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Supervisors’ Foreword

Ultrashort optical pulses have become a ubiquitous tool in fundamental research,
giving access to unprecedented field strength and temporal resolution in the fields
of physics and chemistry. Several Nobel prizes in the last decade are immediate
witness of this development, most prominently the 2005 Nobel Prize awarded to
Hall and Hänsch for the frequency comb.

The concentration of energy on the shortest possible timescale requires an
intricate interplay of at least one linear and one nonlinear optical effect. Given the
additional role of plasma effects, high-field compression scenarios are significantly
more difficult to understand than others. In particular, recent experimental reports
on self-compression of optical pulses during propagation in a filament were highly
puzzling, challenging theoretical modeling of such compression mechanisms in an
unprecedented manner. Filamentary propagation involves spatial as well as
temporal effects, both from linear and two competing nonlinear optical effects.
This puzzling scenario served as the starting point for the thesis of Carsten Brée.
First, with the tangible picture of self-pinching of the intensity distribution of the
light, his work delivers a novel explanation for the remarkable and previously
unexplained phenomenon of pulse self-compression in filaments. Moreover, the
work addresses the scenario of such an intense light pulse experiencing a non-
adiabatic change of nonlinearity and dispersion at the interface between a gaseous
dielectric material and a solid one.

Finally, and probably most importantly, the thesis delivers a simple and highly
practical theoretical approach to estimate the influence of higher order nonlinear
optical effects in optics. The results from this thesis shed new light on recent
experimental observations, which are controversially discussed because they may
completely change our understanding of filamentation, causing a paradigm change
concerning the role of higher order nonlinearities in optics. In fact, these results
indicate the possibility of plasmaless filaments, enabling dissipationless delivery of
highly energetic light pulses in a self-generated guiding geometry.

The thesis has already inspired further work on the nonlinear optical response in
various dielectric media, including solids. Other current effort on noble gases
target an improved precision of the estimates of saturation and inversion intensity.
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It therefore appears that this thesis has already triggered a wave of novel research
in this field, trying to confirm (or disprove) the often underestimated role of higher
order nonlinearities in optics. As the supervisors, we are therefore extremely
pleased that the groundbreaking work of Carsten Brée receives such favorable
acknowledgment by publication in the Springer Thesis series.

April 2012 Uwe Bandelow and Günter Steinmeyer

viii Supervisors’ Foreword



Acknowledgments

I would like to thank Prof. Dr. T. Elsässer and Priv. Doz. Dr. Uwe Bandelow for
giving me the opportunity to work on an exciting topic at the interface of
experiment and theory.

I am deeply grateful to Prof. Dr. G. Steinmeyer and Dr. A. Demircan for their
continuous and valuable scientific advise and for providing respectful and
motivating working conditions.

I would also like to thank Prof. Dr. S. Skupin and Dr. L. Bergé for kindly
providing the source code for the numerical simulations and for their beneficial
contributions to the journal articles published in the course of this Ph.D. project.

Furthermore, I am indebted to Dr. E. T. J. Nibbering who granted access to the
laser system used for the experimental parts of this project.

Dipl. Phys. J. Bethge introduced me into the subtleties of few-cycle pulse
characterization via spectral phase interferometry, for which I would like to
express my honest gratitude.

Dr. Shalva Amiranashvili willingly shared his expertise on envelope descriptions
of nonlinear optics, for which I wish to express my deepest gratitude. I also express
my gratitude to Dipl. Phys. A. Wilms for discussions about physics beyond one’s
own nose and for proofreading the manuscript.

My thanks also goes to Dr. C. Grebing, Dipl. Phys. S. Koke, and Dipl. Phys.
A. Schmidt for sharing with me their experimental expertise on nonlinear optics.

Finally, I would like to thank all members of the research group ‘‘Laser
Dynamics’’ at WIAS and those of the division C2 at MBI for the enjoyable and
cooperative working atmosphere.

ix



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Theoretical Foundations of Femtosecond Filamentation. . . . . . . . . 7
2.1 The Forward Maxwell Equations . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 The Nonlinear Optical Response . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Third-Order Response to a Monochromatic Wave. . . . . . 13
2.2.2 Third-Order Response to an Optical Pulse . . . . . . . . . . . 14
2.2.3 Plasma Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Contributions to the Nonlinear Refractive Index . . . . . . . . . . . . 17
2.3.1 Plasma Contributions. . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Contributions Due to the All-Optical Kerr Effect . . . . . . 18

2.4 An Envelope Equation for Few-Cycle Optical Pulses. . . . . . . . . 20
2.4.1 Reduction to the Cylindrically Symmetric Case . . . . . . . 23

2.5 Properties of Filamentary Propagation . . . . . . . . . . . . . . . . . . . 23
2.5.1 Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.2 Self-Phase Modulation. . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.3 Self-Focusing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.4 Modulation Instabilities . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.5 Space-Time Focusing . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5.6 Intensity Clamping and the Dynamic Spatial

Replenishment Model . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5.7 Pulse Self-Compression . . . . . . . . . . . . . . . . . . . . . . . . 31

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Pulse Self-Compression in Femtosecond Filaments . . . . . . . . . . . . 35
3.1 The Self-Pinching Mechanism: Self-Compression

as a Spatial Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Stationary Solutions Beyond the Variational Approach . . . . . . . 45
3.3 Cascaded Self-Compression . . . . . . . . . . . . . . . . . . . . . . . . . . 51

xi

http://dx.doi.org/10.1007/978-3-642-30930-4_1
http://dx.doi.org/10.1007/978-3-642-30930-4_1
http://dx.doi.org/10.1007/978-3-642-30930-4_1#Bib1
http://dx.doi.org/10.1007/978-3-642-30930-4_2
http://dx.doi.org/10.1007/978-3-642-30930-4_2
http://dx.doi.org/10.1007/978-3-642-30930-4_2#Sec1
http://dx.doi.org/10.1007/978-3-642-30930-4_2#Sec1
http://dx.doi.org/10.1007/978-3-642-30930-4_2#Sec2
http://dx.doi.org/10.1007/978-3-642-30930-4_2#Sec2
http://dx.doi.org/10.1007/978-3-642-30930-4_2#Sec3
http://dx.doi.org/10.1007/978-3-642-30930-4_2#Sec3
http://dx.doi.org/10.1007/978-3-642-30930-4_2#Sec4
http://dx.doi.org/10.1007/978-3-642-30930-4_2#Sec4
http://dx.doi.org/10.1007/978-3-642-30930-4_2#Sec5
http://dx.doi.org/10.1007/978-3-642-30930-4_2#Sec5
http://dx.doi.org/10.1007/978-3-642-30930-4_2#Sec6
http://dx.doi.org/10.1007/978-3-642-30930-4_2#Sec6
http://dx.doi.org/10.1007/978-3-642-30930-4_2#Sec7
http://dx.doi.org/10.1007/978-3-642-30930-4_2#Sec7
http://dx.doi.org/10.1007/978-3-642-30930-4_2#Sec8
http://dx.doi.org/10.1007/978-3-642-30930-4_2#Sec8
http://dx.doi.org/10.1007/978-3-642-30930-4_2#Sec9
http://dx.doi.org/10.1007/978-3-642-30930-4_2#Sec9
http://dx.doi.org/10.1007/978-3-642-30930-4_2#Sec10
http://dx.doi.org/10.1007/978-3-642-30930-4_2#Sec10
http://dx.doi.org/10.1007/978-3-642-30930-4_2#Sec11
http://dx.doi.org/10.1007/978-3-642-30930-4_2#Sec11
http://dx.doi.org/10.1007/978-3-642-30930-4_2#Sec12
http://dx.doi.org/10.1007/978-3-642-30930-4_2#Sec12
http://dx.doi.org/10.1007/978-3-642-30930-4_2#Sec13
http://dx.doi.org/10.1007/978-3-642-30930-4_2#Sec13
http://dx.doi.org/10.1007/978-3-642-30930-4_2#Sec14
http://dx.doi.org/10.1007/978-3-642-30930-4_2#Sec14
http://dx.doi.org/10.1007/978-3-642-30930-4_2#Sec15
http://dx.doi.org/10.1007/978-3-642-30930-4_2#Sec15
http://dx.doi.org/10.1007/978-3-642-30930-4_2#Sec16
http://dx.doi.org/10.1007/978-3-642-30930-4_2#Sec16
http://dx.doi.org/10.1007/978-3-642-30930-4_2#Sec17
http://dx.doi.org/10.1007/978-3-642-30930-4_2#Sec17
http://dx.doi.org/10.1007/978-3-642-30930-4_2#Sec17
http://dx.doi.org/10.1007/978-3-642-30930-4_2#Sec18
http://dx.doi.org/10.1007/978-3-642-30930-4_2#Sec18
http://dx.doi.org/10.1007/978-3-642-30930-4_2#Bib1
http://dx.doi.org/10.1007/978-3-642-30930-4_3
http://dx.doi.org/10.1007/978-3-642-30930-4_3
http://dx.doi.org/10.1007/978-3-642-30930-4_3#Sec1
http://dx.doi.org/10.1007/978-3-642-30930-4_3#Sec1
http://dx.doi.org/10.1007/978-3-642-30930-4_3#Sec1
http://dx.doi.org/10.1007/978-3-642-30930-4_3#Sec2
http://dx.doi.org/10.1007/978-3-642-30930-4_3#Sec2
http://dx.doi.org/10.1007/978-3-642-30930-4_3#Sec3
http://dx.doi.org/10.1007/978-3-642-30930-4_3#Sec3


3.3.1 Experimental Evidence of Cascaded Self-Compression . . 57
3.4 Temporal Self-Restoration in Femtosecond Filaments . . . . . . . . 60

3.4.1 Experimental Prerequisites . . . . . . . . . . . . . . . . . . . . . . 62
3.4.2 Experiment 1: Variation of Window Position . . . . . . . . . 64
3.4.3 Experiment 2: Windowless Measurement. . . . . . . . . . . . 66
3.4.4 Comparison with Numerical Simulations . . . . . . . . . . . . 67

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 Saturation and inversion of the all-optical Kerr effect . . . . . . . . . . 79
4.1 Kramers-Kronig Relations in Linear and Nonlinear Optics . . . . . 81
4.2 Ionization of Atoms in Intense Laser Fields . . . . . . . . . . . . . . . 82

4.2.1 Keldysh Theory and Its Generalizations. . . . . . . . . . . . . 84
4.2.2 A Recent Modification of the PPT Model . . . . . . . . . . . 90
4.2.3 The Multiphoton Limit . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3 Kramers-Kronig Approach to Second Order
Nonlinear Refraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.4 Higher Order Kerr Effect and Femtosecond Filamentation . . . . . 99
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Appendix A: The Nonlinear Schrödinger Equation . . . . . . . . . . . . . . . 115

Appendix B: Numerical Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Appendix C: Characterization of Ultrashort Few-Cycle Pulses . . . . . . 123

xii Contents

http://dx.doi.org/10.1007/978-3-642-30930-4_3#Sec4
http://dx.doi.org/10.1007/978-3-642-30930-4_3#Sec4
http://dx.doi.org/10.1007/978-3-642-30930-4_3#Sec5
http://dx.doi.org/10.1007/978-3-642-30930-4_3#Sec5
http://dx.doi.org/10.1007/978-3-642-30930-4_3#Sec6
http://dx.doi.org/10.1007/978-3-642-30930-4_3#Sec6
http://dx.doi.org/10.1007/978-3-642-30930-4_3#Sec7
http://dx.doi.org/10.1007/978-3-642-30930-4_3#Sec7
http://dx.doi.org/10.1007/978-3-642-30930-4_3#Sec8
http://dx.doi.org/10.1007/978-3-642-30930-4_3#Sec8
http://dx.doi.org/10.1007/978-3-642-30930-4_3#Sec9
http://dx.doi.org/10.1007/978-3-642-30930-4_3#Sec9
http://dx.doi.org/10.1007/978-3-642-30930-4_3#Bib1
http://dx.doi.org/10.1007/978-3-642-30930-4_4
http://dx.doi.org/10.1007/978-3-642-30930-4_4
http://dx.doi.org/10.1007/978-3-642-30930-4_4#Sec1
http://dx.doi.org/10.1007/978-3-642-30930-4_4#Sec1
http://dx.doi.org/10.1007/978-3-642-30930-4_4#Sec2
http://dx.doi.org/10.1007/978-3-642-30930-4_4#Sec2
http://dx.doi.org/10.1007/978-3-642-30930-4_4#Sec3
http://dx.doi.org/10.1007/978-3-642-30930-4_4#Sec3
http://dx.doi.org/10.1007/978-3-642-30930-4_4#Sec5
http://dx.doi.org/10.1007/978-3-642-30930-4_4#Sec5
http://dx.doi.org/10.1007/978-3-642-30930-4_4#Sec6
http://dx.doi.org/10.1007/978-3-642-30930-4_4#Sec6
http://dx.doi.org/10.1007/978-3-642-30930-4_4#Sec7
http://dx.doi.org/10.1007/978-3-642-30930-4_4#Sec7
http://dx.doi.org/10.1007/978-3-642-30930-4_4#Sec7
http://dx.doi.org/10.1007/978-3-642-30930-4_4#Sec8
http://dx.doi.org/10.1007/978-3-642-30930-4_4#Sec8
http://dx.doi.org/10.1007/978-3-642-30930-4_4#Bib1
http://dx.doi.org/10.1007/978-3-642-30930-4_5
http://dx.doi.org/10.1007/978-3-642-30930-4_5
http://dx.doi.org/10.1007/978-3-642-30930-4_5#Bib1


List of Publications

Refered publications
1. C. Brée, A. Demircan, and G. Steinmeyer, Asymptotic pulse shapes in

filamentary propagation of intense femtosecond pulses , Laser Phys., 19, 330 (2009).
2. C. Brée, A. Demircan, S. Skupin, L. Bergé, and G. Steinmeyer, Self-pinching of

pulsed laser beams during filamentary propagation, Opt. Express, 17, 16429 (2009).
3. C. Brée, A. Demircan, S. Skupin, L. Bergé, and G. Steinmeyer, Plasma induced

pulse breaking in filamentary self-compression, Laser Phys., 20, 1107 (2010).
4. C. Brée, J. Bethge, S. Skupin, L. Bergé, A. Demircan, G. Steinmeyer, Cascaded

self-compression of femtosecond pulses in filaments, New J. Phys. 12, 093046
(2010).

5. C. Brée, A. Demircan, and G. Steinmeyer, Method for computing the nonlinear
refractive index via Keldysh theory, IEEE J. Quantum Electron., 46, 433 (2010).

6. C. Brée, A. Demircan, and G. Steinmeyer, Modulation instability in filamentary
selfcompression, accepted for publication in Laser Phys. (2011)

7. C. Brée, A. Demircan, J. Bethge, E. T. J. Nibbering, S. Skupin, L. Bergé, and
G. Steinmeyer, Filamentary pulse self-compression: The impact of the cell windows,
Phys. Rev. A 83, 043803 (2011).

8. J. Bethge, C. Brée, H. Redlin, G. Stibenz, P. Straudt, G. Steinmeyer,
A. Demircan, and S. Düsterer, Self-compression of 120 fs pulses in a white-light
filament, J. Opt. 13, 055203 (2011).

9. C. Brée, A. Demircan, and G. Steinmeyer, Saturation of the all-optical Kerr
effect, Phys. Rev. Lett. 106, 183902 (2011).

10. C. Brée, A. Demircan, and G. Steinmeyer, Kramers-Kronig relations and high-
order nonlinear susceptibilities, Phys. Rev. A 85, 033806 (2012).

11. B. Borchers, C. Brée, S. Birkholz, A. Demircan, and G. Steinmeyer, Saturation
of the all-optical Kerr effect in solids. Optics Letters 37, 1541–1543 (2012)

Conference Proceedings
12. C. Krüger, A. Demircan, S. Skupin, G. Stibenz, N. Zhavoronkov, and

G. Steinmeyer, Asymptotic pulse shapes in filamentary propagation of femtosecond
pulses and self-compression, in: Quantum Electronics and Laser Science Confer-
ence, OSA Technical Digest, JTuA44 (2008).

xiii



13. C. Krüger, A. Demircan, S. Skupin, G. Stibenz, N. Zhavoronkov, and
G. Steinmeyer, Asymptotic pulse shapes and pulse self-compression in femtosecond
filaments, in: Ultrafast Phenomena XVI, Proceedings of the 16th International
Conference, June 9-13, 2008, Stresa, Italy, Corkum, P., Silvestri, S., Nelson, K.A.,
Riedle, E., Schoenlein, R.W. ( Eds.), Vol. 92 of Springer Series in Chemical Physics,
804 (2009).

14. C. Brée, A. Demircan, S. Skupin, L. Bergé, and G. Steinmeyer, Nonlinear
photon z-pinching in filamentary self-compression, in: Conference on Lasers and
Electro- Optics/International Quantum Electronics Conference, OSA Technical
Digest, ITuC1/1- ITuC1/2 (2009).

15. C. Brée, A. Demircan, S. Skupin, L. Bergé, and G. Steinmeyer, Nonlinear
photon z-pinching in filamentary self-compression, in: CLEO/Europe and EQEC
2009 Conference Digest, CF5_4 (2009).

16. C. Brée, J. Bethge, S. Skupin, L. Bergé, A. Demircan, G. Steinmeyer, Double
Selfcompression of Femtosecond Pulses in Filaments, in: Quantum Electronics and
Laser Science Conference, OSA Technical Digest, JThD6 (2010)

17. C. Brée, J. Bethge, A. Demircan, E. T. J. Nibbering, and G. Steinmeyer, On the
Origin of Negative Dispersion Contributions in Filamentary Propagation, in:
Conference on Lasers and Electro-Optics, OSA Technical Digest, CMU2 (2010).

18. C. Brée, G. Steinmeyer, and A. Demircan, Saturation of the all-optical Kerr
effect, in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical
Digest (CD) (Optical Society of America, 2011), paper CWR6.

19. C. Brée, A. Demircan, and G. Steinmeyer, Saturation of the All-Optical Kerr
Effect, in CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest
(CD) (Optical Society of America, 2011), paper EF4 6.

xiv List of Publications



Symbols and Conventions

Rez Real part of z
Imz Imaginary part of z
ox;

o
ox

Partial differentiation with respect to x

r! Nabla operator r!¼ ox e!x þ oy e!y þ oz e!y

e!x Unit vector in x direction

r! Position vector r!¼ x e!x þ y e!y þ z e!z

D Laplace operator D ¼ o2
x þ o2

y þ o2
z

D? Transverse Laplacian D? ¼ o2
x þ o2

y

dðxÞ Delta distribution
R

dxdðxÞf ðxÞ ¼ f ð0Þ
HðxÞ

Heaviside function HðxÞ ¼ 1; if x [ 0
0; if x\0

�

sgn(x)
sign function sgnðxÞ ¼

1; ifx [ 0
0; ifx ¼ 0
�1; ifx \0

8
<

:

bGðxÞ ¼ F G½ �ðxÞ Fourier transform, bGðxÞ ¼ 1
2p

R
GðtÞeixtdt

GðtÞ ¼ F�1 bG
h i
ðtÞ Inverse Fourier transform, GðtÞ ¼

R
bGðxÞe�xtdx

H½f �ðxÞ
Hilbert transform, H f½ �ðxÞ ¼ � 1

p P
R1

�1

f ðXÞ
X�x dX

�0 Vacuum permittivity �0 ¼ 8:854187817� 10�12 As/Vm
l0 Vacuum permeability l0 ¼ 4p� 10�7 Vs/Am
� Relative permittivity
x Angular frequency
x0 Center angular frequency
c Velocity of light in vacuum, c ¼ 299792458 m/s

k
!

Wavevector k
!¼ kx e!x þ ky e!þy þkz e!z

kðxÞ Norm of wavevector, kðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y þ k2

z

q
¼ nðxÞx=c

xv



k0 Wave number at center frequency x0; k0 ¼ kðx0Þ
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TOD Third Order Dispersion
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HT Hilbert Transform
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TDSE Time Dependent Schrödinger Equation
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Chapter 1
Introduction

Femtosecond filaments are narrow self-confined beams of laser light maintaining
their beam diameters over distances widely exceeding the classical Rayleigh range
of a laser beam [1]. As shown in Fig. 1.1, such a self-organized, filamentary structure
of light and free electric charges emerges when pulsed femtosecond laser radiation
is focused into a gas cell. In the setup depicted, the cell was filled with argon at
atmospheric pressure. Due to the high optical intensities involved, the gas is ionized
to form a dilute plasma, as is evident by the characteristic bluish-violet fluorescence.
The latter sets in at the position of the so-called nonlinear focus FNL, which actually
precedes the position of the linear focus F . By the existence both of a nonlinear focal
point and the aforementioned long range propagation property, filaments apparently
defy the diffraction laws of linear optics [2, 3]. Indeed, the physical mechanisms
behind filament formation have given rise to many controversial discussions on their
sub-diffractive nature. Quite clearly, a filament is a highly nonlinear optical phenom-
enon that can only be generated with pulsed laser beams at peak powers in the GW
and MW range in gases and condensed media, respectively [4, 5]. In liquids, fila-
ments were first observed by Pilipetskii and Rustamov [6]. In gases, which possess
a Kerr nonlinearity three orders of magnitude smaller than that of liquids, the first
observation of atmospheric laser filaments [1] became only possible three decades
later with the development of the chirped pulse amplification (CPA) technique [7]
in the mid-eighties, which provides ultrashort laser pulses up to the PW level. With
typically observed filament diameters of some 100 µm in gases, the peak power of
some 10 GW required to observe filamentation translates into field strengths of sev-
eral 1010 V/m. This value approaches inner-atomic binding forces of the order of
one atomic unit of the electric field strength (5.14 × 1011 V/m).

Possible applications of femtosecond filamentation are widespread. Spectral
broadening due to self-phase modulation in filaments was first observed in Ref. [8].
The resulting white-light supercontinua have found applications in optical coherence
tomography or white-light LIDAR (light detection and ranging). The latter involves
atmospheric analysis utilizing the white-light continuum within a filament gener-
ated by a terawatt laser source, as realized, e.g., within the Teramobile project [9].

C. Brée, Nonlinear Optics in the Filamentation Regime, Springer Theses, 1
DOI: 10.1007/978-3-642-30930-4_1, © Springer-Verlag Berlin Heidelberg 2012
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FNL

F

Fig. 1.1 A femtosecond filament obtained by loosely focusing pulsed femtosecond laser radiation
into an argon filled gas cell. Initial pulse energy and duration are about 1 mJ and 45 fs, respectively.
F and FNL denote linear and nonlinear focus, respectively

A further example of remote optical sensing is provided by laser induced breakdown
spectroscopy (LIBS) in conjunction with the long-range propagation of femtosecond
filaments [10]. With this technique, remote samples can be irradiated with intensities
sufficiently strong to trigger photoionization, which enables the detection of charac-
teristic atomic emission lines. This method can, e.g., be used for a remote analysis
of objects of cultural heritage, e.g., sculptures or monuments [11]. Further potential
applications of femtosecond filamentation involve the wireless transfer of electric
current or the generation of Terahertz radiation [12]. The former aims, e.g., at a con-
tactless pantograph for the power supply of high-speed trains [13], while the latter
can be exploited, e.g., for security screening issues such as the remote sensing of
explosives.

The intensities within filaments are sufficiently high to create a dilute plasma via
multiphoton or tunneling ionization processes. This leads to a competition between
cumulative effects from plasma contributions to the refractive index and instanta-
neous Kerr contributions, which yields a considerable dynamics of the optical pulse
shape both, in the spatial and temporal domain [14]. Under suitable experimental con-
ditions, this may lead to the surprising experimental effect of pulse self-compression:
in addition to the spatial confinement within the laser beam, nonlinear optical effects
have been shown to produce further pulse shortening upon nonlinear propagation,
coming close to the old dream of the formation of optical light bullets [15], which
ideally self-concentrate their energy while traveling through a nonlinear medium.
This phenomenon, while analyzed previously in numerical simulations [16], is now
shown to be chiefly of spatial nature, strongly contrasting any previous method for
pulse compression [17, 18]. Furthermore, it is shown both experimentally and in
numerical simulations that the processes leading to pulse self-compression can be
cascaded for suitably chosen input pulse parameters [19].

Filaments are strong nonlinear attractors and have been shown to possess
self-healing capabilities of their transverse spatial profile. The time domain ana-
logue of this self-restoration property is another surprising finding with pulse self-
compression. It is related to the fact that experimental set-ups frequently require cell
windows to employ the nonlinearity of atomic gases. Compared to the dispersion
and nonlinearity of a gaseous medium, cell windows represent a sudden and non-
adiabatic change in either property of a factor of some thousand. Either the nonlinear
or the dispersive linear influence should immediately destroy the short temporal
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signature of the self-compressed pulses generated within the filament. This puzzling
controversy was recently theoretically solved [20, 21], predicting that a self-healing
mechanism may regenerate the original shortness of the pulse; a prediction that will
now be experimentally verified within this thesis [22].

Finally, with field strengths approximating inner-atomic binding forces, the ques-
tion arises whether there is an influence of higher-order Kerr effects beyond χ(3)

in any of the above-discussed. As self-focusing in a Kerr medium with χ(3) > 0
leads to an intensity blow-up, counteracting higher-order Kerr terms have origi-
nally been discussed phenomenologically to explain filament formation as such [23].
On the contrary, recent papers have mostly neglected nonlinear susceptibilities higher
than third order [4, 5]. Instead, clamping of χ(3)-governed nonlinear refraction
is explained by Drude contributions from plasma formation. This perspective has
recently been challenged by measurements [24, 25] of the nonlinearly induced bire-
fringence, clearly indicating an effect of higher-order Kerr contributions to filament
formation, which gave rise to a controversial discussion [26–32]. This thesis provides
a totally independent approach to the question of a paradigm change in the expla-
nation of femtosecond filaments, computing the nonlinear refractive index changes
via a Kramers-Kronig transformation of multiphoton ionization rates [33]. For the
case of two-photon ionization, which is related to second-order nonlinear refraction
governed by χ(3) [34–36], this method yields results which are in excellent agree-
ment with all available accepted experimental and theoretical materials published
previously.

As a single-parameter theory, depending only on the ionization energy of the
respective atom, the employed model provides estimates on the nonlinear refrac-
tive index that clearly confirm the importance of the higher-order Kerr coefficients
[24, 25] for filament stabilization [31]. This opens a perspective on a paradigm change
in the understanding of nonlinear optics at extreme intensities. Quite clearly, under
certain conditions, high-order refractive nonlinearities may all set in simultaneously
above a threshold intensity, similar to the behavior of dissipative nonlinearities in
phenomena as exploited in high-harmonic generation. This may open a completely
new perspective at nonlinear optical phenomena in the extreme, in the highly inter-
esting merger region between traditional perturbative nonlinear optics and high-field
nonlinear optics.

The numerical simulations discussed in this thesis were performed with a FOR-
TRAN90 code which was kindly provided by Dr. Luc Bergé (Commissariat à
l’Energie Atomique et aux Energies Alternatives, Arpajon, France) and Prof. Ste-
fan Skupin (Max Planck Institute for the Physics of Complex Systems, Dresden,
and Friedrich Schiller University, Institute of Condensed Matter Theory and Optics,
Jena). The code uses the Message Passing Interface (MPI) libraries which enable
parallel computation.

This thesis arose from a joint project of Weierstrass Institute for Applied Analysis
and Stochastics (WIAS) and Max Born Institute for Nonlinear Optics and Short Pulse
Spectroscopy (MBI). All simulations were performed on the blade cluster euler
(Hewlett-Packard CP3000BL) at WIAS. For the experimental parts of the thesis,
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a Ti:sapphire regenerative amplifier system (Spectra Physics Spitfire) at MBI was
employed. Access to the laser system was kindly granted by Dr. Erik Nibbering.
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Chapter 2
Theoretical Foundations of Femtosecond
Filamentation

In the following chapter, the theoretical modeling of femtosecond filamentation is
discussed. For a detailed understanding of this phenomenon, the dynamical equation
governing the evolution of the laser electric field have to be identified. As only fem-
tosecond filaments in gases are considered here, these are provided by Maxwell’s
equations [1] in an isotropic, homogeneous, non magnetizable dielectric. Thermal
effects can be neglected here as they do not show up on a femtosecond timescale.
In addition, the propagation equations admit further simplification as the radiation
emitted by modern laser sources exhibits a highly directional character. In the fol-
lowing, the positive z-direction is chosen as the propagation direction of the beam.
The electric field is decomposed into plane waves with wave vector �k. Then, the
notion of directional beam propagation along z implies kz > 0 and k⊥/|�k| � 1,

where k⊥ is the modulus of the transverse wave vector, i.e., k⊥ =
√

k2
x + k2

y . With

these assumptions, it can be shown that with good accuracy, the Maxwell equations
can be factorized [2, 3], yielding a first order partial differential equation in z, also
known as Forward Maxwell’s Equation (FME) [4]. The latter governs the evolution
of the directional laser field. Compared to Maxwell’s equations, the FME allows
for a greatly simplified numerical treatment and speeds up the calculations. More-
over, the FME allows the description of ultra-short, ultra-broadband laser radiation
emitted by modern, mode-locked femtosecond laser sources. The latter emit laser
pulses with durations <10 fs. For laser radiation with a spectrum centered around
800 nm, this duration corresponds to less than three oscillations of the optical carrier
wave. While the propagation of narrow-band optical pulses in a Kerr medium can be
adequately described by a Nonlinear Schrödinger Equation (NLSE) [5], the slowly
varying envelope approximation (SVEA) fails for these few-cycle pulses. Never-
theless, assuming moderate restrictions on the pulse and the propagation medium,
a nonlinear envelope equation (NEE) [6] can be derived. The NEE is a generaliza-
tion of the NLSE of Ref. [5] and turned out to be a successful model describing the
dynamics of few-cycle femtosecond pulses, reproducing experimental results [7].
In fact, historically, the NEE may be considered an ancestor of the more general
FME.

C. Brée, Nonlinear Optics in the Filamentation Regime, Springer Theses, 7
DOI: 10.1007/978-3-642-30930-4_2, © Springer-Verlag Berlin Heidelberg 2012



8 2 Theoretical Foundations of Femtosecond Filamentation

A complete description of intense laser radiation propagating in a dielectric
medium further requires an appropriate modeling of the polarization �P due to the
response of bound electrons induced by the laser field. As in filamentation intensities
of the order of 1013 W/cm2 are involved [8], the polarization is expected to depend
on the electric field in a nonlinear manner. Moreover, the intensity levels achieved in
filamentation experiments are sufficiently high to ionize the medium, resulting in the
generation of a dilute plasma. This gives rise to a non-zero electron density ρ and an
electron current density �J coupling to the electric field. However, the laser wavelength
typically used for the generation of femtosecond filaments is 800 nm (the character-
istic wavelength of a Ti:sapphire amplifier), corresponding to a photon energy of
≈1.55 eV. In contrast, the ionization potential of the gases relevant for filamenta-
tion experiments varies between 10 and 25 eV. This suggests that ionization does
not proceed via direct (single-photon) photoionization. Rather, ionization proceeds
in a highly nonlinear manner, via, e.g., multiphoton or tunneling ionization [9, 10]
which leads to an equally nonlinear dependence of ρ and �J on the laser electric field.

Finally, the aim is to identify those mechanisms leading to the observed long-
range propagation [11–13] of femtosecond filaments as well as other characteristic
properties as will be detailed below. To this aim, the envelope equation is analyzed
in certain limiting cases in order to isolate the dominant effects contributing to the
specific phenomenon under consideration.

2.1 The Forward Maxwell Equations

Maxwell’s equations governing the evolution of an electromagnetic field in a dielec-
tric material may be expressed as a coupled set of vector-wave equations for the
electric field �E , the dielectric displacement �D and the current density �J according
to [1, 8, 14]

�∇( �∇ · �E) − �∇2 �E = −μ0

(
∂2 �D
∂t2 + ∂ �J

∂t

)
(2.1)

�∇ · �D = ρ. (2.2)

Here, �D = ε0 �E + �P is the dielectric displacement which accounts for the bound-
charge density due to the polarization �P induced by the laser electric field. The
polarization corresponds to an ensemble average of the atomic or molecular dipole
moments induced by the laser field. Throughout the thesis, the paraxial approximation
is used, assuming that the laser beam may be Fourier decomposed into plane waves
with wave-vectors �k satisfying

k⊥ � |�k|, (2.3)

such that the angle between �k and the optical axis is sufficiently small. As discussed
in the introductory remarks to this chapter, this is a reasonable assumption as laser
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beams exhibit a highly directional character and low beam divergences. Moreover,
the polarization is decomposed according to

�P = �P(1) + �PNL, (2.4)

where the first term �P(1) varies linearly and the second term varies nonlinearly
with the electric field. Thus, �P(1) describes classical, linear optical phenomena,
while the nonlinear response �PNL leads to nonlinear optical effects and induces self-
interactions of the optical field.

For an isotropic, homogeneous medium, �P(1) is collinear to the electric field. In the
following, it is often useful to treat Eq. (2.2) in the frequency-domain representation.
The frequency-domain analogue Ĝ(ω) is related to the function G(t) via the Fourier-
transform F , for which the following convention is adopted throughout the thesis,

Ĝ(ω) = F[G](ω) ≡ 1

2π

∫
G(t)eiωt dt (2.5)

G(t) = F−1[Ĝ](t) ≡
∫

Ĝ(ω)e−iωt dω. (2.6)

Assuming local response,1 the frequency domain representation of the linear polar-
ization may be written as [14]

�̂P(1)
(�r ,ω) = ε0χ

(1)(ω) �̂E(�r ,ω). (2.7)

The first order susceptibility χ(1) is related to the frequency dependent refractive
index n(ω) and absorption coefficient α(ω) via (n(ω)+ iα(ω)c/2ω)2 = ε(ω), where
the dielectric permittivity is given by the relation ε(ω) = 1 + χ(1)(ω). It has been
shown in Refs. [3, 8] that the approximation �∇ · �E ≈ 0 is justified if, in addition to
the paraxiality criterion Eq. (2.3), the nonlinear polarization satisfies the inequality

|PNL,i |
ε0n2(ω)

� |Ei |, (2.8)

where k(ω) := |�k| = n(ω)ω/c describes the modulus of the wave vector and
i = x, y, z labels the vector components. Thus, exploiting the condition Eq. (2.8),
the frequency domain analogue of Eq. (2.2) reads

∂2 �̂E
∂z2 + k2(ω) �̂E + ∇2⊥ �̂E = −μ0ω

2
(

PNL + i
�̂J
ω

)
, (2.9)

1 Nonlocally responding media play a crucial role for the physics of negative refraction [15].
In these media, the susceptibility χ(1)(ω, �k) depends both on the frequency ω and the wave vector
�k. The non-local analogue to Eq. (2.7) therefore involves a convolution in the spatial domain.



10 2 Theoretical Foundations of Femtosecond Filamentation

where the imaginary part of the linear susceptibility has been neglected, i.e. k2(ω) =
ω2ε(ω)/c2, with a real-valued dielectric function ε(ω). This is a suitable approxi-
mation for modeling femtosecond pulse propagation in gases at standard conditions,
which exhibit negligible linear losses [8]. The latter approximation will be used
throughout this work, unless otherwise stated. It is furthermore assumed that the
nonlinear response is isotropic and homogeneous. In combination with the paraxi-
ality assumption �∇ · �E ≈ 0, this leads to a decoupling of the vectorial components
�E = (Ex , Ey, Ez) in the propagation Eq. (2.9). Assuming linear polarization of the
initial laser field, �E = (Ex , 0, 0), the polarization is then preserved during beam
propagation in the paraxial regime, and throughout the thesis, it is justified to switch
to a scalar description, setting

�E = E �ex , �PNL = PNL�ex , �J = J �ex (2.10)

with orthogonal unit vectors �ex , �ey, �ez . However, it should be noted that for large
nonparaxiality, the latter assumptions cannot be maintained, leading to a nonlin-
ear coupling of differently polarized states, as has recently been demonstrated in
Ref. [16].

Although the second order wave equation (2.9) provides a convenient simplifi-
cation of the full model Eq. (2.2), both the paraxiality criterion and the condition
Eq. (2.8) have not been fully exploited yet. In fact, as demonstrated in [2, 3, 17],
the second order wave equation can be factorized to yield a first order differential
equation in z, a fact that greatly simplifies numerical beam propagation. A detailed
derivation of this factorization procedure can be found in Refs. [2, 3]. Here, the
method is outlined by means of the one-dimensional Helmholtz equation with an
inhomogeneity h,

∂2 Ê

∂z2 + k2 Ê = ĥ (2.11)

where k = n(ω)ω/c and Ê(z,ω) denotes the frequency domain representation of
the electric field E(z, t) in the time domain.

Fourier transform w.r.t z, Ê(z,ω) → Êβ(β,ω), where β denotes the conjugate
variable yields the equation

Êβ = ĥβ
k2 − β2 , (2.12)

where it was used that ̂∂/∂z = −iβ and the equation was formally solved for Êβ .
The rather formal manipulations leading to Eq. (2.12) can be substantiated by noting
that the Fourier transform w.r.t. β,

Gω(z, z′) =
∫

dβ
e−iβ(z−z′)

k2(ω) − β2 , (2.13)
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corresponds to the Green’s function G(z, z′) of the one-dimensional Helmholtz equa-
tion. This allows the construction of a solution to the inhomogeneous Eq. (2.11)
according to

Ê(z,ω) =
∫

dz′Gω(z, z′)̂h(z′,ω). (2.14)

However, note that appropriate boundary conditions [2] have to be supplied to solve
the problem (2.11) using Eqs. (2.12) and (2.13).

Factorization of the Helmholtz equation is achieved by noting that Eq. (2.12) can
be decomposed according to [3]

Êβ ≡ ĥβ
β2 − k2 = Ê+

β + Ê−
β , (2.15)

where forward and backward propagating electric field components Ê±
β were defined

according to

Ê+
β = − ĥβ

2k

1

β + k
, Ê−

β = ĥβ
2k

1

β − k
. (2.16)

The Helmholtz equation in the z-domain is therefore equivalent to the set of first-oder
differential equations

(∂z + ik)Ê+ = ĥ

2k
, (∂z − ik)Ê− = ĥ

2k
(2.17)

The wave fields E± correspond to waveforms traveling into the positive and nega-
tive z directions. In the linear regime, they evolve independently. The inhomogeneous
three-dimensional Helmholtz Equation (2.9) allows a completely analogous factor-
ization, with the subtle difference that the inhomogeneity h may depend on the field
E to model pulse propagation in the nonlinear regime. In this case, the factorized
Helmholtz equations for the forward- and backward propagating field components
are nonlinearly coupled. However, it is shown in Ref. [3] that for an initial field
E = E+ + E− with a dominant forward-propagating field component E+, the
backward-propagating component E− stays small along z-propagation and can be
neglected, as long as the paraxiality criterion k⊥/|�k| � 1 and the condition (2.8) are
fulfilled.

As shown in Sect. 2.3, these criteria are usually satisfied in filamentary propa-
gation, which justifies the assumption Ê = Ê+. The factorization procedure thus
yields a first order partial differential equation for the forward-propagating field,

∂ Ê

∂z
= i

2k(ω)
∇2⊥ Ê + ik(ω)Ê + iμ0ω

2

2k(ω)

(
̂PNL + i

Ĵ

ω

)
. (2.18)

This equation has originally been used in Ref. [4] as a starting point to analyze
supercontinuum generation in photonic crystal fibers. While Eq. (2.18) describes
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freely propagating pulses in a nonlinear medium, a rigorous derivation of an equation
analogous to the FME, describing forward-propagting pulses in a guided geometry,
has recently been given in Refs. [18, 19].

2.2 The Nonlinear Optical Response

This section is devoted to the nonlinear response of the material to the intense laser
field. The basic assumption of perturbative nonlinear optics is that the nonlinear
polarization PNL of an isotropic medium can be decomposed as

PNL = P(3) + P(5) + P(7) + · · · . (2.19)

As only isotropic, centrosymmetric media are examined in the following, all even-
order contributions P(2k) vanish identically [20]. Demanding that the nonlinear
response respects time-translational invariance of the dynamical equation leads to
the following expression for the n-th order contribution in the time domain2 [22].

P(n)(�r , t) = ε0

∞∫

−∞
dτ1

∞∫

−∞
dτ2...

∞∫

−∞
dτn R(n)(τ1, τ2, ..., τn)

× E(�r , t − τ1)E(�r , t − τ2)...En(�r , t − τn). (2.20)

In the frequency domain, this translates into

P(n)(�r ,ω) = ε0

∫
· · ·

∫
χ(n)(−ωσ;ω1, ...,ωn)E(�r ,ω1)...E(�r ,ωn)δ(ω − ωσ)dω1...dωn,

(2.21)

where ωσ = ω1 + ω2 + · · · + ωn , and only homogeneous media are considered
for which the response kernel R(n) and the susceptibilities χ(n) are independent of
position. The n-th-order contribution to the nonlinear polarization is frequently con-
sidered as resulting from an n + 1-photon process interacting with bound electronic
states. From this point of view, the delta function in the integrand ensures conserva-
tion of photon energy, �ω = �ω1 + · · · + �ωn .

2 As in the case of the linear polarization, spatial dispersion modeled by a wave-vector dependent
nonlinear susceptibility χ(n)(ω1, · · · ,ωn, �k1, · · · , �kn) was disregarded. Spatially dispersive non-
linearities involve a nonlocal optical response and can arise from thermal effects or may occur in
dipolar Bose-Einstein condensates [21].
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2.2.1 Third-Order Response to a Monochromatic Wave

In the following, the impact of the first non-vanishing order P(3) on a monochro-
matic plane wave of frequency ω0 and amplitude E0 propagating into the positive
z-direction with wave-vector k0 ≡ k(ω0) = n(ω0)ω0/c,

E(�r , t) = E0 cos(ω0t + kz + ϕ) (2.22)

will be discussed. With Euler’s formula for the cosine, this may be decomposed
according to

E(�r , t) = 1

2

(
Aeiω0t+ik0z + A∗e−iω0t−ik0z

)
, (2.23)

where
A = E0eiϕ. (2.24)

With the help of Eq. (2.23), the frequency-domain representation Eq. (2.21) of the
third-order nonlinear polarization induced by a monochromatic plane wave may be
written as [20]

P(3)(ω) = 3

8
ε0χ

(3)(−ω0;ω0,ω0,−ω0)|A|2Aδ(ω − ω0)e
ikz

+ 3

8
ε0χ

(3)(ω0;−ω0,−ω0,ω0)|A|2A∗δ(ω + ω0)e
−ikz

+ 1

8
ε0χ

(3)(−3ω0;ω0,ω0,ω0)A3δ(ω − 3ω0)e
i3kz

+ 1

8
ε0χ

(3)(3ω0;−ω0,−ω0,−ω0)A∗3δ(ω + 3ω0)e
−i3kz . (2.25)

It follows that the polarization P(3) oscillates at frequencies ±3ω0 and ±ω0. While
the latter give rise to a nonlinear refractive index change as will be detailed below, the
former correspond to the generation of a third-harmonic wave copropagating with
the fundamental wave, a phenomenon known as third-harmonic generation (THG).
However, the expression (2.25) shows that there exists a mismatch between the wave-
vector 3k(ω0) of the polarization and the wave-vector k(3ω0) of the radiated harmonic
wave, �k = k(3ω0) − 3k(ω0), whenever the medium exhibits nontrivial dispersion
n(3ω0) �= n(ω0)[20]. In general, this will lead to destructive interference of the
third harmonic waves generated at different positions unless suitable phase-matching
techniques [20] are applied which ensure vanishing of the wave-vector mismatch �k.
Harmonic generation is therefore disregarded in the following, focusing the attention
to self-induced refractive index changes.
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2.2.2 Third-Order Response to an Optical Pulse

While Eq. (2.25) was derived for a monochromatic plane wave, filamentation is only
observed for sufficiently high peak powers of the laser pulse of the order of 100 GW,
which is impossible to achieve with monochromatic light. Instead, only pulsed laser
sources generating ultrashort pulses with durations of the order of some ten femtosec-
onds are capable of providing the required peak optical powers. Equation (2.25) there-
fore has to be generalized for ultrashort optical pulses. The subsequent discussion
is greatly simplified by introducing so-called complex-valued analytic signals. With
the decomposition (2.23), the real-valued monochromatic wave is seen to consist of
positive and negative frequency components. This can be generalized for arbitrary
time-dependence of the electric field, using that the Fourier transform of any real-
valued function F(t) satisfies F̂(−ω) = F̂∗(ω). This reveals that the information
contained in the negative frequency components of F can be considered redundant,
and instead of the real-valued electric field E , the so called analytic signal E A [19] is
considered in the following. This is composed of the positive frequency components
of E according to

E A(�r , t) = 2

∞∫

0

dω Ê(�r ,ω)e−iωt . (2.26)

From this, the electric field may easily be reconstructed according to

E(�r , t) = 1

2
(E A(�r , t) + E∗

A(�r , t)). (2.27)

It is moreover useful to factorize the analytic signal E A into an envelope A and an
exponential oscillating at the carrier-frequency ω0 of the laser field,

E A(�r , t) = A(�r , t)e−iω0t , (2.28)

where the carrier frequency ω0 denotes the mean frequency [23]

ω0 =

∞∫
−∞

dω|Ê |2ω
∞∫

−∞
dω|Ê |2

. (2.29)

In the frequency domain, the definition (2.28) corresponds to the identity Â(�r ,ω) =
Ê A(�r ,ω + ω0), which shows that A has zero mean frequency, corresponding to the
removal of the fast carrier oscillations at ω0, leaving only a pulse envelope. In what
follows, the generalization of Eq. (2.25) for short laser pulses shall be discussed.
However, experimental or theoretical data describing the dispersion of χ(3) over a
large frequency range often vary by orders of magnitude [24]. More reliable data is
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available from measurements or calculations of χ(3) at a single frequency. Conse-
quently, it is henceforth assumed that the spectral bandwidth of the pulse is small
with respect to the frequency scale on which χ(3) shows notable variation. Then, it is
possible to show [8] that the third-order polarization induced by the electromagnetic
pulse is given by

P(3)(�r , t) = 3

8
ε0χ

(3)(−ω0;ω0,ω0,−ω0)|A(�r , t)|2A(�r , t)e−iω0t + c.c.

+ 1

8
ε0χ

(3)(−3ω0;ω0,ω0,ω0)A3(�r , t)e−i3ω0t + c.c.. (2.30)

Neglecting again the THG term oscillating at 3ω0, the third order polarization gives
rise to an intensity dependent change of the refractive index. This is due to the fact
that sufficiently strong electromagnetic fields can distort the electronic distribution
within in the medium, which gives rise to a modified refractive index. This effect is
also referred to as the all-optical Kerr effect [25] and should not be confused with the
electro-optic (DC) Kerr effect [26], where a static electric field induces birefringence
in the material. In order to further evaluate the third order contribution to the intensity
dependent refractive index (IDRI), it is useful to introduce the optical intensity I .
As the energy density of an electric field is proportional to the square of the electric
field strength, it follows that the optical intensity is given by [23]

I (�r , t) = ε0cn0
1

T

t+T/2∫

t−T/2

E2(�r , t ′)dt ′, (2.31)

where n0 ≡ n(ω0) denotes the refractive index at the center frequency, and the aver-
age over one optical cycle of duration T = 2π/ω0 was taken. Demanding that the
envelope A defined in Eq. (2.28) varies slowly compared to the carrier oscillation
at ω0, it follows that the above relation for the cycle-averaged intensity can be eval-
uated to give

I = 1

2
n0ε0c|A|2 (2.32)

Including only the third-order nonlinear polarization, it can be deduced from
Eq. (2.30) that the IDRI due to the all-optical Kerr effect is given by

n(I ) = n0 + n2 I, (2.33)

where n2 denotes the second order nonlinear refractive index which is given by

n2 = 3

4n2
0ε0c

χ(3) (2.34)
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Note that for the latter derivation, both linear and nonlinear absorption were dis-
regarded, which allows to impose Imχ(1) = Imχ(3) = 0. In fact, this approxima-
tion is frequently justified in the context of femtosecond filamentation [8, 12]. A
more detailed discussion of higher-order nonlinear refraction and absorption coeffi-
cients and their relation to the nonlinear susceptibilities χ(n) is provided in Sect. 2.3.
Indeed, it is one of the main conclusions both, of recent experimental results [27–29],
and of the theoretical investigations in Chap. 4, that higher-order nonlinearities χ(n)

for n > 3 actually play a greater role than previously supposed.

2.2.3 Plasma Response

Besides the all-optical Kerr effect, an important contribution to the nonlinear refrac-
tive index is given by free carriers. In fact, the intensities achieved within femtosecond
filaments are sufficiently high to trigger photoionization processes. The femtosecond
laser pulse thus propagates in a self-generated plasma. The current density J taking
into account the generation of free carrier by photoionization can be decomposed
according to

J = JFC + JPI, (2.35)

where JFC is the current density of free carriers subject to the electric field E , while
JPI accounts for losses due to photoionization. Both quantities couple to the FME
Eq. (2.18). The dynamics of the free carriers is treated in terms of the Drude model
[30, 31] according to

∂ JFC

∂t
+ JFC

τc
= q2

e ρ

me
E (2.36)

Here, qe and me denote electron charge and mass, respectively, ρ denotes the number
of free carriers per unit volume and τc represents the mean time between collision
of free carriers. In the frequency domain, Eq. (2.36) can be formally solved for the
Fourier transform ĴFC, and it is found that the current of free carriers (2.18) is given
by [8]

− μ0ω

2k(ω)
ĴFC = 1

2k(ω)

(
− ωn0σ(ω)

c
− i

ω2
0

c2ρc(1 + ν2
e /ω2)

)
ρ̂E (2.37)

where n0 = n(ω0) is the refractive index at the carrier frequency, νe = 1/τc and
ρc = ω2

0meε0/q2
e is the critical density of free carriers for which the plasma becomes

opaque for a laser beam of carrier frequency ω0. The cross-section for collision of
free carriers is given by

σ(ω) = q2
e

meε0n0cνe(1 + ω2/ν2
e )

. (2.38)

http://dx.doi.org/10.1007/978-3-642-30930-4_4
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In Eq. (2.37), the loss term involving the cross-section σ(ω) accounts for colli-
sional ionization by free carriers accelerated in the laser field. As this process con-
sumes electromagnetic energy, it is frequently referred to as inverse Bremsstrahlung.
In contrast, the term involving the purely imaginary prefactor of ρ̂E corresponds to
the change of the refractive index due to the plasma and will be discussed below.

In addition, direct photoionization of neutral atoms takes energy from the laser
field. This requires the introduction of the loss current [8],

JPI = k0

ω0μ0

Uiw(I )

I
(ρ0 − ρ)E . (2.39)

This quantity depends on the ionization potential Ui of the gas species and on the
neutral density ρ0. Furthermore, it depends on the ionization rate w(I ). A theoretical
derivation of the ionization rate of atoms or molecules subject to intense laser fields
has been performed by several independent researchers [10, 32–36]. Throughout
this work, the results of Perelomov, Popov and Terent’ev (PPT) [32, 35] are applied.
A deeper discussion of the PPT model is presented in Chap. 4 of this thesis. As the
ionization depends highly nonlinear on the intensity, it is justified to assume that
only frequency components of the pulse close to the carrier frequency ω0 contribute
to ionization processes. Therefore, for the collisional cross section the replacement
σ(ω) → σ(ω0) is performed throughout. It then follows that the density ρ of the
self-generated plasma satisfies the rate equation

∂ρ

∂t
= w(I )(ρ0 − ρ) + σ(ω0)

Ui
ρI. (2.40)

While typical timescales relevant in filamentation are of the order of 10−13 −10−14 s,
recombination of ions and electrons takes place on a nanosecond timescale. This
justifies to neglect recombination effects in Eq. (2.40). The first term on the r.h.s. of
Eq. (2.40) accounts for photoionization, while the second term models the contribu-
tion of collisional ionization to the electron density.

2.3 Contributions to the Nonlinear Refractive Index

2.3.1 Plasma Contributions

For the case of a monochromatic plane wave of frequency ω = ω0, leading to
k(ω) = k(ω0) = k0 and n(ω) = n(ω0) = n0, the FME Eq. (2.18) reduces to

∂ Ê

∂z
= −i

ω0

c
(n0 + �n p)Ê, (2.41)

http://dx.doi.org/10.1007/978-3-642-30930-4_4
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where additionally, losses due to collisional ionization, i.e.,νe → 0, and the nonlinear
polarization were neglected. This shows that for νe = 0, the contribution of the free
carriers to the refractive index is given by �n p = −ρ/2n2

0ρc. In contrast, using the
Drude model of a collisionless plasma and the wave Eq. (2.9), it turns out that the
presence of plasma in a medium with neutral refractive index n0 lowers the refractive
index according to [37]

n =
√

n2
0 − ω2

p

ω2 , (2.42)

where ωp = √
ρq2

e /meε0 = ω0
√
ρ/ρc is the plasma frequency. The obvious discrep-

ancy arises from the approximations introduced with the FME: the term accounting
for the linear polarization ∼k2(ω)Ê exhibits a quadratic dependence on the wave
vector k, while the current density JFC enters linearly. In contrast, due to the factor-
ization procedure, the linear polarization gives rise to a term ∼ k(ω)Ê on the r.h.s. of
Eq. (2.9), while the term containing the current is not affected by the factorization and
enters linearly. However, for ρ � ρc, Eq. (2.42) may be approximated according to

n = n0 − ρ

2n2
0ρc

, (2.43)

which corresponds to the plasma induced refractive index change derived from the
FME. Thus, the inequality ρ � ρc provides an additional criterion for the validity of
the FME. As an example of practical relevance, filamentary propagation of a pulsed
femtosecond laser beam emitted by a Ti:sapphire amplifier (with a center wavelength
of 800 nm) is considered. Assuming that the pulse is propagating in a gaseous medium
of atmospheric pressure, the ratio of ionized particles is of the order of 10−3[38],
i.e. ρ ≈ 3 × 1016 cm−3, while the critical plasma density for the given wavelength is
ρc ≈ 2 × 1021cm−3. Under these assumptions the plasma-induced refractive index
change in femtosecond filaments is therefore of the order of ρ/ρc ≈ 10−5, which
justifies the approximations introduced with the FME Eq. (2.18).

2.3.2 Contributions Due to the All-Optical Kerr Effect

In linear optics, the refractive index n0 and absorption coefficient α0 are related to
the complex dielectric permittivity ε according to

(n0 + iα0c/2ω)2 = ε. (2.44)

Using
D̂ ≡ ε0εÊ = ε0 Ê + P̂(1) (2.45)
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satisfied by the dielectric displacement and Eq. (2.7) for the linear polarization P̂(1)

it follows that ε(ω) = 1 +χ(1)(ω). This consideration can be generalized to the case
of nonlinear optics if it is assumed that the spectral bandwidth of the optical pulse
E is small compared to the frequency scale on which the nonlinear susceptibilities
χ(n) show notable dispersion. In analogy to the reasoning that led to Eq. (2.30) for
the third-order susceptibility χ(3), an envelope description (Eq. 2.28) is introduced
to identify the self-refraction terms contributing to the nonlinear polarization P(n).
This yields an intensity dependent dielectric permittivity [39]

ε(I ) = 1 + χ(1)(ω0) +
∑

k≥1

C (k)χ(2k+1)
ω0

|A|2k, (2.46)

where the intensity I is related to the envelope A according to Eq. 2.32. The factor
C (k) follows from combinatorial considerations [40] and is given by

C (k) = (2k + 1)!
22kk!(k + 1)! , (2.47)

and χ(n)
ω0 denotes the nth-order nonlinear susceptibility associated to self-refraction,

e.g., for the third order polarization, χ(3)
ω0 = χ(3)(−ω0,ω0,ω0,−ω0), while χ(1)(ω0)

denotes the linear susceptibility at frequency ω0. From Eq. (2.46), a nonlinear refrac-
tive index n(I ) and a nonlinear absorption coefficient α(I ) can be defined by gener-
alizing Eq. (2.44) according to

(n(I ) + iα(I )c/2ω)2 = ε(I ). (2.48)

Compact approximate expressions for n(I ) and α(I ) can be derived if it is assumed
that the nonlinear refraction and absorption changes �n(I ) = n(I ) − n0 and
�α(I ) = α(I ) − α0 are sufficiently small such that only first order contributions
of these quantities have to be considered. In addition, it is assumed that the linear
absorption coefficient α0 satisfies αc/ω � n0 [22], which leads to the following
expressions for the nonlinear refractive index and absorption coefficient,

n(I ) = n0 + ∑
k≥1

n2k I k

α(I ) = α0 + ∑
K≥2

βK I K−1.
(2.49)

The coefficients n2k and βK are related to the real and imaginary part of the nonlinear
susceptibilities χ(2k+1) pursuant to

n2k = 2k−1C (k)

n0(n0ε0c)k
Reχ2k+1 (2.50)
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βK = ω0

c

2K−1C (K−1)

n0(n0ε0c)K−1 Imχ2K−1. (2.51)

It is interesting to note that the approximations involved in defining a nonlinear refrac-
tive index are closely related to the approximation (2.8) made during the derivation of
the FME. In fact, in terms of refractive index changes, the condition on PNL translates
itself into �n(I ) � n0.

In Chap. 4 it is shown that the nonlinearly induced refractive index changes �n
are small for the noble gases helium, neon, argon, krypton and xenon, which are the
most commonly used media in experimental femtosecond filamentation. For these
gases, it can be shown that �n varies between ∼10−5 and ∼10−7 for intensities up to
40 TW/cm2 (xenon) and 300 TW/cm2 (helium), respectively. As the error introduced
by approximation (2.49) is of the order �n2, the use of the FME is clearly justified.

2.4 An Envelope Equation for Few-Cycle Optical Pulses

A further simplification of the FME may be obtained by imposing certain restrictions
on the envelope A. Besides assuming that the envelope varies slowly in time, it has to
be imposed that the envelope varies slowly in the spatial coordinate z. Thus, for the
following, besides subtracting the carrier oscillations atω0 in time, a subtraction of the
spatial oscillations along the propagation direction z is necessary. These oscillations
are governed by the z-component kz of the wave-vector. However, assuming paraxial
propagation, it is found that k⊥/k � 1 which is equivalent to kz ≈ k0. The electric
field is then rewritten in terms of amplitudes that are slowly varying both in time and
space pursuant to

E(�r , t) = √
c1

(
E(�r , t)eik0z−iω0t + E∗(�r , t)e−ik0z+iω0t

)
. (2.52)

The normalization factor c1 = μ0/(n2
0ε0) is chosen such that I = |E |2. The envelopes

E and A are related by E = A exp(−ik0z)/2
√

c1. The requirements leading to an
envelope E varying slowly both in t and z then read

∣∣∣∣
∂

∂z
E
∣∣∣∣ � k0|E |, (2.53)

and ∣∣∣∣
∂

∂t
E
∣∣∣∣ � ω0|E |. (2.54)

These restrictions provide the slowly varying envelope approximation (SVEA)
[41]. With these conditions, a simple first order PDE in z for the envelope E was
obtained [5], which, neglecting plasma response and nonlinearities higher than third

http://dx.doi.org/10.1007/978-3-642-30930-4_4
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order, corresponds to the Nonlinear Schrödinger Equation, see Appendix A for a brief
mathematical introduction. This equation has successfully been applied to explain
various phenomena during the early days of nonlinear optics. However, the latter
equation fails to correctly describe ultra-broadband pulses as they arise for example
in femtosecond filaments. This is due to the fact that for ultra-broadband pulses, the
slowly varying envelope ceases to be a meaningful concept, especially for pulses
consisting only of a few-cycles of the optical carrier field. However, a generalized
envelope equation capable of describing the propagation of few-cycle pulses can be
derived from the FME, which yields [6]

∂zE = i

2k0
T −1�⊥E + iDE + i

ω0

c
n2T |E |2E − i

k0

2ρc
T −1ρ(I )E

− σ

2
ρE − Uiw(I )(ρnt − ρ)

2I
E, (2.55)

∂tρ = w(I )(ρnt − ρ) + σ

Ui
ρI. (2.56)

In the above equation also referred to as the nonlinear envelope equation (NEE), only
the third-order nonlinearity χ(3) was taken into account. Furthermore, a transforma-
tion of variables t → t − z/vg(ω0) to a frame comoving with the group velocity
vg(ω) = (dk(ω)/dω)−1 of the laser pulse was performed, and it was used that
vg ≈ c for gaseous media at standard conditions. The operator T ensures validity of
the model in the few-cycle domain and is given by

T = 1 + i

ω0
∂t . (2.57)

while the operator D is given, in the frequency domain, by

D̂(ω) = k(ω) − k0 − (ω − ω0)
∂k

∂ω

∣∣∣∣
ω=ω0

(2.58)

A Taylor expansion of this expression followed by a Fourier transform, yields the
following expression for the operator D in the time domain,

D = 1

2!β2
∂2

∂t2 + 1

3!β3
∂3

∂t3 + · · · (2.59)

whereβn = dnk/dωn , evaluated atω = ω0, and it was used that the Fourier transform
F satisfies

F−1(ωĜ(ω)) = i
d

dt
G(t) (2.60)

The operator D describes the dispersion of the temporal pulse profile of the pulse
due to the fact that different frequency components of the pulse propagate with
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different velocities. For a narrow-band pulse, it often suffices to employ the power
series representation Eq. (2.59) up to some finite order. However, for ultra-broadband
pulses, it is more appropriate to evaluate D(ω) by using Sellmeier type equations
for n(ω) [41, 42]. Alternatively, in the context of fiber optics, a recent approach
involves approximation of D(ω) using rational functions [43]. The frequency domain
representation T̂ of T reads

T̂ = 1 + ω

ω0
(2.61)

This operator emerges by setting k(ω) ≈ n0ω/c on the r.h.s. of the FME (2.18),
where it is assumed that the carrier wavelength is far from a medium resonance such
that n(ω) exhibits weak dispersion. Subsequently, in theω dependent prefactors of Ê ,
P̂NL and Ĵ , the identity ω = ω0(1 + (ω − ω0)/ω0) is employed. The operator T
then emerges by noting that ω − ω0 → i∂t , where ∂t is restricted to act on the
pulse envelope E . With these approximations, the envelope Eq. (2.55) is obtained
after performing the Fourier transform into the time domain. It suitably models the
propagation of few-cycle pulses given that the electric field E satisfies

∣∣∣∣
∂E

∂z

∣∣∣∣ � k0|E |, (2.62)

This holds when the electric field evolves slowly during z-propagation. Therefore,
the approximations leading to the NEE are referred to as the Slowly Evolving Wave
Approximation (SEWA). Note that the SVEA corresponds to setting T = 1 in the
NEE (2.55). In contrast to the SVEA, the SEWA does not imply a limitation of the
pulse duration and can be used to model the propagation of few-cycle pulses in media
subject to the additional limitation

∣∣k0 − ω0

vg(ω0)

∣∣/k0 � 1, (2.63)

demanding that the group velocity differs from the phase velocity only marginally.
Historically, the generalized envelope equation was derived by Brabec and Krausz

prior to the FME. However, as shown above, the envelope Eq. (2.55) can be derived
from the more general FME in a rather straightforward manner. When wave-mixing
phenomena like THG or sum frequency generation in filaments are investigated, the
FME should clearly be preferred against the envelope description [44]. Nevertheless,
only self-refraction effects are considered throughout this thesis, as the radiation due
to THG is typically poorly phase-matched in femtosecond filaments and can be
neglected. Further on, like the FME, the NEE provides a valid model for propagation
of few-cycle pulses as shown in the above-cited references.

Therefore, the Eqs. (2.55) and (2.56) suitably describe femtosecond filamentation
for the medium and input pulse parameters considered here.
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2.4.1 Reduction to the Cylindrically Symmetric Case

It turns out that the complexity of solving Eq. (2.55) numerically can be strongly
reduced by imposing an additional symmetry constraint, i.e. cylindrical symmetry
along the propagation direction z. As discussed in Sect. 2.5, the evolution Eq. (2.55)
is subject to an azimuthal modulation instability which amplifies small amplitude,
radially asymmetric perturbations on a cylindrically symmetric beam, leading to
a loss of cylindrical symmetry and eventually a multiple spatial break-up of the
beam also known as multifilamentation. However, it follows from the experimental
observations of Ref. [45] that the radial symmetry of the input beam is preserved dur-
ing filamentary propagation for input powers not exceeding roughly 5 − 6Pcr [45],
where Pcr is the critical power for self-focusing, as discussed in detail in Sect. 2.5.
In the latter experimental work, 45 fs, 5 mJ-pulses emitted by a regenerative
Ti:sapphire amplifier were focused into a 1.5 m long cylindrical gas cell filled with
argon. For the chosen input beam parameters, the above constraint on the input power
translates itself into a constraint for the pressure within the argon gas cell to values
below 60 kPa, thereby limiting the nonlinearity n2. Alternatively, the energy of the
input pulse can be diminished using an adjustable diaphragm. Indeed, a carefully
adjusted diaphragm has frequently been proven to be a suitable measure to avoid
multiple filamentation [46]. Under these assumptions, it suffices to consider cylin-
drically symmetric solutions E(r, z, t) of Eq. (2.55). In this case the Laplacian in
Eq. (2.55) can be reduced to its radial component

�⊥ = (1/r)∂r r∂r , (2.64)

where the radial coordinate is given by r = √
x2 + y2.

2.5 Properties of Filamentary Propagation

In the following, various limiting cases of the envelope Eq. (2.55) are considered,
and a discussion of the phenomena relevant in the respective regimes is provided.

2.5.1 Dispersion

Dispersion is usually referred to as the frequency dependence of certain material
properties governing the response to an external optical field, such as the refractive
index n = n(ω) or the nonlinear susceptibilities [14]. In linear optics, an external
optical field induces a frequency dependent polarization, which may reshape the
irradiated optical pulse during propagation, as different frequency components of
the pulse propagate with unequal phase velocities in the medium. Neglecting the
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nonlinear response terms and assuming that the pulse is sufficiently long such that
the SVEA can be applied, it is a reasonable approximation to set T = 1 in Eq. (2.55).
In addition, only plane waves propagating into the positive z-direction are considered.
Then, it follows that the NEE reduces to

∂zE = iDE . (2.65)

The dispersion operator accounts for group-velocity dispersion (GVD) governed
by β2, third-order dispersion (TOD) governed by β3 and higher-order dispersion
terms [41]. Here, the effect of GVD on an initially Gaussian-shaped temporal profile,

E(0, t) = N (0)e−t2/tp(0)2
(2.66)

will be discussed. Neglecting all higher order terms but GVD, Eq. (2.65) can be
integrated to yield [41]

E(z, t) = N (z)e−t2/t2
p(z)−iC(z)t2/t2

p(z) (2.67)

with

N (z) = N (0)√
1 − i z

L D

, tp(z) = tp(0)

√
1 + (z/L D)2, C(z) = z/L D, (2.68)

where L D = t2
p(0)/2|β2|. The expressions for the normalization constant N (z) and

the pulse duration tp(z) show that the amplitude of the pulse decreases, while the
duration tp(z) increases along z. The chirp factor C(z) shows that GVD introduces
a linear frequency chirp on the pulse. A discussion of chirped Gaussian pulses can
be found in the introduction to the subsequent chapter dealing with pulse compres-
sion techniques. A characteristic length-scale on which these processes take place is
provided by L D .

While group velocity dispersion β2 introduces a symmetric temporal broaden-
ing of the pulse envelope, the odd-order terms β2k+1 terms introduce an asymmet-
ric temporal stretching. Especially, the impact of TOD on Gaussian pulses can be
described analytically in terms of Airy functions [41]. In filamentation, one typically
focuses pulsed femtosecond laser beam into noble gases or air at atmospheric pres-
sure. However, these exhibit a relatively weak dispersion [42]. For example, argon
at standard conditions has β2 = 0.2 fs2/cm, such that the characteristic length scale
L D = 62.5 m for a 50 fs initial pulse. In fact, one may estimate that GVD only
becomes relevant for pulses with initial duration <10 fs, for which L D approaches
the typical propagation distances of the order of ∼1 m used in experimental investi-
gations of filamentary propagation.
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2.5.2 Self-Phase Modulation

Self-phase modulation arises from the intensity dependence of the refractive index,
n = n0 + n2 I . This nonlinear effect can result in a substantial spectral broaden-
ing of an optical pulse, leading to the formation of a white-light supercontinuum.
In condensed media, this was first observed in Ref. [47].

In order to investigate its impact on the evolution of a laser pulse, it is assumed
that the optical intensity is sufficiently low not to trigger photo-ionization. Further
on, it is assumed that the SVEA can be applied, leading to the condition that the pulse
has to be much longer than the optical cycle, such that setting T = 1 in Eq. (2.55)
is justified. If one additionally assumes that the dispersion length L D is large, it is
possible to neglect dispersion, setting D = 0. Using a polar decomposition of the
complex envelope E(z, t) of a plane wave propagating in the z-direction according
to E(z, t) = |E(z, t)|e−iφ(z,t), it can be inferred from the dynamical Eq. (2.55) that
the temporal phase φ(z, t) of the pulse acquires a self-induced temporal phase-shift
according to [12, 20]

φ(z + �z, t) = φ(z, t) − ω0

c
n2|E(z, t)|2�z. (2.69)

From this, the SPM induced change of the instantaneous frequency, calculated as the
time derivative of the instantaneous phase φ(t), is given by

�ω(t) = −ω0

c
n2
∂

∂t
|E(z, t)|2�z. (2.70)

Assuming a Gaussian temporal shape of the pulse E ∼ exp (−t2/t2
p), it follows that

the SPM induced change of the instantaneous frequency satisfies

�ω(t) ∼ te−t2/t2
p . (2.71)

This reveals that action of SPM on the leading edge (t < 0) of the pulse produces a
spectral redshift, while a blueshift is produced in the trailing edge (t > 0). In sum-
mary, SPM generates new spectral content, leading to a broadening of the frequency
spectrum of the pulse [20, 41]. Under the above approximations, SPM only affects
the temporal phase, leaving the temporal profile |E(z, t)| unchanged. This ceases to
be true when dispersion can no longer be neglected. Assuming, for simplicity, that
the pulse is subject to GVD only, it can be shown that the combined action of normal
GVD (β2 > 0) and SPM leads to the phenomenon of optical wavebreaking [41].
This becomes noticeable as a steepening both of the leading and trailing edges of the
pulse, which in turn yields a strong impact of GVD on the steepened pulse edges.
The latter causes rapid oscillations of the pulse envelope in leading and trailing edge.
The formation of pronounced spectral sidelobes are the frequency domain analog of
optical wavebreaking.
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If the initial pulse is symmetric in time, the aforementioned interplay of GVD and
SPM preserves this symmetry as the pulse propagates along z. However, the situation
dramatically changes when the pulse duration approaches the order of the optical
cycle. In this case, the operator T in Eq. (2.55) becomes essential for a physically
reasonable description, and the dynamical equation describing SPM in the few-cycle
regime reads

∂zE = −i
β2

2

∂2

∂t2 E + i
ω0

c
n2T |E |2E . (2.72)

Here, the operator T can be regarded to account for an intensity dependence of the
group velocity. For positive n2, it takes into account that more intense parts of the
pulse propagate slower and are delayed with respect to the less intense parts. This
behavior causes a steepening of the trailing edge of the pulse, while the leading
edge is unaffected by steepening effects. This characteristically asymmetric effect is
known as self-steepening [48]. Depart of the characteristically asymmetric temporal
pulse profile, SPM in the few-cycle domain also leads to a strong asymmetry in
the spectrum. In fact, the generation of new frequency components by SPM is most
pronounced when the envelope exhibits a strong temporal gradient. Therefore, the
generation of blue spectral content in the steepened trailing edge of the pulse is
strongly enhanced compared to SPM based generation of red frequencies in the
slowly rising leading edge of the pulse. It follows that few-cycle pulses subject to SPM
typically exhibit a strongly asymmetric spectrum, with a pronounced blueshifted
spectral tail. In addition, as the blue spectral components are dominantly generated in
the vicinity of the self-steepened trailing edge of the pulse, they are strongly localized
in the temporal domain, leading to a nearly flat spectral phase in the blueshifted
spectral range.

2.5.3 Self-Focusing

Besides the modulation of the temporal phase leading to spectral broadening and
optical wavebreaking, the IDRI can cause a modulation of the spatial phase of the
pulse. Assuming a monochromatic cw-beam propagating in a medium with vanishing
plasma response, one finds that in this regime, setting E = E(x, y, z), T = 1 and
D = W = ρ = 0 leads to the simplified Eq. [5]

∂zE = i

2k0
�⊥E + i

ω0

c
n2|E |2E (2.73)

This is the Nonlinear Schrödinger equation in two transverse spatial dimensions
(x, y) and one dimension corresponding to the propagation direction z. It corresponds
to the paraxial approximation of the Helmholtz equation, augmented by a contribution
due to the IDRI n = n0 + n2 I . The nonlinear part of the refractive index gives rise
to a self-induced modulation of the spatial phase,
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φ(x, y, z) → φ(x, y, z) + ω0

c
n2 I (x, y, z)�z. (2.74)

For a Gaussian beam and positive n2, the self-induced spatial phase exhibits neg-
ative curvature and mimics the action of a focusing lens. This may lead to persis-
tent self-focusing of the beam until the intensity blows up, as was first observed in
Ref. [49]. The nonlinear Schrödinger equation can be analyzed by several approxi-
mate approaches, considering for instance the propagation of rays in a self-induced
refractive index profile, or, alternatively, the method of moments [50]. All these
approaches predict that a Gaussian beam in a medium with positive n2 will tend
to self-focus until the amplitude blows up at a finite distance zcr, and the solution
diverges, given that its optical power ∼ ∫ |E(x, y, z)|2dxdy exceeds a certain criti-
cal value Pcr. The numerical value of this critical power differs slightly between the
various approximative approaches. An analytical treatment of Eq. (2.74) reveals that
the critical power for self-focusing is given by [50–52]

Pcr = 11.69λ2

8π2n0n2
. (2.75)

Here, Pcr is the optical power a of specific transverse profile, the so-called Townes
mode [52], which provides a family of stationary solutions to Eq. (2.73). A more
detailed discussion of the mathematical background of self-focusing described by the
Nonlinear Schrödinger equation can be found in Appendix A. It can be shown that an
arbitrarily shaped beam will not collapse if its optical power P satisfies P < Pcr [53].
Therefore, P > Pcr provides a necessary, but not sufficient condition for collapse to
occur. For Gaussian beams, collapse does not occur unless P > PG

cr ≈ 1.02Pcr [50].
Note that a frequently used approximation for the critical power is given by
Pcr = λ2

0/(2πn0n2) which is used throughout the thesis. This approximate value
can, as will be shown in Sect. (3.1), be derived using a variational approach (see
Appendix A). This variational approach is closely related to the aforementioned
method of moments. Also, it has to be emphasized that the Townes profile provides
a stationary, yet unstable solution to (2.75)[53–55]. This is due to the fact that any
arbitrary small perturbation will either cause collapse or decay of the Townes mode.
In this aspect, the Townes solution differs from the familiar fiber solitons [41] in the
anomalous dispersion regime β2 < 0, which are governed by a (1+1)-dimensional
NLSE analogous to (2.74) and are unconditionally stable. A semiempirical formula
for the finite propagation distance zcr at which a Gaussian beam with beam waist w0
at z = 0 collapses was provided by Marburger [56], pursuant to

zcr = 0.376z0√(√ Pin
Pcr

− 0.852
)2 − 0.0219 + z0

f

, (2.76)

where z0 = πn0w
2
0/λ0 is the Rayleigh range of a collimated Gaussian beam,

f = R/2 the focal point, and R is the radius of curvature of the beam wavefront.

http://dx.doi.org/10.1007/978-3-642-30930-4_3
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A detailed analysis of this formula shows that zcr may be smaller than f such that
the beam collapses at a position prior to the position of the linear focus. Thus,
in order to distinguish it from the geometrical focus of linear theory, zcr is often
termed nonlinear focus. Of course, beam collapse does not occur in physical sys-
tems, as counteracting effects come into play as the beam intensity blows up. For
example, it has been shown that nonparaxiality and vectorial effects can stop the col-
lapse of the beam [16, 57]. However, these effects become relevant at intensities far
beyond the photoionization threshold. While photoionization is currently supposed
to be the prevalent mechanism to stop beam collapse, as discussed below, the discus-
sion of Chap. 4 reveals the possible role played by higher-order Kerr nonlinearities.
Besides, also GVD turns out to be able to saturate the self-focusing collapse, this
will be discussed below, and, in more detail, in Sect. 3.3.

2.5.4 Modulation Instabilities

The Townes mode is a radially symmetric solution to (2.74). However, besides the
previously discussed self-focusing instability, solutions of (2.74) suffer from the
so-called azimuthal modulation instability, which is able to break the radial symmetry
of a given solution. To be more precise, an infinitesimally small, radially asymmetric
perturbation to the radially symmetric initial field will, under certain conditions, be
exponentially amplified, leading to a spatial break-up and loss of radial symmetry of
the initial solution. Theoretically, this was first observed by Bespalov and Talanov
[58] by means of a plane wave propagating in the z direction, being perturbed by
a small amplitude wave with nonvanishing transverse wave vector �k⊥ = (kx , ky).
In the context of femtosecond filamentation, this phenomenon is known as multi-
filamentation and is expected to be observed when the input power of the pulsed
laser beam strongly exceeds the critical power Pcr for self-focusing. Nevertheless,
for beam powers up to five critical powers, it has been demonstrated that the onset
of multifilamentation can be circumvented by means of suitably aperturing the input
beam [45].

In addition, modulation instability is the cause of another phenomenon occurring
in the context of femtosecond filamentation, namely the generation of hyperbolic
shock-waves, X-waves and conical emission [59]. The latter instability occurs due to
the interplay of self-focusing and normal GVD. In fact, it can be shown that GVD with
β2 > 0 is able to counteract the optical collapse induced by the Kerr nonlinearity [60].
Considering the evolution of long input pulses such that the SVEA (T = 1) can
applied, and further neglecting plasma response and higher order dispersion βk for
k > 2, the envelope Eq. (2.55) reduces to

∂zE = i

2k0
�⊥E − i

β2

2

∂2

∂t2 E + i
ω0

c
n2|E |2E . (2.77)

http://dx.doi.org/10.1007/978-3-642-30930-4_4
http://dx.doi.org/10.1007/978-3-642-30930-4_3
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For β2 > 0, this is a Nonlinear Schrödinger Equation in (2 + 1)-dimensions with
a hyperbolic wave operator α�⊥ − γ ∂2

∂t2 with α, γ > 0. The latter equation admits
identical stationary solution as Eq. (2.74), namely a monochromatic beam with a
transverse beam profile given by the Townes mode. However, the detailed analy-
sis of [61] reveals that a small perturbation to the stationary solution may acquire
exponential gain, leading to the formation of so-called X-waves. The latter have
recently been related to the phenomenon of conical emission frequently observed in
filamentation [59].

2.5.5 Space-Time Focusing

Space-time focusing is not a phenomenon restricted to filamentary propagation.
Rather, it describes the impact of linear diffraction on ultrashort, ultra-broadband
optical pulses. Diffraction, i.e. the spreading of a laser beam in the transverse plane,
is governed by the dispersion relation

n2(ω)
ω2

c2 = k2
x + k2

y + k2
z . (2.78)

In the case of paraxial propagation into the positive z-direction, the latter relation
may be approximated using

√
1 + x ≈ 1 + x/2, which yields

kz = k(ω)

(
1 − k2⊥

2k2(ω)

)
. (2.79)

However, it was noticed in Ref. [62] that the SVEA, which corresponds to the replace-
ment k(ω) → k0 in the latter equation, fails to describe spatiotemporal coupling
effects which occur for ultrashort, diffracting laser pulses. Indeed, it can be deduced
from the dispersion relation Eq. (2.78) that blue spectral components of a pulse dif-
fract slower than their red spectral counterparts, which eventually gives rise to a
narrowing of the on-axis spectrum of the beam. This corresponds to a pulse broaden-
ing in the temporal domain. Therefore, it became necessary to include a correction
term to the SVEA model to account for the spatiotemporal coupling effect governing
the diffraction of ultrashort pulses. In the NEE model (2.55), this correction is pro-
vided by the augmented diffraction term ∼T −1�⊥. In contrast to the NEE model, the
factorization procedure leading to the FME naturally respects the dispersion relation
(2.79).
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2.5.6 Intensity Clamping and the Dynamic Spatial
Replenishment Model

The intensity clamping model [63] of femtosecond filamentation assumes that the
onset of photoionization and the subsequent defocusing effect due to free carriers is
the dominant mechanism to arrest the beam collapse triggered by Kerr self-focusing.
Using the expression for the IDRI �n = n2 I and the corresponding expression for
the plasma-induced refractive index change according to Eq. (2.43), the nonlinear
change of the refractive index is given by

�n = n2 I − ρ

n2
02ρc

(2.80)

For a self-focusing medium n2 > 0, the plasma contribution to the refractive index
has a sign opposite to that of the Kerr nonlinearity. Therefore, the plasma-induced
refractive index profile acts like a defocusing lens, as the density of free carriers
generally increases towards the optical axis. The intensity clamping model provides
an estimate for the maximal intensity achieved within femtosecond filaments. At the
clamping intensity, defined as the solution of

�n ≡ n2 I − ρ

n2
02ρc

= 0, (2.81)

the plasma induced refractive index change is sufficient to generate a defocusing
effect that balances Kerr induced self-focusing. Using (2.56) and neglecting plasma
losses, the rate equation for ρ can be integrated to yield

ρ = ρ0

(
1 − exp

[−
t∫

−∞
w[I (t ′)]dt ′

])
. (2.82)

However, in order to obtain an estimate of the clamping intensity, it suffices
to consider the peak plasma density and peak pulse intensities, ρmax and Imax.
Using exp (−x) ≈ 1 − x for not too high plasma densities, one finds that ρmax =
tpρ0w(Imax), leading to the following equation for the clamping intensity [8]

Imax = tpρ0w(Imax)

2ρcn0n2
. (2.83)

It has been shown that this expression generally provides a good estimate for the
intensity in the nonlinear focus [13]. However, intensity clamping does not imply
that long-range filamentary propagation is a stationary process, with constant inten-
sity Imax along the entire longitudinal extension of the filament. Rather, filamentation
is a highly dynamical process, and a detailed examination of a femtosecond filament
reveals that it consists of recurrent nonlinear foci along its longitudinal axis. Besides,
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it has been demonstrated in Ref. [64] that the different temporal sections of the pulse
are subject to repeated focusing and refocusing cycles such that the pulse fluence, i.e.
the time integrated intensity given in units of J/m2, appears stationary and, according
to [64]: “[...]produce[s] the illusion of long-distance propagation of one self-guided
pulse”. This model was termed Dynamic spatial replenishment by the authors of [64].

2.5.7 Pulse Self-Compression

Pulse self-compression probably is the most intriguing phenomenon observed in
femtosecond filamentation. Unless traditional schemes for laser pulse compression,
it enables the generation of ultrashort pulses consisting only of a few cycles of the
optical carrier field without the need for any dispersive compression techniques. The
following Chap. 3 will discuss filamentary self-compression in detail, revealing both
theoretical and experimental aspects of the topic.
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Chapter 3
Pulse Self-Compression in Femtosecond
Filaments

In the current chapter, various theoretical and experimental aspects of pulse self-
compression in femtosecond filaments are discussed. The main message of the
theoretical part is that filamentary self-compression relies on fundamentally dif-
ferent mechanisms than traditional pulse compression schemes in single-mode-,
microstructure-, photonic crystal- and gas filled hollow fibers [1–4]. As a necessary
prerequisite for pulse compression, traditional schemes rely on spectral broadening
due to self-phase modulation in a fiber with nonvanishing Kerr nonlinearity. How-
ever, both linear dispersion and the Kerr nonlinearity introduce a positive chirp on
the pulse such that in the frequency domain, the complex envelope of the spectrally
broadened pulse is given by

Ê(ω) ∼ exp

(
− ω2

�ω2 + iφ(ω)

)
(3.1)

where a Gaussian spectral distribution with a spectral bandwidth (1/e) �ω is
assumed. The FWHM spectral width �ωFWHM is then given by �ωFWHM =√

2 ln 2�ω. The spectral phase is given by φ(ω). Assuming that the medium dis-
persion is dominated by second-order dispersion β2, the assumption of a parabolic
spectral phase φ(ω) = αω2/2 is justified. In this case, the group-delay dispersion
D2 ≡ d2φ/dω2 = α is frequency-independent and given by the parameter α.
A Fourier transform of Eq. (3.1) yields the complex envelope in the time domain,

E(t) = exp

(
− t2

t2
p(α)

− iC
t2

t2
p(α)

)
. (3.2)

The parameter tp(α) is related to the FWHM pulse duration according to tp(α) =√
2 ln 2tFWHM, while C = α�ω2/2 is the chirp factor. The pulse duration depends

on the group delay dispersion α according to
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tp(α) = tp(0)

√
1 + 4α2

t4
p(0)

. (3.3)

Here, tp(0) = 2/�ω is the duration of the corresponding transform-limited pulse,
i.e. the pulse obtained by settingα = 0 in Eq. (3.1), yielding a flat spectral phase over
the whole frequency range. For the given spectral bandwidth �ω, tp(0) = 2/�ω
is the shortest attainable pulse duration, assuming a Gaussian spectral shape. Since
the GDD acquired by the pulse during the process of spectral broadening leads to a
significant temporal stretching according to Eq. (3.3), it is the aim of traditional pulse
compression techniques to apply suitable dispersion compensation techniques that
eliminate the GDD in Eq. (3.1) in order to obtain a short, transform limited pulse.
In an experimental setup, this may be achieved by suitably aligning a pair of gratings
or chirped mirrors [5–8] which introduce an appropriate group delay between the
different spectral components of the pulse so as to produce negative GDD. For an
appropriately chosen compressor geometry, this amount of negative GDD precisely
cancels the positive GDDα of the spectrally broadened pulse, resulting in the desired
transform-limited, ultrashort pulse. The commonly used dispersive pulse compres-
sors are restricted to compensation of positive second-order dispersion (GDD), i.e.
a parabolic spectral phase with positive curvature. In practice, however, ultrashort
pulses in optical fibers are also subject to higher-order dispersion such that compen-
sating only for GDD can lead to unwanted satellite pulses and even pulse splitting
effects, thus limiting the effectiveness of dispersive pulse compression techniques [9].
This can be avoided, at least partially, by compression schemes which allow for
a simultaneous compensation of GDD and TOD (third-order dispersion, β3) [10].
In summary, it is obvious that these traditional compression schemes reshape the
pulse by introducing a temporal energy flow: the positively chirped, temporally
stretched pulse is dispersed in time, and each frequency component of the pulse
approaches a hypothetical observer at a different time. The dispersion compensation
then introduces negative GDD on the spectral phase, such that the energy contained
in the different frequency components flows back towards the pulse center, leading
to a temporal recompression of the pulse.

Pulse compression in a femtosecond filament was first evidenced in Ref. [8]. How-
ever, the experimental setup still included a pair of chirped mirrors for dispersion
compensation. Pulse self-compression without any dispersion compensation scheme
is first described in Ref. [11]. Besides the fact that no external dispersion compen-
sation scheme is necessary in filamentary self-compression, this pulse compression
method does not require any guiding structures such as fibers or hollow fibers and is
therefore not limited by damage threshold. Instead, interacting nonlinear effects lead
to a self-guiding effect in the propagation medium as will be detailed below. Simul-
taneously, under appropriate initial conditions, the on-axis temporal profile of the
pulse will shorten. For the moment, it will be assumed that the relevant mechanisms
acting in this pulse self-compression scenario are analogous to those in traditional
compression schemes. This requires the existence of an intrinsic source of negative
GVD within the propagation medium. Regarding the fact that the noble gases He,
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Ne, Ar, Kr, Xe exhibit positive β2 in the wavelength regions typically used in fil-
amentation, such source of negative GVD is not straightforward to figure out. One
possible candidate for a source of negative GVD may be the plasma generated by
photoionization. According to the Drude-Theory, the refractive index of a partially
ionized medium is given by

n(ω) =
√

n2
0(ω) − ω2

p

ω
, (3.4)

where n0 is the refractive index of the neutral medium and ωp = √
Ne2ε0me is

the plasma frequency depending on the number N of free electrons. Using k(ω) =
n(ω)ω/c and β2(ω) = d2k(ω)/dω2, an expression accounting for the plasma GVD
has been derived in Ref. [12] according to

β2,e = −1.58 × 10−5λ3 N
fs2

cm
. (3.5)

The wavelengthλ and carrier density N are given in units of cm and cm−3, respec-
tively. Using the typical wavelength of a Ti:sapphire laser, λ = 800 nm and a fraction
of approximately 0.1 % of ionized particles, the latter being the characteristic plasma
density achieved in a femtosecond filament, a plasma GVD of β2,e = −0.22 fs2/cm
is obtained. In contrast, the GVD of argon at 800 nm amounts to β2,0 = 0.2 fs2/cm. In
the following example, the hypothesis that filamentary self-compression acts com-
pletely analogous to traditional compression mechanisms will be tested. To this
aim, self-compression of a Gaussian input pulse with an initial duration tp = 40 fs
will be analyzed, presupposing nonlinear spectral broadening and dispersive pulse
shaping processes as the driving forces behind filamentary self-compression. It is
first assumed that the pulse is subject to spectral broadening such that the resulting
spectrum supports a transform-limited pulse duration of tp(0) = 10 fs, a realistic
compression ratio achievable in self-compression experiments [11]. Furthermore,
in analogy to fiber based compression schemes, one might expect that spectral
broadening during filamentary propagation is accompanied with additional posi-
tive GDD accumulated by the spectral phase of the pulse. Assuming, for instance, an
acquired GDD of ≈ 194 fs2, it follows that the initial pulse duration is unchanged.
Thus, in order to explain filamentary self-compression in terms of dispersive pulse
shaping mechanisms as in traditional compression schemes, it has to be assumed
that the positive excess GDD is compensated by some source of negative GDD. In
the following, this is assumed to stem from plasma contributions to the refractive
index which provide the necessary dispersion compensation to yield a transform
limited, self-compressed 10 fs-pulse. However, in order to ensure that the plasma
GVD β2,e = −0.2 fs2/cm compensates for the acquired positive chirp of ≈200 fs2,
the pulse has to propagate along a distance �z = 100 m in a strongly ionized
(N = 2.7 × 1016 cm−3) self-generated filament, according to GDD = β2�z. In
contrast, the longitudinal extension of the filament in self-compression experiments
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is typically of the order of only 1 m. Moreover, in these configurations, the length of
the strongly ionized plasma channel is of the order of some 10 cm. In consequence,
due to the weak GVD both of the gas and the plasma, dispersive pulse shaping can be
clearly ruled out as the main mechanism leading to pulse self-compression in fem-
tosecond filaments.This makes it evident that the mechanisms behind filamentary
self-compression are unlike those acting in traditional pulse compression methods,
and it is the purpose of the subsequent sections to identify these mechanisms.

3.1 The Self-Pinching Mechanism: Self-Compression
as a Spatial Effect

Magneto-hydrodynamics (MHD) provides effective mechanisms for increasing the
electron density within high-current pulsed discharges. In the plasma channel the
self-generated magnetic field may act to radially focus the electron fluence to near-
thermonuclear current densities, with the z-pinch [13, 14] being one of the most
prominent examples. In contrast, according to the preceding discussion, laser pulse
compression [1, 4, 5] has traditionally pursued energy concentration along the tem-
poral coordinate rather than radial contraction. In the following it will be shown
that inside a light filament, the combination of only three effects, namely diffrac-
tion, Kerr self-focusing, and plasma-induced self-defocusing, holds for a radial con-
traction mechanism acting on the photon fluence. In analogy to the z-pinching in
MHD, this mechanism will be referred to as self-pinching in the following. This
phenomenon gives rise to spatio-temporally inhomogeneous configurations of the
optical field, implying strong temporal variations of the beam radius [11, 15].
In contrast to previous explanations (see, e.g., [15–17]) of the self-compression in
filaments that indicated a complex interplay of some ten effects, in the course of the
present section it turns out that only the above-mentioned three spatial effects suffice
for self-compression [18]. Propagation of short laser pulses in a filament involves
numerous linear and nonlinear optical processes that are typically modeled in the
framework of a Nonlinear Schrödinger Equation (NLSE). It is quite remarkable that
MHD bears a very similar NLSE for the magnetic field, which may give rise to
ionospheric filaments and mechanisms analogous to self-pinching [19]. As all these
scenarios exhibit a complex interplay of linear and nonlinear processes it is gener-
ally difficult to isolate the primary processes leading to the observed phenomena. For
the optical case, however, one can compute characteristic lengths of the participating
processes [20] to sort out group-velocity dispersion, absorption, Kerr-type self-phase
modulation and self-steepening, leaving mainly plasma effects and transverse self-
focusing and -defocusing as suspected drivers behind the experimentally observed
self-compression. Such analysis, in particular neglection of dispersion, is indicative
of vanishing energy flow along the temporal axis of a pulse in the filament. This
essentially leaves particle densities and respective fluences as key parameters, simi-
lar to the situation in MHD. The discussion will therefore be restricted to analyzing
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radial energy flow, for which an extended NLSE in cylindrical coordinates (r, t),
assuming cylindrical symmetry, is used [21]. This extended NLSE effectively couples
the photon density to the electron density ρ. Compared to the full model Eq. (2.55),
energy flow along the t-axis and dissipation are neglected. These effects have been
proven unimportant in gaseous media at low or atmospheric pressure both, in previous
theoretical and experimental studies [11, 15].

Consequently, a reduced model considering only Kerr-type self-focusing and
plasma defocusing as main dynamic effects during filament formation in gases turns
out sufficient to observe self-compression:

∂zE = i

2k0r
∂r r∂rE + iω0

c
n2|E |2E − iω0

2n0cρc
ρ[I, t]E, (3.6)

ρ[I, t] = ρ0

(
1 − exp

(−
t∫

−∞
dt ′w[I (r, z, t ′)])

)
. (3.7)

Here, z is the propagation variable, t the retarded time, and ω0 is the central laser
frequency at λ0 = 2πn0/k0 = 800 nm. n2 is the nonlinear refraction index. Photon
densities are described via the complex optical field envelope E , with I = |E |2. The
wavelength-dependent critical plasma density is calculated from the Drude model
according to ρc ≡ ω2

0meε0/q2
e , where qe and me are electron charge and mass, respec-

tively, ε0 is the dielectric constant, c the speed of light, and ρ0 denotes the neutral
density. Plasma generation is driven by the ionization rate w[I ], which is suitably
described by Perelomov-Popov-Terent’ev (PPT) theory [22]. It is emphasized here
that for vanishing plasma density ρ ≡ 0, the delay t is a free parameter of Eq. (3.6).
This means that the envelopes E(r, z, t) for each instant t evolve independently. For
non-vanishing ρ, Eq. (3.7) models a persistent, noninstantaneous nonlinearity which
introduces a memory effect to the evolution Eq. (3.6). Physically, this is owing to the
fact that any temporal component of the pulse is affected by the plasma generated
by all preceding temporal slices of the pulse, as electron-ion recombination can be
neglected on a femtosecond time scale.

For the following investigations, data for argon [15] at atmospheric pressure is
used. In Ref. [21], the intensity clamping and the resulting temporal pulse profiles
in regimes where a Kerr-induced optical collapse is saturated by plasma defocusing
have been analyzed using a time-dependent variational approach. Using appropriate
approximations, this analysis gave rise to steady-state temporal profiles with soliton-
like qualities. It is the aim of this section to go beyond the approximations of [21] in
order to calculate a field configuration that represents a stationary temporal intensity
profile maintaining a balance between competing nonlinear effects in every temporal
point. As in [21], these are derived from a time-dependent variational approach, with
the following trial function

E(r, z, t) =
√

P(t)

πR2 exp

[
− r2

2R2 + i
k0r2∂z R

2R

]
. (3.8)
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The quadratic phase guarantees preservation of continuity equations through self-
similar substitutions and relates the spatial phase curvature of a Gaussian beam to
the logarithmic derivative of the pulse radius w.r.t. the z-coordinate. The pulse radius
R ≡ R(z, t) depends on both the longitudinal and temporal variables. Due to the
neglection of temporal dispersion and self-steepening terms, no energy flow between
different temporal sections of the pulse occurs in the simplified model governed
by Eq. (3.6). Furthermore, dissipative effects were ruled out. In consequence, the
optical power P(z, t) = 2π

∫ ∞
0 rdr |E(r, z, t)|2 is conserved along propagation, i.e.,

∂z P(z, t) ≡ 0. For this conservative system, straightforward algebra provides the
virial-type identity [23] (see also Appendix A),

∂2
z

∞∫

0

r3|E |2dr = 2

k2
0

∞∫

0

r |∂rE |2dr − 2n2

n0

∞∫

0

r |E |4dr − 1

n2
0ρc

∞∫

0

|E |2r2∂rρdr.

(3.9)

Inserting the trial function (3.8) with R(z, t) = w(z, t)/
√

2 being related to the
Gaussian spot size w(z, t), one obtains a dynamical equation governing the evolu-
tion of the pulse radius R along z [23]. For the derivation of analytical expressions
for the plasma term on the r.h.s. of Eq. (3.9), the PPT ionization rate is approxi-
mated by a power law dependence w[I ] = σN∗ I N∗

0 , with parameters N∗ = 6.13
and σN∗ = 1.94 × 10−74 s−1cm2N∗

W−N∗
fitted to the PPT rate for the intensity

range of 80 TW/cm2. Introducing the on-axis intensity profile according to I0(t) ≡
I (r = 0, z, t) = P(t)/πR2(t), a Gaussian power profile P(t) = Pin exp(−2t2/t2

p )

is imposed with duration tp and peak input power Pin as a boundary condition. This
results in the following integral equation for steady state solutions,

0 = 1 − P(t)

Pcr
+ μP2(t)

t∫

−∞
dt ′

I N∗+1
0 (t ′)

P(t ′)
1(

I0(t) + N∗ I0(t ′) P(t)
P(t ′)

)2 , (3.10)

with Pcr = λ2
0/(2πn0n2) and μ = k2

0 N∗σN∗ρ0/πρc.
Equation (3.10) is basically a generalization of a Volterra-Urysohn integral equa-

tion [24], with a kernel depending not only on I0(t ′) but also on I0(t). Here, Eq. (3.10)
is solved without the approximations made in Ref. [21]. Taking into account that the
integral term of Eq. (3.10) is strictly positive, it immediately follows that nontriv-
ial solutions only exist on the temporal interval −t∗ < t < t∗ where P(t) > Pcr,
with t∗ = (ln

√
Pin/Pcr)

1/2tp. From a physical point of view, Kerr self-focusing
can compensate for diffraction only on this interval, enabling the existence of a sta-
tionary state. For computing a stationary solution I0(t) of the integral equation, the
method presented in [25] is applied which combines a Chebyshev approximation
of the unknown I0(t) with a Clenshaw–Curtis quadrature formula [26] for the inte-
gral term. As the laser beam parameters, a ratio Pin/Pcr = 2 and a pulse duration
tFWHM = √

2 ln 2tp ≈ 100 fs are chosen, leading to t∗ ≈ 50 fs. The spectrum of
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Fig. 3.1 a Spectrum of solutions I0(t) of Eq. (3.10). For the solution I0(t) marked in red [see (a)],
b displays a spatio-temporal representation of the corresponding cylindrically symmetric Gaussian
beam, Eq. (3.8), with a time-dependent beam-waist R(t) = √

P(t)/π I0(t). I0(t) solves the steady
state condition Eq. (3.10). Color encodes on-axis intensity. Reprinted from C. Brée et al. [18] with
permission from Optical Society of America

solutions thus obtained is depicted in Fig. 3.1a. As 1 − P(t)/Pcr vanishes at the
boundaries, there exists a continuum of multiple roots. All solutions show a strongly
asymmetric temporal shape, with an intense leading subpulse localized at t = −t∗
[21] and a minimum [dashed line in Fig. 3.1a] localized near zero delay, followed
by a region of rapid intensity increase, suggesting singular behavior of the solutions.
Filamentation is known to proceed from a dynamical balance between the Kerr and
plasma responses, and a steady-state solution cannot strictly be reached by the phys-
ical system. Nevertheless, Eq. (3.10) provides deep insight into the configuration
that the pulse profile tends to achieve in the filamentary regime. The rotationally
symmetric structure shown in Fig. 3.1b provides a graphical representation of the
cylindrically symmetric Gaussian beam Eq. (3.8). The latter exhibits a beam-waist
R(t) varying in time, which is encoded by the radius of the solid of revolution at
each given instant. This representation allows to identify deviations from a Gaussian
beam without any spatio-temporal couplings, i.e., a beam with a time-independent
beam-waist. Such deviations are clearly expected for intense optical pulses subject
to the interplay of instantaneous Kerr self-focusing and noninstantaneous plasma
defocusing.

Indeed, the structure of the emerging solutions (Fig. 3.1b) indeed indicates the for-
mation of two areas of high on-axis intensity being separated by an approximately
20 fs wide defocused zone of strongly reduced intensity. While similar double-peaked
on-axis intensities have already been observed in numerical simulations and experi-
ments [11, 27–30] many authors considered a parasitic dispersive break-up in bulk
media or optical fibers. Despite its superficial similarity, however, such a break-up
cannot be exploited for the compression of isolated femtosecond pulses as will be
done below. Interestingly, a comparable dynamical behavior is observed as reported
for condensed media, where temporal break-up around zero-delay and the subsequent



42 3 Pulse Self-Compression in Femtosecond Filaments

Fig. 3.2 a Evolution of the on-axis temporal intensity profile along z for the reduced numerical
model governed by Eq. (3.6). b Same for the simulation of the full model equations [15]. Reprinted
from C. Brée et al. [18] with permission from Optical Society of America

emergence of nonlinear X-waves occurs. These X-waves were recently proposed to
constitute attractors of the filament dynamics [31, 32].

A deeper substantiation of the analytical model is obtained through direct numer-
ical simulations using the reduced radially symmetric evolution model Eq. (3.6)
for the envelope of the optical field (see Appendix B for more details on the
numerics). The incident field is modeled as a Gaussian in space and time with
w0 := w(z = 0, t) = 2.5 mm and identical peak input power and pulse dura-
tion as used for the solutions of Eq. (3.10). The field is focused into the medium with
an f = 1.5 m lens. The result of these simulations can be considered as prototypical
for the pulse shaping effect inside filaments. These simulations also demonstrate that
spatial effects alone already suffice for filamentary self-compression. As the evolution
of the on-axis temporal intensity profile in Fig. 3.2a reveals, filamentary compres-
sion always undergoes two distinct phases. Initially, while z approaches the nonlinear
focus (z = 1.4 − 1.5 m), a dominant leading peak is observed. When the trailing
part of the pulse refocuses in the efficiently ionized zone (ρmax ≈ 5 × 1016cm−3) a
double-spiked structure emerges. This transient double pulse structure confirms the
pulse break-up predicted from the analysis of Eq. (3.10), see Fig. 3.3a, c, and is com-
patible with the stationary shapes detailed in Fig. 3.1a. Here, analogous to Fig. 3.1,
Fig. 3.3c shows a solid of revolution whose radius at each instant t encodes the RMS
width of the optical field configuration obtained from the numerics. Subsequently,
only one of the emerging peaks survives and experiences further pulse shaping in
the filamentary channel.

At z = 1.7 m the leading subpulse has already been reduced to a fraction of
its original on-axis intensity. This effective attenuation of the leading pulse isolates
the trailing pulse that now exhibits a duration tFWHM = 27 fs. The combined split-
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Fig. 3.3 a Pulse sequence illustrating the two-stage self-compression mechanism. Shown are the
on-axis intensity profiles for z = 1.5 m (solid line), z = 1.55 m (dashed line) and z = 1.7 m (dash-
dotted line). b Self-compressed few-cycle pulse at z = 2.5 m. c Solid of revolution encoding the
instantaneous radial RMS width of the optical field exhibiting the double-spiked structure on-axis
at z = 1.55 m. d Same for the few-cycle pulse at z = 2.5 m. Reprinted from C. Brée et al. [18] with
permission from Optical Society of America

up and isolation during the first phase therefore already provides an about fourfold
compression of the 100 fs input pulses. In the subsequent weakly ionized zone of the
filament (z > 1.6 m), the surviving, trailing subpulse is then subject to additional
temporal compression. At z = 2.5 m our simulations indicate pulses as short as
tFWHM = 13 fs (Fig. 3.3b), which agrees favorably with the experimental results
in Ref. [11]. In contrast to the plasma-mediated self-compression in the strongly
ionized zone, compression in the second zone is solely driven by the Kerr nonlinearity
(ρ < 1013 cm−3). With time slices of higher optical powers being able to compensate
diffraction by Kerr self-focusing, these portions of the pulse diffract less rapidly
than time slices with less optical power. Compared to a linear optical diffraction-
ruled scenario, the nonlinear optical effects therefore lead to the formation of a
characteristic pinch. This emerging spatial structure is depicted in Fig. 3.3d. This
clearly sets the self-pinching mechanism apart from numerous previous reports on
seemingly similar dynamics.

For an analytic description of temporal compression during further filamentary
propagation, the dynamical equation for the time dependent beam radius derived
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from Eqs. (3.8) and (3.9) [23] is considered, yet neglecting the plasma term. With the
initial conditions R(z = z0, t) = R0 and ∂z R(z = z0, t) ≡ 0 the resulting problem
is analytically solvable, and one finds

R(z, t) = R0

√
1 + [(z − z0)/k0 R2

0]2(1 − P(t)/Pcr). (3.11)

This equation models the evolution of the plasma-free filamentary channel from
z > 1.6 m, assuming P(t) ≤ Pcr . The profile P(t) represents the power contained
in the filament core region only. For simplicity, it is assumed here that P(t) =
Pcr exp(−2t2/t2

p), R0 = 100µm and tp = 23 fs. This corresponds to the duration of
the pulse at z0 = 1.7 m shown in Fig. 3.3a. Resulting characteristic spatio-temporal
shapes are shown in Fig. 3.4. As in Fig. 3.1b, color and radius of the depicted solids
of revolution encode instantaneous on-axis intensity I0(t) and instantaneous beam-
waist R(t), respectively. These shapes clearly reveal the presence of self-pinching in
this Kerr-dominated stage of propagation and the dominant role it plays for on-axis
temporal compression.

The analysis presented so far has completely neglected dispersion, self-steepening
and losses. To ensure that dissipation and temporal coupling between time slices
have only a modifying effect on the discussed self-compression scenario, full sim-
ulations of the filament propagation are performed, including few-cycle corrections
and space-time focusing [15]. As shown in Fig. 3.2b, minor parameter adjustment,
setting w0 = 3.5 mm and leaving all other laser beam parameters the same value,
suffices to see pulse self-compression within the full model Equation (2.55). Now
self-steepening provides a much more effective compression mechanism in the trail-
ing part. However, the comparison of Fig. 3.2a with b also reveals that the dynamical
behavior changes only slightly upon inclusion of temporal effects. Clearly, the same
two-stage compression mechanism is observed as in the reduced model. One there-
fore concludes that the pulse break-up dynamics in the efficiently ionized zone is
already inherent to the reduced dynamical system governed by Eq. (3.6). Rather than
relying on the interplay of self-phase modulation and dispersion as in traditional laser
pulse compression, filament self-compression is essentially a spatial effect, conveyed
by the interplay of Kerr self-focusing and plasma self-defocusing. This dominance
of spatial effects favorably agrees with the spatial replenishment model of Mlejnek
et al. [28]. However, the present model indicates previously undiscussed conse-
quences on the temporal pulse structure on axis of the filament, leading to the emer-
gence of the pinch-like structure (Fig. 3.3d) that restricts effective self-compression
to the spatial center of the filament [15, 33]. The present analysis confirms the exis-
tence of a leading subpulse, in the wake of which the short self-compressed pulse
is actually shaped during the first stage of filamentary propagation. This leading
structure gives rise to a pronounced temporal asymmetry of self-compressed pulses,
which is confirmed in experiments [15].

While qualitatively similar break-up processes have frequently been observed
in laser filaments, the preceding analysis identifies the spatially induced temporal
break-up as a first step for efficient on-axis compression of an isolated pulse. In the
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Fig. 3.4 Sequence of pulses illustrating temporal self-compression due to Kerr-induced spatial
self-pinching in the variational model corresponding to a z = 1.7 m, b z = 1.9 m, c z = 2.1 m and
d z = 2.3 m. Reprinted from C. Brée et al. [18] with permission from Optical Society of America

current scenario, the leading break-up portion is eventually observed to diffract out
and to reduce its intensity, while the trailing pulse can maintain its peak intensity.
A subsequent stage, dominated by diffraction and Kerr nonlinearity, serves to further
compress the emerging isolated pulse, and may give rise to almost tenfold on-axis
pulse compression. The main driver behind this complex scenario is a dynamic
interplay between radial effects, namely diffraction, Kerr-type self-focusing, and,
exclusively close to the geometric focus, plasma defocusing. The dominance of
spatial effects clearly indicates the unavoidability of a pronounced spatio-temporal
pinch structure of self-compressed pulses. The frequently observed pedestals in this
method are identified as remainders of the suppressed leading pulse from the original
split-up. The present analysis also indicates that lower pulse energies <1 mJ requiring
more nonlinear gases or higher pressures will see an increased influence of dispersive
coupling, which can eventually render pulse self-compression difficult to achieve.
Higher energies, however, may not see such limitation, opening a perspective for
future improvement of few-cycle pulse self-compression schemes.

3.2 Stationary Solutions Beyond the Variational Approach

The variational approach used in the previous section was successfully used to predict
a plasma-induced temporal break-up of the pulse. However, filamentary pulses typi-
cally exhibit strong spatio-temporal couplings and, moreover, tend to be reshaped into
a system of spatial rings by plasma defocusing and/or conical emission. Therefore,
the assumption of a fixed Gaussian radial beam shape used in the variational model
governed by Eqs. (3.8), (3.9) requires justification. In the following, this is achieved
by comparing the predictions from the variational approach to those extracted from
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Fig. 3.5 a Evolution of the on-axis temporal profile along z. As soon as plasma defocusing has
saturated the optical collapse, a characteristic temporal break-up occurs. b Evolution of the peak
intensity (solid line) and the on-axis intensity at zero delay (dashed line). c On-axis temporal
distribution at z = 1.55 m exhibiting a typical double hump structure. Reprinted from C. Brée et
al. [34]. Copyright © 2010 Astro, Ltd.

calculating stationary solutions directly from the generalized Nonlinear Schrödinger
Equation (3.6). In fact, it turns out that the local minimum between the sub-pulses
of the characteristic double-hump solutions are again located near the instant where
the conserved power profile of the pulse has its maximum, i.e., at zero temporal
delay. Thus, the obtained stationary solutions show good qualitative agreement with
the solutions calculated from the variational approach [34]. For completeness, these
results are then compared with those of direct numerical simulations, where as in
the preceding section, only spatial effects are included. This disregards dissipative
terms and energy exchange between adjacent temporal slices, thereby ensuring that
these effects do not contribute to the observed temporal break-up. The propagation
equation of this reduced model is expressed by the NLSE coupled to an evolution
equation for the electron density Eqs. (3.6) and (3.7). For the numerical simulations
and the analytical discussion, again data for argon [15] at atmospheric pressure is
used as medium parameters. As initial conditions for the numerical simulations,
a Gaussian spatio-temporal distribution for the photon density is imposed, with a
beam waist w0 = 2.5 mm. In contrast to the previous section, where a pulse duration
of tp = 100 fs was chosen, here an input pulse duration of tp = 38 fs was chosen in
order to adjust to the experimental conditions of [11, 15].

The input energy is Ein = 1 mJ, corresponding to a peak input power of P = 2Pcr,
where Pcr ≈ λ2/2πn2 is the critical power for Kerr self-focusing. The beam is
focused into the medium with an f = 1.5 m lens. The evolution of the on-axis inten-
sity depicted in Fig. 3.5a reveals the crucial role of a plasma mediated temporal break-
up for an efficient temporal compression induced by local contraction of the spatial
beam profile. In fact, the observed compression dynamics is again governed by the
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Fig. 3.6 a Intensity distribution in the (r, t)-plane as plasma defocusing initiates the pulse break-up
at z = 1.37 m. b Corresponding spectrogram. c Intensity distribution of the split pulse at z = 1.55 m
in the (r, t)-plane. d Corresponding spectrogram. Reprinted from C. Brée et al. [34]. Copyright ©
2010 Astro, Ltd.

self-pinching mechanism and qualitatively agrees with that of the previous section,
cf. Fig. 3.2a. The pulse breaking is initiated when plasma defocusing starts to saturate
the optical collapse (see the evolution of the peak intensity in Fig. 3.5b, solid line).
Figure 3.6a depicts the intensity distribution in the (t, r) plane at z = 1.37 m, clearly
revealing defocusing of the trailing part into a system of rings. The corresponding
XFROG (cross-correlation frequency-resolved optical gating) spectrogram [15] (cf.
Appendix C) of the on-axis intensity profile (Fig. 3.6b), calculated with a 10 fs
Gaussian reference pulse, exhibits an inclination due to the generation of red and blue
frequencies in the leading and trailing edge of the pulse, respectively. Upon further
propagation the rear part of this system of spatial rings merges during a refocusing
stage at z = 1.55 m, and a blue-shifted trailing subpulse is generated (Fig. 3.6c,
d). The on-axis temporal profile of this strongly asymmetric temporal distribution
depicted in Fig. 3.5c shows a characteristic double-hump configuration with a local
minimum at zero delay. In the simulations, one can track the origin of this minimum
to the fact that defocusing prevails at zero delay. Therefore, the energy contained in
the spatial rings at zero delay is not transferred back to the optical axis (dashed line
in Fig. 3.5b). From the spectrogram representation (Fig. 3.6d) of the split pulse, it
becomes obvious that the trailing subpulse is blue-shifted with respect to the leading
pulse. This spectro-temporal split is a characteristic feature of filamentary propaga-
tion [27, 28, 35], and it is important to note that this split is already fully explicable
within the framework of the reduced model equation that incorporates only spatial
effects. At first sight, the emergence of the central minimum and the resulting double-
hump temporal shapes may appear as a somewhat arbitrary intermediate stage in the
pulse shaping process. For a clarification of the role of these characteristic pulse
shapes which tend to appear when plasma defocusing saturates Kerr-driven opti-
cal collapse, we search for field configurations representing stationary states. These
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stationary spatio-temporal field distributions maintain a balance between compet-
ing nonlinear effects in each time instant. The following analysis circumvents the
limiting constraint of a fixed Gaussian radial shape, which has to be imposed in the
time-dependent variational approach carried out in the previous section. To further
facilitate the calculation of stationary states to the evolution Eq. (3.6), for the ion-
ization rate the multiphoton description w[I ] = σN∗ |E |2N∗

is used. Here, σN∗ is the
cross-section for N∗-photon ionization [36]. As the relevant intensity level in argon
filaments is well above the validity of a perturbative multiphoton description, the
numerical value of σN∗ = 1.94 × 10−74 cm2N∗

W−N∗
and N∗ = 6.13 are deter-

mined by a local fit to the ionization rate given by PPT theory. As the model utilized
here completely neglects dispersion, the time variable can be regarded as a parameter.
Hence the most general ansatz for the stationary state reads as

E = Rμ(t)(r, t) exp
(
iμ(t)z

)
, (3.12)

where an explicit time-dependence of the propagation constant μ is allowed. Sub-
stituting this into the dynamical Eq. (3.6) yields the following nonlinear differential
equation (cf. Appendix A),

0 = 1

2k0r
∂r r∂r Rμ(t) + ω0

c
n2 R3

μ(t) − 1

2n0ρc

ω0

c
ρRμ − μ(t)Rμ(t). (3.13)

Any solution Rμ(t) of this equation depends on the specific choice of μ(t), as does
the conserved optical power P = 2π

∫ ∞
0 rdr R2

μ(t), except for vanishing plasma den-
sity ρ ≡ 0. For the latter plasma-free case, the solution of (3.13) corresponds to the
spatial Townes soliton [37] with an optical power P ′

cr ≈ 11.69λ2/(8π2n2), inde-
pendent of the chosen value of μ. Note that the optical power of the Townes soliton
slightly differs from the usual definition of the critical power Pcr = λ2/(2πn2), with
Pcr/P ′

cr ≈ 1.075. In the presence of plasma, the general solution of (3.13) requires
introduction of a cut-off time −t∗, imposing P(t) < P ′

cr for t < −t∗ similar to the
variational analysis in the previous section. With this constraint, Kerr self-focusing
cannot compensate for linear diffraction at t < −t∗, and neither can a nontrivial sta-
tionary state exist. The solution at t = −t∗ itself radially coincides with the Townes
soliton, as we assume ρ ≡ 0 at this very instant. Imposing a Gaussian power pro-

file P = Pin exp
(
−2t2/t2

p

)
leads to t∗ =

√
ln

√
Pin/P ′

cr. In order to obtain those

functions μ(t) that give rise to stationary solutions with a conserved Gaussian power
profile, a standard trust-region method [38] for nonlinear optimization in MatLab
is used. This yields a continuum of stationary states, the on-axis intensity profiles
of which are depicted in Fig. 3.7a. The propagation constant μ(t) of the solution is
represented by the red curve in Fig. 3.7a. The on-axis profiles feature the same char-
acteristic double-hump temporal structure as in the numerical simulations. A similar
analysis on steady-state solutions was carried out earlier in [39, 40], however, with
no prediction on pulse break-up. The intensity distribution in the (t, r) plane shown
in Fig. 3.7b demonstrates that the plasma nonlinearity acts to defocus the temporal
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slices around zero delay into a spatial ring as was also observed in the simulations
(cf. Fig. 3.6a, c). In summary, evaluation of stationary solutions of (3.6) provides
remarkable accurate predictions for the on-axis temporal profile and pulse breaking,
occurring in a regime where plasma defocusing balances Kerr self-focusing. Both,
the numerical simulations as well as the stationary states calculated directly from the
NLSE confirm that the emerging double-hump intensity distributions are defocused
around zero delay. These time-slices actually contain the highest optical energy. As
the impact of Kerr self-focusing is crucially determined by the optical power rather
than intensity (cf. Appendix A), this behavior may be considered counterintuitive. In
the following, the position of the local minimum in the double hump structure is scru-
tinized. This minimum is generally observed to occur when the competing nonlinear
effects balance each other at any instant. In a time-dependent variational approach
[23, 41], this condition gives rise to the nonlinear integral equation Eq. (3.10) for
the on-axis intensity profile I0(t) of the stationary state. A continuum of solutions
of (3.10) is shown in Fig. 3.8a. Quite remarkably, these solutions are in good agree-
ment with the solutions derived directly from the NLSE, showing the characteristic
double-hump structure with a minimum around zero delay. In order to calculate the
exact position of the minimum we differentiate (3.10) with respect to the retarded
time variable t and subsequently set ∂/∂t I0(t) = 0 in the resulting expression. This
yields the nonlinear integral equation

0 = Ġ(t)I 2
0 (t) + κ

(1 + N∗)2

I N∗+1
0 (t)

P(t)
− 2κN∗ Ṗ(t)

I0(t)

t∫

−∞
dt ′K [t, t ′, I0(t), I0(t

′)]

(3.14)

with κ = k2
0 N∗σN∗ρ0/πρc and

G(t) = 1 − P(t)/Pcr

P2(t)

and an integral kernel

K [t, t ′, I0(t), I0(t
′)] = I N∗+2

0 (t ′)

P2(t ′)
(

1 + N∗ I0(t ′)P(t)
I0(t)P(t ′)

)3 ,

in which Pcr = λ2
0/(2πn0n2). Again, the nonlinear integral equation Eq. (3.14) is a

generalized Volterra-Urysohn integral equation [24]. Combining a Clenshaw–Curtis
quadrature scheme for the integral term of (3.14) with a Chebyshev expansion of
the unknown function I0(t) yields a set of nonlinear equations for the expansion
coefficients [26], which are solved utilizing standard algorithms for nonlinear opti-
mization in MatLab [38]. The solution of this equation is depicted by the dotted line
in Fig. 3.8a. Moving along this line towards positive times, the local minimum of the
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Fig. 3.7 a On-axis temporal intensity profiles (solid lines) and propagation constant μ(t) corre-
sponding to the red curve (dashed line) of steady state solutions, obtained by solving Eq. (3.13),
imposing a Gaussian power profile. b depicts the spatio-temporal representation of the curve marked
in red. Nontrivial stationary solutions only exist within the time-window−t∗ ≤ t ≤ t∗ (t∗ ≈ 22.4 fs).
Reprinted from C. Brée et al. [34]. Copyright © 2010 Astro, Ltd.

solution appears more pronounced. This indicates that the pulse splitting mechanism
works most effectively in the vicinity of zero delay. This analysis therefore explains
the peculiarity of the split preferentially occurring at the instant of maximum power
inside the pulse. Although the variational approach provides a good estimate on the
exact on-axis temporal profile of the steady states shown in Fig. 3.7a, one can certainly
not expect a precise coincidence with the exact solutions, as the variational approach
imposes a fixed Gaussian radial shape of the pulse as shown in Fig. 3.8b. In par-
ticular, the simplifying assumption of a Gaussian spatial profile neglects the fact
that plasma defocusing actually gives rise to the formation of spatial rings. Never-
theless, our analysis corroborates a tendency for self-pinching and pulse break-up.
Starting from an independently obtained observation of filamentary pulse-breakup
both in numerical simulations and experimental investigations, stationary states of
the NLSE coupled to a noninstantaneous plasma response were investigated. The
resulting solutions provide a remarkable prediction for the plasma-induced break-up
scenario in the strongly ionized filament channel. The quality of the exact solutions
compares favorably to stationary solution obtained from Eq. (3.10). In particular,
the position of the local minimum separating the individual sub-pulses is directly
obtained from a nonlinear integral equation. Both, the exact and the variational
approach of deriving stationary solutions to the NLSE corroborates the temporal
break-up observed in the numerical simulations and the emergence of local min-
ima of the intensity profile around zero delay. In summary, it can be concluded that
with plasma defocusing saturating the optical breakdown, the present assumption
of emerging steady state profiles offers deep insight on the dynamical behavior and
underlying mechanisms of a physical system that was previously only accessible in
detailed numerical simulations.
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Fig. 3.8 a On-axis intensity profile of steady state solutions calculated from a variational approach
according to Eq. (3.10). The dotted line represents a solution to Eq. (3.14), indicating the position
of the local minimum. b Depicts the spatio-temporal representation of the curve marked in red.
Reprinted from C. Brée et al. [34]. Copyright © 2010 Astro, Ltd.

3.3 Cascaded Self-Compression

Besides the so-far discussed filamentation regime leading to self-compression during
a split-isolation cycle, filamentation regimes exist which exhibit a richer dynamics
in the so-called post-ionization regime following the nonlinear focus [42]. While
the first scenario is characterized by a single, strongly-ionized regime followed by a
weakly-ionized, sub-diffractive channel, the latter exhibits multiple refocusing events
in the postionization regime leading to multiple temporal splittings of the pulse.
The appearance of refocusing events and multiple temporal splittings in nonlinear
filament propagation is closely related to the occurrence of modulational instabili-
ties. These instabilities are a characteristic feature of the nonlinear propagation of
waves. Prototypical examples are the Benjamin–Feir instability [43] of deep-water
waves and the azimuthal modulational instability of spatial solitons of the nonlinear
Schrödinger equation in optics [44]. Similar phenomena have been reported to occur
in Bose–Einstein condensates [45], in plasma physics [46, 47] and in the propagation
of short laser pulses [48–50]. In self-generated optical filaments, temporal break-ups
serve to actively compress femtosecond laser pulses [41, 51]. Recently, there has
been revived interest in such phenomena as they can give rise to an unusual increase
of pulse amplitude or concentration of energy and to the appearance of the so-called
rogue waves [52, 53]. The probability for the appearance of these rare events rapidly
decreases with their amplitude. As the physical systems are deterministic, perfect
control of the input wave should, in principle, enable an arbitrary increase of wave
amplitude within the system’s limitations. However, exploitation of rogue wave phe-
nomena [54] or other highly nonlinear scenarios for the generation of a desired
pulse shape is technically limited by the feasibility of control over the input wave.
Noise on the input waveform therefore impedes pulse compression at a certain point.
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In most systems, a fundamental limitation arises due to quantum noise [49]. In the
current section, a new approach for exploiting rare events in a highly nonlinear
system is presented, cascading the process while at the same time limiting the under-
lying nonlinearity in every step. The latter measure maintains control over the output
wave when exploiting such events, e.g., for waveform compression. This cascaded
waveform control is illustrated by the propagation of short pulses in a self-generated
filament that are suitably described by the nonlinear Schrödinger equation [41, 51].
In this system, pulse compression factors of the order of 3–5 have been previously
discussed [11, 15, 18, 55, 56] in single-compression cycles. Quite remarkably, the
compression factor of each individual process remains nearly conserved in double
self-compression, enabling in total nearly twelve fold compression [57].

For an investigation of this cascaded compression mechanism, numerical sim-
ulations of the generalized Nonlinear Schrödinger Equation (2.25) are conducted,
modeling the propagation of intense femtosecond pulses in argon [58, 59]. Based
on experimental parameters discussed below, input pulses containing an energy of
2.5 mJ at 800 nm and initial beam waist w0 = 2.5 mm are assumed. The input pulse
duration was taken as tFWHM = 120 fs. The pulses are focused by an f = 1.5 m lens
into a noble gas. To identify the small parameter range giving rise to compressed out-
put waveforms on the axis of the filament, a parameter scan is performed by varying
the gas pressure in a range from 100 to 120 kPa, at otherwise fixed input parameters,
see Fig. (3.9). At a pressure p = 106 kPa, the simulations predict plasma-dominated
dynamics in a relatively short nonlinear focal zone succeeded by a 1 m long self-
generated channel, in which plasma formation is virtually absent. This qualitatively
corresponds to the numerical scenario analyzed in Sect. 3.1. In the plasma-free zone,
Kerr self-focusing effectively balances linear diffraction, see Fig. 3.9a. This figure
clearly reveals how a splitting event at z = 1.4 m close to the linear focus position
merges into formation of one isolated and shorter pulse. The splitting initially pro-
duces two pulses, one at t = −100 fs and a second one at t = +60 fs. At z = 1.6 m,
each of these subpulses is roughly 40 fs wide, which is a natural consequence of
the split. Upon further propagation (z = 1.7 m), the pulse at negative delays dies
out quickly, leaving only one isolated and shortened pulse behind. This prototypical
split-isolation cycle has already been discussed in [15, 18, 34] as the origin of on-axis
pulse self-compression [11]. After the split-isolation cycle, plasma generation has
effectively ceased, such that pulse shaping in the elongated channel at z > 1.7 m is
now dominated by an interplay between Kerr-type self-refraction and linear optical
effects. Notably, self-focusing compensates diffractive optical effects, giving rise to
a sub-diffractive nature of this final nonlinear propagation stage as also observed by
Faccio et al. [60].

Increasing the pressure to 109 kPa, the delicate balance in the sub-diffractive
channel behind the strongly ionized zone is disturbed by a slight increase of Kerr
nonlinearity. This increase triggers a refocusing event 0.5 m behind the first nonlinear
focus, and a second strongly ionized zone evolves (Fig. 3.9b, c). In fact, in Ref. [61]
it has been shown shown that already 0.5 % amplitude noise on the input waveform
yields shot-to-shot intensity fluctuations in the second focus of about 50 %.

http://dx.doi.org/10.1007/978-3-642-30930-4_2
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Fig. 3.9 a Evolution of on-axis intensity profile along z for pulse self-compression into a sub-
diffractive channel in argon, p = 106 kPa. b Corresponding evolution for the double self-
compression scenario at p = 109 kPa. Inset: close-up on the pulse break-up in the second focus,
accompanied by shock wave formation. c Evolution of on-axis peak intensity for pressure from 106
to 120 kPa. Reprinted from C. Brée et al. [57]. Copyright © 2010 IOP Publishing, Ltd.

While refocusing, the pulse experiences a second split-isolation cycle that shows
superficially the same behavior as the first one, i.e., the surviving pulse from the first
cycle splits into two at z = 2.2 m. In contrast to the first cycle, the trailing pulse
dies out at t ≈ 80 fs, leaving only one isolated and yet again shortened pulse at
t ≈ 50 fs behind. In the subsequent nonlinear propagation inside the channel, the
pulse reaches a minimum duration of 16.4 fs at z = 2.5 m. Further increasing the
pressure to p = 120 kPa, pulses with a minimum duration of 10.9 fs emerge after
the second focus. This nearly twelve fold compression chiefly goes back to the two
split-isolation cycles. Such a strong compression effect has neither been observed in
previous experimental [11, 55, 56] nor theoretical studies [15, 18]. The emergence of
the refocusing event must not be confused with focusing-defocusing cycles [17] that
occur on significantly shorter length scales of ≈20 cm whereas repetition of the split-
isolation cycle is only observed with a distance >50 cm between the events. Apart
from the different length scales, our simulation indicate a pronounced intensity drop
and a resulting cease of plasma formation between the two cycles (Fig. 3.9c), which
further suggests a conceptual difference to the much milder focusing-defocusing
cycles previously reported.

Despite the apparently identical effect on pulse duration, collapse saturation in the
two foci is accomplished by different physical effects. In the first nonlinear focus (z =
1.5 m), plasma defocusing and related dissipative terms clamp the intensity whereas
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Fig. 3.10 On-axis XFROG spectrograms a of the optical field emerging from the sub-diffractive
channel regime of Fig. 3.9a, z = 2.45 m, p = 106 kPa, and b after the second pulse breaking at
z = 2.45 m, p = 109 kPa (two-foci regime). c Energy of the output pulse at z = 2.5 m transmitted
through an aperture of radius rO . (d) Temporal duration (FWHM) of transmitted power profiles.
Reprinted from C. Brée et al. [57]. Copyright © 2010 IOP Publishing, Ltd.

temporal effects, in particular dispersion, take over this role in the second focus
(z = 2 m). Indeed, neglecting the plasma response for z > 1.75 m in the simulation
at p = 107 kPa (Fig. 3.9c, blue line) leads to a nearly unchanged dynamical behavior
for the second compression stage. Similar plasmaless refocusing events have been
discussed in Refs. [42, 62]. With increasing pressure (p ≥ 1.09 bar), however, plasma
becomes again essential for preventing spatial wave collapse, while dispersion dom-
inates temporal dynamics by exchanging power between different pulse time slices.
The generation of dispersive shock waves in the trailing edge of the pulse (Fig. 3.9b,
inset) during the second splitting event further underlines the strong impact of dis-
persion and self-steepening.

In order to further analyze spectro-temporal signatures of the pulse-shaping action
during the refocusing event, XFROG spectrograms were computed from the simu-
lated on-axis data, see Fig. 3.10. XFROG spectrograms are a convenient way to ana-
lyze characteristic deviations from a spectrally and temporally homogeneous energy
distribution inside the pulse, which are also directly measurable [63], see also Appen-
dix C. In highly nonlinear scenarios, these spectrograms have previously elucidated
the mechanisms behind supercontinuum generation in photonic crystal fibers [64] and
filaments [15]. In the single self-compression regime, these representations exhibit a
characteristic shape that are most suitably described as the mirror image of the Greek
letter � (Fig. 3.10a), as has already been discussed in [15]. A short pulse duration is
intimately connected to a vanishing slant of the vertical bar of the �. The extension
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Fig. 3.11 a Evolution of XFROG spectrogram along z during propagation through the second
focus. b Corresponding angularly resolved far-field spectra. Reprinted from C. Brée et al. [57].
Copyright © 2010 IOP Publishing, Ltd.

of this section towards the blue is a measure of the asymmetric nonlinear spectral
broadening effects, mainly caused by self-steepening [65]. The appearance of pro-
nounced horizontal structures along the cap section of the �, in contrast, is connected
to the suppression of the leading pulse in the split-isolation cycle, i.e., pulse con-
trast. If a second split-isolation cycle appears, the spectro-temporal pattern of the
pulses changes in a characteristic way, see Fig. 3.10b. Remnants of the suppressed
pulse after the second split-isolation cycle now appear as a blue trailing pedestal of
the spectrogram, i.e., point symmetric to the red leading pedestal appearing after
the first cycle, with a shape that we will refer to as Q-shape in the following. The
broadening effect appears as a spectral red-shift along the vertical axis in Fig. 3.10b.
As filamentary self-compression is typically restricted to a small region around the
optical axis, for the simulated output pulses at z = 2.5 m, the power profile trans-
mitted through an aperture of radius r0 defined by P0(t) = 2π

∫ r0
0 drr I (t, r) was

calculated, where I (t, r) defines the spatiotemporal intensity distribution of the laser
field. The transmitted energy and averaged pulse duration versus aperture radius r0
are shown in Fig. 3.10c, d, respectively.This clearly shows that, for the chosen initial
conditions, double self-compression is superior to the single-focus scenario for two
reasons. First, the pulse duration (green curve) increases less rapidly with r0 for the
double-compression scenario at 120 kPa. Second, only for this scenario, energetic
0.3 mJ output pulses at sub-20 fs duration can be obtained.

Figure 3.11a shows a more detailed view of the transition from inverse � to
Q-shape, with a zoomed-in set of spectrograms computed in the range from z = 195
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to 245 cm. In the initial spectrograms in this sequence, the typical � shape appears
with the vertical bar extending into the blue spectral range. During the approach
towards the second focus, however, the spectral extension into the blue reduces, with
a red shift appearing shortly afterward. Emergence of the red-shift comes along with
formation of a blue trailing pedestal, which is ultimately a remnant of the blue wing
of the inverse � shape. Figure 3.11b additionally shows a view of angularly resolved
spectra [60] during this transition phase. These structures exhibit a markedly differ-
ent behavior in the blue and the red wing of the pulse. This behavior is related to the
strong influence of self-steepening, which causes the blue shift in the trailing part of
the pulse. In fact, the modulational instability occurring in self-focusing media with
normal group-velocity dispersion reshapes this part of the pulse into a characteristic
X-shaped spatio-spectral pattern [66]. The X-waves are known to emerge in regimes
where normal group velocity dispersion saturates the optical collapse due to Kerr
self-focusing. Mathematically, they originate from exponentially amplified noise on
a cw-beam with the radial shape of a Townes soliton, being a stationary, yet unstable,
solution of the simplified Nonlinear Schrödinger equation

∂zE = i

2k0
�⊥E − i

β2

2

∂2

∂t2 E + i
ω0

c
n2|E |2E (3.15)

with GVD coefficient β2 > 0. In the spatio-temporal domain, this instability has also
been shown to be responsible for the observed temporal splitting and the emergence of
hyperbolic shock waves [67, 68]. Remarkably, those dispersion dominated dynamics
are still observable in the pressure regime above 109 kPa, where plasma defocusing
is already essential for wave-collapse arrest. The apparent red-shift of the spectra of
the optical fields emerging from the 2-foci regime can thus be ascribed to both, self-
phase modulation in the leading edge of the pulse during the refocusing stage and
to angular dispersion of the blue spectral content of the pulse into a spatial reservoir
due to the generation of the shock wave. Figure 3.12a shows the shock-wave in the
spatiotemporal domain, exhibiting a clear temporal asymmetry, with shock-waves
only appearing in the trailing part of the pulse at t ≈ 80 fs. This characteristic
asymmetry shows up in the few-cycle regime, where self-steepening and space-time
focusing have to be taken account in the model by including the operator T and T −1.
In fact, presupposing T = 1, theory predicts temporally symmetric shock-waves
both in the leading and trailing edge of the pulse, an observation that has also been
done in the context of nonlinear fiber optics [69], where shock-waves are generated
both in the leading and trailing parts of the pulse due to the interplay of normal
GVD and self-phase modulation. In the trailing part of the pulse, Fig. 3.12a exhibits
the presence of a spatial ring approximately localized at t = 70 fs and r = 600µm.
In order to analyze this phenomenon in more detail, Fig. 3.12b displays a tomographic
representation of the laser pulse, showing spectrogram representations of the pulse
for different radial distances from the optical axis. The spatial ring shown in Fig. 3.12a
is also clearly visible in the XFROG tomographic representation of Fig. 3.12b, with
a blue-shift of approximately 20 THz w.r.t. the carrier frequency of 375 THz. In fact,
the emergence of a spatial ring with anti-Stokes shifted wavelengths around the
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Fig. 3.12 a Intensity distribution in the (r, t)-plane of a filamentary pulse at z = 2.5 m and p =
1.09 kPa. b Tomographic XFROG representation of same pulse for different distance r from optical
axis

white-light core of the filament is a well-known phenomenon and is referred to as
conical emission (CE). Recently, the CE has been shown to be related to X-waves,
and, beyond that, has been described in terms of a description similar to that of
Cerenkov-radiation [70].

3.3.1 Experimental Evidence of Cascaded Self-Compression

For experimental verification of the double self-compression, a 45 fs regenerative
Ti:sapphire amplifier system with a pulse energy of 5 mJ was employed. The laser
pulse energy has been carefully attenuated by means of an adjustable diaphragm
and focused with an f = 1.5 m lens to generate a single filament in air. A second
diaphragm after the filament served to isolate the core of the filament. After suitable
attenuation, the temporal structure in the filament core was analyzed with spectral
phase interferometry for direct electric-field reconstruction (SPIDER, [71–73]). The
SPIDER method delivers the spectral phase, which can be combined with an inde-
pendently measured spectrum to reconstruct the complex-valued field envelope in
the spectral or temporal domain. Moreover, this information also suffices to directly
reconstruct XFROG spectrograms from experimental data.

Except for the fact that no gas cell was necessary, this setup widely resembles the
one in [11]. Adjusting the input diaphragm, a regime could be found that displayed a
single filament with two clearly separated strongly ionized zones that were separated
by about 30–40 cm. With these short input pulses, the simulations indicate that we
can at best expect about threefold compression. It may appear intriguing to suggest
dispersive stretching of the 45 fs pulses to 120 fs duration in order to demonstrate
the full compression potential. Yet, these chirped pulses would already exhibit a
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Fig. 3.13 a XFROG trace of an output pulse after double self-compression in air, obtained from
measured SPIDER data. b Numerically obtained Q-shaped XFROG trace at the exit of the air
filament after double self-compression, z = 3 m. Reprinted from C. Brée et al. [57]. Copyright ©
2010 IOP Publishing, Ltd.

much wider bandwidth than Fourier-limited 120 fs pulses, and compression could
also stem from linear optical effects. Therefore the short 45 fs pulses delivered by
the laser source were used as the input directly.

From the measured SPIDER data, the XFROG spectrogram shown in Fig. 3.13a
was reconstructed. This spectrogram shows features previously discussed for the
single-focus and the double-focus regime in argon, cf. Fig. 3.10a, b, respectively.
From the former, a temporally stretched leading pedestal is discernible, which is
generally quite typical for self-compression [15]. In addition to previous experimen-
tal findings, however, a clearly visible trailing blue pedestal appears. A Q-shaped
spectrogram thus forms, which characterizes a second split-isolation cycle. Such a
structure has not been reported in literature yet. It is striking that this feature appears
temporally less stretched than the leading red pedestal from the first split-isolation
cycle, which corroborates less exposure to linear and nonlinear pulse shaping effects.
Therefore the experimental findings appear to be highly compatible with the causal
sequence of events predicted by numerical simulation. This finding also suggests
that the second split-isolation cycle is being caused by a different mechanism than
the first one, causing pedestal formation at opposing spectral and temporal edges of
the main pulse. To compare these experimental findings with theoretical predictions,
a delayed Kerr-nonlinearity was included in the model equations for pulse propa-
gation in molecular air and additional numerical simulations were performed, with
2.5 mJ Gaussian input pulses w0 = 3.5 mm, tFWHM = 45 fs. These initial conditions
match the experimental input pulse parameters as close as possible. The numerical
simulation shows two distinct ionization zones and a characteristic Q-shaped XFROG
spectrogram (Fig. 3.13b) emerging after the refocusing stage and corresponding split-
isolation cycle (Fig. 3.14a). Thus, the numerical data reproduce the characteristical
features of the measured pulses, including redshifted leading and blueshifted trailing
pedestals, as also observed in numerical simulations of double self-compression in
argon. In addition, Fig. 3.14b shows spectra from experiment and theory. Both sim-
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Fig. 3.14 a Evolution of on-axis temporal intensity along z in a numerically simulated filament
in air, exhibiting refocusing stage and double splitting events. b On-axis spectra in numerical
simulation and experiment. c On-axis temporal intensity profile from SPIDER measurement (blue
curve) versus on-axis profile at z = 3.5 m obtained from numerical simulations (black curve).
Reprinted from C. Brée et al. [57]. Copyright © 2010 IOP Publishing, Ltd.

ulated and experimentally recorded spectra exhibit a pronounced redshift, which,
according to our previous discussion, emerges due to spatio-spectral reshaping of
the pulse during the refocusing stage. In Fig. 3.14c a comparison is shown between
on-axis temporal profiles of measured and simulated pulses. The measured pulse
exhibits a duration tFWHM = 22 fs, while the simulated pulse has tFWHM = 14 fs
on-axis.

The cascaded compression scenario is not an isolated phenomenon, but can be
obtained for a range of input pulse parameters and gas species, which sets it apart
from a highly optimized single-compression scenario. Assuming a different gas, e.g.
krypton as the nonlinear medium [58, 59], for a demonstration of the universality
of this mechanism the parameter range of input pulse energy and peak power was
scanned in numerical simulations for appearance of this phenomenon. Beam waist
and temporal duration were fixed at w0 = 5 mm and tFWHM = 120 fs, respectively.
The observed pulse shortening as a function of input energy and system nonlinear-
ity (peak power normalized to Pcr) is depicted in Fig. 3.15, with iso-pressure lines
shown in white. The dashed line, roughly collinear with the 100 kPa pressure line,
marks the lower limit of double self-compression. From this picture, the capability
of the cascaded self-compression becomes immediately clear, giving rise to up to
twelve fold compression. Compression ratios above 10 are localized in the region
of double self-compression and can already be observed at powers exceeding the
critical power by a factor of only three. Our scan also reveals examples for threefold
cascading of the split-isolation cycle, yet with imperfect isolation in the last cycle.
Generally, for pressures exceeding 160 kPa an increased tendency for such undesired
multiple temporal splits is observed. Importantly, cascaded self-compression fills a
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Fig. 3.15 Pulse compression ratio in a krypton filament for various initial conditions in the Energy
versus P/Pcr plane. The solid lines correspond to lines of equal pressure. The dashed line separates
subdiffrative channel regimes (below) from double self-compression regimes (above). Reprinted
from C. Brée et al. [57]. Copyright © 2010 IOP Publishing, Ltd.

considerable fraction of the parameter space mapped out in Fig. 3.15. This sets it
apart from sparsely represented rogue-wave-like events [53].

The conducted numerical investigations and experimental studies pinpoint an
alternative approach toward efficient exploitation and control of highly nonlinear
wave shaping mechanisms. Rather than trying to confine input parameters in an
increasingly narrow range, it appears much more promising to relax these con-
straints in order to avoid that input noise strongly affects the output waveform.
It was demonstrated that physical systems exist that allow for cascaded applica-
tion of the waveform shaping effect, e.g., in order to compress optical pulses or
to concentrate energy. While this effect certainly also narrows the input parameter
space, it is minor as compared to immediate rogue wave control that exhibits a rapidly
imploding parameter space with increasing amplitude [52]. The cascaded compres-
sion method presented here therefore opens a perspective not only for optical pulse
compression but for exploitation of waveform control in a wide range of similar
highly nonlinear physical scenarios.

3.4 Temporal Self-Restoration in Femtosecond Filaments

Spatiotemporal soliton solutions [74] to the Maxwell equations in a nonlinear
medium are an intriguing concept, as these hypothetical objects may serve to trans-
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fer electromagnetic energy over distances widely exceeding the Rayleigh range of
linearly diffracting laser beams. Indeed, with the discovery of filamentary light prop-
agation, it was observed for the first time that nonlinear optical effects are able
to balance diffraction, giving rise to extended, sub-diffractive channels of light
maintaining a high fluence along their longitudinal extension. This unexpected
property has led the authors of [75] to conclude that the physics of femtosecond
filaments is allegeable in terms of spatiotemporal optical solitons, an assumption
that did not remain undisputed [76], however. Indeed, contrary to the idea of spa-
tiotemporal solitons, as it was pointed out in the previous sections, filamentary
propagation of light is a highly dynamical process, with a recurrence of focus-
ing/defocusing cycles maintaining the illusion of stationarity [28]. Nevertheless,
it is frequently observed that filaments are very robust objects and exhibit self-
restoration capabilities of their spatial profile when hitting, e.g., small water droplets
[77]. These properties are rather typical for solitary solutions of nonlinear prop-
agation equations, and it is in fact possible to show that a time average of the
propagation equation governing the filament dynamics admits spatial soliton solu-
tions [77, 78]. Moreover, it has recently been shown for the first time that fila-
mentary light pulses admit self-restoration of their temporal profile when exiting
a gas-filled chamber through a silica window, a setup typically used in filament
self-compression experiments. That is to say, the detailed theoretical analysis of
[79, 80] shows that the self-compressed laser pulse experiences a dramatic change
of its temporal profile as it traverses the silica window, a behavior which is not
explicable by linear theory. In fact, for a few-cycle pulse with initial duration
tFWHM = 10 fs traversing a silica sample with thickness �z = 500 µm, accord-
ing to Eq. (2.68), only a moderate temporal broadening due to the GVD of silica
(β2 = 370 fs2/cm) to tFWHM = 11.2 fs is expected. In contrast, theoretical work
[80] reports temporal stretching in a 0.5 mm thick silica window from initially 13
to 28 fs and >30 fs, respectively. Surprisingly, it is shown in the latter work that the
pulse is able to recompress after it leaves the silica window. This surprising behav-
ior, i.e. the dramatic temporal stretching inside the exit window and the subsequent
recompression, was analyzed in more detail in [80]. Figure 3.16 taken from [79]
shows the simulated evolution of the on-axis intensity profile for two different pulses
directly after they leave the exit window and continue propagation in air. The two
configurations are distinguished by the position of the exit window, where in the
upper left case, the exit window is located closer to the filament. Both upper panels
clearly show the strong temporal broadening of the on-axis profile directly after the
exit window. Further on, it is evident that temporal self-restoration is accompanied
by a refocusing stage. It has been shown in [79] that this refocusing stage emerges
from a spatial phase curvature resulting from spatial SPM which acts like a focusing
lens.

Thus, by robustness of their spatiotemporal profile, filamentary light pulses exem-
plify properties typical for spatiotemporal soliton solutions, although the underlying
dynamical equations generally do not admit unconditionally stable soliton solution
in space and time. These theoretical predictions by Bergé et al. provided a motiva-
tion for an experimental study of the influence of the exit window on filamentary

http://dx.doi.org/10.1007/978-3-642-30930-4_2
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Fig. 3.16 Main features of temporal self-restoration as numerically predicted in [79]. The figure is
taken from Ref. [79]. Reprinted from L. Berge et al. L.2008. Copyright © 2008 American Physical
Society

propagation [81]. However, due to the high intensities involved, the pulse profiles
directly before and after the exit window elude any measurement attempt, such that
the details of the evolution leading to self-recompression are inaccessible experi-
mentally. Nevertheless, it is possible to obtain indirect evidence of the influence of
the exit window, as will be demonstrated in the following.

3.4.1 Experimental Prerequisites

The employed experimental setup is shown in Fig. 3.17. The laser source is a
Ti:sapphire regenerative amplifier delivering 45 fs pulses at 5 mJ and beam waist
w0 = 9 mm. Focusing the pulsed laser beam with a R = 3 m parabolic mirror into
an argon-filled gas cell at atmospheric pressure, an approximately 40 cm long fila-
ment is formed, with a reddish violet fluorescent trail starting at about 10 cm before
the geometrical focus. In order to achieve a single stable filament, a central part of
the beam is selected by an adjustable aperture (D1). The optical power transmitted
through this first aperture was measured as 1.4 W, which at a repetition rate of 1 kHz
corresponds to a pulse energy of 1.4 mJ and to a peak pulse power of 30 GW. This
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Fig. 3.17 Experimental setup: adjustable diaphragms D1, D2, D3, curved mirror CM (R = 3.0 m),
mirror M, silica wedge SW. Pulsed femtosecond laser radiation generated within a Ti:sapphire
regenerative amplifier at a repetition rate of 1 kHz, emitting 45 fs, 5 mJ pulses at 800 nm center
wavelength

equals three critical powers for self-focusing in argon at 800 nm. At the output of
the gas-cell, a pulse energy of 1.2 mJ was measured. The beam enters and leaves
the gas cell by traversing 500 µm thick Brewster-angled silica windows, which were
later replaced by 50µm thick polypropylene foils. As filamentary self-compression
dynamics is most pronounced in the spatial center of the beam, aperture D3 was
carefully matched to select the white-light core of the beam, which contains a pulse
energy of 0.6 mJ. For diagnosis of the filament cell output, a simple spectrograph
and spectral phase interferometry for direct electric-field reconstruction (SPIDER,
[71–73, 82]) were used. A brief overview about the SPIDER interferometric tech-
nique is given in Appendix B. In order to avoid damage in the nonlinear crystal of
the SPIDER setup, the beam was attenuated using the front reflex off a silica wedge
(SW). As the subsequent experiments strongly rely on the accuracy of the SPIDER
data, the statistical fluctuations of the reconstructed output pulse shapes from the
self-generated filament were carefully analyzed in a first step.

Figure 3.18a shows a recorded interferogram (solid line) and the standard devia-
tion (dashed line) of the reconstructed group delay, calculated from a set of approxi-
mately 50 measured interferograms. Here the SPIDER trace is detected at the second
harmonic of the input wavelength, i.e., at about 750 THz, since the SPIDER method
relies on the generation of two spectrally sheared, upconverted copies of the pulse
by sum frequency generation in a χ(2)-medium. The corresponding spectrum and
integrated spectral phase, averaged over the available data, are shown in Fig. 3.18b.
In the time domain, Fig. 3.18c shows the temporal intensity profile reconstructed
from the averaged phase (strong solid line). The measured pulse clearly exhibits
the well-known characteristic asymmetry [11, 15, 65] of filamentary light bullets,
with a duration (FWHM) of 18 fs. In addition, the pulse profiles corresponding to
the individually measured interferograms (light gray lines) are displayed in the same
figure. These measurements show that the modulation depth of the measured SPI-
DER traces is high enough to yield sufficient accuracy over the relevant spectral
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Fig. 3.18 a Measured SPIDER interferogram versus frequency ν = ω/2π (solid line) and standard
deviation of spectral phases (dashed line) retrieved from a set of ≈50 interferograms. b Spectrum
of a self-compressed pulse emerging from a filament (solid line). Dashed line shows the averaged
spectral phase. Concave phases indicate excess normal dispersion. c Time domain representation of
the measured pulse. The black line shows the reconstruction using the averaged spectral phase. The
light gray lines show pulse profiles reconstructed from each measured interferogram. Reprinted
from C. Brée et al. [81]. Copyright © 2008 American Physical Society

range, in particular in the extended blue wing of the spectrum. For the pulse shown,
this gives rise to an error in pulse duration not exceeding ±1 fs.

3.4.2 Experiment 1: Variation of Window Position

In a first experiment the position of the entire argon cell is varied along the optical
axis. In particular, this measure varies the distance between the plasma column and
the output window, but leaves the linear dispersion of the system unaffected. The
window position �z is defined as the distance between the inner surface of the silica
output window of the cell and the position of the geometrical focus. The quantity
�z is varied between �z = 103 and 111 cm, the maximum variation allowed due
to practical constraints in the experimental setup. The results of the measurements
are summarized in Fig. 3.19. In Fig. 3.19a, the measured spectra at minimum and
maximum �z are shown. This comparison clearly reveals that a decrease of �z
comes along with an elevated red shoulder of the spectrum, while the blue shoulder
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generated by self-phase modulation and self-steepening in the trailing part of the pulse
appears suppressed. In fact, an analogous behavior was observed in the numerical
simulations of Ref. [80]. The SPIDER setup determines the spectral phase �(ω)

up to an unknown global offset and an arbitrary linear dependence. However, the
former only corresponds to a global phase factor while the latter translates the entire
pulse in the time domain. Therefore, given that one is only interested in the temporal
pulse shape and the phase, all relevant information is encoded in the group velocity
dispersion (GDD) defined as D2(ω) = ∂2�(ω)/∂ω2. Consequently, instead of the
measured spectral phase, only the corresponding GDD is considered in the following.
Figure 3.19b displays the dependence of the measured GDD on the window-filament
distance �z in a frequency range from 340 to 420 THz. This shows that the GDD
exhibits strong fluctuations, especially in the red spectral range, i.e., below a carrier
frequency of 375 THz. In fact, both the smaller absolute values and the weak variation
of the GDD on the blue side of the spectrum are well expected from the asymmetric
spectral broadening due to self-steepening which becomes increasingly relevant in
the few-cycle domain. Self-steepening generates new blue spectral content in the
trailing part of the pulse and is thus strongly localized in the time domain [65]. This
is also evident from the �-shaped XFROG spectrograms discussed in the previous
section. In the frequency domain, this strong localization is evidenced by a nearly flat
spectral phase in the blue part of the spectrograms, a feature which has been verified
both theoretically and experimentally several times [11, 15, 65]. Reconstructing
temporal pulse profiles from measured spectra and phases, as shown in Fig. 3.19c, the
pulse duration is constant within experimental precision for large window-filament
distances �z > 109 cm. However, a reduction of �z results in an increasing pulse
duration. At �z ≤ 106 cm, only poor compression ratios are observed, with pulse
durations exceeding 30 fs. In the following, the functional

V GDD(ω1,ω2) =
ω2∫

ω1

∣∣∣∣
d D2(ω)

dω

∣∣∣∣dω (3.16)

measures the total variation of the GDD between ω1 = 2π × 340 THz and ω2 =
2π × 425 THz. In Fig. 3.19d, V GDD(ω1,ω2) is plotted against �z. From �z =
103 to 109 cm, the variation roughly correlates with the pulse duration, with the
exception of �z > 109 cm, where it increases while the pulse duration remains
nearly constant. These measurements clearly show that the compression ratio strongly
depends on the position of the exit window. In fact, an unsuitable choice of the
window position can render filamentary self-compression unobservable. However,
in order to provide evidence for the self-restoration mechanism of [79, 80], it is clearly
necessary to supplement the previous measurements with experimental data of the
self-compression efficiency inside the argon cell, which is, of course, impossible to
achieve due to the high intensity within the filament. Instead, output pulses from a
windowless argon cell, as described in the next section, provide indirect evidence
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Fig. 3.19 a Comparison of measured spectra for small (solid line) and large (dashed line) values of
�z. Window proximity elevates the red spectral wing on the expense of the blue wing. b Variation
of GDD versus the window position �z. c Measured pulse duration versus �z. d Total variation V
calculated according to Eq. (3.16) in the frequency range from 340 to 425 THz. Reprinted from C.
Brée et al. [81]. Copyright © 2008 American Physical Society

of the self-compression efficiency within the argon cell, and corroborate further the
non-negligible influence of the cell windows.

3.4.3 Experiment 2: Windowless Measurement

In the following, the impact of the exit window is analyzed in more detail, especially
the theoretically predicted dramatic temporal stretching of the pulse due to the inter-
play of Kerr self-focusing and GDD. To this purpose, the gas cell is positioned at
z = 103.6 cm, which renders self-compression ineffective (see previous section). In a
first experiment, the evacuated gas cell is carefully filled with argon until atmospheric
pressure is reached. The laser beam is then coupled into the gas cell. The energy of the
pulses entering the cell via the first aperture is 1.2 mJ. The temporal pulse profiles and
spectral phases are reconstructed using the SPIDER method. In a next step, the exit
window is removed from the gas cell and replaced by a 50 µm polypropylene foil. The
latter is then covered by a metal plate wetted by ethanol in order to prevent an implo-
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sion of the foil during the subsequent evacuation stage. Having evacuated the gas cell,
it is carefully refilled with argon until atmospheric pressure is reached, allowing to
remove the metal plate. The laser beam is then coupled into the gas cell again, with
identical coupling conditions as for the windowed measurements, i.e. equal pulse
energy and aperture diameter. Even though the foils are a factor 10 thinner than the
previously used silica windows, it is due that nonlinearity and dispersion are nearly
unchanged compared to the silica window.1 Consequently, there is no significant
change in the pulse shaping dynamics observed. However, the thin foil can be easily
perforated at slightly higher intensities, which enables experiments in a windowless
cell. As the diameter of the aperture is very small and there is no pressure difference,
it takes more than ten minutes before diffusion has significantly contaminated the
argon inside the cell, as can be seen both, from a change of the fluorescence color as
well as from a change in the supercontinuum spectrum. The following measurements
have always been taken in the first few minutes of operation of the windowless cell,
therefore minimizing the influence of air contamination. Moreover, as the ablation
process perforating the foil has terminated and the power was subsequently reduced
to restore input beam parameters of the windowed measurements, only plasma for-
mation in the gases could play a role. The input beam parameters were carefully
adjusted as to avoid the generation of a significant plasma density at the exit of the
gas cell. The results for the windowed (red line) and windowless cases (black line)
are directly compared in Fig. 3.20. In Fig. 3.20a, temporal profiles are shown. In fact,
the unwindowed pulse has experienced noticeable self-compression, with a FWHM
duration of 20 fs, while the windowed pulse is considerably longer (38 fs), confirming
that for the chosen window position, self-compression is ineffective. The measure-
ments impressively confirm the dramatic temporal stretching of the pulse due to the
interplay of Kerr self-focusing and GDD, even exceeding the stretching predicted by
linear theory for 0.5 mm of propagation in silica. The measured GDD for both cases
is shown in Fig. 3.20b. Again, the fluctuations on the red side exceed those on the
blue side in both cases, yet with a stronger fluctuation for the windowed pulse. This
may be attributed to self-phase modulation experienced by the pulse during silica
propagation.

3.4.4 Comparison with Numerical Simulations

In the following, direct numerical simulations of the evolution equation describing
filamentary propagation are used in order to link our experimental results to the
self-restoration results of Refs. [79, 80]. A theoretical treatment of temporal self-
restoration in femtosecond filamentation requires the analysis of the pulse dynamics

1 Using a band gap of 3.8 eV [83] and n = 1.5, an estimate of the nonlinear refractive index
n2 = 2 × 10−15 cm2/W for polypropylene at 800 nm may be given. This estimation is based on
Ref. [84]. A group velocity dispersion β2 = 300 fs2/mm is indicated in Ref. [85]. These values are
at least five times larger than the characteristic values for silica at the same wavelength.
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Fig. 3.20 a Temporal pulse profiles, and b GDD reconstructed from SPIDER measurements for
the windowed (dashed line) and windowless case (solid line). Reprinted from C. Brée et al. [81].
Copyright © 2008 American Physical Society

Fig. 3.21 a Evolution of the on-axis intensity profile for a fs-pulse propagating in argon. b Same,
but with a silica window located at z = 2.04 m (�z = 54 cm) and subsequent propagation in air. In
(a) and (b), 0 dB =̂ 92TW/cm2. c Evolution of pulse duration along z in argon (black line). Dashed
line pulse duration along z for propagation in air, after traversing a 0.5 mm silica window. Reprinted
from C. Brée et al. [81]. Copyright © 2008 American Physical Society

during three different propagation stages: in the first stage, the pulse propagates inside
the gas cell, commonly filled with a noble gas. In the second stage, the pulse traverses
the silica window, typically with a thickness of the order of 0.5 mm. Finally, before
reaching the experimental setup used for pulse diagnostics, the pulse propagates
in air at atmospheric pressure. The first propagation stage in the noble gas cell is
appropriately described by the envelope equation Eq. (2.55) introduced in Chap. 2 of

http://dx.doi.org/10.1007/978-3-642-30930-4_2
http://dx.doi.org/10.1007/978-3-642-30930-4_2
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Fig. 3.22 a Comparison of simulated spectra for small (�z = 62 cm, solid line) and large (�z =
78 cm, dashed line) window-filament distance. Window proximity elevates the red spectral wing on
the expense of the blue wing. b Variation of GDD versus window position �z. c Simulated pulse
duration versus �z. d Total variation V GDD calculated according to Eq. (3.16) in the frequency
range from 340 to 425 THz. Circles in (c) and (d) indicate that in the corresponding configuration,
the pulse fluence at the inner window surface exceeds 0.1J/cm2, leading to significant nonlinear
Fresnel reflection at the argon-silica boundary. Reprinted from C. Brée et al. [81]. Copyright ©
2008 American Physical Society

this thesis. However, propagation in silica and air, the former being a crystalline solid
while the latter is a mixture of molecular gases, requires a refined propagation model.
The main difference to the propagation Eq. (2.55) stems from the fact that the Kerr
response both in silica and in air can no longer be treated as instantaneous due to the
delayed response of the nuclei. Taking into account noninstantaneous contributions
to the nonlinear Kerr response, the modified evolution equations are

∂zE = i

2k0
T −1�⊥E + iDE + i

ω0

c
n2T

∫
R(t − t ′)|E(t ′)|2dt ′E

− i
k0

2ρc
T −1ρ(E)E − σ

2
ρE − Ui W (I )(ρnt − ρ)

2I
E, (3.17)

∂tρ = W (I )(ρnt − ρ) + σ

Ui
ρI − ρ

τrec
(3.18)

R(t) = (1 − f )δ(t) + f θ(t)
1 + ω2

Rτ
2
R

ωRτ
2
R

e−t/τR sin(ωRt) (3.19)
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Here, τrec is the electron-ion recombination time, and f denotes the fractional con-
tribution of the noninstantaneous Kerr response to the total nonlinear polarization.
The function R(t) suitably describes the noninstataneous response in molecules or
crystalline solids [86, 87]. In argon, f = 0, and the response kernel reduces to a δ
function, describing instantaneous electronic response. On the other hand, f = 0.15
in silica [87] and f = 0.5 in air [88] account for noninstantaneous contributions to
the Kerr effect, being a consequence of the delayed response of the nuclei. This is also
known as the Raman effect. A pump photon excites an electron in the ground-state |g〉
to an intermediate virtual state |i〉, from which it relaxes to an excited rovibrational
state |v〉 of the molecule. As the energy of the rovibrational states is higher than the
ground-state energy, this is accompanied by the emission of red-shifted photon as
the molecule absorbs energy from the pump field. This gives rise to the appearance
of the so-called stokes line in the spectrum, redshifted w.r.t. to the pump beam. Cor-
respondingly, the blue-shifted photon arising from the transitions |v〉 → |i〉 → |g〉
gives rise to the so-called anti-Stokes line. Equations (3.12)–(3.14) are used to ana-
lyze the dynamical behavior of a few-cycle pulse in silica sample after immediately
after being self-compressed in an argon-filled gas cell. All medium parameters for
argon, silica and air entering Eqs. (3.12)–(3.14) can be found tabulated in Ref. [80].
As for the initial conditions, special care was taken to numerically duplicate the para-
meters of the pulsed femtosecond source used in the experiment. In particular, as
has been pointed out previously in literature [11, 89, 90] placing an aperture in front
of the entrance window stabilizes the filament, prevents spatial break-up and may
help in obtaining an increased bandwidth. Additionally, Ref. [80] has pointed out
the importance of including a frequency dependence of the lens factor describing the
wavefront curvature of the input pulse. Considering these two issues, an appropriate
choice for the Gaussian input field is given by

E(r, z, t) =
√

2Pin

πw2
0

exp

(
− r2

w2
0

− r16

r16
ap

)

×
∞∫

−∞
dω exp

(
i
(ω + ω0)r2

2c f
+ iωt

)
Êin(ω). (3.20)

where Êin(ω) is the Fourier transform of the assumed on-axis temporal power pro-
file of the input pulse, Ein(t) = exp (−t2/t2

p). To obtain qualitative agreement with
experimental data, tp = 38.22 fs, w0 = 9 mm and dap = 2rap = 7 mm correspond-
ing to the diameter of the aperture are chosen as initial conditions. The focal length is
given by f = 1.5 m, and the input peak power Pin is about 84 GW, corresponding to
8.2 critical powers and a pulse energy of 1 mJ transmitted through the aperture. The
theoretical on-axis temporal profile of the initial electric field envelope, normalized to
unity, is given by the Fourier transform of the spectral function Êin(ω). The frequency
dependent lens factor in Eq. (3.20) accounts for the fact that different frequency com-
ponents diffract into different cone angles. Initially, a simulation is performed where
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it is assumed that the entire propagation takes place in argon. Figure 3.21a shows
the numerically simulated on-axis temporal profile along propagation distance z.
Here, the well-known split-isolation scheme [18, 57] is recovered, with a temporal
break-up occurring around the focal range at z = 1.5 m and a subsequent isolation
of the trailing pulse. The solid black line in Fig. 3.21c depicts the corresponding
pulse duration along z. In this simulation, self-compressed pulses are obtained with
a minimum duration of ≈20 fs, comparable to the experimentally observed scenario.
Next, the latter results are compared to those obtained by accounting for the different
propagation stages, i.e., argon, silica and air, as encountered under realistic experi-
mental conditions. In air and silica, besides the instantaneous Kerr response ∼n2 I ,
a delayed Raman term [86] contributes to the nonlinear polarization. The NEE is
modified accordingly, with a relative contribution f of the delayed response to the
total nonlinear polarization given by f = 0.15 in silica and f = 0.5 in air [88].
The latter values and all other medium parameters employed are tabulated in [80].
For the initial propagation stage in argon, f = 0, as no delayed Raman response is
present in atomic gases. The complex output envelope of this simulation is then used
as initial condition for the 0.5 mm propagation in silica. Finally, the output complex
envelope is used as initial envelope for the last propagation stage in air.

As an example, Fig. 3.21b shows the evolution of the on-axis temporal intensity
profile along z for this propagation sequence. Here the dashed white line marks the
position of the exit window at z = 2.04 m, corresponding to �z = z − f = 54 cm.
This simulation qualitatively reproduces simulation results of [79, 80] and exhibits
temporal self-restoration. This is also evidenced by the dashed line in Fig. 3.21c,
exhibiting both, temporal stretching in the silica window to ≈33 fs from initially 14 fs,
and a subsequent self-restoration of the temporal profile to 14 fs during a focusing
stage. In fact, Fig. 3.21 indicates that the output window can even be beneficial for
the pulse compression: For an optimum window position (�z = 54 cm) the pulse
duration for z > 2.2 m is even shorter than for the windowless case (see solid line in
Fig. 3.21c). The window position is then further varied between �z = 34 to 110 cm,
where �z has been chosen as the distance between the inner surface of the silica
window and the focal point at f = 1.5 m, in analogy to the experiments. The output
pulses are analyzed at z = 2.78 m, corresponding to the fixed position of the SPIDER
setup in the experiment. Figure 3.22a shows numerical spectra for �z = 62 cm
(solid line) and �z = 78 cm (dashed line), reproducing the experimentally observed
elevation of the red spectral wing and breakdown of blue spectral wing. Figure 3.22b
shows the GDD along �z. This figure qualitatively reproduces the experimental
results, showing strong GDD fluctuations in the red spectral range. In contrast, the
GDD on the blue side of the spectrum has a much smaller absolute value and remains
nearly constant for increasing �z, as also evidenced experimentally. The simulated
pulse duration in Fig. 3.22c strongly varies with �z, first decreasing from 50 to 12 fs
and then increasing again up to a value of ≈30 fs at �z = 62 cm. Increasing �z,
the pulse duration decreases again to attain a minimum value of 22 fs at around
�z = 100 cm. For larger distances, the pulse duration increases again. Thus, the
simulations reveal that the effectiveness of filamentary self-compression crucially
depends upon the chosen window position. Obviously, quantitative values for the
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Fig. 3.23 XFROG spectrogram calculated from measured spectrum and spectral phase at a �z =
109.7 cm and b at �z = 103.6 cm. c Corresponding figure obtained from simulation data at �z =
78 cm and d �z = 62 cm. e Depicts numerical difference of experimental XFROG signals IX ,
�IX = IX (�z = 103.6cm) − IX (�z = 109.7cm) shown in (a) and (b), while f shows the
corresponding quantity for the XFROG signals shown in (c) and (d). All XFROG spectrograms are
normalized to unity, 0 dB =̂ 1 arb. u. Reprinted from C. Brée et al. [81]. Copyright © 2008 American
Physical Society

measured and simulated pulse durations at comparable values for �z (103–111 cm)
disagree, in particular, the simulated pulse duration is almost constant in this �z
range. This discrepancy is to be attributed to the insufficient knowledge of the initial
pulse. It is well known that pulse self-compression dynamics are very sensitive
(∼10 %) to input fluctuations [15]. However, as the experimentally measured pulse
durations vary between 20 and 35 fs and decrease with increasing �z (Fig. 3.19c),
they are instead compared with simulated pulses in the range 60 cm< �z < 100 cm
exhibiting similar durations and sign of slope with respect to the window position.
This latter choice is also substantiated by the behavior of V GDD(ω1,ω2) shown in
Fig. 3.22d which, at least in the interval 60 cm< �z <80 cm, roughly correlates with
the pulse duration. This closely reproduces the experimentally observed behavior.

Note that in Fig. 3.22c, d, for �z < 48 cm, the pulse fluence at the inner surface
of the exit window exceeds 0.1 J/cm2. According to [80, 91], this leads to signifi-
cant nonlinear Fresnel reflection at the boundary, which cannot be captured by the
envelope model [15, 92] employed here. Therefore, in Fig. 3.22c, d, the affected data
points are highlighted by gray circles, indicating that the assumed model is strictly
valid only for �z > 48 cm. An even deeper insight into the dynamics of tempo-
ral self-restoration is obtained by considering XFROG spectrograms [63] both from
measured and simulated pulses. Figure 3.23a shows an XFROG trace calculated from
a measured spectrum and SPIDER phase, corresponding to the pulse leaving the gas
cell at the exit window at �z = 109.7 cm, a regime where self-compressed pulses
with a pulse duration of 20 fs are obtained. Note that the spectrogram exhibits the
well-known inverse �-shape discussed in previous publications [15, 57]. In contrast,
positioning the exit window at �z = 103.6 cm, the XFROG spectrogram recon-
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Fig. 3.24 Numerically obtained a on-axis temporal profile and b corresponding GDD for windowed
(dashed line) and unwindowed case (solid line). Reprinted from C. Brée et al. [81]. Copyright ©
2008 American Physical Society

structed from the measured pulse is shown in Fig. 3.23b. Here the refocusing of a
self-compressed few-cycle pulse manifests itself in an increasing temporal delay of
the blue spectral components, which eventually form a blue trailing subpulse. Indeed,
this shift of the blue spectral components towards positive delay is observed in the
experimental XFROG trace. As the effect is quite subtle, the numerical difference
�IX = IX,1 − IX,2 is calculated, where IX,1 and IX,2 denote the XFROG intensities
at �z1 = 103.6 cm and �z2 = 109.7 cm, respectively. The XFROG intensity IX is
calculated from the electric field envelope E according to Eq. (A.27) of Appendix C.

The visualization of �IX shown in Fig. 3.23e clearly confirms the previous state-
ment. A similar result is obtained from numerical simulations by comparing numeri-
cal XFROG traces at �z = 78 cm (Fig. 3.23c) and �z = 62 cm (Fig. 3.23d). Indeed,
as revealed by the difference plot in Fig. 3.23f, the blue spectral components are
shifted towards positive delays. Analyzing numerical data, it turns out that the pulse
at �z = 62 cm undergoes a stronger refocusing event after it leaves the exit window.
Therefore, in fact, according to the results of [57], its blue spectral components are
expected to exhibit additional positive delay. This is evidenced both in the numerical
simulations and in the experiment.

To conclude, a last numerical experiment is performed where the output pulses
from windowed and unwindowed configurations are compared. For the windowless
case, the simulations predict a pulse duration of �tFWHM = 24 fs at z = 2.78 m,
whereas �tFWHM = 32 fs when a silica window is placed at �z = 62 cm, cf. the
temporal profiles shown in Fig. 3.24a. The corresponding GDD for the windowed
(red line) and windowless case (black line) is shown in Fig. 3.23b. Confirming exper-
imental observations (Fig. 3.20b), for the windowed case, a stronger fluctuation of
the GDD on the red spectral wing is observed.

Even though measurements of the pulse shape or spectral phase are virtually
impossible directly at location of the output window, it could be demonstrated that
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the window and its position are highly important in achieving a self-compressed pulse
out of a filament compressor. Depending on the window position, the suggested self-
healing mechanism can either be activated or inhibited. Windowless operation of
the argon cell also clearly shows that the pulse coming directly out of the cell is
already short, but its short temporal signature may then be spoilt by the sudden non-
adiabatic change in dispersion and nonlinearity in a solid window. Our experiments
indicate that the length of the highly dispersive and nonlinear material is of secondary
importance, as even thin foils require self-healing in order to obtain a short pulse at the
output of the cell. All these observation strongly support the theoretically predicted
importance of the windows for shaping of a short pulse. These findings may explain
that some authors reported problems in reproducing filament self-compression in
windowed cells whereas direct self-compression in atmospheric air appeared to work
right away. In summary, these observations make it manifest that future application
of this versatile compression mechanism can be greatly simplified if the position of
the rear window is actively adjusted for optimum shortness of the pulse.
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Chapter 4
Saturation and Inversion of the All-Optical
Kerr Effect

Recently, it has been shown both, experimentally and theoretically [1–3] that for
intensities relevant in femtosecond filamentation, the Kerr refractive index of major
air components exhibits a saturation behavior and changes its sign from a focusing
to a defocusing nonlinearity, as is shown in Fig. 4.1 taken from [2]. In Ref. [4],
the implications of this surprising behavior on femtosecond filamentation have been
analyzed using numerical simulations. As the unexpected saturation behavior clearly
cannot be theoretically modeled by truncating the power series for the Kerr refractive
index after the n2 term, this underlines the urgent need for a theoretical determination
of the higher order nonlinearities. The observed saturation behavior is completely
contrary to the present model of filamentary propagation, as up to now it has widely
been accepted that the refractive index change induced by free electrons provides
the dominant saturation mechanism counteracting Kerr self-focusing. Therefore, the
recent development has led the authors of Ref. [5] to postulate the possibility of a
“paradigm shift”, and they propose an experiment designed to clarify the role of the
higher order nonlinearities by measuring the efficiency of fifth harmonic generation
in the medium under consideration. Therefore, the recent indications of a dominant
role of higher-order nonlinearities clearly require further investigation.

In the current chapter, a theoretical estimate on the expansion coefficients n2k of
the intensity dependent refractive index

n(I ) =
∑

k≥0

n2k I k (4.1)

for different noble gases is provided. Based on the theoretical investigations of
Ref. [6], Kramers-Kronig (KK) theory is used to provide theoretical estimates of
arbitrary higher order nonlinearities. As conjectured in Ref. [3], the saturation behav-
ior of the Kerr refractive index is closely related to ionization of the noble gas atoms
by the intense laser field. Using a recently developed model [7] for ionization of
atoms in strong alternating electric fields, cross sections σK for the ionization of the
atoms by simultaneous absorption of K photons are calculated. This makes it pos-

C. Brée, Nonlinear Optics in the Filamentation Regime, Springer Theses, 79
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Fig. 4.1 Intensity dependent refractive index for major air components versus intensity at standard
conditions. The figure is taken from Ref. [2]. Reprinted from V. Loriot et al. [2]. Copyright © 2010
Optical Society of America

sible to relate the calculated multiphoton absorption spectra, via KK theory, to the
higher order nonlinear coefficients n2(K−1). In Sect. 4.1, KK theory in linear optics
and its generalization to nonlinear optical susceptibilities is briefly reviewed. This
method has first been used to calculate the nonlinear refractive index n2 from the
cross-section for two-photon absorption (TPA) between the valence and conduction
band of certain semiconductors [8, 9]. In fact, the remarkably accurate results of the
approach obtained in Ref. [8] provided a strong motivation to transfer the principles
and results of the work of Sheik-Bahae et al. to the nonlinear optical response of noble
gas atoms, as this is highly relevant for the modeling of femtosecond filamentation.

As knowledge of multiphoton cross-sections is a prerequisite for calculating the
nonlinear refractive index using the KK transform, in Sect. 4.2 the prevalent theories
describing the ionization of atoms in intense laser-fields are briefly discussed. Using
a recent modification of Popov-Perelomov-Terent’ev (PPT) theory [7, 10], cross-
sections for multiphoton absorption of atomic gases are derived. Extending the results
of Ref. [11], in Sect. 4.3, KK theory is used to calculate the nonlinear refractive index
n2 from TPA cross-sections in helium, neon, argon, krypton and xenon. Comparing
the results on the dispersion of n2 with values established in the literature, excellent
agreement is found, especially in the long-wavelength region. In Sect. 4.4, KK-theory
is used to obtain numerical values of the higher-order nonlinearities n2k , which
allows calculating the intensity dependent refractive index change induced by the
Kerr effect, �n(I ) ≡ n(I ) − n0 up to arbitrary order in I , observing the recently
predicted saturation behavior. A brief discussion is given, and it is pointed out that
the obtained results, together with independently obtained ones, may have paradigm
changing consequences for the theoretical modeling of femtosecond filamentation.
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4.1 Kramers-Kronig Relations in Linear and Nonlinear Optics

Any theoretical description of physical reality is subject to the requirement of causal-
ity. In the framework of Newtonian mechanics, this simply states that the state of any
given physical system at time t is only affected by events occurring at t ′ < t . In linear
optics, the requirement of causality has led to the formulation of the KK relations
[12, 13] between the real and imaginary part of the linear susceptibility. The time
domain analog of Eq. (2.7) for the linear polarization is given by

P(�r , t) = ε0

∞∫

−∞
dτ R(1)(τ )E(�r , t − τ ), (4.2)

where the optical response is governed by a response kernel R(1)(t) which is related to
the linear susceptibilityχ(1)(ω) via a Fourier transform. The requirement of causality
manifests itself in the identity

R(t) = R(t)�(t), (4.3)

where �(t) denotes the Heaviside step function defined by �(t) = 1 for t > 0
and �(t) = 0 for t < 0. Thus, the Eqs. (4.2) and (4.3) simply state that only field
configurations from the past, E(t ′) with t ′ < t , can affect the linear optical response.
Then, the frequency domain analogue of Eq. (4.3) provides the KK relation, which
reads

χ(ω) = 1

iπ
P

∞∫

−∞

χ(�)

� − ω
d�, (4.4)

where P denotes Cauchy’s principal value. The more familiar form of the KK rela-
tions relates dispersion n(ω) and absorption coefficients α(ω) according to

n(ω) − 1 = c

π
P

∞∫

0

α(�)

�2 − ω2 d�. (4.5)

This relation is completely equivalent to Eq. (4.4), as linear dispersion n(ω) and
absorption α(ω) are related to the real and the imaginary part of χ according to
Eq. (2.44). In nonlinear optics, the nonlinear polarization PNL may be represented as
a power series in the electric field components according to PNL = P(3) + P(5) + ...,
where the n-th order contribution is given by Eq. (2.20). In order to respect causality,
the response function R(n) must satisfy

R(n)(τ1, τ2, ..., τn) = R(n)(τ1, τ2, ..., τn)�(τi ) (4.6)

http://dx.doi.org/10.1007/978-3-642-30930-4_2
http://dx.doi.org/10.1007/978-3-642-30930-4_2
http://dx.doi.org/10.1007/978-3-642-30930-4_2
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for any i = 1, 2, ..., n. Again, taking the Fourier transform of this relation with
respect to all time arguments, it is straightforward to see that the n-th order nonlinear
susceptibility satisfies the KK-type relation

χ(n)(−ωσ;ω1,ω2, ...,ωi , ...,ωn) = 1

iπ
P

∞∫

−∞

χ(n)(−ωσ;ω1,ω2, ..., �, ...,ωn)

� − ωi
d�.

(4.7)
As in linear optics, for the case of nonlinear refraction of a probe beam induced by
a strong pump beam this may be recast into an equation relating the refractive index
change �n to the change in absorption �α according to

�n(ω; ξ) = c

π
P

∞∫

0

�α(�; ξ)
�2 − ω2 d�. (4.8)

Here, according to Ref. [14], the variable ξ represents the source of the absorption
and refractive index changes. For example, consider a probe beam at frequency ω1
and a strong pump beam at ω2 which induces a change of the refractive index seen
by the probe beam. Then, ξ = ω2, �n(ω1,ω2) = 3

4n2
0ε0c

Reχ(3)(−ω1;ω1,ω2,−ω2)I

and �α(ω1,ω2) ∝ Imχ(3)(−ω1;ω1,ω2,−ω2)I describes nondegenerate TPA, cf.
Eqs. (2.50), (2.51). In the following, this relation will be used to calculate n2 and
higher-order nonlinearities from known multiphoton cross-sections in helium, neon,
argon, krypton and xenon.

4.2 Ionization of Atoms in Intense Laser Fields

Since the development of laser sources delivering pulse energies of several μJ at
pulse durations of only a few cycles of the optical carrier field, optical intensities
can be achieved which suffice to ionize a considerable fraction of the atoms of the
propagation medium. Considering femtosecond filamentation, where typically air or
noble gases are used in experiments, according to the classical theoretical model of
filamentation, the intensity in the vicinity of the nonlinear focus is of the order of
the clamping intensity. For argon at atmospheric pressure, this intensity corresponds
to ≈100TW/cm2. However, considering the ionization potential of argon, photon
energies of �ω ≥ Ui = 15.7596 eV are necessary for photo-ionization of the gas,
corresponding to a laser wavelength of λ ≈ 80 nm in the XUV regime, whereas
femtosecond filamentation is normally considered in the visible or near IR regime.
To resolve this apparent contradiction, it can be shown that for sufficiently high
intensities, higher-order terms in the perturbative expansion of the ionization cross-
section start to contribute. Using lowest-order perturbation theory (LOPT) [15,
16], it is found that the K -th-order contribution to the ionization rate is given by

http://dx.doi.org/10.1007/978-3-642-30930-4_2
http://dx.doi.org/10.1007/978-3-642-30930-4_2
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wK = σK I K , with the cross-section

σK ∝
∣∣∣∣
∑
aK−1

· · ·
∑
a1

〈 f |�μ · �ε|aK−1〉 · · · 〈a1|�μ · �ε|g〉
[EaK−1 − Eg − (K − 1)�ω] · · · (Ea1 − Eg − �ω)

∣∣∣∣
2

. (4.9)

In this expression, | f 〉 and |g〉 denote the ground- and final electronic state, while
|ak〉 denotes a complete set of atomic states. The corresponding energy levels are
given by Eg, Eal , and �μ · �ε denotes the projection of the electronic dipole operator
onto the polarization direction �ε of the incident electric field. The rate wK describes
multiphoton ionization (MPI) of an atom by simultaneous absorption of K photons,
such that the total energy of the absorbed photon exceeds the ionization potential, i.e.,
K�ω ≥ Ui . MPI can adequately be described using perturbation theory. For exam-
ple, LOPT has successfully been applied to obtain multiphoton cross sections for
evaporated metal atoms [17]. Combining LOPT with an ab initio method for the cal-
culation of two-electron wavefunctions, MPI cross-sections of molecular hydrogen
were obtained [18].

The precise knowledge of MPI rates wK is crucial in order to obtain higher-order
Kerr coefficients by using the generalized KK relations Eq. (4.8). Indeed, K -photon
ionization gives rise to a nonlinear absorption change according to a power law inten-
sity dependence �α = βK I K−1 (cf. Sect. 4.4). Given the validity of the perturbative
description of the nonlinear polarization Eq. (2.19) resp. that of the intensity depen-
dent refractive index n(I ) Eq. (2.49), it follows that �α can be related to the K −1-th
order contribution �n = n2(K−1) I K−1 via the generalized KK relation Eq. (4.8).
It is, however, important to point out that there exist regimes where the perturbative
multiphoton description of ionization of atoms in strong laser fields breaks down, and
so called tunneling ionization becomes relevant. To identify the different regimes,
in his pioneering work, Keldysh [19] analyzed strong field ionization of hydrogen
like atoms and introduced the so-called Keldysh parameter

γ = ω
√

2�ωpme

E0qe
. (4.10)

Here, E0 denotes the amplitude of the electric field, ω the frequency of the applied
laser field, me and qe denote electron mass and charge, respectively, and �ωp = Ui

is the ionization potential of the gas species. The tunneling picture depends on the
formation of a Coulomb barrier due to the superposition of the optical potential
with the atomic Coulomb potential. This can only be satisfied when the strength
of the ponderomotive potential1 Up = q2

e E2
0/4meω

2 exceeds that of the ionization
potential Ui . By noting that the Keldysh parameter Eq. (4.10) may be written as
γ = √

Ui/2Up, it follows that the tunneling regime corresponds to the limit γ � 1.
In this limit, the applied ac electric field deforms the Coulomb potential as shown in
Fig. 4.2, allowing the bound electron to tunnel through the resulting barrier. In fact,

1 The ponderomotive potential corresponds to the cycle averaged quiver energy of an electron in an
external electromagnetic field.

http://dx.doi.org/10.1007/978-3-642-30930-4_2
http://dx.doi.org/10.1007/978-3-642-30930-4_2
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r

V(r)∼ −1/r
V(r)−Ez
−Ez

−E
B

Fig. 4.2 a Tunnel ionization. Black solid line represents the undistorted Coulomb potential. The
black dotted line corresponds to the linear potential Ez due to the presence of the electric field E ,
and the dashed black line represents the superposition of both atomic and laser potential. The gray
dashed line corresponds to the binding energy −EB of the electron

following Keldysh’s work, a variety of models based on and extending Keldysh the-
ory were developed. The prevalent models employed in today’s strong field physics
are the KFR (Keldysh [19], Faisal [20] , Reiss [21]) theories. While Keldysh the-
ory is a tunneling model assuming γ � 1, the Faisal model is a high-frequency
approximation requiring ω � ωp and Up � Ui . The model of Ref. [21] requires
only Up � Ui , which is consequently referred to as the strong field approximation
(SFA). SFA uses a rigorous S-matrix formalism to justify the necessary approxi-
mations and provides photo-electron spectra which accurately agree with measured
spectra. While SFA provides excellent photo-electron spectra, the ionization model
provided by Perelomov, Popov and Terent’ev provides more accurate results when
only total ionization rates are required. In fact, in [22] it has been shown that the
ionization rate of PPT accurately fits experimental data, whereas SFA underestimates
the data by 2–3 orders of magnitude. In the following, the ionization rate provided
by PPT will be used. A theoretical treatment of the ionization of atoms in intense
laser fields and a recent modification of PPT-theory is presented, giving accurate
results both in the tunneling regime (γ � 1) and especially in the multiphoton
regime (γ � 1). In fact, the perturbative limit w(I ) = σK I K provides absorption
cross-sections σK (ω) which can be used to calculate the expansion coefficients of
the power series for n(I ) and their dispersion with frequency.

4.2.1 Keldysh Theory and Its Generalizations

In this subsection, the theoretical foundations of PPT theory are briefly presented.
Only the basic physical assumptions and approximations are discussed here, as it is
not the aim of this subsection to rederive the ionization rate of [10] in detail. For the
current discussion, all quantities are given in atomic units. However, the final result,



4.2 Ionization of Atoms in Intense Laser Fields 85

i.e., the ionization rate and the multiphoton cross sections used in the subsequent
section, are presented in SI units for convenience. In atomic units, the problem of
ionization of atoms in an intense laser field is described by the Schrödinger equation
i∂tψ = Hψ, with a Hamiltonian given by H = − �p2/2 + V (�r) − �E · �r , where
V (�r) is the binding potential of the atom, �p = (px , py, py) and �r = (x, y, z)
are momentum and space coordinates, respectively, and �E is the electric field.
It is possible to show that the Schrödinger equation is completely equivalent to
the following integral equation

ψ(�r , t) =
∫

d3 �r ′G(�r , t; �r ′, t ′)ψ( �r ′, t0) +
t∫

t0

dt
∫

R3

d3 �r ′G(�r , t; �r ′, t ′)V ( �r ′)ψ( �r ′, t)

(4.11)
where G(�r , t; �r ′, t ′) denotes the Greens function of an electron in the external poten-
tial − �E · �r . With ψα the discrete or continuous eigenfunction and Eα the corre-
sponding eigenenergies, the Greens function may, quite generally, be written as
G(�r , t; �r ′, t ′) = ∑

ψα(�r)ψ∗
α(�r ′) × exp

(−i Eα(t − t ′)
)
. For the present problem, it

is given as

G(�r , t; �r ′, t ′) = θ(t − t ′)
∫

d3 �p�V (�r , t)�∗
V ( �r ′, t ′) (4.12)

The continuum wavefunction �V denotes the non-relativistic Volkov state [23] and
solves the Schrödinger equation of a charged particle in an electromagnetic field.
It is given by

�V (�r , t) = 1

(2π)3/2 exp

(
i

[
�π(t) · �r − 1

2

t∫

−∞
�π2(τ )dτ

])
(4.13)

The generalized momentum �π couples the vector potential �A to the electronic wave-
function. These quantities are related to the kinematic momentum �p and the electric
field �E , respectively, according to

�π(t) = �p − �A(t), �A(t) = −
t∫

−∞
�E(t ′)dt ′. (4.14)

The spatially uniform electric field is chosen as

�E(t) = �E0 cosωt, (4.15)

where it is assumed that the field is linearly polarized along the x-axis, �E0 =
(E0, 0, 0). The field is turned on adiabatically at t0 → −∞. Note that although
the derivation of PPT assumes a monochromatic wave, their results are commonly
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generalized for electric fields of the form �E(t) = �E0(t) cosωt with a time dependent
envelope E0(t). With the decompositions (2.27) and (2.28), one then finds that the
amplitude E0(t) equals the modulus of the complex envelope, E0(t) = |A(t)|. Then,
the Keldysh parameter may be written

γ = ω
√

2�ωpme

|A(t)|qe
. (4.16)

As only cycle-averaged ionization rates are provided by PPT, this generalization
which involves a time-dependent Keldysh parameter, is meaningful for envelopes
E0(t) varying slowly with respect to the optical cycle. This issue was dealt with in
detail in Ref. [24], providing an ionization rate that follows the instantaneous phase
of the electric field.

Note that here, as in the original work of Keldysh [19], the so called length gauge
is employed, where the electromagnetic interaction contributes with a term ∼−�r · �E
to the Hamiltonian. In velocity gauge, the same interaction is modeled by coupling
the vector potential to the electron wavefunction according to the prescription �p →
�p − �A, i.e., in this gauge, the Hamiltonian is given by ( �p − �A)2/2. Clearly, any
measurable quantity within a theoretical model of physical reality should be gauge-
invariant. However, a perturbative treatment of the interaction of electrons with strong
laser fields may break gauge invariance, and the initial choice of gauge strongly
affects the numerical outcomes of the corresponding theory. In SFA, the impact of
choosing a specific gauge on photo-electron spectra and ionization rates has been
extensively discussed in [25].

Equation (4.11) may be further simplified by noting that the first term on the
r.h.s. describes the motion of an otherwise free electron in a spatially uniform alter-
nating electric field. Thus, this term gives no contribution to the ionization current.
The main approximation used in Ref. [10] is then to replace the exact wave function
ψ(�r , t) by the wave function φ�m(�r) exp (iκ2t/2) of the unperturbed atomic bound
state, where �, m are angular and magnetic quantum numbers, respectively. This
approximation is justified if the electric field strength �E is smaller than the internal
atomic field strength, i.e., E0 � �, where, in atomic units, � = κ3. In SI units, this
quantity amounts to � = 4

qω
3/2
p

√
2me�. This condition ensures that near the atomic

nucleus, i.e., for κr < 1, the exact electronic wavefunction nearly coincides with its
unperturbed counterpart φ�m(�r) exp (iκ2t/2). For κr � 1, this substitution is only
justified when the atomic potential V (�r) vanishes faster than 1/r . Then, from regions
κr > 1 whereψ differs from the unperturbed wavefunction, a negligible contribution
to the integral in Eq. (4.11) results. These approximations are equivalent to assuming
a Volkov state [23] as the final state of the ionized electron.2

2 The limitations of these approximations can be partially overcome by introducing dressed final or
initial electronic states. Dressed atomic states were used in Refs. [26, 27] as initial states to account,
e.g., for the shift of atomic energy levels due to the applied AC electric field. These field-dependent
bound states are derived on account of Floquet’s theorem applied to the Schrödinger equation with
a time periodic perturbation due to the irradiated laser field. To account for the long-range Coulomb
potential, dressed continuum states have been derived in Ref. [28], as discussed below.

http://dx.doi.org/10.1007/978-3-642-30930-4_2
http://dx.doi.org/10.1007/978-3-642-30930-4_2
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Finally, ψ(�r , t) is replaced by φ�m(�r) exp (iκ2t/2). As the latter function solves
the stationary Schrödinger equation, on the r.h.s of Eq. (4.11) one may replace
V (�r)φ�m by ( �∇2 − κ2)φ�m(�r)/2 to obtain the following estimate for the perturbed
wave function,

ψ(�r , t) =
t∫

−∞
dt ′

∫
d3 �r ′G(r, r ′, t, t ′)1

2
( �∇′2 − κ2)φ�m( �r ′) exp (iκ2t ′/2), (4.17)

where �∇′ = (∂/∂x ′, ∂/∂y′, ∂/∂z′). Assuming that the incident electric field is
linearly polarized along the x-axis, using Eqs. (4.12) and (4.17) one calculates the
flux of electrons through the plane perpendicular to the polarization axis according
to

J (x, t) =
∫

dy
∫

dz jx (�r , t), (4.18)

where the x-component jx of the probability current �j is given by

jx (�r , t) = i

2

(
ψ(�r , t)

∂

∂x
ψ∗(�r , t) − ψ∗(�r , t)

∂

∂x
ψ(�r , t)

)
. (4.19)

In order to calculate the probability current, the approximate expression Eq. (4.17)
for the wavefunction is employed. Finally, the ionization rate may be obtained from
taking the limit

w(E,ω) = 2 lim
x→∞ J (x, t). (4.20)

where J (x, t) represents the cycle averaged ionization current. Interestingly, the ion-
ization rate may be decomposed into a sum over probabilities of n-photon processes
according to

w(E,ω) =
∞∑

n≥ν
wn(E,ω), with ν = ωp

ω

(
1 + 1

2γ2

)
. (4.21)

The summation starts with the smallest natural number n0 greater than ν, accounting
for the fact that at least n0 photons are necessary to provide both, the binding energy
ωp necessary for ionizing the atom, and the ponderomotive energy Up = κ2/4γ2.
The quantity wn(E,ω) is given by

wn(E,ω) = 2π
∫

d3 �pδ
(

1

2

[
�p2 + κ2 + κ2

2γ2

]
− nω

)
|Fn( �p)|2. (4.22)

Again, the δ-function in the integrand enforces conservation of energy, i.e., the energy
of the n photons nω is absorbed and converted into the energy ωp = κ2/2 needed
to detach the electron from the atom, the kinetic energy �p2/2 of the free electron as



88 4 Saturation and Inversion of the All-Optical Kerr Effect

well as the ponderomotive energy. The function Fn( �p) corresponds to a momentum-
resolved photo-electron spectrum of the n-photon process, and its modulus can exper-
imentally be measured. With the substitutions

r = (1 + (p2
y + p2

z )/κ
2), γ′ = γr, ω′ = ω/r2, p′ = px/r (4.23)

it follows that

Fn( �p) = in

2π

π∫

−π
dβχ�m(π(β)) exp

{
−i

ωp

ω′
[(

p′2
κ2 +1+ 1

2γ′2
)

t+ 2p′
κγ′ sin β+ 1

4γ′2 sin 2β

]}

(4.24)
where χ�m(�π(α) = 1/2(�π2(α) + κ2)φ̃�m(�π(α)), and φ̃�m( �p) is the momentum

representation of the bound state electronic wavefunction which is obtained from
the configuration space wavefunction by a 3D Fourier transform. In order to obtain
an approximate numerical exprefigure ssion for the integral, some further approx-
imations are made by the authors of [10]. First, the saddle point approximation is
used to evaluate the integral, where it is presupposed that the exponential provides a
rapidly oscillating function. Then, only stationary points of the exponent contribute
to the integral. Second, it is shown that, in the space domain, the wavefunction φ�m

of the bound electronic state needs to be known asymptotically only, i.e., only values
φ�m(�r) for r → ∞ enter the integral Eq. (4.24) evaluated according to the saddle
point approximation. Third, it has to be assumed that the electron wavefunction
of the initial state corresponds to that of a bound state in a potential that vanishes
more rapidly than the Coulomb potential ∼1/r . Therefore, the rate finally obtained
in Ref. [10] is strictly valid only for, e.g., the photo-detachment of electrons from
negatively charged ions, and is given by

w�m(γ,ω) = 4
√

2

π
ωpC2

n∗�∗
(2� + 1)(� + |m|)!
2|m||m|!(� − |m|)!

γ2

1 + γ2 Am(γ)

×
(

�

E
√

1 + γ2

)−3/2

exp

[
− �

3E
g(γ)

]
, (4.25)

where all quantities have been converted back to SI units. The internal atomic field
strength is given by � = 4

qω
3/2
p

√
2me�. The coefficient C2

�∗n∗ results from an asymp-
totic expansion of the electronic wavefunction of the atoms and is given by

C2
�∗n∗ = 22n∗

n∗�(n∗ + �∗ + 1)�(n∗ − �∗)
(4.26)

In fact, for atomic hydrogen, the asymptotic expansion of the wavefunction is known
exactly, and one may set �∗ = � and n∗ = n, where n and � are the principal and
orbital quantum numbers, respectively. For more complex atoms, an approximate
expression for these coefficients can be obtained by introducing effective quantum
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numbers according to n∗ = Z
√
ωH /ωP [29] and �∗ = n∗ − 1 [30, 31], where ωp

and ωH correspond to the ionization potential of the respective atom and atomic
hydrogen, respectively. The function A(γ) can be expressed as the following infinite
series:

Am(γ) = 1

|m|!
∞∑
κ≥ν

e−α(κ−ν)wm
(√
β(κ− ν)

)
(4.27)

Here, the following notation is used:

wm(x) = e−x2

x∫

0

et2
(x2 − t2)|m|dt (4.28)

α = 2

[
sinh−1 γ − γ√

1 + γ2

]
(4.29)

β = 2γ√
1 + γ2

(4.30)

ν = ωp

ω
(1 + 1

2γ2 ) (4.31)

κ = 〈ν + 1〉 + k, k = 0, 1, 2, 3, ... (4.32)

In the definition of κ, 〈x〉 denotes the integer part of x . Under experimental condi-
tions typically met in femtosecond filamentation in noble gases, it is reasonable to
assume that the orientation of all atoms is equally distributed. Thus, in the following,
it suffices to consider the ionization rate w� = 1

2�+1

∑�
−� w�m , averaged over all

possible magnetic quantum numbers m. One then obtains the simplified expression

w(γ,ω) = 4
√

2

π
ωpC2

�∗n∗
γ2

1 + γ2 A0(γ)

(
�

E
√

1 + γ2

)−3/2

exp

[
− �

3E
g(γ)

]

(4.33)
with �∗ = n∗ − 1, and it has been used that Am � A0 for m �= 0.

Coulomb Corrected Ionization Rates

The ionization rate Eq. (4.33) was derived under the assumption of a short range
atomic potential. This neglects the Coulomb interaction of the ionized electron with
the atomic residuum and does not adequately describe the ionization of neutral atoms.
In Ref. [28], dressed continuum states, i.e., Coulomb corrected Volkov functions,
were used to account for long-range interactions. An alternative approach is pro-
vided by the method of imaginary times [32]. This method treats the sub-barrier
motion of the tunneling electron quasiclassical, i.e., it calculates classical electron
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trajectories according to the Newton’s equations of motion. However, conservation
of energy in Newtonian mechanics involves the relation dt = dr/

√
2(E − V )/m,

where E is the conserved energy and V the barrier potential. It is thus clear that
sub-barrier movement (E < V ) can classically be treated only in imaginary time.
Having solved for the classical trajectories of electron tunneling with appropriate
initial- and boundary conditions, the Coulomb correction to the ionization rate is
essentially determined by the classical action integral S = ∫

dt L , where L = T − V
is the Lagrangian of an electron under the influence of both the Coulomb potential
and the external alternating electric field, and T denotes the kinetic energy. In fact,
this method is closely related to similar methods used in semiclassical theories, as for
example the well-known WKB (Wenzel, Kramers, Brillouin) approximation of quan-
tum mechanics. Furthermore, it was shown in Ref. [33] that, using the saddle-point
approximation, the path-integral representation of the quantum-mechanical Greens
function may be approximated as

G(�r , t; �r ′, t ′) ≈ θ(t − t ′)
(2πi(t − t ′))3/2 exp

(
i S(�r , t; �r ′, t ′)

)
(4.34)

where S(�r , t; �r ′, t ′) is the action evaluated along a classical trajectory connecting the
points (�r , t) and ( �r ′, t ′). Also, corresponding semiclassical method may be used in
attosecond physics to describe the recollision dynamics of electrons relevant in the
generation of attosecond pulses and high harmonic radiation [34, 35]. The method of
imaginary times was used 1967 by Popov et al. [36] to derive a Coulomb corrected
version wC (γ,ω) of their original ionization rate w(γ,ω) Eq. (4.25). They obtained

wC (γ,ω) = Qw(γ,ω), Q =
(

�

E

)2n∗
. (4.35)

The correction factor Q strongly increases the ionization rates, as the potential bar-
rier generated by the superposition of a long-range Coulomb potential is strongly
suppressed compared to the case involving a short-range atomic potential.

4.2.2 A Recent Modification of the PPT Model

Recently, an improved ionization rate was derived in Ref. [7] according to

w(γ,ω) = ωp
22n∗−2

�2(n∗ + 1)

(
ωp

ω

)−3/2
β1/2 A0(γ)

(
�

E(1 + 2e−1γ)

)2n∗
exp

[
− �

3E
g(γ)

]

(4.36)
where the definition of the quantities A0(γ), g(γ),β matches that of Eq. (4.25).
Again, the method of imaginary time was used to derive a Coulomb corrected ion-
ization rate. However, unlike the derivation of Ref. [36], the authors laid special
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emphasis on the perturbative limit γ � 1 and succeeded in presenting a very accu-
rate Coulomb corrected ionization rate in this regime. Thus, this result is especially
useful for intense, high-frequency XUV or x-ray laser radiation with γ � 1, as pro-
duced, e.g., by free electron lasers. Nevertheless, the latter results were shown to be
equally valid in the tunneling regime γ � 1 and, in fact, also for arbitrary frequencies
and values of the Keldysh parameter γ. As the subsequent analysis strongly relies on
the accuracy of calculated MPI cross-sections, in the following, Eq. (4.36) is used as
a starting point for derivation of the latter.

4.2.3 The Multiphoton Limit

In the following, the limit of expression Eq. (4.36) in the perturbative regime γ � 1
is calculated, for which

g(γ) → 3
2γ

−1(ln 2γ − 1
2 ),

α(γ) → 2(ln 2γ − 1),

β(γ) →
γ→∞ 2.

(4.37)

In addition, for large γ one has

(
�

E(1 + 2e−1γ)

)2n∗
→

(
2eωp

ω

)2n∗
, (4.38)

exp

[
− �

3E
g(γ)

]
→ exp

[
− �

3E

3

2
γ−1

(
ln 2γ − 1

2

)]
=

(
2γ

)−2ωp/ω

exp
(ωp

ω

)

(4.39)

It follows that for γ � 1, the infinite sum represented by A0(γ) reduces to

A0(γ,ω) →
∞∑

k=0

(2γ)−2(K+k−νp)e2(K+k−νp)w0

(√
2(K + k − νp)

)
, (4.40)

where K = 〈ωp/ω + 1〉 is the minimum number of photons required to ionize
an atom with ionization potential �ωp and νp = ωp/ω. With Eqs. (4.38)–(4.40)
and the definition of γ in Eq. (4.10), the ionization rate (4.36) admits the following
perturbative expansion in the limit γ � 1,

w =
∞∑

k=0

σK+k I K+k, (4.41)

where σk , the cross-section for k-photon absorption, is defined below. Furthermore,
with the definition Eq. (2.32), the Keldysh parameter Eq. (4.16) was expressed in

http://dx.doi.org/10.1007/978-3-642-30930-4_2
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terms of the intensity I . The linear refractive index n0 appearing in the definition of
the intensity was set equal to unity, n0 = 1. This is justified by that fact that only
gases at standard conditions are considered in the following.

The leading term of the expansion corresponds to K -photon ionization with the
minimum number of photons required, whereas the higher order terms describe
above threshold ionization (ATI) [37], which results in an excess kinetic energy of
the ionized electron that is larger than the ionization energy ωp as more photons
are absorbed than required for ionization. However, as the PPT model fully neglects
any internal atomic resonances, effects such as resonance-enhanced MPI [38] where
the atom is excited to an intermediate bound state from which it is subsequently
ionized, or so called rescattering processes [37], where the electron returns to the
ionic residuum and is scattered off it, are not accounted for in this model. The MPI
cross-sections σK derived from the perturbative limit of the ionization rate of [7] is
given by

σK = 2
√

2C2

π 22n∗−2K e2n∗
ωp

(
ωp
ω

)2n∗−3/2

×e2K−ωp/ωω−2K
(

q2

�ωpmeε0c

)K

w0

[√
2K − 2ωp

ω

]
(4.42)

Each σK is defined for ω > ωp/K , where ωp = Ui/� is the minimum frequency
required for a single photon to ionize the atom. A log–log plot of the spectral depen-
dence of the MPI cross sections σ2,σ3 and σ4 for argon (Ui = 15.76 eV) according
to Eq. (4.42) is shown in Fig. 4.3. The cross-sections exhibit a strongly asymmetric
spectral dependence and drop off sharply towards zero at the K -photon absorption
edge at ωp/K .

Having found a perturbative expansion of the ionization rate now lays the ground
for an application of KK theory to calculate the coefficient n2k in the perturba-
tive expansion of the Kerr refractive index �n = n2 I + n4 I 2 + · · · from the
coefficients σk . This will be the aim of the following sections.

4.3 Kramers-Kronig Approach to Second Order Nonlinear
Refraction

Second order nonlinear refraction is a key nonlinear optical mechanism in isotropic
media, including all gases, liquids, and a large class of solids. In dielectric media,
nonlinear refraction causes an intensity-dependent increase of the index of refraction
n = n0 + n2 I , which gives rise to spectral broadening and is the basis for nearly all
femtosecond pulse compression mechanisms. While nonlinear refraction in solids
and liquids has been directly linked to two-photon absorption via a modified KK
relationship [8, 9, 39] and has been extensively explored experimentally using the
z-scan technique [40], neither one of these can be used to determine the nonlinear
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Fig. 4.3 Log–log plot of cross section σ2 to σ4 of multiphoton ionization as derived from Eq. (4.42)

index of refraction n2 in gases. Despite the high technical importance of this nonlinear
spectral broadening mechanism in gaseous media [41–43], all theoretical modeling of
the latter therefore relies on an indirect determination of n2 ∝ γ(3)(−ω;ω,ω,−ω)

from third-harmonic generation (THG) measurements [44] γ(3)(−3ω;ω,ω,ω) or
theoretical calculations of the dynamic hyperpolarizability [45, 46] γ(3)(−2ω;
ω,ω, 0), which mostly refer to the scenario of electric-field induced second har-
monic generation (ESHG). Here, the dynamical hyperpolarizability γ(3) is related
to the nonlinear optical susceptibility χ(3) via the Lorentz-Lorenz law[47, 48]. This
law emerges from a comparison of the local atomic or molecular dipole moments
and the macroscopic polarization P and can easily be generalized to the nonlinear
optical case. In this case, the higher-order expansion coefficients relating the local
electric field to the nonlinear polarization are termed hyperpolarizabilities. Gener-
alizing the Lorentz Lorenz law, the third-order hyperpolarizability γ(3) is related to
the nonlinear susceptibility χ(3) according to

χ(3)(−ωτ ;ω1,ω2,ω3) = ρ0

3!ε0

(
ε(ωτ ) + 2

3

)(
ε(ω1) + 2

3

)(
ε(ω2) + 2

3

)

×
(
ε(ω3) + 2

3

)
γ(3)(−ωτ ;ω1,ω2,ω3) (4.43)

for the case of the third-order hyperpolarizability. Here, ωτ = ω1 + ω2 + ω3, and
ε denotes the relative permittivity.

Even though the efficiency of second harmonic generation in an isotropic medium
in the presence of a strong constant electric field is very accurately measurable,
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Table 4.1 Nonlinear refractive index n2 at 800 nm and atmospheric pressure

n2(10−8cm2/TW) Eq. (4.46) [44] Refs. [45, 49]

He 0.52 (0.48) 0.40 0.40 (0.38)
Ne 1.31 (1.18) 0.71 0.99 (0.96)
Ar 12.68 (10.84) 9.46 11.2 (10.4)
Kr 30.69 (25.63) 25.9 25.6 (23.17)
Xe 91.58 (73.87) 77.0 69.8 (61.39)

ESHG data has been compiled from Refs. [45, 49] and corrected for the dispersion of the DFWM
process [Eq. (4.51)]. Data from [44] is scaled from λ = 1055 nm using Eq. (4.49) with ν = 3/2.
Values in parentheses denote the static limit n2(ω → 0).

the wavelength dependence of the ESHG coefficients γ(3)(−2ω;ω,ω, 0) differs
from the dispersion of the coefficients γ(3)(−ω;ω,ω,−ω) governing nonlinear
refraction [49]. Equality of the two coefficients is only expected for the limiting
case ω → 0, i.e., in the far infrared. The most accepted experimental data for n2
have probably been measured by Lehmeier et al., determining the THG efficiency in
the inert gases [44]. Because this data has only been determined at the wavelength
λ = 1.055μm, frequency scaling is generally considered difficult. For argon, using
Eq. (18) of Ref. [44] yields n2 = 1.33 × 10−19 cm2/W at 248 nm, which disagrees
with independently measured values n2 = 2.9 ± 1.0 × 10−19 cm2/W of Ref. [50].
Both values, finally, appear to be incompatible to explain the high efficiency of a
hollow fiber compressor at 248 nm, which indicates an even higher value of n2 at this
wavelength [51]. This example makes it clear, that there is urgent need for improved
scaling laws and more dependable theoretical estimates of the latter. Consequently,
and probably owing to the wide spread of experimental data on n2 published [44,
50–52], values used for the modeling typically vary over an order of magnitude, even
for the most commonly used inert gases.

In the following, a different approach is described to deduce n2 in the inert gases
from Keldysh theory [10, 19, 53–55] using the modified KK relationship from
Ref. [8]. However, it is important to point out that cross sections for multiphoton
ionization are available only for the degenerate case, i.e., the absorption of photons of
equal frequency. Therefore, KK theory cannot be used to relate degenerate absorption
coefficients for TPA to self-refraction n2(ω) = 3

4n2
0ε0c

χ3(−ω;ω,ω,−ω). Instead,

one introduces n(N D)
2 (ω1,ω2) = 3

2n2
0ε0c

χ3(−ω1;ω1,ω2,−ω2) which describes the

refractive index change seen by a probe beam at ω1 induced by the presence of a
strong pump beam at ω2. Here, a factor of 2 arises due to the so-called weak-wave
retardation [56]. This states that generally, nonlinear effects induced by auxiliary
beams are a factor of 2 higher than the corresponding self-action effects. Then, for
the nondegenerate n(ND)

2 , a KK relation between n2(ω1,ω2) and the cross section for
nondegenerate TPA �α(ND)(ω1,ω2) can be formulated as
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�n(ω1,ω2) = n2(ω1,ω2)I = c

π
P

∞∫

0

�α(ND)(�,ω2)

�2 − ω2
1

d� (4.44)

where P denotes Cauchy’s principal value. Unfortunately, there exist neither the-
oretical nor experimental work on the dispersion of the cross sections for nonde-
generate TPA or multiphoton absorption in rare gases. Thus, one has to use an
estimate which also has been used successfully in Ref. [8] for the calculation of
nonlinear refraction in solids from TPA coefficients using KK theory. With �α(ω)

being the TPA coefficient for the degenerate case, in the latter work, the estimate
�α(N D)(ω1,ω2) = 2�αD((ω1 + ω2)/2), was used, with a factor of 2 arising due
to the weak-wave retardation. Of course, the latter approximation is only reasonable
for ω1 ≈ ω2. However, the approximation is justified by noting that the presence of
the denominator in Eq. (4.44) strongly weights frequencies � in the vicinity of ω1.
Indeed, a remarkable agreement with measured values of the nonlinear refraction
in solids was obtained in Ref. [8]. The TPA absorption coefficient �α2(ω) can be
related to the TPA cross section σ2(ω) (for the degenerate case) according to [57]

�α(ω) = 2�ωρ0σ2(ω)I. (4.45)

Thus, with the above considerations, setting ω1 = ω2 = ω in Eq. (4.44), a KK
relation for self-refraction may be formulated as

n2(ω) = �cρ0

π
P

∞∫

0

σ2
( 1

2 (� + ω)
)

� − ω
d�. (4.46)

In order to evaluate integrals of the form of Eq. (4.46), here a method based on the
Fast Fourier Transform (FFT) is used. This is possible as it turns out that the integral
transform in Eq. (4.46) is closely related to the Hilbert transform (HT) H. The HT
of a function f is defined as

H[ f ](ω) = − 1

π
P

∞∫

−∞

f (�)

� − ω
d� (4.47)

This can be evaluated by employing the following formula which relates the HT H
to the Fourier transform F according to [58]

F[H[ f ]](ω) = −i sgn(ω)F[ f ](ω) (4.48)

Numerically, this is evaluated using the FFT method. Equation (4.46) then yields
the dispersion of n2 with wavelength for the five inert gases helium, neon, argon,
krypton and xenon. The results of these calculations in comparison to independent
experimental and theoretical data are shown in Fig. 4.4. Experimental data has been
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mainly extracted from measurements of the third-harmonic efficiency by Lehmeier
et al. [44], which is probably the most accepted reference on experimental data for n2
of the inert gases. As all data has been acquired at a wavelength 2πc/ω′ = 1055 nm,
it is extrapolated to a range of angular frequencies ω shown in Fig. 4.4 to indicate
the dispersion of n2 with wavelength. For this purpose, the relation

n2(ω) = νω′ − ωp

νω − ωp
n2(ω

′), (4.49)

originally suggested in Ref. [44] to scale THG data with ν = 3 is used, keeping in
mind that in the theoretical computations by Bishop and Pipin [49], the DFWM coef-
ficientγ(3)(−ω;ω,ω,ω) scales differently with wavelength than its THG counterpart
γ(3)(3ω;ω,ω,ω). The data was augmented by theoretical calculations [46, 49] and
measurements [45] of the hyperpolarizability of the gases under consideration. With
the noted exception of the data provided in Ref. [49], however, the hyperpolarizability
data only provide ESHG efficiencies, which unfortunately exhibit a different disper-
sion behavior. Without further processing, this data can therefore only be sensibly
used to estimate the long wavelength limit n2(ω → 0). Based on the extensive work of
Ref. [49], this issue can be fixed by noting that in the long-wavelength limit, the third-
order hyperpolarizability may be expanded into an even power series according to

γ(3) = γ0(1 + Aω2
L + Bω4

L + · · · ) (4.50)

with γ0 = γ(3)(0; 0, 0, 0). The coefficient A has been demonstrated in Ref. [59] to
be the same for all third-order nonlinear processes, and the difference in frequency
scaling is governed by the quantity ω2

L = νω2, where ν = 12, 6 and 4 for THG,
ESHG and DFWM, respectively.

As νDFWM : νESHG = 2 : 3, it is obvious to rescale ESHG data according to

γDFWM(ω) ≈ γ0

[
γESHG(ω)

γ0

]2/3

(4.51)

in order to obtain the hyperpolarizability γDFWM associated to degenerate four-wave
mixing. Again, this adjustment provides a much better agreement with the exper-
imental data for gases like krypton and argon at 248 nm wavelength [50] but fails
to explain the values reported for neon and the large negative n2 of xenon, which
is, however, attributed to a local coincidence with a two-photon resonance. The
main reason for including the ESHG data is their much higher reliability. Typically,
a precision of about 2 % or better is claimed for ESHG data, whereas values of
10 % are already considered as extremely reliable for all methods of determining
hyperpolarizabilities with three optical fields, i.e., DFWM or THG measurements.
Inspecting the data in Fig. 4.4, one finds that in the long wavelength limit all differ-
ent methods for estimating n2 agree with each other within 20–30 %. Considering
both, the approximations made by PPT theory, and the assumptions used here on the
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Fig. 4.4 Nonlinear refractive index in the long-wavelength regime according to Eq. (4.46) for
helium (a), neon (b), argon (c), krypton (d) and xenon (e). Squares experimental data of Lehmeier et
al. [44]. Triangles Hooker et al., experiment [50]. Stars Rice et al., theory [46]. Circles experimental
data, Lundeen et al. [60]. Filled squares Bishop and Pipin, theory [49]. Solid lines n2 according to
Eq. (4.46). Dashed lines experimental data of Ref. [45], rescaled using Eq. (4.51). Dashed-dotted
lines theoretical calculations of Ref. [46], interpolated according to scaling law Eq. (4.50). Dotted
lines Lehmeier data [44] rescaled with the help of Eq. (4.49)

frequency dependence of the nondegenerate TPA absorption coefficient, Eq. (4.46)
delivers excellent n2 estimates in the infrared and visible, with a slight tendency to
underestimate nonlinear refraction compared to measured hyperpolarizabilities and
ESHG data. Disagreement between ESHG data and the KK expansion in the infrared
limit ω → 0 is typically only 10–20 %. Compared to Ref. [11], which neglected
the frequency dependence of the TPA cross-section, the KK expansion yields good
agreement with independent theoretical and experimental work also below 500 nm.
Table 4.1 lists a compilation of n2 valuesLWL for 800 nm, which is currently prob-
ably the most important wavelength for pulse compression experiments. Keeping in
mind that the absorption spectra σK have been derived from strong field ionization
rates for which often an order of magnitude agreement with experimental data is
considered reasonable, the KK approach provides an outstanding agreement with
the n2 values provided by the cited theoretical and experimental work. Especially,
considering the static limit n2(ω → 0), the values calculated from the KK approach
deviate no more than 15 % from the cited experimental and theoretical reference.
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For the static limit γ(3)(0; 0, 0, 0) of the hyperpolarizability, a completely analytical
expression may be obtained by relating the hyperpolarizability to the Kerr coefficient
n2 with the help of Eqs. (4.43) and (2.50) which yields

γ(3)(0) = 8ε2
0c

ρ0
n2(0), (4.52)

where it was used that n0 = √
ε ≈ 1. Evaluating Eq. (4.46) in the limit ω → 0 finally

yields

γ(3)(0) = 64e4
�

2ε2
0

ω4
H m3

e

F(n∗) (4.53)

where the function F(n∗) describes scaling of n2 with the effective principal quantum
number n∗ = √

ωH /ωp of the gas species and is given by the integral representation

F(n∗) = (8e)2n∗

�2(n∗ + 1)
n10∗

1∫

0

dxx2n∗+3/2e−2xw0

[
2
√

1 − x

]
(4.54)

The variation of γ(3)(0) with the atomic ionization potential is shown as dashed line
in Fig. 4.5.

For comparison, the figure is supplemented with the static hyperpolarizabilities of
various atomic species. All data was theoretically obtained by different perturbative

http://dx.doi.org/10.1007/978-3-642-30930-4_2
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techniques [61–65] except for hyperpolarizabilities of the rare gases He, Ne, Ar, Kr,
Xe which were taken from experimental work [45].

Clearly, for the noble gases, the agreement with the theoretical curve is most
striking. However, for decreasing ionization potential, the n2 values found in the
literature follow only roughly the curve calculated here, with an increasing tendency
of the present theory to overestimate the static n2 values. However, it should be
kept in mind that the PPT model only provides a rough estimate on the MPI cross
sections σK , as this model neglects any internal atomic resonances. Rather, only
transitions from the bound state to the continuum are considered. Thus, processes
such as resonance enhanced MPI [37, 38] or multiphoton transitions between bound
states [66], are not accounted for by the cross section σK derived from PPT theory.
For example, considering two-photon bound-bound resonances in xenon, the authors
of [66] predict negative n2 for xenon at 248 nm. Nevertheless, the excellent agreement
of the static n2 values of the noble gases mainly considered here, suggests that the
dominant contribution to the second-order nonlinear refractive index results from
non-resonant TPA due to transitions between a bound state and the continuum.

In conclusion, an alternative route for estimating the nonlinear refraction of inert
gases from a KK transformation of the PPT theory has been established. This method
is completely analytical and requires knowledge of a single parameter, i.e., the ion-
ization energy of the gas. Equation (4.46) directly delivers estimates that are in sur-
prisingly good agreement with experimentally measured values for the visible and
infrared. As it will be shown in the next section, this method can easily be general-
ized for the estimation of higher-order effects or other gases where less experimental
information is available. Moreover, the dispersion of n2 at frequencies ω > ωp/2
above the two-photon absorption edge has been completely disregarded. This also
will be supplemented in the next section.

4.4 Higher Order Kerr Effect and Femtosecond Filamentation

In this section, the KK ansatz will be generalized to calculate higher-order indices.
This finally provides an independent check of the formerly reported saturation behav-
ior of the Kerr refractive index in gaseous media. Keeping in mind the power series
expansion Eq. (4.1) of the nonlinear refractive index, it is obvious that n2(K−1) is
related to K -photon absorption, as the absorption coefficient scales with intensity
according to [57]

�αK (ω) = βK I K−1. (4.55)

where βK = K�ωρ0σK , cf. Eq. (2.51) which relates βK to the imaginary part of
the nonlinear susceptibility χ(2K−1). In principle, the KK approach is only applica-
ble to the nondegenerate case of simultaneous absorption of K photons of different
frequencies ω1,ω2, ...,ωK . In the present case, only degenerate absorption coeffi-
cients are known for which no KK relations may be formulated. Thus, analogous
to the considerations that led to Eq. (4.44), an estimate has to be provided for the

http://dx.doi.org/10.1007/978-3-642-30930-4_2
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Fig. 4.6 Dispersion curves for n2...n6 for argon in the vicinity of the 2,3 and 4-photon resonance

nondegenerate absorption cross-section σ(N D)
K (ω1,ω2, ...,ωK ) for the simultaneous

absorption of K photons of frequencies ω1,ω2, ...ωK . Again, it seems obvious to use

σ
(N D)
K (ω1,ω2, ...,ωK ) = σK

(
ω1 + ω2 + ... + ωK

K

)
, (4.56)

where σK is given by Eq. (4.42). Then, the change of refractive index seen by a probe
beam at ω1 due the presence of pump beams at ω2,ω3, ...ωK is related via KK to
the nondegenerate absorption coefficient according to (k = K − 1 is introduced for
notational convenience)

n2k(ω1,ω2, ...,ωk+1)

= �cρ0

π
P

∞∫

0

(� + ω2 + · · · + ωk+1)
σk+1

(�+ω2+···+ωk+1
k+1

)

�2 − ω2
1

d�. (4.57)

In the present work, only self-refraction is of interest, therefore settingω2 = ω3 = ...

= ωk+1 = ω yields

n2k(ω) = �cρ0

π
P

∞∫

0

(� + kω)
σk+1

(
�+kω
k+1

)

�2 − ω2 d�. (4.58)

This equation is evaluated using the HT method already used for the calculation
of the dispersion behavior of n2 in the previous section. The results for n2 to n6
for argon are displayed in Fig. 4.6. Focusing the attention to the dispersion of the
refractive indices above the threshold for K -photon absorption (ω > ωp), it is
observed that the nonlinear refractive index is highly dispersive in the vicinity of
the K photon absorption edge. Attaining its maximum at ωp/K , it rapidly decreases
for ω > ωp/K and eventually changes sign. In fact, the emergence of negative
numerical values of the higher-order refractive indices is a necessary condition to
observe saturation, as also discussed in Refs. [1, 2]. However, for argon, a negative
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n4 = (−0.36 ± 1.03) × 10−9cm4/TW2 is predicted at 800 nm, whereas Fig. 4.6
suggests that within the framework of the current model, n2(K−1) can attain negative
values only for frequencies ω > ωp/K above the K -photon absorption edge. In fact,
the KK approach yields n4 = 0.239 × 10−9cm4/TW2. Regarding the errorbars pro-
vided Ref. [2], the present value of n4 is compatible with the results of Loriot et al.
Within the KK model, negative values of n2(K−1) for argon are expected for K ≥ 11,
as 800 nm is close to an 11-photon resonance at λ = 11 × 2πc/ωp ≈ 865.4 nm.

A possible mechanism to explain the saturation behavior of the nonlinear refractive
index has been proposed in Ref. [3], taking into account ionization induced depletion
of the ground state, giving rise to a reduction of n2 for the cations. The degree of ion-
ization enters the definition of the multiphoton cross-section Eq. (4.42) via the ioniza-
tion potential and the effective principal quantum number n∗ = Z

√
ωH /ωp. For Ar+

cations, the second ionization potential is found to be Ui = 27.629 eV. Using this and
Z = 2 in Eq. (4.46) , an estimate for the n2-value of singly ionized argon atoms can
be obtained. At 800 nm, KK theory predicts a value of n2 = 6.14 × 10−8 cm2/TW,
a factor of 2 smaller than the corresponding value for neutral argon, cf. Table 4.1.
To simulate the saturation behavior due to ground-state depletion, an intensity depen-
dent effective second order nonlinearity n2,eff can be calculated according to

n2,eff (I ) = pn2,Ar+ + (1 − p)n2,Ar (4.59)

where p is the fraction of singly ionized argon atoms. To reproduce experimental
conditions of [1, 2], in order to calculate p, the medium is assumed to be ionized
by tFWHM = 90 fs pulses with a Gaussian temporal intensity profile given by I (t) =
I0 exp(−2t2/t2

p), where I0 is the peak intensity and tp = tFWHM/
√

2 ln 2. Using the
ionization rate Eq. (4.36) w(I ) of Ref. [7] for a center wavelength of 800 nm, p is
then given by

p = 1 − exp

( t∫

−∞
dt ′w(I (t ′))

)
(4.60)

A plot of n2,eff(I ) versus peak intensity I is shown in Fig. 4.7. The effective second
order nonlinearity n2,eff is nearly constant for intensities up to 150 TW/cm2, then
decreases monotonously until is has reached 50 % of its original value for intensities
of the order of 300 TW/cm2, where the gas is nearly completely ionized. Taking
into account that the nonlinear index change is given by �n = n2,eff(I )I , this
observed behavior of n2,eff translates itself into nearly constant slope of �n(I ) up
to 150 TW/cm2 and a reduced constant slope for higher intensities. For comparison,
the clamping intensity for the given laser- and medium parameters amounts to 81
TW/cm2. The intensity for which a notable change in the slope of �n(I ) occurs
is nearly twice as high. It is thus clear that a depletion induced reduction of n2
plays a minor role in argon filaments. Furthermore, the observed saturation behavior,
especially the change of the index sign, cannot be explained by the depletion model
based on KK theory.
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Fig. 4.7 Intensity dependent
second order nonlinear refrac-
tion n2,eff in argon at 800 nm
according to Eq. (4.59)
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Therefore, in order to provide a theoretical model for Kerr saturation and inver-

sion, higher-order nonlinear terms will be included in the definition of the Kerr
nonlinear refractive index Eq. (4.1). The higher-order coefficients will be calcu-
lated using the KK relation Eq. (4.58) and compared to the experimental results
of Refs. [1, 2], which to date provide the only available experimental data on the
higher-order nonlinearities. Besides argon, the experimental work of Loriot et al. also
provides higher-order Kerr coefficients of the air components N2 and O2. However,
the model of Ref. [7] only holds to describe photo-ionization of atoms. This is due
to the fact that only the asymptotic behavior of the atomic initial wavefunction
enters the derivation of Eq. (4.36) (cf. Sect. 4.2 of this theses), which therefore fails
to properly describe molecule ionization [67]. Instead, more complex approximate
approaches using LOPT, cf. Eq. (4.9) and the subsequent discussion, are commonly
used to theoretically describe ionization of molecules [18]. In principle, LOPT could
be used to calculate higher-order ionization cross-sections σK in order to obtain the
higher-order Kerr coefficients via the KK transform 4.58. However, the perturbative
approach becomes increasingly complex for largefigure K , and closed-form analyti-
cal expression for the cross-sectionsσK , comparable to that of Eq. (4.42) for arbitrary
K , are not known in the literature. Therefore, in the following the semi-empirical
model of Ref. [68] is used, which employs the PPT model with an effective Coulomb
potential and an effective residual ion charge Zeff . For O2 and N2, the latter work
obtains Zeff = 0.53 and 0.9, respectively, which is used in the following to calculate
ionization cross-sections σK and higher-order Kerr coefficients for the molecular
air components. However, for molecular gases, it is known that a delayed Raman
response related to the molecular degrees of freedom contributes to the Kerr non-
linearity, cf. Eq. (3.19) and related discussion. It is therefore emphasized that for the
molecular gases, Eq. (4.58) only delivers the instantaneous, electronic response to
the Kerr nonlinearity, whereas delayed Raman responses are neglected.

The higher-order Kerr coefficients at λ = 800 nm calculated from the KK trans-
form (4.58) of the ionization cross-sections σK are compiled in Table 4.2 for helium,
neon, krypton and xenon and for the air components argon, O2 and N2. In addition
to the n2-values at 800 nm, for the molecular gases, Eq. (4.53) with the respective
Zeff delivers n2(0) = 0.7 × 10−7 cm2/TW and n2(0) = 0.8 × 10−7 cm2/TW for

http://dx.doi.org/10.1007/978-3-642-30930-4_2
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Table 4.2 Higher-order nonlinearities n2k(cm2k/TWk) for helium, neon, argon, krypton, xenon
and molecular oxygen and nitrogen at 800 nm, calculated with Eq. (4.58)

k He Ne Ar Kr Xe O2 N2

1 5.21e-09 1.31e-08 1.27e-07 3.07e-07 9.16e-07 8.15e-08 8.80e-08
2 2.41e-12 9.65e-12 2.90e-10 1.09e-09 5.64e-09 3.08e-10 1.92e-10
3 2.48e-15 1.56e-14 1.42e-12 8.27e-12 7.33e-11 2.90e-12 9.19e-13
4 4.54e-18 4.48e-17 1.23e-14 1.11e-13 1.73e-12 5.41e-14 7.94e-15
5 1.31e-20 2.03e-19 1.72e-16 2.45e-15 7.04e-14 1.84e-15 1.11e-16
6 5.54e-23 1.34e-21 3.63e-18 8.62e-17 5.39e-15 1.22e-16 2.39e-18
7 3.23e-25 1.24e-23 1.15e-19 5.14e-18 7.26e-16 9.92e-18 7.82e-20
8 2.52e-27 1.56e-25 5.89e-21 1.22e-18 −4.87e-17 −7.93e-19 4.20e-21
9 2.57e-29 2.59e-27 7.84e-22 −4.28e-20 −6.98e-19 −1.14e-20 8.21e-22
10 3.34e-31 5.78e-29 −3.76e-23 −6.23e-22 −1.05e-20 −1.74e-22 −2.65e-23
11 5.56e-33 1.76e-30 −6.32e-25 −7.75e-24 −1.76e-22 −2.97e-24 −3.61e-25
12 1.19e-34 8.21e-32 −6.77e-27 −1.09e-25 −3.11e-24 −5.33e-26 −3.98e-27
13 3.37e-36 1.20e-32 −8.29e-29 −1.65e-27 −5.64e-26 −9.77e-28 −5.00e-29
14 1.49e-37 −2.43e-34 −1.09e-30 −2.56e-29 −1.03e-27 −1.81e-29 −6.73e-31
15 1.38e-38 −1.92e-36 −1.50e-32 −4.04e-31 −1.91e-29 −3.38e-31 −9.35e-33
16 −3.11e-40 −1.52e-38 −2.08e-34 −6.42e-33 −3.54e-31 −6.31e-33 −1.32e-34
17 −2.09e-42 −1.36e-40 −2.93e-36 −1.03e-34 −6.56e-33 −1.18e-34 −1.88e-36
18 −1.44e-44 −1.30e-42 −4.13e-38 −1.64e-36 −1.22e-34 −2.21e-36 −2.69e-38
19 −1.12e-46 −1.29e-44 −5.86e-40 −2.63e-38 −2.26e-36 −4.13e-38 −3.87e-40
20 −9.37e-49 −1.29e-46 −8.33e-42 −4.23e-40 −4.20e-38 −7.73e-40 −5.56e-42

n2k is related to the cross-section σk+1 of k + 1-photon absorption via KK theory.

oxygen and nitrogen, respectively. In fact, the values are in excellent agreement
with independent theoretical calculations of Ref. [69] (see also [70]) which provides
n2(0) = 0.746 × 10−7 cm2/TW and n2(0) = 0.72 × 10−7 cm2/TW for oxygen and
nitrogen, respectively for the purely electronic contribution to the nonlinear refrac-
tive index. Furthermore, among the few available references dealing with higher-
order susceptibilities of helium, Ref. [71] delivers n4 = 2.1 × 10−12 cm4/TW2,
n6 = 2.5 × 10−15 cm6/TW3, n8 = 7 × 10−18 cm8/TW4 and n10 = 4.1 × 10−20

cm10/TW5. These values are in surprisingly good agreement with those resulting
from the present KK method.

Interestingly, for all gases considered here, negative n2(K−1) is encountered for
K > Ui/�ω = ωp/ω. In this case, the energy of the K absorbed photons is high
enough to trigger a multiphoton transition into the continuum. It will now be shown
that the appearance of negative Kerr coefficients crucially determines the saturation
and inversion behavior of the nonlinear refractive index.

Having computed the nonlinear refractive indices, it is straightforward to calculate
the intensity dependent Kerr nonlinear refractive index �n(I ) according to Eq. (4.1).
For argon, nitrogen and oxygen, the results are presented in Fig. 4.8. For all considered
gases, the nonlinear refractive index change �n exhibits a behavior comparable
to theoretical and experimental results of [72, 73, 3, 1, 2], i.e., it saturates and
changes sign at intensity levels in the order of magnitude of ≈ 1013cm2/W. The
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Fig. 4.8 Kerr saturation and inversion in a argon, b nitrogen and c oxygen at 800 nm due to
higher order Kerr terms [Eqs. (4.1,4.58), solid lines], classical filamentation model due to plasma
clamping [Eq. (4.61), dotted line], and experimental results [1, 2] (dashed lines). Dashed dotted
line in a depicts TDSE results for argon found in [73]. Reprinted from C. Brée et al. [6]. Copyright
© 2010 American Physical Society

dashed lines in Fig. 4.8 show experimental results of Ref. [2]. In the latter work,
the measured inversion intensity, defined as the (nontrivial) root of �n(Iinv) = 0
amounts to 34 TW/cm2 for argon, whereas the present theoretical results predict
a 40 % higher inversion intensity of about 49TW/cm2. However, Ref. [2] provides
error estimates for the measured values n2, n4, ..., n10. From the numerical values of
these errors, it is possible to estimate the error in the experimental inversion intensity
of Iinv = 34 ± 9 TW/cm2. Similar considerations hold for the experimental data
provided for O2 and N2. For the present theoretical results, the error is extracted from
the deviation of the lowest order coefficient n2 from independent data as summarized
in Table 4.1, yielding a rough error estimate of ±20 %. This analysis shows that KK-
based calculation of the IDRI yields inversion intensities which favorably agree with
experimental results [2]. For argon, an independent prediction of Kerr saturation
and inversion was obtained in Ref. [73]. The corresponding �n(I ) is shown as the
dash-dotted line in Fig. 4.8a. Despite the fact that Ref. [73] slightly overestimates the
linear inital slope of �n(I ) as determined by the lowest order nonlinear coefficient
n2, the inversion behavior is in good agreement with the present results and that of
Loriot et al.

For helium, neon, krypton and xenon, the IDRI �n(I ) according to Eqs. (4.58)
and (4.1) is plotted versus intensity in Fig. 4.9. Again, for neon, krypton and xenon,
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Table 4.3 Inversion intensity from saturation of the nonlinear refractive index versus clamping
intensity in the classical model of filamentation

Helium Neon Argon Krypton Xenon O2 N2

Iinv(TW/cm2) 113 89 49 40 30 36 50
Ic(TW/cm2) 301 204 81 57 37 44 82

theoretical results of Ref. [73] are plotted as dash-dotted curves, exhibiting good
qualitative agreement with the results provided in this work. The inversion intensities
for the gases considered here are summarized Eqs. (4.1)(4.58) in Table 4.3.

In order to elicit the role Kerr inversion assumes in femtosecond filaments,
it should be compared to the classical model of filamentation which truncates the Kerr
refractive index after the n2 term and assumes a nonlinear refractive index change

�n(I ) = n2 I − ρ

2ρc
, (4.61)

see also the discussion of Sect. 2.5. To reproduce experimental conditions of [1, 2],
Eq. 4.61 is evaluated for a 90 fs pulse with a Gaussian temporal profile, for variable
peak intensity I . The peak plasma density ρ generated by this pulse is obtained using
the ionization model Eq. (4.36) of [7], and n2 is provided by Eq. 4.46. The results
are plotted versus peak intensity I as dotted line in Fig. 4.8a and as dashed lines in
Fig. 4.9. The demonstrated behavior of �n in the clamping intensity model shows
clearly that plasma induced saturation and inversion of the nonlinear refractive index
occurs at considerably higher intensities as observed within the higher-order Kerr
model.

For a quantitative comparison, clamping intensities for the gases under consid-
eration are calculated for a laser wavelength λ = 800 nm. Instead of using the esti-
mate Eqs. (2.83), (2.81) is solved numerically. The obtained clamping intensities are
contrasted with the inversion intensities of the higher-order Kerr model Eq. 4.58 in
Table 4.3.

Indeed, the inversion intensities are lower than the clamping intensity. One may
thus expect that the saturation of the Kerr refractive index for the considered cases
is the dominant mechanism in femtosecond filamentation at 800 nm.

However, it is evident from Eq. 4.58 and Fig. 4.6 that the magnitude of the higher
order Kerr coefficients depends on the center wavelength of the irradiated laser beam.
It therefore follows that the IDRI and the inversion intensity exhibits dispersion [74],
as shown in Fig. 4.10a, b for argon. For comparison, the wavelength dependence of
the clamping intensity for argon is shown as dashed line in Fig. 4.10a. The inversion
intensity increases towards shorter wavelength, and eventually exceeds the clamping
intensity, as independently conjectured in [75]. Therefore, for wavelengths below
600 nm, intensity clamping due to free electrons becomes increasingly relevant and
may regain its dominant role for the saturation of the nonlinear refractive index.

http://dx.doi.org/10.1007/978-3-642-30930-4_2
http://dx.doi.org/10.1007/978-3-642-30930-4_2
http://dx.doi.org/10.1007/978-3-642-30930-4_2
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Fig. 4.9 Intensity dependent refractive index for a helium, b neon, c krypton and d xenon according
to Eq. (4.1) and Table 4.2. Dashed lines nonlinear refractive index change in classical model of
filamentation, Eq. (4.61). Dashed-dotted lines TDSE results of [73]

Fig. 4.10 a Dispersion of the inversion intensity Iinv for argon (solid line). Dashed line depicts the
wavelength-dependent clamping intensity according to Eq. (2.81). b Visualization of the dependence
of the nonlinear refractive index �n(I,ω) of argon on wavelength ω and intensity I , calculated
according to Eqs. (4.1) and (4.58)
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Chapter 5
Conclusions

In the present thesis, femtosecond filamentation was investigated. While the first part
of this work explores the self-compression both, theoretically and experimentally,
and reveals the physical mechanisms behind this remarkable phenomenon, the second
part affects the foundations of femtosecond filamentation and, moreover, those of
nonlinear optics at extreme intensities. A totally new approach for a theoretical
prediction of the magnitude of the higher-order nonlinear susceptibilties is presented,
which is in excellent agreement with recent experimental results [1].

In Chap. 3, filamentary self-compression is traced back to a self-pinching mecha-
nism which can be regarded as analogous to the z-pinch of magnetohydrodynamics
[2, 3]. It was shown that the interplay of purely spatial effects, i.e., Kerr self-focusing
and plasma defocusing can lead to a considerable dynamics of the temporal pulse
profile, which is related to the noninstantaneous nature of the plasma nonlinearity.
This temporal dynamics involves temporal splittings of the pulse, as substantiated
by a simple analytical model. Under suitable input pulse conditions, the plasma-
induced pulse splitting may introduce a split-isolation cycle that yields a few-cycle
self-compressed pulse. Moreover, the latter results revealed that the characteristic lon-
gitudinal structure of a filament, with a strongly ionized zone followed by a nearly
plasmaless, subdiffractive channel [4] already appears in a purely spatial model,
neglecting any temporal effects like dispersion and self-steepening. This further cor-
robarates that the prevalent mechanisms behind filamentary self-compression are of
purely spatial nature.

In the postionization zone [5], it was shown that refocusing events, partially
arrested by GVD, can lead to a second split-isolation cycle which cascades the
self-compression mechanism and strongly increases the compression ratio. As both
experimental and numerical studies revealed [6], refocusing events can give rise to
self-compressed few-cycle pulses with characteristic temporal and spectral signa-
tures evident in a spectrogram representation. A further intriguing feature of fem-
tosecond filaments is their ability to restore both, their spatial and temporal profile.
The former was evidenced in [7], where it was shown that a filament can self-restore
its transverse spatial profile after hitting an obscurant with a diameter of up to 2/3
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of the filament core, and it is suggested that “The replenishment of the pulse mainly
proceeds from the nonlinear attractor responsible for the formation of a spatial soli-
ton modeling the filament core.” [7], a proposal which is substantiated by showing
that a time-averaged, approximate analogue of the underlying dynamical equations
indeed admits stable soliton solutions. Temporal self-restoration has been theoret-
ically predicted in [8, 9] by means of the impact of a thin window of fused silica
on the filamentary self-compressed pulse. In a typical experimental setup, the self-
compressed optical pulses leave the gas cell by traversing such a silica window.
The results presented in Sect. 3.4. successfully evidenced these theoretical predic-
tions, and revealed a strong impact of the longitudinal position of the exit window.
In particular, the measurements and numerical simulations also revealed that tem-
poral self-restoration may become ineffective for an unsuitably positioned gas cell.
This is further corroborated by measurements with a window-less gas cell. These
findings might be useful for increasing the efficiency of filamentary self-compression
in future experiments.

Finally, a possible shift of paradigm in the field of femtosecond filamentation and
maybe nonlinear optics as a whole, has been indicated in Chap. 4. A theoretical model
explaining the saturation and inversion behaviour of the IDRI was presented, based
on Kramers-Kronig relations for the nonlinear optical susceptibilities, cf. Eq. (4.58).
This model was originally developed to calculate the second-order Kerr coefficient
n2 of semiconductors [10, 11] and later applied to noble gases [B5]. In Sect. 4.3,
this model is extended to yield more accurate predictions on the dispersion of n2
with wavelength. The obtained results show excellent agreement with independent
theoretical and experimental data [B9]. Having benchmarked the Kramers-Kronig
approach on the basis of the second-order nonlinear refractive index, the method was
generalized to calculate higher-order Kerr terms, yielding favorable agreement with
experimental measurements of Loriot et al. [1, 12].

Nonlinear refraction may be understood to arise from virtual multiphoton transi-
tions from the ground state to an excited bound or continuum state and back to the
ground state. This sequence of transitions produces a phase-shift of the participating
photons which, on a macroscopic level, is responsible for the observed self-phase
modulation due to second- or higher order Kerr nonlinearities. As the employed
ionization model [13] disregards the existence of internal atomic resonances, the
Kramers-Kronig approach of Chap. 4 captures only the contribution of transitions
between the ground and the continuum states to nonlinear refraction. An alternative
approach to analyze the contribution of bound-continuum transitions to the IDRI
was presented in Ref. [14]. In the latter work, the IDRI of a simplified model system
sometimes referred to as ‘delta-Hydrogen’ was calculated. This system uses a delta
function to approximate the atomic potential. The latter potential only admits a single
bound-state, such that in this model, similar to the approach employed here, only
bound-continuum transitions contribute to the nonlinear susceptibility. In fact, within
the ‘delta-Hydrogen’ model, the IDRI exhibits qualitatively the same saturation and
inversion behavior as that observed in [1, 12] and the present thesis. Nevertheless,
the authors of Ref. [14] argue, in support of the classical model of filamentation,
that in real atomic systems, virtual transitions between bound states provide the
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dominant contribution to the IDRI, therefore masking the saturation behavior due to
the continuum transitions. In contrast, the remarkable agreement obtained in Sect. 4.3.
of the second-order nonlinear refractive index n2k with independent experimental
and theoretical data, which is abesent in Ref. [14], indeed suggests that transitions
between the ground state and the continuum states provide a considerable contri-
bution to nonlinear refraction. Nevertheless, a future refinement of the model may
involve to augment the multiphoton cross-sections βK (cf. Eq. (4.55)) with terms
which take into account participating excited bound states, in order to account for
multiphoton transitions between bound states or resonance enhanced MPI.

An experiment to provide an independent test of the predictions of Loriot et al.
was proposed in Ref. [15]. This involves measuring the yield of third compared to
fifth-harmonic generation in the gas under consideration. Indeed, according to the
analysis of Ref. [16], the experimental results of [17] for argon are in support of the
higher-order Kerr model.

These results strongly suggest to include a Kerr-based saturation mechanism into
future models of filament formation. Modeling of white-light propagation, however,
may turn out to be difficult because of the strong dispersion of the higher-order
coefficients, and methods for efficient modeling of dispersive nonlinearities may
have to be found.
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Appendix A
The Nonlinear Schrödinger Equation

The NLSE (2.73) describes the self-focusing of optical beams in a nonlinear Kerr
medium, a phenomenon which is embedded into the more general context of wave
collapse and self-focusing [1]. Therefore, both from a physical and functional
analytic point of view, it is worthwhile to study a generalized NLSE in one
longitudinal dimension g (the propagation direction) and D transverse dimensions
parametrized by ðn1; . . .; nDÞ according to

iogwþ
XD

j¼1

o2

onj
2 wðg;~nÞ þ jwj2rw ¼ 0 ðA:1Þ

As the existence of stable, localized structures of wave energy is of
considerable interest from the viewpoint of technological applications, a good
deal of the mathematical theory on the NLSE is devoted to the existence of
standing wave solutions of the form

Uðg;~nÞ ¼ Rð~nÞeikg: ðA:2Þ

Given that the standing wave solution is stable under infinitesimal
perturbations, it is also referred to as soliton solution of the NLSE. Inserting Eq.
(A.2) into the NLSE (1), one obtains the PDE

XD

j¼1

o2

onj
2 R� kRþ jRj2rR ¼ 0: ðA:3Þ

For r ¼ D ¼ 1, the latter equation can be solved analytically, yielding

RkðnÞ ¼
ffiffiffiffiffi
2k
p

coshð
ffiffiffi
k
p

nÞ
: ðA:4Þ

This is the well known fundamental soliton of the NLSE, which has found
widespread applications in nonlinear fiber optics [2, 3]. A stability criterion for
stationary states of the NLSE under infinitesimal perturbations has been derived in
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Refs. [4–7]. Introducing the soliton mass

NðkÞ ¼
Z

dDnjRkð~nÞj2; ðA:5Þ

stable ground states exist whenever

d

dk
NðkÞ[ 0: ðA:6Þ

This condition for the existence of stable solitons is also known as Vakhitov-
Kolokolov criterion. It can be shown that it is equivalent to the condition rD\2,
which specifies the so-called subcritical case, while Dr ¼ 2 and Dr [ 2 are
referred to as critical and supercritical cases. The critical case is of special
relevance for the physics of intense optical beams. Letting D ¼ 2 and r ¼ 1, it can
be shown that the ground-state solution R0;k to Eq. (A.3) is a continuous, positive
function with no nodes. Furthermore, it is radially symmetric, R0;k ¼ R0;kðqÞ,
where q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

1 þ n2
2

q
. The class of solutions R0;k to Eq. (A.3) for arbitrary k can be

generated from the solution R0;1 for k ¼ 1 by means of the scale transformation

R0;kðqÞ ¼
ffiffiffi
k
p

R0;1ð
ffiffiffi
k
p

qÞ: ðA:7Þ

From this scaling property it is straightforward to conclude that in the critical
case, the mass of the ground-state NðkÞ ¼ 2p

R
dqqR2

0;kðqÞ is independent of k,
i.e., NðkÞ ¼ Nð1Þ. Therefore, it follows from the Vakhitov-Kolokolov criterion (6)
that the ground-state solution R0 is unstable, and it can be shown that for any

�[ 0, there exists an initial condition /ð0;~nÞ of the NLSE close to R0 with

jj/� R0jj\� such that the amplitude of /ðg;~nÞ blows up at finite distance gc, i.e.,

limg!gc
/ðg;~nÞ ¼ 1. Moreover, the groundstate mass N0 ¼ kR0;1k2 provides a

lower bound for the threshold mass required to observe finite-distance blowup: any

initial datum / with k/k2\N0 evolves into a globally defined solution to the
NLSE and does not blow up. Therefore, a necessary condition for blow up is
provided by

jj/2jj[ N0 ðA:8Þ

The ground state R0;1 is also known as the Townes mode [8]. It was obtained by
numerically solving Eq. (A.3) for D ¼ 2 and r ¼ 1, leading to N0 � 11:69. In the
latter reference, the Townes mode is discussed in the context of optical self-
focusing and self-trapping of optical beams in a self-generated waveguide. Indeed,
the paraxial wave Eq. (2.73) in a self-focusing nonlinear Kerr medium with nðIÞ ¼
n0 þ n2I is recovered after the substitutions 4z0g! z, w0ðn1; n2Þ ! ðx; yÞ and
ffiffiffiffiffi
c2
p

w! E, where c2 ¼ k2=ð8p2n0n2w2
0Þ. Adopting the above results to optical

self-focusing, it is found that in analogy to Eq. (A.8), self-focusing and blow up at
the critical distance provided by the Marburger formula (2.76) is possible only
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under the necessary condition that the optical power P of the input beam exceeds
the critical power Pcr ¼ N0k

2=ð8p2n0n2Þ, cf. Eq. (2.75).
An important analytical tool for the mathematical analysis of self-focusing and

blow up is provided by the so-called virial identity. Introducing the variance V and
Hamiltonian H of the wavefield w according to

V ¼
Z
j~nj2jwj2d2n ðA:9Þ

H ¼
Z

d2n j ~rwj2 � 1
2
jwj4

� �

; ðA:10Þ

it is found that any solution to the NLSE 1 satisfies

o2
gV ¼ 8H: ðA:11Þ

Here, only the case (D ¼ 2; r ¼ 1) is considered. As stationary solutions to the
NLSE have constant variance, it immediately follows from the virial identity that
H ¼ 0. Therefore, in critical dimension D ¼ 2, r ¼ 1, the Townes mode is a zero-
energy solution of the NLSE. Using the virial identity, an estimate for the critical
power can be obtained. As a trial function, a Gaussian beam of waist PðgÞ and
optical power ~P in dimensionless units, is chosen according to

wðg;~nÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~P

p.2ðgÞ

s

exp
�
� q2

2P2ðgÞ
þ i

1
4
PgðgÞq2

PðgÞ
�

ðA:12Þ

Inserting this ansatz into the virial identity 11 yields an ordinary differential
equation that governs the evolution of the beam waist P;

1
4
P3ðgÞ d2

dg2
PðgÞ ¼ 1�

~P
~Pcr

ðA:13Þ

For linear diffraction, the right hand side of this equation is equal to unity.
However, for optical beams with a power exceeding the critical power ~Pcr , the
right-hand side reverses the sign compared to linear theory, and the beam waist
eventually contracts to zero, yielding an intensity blow-up at some finite distance
g�. The evolution equation for the beam waist can be solved analytically, and
reverting to physical units, the solution is given by Eq. (3.11) of Sect. 3.11, with a
critical power approximated by means of the variational approach according to

Pcr ¼
k2

2pn0n2
; ðA:14Þ
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Appendix B
Numerical Method

The FORTRAN90 code implementing a numerical integration scheme for the set
of Eqs. (2.55), (2.56) was kindly provided by Stefan Skupin (MPIPKS) and Luc
Bergé (CEA-DAM). The code uses a split-step pseudospectral method [1] to
integrate the envelope Eq. (2.55), which can be represented as

�iozÊ ¼ LðxÞE þ N ðÊ;xÞ ðB:15Þ

where the operator L given by

LðxÞ ¼ LrðxÞ þ DðxÞ ðB:16Þ

subsumes the linear optical effects. It can further be decomposed into a
contribution DðxÞ Eq. (2.59) modeling temporal dispersion and a radial part Lr;

LrðxÞ ¼
1

2k0

bT�1ðxÞ 1
r
orror ðB:17Þ

which models linear diffraction within the paraxial approximation, including

space-time focusing effects. Here, bT ¼ 1þ x=x0 is the frequency domain
representation of the operator T, Eq. (2.57). The nonlinear propagation effects

are contained in NðÊ;xÞ, which is given by

NðÊ;xÞ ¼ i
x0

c
n2T̂ðxÞF jEj2E

h i
ðxÞ � i

k0

2qc
T̂�1ðxÞF qðEÞE½ �ðxÞ

� r
2
F qE½ �ðxÞ � F UiWðIÞðqnt � qÞ

2I
E

� �

ðxÞ ðB:18Þ

The applied pseudospectral method numerically integrates Eq. (2.55), obtaining

the envelope Êðr;x; z0 þ DzÞ from given initial datum Êðr; z0;xÞ, by first
advancing the initial datum along a distance Dz=2 according to the equation
obtained by setting N � 0 in Eq. (B.15). Formally, the solution to the corre-
sponding linear evolution equation may be written
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Êðr; zþ Dz=2;xÞ ¼ eiDz
2LrðxÞeiDz

2DðxÞÊðr; z;xÞ ðB:19Þ

as the operators LrðxÞ and DðxÞ commute with each other. While a solution to the
purely dispersive part of the evolution equation is readily obtained by
multiplication of the initial datum with the phase factor expðiDzDðxÞ=2Þ, the
action of the radial operator expðiDzLrðxÞ=2 is approximated numerically by
using a finite-difference, implicit Crank-Nicholson scheme [2] with transparent
boundary conditions in r [3].

The linearly evolved initial datum is then further propagated along a distance
Dz according to the nonlinear equation obtained by letting L ¼ 0 in Eq. (B.15).
The nonlinear integration step is performed using a Runge-Kutta method.
However, in the frequency domain, terms nonlinear in the envelope correspond
to multifold convolutions, which can only be performed at large computational
cost. Therefore, prior to performing the nonlinear step, the fast fourier transform

method (FFT) is applied on Êðr;x; zÞ to obtain the time-domain representation of
the envelope Eðr; z; tÞ, which enables a straightforward computation of the
nonlinear terms. The aliasing error introduced by this procedure is controlled by

applying a low-pass filter on Ê in the frequency domain. Furthermore, usage of the
FFT implies imposing periodic boundary conditions on the envelope both in the
time and frequency domain.

A repeated linear propagation step along a distance Dz=2 completes the
integration scheme, yielding the electric field envelope Eðr; zþ Dz; tÞ from an
initial envelope Eðr; z; tÞ, subject to the full propagation model Eq. (B.15).

The numerical computations are parallelized using the Message Passing
Interface (MPI) libraries and executed on the WIAS blade cluster euler
(Hewlett-Packard CP3000BL). The cluster consists of 32 blades of the type HP
BL460c and 16 blades of type HP BL2x220c. Each blade is equipped with two
INTEL Xeon5430/2666 Quad Core processors and provides 16 GB of RAM. In
order to implement an efficient parallelization of the employed pseudospectral
method, the two-dimensional numerical grid has to be distributed among the
compute nodes. It is assumed that the discretized r and t coordinates label columns
and rows of the grid, respectively. Then, the conduction of the FFT requires each
compute node to store entire columns, while for the application of the Crank-
Nicholson method, each node has to store entire rows. Therefore, the distribution
of the grid among the compute nodes has to be transposed repeatedly. An efficient
method to perform the necessary data exchange between the nodes is described
in [4].
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Appendix C
Characterization of Ultrashort
Few-Cycle Pulses

Spectral phase interferometry for direct electric field reconstruction (SPIDER) [1]
is an interferometric method to characterize the spectral phase of ultrashort few-
cycle optical pulses. The spectral phase /ðxÞ is defined as the phase of the electric
field EðtÞ in the frequency domain, i.e., as the argument of the Fourier transform
ÊðxÞ of EðtÞ,

ÊðxÞ ¼ jÊðxÞjei/ðxÞ: ðC:20Þ

In principle, the spectral phase of an optical pulse can be reconstructed by
means of the Takeda algorithm, from the interference signal generated by two
spectrally sheared replica of the pulse. In practice, the spectrally sheared replica
are generated by frequency up-conversion in a vð2Þ medium, see Fig. C.1. To this
purpose, a thin glass plate is used as an etalon. The front and back reflex off the
etalon provides two copies of the pulse with mutual temporal delay Ds. In addition,
the fraction of the pulse transmitted through the glass plate is sent through a
dispersive medium, e.g., BK7 glass. The acquired frequency chirp stretches the
pulse temporally and maps its frequency content into the time domain.
Subsequently, the chirped pulse and the two copropagating copies of the pulse
are subject to sum frequency generation in a vð2Þ medium. In the experiments of
Sect. 3.4., a BBO crystal under Type-II phase matching conditions was used. As
the chirped pulse is sufficiently long, the SFG process may be described by
resulting from the interaction of a short pulse with a monochromatic wave, giving
rise to a frequency up-conversion of the short pulses. However, due to the fre-
quency chirp of the stretched pulse and the temporal delay between the short
pulses, each of them is upconverted with a slightly different respective frequency.
The SPIDER signal thus consists of two spectrally sheared pulses with a frequency
offset Dx that is determined by the delay Ds and the GDD of the chirped pulse. In
the frequency domain, it is given by

SðxÞ ¼
	
	Êðx� x0Þeiðx�x0ÞDs þ Êðx� x0 � DxÞ

	
	2: ðC:21Þ
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With the polar decomposition Eq. (C.20), this may be evaluated to give

SðxÞ ¼
	
	Êðx0Þ

	
	2 þ

	
	Êðx0 � DxÞ

	
	2 þ 2

	
	Êðx0ÞÊðx0 � DxÞ

	
	�

� cos
�
/ðx0Þ � /ðx0 � DxÞ þ /refðx0Þ

�
; ðC:22Þ

with a linear reference phase /ref ¼ x0Ds. Experimentally, the SPIDER signal
SðxÞ is obtained by analyzing the copropagating spectrally sheared pulses with a
spectrograph. This gives rise to a characteristic fringe pattern, as displayed in Fig.
3.18a. A close inspection of Eq. (C.22) reveals that (for nontrivial spectral phase)
the fringe spacing is not constant along x. In fact, the phase of the cosine in Eq.
(C.22) consists of a linear contribution x0Ds plus a phase modulation due to the
presence of the finite difference

hðx0Þ ¼ /ðx0Þ � /ðx0 � DxÞ: ðC:23Þ

By analyzing the modulation of the fringe spacing and after subtracting the
linear reference phase /ref ¼ x0Ds, the group delay of the pulse is obtained, where
it is assumed that

hðx0Þ � Dx
o/ðx0Þ

ox0
: ðC:24Þ

The necessary phase demodulation can, e.g., be obtained by using the Takeda
algorithm [2] or wavelet based demodulation strategies [3, 4].

The reference phase /ref can, in principle, be obtained without further
measurement by calculating the delay Ds from the thickness of the glass etalon. In
practice, however, the spectral phases of copropagating pulses do not coincide
exactly, as the pulse resulting from the back reflex of the etalon is subject to
additional dispersive shaping while traversing the etalon. Therefore, under
experimental conditions, the reference phase is quasi-linear,
/refðx0Þ ¼ x0Dsþ nðx0Þ, with a small deviation nðx0Þ which accounts for the
dispersive effects within the SPIDER apparatus. To minimize this effect, the

Fig. C.1 Schematic repre-
sentation of a experimental
SPIDER setup. Two mutually
delayed copies of the pulse to
be characterized are subject
to sum frequency generation
(SFG) in a vð2Þ-crystal with a
third, chirped copy of the
pulse in a Type-II phase
matching geometry
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reference phase can be measured by screening off the chirped pulse and changing
the orientation of the nonlinear crystal to achieve Type I phase matching. This
enables the copropagating pulses to generate a second harmonic signal within the
BBO crystal. The SHG signal is subsequently recorded by a spectrograph and
the resulting fringe pattern is demodulated, in analogy to the demodulation of the
SPIDER signal. This procedure yields the required reference phase /ref , which is
subtracted from the demodulated SPIDER phase to yield the group delay of the
input pulse. The spectral phase can finally be obtained by integrating Eq. (C.24),

/ðx0Þ ¼ 1
Dx

Z
dx0hðx0Þ þ C0 ðC:25Þ

As the SPIDER method does not provide experimental means to determine the
integration constant C0, the electric field is determined up to a constant phase shift,
cf. (C.20). Therefore, SPIDER is a technique to determine the envelope of an
ultrashort pulse and is insensitive to an offset between the carrier signal and the
envelope.

While SPIDER is an interferometric method, the XFROG method is non-
interfero-metric. It relies on the generation of a cross-correlation signal generated
by focusing the test pulse EðtÞ to be characterized and a well-characterized
reference pulse ErefðtÞ into a vð2Þ medium, e.g., a BBO crystal. Furthermore, a
delay stage is used to introduce a variable temporal delay s of the reference pulse
w.r.t. the test pulse. The electric field of the cross-correlation signal detected
behind the BBO crystal is then given by

EXðt; sÞ ¼ EðtÞErefðt � sÞ: ðC:26Þ

When the XFROG signal is analyzed with a spectrograph, the spectral intensity
of the XFROG signal provides the XFROG trace,

IXðx; sÞ ¼
	
	
	
	

Z1

�1

dtEXðt; sÞeixs

	
	
	
	

2

: ðC:27Þ
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