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Supervisor’s Foreword

This Ph.D. thesis by Nouamane Laanait explores the role of correlations between
ions in determining the distribution of ions near a liquid/liquid interface. Ions are
distributed near charged molecules and particles in solution. These include
counterions that are released upon dissolving the molecules and particles or,
possibly, other electrolytes dissolved in solution. The presence of these counter-
and co-ions alters, or screens, the electrostatic interaction between the charged
entities. As a result, the distribution of ions about charged molecules and particles
in solution plays an important role in many scientific areas. Gouy and Chapman
separately addressed this topic in the early twentieth century within the context of
counter-ion distributions in solution near a charged electrode. Subsequently,
Debye and Hückel studied the ion distribution about a single ion within an elec-
trolyte solution. Both of these approaches were based upon a mean-field theory for
which the distributed ions interact electrostatically with the mean field of all other
ions. Except for modeling the solvent as a dielectric continuum, all other inter-
actions were neglected. Since then, many interesting ideas have been introduced
about the role of other interactions, including non-mean-field correlations and
fluctuations. It has been suggested that non-mean-field effects are responsible for
unusual effects, such as charge inversion of colloids and DNA condensation in
solutions of multivalent ions. However, a direct connection had not been previ-
ously established between the predictions of these novel ion distributions and their
measurement. Nouamane’s Ph.D. research, described in this thesis, is the first to
establish this connection. The National Science Foundation Division of Chemistry
grants 0615929 and 0910825 supported his work.

Nouamane joined my research group in May of 2006, just a few years after
Guangming Luo, a post-doctoral associate recruited from Beijing, had started to
use X-ray surface scattering to probe the distribution of ions at a liquid/liquid
interface. The X-ray experiments utilized the high-precision liquid surface scat-
tering instrument situated at the ChemMatCARS sector of the Advanced Photon
Source (Argonne National Laboratory), where Binhua Lin and Mati Meron ably
assisted us in these experiments and in Nouamane’s subsequent experiments.
Guangming’s research established the importance of considering ion-solvent
interactions to understand ion distributions. Although several authors had
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previously introduced ion-solvent interactions into a Poisson–Boltzmann formal-
ism to produce a theory of ion distributions, Daikhin, Kornyshev, and Urbakh’s
clear description of the role of a free energy profile on ion distributions at a liquid/
liquid interface influenced us. Guangming’s model of the free energy profile with a
simple analytic form provided excellent fits to our data, but a more fundamental
determination of the free energy profile awaited a conversation with Ilan Benjamin
(University of California at Santa Cruz) in a study lounge at the Argonne National
Laboratory Guest House. Subsequently, Ilan used molecular dynamics computer
simulations to determine the potential of mean force for the relevant ions and
Guangming showed that this description of ion-solvent interactions, within the
context of a modified Poisson–Boltzmann equation, yielded ion distributions that
matched his data.

Guangming’s early measurements were limited by the small electric potential
difference across the liquid/liquid interface that was achievable in a system for
which the potential difference is established by ion partitioning across the inter-
face. Nouamane’s first experimental work in the summer of 2006, in collaboration
with his fellow graduate students Binyang Hou and Jaesung Yoon, utilized a full
electrochemical cell that Guangming and Petr Vanysek (Northern Illinois Uni-
versity) had designed prior to Guangming’s departure from my lab. Along with the
appropriate electrolytes, this cell provided a range of ±400 mV in electric
potential difference, which led to strikingly different X-ray reflectivity measure-
ments than had been observed previously. Needless to say, this did not immedi-
ately lead to an understanding of the role of ion correlations in ion distributions,
though it did provide an experimental method to measure ion distributions on the
nanoscale under conditions in which the strength of ion correlations can be tuned.
However, years of experimental and theoretical research were required to under-
stand these data.

After establishing a protocol for measuring reproducible X-ray reflectivity from
these samples, many ancillary experiments described or mentioned in this thesis
were required for a full understanding of these measurements. In addition, several
theoretical approaches to the analysis of these data were undertaken. The earliest
analysis revealed that the monotonic potential of mean force, previously used
successfully by Guangming, underestimated the interfacial ion concentration
exhibited by the new data. Nouamane addressed this issue by adding a Gaussian
well to the potential of mean force. This led to an understanding that organic
anions (TPFB-) were forming a condensed layer at the organic/water interface
under large, positive electric potentials. It became apparent that this effect was
more than just a perturbation on the Gouy–Chapman theory of ion distributions,
and these results were published in the Journal of Chemical Physics in 2010.

In seeking a fundamental understanding of the condensed ionic layer, Nouamane
pursued several different approaches. These included the very demanding task of a
molecular dynamics simulation of the organic anion, TPFB-, at the organic/water
interface. This calculation involved the transfer of a significantly more complex ion
than had been studied previously. Ilan Benjamin supervised Nouamane in this
calculation, which involved parameter development, quantum computations, and
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improvements to the simulation methodology. The single-ion potential of mean
force for TPFB- derived from these calculations demonstrated conclusively that
ion-solvent interactions, by themselves, could not explain the X-ray data.

Nouamane then considered the effect of ion correlations. At first, he modified
and extended the so-called Steric Poisson–Boltzmann (SPB) theory by Andelman
and co-authors, which treats excluded volume correlations by considering the
effect of solvent entropy. Although a promising description of Nouamane’s X-ray
data, this thesis constitutes the first publication of this work. At about the time that
Nouamane was finishing the SPB analysis, he became very enthusiastic about the
Debye–Hückel hole theory of electrostatic correlations. A recently formulated
version of this theory, named after two mid-twentieth century scientists, is a
modern approach to ion correlations that are the result of long-range electrostatic
interactions. This is a very different approach to ion correlations than the excluded
volume approach of SPB theory; however, it could not be applied by itself for a
quantitative analysis of the X-ray data.

By combining the effects of ion-solvent interactions and ion correlations,
Nouamane realized the breakthrough required to analyze his X-ray data on ion
distributions. Nouamane showed that his data could be fit by a density functional
approach that combined his MD simulation of ion-solvent interactions with the
Debye–Hückel hole theory in a weighted density approximation. Fitting the X-ray
data required only one free parameter, the interfacial roughness, whose fitted
values agreed with those calculated from capillary wave theory. The agreement
between X-ray data and ion distribution theory confirmed the long-standing pre-
diction of a sharply localized double layer, which is a signature of ion correlation
models. Application of this new approach to the analysis of X-ray data that probes
ion distributions on the nanoscale is an important and original contribution to the
scientific literature.

The density functional approach taken by Nouamane should have broad
applicability. For example, as part of his thesis research, Nouamane applied this
approach to describe an interfacial tension measurement of the variation of
interfacial excess charge with electric potential difference. No adjustable param-
eters are required for the striking agreement of Nouamane’s measurements of
excess charge and his theoretical prediction. This last result demonstrated an
important connection between X-ray measurements that probe ion distributions on
the nanoscale and common electrochemical measurements that can be carried out
in many laboratories. A short report of Nouamane’s work on ion correlations was
published in the Proceedings of the National Academy of Sciences in 2012.

On a personal note, I would like to thank Nouamane for the many enjoyable and
exciting scientific interactions that we shared during his years working in my
laboratory.

Chicago, April 2013 Prof. Mark L. Schlossman
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Chapter 1
Introduction

The study of ion distributions near charged surfaces holds great promise for the
understanding of various biophysical processes [1–3], such as ion and electron trans-
fer across biomembranes and DNA condensation to name but a few, and finds natural
applications in the industry, most notably in energy storage in electrochemical capac-
itors [4]. The study of ion distributions is a multidisciplinary field, spanning statistical
mechanics, many-body physics, computer simulation, electrochemistry, and phys-
ical chemistry. However, the origins of this field belong to electrochemistry, when
Gouy and Chapman [5, 6], almost a century ago, tried to describe how ions are
distributed near an electrode in a system akin to an electrochemical cell, and dis-
covered the celebrated Poisson-Boltzmann equation (PB). This theory was able to
successfully describe a number of properties of electrolytes, but was found to poorly
predict the behavior of systems that are highly concentrated or near highly charged
electrodes. These shortcomings prompted a number of researchers to modify some
of the simplifying assumptions entering PB. For instance, Stern [7] introduced a
solvent layer (commonly called the Stern layer) near the charged surface from which
ions are excluded, and represents the first attempt to address solvent structure within
a theory of the electrical double layer. A milestone in the study of ion distributions
is the theory of bulk electrolytes by Debye and Hückel [8]. In their attempt to con-
struct a self-consistent theory, they linearized the PB equation, thereby introducing
a methodology to deal with screened interactions that found wide applicability in
physics, and defined properties of solutions that are still widely used in chemistry.
Debye-Hückel (DH) like theories, also constitute a class of models where ion corre-
lations can be calculated exactly. Ever since the discovery of the Poisson-Boltzmann
equation, researchers have tried to modify it to include a more realistic description
of ion interactions in solution. In addition to the electrostatic interaction, which is
the only interaction considered in the PB and DH theories, specific ion-solvent inter-
actions such as hydration are very strong and cannot be neglected. Also, interactions
due to ions having a finite size [9], which is ignored in the PB treatment, places
severe restraints on the packing and layering structures of ion distributions near
surfaces. There has been steady theoretical progress in investigating all of the above
interactions within the framework of the PB equation, as well as in more sophisticated
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2 1 Introduction

approaches. However, the measurement of the electrical double layer at an atomic
or molecular level, has only become possible in the past two decades, starting with
the x-ray standing waves measurements of the diffuse layer at a solid/liquid interface
by Bedzyk [10]. In the past decade, x-ray scattering studies have been performed
to measure ion density profiles near solid/liquid interfaces by Fenter and coworkers
using resonant x-ray reflectivity [11], near DNA molecules using small-angle x-ray
scattering by Pollack et al. [12], and at liquid/liquid interfaces by Schlossman’s group
[13–16]. These studies have revealed that the energetics of electrical double layers
are highly dependent on the chemical nature of the ions, the specific ion-solvent
interactions, and solvent structure near the charged surface. A theoretical model that
aims to describe all these specific interactions will be hopelessly complicated and
must be tailored to the problem at hand. Hence, severely limiting its applicability in
other settings, and obscuring the physical picture it should provide of the salient fea-
tures of the double layer. Fortunately, many of these specific interactions are easily
addressed in computer simulations, specifically Molecular Dynamics simulations.
Therefore, the general approach that we take in this work to interpret the experimen-
tal investigations, can be succinctly summed up as : Derive what can be derived, then
simulate the rest.

A key aspect of ion distributions that has proven difficult to describe, eluding
theoretical treatment and experimental investigation alike, is electrostatic ion cor-
relations (see [3] for an excellent review). The latter have been shown to give rise
to a number of counterintuitive results. Notorious among these is the phenomenon
of charge reversal or overcharging. First discovered using Monte Carlo simulations
(MC) of the electrical double layer (1:1 Restricted Primitive Model) by Torrie et al.
[17], it was found that at high surface charge densities and concentrations, the ions
strongly condensed on the charged plate exhibiting quasi-layering. This ionic layer
seemed to overcharge the plate, as a result of the appearance of a potential drop.
Subsequent electrophoresis experiments of colloids confirmed this result, where the
mobility of a colloid in a suspension with high ionic strength and multivalent ions
is reversed with respect to its bare charge. A succinct description of overcharging
can be given if we consider ion correlations: Gain in electrostatic free energy due to
correlations in the positions of the screening counter-ions. However this gain needs
to be large enough to counteract the loss in entropy, hence the need for strong elec-
trostatic interactions in a system. Of equal significance to the study of the electrical
double layer is the discovery of like-charge attraction between two colloids in a
suspension based on the hypernetted chain approximation by Patey [18] and even-
tually confirmed by simulations and experiments. This attraction is usually studied
in the case of planar geometry, where an analytic solution of the Poisson-Boltzmann
equation exists, for instance the attraction between two like-charged plates in a solu-
tion of counter-ions [19]. This like-charge attraction was proved to be impossible
in the framework of mean-field theories such as Poisson-Boltzmann and DLVO the-
ory (Derjaguin and Landau, Verwey and Overbeek) [20, 21]. It is widely believed
that like-charge attraction is the mechanism responsible for fundamental biophysi-
cal processes, such as the formation of actin bundles and the aggregations of DNA,
a phenomenon known as DNA condensation [22], and is responsible for the compact
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form of genes. Charge reversal and like-charge attraction demonstrated the need for
theories and models, beyond the mean-field approximation, to describe ion correla-
tions. Addressing the latter has shed much light on the stability and phase separation
of colloidal suspensions [3]. However, the role that strong ion correlations play in
DNA condensation remains an issue of contention.

In this work, the issue of describing ion correlations in charged soft matter is
addressed using experimental investigations, computer simulations, and density func-
tional theory. Synchrotron x-ray scattering reveals dense ionic condensation at the
liquid/liquid interface, when the latter is polarized with an electric field (see Chap. 3).
This observation is used as a stringent test of models of the electrical double layer.
Specifically, systematic control of the magnitude of this ionic layer, through the
interfacial electric field, allows for a detailed study of correlations as a function of
the Coulomb coupling strength in the system. A mean-field description of ion inter-
actions, the Poisson-Boltzmann equation (see Chap. 2), is incapable of predicting
physical density profiles when the ions are strongly correlated, this is demonstrated
by comparing the predictions of the Poisson-Boltzmann equation to x-ray reflectiv-
ity data, which probes the electron density profile with a molecular resolution (see
Chap. 4). A coarse-grained Poisson-Boltzmann theory based on a lattice Coulomb
gas removes the divergences of the Poisson-Boltzmann equation, and produces prop-
erties of the electrical double layer in modest agreement with thermodynamic mea-
surements of the interfacial charge (see Chap. 5). Nonetheless, significant deviations
between theory and x-ray data remain at the highest probed potentials. A density
functional theory is proposed that suggests that the observed ionic condensation
is driven by electrostatic ion correlations. The latter are described by a nonlocal
free energy functional based on the Debye-Hückel Hole theory of a one-component
plasma. Once corrected for specific ion-solvent interactions at the interface that
are mapped out using Molecular Dynamics simulations (see Chap. 6), remarkable
agreement between the predicted density profiles and the structural measurements
is found, without any adjustable parameters in the theoretical model. The proposed
density functional also produces global electrostatic properties of the double layer
in excellent agreement with the thermodynamic data (see Chap. 7).

This work provides evidence for a sharply localized electrical double layer, when
strong correlations are present, confirming a common prediction of many ion corre-
lation models. We anticipate that the results reported here, to be of relevance in other
strongly correlated soft matter systems.
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Chapter 2
The Poisson-Boltzmann Equation

In this chapter, we give a theoretical treatment of the Poisson-Boltzmann equation,
and discuss the various approximations that enter into it, setting the stage for the var-
ious theoretical extensions that are experimentally investigated in subsequent chap-
ters. We derive the PB equation from a density functional theory. In this formalism, a
free energy functional F[n(r)] is postulated, where n(r) is the inhomogeneous den-
sity, then the equations of motions are derived using a variational principle [1]. Once
F[n(r)] is known, one can solve the resultant Euler-Lagrange equations (generally
a system of differential equations) or use functional minimization, where successive
self-consistent density profiles are tested to find the equilibrium (extremum) den-
sity profile [2]. Other than its mathematical simplicity, the DFT approach shifts the
emphasis from particles and their interactions to densities. Hence, a large number
of known equations of state of fluids can be used as density functionals, and their
adequacy to describe the physics of a particular system easily determined. Moreover,
including different types of correlations is done with ease, just by adding their con-
tribution to the free energy. Needless to mention, that the difficulty in this approach
resides in finding some functional that properly describes the system under study.
Finally, the DFT formalism directly provides us with a free energy expression, from
which various physical quantities (pressure, etc ...) are easily obtained to be com-
pared with thermodynamic measurements. The Helmholtz free energy, F[n(r)] can
be minimized subject to the constraint of particle conservation, or in a system with
charged particles, the constraint of electroneutrality. Equivalently, one can use the
grand potential, �, defined by � = F − μN , where μ is the chemical potential.
Various subtleties arise in defining the grand potential as a unique functional of the
density, instead of a generalized external potential. For instance, in a system with
electrostatic interactions, the external potential is given by μ − eφ(z), where φ(z) is
the electrostatic potential. Nevertheless, once can prove that �[n] is a well-defined
functional, uniquely determined by n(r) (see [1]). Since, we are interested in study-
ing a liquid/liquid interface under the application of an electric field normal to the
interface, we assume homogeneity in the xy-plane, with the inhomogeneous density
depending only on the z-axis, then the relevant grand potential for our system is

N. Laanait, Ion Correlations at Electrified Soft Matter Interfaces, 5
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�[n(z)]/A, with A being the surface area. The Poisson-Boltzmann equation for a
v : v electrolyte that consists of ± ions in a medium with dielectric constant ε, can
be derived using a density functional as follows,

β

A
�PB[n(z)] =

∑

i=+,−

(
β

A
FPB[ni (z)] − β

∫
dzni (z)μi

)
(2.1)

where ni is the 1-particle density of ion i , μi is the chemical potential. The free energy
due to the (±) ions, F[n±(z)] consists of the entropy in the ideal gas approximation,
and the electrostatic interaction in the mean-field approximation, where the ions only
interact with the average electrostatic potential in the system,

β

A
FPB[n±(z)] =

∫
n±(z)

(
ln(�3n±(z)) − 1

)
dz ± β

2
ev

∫
n±(z)φ(z)dz (2.2)

where � is the thermal wavelength. Varying the grand potential with respect to n±(z),
we find

β

A

δ�PB[n(z)]
δn±(z′)

=
∫ {

δn±(z)

δn±(z′)
(ln(�3n±(z)) − 1) + n±(z)(

δn±(z)

δn±(z′)
1

n±(z′)
)

}
dz

± β

2
ev

{∫
δn±(z)

δn±(z′)
φ(z)dz +

∫
n±(z)

δφ(z)

δn±(z′)
dz

}
− βμ±

∫
δn±(z)

δn±(z′)
dz

(2.3)

using the identity,
δn(z)

δn(z′)
= δ(z − z′), and assuming that φ(z) obeys Poisson’s

equation, and therefore can be expressed as,

φ(z) =
∫

G(z − z′)(n+(z′) + n−(z′))dz′, (2.4)

where G(z − z′) is the Green’s function. The functional derivative of the grand
potential with respect to the density is

β

A

δ�PB[n±]
δn±

= ln(�3n±) ± βveφ(z) − βμ±

⇒ n±(z) = eβμ±

�3 e∓βveφ(z) (2.5)

In the 2nd line, we set the variation of the grand potential to zero and solved for n±.
Since, we only consider dilute solutions in this work, where the activity coefficient is
very close to 1 (see [3]), then in the mean-field approximation, the chemical potential
is given by μ± = 1/β ln(�3nb), with nb the ionic bulk density. From this expression,
we obtain the Boltzmann distribution of the ions in the electrostatic potential,

http://dx.doi.org/10.1007/978-3-319-00900-1_3
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n±(z) = nbe∓βveφ(z), (2.6)

This expression for the density distribution together with Poisson’s equation gives the
celebrated Poisson-Boltzmann equation (PB). In the application of the PB equation
to a liquid/liquid interface, the Boltzmann distribution (Eq. 2.6) is defined in each
phase from the corresponding solution concentrations defined in Chap. 3 from equi-
librium partitioning. Then the PB equation is solved across the interface numerically
subject to boundary conditions defined in Sect. 5.4. Typical density profiles from
the PB equation are illustrated in Fig. 2.1. The key characteristic of these profiles
is their monotonic decay away from the interface. Analytic density profiles can be
derived by solving the PB equation in planar geometry when the surface charge or the
potential φ(z) are defined at z = 0 (both of these cases do not apply to an electrified
liquid/liquid interface). These exact ion distributions are found to follow an inverse
power law behavior (∼ 1/z2). In Chaps. 3, 4 and 6, we will show that the PB gives
an inadequate description of the ion density profiles at electrified soft interfaces, both
qualitatively and quantitatively. This inadequacy is easily traced back to a neglect
of a myriad of interactions that an ion experiences in a physical system. In fact,
as is clear from the DFT derivation above, the PB theory describes an ideal solu-
tion where the particles interact by a Coulomb potential. The neglect of ion-solvent,
solvent-solvent, and ion-ion interactions in this mean-field model ultimately leads
to contradictions with experimental results when the latter have sufficient resolution
such as x-ray scattering techniques.

Heuristically, one can describe ion interactions “beyond ” the mean-field approx-
imation of the PB theory, by writing the ion distribution as follows,

ni (z) ∝ exp (−β(±vi eφ(z) + Wi (z)) (2.7)

Fig. 2.1 Density profiles
predicted by the poisson-
boltzmann equation
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where Wi (z) is the potential of mean force due to all the solvent particles and ions in
the system that interact with ion i , and that does not include the Coulomb interaction.
In Chap. 4, we follow this approach to quantify ion interactions in excess of the ideal
PB description of the electric double layer, by fitting Wi (z) to the x-ray reflectivity
data. In light of the comparison between PB predictions and the x-ray data, we find
that PB ion density predictions “diverge” at highly polarized liquid/liquid interfaces,
which motivates us to study steric effects in these systems (see Chap. 5) using a
modified PB equation in the mean-field approximation, [3] based on using a lattice
gas expression of the entropy instead of the ideal gas approximation used in (2.1).
Restricting the ions to a lattice gives rise to repulsive short-range attractions, causing
the density profiles to saturate in the close packing limit (∼ 1/a3

i ), where ai is the
effective ionic diameter, and are found to be given by

ni (z) ∝ exp (−β(±vi eφ(z))

1 − 2a3
i nb + 2a3

i nb cosh(zeβφ(z))
(2.8)

We find that this modified PB model may be of utility in describing the double layer
near moderately charged soft interfaces. An accurate description of ion correlations
both electrostatic and due to specific solvent correlations is obtained through a density
functional formalism presented in Chap. 7, where the density profiles derived have
the following form,

ni (z) ∝ exp
(
−β(±vi eφ(z) + f sol

i (z) + μion
i (z))

)
(2.9)

where f sol
i represents a free energy profile from the contributions of ion-solvent

interactions that we simulate using Molecular Dynamics in Chap. 6, while μion is the
excess chemical potential due to electrostatic ion correlations that is calculated using
a nonlocal density functional of the Debye-Hückel-Hole theory of a one-component
plasma [4].
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Chapter 3
Electrochemical Methods

Historically, the study of electrical double layers originated in electrochemistry. The
first double layer model (Gouy-Chapman theory) was motivated by the study of ions
near an electrode in an electrochemical cell. Initially, electrochemistry was mainly
focused on quantifying electrode processes, such as rates of reduction/oxidation,
and the behavior of charge transport at the electrolyte/electrode interface. These
early studies of electrochemical phenomena were restricted by the classical electro-
chemical measurements of current and potential, such as impedance spectroscopy
(Sect. 3.3), and cyclic voltametry (Sect. 6.1). With the advent of modern electrochem-
ical techniques, such as electroreflectance spectroscopy, electrochemists are able to
study, in detail, the electronic structure of the electrolyte/electrode interface and its
response to the electric field of the double layer, thereby complementing information
gained through classical measurements.

However, direct measurements of the distribution of ions and solvent behavior at
electrodes are out of the reach of current electrochemical methods. Although electro-
chemistry is invaluable in defining a number of important physical properties of the
double layer, such as the potential of zero charge (PZC) and the differential capac-
itance, it cannot be used to gain insight into the energetics of the double layer such
as ion adsorption and ion density profiles. For traditional electrochemical experi-
ments, being of a thermodynamic nature, are devoid of structural information, and
require additional non-thermodynamic assumptions about the microscopic behavior
of the electrolytes to describe physical interactions of ions in solution. Often, those
microscopic assumptions themselves are the subject of study in the structural mea-
surements of x-ray reflectivity, yet electrochemical data used in conjunction with
x-ray scattering studies, becomes an excellent tool to test the validity of models of
ion distributions. (see Chaps. 5 and 7).

In the next sections we introduce the experimental systems under study and the
electrochemical methods used to characterize the samples on which x-ray scattering
studies were performed (see Chap. 4).
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Fig. 3.1 Sketch of the electrochemical cell used in experiments of aqueous electrolyte/
organic electrolyte. The cell diagram: Ag|AgCl|0.1 M NaCl + 20 mM HEPES (water)
‖5 mM BTPPATPFB (DCE)|10 mM LiCl + 1 mM BTPPACl (water) |AgCl|Ag. The volume ratio
of water:DCE is 2:1. An electric field at the interface causes the formation of a double layer on both
sides of the interface

3.1 The Electrified Interface Formed by Two Immiscible
Electrolyte Solutions

In what follows, we focus on the liquid/liquid interface formed by a 100 mM aqueous
solution of NaCl including 20 mM HEPES to buffer the pH to 7.0, and a 5 mM solution
of bis(triphenyl phosphoranylidene) ammonium tetrakis(pentafluorophenyl) borate
(BTPPATPFB) in 1,2-dichloroethane (DCE), shown in Fig. 3.1. The crystal struc-
ture of BTPPATPFB is shown in Fig. 3.2 (see Appendix for atomic coordinates)
and was obtained from x-ray powder diffraction measurements (Personal commu-
nication from Prof. Petr Vanysek, Northern Illinois University, USA). This system
represents the staple of electrified liquid/liquid interfaces that we have investigated,
with other samples varying only in the aqueous electrolyte composition. Further-
more, the electrochemical procedures employed are identical. The aqueous and
organic solvents have negligible mutual solubility; the solubility of DCE in water is
0.158 %/mol [1], while the solubility of water in DCE is 1.24 %/mol [2]. When the
two electrolytes are put into contact, the aqueous ions (Na+, Cl−) and the organic
ions (BTPPA+, TPFB−) will partition across the interface, thereby slightly affect-
ing the initial bulk concentrations in both the aqueous phase (w) and the organic
phase (o). This process will take place until chemical equilibrium is reached. The
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Fig. 3.2 Crystal structure of BTPPATPFB. Structure obtained from x-ray powder diffraction.
Left TPFB−, tetrakis (pentafluorophenyl) borate. Right BTPPA+, bis(triphenyl phosphoranylidene)
ammonium

initial and equilibrated concentrations of the ionic species i are given by cw(o)
i,0 and

cw(o)
i,eq , respectively. Equilibrium between the two liquid phases necessitates the equal-

ity of the chemical potential for each ion, μo
i = μw

i , with μi defined as follows,

μi = μid
i + zi Fφ

= μ
◦
i + RT ln ci,eq + zi Fφ

whereμid
i is the chemical potential of the ideal solution given in the second line, μ

◦
i is

the standard chemical potential, zi is the valency, and F is Faraday’s constant. Using
the ideal gas chemical potential amounts to setting the ionic activity, γi , to unity.
In the case of the organic electrolyte, the concentration is low and BTPPATPFB is
not fully dissociated (see Sect. 3.3). For the aqueous electrolyte, the activity deviates
slightly from 1 [3], introducing negligible errors in the partitioned concentrations
of Na+ and Cl−. Hence, we may set γi = 1 throughout the calculation. Using the
equilibrium condition ( μo

i = μw
i ), gives the Nernst equation,

�φw
o = 1

zi F
(−�G

◦w → o
i + RT ln

co
i,eq

cw
i,eq

) (3.1)

where �φw
o = φw − φo is the inner potential difference between the two phases,

�G
◦w → o
i = μ

◦w
i −μ◦o

i is the standard Gibbs energy of transfer of ion i from the water
phase to the oil phase (DCE). This change in free energy due to ionic partitioning is
a measurable quantity. The energies of transfer of the aqueous ions, Na+ and Cl−,
are widely available in the literature, for instance, see [4] and references within. The
Gibbs energy of transfer of the organic ions (TPFB−, BTPPA+) were measured by
UV-visible spectroscopy and mass spectroscopy [5], and shown in Table 3.1.

In contrast to �G
◦w→o, the inner potential difference is not a measurable quantity

but needs to be solved for as well. Hence, if the number of species of ions is n, then
we need to determine 2n concentrations (cw

i,eq , co
i,eq ) producing 2n +1 unknowns. In

addition, we have n Nernst equations, n constraints given by the initial concentrations,



12 3 Electrochemical Methods

Table 3.1 Free energies of transfer and equilibrated ionic bulk concentrations

�G
◦w → o
i cw

i,0 co
i,0 cw

i,eq co
i,eq

(kJ/mol) (mM) (mM) (mM) (mM)

Na+ 57 ± 6a 100.0 0.0 100.0 1.4 × 10−8

Cl− 53 ± 4 100.0 0.0 100.0 3.7 × 10−8

BTPPA+ −56 ± 2 0.0 2.689 2.9 × 10−10 2.689
TPFB− −72.5 ± 6 0.0 2.689 7.4 × 10−13 2.689
aValues of aqueous ions from [4]

and a bulk electroneutrality condition in either phase,

∑

i

zi c
w
i,eq = 0,

producing a solvable system of equations. The equilibrated bulk concentrations are
shown in Table 3.1. The bulk ionic concentration of BTPPA+ and TPFB− is different
than the concentration of BTPPATPFB (=5 mM), primarily as a results of partial
dissociation, as determined in Sect. 3.3. From Table 3.1, we remark that the final
equilibrated concentrations are practically the same as the initial concentrations,
allowing us to ignore partitioning, when convenient. While, the above treatment is
exactly valid in the absence of external fields, it is approximately valid when an
external electrostatic potential is applied, and care must be taken when applying
large potentials, as discussed below.

The solutions were prepared from purified solvents. Water was produced by a
Barnstead Nanopure system and DCE was purified by multiple passings through
a column of basic alumina. NaCl in the form of powder was purchased from
Fisher Scientific and further purified by roasting to remove water and impurities.
BTPPATPFB was synthesized from BTPPACl (Aldrich) and LiTPFB (Boulder Sci-
entific) as described in [5, 6]. To allow for the two electrolytes to saturate and reach
equilibrium, the two phases are put in contact in a beaker and rocked for ten hours;
this allows for diffusion processes and ion partitioning to take place. The solutions
are then extracted separately and put in the sample cell, see Fig. 3.1. We found that
saturation of the phases is crucial to producing a structurally stable liquid/liquid
interface when probed by x-ray scattering.

The electrolyte solutions are hosted in a glass electrochemical cell shown in
Fig. 3.1, where the liquid/liquid interface has a diameter of 7 cm. An electric field is
applied at the interface using the four-electrode potentiostat method, where a current
is forced through the counter electrodes (CE1,2) made from a platinum mesh with area
9 cm2 and the potential is monitored at the reference electrodes (RE1,2). The desired
applied potential is obtained by the potientiostat through a feedback loop, between the
current collected at CE1,2 and the potential at RE1,2. Ag/AgCl reference electrodes
are inserted into Luggin capillaries that terminate within 4 mm of the interface. Being
in close proximity to the interface and with negligible current passing through them
(i.e. in chemical equilibrium), the reference electrodes enable very accurate and
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Fig. 3.3 Cyclic Voltammetry plot for the 100 mM NaCl (water)/5 mM BTPPATPFB (DCE) system.
The potential is scanned at a rate of 10 mV/s, while collecting the current. The circles indicate the
onset of ion transfer across the interface (see text). The measurement reveals a polarization window
in the range of �φw-o

cell ≈ 0.05–0.65 V

stable monitoring of the applied potential at the interface. The Luggin capillary
on the DCE side contains a solution of 10 mM LiCl + 1 mM BTPPACl, with LiCl
added to compensate for the low ionic conductivity of the organic salt BTPPACl. The
electric field at the water/DCE interface causes the ions to form back-to-back double
layers at the interface. The structure of the double layer is controlled by tuning the
amplitude of the electric field and is then probed by x-ray reflectivity measurements
(see Chap. 4).

We conduct cyclic voltammetry measurements (CV) to find the system’s polariza-
tion window. This determines the range of interfacial potentials where the interface
is ideally polarizable, i.e the system is at equilibrium in the absence of irreversible
transfer of ions across the interface. Cyclic voltammetry is the most widely used elec-
trochemical technique and can be employed to measure ion diffusion coefficients,
free energies of transfer and a host of other properties [7]. CV measurements are
performed by linearly sweeping the applied potential in the forward direction shown
by open arrows in Fig. 3.3), �φw-o

cell = φRE2 − φRE1 at a scan rate of 10 mV/s, up
to some maximum potential value �φw-o

cell = 0.65 V, while recording the current.
Then, reversing the sweep (closed arrows in Fig. 3.3) and reducing the potential
to a minimum value �φw-o

cell = 0.05 V, and then back to its starting value. This is
done for a few cycles to ensure reproducibility of the sample’s response to the elec-
tric field, and as a test for cleanliness, as shown in Fig. 3.3. The extrema of �φw-o

cell
are carefully chosen to be bounded by the Gibbs energies of transfer of the ions
(Table 3.1) in the system to avoid transferring ions across the interface. In fact, if
the scan was extended further, a well-defined and symmetric current peaks would
show up in the CV curve at a potential value given by 1

zF �Gw → o. Note that we have

http://dx.doi.org/10.1007/978-3-319-00900-1_4
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omitted the standard symbol, since a reference state needs to be chosen, (requiring an
extra-thermodynamic assumption) before this potential can be interpreted as a stan-
dard free energy of transfer [7]. Also a knowledge of the �G

◦w→o
i for the other

electrolyte is necessary.
As seen in Fig. 3.3, for �φw-o

cell > 0.5 V, a positive current starts to flow due to
double layer charging, that is enhancement of TPFB− on the DCE side and Na+
on the water side. There is also a contribution of the current from a small amount
of ion transfer across the interface. As one approaches �φw-o

cell ≈ 0.65 V, there is a
significant increase in the positive current indicating the onset of ion transfer (solid
circle in Fig. 3.3), that is TPFB− to the water side and Na+ to DCE side. This
indicates that potentials higher than 0.65 V should not be applied in order to avoid
large current flow. In fact, the magnitude of the current is proportional to the sweep
rate, which is greatly reduced during the reflectivity measurements compared to that
used during CV, leading to a system in a steady-state of equilibrium with minimal
current (�5 µA). For instance, after applying a potential (within the polarization
window) the current is high initially, but then drops and reaches a steady-state value,
as shown in Fig. 3.4. Similarly, we determined that potentials lower than 0.05 V
should not be applied due to transfer of BTPPA+ to the water phase and Cl− to the
DCE phase (dashed circle in Fig. 3.3). The polarization window is roughly estimated
from a CV measurement. During x-ray experiments, the system is subject to an
applied potential for much longer times than during CV measurements, on the order
of minutes or hours. Hence, the polarization window obtained from CV is further
verified by checking the reproducibility of the x-ray intensity as a function of �φw-o

and as a function of time as discussed in Chap. 4.
The cyclic voltammetry curve of a reversible and stable system should exhibit the

following properties, discussed in [8]:

• The current peak position does not change as a function of potential sweep rate.

820 840 860 880 900 920 940 960

0

10

I [
A

]

Time (s)

Fig. 3.4 Plot of the current as a function of time during the application of an electrostatic potential

http://dx.doi.org/10.1007/978-3-319-00900-1_4
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Fig. 3.5 Varying the potential sweep rate of the CV data for the 100 mM NaCl (water)/5 mM
BTPPATPFB (DCE) system. The potential is scanned at two different rates of 5 and 1 mV/s. The
plots exhibit the properties of a stable, reversible system

• The peak current magnitude, I1 and I2, taken at two different potential sweep rates,
ν1 and ν2, should obey:

I1

I2
=

√
ν1

ν2

This equation can be derived by assuming that cw(o)
i obey the Fick diffusion

equation,

Dw(o)
i

∂2cw(o)
i (z, t)

∂z2 = ∂cw(o)
i (z, t)

∂t
,

where Dw(o)
i represents the diffusion constant of ion i, z is the interfacial normal

and t is the time variable. The boundary conditions are consistently determined
by Eq. (3.1).

In Fig. 3.5, the CV data of the 100 mM NaCl (H2O)/5 mM BTPPATPFB (DCE) is
shown, using two different potential sweep rates, 5 and 1 mV/s. As mentioned the cur-

rent peak position is independent of the sweep rate. Furthermore,
I1

I2
= 1.74 is in fair

agreement with
√
ν1

ν2
= 2.24, which indicates that the overall electrolyte/electrolyte

system is stable and reversible.
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3.2 The Potential of Zero Charge

The interfacial potential �φw-o is distinct from the applied potential �φw-o
cell . Since,

we expect that at �φw-o = 0 V, minimal current should be present (i.e. no sur-
face excess charge on either side of the interface), this is seen by close inspection
of Fig. 3.3 to be the case when �φw-o ≈ 0.35 V. Hence, a determination of the
“zero” of the interfacial potential is needed. We define the interfacial potential as
�φw-o = �φw-o

cell − �φw-o
PZC, where the last term is called the potential of zero charge

(PZC). In subsequent chapters, we abbreviate our notation, denoting the interfacial
potential by �φ only. The fact that the value of this potential is nonzero, should
not come as a surprise, since the potential we measure, �φw-o

cell , is across the entire
electrochemical cell, not just the liquid/liquid interface. Hence, to properly account
for the electrostatic potential that the ions “feel” at the interface when polarized, we
need to determine a value of �φw-o

PZC. This will be eventually used in our description
of the ions’ energetics. One method of finding the PZC is accomplished by its ther-
modynamic relation to the interfacial tension, a property that is easily measurable.
Before we present these measurements, a brief digression into the thermodynamics
of surfaces is necessary.

Since thermodynamic quantities are defined and determined in the bulk with-
out structural assumptions, a strict application of the thermodynamic method-
ology necessitates that quantities related to the surface or interface are to be
defined as excess values over those of the bulk. This is the approach originated by
Gibbs [9, 10].

Consider two semi-infinite phases α and β in contact over a planar area A, as in
Fig. 3.6. For instance,α andβ could represent two immiscible liquids or a liquid phase
in contact with a gas phase. In the canonical ensemble, the bulk phases are completely

α

β

Tα , Vα , Nα

Tβ ,V β ,N β

Interface with 
area  A

Fs = F − Fα − Fβ

Fig. 3.6 Illustration of the thermodynamic procedure to define surface excess properties
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determined by their values of temperature, volume, and number of particles. We
define the total volume of the system by V = Vα+Vβ this choice depends on a choice
of a mathematical surface, termed the Gibbs dividing surface (GDS). However, this
choice is arbitrary as any surface with the “correct” normal vector would do. Hence,
we pick a GDS so that

∑
i μ

i N i
s = 0, where N i

s is the number of particles at the
interface. The appropriate thermodynamic function is the Helmholtz free energy F ,
given below for each bulk phase:

Fα = −pVα +
∑

i

μi N i
α, Fβ = −pVβ +

∑

i

μi N i
β (3.2)

i is summed over all particle species present in the bulk phases. The total free energy
F of the system cannot simply be the sum of the bulk contributions:

Fα + Fβ = −pV +
∑

i

μi N i . (3.3)

since the quantity in (3.3) does not depend on all the extensive variables of the system:
V, N , and A. This excess free energy Fs(A), is interpreted as the free energy of the
interface. The total free energy of the system is given by:

F = Fα + Fβ + Fs(A) (3.4)

= −pV +
∑

i

μi N i + γA (3.5)

where γ is the energy cost to create a surface with area A under the conditions of
isothermal, reversible work. We identify it with the interfacial tension. Numerous
methods exist to measure this work. We employ the Wilhelmy plate method [11],
where a plate is put in wetting contact with the interface. The interfacial tension,
then is the force per length required to pull the plate out of the liquid, (note that this
force only has a tangential component, as needed to properly identify it with the
interfacial tension “force”). The teflon plate is attached to a Cahn microbalance, that
measures the force per length.

The surface free energy per unit area at an interface formed between two elec-
trolyte solutions, as a result of charging of the interface, is

d F = γ + σd(�φw-o
cell ) (3.6)

where σ is the surface excess charge per unit area. At equilibrium (constant tem-
perature and chemical equilibrium) ∂F/∂�φw-o

cell = 0, and we have the Lippmann
equation:

σ = −
(

∂γ

∂�φw-o
cell

)

T,V,μ

. (3.7)
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Fig. 3.7 Potential-dependent tension data of the 100 mM NaCl (aqueous)/5 mM BTPPATPFB sys-
tem. Tension measurements taken using the Wilhelmy plate method, as a function of �φw-o

cell to
determine the potential of zero charge

Due to the large cross-sectional area of the cell, and those of the electrodes, small
current densities are generated, smaller than a few tens of µA/cm2. These current
densities, generate insignificant Joule heating, justifying the constant temperature
assumption. Furthermore, prior saturation of the two liquid phases as discussed ear-
lier, guarantees that the chemical potential, most importantly μions , is constant.

The Lippmann equation allows us to determine the surface excess charge from
potential-dependent tension measurements. Figure 3.7 shows tension data taken on
the 100 mM NaCl (aqueous)/5 mM BTPPATPFB system as a function of applied
potential, which is equal to the potential of zero charge, when γ(φ) is maximum.
The data is fitted against a polynomial of even powers of φ (up to φ4), producing
�φw-o

PZC = 318 ± 3 mV. The latter is in good agreement with our estimate from the
CV measurements.

In addition to determining the PZC, measurements of the surface excess charge
provide an excellent tool to probe the accuracy of theories of the double layer.
However, before we undertake such studies, we need to address the bulk behavior
of ions.

3.3 Conductivity Measurements of the Dissociation
of BTPPATPFB

Due to the low permittivity of 1,2-Dichloroethane (ε = 10.43), it is expected that
BTPPATPFB would not fully dissociate into its ionic constituents. A rudimentary
explanation of this fact is easily given in terms of a crude solvation picture. Suppose
that we have an electrolyte with fully dissociated monovalent ions (e.g. Na+, Cl−)
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in a polar solvent such as water (ε = 78.95) with a Bjerrum length lB ≈ 7 Å, at
room temperature. Henceforth, for a separation r � 7 Å, the ions Na+ and Cl− are
quite stable as a dissociated compound due to thermal fluctuations in the electrolyte.
Furthermore, the ion–dipole interaction energy (μe/r2ε) for a highly polar molecule
such as water (μ = 1.85 D) at molecular separation, is on the order of kT ; leading to
a further stabilization of the ion by solvation. DCE with a lB ≈ 55 Å, would cause
BTPPA+ and TPFB− to be unstable due to the strength of their Coulomb attrac-
tion and the negligible ion–solvent dipole interaction. Thereby, a significant fraction
would associate into the compound BTPPATPFB. Evidently, this crude picture omits
a number of important physical effects such as the dependence of screening on the
ionic concentration and specific solute–solvent interactions to be of any quantitative
use. However, the above considerations demonstrate the necessity to measure the
degree of dissociation of BTPPATPFB in 1,2-Dichloroethane.

We determine the degree of dissociation by performing solution conductivity
measurements. Although, modern techniques such as IR Raman spectroscopy [12] or
NMR [13] are nowadays routinely employed to measure the dissociation constant in a
number of biological and chemical settings, where the complexity of the latter, makes
the interpretation of the conductivity data difficult. For the purpose of measuring the
dissociation of electrolytes, conductivity measurements remain an accurate method,
simple in both its data interpretation and experimental setup.

The experimental apparatus consists of an electrochemical cell resembling the
one portrayed in Fig. 3.8 with solid platinum plates immersed in an organic solution

~

Impedance
Analyzer

l

+
A

−

Platinum Electrodes

Solution level

Glass cell

Fig. 3.8 Illustration of the experimental setup of solution conductivity measuruments (not drawn
to scale). A glass cell hosts an organic solution of BTPPATPFB, in contact with two solid electrodes
separated by a distance l. A is the area of the electrodes exposed to the solution. Under bias, the
ions migrate to the electrodes inducing a current. The conductivity is determined from the measured
impedance
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Fig. 3.9 Extracting solution Resistance from Impedance data. The oval box in the inset shows the
range of frequencies over which the current and the potential are in phase, corresponding to |Z |
equivalent to solution resistance

of BTPPATPFB at some concentration c. The electrodes were rinsed with deionized
water prior to each measurement and the cell was kept in a thermostatic bath. An AC
voltage on the order of 10 mV is applied at the electrodes, resulting in an electric cur-
rent due to transfer of charged ionic species. The response of the system is collected
and processed by an impedance analyzer (Solartron 1255+1286). A large frequency
range was used (1 Hz–1000 kHz), obtaining a plot of |Z | versus Frequency as shown
in Fig. 3.9, where Z is the impedance. When the phase shift θ between V and I is
close to zero, |Z | is essentially the cell resistance R, assuming Ohmic behavior. We
determine R from the data by averaging over |Z | in the relevant frequency range.

The electrolyte solution was prepared from purified DCE that was equilibrated
with 100 mM NaCl aqueous solution as described in Sect. 6.1. A stock organic solu-
tion at a concentration of 100 mM is initially prepared from which solutions at other
concentrations were obtained by dilution, see Table 3.2. The impedance was mea-
sured at each of these concentrations, from which the solution resistance is deduced
as discussed. The solution conductance G, is the reciprocal of the resistance. To find
the conductivity of the solution σ, the cell geometry as shown in Fig. 3.8, needs to
be accounted for:

σ = G
l

A
,

where l is the distance between the two electrodes and A is their cross-sectional
area in contact with the solution. l/A is called the cell constant and is not easily
determined from an accurate measurement of the cell’s dimensions. Customarily,
the cell constant is found through calibration. In our experiment, l/A is determined
by calibration against a standard 0.01 M aqueous solution of potassium chloride,
whose conductivity is known (1.413 mS/cm). Measuring the calibration solution
conductance yields a cell constant of 8.81 × 10−3cm−1. The experimental quantity

http://dx.doi.org/10.1007/978-3-319-00900-1_6


3.3 Conductivity Measurements of the Dissociation of BTPPATPFB 21

Table 3.2 degree of dissociation of BTPPATPFB at various concentrations in 1,2-dichloroethane
from solution conductivity measurements

c, mol/cm3 G, Siemens �, S · cm2/mol θ, %
(±4 × 10−8)a (±2 × 10−2) (±1)

2.00 × 10−9 6.35 × 10−7 2.80 99.15
5.00 × 10−9 1.59 × 10−6 2.79 98.96
5.00 × 10−8 1.50 × 10−5 2.64 94.50
1.00 × 10−7 3.02 × 10−5 2.66 95.77
2.00 × 10−7 5.82 × 10−5 2.56 92.86
5.00 × 10−7 1.28 × 10−4 2.25 82.68
1.00 × 10−6 2.01 × 10−4 1.78 66.09
2.00 × 10−6 3.65 × 10−4 1.61 60.82
5.00 × 10−6 7.85 × 10−4 1.38 53.79
1.00 × 10−5 1.44 × 10−3 1.26 50.84
2.00 × 10−5 2.58 × 10−3 1.14 48.16
5.00 × 10−5 5.63 × 10−3 0.99 45.51
1.00 × 10−4 9.28 × 10−3 0.82 40.64
aOnly the largest error is quoted. The source of the uncertainty are fluctuations in the measured
impedance

that is accessible theoretically is the equivalent conductance, � = σ

c
, when defined

in units of S · cm2 · mol−1.
Deriving an expression of � from a theory of electrolytes, that agrees with experi-

mental data, was one of the most studied problems in the early years of investigating
electrolytes, with contributions from a number of illustrious physicists including
Debye and Onsager. To properly describe electrolytic conductance, one needs to
consider not only the electrostatic interaction but also hydrodynamics due to the
mobility of the charges as well as local gradients in the osmotic pressure and viscos-
ity. For a thorough treatment (and a compelling historical perspective), the interested
reader is referred to the book by Fuoss [14], one of the early contributors to the
subject. An expression for the equivalent conductance is needed to interpret the data.
We use the expression due to Fuoss and Onsager [15], which improved over the
Debye-Huckel conductance by considering the above mentioned effects, in addition
to electrostatic interactions

� = �0 − S
√

c + E c log c + J c (3.8)

where �0 is the limiting equivalent conductance, S and E are constants that depend
on �0, the solvent’s permittivity, and viscosity. While J is also a constant, a function
of the ion size, which are modeled as spheres.

Equation 3.8 is fitted against the data as shown in Fig. 3.10. Reasonable agree-
ment is obtained over the entire range of concentrations. In the limit of infinite
dilution, the Fuoss-Onsager equation does not seem to follow the data trend, giving
�0 = 2.93 ± 0.03 S · cm2/mol. Since, we are only interested in �0 to calculate the
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Fig. 3.10 Determining the limiting equivalent conductance

degree of dissociation at a specific concentration c = 5 mM, an accurate�0 is needed.
Due to the somewhat monotonic trend of � in the range of c ≤ 10−8mol · cm−3,
we expect that the limiting conductance could be extrapolated from measured val-
ues. We performed a spline interpolation on the data, shown in Fig. 3.10, producing
�0 = 2.83 S · cm2/mol. Given the latter, the degree of dissociation could be deter-
mined from the Shedlovsky equation [16],

� = θ�0 − α(�/�0)(c θ)
1/2, (3.9)

α = 8.2 × 105�0/(ε T )3/2 + 82/η(ε T )1/2

whereα is the Onsager coefficient, η is the viscosity of DCE (=8.87 × 10−3 Pa · s), ε
is the permittivity of DCE (=10.43), and T is the absolute temperature. The degree of
dissociation of BTPPATPFB in 1,2-Dichloroethane is calculated from (3.9) and tab-
ulated in Table 3.2. Note that using �0 = 2.93±0.03 S·cm2/mol gives a dissociation
that is less than 1 % different than the values listed in the table.

We conclude that 53.79 % (±1 %, the uncertainty arises from fluctuations in the
measured impedance) of BTPPATPFB is dissociated in the system we study, resulting
in an ionic bulk concentration about half that of the initial bulk BTPPATPFB con-
centration. This charge carrier concentration is the meaningful quantity that enters
electrostatic models used to predict the ion density profiles.
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Chapter 4
X-ray Reflectivity Studies of Ion Condensation
at the Electrified Liquid/Liquid Interface

X-ray reflectivity (XR) is a powerful tool to probe the atomic structure of surfaces and
interfaces. Due to the weak interaction of x-rays with matter, XR measurements are
most suitable to study the interfacial structure of systems in their natural settings, i.e.
in situ, specifically in extreme physical or chemical conditions, and when the interface
is inaccessible to microscopy, as in buried interfaces. The study of liquid surfaces by
synchrotron x-ray scattering was pioneered by Pershan, Als-Nielsen and coworkers
in the early eighties [1], and was put on a firm theoretical footing with significant
contribution from Pershan’s group [2–4], as well as S. Sinha and coworkers [5],
leading to the understanding that x-ray reflectivity probes gradients in the electron
density in conjunction with the interface’s long wavelength fluctuations. For further
details on the subject, we refer the reader to the numerous reviews of XR applied to
liquid surfaces [6, 7]. The first XR studies of water/oil interfaces were performed by
M. Schlossman and coworkers, specifically water/alkane interfaces [8], where it was
found that the structure of the interface is approximated by capillary wave theory [9],
though an intrinsic interfacial structure that varies with the type of organic solvent
is needed to account for the observed interfacial width (for a review see [10, 11]).
Subsequent XR studies of water/polar oil interfaces focused on ion distributions near
the water/nitrobenzene interface, where the interfacial potential was controlled by
partitioning of a ion common to both phases [12, 13]. These studies showed that
the electrical double layer energetics is greatly influenced by the interfacial liquid
structure. Recently, we have shown using XR that ionic condensation takes place at
a liquid/liquid interface under the application of an electric field [14]. These results
are the focus of this chapter.

In Sect. 4.1, we briefly discuss experimental details pertinent to measurements
of reflectivity from the electrified liquid/liquid interface. Procedures to analyze the
x-ray data are presented in Sect. 4.2. We conclude with some remarks.

N. Laanait, Ion Correlations at Electrified Soft Matter Interfaces, 25
Springer Theses, DOI: 10.1007/978-3-319-00900-1_4,
© Springer International Publishing Switzerland 2013
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4.1 Experimental Procedure

X-rays interact very weakly with matter by virtue of the Thomson cross-section
(σs ≈ 10−9 Å2 per electron). This is further accentuated at liquid interfaces where
the number density is small, resulting typically in scattering events of 1 photon
per 1010 incident photons. This weak interaction requires the use of very strong
x-ray sources such as synchrotron storage rings. Hence, all of the x-ray experiments
reported in this work have been done at the Advanced Photon Source (Argonne
National Laboratory), a third generation synchrotron. Due to this weak scattering,
x-ray reflectivity can be treated in a kinematical approximation where multiple scat-
tering events are neglected. This is an excellent approximation for XR from liquid
surfaces when conditions are far from the critical angle of total external reflection.
In elastic scattering, the most relevant variable is the momentum transfer variable,
Q, defined by

Q = kout − kin

where kout is the wavevector of the outgoing beam and kin is the wavevector of the
incident beam. If we are only interested in reflection in the specular condition, i.e the
incident angle α is equal to outgoing angle, then the only non-vanishing component
of the scattering vector Q is the component normal to the interface, as shown in
Fig. 4.1, and given by

Qz = 4π

λ
sinα

where λ is the beam’s wavelength. The wavelength is related to the energy by hc/E ,
where h is Planck’s constant and c is the speed of light. The energy of the x-ray beam

Fig. 4.1 X-ray kinematics
and sample cell
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we use is determined by the characteristics of the sample studied. In our studies, as
illustrated in Fig. 4.1, the x-ray beam needs to travel through a thick phase of water
before reaching the interface, hence attenuation in the incident beam’s intensity is
unavoidable due to absorption. The absorption cross section is related to the energy
through, σa ∝ 1/E3, which is valid far from an absorption edge. Therefore, it is
beneficial to have as high an energy as possible. The beamline where experiments
were performed, Sector 15 (ChemMatCars, University of Chicago), permitted us to
reach a beam energy of 30 keV while keeping a high-flux, well-focused beam. All
specular reflectivity data presented in this work was then performed at a wavelength
λ = 0.41255 ± 0.00005Å.

In what follows, we consider an ideal flat surface (shown in Fig. 4.2), characterized
by a step-function electron density profile ρ(z), and study the dependence of its
reflectivity on the momentum transfer Qz , and the critical momentum transfer Qc.
For x-rays, Qc = 4

√
π�ρre, where �ρ = ρ2−ρ1 the difference in electron densities

of the bulk phases, and re is the Thomson scattering length, neglecting anomalous
dispersion corrections. In the region of Qz � Qc, the reflectivity is given by the
Fresnel reflectivity from classical electromagnetic theory,

RF(Qz) ∼
(

Qc

2Qz

)4

Since RF(Qz) falls fast with Qz , this limits the spatial resolution � accessible in
a reflectivity measurement [15]. For instance, the water/DCE system has Qc ≈
8 × 10−3 Å

−1
, so to resolve molecular structure (� = 1 nm), XR data needs to be

measured up to Qzmax ≈ π/� = 0.3 Å
−1

. When Qz > 0.3 Å
−1

, bulk scattering
overwhelms the specular signal and the reflected intensity drops to less than 10−11.

Liquid interfaces are not ideal, with an electron density profile that varies smoothly
with depth. Hence the reflectivity from the latter is not given by Fresnel reflectivity,
but in the kinematic approximation (still assuming a flat surface) can be expressed as,

R(Qz)/RF(Qz) ≈ 1

�ρ
|F̂{dρ(z)/dz, Qz}|2

Fig. 4.2 Illustration of an
ideal interface
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where F̂{., .} represents the Fourier transform. This shows that XR is very
sensitive to the interfacial normal inhomogeneous density profile of the electrical dou-
ble layer. And this sensitivity can be tuned by progressive polarization of the interface,
which leads to variations in the gradient of the electron density. However, XR only
gives information that is averaged over the xy-plane and must be supplemented with
in-plane scattering to probe 2d ordering. We note that we have been unsuccessful in
our attempts to measure in-plane scattering at these electrified liquid/liquid interface,
as a result of the strong scattering from the bulk liquid phases.

Measurements of the reflectivity were done using a liquid surface reflectometer
at sector 15 [16]. The reflectometer consists mainly of a steering crystal to bring the
beam to the sample, ion chambers to monitor the beam intensity, slits to define the
beam cross-section and a sample stage where the sample resides. After the sample
stage, a detector is set up to record the reflected the signal. A thorough descrip-
tion of the measurement procedures (detector scan, sample height scan, geometric
alignment, data processing) have been discussed in detail elsewhere and will not be
addressed here [17]. Here, we mainly sketch the procedure to measure the reflec-
tivity as a function of potential. First, we need a flat liquid/liquid interface. This is
accomplished by pinning the interface to the top of a Teflon strip, where the lat-
ter is pressed to the inner glass wall of the sample cell by a strip of stainless steel
shim stock. The interface is flattened by adjusting the volume of DCE phase. After
acceptable sample height scans are produced, the Q-space geometry is defined. The
reflectometer is moved into a specific Qz point at which a series of electrostatic
potentials are measured within the polarization window measured electrochemically
(see Chap. 3). During the experiment, the current is monitored, while the open circuit
potential reflectivity data is used as a reference measurement to insure that the sys-
tem is completely reversible to polarization. This same procedure is then repeated
at a different Qz . The procedure to apply the potential is as follows: starting from
some applied potential �φ1

cell usually chosen to be the open circuit potential, the
potential is ramped up to the desired �φ2

cell using a rate of a few mV/s. Once �φ2
cell

is reached, the system’s current is allowed to equilibrate, reaching a constant value
typically less than 1 µA. Afterwards, the data collection begins. This procedure of
measuring reflectivity ensures that the data is reproducible, as confirmed for each
data set on a different but identically prepared sample.

4.2 Data Analysis

Due to the limited Qz range measurable at the liquid/liquid interface, standard
routine analyses based on fitting of the electron density (model-dependent, model-
independent, Patterson function, etc ...) would not provide us with as much informa-
tion as direct comparison to some theoretical method. In addition, since reflectivity is
not sensitive to the individual ions only to the overall electron density, the previously
mentioned analyses would not produce ion distributions from which we can properly
investigate the physics of the electrical double layer. Hence, we choose to directly

http://dx.doi.org/10.1007/978-3-319-00900-1_3
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compare the predictions of electrical double layer models to the data by calculating
ion distributions from the models and converting them to an electron density profile
from which the reflectivity can be readily obtained using the Paratt method [18]. This
methodology was used by Luo et al. in [12, 13].

Fitting to the data involves calculating the electron density ρ(z) and R/RF from
the ion concentration profiles ci (z), using the method described in [12]. The first step
in this method is to define an intrinsic electron density profile, where the solvents
are assumed to be homogeneously distributed,

ρint
solvent(z) =

{
ρw, z > 0,

ρo, z < 0,
(4.1)

with the following electron densities for water: ρw = 0.33 e−/Å
3
, and DCE: ρo =

0.38 e−/Å
3
. The electron density of the double layer is accounted for by smearing the

charge of an ion throughout its volume using a Gaussian function, for this purpose the
ions were modeled as spheres of diameter 1.95 Å for Na+, 3.66 Å for Cl−, 11.0 Å for
BTPPA+, and 10.0 Å for TPFB−, where the latter were calculated from the crystal
structure of BTPPATPFB. At some potential �φ, a theoretical model (see main text)
is used to predict a density profile ni (z) of each ion i present in the system, the overall
intrinsic electron density is given by,

ρint (z) = ρint
solvent(z) +

∑

i

(
n̄i (z)N e

i − n̄i (z)Viρ
int
solvent(z)

)
(4.2)

where the sum is over the ion types, n̄i (z) is the size-smeared density profile of ion
i , N e

i is the number of electrons of ion i . While the first term in the sum counts
the contribution of the ion densities to the electron density profile, the last term
subtracts the solvent electron density within the ionic volume Vi to eliminate over
counting of the solvent’s electron density. The intrinsic electron density ρint (z) is not
directly measurable by reflectivity. Due to interfacial thermal fluctuations, reflectivity
measures fluctuations superposed on the intrinsic electron density profile given in
(4.2). Hence, the relevant electron density profile averaged over the xy-plane is
given by

〈ρ(z)〉xy =
(
ρint � f

)
(z) (4.3)

where � is the convolution operation, and f is the probability density function
assigned to the interfacial fluctuations. A useful model to describe interfacial fluctu-
ations is capillary wave theory, which describes the latter as density fluctuations that
are driven by thermal fluctuations and opposed by surface tension and gravity. This
model provides a useful connection between the interfacial tension and rms value of
height fluctuations (hxy) or interfacial width, σcap
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σ2
cap(φ) ≡ 〈h2

xy〉 = kB T

2πγ(φ)
ln

Qmax
xy

Qmin
xy

(4.4)

where γ(φ) is the potential-dependent interfacial tension (see Chap. 3), Qmax repre-
sents the maximum wavevector above which a continuum description of fluctuations

breaks down (taken to be π/10 Å
−1

) and Qmin is the in-plane experimental resolu-

tion (≈10−4Å
−1

). The probability density function of the capillary wave model is
given by the normal distribution N (zo,σ) whose variance is determined by (4.4).
Therefore in (4.3), we use

f = N (0,σcap(φ)) (4.5)

Due to the dependence of the interfacial width and the ion distributions on the elec-
trostatic potential, the procedure to define ρ(z) is done at each potential. The x-ray
reflectivity is calculated by Parratt’s method [19], where the electron density profile is
divided up into very small segments along the interfacial normal. The reflection and
transmission coefficients can then be exactly calculated in each segment (including
the effects of absorption) and the reflectivity is then obtained over the entire domain
of electron density variation [17]. Fits of R/RF to predictions of GC model (Fig. 4.3)
used only the interfacial roughness (fitted values are listed in Table 4.1) and a Qz

offset ( 10−4Å−1, a typical misalignment of the reflectometer) as fitting parame-
ters. These fits agree with the data at small �φ (−0.12 to 0.18 V), but at larger �φ
(0.28 and 0.33 V), R/RF is greatly overestimated primarily because Gouy-Chapman
theory predicts large TPFB− ion concentrations near the interface, which provides
the dominant x-ray contrast.

As discussed in Chap. 2, one can include the contributions of interactions omitted
in the Poisson-Boltzmann theory by approximating the energy of ion i that enters

Fig. 4.3 Gouy-Chapman
predictions of R/RF
compared to the data at
various potentials
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Table 4.1 The potential dependent interfacial roughness of the 100 mM NaCl system: capillary
wave theory and fits to the x-ray data

Capillary wave GCa (±0.20 Å) PMF I (±0.20 Å) PMF II (±0.20 Å)
theory (Å)

�φ = 0.33 V 5.06 5.06 4.83 4.32
�φ = 0.28 V 4.83 4.83 4.73 4.34
�φ = 0.18 V 4.69 4.03 5.10 4.74
�φ = 0.08 V 4.51 4.22 5.17 5.08
�φ = −0.02 V 4.45 4.27 4.98 4.91
�φ = −0.12 V 4.45 3.84 4.78 4.83
aRoughness at �φ = 0.33, 0.28 V is not fitted for the GC model

the Boltzmann factor by Ei (z) ≈ eiφ(z) + Wi (z), where Wi (z) is the potential of
mean force (PMF) for each ion i . The resultant equation is

d2φ(z)

dz2 = − 1

εoε

∑

i

ei n
b
i exp[−β(eiφ(z) + Wi (z))], (4.6)

Since ion–ion correlations are negligible for monovalent aqueous ions, we have
chosen to determine the PMF of Na+ from a molecular dynamics (MD) simulation
for a single ion (see Sect. 6.2). The PMF of Cl− was taken from an MD simulation in
the literature [20]. Figure 4.4 illustrates the monotonic variation of Wi (z) for Na+ and
Cl−. Due to the computational difficulties of simulating Wi (z) for large molecular
ions such as BTPPA+ and TPFB− (see Sect. 6.3), we used a phenomenological PMF
previously introduced in [12, 13],
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Fig. 4.4 Potentials of mean force for BTPPA+ (black) and TPFB−. W I
TPFB− :red, W I I

TPFB− :blue,
determined by fitting the reflectivity data in Fig. 4.5. PMFs for Na+ (green dots) and Cl− (circles)
were calculated by MD simulations (see text)
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http://dx.doi.org/10.1007/978-3-319-00900-1_6
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Wi (z) = (Wi (0) − W p
i )

erfc
(|z| − δ

p
i /L p

i

)

erfc
(−δ p

i /L p
i

) + W p
i , (4.7)

where p(= w, o) refers to either the water phase (z ≥ 0) or the oil phase (DCE,
z ≤ 0), W o

i − W w
i is the Gibbs energy of transfer of ion i from water to oil, δ p

i is
an offset to ensure continuity of Wi (z) at z = 0, and L p

i characterizes the decay
of Wi (z = 0) to its bulk values W w

i and W o
i . We used this monotonic PMF for

BTPPA+, but had to modify it for TPFB−, as described below. Since W o
i − W w

i for
BTPPA+ is known (Table 3.1), the PMF of BTPPA+ is characterized by 3 parameters:
Lw

BTPPA+ , Lo
BTPPA+ , WBTPPA+(0) listed in Table 4.2. We determine the latter by fitting

to R/RF data at �φ = −0.12 V where it is expected that the BTPPA+ interfacial
concentration is enhanced. The large error bars on the PMF of BTPPA+ are due
to the small magnitude of the most negative �φw−o that we studied. Moreover, the
x-ray contrast of BTPPA+ is not much different than DCE, ρBT P P A+ = 0.39 e−/Å3,
further limiting precise determination of the parameters. The PMF fitting routine is
described in detail in [21]. Briefly, parameters to define Wi (z) are chosen from
some parameter intervals, then the PB-PMF equation (4.6) is numerically solved,
the reflectivity is computed from the predicted ion distributions as described earlier,
and the reflectivity curve is compared to the data by calculating the χ2 value, which
measures the quality of a fit given uncertainties in the data. This procedure is then
repeated to scan the entire parameter space to locate Wi (z) with the minimum χ2.

The x-ray reflectivity at the two highest positive potentials cannot be fit if (4.7) is
used to model the PMF for TPFB−. The simplest model that will produce the peaks in
Fig. 4.5 is a single layer of TPFB− ions at the interface (note that a layer of Na+, whose
concentration is also enhanced at the interface, cannot provide the x-ray contrast
required to fit the data). The TPFB− layer is modeled by an attractive well in the PMF.
WT P F B−(z) is given by (4.7) plus a Gaussian function D exp[−(z − z0)

2/2σ2
P M F ]

for z < 0 along with a constant offset at z = 0 to maintain continuity (see Fig. 4.4).
The six parameters of WT P F B−(z) [z0, D, σP M F , Lw

T P F B− , Lo
T P F B− ,

WT P F B−(0)] along with the Qz offset and the interfacial roughness ( 4.3Å < σ <

5.1Å) are determined by fitting R/RF measured at �φw−o = 0.28 and 0.33 V, where
the concentration of TPFB− is enhanced at the interface, shown in Tables 5.1 and
4.2. This fitting is performed under the constraint that the resultant Wion(z) produces
R/RF in agreement with the data over the entire range of potentials. The assumption
of W (z) being independent ofφ(z) will be discussed at the end of the section. In addi-
tion, fitted PMFs were rejected if the fit value of the roughness σ was unphysically

Table 4.2 PMF parameters of BTPPA+ and TPFB− obtained by fitting to the reflectivity data

W (0) (kB T ) Lo (Å) Lw (Å) z0 (Å) σP M F (Å) D (kB T )

WBTPPA+ (z) 14 +12/−6 20 +11/−6 13 ± 2 – – –
W I

TPFB− (z) −5 ± 0.5 3 ± 0.1 9 ± 4 −3.5 ± 0.2 3.4 ± 0.2 −9 ± 0.25
W I I

TPFB− (z) −25 ± 0.5 11 ± 0.5 10 ± 2.7 −7.5 ± 0.3 2.6 ± 0.3 −5.25 ± 0.2

http://dx.doi.org/10.1007/978-3-319-00900-1_3
http://dx.doi.org/10.1007/978-3-319-00900-1_4
http://dx.doi.org/10.1007/978-3-319-00900-1_5
http://dx.doi.org/10.1007/978-3-319-00900-1_4
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Fig. 4.5 PB-PMF predictions
of R/RF compared to the data
at various potentials
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small. In those cases an interfacial bending modulus [22] on the order of 100 kB T
would have been required to reconcile the discrepancy of σ with its value predicted
by capillary wave theory [23]. In the case of the TPFB− PMF, two local minima in
χ2-space (denoted W I

TPFB−(z) and W I I
TPFB−(z)) were found to satisfy these condi-

tions. Potential profiles that are intermediate between W I
TPFB−(z) and W I I (z)

TPFB− do not
satisfy these conditions. Most of these fits had values of σ within one standard devi-
ation of capillary wave theory predictions using the measured potential-dependent
interfacial tension [12, 13]. Fits to W I I

TPFB−(z) at �φw−o = 0.28 and 0.33 V had
values of σ within two standard deviations of capillary wave theory (Table 5.1).

The PB-PMF model with the Wi (z) shown in Fig. 4.4 produces R/RF in good
agreement with the data over the entire range of measured potentials (Fig. 4.5). The
attractive wells for W I,I I

TPFB−(z) have comparable depths (6 kB T for W I
TPFB−(z) and 5

kBT for W I I
TPFB−(z)), FWHM, and centers (Table 3.1). The ion concentration profiles

ci (z), are calculated from (4.6) using Wi (z). Figure 4.6 shows that the ci (z) at the
highest potential, �φw−o = 0.33 V, take the form of two back-to-back double layers
with a sharply defined layer of TPFB−. The bulk concentration in both phases is
constrained causing the ion density profiles to be discontinuous at the interface. The
distribution of Na+ near the interface is in stark contrast to that predicted from the
Gouy-Chapman model, but agrees with the picture of a strongly hydrated aqueous
ion at a water/oil interface, i.e Na+ density profile increases as a consequence of the
electrostatic interaction, yet prefers to remain hydrated, causing a depletion in its
density in the immediate vicinity of the oil phase (Fig. 4.7). The different ci (z) cal-
culated from W I

TPFB−(z) or W I I
TPFB−(z) differ mainly in the broadness of the profile,

which in the case of W I
TPFB−(z) returns to its bulk value at z = 0, while W I I

TPFB−(z)
allows TPFB− to penetrate slightly more into the water phase. The electron density

http://dx.doi.org/10.1007/978-3-319-00900-1_5
http://dx.doi.org/10.1007/978-3-319-00900-1_3
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Fig. 4.6 PB-PMF ion concentration profiles as a function of positive potentials for the 100 mM
NaCl (w)/5 mM BTPPATPFB (o) system

profiles ρ(z) calculated from the different ci (z) are almost identical (Fig. 4.8), which
demonstrates why our data cannot discriminate between W I

TPFB−(z) and W I I
TPFB−(z).

The maximum density of TPFB− near the interface occurs at �φw−o = 0.33 V
and is 1 nm2 per TPFB− ion when W I

TPFB−(z) is used or 1.5 nm2 per TPFB− ion
when W I I

TPFB(z) is used. Both values represent a high-density layer for an ion of
1 nm diameter. Although dense ionic layers have been observed in the interfacial
adsorption of charged amphiphiles [24], the absence of a dense TPFB− layer at
�φw−o ≈ 0 indicates that TPFB− is, at most, weakly amphiphilic, further supported
by measurement of the Gibbs adsorption isotherm [21].



4.2 Data Analysis 35

-80 -60 -40 -20 0 20 40 60 80

1x10-3

1x10-2

0.1

1
BTPPA+
TPFB- PMF I
Na+
Cl-
TPFB- PMF II

c 
(z

) 
[M

]

Interfacial Height, z [Å]

 = -0.02 V

-80 -60 -40 -20 0 20 40 60 80

1x10 -4

1x10 -3

1x10 -2

0.1

1
BTPPA+
TPFB- PMF I
Na+
Cl-
TPFB- PMF II

Interfacial Height, z [Å]

 = -0.12 V

Fig. 4.7 PB-PMF ion concentration profiles as a function of negative potentials for the 100 mM
NaCl (w)/5 mM BTPPATPFB (o) system
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The MD simulations of the potentials of mean force that we used for Na+ and
Cl− do not account for ion–ion correlations, but they do include ion–solvent and
solvent–solvent correlations. Such correlations also account for the monotonic form
of WBTPPA+(z) . However, as a result of modeling the x-ray reflectivity, the phe-
nomenological WTPFB−(z) in Fig. 4.4 must implicitly account for ion–ion corre-
lations if they are important for the observed condensation. A deficiency of this
phenomenological PB-PMF model is the lack of a physical mechanism that
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underlies this ionic layering. Hence, theoretical models will be studied in the next
chapters to investigate the possible role of steric effects, which can stabilize large
ion adsorption [25], and that of electrostatic ion correlations [26] in the observed
ionic layering. The assumption of a Wi (z) independent of the electrostatic potential
is reasonable if solvent correlations dominate the PMF, within the limited polariza-
tion window. If ion–ion correlations are involved, Wi (z) should depend on φ(z),
although this is not the only instance where the latter can occur. In fact, such a result
has been recently observed in the 10 mM LiCl data set, where we were able to apply
a much larger electrostatic potential. A similar analysis as the one presented here
indicated that a unique WTPFB−(z) can fit the 10 mM LiCl data set up to �φ = 0.4 V,
incidentally this is within the statistical uncertainties of W I I

TPFB−(z). However, when
�φ > 0.4 V a statistically different PMF is needed to describe the data. Further
details are presented in [21]. For the system studied in this chapter, no evidence
of a PMF dependence on the potential is found within the polarization window. In
Chap. 7 conclusive evidence is presented that the ion condensation presented here
is due to electrostatic ion correlations, indicating that the assumption of a potential-
independent W (z) is only a first approximation to the interactions of ions in the
system.

4.3 Concluding Remarks

The phenomena of monovalent ion condensation probed using the structural mea-
surements of x-ray reflectivity is an interesting and novel result in the study of ion
distributions. In the next three chapters, using theoretical models and Molecular
Dynamics simulations we will utilize this observation as a stringent test of electrical
double layer models and as a guide to understand the rich and complex interac-
tions of ions in solution. Moreover, the PB-PMF model presented is shown to give a
quantitative description of this ionic condensation when fitted against the XR data.
The role that the potential of mean force Wi (z) plays, is that of an excess chemical
potential over the ideal gas approximation of the PB theory. Based on the results
presented here and the previous results of [12, 13], the PB-PMF approach seems to
provide a suitable approach to phenomenologically extend the Poisson-Boltzmann
theory beyond the mean-field approach.
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Chapter 5
Sterically Modified Poisson-Boltzmann
Equation

Steric effects in charged soft-matter play important roles in numerous settings such
as colloidal suspensions and greatly influence the behavior of macromolecular ions
in solution. The Poisson-Boltzmann equation ignores these excluded-volume inter-
actions, which prompted a number of researchers to address this deficiency at various
levels of sophistication and theory, [1–6]. Recent work by Antypov et al. [7], reviews
numerous approaches to address steric effects that are amenable to a functional
free energy formulation, and compares their predictions to those of Monte Carlo
simulations. The results of [7] seem to favor approaches based on nonlocal den-
sity functional theories. However, the correct methodology to account for these
excluded-volume interactions is still under debate. Specifically, the interplay between
excluded-volume correlations and electrostatic correlations remains an issue of con-
tention that is currently addressed theoretically in a satisfactory manner only within
ab initio approaches (those with an explicit treatment of the 2-body interatomic
potentials), such as the anisotropic hypernetted chain [8]. Moreover, partially due to
the close connection between size correlations and electrostatic correlations, exper-
imental studies that probe ion distributions have only recently begun to address the
theoretical questions concerning excluded-volume interactions of ions in solution.

In what follows we present a theoretical approach that aims to describe volume-
excluded interactions in charged soft-matter, at the mean-field level, thereby ignor-
ing ion correlations. This theory results in a sterically modified Poisson-Boltzmann
(SPB) equation, and reduces to the Poisson-Boltzmann equation in the limit of zero
size.
The SPB theory that we discuss, due to Borukhov et al., is based on a lattice Coulomb
gas formalism [9] and utilizes a phenomenological free energy functional [9, 10].
In contrast to the PB result that the ion density is unbounded (see for example
Fig. 5.2), the main prediction of the SPB theory is that near highly charged surfaces
the counterions would exhibit a saturated ion density profile n(r) at the close packing
density of 1/a3, where a is the ion size, effectively stabilizing ionic condensation at the
surface. This can be interpreted physically to be due to the loss of the solvent entropy,
which counteracts the gain in electrostatic energy due to ion layering at the surface.

N. Laanait, Ion Correlations at Electrified Soft Matter Interfaces, 39
Springer Theses, DOI: 10.1007/978-3-319-00900-1_5,
© Springer International Publishing Switzerland 2013
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In fact, it will be seen that SPB theory is just the PB theory with the additional
contribution of solvent entropy to the free energy functional, FPB[n(r)] (see Chap. 2).
In Sect. 5.1, we give a rigorous exposition of the field theory formalism used to
derive FSPB[n(r)] from the lattice Coulomb gas. In Sect. 5.2, a phenomenological
free energy is postulated and shown to be equivalent to the lattice gas formalism.
The SPB equation is then obtained through a variational procedure. We generalize
Borukhov’s SPB, in Sect. 5.3, to include excluded volume effects due to multiple
ionic sizes. In Sect. 5.4, we discuss a numerical procedure to solve the SPB equation
formulated as a boundary value problem for application to a liquid/liquid interface,
and more generally models of ion distributions whose equations of motion are second
order nonlinear ordinary differential equations. The predictions of both the simple
SPB and the generalized SPB in a number of settings are also presented. In the last
section, we compare x-ray reflectivity and thermodynamic data from the liquid/liquid
interface to the results of SPB theory and show that the latter gives a qualitatively
correct description of ion properties for this system when moderately charged.

5.1 Lattice Gas Approach

In this section, we follow the approach of Borukhov [9] in deriving the SPB equation.
Consider a system composed of ions of charge ±ze and size a coupled to a bulk
reservoir (a z : z electrolyte) in a continuum dielectric medium of permitivity ε. The
volume occupied by the system is divided into a three dimensional lattice, where each
lattice cell has dimensions a×a×a, shown in Fig. 5.1. Restricting the occupation of
each lattice site to a single ion produces a short-range repulsion. We introduce spin
variables {si} to denote the occupation of cell i, where si = 1,−1, 0 signifies that
the lattice is occupied by a cation (+), or an anion (−), or unoccupied, respectively.
With the ions only interacting through a Coulomb field vc = 1/ε|r| (we use cgs units
throughout), the Hamiltonian of the system written in terms of {si} is:

Fig. 5.1 Lattice gas modeling of z:z electrolyte with lattice spacing a. The ions are represented as
spheres with diameter a and charge ±ze. The “spin” variables si indicate the occupancy of a lattice
site

http://dx.doi.org/10.1007/978-3-319-00900-1_2
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H = 1

2
(ze)2

∑

j,j′
sjvc(rj − rj′)sj′ −

∑

j

μjs
2
j (5.1)

where ri denotes the position of cell i, and μi is the chemical potential that couples
the lattice site i to a bulk reservoir of (±) ions. The canonical partition function, is
given by

Z = Tr(e−βH) (5.2)

=
∑

si=1,−1,0

exp

⎛

⎝−β
2

(ze)2
∑

j,j′
sjvc(rj − rj′)sj′ + β

∑

j

μjs
2
j

⎞

⎠ (5.3)

To convert the discrete lattice cell occupation sums into spatial integrals, a field
representation of the ion density is introduced through a charge density operator ρ̂,
defined by

ρ̂c(r) =
∑

j

zesjδ(r − rj) (5.4)

where δ is Dirac’s delta function. The charge density operator, when acting on an ion
number density ρ(ri) associated with cell i, gives the charge density at ri, as follows

∫
driρ̂c(r)ρ(ri) =

∑

j

zesj

∫
driδ(r − rj)ρ(ri) (5.5)

=
∑

j

zesjδijρ(ri) (5.6)

= zesiρ(ri) (5.7)

the definition of the Dirac delta function is used from the 1st to 2nd line, where δij

is the Kronecker delta. Global charge neutrality is trivially satisfied by taking the
integral of ρ̂c(r) over all space,

∫
driρ̂c(r) =

∑

j

zesj = 0 (5.8)

Using the definitions above, we can rewrite the sums over the spin variables in (5.3),
in terms of the charge density operator,

Z =
∑

si

exp

⎛

⎝−β

2

∫
drdr′ρ̂c(r)vc(r − r′)ρ̂c(r′) + β

∑

j

μjs
2
j

⎞

⎠ (5.9)

= exp

(
−β

2

∫
drdr′ρ̂c(r)vc(r − r′)ρ̂c(r′)

)
×

∑

si

eβ
∑

j μjs2
j (5.10)
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The double integral in (5.10) cannot be performed analytically, because the particles
are coupled via the 2-body potential, vc. To linearize the charge density fields, we
need to introduce an auxiliary field, denoted by ϕc, then use a Hubbard-Stratonovich
transformation [11] to map the system into a system of particles that interact only
with this auxiliary field. For this theory, the Hubbard-Stratonovich transformation is
equivalent to the following identity,

1 =
∫

DρcDϕc exp

⎛

⎝i
∫

drρc(r)ϕc(r) − ize
∑

j

sjϕc(r)

⎞

⎠ (5.11)

where we have set β = 1, to be restored when we derive the free energy. The above
identity, is easily derived from the spectral definition of the Dirac delta function,
δ(r−r′) ∝ ∫

dkeik.(r−r′), generalized to a functional (up to a constant which cancels
out at the end of the derivation),

δ[ρc(ri) − ρ̂c(r)] =
∫

dϕc(ri)e
iϕc(ri)(ρc(ri)−ρ̂c(r)) (5.12)

Extending the above definition for all {ri}, we have

δ[ρc(r) − ρ̂c(r)] =
∏

i

δ[ρc(ri) − ρ̂c(r)] (5.13)

=
∏

i

∫
dϕc(ri)e

iϕc(ri)(ρc(ri)−ρ̂c(r)) (5.14)

=
∫ ∫

· · · dϕc(r1)dϕc(r2) · · · eiϕc(r1)(ρc(r1)−ρ̂c(r))eiϕc(r2)

× (ρc(r2) − ρ̂c(r)) · · · (5.15)

=
∫

Dϕc exp

⎛

⎝i
∑

i

ϕc(ri)ρc(ri) − ize
∑

ij

sjδ(r − ri)ϕc(ri)

⎞

⎠

(5.16)

δ[ρc(r) − ρ̂c(r)] =
∫

Dϕc exp

⎛

⎝i
∫

drϕc(r)ρc(r) − ize
∑

j

sjϕc(rj)

⎞

⎠ (5.17)

In the 2nd line, (5.12) was used, in the 3rd line, the product of the exponential terms
is summed. In the 4th line, we apply the definition of ρ̂c and define the functional
integral, i.e,

∏
i

∫
dϕc(ri) → ∫ Dϕc. Finally, in the last line the discrete sum that

does not involve a lattice site occupation is converted to an integral. The final step
in the derivation of (5.11) is taking the integral of both sides of the last expression
(incidentally canceling the proportionality constant we omitted),
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1 ≡
∫

Dρcδ[ρc(r) − ρ̂c(r)]

=
∫

DρcDϕc exp

⎛

⎝i
∫

drϕc(r)ρc(r) − ize
∑

j

sjϕc(rj)

⎞

⎠ (5.18)

Inserting the above identity into (5.10), gives

Z =
∫

Dϕc

∫
Dρc exp

(
−1

2

∫
drdr′ρ̂c(r)vc(r − r′)ρ̂c(r′) + i

∫
drρc(r)ϕc(r)

)

︸ ︷︷ ︸
A (ϕc)

(5.19)

×
∑

si

e−ize
∑

j sjϕc(r)+∑
j μjs2

j

︸ ︷︷ ︸
B()

(5.20)

where we have factorized the partition function into two terms, A (ϕc) contains
functional integration over the density fields, and B() contains discrete sums over
lattice site occupations. The partition function is given by:

Z =
∫

DϕcA (ϕc)B(ϕc) (5.21)

B(ϕc) can be manipulated to yield,

B(ϕc) = exp

⎛

⎝ln{
∑

si=1,−1,0

e−ize
∑

j sjϕc(r)+∑
j μjs2

j }
⎞

⎠ (5.22)

= exp

⎛

⎝ln{
∑

si=1,−1,0

∏

i

e−izesiϕc(ri)+μis2
i }

⎞

⎠ (5.23)

= exp

⎛

⎝
∑

i

ln{
∑

si=1,−1,0

e−izesiϕc(ri)+μis2
i }

⎞

⎠ (5.24)

Now, we can convert the summation over lattice cells into spatial integrals,
∑

i →
1/a3

∫
dr. Putting this into the expression above, and performing the summation

over the cell occupation, we obtain

B(ϕc) = exp

(
1

a3

∫
dr ln[1 + eμ+−izeϕc(r) + eμ−+izeϕc(r)}

)
(5.25)

with obvious notation for the chemical potential of ± ions.
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TheA (ϕc) term requires more involved calculations thanB(), in order to evaluate
the path integrals. However, there are standard field-theoretic methods that one can
follow [12]. We start by writing ρc(ri) ≡ ρi,ϕc(ri) ≡ ϕi and vc(ri − rj) ≡ vij. The
density field (and its conjugate) ρi (ϕi) can be thought of as the i component of an
infinite-dimensional column vector ρ (ϕ). While, vij represents the ij element of the
(infinite dimensional) matrix Coulomb kernel, vc. Recall that A (ϕc) is given by,

A (ϕc) =
∫

Dρc exp

(
−1

2

∫
drdr′ρ̂c(r)vc(r − r′)ρ̂c(r′) + i

∫
drρc(r)ϕc(r)

)

(5.26)
replacing the integrals with sums and using the above notation, we have

A (ϕc) =
∫ ∏

l

∫
dρl exp

⎛

⎝−1

2

∑

ij

ρivijρj − i
∑

i

ρiϕi

⎞

⎠ (5.27)

Using matrix notation we could write the sums as follows:

∑

ij

ρivijρj = ρTvcρ and
∑

i

ρiϕi = ρTϕ (5.28)

where T stands for the transpose. The term quadratic in ρ is diagonalized by means
of an orthogonal transformation ρ′ = Oρ, where O is an orthogonal matrix (OT =
O−1). We now have,

ρTvcρ = ρ′TOvcOTρ′ = ρ′Tdiag(vc)ρ
′ (5.29)

ρTϕ = ρ′TOϕ (5.30)

where diag( ) stands for diagonal, to represent that the Coulomb kernel is now in
diagonal form with eigenvalues {λi}. Reverting to the index notation, A (ϕc) is
given by

A (ϕc) =
∏

l

∫
det(O)dρ′

l exp

(
−1

2

∑

i

λiρ
′2
i − i

∑

ik

ρ′
kOkiϕi

)
(5.31)

where det( ) stands for determinant, the jacobian appears due to transformation of
the integration measure dρ, but since O is an orthogonal matrix, then det(O) = 1.
Since the density fields are now decoupled, we can perform their functional integrals,
when the exponential term is rewritten in the form of a Gaussian.

A (ϕc) =
∏

l

∫
dρl

∏

i

exp

(
−1

2
λiρ

2
i − i

∑

k

ρkOkiϕi

)
(5.32)
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=
∏

i

∫
dρi exp

(
−1

2
λiρ

2
i − i

∑

k

ρkOkiϕi

)
(5.33)

=
∏

i

∫
dρi exp(−λi

2
{ρi + i

λi

∑

k

Okiϕi}2 + λi

2
(

i

λi

∑

k

Okiϕi)
2) (5.34)

=
(

∏

i

∫
dρi exp(−λi

2
{ρi + i

λi

∑

k

Okiϕi}2)

)

× exp

(
∑

i

λi

2
(

i

λi

∑

k

Okiϕi)
2

)

︸ ︷︷ ︸
C(ϕ)

(5.35)

In the 1st line, the sum is converted to product of exponentials, we also relabel ρ′
by ρ. In the 2nd line, the product of exponentials and the product of integrals are
expanded then factorized. In the 3rd line, we complete the square, and in the last line
exponential terms that don’t depend on ρ are taken out of the integral. To evaluate
the remaining gaussian integrals, we shift ρi + i

λi

∑
k Okiϕi → ρi, giving

A (ϕc) =
∏

i

√
2π√
λi

× C(ϕc) (5.36)

=
K√2π√
det(vc)

× C(ϕc) (5.37)

where we used the identity det(M) = ∏
1/λi, when M is a diagonal matrix, and

K is the number of ρ-fields. This overall multiplicative constant does not affect the
physics, and is easily seen to cancel out in the expression of any physical quantity
derived from the partition function. Now, we turn our attention to the term involving
the fluctuating field, C(ϕc). Using matrix notation,

C(ϕc) = exp

(
−1

2

∑

i

λi[λ−1
i (Oϕ)T][λ−1

i (Oϕ)]
)

(5.38)

= exp

(
−1

2

∑

i

ϕTOTλ−1
i Oϕ

)
(5.39)

= exp

(
−1

2
ϕTOTdiag(vc

−1)Oϕ

)
(5.40)

= exp

(
−1

2
ϕTvc

−1ϕ

)
(5.41)

= exp

(
−1

2

∫
drdr′ϕc(r′)v−1

c (r − r′)ϕc(r)
)

(5.42)
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In the 3rd line, we use matrix notation to convert the sum of the reciprocals of
the eigenvalues to the inverse of the diagonalized Coulomb matrix. In the 4th line,
we use the orthogonal matrix O and its inverse, to transform diag(v−1

c ) back to its
non-diagonal form v−1

c . In the last line, we use the continuous representation of the
operators. The inverse of the Coulomb operator, v−1

c (r−r′), is obtained from Poisson
equation of a point charge located at r′ , ∇2φ = −4πzeδ(r − r′)/ε . The inverse
kernel is given by, v−1

c (r − r′) = −ε∇2δ(r − r′)/(4π(ze)2). Plugging this result in
C(ϕc), (note that we omit the factor (ze)2, since we defined vc = 1/ε|r| with the ze
absorbed in the definition of the density operator)

C(ϕc) = exp

(
−1

2

∫
drdr′ϕc(r)(

−ε
4π
δ(r − r′)∇2)ϕc(r′)

)
(5.43)

= exp

(
ε

8π

∫
drϕc(r)∇2ϕc(r)

)
(5.44)

= exp

(
− ε

8π

∫
dr|∇ϕc(r)|2 − ϕc∇ϕc |∞

)
(5.45)

In the 2nd line, we used the definition of the Dirac delta function. In the 3rd line, we
integrated by parts. The boundary term is zero, since the field vanishes at infinity.
Putting this expression of C(ϕc) into (5.37), we have for A (ϕc)

A (ϕc) =
N
√

2π√
det(vc)

exp

(
− ε

8π

∫
dr|∇ϕc(r)|2

)
(5.46)

Finally, (5.46) and (5.25) are plugged in (5.21), and restoring β gives the partition
function,

Z =
∫ Dϕc√

det(vc)/(2π)N

exp

(∫
dr{−βε

8π
|∇ϕc(r)|2 + 1

a3 ln[1 + eβμ+−izeβϕc(r) + eβμ−+izeβϕc(r)]}
)

(5.47)

The theory of particles on a lattice interacting through a Coulomb potential has
been converted to a field theory of the fluctuating field ϕc. Given our expression
for the partition function, we can derive physical properties of the system, such as
the number density, etc …. However, a close inspection of (5.47), reveals that the
chemical potentials μ± are undefined. We proceed to derive an expression for them
in terms of the total number of particles in the system N . The final expression for
the bulk chemical potential also provides a way to check the self-consistency of the
statistical field theory defined by (5.47). The average number of (±)-ions is given by,
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N± = 1

Z

∂Z

∂(βμ±)
(5.48)

= 1

Z

∫ Dϕc√
det(vc)/(2π)N

exp

(∫
dr{−βε

8π
|∇ϕc(r)|2 + 1

a3 ln[1 + eβμ+−izeβϕc(r) + eβμ−+izeβϕc(r)]}
)

(5.49)

× 1

a3

∫
dr

eβμ±∓izeβϕc(r)

1 + eβμ+−izeβϕc(r) + eβμ−+izeβϕc(r)
(5.50)

N± =
〈

1

a3

∫
dr

eβμ±∓izeβϕc(r)

1 + eβμ+−izeβϕc(r) + eβμ−+izeβϕc(r)

〉
(5.51)

where 〈. . .〉 stands for the canonical average. In the thermodynamic limit (N → ∞,

N/V finite), where N is the total number of particles in the system and V is the
system’s volume, the ensemble average is found by letting

∫
dr → V and evaluating

the integrand for a zero fluctuating field,

N± = V

a3

eβμ±∓izeβϕc(r)

1 + eβμ+−izeβϕc(r) + eβμ−+izeβϕc(r)

∣∣
ϕc=0 (5.52)

N± = V

a3

eβμ±

1 + eβμ+ + eβμ− (5.53)

Due to global charge neutrality, we must have N+ = N− = N/2. Defining the volume
fraction, ηo = Na3/V = 2nba3, where we have introduced the bulk density of the
ions, nb = N±/V , the chemical potential as a function of ηo, is found by inverting
(5.53),

μ+ = μ− = 1

β
ln

(
1

2

ηo

1 − ηo

)
(5.54)

As expected the bulk chemical potential is consistent with the physics of the lattice
gas, this is clearly seen by expanding the logarithmic function in (5.54), and using
the definition of ηo,

μ± = 1

β
(ln(nba3) − ln(1 −

∑

i=+,−
nb

i a3)) (5.55)

The first term on the right hand side of the equation is just the chemical potential of an
ideal gas, μid. However due to restricting the lattice site occupation, which generates
repulsions, μ± needs to be higher than μid, this is taken care of by the second term
on the right hand side. Moreover, in the limit of infinite dilution (nba3 � 1) , we
need to have μ± = μid, as is the case in (5.54).
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The functional integral in the partition function needs to evaluated. This is done
using the stationary-phase approximation [13], where the integrand in (5.47) is eval-
uated at its saddle-point, φ(r) = iϕc(r). This is equivalent to the mean-field approx-
imation, where the fluctuation field ϕc is replaced by the macroscopic average of the
electrostatic potential, φ. We obtain,

Z|φ(r)=iϕc(r)

= Zvc exp

(∫
dr{βε

8π
|∇φ(r)|2 + 1

a3 ln[1 + eβμ+−zeβφ(r) + eβμ−+zeβφ(r)]}
)

(5.56)

= Zvc exp

(∫
dr{βε

8π
|∇φ(r)|2 + 1

a3 ln[1 + ηo

1 − ηo
cosh(zeβφ(r))]}

)
(5.57)

where Zvc ∼ 1/
√

det(vc) is a constant (corresponding to the self-energy), and will
be subtracted off when defining the free energy. Also, in the 2nd line we used (5.54).
The free energy can now be derived from the partition function,

F[φ(r)] = − 1

β
(ln Z − ln Zvc) (5.58)

= − ε

8π

∫
dr|∇φ(r)|2 − 1

βa3

∫
dr ln[1 + ηo

1 − ηo
cosh(zeβφ(r))]

(5.59)

We can now derive the equation of motion for the electrostatic potential, from the
variation of F with respect to φ,

δF
δφ(r)

= − ε

8π

∫
dr′ δ|∇φ(r′)|2

δφ(r)
− ze

a3

ηo

1 − ηo∫
dr′ δφ(r′)

δφ(r)
sinh(zeβφ(r′)

1 + ηo
1−ηo

cosh(zeβφ(r′))
(5.60)

Using the identity
δφ(r′)
δφ(r)

= δ(r′ − r) and the fact that
δ|∇φ(r)|2
δφ(r)

= − 2δ(r′ − r)

∇2φ(r′) (A.5), derived in the appendix. We find,

δF
δφ(r)

= ε

4π
∇2φ(r) − ze

a3

ηo

1 − ηo

sinh(zeβφ(r)
1 + ηo

1−ηo
cosh(zeβφ(r))

(5.61)

Then,
δF
δφ(r)

= 0, implies that,

∇2φ(r) = 8πzenb

ε

sinh(zeβφ(r))
1 − ηo + ηo cosh(zeβφ(r))

(5.62)
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We call (5.62) the sterically modified Poisson-Boltzmann equation (SPB).
The SPB model is a differential equation that is highly nonlinear in φ, therefore
recourse to numerical methods is necessary to solve for the electrostatic potential
distribution and the ion distributions (treated in Sect. 5.4). However, the main physical
predictions of (5.62) can be extracted by taking a few limits. For instance, in the limit
of zero size ηo → 0, SPB reduces to the PB equation of a z : z electrolyte. The SPB
density profile is given by

n±(r) = nb e∓zeβφ(r)

1 − ηo + ηo cosh(zeβφ(r))
(5.63)

implying that n± is bounded from above by 1/a3 for all values of φ. Moreover, in
the limit of large electrostatic potentials, zeβφ � 1, the counterion density behaves

as 1
a3

1

1 + 2−ηo
ηo

e−zeβφ
, indicating that the density profile saturates as a function of

φ(r), and does not reach the PB contact value (further discussion of this result is
postponed to Sect. 5.6). Additionally, in the case of moderate (small) electrostatic
potentials the SPB should predict ion density profile closely resembling those of the
PB, for in that regime the density contact value is small and the steric effects are
expected to be small (negligible). A comparison between the predictions of the SPB
and PB equations for the counterions distribution are shown in Fig. 5.2, illustrating
the various limits just discussed.
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Fig. 5.2 Comparison of counterion density profiles predicted by the SPB and PB models. The
numerical solutions of the models are obtained for a 1 : 1 electrolyte, in a medium of dielectric
constant ε = 10, T = 300 K. An ionic size of 11 Å was used for the SPB theory. The bulk ionic
density is kept fixed at nba3 = 2 × 10−3. a Electrostatic potential difference of �φ = 5kBT/e is
applied, as discussed in the text the SPB and PB results are in close agreement. b Large electrostatic
potential is applied, �φ = 12kBT/e showing the density saturation predicted by the SPB theory
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5.2 Density Functional Approach

A simpler route to the SPB equation than the field-theory of the lattice Coulomb gas
is a density functional theory (DFT). Following [10], the free energy functional of a
z : z electrolyte in a medium with dielectric constant ε is

F[φ(r), n±(r)] = U − TS (5.64)

where U is the internal energy, T is the temperature and S is the entropy. The internal
energy of the SPB model is

USPB = UPB(μid → μ±) (5.65)

where the expression of the PB internal energy is used after the replacement of the
ideal gas chemical potential by its lattice gas counterpart (Eq. 5.54). The entropy
functional of the lattice gas is,

SSPB = −kB

a3

∫
dr[n+a3ln(n+a3) + n−a3ln(n−a3)

+ (1 − n+a3 − n−a3)ln(1 − n+a3 − n−a3)] (5.66)

The first and second term are the entropies of the positive and negative ions, respec-
tively. The last term is due to restricting the occupation of a lattice site. To shed more
light on (5.66), we take its limit far from close packing n±a3 � 1, by expanding the
ln(1 − n+a3 − n−a3) term to first order in n±,

SSPB ≈ −kB

a3

∫
dr[n+a3ln(n+a3) + n−a3ln(n−a3)

+ (1 − n+a3 − n−a3)(−n+a3 − n−a3) + O(n2±)] (5.67)

= −kB

∫
dr[n+ln(n+a3) + n−ln(n−a3) − n+ − n− + O(n2±)] (5.68)

= −kB

∫
dr[n+(ln(n+�3) − 1) + n−(ln(n−�3) − 1)] (5.69)

= SPB (5.70)

In the line before last, we replace a by the thermal wavelength �, given that in the
infinite dilution limit the latter sets the relevant length scale. As we expected, the
lattice gas entropy has the ideal gas entropy as a limit. From Eqs. (5.66) to (5.65),
the total free energy functional is given by
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FSPB[φ(r), n±(r)] =
∫

dr[− ε

8π
|∇φ|2 + zen+φ− zen−φ− μ+n+ − μ−n−]

(5.71)

+ −kBT

a3

∫
dr[n+a3ln(n+a3) + n−a3ln(n−a3)

+ (1 − n+a3 − n−a3)ln(1 − n+a3 − n−a3)] (5.72)

To understand the effects of this novel entropic term, ln(1 − n+a3 − n−a3),
consider a situation where the system is in contact with a highly charged surface.
The counterions (say positive ions) will be attracted to the surface, thereby forming
a dense layer. While ionic layering is favorable electrostatically, this is accompanied
by a loss of solvent entropy as the solvent near the surface is expelled to make “room”
for the ions. So as n+ → 1/a3 in the layer, the solvent entropic cost is accounted for
by the last term in FSPB. This motivated Borukhov et al. to call it the solvent entropy.
Minimization of the free energy leads to a saturation of the density profile as seen in
Fig. 5.2.
Finally, to obtain the SPB equation, a variational procedure with respect to φ(r)
and n±(r) is performed (as was done in the last section), leading to the following
Euler-Lagrange equations,

δF

δφ
= −ε

4π
∇2φ+ zen+ − zen− = 0 (5.73)

δF

δn±
= ±zeφ− μ± + kBT ln

n±a3

1 − n+a3 − n−a3 = 0 (5.74)

The first equation is just Poisson’s equation. The second equation can be rewritten
in this form,

n±a3

1 − n+a3 − n−a3 = eβμ±e∓zeβφ (5.75)

Given the definition of μ± derived in the last section, these two equations are easily
solvable for n+ and n− in terms of φ and nb, to give Eq. 5.63. The latter, when
combined with Poisson’s equation, produces the SPB model (Eq. 5.62).

5.3 Generalized SPB Theory

The SPB model due to Borukhov, et al., considers ions to have a single size a. In
this section, we generalize the model to treat ions with arbitrary size. This makes
the theory applicable in a more general setting, where invariably, ions have dif-
ferent sizes, either due to their specific interactions with the solvent (hydration
shells, etc …) or to their chemical nature. A generalized SPB theory (GSPB),
would allow us to tackle problems such as ion competition, where for example a
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smaller monovalent counterion exhibits more affinity to a charged surface than a
larger divalent counterion.

A free energy approach would generate a functional that depends on all the ionic
densities ni given by F[φ(r), n1(r), . . . , nn(r)]. As before, Poisson’s equation comes

from
δF
δφ

= 0, while
δF
δni

= 0 generates non-algebraic equations for n1, . . . , nn.

Hence, an equation of motion in the form of Eq. 5.62 is not readily obtainable from this
procedure. However, as mentioned earlier, one can still find the optimal ni’s directly
from the free energy, using for example Monte-Carlo functional minimization. In
order to derive a single differential equation that describes the generalized steric
Poisson-Boltzmann, we need to derive the partition function of the system. Since
the partition function will only be a function of φ and μ, effectively decoupling the
ni’s from each other. The latter are easily obtained from the partition function in the
usual way. To accomplish this, we generalize the procedure due to Chu et al. [14].
The grand-canonical ensemble partition function �, can be derived by counting the
possible occupancies of a lattice cell by the n ionic species. Consider a system with
n ion types, each with diameter ai. Suppose that the ion(s) with the largest diameter
have a diameter a that sets the size of the lattice cell a3. The cell volume occupied
by an ion of diameter ai is v3

i a3, where vi = ai/a. The occupation possibilities of a
lattice cell, where we only consider full occupation or empty, are as follows:

• Unoccupied cell:
�1 = 1. (5.76)

• A cell occupied by a single ion of type i of volume a3:

�2 =
′∑

i

e−β(sgn(i)zieφ−μi), (5.77)

the prime indicates that the sum is limited to ions of diameter a.
• A cell occupied by m ions of types i that satisfy

∑
i αivi = 1, where αi is the

multiplicity of ions of type i. Note that the total number of ions in the cell is then
given by m = ∑

i αi. This occupancy condition is satisfied trivially when all m
ions are of the same type Q, i.e. m = αQ = (vQ)−1. The partition function of the
general case is given by:

�3 =
′′∑ ∏

i

⎛

⎝
αi∑

j=1

(
αi

j

)
(e−β(sgn(i)zieφ−μi))j

⎞

⎠ (5.78)

where the double prime indicates the sum over all possible ways to have m ions
that satisfy

∑
i αivi = 1, and the product is over distinct ionic species i that make

up the collection of m ions. The term in the parentheses counts the possible ways
we can fill a cell with ions of type i with multiplicity αi > 1.
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The total partition function per lattice cell, is the sum of the individual partition
functions,

�[φ(r)] = 1 +
′∑

i

e−β(sgn(i)zieφ−μi) +
′′∑ ∏

i

⎛

⎝
αi∑

j=1

(
αi

j

)
(e−β(sgn(i)zieφ−μi))j

⎞

⎠

(5.79)

where the binomial coefficient is defined as

(
n

p

)
= n!/p!(n − p)!. In the case, where

n = 3, with v1 = 1/2 and v2 = v3 = 1 but z2 �= z3, there is only one way to have
more than one ion fully occupying a cell and that is with m = 2, with both ions of
type 1, i.e their multiplicity is α1 = 2. Applying this to the partition function gives,

�[φ(r)] = 1 + e−β(sgn(2)z2eφ(r)−μ2) + e−β(sgn(3)z3eφ(r)−μ3)

+
α1∑

n=1

(
α1

n

) (
e−β(sgn(1)z1eφ−μ1)

)n
(5.80)

= (1 + e−β(sgn(1)z1eφ−μ1))2 + e−β(sgn(2)z2eφ(r)−μ2) + e−β(sgn(3)z3eφ(r)−μ3)

(5.81)

The last line is obtained by combining the term that involves the sum and 1 to get the
binomial expression. This expression is identical to the one derived in [14] [Eq. 1].

As in Sect. 5.1, the chemical potential of ion type i, is found by inverting

nb
i = 1

Na3

∂ln �N

∂(βμi)
|φ(r)=0 (5.82)

where N is the number of lattice sites. While, ni(r) is given by,

ni(r) = 1

a3�

∂�

∂(βμi)
(5.83)

The GSPB equation of motion is then given by

∇2φ(r) = −4π/ε

n∑

i

sgn(i)zie
1

a3�

∂�

∂(βμi)
(5.84)

It is easy to check that in the case n = 2 ( v1 = v2 = 1, z1 = z2 = z), 5.84 produces
the SPB equation of motion (Eq. 5.62).
To illustrate the predictions of the GSPB model, we consider three case studies, all
with n = 3 with 2 counter-ions and 1 co-ions. We consider the counter-ions, A+ and B
(counter-ion) with diameters aA+ = 1 Å and aB = 10 Å(or aB = 15 Å) respectively.
The co-ion Cl− has diameter aCl− = 3.6 Å. Since, the largest counter-ion is B,
then its size sets the lattice cell dimension, i.e a3

B = a3. Then, we vary the valency
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Fig. 5.3 Ion competition as predicted by the GSPB equation. All numerical solutions are obtained in
a medium of dielectric constant ε = 80, T = 300 K. The electrolyte is made up of the following ions:
A+, B and Cl−. The bulk ionic density is kept fixed at cb

A+ = cb
B = 0.1 M, and cb

Cl− = 0.1M+zBcb
B.

An electrostatic potential difference of �φ = −10kBT/e is applied. a Competition between two
monovalent ions with different sizes. b Competition between a small monovalent ion and a larger
divalent ion

of B (zB = 1 or zB = 2 ) to show the effects of volume-excluded interactions in
conjunction with varying degrees of electrostatic attraction to the surface. Numerical
solutions of Eq. 5.84 applied to this system are performed to find the ion distributions
shown in Fig. 5.3. Figure 5.3a shows enhancement of A+ and Ci+ for z > 10 Å, since
both ions are monovalent this enhancement at the surface produces an equal gain
in electrostatic energy. However, closer to the surface the smaller A+ is further
enhanced at the interface, while the larger B+ is depleted since the solvent entropy
cost to layer A+ is much smaller than the cost to layer the larger B+. In Fig 5.3b, now
a divalent B2+ can induce a bigger gain in electrostatic energy when enhanced at the
interface, but due to large size 15 Å, at a much larger entropic cost. Hence, the GSPB
theory predicts that a small monovalent ion (diameter of 1 Å) would outcompete a
much larger divalent ion. While this result seems reasonable from energy arguments
presented above, the GSPB theory is a mean-field theory whose results for divalent
ions at such large surface potentials (10 kBT ) are suggestive at best. In Sect. 5.5, we
will determine the range of validity of the SPB theory at a liquid/liquid interface as
a function of surface electrostatic energy, eφ(0).

5.4 Numerical Implementation of Electrostatic Boundary
Value Problems

The Poisson-Boltzmann equation and modifications of it presented in this chapter
and others do not admit exact solutions in closed analytic form as a result of their
nonlinearity. For application to the electrified liquid/liquid interface, we are inter-
ested in finding solutions to these models in a planar geometry, where in fact the
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Poisson-Boltzmann equation can be solved exactly only in the z : z symmetric
electrolyte if the surface charge σ is known, forming a well-posed initial value prob-
lem (IVP) (or equivalently, if one knows φ(0), where z = 0 is the location of the
interface, by using Gauss’s law, the problem can be expressed as an IVP). On the
other hand, the electrolyte/electrolyte interface on the other hand constitutes a well-
formed boundary value problem (BVP). The applied potential across the system
�φcell is known from the electrochemical setup and using measured values of the
potential of zero charge, �φ = φwater −φoil, is accurately determined (see Chap. 3),
where the subscripts water and oil refer to bulk water and bulk oil respectively. We
use the following convention, the upper half-plane (z > 0) is occupied by water and
the lower half-plane (z < 0) is occupied by oil (DCE). This implies that we know
the value of the electrostatic potential, at two points, φ(±∞). But the value of φ
at z = 0 is only constrained by the continuity of the electrostatic potential across
the interface. In what follows, we present a numerical implementation of this BVP
which produces a solution of the PB equation, and its variations, in the form of the
electrostatic potential and the ion distributions.

We have used the computational suite Mathematica (Wolfram Research Inc,
Version 8), to solve the second-order nonlinear differential equations of the elec-
trical double layer models. Mathematica is a powerful computational package
and programming language, with symbolic (exact) and numerical capabilities. It
comes with an extensive library of compiled mathematical functions that covers
the fields of statistics, pure and applied mathematics, data and image processing,
etc…Mathematica solves differential equations (ordinary and partial) in exact
form (when a solution exists) through the function DSolve[]. Numerical differen-
tial equation solving is handled by the NDSolve[] function which is approximately
1500 pages of optimized C-language code, containing dozens of standard differen-
tial equation solving methods such as “Runge-Kutta” and less conventional though
powerful schemes such as the “Chasing” method. A book on numerical differential
equation solving with Mathematica [15] and references therein has a thorough
overview of the theory and code relevant to this functionality. We exclusively employ
the “Shooting” method in conjunction withNDSolve[] in our codePBSolve[] (out-
lined in the appendix). To illustrate how the “Shooting” method works, we consider
the example where we have an electrolyte in contact with a surface. In this 1-phase
problem, assume a known potential drop given by �V . We want to solve a PB-like
equation over the interval [0, zbulk], the system is defined by:

φ′′(z) = S(φ(z));φ(0) = �V ,φ(zbulk) = 0. (5.85)

where ′′ signifies second-order differentiation with respect to z, zbulk is usually taken
to be 10–15 Debye lengths away from the interface. When this system is given to
NDSolve[] with the option Method → “Shooting” specified, the following is done
(behind the scenes). The system is converted to an IVP,

φ′′(z) = S(φ(z));φ(0) = �V ,φ′(0) = α. (5.86)

http://dx.doi.org/10.1007/978-3-319-00900-1_3
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Now the system can be directly integrated (numerically) ifα is known. Hence, the
problem is reduced to determining α such that φα(zbulk) = 0, a root finding problem
(which is solved by FindRoot[]), where different α’s are tried until αsol is found
that satisfies φ(zbulk) = 0. Given αsol, the system defined by (5.86) is integrated.
Returning the solution φ(z) as an interpolating function. The “Shooting” method is
a very fast computational scheme, with solutions usually obtained in a few seconds.
PBSolve[] does not use the internal error estimations of Mathematica, but has
its own error measures accepting a solution returned by NDSolve[], only when it
satisfies the boundary conditions within an error margin of at least 10−6 V (typical
solutions have errors of 10−7 V). For 1-phase z : z electrolyte, an exact analytic of the
PB equation exists [16]. In Fig. 5.4 we compare the latter, to the numerical solution
of this system obtained by PBSolve[]. We have computed electrostatic potentials
for a 1:1, 2:2 and 3:3 electrolyte. The figures shows excellent agreement between
the two solutions.
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Fig. 5.4 Comparison between numerical and analytic solution of PB equation for a z : z electrolyte.
All solutions are obtained in a medium of dielectric constant ε = 80, T = 300 K, with the bulk
concentration of nb = 0.1 M. a 1:1 electrolyte, �φ = 0.6 V. b 2:2 electrolyte, �φ = 0.3 V.
c 3:3 electrolyte, �φ = 0.2 V
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For further comparison, we plot φ(z) on a log-scale in Fig. 5.5a and the difference
between the analytic and numeric solutions in Fig. 5.5b. As advertised, typical errors
in the boundary conditions are on the order of 10−7 V.

The drawback of the “Shooting” method is its robustness. For instance, �φ’s
used in Fig. 5.4 are the highest potentials at which solutions can be obtained from
PBSolve[] within the prescribed errors. This is due to the fact that the Poisson-
Boltzmann equation is highly singular near z = 0, hence the “Shooting” method
procedure has difficulty finding a root that satisfies the Boundary value equation, and
becomes highly sensitive to the starting point of this search. However, one should
note that long before those potentials are reached, PB has ceased to predict physical
results for the ion distribution. For instance, for a 3 : 3 electrolyte at �φ = 0.2 V,
PB predicts that c(0) ≈ 109M !
For models less singular than PB (e.g SPB), PBSolve[] can find solutions at much
larger potential drops. The solutions of PBSolve for the SPB models were compared
to numerical solutions obtained in [10], and agree very closely. PBSolve[] was
also tested against the “Quasi-Linearisation” scheme that converts the second order
differential equation into an integro-differential equation for the electric field, and
was used by Luo et al. in [17] to solve the PB equation, with the two methods being
in close agreement as shown in Fig. 5.6.

For a 2-phase system, with permittivities ε1,2, PBSolve[] works as follows:

• Define BVP1[φ1(z),α] = {φ′′
1(z)= S1(φ1(z));φ1(0)=α−�V ,φ′(zbulk phase 1)=

0} in phase 1.
• Define BVP2[φ2(z),α] = {φ′′

2(z) = S2(φ2(z));φ2(0) = α,φ′(zbulk phase 2) = 0}
in phase 2.

• NDSolve[] is setup to solve BVP1 and BVP2 once α is assigned.
• FindRoot[] finds αsol, that is α that satisfies ε1φ

′
α,1(0) = ε2φ

′
α,2(0).

• Given αsol, NDSolve[ BVP1[φ1(z),αsol] , BVP2[φ2(z),αsol] ] solves for φ(z).
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Fig. 5.6 Comparison of the numerical solution of PB equation for a 1 : 1 electrolyte using the
Shooting Method and the “Quasi-Linearisation” scheme
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Fig. 5.7 Numerical solution of the electrostatic potential (PB equation) in 1 : 1/1 : 1 electrolyte
with �φ = 0.5 V. Solution obtained using PBSolve[] under the following conditions: ε1 = 78.95
(water), ε2 = 10.43 (DCE), T = 296 K, nb

1 = 0.01 M, and nb
2 = 0.0027 M

A solution is typically found in less than 15 s on a 2.4 GHz Intel Core 2 Duo. The entire
code is very compact (a few lines), efficient due to its use of native Mathematica
functions (NDSolve[] ,FindRoot[]), and is included in the appendix. Shown in
Fig. 5.7 is a numerical solution of the PB equation for a water/oil electrolyte system
in Chap. 3 at an applied potential of 0.5 V. Note that all electrostatics (potentials,
density profiles, etc …) are computed using PBSolve[] in this chapter and others,
unless noted otherwise.

5.5 Experimental Tests of the SPB Theory

The experimental system under study is the liquid/liquid interface between two
immiscible electrolyte solutions: a 10 mM aqueous solution of LiCl and a 5 mM
solution of bis(triphenyl phosphoranylidene) ammonium tetrakis(pentafluorophenyl)

http://dx.doi.org/10.1007/978-3-319-00900-1_3
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borate (BTPPA+, TPFB−) in 1,2-dichloroethane (DCE). This system only differs
from the electrolyte/electrolyte system described in Chap. 3, in using LiCl at a smaller
concentration as the aqueous electrolyte instead of NaCl. Hence, all electrochemical
studies (cyclic voltammetry, surface tension measurements …) presented in Chap. 3
are qualitatively similar for the two systems (see [18] for a detailed electrochemical
study of the 10 mM LiCl system).

As previously discussed, the electric potential difference between the water and
oil (DCE) phases, �φ, is given by the applied potential difference across the elec-
trochemical cell minus the potential of zero charge, �φ = �φw-o

cell − �φw-o
PZC where

�φw-o
PZC = 365±4 mV as determined by a measurement of the surface excess charge.

Figure 5.8 illustrates the surface excess charge σ on either side of the liquid/liquid
interface as determined by measurements of the interfacial tension. The latter is fitted
to a second-order spline interpolation, the Lippmann equation, Eq. 3.7, was then used
to determine the surface excess charge. As we charge the system, enhancement of
ions on either side of the interface, produces an excess interfacial charge. Since, the
system is globally neutral, we must have |σo| = |σw| ≡ σ, where as usual, o: oil and
w: water.

The excess interfacial charge can also be directly computed from the ion density
profiles, as follows

σo = e
∫ 0

−∞
dz(n+(z) − n−(z)) (5.87)

for the oil phase, n+ represents the ion density of BTPPA+, and n− that of TPFB−.
The excess interfacial charge in the water phase is similarly defined, with n+ being
the ion density of Li+, and n− that of Cl−, with the integration now extending from
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Fig. 5.8 Surface excess charge of the liquid/liquid interface as a function of electric potential
difference, at T = 296 K, in units of electron charge e per Å2
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the interface (z = 0) to the aqueous bulk (+∞). The very large Gibbs energies
of transfer of the ions between the water and DCE phases allows us to ignore ion
partitioning between the phases and to approximate the bulk ion concentrations, nb
as the dissociated concentrations (2.689 mM) of BTPPA+ and TPFB− in DCE and
initial concentrations of Li+ and Cl− in water. The ion density profiles are computed
from the PB equation,

d2φ(z)

dz2 = 8πenb

ε
sinh(eβφ(z)) (5.88)

where ε is the dielectric constant of water (=78.95), when (5.88) is applied to the
aqueous electrolyte, or the dielectric constant of DCE (=10.43), when applied to the
oil phase. In Sect. 5.4, we outlined the numerical methods used to solve this type
of electrostatic problems, where we imposed the following boundary conditions
(Figs. 5.9 and 5.10):

• Discontinuity of the electric field at the interface: εwE(z)|z=0+ = εoE(z)|z=0− .
• Continuity of the electrostatic potential at the interface: φ(z)|z=0+ = φ(z)|z=0− .
• Bulk charge neutrality: limz→+∞ E(z) = 0, limz→−∞ E(z) = 0.
• Difference in potential between the bulks, equals the measured interfacial potential:

�φ = �V .

Note that the above boundary conditions are imposed in all applications of double-
layers models to the electrified liquid/liquid interface presented in this work. Similar
to the PB model, we solve the SPB equation (5.62), projected on the normal to the
interface:

d2φ(z)

dz2 = 8πenb

ε

sinh(zeβφ(z))

1 − 2a3nb + 2a3nb cosh(zeβφ(z))
(5.89)

The size a in (5.89) is taken to be the size of the ion whose concentration is enhanced
at the interface. For example, when �φ > 0, a in the water phase is the size of Li+
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Fig. 5.9 Electrostatic potential distribution predicted from the PB and SPB models at an interfacial
potential of 0.415 V
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Fig. 5.10 Ion distributions predicted from the PB and SPB models at various interfacial potentials.
Potentials in the range of 0.415 to 0.295V only show SPB density profiles

and a in the DCE phase is the size of TPFB−. This is justified by the fact that at
those potentials where steric effects are strong the depleted ion has an interfacial
concentration that is orders of magnitude smaller than that of the enhanced ion. The
ion concentration profiles predicted by SPB take the form of two back-to-back double
layers at the interface Fig. 6.8, in qualitative agreement with Poisson-Boltzmann
theory. Starting at �φ = 0.295 V, the concentration profile predicted from (5.89)
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is bound by 1/a3 and hence does not reach the unphysical values predicted by PB.
The parameter a, in (5.89) is an effective ion size that we determine by fitting to the
surface excess charge data. This is a natural consequence of the fact that our theory is
a mean-field approximation. Note that the effective size is a result of the interactions
between ions and is distinct from the hydrated ion size. A thorough discussion of
this subtle difference, pertinent to double layer models, was presented in [8].

The solid line in Fig. 5.8 is computed from SPB by numerically integrating the cal-
culated concentration profiles, the same was done for the PB equation. For �φ < 0,
the ion size a in the water or DCE phase is set to be the van der Waals (vdW) diameter
of 3.6 Å for Cl− [19] or 11 Å for BTPPA+ [18], respectively. For �φ > 0, the size
aw = 1.44 Å is the vdW diameter of Li+, while ao = 11.2 ± 0.1 Å of TPFB− in
the DCE phase is the only fitting parameter and is determined by fitting the SPB
theory to the surface excess charge data. The fitting routine uses PBSolve to solve
the SPB equation at different potentials given some size parameter. The calculated
surface excess charge for a fixed ion size is then compared to the data by calculating
the χ2 value. This is done for 8 Å < ao < 13 Å. The ionic size given the best fit
ao = 11.2 ± 0.1 Å is slightly larger than the calculated vdW diameter of 10.0 Å
for TPFB− [18], as might be expected for a weakly solvated large ion. Varying the
effective sizes of the other ions from their vdW diameters does not yield apprecia-
bly better fits to the data, which indicates, for example, that hydration of Li+ does
not play a significant role in determining the excess charge when TPFB− is on the
DCE side of the interface. As discussed at the beginning of the chapter, the main
difference between the SPB and PB model is the saturation of the density profile
at the close-packing limit. This assumption produces a surface excess charge that is
bounded from above, producing a good fit to the surface excess charge data, over
a larger potential range than the Poisson-Botlzmann equation, as shown in Fig. 5.8.
However, in the region where �φ > 0.3 V, the SPB surface excess charge does not
follow (qualitatively) the trend of the data. Comparison of the reflectivity predicted
by SPB to the x-ray data allows for more definitive conclusions on the range of
validity of the theory.

Following the methodology of Chap. 4, we simulate the reflectivity from the SPB
model with the interfacial roughness as our only fitting parameter. From Table 5.1,

Table 5.1 The potential dependent interfacial roughness of the 10 mM LiCl system: capillary wave
theory and fits to the X-ray data

Capillary wave theory SPB PBa

(Å) ( ±0.20 Å) ( ±0.20 Å)

�φ = 0.415 V 5.25 4.88 5.25
�φ = 0.355 V 4.92 4.48 4.92
�φ = 0.295 V 4.79 4.42 4.79
�φ = 0.255 V 4.53 4.20 4.36
�φ = 0.185 V 4.52 4.12 4.28
a0.415 V, 0.355 V, and 0.295 V, roughness values are not fitted for PB model.
The fitted roughness at these potentials is more than 3 standard deviations

http://dx.doi.org/10.1007/978-3-319-00900-1_4
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the fitted values of the potential-dependent roughness agree with values calculated
from capillary wave theory using the measured interfacial tension within two standard
deviations, though the fitted values are consistently smaller than the calculated values.
For comparison, the dashed lines in Fig. 5.11 illustrate fits using PB. In the range of
0 V < �φ ≤ 0.255 V, SPB and PB yield similar reflectivity curves in agreement
with the data. This reflects the fact that small ionic interfacial densities are present at
these low potentials, leading to negligible steric effects. In addition, broadening of the
density profiles with the ionic sizes and the interfacial roughness, produces electron
density profiles in close resemblance for the two models. When �φ = 0.295 V, clear
deviations between PB and the data are seen, with SPB in excellent agreement, as
shown in Fig. 5.12. At �φ = 0.355, 0.415 V, the PB equation greatly overestimates
R(Qz)/RF(Qz) primarily because it predicts unphysical ion concentrations of TPFB−
that exceed the close-packing density of 1/a3 at the interface, while the agreement
between R(Qz)/RF(Qz) and SPB is modest, with the latter predicting interfacial
condensation of TPFB− with an average layer density of 1.7 nm2 per ion at the
highest potential.

The comparison between the theoretical models and the x-ray data are consis-
tent with the results drawn from electrocapillary measurements. SPB captures the
essential features of the potential dependent reflectivity data, however, it is important
to note that the higher Qz values of R/RF in Fig. 5.12 are underestimated at higher
potentials (�φ ≥ 0.355 V). This indicates that while the inclusion of solvent entropy
in (5.89) leads to a stabilization of the ionic condensation, the SPB equation pro-
vides, at best, a first approximation to the functional form of the ion concentration
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Fig. 5.11 X-ray R(Qz)/RF(Qz) compared to SPB and PB predictions in the potential range 0–0.255
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Fig. 5.12 X-ray R(Qz)/RF(Qz) compared to SPB and PB predictions in the potential range 0.295–
0.415 V. For clarity, the data and simulated curves for 0.295 V are offset by −0.2

profile. This shortcoming of SPB was not apparent from a comparison to only the
surface excess charge data shown in Fig. 5.8. This analysis demonstrates the need to
use structural measurements, and not just thermodynamic data, to test models of ion
distributions at soft-matter interfaces. The discrepancy between the SPB model and
the data at the higher potentials can be attributed to the combination of large interfa-
cial electrostatic energy (≥14kBT ) and a large Bjerrum length in DCE ( �B ≈ 54 Å),
which should generate strong electrostatic ion-ion correlations for TPFB− at the
interface even though it is a monovalent ion. These correlations are not included in
the mean-field approximations of the sterically modified Poisson-Boltzmann equa-
tion and will be discussed in Chap. 7. However, the above analysis demonstrates the
need to accurately account for ion-solvent correlations. This is treated in the next
chapter using molecular dynamics simulations.

5.6 Concluding Remarks

In summary, we have presented a theoretical treatment of solvent correlations in a
double-layer model, at the mean-field level, based on a lattice Coulomb gas formal-
ism. The resultant theory is in the form of a modified Poisson-Boltzmann equation.
We generalized the SPB model beyond its original formulation by Borukhov et al.
to account for arbitrary ionic sizes. Using a numerical code devised to compute the
electrostatics of boundary value problems, the ion density profiles of the SPB model

http://dx.doi.org/10.1007/978-3-319-00900-1_7
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were calculated as function of interfacial potential. The predictions of this sterically
modified PB were tested against x-ray reflectivity data and electrocapillary measure-
ments at the electrified liquid/liquid interface, establishing its utility in describing
steric effects in ion distributions near a moderately charged liquid/liquid interface
and demonstrating its advantages over the Poisson-Boltzmann equation in that same
setting.
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Chapter 6
Molecular Dynamics Simulation of Solvent
Correlations

One of the main challenges encountered in the investigations of the electrical double
layer is the complexity of ion specific effects, especially in regard to quantifying
ion-solvent correlations. This complexity is further accentuated at interfaces, where
ion solvation is inherently connected to the inhomogeneities in the solvent structure.
Often, theories based on statistical mechanics of particles and continuum coarse-
grained models offer simple and somewhat qualitatively correct pictures of solvation
in the bulk [1, 2]. Nevertheless, the predictive power of these models is restricted by
the large number of chemical components normally present in a solution of practical
relevance. Most importantly, ion-solvent correlations in an inhomogeneous system,
e.g. liquid/liquid interface, can only be described properly if the underlying interfa-
cial structure is also accounted for accurately. This by itself is a daunting task, where
most of the progress has been in the description of simple fluids near surfaces [3].
The advent of computer simulations has permitted comparisons between the molec-
ular descriptions of the latter to the analytical models. Furthermore, simulations have
offered a significantly novel and direct methodology to compare molecular models
with experimental results, and in some instances, even facilitating the interpretation
of the latter. The main difficulty in carrying out computer simulations, specifically
classical molecular dynamics (MD), which was solely used in this work, resides
almost entirely in determining the intermolecular and intramolecular potentials to
define the system’s potential energy surface. These potentials, commonly coined
force fields, are often determined from ab initio quantum computations or fitted
against empirical properties of the system at hand. Henceforth, force fields are very
much system dependent and only occasionally transferrable. As outlined in Chap. 1 ,
we will use MD simulations to map out the free energy profile of an ion near the liq-
uid/liquid interface. This is interpreted as the contribution of ion-solvent correlations
to the free energy of the electrical double layer.

The chapter is outlined as follows. We introduce in Sect. 6.1 specifics to the MD
simulation of a water/DCE interface. In Sect. 6.2, we discuss the methodology used to
simulate the solvent potential of mean force (PMF) for a number of atomic ions. The
last section is devoted to determining the force fields of TPFB− and to the simulation
of its solvent PMF.

N. Laanait, Ion Correlations at Electrified Soft Matter Interfaces, 67
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6.1 MD Simulation of a Liquid/Liquid Interface

One of the first MD simulations of a neat liquid/liquid interface was performed by
Benjamin [4]. The picture that emerged from this work and subsequently corrob-
orated by others [5], is that of a liquid/liquid interface that is molecularly sharp
undergoing wavelike distortions, bearing close resemblance to the thermal excita-
tions predicted by capillary wave theory. All the MD simulations reported in this
work were performed using a custom MD code (C-language), courtesy of Dr. Ilan
Benjamin. The water potential used is the flexible SPC (simple point charge) model
[6]. SPC is a three-site interaction model, where each hydrogen and oxygen carry
a partial charge interacting through a Coulomb potential to model the electrostatic
interaction, and oxygen atoms interact through a Lennard-Jones 6–12 potential that
serves to model the van der Waals dispersion forces and repulsions due to electron–
electron interactions, that are both quantum mechanical in nature. The SPC model
reliably reproduces many of the empirical properties of water such as the density
and the dielectric constant, yet does not include many-body interactions such as
polarizability. In fact, none of the force fields we used are polarizable, since no
consensus has formed in the MD simulation literature or community on the proper
way to account for these many-body effects. Furthermore, the modeling of water
is a very active research field, with few force fields able to withstand the scrutiny
of comparison against ever more precise experimental studies [7, 8]. Dang and co-
workers used polarizable force fields for both water and DCE molecules, with their
simulations producing an interfacial structure similar to the one obtained by the use
of the non-polarizable force fields parametrized by Dr. Benjamin and used here. The
non-bonded interactions for both water and DCE molecules are represented by

UNB =
∑

i, j

(
qi q j

ri j
+ 4εi j

[(
σi j

ri j

)12

−
(
σi j

ri j

)6
])

(6.1)

with i indexing atoms (i# j), and the atomic Lennard-Jones (LJ) parameters pre-
sented in Table 6.1. The Lorentz-Berthelot mixing rules are employed to calculate
interactions between atoms i and j ,

σi j = σi + σ j

2
, εi j = √

εi ε j (6.2)

Table 6.1 Partial charges and
Lennard-Jones parameters for
water and DCE models

Atom σ (Å) ε (kcal/mol) q(e)

CH2 3.98 0.114 0.227
Cl 3.16 0.5 −0.227
O 3.17 0.155 −0.82
H 2.81 0.017 0.41
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The DCE force field is represented by a four-site interaction model with the
CH2 groups of the molecule treated as a united atom, due to Benjamin [4]. The
intramolecular potential energy is given by

UB = kCC

2
(rCC − r eq

CC)2 + kCCl

2
(rCCl1 − r eq

CCl)
2 + kCCl

2
(rCCl2 − r eq

CCl)
2 (6.3)

+ kθ
2

(θ1 − θ
eq
CCCl)

2 + kθ
2

(θ2 − θ
eq
CCCl)

2 (6.4)

+ V1

2
(1 + cosφ) + V2

2
(1 − cos 2φ) + V3

2
(1 + cos 3φ) (6.5)

where the first and second lines express bond stretching and bending using a har-
monic potential, where k is a constant and θ1,2 are bend angles ̂CCCl. The third line
represents torsion around the C–C bond using a cosine expansion in the torsional
angle φ. The parameters that enter VB (listed in Table 6.2) are determined by fitting
to the empirical data (gauche/trans ratio and vibrational frequencies).

In the simulation of atomic ions (Sect. 6.2), the water/DCE system was modeled
by a rectangular box in the xy plane, with dimensions 24.8 × 24.8 Å, the oil phase
extends from z = 0 to z ≈ 40 Å, while the aqueous phase reaches z ≈ −26 Å. The
dimensions of the liquid phases are determined from the observed bulk densities for a
system with a total of 500 water molecules and 215 DCE molecules. In the simulation
of TPFB−, its large size required the use of a box with the following dimensions:
50 × 50 Å, with the same length of the liquid phases, as above, giving a total of
2,424 water molecules and 844 DCE molecules (see Fig. 6.1). The intermolecular
interactions are smoothly cutoff at distances larger than half the length of the sim-
ulation box. The truncation of the long-range behavior of the Coulomb potential is
treated using the reaction field correction [9]. The type of modeling discussed, gives
rise to one liquid/liquid interface and two liquid/vapor interfaces, one at each z-edge
of the simulation box. Benjamin has showed that these two liquid/vapor interfaces
negligibly disturb the bulk liquids and consequently the liquid/liquid interface. All
the simulations discussed in this chapter were done using the microcanonical ensem-
ble (constant N , V, E), using a velocity Verlet algorithm to integrate the equations

Table 6.2 Parameters of
bonded interactions of DCE

kCC 620 kcal/mol Å−2

req
CC 1.53 Å

kCCl 464 kcal/mol Å−2

req
Cl 1.787 Å

kθ 88 kcal/mol rad−2

θ
eq
CCCl 108.2◦

V1 −0.24 kcal/mol
V2 0.1 kcal/mol
V3 3.228 kcal/mol
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Fig. 6.1 Snapshot of the molecular dynamics simulation of the water/1,2-dichloroethane interface
in the presence of an ion

of motion [9]. The water/DCE system is usually equilibrated for a few hundred
picoseconds to attain a fixed temperature, using Nosé constant temperature dynam-
ics and velocity rescaling.

6.2 Potential of Mean Force of Na+, Li+, and Cl−

After obtaining an equilibrated liquid/liquid interface, an ion is inserted by replacing
some of the solvent molecules. Since, we only treat atomic ions in this section, the
expression of the potential energy of the system is unchanged, with the sum in (6.1)
running over the ion’s index as well. The only force field parameters that need to be
specified then are the 6–12 LJ parameters, listed in Table 6.3. We choose the ionic
intermolecular potentials that were found in [10] to produce hydration free energies
and first hydration shell structure in reasonable agreement with experimental values.

Two simulation procedures were used depending on the definition of the PMF
employed. In the case of Na+, we used the overlapping windows method used
previously by Benjamin to simulate adsorption energy of inorganic ions near the
vapor/water interface [11], whereby the ion is constrained by a potential in the

Table 6.3 Lennard-Jones
parameters for the simulated
ions

Ion σ (Å) ε (kcal/mol)

Na+ 2.275 0.115
Li+ 1.594 0.133
Cl− 3.934 0.832
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z-direction over a range of 3 Å to sample the system’s phase space in this spatial
region alone. The procedure then is to setup multiple system configurations where
in each configuration the center of the potential is at a different z, allowing for a
1 Å overlap between two subsequents potential windows. Hence, to simulate the
PMF over a region of 40 Å (from bulk to bulk), 20 potential windows are needed.
The advantage of this procedure is that now each configuration undergoes an equili-
bration run and production run, separately on a different processor, thereby generating
a computational load that is colloquially known as embarrassingly parallel. After the
ion is inserted into the potential window, an initial small integration time step on the
order of 10−3 to 10−1 fs is usually needed to start out the equilibration process, since
the position of the inserted ion can be too close to a solvent molecule, producing
very large interaction energies. Afterwards, a time step of 1 fs is used during the
remainder of the equilibration which lasts for 500 ps. After the end of equilibration,
i.e. the temperature of the system has reached the desired value, typically 300 ± 3
K, a simulation run is started where in each potential window we collect sampling
statistics for 2 ns, using a time step of 1 fs. The system’s total energy is monitored
after every 20 ps (at the end of a trajectory) to ensure that it is conserved, typically
rms deviations of no more than 0.1 % are experienced during a simulation. The ion
(one-particle) probability density per potential window is then computed from,

p(z) = 〈e−βUion 〉 (6.6)

where Uion is the potential energy of the ion (Coulomb + 6–12 LJ) and 〈.〉 represents
the ensemble average (average over all trajectories). From the sampling of p(z), we
readily obtain the free energy,

fsolvent(z) = −kT ln p(z) (6.7)

In Fig. 6.2, we plot the free energy for each window. Notice that as the ion approaches
the boundary of the potential window, there is a spike in −kT ln p(z), this could be
traced to the increase in the potential energy of the ion as it “feels” the constraining
potential. The data points at the boundaries have to be eliminated, since these points
are artifacts and do not represent a physically meaningful situation. Furthermore,
note that for windows deep in the liquid bulk phases (z < −17 Å and z > 15 Å)
the free energy is nearly constant compared to the large increases near the interface
(z = 0).

The free energy profile across the interface is obtained by matching −kT ln p(z)
in the region of overlap between every two windows and shifting the entire profile
by a constant so that the free energy is zero in bulk water, as shown in Fig. 6.3. As
expected for a strongly hydrated alkali ion, the free energy starts to increase as the ion
starts to interact with the DCE molecules, while deeper in the bulks the free energy
is constant, reflecting thermodynamic equilibrium. The most stringent test one can
impose on a simulated PMF is a comparison of its bulk value difference to the Gibbs
free energy of transfer. For the sodium ion, the experimental free energy of transfer
is 23 ± 2kB T (Table 3.1) and is in excellent agreement with the simulation result,

http://dx.doi.org/10.1007/978-3-319-00900-1_3
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Fig. 6.2 MD simulated free energy of Na+ in different potential windows across the water/DCE
interface
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Fig. 6.3 MD simulated solvent PMF of Na+. The small-scale structure in the PMF is due to random
fluctuations in the window sampling as shown in 6.2

23 ± 0.5kB T . Nevertheless, the comparison between the PMF bulk difference and
the Gibbs free energy of transfer is not always straightforward as will be discussed
later in the section.

In the free energy simulation of Cl−, the overlapping window method did not
produce a stable free energy profile that converged in bulk phases, as shown in
Fig. 6.4. An inspection of the ensemble averaged solvent density profiles reveals that
excessive mixing of the solvents occurs, greatly distorting the interface as shown
Fig. 6.5, with the ion located 13 Å from the interface.
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Fig. 6.4 MD simulated free energy of Cl− in different potential windows across the water/DCE
interface
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Fig. 6.5 Liquid/Liquid interface profile in the presence of Cl− constrained by a potential window

Several factors could be at play. First, the relatively large size of Cl− could be dis-
turbing the interfacial structure and a larger simulation box needs to be used. Second,
the interaction between Cl− and a DCE molecule may not be properly parametrized,
recall that this interaction was obtained using the mixing rules, while ideally one
would like to derive the force field parameters from empirical data and/or ab initio
computations of a chloride ion in a dichloroethane solvent that are unavailable at the
moment. Third, the constant motion of chloride in the potential window may be caus-
ing the solvent mixing. We did not test the first hypothesis, since a larger simulation
box (four times bigger) is computationally expensive due to the N 2 scaling behavior
of the MD code, where N is the number of particles. Furthermore, we will use a
large simulation box when we simulate the PMF of TPFB−. Also as mentioned, due
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to the lack of empirical and ab initio input we could not further test the Cl−-DCE
interaction parameters. To investigate the effect of the constraining potential on the
simulation, we will use a different methodology to simulate the ionic free energy
profile. This technique is different from the overlapping potential windows used up
to this point, in that instead of constraining the ion to move over a small region, we
completely freeze its spatial motion. The equilibration and production runs proceed
as described earlier. The definition used for the potential of mean force is given by,

Wsolvent(z) = −
∫

dz′〈F(z − z′)〉 (6.8)

where 〈F(z)〉 is the z—component of the total force acting on the center of mass of
the ion due to all N − 1 particles in the system, averaged over all trajectories. Due
to its computational simplicity, we exclusively used this method in all simulations
presented in the remainder of this chapter. In Fig. 6.6, 〈F(z)〉 is plotted for a Cl−
simulation where each data point was sampled for 2 ns, but the force is far from
converged in either bulk. Longer simulation times would have no effect on the force
convergence, since a monitoring of the interaction energy of chloride with the solvent
shows that the latter typically converges in less than 50 ps, as shown in Fig. 6.7. This
indicates that the interface is still significantly disturbed by Cl− either due to its large
size or less than optimal interactions with DCE.

To further test the origin of this instability, we use a soft restoring potential
(= −αz3) that a water molecule would become subject to if its height is less than
0, stopping it from further going into the DCE phase. Consequently this restoring
force avoids the mixing of the two solvents as illustrated in Fig. 6.8, where a series of
simulations were performed as a function of the strength of the restoring potential.

At the highest interaction strength, α = 40kT , the interface is practically a hard-
wall, with the solvent density profiles exhibiting oscillations characteristic of fluids
layering near a hard-wall [12]. At lower interaction strengths,α = 0.2kT, 0.4kT , the

Fig. 6.6 Ensemble averaged
force acting on chloride at
different positions along the
normal to the interface

-20 -10 0 10 20

-0.2

0

0.2

0.4

0.6

0.8

1

Interfacial Height, z (Å)

F
(z

)
(k

ca
l/m

ol
/Å

)



6.2 Potential of Mean Force of Na+, Li+, and Cl− 75

0 500 1000 1500

-200

-100

0

100

200 z_ion=12.02 Å, shifted up by 180 kcal/mol. 

z_ion=  7.02 Å, shifted by 120 kcal/mol. 

z_ion=  0.02 Å, shifted by 60 kcal/mol. 

z_ion= -6.98 Å.

Simulation Time (ps)

U
in

t (
kc

al
/m

ol
)

Fig. 6.7 Interaction energy of water and Cl− at different positions along the normal to the interface,
monitored over the simulation run
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Fig. 6.8 Solvent density profiles at different interaction strengths of the water restoring potential

solvent density profiles resemble those of a stable water/DCE interface [4]. Further
decrease in the interaction strength,α < 0.2kT , produced density profiles resembling
those in Fig. 6.5. The PMF simulation procedure outlined above was performed at
these same restoring potentials, with the resultant free energy profiles shown in
Fig. 6.9.

The PMF obtained are well-behaved and converge to a constant value in both bulk
phases. The simulated free energies of transfer are at odds with the experimental
value, 12.66 ± 0.8 kcal/mol (Table 3.1) with �Wsolvent ≈ 16 kcal/mol with minimal
variation between the three PMFs. The most noticeable difference between the three
cases is the sharp increase in the free energy at z ≈ −5 Å but diminishes in magnitude
as α becomes smaller. We can conclude that the overall structure of the potential of
mean force has been converged by tuning the strength of the restoring potential.

http://dx.doi.org/10.1007/978-3-319-00900-1_3
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Fig. 6.9 Cl− PMF using different interaction strengths of the water restoring potential

Using thermodynamic integration of a hydrated ion in water and in DCE, Rose and
Benjamin [13] showed that the free energy of transfer is highly dependent on the
number of water molecules within a cluster for small hydrophilic ions such as Li+
(see below). For larger ions such as Cl−, there is less of a dependence. Nevertheless,
the correspondence between the Gibbs free energy of transfer and the PMF in the
case of Cl− is ambiguous due to the disturbance that ion transfer impinges on the
interface. In addition, we can infer from the MD results of [13], which used the same
force field parameters for the solvents and the ion as in this work, to produce Gibbs
energies of transfer in good agreement with the data, that the Cl−-DCE interaction
are well parametrized, at least in the bulk. A PMF simulation of Cl− by Wick and
Dang [14], using polarizable potentials for the solvents and the ion, produced results
that structurally resembled ours but with the free energy difference in agreement
with the experiments, and was used in our calculations of ion density profiles (see
Chap.4).

We have also carried out simulations of the PMF of Li+, which showed no dis-
turbance of the interface, similar to results of Na+, further justifying our claim that
the large mixing of the solvents is probably correlated with the size of the ion being
transferred across the interface. The Li+ PMF simulation proceeded as described
earlier with a close monitoring of the interaction energy between the ion and water
to determine force convergence as shown in Fig. 6.7. To determine the effect of
hydration shells on the free energy profile, we have performed two simulations,
one with a restoring potential (α = 40kT ) and one without. The results shown in
Fig. 6.10 are in agreement with the simulated free energies of transfer in Fig. 6 of
[13], where �G ≈ 60 kcal/mol for the transfer of a bare Li+ ion to be compared
with �Wsolvent = 64 kcal/mol for α = 40kT . In the case of no restoring potential,
�Wsolvent = 28 kcal/mol, an inspection of the radial distribution function g(r) when
Li+ is located at z = −12.6 Å (Fig. 6.11), a position at which Wsolvent(z) has almost
reached its bulk value, reveals that the ion is solvated on average by approximately
1−2 water molecules in its first hydration shell, a snapshot from the MD simulation

http://dx.doi.org/10.1007/978-3-319-00900-1_4
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Fig. 6.10 Li+ PMF at the water/DCE interface, with and without a restoring potential
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Fig. 6.11 Radial distribution functions of oxygen and hydrogen around a central Li+ located at
z = −12.6 Å in DCE

also confirms this picture Fig. 6.12. For a cluster that contains 2 water molecules +
Li+, �G ≈ 30 kcal/mol from [13], in excellent agreement with the PMF value.

6.3 Potential of Mean Force of TPFB−

Force field parameters of TPFB− consist of defining the Lennard-Jones parameters
(ε,σ) for each constituent atom (C,F,B), partial charges for Coulomb interactions,
and intramolecular interactions. Since, the crystal structure of TPFB− is known, equi-
librium bond properties that enter the force field are determined by averaging over the
crystal structure values (r eq

BC, r eq
CF, r eq

CC, θ
eq
CBC, θ

eq
BCC, θ

eq
CCF in Table 6.4) . The harmonic

force constants that define bond stretching and bending, involving combinations of
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Fig. 6.12 Snapshot of the MD simulation with the ion located at z = −12.6 Å in DCE. For clarity,
the size of the ion (purple) was magnified

C and F atoms (kCF, kCC, kCCF, kCCC in Table 6.4) are readily available in force field
libraries such as the general Amber force field [15], and were used as is. No force
field parameters involving boron were found though, due to its uncommon use in
simulation of organic and biological compounds. Hence, the bond stretching constant
of the C–B bond (kBC )was determined from a vibrational analysis using Gaussian03
[16], the quantum model employed was second-order Moller-Plesset perturbation
theory (MP2) in the aug-cc-pVDZ basis, a description of the computational details is
given below. Since, boron enters in all bonded interactions that define the geometry
of TPFB− in the simulation, its corresponding parameters (kCBC and kCBC) were
set to preserve the equilibrium tetrahedral structure. Consequently, the bending con-
stant of the C–B–C angle was tentatively set to be approximately equal to that of
its counterpart for the C–C–C, with the equilibrium angle, ̂CBC, set to be that of a
tetrahedral, given that the crystal structure average (̂CBC = 107.55◦) is very close
to that geometry. The torsion potentials, VF−C−C−C, are chosen to keep the fluorine
atoms in the plane of the flurophenyl rings and VC−C−B−C to maintain the tetrahedral
equilibrium configuration, as illustrated in a snapshot from the simulation (Fig. 6.13).
In Table 6.4, we summarize the parameters that enter the intramolecular potentials, in
the quadratic potential approximation (6.5), to model bonded interactions of TPFB−.

The intramolecular potentials of TPFB− have a small contribution to the overall
ion interaction energy compared to the Coulomb and Lennard-Jones interactions.
Hence, accurate parametrization of the latter is necessary, especially for the C and F
atoms . The Lennard-Jones parameters for aromatic carbon and fluorine were taken
from the amber force field [17], while those of boron are taken from the literature
[18], shown in Table 6.5. Several LJ parameters for C and F were tested, with the ones
from the Amber force field producing the best agreement with the experimental free
energy of transfer, while varying (εB,σB) did not affect the results of the simulation.
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Table 6.4 Parameters of
Bonded interactions of
TPFB−

kBC 631.74 kcal/mol Å−2

req
BC 1.66 Å

kCF 368.70 kcal/mol Å−2

req
CF 1.35 Å

kCC 589.70 kcal/mol Å−2

req
CC 1.38 Å

kCBC 100.0 kcal/mol rad−2

θ
eq
CBC 109.47◦

kBCC 200.0 kcal/mol rad−2

θ
eq
BCC 113.4◦

kCCF 67.8 kcal/mol rad−2

θ
eq
CCF 119.50◦

kCCC 69.8 kcal/mol rad−2

θ
eq
CCF 120.0◦

VF−C−C−C 9 kcal/mol
VC−C−B−C 90 kcal/mol

Fig. 6.13 Snapshot of the TPFB− MD simulation

Table 6.5 Partial charges
and Lennard-Jones
parameters for TPFB−

Atom σ (Å) ε (kcal/mol) q(e)

F 3.50 0.061 −0.145199
C 3.816 0.086 0.079332
B 3.543 0.095 1.2 × 10−5

The atomic partial charges of TPFB− were computed using the CHELPG algo-
rithm implemented in the computational chemistry package NWCHEM [19]. The
CHELPG algorithm consists of assigning a charge qi to atom i in a molecule, then
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using a monopole expansion to calculate the resultant electrostatic potential (ESP),

VESP(r) =
nuclei∑

i

qi

|r − ri | (6.9)

VESP is then compared to the “true” molecular electrostatic potential, V (r) defined
by,

V (r) =
nuclei∑

i

Zi

|r − ri | −
∫

dr′�(r′) 1

|r − ri |�(r′) (6.10)

where Zi is the atomic number of nuclei i , and �(r′) is the electronic wavefunc-
tion of the molecule. The difference between VESP(r) and V (r) is minimized by
fitting the partial charges qi . This is done in the CHELPG algorithm by setting up
a grid around the surface of the molecule and calculating the distribution of VESP
[20] at these mesh points. A significant drawback of this method is the insensitiv-
ity of the electrostatic potential on the value of the partial charge of an atom that
is far from the molecular surface. For instance, in the case of TPFB−, a straight-
forward CHELPG computation of the partial charges gives a large charge on the
boron of 2.62 e, which needs to be compensated by the carbons bonded to it, caus-
ing the latter to have an average charge of −0.8 e (see list in the appendix 7.4).
Since such a distribution of charges would generate unrealistically high Coulomb
interactions in the MD simulation, we choose to constrain the charge of the boron to
zero. Also, to not overcomplicate the force fields, we constrain the carbon (fluorine)
atoms to have the same charge. This is justified by the tetrahedral symmetry of the
molecule and to force carbon atoms farther away from the van der Waals molec-
ular surface to have reasonable charges. The partial charges obtained are listed in
Table 6.5. The quantum computations were done using Moller-Plesset’s second-order
perturbation theory (MP2) in the Hartree-Fock theory (HF) [21]. HF theory ignores
electron-electron correlation, thereby assuming that an electron interacts only with
the electrostatic field due to the N − 1 electrons in the system, and gives an elec-
tronic energy equivalent to Moller-Plesset first-order perturbation. MP2 introduces
electron-electron repulsions, that originate in the (full) Schrödinger Hamiltonian, as
a perturbation. This scheme is found to give more accurate electrostatic potential
distributions than HF, with the MP2 computed moments in good agreement with
empirical data. Of crucial importance is the basis or atomic orbitals used to do the
quantum calculations. We used the aug-cc-pVDZ basis [22], which are a large col-
lection of Gaussian functions, producing 25 functions per atom, using the following
polarization (4s3p2d) to ensure that bonding and electric field properties are prop-
erly described. The aug-cc-pVDZ basis sets represent the state the art in correlated
quantum calculations and ensure that moments calculated from the CHELPG are at
least in close agreement with empirical data, which in the case of TPFB− is lacking.
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Fig. 6.14 TPFB− simulation at the water/DCE interface without a restoring potential. a Ensemble
averaged force over 1.7 ns. b Averaged Interfacial density profile with ion located at z = 13.7 Å. c
Interaction energy of TPFB− with water over 1 ns, zion = 13.7 Å

MP2/aug-cc-pVDZ produce a dipole moment of 0.015886 (a.u) and a quadrupole
moment tensor (Qxx = −1.930683, Qyy = 1.299866, Qzz = 0.6301817), given
here as a future reference.
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Fig. 6.15 TPFB− simulation of the average force acting on the center of mass of the ion with a
restoring potential
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Fig. 6.16 TPFB− Solvent free energy profile simulated at the water/DCE interface

With the force field parameters defined by Tables 6.4 and 6.5, the PMF MD simu-
lation proceeds as described earlier. The ion is inserted into the simulation box, 500
ps equilibration run ensues. Then the ion’s center of mass is translated by 1 Å in the
z-direction, at each new position a 500 ps equilibration run is performed with the
solvents’ molecules initial configuration given by the previously equilibrated sys-
tem. This continues until we have a series of equilibrated boxes with ionic positions
spanning bulk water to bulk DCE. Then at each fixed z, with the molecular ion’s spa-
tial degrees frozen, we collect sampling statistics for 2 ns. The ensemble averaged
force (over the last 1.7 ns of the simulation), and solvents density profile presented
in Fig. 6.14 are reminiscent of the simulation of Cl−. Such a behavior is expected,
in light of the discussion in Sect. 6.2. Even though a simulation box with four times
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the surface area is used, we expect that a much larger TPFB− with diameter of 10
Å would create significant distortions as seen in Fig. B. This is further confirmed by
looking at the interaction energy of TPFB−-Water, in Fig. C, where the latter did not
converge even over the span of 1 ns.

Unfortunately, due to the prohibitively expensive scaling of the simulation as N 2,
and a 2 ns simulation time (per position) requiring 408 h of processor time, we were
unable to further increase the size of the system. Instead, we use a restoring potential
to maintain a relatively stable water/DCE interface during the PMF simulation. The
strength of the restoring potential was tuned with the interfacial profile monitored, this
produced a minimum interaction strength of 0.25kT , below which excessive mixing
occurs. It is worth noting that a simulation of TPFB− in a smaller MD box like the one
we used for the atomic ions, necessitated the use of a much higher restoring potential
strength (>1kT ) to avoid excessive solvent mixing. With the strength of the restoring
potential fixed, a series of simulations are undertaken with the resultant average force
as a function of distance along the interfacial normal shown in Fig. 6.15, exhibiting
convergence in both bulks. The solvent PMF obtained from the force data is given in
Fig. 6.16, where �Wsolvent = 26.0 ± 0.5kT , is in agreement with the experimental
value of �G = 29.3 ± 2 kT , indicating that the MD PMF can predict properties
of the TPFB− at the water/DCE interface that are accurate. The issue of the PMF
predicting correct ion-solvent correlations will be addressed in Chap. 7.

6.4 Concluding Remarks

The simulated solvent free energy profiles represent a convenient and compact
method to account for ion-solvent correlations in a free energy formalism of the
electrical double layer. In the next chapter, it will be shown that fsolvent(z) is not only
a necessary ingredient for a proper, and as it turns out accurate, description of ion
distributions in the presence of strong electrostatic ion correlations, but is crucial to
extract physically sensible results from ion-ion correlation models.
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Chapter 7
The Role of Electrostatic Ion Correlations
in Ion Condensation

In the past decade, significant theoretical progress has been made in understanding
the regime where electrostatic ion correlations dominate in a classical Coulomb fluid,
i.e., the strong-coupling limit (SC). The SC models are often based on the picture of
a 2-dimensional ionic layer near the charged surface due to Rouzina and Bloomfield
[1]. These authors proposed that the character of electrostatic correlations amongst
counter-ions near a charged surface is 2-dimensional rather than 3-dimensional.
Hence, within this proposed picture, in the limit of zero temperature, the ground
state of the counter-ions is given by the well-known Wigner crystal. Shklovskii and
co-workers [2, 3] applied this idea to the study of correlations by assuming that
the chemical potential of the Wigner crystal (extrapolated from MC simulations)
describes the chemical potential of the condensed ionic layer even for non-zero
temperature. These authors found that the diffuse tail of the density profile falls expo-
nentially instead of an inverse power law as in the case of the Poisson-Boltzmann
solution. Subsequent field-theoretic approaches to this 2d bound state were initiated
by Netz and others [4, 5], giving qualitative agreement with Shklovskii’s model, and
offered a systematic derivation of the one-particle densities through a virial expan-
sion in the inverse coupling constant � = 2πq3�2

Bσ, where q is the charge carried
by the counter-ion, �B is the Bjerrum length, and σ is the surface charge density.
The resultant expansion in � is asymptotically exact and may offer the possibil-
ity of exact interpolation between the weak coupling limit of the PB theory and
the SC regime. Excellent agreement is found between the SC field-theory and MC
simulations as shown in the references above. Aside from the SC models discussed
above, there is a long tradition of treating ion correlations using density functional
theories with the correlation free energy extrapolated from the MC simulation of
a one-component plasma developed by Stevens and Robbins [6] or from Debye-
Hückel-like theories put forth by Penfold and coworkers [7] that are often based on
the idea of a “correlation hole” to correct for the unphysical behavior of the DH den-
sity near the origin. The most popular model based on a correlation hole is that due
to Nordholm [8] and is commonly called the Debye-Hückel-Hole theory of a one-
component plasma, within which a correlation free energy can be exactly calculated
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using the process of Debye charging [7]. The density functional theories in Refs. [6,
7] are in the local density approximation (LDA). However, one-component plasma
models are known to become unstable at large densities or large Bjerrum lengths.
Hence,weighted density approximations (WDA) were used to avoid this instability
[9–11]. Integral equations of liquid state theory were the first to show that like-charge
attraction is due to ion correlations and are very powerful and accurate models [12–
14] producing agreement with simulation and macroscopic data of surface forces
[15] and surface excess charge [16]. However, a number of approximations enter
the construction resulting in complicated theories that are known to produce “no
solution” regions. All of the above models consider a structureless dielectric back-
ground, thereby neglecting the effects of solvent correlations. Hence, comparison of
the theoretical results has been mostly limited to Monte Carlo simulations. The chem-
ical specificity of ion interactions with a charged surface [17] and the complexity
of solvent mediated effects [18] in a typical strongly correlated system, complicate
the connection between theory and data. Therefore, an experimental analysis of SC
models where ion–solvent interactions are adequately described is highly desirable.
In this chapter we provide direct comparisons between the predictions of the DHH
model, implemented using a weighted density approximation, and x-ray reflectivity
measurements, as well as surface excess charge. In Sect. 7.1 we present a treatment
of the DHH model. In Sect. 7.2 we use the latter in a WDA, in conjunction with
solvent correlations simulated from MD simulation (see Chap. 6). In the last section,
the prediction of this model is compared against the data.

7.1 The Debye-Hückel Hole Theory

The one-component plasma (OCP) model is a collection of N point charges with
charge e in a rigid neutralizing continuum background with dielectric ε and volume V .
We fix an ion at the origin r = 0 and derive how the remaining ions are distributed
about it. The potential due to an ion at the origin, is given by the Poisson equation

∇2φ = −4π

ε
ρ(r), (7.1)

whereρ is the charge density. This system is one of the simplest Coulomb systems one
can study characterized by only two length scales, the Bjerrum length �B = βe2/ε,
and the mean nearest-neighbor separation d = 3/(4πnb)1/3, where nb = N/V is
the bulk density. These two length scales form a coupling constant � = �B/d that
measures the strength of the interaction in the system. The charge density is given by

ρ(r) = e(nbg(r) − nb), (7.2)

where the first term on the right hand side is the charge due to the ions and the second
term is due to the negatively charged background. The average electrostatic potential

http://dx.doi.org/10.1007/978-3-319-00900-1_6
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vanishes in this system. However, the inhomogeneity in the ion distribution around
the central ion, given by the radial distribution g(r) produces a nonzero electrostatic
free energy. In fact, ignoring all interactions but the electrostatic one, g(r) is given by

g(r) = e−βW (r), (7.3)

where W (r) the potential of mean force, which we approximate by eφ(r), where as
in Eq. (7.2), φ(r) is the electrostatic potential due to the central ion. Note that this
approximation ignores electrostatic correlations due to the ionic atmosphere around
the central ion. Since ρ(r) is now defined we could insert it into Eq. (7.2) to obtain
the Poisson-Boltzmann equation. Since no analytic solution exists for the latter in a
spherical geometry, Debye and Hückel linearized the exponent in Eq. (7.3) to obtain
an equation that only depends on φ(r) [19], ρ(r) = −βenbφ(r) putting this into
Poisson’s equation we find,

∇2φ = κ2φ(r), (7.4)

where κ = (4πe2nb�B)1/2, is the inverse Debye screening length. The solution of
the Helmholtz equation (7.4) gives the DH potential,

φ(r) = e
e−κr

εr
. (7.5)

Consequently, the charge density is given by ρ(r) = −κ2 exp[−κr ]/4πr , and we
immediately notice that while ρ(r) should be bounded from below ρ(0) ≥ −enb, we
have ρ(r) → −∞ as r → 0. This pathology is easily traced to the linearization of
the Boltzmann factor which is valid only for small deviations from the bulk density
nb. To correct this problematic behavior, Nordholm [8] postulated the existence of a
correlation hole of radius s around the central ion, where co-ions are totally excluded.
Note that in the DH theory of the OCP, the co-ions are being pushed away from the
central ion, at large ρ(r) this ultimately leads to negative n(r), clearly an unphysical
result. The correlation hole is then the byproduct of the strong repulsion between
the co-ions surrounding the central ion. A repulsion that is energetically costly to
overcome. In the region outside the hole, r > s, the linearization should still hold with

the electrostatic potential now given by C
e−κr

r
, with C a constant that is determined

from the continuity of ρ(r) at r = s. Fixing the constant gives the following charge
density distribution,

ρ(r) =
{ −enb, r < s,

−enbse−κ(r−s)/r, r ≥ s,
(7.6)

The radius of the correlation hole is found by imposing charge neutrality,

4π
∫

drr2ρ(r) = −e, (7.7)
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producing,

s = 1

κ
(ω − 1),

ω = (1 + 3�Bκ)
1/3. (7.8)

The dependence of the correlation hole on � given by the expression in (7.8) con-
forms to the expectation of the interplay between kinetic and potential energy. For
instance, in the limit � → ∞, s → d, with � representing an inverse temperature we
expect that the internal energy of an ion is composed almost entirely of electrostatic
energy with the ions strongly correlated and equivalently generating an exclusion
region around the central ion, of radius equal to the average ion–ion distance. In the
opposite limit of high temperature, � → 0, s → �B and the electrostatic repulsion is
comparable to the thermal energy. Given the charge density, the electrostatic poten-
tial is easily solved and can be found elsewhere [20], with the potential due to the
ionic atmosphere given by ψ = −kB T/2e(ω2 − 1). The free energy per particle,
f DHH due to correlations in the OCP can be calculated exactly by Debye charging
the co-ions,

β f DHH = βe
∫ 1

0
ψ(λe)dλ (7.9)

= 1

4

(
1 + 2π

3
√

3
+ ln

(
ω2 + ω + 1

3

)
− ω2 − 2√

3
tan−1

(
2ω + 1√

3

))

(7.10)

This free energy per particle could then be used in a density functional theory to find
the optimum density profiles. An important observation with a serious consequence
for the density functional approach and the thermodynamics of the OCP plasma is the
asymptotic behavior of f DHH. In the limit of large densities, equivalently large �, the
−ω2 term dominates over the other terms in Eq. (7.10). The free energy density then
behaves as −nω2, i.e, n f DHH ∼ −n4/3 clearly not a convex function, yet meta-stable
results are found if n(z) does not cross some critical density as described in [11].
Nonetheless, it can be shown that this non-convexity can lead to negative pressures
[21]. This thermodynamic instability is not restricted to the DHH model alone but
is a general feature of a one-component plasma (e.g. from MC simulations) with the
pressure becoming negative at � > 3 leading to a collapse, because a decrease in the
volume is accompanied by a decrease in the electrostatic correlation free energy, and
the entropy can no longer compensate for this inward force. This negative pressure
is ultimately caused by ignoring the pressure due to the background. Levin in [20]
proposed a way to deal with this instability that depends on the physical system at
hand. In our application of the DHH theory of a OCP to a liquid/liquid interface this
problem is bypassed by accounting for solvent correlations.
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7.2 A Density Functional Theory of Ion Correlations

To describe ion correlations in the double layer of the 10 mM NaCl (H2O)/5 mM
BTPPATPFB (DCE) system, we use a density functional theory developed by Penfold
et al. [7], and Stevens and Robbins [6], but amended here to account for MD simulated
solvent correlations [22, 23]. We consider the grand potential per unit area to be
composed of an ideal (Poisson-Boltzmann) contribution FPB and an excess free
energy due to correlations,

β

A
�[n+, n−] =

∑

i=+,−

(
β

A
�PB[ni ] + β

∫
f sol
i (z)ni (z)dz

)

+ β

A
F ion[n−(z)], (7.11)

where �PB[n±] is the grand potential due to the (±) ion given in Eq. (2.1), consisting
of the ideal gas entropy, the electrostatic interaction, and the chemical potentials.
Note that for z > 0 or z < 0, (+) denotes Na+ or BTPPA+ and (−) denotes
Cl− or TPFB−. To describe the specific interactions of an ion with the solvent, we
have introduced the free energy profile per ion i , f sol

i (z). These were MD simulated
for Na+ and TPFB−, and presented in Chap. 6. Since we are mostly interested in
potentials where BTPPA+ and Cl− are largely depleted from the interfacial. The
solvent free energy profile of Cl− was MD simulated by Wick and Dang [24] and
is used here as is, while f sol of BTPPA+ was fitted to interfacial excess charge
assuming some functional form that mimics the MD simulated profiles [25]. We only
include ion correlations for TPFB− due to the following considerations. Owing to
the small dielectric constant of the oil phase εo = 10.43, there is a strong electrostatic
interaction between monovalent TPFB− ions, characterized by the coupling strength
� ≈ 4, where d ≈ 1.5 nm is the mean nearest-neighbor separation at the interface
for the highest probed potential (�φ = 0.406 V), and the Bjerrum length �B =
βe2/εo ≈ 5.5 nm in DCE at T = 296 K. The correlations of BTPPA+ are not
included, as mentioned above, its interfacial density is orders of magnitude less than
that of TPFB− (for instance, see Fig. 4.6). Moreover, due to the dilute bulk density
in the oil phase, nb = 10−6 ions/Å3, the strength of the interaction is weak with
� = 0.89. In the aqueous phase ion correlations are negligible, the Bjerrum length
is much smaller �B ≈ 0.7 nm, hence � 	 1 by virtue of the presence of monovalent
ions. In fact the Bjerrum length of monovalent ions in DCE is approximately equal
to that of trivalent ions in water!

Minimization of Eq. (7.11) proceeds as before (see Chap. 2), ignoring ion corre-
lations for the moment (F ion = 0),

http://dx.doi.org/10.1007/978-3-319-00900-1_2
http://dx.doi.org/10.1007/978-3-319-00900-1_6
http://dx.doi.org/10.1007/978-3-319-00900-1_4
http://dx.doi.org/10.1007/978-3-319-00900-1_2
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β

A

δ�[n±]
δn±

= β

A

δ�PB[n±]
δn±

+ β

∫
f sol± (z)

δn±(z)

δn±(z′)
dz

= ln(�3n±) + β
(
±eφ(z) − μ± + f sol± (z)

)
. (7.12)

Solving for n±, we find that the optimal density profile of Na+, Cl−, and BTPPA+
is given by

n±(z) = nb exp
(
β

(
∓eφ(z) − f sol±

))
. (7.13)

To find the density profile of TPFB− including ion correlations, we use the Debye-
Hückel-Hole theory (DHH) of the homogeneous OCP derived in the previous section.
To account for the inhomogeneity in the system using a density functional theory,
one can use the local density approximation (LDA) nb → n−(z) in Eq. (7.10) to
obtain f DHH(n−(z)). However for large densities or large Bjerrum lengths there is
an instability in the computation of n−(z) within the LDA, known as a “structuring
catastrophe” [7]. The origin of this instability is due to the asymptotic behavior
of the correlation free energy discussed at the end of the last section. Specifically,
during the computation of n−(z) within the LDA an increase in the local density is
accompanied by a decrease in the excess chemical potential, which in turn increases
the local density even more, this proceeds ad infinitum and in the words of Barbosa
et al. “the overall system collapses to a point.” [11], who also derived a critical density
as a function of ion valency in water, beyond which the instability takes place. In
our computations of the density profiles at the electrified liquid/liquid interface, the
structuring catastrophe occurs at potentials higher than 180 mV, when the TPFB−
density reaches a value of 0.5 M. To circumvent this, Groot [9] suggested using
the DHH correlation free energy within a weighted density approximation (WDA)
[26, 27], i.e., f DHH(n̄−(z)), where n̄−(z) is the weighted density defined by,

n̄−(z) =
∫

n−(z′)w
(|z − z′|, n−(z)

)
dz′, (7.14)

where the weight function w depends on the local density and smoothes out any
sharp fluctuations in the latter when calculating the excess chemical potential. Note
that the inverse Debye length is now also a function of the weighted density, as well
as the quantities it enters, i.e, s, and ω (see Eq. (7.8)). An expression for the weight
function was originally derived in [9] based on consistency with the particle correla-
tion functions of the homogeneous system. By comparison of the second variation of
the free energy of the inhomogeneous DHH plasma to the direct correlation function,
Groot arrived at the following w-function [9],

w(r) = 3

2πs2

(
1

r
− 1

s

)
�(s − r) (7.15)

with s the radius of the correlation hole defined in Eq. (7.8). Since Eq. (7.15) depends
on the radial coordinate r , we need to project it on the z-axis to apply it in a planar
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geometry. Applying the definition in Eq. (7.14) to n̄(r) and using the polar coordinates
(ρ,φ)

n̄−(z) =
∫

dz′n−(z′)
∫ 2π

0
dφ

∫ ∞

0
ρ dρ w(

√
ρ2 + |z − z′|; n(z))

= 2π
∫

dz′n−(z′)
∫ ∞

0
ρ dρ

3

2πs2

(
1√

ρ2 + |z − z′|2 − 1

s

)
�(s −

√
ρ2 + |z − z′|2)

= 3

s2

∫
dz′n−(z′)

∫ √
s2−|z−z′ |2

0
dρρ

(
1√

ρ2 + |z − z′|2 − 1

s

)

= 3

s2

∫
dz′n−(z′)

(√
ρ2 + |z − z′|2 − ρ2

2s

) ∣∣∣∣
ρ=

√
s2−|z−z′|2

ρ=0

= 3

2s3

∫
dz′n−(z′)

(
s − |z − z′|)2

. (7.16)

The same expression was arrived at in [10] (Eq. (29)) using a quadrature. The
weighted density now defined, we can derive the density profile of TPFB− from
Eq. (7.11) by minimization with respect to the local density n−, with the correlation
free energy given by

F ion[n−(z)] =
∫

n−(z) f DHH(n̄−(z))dz, (7.17)

we find,

n−(z) = nb exp[β(eφ(z) − f sol− (z) − μion(z))],

μion(z) = δF ion

δn−(z)

= f DHH(n−) +
∫

dzn−(z)
δ f DHH(n̄−)

δn−
. (7.18)

Since the excess chemical potential due to ion correlations, μion depends on
n− through Eq. (7.14), to calculate the ion distributions, Poisson’s equation and
Eqs. (7.13), (7.16), and (7.18) are numerically solved to self-consistency and define
what we call the PB/MD/DHH model. The solution to Poisson’s equation, the electro-
static potential φ(z), satisfies the same boundary conditions used in
p. xxx. The algorithm used to self-consistently solve for the density profiles for
the NaCl/BTPPATPFB system from the PB/MD/DHH model is the following:

• Choose nguess
− (z), for z < 0.

• Find s(nguess
− (z)) from (7.8).

• Compute n̄−(z) from (7.16) with n−(z) → nguess
− (z).

• Find f DHH(n̄−(z)).
• Compute μex from (7.18).
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• Define Poisson’s equation with n−(z) given by (7.18) and n+(z) given by (7.13)
for z < 0 and n± defined by (7.13) when z > 0.

• Solve Poisson’s equation using PBSolve.
• The solution of Poisson’s equation φ(z), is used to find n−(z)sol, again using

(7.18).
• If max{|n+(z)sol − nguess

+ (z)|} < Tolerance, then the computation has
converged.

• If max{|n+(z)sol − nguess
+ (z)|} > Tolerance, then nnew guess

+ (z) ≡ n+(z)sol and
the loop is repeated.

A few notes about the above algorithm (code included in the appendix): (a) For fast
convergence nguess

− (z) at a potential �φ1 can be taken to be the density profile at that
same potential from (7.13) that defines the PB/MD model where no ion correlations
are present, (b) the code scans a list of differences between the guess and the solution
at each z, after the max value is found it is compared to the convergence criterion or
the tolerance. We choose a tolerance of 10−6M, this produces an approximate error
of 0.1 % in nb used in the computation, and less than 10−4 % in the maximum value
of n−(z). In the next section, we compare the density profiles to the x-ray reflectivity
measurements and the interfacial excess charge.

7.3 Experimental Tests of the PB/MD/DHH Theory

In this section, we compare the ion density profiles predicted by the models dis-
cussed in the last section, to the excess surface charge data and XR measurements of
the 10 mM NaCl/5 mM BTPPATPFB. The electrochemistry of this system is similar
to the 100 mM NaCl system presented in Chap. 3. Interfacial measurements deter-
mined a potential of zero charge of 0.374 V [25] with respect to which, all interfacial
potentials �φ discussed are referenced. In Fig. 7.1, the ion concentration profiles
are illustrated. The PB/MD model that only includes f sol for each ion and ignores
electrostatic ion correlations predicts TPFB− density profiles with a relatively long
diffuse tail, with a peak concentrations increasing with increasing potential. The
high free energy cost for TPFB− to approach the interface due to unfavorable inter-
actions with the water as shown in Fig. 6.16, the ion density peaks at about a/2,
where a = 1 nm is the ion’s van der Waals diameter and decreases rapidly past that
point. With ion correlations added to this model as described in the last chapter, the
PB/MD/DHH model predicts TPFB− ion density profiles qualitatively and quanti-
tatively different than the PB/MD model, characterized by a fast falling diffuse tail
in qualitative agreement with other SC models such as Shklovskii’s Wigner Crystal
model [3]. Much higher densities are predicted by PB/MD/DHH by comparison with
the PB/MD model, reflecting the basic fact that electrostatic ion correlations produce
a system configuration that is energetically lower than a configuration where those
correlations are not included. This translates into more ions condensing onto the
polarized interface.

http://dx.doi.org/10.1007/978-3-319-00900-1_3
http://dx.doi.org/10.1007/978-3-319-00900-1_6
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Fig. 7.1 Ion concentration profiles predicted from the PB/MD/DHH (DHH) model and the PB/MD
(MD) model at all interfacial potentials probed
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Fig. 7.2 TPFB− reduced
density profiles predicted
from the PB/MD/DHH model
as function of interfacial
height at different potentials
and coupling constants. The
ion diameter a = 10 Å
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Progressively higher densities of TPFB−, as illustrated in Fig. 7.2 are predicted
as systematic polarization of the interface increases the coupling constant � from a
weakly correlated system � ≈ 1 to a strongly correlated one with � ≈ 4 at the highest
potential �φ = 0.406 V. However, the reduced density never quite reaches 1 or close
packing indicating that the system is not close to the regime where overcharging
(i.e enhancement of BTPPA+) would start to occur. Ion correlation energies reach
approximately 4 kB T with the functional form of the excess chemical potential also
reflecting the energetics due to solvent correlations. Since, the highest value of the
electric field is at z = 0, one would expect that μion(z) would have a minimum at
that z, yet unfavorable interactions with water forces the TPFB− layer to get as close
to the interface as possible gaining electrostatic energy before solvent correlations
become too penalizing (Fig. 7.3).

We first test the predictions of PB/MD/DHH against the interfacial excess charge
measurements (see Chap. 3 for an outline on how these measurements are performed).
As described in Sect. 5.5, we integrate the theoretical density profiles to find the inter-
facial charge σ. This thermodynamic measurement serves to constrain global electro-
static properties of the theoretical models. Poisson-Boltzmann theory predicts σ(φ)

Fig. 7.3 Excess chemical
potentials due to ion cor-
relations as a function of
interfacial height at different
potentials
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Fig. 7.4 10 mM NaCl inter-
facial excess charge data and
theoretical predictions
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that effectively diverges at �φ > 0.3 V, as shown in Fig. 7.4. This is a clear indication
that excluding solvent correlations makes the PB theory ill-conditioned to predict
electrostatics at the electrified liquid/liquid interfaces. This conclusion is similar to
the one arrived at in Sect. 5.5 with regards to the 10 mM LiCl/5 mM BTPPATPFB
system, and later corroborated by x-ray reflectivity measurements. Correcting PB
with solvent correlations (PB/MD) through the density functional formalism, with
the latter modeled with the help of MD simulations, an idea originally introduced by
Luo et al. in [22, 23], gives a well-behaved σ(φ) though it underestimates the data
starting at �φ > 0.246 V. In light of the discussion above, this is quite expected,
for potentials higher than 0.246 V, the system is becoming strongly correlated with
� > 2 and there is a dire need to address electrostatic correlations that allow for
more ions at the interface. Remarkable agreement between the PB/MD/DHH model
and the data exists at all potentials suggesting that the Debye-Hückel Hole theory
properly describes ion correlations and consequently that of ion distributions. Note
that no adjustable parameters enter any of the theoretical models.

Fitting to the x-ray data involves calculating the electron density profile ρ(z) from
the ion density profiles n(z), as described in Sects. 4.2, and 5.5. In addition to probing
dρ(z)/dz, XR is also sensitive to interfacial thermal fluctuations (see Sect. 4.1),
hence this interfacial roughness constitutes the only fitting parameter involved in
comparing theoretical density profiles to the data. The fitted roughness values (4.2–
4.9 Å) of all the simulated XR curves in Figs. 7.5 and 7.6 are within 2 s.t.d (±0.4 Å)
of the interfacial widths predicted from capillary wave theory as shown in Table 7.1,
calculated using potential-dependent interfacial tension measurements [28, 29]. This
relatively small deviation, between fitted values and a model that has been proven to
successfully predict interfacial thermal fluctuations offers strong evidence that the
quality of fits shown below between data and PB/MD/DHH (within the available Qz

range) is due to a proper accounting of the system’s electron density profile.
In agreement with the macroscopic measurements, the XR data shows that PB/MD

correctly predicts ion density profiles at �φ < 0.246 V when the correlation strength
is < 2 kB T (see Fig. 7.5), but at higher potentials when stronger TPFB− correlations
are present, it underestimates the interfacial density of the latter, as a result predicting
lower reflectivity as illustrated in Figs. 7.6 and 7.7. At larger potentials, we fix the
PB/MD roughness to be that of the fitted values obtained for PB/MD/DHH, allowing a
meaningful comparison between the predictions of the two models. Note that fitting

http://dx.doi.org/10.1007/978-3-319-00900-1_5
http://dx.doi.org/10.1007/978-3-319-00900-1_4
http://dx.doi.org/10.1007/978-3-319-00900-1_5
http://dx.doi.org/10.1007/978-3-319-00900-1_4
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Fig. 7.5 10 mM NaCl XR data and reflectivity predictions of the PB/MD/DHH and PB/MD models
for �φ ≤ 0.246 V and μion ≤ 2 kB T
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Fig. 7.6 10 mM NaCl XR data and reflectivity predictions of the PB/MD/DHH and PB/MD models
for �φ ≥ 0.286 V and μion > 2 kB T

Table 7.1 The potential dependent interfacial roughness of the 10 mM NaCl system: capillary wave
theory and fits to the X-ray data

Capillary wave theory (Å) PB/MD/DHH (±0.20 Å) PB/MD (±0.20 Å)

�φ = 0.406 V 5.23 4.91 4.91
�φ = 0.346 V 4.92 4.53 4.53
�φ = 0.286 V 4.74 4.30 4.30
�φ = 0.246 V 4.61 4.32 4.35
�φ = 0.174 V 4.54 4.21 4.09
�φ = 0.006 V 4.44 4.38 4.40
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Fig. 7.7 10 mM NaCl
XR data and reflectiv-
ity predictions of the
PB/MD/DHH and PB/MD
models at �φ = 0.406 V and
μion ≈ 4 kB T
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the roughness for PB/MD does not produce substantially better qualitative fits to
the data, but results in extremely small roughness values (≈3 Å) necessitating large
bending rigidities on the order of 100 kB T . The PB prediction greatly overestimates
the data starting at 0.286 V, indicating that the PB interfacial density is much larger
than what occurs in the system. A recurring feature of the PB application to an
electrified liquid/liquid interface, as shown in previous systems (Sects. 4.2, 5.5 [30]).
Reflectivity curves simulated from the PB/MD/DHH model show good agreement
with the reflectivity data at all potentials, capturing the essential trend of the data,
and properly describing the ion density profiles. It is noteworthy that PB/MD/DHH
produces R/RF curves higher than those of PB/MD; a direct consequence of the
fundamental result that electrostatic correlations allow for more ions to condense on
a charged surface.

We note that we ignored TPFB−-Na+ correlations across the interface, due to lack
of SC models, to the best of our knowledge, that treat ion–ion correlations across a
dielectric discontinuity. Nevertheless, these two ions (and all others in the system)
interact in a mean-field way through the electrostatic potential φ(z). However, such
correlations might lead to a more compact double layer [31] and may be responsible
for the small deviations at high Qz between the PB/MD/DHH model and the XR data
for the highest potentials. Comparison of the thermodynamic data and XR data of the
10 mM LiCl system against the PB/MD/DHH predictions is shown below in Figs. 7.8
and 7.9, respectively. Also of note is the approximation that f sol is independent of
�φ, while current data is well described within this approximation, perhaps the
slight deviation between PB/MD/DHH and the data at the highest potential for high
Qz in the case of the 10 mM NaCl data, and the overestimation of the R/RF peak
amplitude for the 10 mM LiCl data at the highest potential, may be an indication of
the limitation of this assumption and/or of the DHH model.

http://dx.doi.org/10.1007/978-3-319-00900-1_4
http://dx.doi.org/10.1007/978-3-319-00900-1_5
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Fig. 7.8 10 mM LiCl inter-
facial excess charge data and
theoretical predictions
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Fig. 7.9 10 mM LiCl XR data
and reflectivity predictions of
the PB/MD/DHH
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7.4 Conclusion

We presented structural and macroscopic measurements at the electrified liquid/liquid
interface that stringently tested the Debye-Hückel-Hole model of ion correlations in
a weighted density functional approximation. We found that this model properly
accounts for ion correlations up to a correlation strength of 4 kB T , with density pro-
files in agreement with XR data and global electrostatic properties in accord with
thermodynamic measurements. Therefore, the physical mechanism responsible for
the monovalent ion condensation first presented in Chap. 4, and eluded the analy-
sis therein and that of Chap. 5 based on including steric effects of the double layer,
is finally identified with strong ion–ion correlations. However, note that the excess
chemical potential derived in this section is in qualitative agreement with the phe-
nomenological potential of mean force (Fig. 4.4) found in Chap. 4. Key to the analy-
sis presented in this chapter was the inclusion of specific ion–solvent interactions
simulated from MD dynamics that allowed us to quantify the interfacial structure
that an ion “sees”. The density functional theory presented here is not limited to a

http://dx.doi.org/10.1007/978-3-319-00900-1_4
http://dx.doi.org/10.1007/978-3-319-00900-1_5
http://dx.doi.org/10.1007/978-3-319-00900-1_4
http://dx.doi.org/10.1007/978-3-319-00900-1_4
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liquid/liquid interface and should be applicable in other settings such as ion corre-
lations near charged biomolecules or charged solid surfaces. Moreover, this theory
may be extendable to treat dense strongly-coupled systems where the ion–solvent
correlations are necessarily a function of density, i.e. f sol [n±].

This comparison between the density profile predictions of a strong coupling limit
model and XR measurements is a first in the study of ion correlations near charged
surfaces and does offer a significant insight to the study of electrical double layers. A
significant contribution of the work presented resides in the conclusion that the rich
complexity of interactions found in charged soft matter systems cannot be passed
over in empirical investigations of electrostatic ion correlations. Furthermore, The
coupling strength � for ion correlations in this work is comparable to that for trivalent
ions in aqueous solution and we expect that these results will also be relevant for that
situation with direct applicability to biophysical settings.
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Chapter 2

Atomic coordinates of the compound BTPPATPFB, as obtained from x-ray powder
diffraction measurements, in XYZ format:
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Chapter 4

We derive the functional derivative of the electrostatic self-energy, |∇φ(r)|2 used in
the derivation of the sterically modified Poisson-Boltzmann Eq. (4.67).

δ|∇φ(r′)|2
δφ(r)

= 2
δ

δφ(r)
(∇φ(r′)).∇φ(r′) (1)

= 2∇ δφ(r′)
δφ(r)

.∇φ(r′) (2)

= 2∇δ(r′ − r).∇φ(r′) (3)

= −2δ(r′ − r)∇2φ(r′) + 2∇.(δ(r′ − r)∇φ(r′)) (4)

= −2δ(r′ − r)∇2φ(r′) (5)

We apply the chain rule in the 1st line. In the 2nd line, we exchange the order of
the functional derivative and the gradient with respect to r′. In the 4th line, we use
the chain rule once more. Since the whole expression appears under an integral, the
second term on the right of line 4th vanishes once we use the divergence theorem,
giving the desired expression.

In the following, we take an in depth look into PBSolve. We include the INPUT,
DEFINITIONS, MODELS sections used for a 1-phase system. For a 2-phase system,
the main difference is in the Code (algorithm) section used to solve the double layer
model, which we also reproduce.

PBSolve for electrolyte in contact with charged surface

Version: 4
Author: N. Laanait
First Modified: 10/02/2009
Last Modified: 10/22/2010
Note: the code is fully parallel. Uses a max of 8 processors. But works fine for < 8.

http://dx.doi.org/10.1007/978-3-319-00900-1_4
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Chapter 5

Partial Charges of TPFB− computed using CHELPG algorithm without any con-
straints.
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Chapter 6

Mathematica Code to solve the ion density profiles using the WDA of a DHH plasma.
The Poisson equation solver used is PBSolve, see Chap. 4 appendix for its outline.

http://dx.doi.org/10.1007/978-3-319-00900-1_4
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