces may be instantaneously impressed on a single body, and the resultant
force, which is the vector sum of all the forces combined, will still result in straight-

line motion. A sailboat courses in a direction that is the resultant path of wind in one

direction and the resistance of the keel in another. Newton’s Corollary I to his Laws

states: “A body, acted on by two forces simultaneously, will describe the diagonal

of a parallelogram in the same time as it would describe the sides by those forces

separately.” Newton showed this principle using the diagram below, which is here
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reproduced just as Newton drew it, except for the arrows on the vectors. Assume a

body is at A. Suppose in a given time, a force M acting alone would carry it from A
to B, and force N acting alone would carry it from A to C. Acting together, the

resultant of the two forces would in the same time carry it from A to D.

Newton reasoned that, since motion arises only in the direction of the applied

force, the force N in the direction of AC will not alter the velocity generated by the

other force M in the direction of AB. So the body moved by force M along AB will

arrive somewhere along the line BD at the same time regardless of whether force N

is impressed or not. Likewise the body moved by force N will arrive somewhere

along CD at the same time regardless of whether force M is impressed or not.

Therefore the body will be found at D where the lines meet. “But it will move in a

right line from A to D, by Law I.”

It follows from this argument that a force O along the diagonal AD can be

resolved into forces along AB and AC, or along any perpendicular axes.

The Independence of the Effects of Perpendicular
Forces on Straight-Line Motion

Suppose you are on a cliff with two rocks in your hands. You manage to drop a rock

off the cliff at the same time as you throw the other rock horizontally, such that they

leave your hands from exactly the same height from the ground below.
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One rock goes straight down, the other goes out. Assuming no friction, which

will hit the ground first? As students in every physics class are taught, they hit at the

same time. This is because the motion of the rock in the vertical direction is

independent of the motion of the rock (and the throwing force that induced that

motion) in the horizontal direction.

We can generalize this principle. Imagine a bowling ball travelling in uniform

(unaccelerated) motion through space, where there is no friction of any kind to slow it

down. ByNewton’s First Law, if it encounters no other forces on its way, it will travel

forever in a straight line. Now suppose you are somehow able to arrive in your space

suit and give it a shove at right angles to its motion. Because you pushed it

perpendicularly, the ball is not speeded up or slowed down. By this we say that no

component of your pushing force can be resolved along its axis of motion to acceler-

ate or retard it. But the perpendicular shove does deflect it off its course. Consistent

with Newton’s Second Law, the ball will respond to the shove by going in a straight

line only in the direction of the applied force. In that perpendicular direction, the ball
was originally at rest, even though in the other direction, along the axis of motion, it

was not. Your push did not alter its motion in the original direction of travel. The

shoving force only affected the ball in the direction of the shove. The resulting

direction of travel for the ball will be the composite of the two motions. If the

shove made the ball go perpendicularly at the same velocity as the original ball was

travelling, the resultant motion will be along the 45� diagonal between them. Forces
and resulting motions along an axis in three-dimensional space are completely
independent of forces and resulting motions along any other axis. So long as no

component of the force is along the original axis, the original velocity will be

unchanged. This independence of forces with respect to each axis in three-

dimensional space was a principle insisted upon by Galileo to his skeptical friends.

Inertial Frames of Reference and Relative Motion

Again suppose the bowling ball is moving past you through space in its original

state of constant velocity. Now you are somehow able to hop on the bowling ball

and travel with it. Assume there is nothing around you to tell if you are moving or

not. From your perspective, the bowling ball will now appear to be at rest. Without

acceleration, you don’t know if you are sitting still or riding along on it at constant

speed in some direction. It seems like it is at rest. Your friend now gives you and the

ball a shove perpendicularly to the right. From your perspective, his push will

appear to be an initial acceleration from rest to a certain velocity off to the right.

You will feel that acceleration (as you feel acceleration when an elevator goes up or

down) but once he stops pushing, you will again perceive you are at rest. Unless

there is some acceleration (or external reference point) to inform you if you are

being shoved to the right or pushed to the left, or kicked from behind or slowed

down, everything seems to be at rest. This is called an inertial frame of reference.
It only exists in situations of constant velocity (or rest) when there is no acceleration
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in any direction acting upon you. This helps explain why forces act completely

independently along each of the three-dimensional axes of space. Any mass,

moving or not, that is not accelerated may be deemed in motion or at rest in some

frame of reference, and along some axis. Any applied force on that mass will move

it from that rest frame of reference to another inertial frame of reference which will

persist when the force ceases. The application of Newton’s Laws to that mass in any

inertial frame of reference will yield results consistent with the application of those

laws in any other inertial frame of reference.

Textbooks often state that “acceleration is the change of velocity or direction of

an object.” But in fact they are the same, because any change of direction of motion
of an object is a change in velocity along one or more axes in your chosen frame of

reference. If a particle is moving with uniform velocity along an x axis, and a small

force displaces it perpendicularly along the y axis, it will then have motions along

both the x and y axes: the velocity along the x axis will be unaffected (due to the

independence of axial motions, by Newton’s Second Law), but the velocity along

the y axis will increase from zero to its new velocity in the y direction. This change
in velocity is of course acceleration, but along one axis only. Any change of

velocity may be seen as a change along one or more axes of motion, independent

of the motion along any axis where no force has been applied, just as in the case

above of two rocks falling and thrown outward from a cliff.

Consider these principles with respect to any given mass particle or object,

where the mass is at rest or in uniform, rectilinear motion (that is, not being

accelerated):

• Any three-dimensional coordinate system can be constructed in any orientation

with the object its origin. That coordinate system will be the frame of reference

for that object.

• Any object in uniform motion can be made to appear at rest by adopting the

three-dimensional coordinate system as the frame of reference for such mass,

with the mass at its origin.

• Any axis of a three-dimensional coordinate system can be aligned along the path

of uniform motion of a mass. In such case, the mass will be at rest with respect to

the other two axes.

Where the velocity of the mass changes (accelerates), we can add these

principles:

• Any change of direction of a mass is a change in velocity along one or more axes

of a three-dimensional coordinate system. Any such change in velocity of the

mass is called acceleration in that reference system.

• Any change, with respect to a mass, of the velocity of the three-dimensional

coordinate system itself, such that the mass appears to be changing velocity

along one or more axes of a three-dimensional coordinate system, is also called

acceleration of the mass with respect to that reference system.

• A frame of reference that accelerates in tune with physical objects in a given

location that are subject to gravity and no other forces is called a free-falling
frame of reference.
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Full exploration of the implications of these principles is beyond the scope of

this book. Suffice to say, it was through the deep pondering of these ideas of inertial

and accelerated frames of reference that Einstein derived his theories of relativity.1

Keeping these principles in mind will assist in understanding many aspects of

motion and forces.

The Attraction of Masses

The Force of Gravity: Falling

Another observable characteristic of masses is that they have weight. No bodies

in our terrestrial experience have noweight. They want to gravitate toward the Earth.

If dropped, they fall. The felt weight is a force pulling down which, as with inertia,

becomes greater as the mass increases. Boulders have more mass than marbles, so

they weighmore. Rockets weighmore than birds, and takemore force to get them off

the ground. The weights of objects at equal distances from the center of the Earth in

fact depend only on the quantity of mass. Why don’t heavier objects, with more

mass, fall faster? It is because the inertias of the objects resisting their downward

movement also depend on their quantities of mass – heavier objects being also

harder to move. The greater the mass, the greater is the gravitational force making it

fall, but greater too is its inertia resisting its movement. Any advantage of weight for

a swifter fall is exactly offset by a corresponding disadvantage of inertia resisting the

fall. The result is that, assuming no air resistance, all objects fall at the same rate, as

Galileo observed. Another way to look at it is to consider that the gravitational force

on each particle of mass is resisted by the inertia inherent in each particle of mass.

Given this rule, it makes no difference how big or small the mass is, everything falls

at the same rate. This is true whether you consider a single particle, a cluster of

particles or a conglomeration of millions of particles. This may be made clearer if

you imagine a collection of particles of equal mass falling next to each other. They

arrive at the ground at the same time. Now imagine that they are tied to each other

with thin threads, or even so close that they may be adhered to each other, and form

an aggregate mass of all the single particles. They still fall at the same time,

regardless of the horizontal component of being adhered to each other in a solid

mass. If you take away the resistance of air, and they fall from the same height, a

marble will hit the ground at the same time as a boulder, a rocket or a bird.

The rule may be simply stated: the forces pulling bodies down are proportional

to their masses; but because their inertias are also proportional to their masses,

the accelerations each mass experiences will be the same. This is true on Earth, the

Moon and every other planet. This applies when the resistance of the atmosphere is

neglected, which otherwise slows things unequally, depending on their shape.

1 See, for example, Peter G. Bergmann [1] for a clear explication of these concepts.
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The Attractive Force of Gravity

It is the phenomenon of gravity that each particle of mass attracts every other

particle of mass. The force of attraction of two bodies on one another is the product

of their masses. The Earth pulls on a 2 kg rock with twice the force that it pulls on a

1 kg rock. The whole gravitational pull of the Earth is essentially doubled up on the

rock weighing twice as much as the other rock, and weighs twice as much on a

scale. A 1,000 kg boulder experiences a 1000 times more force than does a 1 kg

rock. We could increase the rock’s size without limit and the Earth’s pull on it

would also increase without limit. The gravitational attraction of mass is cumula-

tive. It grows and grows as more and more matter is gathered.

This can be made clearer if we imagine two equal particles of the smallest size

you may wish to consider, each attracting each other. We might represent their

mutual attraction like this:

We could think of the line as a line of force between the two particles, pulling on
each mass equally. Now let’s picture three particles of mass on the right and four

particles on the left, tightly clustered on each side so they touch (but expanded here

for the sake of clarity of illustration) so their internal attractions to each other are

irrelevant. Now diagram all the attractions of each side to each.

Count the lines of force. If each of the four particles attracts each of the

three particles, we can assume that the total forces are four times three, or twelve

times the forceof a single pair of particles alone.Thediagramshows12connecting lines

of force among the particles. If the cluster of fourparticles on the left are called onemass

and labeledm1, and the cluster of three particles on the right are calledm2, their mutual

gravitational attractionwould beproportional to the product of themasses, orm1m2.We

can expand this notion to include hundreds, thousands millions, billions or more

particles in the left-hand mass, and no particle in the right-hand mass would be
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diminished or diluted by having to “connect”withmore andmore on the left.Wewould

not say “The lines of force for that particle have been all used up.” As long as their

distance fromeach group ofmasses remains the same, therewould be no dilution of any

line of force, no matter how many lines we “burden” each particle with. We could add

particles upon particles of mass on either side, or both, and there would be no

impairment of any individual line of force. In other words, the capability for attraction

of each particle to any number of others appears, quite mysteriously to our intuition, to

be unlimited.

One could also think of the above example in a three by four matrix, with each

little force line represented by the symbol fx,y:

m2 3 f1;3 f2;3 f3;3 f4;3
2 f1;2 f2;2 f3;2 f4;2
1 f1;1 f2;1 f3;1 f4;1

1 2 3 4

m1

The total of all the forces is the total number of elements in the matrix, which

again is the product of column by row; that is, the total of all the individual masses.

Note too that the attractions of the particles to each other on each side, whether or

not they are in contact, do not diminish the gravitational attraction represented by

the lines of force to m2. The mutual attraction of each particle of the 5.97�1024 kg

comprising the Earth’s mass in no way detracts from the attraction of those particles

to other masses. Similarly, each grain of interstellar dust and molecule of gas

coalescing from a cloud to become a star is capable of attracting every other

grain and molecule, and themselves together attracting other clouds of gas and dust.

Gravity and Distance

The strength of the gravitational force between two particles is dependent on the

particles’ distance apart. If particles of mass are moved farther away from each

other, their mutual gravitational attraction will diminish, not linearly, but more so.

It diminishes in a special way: twice the distance, one-fourth the force; three times

the distance, one ninth the force. This is an inverse square relationship, and so far as
we know, it holds to the ends of the universe.

Newton’s Universal Law of Gravitation

To summarize the ideas of attraction as the product of the masses, and strength of

that attraction varying as the inverse square of their distance apart, we can use a

concise mathematical symbolism:

F / m1m2

r2
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The equation tells us that the force F between two objects is proportional to the

product of their masses m1 and m2 and inversely as the distance r between them

squared. To actually calculate the force, in newtons, the units of distance and mass

must be given in meters and kilograms (if we use the mks system), and a constant

must be employed to make the units come out right. Physicists use G, the gravita-
tional constant, which has been found (in the mks system) to be 6.674 � 10�11.

Using this constant, the full equation of Newton’s universal law of gravitation

becomes,

F ¼ Gm1m2

r2

Gravitational Acceleration

Suppose for the sake of simplicity we have four particles inm1 and only one particle

in m2. The lines of force in our example now look like the diagram below. The

diagram represents the gravitational force exerted on a single “unit mass” by the

particles of mass in m1. It is no longer 12 lines of force but 4. The secondary mass

has been stripped down to one, and we have isolated the “grabbing potential” of the

primary mass m1 alone. This is a convenient way of acknowledging the amount of

gravitational acceleration induced on any object (of any mass) by the mass m1.

Since m2 is unity, we have done the mathematical equivalent of dividing each

side of the above equation by m2. We could therefore write the above equation this

way:

F

m2

¼ Gm1

r2
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But since by Newton’s Second Law ( F ¼ mf ) acceleration (here denoted by f )
is force per unit mass ( f ¼ F/m), we make this substitution on the left side of the

equation and it becomes,

f ¼ Gm1

r2

Because there is no secondary mass m2 in the equation, it should be apparent

from this equation that the gravitational acceleration acting upon any mass falling

to Earth from the same height will be the same, be it an elephant or egg. Hence

(again) they will hit the ground at the same time.

Gravitation and the Laws of Motion

The physical interpretation of the above result involves equating the gravitational

and inertial forces on a given mass. Hold a rock m2 in your hand. By Newton’s

Third Law, the gravitational force of Earth, of large mass m1, creates an equal

resisting force on the mass in the opposite direction. The resisting force of inertia on

this second mass, whose state of rest wants not to change, can be expressed by

Newton’s Second Law. The two forces are therefore,

F ¼ Gm1m2

r2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Force of gravity pulling the mass down ðand the Earth upÞ

F ¼ m2f|fflfflfflfflffl{zfflfflfflfflffl}
Force of inertia resisting any change of velocity

Observe that the mass m2 appears in each equation. If it has a large value in

one equation, it is just as large in the other. However massive and heavy the rock m2

may be, the gravitational pull on it in the left-hand equation will be exactly offset

by the force of inertia resisting that pull, in the right-hand equation. Again, that is why

(in spaces devoid of friction) objects of anymass in the same gravitational field fall at

the same rate. The quality of mass that is both resistive to acceleration (inertia) and a

source of gravitational attraction is called the principle of equivalence.
Setting the forces equal to each other as Newton’s Third Law requires, the m2

terms cancel, and we again find the acceleration induced on any mass by mass m1 at

distance r:

f ¼ Gm1

r2

In summary, the Earth’s gravity will set up an acceleration in any mass

whatsoever, whose change of motion is always resisted by the equivalent inertial
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capacity of that mass, be it a feather, a stone, the Moon, a distant planet or the sea.

This acceleration is thus independent of the mass pulled; it depends only upon the

Earth’s mass and the distance of the thing from the center of the Earth. It will be a

continuous acceleration. This follows from the continuous application of the con-

stant pull of Earth’s gravity on it at every moment. Drop a stone from any height

and it will accelerate all the way to the ground, going initially from a state of rest

to a state of motion downward, and increasing its velocity at every instant.

This acceleration, while continuous, is not the same at every distance. The

acceleration equation tells us that. Because acceleration is force per unit mass,

gravitational acceleration naturally diminishes with distance just the way gravita-

tional force diminishes. The acceleration of the Earth’s gravity at the surface of the

Earth, at “one g” (where r is one Earth radii), calculated from the above equation, is

about 9.8 m/s, every second: a falling object gains 9.8 m/s of velocity in every

second of its fall. As we go up and away from the Earth, the gravitational accelera-

tion diminishes rapidly by the inverse square rule. At two Earth radii, the gravita-

tional pull of the Earth is one fourth g. At the Moon, which is distant from us by

about 60 Earth radii, the inverse square weakening of the Earth’s gravitational

acceleration has taken its toll. The gain in velocity every second is only one sixtieth

this value squared, 1/602, or about 2.7 mm, which is what our Moon experiences.

An object achieving escape velocitywill journey fast enough to forever leave the
gravity of the body it left behind. It “leaves” gravity by achieving such distance

from the mother planet (or satellite, or star) that the holding power of its gravita-

tional force becomes ineffectual to stop it. Mathematically, the rapidly increasing

denominator r squared makes the value of acceleration f ultimately shrink to

relative insignificance. A baseball batted off a small asteroid could possibly achieve

that velocity; if so, it would fly forever in a straight line. But if it does not achieve

the necessary escape velocity, it would be bent around by gravity and return,

ultimately orbiting or colliding with the body it sought to leave. The simple

equation telling how acceleration relates to escape velocity will be discussed later.

Given the idea of gravitational acceleration, which will be the same on all

masses large or small at the same distance from the center of mass of Earth, what

then is weight? In the context of Newtonian gravitation, it is the force of gravity

pulling on the mass. And, from Newton’s Second Law, the gravitational force

needed to accelerate a mass is equal to the mass acted upon times that acceleration:

f ¼ Gm1

r2

�
Gravitational acceleration induced by Earth; m1

F ¼ m2fg Force resisting any such acceleration onmass m2

The acceleration in the first equation is now substituted into the second equation:

F ¼ m2

Gm1

r2

� ��
Weight of m2
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And the latter expression is of course Newton’s gravitation equation:

F ¼ Gm1m2

r2

It is not always easy to understand that the acceleration due to gravity, which

acts upon the rock held at rest in your hand, and is perceived as weight, is the same

kind of acceleration needed to change the velocity of an object, from rest or

otherwise. Both involve force. And if it weren’t for the chemical energy in your

muscles resisting the fall of the rock, its velocity would indeed change.

Gravity, Inertia, and Curvilinear Motion in Space

A concise description of the balance of forces that must exist to keep the planets

from falling into the Sun was given in the preface to Newton’s The System of the
World (or Treatise on the System of the World), published in 1728.2 The likely

author of the preface was Newton’s translator, Andrew Motte. He wrote:

Since then the Planets by radii drawn to the Sun describe areas proportional to the times,

it follows that the compound force which keeps them in their regular motions according to

that law, is compounded of two forces; one which impels them according to the tangents of

their orbits, and the other impels them toward the Sun; the first of which we may call the

Projectile, the other the Centripetal Force.

According to Motte, all orbital motion, in simple two-body Keplerian mechan-

ics, may be understood as the composition of those two forces: the tangential,

“projectile” force, and the centripetal, inward-pulling force. In reality, however, the

first “force” is nothing more than the simple resistance (inertia) to being compelled

away from its Newtonian straight-line motion. The resistance arises from the fact

that moving objects tend to move in a straight line, forever, at constant velocity

unless acted upon by a force (such as friction) which changes that. The idea of

“projectile” motion, however, accurately conveys the rectilinear nature of that

motion. Were there nothing to slow down or change the path of a cannonball shot

from a high mountain, it would proceed forever in a straight path at the same

velocity.

The force in space that changes that projectile motion is the gravitational force

from another body, pulling the object into a curvilinear path. That force, as Newton
first showed, is directed toward one focus of an elliptical orbit, and to the center of a

circular orbit. The effect of the inward pulling force on a rotating object is again

2 The work is believed to be an earlier and more accessible draft of what eventually became Book

III theMathematical Principles of Natural Philosophy or Principia. Sir Isaac Newton,Mathemat-
ical Principles of Natural Philosophy, p. 395 (Translation by Andrew Motte 1729, revised by

F. Cajori, Berkeley: University of California Press 1949). All excerpts from the Principia
discussed in this book are drawn from this translation.
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a resistance to going in a curve. It is sometimes popularly called inertial force, or

centrifugal force, familiar to us when we go around a sharp curve in a fast moving

car, and lunge toward the left side of the car. Centrifugal force again is not an actual

force pulling an object outward, but is the product of inertia – the “want” of an

object to go in a straight line.3 Newton’s Second Law (F ¼ mf) tells us that the
more massive the object is, the harder it is to pull it off its straight, projectile

motion. It is said to have more inertia.

Forces can combine upon a mass to create a motion that looks like a continuous

curve. But as Newton showed, that path may be viewed as a composite of instanta-

neous straight-line motions. The Moon both falls toward Earth and goes around it.

It falls toward the Earth’s center directly like a dropped stone, at 2.7 mm/s per

second acceleration. But by inertia it also tends to continue in a straight line tangent

to its orbit – at right angles to the straight line of its fall. The combination of these

two motions traces a path that is the curve of its orbit. Were it not for its centripetal

motion, toward Earth, it would continue its projectile motion forever in a straight

line, at the speed it had from its origins. But it is accelerated toward the Earth – it

is falling.

Let us imagine the gravitational force of Earth as occurring in pulses, repeated in

the smallest instants of time you can conceive. At every instant, Earth’s gravity tugs

the Moon away from its straight line, rectilinear motion. At that instant, it moves

along a new tangent line. And in the next instant, with the next pulse of gravity, it is

tugged again to yet another straight line, which has no “memory” of where it was

before – the new straight line motion could continue for a fraction of a second or a

million years; but in fact the pull of gravity tugs it to a new straight line again and

again and again. Each pulse is a fresh tug, causing a fresh fall away from the straight

line, into another straight line. But at the lunar distance, the tug is not so great as to

pull it into the Earth, nor is the Moon’s velocity so great as to allow it to escape.

All is in balance. Now imagine this process repeated in almost infinitesimally small

time intervals, with the straight lines becoming shorter and shorter, so that the little,

infinitely small, saw tooth patterns of this motion smooth out to create a path lasting

over the whole course of the Moon’s orbit.

All the mathematics for two-body problems is a simple combination of the

description of the gravitational forces and inertial, rectilinear motion; the combina-

tion of the gravitational force of a mass pulling an object inward toward it, and the

would-rather-keep-going-in-a-straight-line inertial tendency of a mass to resist

3 The real forces acting on an orbiting object are the inward, gravitational force and the inertial

tendency to move in a straight-line direction tangent to the orbit. The resistance to the deflection

off the straight line course is due to the inertia of the moving mass, not some new force pulling it

outward. It happens whenever a reference frame is rotating, causing thereby a circular accelera-

tion. For this reason, centrifugal force is often called a “fictitious force.”
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the inward pull. These attributes of mass and motion are expressed in the two

families of equations which when intermixed produce Kepler’s laws as one of their

many progeny. And it was Newton who, relying upon the great minds before him,

showed this comprehensively in his Principia, mostly with the aid of geometry.
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Chapter 2

Galileo’s Great Discovery: How Things Fall

Galileo Galilei (1564–1642), the famous Italian mathematician at the leading edge

of the scientific revolution that was to sweep Europe, was curious about motion.

He was an experimentalist who for the first time had the insight and talent to link

theory with experiment. He rolled balls down an inclined plane in order to see how

things fell toward the Earth. He discovered in this way that objects of any weight

fell toward the Earth at the same rate – that they had a uniform acceleration.

He surmised that if they fell in a vacuum, where there was no air resistance to

slow some objects more than others, even a feather and a cannon ball would

descend at the same rate and reach the ground at the same time. He also explored

the motion of pendulums and other phenomena. He is perhaps most famous for his

1610 telescopic discoveries of the moving moons of Jupiter, the phases of Venus,

and the craters of the moon, all of which convinced him, against the ages-old

wisdom of Aristotle and of the Catholic Church, of the rightness of the Copernican

heliocentric view of the solar system.

In his investigations of motion, Galileo was the first clearly to understand that

the forces acting upon objects could be broken into independent components; that a
thrown stone had a force pulling it down as well as the force throwing it horizon-

tally outward. These insights would be of great use to Isaac Newton, born the

year Galileo died, in devising the calculus and his universal laws of gravity and

motion.

The Distance a Thing Falls

Galileo was interested in understanding how things moved and fell. What laws of

motion governed them? Determining physical laws from experiment was

completely new in early Seventeenth Century Italy, but Galileo was intellectually

adventurous enough to try. One of Galileo’s most famous experiments, in 1604, was

his inclined plane experiment, where he measured the distance a ball rolled down a

ramp in each unit of time. Since forces in different directions act independently,

D.W. MacDougal, Newton’s Gravity: An Introductory Guide
to the Mechanics of the Universe, Undergraduate Lecture Notes in Physics,

DOI 10.1007/978-1-4614-5444-1_2, # Springer Science+Business Media New York 2012
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he could time the descent of the ball and learn how forces act on the ball as if it were

only moving in the down direction. From that he could deduce how a freely falling

object would move.

Why did he use a ramp to measure fall? It is because with the limited technical

means then available to Galileo, he could not possibly have timed, with any

reasonable accuracy, the rapid descent of a vertically dropped ball. Using an

inclined plane allowed him to dilute the force of gravity and slow the ball down

so he could time it with a water clock, where he could then compare the weight of

water that poured out before and after each event. This told him the time intervals

elapsed during the ball’s fall down the ramp, which were not necessarily the

equivalent of the seconds of a modern clock.1 Galileo repeated this experiment

many times to help remove some of the subjectivity in his measurements and

thereby gain greater accuracy of the result.

Galileo’s idea of using an inclined plane to accurately measure free fall as noted

took advantage of his insight that forces act independently in each dimension.

As we saw in Chap. 1, the downward, vertical force on the rolling ball (the

gravitational force) can be analyzed separately from the horizontal force that

moves it laterally along the plane. The movement down the plane is the result of

the combination of the downward gravitational force on the ball and the force of the
plane on the ball, acting perpendicular or normal to the plane, resisting it and

deflecting it horizontally. Recall our example of a sailboat where the resultant path

is the combination of the forces of wind on the sail and resisting water on the keel.

Studying the downward component of the forces acting on the rolling ball, then, is

equivalent (if we disregard the frictional forces acting on the ball) to studying the

force drawing down a freely falling object, where all the forces act downward, in

1 It is quite possible that Galileo initially timed the rolling ball by means of musical beats and later

confirmed their accuracy by means of the water clock. Galileo was musically inclined, accom-

plished on the lute, and his father and brother were musicians. Setting adjustable gut “frets” on the

inclined plane would enable the ball to make an audible bumping sound as it passed over the frets.

Adjusting the spacing of these frets so the bumps occurred at exactly even intervals, according to

his internal sense of rhythm, could easily have been done. Indeed, that method was likely far more

accurate than any clocks of the day, which could not measure times shorter than a second. This

idea was advanced by the late Stillman Drake, Canadian historian of science and Galileo expert.

See Stillman Drake, “The Role of Music in Galileo’s Experiments”, Scientific American, June,
1975. The important thing is that the time intervals be deemed to be equal, whatever those intervals

may be:

The phrase “measure time” makes us think at once of some standard unit such as the

astronomical second. Galileo could not measure time with that kind of accuracy. His

mathematical physics was based entirely on ratios, not on standard units as such. In order

to compare ratios of times it is necessary only to divide time equally; it is not necessary to

name the units, let alone measure them in seconds. The conductor of an orchestra, moving

his baton, divides time evenly with great precision over long periods without thinking of

seconds or any other standard unit. He maintains a certain even beat according to an internal

rhythm, and he can divide that beat in half again with an accuracy rivaling that of any

mechanical instrument. Ibid., 98.
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the y direction. This was a fundamental intuition, and helped lay the conceptual

foundation for Newton’s work on the action of forces, and the concept of vectors.

Using the ramp, however, came with a price. Any object falling through the

atmosphere will experience friction, whose effects will vary with the weight and

shape of the object. Using an inclined plane introduces a whole new element of

friction into the experiment. Galileo tried to minimize it by covering the plane with

parchment. Air resistance on a heavy, slow-moving ball would probably have been

negligible. Energy went into rotating the mass, though, and with the remaining

friction the ball would descend at some fraction of the speed with which it would

roll freely on a frictionless surface. But in this experiment Galileo was seeking only

proportions: the relationship between time and distance of fall. Even if the ball was

retarded by some unknown amount of friction, the relationship between distance

and time after it got going should be affected more or less equally in each interval.

Galileo’s famous Dialog Concerning Two New Sciences2 of 1638 is his rich and
delightful inquiry into fundamental physical questions about the strength of

materials and motion. It is highly readable, even after more than three and a half

centuries. Here is Galileo’s description of his inclined plane experiment, stating his

findings regarding the relation between distance and the time of fall:

A piece of wooden moulding or scantling, about 12 cubits long, half a cubit wide, and three

finger-breadths thick, was taken; on its edge was cut a channel a little more than one finger

in breadth; having made this groove very straight, smooth, and polished, and having lined it

with parchment, also as smooth and polished as possible, we rolled along it a hard, smooth,

and very round bronze ball. Having placed this board in a sloping position, by lifting one

end some one or two cubits above the other, we rolled the ball, as I was just saying, along

the channel, noting, in a manner presently to be described, the time required to make the

descent. We . . . now rolled the ball only one-quarter the length of the channel; and having

measured the time of its descent, we found it precisely one-half of the former. Next we tried

other distances, comparing the time for the whole length with that for the half, or with that

for two-thirds, or three-fourths, or indeed for any fraction; in such experiments, repeated a

full hundred times, we always found that the spaces traversed were to each other as the
squares of the times, and this was true for all inclinations of the plane, i.e., of the channel,
along which we rolled the ball.3

We can confirm this mathematical relationship found by Galileo between the

distance the ball went and its time of descent. Below are some of Galileo’s

measured times and distances for the rolling ball as it progressed down the inclined

plane. Galileo used a measuring unit called points, each of which was about 29/

30 mm. As shown on the chart, the ball rolled about 2104 � 29/30 mm or about

2,034 mm (2.34 m), less than 7 ft, in eight intervals (again, not necessarily seconds):

2Dialog Concerning Two New Sciences (translated by Henry Crew and Alfonso de Salvio,

Macmillan 1914). This classic translation is also available online: http://galileoandeinstein.phys-

ics.virginia.edu/tns_draft/index.html. See also Hawking [1] (Short title) Dialogs, which uses the

same translation.
3Dialogs, 136–37 (my italics).
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Time (equal intervals) Distance (in points) Distance divided by 33

1 33 1.00

2 130 3.94

3 298 9.03

4 526 15.94

5 824 24.97

6 1,192 36.12

7 1,620 49.09

8 2,104 63.76

The last column we added to show the multiples of the initial distance. The idea

is to try to intuit a pattern in the numbers, by dividing the initial distances by the first

distance number (33) and seeing if the other numbers are multiples of it. It is

apparent that, after dividing each distance (which we will call s) by 33, the last

column increases approximately as the square of the time. Indeed it does not take a

great deal of rounding of this experimental data to make the relationship just that, as

Galileo saw. The exact relationship is confirmed by many repeated observations.

It can be expressed by a simple equation:

t2 ¼ s

k

Where k is 33, hence,

s ¼ kt2

We have not explained what the kmeans in this equation. It is a “proportionality

constant” whose value determines the distance in the equation, in units of our

choice. As we shall see, the constant is a constant of acceleration, the gradual

incremental addition to velocity in the presence of a force inducing it.

The Meaning of Constant Acceleration

To understand uniformly accelerated motion, we shall return to the man who

articulated it in simple terms. In his Dialogs, Galileo reasoned that constant

acceleration implied steady, incremental additions of velocity evenly in proportion

to time:

When, therefore, I observe a stone initially at rest falling from an elevated position and

continually acquiring new increments of speed, why should I not believe that such increases

take place in a manner which is exceedingly simple and rather obvious to everybody? If

now we examine the matter carefully we find no addition or increment more simple than

that which repeats itself always in the same manner. This we readily understand when we

consider the intimate relationship between time and motion; for just as uniformity of

motion is defined by and conceived through equal times and equal spaces (thus we call a
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motion uniform when equal distances are traversed during equal time-intervals), so also we

may, in a similar manner, through equal time-intervals, conceive additions of speed as

taking place without complication; thus we may picture to our mind a motion as uniformly
and continuously accelerated when, during any equal intervals of time whatever, equal
increments of speed are given to it. Thus if any equal intervals of time whatever have

elapsed, counting from the time at which the moving body left its position of rest and began

to descend, the amount of speed acquired during the first two time-intervals will be double

that acquired during the first time-interval alone; so the amount added during three of these

time-intervals will be treble; and that in four, quadruple that of the first time interval. To put

the matter more clearly, if a body were to continue its motion with the same speed which it

had acquired during the first time-interval and were to retain this same uniform speed, then

its motion would be twice as slow as that which it would have if its velocity had been

acquired during two time intervals.4

In other words, in uniformly accelerated motion, the velocity will be proportional

to time,

v / t

The proportionality constant to convert the proportionv / t into an equationmust

be the amount by which increases in velocity occur steadily with time. This is the

definition of constant acceleration. In a freely falling object, acceleration in falling

due to the Earth’s gravitational field is known from experiment (and theory) to be

9.8 m/s per second.5 Hence for such cases the equation may be written v ¼ 9.8 t.
To make this clearer, suppose a rocket is boosting a probe into deep space at a

constant acceleration of 10 m/s, every second. Constant acceleration means con-

stant increase in velocity – in heaps of 10 m/s velocity in every new second.

Time in seconds Increments of velocity (m/s) Total velocity (m/s)

1 10 10

2 10 þ 10 20

3 20 þ 10 30

4 30 þ 10 40

5 40 þ 10 50

Every second begins with the velocity the object had at the end of the previous

second. The incremental addition to velocity in each second – the constant by which

the time is multiplied – is 10, which is the probe’s constant acceleration. Where

acceleration (again symbolized by a) is constant, the equation for velocity is,

v ¼ at

4Dialogs, 123 (my italics).
5 The acceleration of a falling body near the surface of the Earth due to gravity is 9.8 m/s per

second, written usually as 9.8 m/s2. This means it gains 9.8 m/s in velocity each second of its fall.

As noted in Chap. 1, this value for acceleration, or “g” as it is called, will diminish as we move

farther away from the Earth’s surface (diminishing, in fact, with the square of the increasing

distance from the center of the Earth).
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The distance the spacecraft will go in a given time at this rate of velocity

increase is also some function of time. Let’s see what it is. If an object moves at

constant velocity (zero acceleration), the distance it travels is,

s ¼ vt

where s is our symbol for distance. But the velocity in our case keeps increasing

every second, at a constant rate. For example, it goes 10 m/s in the first second and

20 m/s in the next second. So the overall velocity during these 2 s will not be 10 or

20 but the average of them, or 15 m/s. In 2 s, it will actually traverse 30 m. Given an

average velocity �v, the distance equation becomes,

s ¼ �vt

The distance the spacecraft travels will equal its average velocity times time. But

is there a simpler way of computing average velocity when we know acceleration?

To compute the average of first two velocities, as we did above, wementally did this:

�v ¼ v2 � v1
2

To compute the average velocity over a span of time, we need to know how

many seconds elapsed, from the time the motion started, ts to the time it ended, te.
Since velocity will in each case be equal to acceleration times time, the above

equation becomes,

�v ¼ ate � ats
2

Or, to simplify, assuming the start time is zero seconds, letting t just be elapsed
time,

�v ¼ 1

2
at

So in our example the average velocity in 5 s will be 25 m/s. How far will it go?

To find out, substitute the above equation for average velocity into the distance

equation, s ¼ �vt:

s ¼ 1

2
at2

In 5 s the spacecraft in our example with constant acceleration of 10 m/s, every

second (expressed as 10 m/s2) will therefore travel (½ � 10 � 52 ¼) 125 m.

This is the relationship between distance and uniformly accelerated motion which

we saw was discovered by Galileo from his experiments with rolling balls. The k in
the relation s ¼ kt2 must therefore equal half the acceleration: k ¼ ½a, where the

constant acceleration g (of 9.8 m/s2) was furnished by the Earth’s gravity. Rewriting

the equation specific to Earth’s gravitational acceleration we have,
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s ¼ 1

2
gt2

Notice that there is no horizontal component to this equation. The vertical

distance is, again, independent of any additional thrust, push, shove or shot in a

direction perpendicular to line of descent. This equation applies to the little man we

encountered on the cliff in Chap. 1 dropping and throwing the rocks. If it takes 3 s

for the rocks to reach the ground, the balls were dropped from about 44 m (almost

145 ft):

s ¼ 1

2
9:8ð Þð3Þ2

s ¼ 44:1 meters

Graphing Velocity and Time in Uniformly Accelerated Motion

Problem Show graphically that the distance traveled by a freely falling object

under uniform gravitational acceleration equals half the velocity times the time of

the fall. In doing so, use the value of the Earth’s gravitational acceleration as the

uniform acceleration constant.

Given

v ¼ at Velocity in uniformly accelerated motion

a ¼ 9:8 m=s2 The acceleration due to Earth’s gravity at its surface

Assumptions We will assume that the object moves without resistance, and

disregard any slowing effects of friction, as if it were falling in a vacuum.

Method By inspection of the equation v ¼ 9.8t, one can see that it must be a

straight line, with a slope (or rate of change of s/t) of 9.8 and an s intercept (on the y
axis) of 0. This tells us that the velocity increases at a constant rate with time. The

change of velocity with time is by definition acceleration. Velocity is changing at

each instant, so to capture the true s ¼ vt relationship for every changing increment

of time, we need to find the total area under the graph.

Calculations The relationship between time (in seconds) and the ever-increasing

velocity during fall is an upwardly sloping straight line, apparent on the graph below.

It is evident that a falling object speeds up with a constant or uniform accelera-

tion, with a velocity proportional to time of the object’s descent. That the slope is
9.8 to 1 means that the velocity increases 9.8 m/s every second, in the progression,
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9.8, 19.6, 29.4, 39.2. . . That is the “the amount of speed acquired” in each interval

of time, where the intervals are 1 s each.

Observations

1. How can we find the distance when the time and velocity at each point are

known? It may be tempting to conclude that the total distance traveled by the

object is found merely by multiplying v times t in the chart, under the assumption

that v ¼ st. But here velocity is not constant, it is changing. The object is falling
at 98 m/s after 10 s – but the total distance it fell is not 980 m. For the first half of

the trip down (zero to 5 s), it was falling at less than 50 m/s, and for the second

half (after 5 s) it was falling at more than 50 m/s. So we must multiply the

average velocity of the voyage by time.6 Average velocity is just vavg ¼ (0

þ 9.8)/2, or 49 m/s. This multiplied by the full time of fall of 10 s is 490 m, the

6Galileo’s first theorem in the section of his Dialogs titled “Naturally Accelerated Motion” states:

“The time in which any space is traversed by a body starting from rest and uniformly accelerated is

equal to the time in which that same space would be traversed by the same body moving at a

uniform speed whose value is the mean of the highest speed and the speed just before acceleration

began.” Dialogs, 132.
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total distance of fall. The equation for finding distance, when the elapsed time

and uniformly changing velocity from rest are known, is s ¼ ½vt. This proce-
dure is equivalent to finding the area of the triangle under the sloped line.

The area of a triangle is half the base times the height, so

s ¼ 1

2
vt:

2. In his investigations of accelerated motion, Galileo utilized both experimental and

theoretical methods. Since measuring time precisely and easily was not possible in

his day (the water clock as we mentioned above was probably used by him to

confirm, rather than discover, these laws), he sought to understand his experimental

results by mathematical reasoning, using geometry to illustrate proportional
relationships.7 The rolling ball experiment was his attempt to find the proportional

relationship between distance traveled and time. This yielded the law that distance

was proportional to time squared.8 Since he had concluded that in uniformly

accelerated motion an object’s velocity increased in a manner that was proportional

to time, he could intuit the correctness of the time-squared law for distance mathe-

matically. Here is an intuitive, non-geometrical shorthand version of his reasoning:

The distance covered by a non-accelerating object is proportional to velocity times

time. But in a uniformly accelerating body, that velocity is itself proportional to time.

Hence the distance is proportional to times squared. Expressed symbolically:

s / vt in uniform motion; but

v / t in a uniformly accelerating body; so

s / ðtÞ t in a uniformly accelerating body; or

s / t2  

This result corresponds to the relationGalileo obtained in his rolling ball experiment.

Hence he could feel confidence in the truth of his theorem: “The spaces described

by a body falling from rest with a uniformly accelerated motion are to each

other as the squares of the time-intervals employed in traversing these distances.” 9

3. Galileo’s own reasoning is a good example of geometrical thinking in an era

where quantifiable results were difficult to come by. Below is his line of

argument and diagram proving the same problem we worked through above10:

7 The method of finding the limit of a function to quantitatively derive velocity or acceleration was

unknown, and lay three-quarters of a century in the future.
8Dialogs, 133: Theorem II, Proposition II in “Naturally Accelerated Motion.”
9 Ibid.
10 Galileo is here proving his Theorem I, Proposition I: “The time in which any space is traversed

by a body starting from rest and uniformly accelerated is equal to the time in which that same space

would be traversed by the same body moving at a uniform speed whose value is the mean of the

highest speed and the speed just before acceleration began.” Dialogs, 132.
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Let us represent by the line AB the time in which the space CD is traversed by a body which

starts from rest at C and is uniformly accelerated; let the final and highest value of the speed

gained during the interval AB be represented by the line EB, drawn at right angles to AB;

draw the line AE, then all lines drawn from equidistant points on AB and parallel to BE will

represent the increasing values of the speed, beginning with the instant A. Let the point F

bisect the line EB; draw FG parallel to BA, and GA parallel to FB, thus forming a

parallelogram AGFB which will be equal in area to the triangle AEB, since the side GF

bisects the side AE at the point I; for if the parallel lines in the triangle AEB are extended to

GI, then the sum of all the parallels contained in the quadrilateral is equal to the sum of

those contained in the triangle AEB; for those in the triangle IEF are equal to those

contained in the triangle GIA, while those included in the trapezium AIFB are common.

Since each and every instant of time in the time-interval AB has its corresponding point on

the line AB, from which points parallels drawn in and limited by the triangle AEB represent

the increasing values of the growing velocity, and since parallels contained within the

rectangle represent the values of a speed which is not increasing, but constant, it appears, in

like manner, that the momenta assumed by the moving body may also be represented, in the

case of the accelerated motion, by the increasing parallels of the triangle AEB, and, in the

case of the uniform motion, by the parallels of the rectangle GB. For, what the momenta

may lack in the first part of the accelerated motion (the deficiency of the momenta being

represented by the parallels of the triangle AGI) is made up by the momenta represented by

the parallels of the triangle IEF. Hence it is clear that equal spaces will be traversed in equal

times by two bodies, one of which, starting from rest, moves with a uniform acceleration,

while the momentum of the other, moving with uniform speed, is one-half its maximum

momentum under accelerated motion. Q.E.D.11

11 Ibid. 132–33.
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If Galileo Only Knew Calculus: A Quick Look
at Instantaneous Velocity

We noted above that Galileo realized that the forces acting upon objects could be

broken into independent components, which we now typically represent as vectors.

An object is pulled directly downward by gravity with uniform acceleration whether

or not it is flung outward or just dropped. The idea of separating forces and motions

into components and analyzing them separately is a method of analysis now com-

monplace in the study of dynamics. The path of a falling object can be analyzed

using a graph in terms of change along the y axis and change along the x axis. The
ratio of those quantities, called the slope, tells about the rate of change of the curve at

the point in question. Let us look again at the simple case of objects falling – or

rolling – freely in a gravitational field. It will help us understand how the ever-

changing velocity entailed in accelerated motion ultimately required Newton to

explore what happens when segments under investigation are broken down into

smaller and smaller parts, which was the heart of his remarkable discovery of the

calculus. The principles are best conveyed through the use of a few simple problems.

Problem The actual initial distance a dropped object falls to Earth in the first

second is about 4.9 m (16 ft). Using only the distance-time-squared relationship

discovered by Galileo, expressed in the equation s ¼ kt2, where the constant

k ¼ 4.9 (since at t ¼ 1, k ¼ s ¼ 4.9), and the distance and time data plotted

below, derive an equation for the instantaneous velocity of a freely-falling boulder,

during any moment of its descent.

Given Below is the distance in meters the freely-falling boulder covers in 10 s.

Time (s) Time squared Distance (m) s ¼ kt2

1 1 4.9

2 4 19.6

3 9 44.1

4 16 78.4

5 25 122.5

6 36 176.4

7 49 240.1

8 64 313.6

9 81 396.9

10 100 490

Assumptions We will as before ignore the role air friction plays, and assume it

falls in a vacuum toward the Earth.

Method Examining the plot of data below, we note that the rate of descent appears

non-uniform. Earlier parts of the curve are shallow, gradually becoming steeper and

steeper with increasing time. Steeper means faster, since there is increasingly more

change along the y axis – distance – in a unit of time than where the curve is more
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horizontal. We can see from both charts, too, that the numbers grow faster with each

second. This conforms to our intuition, since things do fall faster and faster as they

drop, as one can see by looking at a waterfall, where the water descends with

increasing rapidity as it nears the bottom.

The rate of this descent – the velocity of the object – will differ at each point

along the curved graph. How can we find the velocity of our rock at any particular

point? We must pick a small place on the curve beginning with that point, illustrated

below by small boxes, and find the slope of the line there. The slope is the difference
in the boxes between the two s points on the y axis (how distance has changed),

which is Ds, divided by the difference between the two t points on the x axis (how
time has changed), which is Dt. This relationship Ds/Dt, increment of distance per

increment of time, is the mean velocity within the box. We can see how this looks

on a graph of the 10 s of data:

Little rectangles are drawn at arbitrary times (2, 5 and 9 s) to illustrate that that

the slope gets increasingly steep with time. The first rectangle is elongated horizon-

tally, and the second less so, and the last is beginning to be elongated vertically.

Since velocity is the ratio of distance to time, we can see the velocity of the rock

(and the slope, Ds/Dt) is increasing as time goes on. If we call these boxes Box A, B

and C respectively, and compute Ds/Dt for each, we get the following results:

Box

Time t when
entering box

Distance swhen
entering box

Distance s0 when
leaving box

Difference in

s values: Ds Dt

Average

velocity:

Ds Dt=

A 2 19.6 44.1 24.5 1 24.5

B 5 122.5 176.4 53.9 1 53.9

C 9 396.9 490 93.1 1 93.1
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The velocity increases dramatically in each box. But what do those represent?

They are, again, the average velocities of the object within each box. The rock took
1 s to drop through each box, and the length of that drop was the Ds value applicable
to each. If Dt is as big as it is, then we must be content with this approximation of

velocity at the location of each box. Within the boxes there is an approximation: the

curve changes, albeit slightly inside each box, so the slope in each is really not

the same throughout the whole box. We still don’t know the actual velocity at any

particular point. If one were trying to determine exactly the force on a bungee cord,

or the speed for a soft landing on the Moon, however, one would need to know the

exact, not merely average, velocity. How can we do this? We can try by making

Dt smaller. Since Galileo’s equation for this curve is known, we can see what

happens to s when Dt is added to the equation; specifically, how the equation may

change when we reduce the value of that Dt to near zero. This is called finding the

limit of a function, as Dt approaches (but does not actually reach) zero. It is

equivalent to reducing the time intervals to ever smaller units, as if the boxes

were made smaller and smaller, and seeing how the distance changes in those

smaller units of time. If the boxes are made almost infinitely small, such that they

become virtually points, the velocity at those points essentially becomes the

instantaneous velocity we seek instead of the average velocity.

Calculations The average velocity in any box is given by this relation:

v ¼ Ds
Dt

We eventually want to find what the instantaneous velocity is as Dt approaches a
limit, in this case zero, expressed mathematically by this notation:

lim
Dt!0

v ¼ Ds
Dt

Calling the distance at entry into the box s and the distance at exit s’, and the

small increment of time Dt, the velocity equation before we limit the size of Dt is,

v ¼ s0 � s

Dt

Now let us modify Galileo’s equation by adding the Dt to the time increment:

s ¼ kt2

s0 ¼ k tþ Dtð Þ2

and the equation for velocity in the box becomes,

v ¼ k tþ Dtð Þ2 � kt2

Dt
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This can be expanded, then simplified,

v ¼ k t2 þ 2tDtþ Dt2ð Þ � kt2

Dt

v ¼ kDt 2tþ Dtð Þ
Dt

v ¼ k 2tþ Dtð Þ

From this equation the velocity through any size box can be computed. All we do

is adjust the size of Dt and make the box as small as we choose. Now we can see

what happens when we make Dt approach zero:

lim
Dt!0

v ¼ k 2tþ Dtð Þ

v ¼ 2kt

which, under our initial assumption that an object falls toward Earth a distance of

4.9 m in the first second (that is, k ¼ 4.9) reduces to,

v ¼ 9:8t

Observations

1. This of course is the familiar v ¼ at equation discussed earlier, where a is the

value of acceleration due to gravity near the Earth’s surface of 9.8 m/s2.

2. Inserting the values of 1 at 2, 5 and 9 s, respectively, for Dt in the equation v ¼ k
(2 t þ Dt) yields 24.5, 53.9 and 93.1 m/s. These are the same values for average

velocity given by the numerical method in the chart above. When we reduce Dx
to zero, to find instantaneous velocity, the equation v ¼ 9.8 t applies. The

instantaneous velocities at those times are 19.6, 49 and 88.2 m/s, respectively.

3. To see how the initial values of velocity converge on these final values as Dt gets
smaller, take the middle box as an example, where the object has fallen for 5 s

and traveled 122.5 m. Beginning with the equation v ¼ k (2 t þ Dt) with Dt at 1,
we reduce the size of Dt by increments before finally bringing it to zero. The

average velocity of the object through the box between 5 and 6 s becomes the

instantaneous velocity of 49 m/s at exactly 5 s:

Dt Velocity at 5 s (m/s)

1 53.9

.5 51.45

.25 50.225

.1 49.49

.01 49.049

(continued)
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Dt Velocity at 5 s (m/s)

.001 49.0049

.0001 49.00049

0 49

4. The method of finding the limit of the equation as we shrink Dt is at the heart of
the differential calculus, invented independently at about the same time by

Englishman Newton and the German Gottfried Wilhelm Leibniz (1646–1716).

It sparked a revolution in mathematics and was Newton’s prime tool for his

seminal analysis of the motion of moving bodies, published in 1687 as

Philosophiae Naturalis Principia Mathematica, or The Mathematical Principles
of Natural Philosophy, (often referred to as the Principia). The increment Dt (or
any such small increment of a value, be it time, velocity, distance, etc.) was

called by Newton a “fluxion” and a “differential” by Leibniz. Leibniz’s termi-

nology and symbols have survived.

Using Limits to Find the Acceleration of a Freely-Falling Body

We have seen that the velocity of a falling object near the Earth increases at a

constant 9.8m/s2. That is, the rate of change of velocity (the acceleration) is 9.8m/s2.

This result we infer from the equation for velocity, v ¼ 9.8 t. Let us now use some of

the same limit concepts to find it directly.

Problem Derive the acceleration of a freely falling object using the same

techniques as were used in the above discussion.

Given

v ¼ 9:8t The equation for velocity of a freely falling object toward Earth

lim
Dt!0

a ¼ Dv Dt= Acceleration (change of velocity with time) as Dt approaches zero

Assumptions We will again ignore the role air friction plays, and assume the

object falls in a vacuum toward the Earth.

Method To assist our analysis, we consider the object’s velocity at entry into any

arbitrarily small box and the velocity at exit, after a small increment of time has

passed. The difference may then be found between the velocity after the small time

increment and the velocity before it, as the numerator in the above limit. We then

calculate the expression when Dt goes to zero. Graphically, the result is the same as

before: Recalling the straight-line graph of velocity (on the y axis) and time (on the

x axis) we can again visualize smaller and smaller increments of time, and corre-

spondingly smaller and smaller increments of velocity as a function of time.
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Calculations If we let the velocity be v at entry into any arbitrarily small box and

the velocity at exit be v’, then Dv ¼ v0�v. The small increment of time we again

represent as Dt, so

lim
Dt!0

a ¼ Dv
Dt

Since Dv ¼ v0�v, the acceleration equation before we limit the size of Dt is,

a ¼ v0 � v

Dt

Now let us modify the velocity equation by adding the Dt to the time increment:

v ¼ 9:8t

v0 ¼ 9:8 tþ Dtð Þ

Substituting these values into the equation for acceleration, the expression

becomes,

a ¼ 9:8 tþ Dtð Þ � 9:8t

Dt

a ¼ 9:8tþ 9:8Dt� 9:8t

Dt

Simplifying and dividing by Dt, we find,

a ¼ 9:8m=s2

Observations

1. The approach is called differentiation, and with it we arrive at the same result as

we found before: that the acceleration is indeed a constant. The important point

is the method, unknown to Galileo, by which Newton was able to unlock the

secrets of lunar and planetary motions.

2. In summary, we used the method of differentials on two equations above. It was

applied to the distance-time-squared equation y ¼ kt2 and then the other was

y ¼ 9.8 t. The method yielded 2kt and 9.8, respectively. The first produced the

rate of change of distance with respect to time, or velocity. The second yielded

the rate of change of velocity with time, or acceleration. It looks as if the same

operation was applied to each equation. Can we generalize the method? Indeed,

it can be shown that, in most cases, all one needs to do to find the rate of change

of such a function is first to multiply the function by its exponent and then reduce
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the power of the exponent by one.12 Suppose we try it on a cubic equation, say

y ¼ Zx3, where Z is any constant, returning to the conventional x, y notation for

the abscissa and ordinate. If the general rule is correct, then the rate of change of

y with respect to x, written as Dy/Dx, should simply be 3Zx2. Using the above

methods, try this for yourself to see if you agree.

A Summary of Galilean Equations

It is worthwhile thoroughly to know the basic equations of motion. Below is a

summary of the relationships among distance, velocity, acceleration and time,

which we will sometimes call the “Galilean equations” even though Galileo himself

never actually expressed these relationships in this algebraic form:

Summary of Galilean equations

Condition Proportion

Proportionality

constant Equation

Distance at time t assuming continuous, uniform motion

(i.e., where velocity has been constant)

s / vt 1 s ¼ vt

Distance at time t after uniform acceleration from rest

(i.e., where initial velocity was zero)

s / vt ½ s ¼ ½vt

Velocity at time t after uniform acceleration from rest v / t a v ¼ at

Distance at time t after uniform acceleration from rest s / t2 ½a s ¼ ½at2

Notes on Using the Law of Conservation of Mechanical Energy
to Derive the Galilean Distance Equation

We may use energy concepts to derive the Galilean distance-time-squared relation.

The law of conservation of mechanical energy was not well-understood until the

nineteenth Century. The subject is treated extensively in most physics textbooks;

we will give only a brief summary here of the key concepts relevant to our

discussion. Energy is the ability to do work, which is the ability of a force to

move an object through a distance. Kinetic energy is the energy of motion. It has the

ability to do work upon impact with another object. It is expressed by the relation:

KE ¼ ½ mv2. That is, the kinetic energy of a mass m varies as half the square of its

velocity. The kinetic energy per unit mass m thus equals v2/2. Potential energy is a
kind of stored energy. When a spring is wound, it can do work when unwound.

When an object is raised above the ground it acquires potential energy, the greater

12 A calculus course is advised to properly examine the many nuances and variations of this idea to

more complex functions, and its inapplicability to certain classes of functions not considered here.
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with height, which is converted to kinetic energy as it falls and gains speed. It is

expressed by the following relation near the surface of the Earth: PE ¼ mgh. That
is, the kinetic energy of a mass m increases as it is raised a distance h against the

accelerative force of gravity g.13 The potential energy per unit mass m thus equals

gh. It is a fundamental law of physics that total mechanical energy in a system can

neither be created nor destroyed. So in any “closed” mechanical system, where we

assume no gains or losses of energy from external sources (for example, in the form

of heat due to friction) then KE þ PE ¼ constant. The total energy in the system is

Etotal ¼ KE þ PE.
Nowwith these ideas inmind, imagine a rock high up on a cliff, whose height is h.

You are about to push it off. Before the rock is pushed, its velocity is zero, so v ¼ 0,

and its total energy ismgh, which is entirely potential. After you shove it off, it loses
height but gains velocity: the potential energy is “exchanged” for kinetic energy as it

falls. As it hits the ground, where h ¼ 0, potential energy has diminished to zero,14

and its total energy, now all kinetic, is ½ mv2. The total energy from top to bottom,

however, has always remained constant:

Etotal ¼ mv2

2
þ mgh

The kinetic energy at the bottom of the cliff thus equals Etotal and that is the same

value as the potential energy at the top. Equating them, cancelling the mass terms,

relabeling acceleration a and the height s, and isolating the velocity term, we have

v2 ¼ 2as

Given that in the case of uniform acceleration, the velocity at time t is equal to
acceleration times time elapsed, or v ¼ at, we can square that expression (to

become v2 ¼ a2t2) and substitute the right-hand side for v2 in the previous equation:

a2t2 ¼ 2as

Solving for distance yields,

s ¼ 1

2
at2

We have derived the Galilean relationship from purely energy concepts unknown

in Galileo’s time. Had he known, how much time it would have saved him!

13As one ventures far from Earth the value of g changes with the inverse square of the object from
the center of the Earth, so in those cases the equation must be modified to take that into account,

and the equation is PE ¼ �GMm/r.
14We here adopt the surface of the Earth as the arbitrary zero reference point for potential energy,

since the rock can descend no lower.
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Exercises: Playing Around with Gravity Galileo undertook his experiments with

early nineteenth Century materials and concepts. We now have modern mathemat-

ics and far greater knowledge of the motion of bodies both on this and other worlds.

We also have experience in doing thought experiments using mathematical models

to study and predict outcomes. The problems below invite you to model simple

dynamic situations in various contexts to help you gain greater familiarity with the

basic Galilean concepts.

Problems

1. An amateur rocket test-fired from rest travels horizontally with constant accel-

eration. After 30 s of flight it has achieved a velocity of 900 m/s. What is its

horizontal acceleration and distance travelled?

2. Ignoring friction, at what height must the horizontally-aimed rocket in the

previous problem be launched in order for it not to hit the ground before 30 s

of flight?

3. A rocket has been fired vertically from the ground with steady acceleration. Its

velocity at height h is 300 m/s. What is height h?
4. A small balloon ascends to an altitude of 1 km above the surface of the earth,

whereupon a 1 kg ball is dropped. What potential energy has the ball gained at

the top of its ascent? Ignoring friction, (a) what would be the ball’s kinetic

energy and velocity be when it hits the earth; and (b) assuming a gravitational

acceleration of 9.8 m/s per second, how long would the fall take?

5. Mars has a surface gravity that is 3.71 m/s2. If Galileo’s rolling ball experiment

were set up on Mars, estimate the numerical results that would be obtained.

Ignore friction. Explain your reasoning.

6. Neptune has surface gravity that is about 1.138 times that of the Earth.

If Galileo’s rolling ball experiment were set up on Neptune, estimate the

numerical results that would be obtained on that planet. Ignore friction. Explain

your reasoning.

7. Galileo’s rolling ball experiment is primarily an illustration of: (a) how fast

things fall; (b) how friction affects the speed of moving objects; (c) how objects

in motion tend to stay in motion; (d) how vectors work.

8. Suppose you drop a tennis ball from a height of 1.5 m while your friend holds a

gun and, at the moment you drop the ball, shoots it perfectly horizontally from

the same height. Ignoring friction, which should hit the ground first: the ball or

the bullet? Explain your answer.

9. Galileo discovered that a dropped object will fall (a) equal distances in equal

times; (b) twice as fast in the second second as in the first second; (c) as far

proportionally as the square of the time; (d) half the acceleration times the time.

10. Imagine a 1 kg ball is rolled down a frictionless ramp 10 m long whose high end

is 1 m off the ground. The ramp merges into a perfectly flat pathway at ground

level. Describe and compute the forces, accelerations and velocities of the ball

at each second of its motion down the ramp and along the level plane.
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Chapter 3

Christian Huygens’ Remarkable Pendulum

The pendulum is curiously related to circular motion in a gravitational field, and its

investigation helped lay the foundations of celestial mechanics. With it, the brilliant

polymath Christiaan Huygens (1629–1695) in the mid-1600s was able deduce the

vertical fall of an object in a given time and determine the pull of Earth’s gravity

with remarkable accuracy. His results, developed in the course of his invention of

the pendulum clock, were used by Newton and, as will be discussed in Chap. 6,

gave critical, empirical support to his universal theory of gravitation.

Of Planes and Pendulums: A Historical Sketch

It is not easy, even nowadays with a reliable stopwatch, to time a falling stone with

absolute exactness. How much greater was the challenge in the 1600s. Yet if an

object’s fall in just 1 s could be known, not just approximately, but with precision, it

would open the door to a more important and sensitive measure, then unknown: the

constant of acceleration due to gravity, Earth’s “g”. But the crude measuring

devices of the day would not allow it. Counting pulse beats or weighing water in

a water clock was too cumbersome and ultimately subjective to measure anything

fast. The inventive Galileo chose to run his ball down an inclined plane so he could

slow its motion down, and discern the crucial proportional relationships between

distance and time. But as to actually quantifying the speed, to know its velocity

exactly, this was still out of the question. It was again the question of accurate

timekeeping. Perhaps there would be another way to find out.

The steady, silent rhythm of the swinging pendulum has captivated humans for

ages. Galileo noticed that no matter how far a pendulum of a given length is pulled
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back, it appeared to have the same period.1 He also keenly deduced that the period

of a pendulum is proportional to the square root of its length.2 Would measuring the

period of a pendulum of a known length be somehow sufficient to tell the distance

of fall in a short period of time? Huygens, building on Galileo’s work, unlocked the

key to pendulum motion in his 1673 book, The Pendulum Clock or Geometrical
Demonstrations Concerning the Motion of Pendula as Applied to Clocks.3

Why should the fall of an object in a gravitational field be determinable by a

pendulum? Recall the independence of forces emphasized by Galileo in his

experiments with ramps. A pendulum bob, held to one side and released, will

experience a downward force of gravity, and a transverse pull from the string holding

it. The downward force of gravity is independent of the transverse pull of the cord

drawing it to the center of its swing. If we can determine the downward fall, the vector

component that acts just vertically—if we isolate that in our thinking—the fall

downward should be no different than any dropped ball. It should cover its descent

distance in the same amount of time as if it were dropped free of the pendulum cord.

Hence, the Galilean equation for distance (proportional to time squared) should apply

to a falling pendulum bob the way it applies to any other falling object. Christiaan

Huygens demonstrated this in simple propositions. He began by re-proving Galileo’s

findings about objects on inclined planes. He then imagined a series of connected

planes and extrapolated this to motion along the arc of a pendulum. His Proposition

IV draws directly from Galileo’s discussion of balls moving on two sloping planes,

connected at the bottom, which we discussed in Chap. 1:

PROPOSITION IV

If a heavy body begins to move upwards with the same velocity acquired at the end of a

descent, then in equal parts of time it will cross the same distances upwards as it did

downwards, and it will rise to the same height from which it descended. Also in equal parts

of time it will lose equal amounts of velocity4

1 Hawking [1] (Short title)Dialogs, 65: “But observe this: having pulled aside the pendulum of lead,

say through an arc of fifty degrees, and set it free, it swings beyond the perpendicular almost fifty

degrees, thus describing an arc of nearly one hundred degrees; on the return swing it describes a little

smaller arc; and after a large number of such vibrations it finally comes to rest. Each vibration,

whether of ninety, fifty, twenty, ten or four degrees occupies the same time: accordingly the speed of

the moving body keeps on diminishing since in equal intervals of time, it traverses arcs which grow

smaller and smaller.” This is known as isochronism, and has since been found to be true for small

angles of swing, but only to a fair approximation for larger angles. See the discussion about the

period of the pendulum in the text.
2Dialogs, 73: “As to the times of vibration of bodies suspended by threads of different lengths,

they bear to each other the same proportion as the square roots of the lengths of the threads.”

Compare this result with the equation for the period of the pendulum given below in the text.
3 Huygens [2] (Short title) Pendulum Clock. The Pendulum Clock was first published in 1673.
4Pendulum Clock, 38: Proposition IV. Along these lines, Galileo had earlier stated: “[It] is very

likely that a heavy body falling from a height will, on reaching the ground, have acquired just as

much momentum as was necessary to carry it to that height; as may be clearly seen in the case of a

rather heavy pendulum which, when pulled aside fifty or sixty degrees from the vertical, will

acquire precisely that speed and force which are sufficient to carry it to an equal elevation save

only that small portion which it loses through friction on the air.” Dialogs, 72.
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Thus the distances and velocities at any point on one side will equal the distances

and velocities at the same points on the other side. From this, Huygens, echoing

Galileo, tells us that the velocities acquired by objects “falling through variably

inclined planes are equal if the elevations of the planes are equal.”5 And (by

Proposition IX) any such object “will rise to the same height from which it came

no matter how many contiguous plane surfaces it may have crossed. . .or what their
inclinations are.”6

5Pendulum Clock, 43: Proposition VI. Again, from Galileo: “[W]e may logically infer that a body

which descends along any inclined plane and continues its motion along a plane inclined upwards

will, on account of the momentum acquired, ascend to an equal height above the horizontal . . .and
this is true whether the inclinations of the planes are the same or different . . . But by a previous

postulate the speeds acquired by fall along variously inclined planes having the same vertical

height are the same” Dialogs, 172. That is, the speeds at the bottom of the plane will be the same if

the fall is from the same height; the angle of the plane, be it sloped at a low angle or almost vertical,

or absolutely vertical, will make no difference to this conclusion. This result follows from

considerations of potential and kinetic energy discussed in Chap. 2.
6Pendulum Clock, 46: Proposition IX.
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Huygens has conceived here of any number of plane surfaces made up of smaller

and smaller linked segments, so that it approaches a smooth curve.7 This analysis

anticipates Newton’s division of arcs into small linear increments, merging ulti-

mately (as the segments become infinitesimally small and almost infinitely more

numerous) to a smooth curve:

[A] body descending through the circumference of a circle or through any curved line (for here

we can consider any curve to be composed of an infinite number of straight lines) will always

acquire a velocity equal to what it would acquire by descending from an equal height. This

velocity will be equal to the velocity acquired in a perpendicular fall from the same height.8

This was the beginnings of calculus, and it is clearly present in Huygens.

In short, the fall of a pendulum bob from a given height, measured vertically, will

equal the fall of the bob as if dropped freely.

Nowadays we would confirm the truth of this proposition from the principles of

conservation of mechanical energy. Suppose a pendulum is 5 m long and is pulled

to the right by 3 m (about .64 rad or almost 37�), such that the bob when released

would fall 1 m, as in the figure.

7 Huygens’ proof of proposition VIII may be excerpted as follows, with reference to the above

illustration copied from Pendulum Clock, 45, Fig. 13:

Let AB, BC, and CD be contiguous planes whose terminus A has a height above the

horizontal line DF. . . And let a body descend through these planes from A to D. Now I say

that at D it will have the same velocity which it would have at F by falling from E. For when

CB is extended it cuts AE at G, and likewise DC, when extended, cuts AE at E. Now a body

descending through AB will acquire the same velocity at B as a body descending through

GB [Proposition 6]. Hence it is clear that, if change or direction at B has no effect, the body

will have the same velocity when it arrives at C as if it had descended through the plane GC,

which is the same as it would have by descending through EC. Hence, in the same way, it

will cross the remaining plane CD as if it had passed through EC. And thus at D it will have

the same velocity as if it had descended through the plane ED, that is, the same velocity

acquired by a fall through the perpendicular EF. Q.E.D.

8 Ibid.
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What is the speed of the bob at the lowest point, and how does this compare with the

speed of the bob if dropped vertically? It is apparent that the sumof kinetic and potential

energies at the top and bottom of the pendulum’s swing must be the same, just as in the

case of the rock dropped from the cliff in Chap. 2. The velocity squared at the end of the

fall is therefore, v2 ¼ 2as, where a is the steady acceleration and s is the fall distance.
The acceleration is due to gravity, so we can write the equation for velocity this way:

v ¼
ffiffiffiffiffiffiffi
2gs

p
Inserting for g the Earth’s gravitational acceleration of 9.8 m/s2, the fall distance

of 1 m, and neglecting the effects of air friction, the speed of the bob at the bottom

of its swing is,

v ’ 4:4 m=s

From the equation alone it is apparent that this result is the same as if the bob, freed

from the pendulum cord, were simply dropped 1 m to the ground: the final speeds

attained from the same height are always the same. Of course if we pull the pendulum

back farther, the bob will swing through a steeper angle, the initial height at release

will be greater, and the fall distance, and hence the maximum velocity of the

pendulum, will be greater. Pull the bob up to 45� from vertical (p/4 rad) and the fall
distance increases to about 1.5 m; the maximal velocity (at the bottom of the swing)

increases to about 5.4 m/s.9 A lesser angle will produce a lesser velocity. Deflect it 9�

(p/20 rad) and the fall distance becomes .06 m, and it swings past vertical at only

1.1 m/s. Except for the means of accounting for friction, these results are no different

thanwould be obtained by experimentingwith variably inclined planes and observing

the end velocity’s dependence upon initial height. Notice too that the speed is

independent of the mass of the bob; it does not appear in the above velocity

equation.10 This is consistent with Galileo’s early observations that, disregarding

friction, objects of unequal mass falling from the same height will still fall to the

ground at the same speed—the principle of equivalence discussed in Chap. 1.

We said that Galileo noticed constancy in the period of a pendulum: no matter

how far he pulled it back, the oscillations seemed to take the same amount of time.

Why should this be? Let’s continue the thought experiment in which we pulled a

pendulum back far, at a steep angle, then less so. When the bob is pulled back far, its

end velocity is greater but it travels through a longer arc than when deflected only

slightly. A pendulum swung through a small angle similarly has, as we noted, a

slower velocity, but less distance to travel than when deflected more. In all,

shouldn’t the swing times, the periods of the pendulums therefore all be the same?

The answer is, to a fair approximation, yes. The arc distance to midpoint of the 9�

pendulum is about .785 m, and the pendulum’s mean velocity is about .55 m/s.

9 If y is the pull-back angle of the pendulum from the vertical, and l the length of the pendulum, the

drop distance s can be calculated from the equation s ¼ l(1– cosy).
10 The mass terms cancel out in the energy equations: KEtop þ PEtop ¼ KEbottom þ PEbottom
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For the 45� pull-back angle, the pendulum’s arc length is about 3.93 m and its mean

velocity is about 2.75 m/s. Divide the arc length by the velocities, and the time to

travel these arc lengths in each case is the same: about 1.4 s. When Galileo observed

this remarkable property of pendulums, called isochronism, he had the idea that it

could be used to tell time far more accurately than ever possible, from which seed of

inspiration Huygens’ pendulum clock was conceived half a century later.

How Gravitational Acceleration Was Measured

with a Pendulum

Before Huygens, the constant of acceleration due to gravity was unknown. It could

have been determined by the Galilean equation s ¼ ½ gt2, where g is the accelera-

tion due to gravity: if one knows the distance s a thing falls in a second, one can

solve the equation for g. But to do so in the 1600s would as we noted have required
a timekeeping device accurate to within at least hundredths of a second, and some

automatic means of recording the start and end of fall, which as we mentioned did

not exist. To return to our original question, the key issue was how to know exactly

the distance an object of any mass would fall in a given time: from this the

acceleration of gravity could be found. Galileo gave us proportions: the distance

fallen is proportional to the square of the time. But he could not reliably quantify

how far an object would far in the space of, say, 1 s. This quantification, as we shall

see in Chap. 6, would be vital to Newton’s calculations of how the Moon’s motion

conformed to his evolving theory of gravitation.

Huygens’ addressed this challenge in the last proposition of his book: “How to

define the space which is crossed by a heavy body falling perpendicularly in a given

time.”11 He acknowledges the limitations of experiments, due to the speed of the fall:

Those who have previously studied this measure [of the fall of a body] agree that it is

necessary to consult experiments. But the experiments which have been conducted so far do

not easily give an exact determination of this measure, because of the speed which the

falling body has acquired at the end of its motion. But if one uses our Proposition . . . in The
Falling of Heavy Bodies . . ., and if one knows the length of a pendulum which marks off

seconds, then he can explain this matter as a certain derivation without experiment.12

In other words, the perpendicular fall can be measured by the period of a

pendulum whose length is adjusted just so it completes one oscillation—one arc

sweep in one direction (half a full period – just the tic part of the pendulum clock)—

in 1 s. The period of such a pendulum is 2 s (the tic and the tock of the clock). Such a

pendulum is called a seconds pendulum and is a fruitful way of simplifying

calculations. This was an excellent development since it avoided the rather clumsy

inclined planes, with all their friction and imprecision of measurement.

11Pendulum Clock, 170: Proposition XXIV.
12 Ibid., 170–71: Proposition XXVI.
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Determining How Far a Body Falls in One Second
from the Length of a Pendulum

Huygens succeeded in finding the relation between the period of a pendulum and

the fall of an object. Isaac Newton concisely described Huygens’ result in these

words: “[T]he space which a heavy body describes by falling in one second of time

is to half the length of this [seconds] pendulum [of Christiaan Huygens] as the

square of the ratio of a circle to its diameter (as Mr. Huygens has also shown) . . .”13

The next problem will show how this is so.

Problem Given the information below, derive Huygens’ result, as expressed by

Newton, to show that the fall distance s of an object equals half the length of a

seconds pendulum times the “square of the ratio of a circle to its diameter.”

Given

s ¼ ½ at2 The Galilean equation for the distance an object moves in time t under
the influence of a constant acceleration a. Where the constant

acceleration is induced by gravity, g, the equation becomes s ¼ ½ gt2

P ¼ 2p
ffiffi
l
g

q
Equation approximating the period P of a pendulum of length l

Assumptions The pendulum formula is a useful approximation for small angles of

swing. We will assume that the swing angle of the seconds pendulum is small, say a

few degrees. We will also disregard the fact that the value of g varies slightly at

different locations on the Earth, and at different altitudes, a fact unknown by

Huygens at the time.

Method Since the Galilean equation relates fall distance to acceleration, it may be

rearranged to isolate acceleration. This we can substitute for acceleration in the

pendulum equation. Doing this should yield a value of s in terms of l, the length of

the pendulum, with the only other variable being t. Since the time we are consider-

ing is 1 s, we can set t ¼ 1 and simplify the result. Finally, we must set the period

equal to two for a seconds pendulum.

Calculations Starting with the Galilean distance-time-squared equation, s ¼ ½ gt2,
we can isolate the acceleration term:

g ¼ 2s

t2

13 Sir Isaac Newton [3] Book III, Proposition IV. Theorem IV.
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Now we can substitute the right-hand side of the above equation into the

pendulum equation given above:

P ¼ 2p

ffiffiffi
l

g

s

P ¼ 2p

ffiffiffiffiffiffiffiffi
l
2s
t2

� �
s

Let us now set t ¼ 1 and square each side:

P2 ¼ 2p2l
s

Since the period of a seconds pendulum is 2 s, we set P ¼ 2, and solve for s:

s ¼ l

2
p2

This is the result we sought, telling how far, s, a body will fall in 1 s, a relation

discovered by Huygens and (as we shall see later) used by Newton, where the

“square of the ratio of a circle to its diameter” is of course p2.

Observations

1. This equation means that a seconds pendulum of length l will complete one

swing, say right to left (but not back) in the time a free-falling object at that

location will fall through distance s. This was a valuable equation. With it,

neither Huygens, nor Newton, nor anyone else in the 1670s or 1680s would need

a stopwatch or electronic timer to try to time the fall of an object. Longer

durations of time could be measured accurately, over many swings of the

pendulum, and the result averaged to get a fairly accurate time for the period

of each swing. Then, carefully calibrating the pendulum length so the swing

intervals would come out to be exactly seconds, one could then calculate the 1-s

free fall distance.14

2. How can we find an equation for the length of a seconds pendulum? Since, by the

pendulum equation, P2 ¼ 4p2l/g, we can set period equal to 2 s again, and solve
this for l. The result is,

l ¼ g

p2

14 See, e.g., Pendulum Clock, 170–71: Proposition XXVI, and the discussion by H.J.M. Bos in the

introduction to the Pendulum Clock, xvi–xvii.
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Try inserting values for g into that equation and see what lengths you find for the
seconds pendulum under the assumed values you chose.

3. Assume that we are Huygens, and we don’t know the value of g, but have
painstakingly, by trial and error, experimentally found the right length of a

seconds pendulum. Let us say the magic length is found to be .993 m. Given

this, let’s determine g. Since from the above discussion, l ¼ g/p2, then

g ¼ lp2

g ¼ :993 3:14::ð Þ2

g ¼ 9:8m=s2

Christiaan Huygens did not know the value of gravitational acceleration, g, but
he was the first to determine it, and he did so with amazing accuracy.15 He went

on to propose that the length of a seconds pendulum be adopted as a universal

standard for the meter. His efforts were supported by many, but ultimately did

not win the day. At the time it was not known that the value of g was not exactly
the same all over the Earth.

4. Let us take the last two derived equations, eliminate the length term, and see

what emerges when we solve for g:

s ¼ p2

2
l|fflfflfflffl{zfflfflfflffl}

Distance of fall related to length of pendulum

l ¼ g

p2|fflffl{zfflffl}
Length of pendulum related to g

We can take the expression for l on the right and substitute it into the left-hand

distance equation, and we obtain this result,

g ¼ 2s

This should not be a completely surprising conclusion, since we get the same

thing by setting time equal to 1 s in the equation s ¼ ½ gt2.
5. If the length of the seconds pendulum is about .993 m, what is the fall distance

s of an object in 1 s?

s ¼ p2

2
l

15Pendulum Clock, 171: Proposition XXVI. Actually, Huygens found the value of 2s which, from
the equation s ¼ ½ gt2 (where time is 1 s) is readily seen to be equivalent to the value of g, as
discussed in the following text. See Chap. 6 for the discussion of how Newton used the value found

by Huygens for his famous “Moon test.”
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s ¼ 3:14::ð Þ2
2

:993ð Þ

s ¼ 4:9 meters

Since g ¼ 2 s, acceleration due to gravity should be 9.8 m/s2, which it is.

Deriving an Equation for the (Approximate) Period

of a Pendulum

We gave the equation for approximating the period of a pendulum whose swing was

small. Now we can derive that equation. In doing so, we can review a few

fundamentals of circular geometry that will help us later on.

Problem Derive an equation for the approximate period of a pendulum, swinging

in small arcs.

Given A pendulum of any length, depicted in the figure below.

These basic concepts of Euclidean geometry:

1. A central angle is measured by its intercepted arc. Hence ff AOB ¼ AB
_

where the

notation AB
_

means the length measured along the arc.

2. An inscribed angle (the angle formed where two chords of a circle meet at

one point) is measured by one half its intercepted arc. Hence ffAPB ¼ ½AB
_
, and

ff APB ¼ ½ ff AOB. Likewise ff APB ¼ ff CBA
Assumptions We will ignore the effects of air friction on the bob and string, and

assume no forces other than gravity are present to disturb its motion.

Method Understanding the geometry of the pendulum will help in the understand-

ing of orbits and Newton’s breakthroughs discussed in the next few chapters. We

first examine some basics of circular geometry, circular motion and radian measure.

Suppose an object is moving at constant speed around a circle. It takes a certain

amount of time to complete one revolution, and that time is the period P. Now allow

that the object moves only part way around the circle, through an angle of y in time

t. We don’t need to know what y is yet since we are at the moment just exploring

angular relationships. The circumference of the circle is p times the diameter, or
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2p times the radius r. Taking the radius as one unit for convenience, we can derive

this proportion:

t

P
¼ y

2p

That is, the ratio of the time of a partial rotation y is to the period (the time of

full rotation) as the angle described in that time is to the whole circle. The time

elapsed is therefore,

t ¼ P
y
2p

We will keep this equation in mind for use in solving the problem. Next, the

distance along the circumference in a given time is important to know, and can be

conveniently expressed as units of radii, or radians. We have to use angular units of

radians, rather than degrees, to do so.16 The distance along any arc is the angle in

radians times the radius: ry:

For instance, in circle whose radius is 5 m, the arc distance encompassed within

15�, which is.2618 rad, would be 5 � .2618 ¼ 1.31 m. This is a wonderfully useful

mathematical tool! Now refer to the accompanying diagram.

16An angle in radians can be thought of as a fractional part of a circular arc. For example, 1 rad is

one whole radius laid out along the circumference of a circle of radius r. Half a radian is the

projection or trace of half the length of a radius on the arc. An angle where y ¼. 25 rad (14.324�)
describes a quarter of a radius along the arc, and so on. There are 2p radians in a whole circle. To

convert degrees to radians, multiply the angle in degrees by p/180. 1 rad is about 57.3�.
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In reviewing the figure, it is helpful to recall some principles you likely learned

in geometry: a central angle is measured by its intercepted arc, and an inscribed

angle is measured by one half its intercepted arc. Our overall task will be to relate

the geometry of the circle in the figure to parameters of pendulum length, gravita-

tional acceleration, and period. To find the period of a pendulum we should first

investigate the equations we have already discussed. The Galilean equation

s ¼ ½ gt2 may be useful, for if we know the fall distance s we can relate it to

gravitational acceleration g. The fall distance s in the equation may be approximated

by BC. If we can find BC, we can begin to merge the geometry with equations of

motion. How do we find the fall distance? In the triangles above consider the radius

r of the larger circle, equal to OA and OB. If we multiply this radius by the angle y,

the result will be the arc length from A to B: rywill give the arcAB
_

. If we use this arc

length as an approximation of the chord AB (which is truer and truer as an

approximation as y gets smaller and smaller) then that chord becomes the radius

of the smaller circle. Thus AB � y/2 should give us (roughly) BC. We’ve used one

radius times its angle (y) to leap frog to another radius, which, times its angle (y/2),
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gets us what we want. Once we have the fall distance, what do we do with it? We

will then need to find a way of putting it in terms of period, hopefully getting rid of

the angle terms. Since we know the value of t from the equation t ¼ Py/2pwe found

above, that should open the door to the solution. That will let us put s in terms of

period and angle. Let’s see where all this takes us.

Calculations The length along the arc generated by the angle y is AB
_
, so that,

AB
_

¼ ry

Note that this arc length is not the same length as the chord AB (written

commonly with a bar over it to distinguish it from arc AB) but as the angle y
becomes small, the approximation is better. We will consider that, as y approaches

a very small size, then,

AB ’ AB
_

So that,

AB ’ ry

Now chord AB is the radius of the smaller circle, and its equivalent ry times the

angle y/2 will give the approximate length of arc BC
_

:

BC
_

¼ ry
y
2

� �

BC
_

¼ ry2

2

Since we are assuming that y approaches very small size, then,

BC
_

’ AC ’ s ’ ry2

2

Now we can write the equation s ¼ ½ gt2 this way:

ry2

2
’ 1

2
gt2

ry2 ’ gt2
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Earlier we found that t ¼ Py/2p, so we are closer to our goal since we can make

the substitution for time and get this result,

ry2 ’ g
Py
2p

� �2

Doing the simplifying algebra, canceling the y terms and letting the length of the

pendulum l be the radius, we arrive at this satisfying conclusion, most accurate for

small angles:

P ’ 2p

ffiffiffi
l

g

s

Observations

1. Inspection of the equation shows that the period is independent of the mass of the

bob. Compare that conclusion with Galileo’s discovery that, in the absence of the

effects of friction, objects of unequal mass fall to the ground at the same time.

2. The mesmerizing swings of a pendulum or the oscillations of a spring are

examples of what is called simple harmonic motion. Let us take a brief look at

the forces acting on the pendulum to understand what simple harmonic motion is

and how it works.

The pendulum’s motion begins at rest, and upon release, it experiences the

downward pull of gravity and slantward pull of the string. The forces are not
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opposing, but offset, depending on the angle of the swing, as seen in the figure.

Resolving the forces into rectangular vector components, the sideways force

tugging on the bob is mg sin y where y is the angle of the swing, m is the mass of

the bob, and g is the gravitational acceleration. At the center of the swing, the

pull on the string is aligned with the pull of gravity, and the sideways force is

zero. At that point, if the string were cut, the sideways motion of the bob would

be tangent to the arc, and were it not for gravity and the restraint of the string,

would continue in a straight, horizontal line, impelled by inertia, just like the

rolling ball after it reached the end of its inclined plane. But the pendulum is

pulled back by the cord, and up, and the restraining force on its upward swing is

F ¼ � mg sin y, growing larger as the angle y increases. (We use the negative

sign to in indicate the reverse direction of the swing.) For very small angles, sin

y � y, so we can say that F � � y, where the restraining force is proportional to
the displacement y. This is an important indicator of simple harmonic motion: in

a physical system where the force is proportional to displacement, things behave

like springs and other harmonic oscillators, and can be similarly described

mathematically.

An edgewise perspective of an object in uniform circular motion creates a

pattern which mimics those of harmonic oscillators, such as springs and

pendulums. In other words, the sideways projection of circular motion moves

with the same sinusoidal motion of a spring or pendulum. On a moving graph,

the pendulum, spring and circular moving object all create sine waves. It is for

this reason that when you line up a pendulum and circle whose respective length

and radius match, and give them the same period, they will move in synch.
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2. One can derive the equation for the period of a pendulum from the principles of

simple harmonic motion. This is classically illustrated by the motion of

springs. A stretched spring will obey Hooke’s law (after Robert Hooke who

discovered it in 1678), and require a force to stretch it that is proportional to
the distance it is stretched. After it is stretched, a restoring force pulls it back to
its equilibrium position. The force works both in the stretch and compression

of a spring, and its quantity for a given distance of stretch or compression will

vary with the nature of the spring. The force is given by the equation F ¼ � kx,
where – x is the amount of displacement of the spring—how far it is stretched

or compressed from its rest position—where k is the spring constant. (The
negative sign indicates that the restoring force is in the opposite direction of

the spring’s stretch.) A large k means a stiff spring. This linear relationship is

the basis for spring scales. The total work done in stretching a spring to

distance x is the sum of the work done in each little displacement of the spring

along the way, and turns out to beW ¼ ½kx2 (where the work units are joules).
When stretched or compressed, the spring is storing energy: its potential

energy. When released, the spring’s potential energy is initially converted to

the kinetic energy of motion, then back to potential energy at the end of the

oscillation. Its acceleration is always changing as it elastically extends and

compresses. A spring hung vertically, affixed with a mass, and given a down-

ward tug will thus oscillate with simple harmonic motion. Likewise a pendu-

lum swinging through small angles is an example of simple harmonic motion.

If we pull the pendulum aside and let it go, its potential energy is converted

into kinetic energy of motion, which is at its maximum at the middle of the

oscillation, just as in the case of a spring. Since the total KE þ PE, as before, is
always constant, then

1

2
mv2 þ 1

2
kx2 ¼ ETotal

When x (the spring displacement) is at its maximum, velocity will be zero; when

the velocity is greatest, at the center of oscillation, the potential energy will be

zero. We can thus equate them and solve for velocity:

v ¼ x

ffiffiffiffi
k

m

r

Since the projection of uniform circular motion onto a straight line reveals the

pattern of simple harmonic motion, the displacement of the spring, x, can be

considered equivalent to the projected radius of a circle. By analogy to circular

motion, the period to complete of one cycle of motion is,

P ¼ 2px
v
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Making the substitution for velocity from the equation just before, and cancel-

ling the x terms yields this equation, which is starting to look like the pendulum

equation, but is not quite there:

P ¼ 2p

ffiffiffiffi
m

k

r

We need to find out what k is. From the discussion above, we know that force is

proportional to the angle y for small angles (i.e., proportional to displacement of

the pendulum, the indicator of simple harmonic motion). If the angle is in

radians, then the distance d along the arc of the swing will be the angle times

the length l of the pendulum, y ¼ d/l. Remembering that, for small angles,

F ¼ mgy, then,

F ¼ mg

l

� 	
d

Now step back and look at this equation. Does it resemble the form of a

harmonic oscillator, where the force to move a mass through a distance is

directly proportional to the displacement, F ¼ kx? Indeed it does, and since d
is the displacement, the other constants in the parenthetical must be k:

k ¼ mg

l

Taking this value for k and referring again to the period equation, we can insert

this ratio for k, and the period becomes,

P ’ 2p

ffiffiffi
l

g

s

This again is the period of a pendulum, derived through its connection with the

harmonic oscillator.

3. In comparing the periods of pendulums and springs, one notices that for a given

pendulum length, P is proportional to 1/√g; for a given mass stretching a spring

to a certain length, P is proportional to 1/√k. One may regard g and k as “stiffness
constants” whose value for those conditions determines the rate of oscillation.

The greater the value of those constants, the shorter are the periods of each.

The Pendulum’s Satisfying Coincidence with Circular Motion

Problem Take a pendulum and a circularly revolving object where the length l of
the pendulum is equal to the radius r of the circle. From the above period equation

for a pendulum, find the ratio of the period of the revolving object to the period of
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the pendulum; then make the period of each the same and find an equation for the

velocity of the revolving object.

Given

P ’ 2p
ffiffi
l
g

q
The approximate period of a pendulum, derived above

v ¼ 2pr
P

Velocity of an object in uniform circular motion

Assumptions We will again ignore the effects of friction, and assume the pendu-

lum deflection is rather small. For the moment, we also offer no particular hypoth-

esis (such as gravitational attraction) why the object should be moving in uniform

circular motion.

Method The second equation can be rearranged into an equation for period, after

which the ratios of the two periods may be found. Making the periods equal will

then give us the solution to the second part of the problem. Use of subscripts will

keep us reminded of which variables belong to which entity.

Calculations First we find the period of the circular revolution:

Pcircle ¼ 2pr
vcircle

Now write the ratios of the two periods:

Pcircle

Ppendulum
¼

2pr
vcircle

� 	
2p

ffiffi
l
g

q

We can cancel the 2p terms and, since the radius of the circle equals the length of

the pendulum, simplify the ratio to this:

Pcircle

Ppendulum
¼

ffiffiffiffiffi
gr

p
vcircle

Because the problem states that the periods are the same, the left-hand side is unity

and the circular velocity is,

vcircle ¼ ffiffiffiffiffi
gr

p

Thus if an object in uniform circular motion has period and radius respectively the

same as the period and length of a pendulum, it will have a velocity equal to the

square root of g times the radius.
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Observations

1. We will see later that this is the exactly the equation for circular orbital motion

around a moon or planet in a gravitational field, where g is the value of

gravitational acceleration at distance r from the primary object (e.g., not at the

Earth’s surface). This equation also hints at an equation for acceleration in

circular motion, discussed in the next chapter, by solving for g. For now, we
posited no reason why the object was revolving with uniform circular motion.

We can see it merely as a geometric fact that when the periods and lengths (of

radius and pendulum) are the same, the object will revolve with a velocity that is

proportional to the square root of the radius times some “stiffness constant”

which we are calling g. The higher the constant, the more rapid is the circular

velocity, and the shorter the period. If we imagined the projection of this circle

against an oscillating spring, with the same constants, the result would be the

same, another consequence of simple harmonic motion.

2. The velocity equation for circular motion can be derived from the pendulum

period equation, and that same velocity equation, working the other way, yields

the period equation applicable to circular as well as pendulum motion, where the

same constants are used. For uniform circular motion,

P ¼ 2pr
v

replacing the velocity term with circular velocity found above,

P ¼ 2prffiffiffiffiffi
gr

p

again yields the period equation for circular motion,

P ¼ 2p
ffiffiffi
r

g

r

As we will see later, this too is the equation for the period of circular orbital

motion around a moon or planet in a gravitational field, where g is the value of

gravitational acceleration at distance r from the primary object.

Exercises: Pendulum Puzzles and Diversions Pendulums are fun to watch. There

is a fascinating, almost mesmerizing, quality about them. As tools in the hands of

able thinkers like Galileo and Huygens, they began to open the door to the mystery

of gravity. The foundations laid by these gentlemen helped Newton to pull together

vital pieces of his evolving theory of gravitation. The questions, problems, and

diversions below are intended to test and enhance your own understanding of the

simple, silent, mysterious pendulum and the principles that underlie its motion.
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Questions

• Explain what a seconds pendulum is.

• Given two pendulums, what is the ratio of their periods to their lengths?

• Explain simple harmonic motion.

• Explain Hooke’s Law

• Compared to its period on the surface of the Earth, do you think a pendulum

of the same length would swing faster, slower, or at the same rate as on the

Moon? Why?

• In Proposition VI of The Pendulum Clock, Huygens states: “The velocities

acquired by bodies falling through variably inclined planes are equal if the

elevations of the planes are equal.” Explain the truth of this proposition using

energy concepts.

• Explain the exchanges between potential and kinetic energy as the pendulum

bob goes through its swing.

• Imagine an enormous pendulum suspended over the plane of the solar system,

such that its bob, when resting in the vertical position, hangs over the Sun.

That is, the plane of the solar system is perpendicular to the hanging pendulum.

The pendulum’s length is very great: about five or so astronomical units long

(about as far away vertically from the Sun as the orbit of Jupiter is from the Sun

along its plane). Would Hooke’s law apply if we pulled the bob to the orbit of

Mercury, then Venus?

• If the solar system were arranged on a principle of simple harmonic motion, how

would the Sun’s gravity change with increasing distance away from the Sun?

How does it actually change? Explain any differences. Do you think that would

be a viable arrangement for a solar system?

Things to Do

• Make a seconds pendulum and measure the value of g as accurately as you can.

• Test Huygens’ Proposition VI (“The velocities acquired by bodies falling

through variably inclined planes are equal if the elevations of the planes are

equal”) by measuring the terminal velocities of rolling balls on planes of

different inclinations, but with the same starting elevation. If velocity measuring

equipment is unavailable, measure the time two balls released simultaneously on

two differently inclined planes of the same elevation take to reach the terminus

of their slopes and compute average velocity.

• Test Huygens’ Proposition VII (“The times of descent on variably inclined

planes whose elevations are equal are related to each other as the lengths of

the planes”) by measuring the times of descent of rolling balls on planes of

different lengths, but with the same starting elevation.

• Determine the actual change in acceleration on a rolling ball descending down a

sloping plane which about halfway down completes its descent on a connecting

plane of a lesser slope.
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Problems

1. Suppose the value of g is 9.782 m/s2 in the Canal Zone and 9.818 m/s2 in

Stockholm. What is the difference in length of a seconds pendulum in those

two places?

2. Assuming you could place a pendulum on Jupiter, and that its surface gravity at

that location is 2.53 times Earth’s mean surface gravity, how long would a

seconds pendulum be?

3. Mars has a surface gravity that is 3.71 m/s2. What is the length of a seconds

pendulum there? Use the period equation to confirm its period.

4. Using the result of the previous problem, confirm how far a rock would fall in

1 s on Mars?

5. You are an astronaut who has landed on the asteroid Pallas. You brought with

you a pendulum whose cord is 1 m long. After a series of trials, you determine

its period to be about 14.32 s. What is the approximate surface g of Pallas?

6. Using the result of the previous problem, calculate the length of a seconds

pendulum on Pallas.

7. Two planets have the same diameter. On each is a pendulum of equal length, but

the period of the first is one third the period of the second.What is the ratio of the

masses of the planets? What is the ratio of their densities?

8. Explain why a pendulum’s period should be independent of the mass of

the bob.

9. Recall from Chap. 1 the equation for gravitational acceleration induced by

Earth, which is the terrestrial g. Acceleration is determined there by massm, the
gravitational constant G, and the radius of the Earth r. Write the equation for

the period of a pendulum expressed in terms of those values, instead of g. If the

length of the pendulum cord were the same as the radius of the Earth, what

would the period equation look like? Recast that equation using k for all the

constants in the equation except r. Interpret your answer. (Keep this answer in

mind as you read through the next chapter).

10. Assume a pendulum could somehow be anchored far out in space, beyond the

orbit of the Moon, and that its length happens to be 384,400 km, which is just

the mean distance from Earth to the Moon. By this configuration, the

pendulum’s string falls toward the Earth, and the bob is at the location of

where the Moon would be in its orbit. Now assume it is pulled back a

reasonably small angle in relation to its length, so that its period approximates

that of the pendulum equation given above. Find the period of the pendulum in

days. Compare this with the period of the Moon in days. Explain your result.

[Hint: What is the value of Earth’s g at lunar distance (refer to Chap. 1)?]
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Chapter 4

The Geometry of the Solar System:

Kepler’s Laws of Planetary Motion

The German mathematician Johannes Kepler (1571–1630) worked tirelessly for

years trying to make sense the data of his employer Tycho Brahe, a Danish

nobleman-astronomer. Tycho was a meticulous observer. From his self-financed

and constructed observatory in Denmark, Tycho in the late 1500s had gathered an

enormous set of positional data on the movements of the planets, including Mars.

Later (in 1600) Tycho hired Kepler to be his assistant in Prague, in the court of

Rudolph II, ruler of the Holy Roman Empire. Though Kepler was Tycho’s able

assistant, Tycho was not generous with sharing his data with Kepler. This frustra-

tion ended upon Tycho’s death, Kepler succeeded to his position as imperial

mathematician, and inherited all of Tycho’s precious notes. Tycho’s data on Mars

in particular was thorough and precise, far more accurate than any observations in

the history of astronomy.

The orbit of that planet, however, had defied understanding. Since the time of

ancient Greeks it had been assumed that all the planets moved in perfect circles. But

the observed varying velocities of Mars in its orbit did not conform to that of a body

in circular motion. Since Kepler’s observation platform, the Earth, was also moving

in orbit, it was necessary for him to understand its motion as well; he could then

make corrections for his own movement relative to Mars and therby deduce the true

motion of Mars. He struggled with the computations for years, recording all of his

mis-steps with excruciating candor, but his persistence paid off. From analysis of

the varying velocities of Earth in its orbit, and reduction of the precise positions of

Mars, Kepler concluded that the ancient idea of the uniform, circular motions of the

planets in their orbits had to be discarded. The orbits were not circles. The planets

did not move at uniform rates. Those ancient deeply rooted ideas whose lineage

could be traced as far back as Plato had to be thrown out. It was revolutionary, but it

was only the first step. For in concluding the planets did not travel at uniform speed,

he searched for the geometric form which would account for their motion. He had in

mind an oval, an egg-shaped orbit for Mars pointed at its perihelion. But the data

still did not match. During these efforts, he began to intuit the physical nature of

planetary orbits; this was not just a geometrical exercise – there must be a cause for
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the motions of the planets. But Newton had not yet been born, and the universal law

of gravitation was unknown. Yet Kepler perceived that the Sun must be the “seat of

virtue that impelled the planets in their orbits.” Whether the cause was some form

of magnetic induction, or swirling vortices, or some kernel of the idea of gravitation

between masses, he assumed that whatever the effect was, it would decrease with

distance from the Sun and increase with proximity. He tested the Earth’s velocities

at each of its apsides (closest and farthest points from the Sun) and found that those

velocities were indeed proportional to distance from the Sun. This was important,

but this relationship was not true everywhere else in the orbit.

As he was twirling these ideas around in his mind, Kepler made an imaginative

leap. He speculated that the Earth swept out equal areas of its orbit in equal times,

tested it with his data, and found it to be true – and thus was born a fundamental law

of planetary motion. Though it was discovered first, it later became known as his

second law of planetary motion. Still perplexing was the unanswered question of

the exact shape of the Martian orbit. In puzzling over the shape of the Martian orbit,

Kepler had faced the problem of determining why Tycho’s observations showed

that Mars’ orbit was not perfectly circular, but yet deviated from the perfect circle

only to a very small degree: about 429 parts in 100,000. In other words, if a

circumscribed circle is one unit in radius, then the Martian orbit left a small gap

of about .00429 radii, as shown in the following diagram, which has for illustration

greatly exaggerated the elliptical shape of the orbit of Mars.

After some false starts, and pages upon pages of calculations, he at last “awoke

as from sleep,” in his words, and tried an ellipse. He re-did his calculations, and

behold, Tycho’s observational data fit! This became the basis for his first law, that

all the planets travel in elliptical orbits, with the Sun at one focus of the ellipse.
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Kepler’s breakthough involved deciding at last that the shape of the orbit must be

an ellipse with the Sun at one focus of the ellipse. If the outer circle is one unit in

radius, the Sun is offset from the center of that circle by the distance e which is

in fact the eccentricity of the ellipse – a measure of its flatness. Kepler discovered

that the width of the little lacuna on each side was actually the ratio of the radius of

the circle over the short axis. What was exciting was that this ratio is geometrically

related to the eccentricity of an ellipse, just the way it should be if the planet’s orbit

were in fact an ellipse. In other words, the empirical data of Tycho Brahe matched

the geometry of an ellipse. In modern parlance, the width of each little lacuna is a

function of the ratio of the semi-major axis a over the semi-minor axis b, and the

length of b is a function of a and the eccentricity e.
To illustrate one reason why the determination of the ellipticity of Mars’ orbit

was difficult for Kepler, and the considerable accuracy of Tycho’s observations, we

need only look at modern data of that planet’s eccentricity. A perfect circle has

0 eccentricity. Mars’ eccentricity is, most accurately, 0.0933941, which is very close

to circular.1 In terms of the width of the lacuna by modern measures, we need to

calculate the ratio of major axis (or semi-major axis) over minor axis (or semi-minor

axis). The major axis of the Martian ellipse is 1.52371 AU.2 The minor axis of the

Martian ellipse is 1.51705 AU. The ratio of these is not far from the .00429 Kepler

was working with. Incidentally, the width of the lacuna on the scale of the Martian

orbit is a little more than 80% of the diameter of ourMoon’s orbit around the Earth –

a miniscule displacement on the scale of our solar system. To detect such a variation

from a true circle in the late Sixteenth and early Seventeenth century required

observations of unprecedented precision, and Tycho Brahe’s data had revealed

that Kepler’s earlier orbits were incorrect by only the tiniest fractions of a degree.

That Kepler did not rest until he eliminated this error, even if it meant discarding

the sacred baggage of ancient assumptions, was a watershed event in the history of

science. Kepler’s travails are documented in his 1609 work, Astronomia Nova seu
Commtaria de Motibus Stellae Martis, usually abbreviated as Astronomia Nova.3

It is one of the great works in the history of science. Kepler’s third law, relating the

squares of the periods of the orbits to the cube of their distances from the Sun, came

a decade later. Here together are Kepler’s famous three laws of planetary motion.

KEPLER’S LAWS OF PLANETARY MOTION

I. The planets move in elliptical orbits with the Sun at one focus.

II. A line from the Sun to a planet sweeps out equal areas in equal times.

III. The square of the period of an orbit (measured in years) is equal to the cube of the

semi-major axis of the orbit (measured in AU).

1 This data can be found at the NASA Jet Propulsion Laboratory website: http://ssd.jpl.nasa.gov/

txt/p_elem_t1.txt .
2 An astronomical unit (AU) is the mean Earth-Sun distance, the astronomers’ standard yardstick.
3 For a lively account of Kepler’s progress and setbacks, see A. Koestler [1]. A clear and concise

account can be found in “Kepler as an Astonomer” by W. Carl Rufus [2].
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These laws were of course completely contrary to the ancient, geocentric view of

the solar system (and universe), and helped further vindicate the Copernican

heliocentric view. We shall briefly explain their meaning here.

Law I The planets move in elliptical orbits with the Sun at one focus. According to
Kepler’s First Law, all the planets orbit the Sun in elliptical orbits. Ellipses differ

from circles by virtue of their eccentricity. Circular orbits are actually a special case

of elliptical ones, where the eccentricity (degree of flattening) is zero.

Here are the eccentricities of the orbits of the (traditional) planets of the solar

system:

Planet Eccentricity of orbit

Mercury .206

Venus .007

Earth .017

Mars .093

Jupiter .048

Saturn .054

Uranus .047

Neptune .009

Pluto .249

It is evident that the planetary orbits are not entirely circular, with Venus and

Neptune being the closest to perfect circles.

Law II A line from the Sun to a planet sweeps out equal areas in equal times. This
suggests that the planets’ orbital velocities increase as they are nearer the Sun

(being fastest at perihelion), and are at their slowest when farthest away (aphelion),

which is the case. This law is derived below.
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Law III The square of the period of an orbit (measured in years) is equal to the
semi-major axis of the orbit (measured in AU). Let’s test this on the solar system4:

Planets

and Pluto

Semi-major axis

distance (a) in AU

Cube of

distance (a3)
Period in

years (P)

Square of

period (P2)

Mercury .387 .058 .241 .058

Venus .7233 .378 .615 .378

Earth 1.00 1 1.00 1

Mars 1.524 3.54 1.881 3.54

Jupiter 5.203.. 140.8 11.86.. 140.7

Saturn 9.537.. 867.3 29.447.. 867.1

Uranus 19.189.. 7.066 84.017.. 7.059

Neptune 30.070.. 27.189 164.79.. 27.156

Pluto 39.48.. 61.546 247.92.. 61.464

Simply stated, the law says that for any set of planets of respective periods Pn

and distances an from the Sun, then

P2
1 : a

3
1 :: P

2
2 : a

3
2

Looking at the table, one can see how the third and fifth columns match. The lack

of exactitude for some of the outer planets in the matches, however, reveals

something about Kepler’s law. The overwhelming primary mass of the Sun in

relation to the other planets means that, for the smaller planets in particular, the

orbits obey this ideal proportion, or at least that deviations from it are not noticeable

at reasonable levels of accuracy. But as we will see later, the great masses of Jupiter

and Saturn, and to a lesser extent Uranus and Neptune, do prevent the periods

squared and distances cubed of those planets from being perfectly proportional

without some correction for their masses, though this was not detectable in Kepler’s

time. Given this, Kepler’s Third Law is actually more of an approximation than a

law. Newton later showed how to take these secondary masses into account and

render exact the period squared, distance cubed relationship in an ideal two-body

system (that is, a system that ignores the effects of other planets). Even with

Newton’smodification of the law, however, there are the unaccounted-for influences

of one planet on another. If we had even more refined numbers we might discern

perturbations or gravitational interference of the large planets in particular on the

others, for example Jupiter on Saturn when they are near each other. These

perturbations tend to force the perturbed planet out of a purely elliptical orbit.

It was just the lack of exact conformity to Kepler’s Third Law, even after accounting

for the masses and gravitational pull of Uranus and the other gas giants, which led to

Leverrier’s and Couch’s prediction of the existence of Neptune.

4 The data on masses and sidereal periods were taken from the Jet Propulsion Laboratory

website http://ssd.jpl.nasa.gov/?planet_phys_par and the distances from the Sun were derived

from http://ssd.jpl.nasa.gov/txt/p_elem_t1.txt. The ellipsis after some numbers indicates trunca-

tion (not rounding).

4 The Geometry of the Solar System: Kepler’s Laws of Planetary Motion 63



The Basic Geometry of the Ellipse

Let’s look a little more at the ellipse, which, as Kepler showed is a form of

fundamental importance in orbital mechanics. We begin with the basic terminol-

ogy. The definitions below apply to the accompanying ellipse figure:

p is the point (such as a planet), located at distance r from the focus F

r is the radius vector, which is the line between F and p (here, p is for planet), always in the

direction of p with a magnitude equal to the distance between F and p, and which varies as
p sweeps counterclockwise around in its orbit. In an ellipse, by definition r þ r0 is always
constant. At one point (on the semi-major axis) r þ r0 ¼ 2a, so we know it is equal to 2a
everywhere else on the ellipse

� is the mass orbited, here shown as the symbol for Sun. It is at F the focus of the ellipse

F is at one focus of the ellipse and is the location of the center of mass of the system, which in

the solar system is the Suna

F0 is the empty focus of the ellipse, with no physical significance

a is the semi-major axis of the ellipse. For a circle, a ¼ r. The line AP, whose distance is 2a, is
the major axis of the ellipse

P is the location of the perigee, which is the point of shortest distance to F from the orbit. If F is

the Sun, another star or our Moon, P would be called the perihelion, periastron or

perilune, respectively.5 It is often generically referred to as the periapsis

(continued)

5 Perihelion is nowadays often denoted by the letter q.
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A is the location of the apogee, which is the point of farthest distance to F from the orbit. If F is

the Sun, another star or our Moon, A would be called the aphelion, apastron or apalune,
respectively.6 It is often generically referred to as the apoapsis

ae is the displacement from the center of each focus, where e is the eccentricity of the ellipse. The
eccentricity is the distance between the two foci, F and F0, divided by the major axis, 2a

aAs we will see later, the center of mass of the solar system is near, but not at the center of the Sun,

and in fact depends upon on the alignment of the planets, particularly Jupiter and Saturn

An ellipse may be drawn with a length of string attached to the two focus points,

and a pencil moving around the outermost perimeter permitted by the string. In that

case, r þ r0 will always be constant, being the total length of the string. One of the

most important things to learn about an ellipse is the concept of eccentricity.

Varying the distance between focus points will vary the eccentricity. It is a measure

of the flatness of the ellipse. A circle has an eccentricity of 0 (where the distance ae
is zero). The flattest ellipse has an eccentricity of just less than 1.

The long major axis is 2a, and half this, the semi-major axis is a. The body

orbited, whether it is the Sun or the Earth or any other planet, would in this diagram

be at F. As a circle is stretched to become an ellipse, the distance between F and F0

becomes greater. Pinch them back together and the ellipse becomes a circle. The

amount of flattening, again, is determined by e, the eccentricity. The eccentricity is
a number between zero (a circle) and just less than one (an almost flat loop), one

step away from being “broken” into a parabola. So an ae of zero means there is no

distance between the two foci and the shape is, again, a circle. As ae approaches

one, the distance between the center and each focus approaches a.

6 Aphelion is often denoted by the letter Q, which we will use later to avoid confusing it with

period P of a body in orbit.
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Note how the semi-major axis also forms an isosceles triangle above (or below)

the center of the ellipse, as shown.

Now notice r, which is the distance from the focus F and the perimeter. It can

move about the focus, as the angle y sweeps around. If the Sun were at F and the

Earth were at p, the line r would be the distance from the Earth to the Sun at every

moment of its orbit. As noted, the point P is the place in the orbit nearest the Sun,

the perihelion, and point A is the aphelion. These are derivations from the Greek

language meaning near and far from the Sun, respectively. In any ellipse, the sum of

the distances from p to F and to F0 is always constant. Now we can put the value of r
in elliptical terms, at the perihelion and aphelion points:

At both perihelion and perihelion, the r line lie lies flat along the major axis, the

line of apsides. At perihelion the value will be a – ae and at aphelion the value will
be a þ ae. So the values of r at these points are:

rP ¼ að1� eÞ

rA ¼ að1þ eÞ
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We can see another feature of the ellipse, the semi-minor axis, b:

Using the Pythagorean theorem, the value of the semi-minor axis can easily be

calculated:

b ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p

As the eccentricity approaches zero, then the semi-major and semi-minor axes

become equal, as in a circle. At the point of equality, they both represent the radius.

Compare the area of a circle with that of an ellipse:

Ae ¼ pabg Area of an ellipse

Ac ¼ pr2g Area of a circle

In the case where the two axes of the ellipse are equal, the equations become

identical.

Determining the Eccentricity of the Moon’s Orbit

Problem The Moon’s perigee (minimum distance from the Earth’s center) is

363,104 km, and its apogee (maximum distance) is 405,696 km. Derive an equation

for finding the eccentricity of an ellipse, where only perigee and apogee are known;

and, using that formula and the information above, find the eccentricity of the

Moon’s orbit.

Given The accompanying diagram of the ellipse.

Assumptions We will use this idealized ellipse to represent the Moon’s orbit

around the Earth, though the Moon’s actual orbit is not so elongated. The Earth

will be assumed to be at the focus F.
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Method We notice that the only place e appears in the diagram is in the length ae.
To solve the problem, we will therefore need to find an equation relating ae to

perigee P and apogee A. There are several ways to do this. One way is to add or

subtract ae from the semi-major axis value a. This will yield the equation.

Calculations

For perigee: For perigee:

A ¼ aþ ae P ¼ a� ae

A ¼ að1þ eÞ P ¼ að1� eÞ

We can eliminate the a term by dividing one expression into the other:

A

P
¼ að1þ eÞ

að1� eÞ
A

P
¼ ð1þ eÞ

ð1� eÞ

Að1� eÞ ¼ Pð1þ eÞ

Next we solve for e,

A� Ae ¼ Pþ Pe

A� P ¼ eðAþ PÞ

e ¼ A� P

Aþ P

Since we have found an easy expression for determining eccentricity, we can

calculate it from the data given. Since perigee is 363,104 km and apogee is

405,696 km, we can compute eccentricity:

e ¼ 404696� 363104

405696þ 363104

e ¼ :0554

Observations

1. This value is therefore just off from fairly circular. The “eccentric” ae for the

Moon is 21,296 km, or about 3⅓ Earth radii off from a circular orbit.

2. If we know P and A, we can of course find the semi-major axis a since A þ P
¼ 2a. Hence a ¼ (A þ P)/2, which we can interpret by saying that a is the

average or mean distance of object p from F during the course of its orbit.
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3. Likewise a can be derived from either A or P. The useful resulting expressions are:

a ¼ A

1þ e
a ¼ P

1� e

4. It is instructive to see how the apsidal distances relate to the semi-minor axis,

depending on eccentricity. We refer again to this diagram of the ellipse:

Mars, for example has a semi-major axis of 1.5237 AU. Its eccentricity is

.093394. Its semi-minor axis is therefore,

b ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p

b ¼ 1:5237
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� :0933942

p

b ¼ 1:517 AU

So we can see that in an orbit like Mars’, where the eccentricity is fairly small

and the orbit not far from circular, the semi-minor axis differs only slightly from

the semi-major axis, as noted in above in the discussion of Kepler’s struggle to

find the true shape of its orbit.

5. Take b2 ¼ a2 1� e2ð Þ and expand the terms within the parentheses:

b2 ¼ a2 1� eð Þ 1þ eð Þ

Since A ¼ a 1þ eð Þ and P ¼ a 1� eð Þ, there follows this interesting result:

b ¼
ffiffiffiffiffiffi
AP

p

6. As should be evident, an ellipse is determined in shape by its eccentricity and in
scale by the length of its semi-major axis. Getting an accurate sense of an orbit’s

eccentricity is thus a key step to understanding, and ultimately predicting, an
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object’s path in the sky. If only the perihelion and semi-major axis of an object

are known, the eccentricity can easily be calculated from this simple equation:

e ¼ 1� a

P

In that equation just two quantities, the perihelion distance and the semi-major

axis, are all that are needed to construct the orbit. When just the semi-major and

semi minor axes are known, eccentricity can be determined from this equation:

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

a2

r

For example, in the case of Mars, a ¼ 1.5237 AU and b ¼ 1.517 AU. Hence

with those as the known or given quantities, we could derive e from that

equation:

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1:5172

1:52372

r

e ¼ :093394

7. When the apsidal distances and semi-major axis are known, then we can use this

equation:

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� AP

p

a

The reader is encouraged to derive the above equations on his or her own.

Deriving Kepler’s Law of Areas

Problem Show how Kepler’s Second Law, his so-called Law of Areas, flows

naturally from the law of conservation of angular momentum.

Given

L ¼ mvr Angular momentum L at right angles to the radius, being the product of mass m,
circular velocity v, and radius r.

A ¼ 1
2
bh The area of a triangle, being one-half the base times the height

yr Distance along an arc, where y is in radians and r is the radius vector.
This distance approximates the base of a triangle when the angle is sufficiently

small. This small angle we’ll call Dy

Assumptions We will assume the law of conservation of angular momentum, a

bedrock physical law, and the perfect “Keplerian” motion of a small planet (of
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relatively insignificantmass compared to the Sun) orbiting the Sun in an elliptical path

without being affected by the perturbing gravitational influences of other planets.

Method Consider two small, near-triangular slices of an ellipse. Imagine an object

orbiting the Sun which is located at one focus, as in the accompanying figure.

At any small increment of time the angle (in radian measure) it sweeps out is Dy.7

The small arc of a given small triangle, rDy, represents the distance the planet

travels along the ellipse in the same small amount of time, Dt. The component of

velocity at right angles to the radius will be the distance traversed along the arc

divided by the increment of time, v ¼ rDy/D/t.
This angular velocity notation will be useful in linking the constant of angular

momentum with the areas of each sector. With appropriate subscripts, we can

define two such small triangles. Their areas, DA1 and DA2, will be one-half their

bases (Dy1r1 and Dy2r2) times their heights (r1 and r2) or DA1¼ Dy1r21 2= and

DA2¼ Dy2r22 2= :

Calculations The value of angular momentum at r1 and r2 is

L ¼ mv1r1 and L ¼ mv2r2

Substituting angular velocities into the angular momentum equations,

L ¼ m
Dy1
Dt

� �
r21 and L ¼ m

Dy2
Dt

� �
r22

7 See Chap. 3 for a discussion of radian measure.
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and acknowledging that angular momentum of the small mass is the same every-

where in the orbit, then

m
Dy1
Dt

� �
r21 ¼ m

Dy2
Dt

� �
r22

Now multiply each side by Dt/2m :

1

2
Dy1r21 ¼

1

2
Dy2r22

These equations define the areas of the respective (very small) sectors, and they

are equal; thus,

DA1 ¼ DA2

Both sectors therefore have equal areas swept out in the given equal times.

Observations

1. It is true that the arc along the curve does not form the rectilinear base of an exact

triangle, and that the truer measure of area would be to use the chord length. But

as we will see in the discussion of Newton’s “evanescent arcs” in Chap. 5, the

angle y can be made as small as one chooses, and as it becomes very small,

the chord length and the arc length ultimately approach equality, and the error

disappears with infinitesimally small angles.

2. A more direct approach to the solution of this problem, though perhaps less

intuitive, would be to see how, in any arbitrary triangular sector within the ellipse

(again with its apex at the Sun), the change of its area with respect to time will

always be constant. In other words, the area of any arbitrary sector being

DA ¼ 1

2
Dyr2

The change of that area with respect to time is (dividing each side by Dt),

DA
Dt

¼ 1

2

Dy
Dt

� �
r2

But since angular momentum is L ¼ m Dy Dt=ð Þr2 and is constant everywhere
in the orbit, then

DA
Dt

¼ L

2m
¼ constant

In other words, no matter what sector we pick, the change in its area with

respect to time will be the same, which is Kepler’s Second Law.
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Determining the Semi-major Axis of the Asteroid Ceres

Problem Ceres, the first asteroid discovered (1803), has a period of 4.6 years.

Using Kepler’s Third Law, estimate the distance of Ceres from the Sun in AU.

Given

P2 ¼ a3 Kepler’s Third Law, where the units are years and AU

Assumptions We will disregard the gravitational effects of other planets or other

perturbing forces.

Method Since we know the period, we simply solve for a.

Calculations

P2 ¼ a3

a ¼ P2 3=

a ¼ 4:6ð Þ2 3=

a ’ 2:77 � AU

Observations

1. The result makes sense, since Ceres lies in the asteroid belt between Mars and

Jupiter, which planets are respectively about one-and-a-half and five astronomi-

cal units out.

2. What if instead of astronomical units and years we used other units, such as

kilometers and days? Since Kepler’s Third Law is a ratio, the law holds for any

consistent set of units. Expressing the law this way (where the symbol : indicates

proportion),

P2
1 : P

2
2 ¼ a31 : a

3
2

Then, for any single planet,

P2 ¼ ka3

where k is a constant of proportionality, and k ¼ P2/a3. Since the units in this

law are years and astronomical units, for Earth, k ¼ 1 (so that P2 ¼ a3). That is
the constant, using years and AU, applicable throughout the solar system. That is

how we approached the Ceres problem above. But if the units were kilometers
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and days, then the applicable constant can be found, for example for Earth, at a

mean distance of about 149.6 million kilometers:

k ¼ P2

a3

k ¼ 365:242

149; 600; 0003

k ¼ 3:984� 10�20

This is a rather inconvenient number! Let’s test it on Mars, whose mean

distance from the Sun is about 227.9 million kilometers. Its orbital period

squared, using the constant, should be

P2 ¼ ka3

P2 ¼ 3:984� 10�20 2:279� 108
� �3

P2 ¼ 4:72� 105

P � 687days

This is the correct approximate value for orbital period of Mars. This labor

reveals the great convenience of using years and AU, where the constant is just 1!

How Conic Sections May Be Generated by One Equation

Problem Using the accompanying figure, derive the general equation for the

conic section.

Given The accompanying figure.

Assumptions Since this is an idealized mathematical construct, there are no

physical assumptions that need to be made

Method Referring to the accompanying figure, the conic section has the property

that all points on it have a constant ratio e (eccentricity) between the distance r from
the focus F and a line known as the directrix.8 Thus, r/d ¼ e. The value of r is of
great use in orbital problems. We can find r by ordinary trigonometry. We knowDF
is the distance d plus the distance r projected onto the x axis, or r cos y. We can then

put d in terms of r and e from the immediately preceding ratio, d ¼ r/e, so the

reference to the directrix disappears. Note that at y ¼ 90�, or p/2 (assuming

8 The derivation of the conic equation is standard in many textbooks, but the approach here was

inspired by the particularly concise treatment given by Peter van de Kamp [3].
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counterclockwise motion, as with solar system planetary orbits) the radius vector is

vertical, and is equal to the parameter p. At that point r ¼ p ¼ ed.

Calculations The distance from focus to directrix is:

DF ¼ d þ r cos y

Since d ¼ r/e, then

DF ¼ r

e
þ r cos y

DF ¼ r

e
1þ e cos yð Þ

When y ¼ p/2 (at 90�), then, at that point, DF ¼ d . As noted, the parameter

p ¼ ed, so,

ed ¼ r 1þ e cos yð Þ
p ¼ r 1þ e cos yð Þ

And from this follows the very important relation which is the general equation for

the conic section,
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r ¼ p

1þ e cos y

Observations

1. Let us see what happens to the orbit when we vary eccentricity:

If e ¼ 0, then r ¼ p and the orbit is circular.
If e > 0 but < 1, the parameter is smaller as e is larger (but never unity), and the

orbit is an ellipse. That is, the width of the orbit becomes less than a circle. At

y ¼ 0, perihelion, then r ¼ p/(1 þ e). The perihelion distance is always

greater than half the parameter.

If e ¼ 1, the orbit is a parabola. At y ¼ 0, r ¼ p/2. The perihelion distance is

always half the parameter.

If e>1, the orbit is a hyperbola. At y ¼ 0, r ¼ p/(1 þ e), the perihelion distance
is always less than half the parameter. A comet, for example, with an

eccentricity even slightly greater than unity will experience a perihelion

passage very close to the Sun.

We will encounter all of these orbital shapes in this book.

2. In the accompanying figure are the arcs of three conics.
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The plot is of the inner arcs of the equation for conics r ¼ p/(1 þ e cos y), for
e ¼ .7 (an ellipse, in blue), e ¼ 1.0 (parabola, in red) and e ¼ 1.1 (hyperbola, in

gold). Notice the value of the radius vector at y ¼ p/2, along the y axis is .5 for

each curve, which is the parameter. Note that, at y ¼ p/2, the cosine of the angle
is zero and so the radius vector is equal to the parameter, r ¼ p for all conics at

that angle.

3. It is important in the ellipse to be able to freely derive the semi-major axis from

the parameter, and vice versa, when the eccentricity is known, or to estimate one

of the unknowns when the other two are known or estimated. Since,

rP ¼ p

1þ e
for y ¼ 0 ðperihelionÞ rA ¼ p

1� e
for y ¼ p ðaphelionÞ

The semi-major axis is the average of these radii vector distances in the

ellipse:

rP þ rA
2

¼ p

1� e2

a ¼ p

1� e2

And,

p ¼ a 1� e2
� �

This is a most useful relation. Let’s try it again on Mars. With the information

given above, find the parameter of the Martian orbit using AU as the units:

p ¼ 1:5237 1� :0933942
� �

p ¼ 1:5104 AU

We have thus found the breadth of the Martian orbit by this simple means.

4. Do not confuse the semi-minor axis b equation with that for the parameter p:

p ¼ a 1� e2
� �

b ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p

5. If one takes the equation for the conic section and substitutes a(1 – e2) for p, then
the resulting polar equation, independent of the parameter, is:

r ¼ a 1� e2ð Þ
1þ e cos y
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6. One can use the polar equation to plot the orbit of Halley’s comet, designated

1P for the first periodic comet. Its key orbital elements are e ¼ .967 and

a ¼ 17.834 AU (values are rounded here).9 With just these two numbers, and

Maple software, the plot can be generated using the equation for the ellipse

(numbers are AU):

Graphing the Orbit of Comet Schwassmann-Wachmann
3 Using Rectangular Coordinates

Above we derived the equation for the elliptical orbit in polar coordinates of r
and y. But there are many occasions when it is useful to work in the Cartesian,

rectangular coordinates of x and y. There are some beautiful symmetries to appre-

ciate too. The equation for the ellipse is,

x2

a2
þ y2

b2
¼ 1

Where a and b are the respective semi-major and semi-minor axes of the ellipse,

and the center of the ellipse is at the origin. We can see that if those axes are equal,

such that b ¼ a, then the equation becomes (by multiplying through by a2) that of a
circle of radius a:

x2 þ y2 ¼ a2

Periodic comet Schwassmann-Wachmann 3, discovered in 1930 by astronomers

Arnold Schwassmann and Arno Arthur Wachmann at Hamburg Observatory in

Germany, is a regular visitor in our solar neighborhood, having an orbital period of

a little less than five and a half years. As sometimes happens, so-called tidal forces

exerted by the gravitational pull of other planets in the solar system, and by the Sun,

can eventually cause a comet to break apart. Comet Schwassmann-Wachmann 3

9 See the JPL Orbital Dynamics website, http://ssd.jpl.nasa.gov/sbdb.cgi?sstr=1P&orb=1#top
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began to do so in 1995, but in May of 2006 it broke apart spectacularly: into first

five then eight segments, and some of those pieces further disintegrated. As the

comet passed by Earth in 2006 one could easily see with an amateur telescope

(as the author did) the rare and beautiful sight of these multiple comets with their

tails hovering against the backdrop of stars in the constellation Corona Borealis.

The pieces were separated from each other after doubtless billions of years together

and hundreds of millions of orbits. The problem below will presume we are

working with the largest remnant, and likely parent of the breakaway comets.

Problem Given the information below,10 graph the orbit of periodic comet 73P

Schwassmann-Wachmann 3 in rectangular coordinates, with the long axis of the

orbit on the x axis. Locate the foci and perihelion of the ellipse. Include the orbit of

the Earth for reference.

Given

a Semi-major axis of the comet: 3.063 AU

e Eccentricity of the comet’s orbit: .692

q The comet’s perihelion distance in AU: .9428

P The comet’s period in years: 5.36

Assumptions Wewill ignore the comet’s inclination of 11.39� and assume an orbit

planar to the plane of the ecliptic (the Earth’s orbital plane around the Sun being the
reference plane). These orbital elements are the osculating elements taking into

account the perturbations that have affected this comet’s orbit as of the epoch (the

time) when given. We assume the Earth’s orbit is circular for this graph.

Method Use the equation for an ellipse in rectangular coordinates,

x2

a2
þ y2

b2
¼ 1

Since the eccentricity and semi-major axis are given, the equation,

b ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p

will yield b. From the origin, or center of the graph, lay out the semi-major axis

with � a on each side of the origin. The maximum and minimum values of y will
be � b. To find the two foci, simply calculate � F from either of these equations:

F ¼ ae F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p

10 The information may be found at the Minor Planet Center, website, http://www.minorpla-

netcenter.net/iau/Ephemerides/Comets/and from Elements and Ephemeris for 73P-C/

Schwassmann-Wachmann at http://ubasti.cfa.harvard.edu/~cgi/ReturnPrepEph?d ¼ c&o ¼ 0073

P for epoch October 6, 2011.
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The Earth’s orbit is a circle of radius 1 AU with the Sun (the focus) at the center.

The graph may be done manually, by a graphing calculator, or by the use of math

software, such as Maple, which produced the graph below.

Calculations First we calculate the semi-major axis:

b ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p

b ¼ 3:063
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� :6922

p

b ¼ 2:21 AU

The foci are located at distance � F from the origin:

F ¼ �ae

F ¼ �2:1

The graph should look something like this:
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The Sun lies at one focus of the ellipse, at distance �2.1 AU from the origin.

A vertical line has been drawn up through this focus. The empty focus is at +2.1 AU

from the origin. The aphelion lies about 5 AU from the Sun, which is in the vicinity

of Jupiter’s orbit. (Recall that the aphelion is 2a – q � 5.2 AU.) The tidal influences

of Jupiter may have caused the breakup of this comet.

Observation As will be seen later, graphing an orbit in rectangular coordinates

will prove to be highly useful in visualizing the position of the orbit in space.

Exercises: Applying Kepler’s Laws to Comets, Asteroids, Spacecraft, and

Moons The power and reach of Kepler’s Laws is often surprising. These basic

building blocks were empirically discovered by Kepler, and one of the first tri-

umphs of Newton’s work was to derive Kepler’s laws theoretically from the

principles of gravitation. Later we will discuss how Newton was able to do this.

For now it is good just to practice using the laws, particularly Kepler’s Third Law,

on a variety of celestial objects.

Problems

1. Periodic comet Bennett C/1969 Y1 has a perihelion distance of q ¼ .5376 and

aphelion Q ¼ 281.89 AU. Calculate the eccentricity of its orbit, its semi-major

and semi-minor axes.

2. A spacecraft launched from Earth has a perihelion distance at Earth’s orbit and

an aphelion at Jupiter’s orbit, at 5.2 AU. What is its period?

3. Distant, dwarf planet Sedna has an orbital period of 12,598.57 years. What is its

semi major axis?

4. Periodic 2P/Encke has a semi-major axis of 2.21449 AU. What is its period

in years?

5. The semi-major axis of Pluto’s moon Charon is about 15.235 plutonian radii,

and has an orbital eccentricity of .0022. What are its apsidal distances Q and q
from Pluto?

6. Identify which of the following statements is incorrect. Assuming for a planet

in the solar system the units are years and astronomical units: (a) the period is

equal to the semi-major axis times the square root of its semi major axis; (b) the

period is equal to the square root of the cube of the semi major axis; (c) the ratio

of the period squared to the semi major axis cubed is a constant; (d) the period

is equal to the semi major axis raised to the two thirds power.

7. Asteroid Eros has a semi-major axis of 1.45793 and a parameter of 1.38573.

Find its period, its semi-minor axis, and its eccentricity.

8. Comet 1/P Halley and comet 13/P Olbers have periods of 75.32 and 69.52 years

respectively and respective eccentricities of .967 and .93. What is the ratio of

the semi-major and semi-minor axes of comet Halley to comet Olbers? Inter-

pret your results.

9. Comet C/2007 Lulin has a nearly parabolic orbit with a parameter of

2.42458 AU and a perihelion distance of 1.212 AU. Sketch a graph of the

orbit of this comet in relation to the orbits of the three inner planets.
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10. Using the standard equation for the conic, draw a graph of the inner orbits

(within 3 AU of the Sun) of three comets whose parameters are each .5 and

whose eccentricities are .5, .8, and 1.0, respectively.
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Chapter 5

How the Moon Falls Toward the Earth

(but Keeps Missing It)

Galileo had shown by experimentation and theory how things fall, and documented

his findings in his 1638 Dialog Concerning Two New Sciences. He asked simple

questions about everyday phenomena and tested them with experiment until he

understood the general laws behind the phenomena of motion. Isaac Newton

applied Galileo’s and Kepler’s laws of motion to the moon and planets and their

satellites, and, with brilliant and subtle geometrical reasoning, developed the

universal theory of gravitation that united earthly and heavenly phenomena. This

he laid out with astonishing rigor in the first part of Newton’s Mathematical
Principles of Natural Philosophy (first published in Latin in 1687, and commonly

known today by the first word of its Latin title, the Principia), perhaps the greatest
masterwork of human thought in the history of science. Newton showed that the

same force (gravitation) that caused the fall of an apple from a tree caused Jupiter’s

moons to orbit Jupiter, Earth’s Moon to orbit Earth, and all the planets and moons

together to orbit the Sun.

In his Principia, Newton dealt comprehensively with the implications of orbital

motion under the influence of a centripetal force. We will see later how he

demonstrated that the motions of the planets and moons under a hypothesized

force that diminished inversely with the square of distance from the primary mass

accurately matched the phenomena of the solar system. He proved in elegant prose

and arcane mathematical language a vast body of propositions relating the motion

of these revolving bodies, the tides, the orbits of comets, precession, and very much

more. The Principia laid the foundation for a new kind of mathematics, the

calculus, to deal with limits and areas. The mathematical concepts and proofs

developed mainly in Book I of the Principia were applied to the observed phenom-

ena of the solar system in Book III, which stunningly demonstrated their
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explanatory power.1 Newton was able to deduce the inverse square law in a variety

of ways, showing that it was sufficient to explain elliptical orbits (as well as motion

along the other conic sections, hyperbolas and parabolas) where the center of force

was at one focus, and he freshly derived Kepler’s laws of planetary motion.

Edmund Halley (1656–1742) had read some early drafts of Newton’s scattered

papers, saw their immense value, and had encouraged the reluctant Newton to

publish the Principia. Halley in fact personally financed its publication. This alone

has insured Halley a prominent place in the history of science. Halley is best known

for using Newton’s mathematics to predict the return of the great comet of 1682. Its

appearance in 1758, exactly as predicted by Halley, triumphantly demonstrated the

success of Newton’s science, and forever gave Halley’s name to the famous comet.

The Facts of Inertia: Newton’s First Law

Let us return to some of the basic questions Newton asked as he was investigating

the findings of Kepler and Galileo and the phenomena of motion. While still a young

man, Newton was curious whether the same earthly force that caused heaviness, that

made rocks to fall to the ground, also caused this planet’s pull on theMoon. But why

doesn’t the Moon fall and hit the Earth in the same way that a rock falls to ground?

Newton speculated that while the Moon does in fact fall, it is in effect falling around
the Earth. Suppose there is a centripetal (“toward the center”) force (not yet named

gravity) pulling on the Moon. That force continually pulls it toward Earth. There is

another inertial force, however, that makes it want to adhere to a straight line path. If

you twirl an object fast at the end of a string, you feel a tug on the string, more the

faster you twirl it. The pull on the string is the inertial tug on an object wanting (so to

speak) always to go in a straight line. If the string is cut, the object will fly off in a

straight-line tangent to the circle. Newton pondered such facts of experience.

Wouldn’t the Moon behave in the same way if not continually drawn back to

Earth by some centripetal force originating from Earth? He realized the same

thing that Galileo had intuited: that the tendency for things to move in a straight

line, or if at rest, to remain at rest, was a fundamental quality of objects with mass.

The principle became the basis for his first axiom or law of motion.

1 Sir Isaac Newton [1]. (Short title) Principia. Book I (On the Motion of Bodies) and Book III (The

System of the World) treat the motions of bodies and the consequences of gravitation. Book II of

the Principia, however, deals with the motion of bodies in resisting mediums, of little concern in

contemporary celestial mechanics. It may have been written chiefly to rebut Descartes theory of

vortices. See, for example, the last Scholium in Book II, after Proposition LIII: “Hence it is

manifest that the planets are not carried round in corporeal vortices; for, according to the

Copernican hypothesis, the planets going round the sun revolve in ellipses, having the sun in

their common focus. . .But the parts of a vortex can never revolve with such a motion.” From Sir

Isaac Newton [1]. All excerpts from the Principia discussed here are drawn from this translation.
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Newton’s First Law states that, in space, undisturbed by friction or other forces,

a body at rest or in motion will remain in that state forever. If it is moving, it will

continue its motion in a straight line for all eternity. It may be at rest2 or in constant,

uniform motion, but it will not accelerate or decelerate. The only thing that will

change its course from an eternal straight-line path would be an external force

applied to it. As Newton stated it in the Axioms or Laws of Motion to the Principia:

LAW I

EVERY BODY CONTINUES IN ITS STATE OF REST, OR OF UNIFORM MOTION IN A RIGHT LINE, UNLESS IT IS

COMPELLED TO CHANGE THAT STATE BY FORCES IMPRESSED UPON IT.
3

Such a force could be, for example, the influence of another planet, moon or star;

friction; something hitting it; or ejections from it (such as the exhaust thrust in the

case of a rocket, or an eruption from a comet’s nucleus) to move it left or right or up

or down, or to slow it down or speed it up.

If the Moon were moving elsewhere out in space, nowhere near another body, it

would move in a straight line, forever. It would have rectilinear motion. But being

near the Earth, the Earth draws it to it, away from its straight line path, into a

curvilinear course. It experiences a centripetal force pulling it inward toward the

center of the arc of its motion, but this force is not so great as to completely

overcome the Moon’s tendency to move away in a straight line tangent to that

arc. There is a composition of forces: the inertial tendency of the Moon always to

move in a straight line is just balanced by the centripetal force (not yet articulated

as gravity by Newton in the early portions of the Principia) tending to make it fall to

the Earth.

As mentioned in Chap. 1, forces can act in combination, and their component

vectors combine to create a resultant motion. The rectilinear motion of the Moon is

its inertial, straight-line vector component, at a velocity that just matches the

centripetal vector component, continually “drawing off” the Moon into the

resulting orbit, which is a path between the Earth’s center and straight ahead.

The schematic figure below illustrates this, but one must imagine the arc as being

squeezed to an almost infinitesimally small size for each instant, so the path of the

Moon at each conceived impulse of pull from the Earth deflects the Moon away

from straight line motion at each corresponding instant.

2 Being at “rest” in space was shown by Einstein in 1905 to be an entirely relative concept. For now

we will use the terms “rest” and “motion” in the sense of absolute rest and motion relative to an

absolute frame of reference, as Newton intended.
3Principia, 13.
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Of course the “impulses,” like the arc lengths, must become correspondingly

small so as to create, in our geometrical construction, an image of a continuous pull
and a continuous deflection, as is the case in the physical world. This basic concept

of vanishing arcs and small increments of time is fundamental to the calculus

developed by Newton to analyze such motions.

If the Moon were somehow given a boost in its speed, the Earth’s pull would, at

the lunar distance, no longer be able to just balance its rectilinear motion: it would

tend to fly off tangentially into space. Newton’s example of a stone projected from

the top of a mountain illustrates this. This famous diagram is from Book III of the

Principia and accompanies his text.
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In the third part (Book III) of the Principia, called the System of the World,
Newton lets us imagine a mountain, from which projectiles or stones are propelled

horizontally with greater and greater force:

[F]or a stone that is projected is by the pressure of its own weight forced out of the

rectilinear path, which by the initial projection alone it should have pursued, and made to

describe a curved line in the air; and through that crooked way is at last brought down to the

ground; and the greater the velocity is with which it is projected, the farther it goes before it

falls to earth. We may therefore suppose the velocity to be so increased that it would

describe an arc of 1, 2, 5, 10, 100, 1000 miles before it arrived at the earth, till at last,

exceeding the limits of earth, it should pass into space without touching it. . . .

[L]et us suppose there is no air about the earth. . .[I]f the velocity was still more and more

augmented, it would reach at last quite beyond the circumference of the earth, and return to

the mountain from which it was projected. . .and retaining the same velocity, it will describe

the same curve, over and over.4

Newton has described, in so many words, how Earth satellites (not stones) would

eventually be projected by rockets, and orbit the Earth, three centuries later.

What Is Centripetal Acceleration?

Any acceleration (change of motion) of an object is caused by a force acting on that

object, in the direction of the induced motion. This should be true whether the

object is at rest or already in motion (remember, motion is relative to the observer!).

The force needed to accelerate a mass depends upon its mass, as we discussed in

Chap. 1. The first clear exposition of these concepts came from Isaac Newton, in his

Second Law of Motion. Here is how Newton put it, again from his Axioms, or Laws
of Motion:

LAW II

THE CHANGE OF MOTION IS PROPORTIONAL TO THE MOTIVE FORCE IMPRESSED; AND IS MADE IN THE

DIRECTION OF THE RIGHT LINE IN WHICH THAT FORCE IS IMPRESSED
5

Our focus will be to apply this law first to find out about circular motion.

(Understanding circular motion was Newton’s first aim, and it led directly and

naturally to understanding elliptical motion.) The Moon’s orbit is nearly circular.6

If the Moon is deflected from its course by a continual force pulling it towards the

4Principia, Book III, 551–52.
5Principia, Axioms, or Laws of Motion, 13.
6 If the Moon’s orbit were perfectly circular, its velocity at all points would be constant. It is

assumed so for our instructional purposes, but any object in an elliptical orbit will move with

velocities that vary depending on the nature of the ellipse, as it draws nearer or farther from the

body orbited; its mean motion, however, will be constant. In the case of the Moon, too, the

irregularities in the distribution of the mass of the Earth, the effects of the Sun’s gravity, etc. all
influence the shape of its orbit.
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Earth, then there must be a continual acceleration acting in that direction.7

Newton’s Second Law states the equivalence of force (per unit of mass) and

acceleration (commonly expressed by the equation F ¼ ma).8 This law is of great

use in understanding the motions of the moons and planets, which orbit not in

straight lines, but as if they are being continually drawn toward some center of

force. Newton called the force acting toward the center the “centripetal force.” He
defined it this way:

DEFINITION V

A CENTRIPETAL FORCE IS THAT BY WHICH BODIES ARE DRAWN OR IMPELLED, OR ANY WAY TEND,

TOWARDS A POINT AS TO A CENTRE
9

This definition, at the beginning of the Principia, does not presume any particu-

lar hypothesis about what such a centripetal force might be. Newton does not

assume that such a force is gravity, which was to be developed only later in the

Principia as a unifying theory after he wove a meticulous and ornate tapestry of

basic propositions. First, in Book I, he depicted geometrically how bodies tend to

move. A body moving in a plane around the center of a circular orbit acts as if that

body were drawn by a force pulling it toward the center. Only much later does he

formally give this force a name and show how it applies to all the phenomena he

presents in Book III.

Since there must be a force drawing an object into a curve, all such motion
along a curve must be accelerated motion. And, according to Newton’s earliest

propositions, the accelerative force must be acting toward the center of the curve.

In this figure, the object in orbit is moving (rather unusually for our solar system)

clockwise, and the (not to scale) straight line vector toward the center of the arc

7A “change of motion” in Law II is a change in [mass � velocity]. In dealing with fixed masses, as

is the case with most classical problems of celestial mechanics, Law II means that force ¼ mass

� change in velocity. Since a change in velocity is acceleration, then force ¼ mass � accelera-

tion. It can be said that the measure of mass is the force required to accelerate it. The equation also

suits those situations where mass does change, such as in rockets whose expenditures of fuel

continually reduce the mass of the rocket as it ascends.
8 Sometimes acceleration and force will appear to be used interchangeably; this is because

acceleration is force per unit mass.
9Principia, Definition V, 2.
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represents the direction of the centripetal force. The resultant motion along the arc

of the orbit is again the composition of the inertial, straight-line (rectilinear) force

of inertia wanting to keep the object going in a tangent to the curve, and the

centripetal force pulling it inward. The vertical line, resembling a backward

pointing arrow on a bow, is the bisector of the chord. It is called the sagitta (from

the Latin word for arrow) or versed sine of the arc. We can think of it as the

centripetal force vector whose length in each case will depend on the length and

degree of curvature of the arc. Newton’s object was to link the geometry of the

curve to its centripetal force vector. This he did in a corollary to his first proposition

of the Principia. Using his usual geometrical method of working in proportions, he

compared in a corollary to the first Proposition of Book I, two hypothetical equal

time arcs, relating the length of the versed sine to the centripetal force:

The forces by which bodies, in spaces void of resistance, are drawn back from rectilinear

motions, and turned into curvilinear orbits, are to each other as the versed sines [sagittae] of

arcs described in equal times; which versed sines tend to the center of force, and bisect

those chords when those arcs are diminished to infinity . . .10

According to this, the centripetal forces of any two curved orbits will ultimately

vary (that is, when the arc length is small at the limit where Dt ! 0) in the same

proportion as the versed sines, or sagittae:11 Intuitively, this makes sense. It seems

natural that the centripetal forces on bodies moving in sharper curves with smaller

radii would be greater than for more leisurely curves with larger radii. Let us

suppose there are two moons revolving around a planet at different distances.

Since they are in the vacuum of space, there will be no air resistance.

10Principia, Book I, Proposition I, Corollary 4, 42.
11While we cannot now take to time to prove this corollary to the proposition, it is an important

one. It holds even for non-circular orbits. Newton creates parallelograms on the arcs of each orbit,

with the chords forming the long axis of each parallelogram. For large arcs that are not circular, the

line on each from A to the center of force may not be congruent (not match up) with the bisector of

the chord. But as we take smaller and smaller units of time, the arcs too are diminished, the bisector

lines converge with the force lines, and both point to the center of force. Thus, as we imagine the

increments of time approaching zero (as Dt ! 0) the direction of the force vectors in each orbit

ultimately coincide with the lines bisecting the chords.
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Under the corollary just given, in equal times of measurement, the forces that

pull the moons from straight lines into their own curved arcs will be proportional to

the length of centripetal acceleration vector in each case. For the closer-in moon,

whose orbit has a shorter radius, the arc of its orbit must logically bend more, so its

sagitta will be longer, corresponding to the increased force on the nearer moon. For

the more distant moon, feeling the centripetal force more weakly, its path will lie in

a less curved line, and its versed sine will be smaller.

Comparing Centripetal Accelerations in Different Orbits

Velocity is always uniform along a circular orbit (“equable motion” in Newton’s

language), and sweeps out equal areas in equal times.12 But if we change the arc and

compare different circles – say, of different hypothetical moons in different orbits,

how will this effect the centripetal forces acting on them?

In Principia’s important Proposition IV of Book I, Newton dealt with the

problem of relating the centripetal forces to velocities in circular orbits. He

concluded that the centripetal forces depend on the squares of the arc distances

covered in a given time, divided by the radii:

PROPOSITION IV, THEOREM IV (BOOK I)

The centripetal forces of bodies, which by equable motions describe different circles, tend

to the centers of the same circles; and are to each other as the squares of the arcs described

in equal times divided respectively by the radii of the circles.13

12 The Moon’s orbit is not too far from circular, and so revolves around the Earth at a fairly

constant velocity, running through its phases predictably in a cycle of a little more than 27 days. If

an object is moving uniformly in a circular orbit, it will journey equal distances along any arc in

equal times. It will also, according to Newton’s very first proposition (and consistent with Kepler’s

Second Law discussed in Chap. 4), sweep out equal areas in equal times:

The areas which revolving bodies describe by radii drawn to an immovable centre of force,

do lie in the same immovable planes, and are proportional to the times in which they are

described. (Principia, Book I, Proposition I, Theorem I.)

This too makes intuitive sense. Visualize each orbit composed of little triangles drawn from the

center, where the sides are the radii and the bases are the distances traveled by the object in equal

times. The length of each base thus depends on the velocity of the body. Since the area of each

triangle is proportional to its base times height, where height – the radius – is constant, the areas of

all triangles in a given orbit will be the same. The areas, too, will be proportional to the velocity,

since, as we said, the object’s motion is uniform along the arc. Now increase the number of

triangles by making them smaller and smaller, until the triangles effectively merge into a circle,

and the bases merge into the arc, and the conclusion is the same. In Newton’s words: “Now let the

number of those triangles be augmented, and their breadth be diminished ad infinitum; and. . . their
ultimate perimeter . . .will be a curved line: and therefore the centripetal force, by which the body

is continually drawn back from the tangent to this curve, will act continually. . .” (Principia, Book
I, Proposition I, Theorem I, 41.) This line of argument is how Newton demonstrated his first

proposition.
13Principia, Book I, Proposition IV, 45.
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The centripetal forces on bodies in each circular orbit will be proportional to the

arcs squared divided by the respective radii:

f1 : f2 ::
arc
_ 2

1

r1
:
arc
_ 2

2

r2

This proposition has two parts. If during equal times we compare two bodies

revolving in different circular orbits, the forces acting on them pull them toward the

centers of their circles. This first idea we already supposed from the Definition V

above. The key new concept here is in the second part of the proposition: that those

forces are proportional to the squares of the distances along the arcs divided by the

radius of each circle. With this result, Newton can take the next step and link force

to an object’s velocity in orbit.

The reason is this: since we know that the arc lengths represent velocities (as the

motion is uniform), the squares of the arcs must also be proportional to the squares

of the velocities. Thus, by positing that the centripetal forces are proportional to

squares of the arcs divided by the radii, Newton must then logically conclude that

the forces are also proportional to the velocities squared divided by the radii – a

powerful, important conclusion. In mathematical symbolism, the centripetal force

on each is proportional to v2/r. Newton made this explicit in the first corollary to the

proposition:

PROPOSITION IV, COROLLARY I (BOOK I)

Therefore, since those arcs are as the velocities of the bodies, the centripetal forces are as

the squares of the velocities divided by the radii.14

The centripetal forces on bodies in each circular orbit will be proportional to the

velocities squared divided by the respective radii:15

f1 : f2 ::
v21
r1

:
v22
r2

And, in general, since accelerations are the result of forces, the centripetal

accelerations are also proportional to:

v2 r=

These propositions set the stage for his famous moon experiment in his System of
the World, which is Book III of the Principia, discussed in the next chapter, where

he showed that the Moon’s actual motion appeared to fit his geometrical

conclusions.

14 Ibid., Corollary 1.
15We use the symbol f to represent centripetal acceleration. We will maintain the reference here to

forces, as Newton did, in describing the proportions, since acceleration is force per unit mass.
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Proving Principia’s Proposition IV: The Proportionality
of Centripetal Forces in Circular Orbits

Problem Using the diagram below and principles of geometry, demonstrate the

first corollary to Newton’s Proposition IV that, for bodies in uniform circular

motion, “the centripetal forces are as the squares of the velocities divided by the

radii.” That is, proportional in each case to v2/r.

Given Uniform motion along circular orbits of any size, depicted below.

These basic theorems of Euclidean geometry:

1. An angle inscribed in a semicircle is a right angle. Thus ABP in the figure below

is a right triangle.

2. If a line is tangent to a circle, it is perpendicular to the radius drawn to the point

of contact. Hence AD is ? to AP.
3. In any right triangle, the perpendicular from the vertex of the right angle

opposite the hypotenuse divides the triangle into two triangles, similar to each

other and to the given triangle. Thus since BC?AP, then triangle APB is similar

to triangle ACB. Also, ffCBA ¼ ffAPB.
4. A central angle is measured by its intercepted arc. Hence ffAEB ¼ AB

_
.

Assumptions We will examine the special case of uniform circular motion.

Because we are applying an idealized mathematical method, no physical

assumptions need to be made now.

Method Draw a circle representing the orbit of some body, and inscribe a right

triangle ABP along the axis, as shown below.
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Now imagine the body is moving steadily along the arcAB
_
. For the moment we will

approximate the length of this path by the chord AB. Newton’s Corollary IV to

Proposition I in Book I stated that, the versed sine, which is the line AC, is
proportional to the magnitude of the centripetal force pulling the object away

from its rectilinear, tangential path along AD, where it would otherwise tend to

go by virtue of inertia, according to Newton’s First Law. Since equal areas are

swept out in equal times, by Proposition I, the length of the arc along AB
_

is

proportional to the velocity of the object.

For this problem, we need to find AC in relation to the radius of the circle by

comparing triangle DCPB and the triangle DACB. They are similar, and the

proportions of their sides will yield the relation between the line AC (the versed

sine) and the diameter AP.
These triangles have straight lines, so how can we compare arc length AB with

chord AB? Is it appropriate to approximate the length of the arcAB
_

by the chord AB?
We will never have a convincing proof if we cannot obtain the true length of the arc

AB
_

. A core creative problem-solving insight in Newton’s Principia derived from

drawing geometrical constructions with straight lines, rectangles and triangles, then

imagining the effect of creating ever smaller units of those until they approximated

the curves in question. These rich and fruitful ideas, which are the foundation of the

calculus, were introduced in Newton’s Lemmas at the beginning of the Principia.
We saw above in his proof of Proposition I how he divided a circle into triangles:

then he increased their number as he diminished their size ad infinitum, so their ever
smaller bases merged at last into a curve, and the conclusion he had demonstrated

for each triangle was true for the circle. We can use that technique on the chord AB
in the figure above. Imagine the point B in the figure being moved closer and closer

to A, and as it approaches A, the arc AB
_

will diminish, becoming smaller and

smaller. Similarly the tangents at the two points will converge. Eventually the

length of the chord AB will approach the length of the “evanescent arc” AB
_

, and

become equal to it at the limit. To quote Newton, using a similar diagram, from the

proof of his Lemma VII in Book I:

Wherefore, the right lines AB, AD and the intermediate arc . . . ½AB
_

� (which are always

proportional to the former), will vanish, and ultimately acquire the ratio of equality.

(Principia, Book I, Lemma VII.)

Calculations Comparing triangles DCPB and DACB, for a circle of any size, and

since triangle ABP is similar to triangle ACB:

AP

AB
:
AB

AC

AC :
AB2

AP
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The above relationship holds true for any other circular orbit around this center

of force. Now construct any other smaller or larger circle, labeled in the same way

but with lower case letters.

In this case too, for the right-hand circle,

ac :
ab2

ap

Then, for the two circles,

AC :
AB2

AP
and ac :

ab2

ap

AC and ac are as before the versed sines, which as we saw above (Principia Book I,

Proposition I, Corollary IV) are ultimately proportional to the centripetal forces.

We will call these forces Fc and fc , and visualize them as force vectors pulling

inward on each orbiting object. The problem here seeks the ratio of the velocities to
those forces. This is straightforward, since as before, AB and ab are the arc lengths,
and hence are the velocities of each object in a given period of time. Given that AP
and ap are the respective diameters, or twice the radii, R and r, of the circles, the

above ultimately reduces to these proportions:

Fc :
V2

2R
and fc :

v2

2r

Fc : fc ::
V2

R
:
v2

r
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Hence the ratio of centripetal forces is as the squares of the velocities divided by the

radii, which is the Q.E.D. of Newton’s Proposition IV, Corollary I of his first book.

Observation In Chap. 7 we will explore the intriguing corollaries to Proposition

IV, and how Newton richly mined the implications of this proposition to demon-

strate that the inverse square law was consistent with any rotational scheme

governed by Kepler’s Third Law. For now we will address his final corollary to

Proposition IV; its neat mathematical summary will be useful in Newton’s famous

Moon test in the next chapter:

COROLLARY IX TO PROPOSITION IV

From the same demonstration it likewise follows, that the arc which a body, uniformly

revolving in a circle with a given centripetal force, describes in any time, is a mean

proportional between the diameter of the circle, and the space which the same body falling

by the same given force would describe in the same given time.16

The “mean proportional” from the above diagram is just arc AB
_

in the relation

AC

AB
_ ¼ AB

_

AP

Hence if we know distance traveled in a given time, AC, and the diameter of the

orbit, AP, we can compute the fall distance in that time, AC.

Determining if Newton’s Centripetal Acceleration for Circular

Orbits Is Consistent with the Galileo’s Distance-Time Squared

Rule for Falling Bodies

The Galilean equations were derived from Galileo’s observations of gravity’s

effects on falling bodies on the surface of the Earth. The logical question now is

whether these equations, when applied to the motion of an object in space, imagined

to be falling toward the Earth while at the same time moving in a straight line, will

yield the same v2/r relation for centripetal acceleration as Newton found.

Problem Show that the Galilean equations for a falling object under constant

acceleration and for constant, rectilinear motion, are consistent with Newton’s equa-

tion v2/r for centripetal acceleration acting upon an object in a circular orbit in space.

Given The matters given for the above problem, and these Galilean equations:

s ¼ 1
2
at2 Equation for determining distance traversed under uniformly accelerated motion, where

here s represents distance an object falls, a the acceleration due to gravity, and t is
time elapsed during the fall

s ¼ vt Equation for distance s as a function of velocity v and time t

16Principia, Book I, Proposition IV, Corollary 9, 46.
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Assumptions Again, we are examining the special case of uniform circular

motion, so the same assumptions apply here as in the preceding problem.

Method Here the goal is to see if the above-derived acceleration force, v2/r , is
consistent with Galileo’s theorems, which he derived from experiment on the

surface of the Earth. We must focus on the distance, AC, the “versed sine”, since

that is the alleged “fall” distance of an object as it moves from A to B along the arc

of its circular orbit. We will assume that this AC distance is the distance s in the

Galilean equation s ¼ ½ at2. As the Moon is falling, it is also moving in a

projectile-like path in a straight line. The distance along the path AD is given by

s ¼ vt. The orbit is the resultant of these two motions. Since the fall along AC and

the movement along AD are to be measured as of the same increment of time, we

one may isolate the t in each equation and set the equations equal to each other.

Then it is possible to solve for acceleration.

Calculations From the above diagram and the conclusion already demonstrated

from the geometry of the circle,

AC ¼ AB2

AP

Calling r the radius of any such circle, and since AP ¼ 2r,

2AC ¼ AB2

r

Put this on the shelf for now; it will be used later.

Now, since s ¼ ½at2, it is assumed to be the distance the object, such as the

Moon, “falls” along the line AC during the same time that it would move the

distance s ¼ vt in the horizontal direction AD. Under this hypothesis, we can cast

the equations into the geometrical terms of the diagram, then set each expression

equal to t2:

Distance along AC in time t|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} Distance along AD in time t|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
s ¼ 1

2
at2 s ¼ vt

AC ¼ 1

2
at2 AD ¼ vt

t2 ¼ 2AC

a

AD2

v2
¼ t2

Since things equal to the same thing are equal to each other,
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2AC

a
¼ AD2

v2

Solving for acceleration, we have,

a ¼ v2
2AC

AD2

But we know from above that 2AC ¼ AB2

r . Making the substitution for 2AC,

we have,

a ¼ v

r

2 AB2

AD2

This still looks rather messy. But recall from Newton’s Lemma VII that as we

shrink the size of the arc ever smaller, by moving point B closer and closer to point

A, “the right lines AB, AD and the intermediate arc. . . ½AB
_

� (which are always

proportional to the former), will vanish, and ultimately acquire the ratio of equal-

ity.” Thus, as this shrinking occurs, we approach an ultimate limit,

AB2

AD2
! 1

and,

a ¼ v

r

2

This is the equation for centripetal acceleration we sought, and we found it by

using the theorems Galileo discovered from motion experiments on the surface of

the Earth, and a small trick of calculus seen cleverly applied here by one of its

inventors, Isaac Newton.

Deriving Galileo’s Equation Geometrically from Newton’s

Equation for Centripetal Acceleration

Now we will work the converse of the above problem to see if we can derive

Galileo’s distance-time-squared relation from Newton’s centripetal acceleration

equation, using Newtonian geometrical techniques. These derivations help give

physical reality to the somewhat abstract mathematical conclusion of Proposition

IV and its first corollary.

Problem Derive the equation s ¼ ½at2 geometrically using Newton’s equation

for centripetal acceleration.
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Given The matters given for the above problem, and,

s ¼ 1
2
at2 The Galilean equation, where s represents distance an object falls, a the acceleration due

to gravity, and t the time elapsed during the fall

Assumptions Same as in the above problem.

Method Further insight to the geometry of circular orbital motion is gained by

going in the other direction, deriving from the geometry already given the Galilean

equation for the fall distance of a uniformly accelerated object. Above we derived

the centripetal acceleration equation a ¼ v2/r from geometry. Here we derive the

distance equation using the same basic geometrical principles.

Calculations Begin with the geometrical relationship we used above,

AC ¼ AB2

AP

Since AP ¼ 2r and the distance AC is the fall distance s in the given time, the

relationship becomes,

s ¼ 1

2

AB2

r

The arc AB
_

is the distance traveled at uniform velocity, which for smaller and

smaller times approaches the chord length AB. Thus, for any constant velocity along
the arc, the length AB ultimately will be proportional to the time t. Since this length
is measured by that uniform velocity times time, then,

s ¼ 1

2

vtð Þ2
r

s ¼ 1

2

v2

r

� �
t2

Since v2/r is centripetal acceleration, then, by substitution of acceleration a for

the parenthetical term, we arrive at the Galilean equation,

s ¼ 1

2
at2
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Observation We have shown that the distance a thing might fall along AC in the

diagram would be consistent with the notion that it is accelerated continuously

toward the center of the circle. Thus far Newton hasn’t needed to say, “that’s

because of the force of gravity acting from the center which furnishes the accelera-

tion.” The relationships have so far still been geometrical and abstract. As noted

above, Newton develops the mathematical principles in Book I of the Principia
which he later, in Book III, ties together into a compelling narrative argument for

gravity. In that book, he makes the physical connection between the Moon’s fall

and the fall of an object on Earth, which we will explore in the next chapter.

Reflections Upon Centripetal Acceleration

Suppose you are resting on the grass after a long bicycle ride. Your bike lies flat on

the ground next to you. You lazily spin one of the horizontal tires. You notice a bug

on the rim of the tire, and decide to give him a ride. By Newton’s laws, even the bug

on the rim of your rotating bicycle tire will experience acceleration outward. This is

because its inertia tends to make it go in a straight line, whereas the tire it is on is

rotating, pulling the bug constantly away from straightness. We want to know what

acceleration the bug will experience if we spin the wheel at a constant velocity. We

want to find the equation that will enable us to calculate the acceleration and thus

the forces on that bug – and maybe even figure out how tightly its little feet adhere it

to the rim. We have a hunch that if we find out, we could use that same equation to

find the acceleration of any other orbiting or spinning thing, like particles in a

cyclotron, molecules in a centrifuge, electrons in an atom or the planets and moons

in our solar system.

How do we determine the acceleration on the bug? Consider what we know. The

displacement away from straightness can be calculated if acceleration is known, by

the s ¼ ½at2 equation derived above. Inspecting that equation, we can see it is

useful in another way: the acceleration can be calculated if the displacement is

known. And that displacement can easily be determined by geometry.

Intuitively, we may suspect that the amount of this circular acceleration will be

related to the velocity on the rim of the tire. If we turn the wheel fast enough, the

bug will be flung off. It may also be related to the distance from the center. Let us

derive the equation for circular acceleration using a simple diagram to illustrate

the circular, clockwise motion of the tire. Assume the diagram represents a pizza-

shaped slice of a spinning wheel. We know from Newton’s laws that a particle

(including a mass of negligible size, like a bug) on the rim of the circle would tend
to travel along the straight line d. If it weren’t dragged in by its attachment to the

tire, it would go in a straight line at whatever velocity it has, which we’ll call v.
We turn the tire a little bit at a time, so the bug moves along the length of d in a

little bit of time, which we’ll represent by Dt. At the same time it is displaced

away from straight by a distance s. (Each little triangle is repeated in each little bit
of time Dt.) The bug is holding on with its feet to the rim, and the rim is circular,
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so it cannot go in a straight line, much as it wants to. The “away from straight”

distance is s.

According to Newton’s Second Law, any deviation of a thing from a straight line

path requires some force, which changes its velocity along an axis (from rest or

otherwise), and thereby, by definition, accelerates. We know from the above

discussion about velocity and acceleration that the displacement caused by acceler-

ation is given by s ¼ ½at2. For very small units of time, which we’ll call Dt, we can
write this equation as s ¼ ½aDt2. (Recall our purpose: if we can find the distance s,
we can derive the acceleration from it.) We also know that, during the same small

interval Dt the distance along the straight line d may be expressed by,

d ¼ vDt

Keeping these two equations in mind, we begin by looking at one of the small

triangles on the wheel. Notice that because the line d is tangent to the rim, the angle

between d and r is always a right angle. Using the Pythagorean Theorem, where in

the diagram r þ s is the hypotenuse, we have,

r2 þ d2 ¼ r þ sð Þ2

r2 þ d2 ¼ r2 þ 2rsþ s2

d2 ¼ 2rsþ s2

100 5 How the Moon Falls Toward the Earth (but Keeps Missing It)



Let us now assume that that arc along the rim is made smaller and smaller. In

other words, our time intervals become shorter, and eventually are as short as we

can make them. The distance s becomes smaller and smaller. But the distance s2

becomes smaller much more rapidly than s does. In fact, when s is almost infinites-

imally small, s2 has become so much smaller that we can safely ignore the s2 term.17

The equation then becomes,

d2 ¼ 2rs

Since as we saw d ¼ vDt and s ¼ ½aDt2, we can now substitute the right hand

side of these equations for the distance terms in the above equation, which will yield

an expression entirely in terms of velocity, acceleration and radius:

vDtð Þ2 ¼ 2r
aDt2

2

� �

Solving for a results in the equation for centripetal acceleration:

a ¼ v2

r

This important equation again shows that the acceleration on the wheel will

increase or decrease as the square of the velocity does, and inversely as the radius. If

the wheel goes twice as fast, the acceleration increases four times. If at that new

speed the bug goes halfway in toward the hub, he will experience double that

acceleration – the turning curve is sharper. This relationship between acceleration

and velocity and radius has nothing to do with gravity. It applies to any circular

motion. It is a mechanical, geometrical fact of the inertial resistance to deflecting a

thing from a straight line. That is the essence of circular acceleration. We saw above

how Newton proved this using geometry and a few simple proportional arguments.

We could approach this derivation of centripetal acceleration in a still simpler

way (there are indeed many ways to do this!). Recall the discussion on pendulums,

the figure on pendulum geometry and the derivation of the fall distance in terms of

radian measure. Beginning with the Galilean relation,

s ¼ 1

2
at2

then for small angles, and ultimately as we approach an infinitesimally small angle,

we found that s ¼ ry2/2, where the angle is in radians. Making the substitution in

the above equation, then isolating the acceleration term, yields

17 For example, if s ¼ .01, then s2 ¼ .0001; if s ¼ .0001, then s2 ¼ .0000001.
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ry2

2
¼ 1

2
at2

a ¼ ry2

t2

Since the velocity along the arc of motion may be given by v ¼ ry/t, it is
apparent that, when substitution is made of the square of this (v2 ¼ r2y2/t2) divided
by r, it takes us to this result,:

a ¼ v2

r

This is the same equation for centripetal acceleration we arrived at (and Newton

arrived at) before, but through a slightly different path, using again the basic

geometry of the circle, and some insights we had gained when working with the

pendulum model.

Let us depart from derivations and try a practical example, to show the power of

this simple equation. If this equation truly applies to any circular motion, why not

try it on the Moon’s (roughly) circular orbit around the Earth? We mentioned earlier

that it travels in its orbit at the leisurely pace of about 1.02 km per second (1,020 m

per second). Its mean distance is 384,400 km away from center of the Earth. This is

3.844 � 108 m away. From these facts alone, we can compute the circular acceler-

ation acting on the Moon. The acceleration the Moon experiences in travelling

along its arc, just like the bug on the wheel, is

a ¼ 1020ð Þ2
3:844� 108

’ :0027 m=s2

Now a fact of fundamental importance in the history of our understanding of the

principles of celestial mechanics: this acceleration corresponds to the 2.7 mm per

second per second gravitational acceleration you will recall we estimated from the

inverse square law. Is this a coincidence? Or is it a hint of something fundamental

about the nature of mass and orbital motion? It was a profound coincidence for

Newton, as we shall see in Chap. 6, who explored its implications to the fullest. For

now, however, it is sufficient to realize that we did not need to know anything about

gravity to derive the equations that led us to the circular acceleration of the Moon.

We used the model of a bug on a wheel. We then assumed the wheel was a third of a

million kilometers in radius. The centripetal acceleration equation requires for its

solution only the velocity and radius. We could have calculated the orbital speed

from the Moon’s distance from the Earth and the time it takes to make one orbit.

The circular acceleration is a characteristic of inertia and the geometry of the orbit

alone. Now we can take this a step farther and look at the actual forces on a

102 5 How the Moon Falls Toward the Earth (but Keeps Missing It)

http://dx.doi.org/10.1007/978-1-4614-5444-1_6


circularly revolving or rotating object. To do this, we simply apply Newtons Second

Law, which relates force to acceleration.

Inertial (“Centrifugal”) Force

Suppose you are in your car going 10 m per second (about 22 mph) around a curve

with a radius of 100 m (328 ft). By the above equation for centripetal acceleration,

your acceleration will be one meter per second every second:

a ¼ v2

r

a ¼ 10ð Þ2
100

¼ 1 m=s2

What force will you experience? By Newton’s Second Law, the force will be

equivalent to the mass times the acceleration, F ¼ ma. Substituting centripetal

acceleration, v2/r, for the acceleration in Newton’s Second Law, the equation for

the force experienced by an object in circular motion becomes:

Fc ¼ mv2

r

In the above example, if you weigh about 60 kg (132 lb) you will feel an outward

force of 60 N (the unit of measure for force). This, again, is the inertial force of you
wanting to go in straight line, often (confusingly) called centrifugal force.18

A Useful Notation for Circular Motion

As we saw in the discussion of pendulums in Chap. 3, is convenient to utilize

concepts of radial notation when dealing with problems in circular motion. Some

interesting and useful relations follow, and it will be good to reinforce those here.

Recall that an object moving in a circle covers 2p radians (“radiuses”) every

revolution, or an actual distance of 2pr meters. The velocity v is the time it takes

the object to accomplish one such revolution, called the period of the object, which

18 The phrase centrifugal force appears to have originated with Christiaan Huygens who stated his

Theorems on Centrifugal Force Arising from Circular Motion as early as 1659, having developed

them even earlier. He did not publish them, however, until 1673, where they appeared appended to

his book on pendulums. See Pendulum Clock, 176–8.
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we have here denoted by P. Therefore, as we have seen, v ¼ 2pr/P. But if the
velocity is expressed just in radians per second (think of radii per second) we use

the symbol o for angular velocity, or angular frequency, where o ¼ 2p/P. For
example, suppose you spin your bicycle tire, and it makes two revolutions (each of

2p radians) per second. Its angular frequency is o ¼ 2p/.5 or 4p radii (radians) per

second. If the tire is .75 m in diameter, the actual velocity of a bug on the rim is

or ¼ 2pr/P or about 4.7 m per second.

Since distance along a circular arc can be expressed as ry, the velocity of a point
at distance r on a steadily rotating wheel (such as the rim of our tire) may be given

by or where o ¼ y/t, measured in radians per second. The equation for the angular

acceleration a of a point on the rim is therefore:

a ¼ v2

r

a ¼ orð Þ2
r

a ¼ o2r

This is a simple and useful expression for centripetal acceleration. For constant

circular motion, then, because acceleration a is the same symbol of the semi-major

axis of an ellipse, we will typically use f to stand for acceleration. In sum, for

velocity and acceleration:

v ¼ or

f ¼ o2r

Similarly, centrifugal force may be expressed as:

Fc ¼ mo2r

Exercises: The Fortunate Circle It has been argued that the very existence of

uniform circular motion was a great bit of good fortune for Isaac Newton, for it

allowed the successful development of his dynamics. Simple, rectilinear motion

would not have permitted the needed growth of his theory, and elliptical and

parabolic motion were too complex to permit the emergence of fundamental

principles. The well-known Newton scholar, John Herival, stated: “. . .[T]he prob-
lem of uniform circular motion was at once not impossibly difficult and yet of

sufficient complexity to call for a real advance in his concept of force and his

method of applying it to motion in a curved path”19 Newton not surprisingly

19 John Herival [2].
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employed his creative imagination to go beyond the circle in order to study it.

Herival explains:

The first known discussion by Newton of the problem of circular motion is found at Axiom

20 of the Waste Book. The case considered is that of a ball moving on the interior of a

hollow spherical surface. According to the principle of inertia there is a constant tendency

for the ball to continue on in the direction of its motion at any point, i.e., along the tangent to

the circle. And the fact that it does not so continue but moves instead in a circle argues the

continuous action on it of a force. This force can only arise from the pressure between the

ball and the surface. But if the surface presses the ball, the ball itself must press the surface.

From which it follows that all bodies moved circularly have an endeavor from the centre

about which they move.20

In considering cases where the ball was colliding against a many-sided polygon,

Newton saw that the number of collisions would be reduced as the polygon (or

circle if the number of sides goes to infinity) grew in size — as the circle’s radius

increased; but would increase (per unit time) as the velocity of the ball increased.

He was thus on to quantifying centrifugal, and thus (by his Law III) centripetal

force as some relation between velocity and the inverse of the radius.21

Problems

1. Identify any inapplicable answer(s): Centripetal force exists only: (a) where

there is gravity; (b) where there is rotation; (c) where there is centrifugal force;

(d) where there is inertia. Explain your reasoning.

2. Identify any inapplicable answer(s): Inertia is a tendency of a mass to: (a) move

in a straight line; (b) stay still; (c) resist the force of gravity; (d) feel heavy.

Explain your reasoning.

3. Identify any inapplicable answer(s): Motion along a curve: (a) will continue

along a curve unless acted upon by an external force; (b) requires a force to

make it happen; (c) requires gravitational force; (c) is always the composition

of two forces. Explain your reasoning.

4. Explain Newton’s comment that “versed sines tend to the center of force, and

bisect those chords when those arcs are diminished to infinity. . .”
5. Explain the following connections, to the extent you understand such

connections to exist: how, in circular motion (a) gravitational acceleration is

related to centripetal acceleration; (b) centripetal acceleration is related to

centrifugal force; (c) centrifugal force is related to inertia; (d) inertia is related

to inertial force.

6. If the solar system were a large spinning disk and the planets were placed on

that disk at the same relative intervals from each other (that is, for example, at

distances from the center of about 1, 1.5, 5.2, and 9.6 units for the planets Earth

Mars Jupiter and Saturn, respectively) what would be the ratio of the

accelerations acting on those planets?

20 Ibid.
21 Newton developed this concept in the Scholium to his Proposition IV. Principia, Book I,

Proposition IV, 47.
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7. If two planetary orbits were to be compared, and the first planet was twice as far

from the center of force but half as fast as the second planet, what would be the

ratio of the centripetal accelerations acting upon them? Under these

circumstances, if the first planet were half as massive as the second, what

would be the ratio of their centrifugal forces be?

8. If you put a small steel ball weighing 1/10 of a kilogram in a centrifuge .5 m in

radius, then turn this centrifuge to spin at a rate of 12,000 rpm, what will the

centrifugal force be acting upon the steel ball? If the ball were suddenly to be

ejected from the centrifuge, and ignoring friction and gravity, at what velocity

will the ball travel? In what path? For how long?

9. Neptune’s moon Naiad is about 48,227 km from the center of Neptune. It

journeys in an almost circular orbit once in .294396 days. What is the centripe-

tal acceleration acting upon Naiad? If you were informed that Naiad’s mass is

.002 � 1020 kg, what centrifugal force would you say it experiences?

10. Compare the centripetal accelerations and centrifugal forces acting upon

Neptune’s moon Naiad with Neptune’s small moon Galatea. Galatea travels

around Neptune at a distance of 61,953 km in a circular orbit with a period of

.428745 days. Galatea’s mass is .04 � 1020 kg. What are the ratios of the

centripetal accelerations and centrifugal forces acting upon those two small

moons of Neptune, Naiad to Galatea?
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Chapter 6

Newton’s Moon Test

One of the most famous thought experiments in the history of science was made

possible by a unique natural coincidence. The coincidence resides in the length of a

second of time in relation to the minute, and the size of the Earth in relation to its

distance from the Moon. In our system of keeping time, a second is one-sixtieth of a

minute; the Earth’s radius is also one sixtieth the distance to the Moon. Isaac

Newton discovered that this coincidence of proportion enabled an easy test of his

gravitational hypothesis that could be grasped by anyone.

About two decades before the publication of the Principia, Newton sought to

prove that the force inducing objects, such as apples on a tree, to fall downward to

Earth was the same force that kept the Moon enchained in its orbit, preventing it

from going off into space. If the characteristic effects of this force were found to be

the same for the Moon and the apple, then it would be evidence that the causes of

the forces are the same. In particular, if the power of the force were found to vary

with the inverse square of the distance all the way to the Moon, it would be a

dazzling demonstration of the validity of that theory. It would suggest that the

centripetal force emanating from the Earth varies so as to be strong at the Earth’s

surface, at one Earth radius, but attenuated by the inverse square of the number of

radii distant from the Earth’s center. The attenuation under such a law would be

easily computable. It would be one-fourth as strong at two radii, one-ninth as strong

at three radii and so forth. Because the mean lunar distance is about 60 Earth radii

distant, it should by this reasoning make the force of the gravitational acceleration

acting on each unit of mass there, only one thirty-six hundredth as strong as we

experience on Earth. This fraction also happens to be the square of the number of

seconds in a minute. Exactly how from these coincident facts Newton constructed

an easily understandable demonstration of an inverse square law of gravity acting

so far away as the Moon is best told by Newton himself in Book III of the Principia.
Newton did not discover this ready proof so easily, in fact was delayed about

twenty years, mainly because in about 1666 the dimensions of the Earth were not
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accurately known.1 William Whiston, who knew and succeeded Newton in his

Lucasian professorship at Cambridge, described his conversation with Newton on

this subject, and Newton’s early frustration with his results:

An Inclination came into Sir Isaac’s Mind to try, whether the same Power did not keep the

Moon in her Orbit, notwithstanding her projectile Velocity, which he knew always tended to

go along a straight Line the Tangent of that Orbit, which makes Stone and all heavy Bodies

with us fall downward, and which we callGravity? Taking this Postulatum, which had been

thought of before, that such power might decrease in a duplicate Proportion of the Distances

from the Earth’s Center. Upon Isaac’s first Trial, When he took a Degree of a great Circle on

the Earth’s Surface, whence a Degree at the Distance of the moon was to be determined

also, to be 60 measured miles only, according to the gross Measures then in use. He was, in

some degree disappointed, and the Power that retained the Moon in her Orbit. . .appeared
not to be quite the same that was to be expected, had it been the Power of gravity alone, by

which the Moon was there influenc’d. Upon this Disappointment, which made Sir Isaac

suspect that this Power was partly that of Gravity, and partly that of Cartesius’s Vortices, he

threw aside the Paper of his Calculation, and went on to other studies.2

It was years later, around 1675, that Newton came upon the more accurate value

of a degree at the Earth’s meridian. French astronomer Jean Picard measured its

value to be 69.1 English statute miles. Newton read of this in the Royal Society’s

Philosophical Transactions, and is reported to have rushed to redo his calculations

that he had set aside so many years before. This time he found, to his excitement,

that his results agreed perfectly with his theory.3 Here, in summary, is how Newton

described his proposition and its proof in Principia’s Book III, Proposition IV:

PROPOSITION IV. THEOREM IV (BOOK III)

That the moon gravitates towards the earth, and by the force of gravity is continually drawn

off from a rectilinear motion, and retained in its orbit.

. . . Let us assume the mean distance [to the Moon] of 60 [semi]diameters in the

syzygies; and suppose one revolution of the moon, in respect of the fixed stars, to be

completed in 27d.7h.43m., as astronomers have determined; and the circumference of

the earth to amount to 123249600 Paris feet, as the French have found by mensuration.

And now imagine the moon, deprived of all motion, to be let go, so as to descend towards

the earth with the impulse of all that force by which. . .it is retained in its orb, it will in the

space of one minute of time, describe in its fall 151/12 Paris feet. . .For the versed sine of

that arc, which the moon, in the space of one minute of time, would by its mean motion

describe at the distance of 60 semidiameters of the earth, is nearly 151/12 Paris feet, or more

1A contrary explanation put forward for the delay was that there “were theoretical questions of

great difficulty relating to the attraction of a sphere upon an external point – a problem which he

[Newton] did not solve until 1684 or 1685. . .” It was only then that Newton proved that a planet or

moon could be treated mathematically as if all its mass were concentrated in a point at its center.

See Florian Cajori [1]. (Short title) Principia.
2 This narrative was excerpted by Gale Christianson from Memoirs of the Life and Writings of
William Whiston, London, 1749, I:36–37, and appears on page 79 of Gale E. Christianson [2]. The
description of events here is drawn from pages 77–88 of that work.
3 There is a great deal of literature on the early origins of Newton’s Moon test. Some concise

descriptions of his early musings during the plague years by people who knew Newton are

presented in S. Chandrasekhar [3].
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accurately 15 feet, 1 inch, and 1 line 4/9. Wherefore, since that force, in approaching to the

earth, increases in the proportion of the inverse square of the distance, and, upon that

account, at the surface of the earth is 60.60 times greater than at the moon, a body in our

regions, falling with that force, ought in the space of one minute of time, to describe

60.60.151/12 Paris feet; and, in the space of one second of time, to describe 151/12 of those

feet; or more accurately 15 feet, 1 inch, and 1 line 4/9. And with this very force we actually

find that bodies here upon earth do really descend; for a pendulum oscillating seconds in the

latitude of Paris will be 3 Paris feet, and 8 lines ½ in length, as Mr. Huygens has observed.
And the space which a heavy body describes by falling in one second of time is to half the

length of this pendulum as the square of the ratio of the circumference of a circle is to its

diameter (as Mr. Huygens has also shown), and is therefore 15 Paris feet, 1 inch, 1 line 7/9.
And therefore the force by which the moon is retained in its orbit becomes, at the very

surface of the earth, equal to the force of gravity which we observe in heavy bodies there.

And therefore. . .the force by which the moon is retained in its orbit is that very same force

which we commonly call gravity. . .

Summary of Newton’s Moon Test

It may be easier to understand this proof by dividing it into parts. We will explain

each part below:

1. The Moon’s fall in a minute at lunar distance is 151/12 Paris feet;
2. The Moon’s fall in a second on the surface of the Earth would be 151/12

Paris feet;
3. The fall of a heavy body (such as a rock) in a second on Earth, as measured by a

pendulum, is the same;

4. Therefore, the force pulling the Moon and the rock are one and the same: gravity

The First Part of the Test

Newton provides the initial data necessary for his proof, the Moon’s distance and

orbital period, and the Earth’s circumference, then begins the first part of his test.

He pictures the Moon stopped in its orbit and let go, to fall toward the Earth: “And
now imagine the moon, deprived of all motion, to be let go, so as to descend towards
the earth . . .” His purpose is to find out how far it would fall in a minute. By using

the geometrical methods of the last chapter, he determines that it would fall 151/12

Paris feet in 1 min: “it will in the space of one minute of time, describe in its fall
151/12 Paris feet . . .” The problem below shows how he determined this. It is not

important for us to know what a Paris foot is, because he uses the same units

throughout.4 In the end he shows that the results are all the same.

4One Paris foot is .32484 m (1.066 English feet).
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The Second Part of the Test

In the second part of the test, Newton mentally removes the Moon (or any object at

that distance) toward the surface of the Earth, and two things happen. The force

increases by the square of the decreased distance (from 60 Earth radii to 1), and the

fall distance decreases by the square of the reduced time (from 60 s to 1).5 These

two cancel out, so “a body in our regions, falling with that force, ought . . . in the
space of one second of time, to describe 151/12 of those feet . . .”

The Third Part of the Test

So far Newton has given us theoretical results, informing us how the Moon should

be expected to behave if brought to Earth, assuming that an inverse square law

governs: it should fall 151/12 Paris feet in a second. Now he needs to compare theory

with reality, and tell us how things actually behave on the surface of the Earth. Here
Newton refers to experiments with the pendulum performed by the Dutchman

Christiaan Huygens whom we encountered earlier. Recall that a pendulum

“oscillating in seconds” is one where each swing is one second in duration. From

such a pendulum the fall distance in one second can be calculated by the formula we

derived earlier, s ¼ ½p2l , where s is the distance and l is the length of the

pendulum. Huygens had determined the distance an object falls in 1 s on Earth;

Newton discovered that it is the same as the fall distance computed above:

“And with this very force we actually find that bodies here upon earth do really
descend. . .”

The Fourth Part of the Test

Newton concludes with the famous pronouncement that the two phenomena must

be caused by the same thing: “And therefore the force by which the moon is retained
in its orbit becomes, at the very surface of the earth, equal to the force of gravity
which we observe in heavy bodies there.”

Newton’s conclusion that the distance the Moon falls toward the Earth in 1 min

corresponds to the distance it would fall in a second if brought down to Earth was a

brilliant exposition of the extension of the force of gravity all the way to the Moon.

But was it an elegant coincidence? The result on its face did not necessarily mean

5 This is because, by Galileo’s theorem, for a given time, distance is proportional to acceleration,

and by Newton’s Second law, acceleration is proportional to force; thus the distance a thing falls is

proportional to the force pulling it downward. By the same theorem, the distance something falls is

also proportional to the square of time.
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that gravity exists everywhere and universally. TheMoon test was striking evidence

that the inverse square law would explain why the Moon is held in its orbit, but it

remained to be shown that there were not other factors at work that might apply

elsewhere. In nature there are often complex conditions affecting results. Nor did

this yet necessarily imply that all bodies attract all bodies. Nevertheless, this

thought experiment was a major stepping stone in making all the pieces of the

gravitational puzzle come together.

One may work out the mathematics of Newton’s approach here, using the

geometrical methods of Chap. 5. The problem below does just that.

Newton’s Demonstration that “The Moon Gravitates
Towards the Earth”

Problem Using the data provided by Newton in Proposition IV of Book III, and

the additional information derived from it given below, check the accuracy of

Newton’s result that the distance the Moon, “deprived of all motion,” would

fall in 1 min from its orbit, is the same distance it would fall in 1 s at the surface

of the Earth.

Given

123,249,600 Paris feet Circumference of the Earth mentioned by Newton, from Picard’s

measurements

60 Earth radii Mean distance from the center of the Earth to the Moon, estimated

by Newton from the work of various astronomers

39,343 min Period of Moon’s orbital revolution, derived from 27d.7h.43m, as

astronomers of the day had determined. This is about the modern

value

s ¼ 1=2p2l Equation found by Huygens for determining the distance s an object

falls in one second from the length l of a pendulum which swings

through its arc once a second

Assumptions We will assume, as Newton did, a circular lunar orbit with uniform

lunar motion, and a distance to the Moon of 60 Earth diameters.6 We will also

assume a spherical Earth and Moon of uniform density, and no particular perturbing

influences of other bodies, such as the Sun. Finally, it is an assumption that the

value of g (Earth’s gravitational acceleration) implicit in Huygens’ pendulum

results would be more or less universally applicable. In fact, the Earth is not a

6Newton begins Proposition IV in Book III of his Principia by summarizing the ancient and then

current estimates for the lunar distance, in Earth radii. The values ranged from 59 (Ptolemy), 60

(Huygens), 60⅓ (Copernicus), 602/5 (Street), and 60½ (Tycho). He settles upon a value of 60. The

true value, derived from the mean diameter of the Earth (calculated either as the average of the

equatorial and polar radii, or as the mean volumetric radius), is about what Copernicus suggested.
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uniform sphere, and spins, and the value of g does vary from place to place, so the

pendulum lengths would not everywhere be precisely the same. But for the rather

rough calculations and assumptions made here, it is safe to say the differences are

not significant.

Method Consider the diagram below. Knowing how far the Moon falls in a minute

(distance AC or DB in the diagram) in going from A to B requires knowing how far

the moon travels in 1 min along the arc AB
_

.7

To compute the fall distance AC, we recall from Chap. 5 that, from Newton’s

Proposition IV, Corollary IX, the arc AB
_

is the “mean proportional between the

diameter of the circle, and the space which the same body falling by the same given

force would describe in the same given time”:

AC

AB
_ ¼ AB

_

AP

This is a useful proportion since the fall distance AC is what we seek. The other

unknowns are the arc length and the diameter of the lunar orbit. The distance to the

Moon is given in Earth radii. From the given circumference we can find the radius

7 If one views the lunar orbit from northern hemisphere of the Earth, it moves counterclockwise. If

viewed from the southern hemisphere, the path is clockwise. In either case, the mathematical

principles are the same.
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of the Earth. Given that the Moon is given as 60 Earth radii distant, one can then

compute the two unknowns in the above proportion, and arrive at the AC distance

the Moon falls in 1 min. The steps are as follows: First, using the diameter of the

Earth, calculate the diameter of the lunar orbit AP. From this, find the circumfer-

ence of the lunar orbit. This latter, when divided by the period in minutes, yields the

arc length between B and A travelled by the Moon in 1 min. Since that arc length is

the mean proportional between AC and AP, distance AC can readily be computed

from the equation just given.

The next part of the analysis entails the application of the inverse square law. By

Newton’s imaginary relocation of the Moon to the Earth’s surface, the strength of

the centripetal force is increased by the square of the reduced distance. This yields a

new result for a minute of fall time. To find the fall in just 1 s on Earth, we apply the

Galilean relation that, for a constant acceleration, distance is proportional to

the square of the time. For the empirical part of the test, it is necessary to translate

the length of Huygens’ seconds pendulum into fall distance on Earth by the

equation s ¼ ½p2l. Then empirical and theoretical results may be compared.

Calculations First part: finding the fall distance of the Moon in its orbit. First we
calculate the diameter of the Earth so we can find the diameter of the lunar orbit. For

conceptual consistency, we will use the units and number of digits Newton did. The

diameter of the Earth will be its circumference CE given by Newton divided by p:

Diameter of Earth: D ¼ CE/p ¼ 123,249,600/3.14. ¼ 39,231,566 Paris feet

Diameter of Moon’s orbit: AP ¼ 60 � D ¼ 2,353,893,968 Paris feet

The distanceAB
_

is the portion of the Moon’s orbital circumference CM traversed by

the Moon in 1 min.

Circumference of Moon’s orbit CM ¼ p � AP ¼ 7,394,976,000 Paris feet

Period of one lunar revolution in orbit P ¼ 39,343 min

Distance along arc AB
_

traversed in one minute ¼ CM/P ¼ 187,962 Paris feet

This is the velocity of the Moon in its orbit, in Paris feet per minute. From that

number we can determine the fall distance of the Moon. Since

AC

AB
_ ¼ AB

_

AP

Then the distance AC will be

AC ¼ AB
_ 2

AP

AC ¼ 187; 9622

2; 353; 893; 968
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AC ¼ 15
1

120
Paris feet

But Newton states, “it will in the space of one minute of time, describe in its fall

151/12 Paris feet . . .” The value we derived of 15 and 1/120 Paris feet (in decimals,

about 15.01) is slightly less than the 15 and 1/12 Paris feet (about 15.1) stated in the

proof of the Proposition and found, as we shall see in the third part of the test, by the

pendulum experiment. The late Indian physicist and Nobel laureate Subrahmanyan

Chandrasekhar speculated that Newton wrote the value 151/12 Paris feet from

memory from an earlier calculation.8 On the other hand, Dana Densmore believes

the difference can be accounted for by subtracting the force of the Sun’s influence, a

correction she assumes Newton computed but did not state in the proof of this

famous proposition.9

Second part: finding the fall distance of the Moon as if it were on the Earth’s
surface. The next part of the proposition states that “since that force, in approaching
to the Earth, increases in the proportion of the inverse square of the distance, and,

upon that account, at the surface of the earth is 60 � 60 times greater than at the

moon, a body in our regions, falling with that force, ought in the space of 1 min of

time, to describe 60 � 60 � 151/12 Paris feet; and, in the space of 1 s of time, to

describe 151/12 of those feet. . .” That is, if we take as our supposition that the

inverse square law applies, then the acceleration on Earth should be 3,600 times

stronger at 60 Earth radii closer. Doing the calculation as Newton suggests, we find

the Moon’s fall closer to home in 1 min of time would be:

60� 60� 15:01 ¼ 54; 032 Paris feet in one minute on Earth

Since the fall distance at this Earthly acceleration is proportional to time squared,

by Galileo’s theorem (s / at2 ), then 54,032 Paris feet is the distance the Moon

would fall on Earth in t2, or in 60 s squared, or in 3,600 s. To find the fall distance in
1 s, we must divide by 3,600:

54; 032

3; 600
¼ 15

1

120
Paris feet in one second on Earth

8 See S. Chandrasekhar, Newton’s Principia for the Common Reader, 358, where Chandrasekhar
states in a note to his result of 151/120 Paris feet: “Newton gives instead 151/12 Paris feet. Perhaps
he wrote this value from memory (?) from an earlier computation with different parameters from

those listed in this proposition.”
9 D. Densmore [4]: “. . .[T]he reason his [Newton’s] number 151/12 Paris feet, differs from ours,

15.01 Paris feet, is that he has taken into account the effect of the sun’s force on the moon.”

Densmore cites and calculates this difference from Newton’s Proposition 45, Corollary 2, though

Newton did not himself refer to that Proposition or corollary for support in Proposition IV of Book

III discussed here. Moreover, the first part of the proof is itself entirely geometrical, and does not

rely upon a presupposition of actual gravitational forces.
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As noted, Newton has accepted the value of 15 and 1/12 Paris feet, “or more
accurately 15 ft, 1 in., and 1 line 4/9.” Since a line is a twelfth of an inch, then the

fall of the Moon if brought to Earth is,

sMoon ¼ 15þ 1

12
þ 1

144
1þ 4

9

� �
’ 15:1 Paris feet ð4:9 metersÞ

Third part: comparing this result with the fall of an object, such as a rock, on Earth.
Newton says, “And with this very force we actually find that bodies here upon earth

do really descend. . .” Newton’s refers to the pendulum studies of Christiaan

Huygens who in 1673 published Horologium Oscillatorium (the Penduluum
Clock).10 This work was available to Newton. Huygens’ reported value for the

distance a pendulum would fall in a second matches what Newton calculated.11

Huygens found, consistent with Newton’s report, as follows:

. . .[I]f the Parisian foot is given, then we would say that the simple pendulum, whose

oscillations mark off seconds in an hour, has a length equal to three of these feet, plus eight

and one-half lines.12

A line is a twelfth of a Parisian inch. Huygens’ pendulum length is therefore about

3.06 Paris feet. Putting that as the value of l in the equation s ¼ ½p2l we have,

s ¼ p2l
2

s ¼ 3:142 3:06ð Þ
2

s ¼ 15
1:15

12
Paris feet 4:9 metersð Þ

This result is compatible with what Huygens found, and Newton concludes that the

fall in 1 s according to the pendulum “is therefore 15 Paris feet, 1 in., 1 line 7/9.”

sPendulum ¼ 15þ 1

12
þ 1

144
1þ 7

9

� �
’ 15:1 Paris feet ð4:9 metersÞ

10 For a modern translation by Richard J. Blackwell of Christiaan Huygens’ 1673 work, See C.

Huygens [5] (Short title) The Pendulum Clock.
11 For an analysis of the pendulum result in contemporary mathematics, see S. Chandrasekhar,

Newton’s Principia for the Common Reader, 359–360.
12 The Pendulum Clock, 168. This is found in Huygens’ Proposition XXV, “A method of
establishing a universal and perpetual measure.”
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Observation The realization that the force of gravity on Earth, when attenuated by

the inverse square law, matches actual fall of the Moon in its orbit was a stunning

insight. Newton revealed that gravity’s reach extends at least to the Moon. We will

show later how he deduced that it extends to the heavens.

A Simple Confirmation of the Inverse Square Law Between
Earth and Moon Using Modern Data

It is instructive to work through a short-hand version of Newton’s Moon test using

more modern quantitative methods. We will use the computed acceleration of the

Moon in its orbit, its distance from Earth, and the value of g on Earth to confirm

Newton’s Moon test and his Proposition IV of Book III of the Principia.

Problem Given the Moon’s mean distance and orbital velocity below, and using

the accelerations of the Moon toward the Earth, show how far the Moon falls toward

the Earth in 1 min and compare that result with how far an object on Earth falls in

1 s. Show that the result is consistent with the inverse square law.

Given

384,400 km Moon’s mean distance from Earth, which is approximately 60 Earth radii away

1.023 km/s Moon’s mean velocity in its orbit

s ¼ ½ at2 Galilean distance equation for constant acceleration, with the same variables

as before

9.8 m/s2 Value of gravitational acceleration at the surface of the Earth

a ¼ v2/r Equation for centripetal acceleration of a circularly revolving object

Assumptions The same assumptions as in the previous problem. In particular, note

the uniform circular motion of the Moon, which again is an acceptable approxima-

tion for our instructional purposes, as it was here for Newton.13 This assumption

thus neglects the fact that the Moon’s distance from Earth varies some in the course

of its orbit, as does its velocity. We also neglect the influence of the Sun on the lunar

orbit.

Method The length AC is the distance the Moon falls in a given increment of time

(we have not yet placed any scale on the above diagram). Set this distance equal to

s in the Galilean equation. That equation contains an unknown – the acceleration

term. Substitute Newton’s expression for centripetal acceleration v2/r, whose deri-
vation we discussed in the last chapter, for the term a, then solve for distance s. That
will yield the distance theMoon falls in time t. Since the time given in the problem is

60 s, the result will be our answer. For Earth, use the value 9.8 m/s2 for acceleration.

13 Its actual eccentricity is roughly .05. The lunar orbit not as circular as Venus’s orbit, whose

eccentricity is less than .01, or Earth, at roughly .02, but more circular than Mars’s .09 eccentricity.
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Calculations Begin with the distance equation, s ¼ at2/2. Since centripetal accel-
eration is given by a ¼ v2/r, the right-hand side of this expression may be

substituted for a in the distance equation:

s ¼ 1

2

v2

r

� �
t2

s ¼ 1

2

1:0232

384; 400

� �
602

Since the above units are in kilometers, the result will be in kilometers. In

meters, the distance (rounded) the Moon descends in its orbit in 1 min is,

s ¼ 4:9 meters|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Moon0s fall in its orbit in one minute

Incidentally, this is a very leisurely descent for this great object! It is about 16 ft.

Now again compare this with the descent of objects closer to home, on the surface

of the Earth. Again begin with Galileo’s equation:

s ¼ 1

2
at2

On Earth, in 1 s, an apple falls,

s ¼ 1

2
9:8ð Þð1Þ2

s ¼ 4:9 meters|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
An apple0s fall on Earth in one second

Observation Newton elsewhere in the Principia showed the applicability of the

inverse square law to elliptical orbits, consistent with the first two laws of planetary

motion discovered by Kepler, published in 1609 in Astonomia Nova. Newton’s
Section III of Book I of the Principia dealt with “The motion of bodies in eccentric

conic sections.” The first entry in that section, Proposition XI, Problem VI, stated

the case for elliptical motion: “If a body revolves in an ellipse; it is required to find

the law of centripetal force tending to the focus of the ellipse.” He proved that the

centripetal force on a body is inversely as the distance from the object to the focus

of the ellipse, a key conclusion making his theory of gravity consistent with ellipses

and all other conic sections.
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A Geometric Approximation of the Moon’s Period

(and Other Diversions)

It can be rewarding to explore some mathematical variations on Newton’s

conclusions. Below are some exercises that may deepen understanding of the

Moon’s orbital geometry.

Problem Suppose the distance to the Moon were unknown. With just the Moon’s

velocity along its orbit and the calculated downward fall toward the Earth in 1 min,

and using radian measure, geometrically approximate the period of the Moon.

Given

4.9 m Distance the Moon’s falls toward Earth in one minute, along line AC
in the diagram

1.023 km/s
Moon’s mean velocity in its orbit, along arc AB

_
in the diagram, which

for short arcs approximates the length of the chord AB

These further basic theorems of Euclidean geometry:

1. A central angle is measured by its intercepted arc. Hence ff AEB ¼ AB
_

2. An inscribed angle is measured by one half its intercepted arc. HenceffAPB ¼ ½

AB
_
, and ff APB ¼ ½ ff AEB. Likewise ff APB ¼ ff CBA.

Assumptions We again approximate the lunar orbit by a circle.

Method Consider the following diagram of the Moon’s orbit around the Earth.

For the sake of interest and variety, we take a southern hemisphere view of the

lunar orbit, and the Moon is revolving clockwise. (Mathematically, of course, there

is no difference from the reverse depiction; the sagitta, or fall distance AC, has the
same geometrical and physical meaning as before.) Our goal is to find the
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(unrealistically exaggerated) central angle ff AEB, labeled y in the diagram. If we

know what part of a circle the Moon travels the angle y in 1 min, we can readily

calculate how long it takes to go all the way around its circumference, which is its

period.

The measure of distance along arc AB
_

is the central angle of that arc (here, y) in
radians times the radius r of the circle. But if as stated in the problem we are to

assume the radius is unknown, then we have to rely upon the information provided

about the smaller triangle DACB. We are helped in this by the given geometrical

principle that the angle ff CBA (marked y/2) is half of the central angle. To see how

this smaller triangle may be useful, assume that point B is the center of a smaller

circle whose radius is approximately AB. Then we can find y/2 in radians by the

ratio of AC/AB (since in radians, y/2 times the little radius AB yields AC; hence
AC/AB ¼ y/2). Since AC and AB are both given, we can determine y/2 and thus y.
Then we simply divide this central radian angle into 2p, the number of radians in a

circle, to yield an approximate period for the lunar orbit.

Calculations The moon falls 4.9 m in 1 min along the line AC (Newton’s versed

sine, or sagitta), but moves in its orbit 1.023 km in 1 s along the arc AB
_

. It therefore

moves 1.023 � 1,000 � 60 ¼ 61,380 m in 1 min along the arcAB
_

. Consistent with

Newton’s Lemma VII, we can approximate for very small angles the chord distance

AB by the arc AB
_

. At any such small angle, the ratio of the fall to the arc distance in

one full minute is then,

ffCBA ¼ y
2
� AC

AB
¼ 4:9

6:138� 104
¼ :00007983 radians

The approximated “slope” of this arc (the ratio AC/AB) is thus about 1 m of fall

for every 12,500 m (about seven and three quarter miles) gained along its orbital arc

(which the Moon traverses in a little more than 12 s). This ratio is equivalent to the

angle y/2 in radians. Therefore, the measure of angle y (ff AEB) in radians is twice

that or .00015966. We divide this into 2p, which is the circumference of the circle

in radians, to find the number of minutes in the mean orbital period:

y ¼ :00015966 radians

Pmin ¼ 2p
:00015966

Pmin ¼ 39; 353

To find the mean orbital period in days, divide Pmin by 1,440, the number of

minutes in a day:

Pdays � 27:3 days
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Observations

1. The above is reasonably close to modern values. The published mean lunar

period is 27.3217 days, or about 39,343 min.14

2. We can also geometrically approximate the orbital period P of the Moon using

its velocity in orbit and its mean distance from Earth (about 384,400 km). Again,

because the lunar orbit is not a perfect circle, the results again will only be

approximate. Recall that the length of the arc AB
_

will be y in radians times the

radius: ryrad ¼ AB
_

. Hence:

yrad ¼ AB
_

r

yrad ¼ 6:138� 104

3:844� 108

yrad ¼ :000159677

This is the angular measure of revolution in 1 min. To find the orbital period, it is

required to find how many of these measures fill an entire circle. To do this we

divide it into 2p:

Pmin ¼ 2p
:000159677

Pmin ¼ 39; 349

Pdays � 27:3 days

3. Above we geometrically derived the orbital period from the velocity and fall

distance, then from velocity and radius distance. Now we derive the fall distance

AC from the angular velocity and period alone. In other words, can we just look

at the velocity along the orbital arc alone and from it compute the distance the

Moon falls in 1 min? If we know only its orbital period and velocity, we can

indeed geometrically calculate the slope and the fall distance. The Moon’s actual

orbital period is about 27.3217 days, which is about 39,343 min. We’ll use

radian measure to determine its angular velocity in radians per minute.

Let’s review the origin of the relation between the half-angle y/2 in the

triangle DCBA, and its sides, AC and AB. Since we know from before that,

AC

AB
¼ AB

AP

14 See NASA’s site, http://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html.
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If we again imagine the arcAB
_

and therefore y to become smaller, as described in

Newton’s Lemma VII, then chord AB is approximated by r � yrad,

AC

AB
� ryrad

2r

and ultimately,

AC

AB
¼ yrad

2

consistent with our earlier conclusions. Here we are taking the fractional part of

the orbit to be one part in 39,343, so it is safe enough for our purposes to

approximate the chord length with the arc length. We called the ratio AC/AB
the “slope” of the orbital arc. The angular velocity of the Moon in radians per

minute along its arc is,

yrad ¼ 2p=P

yrad ¼ 2p=39; 343

yrad ¼ :0001597 radians per minute

Substituting this value into the above equation, we have,

AC

AB
¼ :0001597

2
¼ :00007985 radians

Since the length AB is the lunar velocity (1.023 km/s) times the time increment

we have chosen (1 min), its length is, again, 1.023 � 1,000 � 60 ¼ 6.138 �
104 m. Solving for AC, we have,

AC ¼ 7:985� 10�5
� �

6:138� 104
� �

AC ’ 4:9 meters

The above result again is the distance in meters the Moon in its orbit falls toward

Earth in 1 min under the assumptions given above.

4. The acceleration will be twice this. This is because, recapitulating from above,

in the ultimate case,

AC

AB
¼ ryrad

2r

and, since yrad ¼ 2p=P,
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AC

AB
¼ 2pr

2rP

But 2pr/P is also the velocity in orbit, so

AC

AB
¼ v

2r

Solving for AC we have,

AC ¼ ABv

2r

Since AB in unit time is also the velocity,

2AC ¼ v2

r

Thus the Moon, which falls about 4.9 m in 1 min, experiences a centripetal

acceleration toward the Earth of twice this in the first increment of time. Since

s ¼ ½at2, where in our case s ¼ AC, then a ¼ 2AC/t2. Thus, using seconds as

the units of time, the Moon’s acceleration toward the Earth is:

a ¼ 2AC

t2

a ¼ 2 4:9ð Þ
602

a ¼ :0027 m=s2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
The Moon0s centripetal acceleration toward the Earth

This is 2.7 mm per second, every second. Whereas the pull of Earth’s gravity

on the surface of the Earth at one Earth radius, is 9.8 m per second, every second,

at 60 Earth radii removed from the center of the Earth, the “g” force is slightly
less than one over 602 or one thirty-six hundredth of that value. Yet that

diminished force is still enough to hold the Moon in its gentle orbit around us.

A Pendulum in Space

Newton showed that the distance the Moon falls in 1 min equals the distance an

object on Earth falls in 1 s. A simple and intuitive way of comparing the effects of

the inverse square law of gravity on Earth and at lunar distance is to imagine two
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pendulums, one on Earth and the other somehow suspended in space at the distance

of the Moon. The following problem explores the result.

Problem Take two imaginary pendulums of equal length, one on Earth and the

other somehow suspended in space at the distance of the Moon, oriented so that it

hangs in the direction of the Earth. Given the relation below for determining the

period of oscillation of a pendulum, show by proportions that the period of

pendulum at lunar distance, about 60 Earth radii from the center of the Earth, is

one-sixtieth the period of a pendulum on Earth.

Given

P /
ffiffi
l
g

q
Period relation for pendulums with small amplitudes

l The length of the pendulums, here assumed to be one unit length

g The gravitational acceleration acting on the pendulum mass

Assumptions Because this is a thought experiment, we do not need to establish the

physical possibility of supporting a pendulum in space hovering at lunar distance.

That is the beauty of thought experiments! We will assume that the pendulum is

stationary in space with respect to the Earth, at constant distance, and ignore the

effects of the Sun, Moon, and other planets. Finally, we will assume the pendulums

are each swung through small angles, so the above period relation holds.

Method We will take the value of g at the Earth’s surface as one unit. It is “one g,”
and can be denoted ge. The value of g at the distance of the Moon can be denoted by

gm. By applying the inverse square law through a distance of 60 Earth radii, we can

see the effect of the change of g on the period of the pendulum.

Calculations Take the period of the Earth-bound pendulum to be Pe and the one at

lunar distance to be Pm. The ratio of the periods will be,

Pe

Pm
¼

ffiffiffi
l
ge

q
ffiffiffiffi
l
gm

q

Since the pendulum length in each case is one unit, and ge is also one unit, the

ratios reduce to this,

Pe

Pm
¼ 1ffiffiffiffi

1
gm

q

If we apply an inverse square law to the Earth’s gravity, the gravitational

acceleration gm at lunar distance is 1/602 times ge, or 1/3600th that of Earth’s

gravity at its surface. Given this, the ratio then becomes,
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Pe

Pm
¼ 1ffiffiffiffiffiffiffiffiffi

1
1

3600ð Þ
q

or,

Pe

Pm
¼ 1

60

Thus, the space pendulum at 60 Earth radii has a period that is 60 times longer

than the period of the Earth pendulum: Pm ¼ 60 � Pe. If the Earth pendulum

swings once a second, the space pendulum at the Moon’s distance will swing

once in a minute, exactly the result of Newton’s Moon test but obtained by a

different method.

Observation This result should not be surprising, since it is consistent with

Galileo’s discovery that the forces making an object fall are independent of forces

perpendicular to the direction of fall. For the first part of its swing, a pendulum is,

essentially, a falling object, and continues through the remainder of its swing

through inertia. That it is subjected to a transverse force pulling it inward in its

swing is independent of the force pulling it downward, just as Galileo’s rolling ball

on the inclined plane of his experiments still “fell” though a vertical distance,

independently of the force from the plane making it go transversely.

Exercises: Working with Proportions One of the pleasures of reading Newton is

to absorb his proportional way of thinking. Before instruments had quantified many

things with great accuracy, he, like those before him, would derive fundamental

results about the universe in stepping-stone fashion, by considering the ratio of this

to that, and then from that to one other. By comparing the inverse squares of forces

(called taking the “subduplicate ratio” by Newton) at different distances, he

demonstrated basic principles without having to know the value of constants,

such as the gravitational constant G (which we will see later). His Moon test was

a classic illustration of the method. The beauty of it is that it is usually simple and

intuitive. Courses in the physical sciences do not seem to practice it, preferring to

jump right into the direct, numerical solution of problems. But if you can become

comfortable with proportional thinking, it will greatly enhance your insights into

the heart of the subject. Most or all of the problems below can be solved by the use

of simple proportional thinking.

Problems

1. If the moon’s tangential motion were suddenly stopped, the moon would: (a)

remain at rest in space in accordance with Newton’s first law of motion; (b)

begin falling to earth with constant acceleration; (c) continue to accompany the

Earth in its orbit around the sun; (d) impact the Earth with an acceleration equal

to 9.8 m/s squared; (e) none of the above.

2. Given that the moon is about 60 earth radii distant, what would its period be at

half that distance?
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3. The orbit of Venus is .723 astronomical units from the sun. What gravitational

pull from the Sun does it experience in relation to the Earth?

4. The planets Mars, Jupiter, and Saturn are 1.6, 5.2 and 9.8 astronomical units

from the Sun, respectively. In proportion to the planet Jupiter, what is the Sun’s

gravitational force per unit mass acting on Mars and Saturn?

5. The Moon travels in its orbit at a velocity of about 1 km/s. The Earth orbits the

Sun, which is 390 times more distant than the Moon, at about 30 km/s. What is

the gravitational acceleration of the Earth acting on the Moon in proportion to

the Sun acting on the Earth?

6. Mars is 1.6 astronomical units from the sun. Using just this information,

determine the ratio of the velocity of earth to the velocity of Mars.

7. Saturn, at 9 AU from the Sun, orbits it at about 9.69 km/s. What is Saturn’s fall

toward the Sun in 1 min of time? One AU is about 150 million kilometers.

8. Calculate the Earth’s fall toward the Sun in 1 min of time as it orbits it at about

30 km/s. Using this information, what is the Sun’s gravitational force per-unit

mass at the distance of Saturn’s orbit? How does this compare with your answer

to the previous problem?

9. Assuming the Sun is 333,000 times more massive than the Earth, and is 390

times more distant than the Moon, what is the Sun’s gravitational acceleration

acting on the Moon in relation to the Earth’s gravitational acceleration acting

on the Moon?

10. The Earth is about 81 times more massive than the Moon, which is about 60

Earth radii distant. What is the Moon’s gravitational pull on a 1 kg mass on the

Earth’s surface, in relation to the Earth’s gravitational pull on that mass?
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Chapter 7

Newton Demonstrates How an Inverse Square

Law Could Explain Planetary Motions

By relating the fall of theMoon in space to the descent of objects at the surface of the

Earth, Newton showed the inverse square law applies out so far as the Moon. But

could he prove that the inverse square law applied everywhere else in the solar

system, as appeared to be the case with Kepler’s laws? Because the Earth does not

have two moons, Newton could not directly determine whether the Keplerian

proportions held true for the Moon, and thereby empirically link an inverse square

lawwith that law. But he could inquiremathematically whether an inverse square law

could account for Keplerian motion. Certainly, a theoretical connection between

the two laws would more convincingly establish the universality of gravitation.

This he did in the remarkably brief and intriguing corollaries to Principia’s Proposi-
tion IV of his first book.

Clearing the Mathematical Path to the Inverse Square Law

With his characteristically concise, elegant, and rather cryptic approach, Newton

explored a range of mathematical possibilities in the corollaries to Proposition IV of

Book I of the Principia. They can be looked at in two ways. They can first be

viewed as the development of useful mathematical relationships to apply in systems

where the given conditions appear to hold true, for instance in the comparison of the

periods of two satellites in the same system, or in other contexts when comparing

centripetal forces among systems. They can be seen more profoundly, consistent

with his overall plan of developing a case for his gravitational theory, as a series of

systematic tests of hypotheses. By what we may infer as a thought-experiment, he

allowed orbital periods to vary with distance in both Keplerian and non-Keplerian

ways, to see if the centripetal forces implied by those hypotheses would vary

inversely with the square of the distance from the force. If a hypothesis implied

forces contrary to experience, it could be ruled out. Newton did not formally connect

the mathematics to the physical world until Book III, but the result in Book I was

apparent: the only hypothesis that fit was where periods and distances are related by

D.W. MacDougal, Newton’s Gravity: An Introductory Guide
to the Mechanics of the Universe, Undergraduate Lecture Notes in Physics,

DOI 10.1007/978-1-4614-5444-1_7, # Springer Science+Business Media New York 2012
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Kepler’s Third Law; then and only then must the centripetal forces be governed by

an inverse square law. And conversely, only with an assumed inverse square law are

periods and distances related in the way described by Kepler’s Third law.

Corollary I Relating Arcs to Velocities

As we saw from Proposition IV, when we compare the motion of bodies in two

circles, the centripetal forces on each tend to the centers of the circles, and are in the

ratio of the arcs traversed in equal times divided by the respective radii. Taking the

respective arcs to beAB
_

1 and,AB
_

2 and letting f with appropriate subscripts represent
acceleration (force per unit mass), then

f1 : f2 ::
AB
_ 2

1

r1
:
AB
_ 2

2

r2

In Corollary I to Proposition IV, Newton made the easy conversion of the arcs-

squared to velocities squared. This holds since the times elapsed along the arcs are

the same, so the velocities are proportional to the distances. Thus,

f1 : f2 ::
v21
r1

:
v22
r2

And generally,

f / v2

r

which is the all-important centripetal acceleration relation. This was Newton’s

revealing conclusion in Book I, Proposition IV and its first corollary. As we saw,

it was a vital connecting link between orbital motion and Galileo’s equation for

falling objects on Earth.

Corollary II The Relation of Centripetal Forces to Periods

In Corollary II to the same proposition, Newton shows that “since the periodic times

are as the radii divided by the velocities,” the centripetal forces are proportional to

the radius divided by the square of the period:

f1 : f2 ¼ r1
P2
1

:
r2
P2
2

f / r

P2

This result follows simply from the equation for centripetal acceleration devel-

oped in Corollary I and the fact that in each circle the velocity is equal to the

circumference divided by period of revolution, v ¼ 2pr/P (mathematically

equivalent to Newton’s statement that the periods are proportional to the radii
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divided by the velocities); that is, velocities are proportional to the radius divided

by periods:

f / v2

r|fflffl{zfflffl}
Centripetal acceleration

and v / r

P|fflffl{zfflffl}
Circular velocity

) f / r

P2|fflfflffl{zfflfflffl}
Centripetal acceleration

This is an extremely useful relation which we will visit several times more in

this book.

Corollaries III to VI The “What-if” Corollaries

After these straightforward conclusions, the remaining corollaries of Proposition IV

of Principia’s Book I use these results to explore “what ifs”, considering what the

centripetal forces would be if the relationship between the periods and the distances

from center of force varied in certain ways. The variations would be mathematically

true, but would the world they described conform to experience? We will algebrai-

cally demonstrate the “what if” Corollaries III through VI of Proposition IV,

something Newton left to the reader. We will do it consistently with the Newtonian

way of proportional thinking.

Corollary III

Whence if the periodic times are equal, and the velocities therefore as the radii, the

centripetal forces will be also as the radii; and conversely. (Principia, Corollary III to

Book I, Proposition IV.)

This corollary tests the centripetal forces if the periods are equal, independent of
the radii. This would be the case if, for example, the solar system revolved around the

sun like a record on a turntable or a merry-go-round, where the outer edges rotate

once in the same amount of time as the inner surface. If this were the case with the

planets, all planets at their distances would complete one revolution around the Sun

at the same time. The implication as to centripetal force (shown below) is that the

forces would vary as the radii. In such a system, orbits at twice the distance from the

center of force would imply twice the inward-pulling centripetal force. This out-

come would resemble the way centripetal force works with springs and pendulums,

where the greater the distance from the center (or the longer the stretch), the stronger

the force is tending to pull it back. If in this case the planets had equal periods, they

would be compelled back toward the center with forces increasing as one went

outward. The planets of solar system (if indeed the solar system could even have

formed under such a regime)would very soon have collapsed into the Sun. The result

(of course!) does not conform to experience or to Kepler’s Third Law.

Proof of Corollary III

Corollary II (shown above) can be expressed proportionally in this way, using

Newton’s comparison of circles of radii r1 and r2 respectively:

f1 : f2 ¼ r1
P2
1

:
r2
P2
2
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If as stated the periodic times are equal, then f1: f2 ¼ r1: r2 and generally,

f / r

Corollary IV

If the periodic times and the velocities are both as the square roots of the radii, the

centripetal forces will be equal among themselves; and conversely. (Principia, Corollary

IV to Book I, Proposition IV)

This corollary tests the centripetal forces if the periods (and velocities) are

proportional to the square roots of the radii. The result: constant centripetal

force. This would mean that the Sun would attract all planets equally anywhere in

the solar system – no inverse square law would apply in this case.

Proof of Corollary IV

We have from Corollary II above:

f1 : f2 ¼ r1
P2
1

:
r2
P2
2

and f1 : f2 ¼ v1
2

r1
:
v2

2

r2

Rearranging the proportions in terms of the squares of the times and velocities

yields,

P1
2 : P2

2 ¼ r1
f1

:
r2
f2

and v1
2 : v2

2 ¼ f1r1 : f2r2

Thus,

P1

P2

¼
ffiffi
r

p
1

ffiffiffiffi
f2

p
ffiffiffiffi
r2

p ffiffiffiffi
f1

p and
v1
v2

¼
ffiffiffiffi
r1

p ffiffiffi
f

p
1ffiffiffiffi

r2
p ffiffiffiffi

f2
p

Now if P1 : P2 ¼ v1 : v2, then,

ffiffi
r

p
1

ffiffiffiffi
f2

p
ffiffiffiffi
r2

p ffiffiffiffi
f1

p ¼
ffiffiffiffi
r1

p ffiffiffi
f

p
1ffiffiffiffi

r2
p ffiffiffiffi

f2
p

f2 ¼ f1

Corollary V

If the periodic times are as the radii, and therefore the velocities equal, the centripetal

forces will be inversely as the radii; and conversely. (Principia, Corollary V to Book I,

Proposition IV)
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In this corollary, we are to assume that the periods will be proportional to the

radii. In such a hypothetical case, a planet, such as Saturn, nine astronomical units

out from the Sun would be presumed to take 9 years to revolve around the Sun (not

the 29 years Saturn actually takes!). The result: the greater the distance, the less the

centripetal force. But this is a simple inverse relationship, not an inverse square

relationship. So far, none of the hypotheses that have deviated from Kepler’s Third

Law have come even close to an inverse square relationship of force to distance.

Proof of Corollary V

If the periodic times are as the radii, the velocities will be equal, since from

Corollary II above, P1 : P2 ¼ r1
v1
: r2
v2

, therefore P1 : P2 ¼ r1 : r2 . To find the

relationship between centripetal force, the radii and velocities, we can use the

expression given in Corollary I:

f1 : f2 ¼ v1
2

r1
:
v2

2

r2
so

f1
f2
¼ v1

2r2
v22r1

Where velocities are equal,

f1
f2
¼ r2

r1

And generally,

f / 1

r

Corollary VI

If the periodic times are as the 3 2th= powers of the radii, and therefore the velocities

inversely as the square roots of the radii, the centripetal forces will be inversely as the

squares of the radii; and conversely. (Principia, Corollary VI to Book I, Proposition IV)

At last Newton tests the period-distance relationship of Kepler’s Third law. This

is the empirically verified relationship of the planets in the solar system, although

Newton is not yet necessarily making a connection to the physical world: he is

exploring a mathematical relationship that, if proven, will be useful in Book III

where he does connect these results with observations of real things in the heavens.

Now, what will the hypotheses in this corollary imply as to centripetal force? Result:

An inverse square relationship, which conforms to the observed fall of the Moon

discussed above, and as we will see later, the motion of bodies in elliptical orbits.

Proof of Corollary VI

It is given that P1 : P2 :: r1
3/2 : r2

3/2, which was the important empirical relationship

among the orbiting planets found by Kepler. Since we know from Corollary II
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above that P1 : P2 : r1/v1 : r2/v2, we can make the appropriate substitutions to obtain

relations between the radii and velocities only. Thus,

r1
3 2= : r2

3 2= ¼ r1
v1

:
r2
v2

so
r1v2
r2v1

¼ r1
3 2=

r23 2=

Remembering that 1/r ¼ r�1, we have,

v2
v1

¼ r1
3 2= r1

�1

r23 2= r2�1
which becomes;

v2
v1

¼ r1
1 2=

r21 2=

So here, the velocities are inversely as the square roots of the radii. Now, from

above we know,

f1
f2
¼ v1

2r2
v22r1

and
v2

2

v12
¼ r1

r2

The first equation comes from Corollary V above, and the second we obtained

from squaring the velocity expression. The velocity squared is common to both

equations, so we can make the substitution, eliminating the velocity terms and

solving for the force terms:

f1
f2
¼ r2

2

r12

And generally,

f / 1

r2

This is Newton’s inverse square law of gravitation: The force acting on a body in

a circular orbit is inversely proportional to its distance from the center. It was a

momentous result that came directly from Kepler’s Third Law.

And Conversely. . .

The corollaries end with the phrase, “and conversely” meaning that the principle

works in reverse. If A leads to B, then conversely, B leads to A. Newton does not

prove the converse either (again leaving that to us); however the implication of the

converse of Corollary VI is powerful:

• Kepler’s Third Law relating orbital periods to distances necessarily implies an

inverse square law of centripetal force; and conversely,

• An inverse square law of centripetal force necessarily leads to orbital periods

and distances consistent with Kepler’s Third Law.

132 7 Newton Demonstrates How an Inverse Square Law Could. . .



Summary of Above Corollaries to Proposition IV

The above corollaries to Proposition IV of Book I may be summarized in this way:

Corollary

to fourth

proposition

If periodic time P varied with

the distance r from the center

of force in this way. . .

Which means P
varies as the

following

power of r

How

would the

centripetal

force vary?

Does the

result

conform

to experience?

III P is constant (does not vary

with the radius)

r0 f / r No

IV P varies as √r r1/2 f is constant No

V P varies as r r1 f / 1 r= No

VI P varies as r3/2 r3/2 f / 1 r2
�

Yes!

The most important relation is thus found in the sixth corollary, where the

inverse square law arises out Kepler’s Third Law.

A Small Lesson

Newton appended a “Scholium,” or small lesson, to his Proposition IV, as he did

with various propositions throughout the Principia, showing his awareness of the

implications of what he had discovered:

The case of the sixth Corollary [the inverse square law] obtains in the celestial bodies (as

Sir Christopher Wren,Dr.Hooke, and Dr.Halley have severally observed); and therefore in
what follows, I intend to treat more at large of those things which relate to centripetal force

decreasing as the squares of the distances from the centres.

Moreover, by means of the preceding Proposition and its Corollaries, we may discover

the proportion of a centripetal force to any other known force, such as that of gravity. For if

a body by means of its gravity revolves in a circle concentric to Earth, this gravity is the

centripetal force of that body. But from the descent of heavy bodies, the time of one entire

revolution, as well as the arc described in any given time, is given . . .1

Of Circles and Ellipses

Newton later in Principia proved that circularity was not essential for the truth of

these propositions; Kepler stated that his Third Law applied to the planets which by

his Second law were shown to moving in ellipses. Newton generalized what Kepler

had discovered from Tycho’s observation of the planets as applicable both to

circular and elliptical motion:

The same things being supposed [from the previous Proposition XIV, i.e., revolution about

a center, and centripetal force varying inversely as the distance from the center], I say, that

the periodic times in ellipses are as the 3/2th power of their greater axes.2

1 Florian Cajori [1]. (Short title) Principia.
2Principia, Book I, Proposition XV, Theorem VII, 62.
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Therefore the periodic times in ellipses are the same as in circles whose diameters are

equal to the greater axes of the ellipses.3

Evidence from Distant Worlds: The Moons of Jupiter

and Saturn Obey Kepler’s Third Law, and Therefore

the Inverse Square Law

The inverse square law of centripetal force certainly appeared to explain the

Moon’s orbital motion and the planetary orbits in the solar system. The mathemat-

ics of the Principia united Kepler’s Third Law with the v2/r centripetal acceleration
to produce, remarkably, the inverse square relationship. But skeptics may have

deemed those circumstances unique in their own effects. It was one thing to

demonstrate that the Moon’s fall around the Earth was consistent with a theory

that considered the Earth as the source of some mysterious force keeping the Moon

from flying off into space. It was another to credit to such an unknown force the

motions of all bodies everywhere. While the mathematical conclusions were based

on the assumption that Kepler’s Third Law applied everywhere, this was not

necessarily self-evident. Nothing about motion in the celestial sphere in the

1,600s could be taken for granted, and there were competing theories everywhere:

Kepler’s mystical cosmology, Descartes’ swirling vortices, the Tychonic and

Copernican solar systems, to name a few. Earlier in the same century, Galileo

had been put under house arrest for supporting a heliocentric view of the universe.

Newton had prepared a powerful rebuttal to these alternatives in his one simple

theory of gravitation. The identical effects of the Sun and Earth on their orbiting

bodies was strong evidence, but showing empirically that the inverse square law

also applied to distant Jupiter and Saturn and their satellites, even as they went

around the Sun, would greatly tighten his case for gravity. This would mean

showing clearly that Kepler’s Third Law applied even to remote Jupiter and Saturn.

But how would that be proof? Newton always had in mind his “Rules of

Reasoning in Philosophy,” which begin Book III of the Principia, the first two of

which state:

RULE I

We are to admit no more causes of natural things than such as are both true and sufficient to

explain their appearances.4

RULE II

Therefore to the same natural effects we must, as far as possible, assign the same causes.5

3 Ibid., Corollary.
4Principia, Book III, 398.
5 Ibid.
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Applying these rules to the present case, one might frame the matter this way: If

many types of orbital motion (around the Earth, the Sun, and outer planets) appear

to be governed by a centripetal force, and that force in each investigated circum-

stance is governed by the inverse square law, then it is scientifically reasonable to

conclude that the centripetal forces tending to the center of each of these bodies are

caused by the same thing: a property of matter which in every case in nature will

diminish in an inverse square manner with distance from the center.

The Motion of Jupiter’s Satellites as a Test for the Universality
of the Inverse Square Law

Around the time of Kepler’s discoveries, Galileo had fashioned improved versions

of a telescope, newly invented by Dutch lens makers. His first telescopic

observations of Jupiter revealed a large orange orb surrounded by four little whirling

moons. Indeed, it looked like a miniature solar system. John Flamsteed

(1646–1719), the first Astronomer Royal of Greenwich Observatory in England,

carefully measured the Jovian satellite motions and studied their distances. In letters

to Isaac Newton, Flamsteed noted that the little moons followed Kepler’s Third Law

as exactly as the accuracy of his observations would permit. This was important

information because, as Newton showed, the inverse square law flows naturally from

Kepler’s Third Law. One is the mathematical cousin of the other. If Newton could

show that the inverse square law applied even to the remotest bodies then known in

the solar system, it would be strong evidence for the universality of the gravitation.

In Book III of the Principia, Newton tested Kepler’s Third Law against actual

observations of Jupiter’s and Saturn’s moons and the known planets of the solar

system.6 The book begins with the presentation of “Phenomena,” which are just

systematically organized statements of known facts. From these factual foundations

6 There is a 1728 translation of The System of the World (or Treatise on the System of the World). It
is believed to be an earlier and more accessible draft of what eventually became Book III of the

Principia. The translator of this is unknown, but may have been Andrew Motte, who also

translated the Principia. An online version of the 1728 System of the World is at http://books.

google.com/books?id¼rEYUAAAAQAAJ&pg¼PR1#v¼onepage&q&f¼false.

Newton had famously contentious disputes with Flamsteed. Interestingly, in this earlier account,

Newton gives abundant credit to Flamsteed for his Jupiter observations and his insightful applica-

tion of Kepler’s Third Law to them. But in Book III of the Principia, there is no mention

whatsoever of Flamsteed’s contribution on this matter. Compare page 401 (Phenomenon I) of
Book III of the Principia to pages 555–556 (section [6.]) of that publication. Here is what Newton
said in the earlier version:

This proportion [Kepler’s law] has long ago been observed in those satellites [of Jupiter];

andMr. Flamsteed, who had often measured their distances from Jupiter by the micrometer,

and by the eclipses of the satellites, wrote to me, that it holds to all the accuracy that

possibly can be discerned by our senses. And he sent me the dimensions of their orbits taken

by the micrometer, and deduced the mean distance of Jupiter from the earth, or from the

sun, together with the times of their revolutions. . .. Ibid., 555.
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he drew conclusions in the propositions that followed. Those propositions as we

saw refer for their mathematical support to the propositions, corollaries, and

lemmas of Book I. The first two phenomena pertain respectively to the moons

(here called “planets”) of Jupiter and Saturn. Using data obtained by Flamsteed and

other astronomers to confirm the expected result that the moons of Jupiter and

Saturn obeyed Kepler’s Third Law, Newton arrived at the result that those moons

acted under the influence of a centripetal force with their host planet as its center,

which force fell off with the inverse square of the distance from that center:

PHENOMENON I

That the circumjovial planets, by radii drawn to Jupiter’s centre, describe areas proportional

to the times of description; and that their periodic times, the fixed stars being at rest, are as

the 3/2 th power of their distances from its centre.7

PHENOMENON II

That the circumsaturnal planets, by radii drawn to Saturn’s centre, describe areas propor-

tional to the times of description; and that their periodic times, the fixed stars being at rest,

are as the 3/2 th power of their distances from its centre.8

In the text accompanying Phenomenon I, Newton informs us that the orbits of

Jupiter’s moons “differ but insensibly from circles concentric to its centre; and their

motions in those circles are found to be uniform.” If the moons of Jupiter appeared

at unequal distances at their greatest elongations from Jupiter, or traversed different

parts of their orbits at different speeds, this would be evidence of non-circular

orbits. Since their orbits appear circular, however, his work is made simple: it is

easy to conclude that they describe areas proportional to their times, consistent with

Kepler’s Second Law. The same result follows for Saturn in Phenomenon II.

The last part of the Phenomena states that the satellite motions are consistent

with Kepler’s Third Law, which is a key stepping stone to the Propositions that

follow. The data on the accompanying table is taken as it is presented in the

Principia from Book III, Phenomenon I. The table shows how Newton found the

period-squared, distance-cubed relationship in Jupiter’s moons, the same ratio

of period to orbital distance that is Kepler’s Third Law and that governs the motions

of planets around the Sun.9 As can be seen from the table, the bottom row showing

Newton’s calculated distances (in Jovian radii) of the satellites’ orbits, derived

from the periodic times and the application of Kepler’s Third Law, match closely

the distances derived from observations, in the rows above it.10 His table for Saturn

7Principia, Book III, Phenomenon I, 401.
8Principia, Book III, Phenomenon II, 402.
9Principia, Book III, Phenomenon I, 401.
10 The names of the satellites in order, from Jupiter outward are: Io, Europa, Ganymede, and

Callisto. Having been discovered by Galileo, they are referred to as the “Galilean” moons of

Jupiter. Jupiter has over 60 moons; but these are the brightest and the most beautiful to see, being

visible even in binoculars. The text here is replicated from the Principia, using Newton’s

notational form. The reader should be cautioned about the notation: a number such as 82/3 does

not mean 8 raised to the 2/3 power, but is 8 and the fraction 2/3.
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in Phenomenon II reaches the same conclusion with respect to the four observed

moons of that planet.

The periodic times of the satellites of Jupiter

1d.18h.27m 3d.13h.42s 7d.3h.42m.36s 16d.16h.32m.9s

The distances of the satellites from Jupiter’s center

1 2 3 4

From the observations of:

Borelli. . .. . .. . .. . .. . . 52/3 82/3 14 242/3

Semi-
diameter
of Jupiter

Townly by the micrometer. . .. . .. . .. 5.52 8.78 13.47 24.72

Cassini by the telescope . . .. . .. . .. . . 5 8 13 23

Cassini by the eclipse of satellites. . .. . .. . .. . ... 52/3 9 1423/60 253/10

From the periodic times. . .. . .. . .. . .. . .. . .. 5.667 9.017 14.384 25.299

So far, Newton has shown, albeit with admirable thoroughness, what was

already known about these moons: that they appear to be governed by Kepler’s

Third Law. The crucial step in making his case for gravity comes next, after the

Phenomena, in the first proposition of Book III:

BOOK III PROPOSITION I

That the forces by which the circumjovial planets are continually drawn off from rectilinear

motions, and retained in their proper orbits, tend to Jupiter’s centre; and are inversely as the

squares of the distances of the places of those planets from that centre . . . The same thing

we are to understand of the planets which encompass Saturn . . .11

This proposition has two parts. The first states that the “forces . . . tend to

Jupiter’s centre.” This is a straightforward conclusion following from Newton’s

earliest propositions in Book I: that any body moving along a curve in a plane, and

which by a radius drawn to a point describes areas proportional to times, is “urged

by a centripetal force directed to that point.”12 Thus Jupiter’s moons are “urged” to

the center of Jupiter. The second part, the conclusion we have been waiting for,

states that this urging force obeys the inverse square law. To prove it, Newton calls
upon his workhorse Corollary VI in Book I’s Proposition IV: “If the periodic times

are as the 3/2th powers of the radii . . . the centripetal forces will be inversely as the
squares of the radii; and conversely.” In other words, if the orbital periods of the

moons of Jupiter and Saturn obey Kepler’s Third Law, as observation shows, then

those planets hold them with a force that varies inversely as the distance from the

planet, a marvelously simple and far-reaching conclusion!

11Principia, Book III, Proposition I, Theorem I, 406.
12Principia, Book I, Proposition II, 42. The actual text of Book I, Proposition II, Theorem II,

reads: “Every body that moves in any curved line described in a plane, and by a radius drawn to a

point either immovable, or moving forwards with an uniform rectilinear motion, describes about

that point areas proportional to the times, is urged by a centripetal force directed to that point.”

Principia, at 42.
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Newton then extrapolates this conclusion logically to the primary planets:

BOOK III, PROPOSITION II, THEOREM I

That the forces by which the primary planets are continually drawn off from rectilinear

motions, and retained in their proper orbits, tend to the sun; and are inversely as the squares

of the distances of the places of those planets from the sun’s centre.13

In other words, the inverse square law is observed to apply in the satellite

systems of Jupiter and Saturn and indeed all the planets of the solar system.

Finding the Keplerian Proportionality Constant

in the Jovian Satellite System

Newton’s development of many of his key propositions employed a kind of

proportional thinking that is powerful and intuitively clear. Proportional thinking

is reasoning on the basis of proportions, such as by saying the ratio of period

squared is proportional to distance cubed among all of the planetary orbits. The

proposition above and all the corollaries and their proofs discussed in the last

chapter, for example, are presented by Newton in the proportional manner. The

problem below and those that follow in this chapter are more or less exercises in

that tradition. Here again we begin with Jupiter’s moons, then will apply propor-

tional analysis to some contemporary situations.

Problem Using the observational data above gathered by Newton from Book III of

the Principia: Find the period-squared/distance-cubed proportionality constant for

the Jovian satellites. Then, assuming the constant was derived from just one

satellite, derive the bottom row of Newton’s table, where he determines and

compares the distances of all the satellites from the periodic times. The units to

be used in these proportions are days and Jovian radii.

Given Newton’s Jovian satellite data as shown in the above table.

Assumptions We will assume such accuracy of the data as was available to

Newton. As to the distances, assume that Cassini’s data from the eclipses of the

satellites is the most accurate. Newton seemed to suggest that this was the more

accurate method.14

Method For the first part of the problem, begin by finding the periodic times in

decimal parts of a day. This is the period, P, for each satellite. Then we will find the
ratio of those times squared to the decimal distances (in Jovian radii) a, cubed. The
ratio will be the proportionality constant. Since P2 ¼ ka3, it is then possible to

calculate for each satellite the ratio k ¼ P2/a3. For the second part of the problem,

13Principia, Book III, Proposition I, Theorem I, 406.
14 See, for example, The System of the World, id., 556.
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the constant being given, the task is to solve this equation for a, for each of the

periodic times.

Calculations The respective periodic times in seconds for each of the four

satellites are:

Io Europa Ganymede Callisto

1.769 days 3.55 days 7.155 days 16.689 days

The squares of these times are, respectively:

3.129 12.603 51.194 278.523

The distances (using the last entry for Cassini) are:

5.667 9.0 14.383 25.3

The distances cubed are:

181.995 729 2,975.42 16,194.277

The ratios of each periodic time squared to each distance cubed are therefore,

respectively:

.0172 .0173 .0172 .0172

The ratios are all nearly the same, consistent with Kepler’s Third Law.

The average of these ratios is .0172. This is the ratio of periods squared over

distances cubed, holding true for each satellite. Thus the constant of proportionality

among Jupiter’s satellites, using Newton’s data and the units of days and Jovian

radii, is:

k ¼ :0172

For the second part of the problem, we assume that this proportionality constant

could have been derived from the observations of any one of the Galilean satellites.

The task now is to take the periodic times of the remaining satellites and derive

their distances from Jupiter. We’ll see how the data match up with the last row in

Newton’s table.

Obtaining the following relationships again from P2 ¼ ka3, we isolate the

distance term:

a3 ¼ P2

k
! a ¼

ffiffiffiffiffi
P2

k

3

r
! a ¼

ffiffiffiffiffiffiffiffiffiffiffi
P2

:0172

3

r

The resulting derived distances, in Jovian radii, for each respective period are:

5.666 9.015 14.385 25.3
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These are in good agreement with Newton’s tabulated distances derived from the

periodic times.

Observations

1. It is interesting to compare the radii and periods Newton used with the modern

values. As evident from the chart below, the periods were more accurately

determined in Newton’s day than were the distances from the planet. This is

no doubt because then it was far easier to time satellite occultations and eclipses

of satellites than it was to measure the tiny moons’ distances against the planet’s

bright image in wobbly air through imperfect optics. Even though micrometers

were in use, the telescopes were still by modern measures crude.

Constant Io Europa Ganymede Callisto

Orbital Period (Newton et al.) 1.769 days 3.55 days 7.155 days 16.689 days

Orbital Period (modern) 1.769 3.551 7.155 16.689

Distance (radii) from Jupiter (Newton et al.) 5.667 9.0 14.383 25.3

Distance (radii) from Jupiter (modern) 5.91 9.4 14.97 26.33

Using the modern values, a proportionality constant of .0152 would apply using

units of days and Jovian radii.

2. The equation P2 ¼ a3 applies to the solar system, since as we saw,

P2
1 : P

2
2 ¼ a31 : a

3
2

holds for all the planets, where the units are astronomical units and years. In

other words, the proportionality constant implied in the equation P2 ¼ ka3 is 1,
which works if we use the Earth’s orbital distance as our measuring rod for the

solar system, and years are the unit of time. Recall from Chap. 4 that if we take

period in days and distance in kilometers, the constant is far from one. In fact in

that case k ¼ 3.984 � 10-20, an awkward number.

Using a Modern Jovian Proportionality Constant to Find
the Periodic Time of Jupiter’s Inner Satellite Amalthea

Problem Amalthea is a Jovian moon located only about 181,400 km from the

center of Jupiter, almost as close to Jupiter’ center as our Moon is to Earth. But

Jupiter’s equatorial radius is a lofty 71,492 km, over 11 times the radius of the

Earth. Amalthea thus flies across the sky only about 110,000 km above Jupiter’s

cloudtops. Given these facts, what is the periodic time of Amalthea likely to be?
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Given

P2 ¼ ka3 Kepler’s Third Law in its simplest form, where k is a proportionality constant whose

value will depend on the gravitational system we are observing (in our case

Jupiter’s) and our choice of units

k The proportionality constant .0152 derived above for the Jovian system using modern

data, where the units are days and Jovian radii

a The number of Jovian radii to the Amalthea: 2.537

Assumptions We assume a circular orbit of Amalthea about Jupiter. We can

ignore their true revolution about their common center of mass, since Jupiter is so

overwhelmingly more massive than its tiny companion. We ignore all “non-

Keplerian” effects (such as perturbations by Jupiter’s other satellites, and by

other bodies in the solar system). We also assume the planet and its satellite are

spheres of uniform density and the sufficient accuracy of the above numbers for our

illustrative purposes.

Method Solve the Kepler’s Third Law for P, and the result for the period will

be in days.

Calculations Since P2 ¼ ka3,

P ¼
ffiffiffiffiffiffiffi
ka3

p

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:0152ð Þ 2:537ð Þ3

q

P ¼ :498 days

P � 12 hours

Observations

1. The published period of Amalthea is .498179 days.15 It does in fact have a nearly

circular orbit, with an eccentricity of .003.

2. We can estimate Amalthea’s mean velocity by using the circular velocity

equation (using a for the radius) v ¼ 2pa/P; however, if we want the result in

kilometers per second, we will have to use kilometers for the semi-major axis

(here being the radial distance from Jupiter’s center since we assume a circular

orbit) and convert the period to seconds. The period of .498 days is about 43,000

s, and its given distance is 181,400 km. Its orbital speed is thus,

v ¼ 2p 1:814� 105
� �
4:3� 104

15 See, http://nssdc.gsfc.nasa.gov/planetary/factsheet/joviansatfact.html.
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v ¼ 26:5km=s

This is extremely fast for a satellite. Our Moon moves gracefully through its

realm at about a kilometer a second. Amalthea moves about as swiftly in its tiny

orbit as does Mars at perihelion in its orbit around the Sun.

Applying the Proportionality Constant in Kepler’s Third Law for the
Earth–Moon System to Find the Distance to a Geosynchronous
Satellite

Problem Find the proportionality constant in Kepler’s Third Law for the

Earth–Moon system, and use it to approximate the distance from Earth’s center to

a satellite with a period of exactly 1 day, in Earth radii, then in kilometers.

Given

P2 ¼ ka3 Kepler’s Third Law, where again k is a proportionality constant whose value will

depend on the gravitational system we are observing (here, the Earth–Moon system)

and our choice of units

P The lunar period of about 27.32 days

a The number of Earth radii to the Moon: 60.27

6,378.1 Earth’s mean equatorial radius in kilometers

Assumptions We assume a circular orbit of the Moon about the Earth, ignoring

their true revolution about their common center of mass. More importantly, we

ignore the Moon’s own mass here. We also ignore all “non-Keplerian” effects (such

as perturbations by the Sun and other planets). We also again assume the Earth and

Moon are spheres of uniform density and the sufficient accuracy of the above

numbers for our illustrative purposes.

Method We are no longer here considering the Jovian system, so the Keplerian

proportionally constant for that system cannot be used. The reader is invited to

articulate why this is so. We must here ascertain from data what the proportionality

constant would be for the Earth–Moon system. To do this, we may solve the

Kepler equation for k, then using that value, set the period equal to one and solve

for a. Units will be Earth radii. Multiplying by Earth’s radius gives the value in

kilometers.

Calculations Since P2 ¼ ka3, then

k ¼ P2

a3
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k ¼ 27:32ð Þ2
60:27ð Þ3

k ¼ :00341

This is the proportionality constant for things revolving around the Earth, using
days and Earth radii as units. What is the distance for a satellite to have a 1 day

period? Since P2 ¼ ka3,

a ¼
ffiffiffiffiffi
P2

k

3

r

a ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:003413

p

a ’ 6:44 Earth radii

To find the approximate distance in kilometers, we multiply the above result by the

Earth’s radius in kilometers:

6378:1� 6:44 ¼ 42,378km

Observation

1. If we could see it, a satellite in an equatorial orbit at this distance will appear to

hover over one spot. It will be a geosynchronous satellite (in synch with Earth’s

rotation). Many communication satellites are in such orbits.

2. Here the units we used above were radii and days. We could easily find other

constants using other units for other problems. We could, for example, call the

lunar distance one “lunar unit” and keep the period at days. So to find the period

of something orbiting Earth halfway to the Moon, we would again find the

proportionality constant for those units (in that gravitational system) then work

out the simple calculation. Taking that example, with a being one lunar unit (in
the equation k ¼ P2/a3), the constant becomes k ¼ 27.322 or 746.38. The period

at the halfway point becomes:

P ¼
ffiffiffiffiffiffiffi
ka3

p
! P ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
746:38ð Þ :5ð Þ3

q
’ 9:66 days

At half the lunar distance the period thus drops to a little more than a third of the

lunar period.

3. The method of using the proportionality constant for Kepler’s Third Law for a

given orbital system assists in the intuitive understanding of orbital

relationships. But as will be seen later, there are many other ways to derive the
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key orbital quantities. Typically, for well-observed orbiting systems, such as

satellites, planets, the period will be known or determinable from observation,

and Kepler’s Third law is then used to deduce the mass either of the primary,

where the secondary’s mass is insignificant, or the combined masses of the

system where it is not. For slow-moving double stars, or newly discovered

comets or exoplanets, the period may need to be derived, again from Kepler’s

Third Law, a tool of amazing utility.

Exercises: Fear and Panic Around Mars In his 1882 book, Popular Astronomy,
Simon Newcomb described the discovery of the satellites of Mars 5 years earlier:

On the night of August 11th, 1877, Professor Asaph Hall, while scrutinizing the neighbor-

hood of Mars with the great equatorial of the Washington Observatory, found a small object

about 80 seconds east of the planet. Cloudy weather prevented further observation at that

time; but on the night of the 16th it was again found, and two hours’ observation showed

that it followed the planet in its orbital motion. Still, fearing that it might be a small planet

which chanced to be in the neighborhood, Professor Hall waited for another observation

before announcing his discovery. A rough calculation from the observed elongation of the

satellite and the known mass of Mars showed that the period of revolution would probably

be not far from 29 hours, and that, if the object were a satellite, it would be hidden during

most of the following night, but would reappear near its original position towards morning.

This prediction was exactly fulfilled, the satellite emerging from the planet about four

o’clock on the morning of August 18th.

But this was not all. The reappearance of the satellite was followed by the appearance of

another object, much closer to the planet, which proved to be a second and inner satellite.

. . . The most extraordinary feature of the two satellites is the proximity of the inner one to

the planet, and the rapidity of its revolution. The shortest period hitherto known is that of

the inner satellite of Saturn – 22 hours 37 minutes. But the inner satellite of Mars goes

round in 7 hours 38 minutes. Its distance from the center of the planet is about 6000 miles,

and from the surface less than 4000. If there are any astronomers on Mars with telescopes

and eyes like ours, they can readily find out whether this satellite is inhabited, the distance

being less than one sixtieth that of the moon from us.16

The outer and inner satellites were named, respectively, Deimos (“Fear”) and

Phobos (“Panic”), from the Illiad. Agnes Clerke, an historian of Nineteenth

Century astronomy, described the rapidity of the inner moon this way:

This is the only known instance of a satellite circulating faster than its primary rotates, and

is a circumstance of some importance as regards theories of planetary development. To a

Martian spectator the curious effect would ensue of a celestial object, seemingly exempt

from the general motion of the sphere, rising in the west, setting in the east, and culminating

twice, or even thrice a day; which, moreover, in latitudes above 69� north or south, would

be permanently and altogether hidden by the intervening curvature of the globe.17

16 Simon Newcomb [2].
17 Agnes M. Clerke [3].
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Mars is on the inner edge of the asteroid belt, and it is likely that the tiny moons of

Mars are captured asteroids. Deimos, the outer satellite sighted first by Professor

Hall, actually orbits Mars in slightly more time than given in this early account.

Modern data18 has Deimos orbiting once in 1.2624 days, or a little more than 30 h

and 18 min. Its distance from the center of the planet is 23,458 km (14,576 miles),

about a sixteenth the distance from the center of our Earth to our Moon — a little

more than half the distance to Earth’s geosynchronous satellites. Phobos is much

closer to Mars, only 9,376 km (5,826 miles) from its center. In the following

problems we will assume the orbits of these moons are circular, which they very

nearly are, and explore these unusual objects.

Problems

1. Given Deimos’ period and distance, find the Keplerian proportionality constant

and approximate period of Phobos by this method.

2. Phobos’ actual period is .3189 days. Find the ratio of the respective centripetal

accelerations of Phobos to Deimos toward the center of Mars.

3. Use two methods from Newton’s corollaries to his Principia, Proposition IV

(Book I) to find the ratio of the velocities of Phobos to Deimos.

4. What are the satellites’ mean circular velocities in kilometers per day, and in

kilometers per second?

5. Use Newton’s v2/r equation for centripetal acceleration to calculate the actual

centripetal accelerations of each of Mars’ satellites in SI units (meters per

second and meters), and their ratio.

6. If Mars had a third satellite four times as far away from it as Deimos is, how

much longer, proportionately, would its period be?

7. Referring to the above problem, using one or more of Newton’s corollaries in

his Principia, Proposition IV (Book I), tell how much less, proportionately,

would the acceleration acting on the hypothetical third satellite be? Would the

same ratio hold true if the comparison were to Phobos?

8. How much slower would be hypothetical third satellite’s velocity be? Develop

and explain your answer again using one or more of Newton’s corollaries to his

Proposition IV.

9. The radius of Phobos’ orbit is 2.76 Martian semi-diameters. If a hypothetical

third satellite were orbiting at the very surface of Mars (but not touching it, and

ignoring atmospheric friction) what would the centripetal acceleration acting

upon it be? Use any of Newton’s corollaries to his Proposition IV to find your

answer.

10. Would you expect the results of your previous answer to be the same or

different from the surface gravity of Mars (i.e., the value of the Martian g at

its surface)? Explain your answer.

18 From the NASA/JPL link, http://ssd.jpl.nasa.gov/?sat_elem.
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Chapter 8

Newton’s Master Stroke: The Universal

Law of Gravitation

If Kepler’s laws applied to planets revolving around the Sun, perhaps it was due to

some as-yet (in 1619) undiscovered force that caused such motions. Kepler was

convinced that such a force originated in the Sun, operating at one focus of the

ellipses described by the planets. He speculated that the Sun’s force might be akin

to magnetism. Civilization would have to wait another 70 years before Isaac

Newton would unveil his theory of gravitation.

Newton developed his theory in the Principia in slow and careful steps. Before

Book III, Newton makes no assumptions whatsoever about causes of phenomena in

the physical world, since his purpose was to derive mathematical principles. In the

very first proposition of Book I, Newton describes curved motion in a plane, and

concludes that if bodies move in a curve about a center of force, then they describe

areas proportional to the times described, echoing Kepler’s Second Law:

BOOK I, PROPOSITION I. THEOREM I

The areas which revolving bodies describe by radii drawn to an immovable centre of force

do lie in the same immovable planes, and are proportional to the times in which they are

described.1

There is nothing in this concise and powerful proposition that suggests what the

force is to which such bodies are drawn, or what law governs the force, inverse

square or otherwise. Nor does it state whether there is even a mass at the center

causing the force, or if the force is variable or constant. In Proposition II, Newton

tells us the converse of Proposition I, that if a body is found in that situation to

describe areas proportional to the times, then it is urged by a centripetal force:

1 Florian Cajori [1], (Short title) Principia.

D.W. MacDougal, Newton’s Gravity: An Introductory Guide
to the Mechanics of the Universe, Undergraduate Lecture Notes in Physics,

DOI 10.1007/978-1-4614-5444-1_8, # Springer Science+Business Media New York 2012
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BOOK I, PROPOSITION II. THEOREM II

Any body that moves in any curved line described in a plane, and by a radius drawn to a

point either immovable, or moving forwards with an uniform rectilinear motion, describes

about that point areas proportional to the times, is urged by a centripetal force directed to

that point.2

Beginning with these two propositions and the application of some geometry,

Newton derived the v2/r proportion for centripetal acceleration. Once Newton had

found it, he applied it to the 3/2th power law of Kepler’s Third Law of planetary

motion. This he did in the sixth corollary to Book I, Proposition IV, and it led

straight to the door of the inverse square law. Since, as we saw in the second

corollary to that proposition, centripetal acceleration v2/r reduces to r/P2, the

connection appears easy:

f / r

P2|fflfflffl{zfflfflffl}
Centripetal acceleration

and P2 / r3|fflfflfflffl{zfflfflfflffl}
Kepler0s Third Law

) f / 1

r2|fflffl{zfflffl}
Inverse square law

Newton was able to test this result empirically on the moons of Jupiter and

Saturn. He found the inverse square law applied to those moons. Those moons

“describe areas proportional to the times of description” around those planets, so

the planets themselves must be the source of the centripetal force, consistent with

Book I’s Proposition II. With it, and the careful scaffolding of laws and propositions

constructed in Book I of the Principia, Newton linked the mathematics with the

evidence in Book III. There he stated that the centripetal force that has figured in so

many of his propositions is gravity, and is dependent only upon the mass of the

object. This Newton saw as universal, affecting the Moon and planets just as it

affected things like apples falling on Earth – although in 1687 it was unknown to

anybody other than Newton:

BOOK III PROPOSITION VIII, THEOREM VII

That there is a power of gravity pertaining to all bodies, proportional to the several

quantities of matter which they contain.3

This understated conclusion had been approached with the utmost caution, but

was the apex of his work; the idea of action at a distance was deeply profound and

counter-intuitive, presenting a challenge to its acceptance.

We have been discussing mainly centripetal accelerations (forces acting on unit

masses) and how they relate proportionally to other factors of orbital motion. But

now we need to delve deeper into attractive forces of quantities of masses, not

limiting ourselves to proportions of accelerations. It will be instructive in this

regard to employ Newton’s Second Law to derive the inverse square law of forces,

then construct Newton’s gravity equation.

2 Ibid., Book I, Proposition II, Theorem II, 42.
3 Ibid., Book III, Proposition VIII, Theorem VIII, 414.
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Working with Forces: Deriving the Inverse Square Law

from Newton’s Second Law

Problem Using the equation for circular centripetal acceleration, Newton’s Sec-

ond Law and Kepler’s Third Law, show that the centripetal force acting on a

circularly orbiting object is inversely proportional to the square of the distance

from the center of force.

Given

fc ¼ v2=r Centripetal acceleration fc in circular orbital motion, where v is the velocity
of an orbiting object and r is the radius of the orbit

F ¼ mf Newton’s Second Law, where m is mass and f is accelerationa

v ¼ 2pr=P Circular orbital velocity, where P is the period and r is the radius

P2 ¼ kr3 Kepler’s Third Law. For elliptical orbits, P2 ¼ ka3 where a is the semi-major

axis of the ellipse
aIt is common to use the letter a to stand for acceleration when writing Newton’s Second Law. But
since that letter is also used to stand for semi-major axis of the ellipse, to avoid confusion we here

use the notation f to represent acceleration, fc centripetal acceleration, and Fc centripetal force

Assumptions We assume that each object, planet, moon or sun is a homogeneous

spherical object with uniform density, which may be correctly mathematically

represented as if all its mass were concentrated at its center. We also assume

revolution in a circular orbit, unaffected by other forces.

Method Noticing that the terms for acceleration, radius, velocity and period all

appear more than once in the equations, fruitful combinations and substitutions may

be made. Since we know by Newton’s Second Law that force equals mass times

acceleration, F ¼ mf, and that the centripetal acceleration of a body in circular orbit
is its velocity squared divided by the radius, fc ¼ v2/r, it follows that the force

acting on an object in circular orbit will be the product of its mass and centripetal

acceleration. It is then possible to substitute the velocity and period terms to obtain

an expression solely in terms of the force and radius. Note that centripetal force per

unit mass is equivalent to centripetal acceleration.

Calculations Since F ¼ mf and fc ¼ v2/r, then, making the substitution for

acceleration,

Fc ¼ m
v2

r

� �

This is the force that is needed to draw a mass m into a circular orbital path against

its inertial tendency to go in a straight line. A body in circular motion moves with a

velocity given by the circumference of the circle divided by the period, v ¼ 2pr/P.
Substituting the right-hand side of this velocity equation into the above force

equation, we have,
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Fc ¼ m
4p2

P2

� �
r

This is still the centripetal force acting on a circular moving body of mass m at

distance r from the center of revolution, whether it be a car on a curve, a skater on

ice, a bug on a wheel, or a satellite around a planet. There is no suggestion here of

what keeps the mass m in a curve of radius r. Now we consider it to apply to bodies

in space orbiting with a period P around a center of force, such as the Sun, using

Kepler’s Third Law, P2 ¼ kr3, to eliminate the period term from the equation:

Fc ¼ m
4p2

kr3

� �
r

Fc ¼ m
4p2

k

� �
1

r2

Since all the terms except radius on the right side of the equation are constants, the

inverse square proportional relationship emerges clearly:

Fc / 1

r2

Observation We are beginning to get at quantitative, rather than purely propor-

tional, relationships. In the above equation,

Fc ¼ m
4p2

k

� �
1

r2

the terms in parenthesis are constants, yet k is unknown; these terms will be the

same for every planetary orbit. Here we will introduce a proportionality constant

and call it G, making it equal to the 4p2/k term. The new equation is

Fc ¼ Gm

r2

This is still the centripetal force acting upon a mass m at distance r from the

center of the orbit, varying as the inverse square of the distance from the center, but

without hypothesis as to cause, or knowledge of G.

Constructing Newton’s Gravity Equation

Amoving mass m, such as the Moon, tends by its inertia ever to go in a straight line,

and it resists deflection into a curved path. If another force tends to pull it into a

circular arc, then that force must be proportional to this:

Fc / m

r2
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where r is the radius of the circular arc. This is the force resisting the pull of the

mass into curvature. The fundamental question before Newton was, how can this

force be related to the force causing the pull of the mass into curvature? Newton

concluded that the Moon’s fall to the Earth is governed by the same force that

makes an apple fall to the ground. The rate of the Moon’s fall matched just what

would be expected if the Earth’s gravity decreases with the inverse square of the

distance from the center of the Earth, and acts in its more diminished strength even

as far away as the Moon. Using M to represent the Earth’s mass, the gravitational
force originating from the Earth’s mass must therefore be expressed this way:

Fg / M

r2

There is a clear invitation in these two proportions, Fc and Fg, to relate them to

each other: the force causing the deflection into an orbit must be equal to the force

resisting it. And if the force of Earth’s gravity acts on the Moon, then the Moon’s

gravity must similarly act on the Earth, forcing it into an orbit as well. How did

Newton more generally link these two expressions of force reciprocally acting on

the Moon and Earth to a postulated force, of gravity, originating from the Earth and

Moon, respectively? The key is in Newton’s Third Law:

LAW III

TO EVERY ACTION THERE IS ALWAYS OPPOSED AN EQUAL REACTION: OR, THE MUTUAL ACTIONS OF TWO

BODIES UPON EACH OTHER ARE ALWAYS EQUAL, AND DIRECTED TO CONTRARY PARTS.4

Whatever draws or presses another is as much drawn or pressed by that other. If you press a

stone with your finger, the finger is also pressed by the stone. If a horse draws a stone tied to

a rope, the horse (if I may so say) will be equally drawn back towards the stone. . . This law
takes place also in attractions. . .

This law helps us understand the mutual effect of forces. Thus the body in the

center of the orbit, which we call M, experiences an equal but opposite force from

that experienced by the mass m orbiting it. The acceleration of the Moon toward the

Earth would be proportional to the Earth’s mass attracting it divided by the square

of the distance to the center of the Earth (the radius of the orbit); the acceleration of

the Earth toward the Moon would likewise be proportional to the Moon’s mass

attracting it divided by the square of the radius of its orbit. Each pull on the

respective mass, at a given distance from the other, is correspondingly resisted by

a centripetal force proportional to its own mass.

These are intriguing relationships. Assuming againm is the mass of the Moon,M
is the mass of the Earth, and r is their separation measured from the center of the

Earth, what is the force acting upon the Earth,M, toward the Moon? It appears that

it isGm/r2. What is the force acting upon theMoon,m, toward the Earth? It likewise
appears to be GM/r2.

4Principia, 13–14.
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To state this mathematically, we may again use the symbol f to represent the

respective accelerative forces acting on each body, with the subscripts M and m to

signify the Earth and Moon masses respectively:

fM ¼ Gm
r2

The Moon’s pull on the Earth (fM) causing its moonward acceleration

fm ¼ GM
r2

The Earth’s pull on the Moon (fm) causing its earthward acceleration

In sum, we have assumed as Newton did that the attractive force of a given mass

is proportional to its quantity, and that this force obeys the inverse square law. From

this follows the conclusion that each of the forces acting on the Moon and Earth,

respectively, must be proportional to the masses of the Earth and Moon,

respectively.

Problem Use the Earth – Moon system to show how Newton’s Universal Law of

Gravitation flows naturally from the above relations, fM ¼ Gm/r2 and fm ¼ GM/r2,
wherem andM are again the masses of the Moon and Earth respectively, and r is the
distance between their centers.

Given

fM ¼ Gm
r2

Centripetal acceleration of Earth towards the Moon

fm ¼ GM
r2

Centripetal acceleration of Moon towards the Earth

Method To visualize the relationships among the forces, we may imagine the rela-

tively small acceleration fM of the Earth toward the Moon (the latter shown by the

smaller “mass” in the diagram below), as a line or vector drawn toward the Moon.
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Because the line is drawn as originating from the Earth does not mean that this

acceleration fM originates from the Earth – it originates from the Moon’s mass and

is shown as an accelerative pull upon the Earth toward Moon. The length of this not-

to-scale short line is intended to be proportional to the amount of the acceleration

induced by m, the mass of the Moon. Similarly, the greater acceleration fm of the

Moon toward the Earth, induced by the Earth’s greater massM is shown as a vector

toward the Earth. Its longer line is intended to be proportional to the Earth-induced

acceleration fm in the direction of the Earth.

Assumptions We again assume that each object, or planet, moon or sun is a

spherical object with uniform density, which may be represented as if all its mass

were concentrated at its center (a key conclusion of Newton’s work).We also assume

circular orbits in space, and the absence of any other forces (including friction of air,

or the perturbing forces of other planets or the Sun) affecting their motion.

Calculations The accelerative force pulling on each body will depend on the mass

of the attracting body. Therefore the accelerative force fM acting on Earth is to the

accelerative force fm pulling on the Moon, as the mass of the Moon m is to the mass

of the Earth M:

fM
fm

¼ m

M

MfM ¼ mfm

The accelerations acting on each body, given in terms of mass and distance are,

fM ¼ Gm

r2
and fm ¼ GM

r2

Substituting the right-hand side of these expressions into the previous equation,

we have,

GMm

r2
¼ GMm

r2

Thus the absolute forces acting on each body are equal. The force experienced
by any body is,

Fg ¼ GMm

r2

Observations

1. This is Newton’s Universal Law of Gravitation: the gravitational force attracting

two bodies varies as the product of each of their masses, and inversely as
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the square of their distance apart. The constant G is called the gravitational
constant, and has been determined to equal 6.674 � 10�11 N.m2/kg2 from

experiment.5

2. We could have just used Newton’s Second Law, F ¼ mf, to say that the

acceleration acting on the Moon, induced by the Earth’s mass, f ¼ GM/r2,
when multiplied by the Moon’s mass, m, gives the force acting on the Moon:

F ¼ mf

F ¼ m
GM

r2

� �

F ¼ GMm

r2

Similarly, the acceleration acting on the Earth, induced by the Moon’s mass,

f ¼ Gm/r2 when multiplied by the Earth’s mass, M, is gives the force acting on

the Earth:

F ¼ M
Gm

r2

� �

F ¼ GMm

r2

And they are equal to one another.

3. The conclusion about the proportionality of mass and mutual gravitational

acceleration is intuitive, since a force applies to every part of a mass equally.

In Newton’s words, from Book III of Principia:

[S]ince all the parts of any planet A gravitate towards any other planet B; and the

gravity of every part is to the gravity of the whole as the matter of the part is to the

matter of the whole; and (by Law III) to every action corresponds an equal reaction;

therefore the planet B will, on the other hand, gravitate to all parts of the planet A;

and its gravity towards any one part will be to the gravity towards the whole as the

matter of the part to the matter of the whole.6

5 The Committee on Data for Science and Technology (CODATA) maintains standards for

international uses. See http://physics.nist.gov/cuu/Constants/international.html. The full value

for G given by CODATA is 6.67384 x 10�11. http://physics.nist.gov/cgi-bin/cuu/Value?bg|

search_for¼G. m3 kg�1 s�2.
6Principia, Book III, Proposition VII, Theorem VII, 414–15.
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4. We know the force acting on a standing person by the Earth’s gravity, since by

Newton’s Second LawW ¼ mg, whereW is her weight and g is the acceleration
of gravity induced by the mass of the Earth. If the mass of a person is doubled,

the force acting on her body – her weight – is doubled: 2W ¼ 2mg: the force

acting on her is proportional to her mass: F::m. If the Earth’s mass were doubled

(doubling g), her weight would again be doubled. It is intuitive that the force

acting on a person thus varies as the product of each of the masses.

5. If a 60 kg (132 lb) student is standing on the surface of the Earth, the force on

him will be,

GMm

r2
¼ 6:674� 10�11ð Þ 5:98� 1024ð Þ 60ð Þ

6:38� 106ð Þ2 ’ 588 newtons

Force is measured in newtons (abbreviated N), in SI units (from F ¼ mf) of
kg.m/s2. Note that the distance r is taken from the center of the Earth to the

surface, i.e., it is the radius of the Earth. Now imagine he has climbed Mt.

Everest. What force will be exerted on him then? Remember the inverse square

law, which has taken up residence in the denominator of Newton’s gravitation

equation. Since he is climbing in altitude, and so moving farther away from the

center of the Earth, the r2 term will be slightly larger, and we should expect the

force on the climber to be slightly smaller. Mt. Everest is about 6.39 � 106 km

from the center of the Earth, so he will experience a force at its summit of 586 N,

somewhat less than back down on the surface. This too will be the force he exerts

upon the Earth, by virtue of Law III.

6. It often convenient to use the symbol m for the product GM. When doing

geocentric calculations, GM ¼ 3.99 � 1014 N�m2/kg2 where the primary mass

is the Earth. It is a good number to remember.

7. Recall the formula for the acceleration felt by a small object in the gravitational

field of the larger body, f ¼ GM/r2. For the situation of the Earth, we can write it
as g ¼ m/r2 and check to see if we get an expected result. At the Earth’s surface

the value should be 3.99 � 1014/4.07 � 1013 ¼ 9.8 m/s2 which is correct.

Reflections upon the Equilibrium of Gravitational and Inertial

(Centrifugal) Forces of a Mass in Orbit

We will take a moment to step back and review one implication of Newton’s

gravitation law. We consider the case where the primary mass is much larger

than the secondary. In such cases it is safe to assume the small mass orbits the

center of the larger mass. (For Earth satellites and most of the smaller planets and

satellites of the solar system this is very nearly so, though in fact in all binary

systems the masses orbit their common center of mass, as we will see below.) Let’s

call this little mass m2 to distinguish it from the primary mass m1 around which it
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orbits. The force needed to deflect the secondary mass from a rectilinear path is

given by F ¼ m2f, Newton’s Second law. Any acceleration f of this mass, along any

axis, bending it away from a straight line, will be resisted by the inertia of the mass

m2. Newton also found that centripetal acceleration is a function of the velocity and
the radius of the circular orbit: f ¼ v2/r. Thus we again link centripetal acceleration
in circular orbits with his second law. Substituting the expression for circular

(centripetal) acceleration into that law gives the force needed to bend the object

off of its stubborn tendency to go in a straight line:

F ¼ m2 f|fflfflfflfflffl{zfflfflfflfflffl}
Newton0s Second Law

and f ¼ v2

r|fflffl{zfflffl}
Circular or centripetal acceleration

! F ¼ m2

v2

r

� � Newton0s Second Law and
equation for centripetal
acceleration are combined
to show the force resisting
deflection from a rectilinear path

The resulting force (often called centrifugal force) will increase dramatically (by

the square) as we pick up the velocity. But if we lengthen the radius of spin, the

force is diminished. A heavier mass, too, will result in a greater force than a lighter

one in the equation (double the mass, double the force).

But the force that bends the path of our wants-to-go-in-a-straight-line mass is not

identified in the above equation. It could be anything. When we twirl a weight on a

string, the force is the pull of the string, making sure it doesn’t fly off. But for

objects in space, the force bending the path from straight is gravity. It is given by

Newton’s gravity equation F ¼ Gm1m2/r
2, where the force is dependent on the

product of the masses and is reduced by the square of the distance r between them.

Now we can see how, in a stable circular orbit, the interplay of two physical

attributes: first, the gravitational force, represented by this equation,

Fg ¼ Gm1m2

r2|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
The gravitational force pulling m1 and m2 together

and second, the straight line, inertial tendency of a mass to resist the centripetal

deflection into an orbital arc, represented by this equation,

Fc ¼ m2v
2

r|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Force on m2 needed to deflect its path toward m1 ðfrom F¼mf Þ

The force needed to bend a mass into an orbit is supplied exactly by the

gravitational pull of the other mass. The forces are therefore set equal to each other:

Gm1m2

r2
¼ m2v

2

r
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The respective accelerations are:

Gm1

r2
¼ v2

r|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Gravitational and circular accelerations are equivalent

The two accelerations are equivalent. This shows, as a condition to maintaining

the circular orbit, the gravitational acceleration (left-hand term) induced by the

primary massm1 at the distance r, is equivalent to the centripetal acceleration acting
on the secondary mass m2 at that distance. The greater the mass m2 of the orbiting

object, the greater is the force needed to overcome its inertia to move it, but

equivalently so is the gravitational force acting on it; so the secondary mass

terms cancel out.

Recall that this is why dropped objects of any mass hit the ground at the same

time. Friction aside, the velocity of dropped objects on Earth is dependent only on

the height from which they are dropped. Farther from Earth, the distance from

Earth’s center starts to make a difference, and the inverse square law weakens the

Gm1 gravitational force. But at any given distance, no matter how far, the “fall”

toward the Earth of an object of any mass, be it a small artificial satellite or the

Moon, will by the same principle have the same velocity. This velocity can be

calculated, as we have already seen. From the above equation, solve for v to find the
velocity of any m2 in a circular orbit, where (again m2 << m1):

v ¼
ffiffiffiffiffiffiffiffiffi
Gm1

r

r

The physical insight upon which an understanding of orbital motion rests is that

there must be an exact match-up of gravitational force and orbital velocity, for a

given radius, for any object to exist in a stable orbit. If the velocity is too low in

relation to the gravitational force, the object will succumb to gravity and perhaps

crash into the primary mass. If the velocity is too great in relation to the

attractive pull of the primary mass, the secondary mass may not hold it, and the

object will move away.

The mating of the two equations above yields circular orbital velocity in terms of

mass and orbital radius. It links radius with velocity for any orbited mass. It is the

“just-right” (“Goldilocks”) velocity for an orbiting thing at that distance to stay

around a mass the size of m1. If for example we know the mass of the Earth and the

distance to the Moon, we can determine the Moon’s “perfect” velocity through

space (about 1 km/s) to keep it where it is. The equation tells us that the greater is

the radius, the lesser must be the velocity to maintain orbit. In past times when the

Moon was orbiting closer to the Earth, we know the lunar month must have

been shorter.
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Kepler’s Third Law as Modified by Newton

A common assumption in finding the period of a circular orbiting thing is that of an

insignificantly small object orbiting a much more massive one. In the solar system,

especially with the inner planets, this is a safe assumption. The Earth for example is

1/333,000 the mass of the Sun, and Mars about one tenth even of that. But what is

the picture like when the secondary mass is not so small? Double stars of often quite

comparable masses are frequently found orbiting one another around their common

center of mass. Even in our solar system, Jupiter’s mass is roughly 1/1,000 that of

the Sun, nothing to be ignored for accurate computation. And certainly the Moon’s

mass, at about 1/81 the mass of the Earth, cannot be discounted as insignificantly

small for accurate determination of its period. How can we find the orbital period in

such cases? We return to our original constructed model, but this time imagine the

objects as spinning around each other, like two dancers holding each other’s arms

as they turn.

Suppose we consider any two orbiting bodies where the secondary mass is non-

trivial in relation to the primary. Let r1 and r2 be the respective distances between
the center of mass or “balance point” of the two masses m1 and m2. Think of the

centripetal force of each spinning body as a function of its distance from the center

of mass, around which it is spinning, just as the case of the wheel we discussed

earlier, only each mass of the unequal pair is spinning in a circle of different radius.
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This again is the force resisting change of motion (acceleration) inward, away

from straight line motion. This resisting force, from Newton’s Second Law, can be

expressed as F ¼ m2o
2r2 for the secondary mass, and F ¼ m1o

2r1 for the pri-

mary.7 But their gravitational attraction is a function of their own distances apart r,
consistent with Newton’s gravitation equation. Their distance to each other is the

sum of their respective distances to the center of mass, so r ¼ r1 þ r2 (see the

figure). Writing the equations for each body, we have:

Gm1m2

r2|fflfflffl{zfflfflffl}
Mutual gravitational force attracting m1 and m2

¼ m2o2r2|fflfflffl{zfflfflffl}
Force experienced by m2 as it orbits center of mass at distance r2

Gm1m2

r2|fflfflffl{zfflfflffl}
Mutual gravitational force attracting m1 and m2

¼ m1o2r1|fflfflffl{zfflfflffl}
Force experienced by m1 as it orbits center of mass at distance r1

Canceling the common terms on each side of the equations reveals the balance of

gravitational and centripetal accelerations on each body:

Gm1

r2
¼ o2r2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Balance of accelerations acting on m2

Gm2

r2
¼ o2r1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Balance of accelerations acting on m1

Our goal is to put everything in terms of r, which is the sum of r1 and r2. We

take the pair of expressions just found, each representing the distance to the center

of mass,

r2 ¼ Gm1

o2r2
r1 ¼ Gm2

o2r2

and add them,

r2 þ r1 ¼ Gm1

o2r2
þ Gm2

o2r2

Now, since r ¼ r1 þ r2,

r ¼ Gm1

o2r2
þ Gm2

o2r2

7 Recall that in the angular notation for acceleration, a ¼ o2r is equivalent to a ¼ v2/r.
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We can simplify the whole expression by multiplying each side by o2r
and taking the square root. The result is the relative velocity in a circular orbit

(since v2 ¼ o2r2):

or ¼ v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G m1 þ m2ð Þ

r

r

Or relative acceleration:

o2r ¼ fr ¼ G m1 þ m2ð Þ
r2

This shows rather simply that the individual centripetal forces caused by the

respective revolutions of each mass at different radii from the center of mass is

equivalent to combining virtually all of the mass in one place, as if there were one

small particle only orbiting at distance r from their centers.

Rearranging the above equation for r gives,

o2r3 ¼ G m1 þ m2ð Þ

This is Kepler’s Third Law for circular orbits, in angular notation. Recalling that

o ¼ 2p/P, we may substitute it for o2 and solve for period, yielding the customary

expression of Kepler’s Third Law in terms of the period:

4p2

P2
r3 ¼ G m1 þ m2ð Þ

P ¼ 2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G m1 þ m2ð Þp r3 2=

This relationship is Newton’s modification of Kepler’s Third Law. It is some-

times referred to as the Kepler-Newton Law of orbital motion. It applies equally to

ellipses, where the distance term is the semi-major axis of the ellipse a rather than

the radius r.
Notice that the period will be the same regardless of how the total mass of the

system is allocated between the two masses. If we do a thought experiment and

mentally shift quantities of mass back and forth between the two masses m1 and m2,

making one mass bigger at the expense of the other, then shifting it back, the period

equation tells us that the period will remain the same, since the sum of the masses

will be the same. That is, as long as the number in the parenthesis (m1 þ m2) is

unchanged, the period will be unchanged. The only consequence will be to shift the

location of the center of mass closer to the bigger mass, and (as we will see below)

alter the velocities of each mass around the center of mass. In fact we could

mentally reduce the mass of, say m2 to almost infinitesimal size in relation to m1
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without affecting the period. In that case the center of mass would be (as it is with

our Sun in the solar system) virtually identical with, or at least very close to the

center of m1.

Why, After Newton, It Became Evident that Kepler’s

Proportions Are Not Strictly Satisfied for Large

Secondary Masses

Kepler derived his Third Law from observations of Mars, and then saw how neat the

fit was with the other planets. The giant planets, Jupiter and Saturn, were the

outermost planets known in Kepler’s day. Their slow movement through the sky

made Mars the logical choice for Kepler’s research. Mars’ relatively swift move-

ment had enabled Tycho Brahe, upon whose data Kepler relied, to obtain a great

deal of data over many orbits. Newton was interested in re-deriving Kepler’s Third

Law not from observation, but from his theory of gravitation. The question that

presented itself to Isaac Newton was how the concept of gravitation meshed with

Kepler’s Third Law.

The Strict Proportionality of Kepler’s Third Law

Kepler found that for the planets in the solar system the squares of the periods in

years are proportional the cubes of the semi-major axes in astronomical units, that

is, this relationship is a constant. Thus,

P2
1

a31
¼ P2

2

a32
. . . ¼ P2

n

a3n
¼ 1

Or, put another way, with the same meaning,

P2 ¼ ka3

Where k ¼ 1 if the units are in years and AU. As far as the measurements of Tycho

Brahe using the non-telescopic instruments of the day could suggest to Kepler,

there was nothing in the data to challenge this relationship. When analyzed by

Newton, the movements of Jupiter’s moons too were completely in accord with

law; the proportion yielded the same constant for all the Galilean moons. Applying

Newton’s law of gravitation to the solar system naturally produced this version of
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Kepler’s Third Law, where the constant of proportionality arose from the mass of

the Sun and the gravitational constant:

P2 ¼ 4p2

GM
a3

whereM is the Sun’s mass andG the gravitational constant. From this, it is apparent

that while the proportionality constant may not be one, there is still a constant

proportion, for any period and semi-major axis:

P2
1

a31
¼ P2

2

a32
¼ P2

n

a3n
¼ 4p2

GM

The Keplerian proportionality of period squared to semi-major axis cubed is still

retained. And, as we will see later, with the appropriate choice of units and value of

G, we can make this proportion again equal one.

The Deviation from Strict Keplerian Proportionality

But when Newton considered that orbiting masses actually revolved about their

common center of mass (including even the Sun and planets in the solar system),

the full expression for Kepler’s Third Law became this,

P2 ¼ 4p2

G M þ mð Þ a
3

where againM is the mass of the Sun andm is the mass of a planet (or satellite). The

resulting Keplerian proportionality became this,

P2

a3
¼ 4p2

G M þ mð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
This term is not a constant;
but varies with each mass m

and is no longer technically a constant applicable to all sets of orbits around the

Sun, since each planet has a different mass, albeit small in relation to the mass of the

Sun (or other primary). Comparing the orbits of two or more planets (or satellites),

we see the problem more clearly:

P2
1

a31
¼ 4p2

G M þ m1ð Þ . . .
P2
2

a32
¼ 4p2

G M þ m2ð Þ . . .
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The constant proportionality has disappeared, because the little mass terms m1

and m2 etc. will be different for each planet, and alter the beautiful proportionality

that existed when we ignored it. One might even say that Kepler’s Third “Law,” as

he framed it has been destroyed. We can see this more plainly if we cancel out the

common terms, and set it this way:

P2
1

a31
:
P2
2

a32
¼ 1

M þ m1

:
1

M þ m2

The ratios are not constant. This is quite different from Kepler’s Third Law as he

presented it. But if we think of the little planetary masses m for the most part being

overwhelmingly smaller than the vastly larger solar massM, thenM þ m � M, and

Kepler’s simple proportions are retained.

Why did Kepler not notice what Newton discovered? Because Mars’ mass is

incomparably smaller than the Sun, about one three-millionth of its mass, Kepler

was unaware of any small anomalies in Mars’ period that would have perplexed the

development of his third law. The empirical law he devised based on Mars’

movements appeared to be completely accurate because the mass of Mars was

insignificant in relation to the overwhelming mass of the Sun. And even the giant

planets Jupiter and Saturn seemed to fit the scheme, because their masses are about

one and three-and-a half thousandths the solar mass, respectively, and any errors

attributable to ignoring those masses were not within the limits of detection of the

non-telescopic instruments of the day.

Comparing Periods with and Without the Secondary Mass

Let us compare the periods in the two versions of Kepler’s Third Law to see the

practical consequences of neglecting the secondary mass (where we assumem � 0)

We can say that P’ is the period obtained by disregarding the secondary mass, and P
is the true period, where both masses are taken into account. Compare the periods in

these equations, without and with the secondary mass accounted for:

P02 ¼ 4p2

GM
a3 P2 ¼ 4p2

G M þ mð Þ a
3

If we assume the mass units are solar masses such thatM ¼ 1 andm is expressed

in fractions of a solar mass, and that distance units are astronomical units, such that

a ¼ 1, then the ratio of the periods is:

P02

P2
¼ 1þ m
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P0 ¼ P
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ m

p

Neglecting the secondary mass in calculations therefore naturally results in

slightly longer values for the periods by the factor √(1 þ m).

Example: The Significant Consequences of Disregarding
the Mass of Jupiter

The Sun’s mass is huge; is the secondary mass worth worrying about? How can we

get a sense of the practical difference? We can get an idea of the upper range of the

difference by examining the case of Jupiter, the solar system’s most massive planet.

The ratio of the planet’s mass to the Sun’s mass (taken as unity) is about 0.000954.

We would expect the difference in the period by neglecting this mass to be

√(1 þ m), or √(1 þ .000954), or about 1.000477 times longer than the true

published period of about 4334.82 days. This is about 2 full day’s difference in

period, a large error that would result from neglecting that planet’s mass in the

period calculation. On the other hand, the error factors in period by neglecting the

mass of smaller Uranus (another gas giant planet) and Venus (a small rocky planet)

are only about 1.00002 and 1.000001 respectively.

When one is considering satellites or spacecraft in orbit around the Earth or other

body, the mass of the satellite may be safely ignored. For example, if a 10,000 kg

satellite is orbiting the Earth, its mass in relation to the Earth’s mass is about

1.7 � 10�21 to 1.

Exercises: The Intriguing Case of Eugenia and Petit Prince Eugenia was the

45th asteroid discovered. It was found in Paris on June 27, 1857 by H Goldschmidt.

The asteroid is 215 km in diameter, and is about 2.7 AU distant from the Sun,

orbiting it in the swarm of small bodies between Mars and Jupiter known as the

asteroid belt. A century and a half later, in 1999, astronomers using new, adaptive

optics technology on the Canada-France-Hawaii Telescope on Mauna Kea, Hawaii,

discovered that Eugenia has a companion: a tiny moon orbiting in a nearly circular

orbit at a distance from Eugenia not much greater than the distance between Paris

and Rome. This was a stunning achievement, to resolve such a faint, close object at

over 400 million km away. The little moon was named Petit-Prince (“The Little

Prince”) after the children’s book of that name by Antoine de Saint-Exupery, which

is about a prince who escapes to an asteroid. Petit Prince is perhaps 13 km in

diameter. A second companion, S/2004 (45) 1, and even closer to Eugenia, was

discovered in 2007. Eugenia is thus a triple asteroid system, one of only a handful

known. The following problems explore some of the dynamics of Eugenia and Petit

Prince.
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Problems

1. Eugenia is 2.723537 AU from the Sun. Beginning with the mass of the Sun and

the given distance to the asteroid, find the velocity of Eugenia in its orbit

around the Sun, in kilometers per second. Take the mass of the Sun to be 1.9891

x 1030 kg. and the length of an astronomical unit to be 149,598,000 km.8

2. Find period as if Eugenia’s orbit were a perfect circle (which it almost is) and

compare it with the method of finding velocity you used in the previous

problem.

3. Find Eugenia’s period in years using Kepler’s Third Law and the SI system

4. Find Eugenia’s period in years and days using Kepler’s Third Law and astro-

nomical units.

5. What is the centripetal acceleration acting on Eugenia, resulting from its orbital

motion? Express your result to six significant digits in m/s2.

6. Using the result from problem two above, compute the gravitational accelera-

tion induced by the Sun keeping Eugenia in orbit. Express your result to six

significant digits in m/s2 and compare it with your previous result.

7. Compute the gravitational force in newtons (kg-m/s2) between the Sun and

Eugenia. Assume the mass of Eugenia is 5.8 � 1018 kg.

8. Compute the centrifugal force in Newtons to four significant digits acting on

Eugenia resulting from its orbital motion, and compare it with your previous

result.

9. The orbit of Eugenia’s moon Petit Prince has a semi-major axis of 1,184 km.

Find its period in days by Kepler’s Third Law. For the moment, ignore Petit

Prince’s mass.

10. The orbital period of Petit Prince has been estimated from photographs to be

4.766 days. From this, determine the combined mass of the asteroid and the

satellite around the center of mass. Compare with the published masses of

about 5.8 � 1018 for Eugenia and 1.2 � 1015 for Petit Prince. What percent

contribution to the total mass of the Eugenia–Petit Prince system is Petit

Prince’s mass?

Reference

1. Cajori (1949) Principia in modern English: Sir Isaac Newton’s mathematical principles of

natural philosophy. Book I, Proposition I, Theorem I (Motte’s Translation Revised). University

of California Press, Berkeley, p 40

8 The precise length of an astronomical unit is 149,597,870.691 km. See http://neo.jpl.nasa.gov/

glossary/au.html.
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Chapter 9

Gravity on This and Other Worlds

An intuitive way of understanding gravitational force is to think of it as the “g”
force of a planet or moon. This can be especially helpful when dealing with small

orbiting objects such as artificial satellites. Force per unit mass is acceleration,1 so

a one kilogram ball (a “unit mass”) on the surface of a planet will experience a

gravitational acceleration, or g force, that is proportional to the quantity of mass

in the planet and the inverse square of the distance of the ball from the center of

the planet. It is a useful way of looking at gravity and comparing the gravity of

different bodies.

How Planetary Radius and Density Affect g

Will two planets of exactly the same amount of particles of matter (mass) have the

same surface g? The answer is no. Planets may be of different sizes, so the surface of

one may bemuch farther from the center than the surface of another, diminishing the

relative value of g of the bigger planet according to the inverse square law. If you are
asking how a large planet can have the same amount of matter as a small one, you

will recall that different masses may have different densities. The amount of matter

per unit volume of one planet or satellite may be, and often is, dramatically larger or

smaller than another. A large low-density body may have the same g at its surface as
a smaller, higher density body. Compare our little rocky Earth with the giant beach

ball that is Saturn. The Earth’s mean density is about 5.5 grams per cubic centime-

ter.2 To put this in context, basalt is about 3 g/cm3 and iron about 7.9 g/cm3.

1 Recall that by Newton’s Second Law, force equals mass times acceleration. Acceleration is

therefore the same as force per unit mass, and this is how gravitational force is usually expressed,

as acceleration. Some authors use the term “accelerative force” to covey this concept clearly.
2We will use the c/m3 convention here since that is most commonly used in the astronomical

literature. Earth’s density in the mks system is 5,513.4 kilograms per cubic meter.

D.W. MacDougal, Newton’s Gravity: An Introductory Guide
to the Mechanics of the Universe, Undergraduate Lecture Notes in Physics,

DOI 10.1007/978-1-4614-5444-1_9, # Springer Science+Business Media New York 2012
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The Earth’s mean density thus lies roughly between basalt and iron. Saturn’s mean

density, however, is only .687 grams per cubic centimeter (687.1 kilograms per

cubic meter), 3 or one eighth that of Earth. Being less than the 1 g/cm3 reference

density of water, it would float. Cork is about .25 g/m3 and ice is about .92 g/cm3.

Saturn’s density is somewhere between cork and ice.

Saturn is indeed large. Its mean radius is 58,232 km, about nine times the

Earth’s, but the value of g on Saturn’s surface is only about 10.44 m/s2, slightly

more than Earth’s surface g. We know this from the equation we saw in the last

chapter: f ¼ Gm/r2, where f is the accelerative force (per unit mass) of gravity at

distance r from the center of the mass in consideration. Since we are calling this

force the g force, we may write that g ¼ Gm/r2.
Let’s try an experiment. Suppose we could enlarge Saturn a little while keeping

the quantity of mass within it the same. We will inflate it until the value of g on its

surface is the same 9.8 m/s2 as the Earth’s g at its surface. To do that, we turn the

equation on its head and solve for radius:

r ¼
ffiffiffiffiffiffiffi
Gm

g

s

Inserting values of Saturn’s mass (5.683 � 1026 kg) and Earth’s g, we get

an enlarged radius of 62,212 km, a 107% increase over its former radius. What

must then happen to its density? Since the mass is the same, it must decrease

with the expanded volume. The mass of a spherical object of uniform density is

m ¼ 4/3pr3r where r is the density, so the density must be given by,

r ¼ 3m

4pr3

We insert the new radius into the equation and the new density of our enlarged

Saturn is about .564 g/cm3, or 82% of its former value.

Now what would the result if we shrank Saturn so that its mean radius was the

same as the Earth’s (6,371 km)? What would its surface g and new density be then?

Using g ¼ Gm/r2 with the Earth’s radius (in meters – remember your units!) we

get almost 935 m/s2! Its new, enormous density has become 763.6 g/cm3! This is

about 100 times denser than iron. Keeping these effects of density and distance in

mind, we will turn to planet Earth and consider what its g really means.

3 See http://ssd.jpl.nasa.gov/?planet_phys_par. Densities in general vary with temperature and

pressure.
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All the Mass of a Body May Be Regarded as Concentrated

in a Single Point

Newton proved that, for a sphere of uniform density, the gravitational attraction of a

mass may be regarded as emanating from a single point at its center. He labored for

years to figure this out, but he did finally prove it. With these assumptions, it is

mathematically safe to regard the gravitational force of the Earth as concentrated in

a point at its center, and that gravitational acceleration induced by the Earth’s

(point) mass is dependent on the distance to the surface of the Earth from that point,

in other words, the radius. One must look at the radial distance from the center of

the Earth (or other body) to its surface to find its g acceleration.

The Earth Spins

One of the ancient arguments made by Ptolemy and others against the rotation of

the Earth, and for a geocentric model of the universe, was that a spinning Earth

would make things fly off its surface. The Earth does rotate on its axis, and that

rotation generates inertial (so-called centrifugal) forces4 that counteract the force

of gravity. Suppose you could control the spin of the Earth with a large dial. Turn it

up to make the Earth spin much more rapidly and we all feel lighter; spin it fast

enough and it flings us into space, like children flying off a too-speedy turntable on

a playground. Spin it with an immense velocity and the Earth’s oceans depart into

space. Faster still and the Earth itself begins to come apart. The centrifugal

acceleration that could make these things happen is given by v2/r, where v is the

velocity of the spinning and r the equatorial radius of the Earth. The centrifugal

force that one of us of mass m would experience would be Fc ¼ mv2/r. For us to lift
off at the equator, this centrifugal force would have to be greater than the

countervailing tug of gravity pulling us back, whose force is Fg ¼ GMm/r2,
where M is the mass of the whole Earth not wanting to let us go. The value of

the gravitational force on us is thus always being challenged and offset by the

centrifugal force of the Earth’s rotation. Fortunately, there is not enough spin to

worry us. Assuming a uniform, spherical Earth, the difference of forces at the

equator is,

DF ¼ GMm

r2
� mv2

r

4We use the term “centrifugal force” although, as explained in Chapter 1 and elsewhere, the

perceived force on an object is really its simple resistance (inertia) to being compelled away from

its Newtonian straight-line motion. We use the term extensively in this chapter because of its

intuitive appeal in communicating the effects of the Earth’s spin.
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Or, in terms of the net gravitational acceleration,

Dg ¼ g� fc

where the subscripts represent gravitational and centrifugal acceleration, respec-

tively. In our imaginary scenario, the spin rate could theoretically be adjusted to just

barely offset the pull of gravity, so fc � fg, and create a kind of near-weightlessness
on the surface of the Earth. We know Earth is not spinning nearly that fast because

(among other obvious indicators) we are all firmly on the ground.

Observed g and True g

It is apparent from the above discussion that the observed force acting on a mass at

the equator is the actual gravitational force of the Earth’s mass less the centrifugal

force pulling in the opposite direction. In terms of accelerations, the “true g” of a

theoretically non-rotating Earth is diminished or diluted by the centrifugal acceler-

ation of the actually rotating Earth:

gobserved ¼ gtrue � fc

The observed g (or gobserved) is the value of g that is measured by instruments,

such as pendulums, since the centrifugal force acts on those instruments and causes

them to measure less apparent gravitational acceleration than they would if the

Earth were not going around. If one wanted to find the “true g” (or gtrue) in a given

location that is independent of the centrifugal force, one would have to add the

centrifugal acceleration to the observed, artificially high g:

gtrue ¼ gobserved þ fc

In other words, acceleration readings must be corrected for the centrifugal

acceleration in order to find the true measure of g. True g of course can be

calculated for any spherical body using Newton’s Law of Gravitation. All that is

needed is knowledge of the radius of the sphere and the Earth’s mass. The result is

the g for a non-rotating sphere, and should theoretically (for a perfect sphere of

uniform density) be the same for all parts of the sphere. One could again also take

measurements of the value of g, say at the equator of the sphere (to find the

observed value of g there) then add to that measure the computed centrifugal

acceleration at that location induced by the sphere’s rotation to find true g there.
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Newton’s Analysis of the Effect of the Earth’s Spin

on Its Gravitational Pull

Isaac Newton addressed these issues in the Principia. He calculated the effect of the
Earth’s spin on observed g in Propositions XIX and XX in Book III, considering

first that the Earth is a sphere of uniform density.5 His ultimate purpose was to

determine the oblateness or flattening of the Earth, which he did by a complex path

which we shall not venture upon here; but his first steps are instructive in showing

his method of working with net accelerations and finding true g. We will take a

walking tour here through the early part of Proposition XIX here, and show how he

turned his powerful insights on the motions of the heavens to the analysis of the

Earth and its shape.

Newton’s method turned to account the same principles of orbital motion that he

had earlier applied to explain how the Moon and planets stay in their orbits. There

are two countervailing forces. There is the mass on the Earth’s rotating surface that

tends to go in a straight line by virtue of Newton’s First Law, but the force of gravity

holds it to the surface and prevents it from going in a straight line. It forces the mass

into an arc, just like the bug on the wheel discussed in Chap. 5. The mass resists that

deflection from rectilinear motion (Newton’s Second Law) and that resistance is

perceived as centrifugal force in the direction away from the gravitational pull; that

is, toward a perpendicular from the surface of rotation (Newton’s Third Law).

Step 1: The observed value of g at the equator: The data Newton employed to

ascertain the pull of the Earth’s gravity (at the location of Paris, France) was

identical to that which he put to work in his Moon test which we saw in Chap. 6.

The fall distance of an object in one second (which is directly a function of g) had
already been accurately measured by Huygens in Paris with a pendulum:

In the latitude of Paris a heavy body falling in a second of time describes 15 Paris feet, 1
inch, 1 7/9 lines, as above, that is, 2173 lines 7/9. The weight of the body is diminished by

the weight of ambient air. Let us suppose the weight lost thereby to be 1/11000 part of the

whole weight; then that heavy body falling in a vacuum will describe a height of 2174 lines

in one second of time.6

2,174 lines is equal to 4.904 m.7 Remember that by the Galilean equation, s ¼ 1/2

at2, the decline of a body in the first second is equal to half the acceleration acting

on it. The fall value cited by Newton thus translates to a measured g in Paris of

9.81 m/s2.

5 Newton sought the ration of the axis of a planet to its diameter perpendicular to the axis, in

proposition XIX. The next proposition dealt with comparing the weights of bodies in different

regions of the Earth.
6 Florian Cajori [1], (Short title) Principia.
7 Since a Paris foot is .32484 m, and a line is 1/144 of a Paris foot (1/12th of an inch), 2,174 lines is

4.9042 m. The value of g would be twice that, or about 9.81 meters per second squared. This fall

distance of 2,174 lines in one second on Earth is the same value Newton used for his Moon test

discussed in Chap. 6.
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Step 2: Centrifugal acceleration at the Earth’s equator: The next step was to learn

the effect of the Earth’s spin on this gravitational field at the equator. Thus Newton

first determined the Earth’s radius from the best data on its circumference available

to him. From Proposition XIX:

And from these measures we conclude that the circumference of the earth is 123249600,

and its semidiameter 19615800 Paris feet, upon the supposition that the earth is of a

spherical figure.8

His value for the mean radius of the Earth was quite accurate.9 With this data

Newton could compute centrifugal acceleration at the equator just as he did with the

Moon in its orbit, as we saw in Chap. 6:

A body in every sidereal day of 23h. 56m. 4s. uniformly revolving in a circle at the distance

of 19615800 feet from the centre, in one second of time describes an arc of 1433.46 feet; the

versed sign of which is 0.05236561 feet, or 7.54064 lines.10

Dividing the circumference of the Earth by the total seconds in a sidereal day11

yields the velocity of a point on at the equator, which Newton found to be 1,433.46

Paris feet per second.12 He then sought the versed sine from the calculated velocity.

(For versed sine, think again of the fall distance, or amount of deflection from a

straight line in an arc, in one second.) Since the circular acceleration is given by v2/r
and the versed sine is half this, s ¼ v2/2r, the result is a versed sine of about .05237
Paris feet or 7.54064 lines.

fequator ¼ v2e
re

fequator ¼ 1433:46ð Þ2
19,615,800

fequator ¼ 0:10475 Paris feet=sec2

fequator ¼ 7:541 Paris lines in first second

8Principa, Book III, Proposition XIX, Problem III, 425.
9 Newton’s value for the Earth’s radius in Paris feet converts to 6,372 km, which is about one

kilometer larger than the modern value of the Earth’s mean radius of 6,371 km.
10Principa, Book III, Proposition XIX, Problem III, 425.
11 The Earth’s rotation using the Sun as the reference is called the solar day, consisting of 86,400 s.

The true measure of the Earth’s rotation is to use the fixed stars as the reference. This day is called

the sidereal day and is slightly shorter than the solar day due to the movement of the Earth in its

orbit. Newton uses the correct number of seconds in a sidereal day, 86,164.
12 Using Newton’s numbers for circumference and time, our calculations show the velocity value

to be 1,430.4 Paris feet per second, about 3 feet per second less than Newton’s value. It is unknown

why there is this small discrepancy against Newton’s value.
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We now work with units of acceleration in meters per second per second, rather

than in terms of versed sines; the centrifugal acceleration in modern units comes out

to .034 m/s2 or about 3½ cm/s in the first second, “upon the supposition that the

earth is of a spherical figure.”13 The fall in one second in Paris caused by gravitation

(2,174 lines) is thus compared with the versed sine deflection in one second at the

equator from otherwise straight-line, rectilinear motion (7.54064 lines):

And therefore the force with which bodies descend in the latitude of Paris is to the

centrifugal force of bodies in the equator arising from the diurnal motion of the earth as

2,174 to 7.54064.14

Step 3: Centrifugal force at the latitude of Paris. The rotating radius of the Earth is

less at the latitude of Paris than that of the equator. As shown in the accompanying

figure, the new radius is the equatorial radius of the Earth times the cosine of the

latitude. The component of the new centrifugal force perpendicular to the rotating

Earth’s surface at that latitude (pointing to its center, if the Earth is a sphere) is also

the new acceleration times the cosine of the latitude. Hence the new acceleration is

the old acceleration times the cosine squared of the latitude:

fparis ¼ fequatorcos
2y

where y is the latitude, in this case Paris, France:

The centrifugal force of bodies in the equator is to the centrifugal force with which bodies

recede directly from the earth in the latitude of Paris 48� 500 1000, as the square of the ratio
of the radius to the cosine of the latitude, that is, as 7.54064 to 3.267.15

In our calculations, the latitude in Paris in radians is p/180 times the latitude in

degrees, or .852351 rad. Hence, using Newton’s units and comparing the versed

sines (again as surrogates for the acceleration values),

fparis ¼ 7:54064ð Þcos2 :852351ð Þ

fparis ¼ 3:267 Paris lines in the first second

The ratio of centrifugal forces mentioned by Newton is thus,

fparis
fequator

¼ 3:267

7:54064

13 Recall that the term, versed sine, which is odd to our ears, is really just the deflection from an

otherwise straight line that a particle of mass on the Earth’s surface is forced to take (and by

Newton’s First Law tends to take) by reason of the rotation of the Earth forcing it into a curved

path as it goes round. The resistance to going in a curve is as we noted perceived as centrifugal

force. It is an example of Newton creatively using the same principles he developed governing

orbital motion to analyze the forces of curved motion on the Earth’s surface.
14Principa, Book III, Proposition XIX, Problem III, 425.
15 Ibid.

Newton’s Analysis of the Effect of the Earth’s Spin on Its Gravitational Pull 173



Step 4: True g at the latitude of Paris. Given the gravitational and centrifugal

accelerations at the latitude of Paris, it is now easy to compute the true g at that

latitude by adding them:

Add this [centrifugal] force to the force with which bodies descend by their weight in the

latitude of Paris, and a body, in the latitude of Paris, falling by its whole undiminished

force of gravity, in the time of one second, will describe 2177.267 lines, or 15 Paris feet, 1
inch, and 5.267 lines.16

This invokes the relation for finding true g mentioned above:

gparis ðtrueÞ ¼ gparis ðobservedÞ þ fparis

gparis ðtrueÞ ¼ 2174þ 3:267

gparis ðtrueÞ ¼ 2177:267

In modern units this translates to a true g acceleration (on the assumption of a

spherical Earth) of about 9.823 m/s2. Newton compares the true g at Paris with the

centrifugal force at the equator:

And the total force of gravity in that latitude will be to the centrifugal force of bodies in the

equator of the earth as 2177.267 to 7.54064, or as 289 to 1.17

In our notation, Newton has found,

gparis ðtrueÞ
fequator

¼ 2177:267

7:54064

gparis ðtrueÞ
fequator

¼ 1

289

16 Ibid.
17 Ibid.
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The accompanying illustration may help visualize the relationships:

For our goal of understanding the concept of net acceleration, we can stop here.

Recall that Newton’s aim was to determine the oblateness or flattening of the Earth,

its deviation from a perfect sphere of uniform radius and density. His determining

of the “true g” at the latitude of Paris was the first task. If the Earth were a perfectly
uniform sphere the true g (undiminished by rotational acceleration) should be the

same all over the Earth. If the true g differed at different places, it would be proof

that the Earth has a non-spherical shape. To determine the true gs on Earth, he

would have to take the net g measured by instruments at different places on

Earth and add in calculated centrifugal accelerations for the observers’ latitudes.

This would in theory give a measure of the extent to which the Earth is, or is not, a

true sphere.

The Earth Is Not a Perfect Sphere

It is plain that that every point on the surface of the Earth is not equidistant from its

center. The Earth is not a perfect geometrical figure. There are mountains, valleys,

and also areas of uneven density within the Earth. All these affect the value of g
where it is measured. But the much larger effect than this on g discovered by
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Newton, is that the Earth is not a really not a geometrical sphere at all. It is an oblate

spheroid: it has a flatness which makes its slightly swollen equatorial diameter

larger than its squatter polar diameter. The Earth is an oblate spheroid generated by

the rotation of an ellipse around its minor axis which passes through the poles. As

such, the distance from the equator to the center of the Earth is longer than the

distance from the poles to the center of the Earth. The result is that the gravitational

acceleration at the two places on the surface are different, less at the equator and

greater at the poles. This effect further compounds the effect of the more rapid

velocity at the equator which also reduces the Earth’s gravitational g there.18

Newton analyzed measurements of the value of g gathered from various parts of

the world, which together confirmed his theoretical calculations, with many

qualifications regarding the accuracy of some of the data.19 Given the fact that

the value of g was determined in various parts of the world by pendulums, and his

imperfect knowledge of the size of the Earth, it is amazing that Newton came

relatively close to determining the actual value of the Earth’s oblateness which is a

little more than 13 miles.20

18 Newton found that the reduction of gravitational g in Paris – of the weight of every part of a mass

there – caused the centrifugal acceleration of the Earth’s spin, when compared to the centrifugal

force at the equator, is about one part in 289. But this ratio did not square with his earlier

calculations that, considering the Earth as a sphere, showed the ratio to be 4 to 505 or about one

part in 126. Principa, Book III, Proposition XIX, Problem III, 427. In other words, the spin seemed

somehow to have a lesser effect on g than he originally thought. Newton devised a mathematical

model of the Earth in which he supposed that a narrow canal filled with water penetrated it from

one poles to the center and from the center to the equator. Assuming the water-filled canals in a

rotating Earth must be in gravitational equilibrium, Newton calculated after considerable labor that

the Earth must be about 17 miles shorter at the poles that at the equator:

. . . and therefore the diameter of the earth at the equator is to the diameter from pole to pole

as 230 to 229. And since the mean semidiameter of the earth according to Picard’s
mensuration, is 19615800 Paris feet, or 3923.16 feet (reckoning 5000 feet to a mile),

earth will be higher at the equator than at the poles by 85472 feet, or 17 1/10 miles And its

height at the equator will be about 19658600 feet, and at the poles 19573000 feet. Ibid.
19 A thoroughgoing critique and analysis of Newton’s work on this subject is given in I. Todhunter [2]
20 The propositions in question are rather obscure on the question of the shape of the Earth. Studies

by Colin Maclaurin (1698–1746), Alexis Clairaut (1713–1765), and others treated the Earth’s

shape with considerable mathematical rigor. There is controversy about whether Newton arrived at

approximate oblateness of the Earth more or less accidentally, using an incomplete method or

whether Newton withheld much of his reasoning and simply didn’t state his entire analysis. See,
e.g., S. Chandrasekhar [3].
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Finding the True Value of g at the Equator

Problem From the information given below, determine the components of gravi-

tational and centrifugal accelerations acting on a 1kg mass at the equator.

Given

Fg ¼ GMm
r2

Newton’s Law of Gravitation

Fc ¼ mv2 r= Centrifugal force on a mass m at velocity v at radius r

G The universal gravitational constant: 6.674 � 10�11 N.m2/kg

M The mass of the Earth: 5.9721 � 1024 kg

re The mean radius of the Earth: 6,371 � 103 m

Assumptions We’ll assume the Earth is a sphere of uniform density of the given

mean radius, and the accuracy of the given data. We assume there are no other

accelerations acting on the mass m other than the acceleration due to gravity.

Method Here we can use Newton’s Law of Gravitation to find the acceleration due

to gravity at the Earth’s surface, whose distance in meters is the Earth’s mean radius

from its center. The number derived will be the gravitational acceleration of a

perfect, non-rotating sphere. To find the net or expected observed acceleration

acting on a mass at the equator, it is necessary to subtract the centrifugal accelera-

tion from the gravitational acceleration. For this we determine the velocity at the

equator and use v2/r for the determination of this value. The result will be net g.

Calculations We know that the force acting on a mass at the surface of the Earth is

given by Newton’s Law of Gravitation:

Fe ¼ GMm

r2e

It is given that m is a unit mass, so all our force numbers are accelerations:

ge ¼ GM

r2e

Inserting the given values on the right side of the equation, and solving for

gravitational acceleration at the equator, ge,

ge ¼ 6:674� 10�11ð Þ 5:9721� 1024ð Þ
6:371� 106ð Þ2

ge ðtrueÞ ¼ 9:82 m=s2

This value assumes the Earth is not rotating. It was derived just frommass and mean

radius with no consideration given the spin of the Earth at the equator. It might be

regarded as the “true equatorial g” for a spherical, uniformly dense Earth. (If the
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Earth were a perfect sphere, this value should in theory match the observed

gravitational acceleration at the equator.) We determine the countervailing centrif-

ugal force component from the equation,

Fc ¼ mv2 r=

which will offset the gravitational gg. Again, thinking in terms of accelerations,

fc ¼ v2 r=

We can determine the rotational velocity of the Earth in the usual way, where P
is the rotational period of the planet:

v ¼ 2pre
P

Inserting this expression for velocity into the acceleration equation, we get:

fc ¼ 4p2re
P2

The Earth’s sidereal rotation period encompasses one revolution in 86,164 s.21

Working through the numbers, we get:

fc ¼ 4 3:14::ð Þ2 6371� 103ð Þ
861642

fc ¼ :03388 m=s2

This is about three and a third centimeters per second per second of centrifugal

acceleration. We now have two accelerations, one gravitational the other centrifu-

gal. To find the net acceleration acting on a mass at the equator, we subtract on

from the other:

gnet ¼ 9:82� :034

gnet ¼ 9:786

Observations

1. The velocity of the spinning Earth at the assumed-spherical Earth at the equator

is about 465 meters per second. Yet not withstanding this velocity the

21 See note 11 for an explanation of this.
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gravitational strength is about 9.82/.034 or 289 times that value, more than

adequate to keep us from flying off into space!

2. Again assuming a spherical Earth, what would be the values of g and f and net g
at the latitude of Paris using the above methods? If the Earth is a sphere, the true

value of g should be the same, about 9.82 m/s2. The rotational radius is less

though, by the cosine of the latitude, which (using Newton’s latitude) in radians

is p/180 the latitude in degrees, or .852351. re cos (.852351) is 4,193.5 km. The

velocity in this case has dropped to about 306 km/s and the centrifugal accelera-

tion is now only .022 m/s2. The net g at Paris by this reasoning is thus:

gnet ¼ 9:82� :022

gnet ¼ 9:80 m=s2

This value is a higher g than at the equator, due to the reduced effect of

centrifugal acceleration. What do you think the effect of the latter is as we

approach the poles?

Using g to Derive Velocities in Circular Orbits

Consider the Earth’s gravity at its surface as “one g” with an average value of about
9.8 meters per second per second acceleration.22 It is instructive to compare the

value of g as we leave the Earth’s surface and go into space, even to the Moon, to

see how it diminishes. Imagine that we have a “gravity meter” which would be just

an accelerometer, able to measure accelerative forces acting on it. With the aid of

our gravity meter (and a little mathematics) in our outward-bound travelling

vehicle, we can observe how g drops dramatically as the inverse square law takes

its toll. Also apparent is the corresponding decrease in orbital velocity and increase

in period of satellites at increasing distances from Earth. Since surface gravity

depends on mass and how far the surface is from the center of the mass, one can also

calculate the “g” for the surface of the Moon or Sun or any other body whose mass

is known. These values can be readily compared to the terrestrial g. The value of the
lunar g will tell what velocity is needed to orbit the Moon. The value of the solar g
will inform us why Earth orbits at the speed it does, 150 million km distant from the

surface solar g.
By working with g as our unit, we can readily see the proportionate change in the

pull of gravity as we leave Earth, by virtue of the inverse square law, and how that

change affects velocity and the orbital period.

22 By Newton’s Second Law, force equals mass times acceleration. Acceleration is, as noted earlier,

the same as force per unit mass, and this is how gravitational force is usually expressed, as

acceleration, where units are typically m/s2.
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Problem Derive an equation for finding the velocity of an object in a circular Earth

orbit in terms of g, the value of the Earth’s gravitational acceleration, and distance

from the center of the Earth.

Given

fc ¼ v2=r Centripetal acceleration fc in a circular orbit of radius r at velocity v

Assumptions We assume for the moment that the orbiting body has negligible mass,

and that it moves in a circle. We also assume that the Earth is a spherical object with

uniform density, such that its mass can be represented by a point at its center of mass.

Method The velocity is straightforwardly derived from the centripetal acceleration

equation. The gravitational force draws a mass toward the center of the Earth, and

this must be balanced by the tendency, described by Newton’s First Law, for objects

in motion to continue to move in a straight line. This is why one feels a strong,

centrifugal tug on a cord attached to a whirling object, except your resisting pull on

the cord takes the place of gravity in the analogy. Here we will substitute gr (note the
subscript r) the Earth’s gravitational acceleration at radius r, for fc which is the

assumed centripetal acceleration acting at the same distance. The radius of the circle

of motion is the distance from the object to the center of the Earth.

Calculations We begin with the centripetal acceleration equation. Let gr be the

acceleration due to gravity g acting at distance r from the center of the Earth, and so

expressed as gr

gr ¼ v2

r

Solving for velocity,

v ¼ ffiffiffiffiffiffi
rgr

p

The circular orbital velocity is thus the square root of the object’s distance from

the center of the primary mass times the gravitational acceleration of the primary

mass, at distance r.

Observation If the value of gr is unknown, this equation requires first calculating

gr for an object’s distance from the Earth before its velocity can be determined.

Recall that gr ¼ GME/r
2 (where ME here is the mass of the Earth) and that value,

when substituted into the above velocity equation, simplifies to the form we will

frequently see:

v ¼
ffiffiffi
m
r

r

where m is the product of the constantsGME, with the value m ¼ 3.99 � 1014 m3/s2.
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Using g to Derive Periods in Circular Orbits

Here we show that the tools used to find g on the surface of the Earth can be used to
find the periods of bodies orbiting above it.

Problem Derive an equation for finding the period of an object in a circular orbit in

terms of gr, the value of the Earth’s gravitational acceleration at radius r.

Given

fc ¼ v2=r Centripetal acceleration fc on a particle in a circular orbit of radius r at velocity v

v ¼ 2pr=P Circular velocity of a particle in terms of the circle’s radius r and period P

Assumptions We make the same assumptions about circular orbits around uni-

formly dense spherical bodies as we noted above.

Method Simply substitute the right-hand side of the expression for circular veloc-

ity for velocity in the first equation for centripetal acceleration. This will yield

acceleration in terms period.

Calculations The right-hand terms of the equation v ¼ 2pr/P can be substituted

for velocity in the centripetal acceleration equation:

fc ¼ v2

r

fc ¼ 4p2r
P2

This is the relation we saw in the previous problem, but now applied at any

distance from Earth. Rearrange the equation to solve for the orbital period. The term

fc is going to be equivalent to gravitational acceleration at distance r. Again
denoting the value of g at radius r by gr:

P2 ¼ 4p2
r

gr

Taking the square root of both sides we obtain

P ¼ 2p
ffiffiffiffiffi
r

gr

r

This is the period of an orbiting object at distance r from the center of the Earth,

where at such distance the gravitational acceleration of the primary mass at that

distance is gr. More generally, for any centripetal acceleration,

P ¼ 2p
ffiffiffi
r

f

r
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which recalls the relation from Newton’s corollaries to Principia Proposition IV

of Book I:

f / r

P2

Observations

1. These calculations may also be cleanly done using radial notation, where

o ¼ 2p/P (circular angular velocity in radians), and or¼2pr/P ¼ v, or circular
velocity v along the arc of radius r.23 The acceleration due to gravity gr acting at
distance r from the center of the Earth, is

gr ¼ o2r

Since o2 ¼ 4p2/P2, substitution of the o2 term and solving for P yields the same

result.

2. The equation for the period of an orbiting object is, interestingly, the same as the

basic formula for finding the period of a simple pendulum (swinging in a small

arc) which we saw in Chap. 3:

P ¼ 2p

ffiffiffi
l

g

s

where l is the length of the string attaching the bob to the pivot point and g is the
gravitational constant at the altitude of the pendulum. More generally, for any

centripetal acceleration f
3. Again, the gravitational acceleration is itself determined by gr ¼ m/r2.

Substituting this into the period/pendulum equation simplifies to Kepler’s

Third Law:

P ¼ 2p

ffiffiffiffi
r3

m

s

where again (for the Earth as the orbited mass) m has the value given above, again

with the assumption that the secondary mass is small enough (as is the case with

Earth satellites) to be discounted. Working directly with g is intuitive and has the

advantage of allowing us to visualize the effects on both velocity and period as g
changes with distance from Earth. This is illustrated with the examples below.

23As noted elsewhere, an object moving in a circle covers 2p radians (“radiuses”) every revolu-

tion, or an actual distance (in mks units) of 2prmeters. The velocity v is the time it takes the object

to accomplish one such revolution, called the period of the object, denoted by P. Therefore
v ¼ 2pr/P. But if the velocity is expressed just in radians per second (think of radii per second)

we use the symbol o for velocity. This is then called the angular velocity, or angular frequency,
where o ¼2pr/P.
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Comparing Velocities and Periods at Increasing Distances

from Earth

Problem Approximate the velocity of a spacecraft orbiting the Earth at the

altitudes of (1) Mt. Everest, 8,848 km; (2) 500 km above the Earth’s surface; and

(3) 384,400 km away from the center of the Earth (the Moon’s mean distance). Use

g, the value of the Earth’s gravitational acceleration, adjusted in each case by the

inverse square law for the distance of the spacecraft from the center of the Earth.

Given

v ¼ ffiffiffiffiffiffi
rgr

p
Velocity of an object in circular orbit of radius r

P ¼ 2p
ffiffiffi
r
gr

q
Period of an object in circular orbit of radius r

g 9.8 m/s2, Earth’s approximate surface g

rE 6.38 � 106 m, the Earth’s equatorial radius

Assumptions We assume the Earth is of uniform density and we’ll completely

ignore the effects of atmospheric friction, especially at the altitude of Mt. Everest!

Method We’ll adjust the value of g to various r from the center of Earth, realizing that

its value diminishes with the square of that distance (the inverse square law). Then we

will use the new g in each case to find velocity and period using the given equations.

Calculations Here is the sequence of calculations:

Location of

hypothetical

satellite

Distance

from center

of Earth to

satellite (m)

Number

of Earth

radii to

satellite

Square

of Earth

radii to

satellite

Inverse of

square of

number of

Earth radii

Times

gE at

Earth’s

surface

Velocity

(km/s) Period

Earth’s

surface rE
6.38 � 10

6 1 1 1 9.8 7.91 84.5 min

Mt. Everest,

8,848 m
6.39 � 10

6 1.001567 1.003137 .996873 9.7694 7.9 84.7 min

500 km

above the

earth’s

surface

6.88 � 10
6 1.07837 1.162882 .85993 8.4273 7.61 94.6 min

384,400 km

away

from

Earth’s

center

3.844 � 10
8 60.25 3,630.2 .000275 .0027 1.02 27.4 days

Observations

1. The fifth column from the left shows the fractional number of g compared to the

Earth’s surface – the relative g – and the sixth column from the left is actual the

gravitational acceleration experienced at the given distance. We can see clearly

how the velocity slows and the period increases with increasing distance from the
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Earth’s center. Even at the altitude of Mt. Everest, there is an appreciable diminu-

tion of Earth’s gravitational force, expressed as a reduction in g, to 99.7% of its

surface value. It is surprising to realize that a mere 500 km above the surface of the

Earth, a little over 300miles, where some satellites orbit, the value of g has dropped
to about 86% of its value. At the Moon, our closest celestial neighbor, being

virtually in our backyard in solar system terms, the value of g is less than 3 one-

hundredth’s of 1% of its value at the surface of the Earth. Yet it is eternally held

there in its graceful orbit, continuously pulled back from straight-linemotion by the

less than 3 millimeter per second, per second acceleration exerted from Earth.

2. Note that the above equations using g as the parameter and correcting for

distance by the inverse square law yield the same results as the conventional

equations using GM (or m). The values determined by each method are the same,

as we would expect:

Location

Distance from

Earth’s center r�þh

Velocity

v ¼ ffiffim
r

p
km/s

Period

P ¼ 2p
ffiffiffi
r3

m

q
Earth’s surface (radius ¼ rE) 6:38� 106 m 7.91 84.5 min

Mt. Everest, 8,848 m 6:39� 106 m 7.9 84.7 min

500 km above the Earth’s surface 6:88� 106 m 7.61 94.6 min

384,000 km away from Earth’s center (the

Moon’s mean distance)
3:84� 108 m 1.02 27.4 days

3. A geosynchronous satellite is one whose orbit that exactly matches the Earth’s

rotation with reference to the stars, so there is one revolution in 24 h 56 m 4 s, or

86,164.1 s. To do this it must be fairly high up. How high depends on solving

Kepler’s Third Law to find the radial distance:

P ¼ 2p

ffiffiffiffi
r3

m

s

r ¼
ffiffi
½

p
3�P

2m
4p2

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8:61641� 104ð Þ2 3:986� 1014

39:478

� �
3

s

r ¼ 42; 164 km

This distance is from the center of the Earth.24 Subtracting the mean equatorial

radius of the Earth of 6,378.14 km from that number gives 35,786 km as the

distance from Earth’s surface.

24 Note that we used a slightly more refined value of m here or 3.986 � 1014.
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4. Since 42,164 km is 6.61 Earth radii, the value of the Earth’s gravitational

acceleration g at the surface of the Earth must be diminished 1/6.612 times, or

to about 2.3% of its surface value. The acceleration it experiences (gr) is

therefore .2243 m/s2. The orbital velocity at this distance is

v ¼ ffiffiffiffiffiffi
rgr

p

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:2164� 107ð Þ :2243ð Þ

p

v ’ 3:1 km=s

How much slower this is than the seven and a half kilometers per second

velocities of lower-flying Earth satellites!

5. These values for gr and velocitymake intuitive sense? To check the results with our

intuition, we can think about it this way. Since the distance to the satellite’s orbit

(about 6.6 radii away) is about 1/9th the distance to the Moon (which is about 60

Earth radii away) the value of gr at lunar distance should be roughly 1/81th the

value for the geostationary satellite, and it approximately is (.0027 for the moon

and .2243 for the satellite orbit). The Moon’s velocity in orbit is about 1/3 that of

the satellite’s orbital velocity. This all makes sense because, while the gravitational

force, and hence acceleration, is inversely proportional to the square of the

distance,

g / 1

r2

the velocity is inversely proportional (from v ¼ √mr) to the square root of the

distance,

v / 1ffiffi
r

p

Calculating the Lunar g: Gravitational Acceleration

on the Surface of the Moon

We have so far focused upon the terrestrial g, and how it diminishes by virtue of the

inverse square law as we venture into space. Let us examine g on other bodies.

These values can be straightforwardly calculated if we know the mass of the body.

(Later we will see how to calculate that mass.)

Calculating the Lunar g: Gravitational Acceleration on the Surface of the Moon 185



Problem Approximate the value of the acceleration gm due to the gravity of the

Moon, measured at the surface of the Moon.

Given

g ¼ GMm r2m
�

Moon’s gravitational acceleration g at distance rm

G The gravitational constant: 6.674 � 10�11 N.m2/kg

Mm Approximate mass of the Moon: 7.35 � 1022 kg

rm Approximate mean radius of the Moon: 1.738 � 106 m

Assumptions We’ll assume the Moon is a sphere of uniform density of the given

mean radius.

Method We will find the value of gm at the Moon’s surface, so again considering

the Moon’s mass as located at a point at its center, we find the value of gravitational

acceleration at the distance from the center to the surface, which is the radius of the

Moon. Using the given values, we’ll solve for gm.

Calculations Begin with the acceleration equation:

gm ¼ GMm

r2m

Inserting the given values for the constants on the right side of the equation,

we have:

gm ¼ 6:674� 10�11ð Þ 7:35� 1022ð Þ
1:738� 106ð Þ2

gm ¼ 1:62 m=s2

Observations

1. The value of g for the Earth’s surface is 9.8 m/s2 which is 9.8/1.62 or about six

times the gm of the moon. Expressed another way, the Moon’s gravity is about

1/6th that of the Earth, and its mass is (7.35 � 1022)/(5.98 � 1024) ¼ .012 the

mass of the Earth (roughly 1/81th).

2. The Moon’s gravitational parameter, GMm or m is about 4.9 � 1012 m3/s2.

3. The Moon spins on its axis too slowly to experience the effects of reduced

apparent g at its equator that the Earth experiences.
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Calculating the Solar g : Gravitational Acceleration of the Sun

Problem Determine the value of the acceleration due to the gravity gsun of the Sun
at the Sun’s surface and the gravitationally induced acceleration g1AU at the

distance of one astronomical unit.

Given

gsun ¼ GMs=Rs
2 Equation for Sun’s gravitational acceleration, g at the surface of the Sun,

at one solar radius Rs

G Gravitational constant: 6.674 � 10�11 N.m2/kg

Ms The mass of the Sun: 1.9891 � 1030 kg

Rs Radius of the sun at photosphere: 6.96 � 108 m

g1AU ¼ GMs=r
2 Equation for Sun’s gravitational acceleration, g at one astronomical

unit (AU) from the Sun, r

r Mean distance of the Earth from the Sun, 1.496 � 1011 m

Method We will first substitute the given values for the constants on the right side

of the acceleration equation, and solve for gsun. For the second part of the problem,

we will use r instead of the solar radius, and see how the solar gsun is diminished to

g1AU by the inverse square law at the Earth’s distance from the sun.

Assumptions Though the Sun is a gas body, the radius is given to the photosphere

of the Sun. This is the part that emits radiation (at about 5,800 K) and is the part that

we can see. It is rather thin (.1% of the solar radius) and so appears to be a well-

defined, sharp edge.

Calculations First to find the value of gsun at the Sun’s photosphere, one solar

radius, and insert the appropriate values. We will use the convenient shorthand

msun ¼ GMs for the “Sun’s gravitational parameter” here and for future calculations

where the Sun is the gravitational center, just as we used m ¼ GMearth for the

geocentric gravitational parameter. The value of msun will be 1.3275 � 1020:

gsun ¼ msun
R2
s

gsun ¼ 1:3275� 1020

6:96� 108ð Þ2

gsun ¼ 274 m=s2

This acceleration is almost 28 times the gravity of the Earth at its surface – person

of average weight would weigh about two tons on the Sun. Now to find how

this powerful gravity is attenuated by distance, we make the radius distance equal

to 1 AU.
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g1AU ¼ msun
r2

g1AU ¼ 1:3275� 1020

1:496� 1011ð Þ2

g1AU ¼ :00593 m=s2

Observations

1. The force of gravity of 28 times Earth’s g on the Sun’s surface becomes 1/1,652

terrestrial g at the distance of the Earth, as the Sun’s gravitational acceleration

has dropped from 274 m s�2 to 5.9 mm s�2.

2. We can check this result by scaling gsun out to 1 AU and watch it diminish by the

inverse square of the distance as we leave the Sun. How many solar radii

are there to the Earth’s orbit? It is the distance to the Sun divided by the radius

of the Sun:

1:496� 1011

6:96� 108
’ 214:94 solar radii:

Wewould thus expect the value of gsun at the Sun’s surface to be diminished, at a

distance of 214.94 solar radii, by 1/214.942. This attenuation factor is .0000216.

Since we found that at the photosphere of the Sun gsun ¼ 274 m/s2, we deduce

the value of the Sun’s gravitational acceleration at 1 AU to be 274 � .0000216

or .00593, m/s2, the same almost 6 mm value we found above.

3. What is the velocity of the Earth in its orbit? Using this equation readily yields

the answer:

v ¼ ffiffiffiffiffiffiffiffiffiffiffi
rg1AU

p

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:496� 1011ð Þ 5:93� 10�3ð Þ

p
v ’ 29:8 km=s

4. We can of course calculate the Earth’s mean orbital velocity by using the

equation with the heliocentric gravitational parameter,

v ¼
ffiffiffiffiffiffiffiffi
msun
r

r

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:3275� 1020ð Þ
1:496� 1011ð Þ

s
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v ¼ 29:78 km=s

The Earth’s orbit is of course elliptical, and the mean velocity, which implies a

circular average, differs from the actual velocities it experiences at the apsides of

its orbit.

Exercises: How Gravity Is Just Right The eminent Astronomer Royal, Martin

Rees, wrote a well-known book titled Just Six Numbers.25 In it he marvels that the

key constants of the universe are as they are, and speculates how different things

would be if they were even a little larger or a little smaller. He begins his chapter

about gravity by discussing its vast pervasiveness on large scales:

If we were establishing a discourse with intelligent beings on another planet, it would be

natural to start with gravity. This force grips planets in their orbits and holds the stars

together. On a still larger scale, entire galaxies—swarms of billions of stars—are governed

by gravity. No substance, no kind of particle, not to even light itself escapes its grasp. It

controls the expansion of the entire universe, and perhaps it’s eventual fate.26

Rees goes on to argue that gravity is actually quite a weak force, but its power lies

in its steady accumulation on large, larger and colossal scales, not cancelling its

effects as electric charges do. He questions what our universe would be like it

gravity were not so weak. If gravity were even slightly stronger, he argues, then

the world as we know it and the life forms which surround us could not exist: “In

an imaginary strong-gravity world even insects would need thick legs to support

them, and no animals could get much larger. Gravity would crush anything as

large as ourselves.”27 He makes the interesting case that in such a universe,

galaxies and stars would form quickly, would be smaller and more densely

packed, and there would not be sufficient time to permit complex evolutionary

processes:

. . . [I]n this hypothetical strong gravity world, stellar lifetimes would be a million times

shorter. Instead of living for ten billion years, the typical star would live for about 10,000

years. A mini-Sun would burn faster, and would have exhausted its energy before even the

first steps in organic evolution had got underway.28

This argument is consistent with the so-called anthropic principle, one version

of which holds that if the world were any different we would not have evolved

to observe and comment on it. We are fortunate indeed to live in a Goldilocks

world!

25Martin Rees [2].
26 Ibid., 27.
27 Ibid., 34.
28 Ibid.
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Problems

1. Given the assumptions of this chapter, how much more would a 200,000 kg

ship weigh at the poles than at the equator of an assumed spherical Earth?

2. Design an equation to answer to the following question: what would the Earth’s

rotational period have to be in order to make us nearly weightless at the

equator? Does the equation look familiar? If so, explain why?

3. Use the above equation to calculate the Earth’s period, inminutes, that wouldmake

us weightless at the equator. In this case, use the Earth’s equatorial radius of

6,378.14 km. Its mass, as before, is 5.97219 � 1024 kg. What would the rotational

velocity be in km/s?

4. If the Earth’s density is increased by 10%, what would be the change of the

gravitational field at its surface?

5. Assuming the lunar surface g is 1.624 m/s2, and its radius is 1,737.5 km, what is

the Moon’s mean density?

6. Mars is a nearly spherical planet with a mass of 6.41693 x 1023 kg, an

equatorial radius of 3,396.16 km, and a rotational period of 1.02595676 days.

Assuming a uniform distribution of mass within Mars, what is the approximate

true and apparent Martian g at the equator?

7. Suppose the Earth, whose mean radius is 6,371 km, were shrunk to the size of

the Moon, whose mean radius is 1,737.5 km. Find the proportional change of

the Earth’s density and surface g.
8. Four “if’s” to (try to) answer in your head first and then write down: (a) If both

the mass and radius of the Earth were increased by five times, what would be

the proportional change to its true surface gravitational acceleration? (b) If the

Moon were half its current distance from Earth, what would be the proportional

change to its period and velocity? (c) If Earth’s g were three-fourths its current
value, what would be the proportional change to the Moon’s period? (d) If the

mass of the Earth were suddenly made half its current value, what would be the

proportional change to the velocity of the Moon? Express your answers in

integers, fractions, and radicals, as applicable.

9. You are given the following facts: (a) Neptune’s mass is 1.0241 � 1026 kg and

its mean radius is 24,622 km. (b) Triton is Neptune’s largest moon, in a zero

eccentricity orbit. Its period is only 5.877 days. Find the value of the true

surface g of Neptune, and its g at Triton’s distance. Confirm Triton’s period

using the new g you found.

10. The period of Jupiter’s small moon Amalthea (discussed in Problem 11.2),

orbiting 181,200 km from Jupiter’s center, goes around the giant planet once

every .498179 days. A small circularly-orbiting satellite of Earth at that same

distance would be 28.41 radii away, less than half the distance to our Moon. (a)

Find the g of Earth acting on such a satellite, and from that, its period in days.

(b) Just using proportions, determine the ratio of the mass of Jupiter to the mass

of the Earth.
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Chapter 10

A Binary System Close to Home:

How the Moon and Earth Orbit Each Other

The everyday notion of the planets revolving around the Sun, and the Moon

revolving about the Earth – the concept of one large, fixed, and static body in the

center and the satellite bodies revolving around it – is actually somewhat

misleading. It depends upon one’s frame of reference. Surely if we could stand

on the Sun, that would be our impression as to the planets, even though we know

that all of them, and Saturn and Jupiter especially, exert their own smaller gravita-

tional pull on the Sun and cause it to wiggle around a little irregular orbit of its own.

And from our fixed reference here on Earth, the Moon naturally appears to revolve

around it. Yet it too pulls on the Earth, and they both in fact orbit, albeit in vastly

different arcs. Relative motion is an idea that took mankind a long time to

understand and appreciate. Did it not seem natural for the Sun to be orbiting the

Earth, when clearly the Sun’s motion was all that was detectable? Kepler wrestled

with relative motion in trying to determine the motion of Mars from the Sun’s and

not the Earth’s frame of reference. In fact all motions appear relative to the

observer’s frame of reference.1 If one observes a system of two or more orbiting

bodies from any frame of reference external to them, their orbits dance around a

common center of mass. This point is usually called the barycenter of the system.

The velocities of the masses in such a system depend upon the frame of reference

from which they are measured. The velocity of one mass from the perspective of the

center of mass will be quite different from the velocity measured from the other as

the point of reference. Think about when you were on a train and another train on a

parallel track inched by you in the same direction, or flew by in the opposite

direction. You saw the other train’s velocity relative to you. In fact, the actual

velocity of the other train, from the perspective of an observer external to both, was

neither inching nor flying.

1 Einstein famously followed up on the implications of the idea of relative motion, beginning in

1905 with the notion of the absolute standard of the speed of light, ultimately developing theories

which profoundly altered our conceptions of the fundamental nature of mass, energy, space, time

and gravitation.

D.W. MacDougal, Newton’s Gravity: An Introductory Guide
to the Mechanics of the Universe, Undergraduate Lecture Notes in Physics,

DOI 10.1007/978-1-4614-5444-1_10, # Springer Science+Business Media New York 2012
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Imagine a double star system where each star has the same mass. From your

point of view outside the system, looking down on it, they each appear to be moving

around an invisible point midway between them, their center of mass. It is their

balance point. The stars always seem to face each other, like children whirling

around each other with clasped hands. They move in synch and their orbital periods

are the same. Now shift your position to a vantage point on one of the stars (such

things are possible in the imagination!). Now you are at rest watching the other star

orbiting in the sky around you. And you would notice another thing: it is moving at

twice the velocity that it appeared to move when you were out in space observing it.

Its relative velocity is much greater. But from either frame of reference, their period

is the same, determined by Kepler’s Third Law which depends only upon their

masses and distance between them.

Now we can change the picture to help us focus on the concept of center of mass

and learn more about what it means. If we vary our scenario and make one mass

larger than the other, the center of mass will be closer to the large mass. This seems

intuitive, as the center of balance, so to speak, is shifted more toward the greater

one, just like the adjustment two boys of unequal weight must make on a see-saw,

where the heavier boy has to sit closer in to the center. As to the stars, each will

still orbit around their center of mass, and again, their periods will be identical, still

determined by Kepler’s Third Law.
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As we imagine the larger mass to become even larger still, the center of mass

will be even closer to the larger mass, again what one would intuitively expect.

If the larger mass is very much bigger than the smaller mass, the center of mass can

be inside the larger mass. It is as if a very large boy on the see-saw had to position

himself practically over the center pivot to allow balance with the much lighter boy.

This is the case with the Earth – Moon system: the center of mass is inside the Earth.

While the center of mass is inside the Earth, the Earth still orbits around that center

of mass, like a frying pan being moved around in small circles on a stove.

Remember that the mass of the Earth (or any other body) acts on other masses as

if its entire mass were concentrated at a single point at its center. This was one of

Newton’s great breakthroughs in understanding gravity. This point, mathematically

speaking, orbits the center of mass. That the Earth–Moon center of mass is inside

the Earth doesn’t affect the gravitational result: as with the double stars, the Moon

and the Earth are like two whirling skaters holding hands, the pull on their arms

being the gravitational force between them. Their period is determined again by

their masses and the distance from their centers (Kepler’s Third Law). And it is the

barycenter of this system that is in orbit around the Sun.
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Locating the Center of Mass

If we wish to find the center of mass, it is easy to do. Intuitively it is where we would

expect it to be. Imagine that you have mass m1 and are standing on a balance scale.

The center of mass is the fulcrum or pivot of the scale. To make the scale balance

and find your weight, you slide the smaller weight, which we will callm2 farther out

along the little graduated scale, away from the pivot, making r1 greater, so the

weights are just balanced, where you then read off your weight. The heavier you

are, the father out along the scale you must slide the weight. Hence, the greater is

mass m1, the farther from the center of mass mustm2 be slid. Of course you may not

want to slide m2 so far out; you may instead substitute a heavier weight m2 to make

it balance. Intuitively, you might say that the masses are inversely proportional to

the distances to the center of mass, so m1:m2 :: r2 : r1. Let’s see how this works out

in the context of orbiting things.

We saw that the equations representing the gravitational and centripetal

accelerations of each of two masses in orbit around their center of mass are:

Gm1

r2
¼ o2r2

Gm2

r2
¼ o2r1

Dividing one set of equations by the other to find the ratio of their accelerations,

we have,

m1

m2

¼ r2
r1

This is as we expected, and,

m1r1 ¼ m2r2

This is a definition of the center of mass. Again, r1 is the distance of m1 from the

center of mass and r2 is the distance of m2 from the center of mass. The separation

distance is here denoted R, and is the sum of each of the individual distances to the

center of mass:

R ¼ r1 þ r2

From the above two equations we can derive expressions for the distances r1 and
r2 from the center of mass in terms of the masses m1/m2 and their distant r apart.
From the first equation, it is apparent that r2 ¼ r1 (m1/m2). Substituting that result

for r2 in the second equation and solving for r1 we have,

r1 ¼ R� m1

m2

r1

196 10 A Binary System Close to Home: How the Moon and Earth Orbit Each Other



which, after rearranging can be written as,

r1 ¼ R
m1

m1 þ m2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Distance of m1 from the center of mass

The corresponding expression for r2, obtained by the same reasoning, is:

r2 ¼ R
m1

m1 þ m2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Distance of m2 from the center of mass

These equations tell us the respective distances of the two masses from their

common center of mass. Approaching the matter intuitively, let us look at the first

of the final two equations and roughly estimate the Earth’s distance from the

system’s center of mass. Since the Earth (call it m1) is over 80 times heavier than

the Moon (m2), and thus rather dwarfs it in mass, we would expect that the distance

of m1 from its center to the barycenter (r1) would be a little less than one eightieth

the distance to the Moon from the center of the Earth. Since the Moon is about 60

Earth radii from Earth, the barycenter should be a little less than 6/8th or ¾ of an

Earth radii from the Earth’s center. We will see below if this is roughly correct.

Finding the Earth–Moon Barycenter

Problem Find the distance from the Earth’s center to the barycenter of the

Earth–Moon system.

Given

m1 The mass of the Earth: 5.9736 � 1024 kg

m2 The mass of the Moon: 7.349 � 1022 kg

r1 The radius of the Earth’s orbit around the center of mass

r2 The radius of the Moon’s orbit around the center of mass

R The mean distance between the centers of Earth and Moon: 3.844 � 108 m

r1 ¼ R
m2

m1 þ m2

� �
Equation for locating distance r1 from m1 to the center of mass

Assumptions We assume the Earth and Moon are spheres of uniform density in

circular orbits, which is approximate enough for our purposes. We are also using the

mean distance between Earth and Moon, and assuming a two-body system, ignoring

for themoment the (significant) perturbing effects of theSunand also theplanetswhich

render calculations of the Moon’s actual movement around the Earth more complex.
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Method We need to find the radius r1 of the Earth’s orbit around the center of

mass. We can do this by solving the given equation for r1. This tells us what fraction
of the distance between Earth and Moon equals the ratio of the Moon’s mass to the

mass of both bodies. From that and the equation R ¼ r1 + r2we can determine r1 as
well. Here again is a diagram of the system, with radii shown:

Calculations Substitute the given values for the masses and mean distance

between them:

r1 ¼ R
m2

m1 þ m2

� �

r1 ¼ 3:844� 108
7:349� 1022

5:9736� 1024 þ 7:349� 1022

� �

r1 ¼ 4:6716� 106 meters

4,671:6 kilometers

Observations

1. Since the radius of the Earth is 6,378 km, the distance from the center of the

Earth to the barycenter is indeed a little less than 3/4ths of an Earth radius toward

the Moon, from mid-Earth. To find the distance from the center of the Moon to

the barycenter of the system, we could also do this:
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r2 ¼ R
m1

m1 þ m2

� �

The result is about 379,728 km. This is about 98 % of the way to the Moon.

2. The barycenter of the Jupiter – Sun system, or any other system, can be found in

the same way. The radius of r1 (the Sun’s small orbit) is to the distance between

their centers, R, as the mass of the Sun is to their combined masses. The mass of

Jupiter is only about .0009536 the combined mass of the system. (Jupiter’s mass

is 1.8986 � 1027 kg and the Sun’s is 1.9891 � 1030 kg.) So we would expect the

barycenter of the Jupiter–Sun system to be about that portion of the mean

distance between the Sun and Jupiter, of about 778,570,000 km, or about

742,438 km from the center of the Sun. We could have estimated it pretty well

just by taking the ratio of the Jupiter’s mass to that of the Sun, or 1/1,048, since

even Jupiter’s mass is relatively tiny compared to the star. The result is

743,000 km. Since the Sun’s radius is 696,000 km, the Jupiter-Sun barycenter

lies just a little outside the Sun’s surface (photosphere).

3. The Earth hardly budges the mighty Sun. The Earth-Sun mass ratio is about

1:333,000. Since their mean distance apart (semi-major axis) is 149.6 million

kilometers, the barycenter of the Earth-Sun system is a mere 449 km from the

center of the Sun. Again, when comparing masses of enormous disparity, we can

effectively ignore the smaller mass, and estimate by using the ratio of their

masses multiplied by the separation.

4. The foregoing discussion concerned only two-body systems. The situation for

multi-body (or n-body) barycenters is somewhat more complex. But center of

mass determinations at any moment follow the same procedure. One need only

calculate one pair’s barycenter, then the third from that, as if the barycenter of

the first two were the second body. The motion of the barycenter in a multibody

system can be interesting. Because of the movements of all the planets around

the Sun, each with their own orbital periods, and each with their own perturbing

effects, the solar system barycenter moves about the Sun in a complex path.

Binary systems may and often do follow other more complicated paths around

their barycenters. In some cases their elliptical orbits around the barycenter may

even overlap, but their shapes will always be similar.

Deriving Equations for Velocities Around the Center

of Mass in Circular Binary Orbits

There are various ways of determining the velocities in circular orbits around the

center of mass. Here we demonstrate two, and it is illuminating to compare them.

For each, we must ask, what is the common link between the two masses in their

orbits? What physical laws or principles relate them to each other or apply to each

which would give us the mathematical tools to solve the problem? Let us assume
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their masses (m1 and m2) significantly differ, and that they therefore have different

orbital radii (r1 and r2) and different velocities (v1 and v2) (which is our task to

determine).

Problem Derive equations for finding the velocities of two masses in circular

orbits around their common center of mass, in two ways: (1) first, in terms of their

masses and their relative velocity only; (2) second, using Newton’s laws and the

equilibrium of accelerations of each. Then, (3) combine the equations and solve for

relative velocity.

Given

For the first part of the problem

V ¼ 2pr=P General equation for finding circular velocity, where P is the period

v ¼ v1 � v2 Relative velocity of objects moving in the same direction; where two bodies are

orbiting around center of mass, they are going in opposite directions, and we

may write relative velocity here as v ¼ v1 – (�v2) or v ¼ v1 + v2

For the second part of the problem

Gm1=R Gravitational acceleration acting on m2 from m1, where the masses are R distance

apart

v2=r2 Acceleration of m2 as it orbits the center of mass at r2

For the third part of the problem

r1 ¼ R m2

m1þm2

� �
Equation for locating distance r1 from m1 to the center of mass

Assumptions Same assumptions as in previous problem.

Method For the first part of the problem, if the distances to the center of mass are

known, then the velocities may be determined for each orbit around the center of

mass using the notion that their periods are the same and that the relative velocity v
is the difference of the individual velocities, v1 and – v2 (the negative indicates that
v2moves in a direction opposite v1) . For the second part of the problem, we can use

Newton’s laws to equate gravitational and centripetal accelerations of each mass,

and solve for their respective velocities. Finally, we can use the center of mass

equation to find relative velocity, by substituting the value of radius for r1.

Calculations First part of the problem: We know the periods of each mass are the

same, so,

P ¼ 2pr1
v1

¼ 2pr2
v2

v1
v2

¼ r1
r2

and, since the definition of the center of mass is,

m1r1 ¼ m2r2
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we deduce that

m1v1 ¼ m2v2

Now we wish to solve for v1, but this equation has two variables for velocity, so

we need another equation in order to solve for one of them. We can use the equation

for the relative velocity of the two masses moving in opposite directions, v ¼ v1 –
(� v2) which becomes v ¼ v1 + v2. First we isolate v1:

v1 ¼ v2
m2

m1

� �

Now, we substitute this equation for v1 into the equation v ¼ v1 + v2:

v ¼ v2
m2

m1

� �
þ v2

When we work through the algebra, we arrive at the result for the velocity of m1

about the center of mass:

v1 ¼ v
m2

m1 þ m2

� �

By the same analysis, the velocity of m2 around the center of mass is,

v2 ¼ v
m1

m1 þ m2

� �

where again v is the relative velocity of the two bodies.

Second part of the problem: Here we use a different method, and consider the

gravitational and centripetal accelerations of the two masses. The gravitational

acceleration imparted by the mass m1 on m2 causes the equivalent centripetal

acceleration of m2 as it bends it to its orbit, so we may put the expressions for

each equal to each other. Notice the radius of the orbit for the centripetal accelera-

tion is the smaller orbit r2, but the gravitational acceleration is, as always, deter-

mined by the distance between them.

v22
r2|{z}

Centripetal acceleration of

m2 as it orbits the center

of mass at distance r2

¼ Gm1

R2|ffl{zffl}
Gravitational acceleration

of m2 imparted by the

gravitational pull of m1
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We want the left side to be just velocity, so we multiply each side by r2:

v22 ¼
Gm1

R2
r2

Taking the square root of each side yields the circular orbital velocity of m2

about the center of mass:

v2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Gm1r2

p
R

�
Velocity of m2 around center of mass

By the same reasoning, the velocity of m1 is,

v1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Gm2r1

p
R

�
Velocity of m1 around center of mass

Third part of the problem: The above equations appear quite disparate in form and

origins, but they are easily reconciled. Since they each represent velocities around

the center of mass, let us pick one set and equate them to see what falls out. The two

equations we found for v2 are:

v2 ¼ v
m1

m1 þ m2

� �
v2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Gm1r2

p
R

Equating them, we have,

v
m1

m1 þ m2

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Gm1r2

p
R

Squaring each side, cancelling common terms and rearranging yields this:

v2
m1

m1 þ m2

� �
¼ Gðm1 þ m2Þr2

R2

A nice simplification follows from the identity we discussed earlier, r2 ¼ R (m1/

(m1 + m2)), and results in an equation for the relative velocity of either mass around

the other, at distance R apart:

v2 ¼ Gðm1 þ m2Þ
R

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðm1 þ m2Þ

R

r
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Observations

1. This last equation is the relative velocity of one mass orbiting another in a

circular orbit. It is given with reference to one mass, as if we were on one of the

masses, observing from at that fixed point. It is an important equation, and

should be committed to memory. We will use it as a starting point later when

we discuss velocities in elliptical orbits.

2. One frequently encounters problems involving binary systems where the

calculations would be much simpler if we could change our frame of reference

from the center of mass to the primary mass of the system. Instead of dealing

with individual, changing distances of each mass to the center of mass, we would

deal with one distance parameter, which is just the distance between them.

A clever technique of calculating the reduced mass of the secondary does just

this: it simply changes our frame of reference to one of the orbiting masses, as if

it were standing still, and from there we can examine the motion of the other

mass orbiting around it.

Recall that according to Newton’s Second Law, F ¼ mf, where the force per
unit mass is the acceleration. According to Newton’s Third Law, each force

effects the other equally and in the opposite direction, so m1f1 ¼ � m2f2. Since
acceleration is force per unit mass, this relation can be written this way:

f ¼ F

m1

þ F

m2

f ¼ F
1

m1

þ 1

m2

� �

f ¼ F
m1 þ m2

m1m2

� �

Or, rearranging to express Newton’s Second Law where force is a function of

mass and acceleration,

F ¼ m1m2

m1 þ m2

� �
f

We can interpret this to mean that the system acts as if mass has been shifted to a

stationary primary, the secondary having a reduced mass of m1m2/(m1 + m2).

For the sake of shorthand, we will call the reduced mass m’:

m
0 ¼ m1m2

m1 þ m2

3. We can relate reduced mass to relative velocity. If v is again relative velocity,

and m’ is the reduced mass of the secondary, then

v ¼ v1
m1

m0

� �
v ¼ v2

m2

m0

� �
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Calculating the Orbital Velocities of the Earth and Moon
Around Their Center of Mass

Above we derived equations in two ways to find the velocities of two masses around

their center of mass. We will now use one of the methods to determine the orbital

velocities of the Earth and Moon around their center of mass.

Problem Using the second method given above, calculate the individual, non-

relative, orbital velocities of the Earth and Moon around their center of mass.

Given

v2 ¼
ffiffiffiffiffiffiffiffiffiffi
GM1r2

R

q
Center of mass velocity equation for the Moon, m2

v1 ¼
ffiffiffiffiffiffiffiffiffiffi
Gm2r1

R

q
Center of mass velocity equation for the Earth, m1

m1 Mass of the Earth: 5.9736 � 1024 kg

m2 Mass of the Moon: 7.349 � 1022 kg

r1 Radius of the Earth’s orbit around the center of mass: r1 ¼ 4.6716 � 106 m

r2 Radius of the Moon’s orbit around the center of mass: r2 ¼ 3.7973 � 108 m

R The mean distance between the centers of Earth and Moon: 3:844� 108 meters

G Gravitational constant: 6:674� 10�11N �m2=kg

Assumptions We assume the same things as in the previous problem: that the

Earth and Moon are spheres of uniform density in circular orbits, in an ideal two-

body system, unaffected by the gravitational perturbations of the Sun or planets.

Method Simply substitute the appropriate values into the equations and solve for

velocity.

Calculations The velocity of the Moon around the CM is:

v2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Gm1r2

R

r

v2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6:674� 10�11ð Þ 5:9736� 1024ð Þ 3:7973� 108ð Þp

3:844� 108

v2 ¼ 1; 012:2 m=s

The velocity of the Earth around the CM is:

v1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Gm2r1

R

r

v1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6:674� 10�11ð Þ 7:349� 1022ð Þ 4:6716� 106ð Þp

3:844� 108

v1 ¼ 12:45 m=s
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Observation It is interesting to see that, while the Moon travels in its large orbit at

the speed of a rifle bullet, the Earth lumbers along at a little less than 12 ½ meters

per second in its small orbit, not even 28 mph, about the speed of a car along a

residential street.

The Relations Between Masses, Accelerations and Period

in Circular Binary Orbits

Two bodies coupled in an orbit around their common center of mass will naturally

have the same period. It makes sense, but it can be instructive to show why that is

so. In the case of the Earth and Moon, which we are idealizing as consisting of

circular orbits, we saw that each one’s orbit is a different size: the Moon revolves

around its big orbit of radius r2 as the Earth moves around its little orbit of radius r1.
Let us get “inside the math” a little and demonstrate by independent means that

their respective periods are in fact the same, and show how their gravitational

accelerations can be combined to derive the same period again. The latter statement

is consistent with what we have been saying: we may treat the Earth as fixed,

mathematically, with the Moon revolving around the Earth, and get the same result

as if we used the absolute motions of each around the barycenter. In other words, if

we shift our frame of reference to Earth and consider just the Moon’s motion

relative to a fixed Earth, the period will be unchanged. For variety of mathematical

experience we will show this using angular notation, as we did in Chap. 8.2 Recall

that for circular orbits, and here referring to the Earth and Moon, respectively,

Gm2

R2 ¼ o2r1
Gm1

R2 ¼ o2r2

f1 ¼ o2r1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Gravitational and centripetal

accelerations of the Earth in its
orbit around the center of mass

f2 ¼ o2r2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Gravitational and centripetal

accelerations of the Moon in its
orbit around the center of mass

Let us now add the accelerations such that their mutual acceleration is written as,

fr ¼ f1+ f2. Given this, we will substitute the above identities for those

accelerations, and factor the result:

fr ¼ o2 r1 þ r2ð Þ

2 Recall that we often use g to represent the gravitational acceleration at various distances from the

mass in question. Here we return to the f notation for the gravitational acceleration. The Earth’s

gravitational acceleration imparted to the Moon at the lunar distance (caused by the gravitational

pull of the Earth) is here denoted by f2. This is the same as the Earth’s g at lunar distance. The
gravitational acceleration imparted to the Earth (from the Moon’s pull of gravity) is denoted by f1.
This is the same as the Moon’s g at Earth distance.
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Since o ¼ 2p/P, the above equation can be solved for period P,

P ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1 þ r2ð Þ

fr

s

Because R ¼ r1 + r2, the period of the orbiting masses does in fact reduce to a

function of the mutual acceleration and center-to-center distance between them:

P ¼ 2p

ffiffiffi
R

fr

s

This is the period of both masses orbiting around the center of mass.

The acceleration term is,

fr ¼ G m1 þ m2ð Þ
R2

Substituting that term in the period equation yields Kepler’s Third Law. It is

mathematically equivalent to the period of one object of negligible mass revolving

around the other where the total mass of the primary m1 + m2.

Problem Using the equations below, and the individual gravitational accelerations

of the bodies induced by the mass of each upon the other at distance R apart, show

numerically that: (1) the periods of the Moon orbiting at radius r2 from the

barycenter, and the Earth orbiting at radius r1 from the barycenter are equal; and

(2) the same result follows when using their mutual gravitational accelerations and

total distance r between them.3 For this problem we will again denote the Earth’s

and Moon’s masses as m1 and m2, respectively. Gravitational accelerations will

again be denoted by f (force per unit mass) with an appropriate subscript.

Given

P ¼ 2p rcm=fcð Þ1=2 Equation for finding the period of an object in circular orbit around a center of

mass from the centripetal acceleration fc and the radius of the center of mass

orbit, rcm. Below for fc we will use the centripetal accelerations of the Earth
f1 and Moon f2

f1 ¼ Gm2

R2
Equation for gravitational acceleration experienced by the Earth

f2 ¼ Gm1

R2
Equation for gravitational acceleration experienced by the Moon

m1 Mass of the Earth: 5.9736 � 1024 kg

m2 Mass of the Moon: 7.349 � 1022 kg

r1 Radius of the Earth’s orbit around the center of mass: r1 ¼ 4.6716 � 106 m

r2 Radius of the Moon’s orbit around the center of mass: r2 ¼ 3.7973 � 108 m

R Mean distance between the centers of Earth and Moon: R ¼ 3.844 � 108 m

G Gravitational constant: 6.673 � 10�11 N m2/kg

3 For the illustrative purposes of the problem, we will not use Kepler’s Third Law to find the

period, but rather use the two-step process of first finding the individual gravitational accelerations

of the Earth and Moon, then finding the period.

206 10 A Binary System Close to Home: How the Moon and Earth Orbit Each Other



Assumptions Same as the previous problem.

Method For the first part of the problem, we determine the accelerations imparted

to each body due to the gravitational pull of the other. These are each calculated at

their mean distance R from each other. (It is important to realize that we use

the center-to-center distance R to calculate their respective accelerations, f1 and

f2). For calculating separate periods, we will use their respective orbital radii from

the center of mass, r1 and r2. Then we insert the applicable accelerations of each

body into the period equation and compute the period of the Moon in its large orbit

about the barycenter, at distance r2, and the period of the Earth about its smaller

orbit around the barycenter at distance r1. For the second part of the problem, we

sum the accelerations to find the mutual acceleration of each toward each other.

Calculations First part of the problem: We find the values of the accelerations

imparted to the Earth f1 and the Moon f2, caused by the gravitational pulls of the

Moon and Earth, respectively.

Earth Moon

f1 ¼ Gm2

R2 f2 ¼ Gm1

R2

f1 ¼ 6:673�10�11ð Þ 7:349�1022ð Þ
3:844�108ð Þ2 f2 ¼ 6:673�10�11ð Þ 5:9736�1024ð Þ

3:844�108ð Þ2

f1 ¼ 3:3188� 10�5|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Acceleration of the Earth due to the Moon0s gravity

f2 ¼ 2:6976� 10�3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Acceleration of the Moon due to the Earth0s gravity

With these accelerations, we can calculate their periods around the center of

mass:

Earth ðsmall orbitÞ Moon ðlarge orbitÞ
P ¼ 2p

ffiffiffi
r1
f1

q
P ¼ 2p

ffiffiffi
r2
f2

q
P ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:6716�106

3:3188�10�5

q
P ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:7973�108

2:6976�10�3

q
P ¼ 2:357� 106 seconds P ¼ 2:357� 106 seconds

P ¼ 27:28 days P ¼ 27:28 days

The period of the Earth in its small orbit around the center of mass is precisely

the same as the period of the Moon around its much larger orbit, which is the lunar

sidereal month (measured against the fixed stars). The stronger pull of the Earth

holds the Moon in a greater orbit. The lesser pull of the Moon holds the Earth in a

relatively tiny orbit. And the periods of each are the same, as we have assumed.

Second part of the problem: Here we will ascertain numerically if the period is the

same when we add accelerations and use the mean distance between the bodies

rather than their respective barycenter distances:

fr ¼ f1 þ f2

fr ¼ 3:3188� 10�5 þ 2:6976� 10�3
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fr ¼ 2:7308� 10�3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Mutual gravitational acceleration of Moon and Earth

Insert this in the period equation, using the center-to-center radius R rather than

distances to barycenter, and we arrive at the result we obtained above:

P ¼ 2p

ffiffiffi
R

fr

s

P ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:844� 108

2:7308� 10�3

r

P ¼ 2:35736 � 106 seconds

P ¼ 27:2843 days

Observations

1. The above exercise shows numerically that the combined accelerations over the

total distance R between the masses yields the same period as the individual

accelerations calculated with respect the shorter distances of each to the center of

mass.

2. A quick comparison of the acceleration numbers on a calculator will show that the

Earth’s pull on theMoon is a littlemore than 81 times theMoon’s pull on the Earth,

which corresponds exactly to the ratio of their masses. Likewise the distances to

their common center of mass: the center of the Moon is a little more than 81 times

farther from the barycenter than the center of the Earth is. Thus the masses,

barycenter distances and accelerations all bear the same ratio of about 81:1.

Generalizing the relations of mass, velocity, radius and acceleration in circu-

lar orbits, in simple terms, for any binary pair of masses m1 and m2,

v1
v2

¼ r1
r2

¼ f1
f2
¼ m2

m1

Thus, if we assume m2 is the smaller mass, its velocity is greater, its orbital

radius is bigger, and the gravitational acceleration acting on it is stronger, than
the larger mass, whose velocity, radius and acceleration upon it are smaller.4

These relations work for binaries in circular orbits. We will see later how they

are modified for elliptical orbits. One would not, however, use them to compare,

say, the orbits of Earth and Mars, since those bodies are not orbiting each other.

4 Be careful of notation. The terms f1 and f2 are here the accelerations of m1 and m2. They are not

here the forces induced by the masses m1 and m2.
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3. The acceleration of the Earth induced by the Moon’s mass can also be checked

by looking at its orbital velocity, using the equation for centripetal acceleration

discussed earlier: f ¼ 4pr/P2. Given that the lunar sidereal period is

2.537 � 106 s, and the radius of the Earth’s orbit around the center of mass

is 4.6716 � 106 m, the acceleration of the Earth induced by the Moon resulting

from application of that equation is 3.32 � 10�5 m/s2 as we saw before. The

reader should feel free to check whether using this equation with respect to

the Moon’s longer orbit around the center of mass yields the correct greater lunar

acceleration induced by the Earth.

4. Now that we have carefully calculated the orbital periods from the known

masses of the Earth and the Moon, we can admit that the published orbital

period of the Moon and Earth about their center of mass is slightly different from

this. The published orbital period is 27.3217 days, which is slightly longer than

the period of 27.2843 days we derived above. How could this be? What could

effectively slow the Moon so? Whenever an orbit is off from a pure Keplerian

period, or velocity, eccentricity or other orbital characteristic – that is, in a

quantity that differs from the result one would expect from the straightforward

application of Kepler’s Third Law, one must suspect an external influence or

disturbance. We are not concerned about friction, as in the case of a satellite in

low-Earth orbit experiencing atmospheric drag. Nor can we credit the oblate-

ness, or flattening of the Earth around the equator. The main reason is the Sun

and to a much lesser degree, the other bodies in the solar system. The gravita-

tional pull of the Sun on the Earth–Moon system creates perturbations in the

lunar orbit. There are in fact a variety of different gravitational pulls of the Sun

on the Moon, depending on where it is in its orbit around the Earth. The

differences in these pulls in comparison to the Sun’s pull on the Earth, called

tidal influences, create disturbing effects on the lunar orbit which make the orbit

somewhat “non-Keplerian.”

Exercises: The Fascinating Orbits of Pluto and Charon Our knowledge of Pluto

is comparatively recent, and illustrates how the rapid growth of technology has

changed astronomy. The discovery of Pluto in 1930 began, like the discovery of

Neptune, from attempts to understand anomalies in the orbits of Uranus andNeptune.

Percival Lowell, the founder of Lowell Observatory in Flagstaff, Arizona (and

unfortunately more widely known for his insistence on the presence of canals on

Mars) had initiated the search for “Planet X” about 15 years earlier, and had derived

hypothetical elements for the orbit. Clyde Tombaugh, a diligent Midwestern farm

boy hired on by the observatory to help analyze photographic plates, spent many

hours at amachine called a blink comparator, peering at plates of star fields, searching

for the mysterious planet. Identical fields of stars were photographed on different

days and examined with the comparator. The comparator rapidly illuminates one

plate then another (though the eye sees only one continuous image). Changes in

position of an object on the plate become apparent as it would appear to jump back

and forth from one position to the other while the background stars remain fixed.

Tombaugh thought that pictures taken about 6 days apart would be sufficient to show
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any movement of a distant, slow-moving planet. In January of that year, one faint

speck of light was seen to have moved amid the multitude of stars in a particular

region of Gemini. It was confirmed that that spot was the culprit, moving slowly

almost 40 AU from the sun. Finding Pluto was the first significant discovery in the

solar system since Neptune was found (through analysis of irregularities in the orbit

of Uranus) in 1846. Beyond the basic facts of its orbit (its period is about two and a

half centuries), and rough estimates of its small size, almost nothing else was known

about this trans-Neptunian member of our solar system. But then, in 1978, James

Christy at the U.S. Naval Observatory announced that deformed images of Pluto on

photographic plates going back to the 1960s appeared to him to have a pattern, as if

they moved periodically around it, indicating the possibility of a moon. Mutual

eclipses of Pluto and this moon later confirmed its existence, and in the early

1990s, the Hubble Space Telescope finally resolved its relatively large satellite,

named Charon. With adaptive optics, Charon was subsequently detected by

ground-based telescopes. Two smaller moons, named Nix and Hydra were discov-

ered in 2005, each orbiting the system’s barycenter. Two other small moons of pluto

have been discovered since, bringing the total to fivemoons. Over the years, and with

the discovery of several other small bodies, it had become clear that Pluto (now called

a “dwarf planet” by the IAU) was just one of innumerable primordial objects in the

so-called Kuiper Belt of trans-Neptunian objects, whose character and origins could

be key to understanding the formation of the solar system. In 2006, NASA launched

the NewHorizon’s Mission to explore Pluto and Charon and the rest of the plutonian

family and the Kuiper Belt. New Horizons received a gravity assist from Jupiter in

2007 and arrives at Pluto in mid-2015. NASA says, “The [Pluto–Charon] pair form a

binary planet, whose gravitational balance point is between the two bodies. Although

binary planets are thought to be common in the galaxy, as are binary stars, no

spacecraft has yet explored one. New Horizons will be the first mission to a binary

object of any type.”5 The following exercise will explore the dynamics of the

fascinating Pluto–Charon binary system.6

Problems

1. Careful research of photographic images has indicated that the Charon-Pluto

mass ratio is .1165 (� .0055). With this information, ignoring any effects of

Nix and Hydra, and using the notation developed in the chapter, what is the

ratio of their distances from the barycenter of the system?

2. The combined mass of the Pluto-Charon system is estimated to be 1.457

1022 kg (� .0009). What are the individual masses?

3. The semi-major axis of the Pluto-Charon system is only 19,571.4 km. What are

the distances of Pluto and Charon from their barycenter, in kilometers? What is

their ratio? Draw a sketch on any convenient scale you chose of the respective

masses orbiting at the correct distances to the barycenter.

5 See generally, http://pluto.jhuapl.edu/.
6 The data on the Pluto–Charon system for these problems is taken from Buie et al. [1].
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4. Pluto’s estimated radius is 1,153 km. How many plutonian radii are there: (a) to

the center of its orbit; (b) to Charon.

5. What is the ratio of the velocity of Charon to the velocity of Pluto in their orbits

around the barycenter?

6. Calculate the respective velocities of Pluto and Charon in kilometers per

second in their respective orbits around the barycenter. Do the ratios of

velocities you found accord with your previous answer? Interpret your results.

7. What is the relative velocity of the two bodies? To check your work, find the

relative velocity in two different ways.

8. What is Charon’s reduced mass?

9. Does Charon’s reduced mass times the relative velocity of Pluto and Charon

yield the same value as Charon’s mass times its velocity around the barycenter?

10. What are the values of the gravitational accelerations acting on the Pluto and on

Charon, caused by the Charon and Pluto, respectively? Using these values, (a)

calculate the periods of Pluto and Charon around their center of mass, in days;

(b) confirm the period of the bodies, in days, using the combined acceleration

and semi-major axis distance; and (c) confirm the period of the system using

Kepler’s Third Law.

Reference

1. Buie MW, Grundy WM, Young EF, Young LA, Stern AS (2006) Orbits and photometry of

Pluto’s satellites: Charon, S/2005 P1, and S/2005 P2. Astronom J 132:290–298, http://

iopscience.iop.org/1538-3881/132/1/290/pdf/205133.web.pdf
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Chapter 11

Using Kepler’s Third Law to Find the Masses

of Stars and Planets

How do we know the mass of a planet, asteroid, or of a distant star? If we are told

that Saturn is light enough to float on water, that a tablespoon of neutron star stuff

would weigh more than the Earth, or that there is a black hole at the center of our

galaxy, how are those facts known? If you say, “You need to somehow use gravity

as a probe to determine mass” you will be right. There are two ways to do this, one

difficult and often uncertain; the other quite precise, depending on the quality of the

observational data. In the first method, the mass of a body can be inferred by its

perturbing effects on other bodies. This means there must be well defined orbits of

other bodies that have passed close enough to the mystery mass to figure it out. Of

course, the perturbed body need not be a another orbiting planet: in the rare case

that a comet (or even a space vehicle) passes close by, the encounter may allow

measurement of how much the body bends the visitor’s path. The second, vastly

preferable method employs Kepler’s Third Law. It requires a body orbiting the

mass we want to measure. That is, far and away, the most precise measuring tool of

a body’s mass. Without another body whirling around the star, planet or asteroid,

one must fall back on other, imperfect means.

The Once Unknown Mass of Pluto

Pluto, discovered in 1930, illustrates the question. Before the discovery of Pluto’s

moon Charon, astronomers initially conjectured Pluto’s size from its perturbing

effects on Neptune, which were quite uncertain, and by guessing its size from its

magnitude (once its distance was known) and supposed albedo (reflectivity). But

reckoning mass from size is tricky business for a small, very distant body (even in

the cases where a tiny disk may be shown in a telescope), since it is hard to know

whether one is looking at a large, dusky sphere or a small, ice-covered, brilliant one.

Fortuitous events can sometimes help discern size: a lucky line-up of satellite and
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planet (as in the case of Pluto and Charon in the late 1980s) can create eclipses and

transits where the dip in total light from the system can be timed. Similarly,

occasional, timed occultations with distant stars each can greatly aid in deducing

size (as in the case with many asteroids and some Trans-Neptunian Objects, such as

Eris). If size is constrained to within a plausible range, the mass of the object can

sometimes be judged from its probable density and composition. This exercise can

be interesting but is imprecise. If we don’t know a body’s composition, whether it is

rocky, filled with the ice of some element, or layered with rock and ice or other

substance, its mean density will be speculative.

In the case of Pluto, textbooks written even two decades after the planet’s

discovery were still hopelessly uncertain about its mass, guessing it to be at most

about a tenth that of the Earth; off, it would later be found, by a factor of 40.

Harold Spencer Jones, the Astronomer Royal from 1933 to 1955 at the Royal

Greenwich Observatory, in England, wrote about Pluto in his 1951 book, General
Astronomy:

The mass of Pluto has been determined from the perturbations which it produces in the

longitude and latitude of Neptune; the masses deduced from each co-ordinate were in

close agreement, somewhat smaller than the mass of the Earth. This mass cannot

reasonably be reconciled, however, with the diameter of 000.23 measured by Kuiper in

1950 under good conditions with the 200-inch reflector on Mount Palomar. The albedo,

inferred from this diameter and the photovisual magnitude, is 0.17. The diameter is .46

times the Earth’s, a value midway between Mars and Mercury. The volume is one-tenth

that of the Earth; the mass derived from the perturbations of Neptune would therefore

require a mean density for Pluto of 50, which is physically impossible. The mass of Pluto

is not likely to be greater than one-tenth the Earth’s mass. The dynamical determination

depends to a considerable extent upon two observations of Lalande in 1795, which may be

affected by large errors.1

Another decade later, the problem still had not been solved. Pluto’s mass in one

popular text was now said to be “nearly equal to the mass of the Earth,” a ten-fold

increase in the previous error.2 The need to improve the mass estimate was

acknowledged: “New observations of the perturbations of Neptune by Pluto, now

in progress, may eventually resolve this problem.”3 Once Charon was discovered in

1978 and its close, rapid orbit eventually traced on photographs taken by excellent

telescopes, the Pluto–Charon combined mass was ultimately determined to be less

than 1/400th the mass of the Earth.4

1 Harold Spencer Jones [1].
2 Blanco and McCuskey [2].
3 Ibid.
4 The mass calculation of the Pluto + Charon is taken from Buie et al. [3]. Pluto appears to be

about .002 mass of the Earth, or close to 1/460th of it.
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Using Kepler’s Third Law to Find Mass

With reliable data, even the amateur at his desk can use gravity as a probe to

determine mass of planets, asteroids or other objects with admirable precision.

Kepler’s Third Law as modified by Newton can be reconfigured to solve for mass.

Begin with the full statement of Kepler’s Third Law:

P ¼ 2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G m1 þ m2ð Þp a3 2=

Now isolate the mass terms, first squaring each side:

P2 ¼ 4p2

G m1 þ m2ð Þ a
3

m1 þ m2 ¼ 4p2

G

� �
a3

P2

The sum of the masses equals a constant, 4p2/G, times the cube of the semi-

major axis divided by the square of the orbital period, in units of meters, kilograms

and seconds (the SI system). That’s all there is to it. The real challenge is in

obtaining accurate values for the variables of period and semi-major axis distance.

In the case of a star, the situation is no different. Again, the mass of a star of

known spectral type and luminosity can be approximated from its position on the

Hertzsprung-Russell diagram, or from the famous mass-luminosity relationship

developed in the 1920s by A. E. Eddington, or by other means. But again, these

methods are not exact, and it is only with binary star systems that astronomers

obtain a precise picture of the combined masses of the system. It may take years of

observations, however, to peg the period and semi-major axis of a double star

system. The mass equation will yield the aggregate mass; the individual masses can

often be teased out of the photographic or spectroscopic data on their motions if we

can ascertain their center of mass, or their individual velocities, as in some of the

problems below. Where the primary mass is overwhelmingly greater than its little

satellite or planet, then the sum of the masses will be a good enough approximation

of the mass of the primary alone.

If stellar spectroscopic observations reveal velocity, and we have an idea of the

separation between the orbiting components, then one may be in luck and find mass

that way. How is this so? Whether for a star or other body, the retooled Keplerian

equation can easily give us mass if the velocity is known. Recall the equation for

relative circular orbital velocity from the last chapter:

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G m1 þ m2ð Þ

R

r
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Where R is the distance between the masses. This we solve for the sum of the

masses, and we arrive at the useful relation,

m1 þ m2 ¼ v2R

G

And, where m1 � m2, then

m1 ’ v22R

G

where v2 is the velocity of the small secondary mass. These variations on Kepler’s

Third Law are useful equations! Just by clocking the speed of a tiny whirling mass

around its center of mass we can get at the total mass of the system. It can be applied

to an earth satellite, a planetary probe orbiting another planet, an asteroid, a star,

and even our entire galaxy. The physical laws stretch across the cosmos to tell us

vital information regarding mass, if only we can spot one body orbiting another.

The breathtaking power of Newton’s gravitational theory, applicable in all reaches

of the universe, is demonstrated time and again with great success.

Ratios of Ratios, All Is Ratios: The Historical Use of Kepler’s

Third Law to Determine Mass by Proportions

In the days before the gravitational constant was known, before the SI system was in

wide use, or instruments existed that allowed measurements with any exactitude,

evaluation of mass by ratios and proportions, in terms of solar masses (or Earth

masses) was the coin of the realm. There is something refreshingly simple and

intuitive about reasoning by proportions and approximations. Though texts nowa-

days rarely use proportional reasoning, facility with it enables understanding of the

history behind the science and often gives greater insight into physical

relationships. Take Kepler’s Third Law expressed just in terms of its variables:

m1 þ m2 / a3

P2

Historical investigations were limited to the known planets and satellites of our

solar system. The primary mass of the Sun is overwhelmingly more massive that

each of its planets; each planet orders of magnitude more massive than each

satellite. In either case m1 + m2 � m1 was (and is) a fair approximation and,

m / a3

P2

216 11 Using Kepler’s Third Law to Find the Masses of Stars and Planets



As we saw in Chap. 4, if one determines the Keplerian ratio of distance-cubed

over period-squared for any planet (which we’ll call its “Keplerian mass ratio”) the

result, assuming we use consistent units of measurement, is a nearly identical

fraction, a constant, for each planet (discounting the small differences induced by

the individual masses): this is the empirical relationship Kepler noticed that led to

his law. This numerical fraction is unique to the solar system, because the primary

mass is the Sun. Imagine a small particle of insignificant mass at any orbital

distance from any body, be it the Sun, a planet, or distant star. The particle acts

as a tracer of the mass of the primary: the ratio of its distance cubed to period

squared will always be the same for a given primary mass. Another solar system
with a different star of different mass would demonstrate another, unique,

Keplerian mass ratio – another a3/P2 number – which would be the same for all

the (presumed small) planets of that solar system.5

The special Keplerian mass ratio in a planetary system (where each m2 � m1),

then, is a function of the primary star’s mass. Similarly, all the satellites of a planet,

be it one moon or many, will have their own, common, Keplerian mass ratio, as we

saw, for example, with Jupiter’s Galilean moons. This ratio will have one value for

the moons of one planet, and another value for the moons of another planet. The

Keplerian mass ratio will be individual to the particular satellite system, and purely

a function of mass of the system. Again, since the moons of planets are only a small

fraction of the mass of the primary (with our Moon and Charon being notable

exceptions) the Keplerian mass ratios of planetary systems will in most cases be

closely a function of the planet’s mass alone.

Given these gravitationally determined relationships, one can calculate the

relation of a planet’s mass in our solar system to the mass of the Sun: it is the
ratio of the two Keplerian mass ratios. In other words, the Keplerian mass ratio of

the satellite system, determined by the planet’s mass, can be compared to the

Keplerian mass ratio of the solar system, determined by the Sun’s mass; the ratio

of the two yields the planet’s mass in relation to the Sun. To illustrate, where a is

the semi-major axis (or radius in circular orbits) and P the period, of a planet and

its satellite:

This ratio:

a3planet
P2
planet

¼ Keplerian mass ratio; determined by the mass of Sun

5As we noted earlier, Kepler’s Third Law may never have been discovered if the solar system had

planets of very great mass (say, well in excess that of Jupiter), for then the clear a3/P2 relationship

would not have been so apparent. The irregularities in the relationship, as we investigated in Chap. 8,

would have been noticeable even in the crude instruments that Tycho Brahe used, and Kepler’s Third

Law might have been long delayed (and likely had another name). We were (and are!) fortunate that

our system does not resemble one of the exoplanet systems where giant planets have been detected

orbiting close to the parent stars. Of course, in that case, we probably would not be here to think

about it.
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divided by this ratio:

a3satellite
P2
satellite

¼ Keplerian mass ratio; determimed by the mass of the orbited planet

yields the mass of the planet in relation to the Sun. Or, more succinctly:

m�planet ¼ aplanet
asatellite

� � 3 Psatellite

Pplanet

� � 2

This equation in one step gives us the relative mass of a planet to the Sun. Its

reciprocal gives the amount by which the Sun is more massive than the planet. Its

use is not limited to the solar system of course: gravity is universal. For example, to

find the mass of a star in solar masses circled by a planet:

mstarþplanet ¼ asolar planet
astar0s planet

� � 3 Pstar0s planet

Psolar planet

� � 2

This tells us the mass of the combined star plus planet system which will usually

closely approximate the mass of the star. One can derive other variations on

Kepler’s Third Law to accomplish the same result. Newton, in fact, used a simple

alternative of this method in Book III of the Principia to approximate the masses of

Earth, Jupiter and Saturn, using the solar mass as the unit of measurement.

How Newton Estimated Planetary Masses

It must have appeared stunning to others that with basic data and his profoundly

original insight, Newton could purport to find the mass of the planets: to discern the

actual quantity of matter and even density of these distant, unreachable objects that

had been curious mysteries to mankind since ancient times.

In Proposition VIII of Book III of the Principia, Newton uses the term “weight”

to refer to the force acting on an object, which depends on the mass of both the

attracted and attracting bodies. The proposition states that in two spheres of

assumed uniform density, the “weight of either sphere towards the other will be

inversely as the square of the distance between their centers.” This restatement of

the inverse square law prepares us for what follows. In the first two corollaries to the

proposition, Newton describes his method of finding the masses of orbiting objects:

PROPOSITION VIII, COROLLARY I

Hence we may find and compare together the weights of bodies towards different planets;

for the weights of bodies revolving in circles about planets are (by Cor. II, Prop. IV, Book I)

directly as the diameters of the circles and inversely as the squares of their periodic times. . .
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[B]y computation I found that the weight of equal bodies, at equal distances from the

centres of the sun, of Jupiter, of Saturn, and of the Earth, were to one another as 1, 1/1067,
1/3021, and

1/169282 respectively.
6

PROPOSITION VIII, COROLLARY II

Hence likewise we discover the quantity of matter in the several planets; for their quantities

are as the forces of gravity at equal distances from their centres; that is, in the sun, Jupiter,

Saturn, and the earth, as 1, 1/1067,
1/3021, and

1/169282 respectively.
7

Let us see what this means. From the first corollary:

[T]he weights of bodies revolving in circles about planets are. . .directly as the diameters of

the circles and inversely as the squares of their periodic times. . .

Since being proportional to a diameter is being proportional to a radius, we may

put Newton’s statement this way: the accelerations of circularly orbiting masses are

proportional to their radii divided by the squares of the periods:

f1 : f2 ::
a1
P2
1

:
a2
P2
2

This we recognize from the Corollary 2 of Proposition IV in Book I of the

Principia which we considered in Chap. 7.8 This relationship can be employed for

any planet orbiting the Sun whose mass we wish to know, and for a satellite orbiting

the planet. Then to compare them, we must mathematically make them the same

distance away from their primaries:

Hence likewise we discover the quantity of matter in the several planets; for their quantities

are as the forces of gravity at equal distances from their centres. . .

Here Newton tells us that if we put masses the same distance from the orbited

bodies, “at equal distances from their centres,” then compare their gravitational

accelerations toward their parent body, the different accelerations will be propor-

tional to their different masses (“the quantity of matter” in each). By taking their

ratio, one arrives at the mass of the planet in relation to the Sun.

Newton used the orbit of Venus as his reference distance to find the masses of

Earth, Jupiter and Saturn. Those three planets were the only ones then known to

have satellites; Mars’ little moons were not to be discovered for another 200 years,

and humanity knew of no other planets beyond Jupiter.

6 Florian Cajori [4]. (Short title) Principia. (Underlining added for emphasis).
7 Ibid., Cor. II (underlining added for emphasis).
8 This expression, again, can be readily derived. Since circular velocity (v ¼ 2pr/P) is proportional
to radius over period (v: r/P), that proportion can be substituted for velocity in the equation for

centripetal acceleration (f ¼ v2/r), such that for any circle, f: r/P2. Here we use the more general

notation for a as semi-major axis, which for a circle is its radius.
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Newton’s Calculation of the Mass of Jupiter

Problem Given Newton’s data below, use the Newton’s method given in the

Principia, Book III, Proposition VIII, to find Jupiter’s mass.

Given

224d.16 ¾ h Venus’ period given by Newton. This is 5392.75 h, or 224.6979 days.

We will label the decimal day value Pv

72,400 Mean distance of Venus from the Sun, in hundred-thousandths of the Earth’s

distance from the Sun, according to Newton’s Phenomenon IV of Book III.

This translates to .724 astronomical units (AU). We will label it av
16d.16 8/15 h Period of the “utmost circumjovial satellite revolving about Jupiter” according

to Newton, which moon is now known as Callisto, equivalent to 440.5 h or

16.6889 days. We will call the decimal day value of Callisto’s period, Pc

520,000 Mean distance of Jupiter from the Sun, in hundred-thousandths of the Earth’s

distance from the Sun, according to Newton’s Phenomenon IV of Book III.

This is equivalent to 5.2 AU. This is only used with reference to the value

next given below

80 1600 Callisto’s mean elongation from Jupiter, according to Newton. At Jupiter’s given

distance, this corresponds to about 1,250 hundred-thousandths of the Earth’s

distance from the Sun, or .0125 AU.9 It will be denoted ac

Assumptions We will assume as Newton did that the bodies are spheres of

uniform density and that that no other forces are at work, and use Newton’s data

as given.

Method First, using Venus as a reference as Newton did, it is necessary to find the

accelerations acting on Venus from the Sun (denoted fvenus), and on Callisto from

Jupiter (denoted fcallisto). This means finding value of a/P2 for both Venus and

Callisto. Then, mathematically move Callisto as far from Jupiter as Venus is from

the Sun, to find the new acceleration acting on that moon (denoted fcallisto new). This

then enables comparison of the accelerations, respectively from the Sun on Venus

and Jupiter on Callisto “at equal distances from their centres” of revolution. At that

point, the task is to find the change in gravitational acceleration acting on Callisto

by this mathematical relocation of Callisto from its orbit out to the distance of

Venus. For this it is required to apply the inverse square law, since any change of

distance will have an inverse squared effect on acceleration. Accelerations will not

be in SI units of meters per second squared, but in AU per day squared. We could

have chosen other units. The choice may be dictated by the scale of the problem and

the data at hand. We are using the data Newton had available to him. Since we will

9 One may imagine a circle with the Sun at the center and a radius of 5.2 AU drawn to Jupiter.

Another line from the Sun drawn to Callisto at maximum elongation (distance from Jupiter)

forms a tiny angle y only 80 1600 in extent, according to the best measures available to Newton.

The reader can confirm that this angle in radians times Jupiter’s distance yields the separation

given of .0125 AU.
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be dealing with proportions, it does not matter at all what units we use so long as we

are consistent.

Calculations To find the acceleration of Venus in our AU/days system of units:

fvenus ¼ av
P2
v

fvenus ¼ :724

224:6979ð Þ2

fvenus ¼ 1:4334� 10�5

Note that if Jupiter, or any other planet, were at Venus’ distance from the Sun, it

would experience the same acceleration by virtue of being the same distance from

the center of the Sun. Similarly, to find the acceleration of Callisto at its regular

distance from Jupiter,

fcallisto ¼ ac
P2
c

fcallisto ¼ :0125

16:6889ð Þ2

fVenus ¼ 4:488� 10�5

Now we need to true-up the distances. We mathematically move Callisto a long

distance away from Jupiter, all the way to the distance Venus is from the Sun. The

change in gravitational acceleration will be the ratio of the squares of the distances:

fchange factor ¼ a2c
a2v

fchange factor ¼ :0125ð Þ2
:724ð Þ2

fchange factor ¼ 2:981� 10�4

This should be the factor reflecting the change in gravitational acceleration experi-

enced by Callisto when we move as far from Jupiter as .724 AU. Let’s apply that

change factor to Callisto’s acceleration:

fcallisto new ¼ fchange factor � fcallisto
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fcallisto new ¼ 1:33782� 10�8

This Venus-distance acceleration on Callisto is understandably greatly less than it

experiences in its regular orbit. We can now finally compare the ratios of the

gravitational accelerations (determined by the respective masses of the attracting

body) of the Sun on Venus, at Venus’ distance (.724 AU), and Jupiter on Callisto, at

the same Venus distance. The result will be the ratio of the mass of the Sun to the

mass of Jupiter:

M�
MJ

¼ fvenus
fcallisto new

M�
MJ

¼ 4:488� 10�5

1:33782� 10�8

M�
MJ

¼ 1072

This means that, using the given data, Jupiter is 1/1,072 the mass of the Sun. Or,

there are about 1,072 Jovian masses in one solar mass.

Observations

1. This value is slightly different from that found by Newton of 1/1,067, but working

with Newton’s method, as Dana Densmore expressed it, has “served our purpose

in participating in Newton’s reasoning.”10

2. Newton used Venus’ orbit as the convenient reference for all three planets, but

this was not the only way to do it. He could have used the orbit of the parent

planet in each case. For example, Newton could have used the acceleration of

Callisto measured with reference to Jupiter’s orbit. The steps would be: find the

a/P2 value for Jupiter where it is; find the a/P2 value for Callisto; use the inverse

square law to relocate Callisto to 5.2 AU from Jupiter; calculate their ratios.

3. That the method Newton used is reducible to the “ratio of Keplerian mass ratios”

is easily shown by algebraic means. Let us apply it using Jupiter’s orbit (rather

than Venus’) as the reference orbit. We will use Newton’s data again to see what

Newton would have come up with. Newton gives Jupiter’s orbital period as

10Densmore [5]. Densmore gives a far more detailed and quite beautifully explicated account of

Newton’s method in her book. She arrives at a similar result to what we found above (1/1,067). She

states: “It is not clear why we and Newton should not obtain exactly the same results if we both

start with the same data. Perhaps there is a rounding discrepancy, or perhaps he used data he

arrived at on another occasion (it is known that he did for one value that went into these

calculations).” It is possible the discrepancy may be accounted for if one assumes that Newton

used Jupiter, rather than Venus for the reference orbit when he actually ran the calculations. While

his narrative clearly suggests that he used Venus, one can, as noted above, arrive at Newton’s value

more exactly this way.
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4332.514 days.11 The other values are the same as before. Using the equation

below and inserting the numerical values for Jupiter and Callisto, we have,

m�planet ¼ aplanet
asatellite

� � 3 Psatellite

Pplanet

� � 2

m�planet ¼ 5:2

:0125

� � 3
16:6889

4332:514

� �2

m�planet ¼ 1068

This is actually closer to what Newton found, in Jovian masses (1,067).

4. Since Newton’s day, the distances and ratios of the planets and their satellites

have been determined with great refinement. Using data from the Astronomical
Almanac, the ratios become:

m�planet ¼ aplanet
asatellite

� � 3 Psatellite

Pplanet

� � 2

m�planet ¼ 5:2028870

:01258707755

� � 3
16:689

4332:514

� � 2

m�planet ¼ 1048

Notice there has been virtually no change to the deduced periods since Newton’s

time (the relatively rapid motion of planets and satellites enabling high precision

on this, even from early times); however, the semi-major axis of Callisto is

slightly larger than Newton had it. Because the distances are cubed, errors there

have profound effect. Jupiter has “become” slightly heavier.

“Weighing” Jupiter the Modern Way

We could pick any Jovian satellite we wish to ascertain Jupiter’s mass. Its little

satellites spinning day and night around its great bulk give us an ideal tool for

determining its mass using SI units. We will use Amalthea, one of Jupiter’s tiniest

inner moons. It has a nearly circular orbit (eccentricity .003) though that need not be

a condition to using it.12

11Principia, Book III, Phenomenon IV, 405.
12 Satellite data is from The Astronomical Almanac for the Year 2012, F2 (Washington: U.S. Govt.

Printing Office, 2102).

“Weighing” Jupiter the Modern Way 223



Problem Using the orbital information about Amalthea given below, find the

approximate mass of Jupiter in SI units.

Given

m1 þ m2 ¼ 4p2
G

� �
a3

P2
Kepler’s Third Law

G The gravitational constant, 6.674 � 10�11 N˙m
2/kg

a The semi-major axis of Jupiter’s satellite Amalthea,

determined from observation: 181,200 km

P Orbital period given for Amalthea: .498179 days

Assumptions We will assume the accuracy of our data, no perturbing effects on

Amalthea’s orbit, and a pure “Keplerian” two-body system. We will ignore

Amalthea’s own mass.

Method Since we are using SI mks units, we will need to convert Amalthea’s

semi-major axis distance into meters and its period into seconds. Then we solve for

the sum of the masses in the equation given. Because Amalthea is so tiny in

comparison to Jupiter, we can assume that that the sum of the masses is, to a high

order of accuracy, Jupiter’s mass, that is m1 + m2 � m1.

Calculations First we must convert Amalthea’s period into seconds: take

.48179 days times 24 h times 60 s to yield 43,042.666 s. The semi-major axis

distance of 181,200 km is equivalent to 181,200,000 m. Inserting these values into

the mass equation given above, we have,

m1 þ m2 ¼ 4p2

G

� �
a3

P2

m1 þ m2 ¼ 4 3:1415::ð Þ2
6:674� 10�11

 !
1:812� 108ð Þ3

4:304266� 104ð Þ2

m1 þ m2 ¼ 1:899� 1027kg

Since m1 � m2,

m1 ’ 1:899� 1027|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Mass of Jupiter in kilograms

Observations

1. This value accords closely with the published value for Jupiter of

1.8981 � 1027 kg.13 Would the assumptions we made account for the small

difference in the result?

13 The Astronomical Almanac for the year 2012 E4.
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2. The Sun’s is about 1.989 � 1030 kg, which puts Jupiter’s mass at 1/1,048 the

solar mass, consistent with our last result above. The Sun is thus roughly a

thousand times more massive than Jupiter. Recall Isaac Newton had determined

the ratio to be 1/1,067, an extremely close match!14

3. Almathea’s mass (reciprocal mass ratio) is 1/909090909 that of Jupiter.15 That

is, Jupiter is not quite a billion times more massive. To put it in a more familiar

context, Amalthea’s mass is only (relatively speaking) 2.1 � 1018 kg, or about

one thirty-five-thousandth the mass of our Moon. Hence, it goes without saying

that the error in disregarding its mass in the computation of Jupiter’s mass is

slight in the extreme.

4. We could use Amalthea’s velocity to find Jupiter’s mass. Amalthea orbits Jupiter

at a speedy 26.45 km/s. If we take the equation we derived above, m1 � v2r/G
(where m1 � m2), and remember to use mks units, we get the same result:

m1 ’ v2R

G

m1 ’ 26:45� 103ð Þ2ð1:812� 108Þ
6:674� 10�11

m1 ’ 1:899� 1027 kg

5. Once we know Jupiter’s mass, other physical properties can be derived. For

example, since we know the mass of Jupiter, and we have an idea of its size

from observation, we can determine its density. The volume of a sphere is

V ¼ 4pr3/3. Density (usually symbolized by r) is by definition mass per unit

volume, r ¼ m/V. Hence the density is r ¼ 3m/4pr3. From its distance and

angular diameter, and from the eclipses and transits of its moons, astronomers

know quite accurately that Jupiter’s mean radius is 69,911 km (it is not a perfect

sphere, and its equatorial radius is actually larger). Hence the density of the planet

is about1.3 kg/m3, or about a quarter of Earth’s density. From this, astronomers

have long inferred its mainly gaseous composition.

Calculating the Combined Masses of Quaoar
and Its Satellite Weywot

Kuiper Belt objects (KBOs) are icy members of a planetesimal population of our

solar system beyond Neptune. One of those objects, Quaoar, has a satellite,

Weywot, studied by Wesley Fraser and Michael Brown of Caltech. From images

14Principia, Book III, Prop. VIII, Theorem VIII, Cor. I, 416.
15 Ibid., F3.
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taken with the Wide Field Planetary Camera 2 aboard the Hubble Space Telescope,
Fraser and Brown deduced a period for Weywot of 12.438 days, a semi-major axis

of 1.45 � 104 km.

Problem Using the Kepler’s Third Law, approximate mass of the

Quaoar–Weywot system, in kilograms.

Given

m1 þ m2 ¼ 4p2
G

� �
a3

P2
Kepler’s Third Law, rearranged to solve for mass

G The gravitational constant, 6.674 � 10�11 N˙m
2/kg

a Weywot’s semi-major axis: 1.45 � 107 m

P Orbital period given for Weywot: 12.438 days

Assumptions We will assume the accuracy of the given data and that again we are

dealing with a pure “Keplerian” two-body system.16

Method We will need to convert Weywot’s period into seconds (the distance

conversion to meters is already done). Then we solve for the sum of the masses

using Kepler’s Third Law adapted for finding mass.

Calculations We first convert 12.438 days into seconds, by multiplying that

number of days by 86,400 s in a day. The resulting period is 1.0746432 � 106 s.

Inserting the appropriate values into the equation, we get this result:

m1 þ m2 ¼ 4p2

G

� �
a3

P2

m1 þ m2 ¼ 4 3:1415::ð Þ2
6:674� 10�11

 !
1:45� 107ð Þ3

1:0746432� 106ð Þ2

m1 þ m2 ’ 1:6� 1021|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Aggregate mass of Quaoar and Weywot in kilograms

Observations

1. This result is in accord with the result published in the investigators’ article cited

above. By estimates of the likely density and size of Quaoar, the authors deduced

the likely mass of Quaoar to be about 1.55 � 1021 kg, or about 97% of the mass

of the whole system. This puts Weywot at about 1.15 � 1019 kg, or about 24

times Amalthea’s mass, and 1/1,460 the mass of our Moon.

16 The additional assumptions in gathering and processing the data can be found in Wesley C.

Fraser and Michael E. Brown’s article [6].
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2. This above calculations required that we know only a few things from observation

about the planet, or dwarf planet, and their satellites. Unless you have software to

lend a hand, the above math might have seemed a little laborious, even on a

calculator, involving SI units and the value of G which are a rather tedious to

use. There are of course shortcuts we can remember and use. For example, 4p2/
G � 5.9 � 1011, but even so one would still need to accomplish the conversion of

distance and period into SI units and work through the calculations. Below we will

look at some ways in which the Kepler–Newton equation has been greatly

simplified and its usefulness increased.

Manipulating Units to Simplify Equations

We can achieve startling simplifications of the Kepler’s Third Law when we leave

the SI system and use units such as solar masses, years, and AU as the units.

Problem Find a simple algebraic value for the constant G using Newton’s modifi-

cation to Kepler’s Third Law, using units of solar masses, the astronomical unit and

seconds, then years, where the secondary mass is insignificantly small in relation to

the primary mass.

Given

P ¼ 2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G m1þm2ð Þ

p a3 2= Kepler’s Third Law, in Newtonian form

P Period, where units will be years

a Distance from the primary to the secondary mass, where units

will be the astronomical unit

m1 Primary mass m1 � m1 þ m2. in solar mass units

G The gravitational constant

Assumptions We assume the secondary mass is insignificant compared to the

primary, and ignore all other potential physical effects.

Method First change the units so that a is one astronomical unit, and m is one solar

mass. Then insert the given values, which are ones, and solve for G. Since the

Keplerian relationships, once defined, should hold for any situation, and for planet

in the solar system, it doesn’t matter which planet we pick to start with. Because the

Earth is 1 AU distant from the Sun, and because its period is 1 year, we know the

units will be simple. We will therefore choose the Earth as the starting point.

Calculations We start with Kepler’s Third Law, where we assume negligible

secondary mass:

P ¼ 2pffiffiffiffiffiffiffiffiffi
Gm1

p a3 2=
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and take the first step to isolate G:

ffiffiffiffi
G

p
¼ 2p

P
ffiffiffiffiffiffi
m1

p a3 2=

Our mass unit is given as “one solar mass,” the solar mass being unity. Thus as

we are referring to the Sun, m1 ¼ 1. Furthermore, the distance term a is defined in

units of the distance between the Earth and Sun, which is 1 astronomical unit (AU).

Earth revolves around the Sun at a ¼ 1. (We’ll leave the period units in seconds for

now). Since the mass and radius terms are unity, the equation simplifies

dramatically:

ffiffiffiffi
G

p
¼ 2p

P

G ¼ 4p2

P2|fflfflfflfflffl{zfflfflfflfflffl}
G where units are solar masses; AU; and seconds

Now if we use the year as our unit of time, such that for the Earth–Sun system,

P ¼ 1, then this final simplification makes life even easier:

G ¼ 4p2|fflfflfflfflffl{zfflfflfflfflffl}
G where units are solar masses; AU; and years

The above holds for the Earth-Sun system of units (AU, one solar mass and

1 year), where we assume a particle of near-zero mass is orbiting the Sun. That is,

we assume a negligible secondary mass. The results of such calculations will be in

AU, solar masses and years, which astronomers are used to using.

Reducing Kepler’s Third Law to Its Simplest Form

Imagine that you are a new young astronomer hired by an observatory that has been

observing double stars for some time (this used to be a major occupation of some

observatories). Over the years, diligent people before you gleaned extensive data on

the distances and periods of various stars, but now someone needs to analyze this

data and ascertain their masses in the simplest way.

Problem Use algebraic means to simplify the equation for Kepler’s Third Law to

find the collective mass of a binary system, using only units that every astronomer is

familiar with: the astronomical unit, the year, and the solar mass.
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Given

P ¼ 2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G m1þm2ð Þ

p a3 2= Kepler’s Third Law, appropriate for mks units

G ¼ 4p2 The inertial constant derived above, when the units

are solar masses, AU and years

Assumptions Assume motion in perfectly elliptical orbits of any eccentricity

(including zero). Other than ignoring all potential physical effects, we need make

no further assumptions.

Method We use the units given above, and simplify using the given inertial

constant. Since the question asks us to find the collective masses of the stars,

we’ll isolate the mass terms on the left of the equation.

Calculations The first step is a modest rearrangement for clarity, grouping the

inertial constant and p terms together:

P2 ¼ 4p2

G

� �
a3

m1 þ m2

Now, because in the case where the time units are years, G ¼ 4p2, the fraction
cancels to unity. Solving for the sum of the masses, we are left with a most beautiful

equation and one of the most practical in astronomy. It is the ultimate reduction of

Kepler’s Third Law, which in this form the name Kepler’s Harmonic Law seems

most appropriately applied:

m1 þ m2 ¼ a3

P2

Observations

1. Again, these units are solar masses, astronomical units and years. If the orbital
period is given in days, instead of years, we would divide the period by 365.25 as

part of the equation, to still be using these basic “astronomer’s units.”

2. Perfectly elliptical orbits are not really possible in the solar system because of

the perturbations of other planets. But double star systems with enough separa-

tion such that tides play no role travel in almost perfect ellipses and are excellent

illustrations of Kepler’s Laws.17 There too, the orbits of each around their

mutual center of mass is often very obvious, unlike the case in our solar system

where the Sun’s mass so dominates the masses of any planet that the center of

mass is virtually indistinguishable from the Sun itself.

17 See a concise description of this in James Kaler [7].
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3. Applying the above equation to a double star system requires finding the

separation of the stars from each other and the period of revolution. This may

take many years of observations. But once they are approximated, the sum of the

masses can be derived. And from the star orbits, the center of mass can be

approximated because as we saw from the “big mass, small orbit” rule of the

previous chapter, the semi-major axes of each star are inversely proportional to

the respective masses of the stars: a1/a2 ¼ m2/m1.

4. Astronomers can determine the semi-major axes of visual double star orbits by

measuring their angular separation, or parallax (denoted usually by r with units

of arcseconds), of the star from its companion, as seen from Earth. By definition,

a parallax separation of 1 s of arc (1 arcsecond) means the star is 1 parsec (3.26
light years) away. A useful thing about parallax for our purposes is that 1 AU is

the separation of a star from its companion seen from a distance of 1 parsec –

where the angular separation is 1 s of arc. If the angular separation is therefore

divided by the parallax, the result is the separation in astronomical units. If we

apply this to the equation for Kepler’s Third Law, using arcseconds as the units

for the semi-major axis, the equation becomes:

m1 þ m2 ¼ a3

P2r3

The next problem applies this variation on Kepler’s Harmonic Law to a well-

known double star system.

Finding the Combined Masses of Sirius and Its Companion

Problem With the data given below, find the combined mass of Sirius (Sirius A),

in the constellation of Canis Major, and its companion (Sirius B).

Given

m1 þ m2 ¼ a3

P2r3
Kepler’s Third Law, in units given below

a Semi-major axis of Sirius A and B: 7.5600 (arcseconds)
r Parallax of Sirius: .37900

P Orbital period of Sirius A/B: 49.9 years

Assumptions While satellite instruments such as the European Space Agency’s

Hipparcos mission18 have greatly improved the accuracy of stellar parallaxes, such

measurements still have a range of error associated with them. We will ignore

measurement error in this problem.

18 See http://www.rssd.esa.int/index.php?project¼HIPPARCOS.
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Method Since the equation and data are given, simply substitute the appropriate

values into the equation and solve for the sum of the masses.

Calculations We begin with Kepler’s Harmonic Law, modified as discussed

above to accommodate our choice of units:

m1 þ m2 ¼ a3

P2r3

m1 þ m2 ¼ 7:56ð Þ3
49:9ð Þ2 :379ð Þ3

m1 þ m2 ¼ 3:19 M�

Observations

1. The M with the subscript is the conventional notation for solar masses. The sum

of the masses is a little more than three solar masses. Interestingly, it turns out

that about one-third of the contribution to this total mass of the system (almost

one solar mass) comes from Sirius B, yet it is only about the size of the Earth!

Sirius B is in fact one of the earliest discovered of those brilliant, dense, small

stars known as white dwarfs.
2. If the actual separation of the masses in astronomical units has been calculated

and is known, we can again use this equation:

m1 þ m2 ¼ a3

P2

For example, Alpha Centauri is a visual double star system with a semi-major

axis of 20.6 AU and a period of 68 years. The sum of the masses of the two

stars is,

m1 þ m2 ¼ 20:6ð Þ3
68ð Þ2

m1 þ m2 ¼ 1:9 M�

Determining the Individual Masses in the Double
Star System Alpha Centauri

Problem In the case of Alpha Centauri, discussed just above, astronomers have

learned from spectroscopy the stellar velocities of the orbiting stars. It is known that

one star (which we’ll call a1) orbits .7 times as far from the center of mass as its
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companion, a2. Knowing the combined masses for Alpha Centauri and its compan-

ion from the above example, and given the information below, calculate the

individual masses of the components of the system.

Given

a1/a2 ¼ m2/m1 Relationship between masses and distances from the center of mass

of two objects in orbit around their common center of mass

a1 ¼ .7a2 The relationship of stellar distances from the center of mass

in the a Centauri system

Assumptions Again we will take as given the observational data and initial

conclusions as to distances, and understand that the result will be only as accurate

as our input data. For example, the preciseness of the determination of distances

from spectrally measured velocities will depend in part on the size and quality of

the telescope, the sophistication of the spectrographic equipment, the quality of

the atmosphere when the spectroscopic images were recorded, and many other

variables.

Method The simple relationship among masses and distances is the key to finding

individual masses. If we know the ratio of the distances, we know the ratio of the

masses. From the ratio of masses, and knowing the sum of the masses, we have

sufficient information to derive the individual masses.

Calculations Since from the center of mass equation, a1 m1 ¼ a2 m2, and given

that a1 ¼ .7a2, we substitute the right-hand term for a1:

:7a2m1 ¼ a2m2

Cancelling the distance terms yields,

:7m1 ¼ m2

consistent, of course, with the statement that the ratio of the masses is in inverse

relation to their distances from the center of mass. But since we are given the sum of

the masses,

m1 þ m2 ¼ 1:9 M�

we can substitute for m2 from the previous expression and obtain the first mass:

m1 þ :7m1 ¼ 1:9 M�

m1 ¼ 1:1 M�
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And, since .7 m1 ¼ m2, then the second mass will be,

m2 ¼ :8 M�

Alpha Centauri A is therefore about 1.1 solar masses, and its companion, Alpha

Centauri B, is about .8 solar masses.

Observations

1. The shortest period of any binary star known is HM Cancri, a twenty-first

magnitude star and an x-ray source 21,000 light years away. A spectrum by

the Keck I telescope showed the objects to be tightly revolving white dwarf stars.

They have a period of 5.4 min. If we assume a separation of about 65,600 km

(a little over five Earth diameters, center to center distance) this translates to

about .0004385 AU. We can then find their combined masses. Using Kepler’s

Harmonic Law, we may make the substitutions for semi-major axis and period.

But we first need to convert minutes to years, and that is .000010267 years. We

can also mathematically treat the stars as if one star were fixed and the other is

revolving around it, and call the distance given as equal to the semi-major axis.

Hence, we have

m1 þ m2 ¼ a3

P2

m1 þ m2 ¼ :0004385ð Þ3
:000010267ð Þ2

m1 þ m2 ¼ :8 M�

The combined masses of these two white dwarfs are therefore about the mass of

Alpha Centauri B.19

2. The spectral redshifts and blueshifts of HM Cancri show that one star is

revolving with a velocity that is 2.2 times faster than the velocity of the other.

From this information alone we can deduce their individual masses. The

velocities are inversely proportional to their masses, so the fastest star is the

lightest. You must therefore multiply the mass of the lighter star (which we’ll

call m2) by 2.2 to get the heavier star’s mass: m1 ¼ 2.2 m2. Hence the equation

for the combined masses is 2.2 m2 + m2 ¼ .8. Thus,

m2 ¼ :25 M�

19 See “Fastest Known Binary Star,” Sky & Telescope, June 2010, p. 15. The article reports that the
companions are “only about three Earth diameters apart.” We don’t know from the article if that is

a surface-to-surface or center-to-center distance, but we have in any event used five Earth

diameters as the only plausible distance given the masses and the period stated in the article.
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or only a quarter of the Sun’s mass. The heavier star is 2.2 times this,

m1 ¼ :55 M�

This is quite a lightweight stellar system!

What Is the Mass of Our Galaxy? (And Observations

on Dark Matter)

We have seen how simple applications of Kepler’s Third Law enable us to weigh

planets and stars. Why shouldn’t we be able to weigh whole systems of stars, such

as globular clusters and galaxies? The next problem approaches the determination

of mass of our Milky Way galaxy. The key that makes this possible is the

knowledge that our galaxy, in common with all other observed spiral galaxies, is

rotating about its massive center. Our solar system is an outlier in the galaxy, and

rides around this massive, flattened pinwheel about once every quarter billion years.
To give a sense of how long this is, the last time we were at this location in the

galaxy, our planet was at the beginning of the Mesozoic Era, and the whole long age

of the dinosaurs lay ahead, after the great Permian Extinction. This great, rotating

colossus of billions of stars and untold quantities of gas and dust surprisingly does

afford us a simple means of finding its mass. Since it is rotating, we can apply the

same principles as work for any other orbiting thing, and determine mass from

rotational velocity.

Problem Given the Sun’s velocity, determine the mass of the galaxy interior to the

Sun’s orbit around the galactic center.

Given

m1 ’ v2R
G

Equation for determining mass from velocity

R The distance of the Sun from the galactic center. This is about 8 kiloparsecs

(thousands of parsecs), or 8 � 1000 � 3.26 light years, or about

2.5 � 1020 m.a

v The velocity of the Sun in its orbit around the galaxy: 220 km/s

G Gravitational constant: 6.674 � 10�11 N˙m
2/kg

aOne light year is 9.46 � 1012 km

Assumptions The values of distance and velocity are approximate. The mass

ascertainable by this method is the mass interior to the Sun. We will discuss

below how astronomers have analyzed the remaining mass.

Method The first step is to be sure all units are in SI units, then insert the

appropriate values into the given equation. The solar mass is utterly insignificant

in relation to the galactic mass.
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Calculations All we need to do is put the solar velocity in meters per second, then

solve for mass:

mgalaxy:partial ¼ v2R

G

mgalaxy:partial ¼ 220000ð Þ22:5� 1020

6:674� 10�11

mgalaxy:partial ¼ 1:8� 1041 kg

This is the enormous mass of the Milky Way galaxy interior to the Sun,

including gas, dust and any other form of matter, including a black hole at our

galaxy’s center.

Observations

1. Since the Sun’s mass is about 1.99 � 1030 kg, there are about 9 � 1010 solar

masses from the center of our galaxy out to the Sun. That is 90 billion suns worth

of matter!

2. We could of course do this calculation using the simple units we used before, of

years, AU and solar masses. Given a period of 225 Ma and a distance in AU of

8,000 parsecs � 206,000 AU/parsec ¼ 1.648 � 109 AU, we arrive at the

same result:

mgalaxyðpartialÞ� ¼ a3

P2

mgalaxyðpartialÞ� ¼ 1:648� 109ð Þ3
2:25� 108ð Þ2

mgalaxyðpartialÞ� � 9� 1010

3. The visible mass of the galaxy appears concentrated in the core and inner

regions. Far out from our Sun into the galactic fringes, the apparent density of

stars, dust and gas is vastly lower. Yet herein lies a puzzle. It appears that

particles at the outskirts of our galaxy rotate about as fast as our Sun. Why is

the velocity the same? We know from earlier discussion that the velocity v
should be proportional to the inverse square root of the radius: 1/√R. If the mass

interior to the Sun were substantially all of the mass in the galaxy, such that we

were on its very edge, the expected velocity at twice the distance out would be

v/√2, not the same v. We would in that case expect particles at 2R to be orbiting
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at about 156 km/s. In other words, there would be a normal Keplerian drop-off of

velocity. But even though there is in fact some galactic material beyond the Sun,

which should increase speeds somewhat, the velocity curve is still relatively flat.

Thus, at distance 2R, particles orbit with the same velocity as our Sun, so the

galactic mass must be about twice what it is within the solar system’s orbital

distance of R. (Do you see from the equation why this should be so?) The

overarching question is, why is the galactic mass sufficient to create a velocity

of 220 km/s twice as far out from the Sun, even though the mass density we see is

clearly toward the center, interior of the Sun’s orbit, and is significantly lower

farther out? These findings in this and other galaxies have led to the conclusion

that the mass we see is only part of the picture. There must be mass invisible to

us – the so called dark matterwhich must account for these higher-than expected

rotation speeds.

Exercises: What Oberon and Triton Tell Us About Uranus and Neptune As-

tronomers would have had to approximate the masses of Uranus and Neptune by

perturbation effects were it not for the lucky fact that they each have satellites.

Uranus, discovered by Herschel in 1781 was soon found to have two satellites, also

discovered by him in 1787. They were named Oberon and Titania, and over time

enabled computation of Uranus’ mass. The same held for even remoter Neptune,

discovered in 1846 by the German Galle in Berlin, from the predictions of the

Frenchman Leverrier (and concurrently calculated by the Englishman Adams, but

not then communicated to the world). Its large satellite, later named Triton, was

found the following year by Lassell using the U. S. Naval Observatory’s 26 in.

refractor in Washington.

Even with the discovery of a satellite, the task of determining precise mass of a

distant, orbited body, however, can still be difficult. Reliable determination of mass

of a planet or smaller body depends on accurate measurement of the distance of the

satellite from its primary, and its period. These measures are affected by the

remoteness and magnitude of the body, the quality of the optics, the atmospheric

seeing, and the experience of the observer, among other factors. In the last century

and a half, the distance to the satellite was typically determined by micrometer and

given in semi-diameters of the primary planet. Early determinations by visual

means with the telescopes at hand were respectable, and quite close to modern

values for period, but more in error for the difficult-to-determine distance of the

faint moon from the glare of the planet.

The reported masses of both Uranus and Neptune have changed over the years as

data on period and distance has improved. Notice in the accompanying chart the

differing historical values of the stated masses of Uranus and Neptune. The masses

are given in terms of fraction of the solar mass, usually called the reciprocal mass

ratio.
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Historical derivations of outer planet masses from satellite periods and distancesa

Reporter

Date

of data

(approx.)

Calculated mass

of planet to mass

of sun

Satellite

used for the

computation

Period

(days)

Planetary

radii to

satellite

Uranus

John Herschel 1847 1/20,470 Oberon 13.46334 22.56

Simon Newcomb 1882 1/22,600 Oberon 13.463269 22.88

Spencer Jones 1951 1/22,869 Oberon 13.463194 23.5

NASA/JPL 2012 1/22,913 Oberon 13.46 22.83

Neptune

John Herschel 1847 1/18,780? Triton 5.876887 ~12

Simon Newcomb 1882 1/19,380 Triton 5.87690 12.715

Spencer Jones 1951 1/22,869 Triton 5.876389 13.3

NASA/JPL 2012 1/19,423 Triton 5.877 14.3256
aData for the table was drawn from these sources: John F.W. Herschel [8], which relied on the

original data of Lassell; Simon Newcomb [9]; Harold Spencer Jones [10].

The following exercises will explore the methods and challenges of obtaining

accurate masses and other planetary information based on available data.

Problems

1. Use Kepler’s Third Law to find the Keplerian mass ratios (distance cubed over

period squared) of Earth, Mars and Jupiter to the Sun, to seven significant

digits. Use astronomical units as your distance units and days as your period

units (with Earth’s period being 365.25 days). If you did these calculations for

all the planets, explain what would be the result. Are results for each planet

dependent or independent of the mass of each planet? Explain.

2. The historically reported values of the reciprocalmass ratios are shown forUranus

and Neptune in the accompanying table. Compare the early reciprocalmass ratios

for Uranus as reported by John Herschel against the modern values. What is the

percentage error in Uranus’ mass implied by these differences? In Neptune’s?

3. The semi-major axis of Oberon is about 583,500 km, and its period is

13.46319444 days. Using the Keplerian mass ratio found in the first problem,

find the mass of the planet Uranus in relation to the solar mass (i.e., the

reciprocal mass ratio in relation to the mass of the Sun). Take the length of

an astronomical unit to be 149,598,000 km. Tip: Be sure to use units consistent
with Problem 1. Compare your result against the historical determinations of

those ratios given in the table in this chapter.

4. The semi-major axis of Triton is about 354,759 km, and its period is

5.876886574 days. Using the Keplerian ratio mass ratio found in the first

problem, find the mass of the planet Neptune in terms of solar masses. Again,

be sure to use consistent units. Check your result against the historical deter-

mination of this ratio.

5. Find the Keplerian mass ratio of the Earth in units of days and kilometers, and

apply that to the data given for the orbit of Triton to find the mass of Neptune

in solar masses.
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6. Find the mass of Uranus and Neptune directly in SI units by using the

respective orbits of Oberon and Triton and Kepler’s Third Law, and its solar

reciprocal mass ratio. Take the mass of the Sun to be 1.9891 � 1030 kg. How

do your results differ from the modern values for the ratios in the

accompanying table? How do they compare with the answers you found by

the methods in the problems above?

7. It is also common to find planetary masses given in terms of Earth masses. The

Earth’s mass is about 5.7219 � 1024 kg. Using the results of the previous

problems, how many Earth masses is Uranus? How many is Neptune?

8. Our Earth has a density of about five and a half grams per cubic centimeter. The

respective diameters of Uranus and Neptune are 51,118 and 49,528 km. Given

the size and masses of Uranus and Neptune, calculate their respective densities,

in gm/cm3 rounded to the nearest tenth, assuming they are perfect spheres.

If Uranus were the size of the Earth, but retained its same mass, how would

Oberon’s orbit be affected?

9. Triton’s orbit is nearly circular, with an eccentricity of .000016. You are told

that its orbital velocity is 4.39 km/s, more than quadruple the orbital speed of

our Moon. Calculate the mass of Neptune using the velocity of Triton and its

distance from the center of the planet, and compare your result with what you

obtained in problem 6.

10. What happens to the period of a satellite if we imagine that the primary mass is

increased? Triton’s distance from Neptune is very close the Moon’s distance

from Earth when it is at perigee. If Neptune were as dense as the Earth, or about

5.51 g/cm3, what would Neptune’s new hypothetical mass be? What would

Triton’s hypothetical orbital period be, in days? (Hint: Think in terms of ratios).
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Chapter 12

Motion in Elliptical Orbits

We venture here beyond mainly circular orbits and introduce masses orbiting in

either circular or elliptical orbits. Our attention will be focused on comparing the

uniform motion of the circular orbit and the motion at two points on the elliptical

orbit: the so-called apsides, where the mass is either closest or farthest from the

center of mass of the system.

Velocity Along the Apsides of Elliptical Orbits

The law of conservation of angular momentum leads directly to Kepler’s Law of

Areas—that planets in our solar system sweep out equal areas in equal times. These

ideas, as we saw in Chap. 4, are useful to the understanding of motion in elliptical

orbits. From this we can learn something about the velocity of a mass in an elliptical

orbit. Again, in this chapter we focus on the apsides of the ellipse.

Suppose we think of a small orbiting mass moving through a tiny angle in a very

small amount of time Dt. This distance from one focus will be r, which is called the
radius vector. The distance travelled along this small arc of the ellipse will be

approximately vDt. Here v is the velocity component perpendicular to the radius

vector. In this short period of time, the mass will sweep out a small, triangular slice

of the ellipse. This distance vDt may be regarded as the base of the little triangle

drawn from one focus of the ellipse. The height of the triangle is r.
Recalling one of the first lessons of elementary geometry, the area of the triangle

should be half the base times the height. But the base is actually a curve, and as we

have seen in dealing with arcs, the chord distance in a given small angle is not

precisely the length of the arc subtended by it. The area given by that formula may

approximate, but will not equal, the actual area within the radius vector lines. But

using the tried and true principle of limits, however, we can imagine ever shorter

increments of time, where the angle is made as small as we please. As Dt! 0, this

difference ultimately vanishes, as Newton showed in his Lemma 7 of Book I of the

Principia. As the chord length thus ultimately approaches the arc length, the
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to the Mechanics of the Universe, Undergraduate Lecture Notes in Physics,
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velocity vector v becomes perpendicular to the radius vector. Representing all this

mathematically, the area of this little triangle DA—approximately one-half the base

vDt times the height r—can be expressed this way:

DA � vDt
2

r

The change in this area in each increment of time (dividing each side by Dt)
will be:

DA
Dt

� vr

2

If enough of the small units of time when added up are sufficient for the mass to

complete a full orbit, then we say that the radius vector has swept over the whole

ellipse, covering its entire area A, in period P. That is, we imagine the sum of all

the smallest little triangles around the ellipse as the total area, and the sum of all of

the corresponding little increments of time as the period of the orbit.1

1 In the language of calculus, we would integrate the expression dA/dt ¼ vr/2.
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Because the change of area with time is constant (this is another way of stating

Kepler’s Law of Areas), the term on the right must be constant. Having done this,

the equation becomes:

A

P
¼ vr

2

Now we can solve for velocity,

v ¼ 2A

Pr

Let us put the area term A and the radial term r in the familiar dimensions of the

ellipse. Recall that the area of an ellipse is pab, where a and b are again the semi-

major and semi-minor axes of the ellipse, and for perihelion, rP¼a(1�e), and for

aphelion, rA¼a(1þe). Let us arbitrarily select the perihelion distance and make the

substitutions to find the velocity at perihelion in an elliptical orbit:

vP ¼ 2pab
P½að1� eÞ�

We found before that the semi-minor axis is b ¼ a(1� e2)1/2 so the further

substitution gives:

vP ¼
2pa að1� e2Þ1=2

h i
P½að1� eÞ�

The nice thing about these relationships is that they factor easily, because

1 � e2 ¼ (1 � e)(1 þ e) The result for the velocity at perihelion is:

vP ¼ 2pa
P

¼ 1þ e

1� e

� � 1=2

Velocity at perihelion

By the same reasoning, the velocity at aphelion is:

vA ¼ 2pa
P

1� e

1þ e

� �1=2
)
Velocity at aphelion

These are useful equations when we know only the period, the semi-major axis

and eccentricity of an orbit. Such data is often discernable in the observations of

double stars. Note that if eccentricity becomes zero, in the case of a circular orbit,

then the velocities in each case are v ¼ 2pr/P.
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The Orbital Velocities of Earth Around the Sun

To illustrate how the above equations may be used, take the example of the Earth’s

modestly elliptical orbit around the Sun. All we need to know is Earth’s semi-major

axis distance, its eccentricity and its orbital period:

Eccentricity: e ¼ :0167

Semi-major axis: a ¼ 149; 600; 000 kilometers; or 149:6� 109 meters

Period: One year or 3:1558� 107 seconds

Inserting these values into the applicable equations just given above, the

velocities of Earth (in km/s) are:

Velocity of Earth at perihelion: 30:29 km=s

Velocity of Earth at aphelion: 29:29 km=s

As expected, the Earth is moving faster in its orbit when it is nearer the Sun

(which happens to occur in January) than it is when it is farthest away (in June).

These equations did not require us to know the mass of the Earth. The same

equations are easily applied to satellites and other orbiting bodies. In the case of

relatively close exoplanet or double star systems, with repeated observations

astronomers can determine the period and eccentricity, and from their distance

and apparent separation, deduce the semi-major axis. But the most precise

determinations of velocity and period are deduced if we know (or can find out)

the masses of the orbiting bodies.

Comparing Circular and Elliptical Orbits

The velocities with which we were concerned above were those just at the ends of

the elliptical orbit. That is because at those special, apsidal, points the radius vector

lies conveniently along the major axis of the ellipse. At those places, the distance r
for perihelion or aphelion is easily translated into the semi-major distance a, by the
equations rP ¼ a(1 � e), and rA ¼ a(1 þ e).

Look again at the velocity equations. The first term on the right-hand side of

each is 2pr/P. This we recognize as the familiar velocity in a circular orbit, the

circumference divided by the period: v ¼ 2pr/P. But in an elliptical orbit, the

circular velocity appears to be modified by a factor dependent upon the eccentricity

of the ellipse. In the velocity equations, the circular velocity terms were simply

altered for aphelion by the elliptical correction factor [(1 � e)/(1 þ e)]½ and for

perihelion by [(1 þ e)/(1 � e)]½ where e is the eccentricity of the ellipse.
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These equations suggest we might find further fertile ground for exploration if

we compare circular to elliptical orbits. It is good where possible to picture the

physical meaning of an equation, so let us imagine an ellipse that is circumscribed

by a circle such that the circle’s radius equals the semi-major axis of the ellipse, as

in the accompanying diagram.

We will continue to focus only on the end points, the apsides, where the orbits

touch. Consider a circle of radius a. Remember that circular angular velocity can be

expressed in angular notation: oc ¼ 2p/P, where P again is the period. This is the

angular motion around the circle in radians per unit time. Actual velocity along the

rim of the circle is this angular velocity times radius, or v ¼ 2pa/P. In angular

notation this is written v ¼ oa, and its square is v2 ¼ o2a2. Recalling the above

perihelion equation, the velocity (squared) is,

v2P ¼ o2
ca

2 1þ e

1� e

� �

Dividing each side by a yields,

v2P
a
¼ o2

ca
1þ e

1� e

� �

We would arrive at an equivalent expression, with signs in the fraction reversed,

for aphelion velocity. Venturing an interpretation of this equation, we recognize the

left-hand term as centripetal acceleration of a mass in a circular orbit of radius a.
(The centripetal acceleration in a circular orbit is v2/a ¼ o2a.) The square of the

velocity over the radius equals the inertial acceleration o2a of the mass (here

regarded as unit mass) in such a circular orbit. But on our inscribed ellipse of
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semi-major axis a it is multiplied by the ratio for aphelion of (1 þ e)/(1 � e). The
velocity equations inform us that the uniform velocity of an object in a circular orbit

needs correction when we are seeking the apsidal velocity along an elliptical orbit;

they show that an orbiting object moves faster than circular at perihelion and slower

than circular at aphelion. Similarly, the relative acceleration (in elliptical orbits

over circular) increases at perihelion and decreases at aphelion. Note how this

difference is magnified as we imagine the eccentricity to become greater (as it

approaches one). If on the other had the eccentricity diminishes, the difference is

less. If we make the eccentricity zero, where the two orbits in the diagram become

congruent, the equation becomes,

v2

r
¼ o2

cr

Which matches the familiar expression for the equivalence of centripetal and

inertial acceleration in a circular orbit (of radius r).

Angular Velocity in Circular and Elliptical Orbits

From the above discussion, we found the relation between circular orbital velocity

(in an orbit of radius a) and the velocity along an elliptical orbit (of semi-major axis

a) at perihelion to result in this equivalence of acceleration terms:

v2P
a
¼ o2

ca
1þ e

1� e

� �

These relations may be explored further if on each side we divide by a and take

square roots. Remembering that angular velocity is o ¼ v/a, the angular velocities
for perihelion and aphelion of the ellipse (denoted respectively by oP and oA)

become, in relation to circular angular velocity oc:

oP ¼ oc
1þ e

1� e

� � 1
2

oA ¼ oc
1� e

1þ e

� � 1
2

These equations clearly convey the differences between the angular velocities at

the apsides of an elliptical orbit and the uniform angular velocity in a circular orbit

in our comparison case, where the radius of the circular orbit equals the semi-major

axis of the elliptical orbit.
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To summarize, the uniform circular velocity when multiplied by the applicable

correction factor [(1 � e)/(1 þ e)]½ or [(1 þ e)/(1 � e)]½ (depending upon

whether the respective aphelion or perihelion angular velocity is being calculated)

easily generates elliptical velocities along the respective apsides. The perihelion

angular velocity in an elliptical orbit is faster than circular velocity, and aphelion

velocity is slower, consistent with Kepler’s Second Law.

Gravitation and Elliptical Orbits

We compared the uniform velocity in circular orbits with the apsidal velocities of

inscribed elliptical orbits. Though we used Kepler’s Law of Areas, the equations

have been geometrically derived. We have considered the phenomena of motion in

circles and ellipses, but did not directly refer to mass or gravity. Here we examine

how Newton’s law of gravitation is entirely consistent with what we have been

discussing, and yields the same results.

We noted that in our orbit construction, where the radius of the circular orbit

equals the semi-major axis of the inscribed elliptical orbit, this identity holds at

perihelion:

v2P
a
¼ o2

ca
1þ e

1� e

� �

Since according to Newton’s Third Law, the gravitational acceleration balances

the inertial (or centrifugal) acceleration in a stably orbiting system, then, for a

circular orbit of radius a, as we found in Chap. 8,

o2
ca ¼ Gðm1 þ m2Þ

a2

The right-hand term is the familiar Newtonian expression of gravitational

acceleration between two masses separated by distance, which in this case is a.
Now we may substitute the term for gravitational acceleration for the right-hand

acceleration term in the velocity equation:

v2P
a
¼ Gðm1 þ m2Þ

a2
1þ e

1� e

� �

Multiplying through by a, and using the same reasoning for the aphelion

velocity, the result is:

vP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðm1 þ m2Þ

a

1þ e

1� e

� �s )
velocity at perihelion
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vA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðm1 þ m2Þ

a

1� e

1þ e

� �s )
velocity at aphelion

These are again identical to the circular velocity equations except for the

eccentricity corrections on each. We can also cast these expressions in terms of

the perihelion and aphelion distances for each, often expressed in the literature in

terms of q and Q, respectively. These are the radius vectors of the ellipse at the

apsides, rP and rA. We substitute for a from the equations rP ¼ a(1 � e), and
rA ¼ a(1 þ e). This yields an even simpler pair of equations:

vP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G m1 þ m2ð Þ

q
1þ eð Þ

s )
velocity at perihelion

vA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G m1 þ m2ð Þ

Q
1� eð Þ

s )
velocity at aphelion

If we call m ¼ G(m1 + m2), we make it prettier:

vP ¼ m
q
ð1þ eÞ

� �1
2

vA ¼ m
Q
ð1� eÞ

� �1
2

The Orbital Velocities of Mars

Let’s take an example using the apsidal distances of Mars. If we were to find the

velocity of Mars at perihelion and aphelion, using the equations just mentioned,

we would need to know the eccentricity e and either the semi-major axis distance

of the Martian orbit or the distances at aphelion and perihelion. For the sake of

variety we will use the Q (aphelion) and q (perihelion). The appropriate constants

for the Martian orbit are,

m ¼ 1:3275� 1020:

e ¼ :0934

q ¼ 206:62� 109 meters

Q ¼ 249:23� 109 meters
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Plugging those values into the above equations, the velocities of Mars are:

vq ¼ 26:5 km=s vQ ¼ 21:98 km=s

Given that the mass of the Sun is over three million times the mass of Mars, the

planet’s mass may safely be neglected in the above calculations, so that m ¼ Gm1.

These values show greater variation than those of Earth, calculated earlier. This is

because the eccentricity of Mars is greater than that of the Earth. Here is the

comparison of the orbital velocities of Earth and Mars as they orbit our Sun in

graphical form:
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Kepler Revisited

We have thus considered several forms of the velocity equation, each applicable

along the apsides of an elliptical orbit. Both require knowing eccentricity, although

eccentricity is readily computed by a variety of means. One method is to compute

the ratio of Ap and Per.
2

Let us compare two of the above equations. The left-hand equation below

outputs velocity when the period and semi-major axes are known; the right-hand

equation gives the velocity when the masses and semi-major axes are known:

Perihelion velocity: vp ¼ 2pa
P

1þ e

1� e

� � 1
2

vP ¼ Gðm1 þ m2Þ
a

1þ e

1� e

� �� � 1
2

Aphelion velocity: vA ¼ 2pa
P

1� e

1þ e

� � 1
2

vA ¼ Gðm1 þ m2Þ
a

1� e

1þ e

� �� � 1
2

Since both sets of equations equal the same thing (velocity) they present the

opportunity to see what happens when we put them equal to each other:

Perihelion:
2pa
P

1þ e

1� e

� � 1
2 ¼ Gðm1 þ m2Þ

a

1þ e

1� e

� �� � 1
2

Aphelion:
2pa
P

1� e

1þ e

� � 1
2 ¼ Gðm1 þ m2Þ

a

1� e

1þ e

� �� � 1
2

Squaring each side and cancelling out the common eccentricity terms, we end up

with one equation, which devolves into Kepler’s Third Law:

4p2a2

P2
¼ Gðm1 þ m2Þ

a

P2 ¼ 4p2

Gðm1 þ m2Þ a
3

This shows that the basic Keplerian relationship emerges when we independently

construct velocity equations: the first from the period of an object in an elliptical orbit

and the Lawof equal areas in equal times (Kepler’s SecondLaw); the second from the

balance of gravitational and inertial accelerations maintained in the elliptical orbit.

The result is the same Kepler’s Third Law that we derived for the circular orbit. It is

independent of eccentricity and thus applies to elliptical and circular orbits.

2 This ratio can be sometimes be discerned in observations of the trace of the orbit, whether by

radar or other determinations of the height of an orbiting spacecraft, or the maximum and

minimum separations of a satellite from its planet or of a double star system.
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Finding the Velocity of an Artificial Satellite in Earth Orbit

When Just Its Perigee and Apogee Are Known

Problem An artificial satellite orbits the Earth in an elliptical orbit whose perigee

is 160 km (100 miles), and whose apogee is 16,000 km, measured from the surface

of the Earth. Find the eccentricity of the satellite orbit and the velocities of the

satellite at perigee and apogee in kilometers per second.

Given

vP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GmE

q 1þ eð Þ
q

Equation for perigee velocity, where m2 << mE

vP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GmE

Q 1� eð Þ
q

Equation for apogee velocity where m2 << mE

e ¼ Q�q
Qþq

Equation for eccentricity e from perigee q and apogee Q

6.38 � 106 Mean radius of the Earth in meters

GmE The product of the Earth’s mass and the gravitational constant, often

abbreviated (in the Earth-orbiting context) by the symbol m,
where m ¼ 3.99 � 1014

Assumptions That the Earth is a spherical body of uniform density, so the path

of the satellite follows in an idealized ellipse, without distortions in its velocity

caused by gravitational anomalies of the Earth, and without influences of the Moon

or other bodies.

Method First find the perigee and apogee distances by referring them to the center

of the Earth, by converting to meters and adding them to the Earth’s radius. Then

ascertain the eccentricity of the orbit, using the equation given, and solve the

applicable velocity equations.

Calculations Before we can compute the velocities at the apsides with the given

equations, the eccentricity must be known. Remember that the values for perigee,

160 km, and apogee, 16,000 km, must be corrected for Earth’s center, and

converted to SI units of meters. Since Earth’s radius is 6.38 � 106, this must be

added to the distances given. Doing this, we find:

q ¼ 6:54� 106meters

Q ¼ 2:24� 107meters

Calculating eccentricity:

e ¼ Q� q

Qþ q

e ¼ 2:24� 107 � 6:54� 106

2:24� 107 þ 6:54� 106

e ¼ :548
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This eccentricity shows that the orbit will be an elongated ellipse. Now we can

determine velocities at the apsides, again using meters for units.

For perigee For apogee

vP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
q 1þ eð Þ

q
vA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
Q 1� eð Þ

q

vP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:99�1014

6:54�106
1þ :548ð Þ

q
vA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:99�1014

2:24�107
1� :548ð Þ

q
vP ¼ 9718 m=s vA ¼ 2837 m=s

vP ¼ 9:72 km=s vA ¼ 2:84 km=s

Observation We can see what the above orbit looks like by graphing the equation

for the conic:

r ¼ p

1þ e cos y

where the parameter p ¼ a(1 � e2), eccentricity e ¼ .548, and the semi-major axis

a is the average of the apsidal distances: a ¼ (Q þ q)/2 or 14,470 km. The parame-

ter (semi-latus rectum of the ellipse), is thus 10,125 km. Let p go for a complete

revolution, from 0 to 2p. Graphing this with Maple software displays this figure:
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One can see the dimensions of the orbital ellipse clearly here, and the significant

variation in velocity, consistent with Kepler’s Second Law, between perigee

and apogee.

Deriving Apsidal Velocities in an Elliptical Orbit from the Laws

of Conservation of Energy and Momentum

The equations above for determining apsidal velocities were derived by using the

geometry of an ellipse inscribed in a circle. Here we show how those same apsidal

velocities arise naturally from the laws of conservation of mechanical energy and

momentum. We had passing encounters with those laws in earlier chapters, and the

subject is typically covered generally in elementary physics texts, but the energy

laws are so vitally useful in the context of orbits that we will benefit here by

examining them more closely. This will also serve as a brief, introductory energy

course for the chapters that follow.

One of the foundation principles in our natural world is that energy is never lost,

it is always conserved. Energy is not created out of nothing, either. What energy

there is in the universe is what energy there will always be, so far as we know,

though it comes in different forms, and one form can change to another. For

example, mechanical energy can be converted to heat through friction or impact.

The most important energy exchange in dealing with orbits and spacecraft is

between kinetic and potential energy. In elementary physics courses these two

forms of energy are usually written this way:

KE ¼ 1

2
mv2

�
Kinetic energy

PE ¼ �GMm

r

�
Graviltational potential energy

Look at these equations. The first depends on v, the velocity of a mass. The

second is determined by r the distance between the mass and the primary mass

attracting it. The first equation is, roughly speaking, the energy of motion; the other,

the ability to make something have motion. The “potential” for motion exists when

something is lifted away from something that attracts it: it “wants” to fall back. As

something is lifted from the Earth, which is constantly pulling it back, the Earth’s

gravitational pull creates the potential of accelerating the object into motion toward

the Earth. This potential is called the gravitational potential energy, often

symbolized by the letter U. Notice the accompanying plot of the change in

gravitational energy on a 1 kg mass as it is transported from the Earth to the

Moon. A physicist would say that it takes work to move the mass away from

Earth; that is, the exertion of a force over a distance. As the distance is greater, the

gravitational pull lessens. The sum of all the incremental amounts of work to get
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something from the ground into space is the amount of gravitational potential

energy that has been converted to kinetic energy of motion. This gravitational

potential energy is conventionally expressed in the negative, moving toward zero

as r becomes greater and greater. It becomes zero when the distance becomes

infinite. At very great distances from the gravitational source, there is no more

practical ability for the attracting mass to draw it back. That is why the potential

energy approaches zero.

Similarly, when a meteor flies toward Earth, its kinetic energy increases as its

potential energy becomes more and more negative: it becomes ever less as it

descends. It is the conversion of the gravitational potential energy to kinetic energy

that makes it speed up on the approach. In liftoff of a rocket, the opposite occurs,

only here it is the chemical energy of the rocket giving thrust that does the work of

converting gravitational potential energy to kinetic energy. The rocket gains dis-

tance (potential energy becomes closer and closer to zero) and it gains velocity

(kinetic energy increases). The key thing to remember is that the sum of the two

energies is always the same. One form converts to another, in either direction or

along any path, but the sum is always the same.3 Energy is conserved. Returning to

3We assume for the sake of our discussion that no energy is dissipated by friction as a meteor or

spacecraft travels through the atmosphere, which would convert some of the kinetic energy to heat

(and slow the object down). In fact heat through atmospheric friction is a significant source of

energy loss in such cases. It is what melts and destroys most meteors before they hit the Earth.
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the case of a circular orbit, its energy will not change unless something external, a

force, changes it. Such a force could be friction, the influence of other perturbing

masses, the thrust of a rocket, impacts or other influence that either augments or

dissipates the orbital energy in a particular case.

Examining the graph we see that the gravitational potential energy (think of it as

the “pull-it-back” energy) acting on a mass increases sharply as it leaves the Earth,

but its rate of increase drops the farther away from Earth it goes, as the pull of the

Earth’s gravity weakens by the inverse square law, and the work at each succeeding

interval of distance is less. The mighty effort of getting it up and away from the

powerful, close-in hug of Earth’s gravity is manifest in the steep slope near

the Earth. The U graph is the record of the work required to extract the mass

from the tight grip of our planet. Notice that as we get farther away from Earth, the

curve runs almost horizontally along the x axis line, but does not touch it, and would
theoretically go to infinity. There,U energy would be zero. If the graph went that far

out, it would record all the work required to separate a unit mass from all influence
of the Earth’s gravity. But this graph just shows the work necessary to remove the

mass from the immediate pull of Earth’s gravity and hang it in space at the Moon’s

distance. Of course from there it would tend to fall back, converting all that

gravitational potential energy into kinetic energy as it fell toward Earth. At every

moment of the fall, its K + U energies will be the same, a constant.

If we were to consider the graph with r at every point rotated completely around

the vertical axis, the three-dimensional graph would look like funnel, or well. This

“gravitational well” or “pit” exists around every mass, is determined by the quantity

of the mass, and determines how much work is needed to “climb out of the well”

and escape it. That is, the size of the gravitational well determines the amount of

kinetic energy for a given mass that would be needed to overcome the gravitational

potential energy pulling it back.

Let us go out in space and consider ideal circular orbits of a two-body system,

where each mass moves in lock-step at a uniform speed around the center of mass.

Throughout the course of their orbits, the K energy of a given mass, based as it is

solely on velocity, is constant. Likewise the U energy is constant. It is based upon

the distance of the masses from each other, and in circular orbits this U energy is

unchanged. Constant distance, constant velocity means no exchanges of K and U
energies: each remains steady in any circular, eccentricity–zero orbit. Where orbits

are not circular but elliptical, however, the non-zero eccentricity means that the

distance of the masses from each other changes as they orbit the center of mass: the

U energy changes. This change in U requires that the K energy must change, since

the sum of U and K must always be constant. As U increases (as work is employed

to separate the masses), then the K energy (the velocity) needed for this work must

decrease. As U decreases (as “negative” work brings the masses together), the K
energy is the beneficiary of this decrease in U, and velocity must increase. The

energy needed to perform the work of bringing the masses together and of

separating them—for example as a planet approaches perihelion then half an
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orbit latter reaches perihelion—comes respectively from the U energy of gravity

and the K energy of motion, each continually being exchanged for the other

throughout the course of each orbit. This explains in energy terms the velocity

curves of Earth and Mars as they swing through their orbit, moving closer, then

farther from the Sun, perpetually converting one form or energy to another then

back again.

We can put these powerful principles to use to test the results we obtained earlier

regarding the velocity along the apsides of the ellipse. We will also refer in our

proof to the conservation of angular momentum, which we encountered earlier. We

will consider any two masses orbiting their common center of mass.

Problem Using the laws of conservation of energy and angular momentum, find

the velocities in an elliptical orbit at the apsides, where two masses orbit their

common center of mass, at distance R from each other.

Given

K ¼ 1
2
mv2 Kinetic energy of any mass at velocity v

U ¼ � Gm1m2

R
Potential energy of revolving masses separated by distance R

mvArA The angular momentum of a mass at aphelion or apogee, where vA and rA
are the respective velocity and radius vector of the mass at that point

mvPrP The angular momentum of a mass at perihelion or perigee where vP and rP
are the respective velocity and radius vector of the mass at that point

Assumptions We assume symmetrically spherical masses in idealized elliptical

orbits in a two-body system with no perturbing or other external forces which alter

affect it. Therefore, we assume no influences which either augment or dissipate its

total energy.

Method The first step is to design an equation for the total energy of the orbiting

system. Consider two masses m1 and m2 separated by distance R, with two

velocities, v1 and v2:

ET ¼ 1

2
m1v

2
1 þ

1

2
m2v

3
2 �

Gm1m2

R

This represents the total energy as equal to the sum of the kinetic energies of

each of the masses, at their respective velocities, and their potential energy, which

is a function of their masses and distance apart. It doesn’t matter where they are in

their orbits, or whether the orbits have high or low eccentricity: the total energy will

always be constant. But note that there are two velocity terms. How can we simplify

this? By using the concept of relative velocity, it is mathematically possible to

convert this two-body problem, where two masses orbit the center of mass, into a

problem of one mass orbiting the other mass, with our rest-frame of reference being

on one of the masses. In other words, rather than begin from the point of view of an

observer outside the system, we will, by the technique described in Chap. 10,

mathematically place ourselves on one mass. The relative velocity of the other
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mass is then the sum of the two velocities. We will call the rest-frame-of-reference

mass m1, and solve for relative velocity v. We simplify the energy calculations by

evaluating the kinetic energy of the single orbiting mass, and the potential energy

occasioned by the distance between them. Since energy in this conservative system

is neither gained nor lost, the total mechanical energy of any orbiting mass will still

be the same at all points in the orbit. The total energy ET in any kind of closed orbit,

circular or elliptical, should equal K þ U everywhere. This means that the total

energy ET is also constant at the apsides, where the calculations are easier. Hence,

energy at perihelion equals energy at aphelion, EP ¼ EA. We can therefore, equate

the sum of K and U energies at aphelion and perihelion and set up two equations for

the apsidal velocities: an equation is written for each of the apsides, one using r1 for
R and the other using r2. Each of the radius vectors can be equated with its

respective elliptical identity: a(1 � e). Then, since we know the total energy at

one of the apsidal points will equal that of the other, we set the two ET equations

equal to each other and solve for the applicable velocity at each point. Finally, the

momentum conservation equations can be employed to obtain ratios of velocities

and radius vectors. Because at the apsides we also know the velocity of the mass in

terms of elliptical eccentricity and semi-major axis, we can make substitutions and

solve for velocities.

Calculations In the initial model, the sum of the kinetic energy K and potential

energy U is equal to the total energy of the binary system:

ET ¼ 1

2
m1v

2
1 þ

1

2
m2v

2
2 �

Gm1m2

R

Now we translate the separate velocities into relative velocity, v. We make use of

these identities for converting individual velocities into relative velocity:

v1 ¼ v
m2

m1 þ m2

� �
v2 ¼ v

m1

m1 þ m2

� �

These separate velocities can now be plugged into the energy equation to covert

the whole thing into a single equation with only one velocity term:

E
T
¼ 1

2
m1

m2v

m1 þ m2

� �2
þ 1

2
m2

m1v

m1 þ m2

� �2
� Gm1m2

R

Simplifying,

ET ¼ m1m2

v2

2ðm1 þ m2Þ �
G

R

� �
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This is the total energy for a given relative velocity in the binary orbit. From here

we can create two equations. Again, an equation is written for each of the apsides,

one using R ¼ r1 and the other using R ¼ r2. Then, each of the radius vectors can

be equated with its respective elliptical identity: rP ¼ a(1 � e), and rA ¼ a(1 þ e).
Then, since we know the total energy at one of the apsidal points will equal that of

the other, we set the two ET equations equal to each other and solve for the velocity

at each of the apsides.

m1m2

v2P
2ðm1 þ m2Þ �

G

að1� eÞ
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Total energy at perihelion

¼ m1m2

v2A
2ðm1 þ m2Þ �

G

að1þ eÞ
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Total energy at aphelion

We’ll call m ¼ G(m1 + m2) and simplify by canceling common terms and

collecting the velocity terms on one side:

1

2
v2P � v2A
	 
 ¼ m

a

1

ð1� eÞ �
1

1þ e

� �

While this is promising, the apparent difficulty here is that we again have two

velocities, and we are looking for one or the other. As it stands, we cannot find the

velocity at one of the apsides without knowing the velocity at the other. We have

two variables; hence we need a second equation to solve for one. Here we can use

another conservation law, the law of conservation of angular momentum. We know

that the angular momentum will be the same at every point on the ellipse, so we can

derive a useful ratio:

mvPrP ¼ mvArA

vP
vA

¼ rA
rP

Using the radius vector–semi-major axis translations can simplify this neatly:

vP
vA

¼ 1þ e

1� e

This equation has interest in its own right, since it shows clearly the relationship

of the velocities to each other at the apsides. Returning to the previous equation,

we can set it up to use that elegant ratio, and choose first to solve for aphelion

velocity:
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v2A
2

v2P
v2A

� 1

� �
¼ m

a

1

ð1� eÞ �
1

ð1þ eÞ
� �

v2A
2

ð1þ eÞ2
ð1� eÞ2 � 1

" #
¼ m

að1þ eÞ
1þ e

ð1þ eÞ � 1

� �

Working through the algebra and cancelling in the numerators yields,

v2A
2

4e

ð1� eÞ2
" #

¼ m
að1þ eÞ

2e

ð1� eÞ
� �

With a little more simplification we finally arrive at this result for aphelion

velocity:

v2A ¼ m
a

1� e

1þ e

� �

Solving for perihelion velocity similarly yields,

v2P ¼ m
a

1þ e

1� e

� �

These of course are the same equations we found before, but derived

from energy considerations. Unpacking the concise notation and summarizing,

we have,

vA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðm1 þ m2Þ

a

1þ e

1� e

� �s
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Perihelion; periapse; or perigee velocity

vP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðm1 þ m2Þ

a

1� e

1þ e

� �s
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Aphelion; apoapse; or aogee velocity

Observations

1. Note once again how, if the orbit is circular (e ¼ 0), the equation simplifies to

the common expression for velocity in a circular orbit, v2 ¼ m/r.
2. If the one of the masses is insignificantly small in relation to the other, m2 <<

m1, we again have our approximation that

v2A ¼ Gm1

a

1þ e

1� e

� �
v2P ¼ Gm1

a

1� e

1þ e

� �

3. We used the relative velocity to provide a relative picture, with one mass as the

frame of reference. If we used reduced mass instead, we would arrive at the same

result. We leave that derivation for the reader to explore.
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The Gaussian Constant in Celestial Mechanics

The asteroid Ceres had been discovered in 1803, but was soon lost as its path took it

into the Sun’s glare. The tools then available to astronomers were not so well

developed as to determine the whole orbit of a thing from just a few observations.

Then a young man named Karl Friedrich Gauss developed a method to determine

such orbits. His method was used by astronomers to recover Ceres after its passage

around the Sun. It was a stunning success and Gauss became instantly famous.

Gauss evolved into one of the greatest mathematicians of all time, and contributed

brilliantly to a broad range of problems. Of interest to us here is what became

known as the Gaussian constant.
Gauss sought a constant for use with Kepler’s Third Law that would be valid for

all objects in any orbit around the Sun, and would make orbital calculations simpler.

He derived the constant k that bears his name in his famous 1809 work, Theory of
Motion of the Heavenly Bodies Moving About the Sun in Conic Sections, sometimes

referred to by its shortened Latin title, Theoria Motus. Gauss used the Earth’s orbit

around the Sun as his reference. He took the distance between the Earth and Sun as

the unit distance, and the Sun’s mass as one unit.

Earlier we saw how when we changed units the equations became much simpler.

The mass unit was one solar mass; the distance unit was one astronomical unit

(AU). The secondary mass was assumed to be a particle of near-zero mass is

orbiting the Sun. When the unit of time was in seconds, the inertial constant

became this:

G ¼ 4p2

P2|fflfflfflfflffl{zfflfflfflfflffl}
Gwhere units are solar masses; AU and seconds

When the year is the time unit (such that P ¼ 1) the constant further simplified

to this:

G ¼ 4p2|fflfflfflfflffl{zfflfflfflfflffl}
Gwhere units are solar masses; AU and years

If, on the other hand, we use days as our unit of time, as Gauss did, then we have

a constant that will tell us orbital periods of planets in days, which can also be very

useful. In Gauss’ day the year’s length was not as precisely known as it is today, and

with a slight adjustment for the mass of the Moon, he arrived at the value for √G4:

ffiffiffiffi
G

p
¼ :01720209895

4 In Gauss’ day the period of revolution of the earth was taken as 365.2563835 days. The combined

mass of the Earth-Moon system was assumed by Gauss to be 1/354710 of the Sun’s mass.
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Gauss called this value k so,

k ¼ :01720209895

This is the Gaussian constant or the Gaussian gravitational constant. Thus, with
these units (solar masses, AU and days),

G ¼ k2|fflfflffl{zfflfflffl}
Gwhere units are solar masses; AU and days

This value of k is used today in celestial mechanics for the solar system, where the

mass and distance units are solar and AU, respectively, and where the time units

desired are days.5 It has fundamental importance as an astronomical standard constant.

Use of the Gaussian constant can simplify calculations in celestial mechanics.

And even though the values for mass of the Earth-Moon system and Earth’s orbital

period have been refined over the years since the early 1800s, the Gaussian constant

has been adopted as a fundamental constant in astronomy.

Using the Gaussian Constant to Find Heliocentric Periods

For bodies of negligible secondary mass orbiting the Sun, where the units are AU

and days, Kepler’s equation in terms of the Gaussian constant can be written as:

P ¼ 2p
k
a3=2

Using the Gaussian constant, we can as an example find the orbital period of

Mars (neglecting its own mass), given that its semi-major axis is about 1.52 AU (or,

more precisely, 1.52371034 AU)6 from the Sun:

P ¼ 2p
:01720209895

1:52371034ð Þ3=2

P ¼ 686:99 days

which is 1.881 years. This is an easy method to get quite accurate results in celestial

mechanics calculations.

For bodies of more considerable mass, the equation reverts to this general form

(where the 1 is the Sun’s mass in solar mass units):

5 The modern astronomical unit has been redefined (a little) to, in effect, take out the mass

adjustment Gauss made in determining his constant.
6 See http://ssd.jpl.nasa.gov
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P ¼ 2p
k

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ m

p a3=2

where m is the mass of the body in heliocentric orbit, in solar masses. The Gaussian

constant was derived from bodies orbiting the Sun, and is commonly used for such

bodies. It applies to any body: planet, comet, asteroid, or spacecraft in solar orbit.

It was derived from the particular facts of the Earth-Sun system, because they were

known, but the same constant could just as easily have been derived from another

planet’s data in the solar system.

Applying the Gaussian Constant to Find
Heliocentric Orbital Velocities

The Gaussian constant is expressed in terms of solar masses, astronomical units and

days. For finding the period of heliocentric orbits, this is very useful. Later we will

be calculating velocities in heliocentric orbits. The usual result in such calculations

is kilometers per second. So it would seem the AU/days units for the Gaussian

constant would not be much of a time-saver. However, we can derive a conversion

factor for such purposes. For the conversion we divide 1 AU in meters by the length

of the day, which is 86,400 s. Hence the Gaussian AU/day units can become meters

per second. To find its value, we divide

AU

Day|{z}
Units for Gaussian constant k

! AU in kilometers

Day in seconds|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Conversion factor when seeking result in km=s

Inserting the correct values for the numerator and denominator,

149; 597; 871� 108

86; 400

1731:46|fflfflfflffl{zfflfflfflffl}
Conversion factor from AU=days to km= sec

7 The precise result is 1731.45684 which can be used where more precision is desired.
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This number is good to remember.7 To see how this is useful, recall the circular

velocity in a heliocentric orbit is given by

v ¼
ffiffiffiffiffiffiffiffiffiffi
Gm�
a

r

Using the units for the Gaussian constant k (where mass units are solar, time

units are days and distances are in AU) the equation becomes,

v ¼ kffiffiffi
a

p

To take the example of Mars again, its mean velocity should be,

v ¼ :01720209895ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:5237

p

v ¼ :0139358:AU=day

These are awkward units! Converting to kilometers per second, multiply the

result by the conversion factor derived above and we obtain, for a mean orbital

velocity of Mars, the value,

1731:46� :0139358 ¼ 24:1 km= sec

We used two constants, the Gaussian constant and a conversion factor. Combin-

ing these into one “modified” Gaussian constant for a heliocentric orbit, and calling

the result the Greek letter kappa, we get

k ¼ 1731:46k

k ¼ 29:785

We will use this number frequently in heliocentric velocity calculations.8

The equation for mean velocity in kilometers per second thus becomes,

v ¼ kffiffiffi
a

p

8 The result for k to more decimal places is 29.78469189. We will use the rounded value for the

instructional purposes of this book.
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Simple Computation of Apsidal Velocities of Objects
in Heliocentric Orbits

These equations may be applied to generate results for heliocentric apsidal

velocities in orbits that are in kilometers per second. Referring to the earlier-

developed equations for such velocities, we can apply the shorthand Gaussian

constant in this way (where units are AU and k ¼ 29.785):

vP ¼ kffiffiffi
a

p 1þ e

1� e

� � 1
2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Velocity at periheli on in km=s for helicentric elliptical orbits

vA ¼ kffiffiffi
a

p 1� e

1þ e

� � 1
2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Velocity at aphelion in km=s for helicentric elliptical orbits

Sometimes it is convenient to work with just the perihelion and aphelion

distances in computation. Because aphelion Q ¼ a(1 þ e) and perihelion q ¼ a
(1 � e), the two equations above become:

vP ¼ k
1þ e

q

� � 1
2

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Velocity at periheli on in km=s for heliocentric orbits; using AU units

vA ¼ k
1� e

Q

� � 1
2

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Velocity at aphelion in km=s for heliocentric orbits; using AU units

Where again, k ¼ 29.785

Looking back, it is instructive to note that all we have done, ultimately, is to

replace √G(m1 + m2) in the original velocity equations with a new proportionality

constant k which was designed (as Gauss did with his constant) to make the units

come out the way we wanted them to. If you prefer other units, you may repeat the

basic analysis and design your own constant.

Exploring Sedna’s Orbit

Sedna is one of the more fascinating trans-Neptunian dwarf planets discovered in

recent years. It is remote and very red. It is most interesting in respect to its unusual

orbit, which will be explored below.

262 12 Motion in Elliptical Orbits



Problem Given the just the orbital elements below, determine the period of Sedna

in days and years and its velocities at perihelion and aphelion.

Given

.85904862 Eccentricity, e, of Sedna’s orbit

541.4295 Semi-major axis, a, of Sedna’s orbit in AU

.01720209895 Gaussian constant, k, for finding heliocentric periods in units of days

29.785 Modified Gaussian constant, k useful for computing orbital velocities

in kilometers per second

Assumptions We will assume no perturbing influences on Sedna.

Method Using the equation with the Gaussian constant entails substituting the

given parameters and solving for period. The period will be in days. Divide by

365.25 to yield years. Similarly, using the modified Gaussian constant enables

computation in kilometers per second of the apsidal velocities of Sedna.

Calculations First, to find the period in days using the Gaussian constant,

then years,

P ¼ 2p
k
a3=2

P ¼ 2p
:01720209895

ð541:4295Þ32

P ¼ 4; 601; 625:8 days

P ¼ 12; 598 years

In order to find the perihelion velocity, we use the equation,

vP ¼ kffiffiffi
a

p 1þ e

1� e

� � 1
2

vP ¼ 29:785ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
541:4295

p 1þ :85904862

1� :85904862

� � 1
2

vP ¼ 4:65 km=s

By the same process, using the aphelion equation, we obtain for the aphelion

velocity,

vA ¼ 0:352 km=s
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Observations

1. At aphelion, Sedna travels about a third as fast as our Moon does in its orbit.

Even at perihelion, it moves more slowly that Neptune’s mean velocity.

2. As can be seen from these results, this is a most unusual orbit for a solar system

body! The last time Sedna was in its current position, the Northern hemisphere

was emerging from the last cycle of glaciations. According to the JPL website,

Sedna will reach perihelion on July 6, 2075.9

3. We can find perihelion distance q by remembering that q ¼ a(1 � e). Thus,

q ¼ 541:4295ð1� :85904862Þ

q ¼ 76:315AU

This perihelion distance is well beyond the orbit of Pluto. At aphelion, Q, given
by the relation Q ¼ a(1 þ e), Sedna is 1,006.54 AU from the Sun! The nature of

this orbit raises interesting questions about its origin.

Exercises: TheMany StrangeWorlds Beyond Pluto The creative use of some of

the world’s most powerful optics has led to the discovery of a host of distant

“dwarf” planets far beyond the orbit of Pluto. Pluto itself was demoted to the status

of dwarf planet after the discovery of Eris by Michael Brown and his team at

CalTech, who led the way to finding Eris and several more of these so-called Kupier

Belt Objects (KBOs). Eris is more massive than Pluto, known to be so because of its

tiny satellite, Dysnomia. Yet Eris is only one of the far-out objects discovered by

Brown’s group. They have found a menagerie of distant worlds in the Kuiper Belt

which may shed light on the origins of our solar system. The variety of these KBOs

is remarkable: enormous Eris (accompanied by its moon), rocky Quaoar (with a

moon), snow-white Makemake (with no known moons), blimp-shaped Haumea

(with two moons), and remote, red Sedna, so distant that it is in a class by itself,

with an orbital period of about 12,600 years. Because Eris was the troublemaker

that began the demote-Pluto movement, we begin the exercises below with

investigations of its orbit.

Problems

1. The dwarf planet Eris has a semi-major axis a ¼ 68.047440 AU, and an

eccentricity e ¼ .4347542. Using just that data, calculate its velocities in

kilometers per second at perihelion and aphelion.

2. Given Eris’ semi-major axis, calculate the period of Eris in days and years

using the Gaussian constant.

3. Imagine a circle circumscribing Eris’ orbit whose radius is equal to Eris’ semi-

major axis. (1) Calculate its mean velocity in that fictitious circle in kilometers

per second. (2) Apply the elliptical correction factors for perihelion and

9 http://ssd.jpl.nasa.gov/sbdb.cgi#top
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aphelion to determine the velocities of Eris at the apsides in kilometers per

second. (3) Compare the resulting apsidal velocities with the answers to

Problem 1. Take the length of an astronomical unit to be 149,598,000 km.

4. Given the semi-major axis and eccentricity of Eris and the mass of the Sun of

1.9891 � 1030 kg, compute the velocity of Eris in SI units at perihelion and

aphelion.

5. Using the SI system of units, calculate: (1) the velocity of Eris on the fictitious

circle described in Problem 3; (2) the centripetal acceleration for Eris as it

would be on this fictitious circle; and (3) Eris’ centripetal acceleration on its

actual elliptical orbit at the apsides.

6. As a check on your results in the previous problem, compute the gravitational

acceleration imparted upon Eris by the Sun at Eris’ perihelion and aphelion.

7. Eris at perihelion (q) is 38.4635 AU distant from the Sun. Its aphelion distance

is 97.63 AU. Assuming a mass of Eris of 1.659584 � 1022 kg, determine the

potential energy U and the kinetic energy K of Eris at both apsidal points.

Compare the sum of U and K at each of those points. Explain your results. Use

SI units.

8. The elongated, dwarf planet Makemake has a semi-major axis a ¼ 45.4363

AU, and an eccentricity e ¼ .1625448088. Using just that data, calculate its

velocities in kilometers per second at perihelion and aphelion, and its period in

days and years.

9. The dwarf planet Haumea has a semi-major axis a ¼ 42.9849 AU, and an

eccentricity e ¼ .197523. Using just that data, calculate its velocities in

kilometers per second at perihelion and aphelion, and its period in days

and years.

10. Haumea’s two small satellites, Hi’iaka and Namaka, were discovered in 2005

by Michael Brown and his team using the adaptive optics technology at

Hawaii’s W.M. Keck Observatory. The brightest moon, Hi’iaka, orbits its

parent with a semi-major axis of 49,880 km once in 49.462 days with an

orbit eccentricity of .0513. Find (1) the mass of Haumea, and (2) the velocities

of Hi’iaka in meters per second at its apsides.
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Chapter 13

The Energy and Geometry of Orbits

The velocities we found for the elliptical orbit were at the apsides, the places where

the comet, or the orbiting planet, moon, star or spacecraft is nearest or farthest from

one focus of the ellipse. These again are the perihelion and aphelion distances

(when referring to the Sun), perigee and apogee (the Earth), periastron and apastron

(stars), or more generally for any object, periapsis and apoapsis. These two points in

the orbit are important to know, but it is usually essential as well to be able to

calculate the precise orbital velocities at other points of the elliptical orbit. How fast

will the comet be moving against the stars when it travels past the Earth? Is it on its

predicted path, or has its speed been altered by the gravitational influences of

another planet during its trip? In another context, it can be critically important to

know at each moment the velocity of a vehicle destined for a rendezvous with a

moon, planet, comet or asteroid. We want to compare actual with predicted velocity

of the vehicle to see if it is on course for the interception. In the Apollo Moon

program days, it was vital to know the speed of the returning spacecraft to predict

whether it would have a successful “insertion” at just the right spot on reentry, or fly

past the Earth and be lost in space. The many smaller probes sent into the corners of

our solar system have relied on our accurate knowledge of velocity at any point in

the orbit. Velocity corrections are commonplace for space vehicles, which often

employ short bursts of rocket thrust to keep them on course.

How can this type of velocity calculation be done? The key is for us to refer to

the total energy of the orbit, which is constant everywhere in the orbit. If we can

calculate the energy of the orbit in one place, say at the apsides, then the energy at

every other place must be the same, due to the law of conservation of energy. If we

can then relate velocity to that energy, we’ll have the key to unlock the mathemati-

cal puzzle, and create an equation for velocity at any point along the ellipse.

The law of conservation of energy offers rewards in the study of orbital dynamics.

We have seen its use in deriving the basic velocity equations. More fundamentally,

the energy of a mass in orbit will characterize the orbit itself. It will tell us what kind

of conic section the orbit is: ellipse, parabola or hyperbola. Energy considerations
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invite remarkable clarity into the subject. To continue our inquiry into the energy of

orbits, we must first examine the total energy in the circular orbit, then the more

general case of the elliptical orbit. From there we will be positioned to evaluate the

other conic sections in terms of energy.

The Total Energy in a Circular Orbit

Recalling the discussion on the conservation of energy in the last chapter, the total

energy ET in any orbit is the sum of kinetic and potential energies: ET ¼ K + U,
which, in the absence of external forces, is constant everywhere in the orbit. As

before, we can express the total energy in a circular binary orbit this way:

ET ¼ m1m2

v2

2 m1 þ m2ð Þ �
G

r

� �

where r is the distance between the two masses. Remember this equation; we will

use it again soon. Since the velocity in a circular orbit is this,

v2 ¼ G m1 þ m2ð Þ
r

we can substitute the right-hand side of this equation for velocity in the energy

equation. The result, after simplifying, is total energy in a circular orbit of radius r:

ET ¼ �Gm1m2

2r

Examine this equation. It appears that the total energy in the case of, say,

a particle of mass m2 in a circular orbit around a primary mass m1, is dependent

solely upon the radius of the orbit. Does this make intuitive sense? Velocity is

constant in a circular orbit, and, with an unchanging radius, there will be no

variation in gravitational potential energy (which would change only with a change

of distance from the center of mass). Hence there should be one and only one total

energy for a mass orbiting a primary at a given radius. Moreover, the total energy is

negative. This is again because potential energy is always negative, but gets less so
with distance; hence it increases at a decreasing rate (moves closer to zero) as radius

increases. At infinite distance it is zero.

A circular orbit has a finite radius, and is said to be bound. This is not always
easy to understand intuitively, but think of the gravitational potential as being

sufficiently great (negatively great!) to bind the mass into this orbit. An object

may be thought of as circling fully within the gravitational well. If the total energy

in a given case is negative, the gravitational pull factor (the gravitational potential

energy, –U) in the equation is dominant over the velocity factor (the kinetic energy,

K) and the orbit is regarded as bound.
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The Total Energy in an Elliptical Orbit

The circular orbit may be regarded as the simplest case, a special form of the ellipse.

What is the total energy of a mass in an elliptical orbit? For an elliptical orbit, we

again begin with the equation for the total energy in an orbit, using r for the distance
between the masses:

ET ¼ m1m2

v2

2 m1 þ m2ð Þ �
G

r

� �

Now let us investigate the energy at one location of the orbit, for example at

perihelion, whose velocity we know. Recall from the previous chapter that at

perihelion, the velocity (squared) is,

v2P ¼ G m1 þ m2ð Þ
a

1þ e

1� e

� �

We could just have easily picked the aphelion velocity; the energy will be the

same at each point. We now substitute the right-hand side of this velocity equation

for v in the energy equation, recalling that r ¼ a(1 � e) at perihelion:

ET ¼ Gm1m2

1þ eð Þ
2a 1� eð Þ �

1

a 1� eð Þ
� �

Simplification of this expression conveniently cancels out the eccentricity terms

and yields the total energy of the elliptical orbit:

ET ¼ �Gm1m2

2a

This expression is functionally equivalent to the circular orbit energy, except

that instead of radius it refers to the semi-major axis a. For given masses, the total

orbital energy depends only on the length of the semi-major axis. Eccentricity is

irrelevant.

This equation refers to total energy in the orbit. Let’s look again at the types of

energy involved. Unlike the case of the circular orbit, the values of K and U in the

elliptical orbit continuously change as the mass orbits the ellipse, their sum

remaining constant. Increases or decreases in distance from the mass (and thus

changes in potential energy U), will demand corresponding decreases or increases

in kinetic energy K, and hence velocity, to keep ET constant in accordance with the

law of conservation of energy. As we saw before, when the distance from the Earth

to an orbiting satellite is less in its elliptical path (perigee), its velocity will be at

maximum, and where its distance is greatest (at apogee) its velocity is less, consis-

tent with Kepler’s Second Law. There is thus a constant balancing of the two
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energies at every point in the orbit such that the total energy between and at these

extremes is always constant. Of course, other dissipative changes to the total energy
of the system outside of this idealized hypothetical, such as atmospheric friction,

would alter this result.

Considering the geometry of elliptical and circular orbits, and these conclusions

make intuitive sense. Look again at the figure in the last chapter where the semi-

major axis of the ellipse is equal to the radius of the circumscribing circle:

In the ellipse, the K andU energies are always varying, but their sum in each case

is constant. As we decrease the eccentricity of the ellipse, it becomes nearer to

a circle and the variability of the K and U energies will diminish, but their sum will

not change at all. When the variability ceases, at circularity, the sum is still what it

always was, and is no different from that of a circle. The total energy of the circular

orbit is the same as the total energy of the elliptical orbit in the case where the radius

and semi-major axis are the same.

We have seen that the total energy in a bound orbit is negative. Is there ever

a case where total orbital energy is zero or positive? We will see shortly that where

velocity of the mass is sufficiently great, the kinetic energy component can equal
the gravitational potential energy—such that the K and U energies are exactly equal

to each other—and the total orbital energy is zero. In that very special case we have
a parabolic orbit, where the mass has just the right energy to unbind itself from the

gravitational pull and escape. If the velocity is still greater, the total energy is

positive and we have a hyperbolic orbit. Here the K energy of velocity dominates

the energy equation wholly, until at infinite distance (where U is zero), the only
remaining component is the kinetic energy.
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Velocity Anywhere Along the Elliptical Orbit

Returning to the equation for the conservation of energy, ET ¼ K + U, we found

that the total energy of the elliptical orbit equals,

ET ¼ �Gm1m2

2a

This must be set equal to the expression for total orbital energy as a function of

velocity, we found above:

m1m2

v2

2 m1 þ m2ð Þ �
G

r

� �
¼ �Gm1m2

2a

Canceling, simplifying, and solving for velocity yields,

v2 ¼ G m1 þ m2ð Þ 2

r
� 1

a

� �

Using the shorthand notation m ¼ G(m1 + m2), (or Gm1 if m1>>m2) the equa-

tion appears in its most often-cited form:

v2 ¼ m
2

r
� 1

a

� �

This equation, known as the energy equation or vis viva equation, is especially

important in celestial mechanics. (It is commonly written in this velocity-squared

form.) We derived it completely using the law of conservation of energy. The semi-

major axis a being given, one can mathematically place one end of the radius vector

r at the focus of the ellipse and point the other to any spot on the curve where

the velocity is sought, and the equation will yield the velocity at that point on the

ellipse. Demonstrate for yourself that directing the vector to either of the apsides

generates the same apsidal equations for velocity we found before.

If the center of force is the Sun and it is convenient for the units to be in

astronomical units and kilometers per second, the equation may be modified as

before, where the constant k ¼ 29.785:

v2 ¼ k
2

r
� 1

a

� �

Where the ellipse devolves into a circle, such that a ! r, the equation becomes

the familiar equation for the velocity (squared) in a circular orbit,

v2 ¼ m
r
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Energy-wise, the fundamentals of the elliptical and the circular orbits are the

same: both are bound and the total energies of each are independent of eccentricity,

functions solely of their respective semi-major axis and radius. Imagine moving an

orbiting particle to a place infinitely far away from its orbit. In that case, its

potential energy would have increased to become zero (since the distance to the

center of force has become infinite), and its kinetic energy (and so its velocity)

would have decreased to become zero, their sum always remaining the same. This

change would require work, and the amount of that work exactly equals the total

energy of its original orbit.

The Very Particular Parabolic Orbit and the Velocity of Escape

Suppose there is a body in an elliptical orbit with the Sun at one focus, and you are

somehow able to reach down into the solar system and stretch it along its major

axis, such that the value of a grows and grows. The Sun remains at one focus as

we stretch it past the orbit of Pluto, past the Kuiper belt, all the way perhaps to

the Oort Cloud. The secondary focus gradually becomes very remote from the Sun.

The eccentricity of this orbit increases as we gradually flatten it, becoming closer

and closer to unity. At .999999 eccentricity it is still an ellipse, and closed, but

suppose we push the aphelion distance even farther out, in fact infinitely far out,

such that our elongated orbit finally breaks. In such an orbit, the semi-major axis

would become infinitely great, the eccentricity would be exactly 1 and the ellipse

would become a parabola. What this means geometrically can be shown by

examining the equation of the conic:

r ¼ p

1þ e cos y

Recall from the discussion in Chap. 4 that when e ¼ 1 (parabola) and y ¼ 0,

then r ¼ ½ p. When y ¼ p/2 (which is 90�), then r ¼ p. But when y ¼ p (180�),
cos y ¼ �1 and r goes to infinity. Graphing the conic section when eccentricity is

one yields this:
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The parameter is the vertical line from the focus, which is here depicted as

the Sun and the center of force. Notice that the perihelion distance is just half the

parameter. What can we say about the velocity of a particle of mass in this parabolic

orbit? Here is the vis viva equation derived above:

v2 ¼ m
2

r
� 1

a

� �

As a in the ellipse becomes larger and larger, the second term gets smaller and

smaller. When it “opens” and we have a parabola, at a ! 1, the second fraction

becomes zero, and the equation reduces to this form:

v ¼
ffiffiffiffiffiffi
2m
r

r

Compare this with the equation for circular velocity. It differs only by the square

root of 2. If the velocity of a comet is √2 times what its circular orbital velocity

would be at a given distance from the Sun, we know it cannot be in a circular orbit;

it will be unbound and escape. It will have climbed fully out of the Sun’s gravita-

tional well. If a spacecraft is in any orbit around the Sun, and it is given a thrust kick

to propel it at 1.414 (the square root of 2) times its circular orbital velocity at that

distance, it will escape from the solar system (unless other gravitational influences

of, say, encounters with other planets pull it back).

From the energy perspective, we can describe what happened in this stretching.

The total energy of a particle of mass in an elliptical orbit is ET ¼ �Gm1m2/2a, but
because a is infinite in a parabolic orbit, the total energy of a particle in a parabolic
orbit, according to that equation, must be zero. That is,

ET ¼ 0

and this K + U ¼ 0 condition must be met at each point in its parabolic orbit, so

uniquely in a parabola, the kinetic energy always equals the potential energy:

1

2
m2v

2 ¼ Gm1m2

r

Which is of course consistent with the conclusion that v ¼ √2m/r. Thus we can
always identify an object in a parabolic orbit by its velocity. If its velocity is

precisely the necessary escape velocity at its distance, then we can say its orbit

is a parabola. This is a very hard condition to exactly satisfy. It represents the

special case of unit eccentricity.

In a sense, the parabolic “orbit” should not be called an orbit at all, since the

object will never return. It is a trajectory, and it walks a fine line: any less velocity

and it will be bound into an elliptical or circular orbit. What if it is more?What if the

velocity exceeds that of escape? Then we have the case of the hyperbolic trajectory.
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Hyperbolic Trajectories

In orbits where the eccentricity is greater than one, the orbit is also unbound, and is

the hyperbola. In this case, if we move a particle infinitely far away, so that its

potential energy is zero, it may still have some residual velocity. In the case of the

parabola, the total energy is always zero. But in the hyperbola, the lingering kinetic

energy at infinity means that the total energy is not zero: it is positive. And the total

energy at infinity must (again because of the conservation law) be the total energy

everywhere. So for the hyperbola, the total energy is completely a function of that

excess velocity: ET ¼ ½ mv2. It can be shown that this total energy, being always

positive, is equal to:

ET ¼ Gm1m2

2a

Equating this with the energy conservation expression and solving for velocity,

we have:

1

2
m2v

2 � Gm1m2

r
¼ Gm1m2

2a

v2 ¼ m
2

r
þ 1

a

� �

This is the velocity in the hyperbolic orbit. If the center of force is the Sun and

we desire the units to be in AU and kilometers per second, the equation becomes,

for k ¼ 29.785,

v2 ¼ k
2

r
þ 1

a

� �

Compare this with the vis viva equation for the bound orbit. The only difference

is the plus sign, which in the bound orbit is minus. This is because of the geometry

of the hyperbolic orbit, in which the semi-major axis a is at the intersection of the

asymptotes and its axis of symmetry, and is negative. The negative value of a can be
extremely large. Nevertheless, the equation works to yield hyperbolic velocity

dependent, indeed, only upon the value of a and the distance r from the center of

force at which we choose to make our inquiry as to velocity.

Summary of Orbital Energy Relationships

The eccentricity of the conic section is a simple indicator of the bound or unbound

nature of the orbit. Where e < 1 we have a bound orbit, an ellipse or circle.

Anything more and the orbit is unbound. Where e ¼ 1 the result is a parabola

274 13 The Energy and Geometry of Orbits



and where e > 1 the curve is a hyperbola. The difference between the bound orbits

of the ellipse and circle, and the unbound parabolic and hyperbolic trajectories near

unit eccentricity is a narrow one, yet this is where the eccentricities of many comets

lie. A simple graph demonstrates this. Take for example the general equation for

any conic section:

r ¼ p

1þ e cos y

In this equation p is the parameter, known since Newton’s day and before as the

semi-latus rectum, e is the eccentricity and y is the angle from perihelion counter-

clockwise on the arc of the conic. By graphing this equation with values of

eccentricity chosen at .9, 1.0, and 1.1, we should see some closely aligned curves

of the ellipse, parabola and hyperbola. Here, using Maple software is the result:

The focus is at the origin and the parameter p has been (arbitrarily) assigned the

value of .5. (It is the distance vertically from the origin to that value on the y axis.)
Looking to the left of the y axis, the blue ellipse line is the inner arc, the hyperbola is
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the gold outer arc, and the parabola is the red arc sandwiched in between. Note that

on the right of the y axis, the order is reversed, with the elliptical arc being the outer
curve, and the hyperbolic arc on the inside.

What is remarkable about the graph is that the differences in the curves near the

origin are so slight. If the units were astronomical units, with the Sun at the origin,

one can appreciate how exceedingly difficult it would be to tell, simply from the

shape of the orbit, whether a comet was a periodic comet, due to return after it went

to aphelion out in space, or a one-time visitor. Many comets have eccentricities

greater than .9 yet less than 1, and none become dramatically bright until they near

the Sun. If such a comet were spotted inbound within say, half an AU from the Sun,

it would be a challenge to ascertain the nature of its orbit without repeated

observations establishing its velocity.

If one can determine the velocity of the comet, then one will have a far a better

grip on the nature of the orbit. If the comet has “parabolic” velocity, its path will be

a parabola. Less velocity than this, it is an ellipse; more, a hyperbola. Recall this

equation for finding the circular velocity in kilometers per second of an object at

radius distance r astronomical units from the Sun:

v ¼ kffiffi
r

p

where k ¼ 29.785. The parabolic velocity would be √2 greater than this, or

ve ¼ k

ffiffiffi
2

r

r

Applying this equation, we know that the escape velocity of an object at the

distance our Earth is (r ¼ 1) from the Sun from its bound orbit would require

something to give it a kick to about 42 km/s, and for Mars (r ¼ 1.524), to a

little over 32 km/s. Similarly, any object at 1 AU from the Sun, such as a comet,

which is travelling at 42 km/s or greater will be in an unbound orbit. Its orbit will be

parabolic if it is moving at exactly escape velocity and hyperbolic if the velocity is

in excess of the escape velocity. Naturally, when such any object is nearer or farther

from the Sun (or other center of force) its escape velocity from orbit would become

greater or less because the gravitational pull of the main attractor is greater or less

according to the inverse square law.

It is helpful to see how these energy relationships look when compared against

actual solar system bodies. The chart below compares the perihelion velocities of

a number of high-eccentricity comets and also the planets in the solar system,

using this equation, which we used in the last chapter, to compute the orbital

velocities at perihelion, where units are AU and kilometers per second:
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vP ¼ k
1þ e

q

� �1 2=

where k ¼ 29.785. The graph is divided by the red diagonal, e ¼ 1 line which

represents exactly parabolic velocity. Objects with eccentricity of 1 would (if the

graph resolution were greater) appear precisely on that line. Their total orbital

energy in parabolic orbit is zero (K and – U energies being in perfect balance).

Objects to the right of the slanting line are in hyperbolic orbits, having eccentricities

greater than 1 and positive orbital energies. Objects to the left of the slanted parabola

line have eccentricities less than 1, negative orbital energies, and are in bound

elliptical (or circular) orbits. These include the planets and asteroids in the solar

system, stably bound to revolve around the Sun for eons, represented here by the

solid blue diamonds to the left of the diagonal: Mercury, Venus, Earth, Mars, Ceres,

Jupiter, Saturn, Uranus and Neptune are represented.

Why are they in a straight line parallel to the parabolic line? If one multiplied

their circular orbital velocities by √2, they would be on the line. The small open

squares are a random selection of high to very high eccentricity comets listed in the

accompanying table.
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Comets appearing in the grapha

Comet Designation e q [AU] vq [km/s]

Gerradd C/2009 P1 1.000966 1.55 33.8

Boattini C/2008 S3 1.000671 8.02 14.9

West C/1975 VI-A 0.999971 0.20 95.0

Cardinal C/2010 B1 0.999004 2.94 24.6

Bennett C/1969 Y1 0.996193 0.54 57.4

Hale-Bopp C/1995 O1 0.995082 0.91 44.2

Halley 1P 0.967143 0.59 54.6

Encke 2P 0.848332 0.34 69.9

N1 P/2011 N1 0.545582 2.86 21.9

Holmes 17P 0.432878 2.05 24.9

Schwassmann-Wachmann 29P 0.044074 5.73 12.7
aThe data for these comets was gleaned from http://ssd.jpl.nasa.gov/sbdb.cgi

Determining the Velocity of a Near Earth Asteroid
Which Passed by Earth

There is an ongoing effort to detect and track asteroids and comets that pass close to

Earth. Depending on its size, an impact from such a Near Earth Object, or NEO,

could pose a danger to Earth. NEOs are defined as objects (asteroids and comets)

whose perihelion distance is less than 1.3 AU.1 Asteroids in this group are called

Near Earth Asteroids (NEAs). Many NEA’s are very small and miss by a long shot,

but occasionally one passes uncomfortably close to Earth.

An example of a close pass by a tiny NEO is the object designated 2010 TD54.

It is small, with an estimated size of school bus, only 7 m, but had a “miss distance”

on October 12, 2010 of a tenth of the distance between the Earth and the Moon.

Since the mean lunar distance (LD) is 384,400 km, 2010 TD54 passed about

1 The effort to detect NEOs is part of NASA’s Near Earth Object Program, whose website, http://

neo.jpl.nasa.gov/neo/groups.html contains a database of NEOs. Some Near Earth Asteroids

(NEAs) (the Atens and Apollos) have “Earth-crossing” orbits. Asteroids that are large and bright

and pass exceptionally close to Earth are called “Potentially Hazardous Asteroids.” There are close

to 1,200 of these discovered so far. The site defines these PHAs: “Specifically, all asteroids with an

Earth Minimum Orbit Intersection Distance (MOID) of 0.05 AU or less and an absolute magni-

tude (H) of 22.0 or less are considered PHAs.” The absolute magnitude, or intrinsic brightness, of

the PHA depends on its reflectivity (or albedo). With certain assumptions regarding its albedo,

astronomers conclude that an object less than about 150 m in diameter would not be a PHA. A

record of recent encounters with NEOs can also be found on the popular site, http://spaceweather.

com/. That site states, “Potentially Hazardous Asteroids (PHAs) are space rocks larger than

approximately 100 m that can come closer to Earth than 0.05 AU. None of the known PHAs is

on a collision course with our planet, although astronomers are finding new ones all the time.”
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38,440 km from the center of the Earth.2 This is in the neighborhood of our

geosynchronous satellites! Below is NASA’s rendering of this close pass:

One can imagine that the small asteroid would appear be moving very quickly

across our sky. The problem below estimates what the velocity of 2010 TD54

relative to the Sun was on the date of its close encounter with Earth.

Problem Given the information below, find the velocity of 2010 TD54 relative

to the Sun as it passed between the Earth and Moon October 12, 2010. Compare that

with its aphelion and perihelion velocities

Given

v ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
r � 1

a

� �q
The velocity equation for a heliocentric orbit

k Modified Gaussian constant (“kappa”) of 29.785 that will yield a result in

kilometers per second when other units are in astronomical units

r The radius vector in AU between the Sun and the object in orbit. Since we are

determining velocity at the time the asteroid crosses Earth’s orbit, r ¼ 1

a Semi-major axis of 2010 TD54: 1.7853 AU

Q Perihelion distance of 2010 TD54: 2.89 AU

Assumptions We ignore gravitational forces other than the Sun acting on the

asteroid, and disregard the slight inclination (about 5�) of the plane of the asteroid’s
orbit relative to the plane of the Earth’s revolution around the Sun (the ecliptic
plane)

Method Solution of this problem entails straightforward substitution of values into

the energy equation. Remember that units here are AU. The issue here will be

2 The NASA news release for the near-Earth passage of 2010 TD54 stated that at closest approach

the asteroid would pass over Singapore. See http://www.jpl.nasa.gov/news/news.cfm?

release¼2010-332.
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finding the required value of the radius vectors r at the places in the orbit where it is
needed for us to calculate velocity. For the passage close to Earth, we know that

its distance from the Sun will be about the same as the Earth’s, so for that location in

its orbit r ¼ 1. The respective values of r at perihelion and aphelion will just be

those distances. Since aphelion distance Q is given as 2.89 AU, and the semi-major

axis a is 1.7853 AU, the perihelion distance must be the difference between the

major axis (2a ¼ 3.57 AU) and the aphelion distance, or .68 AU. We will distin-

guish the magnitudes of the these different radii vectores, as the old writers referred
to them, by the subscripts E, A and P to stand for the Earth, aphelion and perihelion

distances, respectively.

Calculations First solve the velocity equation to find the velocity of the asteroid

at the distance of the Earth’s orbit of one astronomical unit:

vE ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

rE
� 1

a

� �s

v ¼ 29:785

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 1

1:7853

� �s

v ¼ 35:7 km=s

To find the perihelion and aphelion velocities, we substitute the magnitudes of

the radius vectors for those distances. Beginning with perihelion velocity,

vP ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

rP
� 1

a

� �s

vP ¼ 29:785

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

:68
� 1

1:7853

� �s

vP ¼ 46 km=s

Doing the same process for aphelion velocity yields this result:

vA ¼ 29:785

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

2:89
� 1

1:7853

� �s

vA ¼ 10:8 km=s
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Observations

1. The accompanying orbit diagrammay help to visualize the relationship of the two

orbits. Motions of the Earth and the asteroid are counter-clockwise, and the close

approach on October 12, 2010 was at the intersection of the orbits on the right.

2. Again we see the characteristic velocity signature of the ellipse, consistent with

Kepler’s SecondLaw,where the asteroid has speeded up as it rounds the Sun,more

than quadruple the velocity of its far turn. At aphelion it is past the orbit of Mars

and well into the asteroid belt where it originated, and where it was likely thrown

farther into the inner solar system by the influence of Jupiter at an earlier time.

Newton, Halley and the Great Comet of 1680

The Great Comet of 1680 was one of the great comets of its century. It appears to

have been the first discovered using a telescope on November 4th, 1680 by Mr.

Gottfried Kirch of Saxony. Its timing coincided with Newton’s work on the laws of

motion, and his Book III of the Principia is filled with many pages of recorded

observations, data, analyses and drawings. Newton, “partly by arithmetical

operations, and partly by scale and compass” had first assumed that the Comet of

1680 was on a parabolic track. But Halley was able to show from historical records

and the similarity of its orbital elements that it was likely the same object that had

been seen before, with repeat visits of every 575 years:
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Moreover, Dr. Halley, observing that a remarkable comet had appeared four times at equal

intervals of 575 years (that is, in the month of September after Julius Caesar was killed;
An. Chr. 531, in the consulate of Lampadius and Orestes; An. Chr. 1106, in the month of

February; and at the end of the year 1680; and that with a long and remarkable tail, except

when it was seen at Caesar’s death, at which time, by reason of the inconvenient situation

of the earth, the tail was not so conspicuous), set himself to find out an elliptic orbit whose

greater axis should be 1382957 parts, the mean distance of the earth from the sun containing

10000 such; in this orbit a comet might revolve in 575 years . . . [and with] the equal time of

perihelion Dec. 7d. 23h. 9m. . . and its conjugate axis 18481.2, he computed the motions of

the comet in this elliptic orbit.3

With this information, it was apparent that the Comet of 1680 was not parabolic,

but was in a high-eccentricity elliptical orbit. The key difference between Newton’s

first approximation of a parabolic orbit and the ultimate resolution in favor of an

elliptical orbit was the existence of a long historical record that proved it.4 It was

a dramatic early demonstration of how difficult it can be to distinguish among any

of three types of orbits (elliptical, parabolic and hyperbolic) in that fine zone just

slightly this side or the other of eccentricity one.5

Problem With the information given below, taken from Newton’s account of the

Great Comet of 1680, confirm that Halley’s use of a 575 year period derived from

the historical record does require a major axis of the size stated by Newton; then

determine the semi-major and semi-minor axes of the orbit and find the eccentricity,

the parameter of the ellipse (i.e., the semi-latus rectum), and the perihelion and

aphelion distances of the comet’s orbit. Next, calculate its velocity at the distance of

the Earth’s orbit and at perihelion. Graph the inner orbit of the comet on paper (or

computer) at any convenient scale, with the Sun at the origin.

Given

1382957 The “greater axis” of the ellipse described by Newton, “the mean distance of the earth

from the sun containing 10,000 such . . .”

18481.2 The “conjugate axis” (or minor) of the ellipse, according to Newton

575 The presumed period of the comet’s orbit in years

3Principia, Book III, Prop. XLI, p. 515.
4 This same approach led Halley famously to conclude that the comet of 1682 was also periodic,

with the predicted return time of 75 years, which prediction was confirmed after his death; as a

tribute to that great man, that comet became known as Halley’s Comet.
5 Newton stated in one corollary that comet orbits “will be so near to parabolas, that parabolas may

be used for them without sensible error.” Principia, Book III, Prop. XL, Cor. 2. Clearly he was not
referring to all comets, since in the preceding corollary he had commented on comets with orbits

greater than Saturn, and the application of Kepler’s Third law to them. Yet, in Corollary 3 of that

Proposition, he makes uses the √2 times circular velocity method to estimate the velocity of comets

at a given distance:

And, therefore . . . the velocity of every comet will always be to the velocity of any planet,

supposed to be revolved at the same distance in a circle about the sun, nearly as the square

root of double the distance of the planet from the centre of the sun to the distance of the

comet from the sun’s centre. Ibid., Cor. 3.
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Assumptions We accept the Newton-Halley data, even though, as we will see,

current orbital elements differ. The comet has an inclination to the ecliptic plane of

about 60�, but we will consider the geometry of the orbit on a two-dimensional xy
plane. Influences of other bodies will be ignored, as they were when Newton and

Halley investigated this comet.

Method The “greater axis” and “conjugate axis” are the respective major and

minor axes of the ellipse. The semi-major axis a and semi-minor axis b are half that.
Since an astronomical unit is the mean distance between the Earth and Sun,

Newton’s phrase, “the mean distance of the earth from the sun containing 10,000

such . . .” means that given distances are in ten-thousandths of an astronomical unit.

So to convert to AU, the data must be divided by 10,000. With the units in hand

being AU and years, we can easily check its period with Kepler’s Third Law. The

semi-minor axis and parameter of the ellipse can be calculated by the equations

relating those to a and bwe introduced earlier: b ¼ a√ (1 � e2) and p ¼ a(1 � e2),
still using AU as our units. Eccentricity can be determined by manipulating the first

equation to solve for e. Perihelion distance q can be found by remembering the

simple relation: q ¼ a(1 � e). Aphelion distance can be found by either Q ¼ a
(1 + e) or the major axis minus perihelion distance, Q ¼ 2a � q. With all that

behind us, we can then work through the velocity equations, with this equation for

perihelion distance, vP ¼ k[(1 + e)/q]1/2 used above; and the vis viva equation for

velocity at 1 AU. Use the basic conic equation to graph the ellipse with the derived

values: r ¼ p/(1 + e cos y).

Calculations Halley chose his major axis to just fit the 575 year period of the

Comet of 1680. That period, according to Kepler’s Third Law, required one and

only one major axis. Halley arrived at the given major axis of 138.2957 AU,

which is the same as “1382957 parts, the mean distance of the earth from the

sun containing 10000 such . . .” The semi-major axis is half that or 69.14785 AU.

To confirm this choice of axis, we solve Kepler’s Third Law for period where units

are years and AU:

P ¼ a3 2=

P ¼ 69:14785ð Þ3 2=

P ¼ 575 yr

As to the semi-minor axis b of the ellipse, it is given by Newton that the

“conjugate axis” (which is the minor axis) is 18481.2, where we take Newton to

be using the same units (of 1/10,000 AU). The minor axis would therefore be

1.84812 AU, and the semi-minor axis half this:

2b ¼ 18:4812
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b ¼ 0:92406 AU

We are starting to get a sense of the shape of this orbit, whose long-to-short axis

dimensions appear to be about 69:1.

For the calculation of eccentricity, we may make use of this equation we

encountered earlier in the discussion of the geometry of the ellipse:

b ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p

Solving for e,

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

a2

r

Inserting the values for b and a from above, we have,

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:92406ð Þ2

69:14785ð Þ2

s

e ¼ 0:9999107

The eccentricity is very close to one, which suggests a very nearly (but not

quite!) parabolic orbit. We can get an even better idea of the scale of the ellipse by

calculating the parameter, which is the vertical distance (at right angles from the

long axis of the ellipse) up from the focus, which in our heliocentric problem is

the Sun. To find the parameter of the ellipse, we solve the equation,

p ¼ a 1� e2
� �

p ¼ 69:14785 1� :99991072
� �

p ¼ 0:01234871 AU

Next we are required to find the perihelion and aphelion distances, q and Q,
respectively. Using these familiar equations,

q ¼ að1� eÞ Q ¼ að1þ eÞ

q ¼ 69:14785ð1� :9999107Þ Q ¼ 69:14785ð1þ :9999107Þ

q ¼ 0:006175 AU Q ¼ 138:2895 AU
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This is an extremely close perihelion! Its close shave with the Sun explains why

the comet was so brilliant. (Compare its perihelion distance with those of the

comets in the table above.)

At last we are able to calculate its velocities at perihelion and at Earth distance

from the Sun, or 1 AU. Using the perihelion velocity equation developed above, we

have, for the Comet of 1680 at its closest approach to the Sun:

vP ¼ k
1þ e

q

� �1 2=

vP ¼ 29:785
1þ :9999107

0:006175

� �1 2=

vP ¼ 536 km= sec

This is an astonishing velocity! Compare this with the more sedate comets in the

table. Let’s see what its velocity was at 1 AU Earth-distance:

v1 AU ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

rE
� 1

a

� �s

v1 AU ¼ 29:785

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 1

69:14785

� �s

v1 AU ¼ 41:97 km=s

This is faster than the perihelion velocity of many comets! Let us see what the

graph of this remarkable comet looks like. With Maple software, the display is as

shown in the figure, where units are AU:
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Observations

1. How close to the Sun is .006 AU? The perihelion distance of this comet was less

than a million kilometers from the center of the Sun, whose radius is about

697,000 km. It was thus about 227,000 km above the solar surface. The Catalog
of Cometary Orbits6 lists this comet as among the closest to graze the Sun.

2. More modern analyses have refined these numbers. The NASA/JPL website7

shows the applicable elements to be: e ¼ .999986, a ¼ 444.4285714 and

q ¼ .006222444.43. The inner-orbit plot of this comet looks virtually identical,

and there are only slight changes to the velocities derived above; yet with these

modifications, the major axis of the comet is much larger, with a Q of over 888

AU and the comet’s period is almost 9,400 years!

Exercises: The Wonder of Brilliant Comets Brilliant comets have always been

the subject of awe and fascination in human history, but “great” comets will forever

be the source of intense, world-wide wonder and excitement. Take, for example, the

6Marsden and Williams [1].
7 See http://ssd.jpl.nasa.gov/sbdb.cgi#top.
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description of the initial reactions to the Great Comet of September, 1882. Here are

excerpts from Agnes Clerke’s A Popular History of Astronomy during the 18th
Century8 describing the interest in that comet:

The discovery of a great comet at Rio Janeiro, September 11, 1882, became known in

Europe through a telegram from M. Cruls, director of the observatory at that place . . .
On the forenoon of Sunday, September 17, [Dr. Common, from another location] saw a

great comet close to, and rapidly approaching the Sun. It was, in fact, then within a few

hours of perihelion. . .
The comet, of which the silvery radiance contrasted strikingly with the reddish yellow

glare of the sun’s margin it drew near to, was followed “continuously right into the boiling

of the limb” – a circumstance without precedent in cometary history. . .
On the following morning, the object of this unique observation showed (in Sir David

Gill’s words) “an astonishing brilliancy as it rose behind the mountains on the east of

Table Bay, and seemed in no way diminished in brightness and the sun rose a few minutes

afterward. It was only necessary to shade the eye from direct sunlight with a hand at arms

length, to see the comet, with its brilliant white nucleus and dense white, sharply bordered

tail of quite half a degree and length. All over the world, wherever the sky was clear during

that day, September 18, it was obvious to ordinary vision. Since 1843 nothing had been seen

like it. From Spain, Italy, Algeria, Southern France, dispatches came in announcing the

extraordinary appearance. At Córdoba, in South America, the “blazing star near the sun”

was the one topic of discourse. Moreover – and this is altogether extraordinary – the records

of its daylight visibility to the naked eye extend over three days.

This global fascination with special comets continues. The marvelous appear-

ance of comet Hale Bopp in the spring of 1997 stirred excitement all around the

world. Even lesser comets that appear with a spectacular and surprising splash into

view for a brief period can be memorable for a lifetime. A wonderful thing about

comets is this: one never knows but that tomorrow, next month, or next year another

“great” comet, having been absent for perhaps thousands of years, may enter our

tiny little solar neighborhood put on a display of surpassing beauty.

Problems

1. If an object were in circular orbit around the Sun at the same perihelion distance

as the Great Comet of 1680, what would its velocity be? Use the current JPL

data for the comet in doing your calculation. Compare that velocity to the

perihelion velocity of the comet and the escape velocity at that distance.

Interpret your results.

2. What is the kinetic energy per unit comet mass of the Comet of 1680 at

perihelion? Compare that with the kinetic energy per unit mass of a body in

the circular orbit described in the previous problem. What is their ratio?

3. Comet Elenin C/2010 X1 has the following relevant elements: e ¼ 1.000064,

a ¼ �7532.317 AU, q ¼ .482431 AU. On August 1, 2011 it was 1.038218 AU

from the Sun. What sort of orbit is this? Find the parameter of the orbit and its

velocity on that date.

8 Clerke [2].
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4. Plot the inner orbit (within 2 or 3 AU of the Sun) of Comet Elenin C/2010 X1

given the information above. Use AU as your units.

5. Considering the plane of the Earth’s orbit as the xy plane with the Sun at the

origin, the heliocentric xyz velocity vectors, in kilometers per second, of

Comet Elenin on August 2, 2011 were as follows: v[x] ¼ 41.19707592863396;

v[y] ¼ �6.868007304284843; v[z] ¼ .6153558567863349. Use the Pythago-

rean Theorem to find the velocity of the comet on that date.

6. Comet 1/P Halley has an eccentricity of 0.967143 and a semi-major axis of

17.8341 AU. Find its perihelion distance and the approximate velocities of

Comet Halley as it reaches the orbital distances of Jupiter (5.2 AU), Mars (1.52

AU), Earth (1 AU), Venus (.723 AU), Mercury (.387 AU), and at perihelion.

7. What is the total orbital energy of Comet Halley, assuming its mass is approxi-

mately 3 � 1014 kg?

8. From the vis viva equation, derive the equations for apsidal velocities when just
the semi-major axis and eccentricity are known.

9. Comet 17P Holmes has a perihelion distance of 2.053365 AU, a semi-major

axis of 3.62067 AU, and a semi-minor axis of 3.263863 AU. Find its eccentric-

ity, orbital parameter, apsidal distances, and velocities. Graph the orbit of the

comet at any convenient scale you choose.

10. Assume that Comet Halley and Comet Holmes have the same mass. Describe a

simple way of comparing their total orbital energies. Which has the greater

total orbital energy, and by how much?
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Chapter 14

Introduction to Spaceflight

Toward the end of his classic book, Interplanetary Flight,1 Arthur C. Clarke in

1950 was looking ahead to the end of the twentieth century and the prospects for the

future of space travel. He noted that to the ordinary man “this planet is still the

whole of the universe: he knows that other worlds exist, but the knowledge does not

affect his life and therefore has little real meaning to him.”2 But this, Clarke

predicted, would soon be a thing of the past:

All this will be changed before the 20th century draws to an end. Into a few decades may be

compressed more profound alterations in our world picture than occurred during the whole

of the Renaissance and the age of discovery that followed. To our grandchildren the Moon

may become what the Americas were four hundred years ago – a world of unknown danger,

promise and opportunity. No longer will Mars and Venus be merely the names of wander-

ing lights seldom glimpsed by the dwellers in the cities. They will be more familiar than

ever they were to those eastern watchers who first marked their movements, for they will be

the new frontiers of the human mind.3

It is indeed amazing how far things have progressed in the human adventure of

space travel in the more than half-century since he wrote the book. His prediction

was accurate. We have gone to the Moon; launched robotic explorers to circle

planets, moons and asteroids; sent vehicles to explore or impact Venus, Mars, Titan,

and several comets; and have enjoyed stunning close-up images of Mars’ ancient

waterways, Saturn’s rings, Io’s volcanoes, and the scratched surface of Uranus’

moon Miranda, to name just a few examples. We now routinely see fascinating and

mysterious images transmitted to us from other worlds that people only a generation

or two ago could not have imagined.

Clarke intended his book as a “survey of the possibilities and problems of

interplanetary flight, as far as they can be foreseen at the present day.”4 He noted

1Arthur C. Clarke [1].
2 Ibid., 145.
3 Ibid.
4 Ibid, xiii.

D.W. MacDougal, Newton’s Gravity: An Introductory Guide
to the Mechanics of the Universe, Undergraduate Lecture Notes in Physics,

DOI 10.1007/978-1-4614-5444-1_14, # Springer Science+Business Media New York 2012
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that many of the fundamental techniques already existed to analyze spaceflight: “It

is, for example, possible to calculate by quite simple methods the velocities and

durations required for interplanetary journeys, irrespective of the physical means

that may be used to accomplish them.”5 He was of course correct there too, and we

will do just that in this chapter. There are almost limitless fascinating problems in

the orbital mechanics of space travel. Most problems in the area, however, at least

begin with the basic techniques pioneered by Kepler, Galileo, and especially

Newton. These concepts have been developed to a fine art by their successors,

and have many complex nuances; we consider below only a few of the most

fundamental ideas in interplanetary travel.

Using a Hohmann Transfer to Achieve a Geostationary Orbit

Imagine an artificial satellite that has been launched into an equatorial, circular

orbit 500 km above the surface of the Earth, and its velocity is 7.61 km/s. Assume

that our goal is to transfer the satellite to another circular orbit far higher –

a geosynchronous orbit approximately 42,164 km above the center of the Earth,

where the orbital velocity is about 3.1 km/s. The procedure will be to use an

intermediate elliptical “transfer” orbit that connects the two circular orbits,

a method developed by German engineer and rocket enthusiast Walter Hohmann

in 1925. The satellite has a rocket propulsion engine aboard that can be fired from

Earth either to speed the satellite up or slow it down.

Problem What must the injection velocity of the satellite be from its low, 500 km

above the equator Earth orbit to place it into a elliptical transfer orbit whose apogee

is 42,164 km? Given the velocities noted above, what must the changes in satellite

velocity then be to convert the satellite’s elliptical transfer orbit into the desired

circular geosynchronous orbit?

Given

e ¼ (Q � q)/(Q þ q) Equation for eccentricity of an elliptical orbit, derived from apogee

Q and perigee q distances

vP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
q 1þ eð Þ

q
Equation for perigee velocity in a geocentric elliptical orbit

vA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
Q 1� eð Þ

q
Equation for apogee velocity in a geocentric elliptical orbit

m Shorthand symbol for GME, the product of the gravitational constant

G and mass of the Earth: 3.99 � 1014

RE Equatorial radius of the Earth: 6.38 � 106 m

5 Ibid.
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Assumptions It is assumed that the Earth is a spherical body of uniform density, so

the paths of the satellite follow an idealized circle or ellipse, without distortions in

its velocity caused by gravitational anomalies due to uneven mass distribution. The

points where the satellite gets its boosts will be at exactly the desired perigee and

apogee of the transfer orbit, and tangential to the radius vector. All the orbits are

“coplanar” (lying along the same plane), above the Earth’s equator in the direction

of the Earth’s rotation.

Method The perigee and apogee of the elliptical “transfer” orbit are known: the

perigee is the radius (from Earth’s center) of the 500 km orbit, and its apogee is the

radius of the geostationary orbit, approximately 42,164 km. Since the perigee and

apogee are given, the first task is to determine the eccentricity of the transfer orbit

(but first making all distances refer to the center of the Earth). From the eccentricity

of the planned transfer orbit, we can use the velocity equations to calculate the

perigee and apogee velocities needed to produce the transfer orbit. Then it is

necessary to find how to get the satellite into and out of the transfer orbit. Since

the velocities of the circular “before” and “after” orbits are known, we can calculate

the velocity changes needed, from perigee first to move the satellite from the 500 km

circular orbit to the transfer orbit; and then at apogee to move the satellite from the

transfer orbit to the geosynchronous orbit.

Calculations The satellite height from the center of the Earth is 500,000 m þ RE:

Perigee: Apogee:

5� 105
� �þ 6:38� 106

� � ¼ 6:88� 106m 4:2164� 107m

To find eccentricity,

e ¼ Q� q

Qþ q

e ¼ 4:2164� 107 � 6:88� 106

4:2164� 107 þ 6:88� 106

e ¼ :7194

To find velocities at perigee and apogee we solve these equations:

Perigee: Apogee:

vP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
q

1þ eð Þ
r

vA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
Q

1� eð Þ
r

vP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:99� 1014ð Þ
6:88� 106ð Þ 1:7194ð Þ

s
vA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:99� 1014ð Þ
4:22� 107ð Þ 1� :7194ð Þ

s

vP ¼ 9:99km=s vA ¼ 1:63km=s
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These are velocities that the satellite needs to obtain at perigee and apogee in the

transfer orbit. How do they compare with the given circular orbital velocities vc at
500 km and at 42,164 km?

vc ¼ 7:61km=s for the 500km orbit vc ¼ 3:07km=s for the 42; 164km orbit

What must the change in velocities be, from 500 km circular orbit to elliptical

transfer orbit, then from transfer orbit to 42,164 km geostationary orbit?

DvP ¼ vP � vc500 DvA ¼ vc42;200 � vA

Needed vP ¼ 9:99 km=s vc42;200 ¼ 3:08 km=s

From � vc500 ¼ 7:61km=s � vA ¼ 1:63km=s

Change DvP ¼ þ2:38km=s DvA ¼ þ1:45km=s
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Hence the satellite velocity must be boosted by 2.38 km/s at a designated perigee

injection point to get it into the elliptical transfer orbit, with a rocket burn timed

to achieve just that velocity. Then at the apogee of the transfer orbit, the satellite

must be given an apogee “kick” of 1.45 km/s to place it into the circular geostation-

ary orbit.

Observation This is only one example of such an orbital transfers, which can be

shown to involve the least amount of energy.

Designing an Orbit for a Lunar Mission

Suppose you are to help plan a robotic mission to the Moon. For this trip, you will

want to simply have the spacecraft go around the Moon and return, to check

feasibility of a later robotic landing. You decide to do it in two steps. Inspired by

the above example, you advise launching the vehicle into a circular orbit 500 km

above the surface of the Earth (thus, 6.88 � 106 m from the center of the Earth).

Its velocity at that altitude will be 7.61 km/s. You goal is to plan for a spacecraft

orbit that just rounds the Moon and returns into circular Earth orbit, before initiating

re-entry.

Problem Find the (1) eccentricity of the spacecraft orbit; (2) its perigee and

apogee velocities of the orbit; (3) the injection velocity at perigee necessary to

attain this orbit; and (4) the approximate travel time to the Moon.

Given

e ¼ (Q � q)/(Q þ q) Equation for eccentricity of an elliptical orbit, derived from apogee

Q and perigee q distances

vP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
q 1þ eð Þ

q
Equation for perigee velocity in an elliptical orbit

vA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
Q 1� eð Þ

q
Equation for apogee velocity in an elliptical orbit

m Shorthand symbol for GME, the product of the gravitational constant

G and mass of the Earth: 3.99 � 1014

Q Apogee of the spacecraft orbit, which equals the semi-major axis

distance from Earth to Moon: 384,400 km

q Perigee of the spacecraft orbit: 500 km from the center of the Earth,

or 6.888 � 106 m

a Semi-major axis of the spacecraft orbit, determined from the equation

a ¼ (q þ Q)/2

P ¼ 2pffiffi
m

p a3 2= Period of the spacecraft in its orbit

Assumptions All the assumptions of the prior problem. We’ll also assume that the

mean distance from the Earth to the Moon is the distance the Moon will in fact be

from the Earth at the time of arrival at the Moon. We will also ignore for the sake of

this problem ignore the Moon’s own gravitational pull, its “terminal attraction” on
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the spacecraft as it nears the end of its voyage, as it approaches the Moon. We also

assume no in-flight changes in velocity. Finally, we’ll assume that the spacecraft’s

mass is negligible relative to the other bodies.

Method The perigee and apogee of the elliptical orbit are respectively given as

6.88 � 106 and 3.844 � 106 m. We can therefore calculate the eccentricity of the

orbit in the same manner as was done in the previous problem. From this e,
the velocity equations may again be used to calculate the perigee and apogee

velocities needed to produce the spacecraft trans-lunar orbit. The task is to find

how to get the satellite into and out of that orbit. Using the same method as shown

before, it will be necessary to calculate the velocity change needed at perigee to

move the satellite from the 500 km circular orbit to its orbit to the Moon. For the

estimated length of the voyage to the Moon, one approach is to solve Kepler’s Third

Law for P then divide by 2, since we want the one-way travel time.

Calculations
Perigee: Apogee:

6:88� 106m 3:844� 108m

To find eccentricity,

e ¼ Q� q

Qþ q

e ¼ 3:844� 108 � 6:88� 106

3:844� 108 þ 6:88� 106

e ¼ 3:775� 108

3:913� 108

e ¼ :965

To find velocities at perigee and apogee in this highly elongated transfer orbit we

need to solve these equations:

Perigee: Apogee:

vP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
q

1þ eð Þ
r

vA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
Q

1� eð Þ
r

vP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3:99� 1014Þ
ð6:88� 106Þ ð1:965Þ

s
vA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3:99� 1014Þ
ð3:844� 108Þ ð1� :965Þ

s

vP ¼ 10:68 km=s vA ¼ :191 km=s
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The first is the perigee velocity the spacecraft needs to obtain to achieve the lunar

flyby. How does it compare with the circular orbit velocity vc at 500 km?

vc ¼ 7:61 km=s for 500 km orbit vs: vP ¼ 10:68 km=s for lunar orbit

The change in velocity must therefore be this difference:

DvP ¼ vP � vc500

Needed vP ¼ 10:68km=s

From � vc500 ¼ 7:61km=s

Change DvP ¼ þ3:07km=s

Hence we must boost the space vehicle’s velocity at perigee by 3.07 km/s at an

injection point opposite of the intended apogee to get it into the elliptical transfer

orbit to the moon.

The final task is to find the approximate time of travel to the Moon, given the

facts and assumptions of this problem. The period of the orbit can be determined

from its semi-major axis applying Kepler’s Third Law. The semi-major axis for the

spacecraft orbit will be the average of the perigee and apogee distances.

a ¼ qþ Q

2

The apogee Q is the mean lunar distance from the center of the Earth, of

384,400 km; the perigee q is the 500 km circular parking orbit’s distance from

the center of the Earth. The semi-major axis of the trans-lunar orbit is:

a ¼ 6:888� 106 þ 3:884� 106

2

a ¼ 1:95644� 108 m

or about 195,644.4 km. From this we can determine the period of the spacecraft

orbit using Kepler’s Third Law:

P ¼ 2pffiffiffi
m

p a3 2=

P ¼ 2 3:14::ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:99� 1014

p 1:95644� 108
� �3 2=

P ¼ 8:607820876� 105 seconds
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P � 9:96 days

The one-way travel time will be half this, or,

TOne way � 4:98 days

TOne way � 119:55 hours

Observations

1. Here is the outward path of the spacecraft as graphed by Maple software using
the parameters given:

2. On first examining the problem of travel time one might be tempted to imagine

computing the travel time to the Moon as one of determining straight line

distance over velocity, somehow taking into account the gradual, inverse square

reduction of the Earth’s gravitational field as the rocket headed for the Moon.

While approximations can be obtained this way (using calculus), the important

insight here is that any motion in a gravitational field short of escape velocity

traces a closed, bound, orbit, and travel time is computed by Kepler’s Third Law

in terms of a portion of the overall orbital period.

3. The calculation of travel time can be approximated in a back-of-the-envelope

fashion by assuming that the major axis of the spacecraft’s orbit is about equal to

the semi-major axis of the moon’s orbit. Begin with Kepler’s Third or Harmonic

Law, a3: a03::P2:P02, where a and a0 are the respective semi-major axes of the

Moon and spacecraft, and P and P0 are their respective periods. The relation can
be written this way:

a3

a03
¼ P2

P02
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Now isolate P0 (the period of the spacecraft orbit) so that

P0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
P2a03

a3

r

Because the major axis of the spacecraft’s orbit is about equal to the semi-major

axis of the moon’s orbit, the value of a0 is half of a, and the equation becomes,

P0 ¼
ffiffiffiffiffi
P2

8

r

P0 ¼ 27:32ffiffiffi
8

p

P0 ’ 9:66 days

Time of one-way travel is therefore half of this, or about 4.83 days or 116 h.

Because the approximation ignores the actual perigee of several thousand

kilometers from Earth’s center on the opposite side of the Earth, making the

major axis of the orbit shorter, the travel time is logically a little less.

4. Note that the apogee velocity of .191 km/s is slower than the Moon’s circular

velocity of 1.02 km/s. If we wanted to put the rocket into a circular moon-like orbit

around the Earth at theMoon’s distance would, under the idealized assumptions of

this problem, take a slight apogee kick of about .83 km/s (830 m/s) in the direction

of motion tangent to the apogee point.

5. The perigee velocity is close to, but does not attain, escape velocity. How do we

know this? Since escape velocity is √2 faster than circular velocity, escape

velocity at 500 km is 7.61√2 km/s or 10.76 km/s. Perigee velocity is

10.68 km/s or about 99 % of escape velocity.

6. The Moon’s mass is .012 the mass of the earth, and has a radius of 1,740 km.

From this information one can calculate the velocity needed to put the spacecraft

in a circular orbit around the moon at altitude r from the lunar center. The

equation is,

vc ¼
ffiffiffiffiffiffiffiffiffiffiffi
mmoon
r

r

where mmoon ¼ .012 m. At the 110 km orbital altitude of the Apollo Command

and Service Module (when added to the lunar radius of 1,737.5 km), the circular

orbital velocity is about 1.6 km/s. Since the apogee velocity of the transfer orbit

is .191 km/s, a rocket burn is needed to boost the craft’s speed to circular orbital

velocity. The burn must last just long enough to change the module’s apogee
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velocity by that difference, or, under our assumptions, about 1.4 km/s. To return

to Earth we must reverse the process, slowing the spacecraft down to get it back

to the apogee velocity of the transfer orbit.

7. The accompanying sketch shows the relative orbits of involved in the mission,

not to scale:

8. What if, in considering a manned mission, we are impatient to get to the Moon

and the idea of sitting in a cramped rocket ship for many days on each leg of the

trip is unappealing? We could of course go to the Moon faster by increasing the

kick at perigee of the transfer orbit. This would shorten the amount of provisions

needed to keep a crew sustained. But by going faster, the spacecraft will likely

approach or even attain the escape velocity of the Earth’s gravitational field –

remember under the assumptions of the problem the rocket is already at 99 % of

escape velocity as is. This would necessitate carrying more fuel, hence added

weight, to slow the rocket down as it neared the Moon. More importantly,

however, if there were a failure of the rocket engines en route, the spacecraft

would go off into space and not be capable of returning. With the spacecraft

velocity no more than the transfer orbital velocity, however, a system failure

would mean that the craft would round the moon and do a “free return” to the

Earth naturally.
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Planning a Mission to Mars

The next task is to determine the travel time for a voyage to Mars, whose mean

distance from the Sun (its semi-major axis distance) is about one and a half times

that of the Earth. Significantly more than is required for a trip to the Moon, the

spacecraft now must gain sufficient energy to at least begin the climb out of

the Sun’s gravitational well. It can get a good start, however, by launching in the

direction of the Earth’s rotation around the Sun.

Problem Given the information below, create a concept-level plan for a transfer

orbit from Earth to Mars and approximate the travel time from Earth to the red

planet along this orbit.

Given

P ¼ 2p
k a

3 2= Kepler’s Third Law for determining the period P

k Gaussian constant: .01720209895

P Period of the spacecraft in orbit to Mars

a Semi-major axis of spacecraft orbit

aMars Mars’ mean distance from the Sun in AU: 1.523710346

Assumptions We will assume that the orbits of Earth and Mars are coplanar, so we

don’t need to make any adjustments out of the exact plane of the ecliptic. We’ll take

the mean distance from the Sun toMars asMars’ distance from the Sun at the time of

the rocket’s arrival at Mars. Finally, we’ll assume that the spacecraft’s and the

planets’ masses are all negligible relative to the Sun and to each other.

Method It will require the least energy to launch the spacecraft along a Hohmann

transfer orbit to get to Mars. The apsides of the elliptical transfer orbit can be

calculated by comparison of the two orbits. From this we can calculate the semi-

major axis of the transfer orbit and use Kepler’s Third Law to find the period of the

transfer orbit. Time of travel will be half the period. Units will be astronomical

units, with the mean distance from Earth to Sun and the Sun’s mass each taken as

unit distance and mass, respectively.

Calculations Perihelion of the orbit will be earth’s orbit, at 1 AU and aphelion will

be at Mars’ orbit at 1.52371034 AU from the Sun. The major axis of the transfer

orbit, 2a will be sum of these, so the semi-major axis will be half that: 2a ¼ 1 þ
1.52371034 ¼ 2.52371034, so a ¼ 1.26185517 AU. To find the period:

P ¼ 2p
k
a3 2=

6 From the NASA/JPL website, http://ssd.jpl.nasa.gov/txt/p_elem_t1.txt.
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P ¼ 2 3:14::ð Þ
:01720209895

1:26185517ð Þ3 2=

P ’ 518 days

This is the period of the transfer orbit to Mars and back (to the position the Earth

was in at the time of launch). One-way travel time is half this, or 259 days.

This is over 8½ months in space for the trip to Mars.

Observations

1. Since this is now an interplanetary voyage, we must use the Sun’s mass as the

gravitational focus of the ellipse, rather than the Earth’s. Hence we did not

employ the geocentric inertial constant, m. Using unit solar mass with the

Gaussian constant and AU as our units greatly simplify the calculations.

2. Critical here is timing of the launch from Earth: it is important to be sure that

Mars will be exactly at the apogee of the transfer orbit when the spacecraft

arrives 8 months later!

3. Likewise, in order for the Earth to be in the right place at the end of the return

voyage, the spacecraft will have to depart Mars at a time that will assure that the

Earth will be in the right spot 258 days later. This means it will have to stay on

Mars until the time is right for return.

Calculating the Velocity Needed for the Trip to Mars

Now that we have a rough idea of the orbit to Mars, we can work out how what the

initial velocity conditions must be for the trip.

Problem The given the facts and assumptions of the previous problem, approxi-

mate: the (1) eccentricity of the transfer orbit, (2) its perihelion and aphelion

velocities, (3) the injection velocity at spacecraft perihelion (from Earth’s orbit)

necessary to attain this orbit, and (4) the velocity needed upon arrival at Mars to

match its orbital velocity. Find velocities in Au/day and km/s.

Given

e ¼ (Q � q)/(Q þ q) Eccentricity of an elliptical orbit, derived from aphelion Q
and perihelion q distances

vP ¼ k
ffiffiffiffiffiffi
1þe
q

q
Perihelion velocity for a heliocentric orbit

vA ¼ k
ffiffiffiffiffiffi
1�e
Q

q
Aphelion velocity for a heliocentric orbit

q Perihelion of the spacecraft orbit, from the previous problem: 1 AU

Q Aphelion of the spacecraft orbit, from the previous problem,

1.52371034 AU

(continued)
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k Gaussian constant: .01720209895

a Semi-major axis of the spacecraft orbit, 1.26 AU

vc ¼ kffiffi
a

p Heliocentric circular orbital velocity equation

Assumptions Same assumptions as above. In comparing orbital velocities, we will

also make the simplifying assumption that the orbits of Earth and Mars are circular.

More accurate calculations would account for the eccentricity of the orbits.

Method Determine eccentricity as before from the given equation, and then find

the respective perihelion and aphelion velocities. Compare these transfer orbit

velocities with the mean orbital velocities of Earth and Mars, which may be easily

approximated from the circular velocity equation, and thus find the velocity

changes needed for injection and arrival at Mars. We’ll use Gaussian constant for

simplicity then convert to m/s.

Calculation To find eccentricity, we again follow this procedure,

e ¼ Q� q

Qþ q

e ¼ 1:52371034 � 1

1:52371034 þ 1

e ¼ :2075

To find velocities at perihelion and aphelion in this transfer orbit we need to

solve these equations:

Perihelion: Aphelion:

vP ¼ k

ffiffiffiffiffiffiffiffiffiffiffi
1þ e

q

r
vA ¼ k

ffiffiffiffiffiffiffiffiffiffiffi
1� e

Q

r

vP ¼ :01720209895

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ :2075

1

r
vA ¼ :01720209895

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� :2075

1:52371034

r

vP ¼ :0189 vA ¼ :0124

Multiplying each by the conversion factor7 of 1731.5 for km/s gives,

vP ¼ 32:73 km=s vA ¼ 21:48 km=s

7 See Chap. 12’s discussion on the Gaussian constant for the derivation of this number.
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These are the perihelion and aphelion velocities the spacecraft needs to achieve

the transfer orbit. How do they compare with each circular orbit velocity vc of

Earth and Mars?

Earth0s mean orbital velocity Mars0 mean orbital velocity

vE ¼ kffiffiffiffiffiffiffiffiffiffiffi
aEarth

p vM ¼ kffiffiffiffiffiffiffi
aMars

p

vE ¼ :01720209895ffiffiffi
1

p vM ¼ :01720209895ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:52371034

p

vE ¼ :01720209895 vM ¼ :01393574639

These are in units of Au/day. Multiplying each by the conversion factor of

1731.5 for km/s gives,

vE ’ 29:8 km=s vM ’ 24:1 km=s

The approximate change in velocity from Earth’s orbit to the transfer orbit (at

the spacecraft perihelion) must therefore be,

DvP ¼ vP � vE

DvP ¼ 32:7� 29:8

DvP ¼ þ2:9 km=s for perihelion boost

The approximate change in velocity from the transfer orbit to Mars’ orbit (at the

spacecraft apogee) must therefore be

DvA ¼ vM � vA

DvA ¼ 24:1� 21:5

DvA ¼ þ2:6 km=s for aphelion boost

Hence we must increase the space vehicle’s velocity at these two points to get it

into the elliptical transfer orbit to Mars, and then to make it stay with Mars for a

landing.

Observation The graph below shows the relationship among the orbits of Earth

and Mars and the transfer orbit (in red) (distances are in AU from the Sun in the

center). For simplicity we have assumed the orbit of Mars is circular, when in fact it

has an eccentricity of about .093, which makes it important to incorporate Martian

perihelion time and location in planning the mission.
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Using the Energy Equations to Define the Orbit to Mars

Now let us compare the above results with an alternative approach, where we use

the energy concepts developed in the previous chapters and tie them even more

tightly into the geometry of the orbit. We will begin by summarizing some of the

key concepts and equations.

Let us regard the primary’s mass as M, and since the secondary mass is

insignificant, use m as the product of GM throughout. Total orbital energy in an

elliptical orbit therefore equals

ET ¼ � m
2a

Knowing the orbital energy, the semi-major axis of the elliptical orbit can then

be found by,

a ¼ � m
2ET

We can find that total energy by assessing its value anywhere in the orbit,

provided there have been no changes during flight. During the Apollo program,

lunar launches occurred from a low Earth parking orbit. From there the craft was
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blasted into a lunar orbit, with an injection velocity, vo, that set the stage for the

remainder of the flight unless and until mid-course corrections were necessitated.

The altitude of the parking orbit, ro (the distance from the primary mass) determines

the starting potential energy – U and the injection velocity determines the starting

kinetic energy K. For the trip to Mars for our problem, this jumping-off orbit is the

Earth’s own orbit around the Sun. These initial distance and velocity conditions

define the whole orbit. This is so because, apart from external influences and internal

course or speed adjustments, the total orbital energy is constant throughout. Of

course, if vo is √2 times the circular velocity at the height of the parking orbit, then

the orbit is unbound and parabolic and the craft escapes. If vo were still higher, the

craft’s path with its excess velocity would follow a hyperbolic trajectory.

Summary of Some Key Energy-Derived Equations

The total energy ET of the orbit will be given by the initial conditions; it is

dependent upon the injection velocity vo, and the distance from the primary ro of

the parking orbit from which injection into the trans-lunar or trans-Martian

trip begins:

ET ¼ v2o
2
� m
ro

The parameter of the ellipse can be derived from m and the angular momentum, L:

p ¼ L2

m

And, for the situation where the orbital velocity is tangent to the radius vector

(at the apsides in an elliptical orbit), the angular momentum, L is found by,

L ¼ rovo

This provides alternative derivation of the parameter of the ellipse,

p ¼ r2ov
2
o

m

Oncewe have the parameter, the eccentricity of the ellipse can be teased out by this
equation, which is a variation on the equation for the parameter we saw in Chap. 4:

e ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� p

a

r
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Thus the key elements of the orbit are presented using energy concepts. Finally,

there is the vis viva equation that reveals of the velocity of the spacecraft at any

point in its orbit:

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

2

r
� 1

a

� �s

Now that we have a rough idea of the orbit to Mars, we can work out how what

the initial velocity conditions must be for the trip.

Problem Use the energy-derived equations reviewed above to confirm the semi-

major axis and find the eccentricity and parameter of the transfer orbit to Mars.

Given

ET ¼ v2o
2
� msun

ro

Equation for the total energy of the heliocentric orbit

a ¼ � msun
2ET

Equation for the semi-major axis of the heliocentric orbit

p ¼ rovoð Þ2
msun

Equation for the parameter of the heliocentric orbit

e ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� p

a

r
Equation for the eccentricity of the orbit

ro Distance from Sun of the initial orbit. Here it is the Earth’s mean distance:

one AU or 149,597,900 km

v0 Injection velocity from Earth orbit, from the previous problem: 32.73 km/s

msun The gravitational parameter for the Sun, 1.3275 � 1020. It is GMSun, the product

of the gravitational constant G (6.674 � 10�11) and the mass of the Sun

(1.981 � 1030 kg)

Assumptions We will incorporate the assumptions of the previous problems here.

Method Begin with the initial conditions of distance and velocity to define the

total orbital energy. From there, confirm the semi-major axis, the parameter and

eccentricity of the orbit. For this it is necessary to use SI units.

Calculations The total potential and kinetic energy ET is, after inserting the given

variables,

ET ¼ v2o
2
� msun

ro

ET ¼ 32732

2
� 1:3275� 1020

1:49597900� 1011

ET ¼ �3:52751� 108 Joules

From this we can confirm the semi-major axis a:

a ¼ � msun
2ET
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a ¼ � 1:3275� 1020

2 �3:52751� 108ð Þ
a ¼ 1:88771� 1011 km

This is about 1.26 AU, which appears correct. The parameter of the Mars transfer

orbit is,

p ¼ r2ov
2
o

msun

p ¼ 1:495979� 1011ð Þ2 3273ð Þ2
1:3275� 1020

p ¼ 1:8026� 1011 km

The parameter is thus about 1.21 AU. Finally, we can derive the eccentricity

from,

e ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� p

a

r

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1:8026� 1011

1:88771� 1011

r

e ¼ :2050

Which value is reasonably close to the value of .2075 we had approximated

earlier.

Observation We have thus derived all the key elements of the orbit to Mars using

just two initial conditions: the injection velocity and the distance of the launch orbit

from the primary mass, which in this case was the Sun.

Notes on the Apollo 11 Moon Mission

NASA’s Apollo 11 Moon mission in July, 1969 put the first man on the Moon. The

vehicle that got it there was the colossal three stage Saturn rocket. An abbreviation

of NASA’s concise report of the mission follows.8 It lifted off from the Kennedy

8 This summary was drawn from NASA’s excellent resource, http://history.nasa.gov/SP-4029/

Apollo_11a_Summary.htm.
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Space Center Florida and ascended East, in the direction of the Earth’s rotation,

and arrived in an almost perfectly circular parking orbit 100.4 nautical miles9

(185.94 km) by 98.9 nautical miles (183.16 km).10 Its orbital period, according to

NASA, was 88.18 min at 25,567.8 ft/s (all of NASA’s velocity units in those days

were in feet per second and nautical miles). This translates to 7.79 km/s. After one

and a half orbits its third stage, the S-IVB rocket, from a height of 180.581 nautical

miles (334.436 km) fired for almost 6 min to put the spacecraft into a trans-lunar

injection (TLI) orbit at a spaced-fixed velocity of 35,545.6 ft/s, or 10.8343 km/s.11

This was the velocity which, but for a minor mid-course correction, kicked it all the

way to the Moon on a ballistic path. After about 73 h of coasting flight, the craft was

captured into a lunar orbit of about 314.3 km by 111.1 km above the lunar surface,

having been slowed by an almost 6 min engine burn. It was a dramatic and almost

flawlessly executed trip. After adjusting the lunar orbit to circularize it, the lunar

module descended to the surface of the Moon, and landed on Mare Tranquilitatis,

the Sea of Tranquility, on July 20, 1969. After the astonishing and industrious

21½ hours of activities on the Moon, the lunar module (LM) lifted off the next day

into an elliptical orbit, which again was circularized and became the orbital

platform for the return to Earth. The trans-Earth injection velocity was 8,589 ft/s,

or 2.618 km/s, and reentered the Earth’s atmosphere (at 400,000 ft or about 122 km)

at a velocity of 36,194.4 ft/s. or 11.032 km/s. The trans-Earth coast lasted 59 h

36 min and 52 s, a much shorter return trip.

A question that will strike the student almost immediately is how is it that the

Apollo 11 crew reached the Moon in just 73 h when the idealized lunar mission

discussed above seemed to mandate a much longer flight time, almost 120 h? What

sort of orbit could, by the application of Kepler’s Third Law, have produced a total

period of about 146 h or just 6 days? The answer is that the Apollo 11 traveled faster

than the spacecraft following the orbit in our idealized lunar mission. Apollo 11’s

injection velocity was greater, more than 10.8 km/s vs. 10.68 for the hypothetical

case. Its initial parking orbit for TLI was also lower (about 334 km vs. the 500 km in

the hypothetical). The greater initial velocity means greater initial kinetic energy,

which meant a larger semi-major axis. The result was a longer, slightly more

eccentric orbit that we approximated above. NASA’s reported eccentricity was

.97696. The apogee of the Apollo 11 orbit did not just touch the Moon, as in our

hypothetical; it went well beyond it. But by the time it reached the Moon, it had

slowed down to a fraction of its initial velocity, of course, to somewhere in the

neighborhood of 800 m/s, and was able to be easily captured by the lunar gravity,

9 One nautical mile, the unit used by NASA, is 1.852 km. See http://en.wikipedia.org/wiki/

Nautical_mile. Using this measure, NASA used a value for the Earth’s radius of 6,378.159656 km.
10 See http://history.nasa.gov/SP-4029/Apollo_18-21_Earth_Orbit_Data.htm for the parameters of

the Earth orbits for the Apollo spacecraft.
11 See http://history.nasa.gov/SP-4029/Apollo_18-24_Translunar_Injection.htmv for a compre-

hensive summary of the launch and injection parameters of all the spacecraft in the Apollo

program.
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and with propulsion assists, to navigate into an orbit that ultimately resulted in the

circularized lunar parking orbit mentioned above.12

Let us see if we can model the Apollo 11 orbit. It will not be NASA-precise,

because we will deliberately ignore refinements that are necessary to convey high

accuracy. (We will adopt, for example, all the assumptions noted in the previous

problems of this chapter.) We are interested in exploring just the basic parameters

of the orbit. That said, we will use NASA’s own data on the radius of the Earth, the

parking orbit, velocities and other elements to the level of precision reported by

NASA.13 Taking just the injection velocity of 10.8343 km/s, and the semi-major

axis of the parking orbit, of 180.581 km or 6,712.595 km from the center of the

Earth, we have the initial conditions that allow us to compute the parameters of the

trans-lunar orbit.

We find total energy of the orbit using the equation,

ET ¼ v2o
2
� mearth

ro

ET ¼ 10834:298ð Þ2
2

� 3:9857� 1014

6:712595� 106

ET ¼ �6:8542835� 105 Joules

From this we can derive the semi-major axis distance of the trans-lunar orbit of

Apollo 11:

a ¼ � mearth
2ET

a ¼ � 3:9857� 1014

2 �6:8542835� 105ð Þ

a ¼ 2:907451960� 108 m

a ’ 290; 745 km

12Robert A. Braeunig has calculated the velocities at each point in the mission at http://www.

braeunig.us/apollo/apollo11-TLI.htm.
13 NASA’s value for the radius of the Earth (converted from nautical miles) is 6,378.159656 km,

which we use for this discussion. The value of m is slightly more refined here:GM ¼ 3.9857�1014,

which is a slightly more precise value than the 3.99 � 1014 value used for most of the problems.

This is found by the product of the mass of the Earth of 5.97219 � 1024 kg, taken from the NASA

site, http://ssd.jpl.nasa.gov/?planet_phys_par, and the CODATA value of the Newtonian Gravita-

tional Constant of 6.67384 � 10�11 m3kg�1 s�2. See http://physics.nist.gov/cgi-bin/cuu/Value?

bg|search_for¼G. The result was then rounded to four decimal places.
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This compares with the 195,644 km we found for the idealized lunar orbit in

problem 14.2. The Parameter of the ellipse of the Apollo 11 trans-lunar orbit is

given again by this equation:

p ¼ rovoð Þ2
mearth

p ¼ 6:712595� 106
� �2

10834:298ð Þ2
3:9857� 1014

p ¼ 1:327021391� 107 m

p ’ 13; 270 km

The eccentricity then follows,

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1:327021391� 107

2:907451960� 108

r

e ¼ :97691

This compares rather favorably to the eccentricity value of .97696 reported by

NASA.14 It will be interesting now to find the approximate velocity of Apollo 11 as

it reached the Moon’s orbit. When the Apollo 11 crew arrived at lunar orbit the day

before the landing, July 19, 1969, the Moon was about 394,193 km from the

Earth.15 The semi-major axis of the lunar insertion orbit was about 1,950 km,

which makes the magnitude of the radius vector r for which velocity is to be

calculated about 392,243 km. Using what we have for the velocity equation, we

can approximate the velocity of the spacecraft when it arrived at its circumlunar

station:

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mearth

2

r
� 1

a

� �s

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:9857� 1014

2

3:94193� 108
� 1

2:907451960� 108

� �s

v ’ 813 m=s

14 From http://history.nasa.gov/SP-4029/Apollo_18-24_Translunar_Injection.htm
15 This result was obtained using TheSky software.
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This velocity would be somewhat greater if we had factored into the calculations

the attractive pull of the Moon on the Apollo 11 spacecraft during the latter part of

the orbit.

Exercises: The Magic Spell of Space Travel Arthur C. Clarke’s 1950 book

Interplanetary Flight that we referred to at the beginning of this chapter was a

clear and lively exposition of the nuts and bolts of space travel that made it seem

truly possible. It began his book by this eloquent exposition:

The dream of interplanetary travel is as old as the dream of flight: indeed, for many

centuries both were inextricably entangled. If one could fly at all, men believed, then

presumably it would be possible to go to the Moon, or even to the Sun. So it was thought in

the days before Galileo and Newton, when the old medieval ideas of the universe still held

sway. The Moon might be fairly distant, it was true; but it could hardly be more remote than

the fabulous lands of Hindustan or Cathay.16

Space travel has, it seems, always fascinated Man ever since he became aware of

its possibilities. Now it is no longer a dream of course and we can share information

about the actual experiences of space missions on a regular basis. The solar system,

its physics and geology are gradually becoming as familiar as the Earth’s. The

satisfaction of knowing how rockets get to their destinations, how they orbit, and

how they (sometimes) return, enables a deeper participation in the present scientific

revolution than is possible from being a passive spectator. The problems below, a

few of which touch on actual rocket launches and events in our history, should

further that understanding.

Problems

1. Referring to the energy-derived equations in this chapter, find the total energy

of the idealized orbit to the Moon, and use those equations to confirm

the semi-major axis, the parameter, and the eccentricity of the orbit. Use

10.6748 km/s as the initial velocity from 6,878 km. Experiment with very

slight adjustments to initial velocity to see how sensitive the parameters are

to initial conditions.

2. Calculate the outbound velocity of the Apollo spacecraft at 200,000 km away

from Earth in the trans-lunar orbit of the apollo mission.

3. Suppose you are an astronaut in a rocket on Mars’ moon Phobos. You want to

calculate an orbit that will take you from Phobos to the planet’s other moon

Deimos. The semi-major axes of Phobos and Deimos are 9,376 and 23,458 km

respectively, and you may regard their axes as circular, which they nearly are.

Mars’ mass is 6.41693 � 1023 kg. Design a Hohmann transfer orbit (including

semi-major axis and eccentricity) that will accomplish your task, including

necessary periapsis is and apoapsis velocities changes.

16 Arthur C. Clarke [1], p. 1.
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4. Find the total energy of the transfer orbit in the previous problem, and confirm

the orbital elements of that orbit by using the energy-derived equations.

5. Design an orbit for a Jupiter mission. Jupiter is 5.2 AU from the Sun. You may

assume a circular Jovian orbit for the purposes of this problem. Approximate

the needed perihelion and aphelion distances, the semi-major axis, eccentricity,

velocity changes and one way travel time to the planet. Ignore the (consider-

able) attractive pull of the planet as the spacecraft nears it.

6. During the Apollo 11 flight for the first lunar landing in July, 1969, the third

stage Saturn S-IVB engine was ejected a little more than 4 h into the mission.

The S-IVB kept on drifting, passed the lunar surface at about 3,380 km and went

into solar orbit. Its aphelion was 82,000,000 nautical miles (151,864,000 km)

and its perihelion was 72,520,000 nautical miles (134,307,040 km). Using

the Gaussian constant and AU as the units, find the semi-major axis, eccentric-

ity, and parameter of its orbit, and its orbital period in days. One AU is

1.49598 � 108 km.

7. When the Apollo 11 Command Service Module (CSM) with its attached Lunar

Module (LM) arrived at the Moon, the service propulsion engine fired for

almost 6 min to insert the spacecraft into a lunar orbit of 169.7 by 60.0 nautical

miles, or 314.28 by 111.1 km. The Moon’s mass is 7.346 � 1022 kg and

its radius is 1737.5 km. Find the eccentricity of that orbit, its semi-major

axis, parameter, the orbital period in minutes, and periapsis and apoapsis

velocities in km/s.

8. Find the total energy of the initial CSM orbit in the previous problem and

confirm the elements of that orbit by using the energy-derived equations.

9. The Mars Global Surveyor spacecraft was launched in late 1996 and

rendezvoused with Mars in September, 1997. It is one of the most successful

planetary missions in NASA history. Upon its arrival, the spacecraft executed a

Mars Orbital Insertion (MOI) burn to slow it down and allow itself to be

captured by the Martian gravitational field. The plan was for its initial capture

orbit to have a periapsis of 300 km and apoapsis of 56,675 km above the

Martian surface. Then, because propellant was limited, the capture orbit would

be gradually circularized by allowing the Martian atmosphere to slow it down

in each close pass by a process known as “aerobraking.” This drag process

initially was to cause the apoapsis altitude to shrink to 2,000 km and then

ultimately to 450 km, with periapsis at 400 km above the Martian surface.

Determine the amount of energy loss that atmospheric drag would have to

impart upon the spacecraft to reduce its apoapsis from 56,675 km to the nearly

circularized orbit of 450 by 400 km. The radius of Mars is 3,389.5 km and its

mass is 6.41693 1023 kg.

10. The Mars Global Surveyor ultimately was placed into a mapping orbit above

the Martian surface, with a semi-major axis of 3,774.998 km, an eccentricity

of .00953 and a nearly polar inclination with the periapsis close to the Martian

south pole. From there the on-board Mars Orbiter Camera and Mars Orbiter
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Laser Altimeter returned spectacular images of the red planet along with

accurate topological data. Find the parameter of the elliptical mapping

orbit, the velocities at the apsides, and calculate the sum of the kinetic and

potential energies of the spacecraft at the apsides, demonstrating that they are

the same.

Reference

1. Clarke AC (1950) Interplanetary flight. Harper & Row, New York
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Chapter 15

Getting Oriented: The Sun, the Earth

and the Ecliptic Plane

There are many coordinate systems one may use as references for the placement of

heavenly objects. A standard reference that we will employ is the heliocentric
ecliptic coordinate system.

Visualizing the Heliocentric Elements of an Elliptical Orbit

Imagine a reference plane that is like a plate or disk with the Sun at the center – it is

helio- (for Sun) centric. The Earth’s mean or long-term average orbital plane for a

given epoch (time) defines the plane of the plate: it is called the ecliptic plane, and is
invariable. For the most part the planets of the solar system stick pretty closely to

this plane. (The extent to which a planet does not is called the inclination of its

orbit.) We will begin by examining the orbit of the Earth and defining the first

two important reference points on the ecliptic plane: the vernal equinox and the

longitude of the perihelion.

D.W. MacDougal, Newton’s Gravity: An Introductory Guide
to the Mechanics of the Universe, Undergraduate Lecture Notes in Physics,

DOI 10.1007/978-1-4614-5444-1_15, # Springer Science+Business Media New York 2012
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The vernal equinox is a fixed reference point among the stars, outside the orbit,
which helps us anchor the orbit and compare it with the location of other orbits. It is

sometimes called the first point of Aries because the vernal equinox was originally

in that constellation. It is traditionally represented by the zodiacal sign of Aries

(resembling the Greek letterYÞ even though due to precession, the vernal equinox is
now in the constellation of Pisces. The Sun’s apparent position lies upon the vernal

equinox on the first day of spring in the northern hemisphere. The line of the

equinoxes itself is where the plane of the celestial equator, tilted as it is by about

23.4� from the ecliptic plane, intersects the ecliptic plane.1 It varies over the years

but is commonly about March 22nd; if we could look through the Sun on that date

we would have a fix on the vernal equinox on the other side of the orbit. Now think

of a line from the Sun projected out to the vernal equinox at midnight 6 months

later, on the first day of Earth’s northern hemisphere autumn, about September

22nd: this is the location among the stars that is the beginning point in the orbit for

longitude in this plane. It is shown on the diagram as zero degrees heliocentric
ecliptic longitude. If we were to examine a sky map of this region in mid-March, we

would see the Sun as it was approaching the vernal equinox. The Sun (from our

geocentric view) appears to be moving upward along the ecliptic toward the

1 The celestial equator is the projection of the Earth’s equator into the sky. Since the Earth’s axis is

titled 23.4� from the ecliptic plane, the plane of the celestial equator and the plane of the ecliptic

are correspondingly non-parallel by this amount. The intersection of the two planes creates a nodal

line which points to the equinoxes.
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intersection of the ecliptic and the celestial equator, that is, toward the vernal

equinox. Below is such a map, which on the arbitrary date picked (March 11,

2011) happens also to show four planets very close to the equinox. Note how they

are essentially aligned along the ecliptic plane. You can also confirm that the angle

between the ecliptic and the celestial equator is correctly represented as nearly

23½�. Having thus established an external anchor among the stars to fix our

celestial calculations, we return to the orbit itself.

Perihelion is a reference point within the orbit itself. It is of course the point of

closest approach to the Sun, and is marked on the diagram with a P. Aligning the

semi-major axis along the Sun-planet line (the diagonal in the first diagram),

the focus of the ellipse containing the Sun will be the focus nearest the perihelion

point. While the Earth’s orbit’s fairly slight eccentricity is not apparent in the

diagram, the point P is the point closest to the Sun, and this occurs in early January.

If we measure counterclockwise (the direction of the Earth’s motion in its orbit)

from the equinoxYwe arrive at the perihelion point. The angle between the equinox
and perihelion, between Y and P is called the longitude of the perihelion, and is

commonly represented by the symbol P. For Earth the value of P is about 103�.
This number (as with other elements) does vary minutely due to the perturbations of

the other planets, but it does so exceedingly slowly, and for our purposes may be

regarded as fixed.

Now we introduce a third and fourth reference in the alignment of an orbit

in space. They are called the inclination of the orbit and the line of the nodes.
Where the plane of an orbit tilts with respect to the ecliptic plane, its orbit is said to
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have inclination. For example, the planet Saturn has an orbital inclination of about

2½�. This means its orbital plane is tilted or inclined by that much with respect

to the ecliptic plane. The angle of inclination is represented by the symbol i. The
two intersecting planes geometrically create a line. This line is called the line of
the nodes.

For the Earth’s orbit, we are using a heliocentric-reference system, so the

orbital inclination of the Earth is zero. But as we will see, the orbiting objects

of the solar system do typically have inclinations with respect to the ecliptic

and therefore nodes. For example, the inclination of comet Schwassmann-

Wachmann 3 discussed earlier has an inclination of about 11.4�, and many

have far more extreme inclinations. It should be apparent that with respect to

the ecliptic plane, part of the comet’s orbit lies above the ecliptic plane, and part

lies below it. The line of nodes is the dividing line. The point where the comet

(or planet or asteroid or orbiting spacecraft) traveling counterclockwise, rises

above the ecliptic plane is called the ascending node. The ascending node is the

most important nodal reference point in the orbit. The place where the orbit

goes below the ecliptic is called the descending node. The ascending node’s

angular distance going counter-clockwise from the vernal equinox is called the

longitude of the ascending node and is represented by the symbol O . Thus

the orbit is fixed in this way to the external reference among the stars. The

perihelion point can in turn be referred to the ascending node (rather than

the equinox) and this angle (again running counter-clockwise from the ascend-

ing node) is called the argument of the perihelion; it is usually (not always)

denoted by the symbol o. Here is a schematic of the orbit and ecliptic as seen

from the Sun:

316 15 Getting Oriented: The Sun, the Earth and the Ecliptic Plane



Let us summarize these anchor points of an orbit:

• The angle between the orbital plane and the ecliptic is the inclination of the orbit.
• Longitude angles on the planes are measured in the counter-clockwise direction

(going East).

• Any angle measured from the vernal equinox will be called a longitude.
• The angle from the equinox to the ascending node is O , the longitude of the

ascending node.
• The angle from the equinox to the perihelion isP, the longitude of the perihelion.
• The angle from the ascending node to the perihelion is o, the argument of the

perihelion.

Note that the angle P is the sum of angles in two different planes. Thus O þ
o ¼ P, as shown.

Schematic of Selected Elements of the Orbits of Mars,

Jupiter and Saturn

It is sometimes helpful schematically to depict the ecliptic and orbital planes in

schematic fashion, angled from each other by the orbital inclination i and with the

vernal equinox being the point of their intersection. The longitude of the ascending

node O and longitude of the perihelion P can then be plotted and compared.

Consider for example the inclination, longitude of the ascending node and longitude

of the perihelion for the orbits of Mars, Jupiter and Saturn. Here is a table of those

orbital elements:
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Description

of element

Selected elements of the orbits of Mars and Jupiter (Epoch 2000.0) (longitudes of O
and P in degrees east from vernal equinox)

Mars Jupiter Saturn

i 1.85 1.3 2.5

V 49.6 100.5 113.7

P 336.1 14.7 92.6

With this information we can sketch the schematic2:

The vernal equinox is the common “anchor” to all three schematics. Distances in

degrees (out of 360) are estimated from the vernal equinox, moving counter-

clockwise (to the left), first along the ecliptic to the ascending node, then along

the orbital plane. Planar lines for the orbits can be constructed to extend to some

point to the left, say 270�, then return on the right. Begin by drawing a vertical

line for the vernal equinox. Then key the longitudes off that. Drawing schematics

like this can assist in visualizing the intersection of planetary orbits with those of

comets and asteroids.

2 Of course the schematic will not purport to be to scale or show actual inclinations in degrees,

since the quantities are too small to be accurately depicted. The values of the elements are taken

and rounded from the NASA/JPL site, http://ssd.jpl.nasa.gov/txt/p_elem_t1.txt, epoch 2000.0.
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The Heliocentric Longitude of a Body

The semi-major axis, eccentricity, inclination, longitude of the ascending node and the

longitude of the perihelion are called the elements of the orbit. The ellipse in the

abstract has a scale and shape determined by the semi-major axis and the eccentricity;

the task here has been to fix the orientation of the ellipsewith reference to the stars, the

vernal equinox, and if it has a tilt, measure that tilt off a flat plane known as the ecliptic

plane. The heliocentric orbit is thus aligned in space with reference to the vernal

equinox, and inclined with respect to the ecliptic, fromwhich another reference point,

the ascending node, is given. From these, the perihelion of the ellipse can easily be

fixed. But there is one more element to remember, the mean longitude of the orbiting
planet (or other body). This tells us where it is at a given moment on its continuous

journey around the Sun, as if the planet were moving in a circular orbit. This virtual
orbit is sometimes referred to as the fictitious circle, and we will encounter it again

later. We know that the Earth is at zero degrees longitude at the moment of the vernal

equinox in a given year, but where is it in its orbit on another given date, and how do

we find out? If you are thinking it is simply a function of its mean daily motion (i.e.,

360� divided by its period in days) from a certain reference date to the date of interest,

you are correct. But before getting into the actual calculation of heliocentric longitude,

and because the mélange of Greek letters in this subject can be confusing, we will

briefly revisit the order of the heliocentric elements to help fix them in mind.

Summary of the Elements of the Heliocentric Orbit

Suppose you want to find approximately where a planet is; that is, you desire to find

the mean heliocentric longitude of a planet, its degrees-around-the-Sun progression

from the vernal equinox as of a certain date as if its orbit were a circle. You follow an

imaginary itinerary as if we were on a fast-travelling spaceship. Your pilot is

instructed to stick closely to the flight plan while you with your clipboard keep

track of the angular distances from point to point. You begin the journey by

venturing counter-clockwise (going east) from the first point of Aries, the vernal
equinox ϒ. That is your launching point. You fly east circularly around the ecliptic

plane sticking close and low to that plane until you arrive at a place where the orbital

plane of the target planet rises up ahead of you. That place is the ascending node.

You label it Ν at the place where the up-rising orbit intersects the equinoctial plane

along which you have been travelling, and you go on up. Now, like switching metro

lines, the spaceship transfers to the plane of the planet. On your clipboard you

note the distance in degrees from the start of your trip to this intersection of planes,

from ϒ to N: this amount of circular travel in degrees is the longitude of the
ascending node, O. That trip-to-the-node concludes the first phase of your itinerary.
From N you travel along the up-tilted plane of the planet to the perihelion P of the

elliptical orbit, where the orbit is closest to the Sun. You now note the angular

distance from N to perihelion P, which you label the argument of the perihelion o.
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Continuing your spacecraft’s journey from the perihelion P we finally arrive at the

mean planet, X. You record the angular distance from P to X as the mean anomaly,
M. This point X is where a line from the Sunwould intersect a fictitious circle, on the

orbital plane, along which the planet would move according to its mean daily

motion. Now you add up all the angular distances. The total angular distance you

have travelled on these two jointed planes from ϒ to M is the mean heliocentric
longitude (or just mean longitude if you know you are working with heliocentric

coordinates) of the planet, and is usually symbolized by the letter L. Concluding the

trip, you review the symbols.3 The angular distance from vernal equinox ϒ to the

mean planet is the mean longitude: L ¼ O + o + M:

L|{z}
Mean longitude of the planet

ðdegrees east of planet
from vernal equinoxÞ

¼ O|{z}
Longitude of the ascending node

ðdegrees east of node
from vernal equinoxÞ

þ o|{z}
Argument of the perihelion

ðdegrees east of perihelion from nodeÞ

þ M|{z}
Mean anomaly of the planet

ðdegrees east of planet
from perihelionÞ

Remember also that the longitude of the perihelion, P, is the distance from ϒ to

perihelion, or

P ¼ Oþ o

Therefore,

L ¼ PþM:

Before celebrating the end of your trip, it is important here to realize that you

have arrived only at the mean planet on the orbital plane: you are still not at the true

position of the planet as it is located on its ellipse. So you can pause here in space, at

X, before actually landing on the planet; that final leg of the voyage to the planet

will follow.

3Often symbols particular to the source may sometimes be used instead of the above ones. For

example the Jet Propulsion Laboratory uses the words “node” or OM (for omega) to render O, the
longitude of the ascending node; “peri” or W or “argument of perifocus” for o , the argument

of the perihelion; and MA for mean anomaly M. Other elements commonly used, are P, the period;
q, the perihelion distance; tp the time of perihelion passage which is often given with a Julian day

and calendar date; and n, the mean daily motion of the body. Sometimes the source will also

provide the aphelion distance Q.
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Method for Determining Earth’s Heliocentric Longitude

Determining the Earth’s heliocentric longitude is straightforward.Wemust, however,

use a very particular convention in accounting for time. That is the JulianDay system,

which is universally used by astronomers. It is a continuous count of days (and decimal

parts of a day) from – 4,712. The Julian Day begins at noon, Greenwich Mean Time.

A Julian century is 36,525 days. The date of the beginning of the current century (the

epoch J2000.0) is JD2451 545.0. This corresponds to January 1.5, 2000. The trick is to
find the time forward (or backward) from that point to the date you are interested in.

There are various programs commonly available for calculating Julian days. If one

desires to get right to the result and move on to the other calculations, an easy on-line

source is the United States Naval Observatory site, http://aa.usno.navy.mil/data/docs/

JulianDate.php.

There are several ways of calculating a planet’s heliocentric longitude to any

degree of accuracy desired. The one we have used relies upon the NASA/JPL Solar

System Dynamics website.4 Other sources too are available.5 It provides approxi-

mate Keplerian elements for long intervals, and its HORIZONS system allows for

the very precise computation of elements and ephemerides (positions) for

thousands of objects. Since our present focus is the determination of heliocentric

longitude, the accompanying table, put together from the site’s Keplerian Elements
for Approximate Positions of the Major Planets,6 gives just the mean heliocentric

longitude L for the planets and Pluto.

Coefficients for the approximate mean longitude L of the planets and Plutoa (mean ecliptic and

equinox of J2000, valid for the time-interval 1800–2050 A.D.)

Planet a0 a1

Mercury 252.2503235 149,472.67411175

Venus 181.97909950 58,517.81538729

Earth (EM barycenter) 100.46457166 35,999.37244981

Mars 355.4465680 19,140.30268499

Jupiter 34.39644051 3,034.74612775

Saturn 49.95424423 1,222.49362201

Uranus 313.23810451 428.48202785

Neptune 304.8799703 218.45945325

Pluto 238.92903833 145.20780515
aFrom http://ssd.jpl.nasa.gov/txt/p_elem_t1.txt

The coefficients a0 and a0 are the coefficients of the polynomial,

L ¼ a0 þ a1T

4 Found at: http://ssd.jpl.nasa.gov/?planet_pos.
5 One could also use the approach set forth in JeanMeeus’ book [1]. It has set of tables of polynomial

coefficients for calculating the elements of any planetary orbit. See also, Jean Meeus [2].
6 http://ssd.jpl.nasa.gov/?planet_pos.
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Where L is the mean heliocentric longitude and T is the time measured in Julian

centuries measured from epoch J2000.0, determined by this equation:

T ¼ JD� 2451545:0

36525

The quantity is negative before J2000.0. The mean longitude for the Earth, for

example, can be calculated by plugging in the appropriate coefficients to the

polynomial equation: For Earth (or more precisely, the Earth–Moon barycenter),

for example, the coefficients are, for the mean equinox of J2000.0:

L ¼ a0 þ a1T

L ¼ 100:46457166þ 35999:37244981T

All that is then needed to find a quite good position of the Earth from is to put in

the time in centuries T calculated as noted above.

Finding the Earth’s Heliocentric Longitude at Close Encounter
with Asteroid 2010 TD54

Problem Determine the number of Julian days from epoch J2000.0 until noon on

October 12, 2010, about when asteroid 2010 TD54 made its close approach to the

Earth. From this and the information below, calculate the Earth’s heliocentric

longitude for that moment.

Given

JD 2455482 Date of the closest approach of the asteroid

T ¼ (JD � 2451545.0)/36525 Time in centuries from epoch J2000.0 to JD

L ¼ 100:46457166þ 35999:37244981T Mean heliocentric longitude of Earth at T

Assumptions We assume the accuracy of the coefficients for our purposes, and the

information regarding the asteroid. We are not seeking high level of computational

accuracy for ephemeris purposes. We are determining mean heliocentric longitude,
as if the Earth’s orbit were a circle, and therefore there will be slight differences

between this longitude and the Earth’s actual position in its orbit, since the Earth’s

orbit is elliptical. Calculating the true anomaly, the planet’s actual position on the

ellipse, will be covered later. For the Earth, with its very slight eccentricity, the mean

longitude will give us a pretty fair approximation of where it is at a given time.

Method We will calculate the time elapsed since J2000.0 then insert that value T
into the equation for determining heliocentric longitude. Then substitute the value
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into the longitude equation. If the result is more than 360�, find the remaining

fraction of the orbit in degrees.

Calculations First find the elapsed time from epoch J2000.0, by inserting the date

of the asteroid encounter into the time equation:

T ¼ JD� 2451545:0

36525

T ¼ 2455482� 2451545:0

36525

T ¼ 0:10778918

That is about a tenth of a century, which looks right. Now we substitute this value

for time in the longitude equation:

L ¼ 100:46457166þ 35999:37244981T

L ¼ 100:46457166þ 35999:37244981 0:10778918ð Þ

L ’ 3980:81

This is more than 360� so it is necessary to divide by 360 and truncate the integers to
find the remainder portion of the orbit:

L ¼ 3980:81

360
¼ 11:05779836 ¼ :05779836 of a circle

L ¼ 360ð:05779836Þ

L ’ 20:81�

Observations

1. Does this result square with our intuition? We would expect the mean longitude

on October 12th to be about 20 days after equinox (~9/22), which is point ϒ.
Earth’s mean daily motion eastward in its orbit is 360/365.25 ¼ .9856�. The
result is very close to 20� of movement. The answer appears to be the intuitively

correct mean longitude on the fictitious circle with the Sun at its center.

2. Locating heliocentric longitude can be very practical. If we can determine the

heliocentric longitude of an asteroid or comet for a given range of dates, and we

can also can also ascertain where the Earth is in its orbit, we can find out if the

asteroid or comet will pass close to the Earth, and when. From the mean

longitude we can then calculate where it is on its elliptical path (the true

anomaly), but this is a step later.
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Calculating the Mean Anomaly and Heliocentric Longitude

of the Near Earth Asteroid 2010 TD54

We will take the published orbital elements of the asteroid 2020 TD54 as a good

case study in extracting orbital information from the elements of the orbit. We will

focus on the elements that are essential to the calculation of the true anomaly, which

we encounter in the next chapter – the determination of a body’s actual position in

the orbit. In working with these angles, the direction of measurement of the

longitudes is always counter-clockwise. And keep in mind the important

distinctions as to the starting points. The distance from the vernal equinox to the

ascending node, O, is measured counter-clockwise from the vernal equinox. The

distance o from there to perihelion is measured counter-clockwise from the node.

The sum of those distances, P, is a number that thus originates at the vernal

equinox. The mean anomaly M, listed separately in the elements of a body, has a

different starting point. It begins at perihelion, and moves in the direction of motion

of the body (which for the planets is counter-clockwise) until the mean planet is

reached. The mean anomaly thus is reached by computing the movement of the

body from time of perihelion to its present position. The sum of all of these

distances, then, equinox to node, node to perihelion, perihelion to mean planet, is

the mean heliocentric longitude, L.

Problem Explain each of the orbital elements below, and determine the mean

anomaly and mean heliocentric longitude of asteroid 2010 TD54 for the time of its

closest encounter with Earth at about noon on October 12, 2010 (that is, on JD

2455482).

Given The following table lists the orbital elements of 2010 TD54 as published by

the Jet Propulsion Laboratory, available from its small-body database browser7:

Orbital elements at Epoch 2455400.5 (2010-Jul-23.0) (Heliocentric ecliptic J2000)

Element Value Units

e .6190559851793439

a 1.785313246486003 AU

q .6801043958288775 AU

i 5.073529889261414 deg

Node 18.76272623533118 deg

Peri 80.47725733511749 deg

M 306.6646133153061 deg

tp 2455529.587150799390 JED

(2010-Nov-29.08715080)

Period 871.3047223695602 d

2.39 yr

n .413173475085686 deg/d

Q 2.890522097143128 AU

7Available at http://ssd.jpl.nasa.gov/sbdb.cgi#top.
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Assumptions We will round off the data from the table to three or four places for

the purposes of our approximations. We assume for the sake of simplicity that

closet encounter with Earth occurred at noon. We will ignore the inclination of the

asteroid’s orbit (5�) and take the Earth’s orbit to be circular. These assumptions will

simplify our calculations and enhance the heuristic value of the problem.

Method The first job is to determine the mean anomaly, the distance from perihe-

lion to the asteroid’s position on October 12, 2010. The mean anomaly for the

“epoch date” of July 23, 2010 is given in the chart. (We will call this the “July

epoch.”) It is about 306.6646�. This means that the asteroid has come around about

85 % of a full orbit counterclockwise from its last perihelion, on its way to an end-

of-November 2010 perihelion. This doesn’t tell us where the asteroid is on the

encounter date in October, 2010 (on JD 2455482). Determining the mean anomaly

for the date we seek can be done by taking the days from the July epoch to the

October encounter and multiplying them by the mean daily motion n. This result,
when added to the mean anomaly of epoch, will yield the mean anomaly for the

encounter. Then it is possible to take the next step and solve for mean longitude. To

find the mean heliocentric longitude, we simply fill in the values from the table for

the expression L ¼ O + o + M. As before, we will need to correct the result if it is

over 360�.

Calculations Finding the mean anomaly:

1. First find the number of days from the July epoch (JD 2455400.5) to the October

encounter (JD 2455482).

2455400:5� 2455482 ¼ 81:5 days

2. Since the mean daily motion n is .413173475� per day, the total number of

degrees traversed since the July epoch is,

81:5� :413173475 ¼ 33:6736�

3. Add the above angular travel distance to the July epoch given in the table of

306.66�:

M ¼ Mepoch þ 33:6736�

M ¼ 340:34�

This is the mean anomaly for the encounter date. It is the angular distance going

counter-clockwise from the asteroid’s own perihelion to its location on a ficti-

tious circle.

Finding the heliocentric longitude:
Now we have enough information to calculate mean longitude:
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L ¼ Oþ oþM

L ¼ 18:7627þ 80:477þ 340:34

Adding the result and subtracting 360 we have,

L ¼ 79:58�

Observations

1. This is the mean, eastward longitude of the asteroid from the vernal equinox at

closest approach to Earth on October 12, 2010, on the fictitious circle, not its true

location on the ellipse. This is its total angular distance east from the vernal

equinox, and is good for that 1 day/moment only.

2. We can compute the longitude of the asteroid’s perihelion, which is not given in

the table. The perihelion longitude is,

P ¼ Oþ o

P ¼ 18:7627þ 80:477

P ¼ 99:237�

3. Comparison of the mean longitude (from the vernal equinox) of ~ 80� and the

perihelion longitude (from the vernal equinox) of nearly ~100� shows that the

mean asteroid on the fictitious circle is almost 20� from perihelion at closest

approach to Earth.

4. We can check this result against the time of the asteroid’s November, 2010

perihelion from the elements. The number of days to perihelion after encounter

with the Earth is the angular distance to be travelled by the asteroid since

October 12th times the mean daily motion in degrees:

Days to perihelion ¼ Angular distance to perihelion

Mean daily motion n

Days to perihelion ¼ P� L

n

Days to asteroid perihelion ¼ 19:66�

0:413173475

Days to asteroid perihelion ¼ 47:582919
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These are days from closet encounter with Earth to the asteroid’s perihelion. Is

the perihelion date from the table, November 29th, in fact 47 days from October

12th? Let us check and see what the Julian Day of perihelion is:

JD of perihelion ¼ JD of closest encounterþ 47:582919 days

JD of perihelion ¼ 2455482þ 47:582919

JD of asteroid perihelion ¼ 2455529:58

Compare this with the date of perihelion from the table above. From the USNO

site mentioned earlier, http://aa.usno.navy.mil/data/docs/JulianDate.php, this

slightly rounded result corresponds to Nov. 29, 2010, at almost 02 h UT,

which is correct for this asteroid.

5. Here is the asteroid’s location at closest approach in schematic form:

The asteroid on October 12th was as we saw only about 20� from its November

perihelion, moving east toward it. Note that the ~340� mean anomaly, being

measured east from the perihelion, essentially wraps around our diagram to the

left and terminates at the asteroid at the location shown. This, as you can see,

ends up being about 20� short of a full circle.

Graphing the Inner Orbit of Comet West C/1975 V1-A

One of the longest-period comets known is Comet West, which appeared brightly

and dramatically to the naked eye in the northern hemisphere spring of 1976. This

problem will take us through the steps on how to align the comet orbit in space,
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locate the Earth at the comet’s perihelion, and visualize the comet’s path on its

inbound and outbound journey. As you see from the elements, comet West’s orbit is

highly eccentric, almost parabolic. The graph of the innermost portion of the orbit

will be based upon elements provided by the NASA/Jet Propulsion Laboratory

website.8

Problem The orbital elements of comet West as presented by the JPL site are as

follows:

q e i w Node Tp

0.19662600 0.99997100 43.06640 358.42700 118.92400 2,442,833.7216

From this information, calculate the longitude of the perihelion, semi-major

axis, and the period, and graph or sketch the inner orbit of the comet at perihelion,

within 2 or 3 AU from the Sun. Include the orbit of the Earth and the ecliptic plane,

and locate the line of nodes and the position of Earth at the time of Comet West’s

perihelion. Attempt to visualize the position of the comet in the sky as seen from

Earth at the time of perihelion passage.

Given

P ¼ Oþ o Longitude of the perihelion, from node + o
a ¼ q/(1 � e) Semi-major axis where perihelion distance and

eccentricity are known

b ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
Semi-minor axis of the elliptical orbit

P ¼ a3/2 Kepler’s Third Law, for determining the orbital

period around the Sun when the semi-major

axis is known

T ¼ (JD � 2451545.0)/36525 Time in centuries from epoch J2000.0 to JD

L ¼ 100.46457166 + 35999.37244981T Mean heliocentric longitude of Earth at time T

Assumptions We will round off the element data to three or four places for our

final approximations. Note that the inclination is 43�. We will only approximate this

factor in the depiction of the comet’s orbit. The Tp term means time of perihelion.

Given the nearly parabolic orbit of this comet, its period will be somewhat specu-

lative, as mentioned below. Finally, the comet broke into four pieces as it passed

perihelion. The long term uncertainty in the orbit must be taken for granted.

Method Calculate each of the unknowns from the equations given. Then attempt

to visualize the alignment of the orbit in space relative to the ecliptic plane, laying

the vernal equinox again along the positive x axis, and placing the longitude of the

perihelion counter-clockwise from that. Then the perihelion point of the orbit is

placed at distance to perihelion q along the perihelion line from the Sun. From the

elements we see that this q distance is a little less than .2 AU. Using the any of

equations for an ellipse, graph or sketch the elliptical orbit for the comet. It may be

8 From http://ssd.jpl.nasa.gov/dat/ELEMENTS.COMET.

328 15 Getting Oriented: The Sun, the Earth and the Ecliptic Plane

http://ssd.jpl.nasa.gov/dat/ELEMENTS.COMET


easiest to use the Cartesian coordinate system, and for this purpose the semi-minor

axis must be determined from the equation given. Here is the parametric form of the

ellipse equations:

x ¼ a cos yð Þ y ¼ b sin yð Þ

This creates an ellipse with the center of the ellipse at the origin of the graph (0, 0).

But since we want the graph to be in the inner portion of its orbit, we will want it

centered with the Sun at the origin. To offset such a graph by a certain constant, c, the

equation for the x parameter would be:

x ¼ cþ a cos yð Þ

The offset for this ellipse would be the semi-major axis minus the perihelion

distance, a � q:

x ¼ a� qð Þ þ a cos yð Þ

For the position of the Earth at comet West’s perihelion, determine the Julian

date of the event from the U.S. Naval Observatory site mentioned earlier.9 Then use

the given equations to determine the Earth’s heliocentric longitude, and locate

Earth’s position on the graph counterclockwise from the vernal equinox. Try then

to visualize the location of the comet in the sky from your home as the comet

recedes from Earth.

Calculations Wewill proceed step-by-step in finding each of the needed elements:

Step 1: Find the longitude of the perihelion:

P ¼ Oþ o

P ¼ 118:924þ 358:427

Subtracting 360 since the result is more than a full circle:

P ¼ 117:351�

From this result it appears that the perihelion will be in the northwest or second

quadrant of our graph, about 27� left of vertical.

Step 2: Calculate the semi-major axis of the orbit:

a ¼ q

1� e

9 http://aa.usno.navy.mil/data/docs/JulianDate.php.
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a ¼ :196626

1� 0:999971

a ¼ 6; 780:2 AU

This is indeed an enormous orbit! It can be seen that this comet must have

originated in the Oort cloud, the primordial sphere of icy bodies surrounding our

solar system and home of countless millions of such objects.

Step 3. As the graph is in the Cartesian coordinate system, it is desirable to know the

semi-minor axis distance:

b ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p

b ¼ 6780:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� :9999712

p

b ¼ 51:64 AU

Thus the width of this ellipse on its minor axis is about 100 AU, easily sufficient

to encompass the entire solar system! The length-to-width ratio of this orbit is just

over 130:1.

Step 4. To calculate the period of this comet, we employ the old, reliable Kepler’s

Third Law:

P ¼ a3 2=

P ¼ 6780:2ð Þ3 2=

P ¼ 558; 296 years

The last passage of this comet by perihelion occurred before homo sapiens had
evolved. This is the calculated period; however, the orbit’s eccentricity is nearly

parabolic, and its path is highly sensitive to the subtle perturbing conditions of the

other planets, most of which disturbances occur in the inner one-thousandth portion

of its orbit. Thus calculated period should be viewed with a good deal of skepticism.

Moreover, the comet split into fragments in its voyaging around the Sun, and our

exercise ignores that fact.

Step 5: Generate the graph. This is one of various possible ways of depicting the

ecliptic plane in relation to the orbit. What is important is to fix the perihelion

longitude at about 117� from the vernal equinox along the x axis, and the ascending
node at about 119�. The little line from the Sun to the perihelion point is the

distance q of just under .2 AU. Just to the left of the perihelion point, on the comet

orbit, is the ascending node; the descending node would actually be far on the other
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side of the orbit, not shown here. The comet’s path was inbound under the ecliptic

plane, rising up at the ascending node just after perihelion passage.

Step 6. Compute the Earth’s heliocentric longitude at perihelion. This can be done

by using the given equation, after first determining the Julian Date of perihelion.

For this we will consult the elements mentioned above, which tells us that February

25, 1976 is JD 2442833.5 (which is 1976: Feb 25.22160000). Use the same

procedure as we used earlier.

T ¼ JD� 2451545:0

36525

T ¼ 2442833:5� 2451545:0

36525

T ¼ �:23850787

Because the date is earlier than epoch 2000, the sign is negative. This value is

inserted for the time variable in the longitude equation:

L ¼ 100:46457166þ 35999:37244981T

L ¼ 100:46457166þ 35999:37244981 �:23850787ð Þ

L ¼ �8485:669072
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Again, as this is more than 360�, it is necessary to divide by 360 and truncate the
integers to find the remainder portion of the orbit:

L ¼ �8485:669072

360
¼ �23:57130298 ¼ �:57130298 of a circle

L ¼ 360ð�:57130298Þ

L ¼ �205:6690728

It is necessary to add 360� to get a positive result:

L ¼ 154:33�

Observations

1. Hence we arrived at a heliocentric longitude for the Earth of about 154�. It is
important always to check the results to see if they may intuitive sense. The

Earth’s mean daily motion is about .9856�, and there are about 156 days from

equinox to perihelion; their product is about 154�, confirming the result.

2. Locating the Earth on the graph clearly shows that it was well-placed for a

glorious morning view of the comet in the northern hemisphere after it passed

perihelion.
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3. The graph does not adequately show the 43� inclination of the orbit to the

ecliptic plane. If you drew a perpendicular to the line of nodes along the plane

of the comet’s orbit, that line would be elevated 43� from the ecliptic. Thus the

part of the orbit on the left of the nodal line on the diagram is above the ecliptic

plane. From the perspective of an observer at Earth’s location on the plane, the

comet after perihelion would appear to be rising upward and to the right as it

receded. This means it would appear to be moving to continually higher

declinations, toward the northern constellations, in the morning sky. As the

comet moved farther from Earth, and as the Earth continued to advance in its

orbit counter-clockwise, the comet would also appear to rise earlier and earlier in

the morning as it became fainter with distance.

4. Comets with a high inclinations and long periods most likely originated from the

Oort cloud. Comet Hale-Bopp, that miraculously bright visitor of the spring of

1997, has an inclination of 89� and a period of about 4,200 years. Comet C/1969

Y1 Bennett, whose ghostly tail hung beautifully over the morning sky in the

early spring of 1970, has an inclination of about 90� and a period of almost

1,700 years. The perturbations of the planets over the millennia will subtly or not

so subtly shift these orbits over time, sometimes pulling them closer into a more

circular orbit, or sometimes bringing them so close to the Sun that they become

“sungrazing” comets or even collide with it, ending its existence. Close

encounters with Jupiter or Saturn will of course have a profound effect.

5. The orbital inclination is greater than 90� the comet’s direction appears retro-

grade in relation to the ecliptic. A famous example of high inclination and the

effects of long-term influences of the planets is comet Halley, whose inclination

is about 162�, and whose period over time has become about 75 years.

6. We might be curious to determine the apsidal velocities of comet West using the

simplified velocity equations:

Perihelion velocity Aphelion velocity

vP ¼ k
ffiffiffiffiffiffi
1þe
q

q
vA ¼ k

ffiffiffiffiffiffi
1�e
Q

q

The constant k is 29.785 derived from the Gaussian constant, and as discussed in

Chap. 12, allows distances to be inputted in astronomical units to yield outputs in

units of kilometers per second. The eccentricity and perihelion distance q are

given by the elements as 0.99997100 and .196626 AU respectively. The aph-

elion can be calculated by: Q ¼ a(1 + e). For comet West, Q is about

13,560.2 AU. From this, the velocity calculations become,

vP ¼ 29:785

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ :999971

:196626

r
vA ¼ 29:785

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� :999971

13560

r

vP ’ 95 km=s vA ’ :0014 km=s
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This comet’s velocity variation from perihelion to aphelion is about 69,000 to 1!

The enormous perihelion velocity puts great centrifugal stresses on the comet,

and helps to explain why comet West broke into pieces during its last perihelion

passage.

Exercises: The Beauty of Mysterious Conjunctions A close conjunction of

bright planets in a clear sky is often a sublimely beautiful sight. Like eclipses,

conjunctions of planets often have been associated with omens, both good and

bad, and appear to be of persistent interest to those who perceive such events as

influential on human affairs. But they are of course as predictable as are the motions

of the planets. Because their orbital motion is more rapid, conjunctions of the

inferior planets are far more common than conjunctions of the superior planets.

Close conjunctions among the bright planets Jupiter and Saturn are the most

noteworthy. Conjunctions among these giant planets are often referred to as “great

conjunctions.” A recent such conjunction among the giants took place on May 31,

2000. One can, of course, figure out how frequently conjunctions should occur by

analysis of the approximately 12 year orbital period of Jupiter and the approximately

30 year orbital period of Saturn. Rarer of course are conjunctions of Mars, Jupiter,

and Saturn, as are the so-called great “triple conjunctions” of Jupiter, Saturn, and a

star. The latter event two millennia ago was conjectured to be the Star of Bethlehem.

Because the motions of the planets are precisely predictable, tables of such

conjunctions can be generated by computers. The rarity of the conjunctions is a

function of the selective filter to be applied as to how close the planets, or planets and

a star, need to be to qualify as conjoined. Conjunctions of objects separated in the sky

by only minutes of arc are far scarcer than those of one or two degree separations.

These events differ too from planetary line-ups where a group of planets appear to be

strung in a line from the Sun, but may or may not result in tight conjunctions among

some of them. One can get a sense of the possibility of a conjunction by comparing

heliocentric longitudes of planets. Reliable determination of a conjunction, how-

ever, requires more precision, and specifically, knowledge of the true anomaly of the

conjoining planets which will be treated in the next chapter.

Problems

1. Calculate and plot on a graph the heliocentric longitudes of Mercury, Venus,

and Saturn as of December 21, 2012. Interpret your results.

2. Determine the heliocentric longitudes of Jupiter and Saturn for the date

December 21, 2020.

3. Saturn’s period is 10,757 days. Calculate the mean daily motion of Saturn in

degrees per day. How many degrees does Saturn move across the sky in one

Earth year?

4. Pluto was first seen on a photographic search plate taken of the region near the

star Delta Geminorum on January 21, 1930, very close to the ecliptic plane.

What was the heliocentric longitude of Pluto at the time of its discovery?
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5. Dwarf planet Sedna is immensely far away and was difficult to discover

because of its very slow motion against the sky. From the data available on

the NASA/JPL Solar System Dynamics website discussed earlier, find its mean

daily motion and the values ofO, o,P , L, and M as of November 14, 2003, the

date of its discovery, and plot a schematic diagram of same. (Hint: In the

NASA/JPL HORIZONS Web-Interface, under “Type of Ephemeris,” select

“Elements.” Use the body itself and not its barycenter on all problems here.

Round to hundredths.)

6. Create a schematic diagram of the orbit of Neptune at the time of Neptune’s

discovery in September 23, 1846, showing longitude of the ascending node,

longitude of the perihelion and the mean longitude of the planet on that date.

7. Use the NASA/JPL HORIZONS web-interface system to find the heliocentric

mean longitude of the asteroid Ceres at the date of its discovery by Giuseppe

Piazzi in January 1, 1801. Calculate the longitude of its perihelion, P.

8. Referring to the previous problem, what was the heliocentric longitude of Earth

as reported on the NASA/JPL HORIZONS web-interface system on January 1,

1801? Compare that with your own computation of Earth’s heliocentric longi-

tude for that date. Plot the relative heliocentric longitudes of Ceres (using the

data from the previous problem) and Earth as of the date of discovery.

9. After its initial discovery and observations in the early months of 1801, Ceres

was lost. A young Carl Friedrich Gauss developed an innovative new mathe-

matical method, however, that enabled the asteroid’s recovery on December

31, 1801, giving Gauss international fame. Use the NASA/JPL HORIZONS

web-interface system to find the difference in the heliocentric longitudes of

Ceres between discovery and recovery in 1801. Is the difference commensurate

with its mean daily motion over that interval? Update the plot you did for

Problem 8, now showing the relative heliocentric longitudes of Ceres and Earth

as of the recovery date.

10. OnMarch 25, 1996, spectacular comet Hyakutake C/1996 B2 passed extremely

close to the Earth and was dramatically visible to the naked eye, showing

visible movement even over relatively small increments of time. Using data

from the from the NASA/JPL HORIZONS web-interface system: (a) Calculate

the semi-major axis, and the period in years, and plot the inner orbit of the

comet as of March 25, 1996. (b) Find the Julian date of periapsis (perihelion)

and use the USNO site and find the calendar date and time of perihelion for the

comet. How many days before perihelion was the close approach to the Earth?
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Chapter 16

An Introduction to Kepler’s Problem:

Finding the True Anomaly of an Orbiting Body

We have seen how to orient the orbit of a body in space, using the Sun and the

ecliptic plane as a reference, anchored externally by the position of the vernal

equinox among the stars. On the ecliptic itself, we saw how to compute the

heliocentric longitude of the Earth, as it moves in its almost circular orbit. It is

not circular, but nearly enough, with its modest eccentricity, for us to get a sense of

the Earth’s location relative to the vernal equinox. Similarly aligning the orbit of a

comet or an asteroid in space, as we did in the last chapter, will tell where that body

is at perihelion, but it is usually necessary to predict where it will be at other times

too, to trace its path anywhere along the orbit. When we discussed asteroid 2010

TD54, we knew when it passed closest to the Earth. We computed where the Earth

was in its own orbit at that time, so we could determine approximately where the

asteroid was too, but the two numbers did not really match up. This is because we

were comparing positions for each body on their fictitious circles to find mean

anomaly, M, from which the heliocentric longitudes were determined. As we will

see, this provides useful information, but it does not get us to an appropriate level of

accuracy when we want to compare where they are in their actual, elliptical orbits.

Let us take the next step and venture to calculate more precisely where the asteroid

was and is in its orbit, either at that time or any other time. That requires knowing

the so-called true anomaly of the object.

The True Anomaly Is the Body’s Actual Position in Orbit

The great goal of the astronomer trying to understand the path and motion of an

orbiting body in space is to find the true anomaly of the object for any given time.

This is simply the angular position (often denoted by the Greek letter Nu, u) of the
asteroid in its orbit measured in the direction of its motion from perihelion, with the

Sun as the focus of the elliptical orbit:

D.W. MacDougal, Newton’s Gravity: An Introductory Guide
to the Mechanics of the Universe, Undergraduate Lecture Notes in Physics,

DOI 10.1007/978-1-4614-5444-1_16, # Springer Science+Business Media New York 2012
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The line between the Sun and the asteroid is called the radius vector of the
asteroid, with its usual symbol r. Its magnitude is the distance between them; its

direction is always from the asteroid to one focus of the ellipse, the Sun. It is

apparent from the diagram that at perihelion the true anomaly will be zero and the

radius vector will have the value of the perihelion distance. Knowledge of the

true anomaly tells us at any time where the body is, anywhere in its elliptical

orbit. This is valuable information! It will inform us when a comet or asteroid, or

spacecraft, will pass by Earth’s orbit, or by the orbits of any other planet, as it

traces its path inward and outward. For example, we saw in the last chapter, we

could determine the relative positions of the Earth and comet West when the

comet was at perihelion. But in the months and days before and after perihelion,

we had no way of knowing this. Knowledge of the true anomaly and radius vector

is crucial in plotting the path of the object in relation to the Sun and Earth. By

using computers to determine the true anomaly backwards in time, and matching

the comet’s path with the heliocentric longitudes of the other planets, it will tell

when in a comet’s history it may have passed sufficiently close to any of the other

planets to have had its orbit shifted and been gravitationally perturbed. Knowl-

edge of the true anomaly is essential too for reducing the object’s position to

geocentric coordinates of right ascension and declination, so that it can be

detected and followed by telescopes.

The true anomaly is plainly a fundamentally important parameter in celestial

mechanics. How can we go about finding the true anomaly of an object in space?

We need to go beyond finding mean anomaly: it is not enough to estimate an

object’s position by taking its mean daily motion from the time of perihelion,

then working forwards or backwards the appropriate number of days to find its

approximate present position on a circle. Its use in orbits of even modest

ellipticity will show how inaccurate it can be.

338 16 An Introduction to Kepler’s Problem: Finding the True Anomaly. . .



The Limitations of Using Mean Daily Motion to Find

Position in an Elliptical Orbit

In a circular orbit, we can calculate the mean daily motion from some point,

and deduce where the object will be a later time. The mean daily motion of the

Earth, in degrees per day, will provide an approximate check on our

calculations of its heliocentric longitude. But for accurate positioning of bodies

in eccentric orbits, this does not work. Velocity differences, and thus the mean

daily motions, vary greatly at different places on the orbit. And the greater the

eccentricity, the greater the deviation from whatever could be calculated as its

mean or average motion.

Think how meaningless it would be to compute the mean daily motion of comet

West. Its average velocity is about 47.5 km per second, but this number is in no way

helpful, because the range of its orbital velocities varies from 95 km per second at

perihelion to 1.4 m per second at aphelion. Its mean daily motion is 69,000 times

greater at one end of its orbit than the other. Granted, comet West is an extreme

example, but the principle holds for all elliptical orbits, that plotting an object’s

mean daily motion on an elliptical path will not yield a true prediction of its

position. So the question remains, how can we find the actual position of a comet,

asteroid, or spacecraft in a heliocentric orbit?

Kepler’s Auxiliary Circle: Determining the True

Anomaly from the Eccentric Anomaly

Johannes Kepler was keenly aware of the limitation of using mean daily motion to

accurately predict the actual position of a planet or other body. Indeed, if Mars’s orbit

were circular, predicting its path would be easy, and Kepler’s life would have been

much simpler! Although in that case the world would likely not have been rewarded

with his wonderful discoveries, the fruits of his great struggles to make sense of

elliptical motion. He found that orbiting bodies move not in circles but in ellipses,

somewith large, somewith small eccentricities. He needed amethod that would apply

to orbits of any eccentricity. His mathematical imagination came to his aid. He

concluded that it would be useful to begin by picturing the orbit inscribed within a

larger circle, whose center would be the point of reference for finding the angular

position of the object from perihelion. In other words, Kepler began with the simpler

geometry of the circle, with the center of the ellipse, rather than the Sun, as the pivot

point for calculating angular distance from perihelion. The angular position of the

body determined with reference to this outer auxiliary or fictitious circle is called

the eccentric anomaly and is typically symbolized by the letterE. You can see from the

diagram below, representing as an example asteroid 2010 TD 54, that the eccentric

anomaly does not directly reveal where the body is on the ellipse. Rather we find it
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indirectly: begin at a point on the auxiliary circle at angleE fromperihelion, and drop a

line perpendicular to the semi-major axis until it intersects the body in its orbit.

Once E is known, we can use a rather peculiar trigonometric equation, easily

solved on a pocket calculator or computer, to find the true anomaly:

tan
n
2
¼

ffiffiffiffiffiffiffiffiffiffiffi
1þ e

1� e

r
tan

E

2

This means that twice the angle whose tangent is v/2 will yield the true anomaly.

Finding the angle whose tangent is something is possible with the arctan function

on your calculator. We could therefore write the equation for finding the true

anomaly this way:

n ¼ 2 arctan

ffiffiffiffiffiffiffiffiffiffiffi
1þ e

1� e

r
tan

E

2

 !

The magnitude of the radius vector can be determined from this equation:

r ¼ a 1� e cosEð Þ

In these equations, e and a are, as always, the eccentricity of the ellipse and the

semi-major axis, respectively. Eccentricity has no units, a is typically in AU, and

the angles are in radians (which, again, is degrees times p/180). The first equation
links the eccentric anomaly to the true anomaly, so with it we can return to our

familiar heliocentric reference frame.
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This seems like excellent progress, but how do we determine the key unknown in

each of these equations, namely, the eccentric anomaly?

Kepler’s Equation: Finding the Eccentric Anomaly

from the Mean Anomaly

Kepler worked with these odd bits of plane geometry and was finally led to a

momentous breakthrough, and an equally odd equation, difficult to solve, known as

Kepler’s equation. This equation forges the next link in the chain, by relating the

eccentric anomaly to the mean anomaly, M, which we encountered earlier and can

easily calculate.

E ¼ M þ e sinE

This is the famous Kepler’s equation as it is usually written, and though it may

appear simple at first glance, appearances can be deceptive. It looks easy until we

notice that E appears on both sides of it. Can’t we just isolate the E and make a

straightforward equation out of it? The answer is no, we cannot. It is a kind of

equation mathematicians call a transcendental equation, and since Kepler’s day it

has been the focus of hundreds of papers on ways and means to solve it. Generally,

the value of E can be approximated by iterative methods. It works this way: insert

an initial value of E (say, M) on the right side of the equation, and then compute

what E emerges as the solution on the left hand side. We then take that value of E
and plug it in on the right side and obtain a new value for E, and so on, until we get
results in each iteration that differ only insignificantly from the one just before, to

any degree of accuracy we choose. There are many refinements of this method, and

picking the initial value of E can be something of an art. There are equations for

getting at an initial value of E, so the solution to Kepler’s equation converges

rapidly. But with modern calculators we can do it fairly easily and quickly by these

iterative methods.

The problem below will illustrate finding the asteroid’s eccentric anomaly. The

problem that follows after that will use the eccentric anomaly to enable computa-

tion of the asteroid’s true anomaly, its place in the elliptical orbit measured in the

direction of its motion, counter-clockwise from perihelion.

Determining the Eccentric Anomaly of Near Earth Asteroid 2010
TD54 at the Time of Its Closest Approach to Earth

Let us pull all of these steps together into a problem, so their workings can be better

understood. We will continue to use as our case study the near Earth asteroid 2010

TD54 since we have already built a foundation of familiarity with this asteroid.
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Problem Use the orbital elements given in the previous chapter for asteroid 2010

TD54 to find the mean anomaly of asteroid 2010 TD54 in its orbit on October 12,

2010.

Given

M Mean anomaly of asteroid 2010 TD54 on October 12, 2010: 340.34� (from
Problem 15.2)

E ¼ Mþ e sinE Kepler’s equation for finding eccentric anomaly when mean anomaly M is

known

e Eccentricity of the asteroid orbit of .6190559 given by its elements

Assumptions The same assumptions apply as we used before including particu-

larly the circularity of Earth’s orbit. We will also ignore the asteroid’s 5� inclination
and for our purposes be content with healthy approximations.

Method Begin the iteration of Kepler’s equation by usingM as the initial value of

E and taking it through 15 or more iterations. Convert all degrees to radians by

multiplying by p/180, or 0.01745329252. The iteration can be done by hand but

access to a calculator or mathematical software that makes the iteration far easier!

Calculations The mean anomaly we found in the previous chapter for the asteroid

on October 12, 2010 was 340.34� degrees. We can pick this as the initial value for

E. First it is necessary to convert this value to radians, by multiplying by p/180. The
result is,

M ¼ 5:94 radians

Now we insert this value as the initial value for E0 in the first iteration of

Kepler’s equation, using for e the eccentricity value given above:

E1 ¼ M þ e sinE0

E1 ¼ 5:94þ :619056 sin 5:94ð Þ

The value obtained for E1 is then plugged into the equation on the right-hand

side, to obtain a new value which we label E2:

E2 ¼ M þ e sinE1

Using a Maple program to repeat these steps, the following result emerged for

the first 12 iterations:
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Eccentric anomaly on each iteration (rad) Degrees

E[1] ¼ 5.731724417 328.4036183

E[2] ¼ 5.615675350 321.7544966

E[3] ¼ 5.556803002 318.3813594

E[4] ¼ 5.528860579 316.7803766

E[5] ¼ 5.516091145 316.0487419

E[6] ¼ 5.510365224 315.7206708

E[7] ¼ 5.507820368 315.5748613

E[8] ¼ 5.506693864 315.5103174

E[9] ¼ 5.506196102 315.4817977

E[10] ¼ 5.505976334 315.4692059

E[11] ¼ 5.505879338 315.4636485

E[12] ¼ 5.505836535 315.4611961

Further iterations yield refinements in the result. After 20 iterations the result is

5.505802781 rad, or 315.4592621�, with a difference between each iteration of

about 6.2 � 10�8 rad, which is far more accuracy than needed for our purposes. For

the next steps in our problem, we will settle on E ¼ 5.5058 rad, which is,

E ¼ 315:46�

This is the eccentric anomaly of the asteroid as of October 12, 2010.

Observation

1. If the orbit were centered as in the figure above, the asteroid will have completed

about 315/360 or 7/8ths of its counterclockwise orbit from perihelion.

2. Where the eccentricity of the orbit is high (above .4 or .5), one can experiment

with the use of this equation for faster iterations to the result:

E1 ¼ E0 þM þ e sinE0 � E0

1� e cosE0

where the initial value of E0 is again M.1

Finding the True Anomaly of Near Earth Asteroid 2010 TD54
at the Time of Its Closest Approach to Earth

Now we have found the eccentric anomaly of the asteroid on the encounter date, the

next step is to find the asteroid’s actual place in its elliptical orbit.

1 See Jean Meeus [1] and Laurence G. Taff [2].
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Problem Use the elements given in the previous problem to find the true anomaly

of asteroid 2010 TD54 in its orbit on October 12, 2010, and plot its position on a

graph, with the perihelion of the orbit lying along the negative x axis, and showing

the correct angles for eccentric anomaly and true anomaly.

Given

E Eccentric anomaly of asteroid 2010 TD54 on October 12, 2010,

from the previous problem: 315.46�

n ¼ 2 arctan
ffiffiffiffiffiffi
1þe
1�e

q
tan E

2

� �
Equation for determining true anomaly when E is known

e Eccentricity of the asteroid orbit of .6190559 given by its elements

Assumptions The same assumptions will apply here as in the previous problem,

including again the circularity of Earth’s orbit, the effect of which we will address

later.

Method With the value for E thus determined, we simply solve the equation for

true anomaly. For the plot, the angles will begin at the perihelion of the asteroid

orbit, in the manner used in the graphs above.

Calculations To determine the true anomaly of the asteroid on October 12, 2010,

we insert the appropriate values into the equation:

n ¼ 2 arctan

ffiffiffiffiffiffiffiffiffiffiffi
1þ e

1� e

r
tan

E

2

 !

n ¼ 2 arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ :619056

1� :619056

r
tan

5:5058

2

 !

n ¼ �1:40232 radians

n ¼ �80:347�

Since the result is negative, we add 360�, and the true anomaly of asteroid 2010

TD54 is:

n ¼ 279:65�

From these results, we now plot the position of the asteroid in its orbit at close

encounter:
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Observations

1. The logical next step is to compare the position of the asteroid on October 12,

2010 with that of the Earth on that date. How can we place the Earth on this

diagram? Recall that the equinox is the standard external reference among the

stars. From the first problem in the previous chapter we know the Earth’s

heliocentric longitude L at conjunction with the asteroid, as measured from the

vernal equinox. We also can compute where the vernal equinox is with respect to

the asteroid:

(a) Since the asteroid’s longitude of the perihelion P is 99.24�, the vernal

equinox is 260.76� counter-clockwise from perihelion point P (since

360 � 99.24 ¼ 260.76).

(b) Since the Earth’s mean longitude L (from the vernal equinox) at encounter

(from the discussion in the last chapter) is 20.81�, the angular distance of

Earth from asteroid perihelion is the sum of these. We’ll call this MEarth or

the Earth’s mean anomaly, but measured here from the perihelion angle of

the asteroid.

MEarth ¼ 260:76� þ 20:81�

MEarth ¼ 281:57�

(c) Compare this with the true anomaly of the asteroid of 279.65� on that date

and time. Now we can plot the orbits and positions of Earth and asteroid as of

October 12, 2010 when the asteroid passed close to the Earth. Removing the

mathematical scaffolding of the lines, the diagram looks like this, though it is

definitely not to scale.
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This shows quite roughly the lineup of the Earth and 2010 TD54 at conjunc-

tion. A closeup view generated again by Maple mathematical software

shows them a little better. The assumptions we made likely account for the

fact that they are not even closer together:

2. One of the important assumptions we made was that the Earth’s orbit is circular,

which it almost is, but not quite. Its actual eccentricity is small, being only

.01671. But it is not insignificant when we are trying to locate an asteroid passing

close to the Earth. It can make a truly big difference if the issue is whether the

asteroid poses a risk of impacting the Earth! If we want to improve accuracy of

the calculations, we need to take into account the true elliptical shape of our

Earth’s orbit. This means beginning with its mean anomaly, then finding its

eccentric and true anomalies. We know from the discussion in the preceding

paragraph that Earth’s mean anomaly is 281.57� (from the asteroid’s perihelion).

This equates to about 4.9143 rad. We now adjust this circular measure for the

ellipse by computing the eccentric anomaly, whose equation, again, is:

E1 ¼ M þ e sinE0

E1 ¼ 4:9143þ :01671 sin 4:9143ð Þ
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E4 ¼ 280:629

E ’ 280:63

Because the eccentricity of the Earth’s orbit is so small, the result converges

after only five iterations exactly to the above angle for the eccentric anomaly. This

converts to 4.8979 rad. This “adjustment for eccentricity” shaved a full degree off

the 281.57� mean anomaly we used for the previous problem. Let’s see how that

change affects the true anomaly of the Earth:

n ¼ 2 arctan

ffiffiffiffiffiffiffiffiffiffiffi
1þ e

1� e

r
tan

E

2

 !

n ¼ 2 arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ :01671

1� :01671

r
tan

4:8979

2

 !

The result in radians (�1.4) is converted to degrees (�80.3) and the solution in

degrees is:

n ¼ 279:69�

Compare this solution with the result of the previous problem, where we were

content to use only the Earth’s mean anomaly of 281.57�. How does this true

anomaly of Earth compare with the true anomaly of the asteroid?

True anomalies of Earth and asteroid 2010

TD54 on October 12, 2010

Asteroid 279.65�

Earth 279.69�

Though the results still incorporate certain approximations of time of closest

encounter and various roundings-off along the way, it is evident that we have

removed probably the largest source of error and greatly improved our accuracy

by taking the ellipticity of the Earth’s orbit into account.

Asteroid 2007 WD5’s Passed by Mars: How Close Did It Come?

In late 2007 it was announced that an asteroid would come quite close to Mars early

in the next year. Low inclination Asteroid 2007 WD5 was to make a close pass to

Mars on January 30, 2008. This problem explores ways to find out how close it

might have come.

Kepler’s Equation: Finding the Eccentric Anomaly from the Mean Anomaly 347



Problem Given the orbital elements below, approximate the apparent separation

of Mars and asteroid 2007 WD5 on January 30, 2008.

Given

JD 2454453.5 Date of epoch: December 19, 2007

JD 2454495.5 Date of asteroid encounter with Mars: January 30 2008

Mepoch Mean anomaly of the asteroid at epoch: 14.89803�

n Mean daily motion of asteroid: .242811�/day
O Asteroid’s longitude of the ascending node at epoch: 67.423964�

o Asteroid’s argument of the perihelion for the epoch: 312.82278�

E ¼ M þ e sinE Kepler’s equation for finding eccentric anomaly when mean anomaly

M is known

e Eccentricity of the asteroid orbit: .5981

emars Eccentricity of the Martian orbit: .0933941

n ¼ 2 arctan
ffiffiffiffiffiffi
1þe
1�e

q
tan E

2

� �
Equation for true anomaly when E is known

Assumptions As before, we assume the reasonable accuracy of the data and, for

the sake of clarity of instruction, are tolerant of rounding. We will work with an

assumed close encounter time of noon and ignore the attractive pull of Mars which

undoubtedly would affect a precise result. We are again ignoring inclination for this

asteroid (and Mars), which are quite close to the ecliptic plane.

Method The first step is to reduce the mean anomaly for the epoch to the date of

encounter, which means finding the days elapsed, by subtracting the relevant Julian

dates, and multiplying by mean daily motion. The mean anomaly for the epoch is

then corrected by that factor. Once we are confident that we have a good mean

anomaly for the encounter date, the next step is to find the eccentric anomaly E by

iteration in the same way as was done in the previous problem. With the eccentric

anomaly in hand, the true anomaly u emerges just by grinding through the equation

for the true anomaly. After all that is done, we repeat the process for Mars, and see

how close the two bodies came.

Calculations First we do the analysis on the asteroid, then the planet Mars.

Asteroid 2007 WD5:
The first step is to find the degrees traversed by the asteroid from December epoch

to late January encounter. The numbers in parenthesis are the given Julian dates:

DM ¼ n 2454495:5� 2454453:5ð Þ

DM ¼ :242811 42ð Þ

DM ¼ 10:198062�
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This must be added to the mean anomaly at epoch:

M ¼ Mepoch þ DM

M ¼ 14:89803þ 10:198062

M ¼ 25:09609o

This is the asteroid’s mean anomaly at the time of encounter. The next step is to

find the eccentric anomaly. Converting to radians,

Mradians ¼ M
p
180

� �

Mradians ¼ 25:09609
p
180

� �

Mradians ¼ :43801

We insert this value as the initial value for E0 in the first iteration of Kepler’s

equation, using for e the eccentricity value given above:

E1 ¼ M þ e sinE0

E1 ¼ :43801þ :5981 sin :43801ð Þ

The value obtained for E1 is then plugged into the equation on the right-hand

side, to obtain a new value which we label E2 and so on for the full set iterations, to

generate the eccentric anomaly for the asteroid on the encounter date:

E ¼ :9103 radians

E ¼ 52:16�

To find the true anomaly, we roll out this equation and insert the appropriate

values into the equation for e and E (in radians!):

n ¼ 2 arctan

ffiffiffiffiffiffiffiffiffiffiffi
1þ e

1� e

r
tan

E

2

 !

n ¼ 2 arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ :5981

1� :5981

r
tan

:9103

2

 !
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n ¼ 1:5465 radians

n ¼ 88:61�

This is the angle on the asteroid orbit, counterclockwise from its own orbit’s

perihelion, to the asteroid. To find the distance from the vernal equinox, so we can

have a standard basis of comparison with Mars, we need to add that value to the

longitude of its perihelion, P, which is:

P ¼ Oþ o

P ¼ 67:42484þ 312:82278

P ¼ 20:25

Asteroid longitude from equinox as of January 30, 2008:

P þ u ¼ 88.61 þ 20.25 ¼ 108.86�

Mars:
We can find where Mars was in several ways. Using the techniques mentioned in

this chapter, we can find the heliocentric longitude of the planet. But then to get to

mean anomaly, let us try something a little different. We can find the longitude of

the perihelion P and take the difference between that and L to find the mean

anomaly, since from what we have said it follows that,

M ¼ L�P

The mean longitude we can arrive at from the polynomial formula and the

information from the table. The JPL information is as of epoch J2000.0, so we

again need to correct for the encounter date, JD 2454495.5:

T ¼ JD� 2451545:0

36525

T ¼ 2454495:5� 2451545:0

36525

T ¼ 0:08078029

Then we find heliocentric longitude of Mars for that date:

L ¼ a0 þ a1T

L ¼ 355:4465680þ 0:44441088 :08078029ð Þ
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After dividing the result by 360 and finding the remaining part of the circle that

is left, we have,

L ¼ 101:60577�

We can do essentially the same process for finding the Martian longitude of the

perihelion. From the tables on the JPL site2 referred to before, the equation and

coefficients are:

P ¼ a0 þ a1T

where a0 ¼ �23.94362959 and a1 ¼ .44441088. Working these into the equation,

P ¼ �23:94362959þ 0:44441088 :08078029ð Þ

P ¼ �23:9077�

P ¼ 336:09�

Subtracting this from the heliocentric longitude gives,

M ¼ L�P

M ¼ 101:60577� �23:9077ð Þ

M ¼ 125:5135�

M ¼ 2:1906 radians

Again, we insert this value as the initial value for E0 in the first iteration of

Kepler’s equation, using for e for Mars eccentricity value given above:

E1 ¼ M þ emars sinE0

E1 ¼ 2:1906þ :0933941 sin 2:1906ð Þ

After iteration, we have,

E ¼ 2:26255 radians

E ¼ 129:6345�

2 See http://ssd.jpl.nasa.gov/txt/p_elem_t1.txt.
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To find the true anomaly, we again insert the appropriate values into the

following equation for e and E

n ¼ 2 arctan

ffiffiffiffiffiffiffiffiffiffiffi
1þ e

1� e

r
tan

E

2

 !

n ¼ 2 arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ :0933941

1� :0933941

r
tan

2:26255

2

 !

n ¼ 2:3325 radians

n ¼ 133:64�

To find the distance from the vernal equinox, to enable comparison with the

asteroid, again we need to add that value to the longitude of its perihelion,P, which

we already found to be 336.09�. Hence,
Mars longitude from equinox as of January 30, 2008:

P þ u ¼ 336.09 þ 133.64 ¼ 109.73�

Comparison of true anomalies of Mars and asteroid 2007 WD5 on January

30, 2008 (angular distances from vernal equinox)

Asteroid 108.86�

Mars 109.73�

Observation

1. If one compares the value of Mars’ true anomaly with the precise JPL

HORIZONS’ output for that planet for January 30, 2008, one will notice that

the reported true anomaly is 133.593�, which compares reasonably well with our

calculated true anomaly for Mars of 133.64�. Similarly, the HORIZONS’ read-

out for the asteroid’s true anomaly for that date is 89.491� which compares

reasonably well with our 88.61�.
2. The attentive reader may have noticed a possible source for even this small

discrepancy, apart from the rounding off of certain numbers. TheMars value was

determined by taking the JPD/SSD Keplerian Elements data and correcting it

forward from epoch 2000.0 to the encounter date. The asteroid value, on the

other hand, was found by using the published elements for the asteroid as of

December 19, 2007, and adjusting only the mean anomaly forward (by the

periodic daily motion times the days elapsed to encounter). The asteroid values

are not as well established as those of Mars, of course, and refinements in the

elements were being made as more observations were analyzed.

3. The reader is encouraged to explore and become familiar with the JPL

HORIZONS site. The “Small-Body Browser”3 is a good place to start, and

orbit diagrams can be automatically generated for almost any object desired.

3 See http://ssd.jpl.nasa.gov/sbdb.cgi.
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Exercises: Look Out Above! Now that robotic optics of all sorts are continually

scanning the skies, scores of new near earth objects (NEOs) are being detected,

some of them passing discomforting close to Earth. For example, in mid-2012, the

popular website spaceweather.com reported the sighting of a new object, 2012

KT42 that was among the half-dozen closest NEO objects ever spotted. Likely

several meters wide, it passed only 14,000 km above the Earth’s surface, well under

the altitude of geosynchronous satellites. Similarly, in February 2011, NEO 2011

CQ1 passed within a mere 11,855 km above our planet. The large number of these

objects and the evident frequency of impacts into planets and moons in the life of

our solar system make watching out for these objects, and calculating their orbits,

definitely a worthwhile endeavor!

Problems

1. Draw separate diagrams of the orbits of Mars and asteroid 2007 WD5 as of

January 30, 2008, with the vernal equinox aligned along the positive x axis. For
each one, draw and label arcs of O, o, u in different colors, with lengths in

degrees approximating their values. Draw the nodes, semi-major axes, perihe-

lion and aphelion points, and place the planet and asteroid on their respective

diagrams.

2. Recalculate the true anomaly for the asteroid 2007 WD5 using data from the

NASA/JPL HORIZONS web-interface system for epoch January 30, 2008.

Compare and interpret your result with the value determined above.

3. Use the radius vector equation r ¼ a(1 � e cos E) to find the radius vector of

asteroid 2007 WD5. Does your result make intuitive sense?

4. Comet Halley’s last perihelion passage was on February 6, 1986, JD

2446467.395317051. Its orbital eccentricity is .9673 and its mean anomaly M

on that date was 359.953�. Using the iterative equation for high eccentricity

orbits given at the end of the first problem of this chapter, find the eccentric

anomaly of Comet Halley at that date and time.

5. Using the eccentric anomaly you found from the last problem, find the true

anomaly of Comet Halley at that date and time. Express your answer in radians

and degrees. Confirm your answer using the NASA/JPL HORIZONS web-

interface system.

6. Asteroid 2005 YU55 was reached perihelion on September 9, 2011 then came

quite close to the Earth on November 7, 2011. At the time of its encounter its

mean anomaly was 46.886�. Its semi-major axis was 1.143333 AU and the

eccentricity of its orbit was .4294. Find its true anomaly on that date and its

distance from the Sun.

7. Use the Orbit Diagram section of the NASA/JPL Solar System Dynamics

website to locate asteroid 2005 YU55 as of November 7, 2011. Identify the

Earth’s location in relation to the asteroid on that date.

8. Comet 21/P Giacobini-Zinner (2012 epoch) has an eccentric orbit of e ¼ .71

that takes it just past Jupiter’s orbit before it returns to the inner solar system in

a 6.6 year period. Using the iterative equation for high eccentricity orbits given

at the end of the first problem of this chapter, and given that its mean anomaly
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M as of September 23, 2018 will be 1.90779�, find its true anomaly as of that

date. Express your answer in radians and degrees.

9. The Earth’s mean anomaly on September 23, 2018 was 256.139. Calculate the

Earth’s approximate angular distance from Comet Giacobini-Zinner on that

date.

10. On June 1, 1981 Jupiter was about 5.44 AU from the Sun in the vicinity of

Comet Giacobini-Zinner. Use the radius vector equation r ¼ a (1 � e cos E) to
find the magnitude of the heliocentric radius vector of the comet on that date.

Assume a semi-major axis for the comet of 3.505 AU and a mean anomaly of

126.3577�.
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Chapter 17

What Causes the Tides?

The phenomena of the ocean tides is one of the most visible and dramatic

manifestations of gravity. It is a vivid demonstration of the “action at a distance”

which characterizes its deep mystery. We know that the force of gravity is deter-

mined by two things: the existence of a mass and its distance from us. Any particle

of mass will attract every other particle of mass, and particles twice as far away will

exert their attraction one fourth as strongly. Understanding this inverse square
relationship is the key to understanding the tides. As Rachel Carson put it in her

classic, The Sea Around Us,

The tides are a response of the mobile waters of the ocean to the pull of the moon and the

more distant sun. In theory, there is a gravitational attraction between every drop of sea

water and even the outermost star of the universe. In practice, however, the pull of the

remote stars is so slight as to be obliterated in the vaster movements by which the ocean

yields to the moon and sun. Anyone who has lived near tidewater knows that the moon, far

more than the sun, controls the tides. He has noticed that, just as the moon rises later each

day by fifty minutes, on the average, than the day before, so, in most places, the time of high

tide is correspondingly later each day. And as the moon waxes and wanes in its monthly

cycle, so the height of the tide varies. ***

That the sun, with a mass 27 million times that of the moon, should have less influence

over the tides than a small satellite of the earth is a first surprising. But in the mechanics of

the universe, nearness counts for more than distant mass, and when all the mathematical

calculations have been made, we find that the moon’s power over the tides is more than

twice that of the sun.1

Let us therefore begin with the Moon’s effect on the oceans. The Moon pulls on

the Earth from an average distance from the center of the Earth of 384,400 km.

But the oceans on the near side of the Earth are closer than this to the Moon. Being

closer, they experience a greater pull or lift toward the Moon than is felt by the

mass of the Earth under them. If we now go around to the far side of the Earth, we

see that it is the Earth that is closer to the Moon than the oceans are. It tends to pull

away from them – to be closer to the Moon than they are. Because the oceans are

1 Carson [1].

D.W. MacDougal, Newton’s Gravity: An Introductory Guide
to the Mechanics of the Universe, Undergraduate Lecture Notes in Physics,
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fluid and mobile, and the Earth is relatively more rigid, the oceans move and fill

in, causing a heaping up or bulge, in the areas on the near and far side of the Earth

where these differences in forces are the greatest. To a lesser extent, the Sun’s

more remote attraction has the same effect, and the varying height of the tides is

due to the varying configurations of the Moon and the Sun together. Put most

simply, the cause of the tides is the difference in the gravitational attraction of the

Moon and the Sun on the oceans as compared to their attraction on other parts of

the Earth.

Tidal forces are thus due to the variation of gravitational forces acting over

different parts of an extended body. They apply to any object, not just the Earth and

its oceans. Great and small tidal forces are found everywhere in the universe.

Strong tidal forces can tear a body apart, deform stars, prevent planetary formation

and give rise to rings around a planet. They are deforming forces. Our oceans, in

fact, are not the only manifestation of the variation of gravitational forces affecting

Earth over its volume. The Earth’s crust is somewhat elastic and is itself deformed

by the differential forces of the Moon and Sun. But the rise and fall of the fluid

oceans as the Moon and Sun pass by are the visible manifestations of the tugs of

these bodies.

Newton dealt with the tides in Book III of the Principia. He described the timing

of the tides and the blended forces of the Sun and Moon in this way:

PROPOSITION XXIV. THEOREM XIX

That the flux and reflux of the sea arise from the actions of the sun and moon

. . . [I]t appears that the waters of the sea ought twice to rise and fall every day, as well

lunar as solar; and that the greatest height of the waters in the open and deep seas ought to

follow the approach of the luminaries to the meridian of the place by a less interval than six

hours; as happens in all that eastern tract of the Atlantic and Ethiopic [South Atlantic] seas

between France and the Cape of Good Hope; and on the coasts of Chile and Peru in the

South Sea [Pacific ocean]; in all which shores the flood falls out about the second, third or

fourth hour, unless where the motion propagated from the deep ocean is by the shallowness

of the channels, through which it passes to some particular places, retarded to the fifth,

sixth, or seventh hour, and even later.

. . . The two luminaries excite two motions, which will not appear distinctly, but

between them will arise one mixed motion compounded out of both. In the conjunction

or opposition of the luminaries their forces will be conjoined, and bring on the greatest

flood and ebb. In the quadratures [where the Moon is at right angles to the Earth–Sun line]

the sun will raise the waters which the moon depresses, and depress the waters which the

moon raises, and from the difference the smallest of all tides will follow.

. . .But the effects of the luminaries depend upon their distances from the earth; for when

they are less distant, their effects are greater, and when more distant, their effects are less,

and that as the cube of their apparent diameter. Therefore it is that the sun, in the winter

time, being then in its perigee, has a greater effect, and makes the tides in the syzygies

[when all three bodies are in a line] somewhat greater, and those in the quadratures

somewhat less than in the summer season; and every month the moon, while in perigee,

raises greater tides than at the distance of fifteen days before or after, when it is in

its apogee.

Newton went on to discuss the influences of the varying declination of the Moon,

which is its distance from the equatorial plane of the Earth, and the effect of one’s
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latitude on Earth, the inertia of tidal waters, and the spin of the Earth.2 The tides are

not caused by the rotation of the Earth, though their timing and local extent is

influenced by the Earth’s rotation. Newton noted this in the Corollary to Proposition

XXXVI of Book III of the Principia, referring to the “centrifugal force of the parts

of the earth” having different effects as one goes from the equator to the poles, as

we discussed in Chap. 9.3 Recall that the Earth’s rotation creates a uniform

equatorial bulge on the planet, so that it is more an “oblate spheroid” rather than

a uniform sphere. While this rotation deforms the Earth to some extent, the bulge

around its middle is symmetrical with respect to the Earth’s axis, and does not cause

the periodic tides.

In the first problem, we will look simply at the differences in the pull of the

Moon on the Earth at three points. Our frame of reference will be the center of the

Earth, point b, at distance rb from the Moon. We will compare the Moon’s

gravitation-induced acceleration on the center-Earth distance with its pull on the

sub-lunar point a, at distance ra and the anti-lunar point c, at distance rc. The points
are illustrated by the accompanying figure.

Why do we mention a frame of reference? Taking just the case of the Moon and

Earth, the Earth is attracted to the Moon just as the Moon is attracted to the Earth.

Hence the Earth, too, is in accelerated “free fall” toward the Moon, just as the Moon

is in free fall toward the Earth. (This free fall does not result in collision with the

Moon because the fall is continually off-set by the Earth and Moon each “falling

around” the center of mass of the Earth–Moon system.) With respect to the fixed

stars – the so-called inertial reference frame (that is, a frame of reference that is not

rotating or otherwise accelerating), we can say that our non-inertial, geocentric
reference frame is in free fall. The free-fall acceleration on the Earth (determined at

2 Sir Isaac Newton, Mathematical Principles of Natural Philosophy, Book III, Proposition XXIV,

Theorem XIX, pp 395–337 (Translation by Andrew Motte, 1729, revised by F. Cajori). University

of California Press, Berkeley, 1949. (Short title) Principia.
3Principia, Book III, Proposition XXXVI, Corollary, 478.
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its center) induced by the Moon is Gm/rb
2. All points within this reference frame

are accelerated in this free fall, affected equally and in the same direction. To

isolate the effect of the Moon on different parts of the Earth, as distinguished from

the free-falling Earth itself, we need to mathematically subtract out the accelerated

free-fall motion of this geocentric reference frame. This will enable it to be seen as

it would appear from an inertial frame of reference. After subtracting this overall

acceleration of the Earth itself, we can then imagine the Earth as an enormous

spaceship, and ourselves as astronauts weightless and floating at its center. As

we move away from the center within the spaceship in the direction of the Moon,

we feel an increasing tug from the Moon pulling us toward it. As we move in the

opposite direction, we perceive the spaceship increasingly moving toward

the Moon away from us.4

Another way to describe this weightless situation is to see it as the perfect

equilibrium of accelerations. The acceleration induced by the Moon’s gravity at

the center of the Earth acts as if it is balanced by an acceleration acting in the

opposite direction, in the amount of – Gm/rb
2 that acts on the Earth as a whole.

Whether the method is seen either as a netting out of forces and accelerations or as a

shifting of the frame of reference from an accelerating (non-inertial) reference

frame to a non-accelerating (inertial) reference frame, the mathematical result is

the same. We may from either perspective examine the resulting forces (i.e., those

not determined by the free-falling Earth) that act on points a and c.

Calculating the Differential Gravitational Forces Exerted

by the Moon on the Earth

Problem Calculate the Moon’s gravitational acceleration on three points on the

Earth: the sub-lunar point in the oceans nearest the Moon, at distance ra, the center
of the Earth, at distance rb, and the anti-lunar point in the oceans on the far side of

the Earth, at distance rc. Find the differences (the tidal effects) between the

4We have avoided the terminology of “pseudo forces” and “fictitious forces” which may be

confusing to the student. These are forces that emerge in accelerating reference frames and are not

physically real in the sense of the four fundamental forces of nature. For example, a ball placed on

a moving merry-go-round will move to the outer rim. But no “force” has pushed or pulled it – it is

the rotation of the reference frame itself that has displaced its location due to the ball’s inertia, its

tendency not to move with the rotating frame. If we say that the gravitational force (or accelera-

tion) of the Moon acting at the center of the Earth is exactly balanced by the fictitious force of

inertia F ¼ � mf (or acceleration, F/m ¼ � f) acting in the opposite direction (a so-called

“centrifugal force”), we get exactly the same result as described in the text. For a useful discussion

of frames of reference and the confusion they can cause when explaining tides, see P. Sirtoli, Tides
and Centrifugal Forces (2005), at http://www.vialattea.net/maree/eng/index.htm. An interesting

but considerably more technical treatment is given by E.I. Butikov, A Dynamical Picture of the
Oceanic Tides (1989), http://faculty.ifmo.ru/butikov/Planets/Tides.pdf. The image of the space-

ship Earth was drawn from this paper.
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accelerations at points a and c compared to the acceleration and force at point b, the
center of the Earth.

Given

fn ¼ Gm r2n
�

Gravitional acceleration f at distance rn between Earth and Moon

G Gravitational constant: 6.674 � 10�11 N�m2/kg

m Mass of the Moon: 7.349 � 1022 kg

RE Equatorial radius of the Earth: 6.378 � 106 m

rb Mean center-to-center Earth-Moon distance: 3.844 � 108 m

Assumptions The center of the Earth will be the frame of reference. We’ll assume

that the Earth is spherically symmetric, and will for the moment ignore the effects

of the Sun.

Method We need to find the value of the acceleration due to the Moon’s gravity at

three different distances from the Moon, which correspond to the points a and c on
Earth. To do this we just use acceleration equation above with the applicable values

of r for each distance. Then we subtract the forces and accelerations at points ra and
rc from rb. This will yield the differential accelerations caused by the Moon’s pull at

opposite points on Earth.

Calculations First find the distances from the Moon to Earth-points a and c,
remembering that RE is the Earth’s radius in meters. To do this, we simply subtract

and add the Earth’s radius to the mean lunar distance of rb which is 384,400 km.

The results in meters are:

ra ¼ 3:7802� 108 meters

rb ¼ 3:8440� 108 meters

rc ¼ 3:9078� 108 meters

To calculate the applicable accelerations, we use the given acceleration equation

with the applicable value for r each time. For example, we do the calculation for

gravitational acceleration at each applicable point, a, b or c:

fn ¼ Gm

r2n
where n ¼ a; b or c

Using for Gm the value 4.90471012 and the radius values determined above, the

lunar-induced accelerations at each of the three points a, b, and c on Earth are:

At point a onEarth ðnear sideÞ: fa ¼ 3:43� 10�5 m=s2

At point b onEarth ðcenterÞ: fb ¼ 3:32� 10�5 m=s2

At point c on Earth ðfar sideÞ: fc ¼ 3:21� 10�5 m=s2
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It is apparent that the accelerative pull of the Moon on Earth is stronger on the

near side of Earth relative to the center, and correspondingly weaker on the far

side: fa> fb > fc.
At the distance from the Moon to the center of the Earth, the accelerative pull of

lunar gravity/s2 is thus quite small. Since the Earth weighs about 5.97 � 1024 kg, the

total force (from Newton’s Second Law, F ¼ mf) exerted by the Moon on Earth,

however, is that mass times the 3.32 � 10�5 (the acceleration at the center of the

Earth) or almost 2 � 1020 newtons. The pull on the near side is slightly more; on the

far side, slightly less. However small these accelerations are, their differences, acting

upon the great mass of the oceans, cause the lunar component of the tides we see.

It is now necessary to compare these accelerations against those exerted by the

Moon on the center of the Earth, at rb, to ascertain the tidal differences between the
near and far sides of the Earth relative to the Moon:

Tidal accelerations:

:fa � fb ¼ 3:43� 10�5 � 3:32� 10�5 ¼ 1:1� 10�6 m=sec2  Near side

fc � fb ¼ 3:21� 10�5 � 3:32� 10�5 ¼ �1:1� 10�6 m=sec2  Far side

Observations

1. If we considered a giant mass, say an aircraft supercarrier, whose mass we will

assume is about 9.5 � 106 kg, and compared its weight one side of the Earth with

the Moon overhead at a certain phase, with its weight on the other side of the

world with the Moon in the same phase (with all our given assumptions), the

difference in force on this mass from the Moon’s pull would be5:

Fa�b ¼ 10:45 newtons ðnear side of Earth to MoonÞ
Fc�b ¼ �10:45 newtons ðfar side of Earth to MoonÞ

2. As noted in Chap. 10, we could derive these same accelerations from the

velocities of the Earth and Moon in their orbits around the center of mass

using the equation for centripetal acceleration discussed earlier: f ¼ 4pr/P2.

Deriving a General Equation for Determining Tidal Forces

Our approach with the Moon was a numerical one. That background helps in

undertaking the next problem, which is to derive a general analytical expression

for calculating tidal forces for either the Sun or Moon, or potentially any other

celestial object.

5 Using Newton’s Second Law, F ¼ mf. See Eric M. Rodgers, Physics for the Inquiring Mind, p.
328 (Princeton, 1960) for a similar treatment of this problem which inspired the approach.
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Problem Derive a general equation for determining the tidal effects of one

orbiting mass on another. Starting with Newton’s law of gravitation and the Earth

and Moon as our example, show the tidal effects as a change of force, and also the

rates of change of force and acceleration. Do the calculation for a distance Dr closer
than r to the body exerting the tidal force.

Given

F ¼ GMm r2
�

Newton’s Law of Gravitation, where in our exampleM is the mass of the Earth and

m as the mass of the Moon

rb The mean, center-to-center distance between the two masses

Dr The radius of the Earth, though it could be any small, arbitrary distance from rb

Assumptions Again we assume ideal circular orbits and spherical masses of

uniform density, and the absence of all other perturbing effects.

Method Examining the steps in our numerical solution above, we could have

expressed the steps mathematically this way, where m is the mass of the Moon,

RE the radius of the Earth, and fa and fc are the tidal accelerations at the near and
far sides of the Earth relative to the Moon, which are just statements of Newton’s

gravitational accelerations at each point:

fa ¼ Gm

ðrb � REÞ2
� Gm

r2b|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Tidal acceleration caused by Moon at point a on Earth

fc ¼ Gm

ðrb þ REÞ2
� Gm

r2b|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Tidal acceleration caused by Moon at point c on Earth

We want an even more general expression that applies to the tidal forces

between any two points separated by any distance Dr, where the main bodies are

r meters distant from each other. We can call the difference between the two points

Dr, where Dr << r. Moving from r to Dr means a change in acceleration. In our

Earth and Moon example, the Dr is the radius of the Earth. Here we will take the

first of the equations and generalize the denominator. The tidal force DF between

the two points will then be:

DF ¼ GMm

ðr � DrÞ2 �
GMm

r2

The task is to find a simplified expression for DF.

Calculations Beginning with the general relation just discussed, we do some

algebra heavy-lifting to simplify it:

DF ¼ GMm

ðr � DrÞ2 �
GMm

r2
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DF ¼ GMm

r2
r2

ðr � DrÞ2 � 1

 !

DF ¼ GMm

r2
r2 � r2 þ 2rDr � Dr2

r2 � 2rDr þ Dr2

� �

Now after some cancelling, given that Dr << r and Dr2 << r2, we may achieve

an acceptable approximation by eliminating the isolated Dr and Dr2 terms:

DF ’ GMm

r2
2rDr

rðr � 2DrÞ
� �

DF ’ 2GMm

r3
Dr

This is the change of the force in going from r to r � Dr.
If we divide through by m (since by Newton’s Second Law f ¼ F/m and

continuing to use f as our notation for acceleration), then the change of acceleration
in going from r to r � Dr is

Df ’ 2GM

r3
Dr

Observations

1. Whereas the gravitational force diminishes with the square of the distance, the

tidal effects diminish more rapidly, with the cube of the distance, a result

discovered by Newton.

2. We could have chosen to analyze the equation by going from r to r + Dr, that is,
to move outward from the center of m. As an exercise, rework the above

problem, and satisfy yourself that the result is the same but with a negative

sign, appropriately indicating a diminution of acceleration as one moves farther

away from M.

3. To actually calculate the change in acceleration induced by the Moon upon the

Earth by this equation, using the mass of the Moon m and the center-to-center

distance between Earth and Moon:

Df ’ 2Gm

r3
Dr

Here again we are interested in knowing the acceleration differences between

the center of the Earth and point a or point c on the Earth. So Drwill be the radius
of the Earth. The calculation to find the tidal acceleration at either point is,
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Df ’ 2ð6:674� 10�11Þð7:349� 1022Þ
ð3:844� 108Þ3 ð6:378� 106Þ

Df ’ 1:1� 10�6 m=s2

which could be plus (for near-side point a) or minus (for far-side point c) and
is the same value we derived above for the difference in accelerations.

4. This is a job perfectly suited for calculus, which Newton used to determine the

effects of infinitesimally small changes. Those familiar with it will see that an

easy approach could be to find the rate of change of force in Newton’s gravita-

tion equation, F ¼ GMm/r2. The rate of change of force may with respect to

radius may be expressed as dF/dr where dF and dr have the same function as DF
and Dr. That is, an infinitesimal change in radius being dr with the resulting

force differential being DF. We would need to “take the derivative of the

function of F with respect to r.” This means determining how the force changes

with small changes in orbital radius. One finds the derivative of a function like

this by reducing the exponent of the variable by one, and multiplying the

function by the old exponent, keeping the constants intact as before. The variable

is one over radius squared, or r�2. The new variable is therefore �2r�3. The
derivative of the equation (the change of force with respect to distance along r)
becomes:

F ¼ GMm

r2

dF

dr
¼ � 2GMm

r3

Thus, the minute change in force over a very small distance is,

dF

dr

Over the distance Dr, the change of force would be,

DF ¼ dF

dr

� �
Dr

which is the same as,

DF ¼ � 2GMm

r3
Dr

This equation is the same as what we found just above by non-calculus

means.
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5. The solar versus lunar tidal effects on Earth may easily be compared with this

equation. Call the respective tidal accelerations induced on Earth by the Sun and

Moon fs and fm. If the mass of the Sun is Ms and the mass of Moon is Mm, and

their respective mean distances from Earth are rs and rm, it will be apparent that,
taking the ratio of solar to lunar accelerations,

Dfs
Dfm
¼

2GMs

r3s
2GMm

r3m

Dfs
Dfm
¼ Ms

Mm

� �
rm
rs

� �3

The ratio of the accelerations of the Sun to the Moon is as the ratio of their

masses and the inverse ratio of the cubes of their distances from Earth. Working

through the numbers, we have,

Dfs
Dfm
¼ 2� 1030

7:3� 1022

� �
3:84� 108

149:6� 109

� �3

Dfs
Dfm
¼ :46

The cubing of the great distance from the Sun, as compared with the nearby

Moon, offsets its vastly greater mass. The resulting solar tidal effects are only

about half that of the Moon. The lunar tidal effects on Earth are thus

compounded by the pull of the Sun, and their motions together primarily

determine the tidal cycles.

6. We can determine the actual tidal forces induced by the Sun. A simple way

would be to take .46 of the lunar tidal value of 1.1 � 10�6 m/s2, which is about

5.07 � 10�7 m/s2. Let’s confirm this by using the tidal acceleration equation:

Df ’ � 2GM

r3
Dr

The mass of the Sun is 1.989 � 1030 kg, the gravitational constant G is

6.674 � 10�11 N m2/s, and the mean Earth-Sun distance (the astronomical

unit) r is 1.496 � 1011 m. Again, we can use the Earth’s radius as Dr ¼ 6.378 �
106 m. Inserting these values into the tidal equation yields the following result:

Dfs ¼ 2ð6:674� 10�11Þð1:989� 1030Þ
ð1:496� 1011Þ3 ð6:378� 106Þ

Dfs ’ 5:07� 10�7 m=s2
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This again is the tidal acceleration (difference in gravitational acceleration)

induced by the Sun over the radius of the Earth, which also contributes to

the tides.

7. The solar-induced gravitational (not tidal) acceleration on Earth at point rb may

be found from,

fsun ¼ GMsun

r2

fsun ¼ ð6:674� 10�11Þð1:989� 1030Þ
ð1:496� 1011Þ2

fsun ’ 5:93� 10�3 m=s2

This is about 179 times more powerful than the gravitational acceleration

induced by the Moon of 3.32 � 10�5 m/s2. But at its great distance and the fact

that tidal forces diminish as the cube of the distance, the Sun’s tidal force is as

we saw less than half that of the Moon.

8. The timing of the tides and their actual height at different locations, are far

beyond the scope of this problem. As noted in Newton’s description of the tides,

they depend on many complex physical factors, including the contours of the

oceans and bays, the declination of the Moon, the latitude on Earth, and the other

characteristics and variables of the lunar orbit. One can see this immediately by

inspection of any tidal table.

Visualizing Tidal Pull by Comparing Theoretical and Actual

Orbital Velocities at Opposite Points on Earth

A helpful way of visualizing the tides is to look further at the gravitational

dynamics of a two-body system. Imagine a satellite orbiting the center of mass

of the system. If its actual velocity were to slightly exceed that just needed at its

center for circular orbital motion (to keep it in perpetual “free fall” around the

center of mass of the system), it would “want to” migrate outward to make a larger

orbit, if it could; it will tend to drift outward—demonstrating a kind of gravita-

tional “buoyancy.” This would occur either with an increase in velocity or a

decrease in the accelerative pull of the primary: the projectile or tangential vector

of its motion would be slightly increased relative to the inward centripetal/

gravitational component. This is so just as a spacecraft in circular orbit will

move into a broader elliptical orbit if it is given a tangential, propulsive “kick”

to increase its velocity. On the other hand, an increase in the gravitational

component acting on it, or a decrease in the tangential velocity, will have the
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opposite tendency. The gravitational component there is stronger, and its actual

speed is less than that needed for circular orbital motion at such distance, so it will

find that the gravity of the attracting mass will tend to pull it inward, and it will

tend to “sink” toward the primary. Now think of that satellite as the Earth orbiting

the center of mass of the Earth–Moon system. Parts of it are accelerated differ-

ently. If we could take three free-floating particles and place them at points a, b
and c on the Earth, as in the figure, we would see them tending toward different

orbits, because their accelerations differ. Since centripetal acceleration is f ¼ v2/r,
then the applicable velocity is v ¼ √fr. As acceleration differs among points a, b
and c, the velocity of the particles differ. We will see how this applies to the

oceanic tides here.

Problem The center of the Earth (point b in the figure) is orbiting the center of

mass of the Earth–Moon system, and the radius of that orbit is about 4,671.6 km.

Imagine three particles located at ponits a, b and c, respectively, as shown in the

figure of the Earth at the beginning of this chapter. Compute the orbital velocity of

Earth around the center of mass of the two-body system and compare it with

theoretical velocities that unattached particles at points a and c, not held by the

Earth, would have.

Given

v ¼ ffiffiffiffi
fr
p

Circular orbital velocity at radius r and acceleration f

r0b 4.6716 � 106 m, the distance from the center of the Earth to the center

of mass of the Earth–Moon system (the radius of the Earth’s small orbit)

Assumptions We assume again ideal circular orbits and spherical masses of

uniform density, and the absence of all other perturbing effects. We neglect the

rotation of the Earth. Since we assume the Earth has no rotational motion as to any

point with respect to the center of mass of the system, we must assume that every

point must move in a circle of radius 4,671.6 km from the center of mass. To

emphasize this important point, since the Earth’s revolution about the Earth–Moon

center of mass is non-rotational, the actual velocities at any points within the Earth

will be the same. In other words, there is no rotational component to the Earth’s

revolution around the Earth–Moon center of mass.

Method Our task is to compare the circular orbital velocity of the center of the Earth

around the center ofmass of theEarth–Moon induced by theMoon’s gravitation (from

the equation vb ¼ √fr0b)with the velocitieswhichhypothetical particles at pointsa and
c on the Earth would have. Since from our assumption the radius of revolution in each

equation v ¼ √frwill be the same in this hypothetical, velocitymust vary as the square

root of the gravitational acceleration, increasing and decreasing with it.

Calculations The lunar-induced acceleration f at point b, as found above, is

fb ¼ 3.32 � 10�5 m/s2. Using equation v ¼ √fr, we can determine the velocity

of the center of the Earth, at distance r0b from the center of mass of the Earth–Moon

system:
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vb ¼
ffiffiffiffiffiffiffiffi
fbr

0
b

q
! v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3:32� 10�5Þð4:6716� 106Þ

q
ffi 12:45m= sec

This is the Earth’s velocity of revolution in its orbit around the center of mass of

the Earth–Moon system. Importantly, it is the velocity of every part of the Earth,

since the Earth’s motion is translational, not rotational. We now compare the

Earth’s orbital velocity just found with theoretical velocities of particles located

at points a and c, which are also in orbit around the center of mass of the

Earth–Moon system. We know from above the accelerations at those two points:

Lunar� induced acceleration at a : fa ¼ 3:43� 10�5 m=s2

Lunar� induced acceleration at c : fc ¼ 3:21� 10�5 m=s2

Hence, the hypothetical velocity of particle at a is:

va ¼
ffiffiffiffiffiffiffiffi
far

0
b

q

va ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3:43� 10�5Þð4:671� 106Þ

q
a ’ 12:66m=s

By a like calcuation using for fc the value 3.21 � 10�5 m/s2, and the same value

for r0b, we obtain for the velocity at point c:

vc ’ 12:25m=s

Observation These velocities may be regarded as the “natural” circular orbital

velocities of unattached particles at points a and c, not held by the Earth. But in fact
they are bound to it (albieit the oceans more loosely), and are all moving at

12.45 m/s. Hence the inward (sub-lunar) particles at a are actually moving slower
(at 12.45 m/s) than the natural circular orbital velocity would dictate at that distance

(12.66 m/s), and so the inclination is for the oceans on the near side is to go inward.

The outward (anti-lunar) particles at c are moving faster (at 12.45 m/s) than the

natural circular orbital velocity would dictate at their distance (12.25 m/s), and so

the inclination is for the oceans on the far side to go outward. This is another way of

visualizing the outward trends on the oceans at the two points.

Estimating the Lifting Force of the Moon

An interesting mathematical approach to the analysis of tidal forces is to imagine a

mass of any small size on one of the bodies and compare the forces that compete

with it, to hold it fast or to rip it off. The parent body with its own gravity wants to

hang onto it with a gravitational force; the competing body will be tempting it away

with its tidal force. Even if the parent body, like the Earth, has a vastly stronger hold
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on the mass (which could be an element of the ocean, for example) the competing

body (such as the Moon) may nevertheless have measurable, even dramatic effects.

By looking at the ratio of tidal to gravitational forces, we can quantify the effects, at

least within the idealized limits of our governing assumptions.

Overall, we are looking to see the magnitude of tidal distortion.What do wemean

by tidal distortion? It is the consequence of the pulling of the respective masses

toward each other, in effect warping and elongating them. If the other mass is close

enough to overcome the gravitational pull of the parent, it can ultimately rip mass

away from the parent mass. Just before this happens, we can expect to see significant

distortion. Tidal distortion, in one degree or another, occurs not just in close double

stars, but also in the gravitational interaction between planets and their satellites.

Even the Earth’s Moon pulls on the crust of the Earth, and we see the warping most

visibly in the tides. Its effects are geologically apparent in some of the other satellites

in the solar system, such as Jupiter’s moon Io, which we’ll explore shortly.

Problem Derive an equation for the ratio of tidal to gravitational forces acting on

any mass on the surface of the Earth, calculating actual values for each force; then

find the amount by which the Earth’s gravitational acceleration g is offset by the

passage of the Moon overhead; finally, use the equation to roughly approximate

the maximum lift of the oceans on an idealized Earth-sphere caused by each of the

Moon and the Sun.

Given

Fg ¼ GM1m/r
2 Newton’s gravition equation

Ft ¼ GM2mDr/r
3 Tidal force equation

G Gravitational constant: 6.674 � 10�11 N.m2/kg

M1 Mass of the Earth: 5.972 � 1024 kg

M2 Mass of the Moon: 7.349 � 1022 kg

m An arbitrarily small mass on the Earth’s surface

Dr Equatorial radius of the Earth: 6.378 � 106 m

r Mean center-to-center Earth-Moon distance: 3.844 � 108 m

Assumptions We will assume a circular lunar orbit and that the Earth and Moon

are perfectly symmetric spheres with uniform densities, with the oceans evenly

covering the Earth at a uniform average depth. We will ignore all other factors, such

as the eccentricity of the lunar and solar orbits, their inclination with respect to the

equatorial plane of the Earth, tidal friction, latitude on Earth, the ocean’s variable

depth, contours of the sea floor and coastal land, ocean currents, and other physical

determinants of the actual tides in a given location.

Method For this problem, M1 is the Earth and M2 is the Moon. A small mass

element m is on the surface of the Earth at radius distance Dr from the center our

idealized spherical Earth. The small mass m is attracted by the Earth’s (M1’s) own

gravitational pull, Fg, represented by Newton’s gravitation equation, as if all the

mass ofM1were at its center. The Moon,M2, will exert a tidal force Ft, on the small

mass, quantified by the tidal equation. The ratio of the two equations, Ft/Fg, when
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simplified algebraically, gives us the first result. Their difference Fg � Ft will yield

the diminution of g caused by the Moon’s passage overhead, which “new” g we can
call g0. To find the lifting force, we will imagine a surface of even gravitational

potential on the Earth, and see the degree to which the Moon’s pull affects it. The

gravitational potential energy at the Earth’s surface (our assumed reference level) is

given by the equation PE ¼ �mgh. The work done in lifting a mass m to height h is
DPE. Since the variations in g near the (assumed spherical) Earth’s surface, are

negligible, DPE from one location to another will be linearly related to the height h.
The equipotential surface we assume for the Earth is an equal-energy surface, such

that DPE per unit mass is constant. Hence gh is a constant. If we let the reference

height be the Earth’s surface, h ¼ R (choosing here for simplicity to represent

Earth’s radius as R) then the equation C ¼ gR will describe that equipotential

surface, where C is a constant.6 The task then is noting that for any g, such as g0,
a “new” R can be found, which we will call R0. For any such surface, C ¼ gR ¼
g0R0. The lift, L will be the difference between R0 and R. Let us see how this all

works in practice.

Calculations For the first part of the problem, we need to find the ratios of the

applicable equations. The gravitational force acting on the little mass m by Earth’s

own gravity is given by the Newtonian gravity equation:

Fg ¼ GM1m

ðDrÞ2

The gravitational acceleration on a little mass on the surface of the Earth is,

fg ¼ GM1

ðDrÞ2

Inserting the given values, we have,

fg ¼ 6:674� 10�11ð Þ 5:972� 1024ð Þ
6:378� 106ð Þ2

fg ’ 9:8m=s2

which is the expected result, here rounded to a “standard” g for simplicity of

reference. The tidal force acting on the little mass m on the surface of the Earth

6A succinct way of looking at it is this: if R is the radius of the Earth, the gravitational potential on

the surface is U ¼ �GM1m/R. Since g ¼ GM1m/R
2, then GM1m ¼ R2g. Substituting this last

expression into the first equation yields U ¼ � gR. We can ignore the sign if we choose in this

context, since the difference in U is what will concern us.
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caused by the Moon, M2, is expressed by this equation, where r is the mean

separation between the centers of the Earth and Moon:

Ft ’ � 2GM2m

r3
Dr

The tidal acceleration is,

ft ’ � 2GM2

r3
Dr

Plugging in the right values tells us the tidal acceleration:

ft ’ � 2 6:674� 10�11ð Þ 7:349� 1022ð Þ
3:844� 108ð Þ3 6:378� 106

� �

ft ’ �1:1015� 10�6m=s2

which is the acceleration we found earlier in this chapter using different means. The

proportion of the tidal to the gravitational acceleration (and thus force per unit

mass) is therefore,

ft
fg
’ �

2GM2

r3 Dr
GM1

ðDrÞ2

Simplifying this equation yields the ratio of tidal to gravitational force on a small

element of mass m on the Earth, though for other applications it could be any planet

or star we designate as M1 pulled by an M2:

ft
fg
’ 2M2

M1

Dr
r

� �3

Considering any two objects in a binary system, as the ratio of satellite (or star)

radius to distance to the primary diminishes (i.e., as the fraction Dr/r grows larger),
the greater are the tidal effects. Let’s call this ratio by the Greek letter t (for “tidal”).
To quantify this ratio for the Earth–Moon system, we run the numbers through it:

t ’ 2M2

M1

Dr
r

� �3

t ’ 2 7:349� 1022ð Þ
5:972� 1024ð Þ

6:378� 106

3:844� 108

� �3

t ’ 1:12416 � 10�7
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The reader may confirm this by taking the ratio of the tidal and g values just

computed. This equation may be interpreted as the fractional lessening (or

strengthening) of g over the distance Dr, just as we saw in the first part of this

chapter, when we calculated the actual lunar-induced acceleration differences on

each side of the Earth, one positive (near side) and the other negative(far side). In
our example it amounts to about 1/87 millionth the Earth’s surface gravity.

For the second part of the problem, we need to find the reduction in Earth’s

surface g caused by the overhead Moon:

g 0 ¼ fg � ft

g 0 ¼ 9:8� 1:1015� 10�6

g 0 ¼ 9:799998 m=s2

This very slight reduction in gmay seem small, but remember, its effects are felt

on every kilogram of ocean water.

Finally, we need to determine the lift caused by the Moon on our idealized

spherical Earth as the result of tidal distortion.

When the gravitational acceleration of the Earth at its surface is slightly reduced

(or augmented) by the lunar gravitational acceleration to become g0 the “distorted”
Earth’s “new” radius (reflected in the lift of the oceans along the Earth – Moon

syzygy line in our model) is R0. Since we said that any product of g and R will

describe a surface of constant potential, such that C ¼ gR ¼ g0R0, then,

R
0

R
¼ g

g0

Calling the lift Lmoon, then Lmoon ¼ R0 � R. From this, substitution for R’ may

be made in the above equation, since R0 ¼ Lmoon þ R:

Lmoon þ R

R
¼ g

g0

Solving for L readily yields,

Lmoon ¼ R
g

g0
� 1

� �

The “lift” of the lunar tide from this equation is thus:

Lmoon ¼ 6:378� 106
� � 9:8

9:799998
� 1

� �

Lmoon ’ :71 m
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Or 71 cm. The lift induced by the Sun would be as we saw earlier, 46 % of

this, or

Lsun ’ :33 m

The combined lunar and solar lifts distort the liquid part of the planet to create

our tides, as the Earth rotates beneath the Earth – Moon line.7 The combined solar

and lunar forces at new and full moons, assuming our idealized spherical Earth with

even ocean depths, would raise it about a meter. And these augment and diminish at

near and far approaches of the Earth to the Sun and the Moon to the Earth in their

eccentric orbits.

Observations

1. To avoid calculating the g difference, we could convert the lift equation to one

using just the tidal force ratio t we developed above. We know that

g
0 ¼ g� ft

And since ft ¼ tg, then,

g
0 ¼ gð1� tÞ

Substituting this for the g0 in the above lift equation, we have,

Lmoon ¼ R
t

1� t

	 


The reader should feel free to confirm that this generates the same lift from

the Moon as found before.

2. We have found the approximate lunar contribution to the tidal rise along the

Earth – Moon line, in our idealized sphere of even ocean depth. More generally,

for any radius and where the denominator (as above) substantially approaches

unity, the lift may be approximated by the following expression:

L ¼ tR

3. If the Earth’s net gravitational attraction on a body is reduced by the Moon

passing overhead, what will its effects on you be? Let’s suppose you weigh 50 kg

7We again emphasize that the actual tides and their timing are as noted earlier affected of course

by many factors, such as the eccentricity of the lunar and solar orbits, inclination of the orbits,

friction, latitude on the Earth, ocean depth, contours of the land, currents, etc. The point to

remember is that water flows and the oceans tend to move and hump up under the areas of least

earthly gravitational potential, along the Earth – Moon line. Owing to these differences, tides can

be many meters in some places on Earth and barely detectable in others.
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when the Moon is in quadrature (that is, when the Moon is at right angles to the

Sun-Earth line). How can the Moon affect your weight? Ignoring the effects of

the Sun, what will you weigh when the Moon stands high overhead? Using the

same principles we explored above, we know that the g will be less by the factor
gt. And, since weight is nothing more than gravitational acceleration acting on

your mass (by Newton’s Second Law), then if the gravitational acceleration is

less you will weigh less. So, since F ¼ w ¼ mg, your “new” weight will be

w0 ¼ mg0. Using the above information, it is apparent that the difference in your

weight will be:

Dw ¼ wt

Thus, Dw ¼ 50(1.2416 � 10�7) ¼ 5.62 � 10�6 kg, or about 5.6 mg! Your

new weight will be w0 ¼ w � Dw or 49.99999438 kg. This difference will not

significantly improve your performance in the high jump, but it is interesting to

know that your weight changes twice a day!8

The same principles of tidal distortion that that cause the tides we see, and that

cause you to weigh less when the Moon is at syzygies, also cause distortions –

sometimes extreme distortions, in all close systems of planets, stars and galaxies,

where tidal forces are significant.

4. The moon raises tides on the Earth, but also the Earth exerts enormous tidal pull

on the Moon, producing a tidal bulge on the Moon. Over hundreds of millions of

years, the Earth’s gravitational pull on that bulge has caused the Moon to lock

itself into a synchronous orbit with the Earth. This means that the Moon’s

rotation rate is precisely the same as its orbital period, so that it always faces

in the same direction to the Earth. The Moon is thus tidally locked to the Earth.

This phenomenon is found throughout the solar system.

Exercises: The Prevalence of Tidal Forces in the Solar System While we are

most familiar with the tides here on Earth, and how they are manifest in the rise and

fall of the oceans, there are significant tides of all sorts elsewhere in the solar

system, and among other star systems and even galaxies. Take for example Jupiter’s

large inner moon Io. The first Voyager spacecraft mission detected dramatic,

copiously erupting volcanoes on Io. What is the cause of this activity? It is certainly

close to the giant planet, about 5.9 Jupiter radii, and we would therefore expect it to

experience strong tidal forces from Jupiter; but many moons experience strong tidal

forces (our own Moon, for example, which is quite similar to Io in size and density)

but are not volcanically active. Io is too small to have any geologic activity of its

own—it should be dead like our Moon. The answer lies in the eccentric shape of its

orbit, and how its uneven velocity causes the Jovian-induced tides on Io to stir up its

8 I credit Moaz [2] for this problem. This difference in weight is measurable and it would be an

enjoyable experiment to try over the course of a lunar month.
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interior. The gravitational influence of Io’s next-door neighbor Europa, at 9.4

Jovian radii has rendered Io’s orbit eccentric (e about .004). Io’s velocity thus

varies as it orbits, and it cannot always present the same face to Jupiter. As a result,

the moon cannot rest comfortably in a synchronous orbit. Io’s tidal bulge, however,

always faces Jupiter. The bulge on Io thus moves back and forth quite rapidly across

Io’s surface as the moon orbits the planet, just as our oceans move back and forth

under the influence of the Moon, only on Io it is crust, not fluid water, and it moves

far more rapidly. These tides within Io’s interior thus create enormous stresses and

heat, resulting in the intense volcanic activity we see on Io which is unlike anything

else in the solar system.

Closer in, it is not surprising that Mercury, orbiting so close to the sun, should

also be subject to great tidal stresses. We know this from examination of its surface

in photographs relayed to us by the Messenger spacecraft. All of these effects are

the result of the strong gravity of one body tugging at the mass of another which is

struggling by its own gravity to hold itself together.

Problems

1. Referring to the diagram of the Earth–Moon system at the beginning of the

chapter, calculate the solar induced accelerations at points a and c on the Earth,
and compute their approximate differences from the solar induced acceleration

at point b. Take the mass of the Sun to be 1.189 � 1030 kg and its mean

distance from the Earth to be 1 AU or 1.49598 � 108 km. The equatorial radius

of the Earth is 6.378 � 106 m.

2. Find the solar tidal acceleration on Earth using the tidal equation.

3. Using the idealized assumptions about the Earth and Moon in this chapter,

calculate the combined tidal accelerations of the Sun and Moon on the Earth’s

oceans at new moon and full moon.

4. What is the tidal acceleration on the Moon induced by Earth? The Earth’s mass

is 5.97 � 1024 kg. The Moon’s radius is 1,737.5 km.

5. Jupiter’s innermost Galilean moon Io is slightly larger than our Moon and

slightly farther from its planet than is our Moon: its radius is 1821.6 km, and it

is 421,800 km from the center of Jupiter. But the mass of the mother planet,

however, is vastly larger than Earth, being 1.89813 � 1027 kg. What is the tidal

acceleration induced by Jupiter on its moon Io?

6. How many times greater is the Jovian-induced tidal force on Io than the tidal

force induced by Earth on our Moon?

7. Jupiter’s very small inner moon Metis is only 128,000 km from the Jovian

center and spins around it once in only 7 h. Its mean radius is only about

21.5 km. What is the tidal acceleration induced by Jupiter on Metis?

8. Identify any inapplicable answers: The Jovian-induced tidal force on Metis in

relation to the tidal force on Io is (a) almost two and a half times greater

because it is closer to Jupiter; (b) less than half that of Io partly because it is

smaller than Io; (c) almost 3.6 mm/s2 less than Io.
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9. What is the tidal acceleration induced on Mercury as a result of the Sun’s close

pull? Mercury’s mean distance from the Sun is only .3871 AU, and is its radius

is 2439.7 km.

10. Mercury’s orbit is quite eccentric, e being equal to 0.20563593. What are the

tidal accelerations at the apsides, and their difference?

References

1. Carson R (1961) The sea around us, Rev edn. New American Library, New York, pp 142–143

2. Moaz D (2007) Astrophysics in a nutshell. Princeton University Press, Princeton, p 112

References 375



Chapter 18

Moons, Rings, and the Ripping Force of Tides

In the last chapter we calculated the lifting force of the Moon by imagining a mass of

any small size resting on the Earth’s surface. We looked at the ratio of the Earth’s

gravitational force holding that mass fast to the surface to the competing tidal force of

the Moon (and Sun) tending pull it away. The result was the proportionate tidal pull

of the Moon (and Sun) on the mass. The greater was that ratio, which we called t, the
greater was the tidal pull on thatmass.Multiply the pulling effects on the little mass by

the great quantity of the Earth’s substance at its surface and the result is seen in the

tides and (less evidently) a rise in the Earth’s crust.

We thus examined the effect of a satellite, the Moon, on its parent Earth. But

tidal forces are found in many regions of the solar system and space where the effect

on the satellite, being the less massive object, is the more noteworthy, and where the

satellite is so close to the primary that it is decidedly warped by the parent’s

gravitational pull. There are close double star systems where the stars are distended

into a kind of tear-drop shape by their companions. What if the bodies are extremely

close; will one rip apart the other? Suppose we take our mathematical model and

put the little mass on the satellite instead of the planet. Then, we might ask, is there

ever a case where a satellite could orbit so close as to endanger its own integrity, so

the little mass on its surface (or elsewhere in the satellite) could be ripped off by the

parent’s gravity?

When an object is exposed to unequal forces it may bend or warp, deforming it

from its original shape. Even rigid objects, such as the hull of a submarine, the wing

of a plane, or the span of a bridge, may buckle and break if the uneven distribution

of forces is greater than its design tolerance. In everyday experience, it is the

strength of the object’s materials – originating from chemical forces, combined

with its structural design, distributing the loads of water, wind, traffic, gravity, etc.,

as the case may be, that keeps it stable. The relatively thin hull of a submarine has

integrity from the enormous forces of deep water because the external pressure is

distributed around the hull, and there is a compensating, even, internal pressure.

There is a balance of forces and an equilibrium of pressures. In fact many structures,

such as fuselages, wings, balloons and eardrums, are themselves often relatively

fragile, and are only maintained intact because forces are distributed more or less
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evenly around it. These same principles apply in space, too, to planets, satellites,

comets, stars and even whole galaxies. In space, tidal forces are as we saw

gravitational forces that are unevenly distributed across a mass, causing a tendency

to deform the mass. The internal tensile strength of a planet’s satellite may resist

gravitational tidal deformity from its parent planet.

In the end, the predominant large-scale disruptive force in the universe is

unquestionably gravity.Where a planet, star, or galaxy is sufficiently massive, it

can create an enormous gravitational gradient (difference of force) across a neigh-

boring satellite, star or galaxy. If the tidal force of the parent is almost as great as the

gravitational forces that hold the other together, the latter may be strongly

deformed. If the tidal force exceeds the internal forces that bind the sibling together,

it will be ripped apart. Tidal forces may prevent a planet, satellite or star from

forming in the first place. The evidence of ancient and not-so-ancient tidal rippings

can be seen in the rings of some planets.

The French mathematician Edouard Roche (1820–1843) determined mathemat-

ically how close a satellite could come to a planet before being ripped apart. He

found this by comparing the gravitational forces holding a body together with the

tidal forces tending to break it up. If a satellite is too close to the planet, the tidal

forces will overwhelm the internal gravitational forces of the satellite, and it will

begin to disintegrate. This forbidden zone is known as the Roche limit. If the body
has its own internal tensile strength, it may resist and stay whole a little within the

limit. If the body is rather fluid, it may distend and begin to pull apart before

the limit. It may elongate and stretch closer, which in turn increases the tidal

differences in the distended bulge. Thus the Roche limit of a planet or star is

relative to the object affected. The Roche limit of Jupiter with respect to an icy,

low density comet passing near will be much farther out from the planet than the

Roche limit for a relatively rigid satellite.

Deriving an Equation for the Roche Limit and Applying

It to the Earth–Moon System

Problem Imagine two small spheres, each of mass m and radius Dr. They are just

in contact with each other and orbit the parent planet. Using this model, derive an

equation for finding the Roche limit of a planet that exerts a tidal force on a satellite,

simplify that equation by putting it in terms of the densities of the two bodies, and

use the equation to compute the Roche limit of the Earth in the Earth–Moon system.

Given

Fg ¼ GM1m/r
2 Gravition equation

Ft ¼ GM2mDr/r
3 Tidal force equation

G Gravitational constant

m Mass of two small spheres orbiting at distance r

Dr Radii of each of the spheres

(continued)
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R Mean radius of the Earth: 6,371 km

r Mean center-to-center Earth-Moon distance: 384,400 km

rp Planetary density. Earth’s mean densitya is 5,513 kg/m3

rs Satellite density. The Moon’s mean density is 3,344 kg/m3

aDensity values are drawn from the NASA/JPL websites, http://ssd.jpl.nasa.gov/?

planet_phys_par for the Earth and http://ssd.jpl.nasa.gov/?sat_phys_par for the

Moon

Assumptions We assume that the Earth and Moon are spherical, rigid bodies with

uniform densities.

Method First we imagine two small spheres, each of mass m and radius Dr. They
are just in contact with each other and orbit a planet of mass M. The pair is aligned

along the radius, so that a line connecting their centers passes through the center of

the planet. Hence the gravitational pull of M will be slightly stronger on the inner

sphere than on the outer sphere, tending to pull them apart. On the other hand, they

have their mutual gravitational attraction toward each other resisting separation. The

question is, which force wins? If their distances are such that the two forces,

gravitational and tidal, have exactly the same magnitude, then we have found their

“Roche limit.” If there is a venturing of the little masses past this limit closer to the

planet, then tidal forces will prevail and cleave the twins from each other. It is that

difference that we want to explore here. We can do it more simply using radial

notation, analyzing the forces on each sphere. We may substitute the expressions for

the masses of the bodies with the expressions for their densities, then see how this

simplifies the result. Putting the equation into that form will also enable the calcula-

tion of Roche limits for objects, such as satellites of other planets or comets, whose

masses may not be known but whose densities in some cases may be approximated.

Calculations First we need to find the gravitational attraction of the two spheres

toward each other. Since the total center-to-center distance between them is twice

their radii, their mutual gravitational attraction is,

Fgrav ¼ Gm2

4Dr2

This we will put aside for later use.

The next step is to develop the force equations for the orbiting spheres. Since r is
the distance to the point of contact of the two spheres, the gravitational force from
the planet on inner sphere is:

Fg inner ¼ GMm

r � Drð Þ2

The gravitational force from the planet on outer sphere is:

Fg outer ¼ GMm

r þ Drð Þ2
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Since the spheres are in orbit, they experience an inertial, centrifugal force that

keeps them from falling into the planet. Letting o be the angular speed of the twin

spheres, the centrifugal force on inner sphere is:

Fc inner ¼ m r � Drð Þo2

The centrifugal force on outer sphere is:

Fc outer ¼ m r þ Drð Þo2

The respective net dynamical forces on the spheres are the balances of these two

respective forces:

Finner ¼ GMm

r � Drð Þ2 � m r � Drð Þo2

)
Dynamical force on inner sphere

Fouter ¼ GMm

r þ Drð Þ2 � m r þ Drð Þo2

)
Dynamical force on outer sphere

Ultimately, we will want to equate each of these dynamical forces with the

forces of gravitational attraction of the two spheres toward each other. We want to

know the point at which their own attraction for each other is out-competed by the

differential force of the primary. This point is the Roche limit for the two small

spheres. We can simplify each of these equations by using Kepler’s Third Law in

radial notation. Since r � Dr, the orbital motion of the pair may be represented by

that equation, where again o is the angular speed of the twin spheres:

o2 ¼ GM

r3

The GM terms in the dynamical equations can be replaced by o2r3. A rather

furious amount of algebra is required to simplify this,1 but the result is, for each

equation, the tidal force2:

Ftidal ’ 3mo2Dr

1 The key to simplifying what results in a cubic equation is approximating. Because Dr << r the
terms Dr2 and Dr3 can be eliminated, and the resulting fraction is quite close to unity to a

reasonable approximation.
2 By substituting GMm/r3 for o2 in this equation, you will recognize it as the same tidal force

equation encountered before, but in radial notation and with the coefficient 3 instead of 2:

Ftidal ¼ 3GMmDr/r3. The coefficient is different because we used a different mathematical model

(two small spheres) to create it. This “twin sphere” analysis of dynamical forces is found in many

texts, but that given by James Van Allen, presented here, is one of the clearest. Van Allen [4].
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The Roche limit is the point where this differential tidal force just equals the

spheres’ mutual gravitational attraction:

Gm2

4Dr2
’ 3mo2Dr

Remembering that o2 ¼ GM/r3, the equation can be simplified and solved for r,
which we’ll now call rRoche:

Gm ’ 12o2Dr3

r3Roche ’ 12
M

m

� �
Dr3

rRoche ’ 2:3Dr
M

m

� �1 3=

Note that we may not know the mass of smaller body, so it is often convenient to

replace the mass terms with those for density, where r is density and mass is equal

to 4/3pr3r.3 In each equation, subscripts p and s denote the densities of the planet
and satellite spheres, respectively. Denoting R as the radius of the planet, we now

substitute the density-based expressions into the above equation, eliminating the

mass terms:

rRoche ’ 2:3Dr
4
3
pR3rp

4
3
pDr3rs

 !1 3=

rRoche ’ 2:3R
rp
rs

� �1 3=

A more complete mathematical analysis would yield this same form, but a

slightly larger number for the limit of a fluid body:

rRoche ’ 2:44R
rp
rs

� �1 3=

The units will be in whatever units R is in. The limit in terms of planetary radii is

rRoche/R.

3 This is so since density is mass per unit volume (r ¼ m/V) then m ¼ rV. Volume is found by the

traditional formula, V ¼ 4/3pr3.
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To find the Roche limit for the Earth-Moon system, under the assumptions

above, we insert into the equation the given values for radius and density of each

body:

rRoche ’ 2:44R
rp
rs

� �1 3=

rRoche ’ 2:44 6371ð Þ 5513

3344

� �1 3=

rRoche ’ 18; 364 km

This is almost 2.9 Earth radii.

Observations

1. This result means that a loose body less than eighteen and half thousand

kilometers from the Earth’s center would be torn apart, unless other forces

held it together. Why don’t we get torn apart? It is because chemical forces

hold us together, and those forces are stronger than the gravitational differences.

For the same reason orbiting satellites, bolted together with strong materials,

don’t get deformed and destroyed by the tidal force of Earth’s gravity.

2. Using the technique of two small spheres helps in the intuitive understanding of

planet and satellite formation. If the spheres are imagined to be reduced to the

size of small particles, then it is apparent that they will not cohere into a single

body within the Roche limit of the other attracting body. On the other hand, if a

body is formed more distantly and later captured by a planet, and is orbits within

the 2.44 radii Roche limit, then it suggests that its composition is more rigid,

with greater internal tensile strength. The likely minimum Roche limit even for

rigid bodies is about 1.26 radii.

3. A variation on the above analysis can show the derivation of the 1.26 radii Roche

limit for solid bodies. Instead of visualizing two small spheres orbiting a

primary, we imagine one body with a small mass element m on its surface, at

distance Dr from the center, as we did in the analysis of tidal forces of the Moon

acting to lift tides on the Earth. The gravitational force acting on the little massm
by the satellite’s own gravity is given by the gravity equation:

Fg ¼ GM2m

Drð Þ2

The tidal force acting on the little mass m on the satellite,M2, is expressed by

the tidal equation, where r is the mean separation between the centers of the

planet, M1, and satellite:

Ft ’ � 2GM1m

r3
Dr
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Equating these forces, and isolating rwill give the distance between them that

would mean the little mass gets pulled off if the bodies got any closer:

GM2m

Drð Þ2 ¼ 2GM1m

r3
Dr

r3 ¼ 2M1

M2

Drð Þ3

Solving as before for r, we find,

rRoche rigid ¼ 1:26Dr
M1

M2

� �1 3=

Again it is useful to replace the mass with density terms to simplify it, where

r is density and mass is proportional to r3r. The radius of M1 is denoted by R,
and again terms cancel to yield this:

rRoche rigid ¼ 1:26R
r1
r2

� �1 3=

Where the densities are the same, for rigid bodies the Roche limit is a little more

than one and a quarter times the radius of the planet. What does this mean? In the

last chapter we found the ratio of tidal to gravitational forces (which we called t)
as well as the difference in g entailed by the pull of a neighboring mass, which in

that chapter was the Moon acting on the Earth. The “new” g resulting from the

other mass was g0 ¼ fg � ft. Here, by equating the gravitational and tidal forces,
we are examining a situation whereby decreasing the distance between the

masses eventually causes the new g to become zero. The net g is null. That is,

a situation where the mass of the secondary, however firm to begin with, is now

completely inadequate to hold anything to it, even itself, and disintegration

ensues, unless other factors, such as its internal tensile strength, act beyond

mere gravitational force to “glue” it together or otherwise to prevent its

disruption.

4. Some bodies, like comets, being mere porous collections of ice and dust, are

loosely held together, with a likely Roche coefficient near 1.8.4 The Roche limit

range for rigid to deformable bodies thus appears to be between 1.26 and 2.44

times the radius of the larger body, respectively, where densities are equal, with

4 See the reference cited in footnote 14, at page 1.

Deriving an Equation for the Roche Limit and Applying It to the Earth–Moon. . . 383



comets perhaps in between. Of course, densities are not typically equal: moons

are often less dense than their mother planet. In the case of the Earth-Moon

system, the ratio of satellite-to-planet density is about 3:5. For Saturn and its

innermost moons, it broadly ranges from about 1:2 to 5:8.

Finding the Roche Limit for Saturn and Its Innermost

Satellite Pan

Saturn’s famously beautiful rings and many moons provide a good arena for

exploring the Roche limit concepts. Its largest moon is Titan, and at least five

other major moons are visible through small telescopes.

Less well-known are its numerous tiny inner moons, which hover near and

gravitationally interact with the rings. The location of Saturn’s rings and its smaller

moons is shown in the table below.5 It does not include some of the more recently

discovered fine rings that appear to be associated with the ejecta of some of Saturn’s

satellites.6 It is evident that the main rings are all within the 2.44 Roche limit.

Through even a small telescope on Earth, one can clearly discern (in order of

increasing distance from the planet) the C, B and A rings, with the dark Cassini

division sharply dividing the broad B ring from the A ring. The other rings, and the

5 The distance data is derived from http://nssdc.gsfc.nasa.gov/planetary/factsheet/saturnfact.html.

The density information comes from http://ssd.jpl.nasa.gov/?sat_phys_par.
6 See generally, http://en.wikipedia.org/wiki/Rings_of_Saturn#G_Ring. There are rings that

extend far beyond the Roche limit for Saturn. Some rings seem to be associated with particles

being blasted off the surface of moons by meteorid or micrometeorid impacts, or ejecta from the

moons themselves. Saturn’s E ring, for example, appears to be fed by cryovolcanic plumes – ice

geysers – from the surface of Enceladus.
7 The Cassini-Huygens mission has added enormously to our knowledge of the Saturn system. See

http://saturn.jpl.nasa.gov/index.cfm for a host of pictures and data.
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smallest moons, were discovered by spacecraft.7 Saturn’s innermost moon, Pan,

orbits about 2.217 Saturn radii from the planet. There are no moons lying inward of

Pan. It and Daphnis are just inside the outer edge of the main A ring. Pan is one of

the “shepherd moons” that help sculpt and contour the rings. Pan sweeps a gap in

the A ring called the Encke gap, and Daphnis clears the Keeler gap.

Location of Saturn’s rings and approximate densities and distances of some of Saturn’s inner

moons (within 10 radii)

Moon/ring

Approximate density

of moon (kg/m3)

Distance in

Saturnian radii

Distance from Saturn

in kilometers

Saturn equator 1 60,268

D Ring inner edge 1.11 66,900

C Ring inner edge 1.239 74,658

B Ring inner edge 1.527 92,000

B Ring outer edge 1.951 117,580

Cassini division

A Ring inner edge 2.027 122,170

Pan (and Encke Gap) 360 2.2165 133,583

Daphnis (and Keeler Gap) 560 2.26 136,500

A Ring outer edge 2.269 136,775

Atlas 437 2.282 137,670

Prometheus 475 2.2843 139,353

F Ring center 2.326 140,180

Pandora 500 2.3512 141,700

Epimetheus 689 2.5099 151,422

Janus 634 2.5125 151,472

G Ring center 2.86 172,500

E Ring inner edge 3 181,000

(Many small and large moons) ~250 up to 1,500 3.08–8.75 185,520–527,040

E Ring outer edge 8 483,000

The average density of the innermost moons seems in the neighborhood of

550 kg/m3 or about 4/5ths the density of the planet. The questions that present

themselves here are, why are there no moons inward of Pan? What forces gave rise

to Saturn’s rings?

Problem We wish to find out whether Saturn’s closest satellite is a rigid or a

somewhat fluid body. Find the Roche limit of Saturn for Pan and interpret the

results in terms of the likely nature of Pan.

Given

Rroche ¼ 2.44 R(rp/rs)
1/3 Equation of determining Roche limit for a fluid body

rp Mean density of Saturn 687 kg/m3

rs Estimated mean density of Pan: 360 kg/m3

R Radius of Saturn 60,278 km

Pan’s semi-major axis 133,585 km or about 2.217 Saturn radiia

aSee http://ssd.jpl.nasa.gov/?sat_elem for the source of the physical data about Pan
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Assumptions We assume bodies of uniform density and the reasonableness of our

estimate of Pan’s density. There are of course many unknowns about the true

densities of these objects, and most data give a healthy range of uncertainty around

them. We ignore the effects of any internal tensile strength of Pan, though our

analysis may tell us something about it.

Method We will find the planet-to-satellite density ratio and use the Roche limit

equation for the Saturn–Pan system and see how the limits compare with Pan’s

actual distance from Saturn. From this we may get an approximate idea about

whether Pan is a rigid or deformable body. If we assume that Pan is on the edge of

where satellites of about its density break up, we can try using the density of Pan-

like moons and find an approximate practical value for the Roche limit for Saturn

for such moons. Begin by using the radius of Saturn as the unit of measurement (i.e.,

Saturn’s radius ¼ 1).

Calculations We insert the given quantities in the Roche equation and see what

the Roche limit of Saturn is for Pan. Using Saturn radii as our units, R ¼ 1, the

Roche equation is,

rRoche ’ 2:44
rp
rs

� �1 3=

rRoche ’ 2:44
687

360

� �1 3=

rRoche ’ 3:03 Saturn radii

Since Pan is about 2.2 radii from Saturn, Pan must be held together more rigidly

than a loose, semi-fluid body. Pan is the innermost moon, so it is possible that a Pan-

like moon any closer to Saturn than Pan would not be internally rigid enough to

survive Saturn’s strong tidal forces.

Our working assumption is that Pan’s orbit is more or less at the Saturn Roche

limit of moons of its composition. Let us work backwards to see what the Roche

numerical coefficient might be for a Pan-like moon. We can write the equation this

way, where x is the factor we seek:

2:217 ’ x
rp
rs

� �1 3=

x ¼ 2:217

rp
rs

� �1 3=

x ¼ 1:8 Saturn radii
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Thus, a Roche limit factor of moons of Pan’s composition is more likely about

1.8. Altogether, it suggests that Pan is more rigid than fluid.

Observations

1. The rings are most likely the result of moons that might-have-been but were

unable to form inside the Roche limit, or those that were captured by Saturn’s

gravity then disintegrated after passing within the Roche limit. This could have

been a larger moon that collided or simply fragmented in the distant past, or

smaller moons whose internal gravity could not overcome the competing tidal

forces from the mother planet, or a combination of such events. Saturn, Jupiter,

Uranus and Neptune all have rings and numerous, small, low-density satellites

both in and beyond them, in addition to their main entourage of higher density,

larger and farther-out moons. The main rings of all these planets mostly lie

within the innermost moons. See the accompanying figure of the main rings and

selected innermost moons of the gas giant planets. The densities of these tiny

moons, often at the limit of visibility, must be assumed from orbital parameters

and magnitudes and assumed albedos, or simply given a best guess. The graph

includes the selected moons and rings of Saturn, Jupiter, Uranus and Neptune, in

the order of nearest to the planet outward.
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The dozens of other, farther-out moons are not included. Here are the inner

moons referred to in the graph8:

Planet Selected inner moons Rings

Jupiter Metis, Adrastea, Amalthea, Thebe Halo, Main

Saturn Pan, Daphnis, Atlas, Prometheus, Pandora,

Epimetheus, Jamus

D,C,B,A,F,G

Uranus Cordelia, Ophelia, Bianca, Cressida 6,5,4, Alpha, Beta, Gamma, Delta,

Lambda, Epsilon

Neptune Naiad, Thalassa, Despina, Galatea LeVerrier, Lassell, Arago,

Unnamed, Adams

As noted earlier, certain rings are apparently the product of dust emitted from

moons. The outermost gossamer rings of Jupiter and E ring of Saturn fall into

this category, and were excluded from the above graph. In general, the rings

appear to lie closer in than the planet’s family of moons, a conspicuous excep-

tion being Neptune’s moons.9

2. It will be convenient as a working assumption to use a “fluid” Roche coefficient

(which corresponds to the distance in parent-body radii between equal density

bodies) of 2.44 for extremely loose, fluid, or deformable bodies, such as stars or

small particles that would tend to coalesce under the force of mutual attraction; a

“rigid” 1.26 coefficient for hard, rocky bodies, such as some meteorites and

some rocky asteroids; and an “intermediate” 1.8 coefficient for those bodies

somewhere in between, such as some small moons, “rubble pile” asteroids, and

comets, the latter of which are usually described as rather porous and made of a

conglomerate of water-ice and dust. A more cautious approach is to consider

ranges for the Roche limit of bodies since their internal composition is usually

not well known.

Comet Shoemaker-Levy 9’s Fatal Encounter with Jupiter

When Eugene and Carolyn Shoemaker and David Levy examined a photograph of

the sky taken in March 1993 with the Schmidt telescope on Palomar Mountain in

California, they discovered something most unusual. It was clear there was a new

comet, the ninth on their list of remarkable joint discoveries. What was astonishing

8 See also the JPL website on Planetary Satellite Physical Parameters, http://ssd.jpl.nasa.gov/?
sat_phys_par#legend
9Manymoons of each of these planets thus lie beyond the ones shown in the graph. But there are no

moons within the inner Roche limit, and most hover close to or are beyond 1.8 radii. Wide density

and orbital differences indicate that some moons may have formed at the time their parent planet

coalesced, and that others were no doubt captured in passing. A retrograde orbit (moving in reverse

direction from the revolution of the planet in its orbit) is good evidence of capture. Jupiter, for

example, at the outer edge of the asteroid belt, has captured many rocky, high density moons.
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was that the comet had appeared somehow “squashed” on the image. Photographs

from other observatories later confirmed that Comet Shoemaker-Levy 9 had actu-

ally broken into pieces, evidently torn apart by a prior close encounter with Jupiter.

More surprises were to come. Indeed, it was learned that their comet had actually

been captured by that planet several decades earlier and was orbiting the planet

with an approximately 2 year period. More incredibly, calculations showed that the

fragments would soon impact the planet. This revelation set off a world-wide effort

to witness the impact and its aftermath with every telescope that could be brought to

bear on it, including the Hubble Space Telescope, which could observe it far above

the Earth’s atmosphere. In the words of one scientist, “The disruption of a comet

into multiple fragments is an unusual event, the capture of a comet into an orbit

about Jupiter is even more unusual, and the collision of a large comet with a planet

is an extraordinary, millennial event.”10 The comet fragments finally collided with

Jupiter’s southern hemisphere between July 16 and July 22, 1994. The actual

impact occurred on the far side of the planet, but Jupiter’s rapid rotation quickly

brought the dramatic impact scars into view.

According to NASA, “From July 16 through July 22, 1994, pieces of an object

designated as Comet P/Shoemaker-Levy 9 collided with Jupiter. This is the first

collision of two solar system bodies ever to be observed, and the effects of the

comet impacts on Jupiter’s atmosphere have been simply spectacular and beyond

expectations. Comet Shoemaker-Levy 9 consisted of at least 21 discernable

fragments with diameters estimated at up to 2 km.”11

Problem Orbital calculations of Comet Shoemaker-Levy 9 showed that the comet

was closing in on Jupiter with each pass, and was destined to collide with the

planet in 1994. This trend can be seen in the following table, calculated before the

impact. The date of each perijovial pass is given, together with the distance in

astronomical units:

Comet Shoemaker-Levy 9’s pre-impact passes by Jupiter

Year Date Distance AU

1971 April 26 0.08963

1975 April 26.8 0.06864

1977 May 7.0 0.07000

1980 February 1.8 0.11896

1982 May 26.0 0.12453

1984 October 4.5 0.11937

1987 July 12.4 0.07031

1989 August 2.5 0.06090

1992 July 8.0 0.00072

1994 July 16.8 Impact

10 Rob Landis [1]. His paper includes a fascinating description of the detailed preparations for

the event.
11 http://www2.jpl.nasa.gov/sl9/sl9.html
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Using a Roche coefficient of 1.8, find the Roche limit in Jovian radii and

astronomical units, and determine earliest likely date of break-up of the comet.

Given

Rroche ¼ 1.8 R(rp/rs)
1/3 Equation for determining Roche limit with a coefficient of 1.8,

estimated as reasonable for a comet

rp Mean density of Jupiter 1,326.2 kg/m3

rc Assumed mean density of comet nucleus: 500 kg/m3

R Radius of Jupiter 71,492 km

1.496 � 108 1 AU, in kilometers

Assumptions Though unknown, we assume the given mean density of the comet,

based on best-guess estimates.12 The nucleus of a comet is likely a porous mixture

of water ice and dust, neither liquid nor rocky, so we assume a Roche coefficient of

about 1.8. We assume no other factors affecting its disintegration, such as the

internal tensile strength of the materials within the cometary nucleus, outgassing

from the nucleus due to solar heat (which in any event would be minimal at 5 AU),

or even the size of the comet.

Method Here we use the Roche limit equation, assuming the comet is a more or

less loose collection of rock and ice, and find the limit in Jovian radii. To convert

to astronomical units, simply multiply the Roche Jovian radii by the radius of

Jupiter, which yields the distance in kilometers, then divide by the number

of kilometers in an AU.

Calculations First we find the Roche limit for Jupiter in Jovian radii using a

coefficient of 1.8:

rRoche ’ 1:8
rp
rc

� �1 3=

rRoche ’ 1:8
1326:2

500

� �1 3=

rRoche ’ 2:49 Jovian radii

This many Jovian radii is 178,132 km. In AU it is,

rRoche ’ 178; 132

1:496� 108

12 E.g., D.A. Crawford (Sandia National Laboratories), Comet Shoemaker-Levy 9 Fragment Size
and Mass Estimates from Light Flux Observations, http://www.lpi.usra.edu/meetings/lpsc97/pdf/

1351.PDF. See also, http://www.nature.com/nature/journal/v370/n6485/abs/370120a0.html.
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rRoche ’ :0012 AU

Thus it appears that the comet did not likely break up until the very last pass near

Jupiter in July, 1992. Only then did it enter the critical Roche limit for the planet.

Observations

1. The comet’s final pass was .00072 AU from Jupiter, or 107,712 km, which is

only about one and a half Jovian radii and well within the Roche limit (.001)

even for rigid bodies. Comet Shoemaker-Levy 9 was a vivid demonstration of

the tidal forces that will destroy any body sojourning too close to a planet.

2. The closest perijovial distance of the comet was 107,712 km. For comparison,

the mean radius of Jupiter’s moon Amalthea is 181,400 km. Jupiter’s moons

Metis and Adrastea are respectively 128,000 and 129,000 km from Jupiter.13

How Comet Lovejoy C/2011 W3 Barely Survived

the Solar Furnace

In late November, 2011 Australian amateur astronomer Terry Lovejoy identified a

small, unknown smudge in a star field on a CCD image with his small 800elescope.
He could not know that the smudge would turn out to be one of the most beautiful

and interesting comets in recent years. It soon became evident that Comet Lovejoy

C/2011 W3 would be a “sungrazer” that would reach perihelion December 16th,

coming within a hair’s-breadth 200,000 km of the Sun’s scorching surface. The

comet was a member of the so-called Kreutz group, comets that round the Sun

within only a few solar radii.14 According to long-time amateur astronomer and

comet expert John Bortle: “Among the most extraordinary of all comets, the family

of sungrazers is thought to be the remnants of a huge comet that broke apart

millennia ago, and it might even have been the one Aristotle wrote about in the

year 371 BC that had a tail that spanned a third of the heavens. Progressive

fragmentation at each subsequent swing by the Sun broke up the major fragments

of this progenitor to spawn a host of ever smaller pieces.”15

Images of the comet disappearing behind the Sun were visible on the corona-

graph of the orbiting Solar and Heliospheric Observatory (SOHO). According to

13Data was taken from http://ssd.jpl.nasa.gov/?sat_elem.
14 The comets of the Kreutz group all have similar, though not identical orbital elements. Their

orbits are highly inclined and eccentric, with semi- major axes of ~100 AU and periods of ~ 1,000

years. The original parent comet of this group is estimated to have had a diameter of perhaps

100 km. The majority of the Kreutz group comets have diameters in the range of a meter to 10 m

that are only detectable when they are close to the sun. Gundlach et al. [2].
15 Bortle [3].
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Bortle, the images “showed the comet’s tail being violently distorted by the solar

corona, looking like cigarette smoke in a turbulent breeze, just before the comet

disappeared behind the solar limb. Incredibly, however, the same camera soon

captured images of the comet emerging from behind the Sun’s opposite limb.

Comet Lovejoy had somehow survived its hellish passage through the solar

atmosphere.”16

When, a few days later, the comet finally became dramatically visible to

telescopes in the southern hemisphere, it appeared to be all tail. Indeed, the head

of the comet had transformed into a “bright tailward-pointing ray instead of a

compact central condensation. This ray grew longer each day as the comet had

become weaker and more diffuse. Comet expert Zdenek Sekanina at JPL proposed

that Lovejoy’s nucleus completely disrupted about December 17 .6 UT, and that the

stream of resulting debris was moving rapidly outward into the tail, forming the ray-

like feature.”17 Let us see what might have happened to the head of that comet.

Problem Using a Roche coefficient of 1.8, determine the Roche radius of the Sun

in solar radii and kilometers, and evaluate whether such a comet at a perihelion that

close could have survived without fragmentation.

Given

Rroche ¼ 1.8

R(rp/rs)
1/3

Equation for determining comet Roche limit using a

coefficient of 1.8, estimated as reasonable for a comet

Ρsun Mean density of the Sun: 1,408 kg/m3

rc Assumed mean density of comet nucleus: 500 kg/m3

R Radius of the Sun: 696,000 km

.00554 Comet Lovejoy’s perihelion distance in AUa

1.496 � 108 1 AU, in kilometers
aData taken from: http://ssd.jpl.nasa.gov/sbdb.cgi#top

Assumptions We again assume a likely mean density of the comet, and a Roche

coefficient of about 1.8.We assume no other factors affecting its disintegration, such

as the size of the comet, internal tensile strength of the materials within the cometary

nucleus, or the likely significant outgassing from the nucleus due to solar heat.

Method Here we use the Roche limit equation. To convert to astronomical units,

simply multiply the Roche Jovian radii by the radius of Jupiter, which yields the

distance in kilometers, then divide by the number of kilometers in an AU.

16 Ibid., 39.
17 Ibid., 40.
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Calculations To find the Roche limit for the Sun and the comet in solar radii, we

are asked to use a coefficient of 1.8:

rRoche ’ 1:8
rsun
rc

� �1 3=

rRoche ’ 1:8
1408

500

� �1 3=

rRoche ’ 2:39 solar radii

In kilometers this is 696,000 � 2.39 or only 1,663,440 km. In AU it is,

rRoche ’ 1; 663; 440

1:496� 108

rRoche ’ :01 AU

Lovejoy, at a perihelion distance of .00554 AU, was well within this radius and

should have fragmented.

Observation The real question is, why did Comet Lovejoy survive at all? Both

Shoemaker-Levy 9 and Lovejoy penetrated deep into their parent bodies Roche

radius; the first died, the other lived to see another day, albeit in likely much

reduced form. The answer may lie in the outgassing that Lovejoy experienced as

it ventured well into the solar heat, which may have kept the nucleus more intact

and resistant to fragmentation, and its size, which may have been far larger than the

usual Kreutz-group comet.18

Exercises: How Close Encounters Can Be Perilous We have emphasized the

effects of tidal disintegration of bodies close at hand, such as comets and moons of

our solar system. But they are everywhere in the universe. Astronomers see vivid

evidence of tidal forces pulling passing galaxies apart. Our own Milky Way has

“cannibalized” nearby dwarf galaxies, and the stringy remnants of their former

structures have been discerned among the clouds of other stars in our galaxy.

18 This idea was put forth in Gundlach et al. [2]. The authors concluded that the radius of the comet

must have been between .2 and 11 km before perihelion. Matthew Knight of the Lowell Observa-

tory and Johns Hopkins Applied Physics Lab estimated that the comet’s core must have been at

least 500 m in diameter; otherwise it couldn’t have survived so much solar heating. http://science.

nasa.gov/science-news/science-at-nasa/2011/16dec_cometlovejoy/.
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Common too are “contact” binary stars. They are in such close proximity that their

Roche limits touch, creating merging “Roche lobes” which allow star-matter to

overflow from one star to the other (or from star to black hole) over a kind of

interstellar bridge. Algol in the constellation of Perseus is a famous example of such

a star. Returning to our own solar system, the recent and dramatic comet

disintegrations, the Voyager discovery of rings around the outer planets, pictures

of active extra-terrestrial volcanoes, the still-puzzling mysteries of Saturn’s com-

plex moon-ring dynamics, and even the inward-spiral of the Martian moon Phobos,

give plenty of examples of the effects of gravitational tides close to home. And of

course our moving oceans are our ever-present reminder of this mysterious action-

at-a-distance force which so deeply connects us to the Moon and Sun.

Problems

1. How close could a comet come to Mars before it disintegrated? Assume a

Martian density of 3,934 kg/m3. For this and the problems that follow, assume

a Roche limit coefficient of 1.8 unless otherwise indicated.

2. Phobos, a likely captured asteroid, is revolving rapidly in a low orbit around

Mars, at about 2.76 Martian radii, and is said to be gradually falling inward

toward the planet. Assuming the satellite’s density is 1,872 kg/m3, tell how close

to the Roche limit, in Martian radii and kilometers, Phobos is currently orbiting.

3. If comet Shoemaker-Levy were an asteroid of density 2,500 kg/m3, how close

to Jupiter (in radii) could it come before disintegrating?

4. Modify the Roche equation to use instead of densities, just the mass of the

primary and the density of the secondary. What units would result from using

the modified equation?

5. The densities of Jupiter’s most inward satellite Metis orbits at 128,000 km from

Jupiter’s center, and is estimated to be about 3,000 kg/m3. Find the likely

Roche coefficient for that satellite. Jupiter’s equatorial radius is 71,492 km.

6. Find an approximate minimum perihelion distance within which a comet would

likely be torn apart within the Sun’s Roche limit. Assume the Sun’s mean

density is 1,408 kg/m3, and has a mean radius of 696,000 km. Confirm your

result by using the equation you developed in Problem 4, assuming the Sun’s

mass to be 1.9891 � 1030 kg.

7. How close could a comet come to the Earth without being disrupted by the

Earth’s Roche limit? Assume a mean density for the Earth of 5,513.4 kg/m3.

8. What do you estimate could be the closest orbit of a small body around the

asteroid Vesta? Assume its and its visitor’s density to be about 5,290 kg/m3.

9. Neptune’s little moon Naiad is in a very circular orbit about 1.948 Neptunian

radii distant from the planet (48,227 km). Its density is estimated to be

1,300 kg/m3. Neptune’s density is about 1,638 kg/m3. Why hasn’t that moon

disintegrated? What does its distance tell you about its composition?

10. Explain how different Roche coefficients may come into play when talking

about the formation of planets and satellites in contrast to the breakup of

already existing bodies.
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Chapter 19

Hovering in Space: Those Mysterious

Lagrangian Points

The James Webb Space Telescope will hover in an orbit not around the Earth, as

does the Hubble Space Telescope, but around the Sun. It will mimic Earth’s orbit,

but be farther out, orbiting at the so-called second Lagrangian point, or the L2
point. The telescope will maintain a stable temperature, unaffected by passing

in and out of the Earth’s shadow. Yet the reader may ask: how may an object

orbiting the Sun farther out from the Earth, in a larger orbit, keep up with us? Bodies

in more distant orbits move more slowly; we continually overtake the slower, outer

planets as we whirl around the Sun, and the inner planets outpace us. Won’t the

JWST fall behind? The answer is no, and to know why requires understanding

the Lagrangian points.

What does it mean when we say the new space telescope will be in the L2 point?

Interestingly, a study of the Lagrangian points, as the “L” points are called, yields

useful insights on how bodies orbit and interact in gravitational fields. While the

interactions of two bodies are straightforwardly analyzed with Newtonian mechan-

ics (the so-called two body problem), things become exceedingly difficult when

three or more bodies are involved (the three body problem). Many such problems

cannot be solved by analysis, but require computer iterations to approximate

solutions. The Lagrangian points restrict the inquiry to certain spots in front and

behind and to each side of a planet’s (or moon’s) orbit, where solutions are much

simpler. Thus it is an interesting form of what is known as a restricted three body
problem. To investigate this, we need to step back and take a look as some basic

principles of gravitation.

What do we know about the gravitational effects of the Sun on the Earth? We

know that while the Sun is massive (in kilograms, about two followed by 30 zeros)

it is also far away – about 149.6 million kilometers distant. And because gravity’s

force diminishes with the square of the distance away, the actual acceleration

perceived at our earthly outpost is rather modest. The Sun pulls on the Earth with

a gravitational acceleration of only about .00593 m/s2. That is, about 6 mm per

D.W. MacDougal, Newton’s Gravity: An Introductory Guide
to the Mechanics of the Universe, Undergraduate Lecture Notes in Physics,

DOI 10.1007/978-1-4614-5444-1_19, # Springer Science+Business Media New York 2012
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second, every second.1 That is Earth’s “free fall” acceleration toward the Sun. How

can such a tiny pull keep our big Earth from travelling off into space? While this

seems like a tenuous hold on our precious home, the Sun’s attraction is felt by every

particle of the Earth, so the Sun’s net pull on the globe as a whole is about

3.54 � 1022 N. It is this attraction that (by Kepler’s Third Law) keeps us in an

orbital period of about 365¼ days. This solar acceleration is also fairly slight

compared to the Earth’s own gravity at its surface. The downward pull felt by

you and me on the ground is about 9.8 m/s2. This is about 1,650 times more than the

6 mm/s2 gravitational acceleration from the Sun at Earth’s distance.

But now let’s try a thought experiment. First, any object, such as a spacecraft, at

Earth’s distance from the Sun will also have Earth’s 1 year period. (By Kepler’s

Third Law, the period is proportional to the 3/2 power of the distance from the Sun.

If the distance is the same, the period is the same.) What if we launch a solar-

orbiting spacecraft in a smaller, more inward circular orbit? Venus moves with a

quicker period than Earth, and Mercury is quicker still. The spacecraft’s orbital

period would, like the inner planets, also be less than a year, its increased velocity

counteracting the increased pull of the Sun tending to draw it inward. The actual

period would of course be determined by Kepler’s Third Law.

Now let’s go a step farther:What if the gravitational attraction of the Sun perceived

by our space-faring craft were somehow made less? This could happen if the

spacecraft is still close enough to Earth to feel its gravity pulling it outward, offsetting

the inward pull of the Sun. If the ship is poised at some as-yet unknown distance

between Earth and Sun, the net gravitational acceleration acting on it could be just

right so that the period of the spacecraft would not be as short as it otherwise would be

that distance. In fact, if its distance from Earth were just so, its period could in theory

exactlymatch the Earth’s – it would “track” the Earth exactly. Likewise, a spacecraft
orbiting the Sun at a larger orbit than Earth would normally have a longer period than

Earth (as in the case of the outer planets). But if it were positioned just close enough to

Earth so that the Earth’s gravitation supplemented the Sun’s pull, then it would have a

shorter orbital period than it otherwise would at that distance, were it experiencing the

Sun’s gravity alone. At some particular point, its period too would just match the

Earth’s period. It would hover in a solar orbit just outside the Earth’s orbit, and stay

there. This is similar to the way a geosynchronous Earth-orbiting satellite stays over

one spot of the Earth, its orbital period in perfect synch with the Earth’s rotation.

These Lagrangian pointswere discovered by a brilliant Italian-born mathematician

and astronomer, Joseph-Louis Lagrange (1736–1813), after whom they were named.

Lagrange mastered and extended Newtonian mechanics, and in 1788 published his

most famous work, Mécanique Analytique (Analytical Mechanics). Consider three

cases: where the spacecraft is between theEarth andSun it is at the L1 point.Where it is

outward of the Earth, it is at the L2 point.Where the spacecraft is opposite the Sun from

us it is at the L3 point. The L1, L2, andL3 points are all on the Earth-Sun axis. Lagrange

1 This can be readily calculated from the Newtonian equation for gravitational acceleration,

f ¼ GM/r2.
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also found two other points of stability on the planet’s orbital path itself: the L4 point,

leading at a 60� angle from the Earth-sun axis, and the L5 point, following at 60�.2

The Lagrangian points can be found in almost any three-body system. A well-

known example is the Trojan asteroids clustering at the L4 and L5 points in

Jupiter’s orbit. The Lagrangian points are of tremendous benefit to space explora-

tion. The Solar and Heliospheric Observatory (SOHO) is stationed in solar orbit at

Earth’s L1 point, allowing SOHO continuous observation of the Sun without the

interference of Earth that would be occasioned if it were in an Earth orbit. And we

already mentioned that the James Webb Space Telescope is scheduled to be placed

in Earth’s L2 point, where it will have an uninterrupted view of the heavens, and

join the Herschel and Planck missions. We will discuss later the potential benefits of

the lunar Lagrangian points for exploring the Moon. Now let us now mathemati-

cally work through how the Earth’s L1 and L2 points work.

Deriving Equations for Finding the L1 and L2 Points

in the Earth–Sun System

Problem You are asked to help plan launches of next-generation solar and astro-

nomical telescopes to the L1 and L2 points respectively. Use the concept of

gravitational acceleration toward the Sun being offset (for L1) or supplemented

(for L2) by the Earth’s gravitational acceleration, to derive the mathematical

relationship between period and distance from Earth R for the respective L1 and

L2 points. (For now, do not try to solve for R).

Given

fs ¼ GM1/r
2 Gravitational acceleration fs induced by the Sun on an object at distance r from

the Sun where M1 and G are the mass of the Sun and the gravitational

constant, respectively. At the distance of the Earth, r is one astronomical unit

fe ¼ GM2/R
2 Gravitational acceleration fe induced by the Earth on an object at distance R from

the center of the Earth, where M2 and G are the mass of the Earth and the

gravitational constant, respectively

P ¼ 2p
ffiffiffiffiffiffiffi
r f=

p
Period a circularly orbiting object experiencing centripetal acceleration f at r

distance from the center of forcea

RL1 The distance from the center of the Earth to the L1 point; the difference r � RL1

is thus the distance of the L1 point from the Sun

RL2 The distance from the center of the Earth to the L2 point; the difference r + RL2

is thus the distance of the L2 point from the Sun

o ¼ 2p/P Angular velocity of a circularly revolving object, where P is period. Units are

radians per second if period is in seconds
aThis equation was derived in Chap. 9

2An animation of the Lagrangian points can be found at the European Space Agency website, at

http://www.esa.int/esaSC/SEMM17XJD1E_index_0.html.
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Assumptions We will simplify our task by assuming the Earth is a sphere of

uniform density, and that the Earth and the spacecraft move in circular, planar

orbits. We ignore the Moon, the Earth’s motion about the Earth–Moon barycenter,

and any perturbing forces of other planets. The spacecraft will be assumed to have

negligible mass relative to the Earth’s and Sun’s masses.

Method At L1, the gravitational acceleration of the Sun on orbiting telescope is

offset by the opposing pull of the Earth, just enough to slow it to Earth’s period.

And at L2, the Earth’s gravity on the object supplements that of the Sun enough to

make it match Earth’s period. Things that would otherwise orbit faster are slowed in

L1 things that would orbit slower are speeded up at L2. Since we need to quantify

this and find the distance of L1 and L2 from the Earth, the question to ask is: at what

distance will the period of the Earth and the period of the object be the same? We

are not inquiring where in space the gravitational pulls of the Sun and Earth are

equal; only where the periods of Earth and the spacecraft are equal.

If in each case we combine the equation for solar acceleration with the given

period equation, we can find out how the period depends on the gravitational

acceleration. The goal is to be sure the end result has R in final equation, which is

the distance to the applicable Lagrangian point. To summarize: start with the

appropriate expressions for net the Sun-induced gravitational acceleration at the

L1 and L2 points (reduced by Earth’s pull at L1, augmented at L2). Plug these into

the period equation with the appropriate expressions for the distances, RL1 and RL2.

Each of the resulting equations for the period of an object is cast in terms of the

gravitational acceleration it experiences. Each equation will then have only one

unknown, the distance to the Lagrangian point.

Calculations

Step 1: Find equations for Sun’s and Earth’s gravitational accelerations (forces per
unit mass) on the spacecraft at L1 and L2 points.

From the equations given, we already have the gravitational accelerations

induced by (a) the Sun, fs and (b) the Earth, fe at distances r and R, respectively.
Here we modify the equations to take the distances to the L1 and L2 points into

account:

Equation L1 Point L2 Point

ðaÞ fs ¼ GM1

r2 ! fs ¼ GM1

ðr�RL1Þ2 fs ¼ GM1

ðrþRL2Þ2

ðbÞ fe ¼ GM2

R2 ! fe ¼ GM2

R2
L1

fe ¼ GM2

R2
L2

Step 2: Express the values of solar acceleration fs as reduced or supplemented by
Earth’s acceleration, as appropriate to the respective L1 and L2 Lagrangian points.

We noted that at L1, the gravitational acceleration of the Sun on an object is

slightly canceled or offset by the opposing pull of the Earth, just enough to slow it to

Earth’s period, while at L2, the Earth’s gravity on the object supplements that of the
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Sun just enough to make it match Earth’s period. In this step we express these ideas

algebraically in terms of fs being (a) reduced or (b) supplemented by Earth’s

gravitationally-induced acceleration, fe, to yield the centripetal accelerations fL1
and fL2 at those Lagrangian points:

(a) fL1 ¼ fs � fe

(b) fL2 ¼ fs þ fe

Step 3: Combine the equations from Steps 1 and 2 to show the net gravitational
accelerations at the L1 and L2 points.

(a) fL1 ¼ fs � fe ! fL1 ¼ GM1

ðr�RL1Þ2 �
GM2

R2
L1

 Net acceleration toward Sun at L1

(b) fL2 ¼ fs þ fe ! fL2 ¼ GM1

ðrþRL2Þ2 þ
GM2

R2
L2

 Net acceleration toward Sun at L2

Step 4: Substitute above expressions for centripetal acceleration into the period
equation

Objects in the L1 and L2 points have the same period as the Earth. If we can

recast the accelerations in terms of the orbital period, which is a known constant, it

will be possible to solve for distance R in each. We saw in Chap. 9 that period can

be expressed in terms of centripetal acceleration: P ¼ 2p√r/f. Substituting into that
equation r ¼ r � RL1 for the distance to the L1 point and r ¼ r + RL2 for the

distance to the L2 point; and also for f, the acceleration expressions for each

Lagrangian point found in the last step, we have:

Substitute values for distance : Substitute values for acceleration :

ðaÞ L1 Point: P ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r � RL1

fL1

r
! P ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r � RL1

GM1

ðr�RL1Þ2 �
GM2

R2
L1

s

ðbÞ L2 Point: P ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r þ RL2

fL2

r
! P ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r þ RL2

GM1

ðrþRL2Þ2 þ
GM2

R2
L2

s

These are rather ungainly equations! But they are the expressions we sought,

relating the period to the distance to the L1 and L2 points. The only unknowns in

each equation are the distances from Earth to the Lagrangian points. The period (by

definition) P will be equal to Earth’s period of 365.256 days (expressed in seconds),

r is the Earth’s distance from the Sun (in meters), and the gravitational constant and

mass terms (in kilograms) are known.

Step 5: Simplify the equations.

The equations invite simplification by squaring each side and cross-multiplying.

Beginning with the L1 point equation, we have,
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P ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r � RL1

GM1

ðr�RL1Þ2 �
GM2

R2
L1

s

P2 GM1

ðr � RL1Þ2
� GM2

R2
L1

 !
¼ 4p2ðr � RL1Þ

Now do the same thing with the L2 equation, and divide each side by P2. You can

see by inspection that the resulting constant term on the right will be 4p2/P2. This is

the square of the orbital velocity (or frequency) in radians. Replace it with o2:

(a) L1 Point : GM1

ðr�RL1Þ2 �
GM2

R2
L1

¼ o2ðr � RL1Þ

(b) L2 Point : GM1

ðrþRL2Þ2 þ
GM2

R2
L2

¼ o2ðr þ RL2Þ

These have the familiar form of the dynamical balance of gravitational (left side

of the equations) and centripetal (right side of the equations) acceleration of

orbiting objects. Even though we reduced the equations to one unknown each and

simplified, it is still quite difficult algebraically to solve for RL1 and RL2 in these

equations. UsingMaple software program, however, we find the following approx-

imate values:

(a) RL1:1:49� 109meters ð1; 490; 000 kmÞ L1 is this far from the Earth toward the Sun

(b) RL2:1:50� 109meters ð1; 500; 000 kmÞ  L2 is this far from the Earth away from the Sun

Observations

1. The above equations are still not in their simplest form, but they are intuitive.

Each term represents components of the net acceleration acting upon the space-

craft at the Lagrangian point.

2. Examine the L1 equation. The first term on the left side is the solar gravitational

acceleration; the second is the reduction of that quantity by the Earth’s gravita-

tional acceleration. The result on the left-hand side is thus the net gravitational
acceleration acting on the object. The signs between the terms show that the

solar pull is reduced by Earth’s gravity at the L2 point and augmented at the L2

point. The term on the right-hand side of each equation is the centripetal

acceleration that must equal the net gravitational acceleration.

3. Here is the L1 equation annotated:
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GM1

r � RL1ð Þ2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Sun
0
s

gravitational
acceleration at
distance RL1

from Earthðthe L1 pointÞ

� GM2

RL1
2|ffl{zffl}

Earth
0
s

gravitational
acceleration at
distance RL1

from Earthðthe L1 pointÞ

¼ o2 r � RL1ð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Object

0
s

centripetal
acceleration at
distance RL1

from Earthðthe L1 pointÞ

Note that by moving the centripetal acceleration term to the left-hand side of the

equation, all the accelerations (and thus all of the forces acting on each unit of

mass) will equal zero.

4. In the above calculations, we created equations that held the period fixed while

we saw what relations the distances must have in order to fulfill that condition.

We could have approached the problem from the beginning more like the

physicist than the mathematician, and said: “Let’s find the point where the

vector sum of all the forces on the spacecraft is zero, so that in a rotating

frame of reference a spacecraft at the Lagrangian point is weightless.” Here,

we imagine that the object orbiting around the Sun is the rotating frame of

reference, with the Sun at the center. We are inside the spacecraft at L1. We feel

the gravitational pull of the Sun in one direction opposed by the gravitational

pull of the Earth in the other. It can be shown that at L1 the pull of the Sun is

slightly stronger than the Earth’s pull (see the next Problem below). So our craft

would drift toward the Sun. But we must account for the fact that moving objects

tend (by Newton’s First Law) to go in a straight line; hence, the orbiting

spacecraft seems to drift outward by its circular motion.3 Let us account for

this tendency. At the point of weightlessness the inertial tendency to rectilinear

motion should just balance the differential pull of the Sun over that of the Earth.

3 If one is sitting in a circular frame of reference, though, there appears to be no particular thing

acting on the object that accounts for this outward force except the rotation of the reference frame

itself. So in a merry-go-round, one would not necessarily know why coins spilled on the ground

would all move outward from the center. As noted earlier, physicists often refer to the centrifugal

force as a “fictitious” force. It effectively cancels the accelerative effects of the reference frame

itself to make it an “inertial” reference frame – that is, without its own acceleration, and where

Newton’s laws remain valid.
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Determining the Accelerations on a Satellite

at the Sun–Earth L1 Point

Problem From the L1 equation derived above, draw a graph of the net gravita-

tional vs. centripetal accelerations of an object at the Sun–Earth L1 point to find an

approximate value for RL1; and calculate each of the actual accelerations on such an

object at the L1 point to confirm that the net gravitational and centripetal

accelerations are equal.

Given

GM1

ðr�RL1Þ2 �
GM2

R2
L1

¼ o2ðr � RL1Þ L1 equation derived above

fs ¼ GM1

ðr�RL1Þ2
Gravitational acceleration fs toward the Sun at L1

fe ¼ GM2

R2
L1

Gravitational acceleration fg toward the Earth at L1

fc ¼ o2ðr � RL1Þ Centripetal acceleration at L1

P Period of the Earth, 365.256 days or 3.15581184 � 107 s

G Gravitational constant: 6.674 � 10�11 N.m2/kg

M1 The mass of the Sun: 1.981 � 1030 kg

M2 The mass of the Earth: 5.9736 � 1024 kg

r The mean distance from Earth to the Sun: 1.496 � 1011 m

Assumptions We will again assume circular, planar orbits, and ignore the Moon,

the Earth’s barycentric and elliptical orbit, and any perturbing forces of other

planets. We also assume the Earth is a sphere of uniform density. The spacecraft

has negligible mass relative to the Earth’s and Sun’s masses. All forces will be

expressed as forces per unit mass (that is, as accelerations).

Method We want to find the location at distance RL1 from the center of the Earth

toward the Sun, where all the above accelerations are in balance: where the

difference between the gravitational pull of the Sun and Earth (fs � fe) should

just equal the centripetal acceleration (fc) needed to deflect it away from a rectilin-

ear path. This location should therefore satisfy the equation fs � fe ¼ fc.
One we have created the equation, we will graph it to find an approximate

solution. Graphing complicated equations, whether manually or on a calculator of

computer, can often more easily be accomplished if each side of the equation is

plotted separately. Then zoom in on the graph to see where the two lines intersect,

where fs � fe intersects with fc. The intersection point (or points) is the solution to

the equation. The second part of the problem requires simply calculating the values

for fs � fe and for fc, to confirm numerically what the accelerations are and if they

do in fact balance.

Calculations For the first part of the problem, make a plot of the net gravitational
acceleration of Sun minus Earth, as one proceeds to go away from Earth toward Sun

(that is, as R increases). Let the L1 distance from Earth be R. On the same graph plot
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the centripetal acceleration of an object, also as R increases from Earth. Be sure the

centripetal acceleration is calculated at fixed Earth-year period. Below is one such

graph, at a close-in scale, where R has been chosen (by approximation or trial and

error) to be near the crossing point.

The upward-sloping red line is the net gravitational acceleration (Sun minus

Earth) and the downward-sloping green line is the centripetal acceleration (again,

with P ¼ Earth’s period).

One can see graphically where the L1 point is. Note the intersection point is at

just over 1.49 � 109 m (1,490,000 km), which is where we expected the L1 point to

be. The accelerations there balance out at a little more than .00587 m/s2, which is

5.87 mm/s per second acceleration.

For the second part of the problem, calculate the values for fs and fe and for

fs � fe acting on an object, such as a spacecraft, at the L1 point between Earth and

the Sun. Then use the value 1.49 � 109 for RL1 and substitute that value into each

equation:

(a) The Sun’s gravitational pull at L1:

fs ¼ GM1

ðr � RL1Þ2
! 6:674� 10�11ð Þ 1:9891� 1030ð Þ

1:496� 1011 � 1:49� 109ð Þ � :00605 m=s2

(b) The Earth’s opposite gravitational pull at L1:
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fe ¼ GM2

R2
L1

! 6:674� 10�11ð Þ 1:9736� 1024ð Þ
1:49� 109ð Þ2 � :0001796 m=s2

The difference, fs � fe is the net gravitational pull on the spacecraft at L1:

fs � fe ! :00605� :0001796 � :00587 m=s2

Note that this value of 5.87 mm per second per second, pulling toward the

Sun, is about what appears on the graph. The only thing that will keep our

spacecraft from falling into the Sun is its inertial tendency (by Newton’s First

Law) to go in a straight line, from an imparted tangential push at its original

orbital insertion. The resulting circular orbital motion around the Sun is caused

by the equality of the gravitational and centripetal accelerations, the latter being

calculated as follows:

(c) The centripetal acceleration at L1:

fc ¼ o2ðr � RL1Þ

fc ¼ 4p2ðr � RL1Þ
P2

! 4ð3:14::Þ2ð1:496� 1011 � 1:49� 109Þ
ð3:15581184� 107Þ2 � :00587 m=s2

where we again used the identity, o ¼ 2p/P. Thus we have our equality of

accelerations, fs � fe ¼ fc, since .00587 ¼ .00587.

Observations

1. The calculation of accelerations for the L2 point (which we label RL2) follow in

the same way, with just a change in sign: the distance from the Sun to the L2

point is r + RL2. The distance from the Sun to the L2 point is thus

1.4976 � 1011 m. So the equation for centripetal acceleration at the L2 point

is just a little closer to 6 mm per second per second:

fc ¼ 4p2ðr þ RL2Þ
P2

! 4ð3:14::Þ2ð1:496� 1011 þ 1:49� 109Þ
ð3:15581184� 107Þ2

fc � :00599 m=s2

2. The ledger-sheet for our L1 accelerations now appears as shown on the

accompanying graph arranged as a kind of accountant’s balance sheet. The

direction of accelerations is shown along with the contributor to that accelera-

tion. Note that the overwhelmingly important factors are the gravitational and

centripetal accelerations, with the contribution of the Earth’s own gravity being

relatively small, yet crucial to make the books balance. Note that while
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centripetal acceleration is always acceleration toward the center (e.g., the Sun in

this case) we represent its vector as pointing away from the Sun (with a negative

sign) since it is the acceleration required for an object to be deflected from its

inertial tendency to go in a straight line. Some books would call this the

“centrifugal acceleration” vector.

Balance of accelerations on spacecraft at the Earth–Sun L1 point

Source Sun Earth Centripetal Net

Direction of vector Toward Sun Away from Sun Away from Sun Equal

Acceleration: (mm/s2) 6.05 �.18 �5.87 0.0

Percentage Contribution:

(each direction)

100 % 3 % 97 % 0.0

3. The differences in acceleration on the above graph are on a scale of hundredths

of a millimeter per second per second. It would seem that the slightest pulls and

tugs from other planets could dislodge a spacecraft from that point. Is this so?

For example, would the gravitational pull of Jupiter at its closest affect a

spacecraft hovering in the L1 point? Let us assume that Jupiter at its closest

opposition some year is about 650 million kilometers (6.5 � 1011 m) away

(about 4.3 AU). Its mass is 1.8986 � 1027 kg. Its distance from Earth’s L1

point will thus be about 6.5149 � 1011 m. The gravitational acceleration

imparted by Jupiter at that location will be,

fJ ¼ GMJ

r2

fJ ¼ ð6:674� 10�11Þð1:8986� 1027Þ
ð6:5149� 1011Þ2

fJ ¼ 2:985� 10�7m=s2

which is only about .0003 mm per second per second. The pull of Jupiter on the

L1 point is therefore but a fraction of the 5.87 mm/s2 acceleration induced by

the Sun and Earth — about one part in 20,000. The varying influences of other

planets are small but are cumulative. Having a greater effect at L1 and L2 might

be the (so far unaccounted-for) varying pull of the Moon. The new Moon (when

it is closest to the L1 point) actually contributes .00221 mm/s2 of gravitational

acceleration on the L1 point, or about one part in 2,700. This is over seven times

the pull of Jupiter at opposition, and these effects too accumulate to perturb the

L1 orbit. In fact, if we roughly approximate the Moon’s effect by simply adding

the lunar mass to the Earth’s mass and repeat the L1 calculation, it turns out

(with all other assumptions remaining intact) that the L1 point is about 6,100 km

(near one Earth radius) closer to the Sun. For the L2 point it is about 6,200 km

farther out. But we should always keep our original assumptions in mind and

beware of the false sense of accuracy that numbers can sometimes convey. A
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true accounting would show the variation in the Lagrangian points as the Moon

orbits the Earth in its inclined and slightly eccentric orbit. An even more

complete accounting would consider that the Earth’s orbit around the Sun is

slightly eccentric, so there is a variation in the solar acceleration at different

times of the year. All of these and other complex perturbations reduce the

stability of any object in the L1 and L2 points. Spacecraft and space telescope

designers therefore realize that any spacecraft in the L1 or L2 points will need

periodic adjustments to its orbit to remain in position.

Calculating the Heliocentric Orbital Velocities of a Spacecraft

at the Sun–Earth L1 and L2 Points

Problem Calculate the mean orbital velocities in kilometers per second of the

spacecraft as if it were orbiting the Sun at the Earth – Sun L1 point, and as if it were

orbiting at the L2 point.

Given

vL1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fcðr � RL1Þ

p
Velocity of an object in circular orbit at L1a

vL2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fcðr þ RL2Þ

p
Velocity of an object in circular orbit at L2

fcL1 Centripetal acceleration at the L1 point, �.00587 m/s2

fcL2 Centripetal acceleration at the L2 point, �.00599 m/s2

r The mean distance from Earth to the Sun: 1.496 � 1011 m

RL1 Distance from the Earth to the L1 point, approximated above:

1,490,000 km or 1.49 � 109 m

RL2 Distance from the Earth to the L2 point, approximated above:

1,500,000 km or 1.50 � 109 m
aThis equation was discussed in Chap. 9. It is a rearrangement to solve for v of the equation for

centripetal acceleration equation f ¼ v2/r

Assumptions Same assumptions as noted in the previous problem.

Method To find the distances from the Sun to the respective Lagrangian points, it

is necessary to add or subtract the respective RL1 and RL2 distances from the Earth’s

mean distance r from the Sun. Then insert the correct values into the velocity

equations and solve for velocity.

Calculations

ðaÞ vL1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fcL1ðr � RL1Þ

p
!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:00587ð1:481� 1011Þ

p
’ 29:49 km=s

ðbÞ vL2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fcL2ðr � RL2Þ

p
!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:00599ð1:511� 1011Þ

p
’ 30:08 km=s

408 19 Hovering in Space: Those Mysterious Lagrangian Points

http://dx.doi.org/10.1007/978-1-4614-5444-1_9


Observations

1. The Earth’s mean orbital velocity is about 29.78 km/s. Thus, for the spacecraft to

keep up with Earth at the L1 point, it must orbit about 290 m/s slower at the L1

point, and about 300 m/s faster at the L2 point. These differences are about 1%

greater and lesser than Earth’s velocity, respectively.

2. The equation for the L1 point,

GM1

ðr � RL1Þ2
� GM2

R2
L1

¼ o2ðr � RL1Þ

is intuitive in its form since it shows the individual components of acceleration.

It can be simplified. As a first step in cleaning up the equation, divide each side

by ðr � RL1Þ:

GM1

ðr � RL1Þ3
� GM2

R2
L1ðr � RL1Þ ¼ o2

From the above discussion we note that since o2 ¼ GM1/r
3, the o2 term can

be put into the same general terms as the rest of the equation, which will create

more opportunities for simplification:

GM1

ðr � RL1Þ3
� GM2

R2
L1ðr � RL1Þ ¼

GM1

r3

Now multiply each term by r3/GM1 and call the ratio of M2/M1 in the second

term Mr. Dividing by M1 is the same as calling the solar mass equal to one unit

(that is, one solar mass), which is a typical unit of mass in astronomical

calculations:

r3

ðr � RL1Þ3
� r3Mr

R2
L1ðr � RL1Þ ¼ 1

Divide the numerator and denominator of each fraction by r3:

1

r�RL1

r

� �3 � Mr

R2
L1
ðr�RL1Þ
r3

¼ 1

1

1� RL1

r

� �3 � Mr

R2
L1

r2 1� RL1

r

� � ¼ 1
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Now call the ratio of distances RL1/r ¼ u:

1

ð1� uÞ3 �
Mr

u2ð1� uÞ ¼ 1

Where the Fictional “Counter-Earth” Would Be: The L3

Point in the Earth–Sun System

Problem Using all the same assumptions noted in the previous problems, construct

an equation for the Earth–Sun L3 point, on the opposite side of the Sun from the

Earth. Using calculator, spreadsheet, mathematical software, or manual trial and

error, approximate the distance from the Earth to the Earth–Sun L3 point.

Given

G Gravitational constant: 6.674 � 10�11 N.m2/kg

M1 The mass of the Sun: 1.981 � 1030 kg

M2 The mass of the Earth: 5.9736 � 1024 kg

r The mean distance from Earth to the Sun: 1.496 � 1011 m

Assumptions All of the assumptions of the previous problem.

Method The RL3 distance we want is on the far side of the Sun. Thus the combined

gravitational pull of the rather distant Earth and the Sun are additive (as in the case of

the L2 point). Locating the L3 orbit again means finding the sweet spot where the

centripetal acceleration will offset the combined gravitational accelerations of Sun and

Earth. One thing to be aware of: the combinedpull of the Earth and the Sunwouldmake

the L3 point inside the orbital trace of the Earth, on the far side of the Sun, because of
the slightly stronger gravitational attraction of the combined bodies vs. that of the Sun

alone. The equation should thus resemble the L2 equation. The L3 distance from the

Earth will be RL3. The distance from the Sun to the L3 point will be RL3 less 1 AU.

Calculations Here for reference is the L2 equation developed above:

L2 Equation :
GM1

r þ RL2ð Þ2 þ
GM2

R2
L2

¼ o2 r þ RL2ð Þ

We noted that the distance from Earth at L3 will be RL3, and the distance from

the Sun to RL3 will be that minus r. We thus construct the L3 equation in this way:

L3 Equation :
GM1

RL3 � rð Þ2 þ
GM2

RL3ð Þ2 ¼ o2 RL3 � rð Þ
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Using Maple software, we obtain about 2.992 � 1011 m or 299.2 million km

from Earth, on the Earth-Sun line. This puts it about 12,726 km from the Earth’s

orbit on the far side.

Observations

1. The L3 point too is relatively unstable, since any object there would be perturbed

by other planets and by the uneven effects of non-circular (eccentric) orbits, just

as are objects at the L1 and L2 points.

2. The L3 point has been a source of science fiction inspiration: What if there is

another planet, a “counter-Earth” revolving around the Sun there, but hidden

from our view? Of course, we now have the means to know that this is not true.

Space Station Parking Spot for Lunar Exploration: Determining

the L1 Point in the Earth–Moon System

The Earth–Moon L1 point is an excellent place to park a space way-station for

voyages to and from the Moon. Let’s find out where this is.

Problem Construct equations for the distance from the Earth to the Earth–Moon

L1 and L2 points, taking into account the Earth–Moon barycenter as the center of

revolution of the Earth–Moon system, and find the distances from the Earth and

Moon to the two Lagrangian points, RL1 and RL2.

Given

M1 The mass of the Earth: 5.9736 � 1024 kg

M2 The mass of the Moon: 7.349 � 1022 kg

rb The distance from the Moon to the barycenter (center of mass)

of the Earth–Moon system: 3.79728 � 108 m

r Mean distance between the centers of Earth and Moon: 3.844 � 108 m

G Gravitational constant: 6.674 � 10�11 N.m2/kg

o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G M1þM2ð Þ

a3

q
Angular velocity for the binary system where here a ¼ r.

Assumptions We will again assume circular, planar orbits, and ignoring the

ellipticity of the Moon’s orbit, and any perturbing forces of other planets. We

also assume the Earth and Moon are spheres of uniform density. The spacecraft has

negligible mass relative to the Earth’s and Moon’s masses.

Method We will start with the L1 equation derived above, doing just what we did

with the Earth–Sun L1 point:

GM1

r � RL1ð Þ2 �
GM2

R2
L1

¼ o2 r � RL1ð Þ
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But in the Earth–Sun system it was safe to ignore the vastly smaller mass of the

Earth and assume that the center of the Sun as the center of mass of the system. We

cannot do that for the Earth–Moon system; the mass of the Moon is not insignificant

in relation to the Earth’s mass. The Earth and Moon revolve, as do all binaries,

around their common barycenter along the line between them. The distance from

the Moon to the barycenter is found as we saw in Chap. 10 using the equation:

rb ¼ r
m

M þ m

� �

The result is 3.79728 � 108 m. The centripetal acceleration of the Moon and

Earth, offsetting the gravitational attraction between them, are generated by their

spins around that center of mass, so the distances in the o2r term are going to have

to reflect the distances from the center of mass. The distance in the last term of the

L1 equation must therefore be changed to rb–RL1 because that is the distance of L1

from the center of mass, and therefore the center of revolution for the L1 point, from

which centripetal acceleration is calculated. The angular velocity in the L1 equa-

tion, which is a function of the period, can be rather accurately determined by the

given equation, which is Kepler’s Third Law, remembering, however, that we are

assuming circular orbits for these problems.

Calculations First find the angular velocity of the Moon around the barycenter:

o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G M1 þM2ð Þ

r3

r

o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6:674� 10�11ð Þ 5:9736� 1024 þ 7:349� 1022ð Þ

3:844� 108ð Þ3
s

o ¼ 2:665377395� 10�6

We will use this result shortly. Now construct the L1 equation as before, with a

slight change described above to accommodate the center of mass:

GM1

r � RL1ð Þ2 �
GM2

R2
L1

¼ o2 rb � RL1ð Þ

Inserting the correct values we have:

6:674� 10�11ð Þ 5:9736� 1024ð Þ
3:844� 108 � RL1ð Þ2 � 6:674� 10�11ð Þ 7:349� 1022ð Þ

R2
L1

¼ 2:665377395� 10�6
� �2

3:79728� 108 � RL1

� �
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Using Maple software to solve for RL1, we get,

RL1 ¼ 58; 023 kilometers

This is the distance from theMoon. The distance from the Earth is thus 326,377 km.

Observation This distance is quite close to the Moon, about 85 % of the way there,

yet an object there would be in orbit around the Earth, not the Moon.

The Equilateral L4 and L5 Lagrangian Points

in the Earth–Moon System

The L4 and L5 Lagrangians have the unique and interesting quality of each being at

one apex of an equilateral triangular relationship with the centers of the other two

masses. The points are 60� ahead and behind a line joining the primary and

secondary. In the relationship of the Earth and Moon, for example, the base of

the equilateral triangle is the line between the centers of those two bodies. The other

two sides of the triangle may be constructed from the Earth and Moon, respectively,

to slant toward the L4 point in one direction, ahead of the motion of the Moon, and

to the L5 point trailing it. Thus the distance to the L4 and L5 points to the Moon is

the same mean distance as the Earth is from the Moon, 384,400 km. The next

problem will explore how the balance of the balance of gravitational and centripetal

accelerations in this three-way arrangement is maintained.

Problem Show numerically that the L4 and L5 points in the Earth–Moon system

are places where the balance of the gravitational and centripetal accelerations

is equal.

Given

M The mass of the Earth: 5.9736 � 1024 kg

m The mass of the Moon: 7.349 � 1022 kg

rb The distance from the Moon to the barycenter (center of mass)

of the Earth–Moon system: 3.79728 � 108 m

r Mean distance between the centers of Earth and Moon: 3.844 � 108 m

G Gravitational constant: 6.674 � 10�11 N.m2/kg

o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
G Mþmð Þ

a3

q
Angular velocity for the binary system where here a ¼ r

Assumptions We will again assume the Earth and Moon are spheres of uniform

density in circular, planar orbits, and ignore the ellipticity of the Moon’s orbit, and

any perturbing forces of other planets.

Method We can take either L4 or L5 to make the case, and here we will illustrate

with the L5 point. Unlike the L1, l2 or L3 points, the L4 and L5 points are not in a
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line, but are in a triangular relationship. Before looking at the specifics of the Earth

and Moon, let us examine the situation of any two masses, a primary M and a

secondary m. The center of mass is somewhere between them.

Here, in the accompanying diagram, we let fM be the gravitational acceleration of

the primaryM, and show its vector as pointing towardM along the right side of the

triangle. Our task is to find the values of the vectors fc and fnet to see if they are in

fact equal. This we will do with the Earth and Moon, using numbers rather than a

geometrical proof, although we will need to apply geometry to find the values.

The acceleration fm represents the smaller gravitational acceleration of the lesser

mass m, and its vector is slanting along the other side of the triangle, toward m. The
composition of those vectors, the resultant vector, is the downward line from L5

toward the center of mass, denoted f net. Exactly opposing this downward, resultant,
gravitational acceleration vector is the upward-pointing vector fc. This is the

centripetal acceleration vector, here directed outward as a “centrifugal accelera-

tion” vector which must just balance the net gravitational acceleration vector
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induced by M and m to stay in the same relative position as it orbits the center of

mass. Remember, everything orbits the center of mass of this system, which is

marked cm on the diagram.

To find the length of the vector fc, we need to know the length of lineRcm so we can

multiply it by o2Rcm. This invites use of the Pythagorean Theorem, because the

triangle ABRcm is a right triangle. Side B is just r/2 minus the distance of M to the

center of mass, cm, which as we found in Chap. 10 is 4,671.6 km. Since the large

triangle is equilateral, we know from elementary trigonometry that sideA is r times√3/
2.4 The vector fc must balance the net gravitational acceleration vector, fnet. To find

that from the other two gravitational vectors, we can use the law of cosines.5 When

all the accelerations have been computed, we can see if they balance, such

that fnet ¼ fc.

Calculations Starting with the centripetal acceleration and employing the Pythag-

orean Theorem, we create the following equation to find the distance from the

L5 point to the center of mass, Rcm. This is the orbital radius of an object at the

L5 point:

Rcm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p

From the information given:

A ¼
ffiffiffi
3
p

2
r B ¼ r

2
� 4:6716� 106

A ¼ 3:329� 108 m B ¼ 1:8753� 108 m

Inserting these values into the equation for Rcm we have,

Rcm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:329� 108ð Þ2 þ 1:8753� 108ð Þ2

q

Rcm ¼ 3:821� 108 m

Next find angular velocity from the given equation:

o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G M þ mð Þ

r3

r

4 Length A is r.cos(30�). The cosine of 30� is equivalent to √3/2.
5 The law of cosines is allows one to calculate the third side of a triangle when we know the other

two and the angle between them. It is usually written this way: c2 ¼ a2 + b2 � 2ab cosy. Its use is
shown in the problem.
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o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6:674� 10�11 5:9736� 1024 þ 7:349� 1022ð Þ

3:844� 108ð Þ3
s

o ¼ 2:6653774� 10�6

From these last two values we can compute centripetal acceleration:

fc ¼ o2Rcm

fc ¼ 2:6653774� 10�6
� �2

3:821� 108
� �

fc ¼ 2:71442668� 10�3 m=s2

Let us compare this value with the net gravitational acceleration at L5. To do

that, we have to use the law of cosines to find fnet from fM and fm. The equation is:

fnet ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2M þ f 2m � 2fMfm cos 120�ð Þ

q

Since the separate accelerations are,

fM ¼ GM

r2
fm ¼ Gm

r2

Since the cosine of 120� is �1/2, the equation may be simplified to,

fnet ¼ G

r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ m2 þMm

p

Inserting the correct values yields the following result:

fnet ¼ 6:674� 10�11

3:844� 108ð Þ2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5:9736� 1024ð Þ2 þ 7:349� 1022ð Þ2 þ 5:9736� 1024ð Þ 7:349� 1022ð Þ

q

fnet ¼ 2:71442668� 10�3 m=s2

As can be seen, the gravitational and centripetal accelerations are precisely the

same at the L5 point:

fnet ¼ fc ¼ 2:71442668� 103 m=s2
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Observations

1. The same procedure can be repeated for the L4 point. Note that the locations of

the L4 and L5 points are just the same as the mean distance from the Moon as

the Earth is. L5 rides behind the Earth, and L4 leads, and each hangs in the

balance, so to speak, of the joint gravitational attractions of both bodies.

2. Once can do a balance sheet of these accelerations, just as we did earlier. It turns

out that the Earth contributes over 99 % of the gravitational acceleration acting

on the L5 point.

3. We worked though the individual steps to show the method intuitively. The

above equations could be generalized. For example, the length of side B of any

other such system is,

B ¼ r

2
� r

M

M þ m

� �

which can be simplified and integrated into the above analysis, if desired.

Exercises: The Strangeness of n-Body Gravitational Motions Things become

sometimes strangely interesting when three or more bodies are in delicate equilib-

rium. The Trojan asteroids accompanying Jupiter are in the stable L4 and l5 points,

but it is unknown why more cluster in the leading L4 point than the L5 point.

Asteroids have been captured at the stable L-points of Earth, Mars and Venus. The

small moon Cruithne orbits the Sun but is in resonance with the Earth’s motion.

Like a car on a race track, however, it will appear to switch lanes and go

from outside to inside the Earth’s orbit; from the Earth’s perspective it traces an

odd horseshoe-like pattern.6 Similarly, the small Saturnian satellites Janus and

Epimetheus seem to share an orbit: one is slightly inward and the other outward,

so the inner one will overtake the other, but as they get close, their weak gravita-

tional interaction causes them to switch positions. The moons Telesto and Calypso

maintain their orbits around Saturn in the L4 and L5 points with respect to Tethys.

Hyperion, orbiting between Saturn’s Titan and Iapetus, seems to exhibit chaotic

behavior.7

Sometimes the powerful force of a planet will even fling or “eject” a small body

well out of its customary orbit. The near-Earth Apollo asteroids and the Kirkwood

gaps in the asteroid belt appear to bear the tell-tale fingerprints of mighty Jupiter’s

influence. With the aid of computers and the tools of computational physics, these

strange behaviors can be better understood. On a larger scale, the long-term stability

of multiple interacting bodies in their gravitational fields is related to a profound

6 See http://www.astro.uwo.ca/~wiegert/3753/3753.html for an interesting discussion of this

moon.
7 Chaisson and McMillan [1].
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question that has been puzzling scientists for a long time: Is the solar system itself

stable? Oddly, this question may depend on how one defines “stable” and, it

appears, has not been fully settled.8

Problems

1. Just as was done above, compute a chart of the balance of net accelerations at

the Earth–Sun L2 point.

2. Compute the heliocentric orbital velocity of a spacecraft stationed at the

Earth–Sun L3 point in km/s.

3. If the Moon’s mass were added in to the determination of the L3 point, what

would be the difference in the L3 distance from that calculated above using just

the Earth’s mass?

4. Using calculator, spreadsheet, mathematical software, or manual trial and error,

approximate the distance from the Earth and the Moon to the Earth–Moon L2

point. Take the lunar period to be 27.3217 days, and its mass to be

7.349 � 1022 kg. (Hint: Use distances to center of mass of the EM system in

your calculations.)

5. Compute the gravitational accelerations induced by the Earth and Moon at the

L2 point and create a table of the gravitational and centripetal accelerations like

the one shown in the text.

6. Approximate the L1 and L2 points for Mars. Assume its mass is

6.41693 � 1023 kg and its semi-major axis is 1.52371034 AU.

7. Approximate the L1 and L2 points for Jupiter. Assume its mass is

1898.13 � 1024 kg and its semi-major axis is 5.202887 AU.

8. Compute the accelerations acting on the Trojan asteroids at the Jovian L4 or L5

points, and show that the centripetal and net gravitational accelerations induced

from the Sun and Jupiter are equal.

9. In the above problem, what approximate percentage of the net gravitational

acceleration acting on the Trojan L4 or L5 points is due to the Sun, and what

percentage is due to Jupiter?

10. Compute the accelerations on a spacecraft at the Earth–Sun L5 point and show

that the centripetal and net gravitational accelerations induced from the Sun

and Earth are equal.
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Appendix: Solutions to Problems

Chapter 2

1. 30 m/s2. 13,005 m.

2. 4,410 m.

3. 4,591.8 m.

4. PE is 9,800 J; (a) KE is 9,800 J; v is 140 m/s; (b) 14.286 s

5. The distances would be reduced proportionally by 0.3786. For the given times,

distance is proportional to acceleration.

6. The distances would be increased proportionally by 1.138, by the same

reasoning.

7. (a).

8. By virtue of the independence of forces, both hit the ground at the same time.

9. (c).

10. Since the mass is 1 kg, the force will be equal to the acceleration. Acceleration

is constant at 9.8 m/s2. Velocities each second in meters per second: 9.8, 1.96,

2.93, 3.92; velocity at bottom is 4.427 m/s, which continues.

Chapter 3

1. 0.00365 m.

2. 2.512 m.

3. 0.3759 m; period is 2 s.

4. 1.855 m.

5. 0.19 m/s2.

6. 0.0195 m.

7. 1.9; same for density.

8. Same reason that unequal masses hit the ground at the same time, as explained

in Chap. 1.
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9. P ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lr2=GM

p
; P ¼ 2pr3 2= =

ffiffiffiffiffiffiffiffi
GM

p
; P ¼ kr3 2= .

10. About 27.3 days, due to the greatly reduced value of the Earth’s surface gravity

at the lunar distance. The actual lunar period is about 27.3 days.

Chapter 4

1. e is 0.9962; a is 141.214 AU; b is 12.31 AU.

2. 5.458 years.

3. 541.436 AU.

4. 3.295 years.

5. q is 15.202 radii; Q is 15.269 radii.

6. (c).

7. P is1.76 years; b is 1.42 AU; e is 0.22253.
8. 1.0549 to 1; 0.46126 to 1.

9. [Graph]

10. [Graph]

Chapter 5

1. a.

2. d.

3. a and c.

4. The bisector is perpendicular to the chord, and points toward the center of

force; the arc and chord become unity as the two points of the arc merge.

5. (a) Newton used the term centripetal acceleration before he was prepared to call

its cause gravity. (b) Centripetal acceleration acting on a mass requires for its

existence, force, which opposed, by Newton’s Third Law, is sometimes

described as centrifugal force. (c) Centrifugal force is an apparent force, not

a real one, that appears to arise as a result of a moving object’s inertial tendency

to continue in a straight line. (d) It takes a force to move a mass, by Newton’s

Second Law, owing to the inertial quality inherent in mass.

6. Their accelerations are proportional to their distances from the center.

7. 1/8 to 1; 1/16 to 1.

8. 628 m/s; straight-line, tangent to the radius at point of release; forever until

acted upon by an external force.

9. 2.943 m/s2; 5.86 � 1017 N.

10. 1.65 to 1; 0.083 to 1.

Chapter 6

1. (c).

2. 9.66 days.
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3. 1.91 times Earth’s.

4. 10.56 and 0.28, respectively.

5. 1 to 2.3.

6. 1 to 0.79.

7. 125 m or 12.5 cm.

8. 10.8 m; 0.00007 m/s squared; about the same.

9. About 1 to 2.3, or about the same as the answer to Problem 5, since the Moon’s

velocity around the Sun also about 30 km/s, and its distance from the Sun is

about the same as Earth’s. Calculating by masses, the ratio is 1 to 2.2.

10. 0.00000343 N.

Chapter 7

1. 1.234 � 10�13.

2. 1 to 6.263.

3. 1.582.

4. Phobos: 1.847 � 105 km/day; 2.14 km/s. Deimos: 1.1675 � 105 km/day;

1.35 km/s.

5. Phobos: 0.488 m/s2. Deimos: 0.0778 m/s2. Ratio: 6.264 to 1.

6. Eight times longer.

7. 1/16; yes.

8. 1/2 as fast. See also the proof of Corollary VI: velocities vary as the inverse

square roots of the radii.

9. 3.71 m/s2.

10. The same. The source of the accelerations are the same.

Chapter 8

1. 18.05 km/s.

2. It is the same.

3. 4.49 years.

4. 4.49 years.

5. 7.99 � 10�4 m/s2.

6. It is the same.

7. 4.64 � 1015 N.

8. It is the same.

9. 4.762 days.

10. 5.79 � 1018; kg; 0.02%.

Chapter 9

1. At the equator: 1.957 � 106 kg. At the poles: 1.964 � 106 kg.

2. The equation is Kepler’s Third Law.
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3. 84.8 min; 7.88 km/s.

4. An increase of 0.98 m/s2.

5. 3,343 kg/m3.

6. 3.71 m/s2; 3.696 m/s2.

7. Density increases 49.3 times; g increases 13.45 times.

8. (a) 1/5; (b) 1/8; (c) square root of two times faster; (d) one over the square root

of 2 less.

9. 11.274 m/s2; 0.0543 m/s2.

10. (a) 0.01214 m/s2; 8.884 days; (b) 318 to 1.

Chapter 10

1. 1 to 0.1165 or 8.5837 to 1.

2. Pluto: 1.305 � 1022 kg; Charon: 1.5203 � 1021 kg.

3. Pluto: 2,042.2 km; Charon: 17,529.2 km; 0.1165 to 1.

4. a. 1.77; b. 16.97.

5. 8.5837 to 1.

6. Pluto: 23.26 km/s; Charon: 199.64 km/s. Ratio is 0.1165 to 1.

7. 222.9 km/s.

8. 1.36166 � 1021 kg.

9. Yes. Each is 3.0351 � 1023.

10. On Pluto: 2.64892 � 10�4; on Charon: 2.27375 � 10�3. Their periods are

6.38522 days, by all methods.

Chapter 11

1. Each is approximately the same (about 7.5 � 10�6), and approximately inde-

pendent of the individual masses, since the masses of the planets are dwarfed

by the mass of the Sun.

2. About 12% for Uranus and 3.4% for Neptune.

3. 1/22,894.

4. 1/19,411.

5. It should be close or equal to the previous answer.

6. Uranus: 8.6825 � 1025 kg; 1/22,901. Neptune: 1.0245 � 1026 kg; 1/19,414.

7. 14.5; 17.15.

8. 1.242 g/cm3; 1.1611 g/cm3. It would not be affected.

9. The mass should be close to or equal to the answer in Problem 6.

10. 3.506 � 1026 kg; 3.177 days.
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Chapter 12

1. 5.753 km/s; 2.266 km/s.

2. 205,029 days; 561.34 years.

3. 3.61 km/s; results are the same as for Problem 1.

4. 5,753.4 m/s; 2,266.6 m/s.

5. 3,610.6 m/s; 1.28 � 10�6 m/s2; perihelion, 3.25 � 10�6 m/s2; aphelion, 5.05 �
10�7 m/s2.

6. It is the same as in the previous problem.

7. Perigee: potential energy is�3.8287� 1029 J; kinetic energy is 2.7466� 1029 J;

Apogee: potential energy is�1.5084� 1029 J; kinetic energy is 4.263� 1028 J.

Their sum is the same due to the law of conservation of energy.

8. 5.206 km/s; 3.75 km/s; 111,867.2 days; 306.726 years.

9. 5.55 km/s; 3.72 km/s; 102,937 days; 281.826 years.

10. 4.02 � 1021 kg; perihelion, 77.2 m/s; aphelion, 69.67 m/s.

Chapter 13

1. Circular velocity: 377.587 km/s; perihelion velocity: 533.987 km/s; escape

velocity: 533.989 km/s. The comet at perihelion is extremely close to solar

system escape velocity.

2. 1.42571 � 1011 J; 7.1286 � 1010 J; 2 to 1; the energy of the comet at perihelion

is twice the energy of its orbit in the circle.

3. Hyperbolic; p is 0.96489 AU; 41.338 km/s.

4. [graph]

5. 41.77 km/s.

6. 0.585975 AU; velocities at the respective orbits: Jupiter, 17.07 km/s; Mars,

33.43 km/s; Earth, 41.53 km/s; Venus, 49.03 km/s; Mercury, 67.34 km/s;

velocity at perihelion, 54.57 km/s.

7. 7.464 � 1024 J.

8. Simplify the equation after substituting a(e +1) for r atQ, and a(e�1) for r at q.
9. e is 0.43287761; p is 2.9422 AU; q is 2.053 AU; Q is 5.188 AU; perihelion

velocity, 18.74 km/s; aphelion velocity, 11.79 km/s.

10. It is the ratio of the reciprocal of their semi-major axes; that is, their relative

total orbital energies will be 1/a to 1/a0; Holmes, by 4.93 times.

Chapter 14

1. 1.035 � 106 J.

2. 1,618 m/s.

3. q, 9,376 km;Q, 23,458 km; a, 16,417 km; e, 0.4289; periapsis kick, 417.53 m/s;

apoapsis kick, 330 m/s.

Appendix: Solutions to Problems 423



4. 1.3 � 106 J.

5. q, 1 AU; Q, 5.2 AU; a, 3.1 AU; e, 0.6774; periapsis kick, 8.79 km/s; apoapsis

kick, 5.643 km/s; 2.73 years.

6. a, 0.9565 AU; e, 0.06135; p, 0.95287 AU; P, 341.67 days.

7. e, 0.0521; a, 1,950.2 km; p, 1,944.9 km; P, 128.8 min; periapsis velocity,

1.67 km/s; apoapsis velocity 1.51 km/s.

8. 1.257 � 106 J.

9. 4.942 � 106 J.

10. p, 3,774.5 km; apoapsis velocity, 3,400.46 m/s; apoapsis velocity, 3,336.26

m/s; 5.6724 � 106 J.

Chapter 15

1. 199.7�; 212.1�; 208.5�.
2. 310.8�; 306.3�.
3. 0.033466� per day; 12.22�.
4. 137.4�.
5. Mean daily motion, 0.0000823�; longitude of the ascending node, 144.57�;

argument of the perihelion, 311.32�; longitude of the perihelion, 95.89�; mean

anomaly, 357.82�; heliocentric longitude 93.71�.
6. Longitude of the ascending node, 131.81�; longitude of the perihelion 39.87�,

heliocentric longitude, 330.34�.
7. 80.3�.
8. 102.9�.
9. 77.9�; yes.

10. a, 2279.9 years; P, about 108,864 years; May 1, 09:27:27.6 UT; 37.394 days.

Chapter 16

1. [Drawing].

2. 89.49�.
3. 1.61 AU.

4. 6.2582 rad; 358.6�.
5. 6.0898 rad; 348.92�.
6. 95.88�; 0.97 AU.

7. Close encounter with that asteroid.

8. 0.276 rad; 15.8�.
9. 26.7�.

10. 5.61 AU.
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Chapter 17

1. ~5.06 � 10�7 m/s2 on each side.

2. ~5.06 � 10�7 m/s2.

3. New moon, 1.06 � 10�6 m/s2; full moon, 5.94 � 10�7 m/s2.

4. ~2.44 � 10�5 m/s2.

5. 6.15 � 10�3 m/s2.

6. 252.3 times.

7. 2.6 � 10�3 m/s2.

8. (a).

9. 3.34 � 10�6 m/s2.

10. Perihelion, 6.6� 10�6 m/s2; aphelion, 1.9� 10�6 m/s2; the difference is 4.75�
10�6 m/s2.

Chapter 18

1. 3.58 Martian radii.

2. 0.455 radii, or 1,546 km.

3. 1.46 Jovian radii.

4. Roche, ~1.12(M/r)1/3; meters.

5. 2.35.

6. About 1.77 million kilometers.

7. 4 Earth radii.

8. 1.8 radii.

9. Because, if we assume a coefficient of 1.8, at 1.948 radii it is just outside the

Roche limit; it is non-fluid.

10. Loose particles do not have the cohesion of existing bodies.

Chapter 19

1. Solar, 5.81 mm/s2; Earth’s pull (toward Sun), 0.18 mm/s2; centripetal

5.99 mm/s2.

2. 29.79 km/s.

3. ~500 m.

4. 58,023 km; 326,377 km.

5. Earth’s pull, 3.711 mm/s2; Moon’s pull, 1.46 mm/s2; centripetal, 2.28 mm/s2.

6. L1 ~ 1.082 million kilometers; L2 ~ 1.086 million kilometers.

7. L1 ~ 51.96 million kilometers; L2 ~ 54.22 million kilometers.

8. Each is 2.19 � 10�4 m/s2.

9. Sun, 99.9%; Jupiter .1%.

10. Each is 5.932 � 10�3 m/s2.
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Index

A

Acceleration

continuous, 12

due to Earth’s gravity, 21, 23

lunar-induced, 359, 366, 371

ratio of solar to lunar, 364

solar-induced, 365

tidal, 360–362, 364, 365, 370, 374, 375

Alpha Centauri, determination of mass of,

231–234

Amalthea, moon of Jupiter, 141, 190, 391

Angular momentum, 70–72, 239, 254, 256, 304

Angular velocity, in circular and elliptical

orbits, 244–245

Aphelion, 62, 65, 66, 77, 81, 241–246, 248,

254, 256, 257, 262–265, 269, 272,

276, 279–284, 300–302, 311, 320,

334, 339, 353

Apoapsis, 65, 310, 311

Apogee, 65, 67, 68, 249–251, 254, 269,

290–295, 297–300, 302, 307, 356

Apogee, increased velocity or “kick” at, 298

Apollo Command and Service Module, 297

Apollo 11 Moon mission, 306–312

Apsidal distance, 69, 70, 246, 250, 288

Argument of the perihelion, 316, 319, 348

Aristotle, 2, 17, 391

Asteroid, 2010 TD 54, 322–327, 342, 343–347

eccentric anomaly of, 341–343

elements of, 324

Asteroid, 2007 WD5, 347–354

Astronomical unit, 56, 61, 73, 81, 125, 131,

140, 161, 163, 165, 187, 220,

227–231, 237, 258–260, 265, 271,

276, 279, 280, 283, 333, 364, 389,

390, 392, 399

Attraction of masses, 7–9

B

Barycenter

of binary system, 199

of Earth–Moon system, 195, 197–199

Binary system, 155, 193–210, 255, 370,

411, 413

Bound\ orbits, 270, 274–276, 296

Brahe, Tycho, 61, 161, 217

C

Cartesian coordinate system, 329, 330

Center of mass, 12, 64, 141, 155, 180, 193, 215,

253, 357, 411

Centrifugal force, 14, 103–106, 155–157, 165,

169–171, 173, 174, 176, 177, 357,

358, 380, 403

Centripetal force, 13, 83–85, 88–95, 97–99,

101–105, 107, 113, 116, 117,

127–137, 145, 147–151, 158, 160,

181, 209, 219, 360, 401, 406, 408

Ceres, 73–74, 258, 277, 335

Circle, 40, 59, 84, 108, 128, 149, 172, 195, 218,

243, 270, 289, 319, 338, 366

Circular orbit, total energy of, 268

Clarke, Arthur C., 289, 310

Clarke’s, Interplanetary Flight, 289, 310

Clerke, Agnes, 144, 287

Comet Lovejoy C/2011 W3, 391–394

Comets

energies of, 288

Kreutz group of, 391, 393

Comet Shoemaker-Levy 9, 388–391, 394

Comet West C/1975 V1-a, 327–335

Conic sections, equation for, 74–78

Conservation of energy, law of, 251–257, 267,

269, 271
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Conservation of mechanical energy,

33–35, 251

Constant acceleration, constant, 2, 20–23, 43,

113, 116, 124

Coordinate system, 6, 313, 330

Copernican heliocentric view, 17, 62

Curvilinear motion, 13–15

D

Dark matter, 234–238

Deimos, Martian satellite, 144, 145, 310

Deriving periods with g, 46–53
Deriving velocities with g, 199–203
Deviation from Keplerian proportionality,

162–163

Differential gravitational forces, 358–360

Differentiation, 32

Directrix, 74, 75

Distance-time-squared relationship, 27,

33, 97

Dwarf planets, 81, 262, 264, 335

E

Earth

as not a perfect sphere, 175–176

orbital velocities of, 366

translational motion of, 367

Earth–Moon system

L4 and L5 points of, 413–418

L1 point of, 411–412

Roche limit of, 378–384

Earth–Sun system, L1 and L2 points of,

399–403

Eccentric anomaly, 339–354

Eccentricity, 61, 116, 141, 190, 209, 223, 241,

269, 290, 315, 339, 368

Ecliptic, 79, 279, 283, 299, 313–335, 348

Ecliptic coordinate system, 313

Effect of Earth’s spin on g, 169, 171–175
Elements of the orbit, 305, 306,

317–319, 324

Ellipse

empty focus, 64, 81

parametric equations for, 329

Elliptical orbits

apogee velocity, 290, 293

apsidal velocities, 244, 245,

251–257

compared with circular, 242–244

gravitation, 245–246

perigee velocity, 290, 293

total energy of, 269–270

Energy

summary of orbital energy relationships,

274–278

total in a circular orbit, 268

total in an elliptical orbit, 269–270

Energy equations

(vis viva equation), 271

summary of key, 274–278

used to define orbit to Mars, 303–304

Epoch, 79, 303, 318, 321–325, 328, 331,

348–350, 352–354

Equal areas in equal times, 60–62, 90, 93,

239, 248

Equipotential surface, 369

Escape velocity, 12, 273, 276, 287, 296–298

Eugenia, asteroid, 164

Evanescent arc, 72, 93

F

Fictitious circle, 265, 319, 320, 323,

326, 339

First point of Aries, 314, 319

Flamsteed, John, 135, 136

Focus, 13, 60–62, 64–67, 71, 74, 75, 80, 81, 84,

87, 96, 117, 185, 194, 239, 243,

271–273, 275, 284, 300, 315, 321,

324, 337, 338, 341

Forces

balance of at L1 point, 402, 407

in combination, 3–4

components, 5, 18, 173

Free-falling frame of reference, 6

Freely falling object, 18, 21, 23, 31

G

Galilean equations, 33, 38, 42, 43, 48, 95–98,

116, 171

Galilei, Galileo, 2, 3, 5, 7, 17–35, 37–39, 41,

42, 50, 55, 84, 95–97, 110, 114, 117,

124, 128, 134–136, 290, 310

Galileo’s Dialogue concerning Two New
Sciences, 19

Gaussian constant, 258–264, 279, 299–301,

311, 333

Gauss, Karl Friedrich, 258, 259, 262, 335

Gauss’ Theory of Motion of the Heavenly
Bodies Moving about the Sun in
Conic Sections, 258

Geosynchronous satellite, 142–145, 184,

279, 353
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Gravitational

acceleration, 10, 22, 41, 102, 107, 157, 169,

200, 220, 245, 358, 397

constant, 57, 124, 162, 177, 182, 186, 187,

204, 206, 216, 224, 226, 227,

234, 249, 259, 290, 293, 305,

308, 359, 364, 368, 378, 399,

401, 404, 410, 411, 413

forces, differential as cause for tides, 356,

358–360, 368, 378, 383

potential energy, 251–253, 270, 369

well, 253, 268, 299

Gravitation and the laws of motion, 11–13

Gravity, 6, 17, 37, 84, 107, 133, 148, 167–190,

195, 215, 245, 307, 355, 377, 397

Gravity and distance, 9

Great Comet of 1680, 281–288

H

Halley’s comet, 78, 81, 278, 281–288, 333, 353

Heliocentric ecliptic longitude, 324

Heliocentric orbital velocities, using Gaussian

constant to find, 260–261

Heliocentric periods, using Gaussian constant

to find, 259–260

HM Cancri, determining the mass of, 233

Hohmann transfer, 290–293, 310

Hooke, Robert, 52

Hooke’s law, 52, 56

Huygens, Christiaan, 37–57, 103, 109–111,

113, 115, 117

Huygens’ The Pendulum Clock, 38, 42, 45,

56, 115

Hyperbola, 76, 77, 84, 267, 274–276

I

Impetus, 2

Inclination, 3, 19, 39, 56, 79, 108, 279, 283,

311, 313, 315–317, 319, 325, 328,

333, 342, 347, 348, 367, 368, 372

Inclined plane experiment, 17, 19

Increasing distances from Earth, 21, 384

Independence of forces, 5, 38

Inertia, 2, 3, 7, 11, 13–15, 51, 84–87, 89, 93,

99, 102, 105, 124, 150, 155, 157,

169, 357, 358

Inertial frames of reference, 5–7

Injection velocity, 290, 293, 300, 304–308
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