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! Preface

The first edition of this series on the nervous system as a target organ was published in 1992. This
edition reviewed methodological approaches to detect and quantify the effects of chemicals at vari-
ous levels of neurobiological organization (i.e., behavioral, neurophysiological, neurochemical, and
neuropathological). The first edition also included chapters on newly emerging areas such as devel-
opmental neurotoxicology, neurotoxicology risk assessment, and methods to evaluate neurotoxic-
ity in humans. The evolution of neurotoxicology as a discipline could be seen clearly in the second
edition published in 1999. The second edition contained chapters on emerging in vitro approaches
to study effects of chemicals on the nervous system. Other chapters emphasized potential sites of
action such as neuron—glial interactions, ion channels, the immune system, the endocrine hormone
system, and neurotrophic factors during development. Other chapters focused on putative modes
of action such as metabolic influences, apoptosis, and the formation of reactive oxygen species. The
second edition also included a chapter on the use of brain imaging techniques to evaluate neurotox-
icity in vivo. There was also a summary of approaches to evaluate learning and memory as neuro-
toxic endpoints and methods to assess neurotoxicity in children. This volume finished with a
chapter on emerging concepts for quantitative neurotoxicology risk assessment.

The current edition on the nervous system as a target organ reflects the continued growth
and refinement of the field of neurotoxicology over a 10-year period. Included in the current
edition is a chapter devoted to principles of behavioral phenotyping of neonatal and adult
mice, an important topic for those interested in working with inbred mouse strains, outbred
mouse stocks, or genetically modified mice in neurotoxicological research. Recent developments
concerning design-based stereology and video densitometry for the assessment of neurotoxico-
logical damage are also included. The current edition pays considerable attention to the potential
of newly developed methods such as network analysis and emerging molecular approaches to
identify potential neurotoxicants and their modes of action. The current edition also describes
new advances in understanding the long-term impact of chemicals on the development of the
thyroid hormone system and the potential relationship between disruption of the endocrine
system and reproductive senescence. As in the case of the second edition, there are chapters
that expand upon potential sites of action for neurotoxicity, including adult neurogenesis and
the dopaminergic neurotransmitter system. The current edition also describes exciting new
developments concerning the role of inflammation in the expression of neurotoxicity and the
complex compensatory changes that follow damage to the central nervous system both in vivo
and in slice cultures. Chapters on the role of neurotoxicants and the manifestation of obesity
and the effects of neurotoxins on brain tissue and function revealed through in vivo magnetic
resonance imaging and spectroscopy round out the third edition.

The evolution of neurotoxicology as a discipline is clearly documented in the three editions
spanning a period of nearly 20 years. The first edition focused primarily on how to measure
neurotoxic effects on the nervous system and identified emerging trends such as developmental
neurotoxicity. The second edition reflected the development of new methodologies to identify
sites and modes of action of neurotoxicity and described approaches to understand risk to
humans of exposure to neurotoxic chemicals. The current edition builds on the two previous
editions by exploring the potential use of molecular approaches to screen chemicals for potential
neurotoxicity, developing approaches to understand the complex interactions of chemicals with
biological systems, and providing the basis to study the relationship between neurotoxicant
exposure and the emergence of diseases such as obesity and reproductive senescence. In spite of
the tremendous advances that have made over the last 20 years, the discipline of neurotoxicol-
ogy is still in its infancy. Hopefully, the information provided in this and the previous editions
will stimulate current and future students and researchers to study how the nervous system
functions and how it responds to chemicals with potentially toxic effects.

G. Jean Harry
Hugh A. Tilson
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1 | Molecular Approaches to Identify Specific
Modes of Action for Neurotoxicity In Vitro

Ram Ramabhadran and Steven 0. Simmons

Genetic and Cellular Toxicology Branch, Integrated Systems Toxicology Division, National Health and Environmental
Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, U.S.A.

William R. Mundy

Systems Biology Branch, Integrated Systems Toxicology Division, National Health and Environmental Effects Research
Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, U.S.A.

INTRODUCTION

Advances in molecular biology in the last two decades have produced a powerful set of tools
for the analysis of structure, function, and internal dynamics of eukaryotic cells, both in vitro
and in vivo. The ability to clone genes, measure their expression, and to assess their function by
modulating the expression of the native gene or their mutant versions introduced into cells, are
the central driving forces for this technological revolution. The confluence of these molecular
techniques with the similar developments in cell biology, allowing the isolation and cultivation
of cells in vitro in primary cultures, has greatly impacted our understanding of biology of dif-
ferentiated cells from various mammalian organs including the brain. Despite the contribu-
tions of these complementary approaches to the study of basic cell biology and their successful
applications to drug discovery, their use to address the questions of toxicology lags behind. A
recent report released by the National Research Council of the National Academy of Sciences
(U.S.A) titled “Toxicity Testing in the 21st Century: A Vision and a Strategy” (1), places great
emphasis on the use of in vitro assays, preferably using human cells in culture, in its vision of
the future of toxicity testing as an alternative to the time- and resource-intensive methodologies
currently used. This chapter highlights advances in molecular tools in the context of basic biol-
ogy of neuronal cells, discusses their extant applications to neurotoxicology, and addresses
their future applicability. While the application of the molecular tools in vitro forms the focus
of this review, it should be recognized these same tools have been vital to studies at the whole
organism level, notably through the creation of transgenic and knockout animal models (2-4),
which will be discussed only as is relevant to the in vitro approaches or applications. Further,
advances in recombinant DN A-based expression of proteins in heterologous organisms such as
Escherichia coli and yeast have resulted in their use as antigens for the production of monoclonal
antibodies highly specific to these proteins; these have been vital tools for immunohistochemical
studies of cells in vitro as well as in vivo. However, this has been a well-established technology for
well over a decade and will not be discussed in this review.

NEUROTOXIC MODES OF ACTION AT THE CELLULAR LEVEL

In vitro molecular approaches promise to have an increasing impact in neurotoxicology research
as the focus moves away from apical tests of neurologic function in animals and towards an
understanding of the sequence of key biological events that result in neurotoxicity (i.e., the
mode of action). At the cellular level, mode of action may be defined as a series of key events
starting with interaction of a chemical with a molecular target site and leading to perturbation
of the normal physiological function of the cell. Mode of action data can be used to develop
biologically-based dose response models and improve the ability to extrapolate data between
species. The ability to manipulate and measure the interaction of genes and proteins at the
cellular level will contribute to our understanding of how chemicals with known actions at
neuronal targets (e.g., receptors, ion channels, cytoskeletal proteins) alter critical cellular path-
ways, ultimately resulting in adverse effects on the nervous system. It can also facilitate the
neurobiological study of cellular networks and signaling pathways underlying normal nervous
system function, and allow the identification of new modes of action for neurotoxicity.
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Elucidating the mode of action of a neurotoxicant at the cellular level can be a daunting task
considering that the nervous system consists of a heterogeneous population of cells exhibiting
diverse phenotypes. This complexity, however, serves one major function: the transmission of
information between and within cells. Thus, neurotoxicity at the cellular level can be considered
in light of how chemicals interfere with the molecular mechanisms of neural signaling. To carry
out this role, cells of the nervous system are specialized in terms of their morphology and bio-
chemistry. Unique morphological features of neurons include relatively long axonal processes
ending with pre-synaptic terminals and complex dendritic processes containing post-synaptic
densities, both of which support the pre- and post-synaptic machinery for neurotransmission.
This morphology is supported by neuron-specific proteins that make up the cytoskeleton and
transport system required to move cellular components to and from these relatively distant sites
(5). Biochemically, neurons are highly enriched in the enzymes necessary for neurotransmitter
synthesis, release, uptake, and degradation. Neurotransmitters act at cell surface receptors to
activate ion channels that are responsible for fast synaptic transmission between cells. In addi-
tion, neurotransmitter- and trophic factor-activation of cell surface receptors engage second mes-
sengers and intracellular signaling pathways that regulate normal physiological processes
including neurotransmitter release, neuronal survival and growth, and synaptic plasticity (6).

The morphological and biochemical specialization of neurons that support the transmission
of information provides a multitude of molecular target sites for chemicals (7). Ultimately, neuro-
toxicity results from the interaction of a chemical with one or more of these molecular targets. This
interaction can be due to the recognition of the toxicant’s chemical structure at some physiological
binding site or to the reactive nature of the chemical structure itself. An example of the first case
is the action of domoic acid as an agonist at the kainate and alpha-amino-3-hydroxy-5-methyl-4-
isoxazole propionic acid subclasses of ionotropic glutamate receptors to result in excitotoxicity
(8). In the second case, a chemical can interact with cellular macromolecules (protein, lipids, DNA)
to result in catastrophic damage [e.g., adduct formation between 2,5-hexanedione and cytoskel-
etal proteins to leading to axonal degeneration (9)], or alter the molecular structure in such as way
as to affect normal neuronal function [e.g., interaction of the pyrethroid insecticides with the o
subunit of the voltage sensitive calcium channel resulting in prolonged depolarization (10)].

Neurotoxicants are structurally diverse, ranging from simple ions (10) or solvents (11) to
complex naturally occurring substances (e.g., brevetoxins) (12). In light of the structural diver-
sity of toxicants and the multitude of potential cellular target sites relating to neural signaling,
it would appear to be an impossible task to identify the specific biochemical interactions of
every chemical that leads to neurotoxicity. In contrast, an understanding of the key components
of pathways that regulate normal neuronal functions will help to identify those that, when suf-
ficiently perturbed by chemical exposure, produce neuronal damage or dysfunction. At one
end of the spectrum are pathways that respond to levels of toxicant exposure that result in
lethal cell injury. This would include the trophic factor pathways that promote cell survival
(13), stress response pathways (14,15), and apoptotic pathways (16,17). At the other end of the
spectrum are pathways that are more specific to the regulation of neural signaling. Examples of
such pathways include those that regulate neuronal differentiation and growth (18-20), path-
ways that regulate the development and maintenance of axons and dendrites (5,21,22), path-
ways that regulate neurotransmitter release (23,24), and pathways involved in synaptogenesis
and synaptic plasticity (25,26). Using an approach that focuses on normal regulatory pathways,
it may be possible to identify general principles of dysregulation that are common to a diverse
array of chemical structures. In other words, there are likely common modes of action at the
molecular level that result in an adverse effect on cellular structure or function. For example,
the neurotoxicant Pb?* can substitute for other polyvalent cations (principally Ca** and Zn?**) at
multiple molecular sites in neurons such as ion channels and the signal transduction enzymes
protein kinase C and calmodulin (27). These multiple sites of action, however, can converge on
cellular pathways regulating axonal and dendritic growth and synaptic plasticity (28,29). Simi-
larly, recent work has demonstrated that structurally diverse toxicants which cause subtle alter-
ations in redox potential converge on a Fyn kinase pathway and alter neural progenitor cell
division (30). These examples highlight an important aspect of mode of action studies at the
cellular level: Toxicant-induced changes in critical biochemical pathways were associated with
structural or functional effects in the cell that can be considered adverse. As discussed below,
in vitro neural preparations provide models for both the molecular and genetic manipulation
of regulatory pathways and cell-based assessment of neurotoxicity.
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UTILITY OF IN VITRO MODELS

Faced with the immense complexity and cellular heterogeneity of the nervous system, in vitro
model systems have been an indispensable tool for elucidating mechanisms governing both the
normal development and function of the brain and those underlying disease states. The rea-
sons for this include the ability to ask questions of a specific cell type in isolation and the ability
to control the environmental conditions and variables of interest. Of course, the power of
in vitro models is also the weakness since the nervous system does not consist of cells in isola-
tion, and its very purpose is to communicate with other cells in a coordinated fashion. It is clear,
however, that the responses of neural tissue in isolation can often predict that observed in vivo.
Even with the constraints imposed by growth conditions in vitro (e.g., physical constraints of
the culture vessel, artificial substrate and growth medium, lack of afferent and efferent connec-
tions), at the cellular level, neurons and glia in culture are remarkably similar to those in vivo.
From differentiation and development of polarity to the organization of the cytoskeleton, the
ion channels and receptors expressed, and the characteristics of synaptic communication, neu-
ral cells in culture resemble their counterparts in situ in both structure and function. Thus,
neuronal cells in vitro provide a model system that is ideal for asking questions about those
molecular pathways that regulate normal cell function and respond to perturbation by chemi-
cal exposure. The ability to finely control culture environment also facilitates the ability to
manipulate these molecular pathways using genetic approaches.

A variety of in vitro preparations have been successfully developed and employed to
address specific questions of cell biology and nervous system function (31-33). The use of
in vitro techniques for the assessment of neurotoxicity has been the subject of recent
reviews (34,35). Model systems of differing complexity provide the opportunity to examine
cellular and molecular interactions at a number of levels. Developing brain tissue from differ-
ent regions can be cut into slices that will survive in culture with preserved spatial, structural,
and synaptic organization. These are termed organotypic slice cultures and can be maintained
for several weeks. Organotypic slice cultures from hippocampus, cortex, and cerebellum have
been used to study mechanisms for brain development, neurodegenerative disorders, and
chemical neurotoxicity (36-38). In many cases organotypic cultures provide direct access to
neurons for single-cell analysis, a feature that makes this model attractive for electrophysiolog-
ical recording. Electrophysiological recording of long-term potentiation using hippocampal
slice cultures have been used to understand chemical-induced effects on the cellular and molec-
ular mechanisms of information storage (39). Primary neural cell cultures consist of dispersed
cells that have been dissociated from nervous system tissue. When maintained under the
appropriate culture conditions primary cells will acquire the properties of mature cells and
attain a phenotype that is similar to that of cells from the brain region from which they were
derived (40). Thus, neural cells with properties useful for assessing a particular molecular tar-
get or cell function can be obtained by choosing the appropriate source of cells. A comparison
of properties exhibited by different neuronal culture systems can be found in (41). Although
preparations of primary neuronal cultures can contain a predominant neuronal cell type (e.g.,
sympathetic neurons from the superior cervical ganglia, granule cell cultures from post-natal
cerebellum) many preparations are a mixture of different neuronal populations. Pure neuronal
cultures can be obtained using defined media which prohibit the growth of glial cells or by add-
ing an anti-mitotic agent to the medium during the first days in culture. A mixed glial/neu-
ronal co-culture will result if these steps are not employed. Primary cultures have a limited
lifespan (typically days to weeks), and it is not possible to expand neuronal cell populations in
culture. Thus, new cultures must be prepared from nervous system tissue on a regular basis. A
continuous source of neural cells can be obtained by using cell lines, a term applied to a defined
population of cells that can be maintained in culture for an extended period of time. Cell lines
are usually clonal, meaning that the entire population originated from a single common ances-
tor cell. A number of neuronal cell lines are available (42) and many have been used as in vitro
models in neurobiology (43,44). Neuronal cell lines have been derived from tumors, including
pheochromocytomas (45) and neuroblastomas (46,47). The PC-12 cell line of rat origin and SH-
SY5Y cell line of human origin are salient examples of such cell lines that have been routinely
used in in vitro studies to elucidate basic neurobiologic principles and mechanism of chemical
action (48-50). More recently, cell lines have been generated using oncogene-containing retro-
viruses (51). The introduction of oncogenes from the myc family into primary neural cells can
result in neural cell lines that are immortalized while retaining many of the characteristics of
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the original cell population (43). Cell lines have a number of advantages as in vitro models.
They provide a homogenous population of cells, are relatively easy to grow using standard tis-
sue culture plastic and media, and can be induced to differentiate into a non-dividing cell with
many of the characteristics of a neuron (52).

An emerging in vitro model with great potential is the stem cell, derived from rodents or
preferably from human sources (53,54). Based on their functional properties of self renewal and
multipotency (i.e., the ability to generate both neurons and glia), human neural stem cells are
being widely considered as a potential therapy for neurodegenerative diseases (55-58). How-
ever, there is also great potential for their use in drug discovery and in toxicity screening
assays (59,60), particularly those addressing developmental neurotoxicity. The use of human
neuronal cells provides the opportunity to extend observations from rodent neurons to human
neurobiology and thereby can be helpful in extrapolation of toxicity to humans. Stem cells are
broadly divided into two types: embryonic, derived from developing human embryos, or
somatic/adult, derived from adult tissues including the brain (54). There is, however, a great
ethical debate regarding the use of human embryonic stem cells in research and therapy (61-63).
The situation is relatively simpler with stem cells derived from adult tissues and these are
available from commercial vendors. Although stem cells represent an ideal system for studying
neurotoxicity in vitro, the realization of their full potential in this and other applications is
hampered by experimental difficulties that remain to be resolved. For instance, despite their
pluripotency or multipotency, the ability to derive homogenous population of a differentiated
cell type remains difficult and involved, and the degree of desired differentiation is low and can
vary between experiments (64-68). Maintenance of stem cells requires expensive substrates
and complex media with growth factor supplementation (65,66,69). These requirements add to
the cost and variability inherent to the cell system itself, making the use of stem cells in routine
in vitro research somewhat daunting, especially for screening assays.

A caveat in the use of established cell lines is to be aware that the same cell line main-
tained under the same generic name in different laboratories often behaves very differently
from each other due to differences in both the number of passages and the methodological dif-
ferences between laboratories (70). While there is little that can be done to harmonize the
numerous cell lines that are used under the same name in laboratories all around the world, it
is prudent to minimally establish experimentally that the cells maintain the phenotypic fea-
tures that led to their selection as the model for the phenomenon under study. A second prob-
lem is that, often slow growing cell lines may also be contaminated with other more robust cell
lines grown alongside in the laboratory (70). Thus, where possible, cell lines should be obtained
from established cell banks such as the American Type Culture Collection (ATCC: http:/ /www.
atcc.org/) or similar organizations dedicated to the archiving and distribution of cell lines.

The ability to genetically manipulate cells, be it to create screening assays or to define the
mode of action of toxicants, provide many advantages that go far beyond the use of cells to
biochemically measure molecular changes resulting from toxicant exposures. Genetically mod-
ified cells provide unique opportunities to address questions that would be difficult or impos-
sible to answer through the traditional biochemical approach. Thus, the ability to introduce
genes into cells in vitro has been the ramrod of many of the studies in cell biology for the last
decade or more (71,72). However, from a neuroscience perspective, despite the availability of
primary neuronal cells and established cell lines which exhibit neuronal phenotypes, applica-
tion of many of the molecular tools to neurobiology was limited by the difficulty in genetically
manipulating these cells. Several methods of gene delivery to cells in culture have been devel-
oped for transient and stable expression of exogenous genes (discussed further in the next
section). These methods fall into two classes, namely, physio-chemical methods and viral vec-
tor methods (71,72). Both methods enable gene delivery to cells but at varying efficiencies
depending on the method employed and the cell line of interest. These methods are collectively
known as “transfection” generally for physicochemical methods, and as “transduction” or
“infection” when using viral vectors. The exogenous gene construct and its components are
referred to as “transgenes.”

Cells of neuronal origin, primary or established, have proven to be some of the most
recalcitrant to transfection and this has resulted in a lag in the advancement of the study of
cellular neuroscience, which is in contrast to cells derived from most other organ systems where
transfection techniques were relatively more effective (73). Many of these difficulties have now
been overcome through recent advances in physicochemical and viral delivery methods and
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these are discussed below. Complementarily, the newer techniques such as transcriptomics
and proteomics that do not require genetic manipulation of cells have been applied to neuronal
systems on par with other organ systems. The power of genomic studies in vitro can be
enhanced by the use of appropriate controls using genetically manipulated cells, and further
genetic manipulation of cells can be vital to validation of genomics/proteomics-based
hypotheses. Together, these techniques have contributed to spectacular advances in cellular
neuroscience and these are being translated to in vitro neurotoxicology.

GENETIC MANIPULATION OF GENE EXPRESSION

Developments in molecular biology have provided a set of tools to alter cellular gene expres-
sion in targeted fashion by the expression of exogenous protein coding genes in cultured cells
including neurons (73,74). Introduction of endogenously expressed genes under the transcrip-
tional control of constitutive or inducible promoters, releases them from the natural regulators
of their expression in the cell, permitting studies of protein function. In this context, elucidation
of function is usually enhanced by the expression of mutant versions of the endogenous protein
in a parallel experiment, which can also serve as a control in some cases (if the mutant version
does not have dominant negative properties as described in a later section). The mutant ver-
sions of the protein may differ by single amino acid changes that alter some or all of a protein’s
activity, or by deletion of amino acids comprising one or more domains relevant to the function
under study. Alternately, expression of genes foreign to the mammalian cell such as reporters
(e.g., coral fluorescent proteins, firefly luciferase) (75) under the control of constitutive, induc-
ible, or tissue and developmental stage-specific promoters (76) allows the development of
screening assays as well as aids in mode of action studies. The end goal of the manipulations
and the specifics of the genetic constructs used differ depending on the nature of the experi-
ment. Promoter elements that direct the expression of the exogenously added gene are critical
components of experimental design and the choice or promoter for a specific set of experiments
is dictated by the question that is being addressed.

Gene Delivery into Neurons and Glia In Vitro

The techniques for gene delivery, known as transfection, fall into two basic catego-
ries: (i) physico-chemical methods, and (ii) viral vectors as shown in Table 1. Chemical methods
involve the delivery of naked DNA or DNA complexed with agents such as charged polymers
or cationic lipids to cells. Electroporation, microinjection, and biolistic (gene gun) delivery are
the primary physical methods (71,77). Electroporation involves subjecting cells to an intense
electric pulse leading to the creation of temporary “pores” in the cell membrane permitting the
entry of DNA molecules from the surrounding medium into the intracellular space. Electropo-
ration works efficiently only with single cell suspensions, and is a method of choice for trans-
fection of mouse embryonic stem cells for creation of transgenic mice (4). Microinjection, as the
name suggests, involves the injection of DNA into individual cells using a fine needle and a
micromanipulator set up and is performed under a microscope. This technique is laborious and
hence not practical for use in cell culture experiments where large numbers of cells need to be
modified, but is used extensively in the injection of DNA into embryos to create transgenic
animals (2,3). Biolistic gene delivery relies on the ability of accelerated metal particles to enter
cells and deliver the DNA which has been pre-complexed onto the fine particles derived from
inert metals, mainly gold. The biolistic approach can be used to deliver genes to cells in tissue
explants, although effective gene delivery is limited to superficial layers of the explanted tissue
slice (71,78,79).

The chemical-based methods originated with the discovery over two decades ago that
complexation of DNA with cationic polymers such as diethylaminoethyl (DEAE) dextran
increased its uptake by mammalian cells. Cationic compounds increase DNA uptake by masking
the negatively-charged sugar-phosphate backbone of the DNA molecule. It was also shown that
DNA incorporated into calcium phosphate precipitates could efficiently enter certain mamma-
lian cell types. However, the toxicity of the DEAE dextran approach and the intra-laboratory
and intra-experimental variability of the calcium phosphate technique prompted the search for
more efficient materials to deliver DNA with limited toxicity (71). At this time, several com-
mercially available reagents of the cationic lipid genre (e.g., Lipofectamine™, Fugene™) pro-
vide an easy-to-use means of introducing nucleic acids (both DNA and RNA) into mammalian
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Table 1 Methods for Introducing DNA into Neuronal and Glial Cells
Class Method Advantages Disadvantages Comments

Chemical Calcium phosphate Rapid, inexpensive
No DNA size limit

Transient expression

efficiency

Inter-experiment variability

Cytotoxicity

Lipofection Relatively expensive Transient expression
Simple, rapid

No DNA size limit
Less cytotoxic

Ideal for slice cultures

No DNA size limit

efficiency

Physical Biolistic

Transient expression

Cytotoxic

Restricted to superficial
layers

Directed to specific cells Laborious,

No DNA size limit Transient expression

Microinjection

Needle induced cell death
Need for special equipment

Low throughput
Electroporation Works for many cell
No DNA size limit High level of cell death

Optimization to cell type

required
Viral Several (Table 2)  Access wide range of cell Laborious to produce
types Can be cytotoxic?

Efficient delivery (~100%) Safety concerns?
Persistence of expression?

Low, cell-type dependent

Low, cell-type dependent

Need for special equipment

Cells need to be in suspension
types Need for special equipment

Older method, less
used

Standardized
commercial
preparations
available

Useful in plant cell
transformation

Used in transgenic
animal production
for injecting
embryos

Used extensively in
transducing mouse
embryonic stem
cells for knockout
model production

Extremely useful for
transducing primary
neurons

aDepends on the specific viral vector.
Source: Compiled from Ref. 71, 73, 77.

Table 2 Comparison of Viral Vectors for Neuronal Transduction

Property Retrovirus Lentivirus Adenovirus Adeno- Herpes
associated
virus
Neuronal transdution - ++ ++ +++
Ease of vector production +++ +++ + +
Gene payload (kb) 8 8 82 30°
Persistence of expression Long/short°® Very long Transient Long Transient
Integration into genome + + - -
Expression of viral proteins - - + +
Cytotoxicity ¢ None None Cytotoxic None Cytotoxic
Insertional mutagenesis + + - -

a30kb for “gutless” version which are considerably more difficult to produce.
®Amplicon version payload 15kb, see Ref. 73 for details.

°Expression prone to silencing, hence can be shorter.

dAt reasonable multiplicities of infection (vector particles/cell).

cells in culture with relatively low toxicity. These reagents permit transfection efficiencies
upwards of 80% in many established and primary cell lines; however, the efficiency of transfection
varies significantly among cell types, especially among primary cell cultures. The optimal ratio
of DNA to the lipid reagent has to be empirically determined for each cell type line (71). One of
the chief advantages of the physico-chemical methods of transfection is that there are no
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restrictions on the size of the DNA fragment, notably artificial chromosomes from yeast and
bacteria of 100 to 1000kb, that can be inserted (80). The limitations on the size of transgene
termed “payload” is one of the restrictive features of viral vectors discussed below and is lim-
ited to about 50kb at best or lower (72). The ability to analyze large fragments of DNA is critical
for the delineation of regulatory regions of gene promoters that usually span many kilobases. Def-
inition of the minimum required elements and the resultant shortening of the promoter permit
their more efficent use in routine studies using physico-chemical or viral delivery methods.

Typically, although a higher percentage of cells transfected using physico-chemical methods
take up DNA and express the transfected gene, this expression is transient for a period of 48 to
72 hours after which cells lose the transfected DNA. Analysis of gene expression during this time
window is referred to as “transient transfection” experiment. In a low percentage of the cells how-
ever, (usually <1%) the exogenous DNA integrates into the chromosome (genome) and will remain
stably integrated (71). Cells with integrated copies of the transgene are clonally selected using
selection markers that are incorporated into the DNA construct. These markers, usually tran-
scribed from a different promoter than the gene of interest, confer resistance to antibiotics such as
neomycin, puromycin, or hygromycin, which kill the cells that do not harbor the transfected DNA.
Isolated single clones or a pool of such clones that continue to express the transgene are referred
to as “stably transfected” (71). While transient expression studies are rapid, establishment of sta-
ble clones is time consuming requiring weeks to months, but provide the opportunity to perform
long term experiments without the loss of expression of the transfected gene and reduced
experiment-to-experiment variability when compared with transiently transfected cells.

The cell type-dependent variability of efficiency physico-chemical methods of transfection
makes them very difficult to use universally, especially with primary cell cultures where the
method often causes toxicity. In contrast, viral vectors provide an efficient method for introducing
genes into mammalian cells, particularly neurons (72,73). Viral vector systems capitalize on the
facility of viruses to efficiently introduce and maintain their genomes in mammalian cells. The
cytotoxic and disease-causing genes in the viral genome are deleted and replaced with regulatory
and coding sequences needed for the expression of a foreign protein resulting in a “viral vector”
that transfers the transgene to the transduced/infected cells, usually at high efficiencies (in many
cases close to 100%). Depending on the viral vector used, the expression can be short-lived or long-
lived. A number of DNA and RNA viruses have been modified along these lines to create viral vec-
tors: however, from a neuronal cell perspective, vectors derived from adenovirus, adeno-associated
virus (AAV), retrovirus (oncoretroviruses and lentiviruses), and herpes virus have the broadest
utility (72,73,81-85). Each vector system has its advantages and limitations, chief among which are
the size of the transgene or “payload” that can be encapsidated, its persistence in the cell and the
cytotoxic perturbations caused by the viral-component-related gene expression. The properties of
the various viral vectors are listed in Table 2. It is not possible to review all these systems in detail
here and the references cited above should be consulted for details. The review by Craig (73) pro-
vides an extensive discussion of the adenoviral, AAV, and herpes viral vectors that have been used
in many neuronal cell studies. Lentiviral vectors are a newer class of vectors that were in early
stages of development at the time the review by Craig appeared. The lentiviral vector system is a
welcome addition to the vector arsenal as it has properties overall well-suited for use in differenti-
ated cells such as neurons. The use of lentiviral vectors in neurobiological studies, both in vitro and
in vivo, has been on the rise significantly over the last five years. Established lentiviral vector sys-
tem components can be obtained commercially for vector construction in the laboratory and
several companies provide lentiviral production services.

Lentiviruses are members of the retroviridae family along with their cousins the oncoret-
roviruses such as Moloney leukemia virus which have been used extensively in human gene
therapy trials over more than a decade (83,84). Retroviral particles contain a diploid RNA genome
that upon entry into the host cell is converted to DNA by enzymes co-packaged into the viral
capsid with the RNA genome. The resultant DN A is integrated into the host chromosome. Unfor-
tunately, the oncoretroviral vectors have been of little use to studies in neuronal cells because of
their inability to deliver genes to differentiated /non-dividing cells. In contrast, lentiviral vectors
can transduce genes into differentiated /non-dividing cells with very high efficiency resulting in
stably altered cells without the expression of any extraneous viral proteins that could perturb
cellular functions, as commonly observed with both adenoviral and herpes viral vectors.

Lentiviruses are causative agents of diseases in many animal species, notably HIV-AIDS
in humans. Despite this ominous property, the power of this class of viruses has been harnessed
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for gene delivery by deleting all of the disease-causing genes of the parent virus. Thus, while
vectors have been constructed with equine and feline lentiviruses, the versions derived from
HIV have been used most widely (84,86). Although safety concerns slowed the acceptance of
this vector system, the issues with safety for laboratory in vitro applications (as opposed to use
in human gene therapy or in vivo animal experiments) have significantly abated due to devel-
opment of safer vector designs (87) and the use of the vectors in the laboratory for well over a
decade in the absence of adverse events. Most in vitro work with lentiviral vectors can be carried
out under NIH Biosafety level 2 (88), but caution should be exercised when working with vectors
carrying toxic or oncogenic genes. Lentiviral vectors have been in use for in vitro and animal stud-
ies for nearly a decade and have contributed significantly to the advancement of neuroscience
by permitting the genetic manipulation of neuronal cell lines and primary neurons.

Lentiviral genomes are around 9 kb in length, and all but ~2 kb of this can be replaced by
foreign gene sequences which would include a promoter and the gene/cDNA of interest. The
minimal viral sequences required for the vector to function are the two long terminal repeats
(LTRs) of the virus and a short stretch of DNA, known as y (psi) sequence, required for encapsi-
dation of the RNA transcribed from the vector into vector particles during production of the
vector. Vector production involves the co-introduction of the foreign-gene-delivering vector
(gene transfer vector) with the LTRs into transformed human kidney cells (293T) along with
DNA constructs that direct the synthesis of the core and envelope proteins required for packag-
ing the viral vector particles (84,86). The messenger RNAs (mRNAs) transcribed from the helper
constructs are not packaged into particles because they lack the “y” sequence. A notable fea-
ture of the lentiviral vector particle is the replacement of the traditional envelope protein of HIV
(or other lentiviruses) with the G protein of the vesicular stomatitis virus (VSV G protein),
which enables entry through binding to phosphatidyl serine, a component of all cell mem-
branes. In contrast to the Gp120 envelope protein of HIV that restricts the entry of HIV to a few
cell types, VSV G protein, when present on the envelope of the vector particles, can permit
their entry into (almost) any vertebrate cell, thereby conferring upon lentiviral vectors the
ability to deliver DNA to any cell in any organ (89). Further details of lentiviral biology and
the nuances of vector design and production can be found in the following references (84,86).

Lentiviral vectors offer significant advantages over traditional transfection methods for
establishing stable cells lines. They are relatively easy to produce and concentrate and yield
high titers with high infectivity. Lentiviral vectors transduce almost any cell type (including
primary neurons) with 100% efficiency and stably integrate the transgene into the cellular
genome. Long-term, stable expression of the transgene is obtained over extended periods in
established cell lines of neuronal origin. Maintenance of expression is limited in the case of
primary cultures only by the longevity of the culture itself. Transferred transgenes are inte-
grated as whole cassettes, whereas with transfection/selection methods using physicochemical
methods, random linearization of the circular plasmid carrying the transgene can result in
permuted insertions, some of which are non functional because of breakage of the circular plas-
mid in a region crucial for gene expression. Furthermore, because of the inactivity of the lenti-
viral LTR promoter in the absence of the viral tat protein (90), transcription of the transgene
occurs nearly exclusively form the internal promoter chosen to drive the gene. Lentiviral vec-
tors permit the establishment of stable cells in two to three days, as opposed to several weeks
with the traditional transfection and drug-selection approach used for the establishment of
stable cell clones by physico-chemical transfection. Expression of the transgene is maintained
over long periods without attenuation or silencing commonly seen with oncoretroviral vectors.
Integration of lentiviral vectors is pseudorandom with under 1000 or so preferred sites in the
human genome, with a bias towards the protein coding regions of transcriptionally active
genes (91,92). Due the extreme stability of the integration in host chromatin, no drug selection
is required to maintain transgenes delivered with lentiviral vectors. Lentiviral vectors offer the
ability to modulate the average gene copy numbers of the transgene in transduced cells by
varying amounts of input vector during the establishment of stable cell lines. Multiple vectors
carrying different genes can be introduced simultaneously or sequentially to generate cell lines
or primary cultures simultaneously expressing combinations of genes to study gene-gene inter-
actions (93). Lastly, lentiviral vectors are practically nontoxic to all cell types in vitro including
primary neurons [at the small number of vector copies/cell (5-20) used in most experiments]
because they do not express any of the viral proteins and are practically immobile once they
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integrate into the genome. There are many variations in the design of lentiviral vectors used by
many labs and available from commercial vendors.

Because of the ability of lentiviral vectors to transfer genes to differentiated cells, several
early studies with lentiviral vectors were performed with primary neurons encompassing both
in vitro and in vivo situations as well as in brain slices. Neurons of central nervous system and
peripheral nervous system origin are efficiently transduced by lentiviral vectors at relatively low
multiplicities of infection (moi: number of vector particles/cell) (93-98). They are also efficient in
the transduction of human neuronal progenitor cells (99). In addition to primary neurons, several
difficult-to-transfect cell lines such as the PC12 that is extensively used in neurotoxicological
research are also transduced efficiently (98) as shown in Figure 1.

Promoter Elements: Determinants of Transgene Expression

In all the studies with engineered cells, in addition to the genes/proteins being expressed, the
choice of the promoter used to direct their expression is a critical element that requires context-
specific considerations (76,100,101). Each promoter is characterized by several factors such as
transcriptional efficiency (strength), tissue specificity (limiting their use to specific cell types
derived from the tissue), developmental stage specificity, and inducibility during normal
biological processes as well as upon toxicant exposure. Some examples of promoters used

(€) (D)

Figure 1 (See color insert) Lentiviral transduction of neuronal cells. Lentiviral vectors expressing green fluo-
rescent protein (GFP) under the constitutive cytomegalovirus or elongation factor alpha promoters were used
to transduce cells and explants. Panel (A) isolated rat retinal ganglion cells in culture, three days after transduc-
tion; (B) porcine retinal ganglion cells in explant one week after transduction; (C) PC12 cells stably transduced
and expressing GFP over several passages; (D) neuronal differentiation of cells in panel C, exposed to nerve
growth factor. Source: Panel B reproduced from Ref. 93.
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routinely and widely for constitutive expression in in vitro studies are the immediate early
promoter derived from cytomegalovirus (CMV), the early promoter of SV40 virus, and cellular
promoters of genes such as the elongation factor alpha (EF1-0), actin, or phosphoglycero kinase
(PGK). Among these the CMV, 5V40, and EF1-a drive high level expression of transgenes in
most cell types and all of these elements are short, and therefore easy to engineer into DNA
constructs or vectors with minimal impact on payload.

Tissue-specific or cell type specific promoters, which are highly transcribed in a particular
tissue or a cell type within a tissue, are useful tools to restrict the expression of the transfected
gene to specific organ or a cell type within the organ (100). In the study of neurotoxicology
in vitro, these promoters are useful for determining the authenticity of the neuronal cell type
being studied. In tissue explants and complex tissue culture systems, use of tissue specific
promoters or their combinations enable focusing of the experiments specifically to neuronal/
glial cell type(s) of interest. While the identification of tissue specific promoters is often easy
(e.g., albumin promoter in the liver, neurofilament promoter in the brain, immunoglobulin
promoter in B cells), the isolation of the minimum stretch of DNA required to maintain fidelity
of expression when transferred as a part of the gene construct is difficult, and involves directed
experiments as well as trial and error, notably by creating transgenic animals (2,3). Tissue-
specific promoters are especially useful for in vitro studies of stem cell differentiation where
their expression or lack thereof can enable the monitoring of the differentiation process (102).
Over the past several years many neuron-specific and neuronal subclass-specific promoters
have been identified and used in research (103,104). Further, a major effort by the Allen Brain
Atlas Project (http:/ /www.brainatlas.org) is focused on mapping the expression of known
mRNAs across the brain by in situ hybridization using mRNA probes (105). This information
is useful for the identification of cell type- or subregion-specific promoters for use in the
study of specific cell types in vitro. Another major parallel effort known as GENSAT directed
at the specificity and timing of expression of genes in the brain, has produced thousands of
transgenic mouse lines expressing fluorescent marker protein under the control of various pro-
moter fragments, thus defining the tissue specific promoter DNA fragments in vivo (105).
These resources should aid the further identification of neuron-specific promoters for studies of
neuronal cells and hence neurotoxicology.

The studies such as the ones in GENSAT (105) define large segments of DNA that con-
tain the promoter elements, some of which may be too large to be useful in routine transfec-
tion experiments in tissue culture cells. Definition of the minimal promoter elements that
maintain tissue- or cell type specificity is an arduous task (106). Normally, promoter frag-
ments are of various lengths (usually hundreds of bases to kilobases) are isolated and charac-
terized in vitro by laborious deletion analysis to define the minimum length of the DNA that
retains the properties described for the promoter when resident in its normal chromosomal
locus. However, these properties may not always translate to every cell type and/or condi-
tion beyond the cell system used for their characterization and it therefore it is advisable to
verify their proper functioning in the specific cell system being used experimentally. Also
analysis of families of promoters responding to the same or similar stimuli have led to the
identification of short consensus sequence elements (10-30 bases) which when linked to other
basic, minimal promoter elements are sufficient to qualitatively transfer the properties of the
larger fragments (107). For instance, the hemoxygenase-1 (HO-1) promoter is contained in a
complex 10 to 15kb fragment and responds to various environmental stimuli including oxi-
dative stress, but a 4kb fragment appears to contain most of the sequences required for regu-
lation by multiple stressors (108). A major component of the response to oxidative stress by
the HO-1 promoter is directed by the binding of a transcription factor known as Nrf2 (108)
that binds to a short, 10 base-pair DNA sequence element within the larger promoter frag-
ment. A synthetic promoter comprising of the basic elements common to all eukaryotic pro-
moters [i.e., TATA box and CAAT box (101)] and appropriately positioned Nrf2 binding
consensus sequence results in a promoter that is responsive to oxidative stress. Multimeriza-
tion of the transcription-factor binding consensus sequence in the synthetic promoter results
usually in promoters that produce an enhanced response to the specific stimulus (107,109).
However, their design involves trial and error for the optimum spacing between the elements
and their placement relative to the basal promoter elements. Several such artificial promoter
constructs that produce specific responses have been constructed in various laboratories and
are also available from commercial vendors.
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A novel and an extremely useful version of the synthetic promoters is the widely used
tetracycline-regulated inducible promoter system that has provided unprecedented utility
to the study of biology in vitro and notably in transgenic animals (110). Assembled using
minimal binding elements of a bacterial promoter whose transcription in bacteria is induced
by the antibiotic tetracycline, this promoter system works exquisitely in mammalian cells
including neurons and neuronal cell types and its transcription is highly induced by addi-
tion or withdrawal of tetracycline (two designs respectively known as tet>™ and tet°f). A
detailed description of this promoter system is beyond the scope of this chapter and the
reader should consult a number of comprehensive reviews in the scientific literature (110)
or technical specification sheets provided by commercial vendors. However, for the tet system
to function in mammalian cells, co-expression of the tet repressor protein (fused to a tran-
scriptional activator) is obligatory. Other similar inducible promoter-related DNA elements
from yeast such as the Gal 4 system as well as from mammalian genes such steroid recep-
tor are useful for inducible expression of proteins and are useful to the study of neuronal
cells (103,111). Major advantages of the use of inducible promoter systems are the ability to
turn on the expression of the transgene at will and the ability to use a parallel culture of
uninduced cells as a control.

Caveats in the Use of Genetically Modified Cells

There are several caveats that need to be considered in designing and interpreting the results of
experiments with genetically modified cells. First, the expression/over-expression or untimely
expression of an endogenous or foreign protein may compromise the health of the cell, although
not overtly, or alter cells in some way not directly measured in the experiment. While appropri-
ate controls using an “empty vector” that lacks the gene of interest or mutant forms of the
protein under study are often helpful, they are by no means fool-proof and hence it is often dif-
ficult to engineer perfect controls. Use of inducible systems, as mentioned above, provides the
best control for the effects of an exogenous protein on a cell, but with the assumption that the
process of engineering the cell with the regulatory proteins required for induction itself does
not alter the cell’s properties in the un-induced state, particularity if the promoter being regu-
lated has any extent of leakiness in the “off” state. Furthermore, as discussed later, the controls
are dependent on the specific method used to introduce the genes into cells and the longevity
of the engineered state (transient vs. stable expression). In stably transfected cell lines where
the foreign gene and the promoter are integrated in the chromosome, the expression properties
of the promoter can vary with the site of integration. Because integration of foreign DNA into
mammalian chromosome is a random event, the use of a stable pool of cells resulting from
independent transfection events, in contrast to the use of isolated single clones, will alleviate
extreme deviations associated with a single integration site of the transgene construct. While
well-characterized clonal lines are useful in situations like protein overproduction or screening
assays, their use in mechanistic studies could be complicated by the chromosomal integration
site of the transgene specific to the particular clone. The deviations could arise from the altera-
tions in the properties of the promoter by the integration site or by the interruption and disrup-
tion of a key cellular DNA locus by the integration event. Although these caveats may appear
so serious as to compromise studies using genetically modified cells, their increasing use in
neuroscience and neurotoxicology as discussed below in detail, underscores that the power of
genetically manipulated cells in providing insights far outweigh these problems.

EXPERIMENTAL APPROACHES TO GENETIC MODIFICATION OF CELLS

The approaches to genetic modification of cells, based on the desired endpoint, fall broadly into
three categories: (i) exogenous gene expression/over-expression, (ii) inhibition of endogenous
gene function using dominant negatives and small interfering RNAs (siRNAs), and (iii) reporter-
based techniques for real time studies of transcriptional timing and protein localization. The
details of the three approaches are discussed below.

Gene Expression/Over-Expression
Protein expression and over-production by genetic engineering of cells is one the earliest and
medically beneficial application of genetic manipulation of cells ranging from bacteria to
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mammalian cells. These techniques form the basis for the production of biological therapeutics
ranging from growth factors to antibodies which were then applied with necessary modifica-
tions to cell biology and pharmacology in vitro. While the focus of this review is on the applica-
tions of these methods to cells in vitro, it should be noted that availability of proteins of high
purity created by genetic engineering have permitted the development of in vitro biochemical
assays, such as those based on enzyme activity, for characterization of toxicants. For instance,
in vitro assays using recombinant-expressed liver enzymes, such as members of the Cyp fam-
ily, have been vital to the study of toxicant metabolism (112). Similarly, and more pertinent to
neurotoxicology, rat, mouse, and human acetyl cholinesterases produced by recombinant
methods have been used to characterize organophosphate pesticides, determine the relative
species-specific sensitivities of the enzymes facilitating extrapolation of results obtained in
rodents to human exposures. These recombinant enzymes are also being developed as anti-
dotes for organophosphate poisoning (113-118).

In the context of cell-based in vitro studies, over-expression of native proteins (such as
those normally expressed endogenously in neurons) or their mutated versions, often use
promoter elements of higher strength or specificity. This approach results in the elevated
production of the protein in the cell, thereby permitting the study of the role of the protein in
normal cellular metabolism, in disease states (93), and/or in response to environmental
insults (see next paragraph). In this context, it is also possible to express the constitutively
active or non-activatable versions (such as by mutation of a post-translational modification
site, e.g., phosphorylation) of a protein, permitting the study of its role in cell biology. This
strategy is typically applied to proteins that are activated or silenced via phosphorylation
where the replacement of neutral serine or threonine (which are normally phosphorylated by
a kinase and acquire a negative charge) with a charged aspartic acid residue. Conversely, the
serine or threonine in a protein that are substrates for phosphorylation can be replaced with
alanine, a moiety that cannot serve as a phosphoacceptor, thereby rendering the mutant pro-
tein not activatable by phophorylation. There a large number of studies in literature analyz-
ing kinase cascades using these approaches, however the following examples should be
sufficient to illustrate the approach (103,119,120).

The current scientific literature abounds with examples of protein expression studies
spanning a decade or more, but the following prototypic studies are cited as instances pertinent
to neurological disease and neurotoxicology. Over-expression of glutathione peroxidase in cul-
tured neurons has been shown to render the neurons relatively resistant to the toxic effects of
the Alzheimer's disease associated A-beta peptides (121). Over-expression of the unphosphory-
lated form of the protein MARCKS (myristoylated alanine-rich C kinase substrate, which is
normally phosphorylated) in the neuronal cell line SH-SY5Y cells has been shown to influence
neurite initiation induced by insulin-like growth factor-1 (122). Heat shock protein over-
expression has been shown to protect primary neuronal cells from apoptosis induced by nerve
growth factor (NGF) withdrawal or by exposure to retinoic acid (123,124). Transfer of human
Cu/Zn superoxide dismutase (SOD) protects dopaminergic neurons against damage by
6-hydroxydopamine (125). Lastly, pertinent to neurotoxicology, over-expression of the Parkinson’s
disease-associated protein, alpha synuclein, and its mutant forms has been shown to be toxic to
neurons in culture and has been shown to increase the sensitivity of these neurons to apoptosis
induced by the pesticide dieldrin (126). These and other such examples of relevance to neuro-
toxicology discussed in a later section, show that gene over-expression studies offer novel ave-
nues to address the toxic mechanisms of compounds and their molecular targets in a way that
was not possible without the use of genetic modification. Prior to the advent of genetically
engineered cells, such studies depended on the availability of naturally isolated cell variants
from human and animal sources that were obtained perchance by serendipity or isolated from
diseased animals or humans (such as rat PC12 cells or human SH-SY5Y, discussed earlier under
“Utility of in vitro models” on p. 3) and hence their applications are of limited in scope. Genetic
manipulation of cells through the techniques described above affords the controlled and
graded alteration of expression level of the protein under study that permits the design of more
meaningful experiments with appropriate parallel controls.

Interference with Gene Expression or Function
Complementary to over-expression studies, inhibition of specific gene function in cultured
neurons or neuronal cell lines offers a powerful tool for the study of gene function and the roles
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specific genes play in the cell’s response to toxicants. Gene function can be inhibited by two
broad mechanisms that produce a reduction of activity of the targeted endogenous gene. While
achieving the same end, ablation of gene function, these methods differ greatly in the in their
mechanics. The earlier of the two, termed “dominant negative expression,” was developed based
on the observation that the function of endogenous proteins can sometimes be disrupted by
over-expression of mutant forms of the protein, resulting in a mutant cell phenotype. A significant
number of such dominant negative proteins with specific applications to neuroscience have
been described (103). The mechanism of action of dominant negative mutant proteins results
from their binding to key targets of their normal counterparts resulting in little or no function-
ality of the complex. Similarly, the dominant negative protein may incorporate into multimeric
complexes usually formed by their normal counterpart, rendering the multi-subunit com-
plexes, such as ion channels, inoperative. Dominant negative version of proteins can be cre-
ated through a variety of manipulations such as truncation, elimination of post translational
medication sites (e.g., phosphorylation sites) either by deletion or point mutations and fusion
of the protein to other proteins (103,127-130).

While dominant negative protein expression provided a novel strategy to study gene
function, it is rather laborious from the perspective of designing and characterizing a dominant
negative protein mutant. Additionally, it is not at all clear that dominant negative can be engi-
neered for all proteins. In view of these limitations with the dominant negative approach and
the recent emergence of RNA interference technology for inhibition of gene function, its use has
decreased significantly. However, the dominant negative effect should be considered as a
possible phenomenon when interpreting the results of experiments where mutant versions of
protein are used as controls for their native counterpart.

About a decade ago, in a set of ground breaking experiments, it was observed that intro-
duction of double stranded RNA representing the sequence of genes into a whole range of
species from plants to worms to flies, resulted in the specific suppression of the expression of
thehomologous gene, through the phenomenon dubbed as RN A interference or RNAi (131,132).
Frustratingly, this phenomenon could be demonstrated to work in most cells from most spe-
cies other than vertebrates. This is because vertebrates mounted an interferon response when
exposed to double stranded RNA, leading to cytotoxic consequences. It was soon discovered
that this phenomenon of RNA interference worked in vertebrate cells, notably in mammalian
cells, if the size of the double-stranded RNA was restricted to 18 to 21 nucleotides. This short-
ening permits RNA interference without eliciting an interferon response (133). Since this
breakthrough discovery, a new field of research based on short interfering RINAs (siRNAs) has
emerged with a growing number of research publications using the technique and a host of
commercial vendors supplying siRNA reagents against practically every gene in the genome
of wide range of species. siRNAs (short interfering RNAs) are believed to inhibit the expres-
sion of their homologous genes by either causing the degradation of the cognate mRNA or by
inhibiting the translation of the mRNA into protein or both.

While space does not permit a detailed description of the siRNA technology, current sci-
entific literature is replete with reviews that expound on the benefits and the caveats of this
technology (133-135). Briefly, siRNAs can be delivered to a cell in culture by two methods. In
the first method, chemically synthesized short double-stranded RN A molecules 18 to 21 nucle-
otides in length can be added to the cell culture to obtain specific inhibition of the correspond-
ing genes. A fraction of the RNA from the extracellular space is taken up by the cell to cause
specific inhibition of expression of the message cognate to the siRNA. Nucleic acids, owing to
their charged nature, do not permeate cells easily. This necessitates the addition of high concen-
trations (high micromolar) of the siRNA, often with other facilitating chemical agents. The high
concentration used often leads to off-target effects and other toxicities. Further, the effects of
exogenously added siRNA are often transient prohibiting long-term analysis of gene suppres-
sion. Nonetheless, this approach has great value because of its ease and rapidity and has been
used extensively to validate hypotheses.

An alternative to the use of exogenous RNA is the introduction of DNA constructs encod-
ing the siRNA into cells. Stable integration of the siRINA construct into the genome of the cells
produces long-lasting inhibition of the function of the cognate gene. Typically, the short RNAs
are expressed as hairpins (short hairpin RNA:shRNA) from the transfected DNA that, upon
intracellular expression, are processed by the cell’s biochemical machinery to form double
stranded siRNA similar to the moieties internalized upon external addition of synthetic double-
stranded siRNA. In this case, however, the expression from the transfected DNA can be



14 RAMABHADRAN ET AL.

longer-lasting and permits the study of long-term consequences of inhibition of specific
genes (134,136). Of note is the fact that lentiviral vectors described in the previous sections is a
powerful delivery vector for shRNA application and affords the regulation of the expression of
the shRNA through inducible promoters (89,137). Within the last five or so years, the siRNA
technology has burgeoned into an industry with several vendors supplying siRNAs to practi-
cally every protein coding gene in the human and mouse genomes. Algorithms for selection of
the target site within the target mRNA and modifications to the siRNA to improve their efficacy
have been developed. High throughput methods for functional genomics based on loss of func-
tion and phenotypic suppression by siRNA have been developed (134,136). In addition to their
use in research, several biotechnology companies are engaged in the development of siRNA as
drugs for specific diseases. However, the difficulties with the systemic delivery of the siRNA
drug through the biological barriers at the organism level and cellular level remains one of the
major roadblocks to the fruition of siRNA therapeutics (138).

Both approaches of delivering siRNA to cells are currently used primarily based on the
duration of inhibition required in experimentation. As the RNAi-based gene knockdown has
become a routine component of in vitro neurobiological research, key examples of siRNA
approaches to neurons are too numerous to review here, but a few salient examples are as fol-
lows: Krichevsky and Kosik (135) demonstrated that RNAi could be applied to primary neu-
ronal cultures and demonstrated the knockdown of MAP2 expression. Calabrese and Halpain
(139) showed that knockdown of endogenous MARCKS using RNAi reduced spine density
and size in hippocampal neuronal cultures. Willard et al. (140) showed that siRNA-mediated
knockdown of RGS12 expression also inhibits NGF-induced axonal growth in dissociated cultures
of primary dorsal root ganglia neurons.

Exogenous siRNA methods have been used to deduce or confirm proposed regulatory
mechanisms and for the validation of putative targets of inhibition by chemicals, notably drugs
(141). This approach is based on the premise that sequela of inhibition of a protein target by a
drug or toxin would resemble the consequences of inhibition of the production of that protein
using siRNA. While this approach has not been applied significantly to toxicological studies,
the siRNA approach represents a powerful tool for mechanistic studies in in vitro toxicology
where the hypothesized mechanism of action of a toxicant through a target protein can be
simulated using siRNA against the gene transcript encoding the target protein.

As with all technologies, there are caveats to be borne in mind with siRNA studies (142,143).
It is well established that the inhibitory activity of siRNAs are variable ranging from no effect to
>90% inhibition of the target; it is rare that 100% inhibition of the target is ever achieved as would
be the case with a gene knockout (hence “knockdown”). siRNAs targeting different regions of
the same target mRNA show differing efficiencies (144). Accordingly, it is necessary to test sev-
eral siRNAs to identify an acceptable moiety. While mismatched (generally sequence scrambled)
siRNA at the same concentration as the experimental version can be used to control for mass
effects, it is always possible that the control RNA might affect another mRNA target in the cell.
Chief among the difficulties in the application of siRNA are the off-target effects of the siRNAs
directed against a specific target mRNA as well as global effects on the cell, primarily interferon
response. These effects have been observed in experiments where the siRNAs are applied exog-
enously to the cells as well as when they are expressed endogenously in the cell using expression
vectors. While the algorithms for the design of siRNAs are designed to minimize off target effects,
it is critical to experimentally rule out off-target effects by use of two to three siRNAs directed to
different sites within the same mRNA (144). Although the interferon response characteristic of
vertebrate cells is minimized by the use of short siRNAs of 20 to 23 base-pair length, several stud-
ies have reported the activation of interferon response even with the small RN As. Recent studies
show that induction of the interferon response varies with both the length of the RNA as well as
the cell type being treated (145). Thus, in experiments with siRNA, measurement of interferon
response induction should be performed (143,145). Several commercial kits are available to
measure interferon response using polymerase chain reaction (PCR) based assays.

While the siRNA methodology serves a powerful tool to analyze gene function in neurons,
it would be inappropriate to omit the discussion of the centrality RNA interference phenomenon
to cell biology because of its emergence as a newest frontier in biology. Although siRNA was
discovered accidentally and developed as a research tool, it has become obvious that nature
upstaged man and used the RNA interference as a regulatory phenomenon through much of
the evolutionarily history of eukaryotic organisms. Since the detailed study of genomes of
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eukaryotes began, it has been assumed that much of the genome, except the DNA regions
encoding proteins and regions regulating their production, was “junk.” However, it was known
that much of this “junk DNA” is transcribed to produce RNA (146). At least a fraction of this
RNA is comprised of what is now recognized as microRNA (miRNA) that is now believed to
be a vital to regulation in the eukaryotic organism through mechanisms analogous to that of
siRNAs (131). Several miRNAs have been implicated in the development and maintenance of
the nervous system (147,148). This is an unfolding area of biology whose full impact is yet to be
felt. The possibility that a mammalian cell contains large classes of regulatory RNA is not
inconceivable. Thus, it is possible that toxicants could elicit their adverse effects by interfering
with miRNA production and metabolism.

Expression of Fluorescent Reported Proteins

The discovery of fluorescent reporter proteins from marine organisms, first green fluorescent
protein (GFP) and subsequently GFP variants covering the entire visible spectrum, have
advanced the study of cell biology, including that of neuronal cells into a new dimension (75,149-
151). Ectopic expression of these proteins is achieved through the transfer of DNA encoding
them. Cells expressing the fluorescent proteins (FPs) can be visualized for periods extending
days under a microscope without the need to irreversibly fix the cells and hence permit the real-
time monitoring of cellular events (149). The applications of the fluorescent proteins fall into two
different categories: (i) as makers of cell type specificity and event timers and (ii) organelle mark-
ing and protein-protein interactions. While the focus here is on the use of FPs as reporters, it
should be recognized that prior to the advent of FPs, a number of other reporters such as firefly
luciferase, E. coli beta galactosidase and others with enzymatic activities were used very success-
fully as reporters in in vitro studies, primarily to monitor alterations in the activities of promot-
ers of interest. In contrast to FPs that produce stoichiometric readouts (proportional to the amount
of fluorescent protein) and hence are less sensitive, the enzymatic reporters are catalytic and hence
provide a greater sensitivity and dynamic range to measurements (152).

Fluorescent protein expression driven by either a cell-type-specific or developmental
stage-specific promoters respectively permits the identification of cell types or their stage in
development. FPs driven by promoters encoding synaptic proteins such as synapsin (68,153) or
post synaptic density protein 95 (psd95) (154) for instance, are expressed exclusively in neu-
ronal cells, while FPs linked to the glial fibrillary acidic protein (GFAP) promoter are restricted
to glial cells (155). Neuronal cell types could be further distinguished and studied by this
approach, if promoters specific to those cell types could be identified and engineered. For
instance, there are several promoters described that drive genes involved in neurotransmitter
production and these would be specific for that particular class of neurons (103). A GFP pro-
tein inserted into the chromosomal tau gene coding sequences resulting in the expression of a
GFP-tau fusion protein has been used to follow the differentiation of stem cells into neurons
(156). When expressed in neuronal cells, FPs fill the entirety of the cytoplasmic and nucleoplas-
mic space within the neuron including long axonal processes and therefore provide a conve-
nient and vivid method to assess changes in cell morphology caused by toxicants and other
agents. Such experiments can be performed using dispersed neuronal cells or in explants such
as brain slices using gene delivery approaches described in the previous sections (78,79).

The timing of appearance of FP expression can also be monitored as a real-time marker
of the differentiation process as exemplified in their application in timing the differentiation of
stem cells. Differentiation of pluripotent stem cells into cells of various lineages is accompa-
nied by expression of lineage-specific genes. Expression of fluorescent proteins under the con-
trol of lineage-specific gene promoters “reports” the specific stage in the differentiation
process (68,156). Multiplexing fluorescent proteins with distinct excitation/emission spectra
permit the expression of different colored proteins under differentiation-stage-specific or
lineage-specific promoters, permitting the real-time visualization of unfolding of developmental
events (157). This is a task easily achieved using lentiviral vectors, which can deliver multiple
genes sequentially or simultaneously (99). This approach is of particular significance to neuro-
toxicology, particularly to developmental neurotoxicology, as differentiation of pluripotent
human stem cells into neuronal lineages has been proposed as system for screening develop-
mental neurotoxicants (59,158). It is germane to note here that transgenic mouse strains
expressing FPs in specific subsets of neurons have been established permitting the study of



16 RAMABHADRAN ET AL.

neuronal cells in dispersed cultures derived from animals treated with drugs or toxicants
in vivo (159,160). More recently, transgenic mice with different populations of neurons labeled
with different FPs have been generated (161) and the neuronal cells obtained from these mice
will likely aid the parallel real-time studies of mixed neuronal populations in vitro.

While the FPs in their free form are useful in themselves, their ability to maintain their fluo-
rescent properties when fused to other proteins has provided powerful avenues to study protein
localization and protein-protein interactions in cells including neurons (162,163). With the judi-
cious choice of the fusion partner, orientation (N- vs. C-terminus) and point of fusion between the
two proteins, it is possible to maintain the functionality of the protein fused to the FP. While opti-
mization of these factors must be performed empirically, once constructed, such fusion proteins
are powerful tools for the real-time study of protein dynamics and localization within cells (163).
A large number of studies using neuronal proteins such as receptors (164), synaptic pro-
teins (154,165), and structural proteins (166) fused to GFP have enabled real time analysis of neu-
ronal physiology in vitro, providing information on localization, physiological dynamics, and
trafficking. However, it is always advisable to confirm these finding by other techniques such as
immunolocalization to ensure that the fusion protein behaves like its native counterpart. The suc-
cessful application of the fusion protein technology in the last several years shows that these fusion
proteins and the cell lines expressing them can be very valuable tools in the study of mechanism
of action of toxicants. We have engineered PC12 cells (167) to express a tau-GFP fusion for use in
real-time assays of neurite outgrowth to measure effects of putative developmental neurotoxicants
on this process . Fusion of GFP with a fragment of the tau proteins (166) enhances the localization
of tau-GFP fusion to the neurites enabling their accurate visualization and quantification.

The availability of multiple FPs overlapping the excitation and emission spectra have
enabled the study of protein co-localization and protein-protein interactions in real-
time (162,168,169). Functional fusion proteins derived using two distinct FPs permit the detec-
tion of their proximity in cells through fluorescent resonance energy transfer (FRET). When the
fusion proteins are separated spatially, they emit at their characteristic emission frequencies
when excited at their respective excitation frequencies. However, when the fusion proteins are in
close proximity, in the order of 5nm (168), the emission of the first FPs (in response to its excita-
tion wavelength) acts as the excitation for the second FP, resulting in non-radiative energy trans-
fer and emission at the wavelength characteristic of the second, recipient FP. This technique has
been used to design a number of real-time in vitro assays (170,171) and has found application in
neurotoxicity studies such as that of the potent neurotoxin botulinum toxin (172).

GENOMICS, PROTEOMICS, METABOLOMICS

The last decade has seen the emergence of a group of technologies all with the suffix “-omics”
that aim at parallel/global analysis of multiple biochemical processes in cells that are very rel-
evant to the field of toxicology (173). These include but are not limited to: transcriptomics, the
comparison of mRNA levels (often used interchangeably with genomics); proteomics, the com-
parison of protein levels; and metabolomics, the comparison of metabolites present in cells. The
-omics technologies, particularly transcriptomics and proteomics, are well suited to in vitro
studies as opposed to in vivo studies because of the degree of control the experimenter can
exert over the cellular environment. Furthermore, unlike in vivo situations where tissues rep-
resent a mixture of cell types showing varying response to treatments, enriched populations
used in in vitro studies provide data relevant to the particular cell type. We should note how-
ever, that although laborious, there are techniques such as laser capture microdissection that
permit the isolation of specific cell populations from tissues generated in in vivo studies (174).
One of the major benefits of the -omics techniques is the ability to compare the global patterns
of changes produced by similar or related treatments. The two major objectives of the -omics
approaches are: (i) identification of correlative biomarkers/signatures of disease, exposure, effect,
or genetic susceptibility and (ii) hypothesis generation of causation for further investigation of the
origins of diseases or mode of action of toxicants.

Genomics/Transcriptomics
Transcriptomics is the earliest of the -omics technologies that has now been largely reduced to
highly automated “chip” based systems for parallel comparisons of the relative levels of
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thousands of mRNAs in cells subjected to different treatments, such as exposure to growth
factors or toxicants (175-177). Cells respond to their environment by altering protein expression
primarily through changes in expression of mRNAs. mRNAs are isolated and used to gener-
ate fluorescent dye-linked complimentary DNAs (cDNAs), which are then quantified by the
degree of hybridization to small single-stranded DNA probes arrayed on solid-matrix chips
(microarrays) using imprinting techniques such as photolithography, wherein each probe is
specific for a particular gene. Due to the large number of data points generated using this tech-
nique, the procedures are highly automated at the wet lab and in silico levels and the evalua-
tion of microarray data is laborious and complicated. Several competing procedures for data
analysis have been developed and each differs with the particular algorithms used. Nonetheless,
microarray data is useful for generating lists of genes whose mRINAs are up- or down-regulated
in response to changes in cellular environment. Examination of the gene lists for clustering of
the altered genes by function or pathways allows researchers to postulate hypotheses regarding
the mode- or mechanism-of-action of the environmental stimulus (178).

Transcriptomics is a relatively mature -omics technology that has been used extensively
in the last five or so years and several in-depth reviews discussing the technology itself and
the methods of analysis have appeared. Originally started in individual laboratories, the tech-
nology has become an industry with several platforms competing for primacy (179). To
address platform-dependent and operator-dependent variability which confounded the
reproducibility of microarrays (180), a global consortium MicroArray Quality Control (MAQC)
was formed (181). Minimum Information About a Microarray Experiment (MIAME) stan-
dards that should enable the harmonization of data obtained under different conditions have
been proposed (182). Applications, extensively to cancer but also significantly to other area of
biology in vitro and in vivo, have been described. An exemplary and successful application of
microarrays from an in vitro research perspective is the analysis of the genomic profile of a
panel of 60 cancer cell lines (NCI60) of different pathological origin (183) and their response
to a library of thousands of compounds (184,185). This effort showed that expression patterns
could be correlated with the histological origin of the cell line, and could also be used to iden-
tify pathways predominantly active in a tumor type. The chemical screening also provided
information on the tumor type specific action of compounds, suggesting cancer-specific thera-
peutic approaches. More recently in 2007, FDA has approved the microarray-based cancer
diagnostic test, MammaPrint, for determining the metastatic potential of breast cancers (186).
Relevant to neuroscience, microarray analysis has examined the transcriptional changes asso-
ciated with the differentiation of stem cells into neurons, providing stage-specific landmarks
(187). Since trasnscriptomic analysis is a relatively mature field, several articles reporting its
application to neurotoxicology have appeared in the past five years; these are described in a
later section below.

Despite the power of the technology there are several issues that need to be considered
when employing microarray analysis. The cost of the array chips and analysis technology ren-
ders microarray assays impractical for large experiments covering multiple doses and time
points. Thus, microarray analysis is restricted to obtaining a “snap shot” at a limited set of time
points or doses of a dynamic process of mRNA metabolism (188) that can yield an entirely dif-
ferent picture if the dose and time parameters are altered. Typically, before the generation of
hypotheses, the mRNA changes observed in the microarray experiment are confirmed using
complementary and more focused techniques such as quantitative PCR (qPCR) that may be
relatively more reliable and cost-effective (189). Several qPCR-based commercial kits have also
recently appeared permitting the study or smaller, defined gene sets related to an organ or a
process or a pathway at higher reliability and lower noise and cost compared to the gene chips
that interrogate thousands of genes. It should also be noted that depending on the nature of
the question addressed, the analysis of microarray data can be very mathematically
involved (190,191). Therefore microarray experiments should be performed with questions
clearly defined and the analysis procedures chosen carefully.

One of the advantages of the in vitro genomics studies is the ease with which hypothesis
generation as well as validation can be conducted relative to similar studies performed in vivo.
The homogeneity of the cell samples and the ability to control the culture conditions and doses
result in reproducible data which can permit efficient generation of mode of action (MOA)
hypotheses. Validation of the hypotheses, leading to MOA information can be performed using
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genetic manipulations such as the gene over-expression and gene-silencing techniques
described in detail in the earlier sections. Thus in vitro systems provide ideal substrates for
genomic analysis to generate MOA information that can then be compared with in vivo genomics
data to facilitate risk characterization.

Proteomics

While changes in the transcriptome of a cell generally result in changes in protein levels of the
altered transcripts, the correlation between mRNA levels and the level of the proteins trans-
lated from them are not equivalent. Levels of a protein in a cell are influenced by factors such
the level of its mRNA, mRNA stability, mRNA sequestration, translational efficiency, and the
degradation rate of the protein (188). Additionally, a single pre mRNA can encode multiple
protein isoforms through alternative mRNA splicing (192) which can be extreme for some genes
(193) and also through the use of internal start codons (194). Furthermore, proteins undergo
extensive posttranslational modifications such as proteolysis, glycosylation, phosphorylation,
and others that control and/or profoundly alter their biological activities. Some modifications
such as phosphorylation and acetylation are reversible and hence dynamic, strongly affecting
the physiology of the cell (195,196). This diversification of function at the protein level is not
reflected at the mRNA level. Thus, it is believed that direct comparison of protein isoforms and
their levels might provide more relevant information regarding the state of a cell than the mea-
surement of their mRINA levels. Therefore proteomics forms a powerful technology for the
study of biology (197) and toxicology (198).

As proteins are composed of twenty amino acids, proteins exhibit a greater structural
diversity than RNA, which is composed of only four bases. Thus the separation and identifica-
tion of the protein complement of a cell poses a greater technical challenge than measuring
mRNA levels. However, in the last few years there have been spectacular developments in
proteomic methodologies such as two dimensional electrophoretic techniques, protein-labeling
techniques, and mass spectrometric techniques to make proteomics studies reproducible and
meaningful (196). A major advance in the reproducibility of two-dimensional electrophoresis
through the development of two-dimensional differential gel electrophoresis (2D-DIGE) using
a multi-dye system has led to rapid advances in the field (199,200). Differentially expressed
proteins detected by DIGE are sequenced using mass spectrometric techniques to identify the
protein (201,202). A technique that is particularly suited to proteomics of in vitro systems the
differential labeling of cellular proteins with a heavy stable isotope followed by analysis by
mass spectrometry, thus allowing the parallel comparison of the two proteomes (202). Because
of the large numbers of posttranslational modifications in proteins and the special approaches
need to study each of these, the field of proteomics is now splitting into subspeciality areas
such as phosphoproteomics and glycoproteomics. The application of proteomics to the study of
biology is only beginning to emerge and the application of this technique to the study of
neurotoxicology is in its infancy, but has great potential (203).

Metabolomics

The rationale of metabolomics is that the action of thousands of genes and their protein products
(30,000-100,000) are reflected at a cellular level in a much smaller number (a few thousands) of
cellular metabolites. Therefore, changes in the levels of these metabolites represent the sum
total of the actions of genes/proteins. Metabolomics analysis is currently focused primarily on
in vivo studies, where body fluids such as serum, urine, or saliva, etc., are profiled for metabo-
lites using mass spectrometric and nuclear magnetic resonance techniques (204). Such analysis
is aimed at matching metabolite profiles to disease, drug treatment or environmental exposure
(205). While powerful at a whole organism level, metabolomics is less-suited to in vitro studies
because of the small molecule-rich media used in cell cultures and the difficulty in isolating the
intracellular metabolites of a cell without causing significant alterations due to technical manip-
ulations (206). However, developments are occurring in this field for successful application of
metabolomics to microbial and mammalian cell bioengineering (206). Despite the demonstrated
advances in the application of this technology at the organism level, the utility of metabolomics
in vitro neurotoxicology are only beginning to emerge (207).
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APPLICATIONS IN NEUROTOXICOLOGY

Recent advances in the molecular techniques discussed in the previous sections are already
propelling research to identify modes of action in neurotoxicology. This section will review
recent literature highlighting the utility of the previously described molecular techniques in
uncovering toxicant modes of action.

Little has contributed as much to the recent understanding of toxicity mechanisms as
functional gene analysis through such techniques as gene over-expression and targeted
gene perturbation by siRNA knockdown, dominant negatives, and pharmacological
agents. Used collectively, these techniques have allowed investigators to study the roles of
specific genes and their gene products in neurotoxicity. Generally, studies have focused on
identifying protective gene products by demonstrating how their over-expression can
reduce the effects of neurotoxicants. Conversely, perturbation of these protective genes
renders cells more sensitive to toxicant exposure. A recent study by Lee et al. (208) showed
that over-expression of HO-1 increased reactive oxygen species (ROS) formation and cell
death in mouse neuronal MN9D cells exposed to the commercial polychlorinated biphe-
nyl (PCB) mixture, Aroclor 1254; additionally, HO-1 inhibition by RNAi knockdown
blocked Aroclor 1254-induced ROS production and cell death. These results indicate that
HO-1, an antioxidant protein that usually confers protection against electrophilic toxi-
cants, can in some instances actually facilitate ROS-mediated toxicity. Overexpression of
the yeast mitochondrial complex I subunit nicotinamide adenine dinucleotide dehydroge-
nase (NDI1) protected human epithelioma SK-N-MC cells from the toxic effects of rote-
none, a powerful complex I inhibitor that produces a Parkinsonian syndrome in rats (209).
In this case, the protective effect of NDI1 overexpression supports the mitochondria-
specific mechanism that has been postulated for rotenone. Stable overexpression of free
radical scavenging enzyme SOD-1 in murine N9 microglia decreased superoxide and nitric
oxide production after lipopolysaccharide treatment; the altered ROS production reduced
the ability of the N9 microglia to induce toxicity with co-cultured neurons (210) and these
results could be reversed by inhibition of SOD-1 with disulfiram. Ectopic expression of
neuroglobin, a vertebrate globin that protects against neuronal hypoxia and cerebral isch-
emia, rendered murine cortical neurons resistant to the toxic effects of the excitatory amino
acid N-methyl-D-aspartate as well the Alzheimer’s disease-related peptide AP (211).

As discussed earlier, over-expression experiments have caveats that often make interpre-
tation using over-expression data alone problematic. The primary concern with over-expression
analysis is that high levels of ectopic expression of a specific gene product will alter normal
cellular function, creating a model that bears little resemblance to the actual biology in question.
One of the more impactful gene analysis methods that has helped alleviate this concern with
over-expression analysis is target gene knockdown

Dominant negative mutants, as discussed previously, provide a useful tool to inter-
fere with normal gene function. The utility of dominant negative mutants stems from the
partial functionality retained by the mutant. Newhouse et al. (212) used constitutively
active MKK3, MMK4, and c-Jun dominant negative mutants to delineate which mitogen-
activated protein kinase (MAPK) signaling cascades were involved with rotenone-induced
apoptosis in SH-SY5Y cells. c-Jun and c-Fos dominant negatives were used in another study
to examine the role of jun N-terminal kinase (JNK) signaling in thimerosal-mediated apop-
tosis in SK-N-SH cells (213). Expression of a dominant negative mixed lineage kinase 3
(MLK3) mutant attenuated the cytotoxicity of MPP+ in SH-SY5Y cells, revealing a protective
role for MLK3/JNK pathways (214).

As discussed earlier, creation of dominant negative reagents is an arduous and often
chancy task, and hence this approach is being supplanted by knockdown techniques using
siRNA. Gene knockdown techniques, especially those using RNA interference that reduces the
cell’s capacity to express a particular gene product, allow researchers to systemically target
components of pathways thought to be critical in the mechanism of action. The targeted knock-
down of HO-1 using RNAI in the report by Lee et al. (208) has already been mentioned. In
another study, siRNAs were used to inhibit expression of specific Bcl-2 family members to dis-
cern the role each member contributed to paraquat-induced cell death using human SK-N-SH
cells (215). It was revealed that siRNA-mediated knockdown of BNip3, Noxa, and Bak pro-
tected cells from the effects of paraquat treatment, suggesting these Bcl-2 family members
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played a role in paraquat-mediated apoptosis. Antisense inhibition of the p53-activated gene
PAG608 abated toxicity in methamphetamine-treated PC12 cells, suggesting a role for the p53
pathway in methamphetamine-induced neurotoxicity (216). Novitskya at al. (217) recently
showed that targeted knockdown of endogenous prion protein (PrPc) abolished the toxic effect
of recombinant mammalian prion protein (rPrP) in human SH-SY5Y cells, indicating a role for
endogenous PrPc in prion-mediated toxicity.

Microarray technology provides researchers with a tool to quantify the simultaneous expres-
sion of thousands of genes. This has helped advance neurotoxicology in at least three important
ways. First, microarray technology has increased our understanding of specific gene expression
patterns associated with neurological diseases. Identification of key genes associated with neuro-
logical diseases provides insights into the mode of action for toxicants that elicit similar adverse
health effects. A classic example of the overlap between neurological disease and neurotoxicity is
that of the heroin analog 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) and Parkinson’s
disease. MPTP targets the dopaminergic neuron of the substantia nigra; these same neurons are
degenerated in Parkinson’s disease. Secondly, microarrays help illustrate how gene expression
patterns change after exposure to toxicants, an application referred to as toxicogenomics. Altered
gene expression patterns often highlight cellular pathways affected by a particular toxicant.
Affected pathway components may be the targets of toxicity, such as cellular metabolism pathway
components, or that are activated in response to toxicant exposure, such as heat shock response.
Toxicogenomic data can thus be used to identify toxicant modes of action as the understanding of
the pathways linked to regulating cellular activities increases. Lastly, gene expression changes
identified using microarray experiments can be useful as biomarkers of exposure (218).

Toxicology as a field has not fully exploited microarrays due to a variety of factors such
as cost, lack of familiarity with the required techniques, and difficulties with data analysis.
However, there have been several studies using microarrays to analyze toxicity-induced
changes in gene expression using cells derived from the nervous system. Gene expression pro-
filing using primary human astrocytes highlighted that manganese chloride, long known to
induce neurotoxicity, stimulated the interferon-y inflammatory pathway, induced oxidative
stress responses, and stymied cell cycle progression (219). Using microarray data from immor-
talized rat astrocytes, Bouton et al. identified several genes activated in response lead exposure,
namely stress-responsive genes such as GFAP and heat shock protein 70 (220). A study using
the MPTP-treated PC12 cells revealed several pathways likely to be involved in MPTP toxicity
including oxidative stress, DNA and protein damage, cell cycle arrest, and apoptosis (221). A
similar study using mouse dopaminergic neuronal MN9D cells also showed a role for oxidative
stress, cell cycle arrest, and apoptosis in MPTP-induced toxicity but also suggested that cellular
metabolism and iron homeostasis may also be disrupted by MPTP (222).

Proteomics is a relatively new field compared to genomics but recent work has highlighted
the promise of proteomics in neurotoxicological research. Zhou et al. (223) used quantitative pro-
teomics techniques to identify proteins involved in microglial activation following MPP+ expo-
sure in rat primary neuron-microglia mixed cultures. Another study probed for proteins targeted
by methylmercury exposure in mice cerebellar granule cells (224). The use of proteomics in neu-
rotoxicology research will surely increase as the power of the applications develops. Mapping
post-translational modifications, which have impact on protein stability, structure, and function
are of keen interest to researchers interested in toxicant mechanisms of action. Protein expression
profiling provides information about changes in quantity and pattern of protein expression result-
ing from toxicant exposure. Finally, a proteomics technique that isolates protein complexes for
component identification known as protein network mapping would allow toxicologists to study
how toxicants affect protein-protein interactions leading to cellular dysfunction (198).

Metabolomics emerged later than proteomics and while best suited to in vivo studies,
applications to in vitro neurotoxicology studies are emerging. For instance van Vliet et al. (207)
examined the alterations in the metabolomic profile of primary rat neuronal cells induced by the
neurotoxicant, methyl mercury, raising the possibility that gamma-aminobutyric acid, choline,
glutamine, creatine, and spermine could serve as metabolite biomarkers for methylmercury
action. It is not unrealistic to anticipate that other studies in this vein would be forthcoming and
will help expand the application of metabolomics to in vitro neurotoxicology with the simulta-
neous measurement in appropriate cell types of alterations in neurotransmitters, neuropeptides,
and other metabolic markers of neurotoxicity.
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INTRODUCTION

With the advent of microarray technology, the generation of a million data points from a single
experiment is now commonplace. However, this explosion of data generation has not auto-
matically equated to novel biological insights into neurotoxicology. Significant advancements
since the initial introduction of microarray technology have come at the data generation stage
through large-scale collaborations between industry, government, and academia. Significant
advances at the data analysis stage have been made as well, in the form of novel computational
and bioinformatic methods; yet, a consensus on the most appropriate method(s) for a given
experimental design has not been reached. This chapter will provide a brief overview of
microarray technology, its current applications in neurotoxicology research, common problems
encountered with microarray data analysis, and novel methods developed for assessing the
biological relevance of results from microarrays.

MICROARRAY TECHNOLOGIES IN NEUROTOXICOLOGY RESEARCH

Microarray technology evolved from the Southern blot, which detects the presence of specific a
DNA sequence by attaching a fragmented mixture of DNA molecules to a solid substrate and
then probing, through hybridization, with a known gene or fragment (1). The microarray
reversed the process by immobilizing known sequences and then probing with labeled unknown
nucleic acids. This technique was expanded such that hundreds of known DNA fragments could
be interrogated in a single experiment. The first example was reported in 1987, when an array
of complementary DNAs (cDNAs) was spotted onto filter paper to detect genes expression
modulated by interferon (2).

Today, microarray technology has several applications. Microarrays can be used for
DNA [e.g., in comparative genomic hybridization or single nucleotide polymorphism (SNP)
analysis] or RNA [either messenger RNAs (mRNAs) or microRNAs (miRNAs)] analyses. In
1997, the first whole genome, that of Saccharomyces cerevisine, was captured on a microarray (3).
Currently, microarray-based, genome-wide scans of gene expression and/or SNPs are possible
for several species commonly used in neurotoxicology research, such as mouse, rat, monkey,
and human.

Specific microarray applications examining genomic DNA include studies of copy number
variation through comparative genome hybridization, genotyping of millions of SNPs, and
analysis of transcription factor binding to specific DNA sequences isolated via chromatin
immunoprecipitation (ChIP-chip). The genetic basis of a wide variety of neuropsychiatric
disorders has now been tested using genome-wide screening techniques that interrogate large
patient cohorts for quantitative trait loci (4-7).

Detection of mRNA expression via microarray hybridization is often referred to as global
gene expression analysis (wWhole genome analysis) or gene expression profiling, and is currently
the most widely used application of microarray technology. Since its inception, the popularity
of the gene expression profiling approach has grown enormously. In 2007, there were over
200,000 datasets deposited in the two major gene expression microarray data warehouses GEO
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and ArrayExpress (8,9). Expression profiling has now advanced to include transcriptional
analyses where splicing patterns can be investigated using splice junction and exon tiling
microarrays (10). In addition, microarrays are now being developed to also include examina-
tion of miRNAs (11). This chapter will focus on expression profiling applications of microarray
technology where neurotoxicological research and advancements in data analysis methods are
widespread.

Brief Overview of Gene Expression Microarray Technology

The appeal of the expression profiling array is simultaneous measurement of mRNA expres-
sion for tens of thousands of transcripts from a single biological sample. Indeed, the motivation
is to use arrays to conduct unbiased assessments of the gene expression changes. At the incep-
tion of the technology, arrays were constructed by robotic spotting of cDNAs onto treated glass
slides. This technology has generally been replaced by microarrays consisting of oligonucle-
otides. These oligonucleotides are either synthesized in situ on a slide, synthesized, and then
spotted onto a slide, or synthesized on a bead and then deposited into microwells on a slide.
No matter the type of microarray, databases of well characterized genes (e.g., RefSeq) and
expressed sequence tags are used to select sequences complimentary to short segments of a
gene for inclusion on the array. Oligonucleotide arrays have become the predominant technol-
ogy due to the higher density and thus more genes and different probes for different regions of
a gene can be included on an array.

For mRNA expression analysis, the experimental steps broadly involve: (i) isolating the
mRNA; (i) converting it to a labeled copy (through a combination of reverse transcription and
amplification); (iii) hybridization to an array of known gene sequences in an addressable array;
and (iv) signal collection, reduction, and analysis. In brief, mRNA is isolated from control and
experimental samples, reverse transcribed to cDNAs, and then labeled with fluorescent dye(s),
and hybridized to the microarray. In a two color design, both the control and experimental
sample is hybridized to the same array; whereas, in a one color design, the control and experi-
mental samples are hybridized to separate arrays. Due to the advances in technology which
produce less costly, more consistent microarrays, the one-color experimental design has become
the most common approach. After washing, the spot-bound fluorescent dyes are excited by
lasers of appropriate wavelengths to generate images. Images are then analyzed to quantify the
signal within each spot. Background hybridization intensity is removed (via quantification of
mismatch probe binding, or measurement of signal intensity at “empty” addresses or negative
control sequences). Therefore, the principal measurement is the signal minus the estimated
background of each probe. Finally, a dataset of signal intensity measurements is generated
usually expressed in a matrix whose columns correspond to samples and rows to genes.

Initially, microarrays were manufactured in-house using cloned polymerase chain reaction
(PCR) products and led to data inconsistencies across users (12). Kothapalli et al. (2002)
examined microarray data from two different systems (13). They reported inconsistencies in
sequence fidelity for the spotted microarrays, variability of differential expression, low spec-
ificity of cDNA probes, discrepancy in fold-change calculations, and lack of probe specificity
for different isoforms of a gene. In addition, Tan et al. (2003) examined gene expression mea-
surements generated from identical RNA preparations that were obtained using three com-
mercially available microarray platforms from Affymetrix, Amersham, and Agilent (14).
Correlations in gene expression levels and comparisons for significant gene expression
changes in this subset showed considerable divergence across the different platforms. These
initial inconsistencies have largely been addressed through a variety of efforts to improve the
reliability of microarrays. For example, introducing standards for microarray experiments
and for data analysis (Minimum Information About a Microarray Experiment; MIAME) (15)
establishing standardized RNA controls (16), and large scale collaborations between govern-
ment, academia, and industry to assure quality control [MicroArray Quality Control (MAQC)
Project] (17) have all led to dramatically increased reliability and reproducibility of microar-
ray experiments. Recent studies comparing platforms across laboratories have concluded
there is not a significant advantage of any one commercial design, but that researchers should
pick the platform based on their individual needs. Although not covered in detail in this
chapter, we refer readers interested in comparisons across platforms to several important
reviews on this topic (18,19).
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Applications in Neurotoxicology

The two broad applications of microarray technology in neurotoxicology research are the
discovery of patterns of expression that can: (i) classify toxicity phenotypes and predict disease
or (ii) identify novel molecular targets of a toxicant. The first use hinges on the hypothesis that
mRNA expression can serve as an important classification system for molecular pathology.
Indeed, microarray data can serve as an important subclinical biomarker of pathology. Research
in this area includes reports of patterns of genetic expression that predict new classifications of
central nervous system embryonal tumors and gliomas (20,21). Indeed, one of the first bioinfor-
matics approaches to analyzing neurotoxicology microarray data [1-methyl-4-phenylpyridinium
ion (MPP+) toxicity in PC12 cells] was published by Slikker and colleagues in 2005 (22). These
studies provided validity for the approach as the analysis identified induction of oxidative stress,
DNA /protein damage, cell cycle arrest, and apoptosis pathways as important sequelae to
MPP+-induced neurotoxicity. A follow-up report extended these findings in MN9D dopamin-
ergic cells (23). Additional neurotoxicology microarray studies include analysis of aryl hydro-
carbon receptor-induction of gene expression changes (24) and Aroclor 1254-mediated
developmental neurotoxicology (25).

The second use, and the focus of this chapter, addresses the hypothesis that neuropatho-
logical phenotypes are created by networks of molecular interactions. Therefore, analysis of
global transcriptional responses can help to build hypotheses of the molecular system, includ-
ing transcriptional regulation, signaling pathways, protein-protein, and protein—nucleic acid
interactions, that are responsible for a particular phenotype. Most examples of microarray
applications in systems biology are in non-mammalian systems such as regulation of the tran-
scriptional responses when yeast cells encounter nutrients or the yeast galactose-utilization
pathway (26). The translation of these methods to the mammalian nervous system is progressing.
For example, Yonan et al. (2003) developed hypotheses of gene networks mediating autism (27)
and Tropea et al. (2006) examined activity-dependent plasticity in the visual cortex (28) using
bioinformatic evaluation of microarray results.

Primary Data Analysis Concerns

While the emphasis of this chapter is on the data analysis portion of microarray research, it is
important to note the quality of the starting material will determine the success of any gene
expression profiling experiment. Indeed, experimental design and sample collection and pro-
cessing will frequently mean the difference between a successful experiment and a collection of
uninterpretable data.

Some issues are of particular note. As we are focused, in the present context, on neuro-
toxicology, it is important to collect samples at a time point prior to frank cell death. Choose a
condition at which altered gene expression is contributing to the pathology (as opposed to
being the result of lost cells). With the widespread adoption of microarray technologies and the
concomitant reduction in costs, it is no longer common practice to perform analyses on “pooled”
samples. In fact, such practices deprive the investigator of potentially important insights into
inter-individual variations. However, this does require that the experimental subjects or sam-
ples be processed in a consistent manner. Before hybridization, the quality of the RNA should
always be verified either by gel electrophoresis or commercial products such as the Agilent
RNA 6000 Nano or Pico kits for the 2100 Bioanalyzer. For most institutional (and commercial)
core facilities, this is a requisite first step in determining whether to proceed with an array
analysis on a given sample.

Developing methods that allow integration of previous research is an important area of
growth. As mentioned above, repositories of microarray datasets are growing. Combined anal-
ysis of datasets as well as determining the biological context of results requires development of
novel computational models to identify mechanisms of biological processes by integrating
diverse sets of experimental data. Growth in this area of research has been initiated particularly
in organisms where high throughput perturbation analyses are possible, including S. cerevisiae,
Caenorhabditis elegans, and Strongylocentrotus purpuratus (29-33). However, finding and quanti-
fying networks from datasets in mammalian species, particularly in the heterogeneous tissues
of the brain, has been challenging. In fact, one of the most critical issues is the data require-
ments of current network based methods. The following sections will provide an overview of
methods currently used at each step of microarray data analysis, starting with image analysis,
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normalization, and determination of differential expression. Next, methods for linking results
with previous research will be discussed. Finally, approaches for developing novel hypotheses
from microarray datasets are discussed.

GENERATING A LIST OF DIFFERENTIALLY EXPRESSED GENES

So far, we have reviewed mechanisms by which large-scale analysis of RN A can be conducted.
These studies produce large databases of quantitative signals (generally of a fluorescent nature).
Following this data generation step, a robust initial data analysis of the signals within and
between chips is of primary concern. There are two areas of particular importance in the initial
analysis of these large datasets: normalization and identification of significant differential
expression. Both of these are complex and involved issues, therefore only a high-level overview
will be provided here.

Initial Data Analysis and Normalization

With all microarray analyses of a functional genomic experiment, data normalization is required.
This need derives from the fact that we are conducting complex analyses on independent
platforms with several involved technical steps—each step of which provides opportunity for
variability. Direct comparisons between microarrays are often not possible due to differences
arising from technical variability in labeling efficiency, hybridization, or microarray fabrication.

The first step is background subtraction. Background subtraction corrects for non-specific
background noise and permits comparison of specific signals. For illustration, if the signal
intensities for the control and experimental spots are 200 and 300, respectively, it would appear
that the experimental signal is 50% higher. However, if a background of 100 is subtracted from
both signal intensities, the experimental value is actually 100% higher than control (100 vs.
200). Background is often taken from the blank areas on the array. A complication to back-
ground subtraction is that differences in background across the array can affect some spots
more than others. An alternative is to use either a local background for the area around each
spot or designate spots with the lowest signal intensities for background determination. The
latter may be a more accurate determination of non-specific background because it represents
the non-specific binding of targets to probe. Background intensities from blank areas (no nucleic
acids) do not contain probe, and therefore are arguably a different form of background. Alter-
natively, nonsense probes (probes which should not be complimentary to any gene) can be
used as a determinant of background signal intensity. In this regard, one innovative aspect of
the Affymetrix platform is the use of the mismatch oligonucleotide. In this case, each hybridiza-
tion oligonucleotide is accompanied by an oligonucleotide of the same sequence with a mis-
match in the middle of the sequence. With oligonucleotides of such short sequence (25 residues),
even such a single mismatch will disrupt specific hybridization signals.

The second step in initial data analysis is signal normalization. To overcome the variabil-
ity in the labeling and hybridization steps, researchers frequently turn to a “sum” approach for
normalization. This strategy is based on the precept that the total amount of labeled target
should be the same in all samples. That is, even though individual genes will have selected
increases and decreases, on balance, the total hybridization signal should be constant. There-
fore, equilibrating the sum of the intensities for all control and experimental spots can be used
to normalize arrays. In a similar vein, the median value of signal intensities can be used. This
value is less susceptible to distortions caused by outlying signals. More complex methods of
normalization have been developed such as those that apply Lowess intensity dependent nor-
malization, which is even more impervious to skewing by outliers (34). Currently, there is no
single standard method and generally the normalization strategy chosen is dependent on the
type and degree of technical variance specific to an individual microarray technology. The ultimate
point, however, is to convert all of the signal intensities from the various arrays to a “common
scale” so as to permit statistical analyses with a reasonable level of confidence.

Significance Testing Methods

Perhaps the most obvious bioinformatics challenge is determining when a gene expression differ-
ence exists between samples. As with normalization, there is no single, commonly accepted
method. In early microarray experiments, one method for “calling” a gene as differentially
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expressed between samples was based on the magnitude of change. Generally, a two-fold
(i.e., 100% increase or 50% decrease) change was commonly accepted as a difference. This method
has fallen from favor because it lacks statistical rigor and eliminates the possibility of detecting
smaller magnitude changes (a common occurrence when examining brain tissue, in particular).
As use of microarray technology has evolved, standard parametric tests (t-test and ANOVA)
were applied to data analysis. The major limitation of this approach is that there are hundreds to
tens of thousands of dependent measures in a microarray experiment. Standard methods for
multiple testing correction (e.g., Bonferonni correction), however, are often too conservative. This
led to further development of tools such as z-score analysis (35), statistical analysis of microarrays
(SAM) (36), and false-discovery rates (37) to give just a few examples. These tools offer a better
approach to determining significant changes because they are designed for the specific require-
ments of examining thousands of dependent measures. As with all statistical analyses, the appro-
priate balance between Type I and Type II error will depend on the goal of the experiment.

When examining thousands of mRNAs or proteins, it is almost a certainty that there will
be false-positives (i.e., changes will be observed by microarray screens that in fact do not exist)
as well as false-negatives. One of the best methods for dealing with this problem is to confirm
changes by another method. Whenever possible, array results are used to identify targets for
further validation using orthogonal technical approaches. This might involve quantitative
reverse transcriptase-PCR (QRT-PCR) or western blot analysis of selected targets highlighted
by the initial microarray screen. For microarray results, the most common method for confir-
mation is to use QRT-PCR. The current preferred method is to use real-time techniques. A range
of techniques exists including Sybr green (38), fluorescent primers (LUX, light on extension) (39),
and TagMan fluorescent probes (40). Real time methods take advantage of the kinetics of the
PCR reaction to accurately quantify transcript levels. For the specifics on quantitation using
PCR there are several good resources (41,42). With microarrays now capable of examining the
whole genome, there is a need for high-throughput confirmation by quantitative PCR. New
instruments and protocols are making possible the PCR confirmation of a large number of
genes (43). Other traditional methods such as in situ hybridization can be used for microarray
confirmation (44) with the additional benefit being that the transcript is anatomically localized.
However, this method is more time-consuming and requires more sample than quantitative
PCR. Finally, if the functional endpoint of the mRNA in question is protein, then the gold stan-
dard for confirmation is the western blot or other protein quantitation method. Not only is this
approach well suited to quantification, it also establishes that observed mRNA changes are in
fact translated into changes in protein. The problem with this technology, however, is that it
is not well-suited to high-throughput applications.

MOVING FROM DIFFERENTIALLY EXPRESSED GENE LISTS TO PATHWAYS

Initially, establishing a list of differentially expressed genes from a microarrray experiment was
the endpoint. Now it is considered only the starting point of a research project as determining
the biological significance of that list is a complex issue. As mentioned previously, these lists
can be used to establish hypotheses and direct experimental research on the function of a single
or couple of genes with a previously unknown role. In recent years, more sophisticated algo-
rithms have been developed to analyze the implications of the complete set of differentially
expressed genes from microarray results. Development of these algorithms has been an inte-
gral part of the resurgence of the field of systems biology, where the focus is the interactions
between parts of a biological system, and not the individual parts themselves.

In the field of systems biology, there has been considerable discussion of “top-down”
versus “bottom-up” strategies for delineating critical interactions in a system (45,46). In par-
ticular, a traditional top-down approach focuses on determining the functions of one or a few
genes through incorporation of known information at several levels of organization, but may
miss important novel discoveries gleaned from the integration of broad gene or protein expres-
sion scans. In contrast, several new computational methods have been recently developed that
take a bottom-up approach, by constructing networks de novo through application of statisti-
cal or graph theory analyses to global gene or protein expression experiments (47,48). How-
ever, these bottom-up approaches have been criticized for utilizing data generated solely by
novel high-throughput techniques at the gene, protein, or metabolite level, while excluding
data generated using more traditional approaches at various levels of organization. Alleviation
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of the limitations at both ends is of paramount importance for the continued growth of systems
biology approaches (49). Methods that combine top-down and bottom-up methodologies for
elucidation of gene regulatory networks (GRNs) may provide the most useful information for
experimentalists who want to balance previous research and novel insights from microarray
experiments. An example of this methodology using the developing telencephalon as a model
system will be discussed in greater detail in the next section.

In regards to top-down approaches, there are numerous ways in which microarray data-
sets can be analyzed within the context of previous research. Pathway enrichment algorithms
are popular as they provide an efficient method for determining the most likely metabolic, sig-
nal transduction, and disease pathways affected by the experimental condition, thus summariz-
ing results based on what is already known about the functions of gene products. The purpose
of these algorithms is to determine how previously studied higher order processes (e.g., the
interactions between gene products) contribute to the observed gene expression patterns.

In contrast, bottom-up strategies generate hypotheses about connectivity between gene
products based on microarray results. These methods employ a wide variety of statistical and
mathematical methods to determine connections between gene products that best explain the
variation in expression results across samples and across genes. The reader is referred to several
comprehensive reviews on these methods for further details (50-53). Because these methods
generally require very large sample sizes to get reliable results, other methods have been developed
to incorporate a priori information, thereby reducing the search space and thus reducing the
sample size requirement (54). These methods utilize literature based information or sequence
based information to require, prohibit, or weigh particular connections between a given set of
genes. These methods are examined in more detail in the next section.

Pathway Enrichment Algorithms

Pathway or functional enrichment algorithms are the most widely used method to develop
hypotheses of the global processes or pathways affected by the experimental condition in microar-
ray analyses. These methods group biologically-relevant sets of genes/proteins based on known
roles in biochemical, signaling, metabolic, or disease pathways. Some researchers have also
extended the use of the methodology by including groupings of genes, or gene sets, based on
chromosomal position and previous microarray experiments. The most important advantage of
this methodology when compared to the conventional univariate statistical analyses is the ability
to detect consistent, yet subtle changes in expression of a group of genes with related functions.
In addition, these methods allow easy integration of genomic, metabolomic, and proteomic data-
sets, as known inter-relationships are annotated in many of the pathway and functional grouping
databases. This section first describes sources of pathway information, then gives a brief over-
view of the statistical methods implemented in the most commonly used pathway enrichment
algorithms, and ends with a few recent examples in neurotoxicological research. The reader is
referred to several important reviews for a more detailed overview of these approaches (55-57).

Sources of Pathway or Functional Information

There are several sources of pathway or functional grouping information. Probably the most
well known is the Gene Ontology (GO) annotation database, which was introduced in 1999 (58)
and has been vastly expanded to incorporate several important sources of data as of 2008 (59).
This database organizes genes into functional categories using a hierarchical system. Therefore,
genes belong to very broad categories such as metabolism, but are also categorized further into
more specific classes, such as pentose phosphate metabolism. The Kyoto Encyclopedia of Genes
and Genomes (KEGG), Biocarta, and GenMAPP are other popular pathway annotation data-
bases. Compared to the hierarchical system of GO, the advantage of KEGG, Biocarta, and
GenMAPP is that gene products are organized into networks of biochemical processes such
that connectivity between individual components of a pathway represents a known direct
interaction. KEGG focuses on inter-relationships between classical metabolism, signal trans-
duction, and disease based pathways (60). Biocarta develops fully annotated pathways from
previous publications (www.biocarta.com/pathfiles/), whereas GenMAPP includes easy to
use tools for creating user defined pathways and visualizing gene expression on the pathways
(61). PANTHER (Protein ANalysis THrough Evolutionary Relationships) is another pathway
resource that builds relationships through a protein functional classification system, either
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through published scientific experimental evidence or evolutionary relationships (62). In addi-
tion, chromosomal location datasets, as well as sets of genes found to be differentially expressed
in previous experiments can serve as functional groupings or gene sets (63,64). Finally, a
comprehensive guide to sources of pathway information has been developed (65).

Statistical Methods

The statistical methods vary widely across pathway enrichment algorithms. Sometimes
referred to as overrepresentation analysis (ORA), the simplest form of pathway enrichment is
to use the chi-squared test or the Fisher exact test to calculate how the observed number of
matches (number of genes that are differentially expressed and are on a specific pathway)
deviates from what is expected by random chance. Popular online software tools that fall into
this category include EASE, GOMiner, and FatiGO (66-70). Other methods use the hypergeo-
metric distribution or the binomial approximation to the hypergeometric distribution to deter-
mine the probability of there being a specific number of genes from one pathway or class
within the list of differentially expressed genes from a microarray experiment. MAPPFinder
and Onto-Tools employ this method and are widely used in microarray research (71,72).
FatiGO and Onto-Tools have recently added additional functional groupings based on promoter
region and SNP analyses (73,74).

It is important to note that many of the algorithms mentioned above require one to pre-
determine significance of differential expression for each gene in the experiment. Therefore,
these methods still have the limitation of potentially missing a set of genes within a pathway
whose gene expression levels change consistently across the pathway, but are not considered
significant because the magnitude of change for individual genes within the pathway is not
great enough to meet the pre-determined fold-change or p-value cutoff. In addition, these
methods assume gene products act independently of each other as permutations are done
across the genes to calculate the P-value for a given pathway.

To alleviate these limitations, other methods, sometimes referred to as functional class
scoring (FCS) analysis, have been developed that do not require a fold change or p-value cutoff
to determine differential gene expression (75). For example, gene set enrichment analysis, or
GSEA, starts with the total set of genes in the microarray ranked by fold change or signal-to-
noise ratio (63). The enrichment score for a given pathway is determined by the distribution of
the positions of pathway genes within the ranked list. A weighted Kolmogorov-Smirnov test is
then used to test whether the distribution differs from uniform. In addition, because the
assumption of independence of expression across genes is likely not met (e.g., transcription of
several genes may be regulated coordinately by the same set of transcription factors), the indi-
vidual experiment can be used as the sampling unit for permutation to maintain the correla-
tions between genes. Some popular online or downloadable tools that incorporate these
methods include Ermine] and SAM-GS (76,77). Finally, as with determining differential expres-
sion, the multiple testing problem needs to be addressed as the more pathways analyzed, the
greater the chance of observing a false-positive result. As in determining significance of differen-
tial expression for individual genes, Bonferroni correction and false discovery rate calculations
are popular methods to address this issue in pathway analysis as well (56).

Examples in Current Neurotoxicology Research

Although several applications of pathway analysis in neurotoxicology research exist, two studies
are highlighted here to provide concrete examples for the neurotoxicologist. Wang et al. (2008)
used pathway analysis techniques to identify strain and region specific responses to chronic
nicotine treatment (78). Behavioral and pharmacological studies have shown that C3H/He]
and C57BL/6 mice respond differently to nicotine treatment. Microarray analyses using tissue
from amygdala, hippocampus, nucleus accumbens, prefrontal cortex, and ventral tegmental
areas produced divergent gene expression patterns according to brain region and strain. Thirty
key genes for each of five components were identified using principal components analysis to
determine genes that explained the majority of strain specific variability. Using this set of key
genes, ORA of GO categories using the EASE software was performed. Results suggested that
nicotine perturbed cell cycle, organogenesis, and transmission of nerve impulse in both strains
across all brain regions, but ubiquitin-dependent protein catabolism was specific to the
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C57BL/6] strain whereas cell-surface receptor-linked signal transduction was specifically
overrepresented in the datasets from the CeH/HeJ strain. Further validation of the predicted
pathway changes using RI-PCR in the prefrontal region supported the hypothesis that the
strain specific increased locomotor activity observed in the C3H/HeJ strain may be due to
increased activation of the mitogen-activated protein kinase signaling cascade.

Looking at age-related changes in gene expression in the human prefrontal cortex,
Pavlidis et al. (2004) compared ORA with FCS pathway analysis methods (79). They found that
ORA methods requiring a cutoff to determine differential expression do not perform as well as
FCS methods that use p-values, fold change, or an ANOVA result as a continuous variable
across the whole gene expression dataset. For example, they found greater consistency in
results across datasets from different brain regions when using a FCS approach. In addition,
ORA methods were found to be less consistent, as results varied depending on the specific
cutoff set for differential expression.

Many more examples exist in the neuroscience and neurotoxicology literature than can be
covered in this chapter. In fact, a review produced in 2005 found over 502 original publications of
microarray datasets in neural or glial tissue, 103 of which involved administration of a nonendo-
genous substance (80). This number has grown considerably since then (over 400 neuroscience
related datasets deposited in GEO and ArrayExpress), and numerous efforts have been made to
develop methods for re-analysis of these datasets to provide context for future studies (81). For
example, GSEA provides easy to use tools to compare current microarray datasets with gene sets
from previous microarray analyses to determine if similar patterns exist. In addition, novel analysis
tools that use previous literature based hypotheses are described in further detail below.

Literature Based Search Algorithms

Although current pathway databases provide annotation of gene products that are part of the
well known canonical pathways, several novel pathways are not included. For example, only
4000 of the 24,000 National Center for Biotechnology Information (NCBI) recognized human
genes are represented in at least one KEGG pathway (60). One method to alleviate this limita-
tion is to develop pathways based on mining of the literature. Two popular proprietary soft-
ware programs that use expert knowledge and text mining algorithms to establish connections
between gene products include Ariadne’s Pathway Studio and Ingenuity’s Pathway Analysis
software packages (82,83), although neither emphasize analysis of neurosciences research.
Other freeware text mining algorithms have been developed for retrieval of information spe-
cifically from the neurosciences literature, such as Textpresso for NeuroSciences (84) and
NeuroExtract (85). The Comparative Toxicogenomics Database provides an easily searchable
database of connections between genes, chemicals, and diseases based on text mining and
expert annotation of the literature (86). In addition, a pathway can be built by traditional litera-
ture research and then tested against a microarray dataset. An example of this methodology
applied to the regulatory cascade describing neurogenesis in the developing telencephalon is
described below.

Testing Microarray Data Against Literature Based Networks: A Case Study

in the Developing Telencephalon

The embryonic telencephalon gives rise to specialized structures such as the basal ganglia, the
neocortex, and the hippocampus. The neocortex, mainly derived from the dorsolateral
telencephalon, is the dominant structure of the adult mammalian brain and functions as the
primary region for higher order processes such as language, decision making, and complex
social behaviors (87). The embryonic ventral telencephalon also contributes to the neocortex, as
it is the site of origin for a unique subset of neocortical GABAergic interneurons (88,89). The
basal ganglia, also derived from the ventral telencephalon, is involved in behavioral control
such as response inhibition, attention span, and overall executive functioning (90). The differential
patterning of these regions begins early during the neurogenesis period, and perturbations of
this process are linked to various neurological disorders often associated with developmental
neurotoxicity including attention-deficit hyperactivity disorder, epilepsy, and schizophrenia. In
addition, behavioral abnormalities associated with in utero exposures to substances such as
ethanol, cocaine, and polychlorinated biphenyls (PCB) are thought to arise from perturbation
of neurogenesis, creating an imbalance between inhibitory versus excitatory neurons (91-95).
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During neurogenesis, which spans the second trimester in humans (approximately E11-
E17 in the mouse), neural stem cells begin the differentiation process to become specialized,
region-specific neuronal populations. This period is critical for correct telencephalon pattern-
ing in the adult, as perturbations during this period can result in massive shifts in positional
identity (96,97). In general, neural stem cells in the dorsal telencephalon differentiate into stim-
ulatory glutamatergic pyramidal neurons, whereas inhibitory GABAergic interneurons are
derived from neural stem cells found in the ventral telencephalon (98). Furthermore, the regu-
lation of cell fate choice is closely linked to the regulation of the cell cycle, thereby determining
the final number of neurons in each region (99,100).

The proneural basic-helix-loop-helix (bHLH) transcription factors Ngnl, Ngn2, and
Mash1, are particularly important for the correct differentiation of neuronal phenotypes in the
developing telencephalic structures (101,102). Mice with null mutations of Mash1 show severe
defects in neurogenesis in the ventral telencephalon, whereas single and double mutants of
Ngnl and Ngn2 lack specific neuronal populations in the dorsal telencephalon (103,104). The
generation of replacement mutations in mice in which the coding sequences of Mash1 and Ngn2
are swapped suggests Mash1 is an instructive determinant of GABAergic neuronal differentiation,
whereas Ngn2 is a permissive factor that may act in combination with other factors to specify
the dorsal glutamatergic neuronal phenotype (105).

The GRN shown in Figure 1 describes the current understanding of neuronal differentiation
initiated by expression of proneural bHLH transcription factors in the developing telencephalon
(106) and is based on extensive experimental research summarized in several important
reviews (97,101,107).

" Neural stem cell

Ventral

Layers II-IV

Layers V-VI

Dorsal

Figure 1 (See color insert) Literature-based gene regulatory network describing proneural bHLH regulation of
telencephalon neurogenesis. Activations are identified with an arrow and repressions are identified with a barred
line. Those connections that are non-significant based on the current microarray dataset are represented as
dashed lines. Significant relationships were determined through analysis of the distribution of the strength of linkage
parameter (B) after 500,000 MCMC simulations. If >95% of the simulations have values above zero they are
considered significant. *Connections which were significant, but as inhibition. Abbreviations: bHLH, basic-helix-
loop-helix; MCMC, Markov Chain Monte Carlo. Source: From Ref. 106 (originally published by Biomed Central).
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A Bayesian based method was applied to global gene expression patterns in Ngn2,
Mash1, and Ngn1 gain of function (GOF) and loss of function (LOF) mice to test these literature
based connections (106). This method removes the need to rely on fold change cutoffs by
examining the strength of the predicted relationships based on concurrently evaluating vari-
ability in gene expression patterns across control and perturbation experiments. Significant
connections based on this analysis [the 5th percentile of the posterior density for B is greater
than zero (108)] are highlighted in Figure 1. This analysis predicted 86% (31/36) of the connec-
tions as significant based on the microarray dataset. Specificity of this method was estimated
via permutation of gene labels, resulting in an estimated false positive rate of 8.2%. Therefore,
the random chance of seeing 31 significant connections out of 36 is very low (p < 0.001), suggest-
ing this method can provide an efficient way to test microarray datasets against literature-based
network hypotheses.

One limitation of this approach is the assumption of an acyclic network (e.g., no feedback
loops) and the assumption that gene expression relationships are linear. For example, notice
that four of the significant interactions are considered inhibitory interactions instead of activa-
tions, which suggests possible feedback loops between Pax6 and Ngnl and Satb2, Ngn2, and
Nscl, as well as between NeuroD and Etvl. In addition, two of the connections originating from
Ngn2 (to Ngn1 and DII1) are not considered significant based on this analysis. As the algorithm
relies on linear relationships between genes, its inability to detect these two connections may
have resulted from non-linear variability between Ngn2 and its targets created by the large
increase in Ngn2 transcript levels after the GOF electroporation. This highlights the importance
of considering experimental design constraints in evaluating connectivity between gene prod-
ucts. Application of robust time-series datasets will allow for determination of acyclic networks
and non-linear relationships (109).

GENERATING NOVEL PATHWAY HYPOTHESES FROM MICROARRAY DATA

As introduced above, another application of microarray datasets is generation of novel network
or pathway hypotheses. In general, this type of analysis uses the variance structure across many
experiments to estimate connections between gene products. In simple terms, if Gene 1 consis-
tently increases when Gene 2 decreases across many different experiments, it would suggest there
is a connection between the product of Gene 1 and Gene 2. Methods for this type of analysis
were first developed using very large datasets generated in organisms where high throughput
perturbation analyses have been developed, including S. cerevisiae, C. elegans,and S. purpuratus (29-33).
Because of the higher complexity of mammalian systems and smaller numbers of microarray
experiments available, application to other species without modification of the methods
produced high false positive rates (48,110). Since then, numerous novel and modified methods
have been developed to alleviate this problem. In particular, it has been found that incorporating
datasets from several independent data sources to limit the search space results in more robust
predictions of connectivity (54,111).

This section starts with a short description of common methods used to predict connec-
tivity using microarray data. Next, databases available to aid in the development of novel
networks in neurotoxicology research are explored. Finally, this section ends with a case study
using a Bayesian based algorithm with an informative prior structure to predict novel connec-
tions in the GRN governing neurogenesis during telencephalon development. This type of
algorithm is particularly useful because it can incorporate multiple sources of prior data.

Generating Networks from Microarray Data

Often referred to as “reverse engineering,” numerous methods have been utilized to predict
connections between gene products based on global gene expression patterns. These methods
are detailed in several comprehensive reviews (50-53). Briefly, clustering is by far the simplest
method employed to group genes by expression patterns. Different similarity metrics including
Euclidean distance, correlation coefficient, ranked correlation coefficient, and mutual informa-
tion based measure have been used to quantify the similarity in gene expression patterns.
Multivariate unsupervised techniques including hierarchical clustering, k-means, and self-
organizing maps have been used to predict functional groups of genes from microarray datasets.
Supervised techniques such as support vector machine or decision tree analysis have been
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employed to classify genes of unknown function based on similarity in expression patterns of
genes whose function is known. Neural network approaches have also been employed to
predict connectivity between genes. Discreet, Boolean networks, where a gene is said to either
be “on” or “off” based on a predetermined cutoff have been used to develop network hypotheses,
whereas other methods use continuous functions to describe relationships between genes.

When compared to other methods, Bayesian approaches have performed particularly
well for identifying connectivity networks based on global gene or protein expression datasets
(112). Bayesian-based network analyses was first introduced in applications of large datasets
from in vitro and invertebrate models (48,113); however, some attempts using datasets derived
from mammalian species have been made (108). Through this research, it has been found that
the sample size limitation can be eased through the use of an informative prior structure to
incorporate data from other sources, such as from sequence-based transcription factor binding
site (TFBS) information (54). In fact a wide variety of data can be used as prior knowledge to
build a probability distribution for particular connections in the Bayesian framework, making
it particularly amenable for prior knowledge data synthesis. Besides literature based search
algorithms or traditional literature searches as described in the above section, there are several
important sources of prior information. Some examples are explored below.

Prior Information Databases

A diverse set of information can be useful as prior knowledge for building a GRN. Some tools
that are particularly suitable for neuroscience research are briefly discussed below. The reader
is also referred to a recent review of informatics tools in neuroscience (114) and to a Neurosci-
ence Database Gateway (http://ndg.sfn.org/) developed and managed by the Society for
Neuroscience.

The National Institute of Mental Health Human Brain Project focuses on funding
neuroinformatics research. One result is the SenseLab Project, which includes six linked data-
bases bringing together neuroscience research in pharmacology, ion channels, membrane prop-
erties, olfactory pathways, and neuronal models (115). Functional magnetic resonance imaging
datasets are deposited in the Brede database (116). This database includes software that allows
searches and cross-referencing to genes, diseases, and receptors via SenseLab. In addition,
compilation of electrophysiological datasets into databases are in the beginning stages (117),
which when complete, will allow integration of these signal transmission datasets into other
static datasets such as gene expression.

Cell to cell connections are an important part of neurophysiology and can help to inter-
pret microarray datasets. Brain Architecture Management System (BAMS) (118,119) focuses on
connectivity in the rat brain, whereas CoCoMac (120) compiles connectivity data in the Macaque
monkey. Currently, C. elegans is the only species for which the complete wiring diagram of the
nervous system is available (www.wormatlas.org).

GeneNetwork (http:/ /www.genenetwork.org) provides easy to use query tools for gene
expression datasets from several brain regions from well-studied recombinant inbred mouse
strains (121). This allows researchers to treat expression levels as quantitative traits that can be
related to morphological or behavioral traits (122). For example, this database has been used to
show the link between genetic variation, gene expression variation, and adult neurogenesis in
the hippocampus (123).

The highly heterogeneous nature of nervous system tissue contributes to the difficulty in
interpretation of results from microarray analyses. Therefore, atlases of spatially restricted gene
expression are ideal databases for supplementing microarray data to obtain morphological con-
text. The Allen Brain Atlas contains high-resolution colorimetric in situ RNA hybridization data
in the adult mouse brain for 21,000 genes (124) and has been used in regulatory network inference
(125). For developmental expression patterns the Brain Gene Expression Map (BGEM), GenePaint,
and Gene Expression Nervous System Atlas (GENSAT) provide searchable databases of radioactive
in situ hybridization and fluorescent protein reporters (126-128).

Novel tools for integration of results from multiple microarray datasets are being devel-
oped. Gemma is one such project that focuses on the functional characterization of gene prod-
ucts via meta-analysis of variation across microarray experiments (129). Therefore, those genes
that have correlated expression patterns are inferred to have a closer relationship than those
with uncorrelated expression patterns. For example, by performing an analysis of 60 human
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data sets, Lee et al. (2004) was able to show more robust functional predictions were possible
when results from several microarray experiments were combined (129).

Protein-protein interaction (PPI) databases can also be used to supplement microarray
datasets in network generation based on the assumption that interactions between gene prod-
ucts at the protein level are predictive of relationships at the mRNA level. Although this is a
simplistic assumption, it can be helpful to determine if the coordinated gene expression seen in
a set of microarray experiments can be related to modules of protein interactions. Several PPI
databases exist, some of which focus on particular species, yeast two hybrid screen results, or
literature searches. Two well known freely accessible databases include database of interacting
proteins (DIP) (130), which has no species restrictions and Human Protein Reference Database
(HPRD) (131), which focuses on human protein interactions. Another popular database as well
as a list of PPI resources can be found at the Mammalian Protein-Protein Interaction Database
(MIPS) (132). Mathivanan et al. (2006) compares several PPl databases and evaluates their
applicability based on the particular needs of a researcher (133).

The most popular method for supplementing gene expression data in network analysis is
TFBS analyses. For example, if the binding site of a particular transcription factor is found in
the upstream region of a gene, then this information can be used to increase confidence of a
direct connection if correlation in gene expression exists between the transcription factor and
the gene. Several important databases are useful in sequence searches for TFBS. TRANSFAC
developed by Biobase provides the most comprehensive database of TFBS position weight
matrices (PWM) (134). A given sequence can also be searched within TRANSFAC, although an
initial sequence alignment and identification of evolutionary conserved regions is recom-
mended. Because TFBS are very short sequences (usually between 6-15bp in length) and
degenerate in nature it is important to perform searches only within evolutionarily conserved
regions to limit false positives. Several sequence alignment algorithms exist and are covered in
detail elsewhere (135). A web-based platform developed at the Lawrence Livermore National
Laboratory provides an integrated set of tools for analysis of TFBS in evolutionarily conserved
sequence (136,137). MatInspector is part of a proprietary software package developed by
Genomatix that includes up-to-date information on PWM and easy to use gene expression anal-
ysis tools (138). An example of how this type of information can be integrated with microarray
datasets to generate hypotheses of GRNs is described in the following section.

A Case Study in the Developing Telencephalon

This example builds from the case study described in the previous section on testing of microar-
ray datasets against a literature-based network. Briefly, microarray datasets were generated
from dorsal and ventral telencephalon tissue derived from Mash1, Ngnl, and Ngn2 GOF and
LOF mice (106). To predict novel co-factors and co-regulators important for telencephalon spec-
ification, comparative genomics bioinformatics approaches were used to identify conserved
TFBS surrounding the putative Ngn2 and Mash1 target genes identified from these global gene
expression datasets (106). Subsequently, this sequence based information was incorporated into
an informative prior structure for the TAO-Gen algorithm (139), which is a Bayesian based tool
for finding the best network given a gene or protein expression dataset. Therefore, the resultant
network incorporates prior information with microarray expression results to develop consensus
predictions of connectivity between the predicted targets, co-factors, and co-regulators.

Sequence Analysis to Identify Potential Co-factors for Ngn2 and Mash1

It has been shown that developmentally expressed genes are often regulated via ultra con-
served long-range enhancers (140-142). Therefore, comparative genomics and TFBS searches
can be utilized to identify putative long-range enhancers. For example, in this study a mini-
mum of 500 kb of sequence surrounding several predicted Ngn2 and Mash1 target genes was
analyzed. In general, approximately 300 kb in front of and approximately 200 kb behind including
UTRs and introns of the gene of interest was considered. A four step bioinformatic process was
then implemented: () The ECR browser (www.ecr.dcode.org) was used to align human sequence
with Mus musculus, Gallus gallus, Xenopus tropicalis, Fugu rubripes, and Danio rerio (137). (ii)
Mulan (www.mulan.dcode.org) was used to perform a higher quality local multi-sequence
alignment based on Blastz (137). (iii) Multitf (www.multitf.dcode.org) was applied to search for
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putative Mashl (GCAGSTGK or CAGSTG) and Ngn2 (CANWTG) binding sites within the
aligned conserved sequences. (4) All other TRANSFAC annotated TFBS within 30 bp upstream
and downstream of the putative Ngn2 or Mash1 binding sites were then identified. In total, 114
conserved putative Ngn2 and Mashl sites were identified. Finally, to identify the most likely
co-factors for Ngn2 and Mash1, K-means clustering was carried out to predict those TFBS that
most often co-occurred with Ngn2 or Mash1 binding sites within the Ngn2 versus Mash1 putative
target genes, respectively.

This bioinformatics approach suggested that only the ubiquitously expressed E-proteins,
Tcf12 and Tcfe?a, are specifically associated with conserved Mash1 binding sites in the Mash1
and common target genes, consistent with an instructive role for Mash1 in ventral cell fate
determination (105). Alternatively, the analysis predicted several co-factors for Ngn2, again
consistent with previous findings suggesting a permissive role for Ngn2 in dorsal fate specifi-
cation (105). In addition, this analysis predicted CREB and Crebbp are the most likely candi-
dates for a dorsally expressed Ngn2 co-factor, which is supported by similar interactions
identified in other developing tissues (143-146). In addition, this analysis predicted transcrip-
tional regulators downstream of Wnt signaling (Tcf4/Lefl) may bind to regulatory modules
that also bind Ngn2. This result is consistent with research implicating the importance of Wnt
signaling in the specification of the dorsal forebrain (147-149), and offers a hypothesis in which
coordinated Wnt activation and Ngn2 expression act in concert to transcriptionally activate
genes important for dorsal neuronal specification.

Identification of Putative Co-regulators of Ngn2 and Mash1 Targets

A second comparative genomics analysis was designed to identify important regulatory mod-
ules that bind transcription factors other than Ngn2 and Mash1. For this analysis, promoter
region sequence (10,000 bp upstream of TSS) from mouse and human orthologs of Ngn2 pre-
dicted targets and Mashl and Mash1/Ngn2 predicted common targets was automatically
uploaded from the UCSC database via the CONFAC website (89). CONFAC then identified
conserved TFBS from the TRANSFAC database version 7.0 in the human and mouse sequence
alignments (150). As part of the CONFAC software, the Mann-Whitney statistical test was then
applied to test for enrichment of TFBS in the given gene lists. Each list was compared with a list
of 250 randomly picked genes available from the CONFAC website, as well as comparing the
Ngn?2 target list with the Mash1/common targets list and vice versa. Several transcription fac-
tors were identified that may act as co-regulators, including Hes1, Egrl, Nfy, Mef2a, Tef, and
Sox9. Each of these transcription factors have previously been implicated in developmental
regulation in neural and non-neural tissues (151-156) and based on the microarray analyses,
showed gene expression consistent with a potential role in the developing forebrain.

Utilization of In Situ Hybridization and Protein-Protein Interaction Databases

Through interrogation of online databases of in situ hybridization in serial brain sections across
development (126,127), the spatially distinct expression patterns of several predicted co-factors/
co-regulators in the developing dorsal and ventral telencephalon was confirmed (106). In fact,
this analysis was able to show that several of the predicted co-factors/co-regulators, including
Sox9, Crebbp, Crebl, Tcf4, Lefl, Pou6fl, Pou2fl, Pou3fl, Tef, Hes1, and E2f1, have appreciable
expression in the ventricular zone of dorsal and/or ventral telencephalon, where proneural
bHLH proteins are specifically expressed. In addition, the HPRD (157) was interrogated to find
if direct PPIs between proneural bHLH proteins and the predicted co-factors have been previ-
ously identified using a yeast two hybrid screen. Experimental evidence found in this database
supported direct PPIs between proneural proteins and Crebbp, Tcf4, and Mef2a.

Bayesian Network Analysis with an Informative Prior Structure

Using Bayesian network analysis with an informative prior structure, the knowledge gained
from the above experimental and computational approaches was synthesized to predict con-
nectivity between the novel target genes, co-factors, and co-regulators (Fig. 2). An informative
prior structure considered all significant literature-based connections as required (diagrammed
using thicker lines) and used the TFBS information from the comparative genomics analyses to
weight connections in which TFBS information was found. For example, a conserved Sox9
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TFBS was identified in the sequence surrounding Lfng, therefore a preference is given to Sox9
being a parent to Lfng, which results in a slightly higher probability that a linear relationship
between these two genes will be significant in the posterior distribution. The reliability of the
TAO-Gen algorithm as well as the utility of the informative prior structure was tested through
direct comparisons with results obtained from another Bayesian network algorithm (112,158),
as well as with results obtained using TAO-Gen without an informative prior.

The final network structure predicts 174 linkages between the set of 82 genes, adding a con-
siderable amount of knowledge to the previous literature based network. For example, Sox9, Mef2a,
Elavl4, and Poub6fl are predicted as prolific co-regulators of the target genes, with 14, 12, 9, and 12
children, respectively. Furthermore, our analysis predicts Creb1, Crebbp, and Yy1 as the most likely
candidates for dorsally expressed Ngn2 co-factors, and supports a synergistic interaction between
Pou-domain containing transcription factors and bHLH proneural proteins in the regulation of
common target genes, which is consistent with previous studies (159). Several transcription factors
were identified as candidate co-regulators of Ngn2 target genes, including Hes1, Egrl, Nfy, Mef2a,
Tef, and Sox9, whereas Poubfl is a predicted co-regulator of Mash1 target genes.

Lessons Learned

One important application of a network analysis is the prioritization of the most useful experi-
mental perturbation or ChIP experiment for resolving the overall network structure (160). This
is particularly relevant to studies in mammalian species, in which perturbation analyses are
much more time and resource intensive, although the development of RNAi strategies and
ChIP-on-chip technologies in mammalian systems offers promising prospects for increasing
the efficiency of network inference (161). For example, the network analysis presented here
would suggest Centg3 and Elavl4 are important candidates for perturbation analysis and sub-
sequent global gene expression analysis for further network resolution, as they are both highly
connected nodes and little is known about their function in the developing telencephalon.
Interestingly, variants in Centg3 have been shown to modulate protection against neurodegen-
eration in Polyglutamine diseases (162). Elavl4 regulates through mRNA stabilization (163),
highlighting the importance of moving beyond cis regulatory binding and mRNA expression
analysis to elucidate network relationships.

SUMMARY

With the maturation and widespread use of microarray technology, there is a critical need to
understand how gene expression patterns can be utilized to understand gene regulation, the
functional outcomes of sets of co-regulated genes, and ultimately phenotypic outcome. This
chapter is intended to demonstrate the utility of bioinformatics approaches for elucidation of
biological insights from omics technologies. Although this chapter focused on global gene
expression analysis as it is the most developed omics field, the methods introduced here are
relevant to all omics techniques. The analytical approaches are not restricted solely to genomic
data, in fact the lessons learned from microarray studies over the past 15 years can aid in the
more rapid development of proteomics, metabolomics, and other systems biology level analy-
ses. This chapter covered initial data analysis to find differentially expressed genes, the place-
ment of gene expression datasets into the context of known pathways, and ended with methods
for developing novel network hypotheses by combining microarray datasets with prior knowl-
edge. There is no doubt that as the technology for rapid experimental data generation contin-
ues to progress, the utilization of computational and bioinformatic tools will become an integral
part of neurotoxicology research.
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INTRODUCTION

This review will discuss the evidence explaining which blood-brain barrier mechanisms in the
immature brain appear to be functional in relation to what is known about effects of neurotoxic
agents in the fetus and newborn. The influence of neurotoxic agents on specific aspects of brain
development have been reviewed in detail elsewhere (1-3) and will only be dealt with in outline
here. There is a widespread belief amongst toxicologists (1,4-13) and neurobiologists (14-18)
that “the” blood-brain barrier in the fetus and newborn is immature or even absent (3). This
appears to be partly due to a teleological view that the developing brain would not “need” a
specialized local environment for its development or if it does then this would be supplied by
protective functions of the placenta (19). A more recent but similarly teleological view is that
“the rapid growth of the cerebral cortex perhaps necessitates a ‘leaky’ structure of the blood-
brain barrier to accommodate the high demand of blood-borne nutrients for brain growth” (20).
The belief in the immaturity of the blood-brain barrier is often stated without citing evidence,
or supported by uncritical acceptance and interpretation of results of three types of experiments.
One involves the injection of large volumes or concentrations of barrier markers into fragile
embryos or fetuses (21). The second, which is more directly relevant to toxicological studies, is
the interpretation of differences in responses of the brains of adult and immature animals to
drugs and toxins as due to barrier immaturity (22). The third type of experiment is measurement
of entry of biologically important molecules such as amino acids into the developing brain.
These show unequivocally that the level of transfer is generally greater in the developing rather
than in the adult brain (reviewed below). Some have interpreted this as evidence of a “leaky”
barrier (20,23). Most of those who did the actual experiments concluded that the greater transfer
was a reflection of a developmental specialization during brain growth (24,25).

The term blood-brain barrier is unfortunate; for many people it implies a single mecha-
nism that excludes certain classes of molecules from the brain. As will be described below, the
term is now used to cover a wide range of mechanisms that determine and control the compo-
sition of the internal environment of the brain, the stability of which is essential for normal
brain function. It is appropriate to be particularly cautious about the administration of drugs to
pregnant women and children since all drugs have potential side effects and the immature
nervous system may be more susceptible to these effects than the adult. Similar problems occur
with respect to exposure to toxins. However, blanket assumptions that the blood-brain barrier
in the fetus and newborn is immature may lead to potentially valuable drugs being withheld
from treatment (26) although it is probable that the incidence of inappropriate use of drugs in
pregnant women is much higher than under-use (27,28). Nevertheless, it would seem appropri-
ate that clinical decisions about drug-use should be rational and based on sound evidence
rather than supposition. In addition, if drugs and toxins have effects in the fetus or newborn,
which are not apparent in the adult, it is important to know what mechanisms are involved.

Fundamental biological questions are: (i) What brain barrier mechanisms are present in the
embryonic, fetal, and newborn brain? (i7) How do they contribute to brain development? (iii) When
do adult mechanisms develop? (iv) Are there any brain barrier mechanisms that are specific or more
prominent in the immature brain than in the adult? The key toxicological question is whether or not
these mechanisms provide protection for the developing brain or render it more vulnerable.

BRAIN BARRIER MECHANISMS IN THE ADULT
The term “blood-brain barrier” was originally coined early in the 20th Century to explain the
results of experiments showing that certain dyes and toxins, when injected into an animal, did
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not penetrate into the brain apart from a few limited areas, e.g., choroid plexus and area
postrema. The explanation of this exclusion was shown by electron microscopy studies (29) to
be due to the presence of specialized intercellular junctions (“tight junctions”) between cells
forming barrier interfaces between blood and brain. In physiological studies several
authors (30,31) have shown that classical dyes used to demonstrate the blood-brain barrier
bind to plasma proteins, particularly albumin, thus it was concluded that the barrier (tight
junctions) was to protein rather than to the much smaller dye molecule (32). However, as a
consequence of measurements of electrical resistance across different epithelia in vitro it was
proposed that the tight junctions between cells in epithelia, such as the choroid plexus and
between cerebral endothelial cells, are a low resistance pathway compared to the actual cell
membranes through which ions and water are able to pass. From the point of view of under-
standing brain barrier mechanisms, the essential point is that the barrier interfaces are imper-
meable to the intercellular passage of proteins and they have low, if any, intrinsic permeability
to small lipid insoluble molecules. The functional importance of this low permeability is that
transport mechanisms in the cells of the barrier interfaces are able to generate gradients between
the brain compartments [cerebrospinal fluid (CSF) and brain interstitial fluid] and the blood
that are essential for normal brain functioning. Thus the overall effect of the brain barrier mech-
anisms is to maintain the internal environment of the brain with respect to a whole range of
constituents (e.g., ions, glucose, amino acids, micronutrients). Some cellular transfer mecha-
nisms result in a net influx of molecules into the brain [e.g., glucose (24,33), many amino
acids (24,34), and efflux mechanisms that exclude certain classes of molecules (including many
drugs) from entering the brain]. Among efflux mechanisms the multidrug resistance proteins MDR-1
(P-glycoprotein) and the MRPs are particularly important as their substrates are a wide range of
drugs and chemicals; many of them neurotoxic (35-37). The developmental status of these
efflux mechanisms is a key to understanding the potential for neurotoxicity in the fetus and
newborn brain, although many textbooks do not mention these mechanisms (38—41).

The brain barrier interfaces are present at three main sites in the adult brain, illustrated in
Figure 1: cerebral blood vessels (blood-brain barrier), choroid plexuses (blood-cerebrospinal
fluid barrier), and pia-arachnoid barrier. In the fetus there is an additional barrier interface
between the cerebrospinal fluid and the brain parenchyma (CSF-brain barrier) (Fig. 1 and
section “Barrier Mechanisms in the Developing Brain”). Furthermore, the placenta provides
an additional barrier interface between the maternal and fetal blood.

BARRIER MECHANISMS IN THE DEVELOPING BRAIN

Intracellular Tight Junctions in Barrier Interfaces

The fundamental structural barrier (tight junctions) present in both the blood-brain and blood-
CSF interfaces is already functionally effective from very early in brain development. Molecules
even as small as sucrose and inulin do not appear to permeate tight junctions either in the
endothelial cells of the first blood vessels to grow into the brain or in the choroid plexus epithe-
lial cells (42—44). This has been demonstrated at both the light and electron microscopical levels
using biotin labelled molecules of different sizes that can be visualized microscopically and also
have permeability properties similar to more familiar markers, such as sucrose mw 362 Da (cf.
biotin ethylenediamine MW 286 Da) and inulin MW 5000 Da (cf. biotin dextran 3000 Da) as
illustrated in Figure 2. Thus the fundamental structural barrier at the blood-brain and blood-CSF
interfaces is present and functionally effective from very early in brain development. The
assumption that the blood-brain barrier in the fetus is not present or only partly formed and
therefore the developing brain is accessible to drugs and toxins (3,4,7,8,11,45) is incorrect. How-
ever, the tight junctions are only part of the system that provides the brain with its stable internal
environment. In addition there is a range of cellular mechanisms that control entry and exit of
molecules across the barrier interfaces. These are the essential determinants of the local environ-
ment in which the brain grows and develops. Much less is known about these mechanisms than
about the development of the morphological components of brain barrier systems. Understand-
ing these mechanisms is an essential prerequisite for interpreting data on toxicological effects in
the fetus and newborn. Some of these mechanisms develop early and their functional effective-
ness is, in itself, evidence of the presence of some aspects of barrier mechanisms in the immature
brain. However, some mechanisms develop later. Whether the temporal differences in development
of different brain barrier mechanisms can be interpreted as evidence of a degree of immaturity or
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(A) Neurovascular unit (C) Meninges
(blood-brain barrier) (arachnoid barrier)

- (D) Neuroependyma
g (fetal CSF-brain barrier)

(B) Choroid plexus
(blood-CSF barrier)

(E) Adult ependyma
(free exchange)

Figure 1 (See color insert) Schematics of the interfaces and barriers in the adult and developing brain. (A) The
blood-brain barrier is a barrier between the lumen of cerebral blood vessels and brain parenchyma. The endothe-
lial cells (Endo) have luminal tight junctions (arrowhead) forming the physical barrier of the interendothelial cleft.
Outside the endothelial cell is a basement membrane (bm) which also surrounds the pericytes (Peri). Around all
these structures are the astrocytic endfeet processes from nearby astrocytes (As Endfoot). All these structures
together are often referred to as the neurovascular unit. (B) The blood-CSF barrier, a barrier between choroid
plexus blood vessels (bv) and the CSF. The choroid plexus blood vessels are fenestrated and form a non-restrictive
barrier (small arrows), however, the epithelial cells (Ep) have apical tight junctions (arrowheads) that restrict
intercellular passage of molecules. (C) The meningeal barrier, is the least studied and structurally most complex
of all the brain barriers. The blood vessels of the dura are fenestrated and provide little barrier function, however,
the outer cells of the arachnoid membrane (Arach) have tight junctions (arrowheads) and this cell layer is believed
to form the physical barrier between the CSF-filled subarachnoid space (SAS) and overlaying structures. The
blood vessels in the arachnoid and on the pial surface (PIA) have tight junctions with similar barrier characteristics
as cerebral blood vessels although lacking the surrounding pericytes and astrocytic end-feet. (D) The fetal CSF-
brain barrier, a barrier between the CSF and brain parenchyma, and has only been shown to be a functional
barrier in the early developing brain (245). In early development, the neuroependymal cells are connected to each
other by strap-junctions (open arrowheads) that are believed to form the physical barrier restricting the passage
of larger molecules such as proteins but not smaller molecules such as sucrose. (E) The adult ventricular
ependyma. During development, the neuroependymal cells flatten and lose their strap-junctions. The mature
ependyma does not restrict the exchange of large molecules at (e.g., proteins) between CSF and brain. Source:
From Ref. 246.
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Figure 2 Micrographs of the blood-brain and blood-CSF barriers at early stages of brain development. (A)
shows neocortical blood vessels on the brain surface of a newborn opossum (Monodelphis domestica) 30 min-
utes after an intraperitoneal injection of a small inert tracer (3 kDa biotin-dextranamine). The tracer, visualized as
a dark reaction product, is clearly confined to the lumen of these blood-vessels, which are the first to grow into
the neocortex of the developing opossum brain (scale bar is 50 uym). (B) Electron micrograph of an intercellular
junction between two adjacent endothelial cells in the newborn opossum brain (blood-brain barrier). Note the
biotin-dextran amine tracer (dark reaction product) which is present in the lumen of the blood vessel, but does not
pass beyond the tight junction complex (arrow) located at the luminal end of the intercellular cleft (scale bar is
200 nm). (C) Electron micrograph of an intercellular junction between two adjacent choroid plexus epithelial cells
(blood-CSF barrier) in a newborn opossum brain 30 minutes after the tracer was injected into the intraperitoneal
cavity. Note that the tight junction (arrow) restricts the passage of this tracer along the intercellular cleft towards
the cerebrospinal fluid in the ventricles (scale bar is 100 nm). (D) Electron micrograph of an intercellular junction
between two adjacent choroid plexus epithelial cells in an embryonic rat brain at 15 days gestation. In this animal,
the tracer was administered into the cerebrospinal fluid on the other side of the blood-CSF barrier rather than into
the peritoneal cavity as in (C). Note that by 10 minutes after administration, the tracer is clearly visible in the
intercellular cleft, but is unable to pass beyond the tight junction complex (arrow) located at the ventricular end of
the intercellular cleft (scale bar is 200 nm). Source: From Ref. 245.
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represent developmental specializations appropriate for specific stages of brain development is
a matter of debate. It may be that mechanisms important for particular aspects of brain develop-
ment become potentially damaging if toxic agents are able to use them to gain entry to the
immature brain. One such mechanism is the transfer of proteins from blood to CSF, which results
in a high concentration of proteins in fetal CSF (46). Since heavy metals and some drugs bind
to plasma proteins, the higher level of these proteins in fetal CSF may represent a hazard to
the developing brain, particularly since they will be entering the brain at periods of greater
vulnerability because of the various growth processes that are occurring (3).

Blood-Brain and Blood-CSF Transport Mechanisms in the Developing Brain

It is the transport mechanisms in these barrier interfaces that determine the internal environ-
ment of the developing brain and supply essential nutrients and other molecules essential for
the growth and differentiation of this complex integrated organ. Figure 3 summarizes what
is known about inward (blood-brain) transport mechanisms that have been shown to be
functional in the fetal and newborn brain.

Water

The key water channel, aquaporin-1, is present in the appropriate (adult) functional site of the
choroid plexus epithelial cells as soon as the plexus begins to differentiate in all species studied,
including the human fetus (47).

lons

One of the most fundamental characteristics of the adult brain is stability of the ionic composi-
tion of CSF and brain extracellular fluid. This stability is essential for normal brain function in
that the transmission of nerve impulses in axons and across synapses is dependent on a stable
resting membrane potential and characteristic transient changes in ion permeability across
axon membranes at postsynaptic terminals. An indication of the stability of ion gradients in

b2+
MeHg Glu (Cys) Mn2*

(Cys) Zn® Fe®
// H IS

GLUT1 Amino Nucleosides Receptor- MCT1 Others
acids Nucleotides mediated MCT2
Glucose Ala, Cys, Adenine Transferrin Lactate Na*
His, Pro Adenosine Ketones K*
Met, Trp Other ions

Figure 3 Inwardly directed (blood-brain) transfer mechanisms that are known to be functionally active in the
barrier interfaces of the developing central nervous system and which could provide potential routes of entry for
some neurotoxic compounds. Examples of the endogenous substrates for each transfer mechanism are shown
below and neurotoxic compounds that can also enter via these mechanisms are shown above. GLUT1 is the main
glucose transporter in cerebral endothelium and choroid plexus epithelium (33,51,53). There are several amino
acid transporters (24,25,34,52,55). Receptor mediated transporters include the transferrin receptor (203,216).
Other transporters identified in immature brain vessels are MCT1 and MCT2 (247).
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brain extracellular fluid can be obtained from measurements of CSF and plasma ion concentra-
tions. Gradients for some ions are present very early in brain development: E45 in fetal sheep
(Mg?; 48), E50 in fetal monkeys (Mg?**; 49), and E23 in fetal rabbits (Na*, K*, CI7; 50). The presence
of even one ion gradient between blood and CSF is strong evidence that the tight junctions in
the barrier interface are functionally effective.

Glucose

The first blood vessels to enter neural tissue acquire the Glut 1 that is characteristic of endothe-
lial cells in brain barriers (51). Similarly in the choroid plexuses, although Glut 1 is absent from
the blood vessels which lack barrier properties, it appears very early in the epithelial cells of the
choroid plexuses (52,53). Glut 1 levels are actually highest in the rat choroid plexus epithelium
during gestation and fall to 50% of that level by P1 and further decline during the first week of
postnatal life (54) which is probably a reflection of the importance of the choroid plexuses for
transfer of materials from blood to brain in early stages of brain development (46).

Amino Acids

Transport of amino acids and other important nutrients in newborn brains of rabbits and rats
has been demonstrated (24,34,55). The uptake of these essential nutrients was greater in new-
born than in older animals. Some metabolites (e.g., lysolecithin and cytosine) were excluded
from entry into the developing brain and it was concluded that this was further evidence that
“the concept of an ‘immature’ barrier at birth seems untenable and inconsistent with current
understanding of the blood-brain barrier” (24). Expression of amino acid transporters in
endothelial cells in developing brain does not appear to have been studied.

Choroid Plexus Transfer of Proteins from Plasma to CSF

The protein concentration in fetal CSF is high compared to the adult (56,57). There is now
evidence from several species that this is produced by transcellular transfer of plasma proteins
across the epithelial cells of the choroid plexuses (58,59) reinforced by the slow turnover of CSF
in the developing brain which allows the proteins to accumulate in CSF early in brain development
to a greater extent than in the adult (46).

Efflux Mechanisms in the Embryo and Fetus

An important barrier mechanism in the adult brain at both the blood-brain and blood-CSF barrier
interfaces is the presence of efflux ATP-binding cassette (ABC) transporters. There are 48 known
ABC proteins in humans (60) classified into seven subfamilies (A-G) of which three (B, C, G)
have been shown to act as efflux transporters at the blood-brain and blood-CSF barriers in the
adult (60,61). These transporters either intercept and export lipophilic compounds including
xenobiotics as they pass across the cell membrane or export compounds from within the intra-
cellular compartment in association with a transport moiety (Fig. 4). Because of the impor-
tance of these efflux mechanisms for protection of the brain from many drugs and toxic
agents (62,63) knowledge of their status in the fetus and newborn is essential for understanding
the potential neurotoxicity of a wide range of compounds.

P-Glycoprotein

The most studied of these ABC proteins is P-glycoprotein [also known as MDR1 or ABCB1
according to the Hugo Gene Nomenclature Committee]. P-glycoprotein is localized in the
luminal membrane of cerebral endothelial cells of several species including humans (64) and
has also been claimed to be located in the apical membrane of choroid plexus epithelial cells
(65). The functional importance of MDR1 in choroid plexus, at least in mice, was demonstrated
in triple knockout (KO) mice lacking Mdrla, Mdr1b, and Mrpl in which the level of penetration
of the anticancer drug etoposide from blood into CSF was about 10 times higher in the triple
KO mice compared to the double KO Mdrla/Mdr1b mice (66). P-glycoprotein has been shown
to be present in human embryonic and fetal brain in three studies. P-glycoprotein expression
was reported to be at adult levels in the fetal brain by the third trimester (67). Weak staining for
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P-glycoprotein in some vessels in the mid and hindbrain of 30 mm CRL (8 weeks gestation)
embryos, with strong staining by 123 mm CRL (15 weeks gestation) was identified by (68).
Virgintino et al. (64) compared the immunoreactivity of four different antibodies to human
P-glycoprotein and found that even as early as 12 weeks gestation there was strong staining
for P-glycoprotein in the first vessels growing into the telencephalon (forerunner of the cerebral
cortex) at a time when the characteristic layers of the cerebral hemispheres are beginning to
form (69).

In mouse embryos, messenger RNA (mRNA) for mdrla was already expressed at E10.5 in
blood vessels associated with the neural tube (70). In a more detailed quantitative study of
mRNA expression detected by reverse transcription-polymerase chain reaction and protein
estimated by western blotting (71) measurable amounts of both at E16 (the earliest age studied)
were detected. By the day of birth, there was no significant increase in the level of mRNA, but
the protein was about four times higher. However, the main increases in both mRNA and pro-
tein did not occur until the postnatal period, the adult level of P-glycoprotein being reached at
three weeks of age (although the mRNA level was only about a quarter of that in the adult). In
the rat fetus expression of mdrla was identified as early as E15 (9) whereas the protein was not
detected until P7 (72). This apparent discrepancy compared to the mouse may have been due
to lack of sensitivity of the antibodies used.

The developmental changes in expression of mdrla in rodents reflect the pattern of vascu-
larization of the developing rodent brain. Prior to birth most vascularization occurs in the more
mature parts of the brain namely the mid and hindbrain. Although the characteristic neuronal
layers of the neocortex are established in the period E15 to the time of birth (73) most vascular-
ization of the cerebral hemispheres in the rodent occurs in the first three weeks of life (74). Thus
much of the increase in P-glycoprotein in the postnatal period in rodents is probably accounted
for by this expansion of the cerebral vasculature. However, in humans the equivalent stage of
vascularization of the brain extends from early in the third trimester to the end of the second
postnatal year (75). In addition to the stage of vascularization at birth, another key question
from the point of view of the vulnerability of the developing brain is how active is this efflux
transport mechanism during these critical stages of brain development. This seems not to have
been studied. Postnatally, there appears to be no information available about the level of MDRI
expression and the level of P-glycoprotein protein in the human infant brain; deductions from
animal experiments depend critically on assumptions about appropriate age-related comparisons,
given the different stages of brain development at which humans and rodents are born (see
section “Species Differences”).

MRPs in Barrier Interfaces in the Developing Brain

MRP1 to MRP6 have been identified in endothelial cells of cerebral blood vessels of a variety of
species (76,77) and see (37) for brief review. Only those MRPs (and other efflux transporters)
present in the apical/luminal membrane of endothelial cells (P-glycoprotein, MRP2, MRP4,
and BCRP) would be expected to restrict entry of drugs and toxins into the brain. However, the
evidence for localization of some of the other MRPs (1,3,5,6) to the basolateral membrane was
determined in cell culture experiments (37); this may not reflect the situation in vivo. In the
developing rat brain mrpl was expressed at E15 (earliest age studied) at a level that was 75% of
that at birth and in the adult, although the difference was not significantly different (9).

Breast Cancer Resistance Protein in the Brain Barrier Interfaces

Another ABC transporter that has been identified in adult cerebral endothelial cells is breast
cancer resistance protein (BCRP) (63,78). This product of the ABCG2 gene was first isolated
from a multi-drug resistant human breast cancer cell line (79). The substrate specificity of BCRP
overlaps with that of P-glycoprotein (62). The mouse equivalent, Bcrpl shares 81% homology
with human BCRP and is encoded by the Abcg2 gene (80). Brcpl expression has been identified
in embryonic rat brain as early as E12.5 (81), with expression said to be confined to blood ves-
sels and not present in the rest of the brain (81). However, the evidence for this was based on a
micrograph of immunocytochemical staining of Berpl in E18.5 brain. Further studies will be
required to define the developmental profile of this potentially important xenobiotic efflux
transporter in the fetal brain. Figure 4 summarizes the three main ABC transporter types
involved in xenobiotic exports at the blood-brain, blood-spinal cord, and placental barriers.
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Detoxifying Enzyme Systems in Brain Barriers of the Developing Brain

As outlined in Figure 4, the MRPs primarily export compounds coupled with glutathione,
glucuronic acid, or sulfates, either by co-transport with the compound or by biochemical
conjugation onto the compound and subsequent efflux of the conjugate [reviewed by (82)].
There is some evidence that BCRP exports both conjugated (glucuronidate and sulfate) and
unconjugated compounds (83,84). Conjugating enzymes form part of the natural Phase II
metabolism machinery of cells for detoxifying and removing endogenous compounds and
probably unwittingly contribute to the efflux of xenobiotics that manage to find their way into
the cells in which these enzymes and MRPs are present. Glutathione is a tri-peptide that requires
the presence of three main enzymes; firstly Gamma-glutamylcysteine synthetase to couple gluta-
mate to cysteine, then Glutathione synthetase to add glycine and finally Glutathione-S transferase
to attach the glutathione onto the drug to be exported. Glucuronidation requires the presence
of the UDP-glucuronyltransferase enzymes to transfer the glucuronyl group from UDP
(uridine-di-phosphoglucuronate) onto a polar functional group present on the compound to
be exported. Sulfation requires the presence of 3-phosphoadenosine-5-phosphosulfate synthase
followed by the sulfotransferase enzymes to transfer the sulfonate group from 3-phosphoadenosine-
5-phosphosulfate onto the compound to be exported. These conjugations result in a less toxic
(less active) conjugate, due to the modification of the reactive polar group, making it less lipid
soluble, thus restricting its distribution and ability to cross cell membrane, and allowing the
compound to be excreted from the cell by MRP and BCRP.

Gamma-glutamylcysteine synthetase is present in many tissues in the adult, including the
central nervous system (CNS) and mRNA from the two genes which encode for it has been
shown to be present as early as gestational day 10 (E10) in fetal mouse brain and liver (85). There
is no information available on the expression of Glutathione synthetase in the developing CNS.
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Figure 4 (See color insert) The three main ABC transporter types involved in xenobiotic export at the blood-
brain, blood-spinal cord, and blood-placental barriers; PGP (p-glycoprotein, also known as MDR1, ABCB1), MRP
(multidrug resistance related proteins, ABCC1-8) and BCRP (breast cancer related protein, ABCG2). PGP and
the MRPs are arranged in two repeated halves, each half containing a nucleotide binding domain and six mem-
brane spanning domains. BCRP is a half-transporter with a single nucleotide binding domain and six membrane
spanning domains, but is thought to form a homodimer in order to be functionally active. All utilize energy from
ATP hydrolysis to move substrates across the membrane. PGP’s substrate binding sites are located within or
close to the internal leaflet, thus PGP is thought to be able to intercept lipophilic compounds as they pass across
the cell membrane. In contrast, the MRPs transport compounds from within the cell cytoplasm in conjunction with
a transport moiety (glutathione, glucuronic acid, or sulfate). This is achieved either by co-transport or by conjuga-
tion of the transport moiety (shown as a star in the diagram) onto the substrate prior to export. The MRPs do not
appear to be able to directly intercept compounds within the internal leaflet in the way that PGP does. BCRP also
transports a wide range of unconjugated compounds, but it is not known if it is able to intercept these from within
the internal leaflet. BCRP is also able to transport conjugated compounds, with a greater affinity for sulfate con-
jugates over glutathione conjugates (248), thus it may function in a similar manner to the MRPs. Abbreviations:
ADP, adenosine diphosphate; ATP, adenosine triphosphate.
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Glutathione S transferase is present in both cerebral endothelial cells and in choroid plexus
epithelial cells (86). The Pi class isoenzyme of glutathione S-transferase has been shown to be
present at least as early as 12 weeks gestation in human fetuses (87) and in rat choroid plexus
from the day of its first differentiation (E15) and subsequently in the brain ventricular zone cells
(E18 to birth) and subventricular zone and astroglial cells of grey and white matter (88). UUDP-
glucuronyltransferases (UGTs): These are found in the CNS in barrier forming cerebral endothe-
lial cells (89), but the highest concentration appears to be in choroid plexus epithelial cells (90).
In fetal rats, UGTs are present in cerebral cortex at embryonic day 17 (the earliest age investi-
gated) and increase to reach a peak between birth and postnatal day 5, before declining to 30%
of the peak level by postnatal day 60 (91). Since mrp1 is expressed as early as E15 in rat brain (9)
its concurrent presence with the glutathione producing enzymes suggests that this efflux
mechanism may be functionally active very early in brain development.

Placental Efflux and Detoxifying Mechanisms

Many of the efflux transporters and enzymes described above in the barrier interfaces of the
developing brain are also present in the placenta (36,60,62,92,93). Studies of mice with dele-
tions of either or both mdrla or mdr1b genes have shown that there is a much greater transfer
of P-glycoprotein substrates [e.g., digoxin (94), some pesticides (95), in mdrla —/— or mdrla —/-
mdr1b —/— mice]. The phenotypes of these have been reported to be normal (96) but there
is some evidence that if challenged with certain drugs the mutants may show congenital
deformities (97).

In the embryo and fetus the placenta provides an important defence against the penetra-
tion of many drugs and toxins that would otherwise enter from the mother’s circulation, should
the mother be exposed. A consideration of whether P-glycoprotein is present and functionally
active at the brain barrier interfaces in the embryo and fetus is important in relation to possible
effects on the developing brain, should the level of such materials exceed the efflux capacity of
the placenta. A related consideration is that there are genetic differences in levels of expression
of P-glycoprotein genes (98); the fetuses of such mothers may be at greater risk that those of
mothers with normal levels of P-glycoprotein gene expression.

SPECIES DIFFERENCES

In addition to the general need for caution when attempting to extrapolate from animals to
humans, in the developmental field there is the additional problem that different species develop
at very different rates and are born at different stages of brain development. For example, “new-
born” represents something quite different in a human, sheep, rat, or marsupial. Taking the
cerebral cortex as an example, in rodents its development is very rapid and in terms of neuro-
genesis and cell migration is largely complete by birth, although other features of its develop-
ment such as synaptogenesis continue well into the postnatal period. In the sheep, which has a
slowly growing brain and a long gestational period (150 days), the equivalent period for the end
of cortical neurogenesis is mid gestation (99). In the human cortex the equivalent period is
towards the end of gestation (100,101). This conclusion was based on studies in rhesus macaque
monkey and extrapolated to humans (102). Correction for shrinkage and stereological errors in
the extensive data of Conel on brains of children showed that after a decline in cortical neurons
numbers at 6 to 18 months (depending on the region) there is a subsequent increase at least up
to 72 months of about two fold (102). In late gestation and in the postnatal period there is also a
substantial amount of organizational development, especially gliogenesis, and synaptogenesis
(101). At the other extreme, in marsupials, the whole of neocortical development occurs after
birth, postnatal day 15 (P15) being equivalent to the newborn (P0) rat neocortex. With respect to
vascularization of the developing brain, most of this process in the neocortex of rodents occurs
in the first three weeks of life (74) whereas in the human this occurs over a much longer period
extending from the third trimester through the first two years of life (75). When transferring
information from experimental animals to humans, particular caution is needed with respect to
development; it is not appropriate to extrapolate findings from neonatal rodents to neonatal
infants. CSF in developing brain has a high concentration of protein, which declines with age.
Thus a simple comparison of total protein concentration in CSF could be a useful comparator
between species. In the adult term human, CSF protein concentration is about two to four times
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the adult level (103) but is much higher in the fetus (57,104). On this basis the equivalent stage in
the rat is about postnatal day (P) 10 to 20 (105); in fetal sheep it is late in gestation (106). In this
and other respects, a newborn rat is quite different from a newborn human.

PHYSICOCHEMICAL PROPERTIES OF DRUGS AND TOXINS

The idea that it should be possible to predict brain barrier permeability of drugs and other
compounds based on considerations of their chemical structure and physical properties has
been around for a while (107). Thus lipid solubility and/or molecular size have been consid-
ered to be primary predictors of drug entry from blood into brain and CSF. It assumed that for
drugs to permeate the brain barriers they would need to be small (<400 Da) if they are hydro-
philic, or if they were larger, they would need to be lipid soluble. In real life this simplistic view
is defeated by the presence of efflux mechanisms in the barrier interfaces (see section “Efflux
Mechanisms in the Embryo and Fetus”). A good illustration of this point in neurotoxicology is
the study of Watanabe et al. (108). These authors investigated placental and blood-brain barrier
transfer of a series of drugs in pregnant rats. The drugs (propranalol, chlorpromazine, haloperi-
dol, atropine, reserpine, dopamine, epinephrine, and norepinephrine) were chosen to be of
very different lipid solubility in the expectation that this would be the main determinant of
their entry into the fetus and its brain. However, with respect to placental transfer, there was no
significant correlation between log P[P is the corrected partition coefficient, chloroform/
water. Thuslog P =loglP, /(1 -0)where o.=1/[1 + antilog( H - K )] and the fetal plasma/
maternal plasma concentration ratios. Thus the entry of the I?lighly lipid soluble drugs pro-
pranalol, chlorpromazine, and haloperidol was much less than predicted from their lipid solu-
bility. Theexplanationforthisislikely tobethatthesedrugsareP-glycoprotein substrates (109,110)
and the presence of this efflux protein in the placenta would have reduced their entry into the
fetus. However, at the time their paper was published it had only just been shown that
P-glycoprotein was present in the placenta (111) and cerebral endothelial cells (112,113).
Watanabe et al. (108) did find that there was a significant correlation for log P and brain/
plasma concentration ratios for the drugs in the mothers, their fetuses (E19) and the postnatal
animals at P2, P7, and P14, but brain/plasma concentration ratios for the three most lipid solu-
ble drugs (propranalol, chlorpromazine, and haloperidol) were appreciably less in the fetus
and neonatal animals compared to the mother and by two weeks postnatal the ratio was
approaching maternal levels. For the less lipid soluble drugs, some reached higher brain/
plasma concentration ratios in the fetus (atropine, epinephrine, norepinephrine) whereas others
achieved lower or similar ratios in the fetus compared to the mother (dopamine, reserpine).
Possibly, age-related differences in brain receptor binding, metabolism, or efflux proteins in
developing cerebral endothelial cells account for these differences. In a detailed compilation of
the physicochemical characteristics and developmental toxicology of 50 compounds, neither
P-glycoprotein nor other efflux mechanisms are mentioned (41). Their presence in the placenta,
cerebral blood vessels, and other sites in the fetus and newborn will affect the distribution of
compounds that are substrates, thus limiting the predictive value of the physicochemical data.
Results such as those in (108) make it clear that for both the adult and developing brain the
question of whether a particular compound will enter it and to what extent and whether it has
neurodevelopmental effects, can only be answered by direct experimentation.

VULNERABILITY OF THE DEVELOPING BRAIN TO DRUGS AND TOXINS

The evidence described above strongly supports the notion that the fetal and newborn brain
has well developed mechanisms in its brain barrier interfaces that determine the composition
and control of the internal environment in which the brain grows. In spite of the wealth of mor-
phological and functional evidence, a belief in the “immaturity” of the blood-brain barrier
persists (1,4-13,15,16). This perhaps explains why experimental evidence about barrier perme-
ability and brain vulnerability in the fetus and newborn is so fragmentary. The findings that
key barrier mechanisms, particularly the efflux mechanisms, are already present early in brain
development as well as in the placenta, does not necessarily mean that the immature brain will
be unaffected by potentially toxic agents ingested by the mother or young child. This can only
be determined by experimentation, in most cases in suitable animal systems. The rest of this
review will outline what is known about the penetration of potential neurotoxins into the
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developing brain and attempt to assess the extent to which the very real neurotoxic effects may
be a property of the barrier interfaces or to some other feature of brain development. However,
the design of many experiments is such that it is often difficult to distinguish between protec-
tive (or imperfections in protection) provided by placental mechanisms compared to brain
barrier mechanisms.

The number of potentially neurotoxic agents is considerable. A recent review (12) listed
201 industrial chemicals known to be neurotoxic in humans and >1000 known to be neurotoxic
from experimental studies. The “chemical universe” was assessed as exceeding 80,000 com-
pounds. The review did not consider drugs, food additives, microbial toxins, snake venoms, or
other biogenic toxins. Many of these potential neurotoxins are substrates for the various efflux
transporters described above. Several reviews have published lists of substrates for the efflux
transporters (35,114-116) but these are not comprehensive. A systematic review of the literature
on effects of prenatal toxin exposure on mental health in children and adolescents has been pub-
lished (116). The number of drugs that have been administered to pregnant women is very large.
A risk assessment for nearly 1200 drugs used in pregnant and lactating mothers has been pub-
lished (117). Most of these have never been evaluated formally for neurotoxic or damaging
effects and testing is not included in the regulatory approval of most of these drugs. There is
little serious evidence (as opposed to anecdote and belief) on the specific problem of the extent
to which different drugs enter the developing brain and by what mechanism. As indicated in the
introduction to this chapter, there is a general tendency to assume that the presence of a drug (or
other toxin) in the developing brain is due to “immaturity” of the blood-brain barrier, rather
than to specific developmental mechanisms.

Medically Important Drugs

Anticonvulsants

Various abnormalities have been reported in offspring of mothers treated with anticonvulsant
drugs during pregnancy [reviewed in (118)]. The incidence appears to vary with different anti-
epileptic drugs and drug dose, with valproate having the highest incidence (over 15% in some
studies) (119) and lamotrigine possibly the lowest (around 3%) (120) although this might reflect
the fact that it is a much newer treatment. Use of polytherapies (98,121), and large doses, appear
to be associated with a higher incidence of congenital malformations; but the reported inci-
dences are very variable. The main disorders affecting the CNS that have been reported are
neural tube defects for exposure early in pregnancy and behavioral (including autism) and cog-
nitive effects that may be severe enough to cause mental retardation (118). Greater blood-brain
barrier transfer of the protein-bound anticonvulsant drugs phenytoin and phenobarbitone has
been reported in immature animals (122). This was attributed to greater extraction from more
slowly perfusing cerebral circulation, which was estimated in newborn rabbits. It was suggested
that this was due to uptake of protein-bound drug in the newborn, but not adult brain. How-
ever, proteins in plasma are not taken up into developing brain via the cerebral blood vessels
(21) but via the choroid plexuses (46). This would also be expected to transfer protein-bound
drugs into CSF, which might account for some of the greater extraction of protein-bound drugs
reported by (122). Only recently has it been appreciated that many of the antiepileptic drugs are
substrates for P-glycoprotein. The likely importance of fetal genotype for efflux transporters in
the placenta in determining fetal sensitivity to these drugs has been discussed (98). This will also
be important for the level of protection efflux transporters provide against the nervous system
damaging effects of these drugs. Evidence for potentially damaging effects of the GABA-acting
antiepileptic drugs, carbamazepine, valproate, vigabatrine, on specific features of development
of the hippocampus and cortex in fetal rats whose mothers had been given antiepileptic drugs
from E14 to E18 have been described (123). Other authors have suggested that genetic differ-
ences in detoxifying mechanisms may play a role in the predisposition of some infants to induction
of congenital malformations by antiepileptics (124). A further complication is that in prolonged,
high dose therapy, there maybe up-regulation of efflux transporter activity (98).

Opiates
For many years morphine has been considered to have a greater effect in newborn infants than
in adults. Decades ago this was attributed to immaturity of the blood-brain barrier (125) and also
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in more recent studies in which fetal brain morphine levels were five times higher than in adult
brain following administration of morphine to pregnant rats (125). In support of the interpreta-
tion of barrier immaturity the authors (126) cited (127) a fetal rat study, in which horseradish
peroxidase (HRP) was used as a marker for blood-brain barrier permeability. However, this is
not relevant because HRP tests protein (tight junction) permeability. Morphine is a much smaller
and more lipid soluble compound and therefore enters the brain by a different mechanism,
although its entry is reduced by P-glycoprotein. Fetal brain levels of morphine could only be
interpreted if fetal blood levels were available, but these were not measured (126). Studies of
blood levels of morphine in neonates (128) raised an important issue, which was ignored for a
long period by neonatal pediatricians and led to a number of disasters (perhaps most notably
the potentially lethal “grey syndrome” in neonates from the toxic effect of chloramphenicol).
The blood-levels of a drug may be very different in the neonate because of differences in metab-
olism. Often liver enzymes that metabolize drugs are less active in the newborn, leading to
higher blood levels of the drug. Also, the metabolic pathways used may be different, resulting
in more active forms of the drug than occurs in adults. Metabolic and pharmacokinetic differ-
ences in preterm infants, term infants and adults have been reviewed in (129). The supposed
greater susceptibility of the immature brain to morphine in causing respiratory depression could
relate to a number of different factors: (i) possible differences in metabolism in neonates, (ii) the
level of morphine receptors in a number of key brain areas may be greater in the newborn than
later in life (130), (iii) morphine is protein bound (131) and the concentration of proteins in
plasma of immature animals and humans is substantially less than in the adult (57,59,105,106),
or (iv) morphine is a substrate for P-glycoprotein (132-134); this would result in a brain level of
morphine that is less than would be predicted for its physicochemical characteristics.

Theophylline and Related Xanthines

Studies of metabolism and distribution of theophylline in the pregnant rat have been published
(135). Pregnant rats were injected with labelled theophylline; fetal brain-blood ratios of around
1.0 compared with 0.41 in adult, were reported. It was proposed that this indicated the lack of
a blood-brain barrier in the fetus. The authors do not seem to have realized that theophylline is
protein bound and that since plasma protein concentration is much lower in the fetus and new-
born, this could increase availability of theophylline for exchange in younger animals. Accu-
mulation of theophylline, theobromine, and paraxanthine in the fetal rat brain has been
measured following a single oral dose of caffeine (136). Pregnant rats at 20 days gestation (E20)
were given a single dose of caffeine (5 or 25 mg/kg). Fetal and maternal concentrations of
caffeine were estimated both in the blood and the brain. Brain/blood ratios of around three
were obtained for theophylline for both doses of caffeine in fetuses, but adult results depended
on the dose administered. In adults, the brain/plasma ratio for theophylline at a caffeine dose
of 5mg/kg was about 3, whereas at a caffeine dose of 25 mg/kg, the ratio was around 0.1. This
was a consequence both of less theophylline getting into the brain and a higher concentration in
plasma. The authors acknowledged that theophylline is lipid soluble (although less so than
caffeine) and has a higher binding affinity than caffeine for proteins in plasma (50-60% and
24-35%, respectively). Nevertheless they still concluded that the greater brain/blood ratios for
theophylline found in fetuses were due to differences in blood-brain barrier permeability. Con-
cern has been expressed about possible teratogenic effects of caffeine ingested by pregnant
women (137) but as indicated above, the developmental state of blood-brain barrier mecha-
nisms is not likely to be a significant contributor, although transfer of protein-bound drug
across the choroid plexuses and greater accumulation of drug due to low turnover of CSF, may
be important.

Theophylline and L-glucose entry from blood into different brain regions and CSF have
been studied in postnatal rats (138). Although theophylline and L-glucose have similar molecu-
lar weights, theophylline is much more lipid soluble, and therefore unlikely to be hindered by
a blood-brain barrier, as theophylline appears not to be a P-glycoprotein substrate (139). L-glucose
is a non-transported low molecular weight probe of brain barrier permeability. Hypercapnia
increased penetration of L-glucose, but not theophylline, into CSF and brain. This supports the
contention that the difference in lipid solubility means that the route of entry is likely to be
different and that an increase in protein binding of theophylline accounts for the decrease of its
brain/plasma ratios in older animals (138). In addition, the transfer of theophylline bound to
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proteins that are transported across choroid plexus epithelial cells (140,141) combined with the
lower turnover of CSF in the developing brain (46) would be expected to lead to higher amounts
of theophylline in fetal CSF and brain, which is a quite different mechanism from “immaturity”
of the barrier in cerebral blood vessels.

Psychoactive Drugs

Drugs such as selective serotonin uptake inhibitors (SSRIs) (e.g., fluoxetine) presumably enter
the brain in adults (otherwise they would be functionally ineffective). Many do so because they
are lipid soluble and are not substrates of efflux proteins such as P-glycoprotein or if they are
substrates, this activity is insufficient to prevent the entry of therapeutically effective concen-
trations of the drug. Such drugs would be expected to cross the placenta and enter the fetal
brain, whatever the state of development of brain barrier mechanisms. The amount reaching
the fetal brain might be affected by the level of fetal metabolism of the drug or degree of protein
binding, but is unlikely to be related to brain barrier mechanisms. However, if psychoactive
drugs are even low-level substrates for P-glycoprotein (as appears to be the case for some
SSRIs) (110) this may influence the level of entry into fetal brain because of the presence of
P-glycoprotein in human cerebral blood vessels (64,68). Because the activity of this P-glycoprotein
in the fetal brain is unknown, it is not clear how important this effect would be. These
uncertainties emphasize the need for evaluation of entry of individual drugs into the fetal or
neonatal brain, rather than relying on predictions from physicochemical properties of drugs.

Steroids and the Developing Brain

In view of the widespread use of steroids in prematurely born infants (e.g., as a means of miti-
gating the effects of respiratory distress syndrome and intraventricular hemorrhage) (142), it is
important to know whether steroids have any deleterious effects on brain development or the
properties of blood-brain barrier mechanisms. Permeability to AIB (a-aminoisobutyric acid, a
low molecular weight, hydrophilic, inert compound) was increased by dexamethasone, and
the effect was slightly greater in the youngest fetuses (143). This effect might make the brain
more vulnerable to exposure to low molecular weight drugs or toxins. An extensive series of
studies concerning repeated doses of betamethasone in pregnant sheep has shown deleterious
effects on brain growth and myelination in the fetuses (144,145).

Environmental Agents

Metals

Metals such as mercury and lead have no known biological function but are present in the
environment in amounts that have increased as a result of human activity. If they enter the
body (e.g., by ingestion or inhalation) they are extremely toxic in small amounts and have del-
eterious effects on the nervous system especially when immature. Other metals such as, cobalt,
copper, and manganese are incorporated into various biological systems, but have toxic effects,
including neurotoxicity, when present in excess amounts. Although some authors have sug-
gested that immaturity of the blood-brain barrier contributes to the greater toxicity of several
metals (3,8,146,147) it may actually be the presence of specific barrier transfer properties at a
time of brain vulnerability due to developmental growth processes that actually contributes to
brain damage.

Mercury

Mercury is present in the environment in a variety of forms, the most abundant and neurotoxic
of which is methylmercury (MeHg). Elemental mercury (Hg?), which may be inhaled from
mercury used in manufacturing processes or in instruments, is also toxic. MeHg is a particular
hazard because other less toxic forms of mercury are converted to MeHg by a variety of organ-
isms, particularly aquatic and MeHg thus enters the food chain and becomes concentrated in
fish. There have been some notable epidemics of mercury poisoning due to contamination of
fish and crops by MeHg (148,149). The neurotoxic effect of mercury have been described in
detail and it is clear that they are greater and more diverse in the immature brain (148,150-152)
but there is some disagreement about the mechanisms by which mercury enters the brain.
MeHyg is said by many authors to be highly lipid soluble (153,154) but actual estimates of its
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solubility are hard to find. However, in the body MeHg is water soluble rather than lipid soluble
(155). The presence of cerebral endothelial amino acid transporters in immature brain blood
vessels (24,156) is more likely to be of significance. Their transfer capacity has been estimated
to be larger than in the adult (55) and this probably accounts for the greater accumulation of
mercury in fetal than in the adult brain (157) as MeHg appears to form a complex with cysteine
and cysteine administration to pregnant rats has been shown to increase brain uptake of MeHg
in their fetuses (146). However, these authors have suggested that immaturity of the blood-
brain barrier also contributes to the greater damaging effect of MeHg in the developing
brain (146,158). Given the evidence summarized earlier about the effectiveness of brain barrier
mechanisms in the embryo and fetus, this seems unlikely to play a role in mercury toxicity in
the developing brain. In adult rats, administration of either MeHg or HgCl, has been shown to
produce acute damage to cerebral blood vessels (159,160). It is not known if this occurs in the
developing brain or if such blood-brain barrier breakdown is part of the neuropathology in
human exposure to mercury. However, the observation that ”°Se-selenomethionine uptake into
brain was less in rats exposed to MeHg (159) is additional evidence of the importance of amino
acid transport across the blood-brain barrier for entry of MeHg into the brain.

Lead

The developing nervous system appears to be particularly susceptible to lead toxicity. Above
80-100 ug /100 mL children are more likely to develop signs of lead encephalopathy (including
fits). At levels that do no appear to produce discernible problems in adults (e.g., 10-20
ug/100 mL) there is evidence of effects on neurocognitive development, including reduction in
IQ (161). Extensive experimental studies in animals (mainly in rats, but also in guinea pigs and
monkeys) have shown that key features of the neuro- and developmental pathology can be
reproduced (162-166) although some early studies used such high levels of lead exposure that
there were confounding effects due to malnutrition (167). Two main features of lead neurotox-
icity have been established: a direct damage of the cerebrovascular endothelium (168-170) and
disruption of a number of biochemical processes within the brain (171,172). The blood vessels
in the cerebellum appear to be more susceptible than those, for example, in the cerebral hemi-
spheres (162,173-175). This has been suggested to be due to the later development of the cere-
bellum (174,175). The relative contributions of damage to the blood-brain barrier and the effects
on biochemical processes to the pathogenesis of lead intoxication is not clear due to the wide
range of experimental protocols for lead administration and different analytical techniques
used. At the blood-CSF interface the choroid plexus cells concentrate lead taken up from the
circulation (20,165). The level of lead in CSF is much lower than in brain (176,177) probably
because of the turnover of CSF (sink effect of CSF secretion and flow) (178). Cerebral endothe-
lial cells also concentrate lead to a high degree (179,180). However, unlike lead crossing the
choroid plexuses into CSF, with subsequent return to the circulation by the flow of CSF, lead
crossing the cerebral endothelial interface is taken up by brain cells, particularly end feet of
astrocytes (179).

Fundamental questions include how lead enters the brain and if the process quantita-
tively or qualitatively different in the developing brain. Brain uptake of **Pb using steady state
in vivo and short pass arterial techniques has been studied in anesthetized adult rats (177,181).
It was concluded that lead enters the brain as PbOH*. Lead is bound to albumin and to L-cysteine
in plasma (182). In a limited number of intra-arterial perfusions in P16 to P17 and P26 postnatal
rats, the brain uptake of lead was substantially greater than in the adult (177). An alternative
mechanism for lead entry into brain that does not seem to have been considered is that lead
bound to L-cysteine may be transported across cerebral endothelial cells, analogous to the entry
into brain of MeHg coupled to L-cysteine (see above). Since amino acid transfer has been
reported to be greater in the developing brain (24,156) this could account for the greater lead
uptake. Lead bound to albumin might also reach the immature brain via the CSF in greater
amounts than in the adult.

There is general agreement that the blood-brain barrier in immature animals is susceptible
to disruption by lead administration, detected by vascular markers such as HRP, trypan blue,
or labelled albumin, up to the age of about two weeks in rats (162,167,168). However, in rats
administered different levels of lead, administration from P5 up to P21 at a daily IP dose of
10pg/g body weight, which achieved a blood lead level of 3.4pg/mL (16.4uM) there was no
effect of this level of lead intoxication on blood-brain barrier transfer of several nutrients
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(D-glucose, phenylalanine, lysine, proline, pyruvate, and uridine) (183). In other experiments
with similar blood levels of lead also using IP injections, but from birth to P15, there was a
blood-brain barrier leak to Evans blue-albumin and to plasma proteins at P15 but not P20 or
P30 (167). This may reflect greater resistance of the blood-brain barrier to lead toxicity in older
animals as suggested by several authors (162,167). It may explain the lack of effect of lead on
glucose, amino acid and pyruvate transport in the immature brain (183) and also on tyrosine
and choline blood-brain barrier permeability from birth to 70 days of age in rata (184). In addi-
tion, there is evidence that in prolonged exposure to lead from the neonatal period, the blood-
brain barrier shows recovery from the earlier pathological changes (180). It is unclear how much
of the neuropathology in the immature brain (169,171,172) is due disruption of a susceptible
blood-brain barrier and how much is directly due to primary neurotoxicity.

Cadmium

Cadmium has been implicated in a number of neurological disturbances in children, although
exposure to cadmium was also often combined with exposure to other neurotoxic metals such
as lead. Problems reported included deficits in psychomotor development (185) and cognitive
skills (186). Much less information is available about the effects of cadmium on the fetus via
maternal exposure (187,188) although it appears that the placenta does limit its entry into the
fetus (188). Most of the available information on possible mechanisms of cadmium neurotoxic-
ity in development comes from animal studies. Differences in experimental protocols and the
lack of blood measurements of cadmium in many experiments make it difficult to relate the
results of animal studies to reports on toxicity in infants and children. The acute effect of cad-
mium appears to be on the vascular endothelium in the brain (189-191) and some other vascu-
lar beds (192). Blood vessels in the immature brain appear to be appreciably more susceptible
to lower levels of injected cadmium (190). Pathological changes consisting of extravasated red
blood cells and occasional severely damaged capillaries were observed within two to four
hours after cadmium chloride (CdCl,) injection, with increasing signs of hemorrhage and vacu-
olation of endothelial cells by four to six hours, which increased further by six to eight hours,
by which time neuronal and glial cells showed pathological changes. Inter-endothelial cell tight
junctions were widened, but the junctions appeared intact (190). Increased permeability of
cerebral vessels in cadmium toxicity reported by (193) appears to be due to damage to the
endothelial cells, which were reported to have definite intracellular gaps, rather than to disrup-
tion of the intercellular junctions (190). Detailed descriptions of neuropathological lesions in
immature rats and rabbits exposed to different regimes of cadmium intoxication have been
published (190,192,194,195). Cadmium has been reported to accumulate in immature rodent
brain to a much greater extent than in the adult (194) this was attributed to immaturity of the
blood-brain barrier by some (196). However, others found no age-related difference in brain
cadmium uptake (195). Given that the damaging effects of cadmium on cerebral vascular
endothelial cells do not appear to include disruption of tight junctional complexes (190) it
seems more likely that if there is an effect on brain uptake, it is direct damage to endothelial
cells that is involved. The relevance of this to acute cadmium toxicity in children is illustrated
by a case report on a child (2 years 10 months) who died of cadmium poisoning and at post-mortem
had signs of blood-brain barrier disruption and cerebral edema (197).

In addition, loading the diet of rats with cadmium resulted in much greater accumulation
of cadmium in brains of adult animals, than in controls, but this effect was barely apparent at
the P15 (195). These results suggest that there is a significant barrier to cadmium entry into
immature brain at least as early as P15 in rats. The immature brain, if anything, appears to be
better protected from exposure to cadmium via the circulation than the adult, but the mecha-
nisms are unclear. One factor that does not appear to have been considered is that the choroid
plexuses have been shown to concentrate cadmium in adults (198) but this property has been
little studied in the immature brain [but see (199)]. The choroid plexuses have been suggested
to be substantially more important than the cerebral vasculature for blood to brain exchange
(46) in early stages of brain development, thus it may be that choroid plexuses also play a larger
role in protecting the brain from toxic effects of cadmium and other xenobiotics.

Iron
The fetus has been suggested not to be at risk from iron overdose in the mother because placental
transport of iron is a saturable process (200). However, recent evidence suggests that high
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maternal iron stores correlate with reduced IQ scores in children (201). Iron is the commonest
cause of poisoning in children, due to gastrointestinal and liver toxicity and there is evidence
from animal studies that iron administration may have adverse neurodevelopmental effects
(201). Chronic low-level ingestion of iron by children might lead to its accumulation in the
brain, as transport of iron from blood into brain appears to be much higher during develop-
ment (202,203). Another aspect of iron transport across the blood-brain and blood-CSF inter-
faces that may have neurotoxicological relevance lies in the utilization and interactions of
transport mechanisms by other metals such as manganese. The main mechanism transporting
iron into brain involves the transferrin receptor, which is only present on cerebral vessel
endothelial cells (204) and possibly other proteins such as divalent metal transporter-1 (DMT-1;
205) and ferroportin-1 (206) although ferroportin-1 does not yet seem to have been localized to
cerebral endothelial cells. Studies of neurotoxic metal entry into brain of rats from P15 to adult
showed that there is a substantially effective barrier to entry of metals (copper, lead, and
cadmium) into the brain at least as early as P15 (195,207,208).

Manganese

Manganese is an essential metal found in various tissues including the brain, but in excess it is
toxic. The biological functions of manganese have been summarized in (209); it is a constituent
of enzymes involved in metabolic pathways for synthesis of amino acids, lipids, proteins, and
carbohydrates. Manganese enters the brain via both the cerebral endothelial cells and the chor-
oid plexuses, but the relative importance of these interfaces appears to depend on its plasma
concentration. Thus at high plasma manganese levels, transport across the choroid plexuses
predominates (210) as may also be the case for iron (211). At least six mechanisms for manga-
nese entry into brain have been described (209) the major ones are via DMT-1 and transferrin-
dependent transport, as well as entry of unbound Mn?*. In adults, the main source of manganese
toxicity is from industrial exposure, resulting in neurological disturbances similar to Parkinson’s
disease (147). There have been reports of adverse neurodevelopmental effects in children asso-
ciated with manganese-contaminated water (147). In infants, deficiency and liver disease
predispose to manganese toxicity. In neonates, the main source of toxicity appears to be associ-
ated with parenteral feeding. Several studies have shown that the uptake of manganese in
developing brain is higher than in adults (198,212). This has been suggested to reflect both an
increased requirement for manganese during development and an “incomplete” blood-brain
barrier (147). Administration by inhalation of manganese to pregnant rats did not cause
increased levels of manganese in the fetal brain (213) from which the authors concluded that
the placenta partially sequesters inhaled manganese, thus limiting exposure of the fetus (214).
In contrast, increased manganese in the diet of pregnant rats from E7 into the neonatal and
postnatal period, resulted in higher brain levels of manganese, zinc, and chromium, but
decreased iron when the young were examined at three weeks of age (147). It is not clear
whether this increase began in the fetal period, because only postnatal animals were examined.
DMT-1 and transferrin receptor levels were increased, as was the level of the inhibitory trans-
mitter y-amino butyric acid. MgCl, added to the drinking water only in the postnatal period
resulted in substantially increased brain levels of manganese that were much greater at P5 and
P10 than in older animals, a finding that the authors attributed to “closure” of the blood-brain
barrier, development of mechanisms of ionic homeostasis, CSF flow, and secretion. However,
as reviewed above, ionic mechanisms controlling CSF composition are already becoming func-
tional at this early stage and the blood-brain barrier in terms of functionally impermeable inter-
cellular junctions develops early in embryonic life (44,48-50). A combination of lead and
manganese exposure during gestation in rats resulted in a 10-fold increase in brain uptake of
lead by three weeks of age (215); this is an example of several of interactions between different
metals in their transport into brain. Part of the explanation for the higher levels of brain man-
ganese uptake in the fetus and neonate is probably that the brain is exposed to higher levels in
the blood, because renal secretion of manganese appears to be limited in the first 17 to 18 days
of life in the rat (212). The transport mechanisms that are likely to contribute to the greater
accumulation of manganese in immature brain are the early presence of transferrin receptors
on cerebral endothelial cells (216) and greater activity of transferrin-mediated metal transfer, as
described for (203). In addition, DMT-1 in cerebral endothelial cells of the developing brain
(147) may contribute to increased manganese transfer into the immature brain. Another mech-
anism likely to be of significance in the developing brain is transfer of manganese bound to
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transferrin and albumin that are transferred across the choroid plexus epithelial cells from
blood into CSE. The lower turnover of CSF (46) would also be expected to contribute to the
greater accumulation of manganese in early postnatal life.

Aluminum

Mice fed a diet containing excess aluminum had the highest brain levels of aluminum in the
youngest animals (P6); in addition, aluminum binds to plasma transferrin (217) thus a possible
route of entry and explanation for the higher levels in the younger animals is transfer of trans-
ferrin across the epithelial cells of the choroid plexuses as may be the case with a number of
metals that are bound to proteins in plasma (e.g., iron and manganese).

Arsenic

Two types of developmental neurotoxic effects have been ascribed to exposure to arsenic.
Numerous papers have associated early maternal exposure both in animals and humans with
neural tube defects. The literature has been reviewed in detail (218) and it was concluded that
deficiencies in the reported studies were such that it could not be accepted that there is a risk of
neural tube defects in the offspring of pregnant women exposed to arsenic. The other neurotoxic
effect reported is that of neurological and intellectual impairment resulting from environmental
exposure (219). In studies of the levels of different arsenic species in newborn mice following
exposure of pregnant mothers to inorganic arsenic in the drinking water, it was found that in the
newborn, brain levels of all forms of arsenic measured were 50% to 70% higher than in the mater-
nal brains (220). This was mainly in the form of dimethylarsinic acid. The levels of this form of
arsenic were higher in the newborn brain than in the newborn liver, which may indicate that
dimethylarsinic acid is synthesized from administered inorganic arsenic. The mechanism by
which arsenic enters the brain (whether immature or not) appears not to be known. There is some
evidence for binding of arsenic by proteins in plasma (221) so that transfer across the choroid
plexus of the developing brain is a possible explanation (cf. 46). In adult animals there is evidence
that arsenic compounds are concentrated in the CSF (20). Also of possible relevance is the report
(222) that arsenic is transported by MRP1 although this was based on in vitro studies and does
not seem to have been investigated in the fetus or newborn.

Other Metals

Tellurium has been reported to produce hydrocephalus in fetus when administered to preg-
nant rats (223). The mechanism by which tellurium enters the fetal brain is not known, but in
the adult it concentrates in the choroid plexuses (20). Tellurium binds strongly to serum pro-
teins (224). Thus, as suggested for some other metals (see above) it may be that the mecha-
nism in the developing brain is via the choroid plexus with subsequent uptake into brain
cells from the CSF. Most of the literature on neurotoxicity of copper and zinc deals with
effects of nutritional deficiency (201). These authors point out that descriptions of excess cop-
per producing developmental neurobehavioral effects are rare and effects of excess zinc
appear not to have been described. Nevertheless, some caution is warranted, as both are
known to have neurotoxic effects in the adult. Both copper and zinc are bound to plasma
proteins and would be expected to enter the fetal and neonatal brain via the choroid plexuses
and CSF (see above). In addition, the main mechanism of transport of zinc into adult brain is
as a zinc-histidine complex (225) that is transported across cerebral endothelial cells. As dis-
cussed earlier the greater transport of amino acids in the developing brain could lead to
transport of metals that bind to amino acids in excessive amounts if there were environmental
or dietary exposure.

Naturally Occurring Toxins: Excitotoxic Amino Acids

Glutamate and aspartate are excitatory neurotransmitters; these and several other amino acids
(e.g., cystine) have been shown to produce brain damage particularly during development, as
has also been found for the food additive, monosodium-L-glutamate (226,227). Much of the
damage is in areas outside the blood-brain barrier such as the hypothalamus and area pos-
trema. However, there are reports of neuronal damage in brain regions that might be expected
to be protected from damage by brain barrier mechanisms (228,229). Many amino acids includ-
ing excitotoxic ones are transported into the developing brain to a greater extent than in the
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adult (Fig. 3; see above). This mechanism might contribute to the neurotoxicity of excitotoxic
amino acids in the developing brain.

Acrylamide

Ikeda et al. (230) conducted maternal-fetal distribution studies of [*C] acrylamide in tissues of
beagle dogs and miniature pigs in late pregnancy. Acrylamide was described as moderately
lipid soluble. Radioactivity in brains of both mothers and fetuses indicated that it penetrated
easily, which would be expected simply on the basis of its lipid solubility, although the authors
explained its presence in fetal brain as due to an absence of a blood-brain barrier. As only 30%
to 40% of the labelled acrylamide was protein bound, there should still have been plenty of free
lipid soluble acrylamide to distribute into the brain. In addition, some would probably have
penetrated into CSF across the choroid plexus epithelial cells bound to plasma proteins.

Pesticides

The neurotoxicology of pesticides, including developmental aspects, has been reviewed
in (13,231). A large number are relatively lipid soluble (231). This might lead to a conclusion
that brain barrier mechanisms would be an unlikely impediment to entry into the brain in
either the adult or developing brain. However, many pesticides are to some degree substrates
for P-glycoprotein (232,233). As indicated above, P-glycoprotein is present in both the placenta
and fetal cerebral blood vessels, but the degree to which it is functionally effective is unknown.
The distribution of organochlorines in stranded pilot whales (Globicephala melaena) from the
coast of Massachusetts has been reported (234). The study included some whole fetuses and
young whales. The absolute concentration of all organochlorines measured in whale fetuses
was considerably less than in mothers, males, or non-pregnant females, which suggests that
placental P-glycoprotein or other efflux mechanisms were effective in limiting entry of these
toxins into the fetus. Only one fetal brain was examined. Levels were lower than in adults, but
as no blood levels were available, this finding is difficult to interpret. The low fetal brain level
suggests that the placental and possibly the brain efflux mechanisms were effective in limiting
brain entry of these toxins.

Pipecolic Acid

Transport of pipecolic acid has been examined in adult and developing mouse brain (235,236).
Pipecolic acid is a plant amino acid found, for example, in some types of bean. Marked hyper-
pipecolinemia has been described in a group of human genetic disorders connected with per-
oxisomal defects such as in the Zellweger syndrome; these syndromes are associated with brain
damage (237). It was found in mice that the net uptake at 10 minutes of injected pipecolic acid
was more than two times greater at P1 than in adults (236). This was interpreted as evidence of
postnatal development of the blood-brain barrier. However, these findings are more likely to
reflect a more active carrier mechanism, related to early (growing) brain development, rather
than to immaturity (cf. 24). Alternatively, or in addition to more active transport in the develop-
ing brain, the finding that in the immature brain small molecules such as L-glucose and
sucrose (42,138) reached higher brain/plasma and CSF plasma ratios than in the adult, due to
low turnover of CSF (46) may also contribute to higher levels of water soluble pipecolic acid
(MW = 129) in the developing brain.

Phytoestrogens

These are plant compounds that produce estrogen-like activity in mammals. The isoflavanoids
diadzin and genestein, included in soy-based foods, are the most commonly consumed (238).
These and coumestrol, present in red clover in high concentrations, appear to be substrates for
Brcp but not for Mdrla (238). These authors also found that fetal brain levels of these phytoe-
strogens were higher in Brcp~~ mice than in controls. However, the increase in brain levels of
adult Brcp~~ mice compared to adult controls was about seven times greater, which suggests
that although some barrier function of Berp was present in the fetal brain, it was much less than
in the adult.
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Herbicides

In experiments in which the herbicide dichlorophenoxyacetic acid labelled with C ([*C]-2,4-D)
was injected intra-peritoneal (IP) into pregnant mice on E17, following (IP) pre-treatment with
saline or 40 or 80 mg/kg ["*C]-2,4-Dichlorophenoxyacetic Acid (['*C]-2,4-D) no ["*C]-2,4-D was
detectable by autoradiography in the brains of mothers or fetuses (239). For zero pre-treatment,
maternal brain/plasma ratios were around 3% to 4%. The fetal level was about 8% of maternal
plasma concentration, which might have given an overestimate of true brain/blood ratio in the
fetus. This finding was interpreted as indicating the existence of a substantial barrier to 2,4-D
in both adult and fetus. Pre-treatment of mothers with 2,4-D over two days resulted in substan-
tial increases in brain levels for both fetuses and mothers. In similar experiments, adult rabbits
were studied, with the addition that the CSF and choroid plexus were sampled. At the lowest
dose of ["C]-2,4-D, the CSF concentration was only about 10% of brain concentration. This
increased to 50% at highest dose of ['*C]-2,4-D. The level in the choroid plexus was about seven
times the brain concentration at the lowest dose, but only 50% higher at the highest dose. Per-
meability to the small organic solute, 2-deoxyglucose (2-DG) was unaffected by 2,4-D adminis-
tration. This was interpreted as indicating that blood-brain barrier permeability was unaffected
by the pre-treatment with 2,4-D. However, 2-DG is a non-metabolized glucose analogue which
is transported into the brain by the glucose transporter, it is therefore an inappropriate test of
barrier function for 2,4-D. In vitro experiments with choroid plexus demonstrated specific inhi-
bition of 2,4-D uptake by increasing concentrations of 2,4-D in the incubation medium. It was
concluded that the concentration of 2,4-D in choroid plexus and lower values in CSF indicated
that 2,4-D is cleared via the choroid plexus and the elevated brain levels found at higher expo-
sure levels of 2,4-D were probably due to reduced clearance rather than increased barrier per-
meability. In terms of fetal/neonatal brain toxicology, the important conclusion is that in the
rat, a significant barrier mechanism to 2,4-D exists at least as early as late gestation. Since the
brain barrier mechanism appears to involve active exclusion of the compound across the chor-
oid plexus, this presumably develops at an earlier stage of brain development. This could be an
MDR, as up regulation of MDR2 by dichlorophenoxyacetic acid in mouse liver has been
reported (240). How much earlier is not known, nor is it clear when this happens in the human
fetus. A physiologically based pharmacokinetic model for 2,4-D dosimetry in the developing
rabbit brain (241) is probably the only detailed pharmacokinetic model that describes the entry
of a compound into fetal brain. Modelling results gave a reasonably good fit with the
experimental data (242).

Paraquat is a low molecular weight (186 Da) highly toxic herbicide. In 10 day old and
adult rats, there was similar limited penetration into brain at 0.5 hour after subcutaneous injec-
tion (243). The penetration at 24 hours was significantly greater in the immature brains, but
mainly in regions outside the blood-brain barrier. The restricted entry after 0.5 hour exposure
suggests strongly that there was an effective barrier to paraquat. The later accumulation could
have been due to the low turnover of CSF in postnatal rats. In addition, there is a possibility
that paraquat is a substrate for P-glycoprotein (244) that would contribute its exclusion from
the brain.

SUMMARY AND CONCLUSIONS
There is clearly substantial evidence that brain barrier mechanisms show significant functional
capacity from early in brain development. Tight junctions in barrier interfaces are functionally
impermeable to proteins and molecules smaller than sucrose from as early as blood vessels and
the choroid plexuses begin to appear in the embryonic brain. At least one of the efflux mecha-
nisms (MDR1, p-glycoprotein) is present in early embryonic cerebral blood vessels of human
and rodent brains. Furthermore, inward transport mechanisms for nutrients such as amino
acids, glucose, and trace metals are present and functional early in brain development and
most appear to be more active than in the adult brain. In addition, systemic injections of classi-
cal markers of barrier function (dyes and HRP) show that they do not enter the developing
brain (except in regions without a barrier as in the adult) providing only moderate amounts of
marker are injected.

The vulnerability of the developing brain lies mainly in the susceptibility of developmen-
tal processes (cell division, differentiation, migration, and synaptogenesis) to the presence of
drugs and toxins. This vulnerability may be enhanced by the activity of some barrier transport
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mechanisms in the developing brain: Influx carrier mechanisms may facilitate the entry of neu-
rotoxins such as mercury (usually in the form of MeHg) and manganese. The lower concentra-
tion of proteins in fetal and neonatal plasma may result in the binding capacity for drugs and
toxins to be exceeded more easily in the developing than in the mature brain; since many drug
and toxins are lipid soluble, they easily penetrate into the brain when unbound unless they are
substrates of the efflux proteins (MDRs, MRPs, BCRP). However, these although present may
not be fully functional. In addition, the presence of transport mechanisms that are unique to the
developing brain may exacerbate the neurotoxic effects of drugs and toxins by increasing their
entry. A well-documented example of such a mechanism is the developmentally regulated
transfer of plasma proteins across the fetal and neonatal choroid plexus. Proteins such as albu-
min and transferrin, in addition to acting as carriers for endogenous molecules such as hor-
mones and trace metals, also bind many drugs and toxins such as unconjugated bilirubin and
heavy metals.

The widespread notion that the blood-brain barrier is absent or immature is long overdue
to be laid to rest. However, the developing brain is undoubtedly vulnerable to drugs and tox-
ins, thus caution in administering drugs to pregnant women remains important. What is really
required is systematic testing of drugs that may be essential for medical conditions in pregnant
women or for diseases in the newborn. At present the most vulnerable members of society,
fetuses and neonates, are the least protected by the regulatory authorities. Most of the drugs
used in pregnancy and for neonates and children have never been fully evaluated for effective-
ness and risks in these populations. Most such drugs are used for treatment not covered by
regulatory approval and problems such as the “grey syndrome” with chloramphenicol and
phocomelia and other deformities with thalidomide, only became clear after extensive clinical
use. Effects of drugs and toxins on brain development and behavior may be more subtle and
difficult to detect, but the consequences could be lifelong.

It is essential that proper mechanisms are developed for preclinical and clinical surveil-
lance of drugs used in pregnancy and in neonates. These should include not only appropriate
toxicological studies but also detailed studies of the mechanisms involved; making use of this
information it may be possible to modify potentially useful drugs to decrease their unwanted
effects.
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INTRODUCTION

In the adult human, thyroid hormone (TH) deficiency or excess can lead to a wide array of
neurological and psychiatric symptoms, which are largely reversible with adequate treat-
ment (1-3). In contrast, TH deficiency or excess during nervous system development leads to
neurological and psychiatric symptoms that are not reversible, and are associated with perma-
nent alterations in brain structure and function (4). Recently, the potential for environmental
contaminants that disrupt the thyroid axis to induce neurodevelopmental impairments has
been a topic of considerable interest (5-10). A large number of environmental contaminants
with diverse structures have been shown to decrease circulating levels of TH (6,11-13). Animal
studies have indicated that this action of xenobiotics on the thyroid system may contribute to
alterations in nervous system development and function (5,6,9,11-21). Some of these environ-
mental contaminants have also been evaluated in humans and been found to lower serum TH
levels (22-24). Moreover, human exposures to some of these same contaminants are associated
with neurodevelopmental impairments (25-29). Thus, an important mechanism by which some
environmental contaminants may produce neurotoxic effects on the developing or adult human
is by interfering with thyroid function, or with TH action.

Considering the importance of TH for normal brain development and for adult physiology,
it is of significant concern that a large number of chemicals to which the human population is
incidentally exposed can potentially impact thyroid function through a number of different
mechanisms. Biomonitoring studies conducted by the center for disease control (CDC) and
others (24,30) document that the general population is contaminated with large variety of indus-
trial chemicals. Of particular concern are the numbers and concentrations of chemicals found in
human amniotic fluid, fetal blood, and breast milk, rendering it unlikely for a child to be born
without some exposure to xenobiotics. Many of these chemicals have been shown to interfere with
TH signaling in experimental systems. However, there are significant gaps in our understanding
of the clinical and fundamental elements of thyroid endocrinology and toxicology that require
resolution before a complete understanding the functional implications of these observations can
be derived. These knowledge gaps also confound our ability to identify some types of thyroid
toxicants or to test their potential to produce adverse effects during development or in the adult.

The effects of thyroid disruption from environmental sources are likely to be mild and
may be difficult to detect in the individual using standard clinical tests of thyroid hormone
levels in blood. Until very recently, experimental studies almost uniformly modeled severe TH
depletions rather than mild to subtle TH insufficiency. The lack of adequate information on low
level thyroid dysfunction has hampered efforts to determine the potential impact of this action
of environmental contaminants on brain development. In addition, the possibility exists that
specific chemicals may bind to the nuclear TH receptor, alter the expression of transport pro-
teins, or interfere with brain deiodinases and could, in principle, affect TH action directly in the
absence of effects on serum hormones. As such, they would remain undetected by simple
assessments of serum hormone change. The impact of acute actions of TH through non-
traditional, nongenomic mechanisms must also be appreciated in the context of developmental
and adult neurotoxicity of thyroid disrupting agents. This chapter will detail the function of
the hypothalamic-pituitary-thyroid (HPT) axis, the role of TH in brain development and in
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adult physiology, and will summarize recent findings on the effects of modest perturbations
of the thyroid axis on neurodevelopment.

THE HPT AXIS
Overview
The thyroid system is organized as a classic neuroendocrine axis, involving the hypothala-
mus, pituitary gland, and the thyroid gland. As depicted in Figure 1, TH synthesis begins
with the active uptake of iodine into the thyroid follicles via the sodium-iodide symporter.
Thyroglobulin (Tg) is a large glycoprotein stored within the colloid of the thyroid gland and
is the substrate upon which TH are synthesized. Iodine must be oxidized, under the control
of the thyroid oxidase enzymes (31-34), and bound to Tg by the synthesis enzyme thyroper-
oxidase (TPO). Tg contains four major tyrosyl residue sites where iodine becomes covalently
bound when TPO is activated. In the adult rat thyroid gland, Tg is stored at concentrations
sufficient to support hormone release for several days. Human thyroid glands contain a sup-
ply of Tg to last several months (35). Chemicals that act primarily by inhibiting TH synthesis
may have no effect on hormone release until these stores of Tg are depleted. However, in
contrast to the adult, the fetal and neonatal human thyroid gland is in short supply of iodi-
nated Tg. At birth, neonates contain Tg stores to support only a single day of TH, making the
developing organism particularly vulnerable to hormone deficiencies induced through a
variety of means (36,37). Parameters of the adult and infant thyroid system that have
implications for tolerance to perturbation of the thyroid axis are summarized in Table 1.
The classic view is that the thyroid gland produces and secretes the thyronine hor-
mones thyroxine (T4) and triiodothyronine (T3), and T3 represents the “active form” of the
hormone (Fig. 1).As depicted in Figure 1, synthesis and release of TH into the circulation are

Hypothalamus
TRp controls negative
feedback

stimulation

Inhibition Blood
T3 T4

ﬁ Free ¢ Bound

Pituitary \
TR controls negative Binding

feedback proteins
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TSH
stimulation TPO 4—.Tg \‘
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Figure 1 Classic model of negative feedback of hypothalamus-pituitary-thyroid axis. lodine is an essential anion
actively transported into the thyroid gland for synthesis of TH (T3 and T4). Upon release from the gland, TH are bound
to proteins in the serum and delivered to a number of target tissues, including brain. TH are metabolized in the liver and
excreted in the bile. Serum TH is regulated by a classic negative feedback loop to the hypothalamus and pituitary gland.
Reductions in serum hormones are corrected by hypothalamic release of TRH to activate pituitary release of TSH. TSH
increases synthesis and release of TH from the thyroid gland. Abbreviations: NIS, sodium-iodide symporter; Tg, thy-
roglobulin; TH, thyroid hormone; TPO, thyroperoxidase; TRH, thyrotropin-releasing hormone; TSH, thyroid stimulating
hormone.
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Table 1 The Adult and Infant Thyroid System Differ from Each Other in a Number of Parameters that Have
Implications for Tolerance to Perturbations of the Thyroid Axis. The Thyroid System of the Neonate Is Less Able
to Tolerate Fluctuations in THs due to its Limited Reserve Capacity Relative to the Adult

Adult Neonate/fetus
Serum half-life T4 5-7 days 3 days
Thyroglobulin stores (Tg) Months <1 day, so minimal with functional reserve
lodine stores Significant iodine stores in Adequate placental and lactational supply
thyroid gland needed on daily basis to maintain circulating
TH
Synthesis of TH Reduced hormone levels High rate of synthesis necessary to meet daily
appear after a delay in demand—placental transfer of maternal T4 in
reduced synthesis early gestation, fetal T4 production later in
gestation
Maturity of adaptive TSH, serum binding proteins, Immaturity of these sources of compensation in
mechanisms deiodinases, iodothyronine face of dropping serum hormone concentrations
transporter proteins
Reversibility of insult All effects completely reversible  Vulnerability of brain to even small insufficiencies
with pharmacological leads to permanent effects
treatment

Abbreviations: TH, thyroid hormone; TSH, thyroid-stimulating hormone.

under the control of negative feedback loops of the HPT axis. A drop in circulating levels of
T4 induces the secretion of thyrotropin releasing hormone (TRH) from the hypothalamus.
TRH stimulates thyroid-stimulating hormone (TSH) secretion from the anterior pituitary.
TSH then initiates TH synthesis and release from the thyroid gland. Although opposing TRH
and TH inputs regulate the HPT axis, TH negative feedback at the level of the hypothalamus
has always been believed to be the primary regulator. Until recently, however, this assertion
had not been directly confirmed in vivo. Using a combination of TRH and TR knock-out
mice, Nikrodhanond et al. (39) demonstrated the dominant role of the hypothalamus in the
control of serum TH. Hypothalamic control of serum hormones through negative feedback is
mediated through activation of the TH nuclear receptor, TRB2 (40). These observations are of
toxicological significance as they indicate that the negative feedback control of serum hor-
mone concentrations might be more sensitive to TH insufficiency than some other endpoints
of hormone action. In addition, environmental contaminants that interfere selectively with
the TRP2 may be particularly potent at affecting serum TH levels. In contrast, TRH also con-
trols the set-point around which TH exert a negative feedback on TSH (41). This action may
account for the paradoxical decreases in both TSH and TH that accompany food deprivation
and caloric restriction (42,43). Although the neural pathways controlling this function are not
completely understood, toxicants may interact with these systems in a manner that mimicks
the effects of caloric restriction.

Furthermore, the iodothyronines, T3 and T4, may not be the only hormones produced
by the thyroid gland. New information indicates that decarboxylated and deiodinated
metabolites of TH, thyronamines, are also produced in the thyroid gland and when released
into the circulation can interact with membrane-bound G protein-coupled receptors (38).
In vivo administration of thyronamines (e.g., T1_ ) produce a rapid decline in cardiac out-
put and hypothermia, physiological functions that are also modulated by TH themselves.
In isolated cell and synaptosomal preparations, thyronamines act as specific dopamine and
norepinephrine reuptake inhibitors and also block the transport of monoamines into syn-
aptic vesicles. These actions may underlie the pharmacological effects of thyronamines in
cardiac and thermoregulatory functions. Toxicants that interfere with TH synthesis or
metabolism may also interfere with thyronamine production as well. The contribution of
altered thyroamine levels to the constellation of symptoms that comprise hypothyroidism
has yet to be addressed.
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Deiodination of THs

In addition to negative feedback mechanisms to control serum concentrations of TH, metabo-
lism by peripheral and central deiodinases and sulfotransferases serve to further modulate
local thyroid action (see inset Fig. 3) (44,45). The only source of circulating T4 is the thyroid
gland, whereas circulating T3 is derived both from the thyroid gland and from conversion of
T4 by iodothyronine deiodinases in tissues. Each deiodinase possesses unique characteristics
and the complex tissue-specific and developmental pattern of their expression is indicative of
their ability to impact diverse physiological systems (46). Type 1 (D1) and Type 2 deiodinase
(D2) catalyze the outer ring deiodination of T4, converting T4 to T3. In brain, D2 is the active
enzyme, residing in astrocytes or the tanocytes that line the third ventricle (44,47). Type 3 deio-
dinase (D3) has the reciprocal action of D2, deactivating T3 and is predominantly localized in
neurons (48-51). D1 is a dual purpose enzyme and can either activate or deactivate TH.

Among the many TH-responsive tissues, there exists a differential reliance on deiodina-
tion mechanisms to modulate the action of TH. In brain, deiodinases represent an important
point of physiological control as 80% of brain T3 is produced locally through activation of these
enzymes (44,46,52). Because T3 has an affinity for the nuclear receptor that is 10-fold greater
than that of T4 (53), it is T3 availability inside the cell that is important for hormone action. As
such, TH signaling in individual tissues can be affected by these tissue-specific processes even
as serum hormone concentrations remain “normal.” Conversely, chemically-induced reduc-
tions or increases in serum hormone levels may be compensated for, within limits, at the tissue
level by upregulation of D2 or down regulation of D3. However, the degree to which these cel-
lular adaptive mechanisms can compensate for low T4 or for chemically-induced alterations in
TH receptor function has not been widely studied.

Developmentally programmed temporally and spatially specific changes in deiodinase
expression regulate the intracellular concentrations of T3 essential for normal development of
the brain, cochlea, and retina (44,46,54,55). Studies in early human gestation and embryonic
cells studied in vitro, however, have failed to demonstrate appropriate regulation of T3 by
deiodinases, suggesting immaturity of this regulatory system (49,50,56). The inability of this
system to regulate T3 in early brain development may contribute to the particular sensitivity of
the developing central nervous system (CNS) to even mild maternal hormonal deficiencies (49).
The potential for environmental contaminants to interfere with the ontogeny and function of
central and peripheral deiodinase pathways can have significant toxicological consequence in
the developing and the adult nervous system.

Transporter Proteins

In the classic model of HPT function, circulating levels of TH are directly related to hormone
action in tissues (57). Recent work indicates that active transport of TH through plasma mem-
brane plays a significant role in the regulation of local T3 action. Monocarboxylate transporter-8
(MCTS$) is a specific and powerful transporter of both T3 and T4. Mutations of the MCT8 gene
in humans produce mental retardation and global neurological dysfunction in the absence of
severe physical characteristics of hypothyroidism (45,58). These observations confirm that the
tissue-specific selective uptake of TH is an important regulatory step in the pathway of TH
action (59). Expression of MCT8 in human fetal cortex begins early in gestation, specifically
implicating this transport protein in the TH-mediated control of fetal brain development (49).
In addition, recent studies show that the severity of the neurological deficits are directly related
to the degree to which specific mutations abrogate T3 uptake (60).

Selective regulation of transport proteins may also contribute to the regional sensitivity of
some brain areas to hormone insufficiency. Hypothyroidism reduces the expression of neuro-
granin (RC3), a thyroid-dependent signaling protein, in the dentate gyrus but not the CAl
region of the developing hippocampus (54,61,62). TH receptors and MCTS are expressed in both
pyramidal and granule cell neurons of the hippocampus. However, under conditions of moder-
ate TH insufficiency a selective upregulation of the expression of MCT8 is seen in pyramidal
cells (63). Consistent with previous work in a model of severe hypothyroidism, this altered
expression pattern of MCT8 is accompanied by a differential expression of neurogranin in these
two neuronal populations. These observations indicate a degree of protection may be conferred
upon CA1 pyramidal neurons as a function of transporter expression and suggest a potential
mechanism for selective vulnerability of neuronal subtypes within the hippocampus (Fig. 2).
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Control PTU

Figure 2 Active transport of TH through plasma membrane plays a significant role in the regulation of local T3
action. Developmental exposure to PTU lowers circulating levels of TH, reduces TH-dependent expression of
neurogranin (RC3) mRNA in the dentate gyrus of the hippocampus, but not area CA1. Conversely, deiodinase-2
is upregulated in the dentate gyrus but not area CA1. These data reflect regional variation in compensatory
responses to disruption of the thyroid axis. Differential capacity in these compensatory mechanisms may contrib-
ute to vulnerability of some brain regions and sparing of others under conditions of TH insufficiency. Source: From
Ref. 63. Abbreviations: D2, deiodinase-2; MCT-8, monocarboxylate transporter-8; PTU, propylthiouracil; TH,
thyroid hormone.

Environmental contaminants that interfere with TH transporters like MCT8 and others (e.g.,
OATP) may produce unique patterns of thyroid disruption.

In summary, a number of recent developments in endocrinology of the thyroid system
indicate that the HPT axis is controlled in ways not fully appreciated previously, but that are
important for thyroid toxicology. As outlined above, new information accumulating over the
past decade has significantly increased our understanding of the regulation of TH in the brain
and other tissues. New insights into feedback control mechanisms, plasma membrane trans-
porters, and peripheral and central deiodinases demonstrate a modulation of TH action with a
degree of precision and regional specificity not previously recognized. Incorporating these
findings requires modifications to the idealized view of the HPT axis depicted in Figure 1 to
that shown in Figure 3. Refining the model of TH function will also necessarily influence the
course of research in neurotoxicology of anti-thyroid agents, as well as the specific kinds of
endpoints evaluated in a screening and testing program designed to identify thyroid
toxicants.
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Figure 3 (See color insert) Recent information has required significant refinement of the original model of the
HPT axis presented in Figure 1. A number of factors contribute to the differential regulation of thyroid hormone
supply and action in different target tissues. In addition to the classic molecular action of thyroid hormones on
gene expression, nongenomic effects mediated by membrane bound receptors for T3, T4, and T1 amines can
mediate thyroid hormone action. Active transport proteins (e.g., MCT8, OATP) and metabolizing enzymes are
differentially expressed and regulate the presentation of hormone to different target tissues. The impact of envi-
ronmental contaminants on these different regulatory mechanisms, especially as they pertain to brain develop-
ment has not been addressed. Abbreviations: HPT, hypothalamus-pituitary-thyroid; MCT8, monocarboxylate
transporter-8; OATP, organic anion transporting polypeptide; TBG, thyroxine-binding globulin; TSH, thyroid-
stimulating hormone; TTR, transthyretin.

THs REGULATE GENE TRANSCRIPTION
During brain development, TH transiently regulates the expression of many genes involved
in a variety of developmental processes in a temporally and spatially specific manner. The
cellular actions of TH are mediated by nuclear receptors encoded by two genes, TRo. and
TRp (48,64). TRal is widely expressed in developing brain, whereas TRf is more restrictive,
found primarily in sensory organs and extensively studied in the cochlea and retina (51). As
previously described, TRf in hypothalamic neurons has recently been implicated in regula-
tion of serum hormone concentrations (39). Thyroid receptors (TRs) bind to DNA in the
unliganded state (i.e., the “aporeceptor”), and can enhance or repress gene transcription
depending on a number of factors including the cellular mileau of co-factors available to the
receptor as well as the particular cis-regulatory element to which the TR is bound (Fig. 4).
The hormone-receptor complex binds to DNA sequences, TH response elements (TREs), that
directly regulate specific genes. Few genes have been identified that are directly activated
by TH, and of them, most are transcription factors (e.g., hairless, hr) that modulate the expres-
sion of other genes (65). TH regulation of these downstream genes is therefore indirect as
these genes do not themselves possess a TRE and do not bind the T3-receptor complex. In
this manner, TH can modulate the expression of a multitude of downstream genes, an action
that dramatically increases the sphere of their influence on brain development, and that
has increased the complexity of identifying developmentally important TH-responsive
genes (66-68).

One concept of TH action is to accelerate developmental changes in gene expression. In
the absence of TH, these changes still take place but at a slower rate, disrupting the exquisite
choreography of timing of events that underlie normal brain development (48,69,70). As such,
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Figure 4 Mechanisms controlling molecular action of thyroid hormone (TH). The molecular action of TH in the
brain can be modulated in a variety of ways. This figure depicts metabolism of THs in the astrocyte, active trans-
port of T3 into the neuron were it binds to TR in the nucleus. The TR, often paired with a HDP, is bound to a TRE
on the chromatin of a thyroid-responsive gene. TH action can be modulated at several sites: (1) alterations in TH
metabolism, (2) expression of transport proteins, (3) TR, (4) cofactors, and (5) transcription factors. Abbreviations:
HDP, heterodimeric partner; MCT8, monocarboxylate transporter-8; OATP, organic anion transporting polypeptide;
TH, thyroid hormone; TR, thyroid receptors; TRE, thyroid response element; D2, deiodinase-2.

TH are necessary but not sufficient for normal development and TH must interact with a
number of factors to exert their full effect. Many comprehensive reviews are available on the
role of TH receptor activation and gene expression in brain development (4,48,64-66,70).
Table 2 was derived from these reviews and represents a summary of genes whose expression
is altered in the brains of hypothyroid animals. Recently, using “functional genomics” (e.g.,
microarrays), a number of these genes were also demonstrated to be differentially expressed
in animals experiencing varying degrees of TH insufficiency, from very modest to severe (71,72).
Itis not at all clear, however, which genes are directly regulated by TH, which genes are down-
stream and only indirectly regulated by TH, and which genes are indirectly modified by a
change in developmental trajectory induced by TH insufficiency (48,65,68).

This complex interplay of TH, gene expression, and developmental timeline is exempli-
fied by the role of TH in white matter development. TH act on a common precursor to oligo-
dendrocytes and astrocytes to favor differentiation of the former at the expense of the
latter (73,74). As recently demonstrated in vivo, the ratio of oligodendrocytes to astrocytes is
altered by thyroid status (19). Cataloguing changes in messenger RNA (mRNA) levels that
occur at varying degrees of TH insufficiency will identify those genes directly regulated by TH
uniquely in oligodendrocytes, in astrocytes, and in their common precursors. As TH levels
decline, the number of oligodendrocytes declines and the number of astrocytes increases; thus,
astrocyte-specific genes will appear to be up-regulated while oligodendrocyte-specific genes
will appear to be down-regulated. These interrelationships may be further clarified through
examination of dose-dependency at different developmental timelines and through the use of
chromatin immunoprecipitation (ChIP) followed by whole-genome approaches.

Adding to the complexity of the molecular basis of neural development, the regulation of
TH-responsive genes in brain is subtle in nature, standing in marked contrast to the gene
expression in the liver and pituitary. Most known neural genes exhibit transient responsiveness
to TH and undergo changes in expression of only two- to three-fold in response to TH (75).
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Table 2 Thyroid Hormone-Sensitive Genes Categorized by Developmental Process and Functional Domain?

Developmental Functional Genes previously Genes with related
process description identified functions
Myelination Myelin genes Mbp, Plp, Mag, Mal, Cldn11, MoBP,
CPNase Mog, Fndc5
Differentiation Neurotrophins BDNF Nitf3,
NT-3, trkA, p75ntr Edg2, Bmp3, Nrn1
Migration Extracellular matrix Tne Slit1, Dcx, Sox4,
Laminin, L1, reelin Itih3
Adhesion molecules Ncam Col11a2, Hapin1, Dpysl,
Amigo2, Itih3
Cytoskeletal Tubulin a1 o2 B4 Arc, Csrpl, Tmod1, Pdlim,
components tau Larp1
Apoptosis Hop/Hod
Casp3, Epha7, Aaft
Synaptic function Intracellular signaling ~ CaMK-IV, Krox-24/Egr-1, Nisr2,
Rhes/Rasd2, RC3, Pgd2 CaMK-Il, Homer1, Calb2
Synaptic transmission  Synaptotagmin-related Pvalb, Kcnal, Sic1a2,
gene-1 Grik4, Grin3a, Gabrd, Tac2,
Vamp1, Elfin, Gpre5b, Lynx1
Transcriptional Transcription factors Hr Junb, Pias3, Militi, Agpat7,
regulation RORo, Bten Jundp?2, Csen

aGenes previously identified in the literature are summarized in column 3. Bolded transcript names in this column represent
literature-reported genes, identified under conditions of severe hypothyroidism, that were also detected by microarray at low
doses of propylthiouracil. The last column lists novel gene transcripts implicated in similar functional domains. Italicized names
denote those whose expression level was significantly altered at the lowest dose of propylthiouracil (1 ppm) examined that induced
a state of hypothyroxinemia in dams and pups (71).

Consequently, it has proven challenging to link the changes in expression of a particular gene
or family of genes to the well known effects of TH on brain development (48,64,65). Difficulty
linking alterations in gene expression and brain function may also derive from the paradigm
often used in these studies. Specifically, models of severe hypothyroidism may lead to a pleth-
ora of effects on somatic development of many organ systems that may obscure the more direct
actions of TH on brain development, inducing alterations in brain development that are
secondary to TH insufficiencies.

Work with TH receptor knock-out mouse models has not aided in the search for thyroid-
responsive genes. Few obvious abnormalities in brain development appear in these mutants
and certainly TR knock-out mice do not exhibit the neural phenotype characteristic of
chemically-induced hypothyroidism (4,67,76). Although originally somewhat enigmatic, recent
work has demonstrated clearly that the severe neural phenotype associated with chemically-
induced developmental hypothyroidism is caused by the presence of the unliganded TR. This
was clearly demonstrated by Hashimoto et al. (77) who developed a mouse model that
expressed a mutant TRf gene that was incapable of binding TH, but retained its ability to bind
to DNA. This mouse exhibits many structural and behavioral abnormalities that are distinct
from TR knock-out mice, and are similar to hypothyroid wild-type mice. Thus, these and other
studies demonstrate that the aporeceptor is responsible for the severe neurological phenotype
associated with hypothyroidism, and implicates co-repressors in the mechanism whereby
hypothyroidism causes brain damage (78).

NON-GENOMIC ACTIONS OF THs

It is also becoming increasingly clear that a subset of important actions of TH—and of products
of the thyroid gland—are mediated by membrane receptors (see reviews by Davis and col-
leagues (79). These actions of TH have been characterized as “nongenomic” as they have tradi-
tionally been demonstrated using in vitro preparations lacking TREs transiently exposed to
TH. They are also described as “acute,” with rapid onset relative to the traditional genomic
mechanisms that require gene transcription and consequent translation of mRINA. However, as
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noted by Davis et al. (79) this characterization is inaccurate in the context of the intact organism
where endogenous levels of TH can mediate acute membrane and cytosolic effects or modulate
background levels of phosphorylation of specific signaling molecules that do impact gene tran-
scription, albeit through a more indirect route. The nongenomic actions of THs clearly repre-
sent an important array of signaling pathways that deserve increased study and awareness.
However, no studies to date have investigated the ability of environmental chemicals to inter-
fere with these important pathways. Thus, our goal will be only to provide a brief overview
of these signaling pathways and to provide references sufficient for the interested reader to
pursue this topic.

A number of specific cellular events are targets of TH action mediated by nongenomic
mechanisms. TH initiation of rapid biological responses include the regulation of intracellular
pH in myoblasts (80), changes in the rates of protein trafficking (81), changes in phosphoryla-
tion of specific nuclear proteins (82), and regulation of actin polymerization and cell motil-
ity (83,84), and calcium-mediated signaling events (79). Occupancy of T4 of the integrin receptor,
a cell surface structural protein of the plasma membrane phosphorylates the mitogen activated
protein kinase (MAPK or erkl1/2) (81,85,86). In the developing brain this class of protein kinases
regulates cell proliferation, differentiation, survival, apoptosis, and plasticity (87,88). In the
adult brain, phosphorylation of erkl/2 is critical for some forms of synaptic plasticity and
learning (89,90) through its interaction with protein kinases and neurotrophins and activation
of transcription factors including cyclic AMP response-element binding protein (CREB) (91).

In astrocytes in culture, interaction of TH with laminin, a member of the integrin receptor
family regulates the dynamics of actin fiber remodeling to promote cell adhesion and guide cell
migration. As described below, migration of granule cells within the cerebellum is significantly
delayed in hypothyroid animals, possibly due to absence of this action of TH (84,92). However
the recent report of nuclear TH receptors in astrocytes indicates a direct nuclear genomic action
may also contribute to TH modulation of astrocyte maturation (93).

THs also activate the phosphoinositol 3-kinase/Akt pathway, an important regulator
of gene expression, cell cycle progression, cell growth, differentiation, metabolism, and sur-
vival (94-98). Direct administration of T3 into hippocampus activates phosphorylation of Akt
(99). Clearly important developmentally, recent data also implicates this signaling pathway
and its downstream targets in the maintenance phase of long-term potentiation (LTP), the
leading experimental model of synaptic changes that underlie learning and memory (100-102).

It is of particular significance that both T4 and reverse T3 may be even more potent than
T3 to induce some of these non-genomic actions. As some hydroxylated environmental chemi-
cals [e.g., polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers] interact with
the T4-specific transport protein transthyretin, these actions of TH may have toxicological rel-
evance (103-105). Thus, toxicants may well interfere with the nongenomic actions of TH with-
out altering the more visible effects of the classically defined genomic actions of TH. Collectively,
these data indicate that actions of TH can occur at non-nuclear sites to alter developmental
processes and by this action may also contribute to effects of TH insufficiency on adult nervous
system and mediate some of the actions of environmental contaminants on brain function.

In addition to the nongenomic mechanisms of the iodothyronines, TH can be progres-
sively deiodinated to lower iodine states, and undergo decarboxylation to form monothy-
ronamine, T1__ (38,106). First produced synthetically, T1 _ has since been identified in vivo and
when bound to plasma membrane receptors, exerts potent effects on cardiovascular function,
body temperature regulation, the balance between glucose and lipid utilization, and can inhibit
specific monoamine transporters in the brain (38). A great deal remains to be learned about this
novel signaling pathway, but it is clear that the physiological impacts of thyronamines may be
quite important. The potential for environmental chemicals to interfere with the synthesis,
transport, or action of thyroamines has yet to be examined.

THs AND BRAIN DEVELOPMENT IN HUMANS

In humans, severe deficiencies in TH during development are associated with irreversible
damage to virtually all organ systems, a condition termed cretinism (107,108). The primary
causes of severe developmental hypothyroidism in humans are mainly iodine deficiency and
congenital hypothyroidism (109-112). Each condition can produce a different spectrum of
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symptoms, the specific nature of which is dependent on the timing, duration, and severity of
the deficiency. TH were once believed to be blocked from reaching the fetus by the placenta;
however, direct evidence that maternal T4 reached the fetus in substantial amounts changed
this perception (113). Moreover, recent epidemiological evidence also indicates that even mild
reductions in maternal THs during early and/or late pregnancy has consequences on brain
development (87,97,114-117). These observations are supported by work in experimental ani-
mals in which mild and transient reductions in TH in maternal serum early in pregnancy can
produce specific deficits in cortical and hippocampal histogenesis (114,118,119).

Congenital Hypothyroidism

Congenital hypothyroidism refers to a condition whereby children are born with very low lev-
els of serum TH (120). In such cases, children appear normal at birth and their mothers have
normal thyroid function. In fact, it is the lack of overt clinical symptoms in children with con-
genital hypothyroidism that initially supported the concepts that TH were not important in
fetal development and that the placental barrier restricted access of maternal TH to the fetus
(113). The most common causes of congenital hypothyroidism are ectopic thyroid gland, thy-
roid agenesia and hypoplasia, and inborn errors of TH biosynthesis (121). Because of the lack
of specific symptoms in the early neonatal period, the diagnosis of congenital hypothyroidism
was often delayed and the prognosis deteriorated with the passage of time (120). The full clini-
cal picture prior to the era of systematic screening included growth retardation, puffy features
and myxedema, and mental retardation. Severely affected children exhibited neurological signs
including spasticity, incoordination, cerebellar ataxia, strabismus, speech problems, and hear-
ing loss (70,107,110,122). With the introduction of routine neonatal screening, severe mental
retardation associated with this condition has been eliminated. However, late diagnosis and
delayed or inadequate treatment is associated with poorer intellectual outcome. Lower global
IQ scores, language delays and poor verbal skills, motor weakness, attentional deficits, and
learning impairments are evident in children with delayed or inadequate treatment (123). Even
in cases where the condition is diagnosed early and treated effectively, subtle impairments in
mental function remain. Standard tests of IQ function in congenitally hypothyroid children are
approximately six points below expected values and selective deficits on visuo-spatial, motor,
language, memory, and attention tests are observed (124-126).

Endemic lodine Deficiency

Iodine is an essential element for the biosynthesis of TH (127,128). Some of the most serious
neurologic impairments associated with thyroid dysfunction from an environmental cause
have been documented in children born in regions of the world where dietary iodine deficiency
is prevalent (108,109,111,122). These children are characterized by stunted growth and a high
incidence of mental retardation. Motor impairments involve both gross and fine motor control,
spasticity, gait disturbances, and inability to stand. Anatomical and physiological alterations of
the ear produce deaf-mutism in a large portion of affected children. Beyond the sensory organ,
deficits in perceptual hearing, learning deficits, and speech problems are also evident. Neuro-
logical deficiencies seen in endemic iodine deficiency are more severe than those resulting from
congenital hypothyroidism, suggesting that early fetal thyroid function is necessary for normal
development. Supplementation of iodine by mid-gestation improves the outcome but does not
completely prevent damage. These observations suggested that development of the fetal brain,
before the onset of fetal thyroid function, is dependent on maternal THs derived from placental
transfer of T4 (113,129-131).

Maternal Hypothyroidism/Hypothyroxinemia

Because the symptoms of congenital hypothyroidism were not apparent at birth, it was once
thought that THs were only necessary for fetal brain development after the onset of fetal thy-
roid function (122). TH of maternal origin were not believed to cross the placenta and therefore
could not contribute to fetal brain development (132). However, Vulsma et al. (113) were the
first to provide clinical evidence of concentrations of circulating THs in the congentially
athyroid fetus. TH has also been shown to cross the placental in rats and as much at 17.5% of
fetal TH at birth are maternal in origin (129,130,133,134).
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Anumber of studies have now demonstrated that subclinical hypothyroidism in pregnant
women can result in neuropsychological deficits in their offspring, despite normal thyroid sta-
tus of the child at birth. Low circulating levels of TH during the second trimester of pregnancy
were associated with poorer scores on the Bayley Scale of infant development and lower IQ
scores at four to seven years of age (135). Pop et al. (136,137) supported these findings and
extended them to an earlier gestational time window. Low T4 levels in maternal serum and the
presence of circulating antibodies for thyroid peroxidase at 12 weeks of gestation were strong
predictors of infant mental development and IQ. Haddow et al. (115) reported 4-7 point IQ
deficits in children born to women with low T4 levels in early gestation (<12 weeks), serum
hormone levels that were still within the subclinical range. None of these children were hypo-
thyroid at birth yet at seven to nine years of age had lower neuropsychological tests scores in
attention, language, reading, and visuo-motor performance. Recently, suboptimal neurological
development as assessed by the Neurobehavioral Assessment Scale was identified as early as
three weeks of age in children born to women with low serum T4 (138). In this study, low
maternal T4 and not TSH or T4 later in gestation was a significant predictor of outcome. These
observations of neurological impairments following subclinical reductions in maternal T4 have
raised the level of concern over the influence of environmental contaminants on thyroid
function and brain development (23,24,139,140).

ANIMAL MODELS OF DEVELOPMENTAL HYPOTHYROIDISM

The role of THs in brain development has been extensively studied in rodent models. Hypothy-
roidism is induced by thyroidectomy, radioactive iodine, or administration of TPO inhibitors
such as propylthiouracil (PTU) and methimazole (MMI). Hypothyroidism induced by mater-
nal exposure to these TH synthesis inhibitors is the most common model (46). Because TH were
not believed to be necessary for fetal brain development until late in gestation, many animal
models have incorporated only the late gestational and early postnatal period to evaluate the
impact of altered TH on brain development (47,108). In addition to dismissing the role of TH in
early fetal development, these models are of severe TH deprivation (48,64,65,108). In the major-
ity of these studies, T4 is typically below the level of detection of most assays, T3 is reduced,
and TSH is increased several fold. Such treatments are accompanied by severe growth retarda-
tion, decreased brain size, delayed developmental milestones, and abnormal gait reminiscent
of the cases of neurological cretinism in humans. As such, the clinical symptoms of severe
hypothyroidism in animals came to be viewed as the clinical signs of developmental TH insuf-
ficiency. In the absence of this phenotype, an erroneous but not uncommon conclusion was that
no effects on brain development were produced.

It is now clear that TR activation in fetal brain occurs early in gestation through the pla-
cental transfer of T4 from the mother to influence brain development (49,134,141). In humans,
fetal thyroid function begins in the second trimester, in rodent not until late gestation (approx-
imately gestational day 17). A gradual decline in dependence on maternal sources occurs from
the onset of fetal thyroid function until birth (Fig. 5). Until recently few experimental studies
were designed to examine mild or subclinical forms of maternal or neonatal TH disruption.

Conception Birth Adult
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hormone
sources

Infant Adult

Figure 5 Thyroid hormone sources during fetal and postnatal life. Development of the fetal brain requires suffi-
cient levels of thyroid hormone. Thyroid hormones are active long before the fetal thyroid is functional. In early
gestation, the fetus is fully dependent upon the mother for its supply of thyroid hormone. In humans, fetal thyroid
function begins in the second trimester, in rodents on GD17, but the status of brain development is comparable
at these times between the two species. Source: From Ref. 76.
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Milder forms of hypothyroidism producing graded levels of hormone reduction have been
produced through manipulations of dietary iodine or administration of lower doses or shorter
duration exposures to the model TH synthesis inhibitors. These studies are the most informa-
tive in defining the untoward effects of mild perturbations thyroid function of concern today.
Developmental processes disturbed by overt hypothyroidism in severe models of hormone
deficiency will be described below, followed by a summary of more recent findings with newer
models that more closely approximate conditions of subclinical hypothyroidism.

TH Modulates Brain Development

THs are generally regarded as regulating cell proliferation, synthesis of microtubule associated
proteins, neuronal outgrowth, and synapse formation. However, it is important to recognize
that TH effects are quite pleiotropic and it is likely that the specific role of TH will depend on
the cell type and time of development. Pre- and postnatal models of hypothyroidism have
revealed reductions in cell number, synaptogenesis and dendritic arborization, altered patterns
of cell migration, and reductions in axonal myelination. Different time windows of hormone
deficits dictate the regionality and the nature of the observed effect (Fig. 6). Abnormal develop-
ment has been well documented in the cerebellum, neocortex, hippocampus, and the heavily
myelinated fiber tracts of the corpus callosum. Normal development of sensory system organs
including the cochlea and the retina is also dependent upon TH.

TH and Development of the Cerebellum

The cerebellum is a largely postnatally developing structure in rodent and has been exten-
sively studied for its developmental dependence on TH (65,72,142,143). Postnatal TH defi-
ciency during the critical period of cerebellar development leads to a multitude of irreversible
morphological abnormalities including reduced neurogenesis, defects in granule migration,
increased granule death, and blunted dendritic arborization of Purkinje cells. THs promote
granule cell proliferation in the cerebellum in the early postnatal period. Between PN2 and
PN12, with a peak on PNS8, programmed cell death removes the supernumerary neurons
within the internal granule cell layer (GCL). Severe hypothyroidism decreases cell prolifera-
tion and dramatically increases the incidence and extends the duration of apoptotic cell death
in the internal GCL (142-146).

One of the hallmarks of TH deficiency on cerebellar development is the persistence of an
external GCL resulting from delays in neuronal migration. On PN15, the cerebellum from a
normal animal has two distinct GCLs, an internal and an external layer. By PN21, migration of
granule cells from the external to the internal layer is complete, the external layer has disappeared
leaving a single layer. Hypothyroidism delays this temporal pattern of neuronal migration
such that a distinct external GCL persists on PN21 (Fig. 7).

The mechanisms responsible for altered migration patterns in cerebellum have been
elucidated using cultures of cerebellar granule cells (83,92). Migrating neurons find their path
through interactions with extracellular matrix proteins and adhesion cell molecules (e.g., NCAM,
laminin, integrins). The organization of actin filaments within astrocytes is regulated by TH and
dictates the secretion, deposition, and patterning of adhesion molecules. Extracellular matrix
proteins and cell adhesion molecules are important because they serve as guidance cues for cell
migration and axonal growth. Actin polymerization is disrupted by TH deficiencies, laminin is
not deposited, and migrating neurons do not recognize the appropriate guidance molecules (83).
In vivo studies support these observations and reveal a marked suppression in the expression of
astrocytic proteins in the cerebellum of hypothyroid animals. The appearance of laminin is
delayed and is reduced in quantity. These effects are accompanied by the persistence of external
GCL in the developing cerebellum as described above and evident in Figure 7 (144,147,148).
Despite the well-characterized effects of postnatal hypothyroidism on cerebellar development, it
is surprising that this system has not been examined in models of low level TH disruption.

TH and Development of the Cortex

THs are also critical for neuronal migration within the neocortex. Cortical neuron migration
occurs earlier in development than in the cerebellum, beginning in the mid to late gestational
period in rodents. The mammalian neocortex is highly ordered, the deepest layer cells are born
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Figure 6 Timeline of development and functional brain maturation in humans and rodents. Events critical for
normal development occur in different brain regions along a distinct ontogenic timeline. Thyroid hormones are
necessary for the normal pattern and timing of critical developmental events. Distinct patterns of functional defi-
cits result under different windows of hormone insufficiency. The relative state of brain maturity is different between
humans and rodents, but the pattern and sequence of developmental events is common across the two species.
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Figure 7 Cerebellar development is thyroid hormone dependent. On postnatal day 11 (P11), the EGL is still
visible. Cells migrate from the EGL to the MGL over the next 10 days and in the euthyroid mouse, the EGL has
disappeared by P21. In the absence of thyroid hormone, cell migration is slowed and the EGL remains at P21 and
persists for several more days before cells either migrate or are apotoptically removed. Arrows identify spindle-
shaped migrating cells. Bar=50 pm. Abbreviation: GCL, granule cell layer. Source: From Ref. 144.
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first followed by the cells in middle, then the upper layers. Each successively generated post-
mitotic neuron must bypass predecessors, which have migrated along the same glial fibers
before settling in the outmost level of the cortical plate. This migratory pattern is known as the
inside-out gradient of cortical plate neurons is exhibited by excitatory glutamatergic neurons of
the cortex (149).

Within the cortex, radial glial cells, an immature form of astrocyte, form a physical scaffold
for the migratory cortical neurons to track to their final destination. Radial glial cells initially
express nestin and vimentin in an early stage, then undergo a morphological transformation to
mature astrocytes to express GFAP during the late gestational, early postnatal period. TH may
affect the balance of production of neurons and glia in the early cortex (150). Immunohistochem-
ical analysis of nestin and GFAP reveals a disruption in temporal pattern of expression of these
markers of astrocyte maturity in the hippocampus and neocortex of hypothyroid animals (151
153). There are no data to indicate a direct action of TH on radial glial cells. Rather, it is posited
that TH indirectly mediate the release of signaling molecules from neurons that act to modulate
glial cell differentiation (48). One candidate signaling molecule is reelin, a substance released by
Cajal-Retzial cells in layer 1 of the cortex. Reelin is critical for laminar organization and mainte-
nance of the inside-out gradient of the neocortex (154,155). Hypothyroidism reduces the expres-
sion of reelin in the cortex during late gestation altering neuronal migration patterns and
cytoarchitecture (151,152,156).

Recent work has indicated that induction of a severe hypothyroid state is not necessary to
disrupt neuronal migration and lamellar cytoarchitecture of the hippocampus and neocortex
(Fig. 8A and B). Perturbation of the laminar pattern of cortical neurons has been observed in
response to very brief and transient exposure of the dam to MMI between gestational day 12 and
15, before the onset of fetal thyroid function (114). In a model of pre- and post-natal iodine
deficiency, cytoarchitectural abnormalities were also apparent in the hippocampus and soma-
tosensory cortex (118). In both models, neurons were present at locations that were inappropri-
ate for their birth date and detected in areas of white matter that do not typically have a neuronal
constituent. Importantly, these aberrations were found in cases of moderate degrees of iodine
deficiency that did not produce the constellation of effects typically characteristic of severe
hypothyroidism. Similarly cytoarchitectural abnormalities following a three-day exposure MMI
were produced by only a modest drop in TH levels in dams to 70% of normal. These findings
are particularly significant as they indicate that a brief episode of maternal hypothyroxinemia at
a critical time is sufficient to impair brain development.

Another demonstration of aberrant neuronal migration was recently reported by Goodman
and Gilbert (157). In this model low doses of PTU were administered to pregnant dams to pro-
duce graded degrees of TH insufficiency. An aberrant cluster of neurons, named a heterotopia,
was detected in the corpus callosum of prenatally exposed animals (Fig. 8C). Cell dating stud-
ies using bromodeoxyruracil delivered to the dam indicated these cells were born in the late
gestational period. A heterotopia was evident in the brains of offspring of dams with ~35%
reduction in circulating T4 and in pups exhibiting no reduction in body weight, delay in eye
opening, or other overt physical signs of hypothyroidism.

In contrast to excitatory neuronal cell migration, GABAergic inhibitory neurons originate in
the medial ganglionic eminence (MGE), transgress the corticostriatal boundary and migrate tan-
gentially into the developing neocortex. These interneurons form the cortical inhibitory circuits in
the cortex and tightly regulate the activity of excitatory glutamatergic neurons. Migration of inhib-
itory neurons from the MGE is more difficult to track in vivo. So too is identification of perturba-
tions in positioning as these inhibitory neurons do not display the lamellar profile of cortical
glutamatergic neurons. Some but not all neurons within the heterotopia of the corpus callosum
reported by Goodman and Gilbert (157) described above expressed proteins specific to inhibitory
cortical neurons, suggesting that this migratory pathway is also disturbed by TH insulfficiency.

Migration of inhibitory neurons was assessed more directly by Cuevas and colleagues
(158) using transgenic mice expressing green fluorescent protein (GFP). Wildtype and GFP-
expressing transgenic mice were exposed prenatally to MMI from GD10 to GD13. Embryos
were taken on GD13 and flat cortical mounts prepared. Explants of GFP-MGE cells were trans-
fected on control or hypothyroxinemic cortices and the migratory pattern observed over two
days in culture. Cells from MMlI-treated embryos implanted into control cortical mounts
migrated in a normal, preferentially medial direction. However, neurons from control embryos
placed within a hypothyroxinemic cortex, migrated long distances but displayed a concentric
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Figure 8 (See color insert) Cortical histogenesis and neuronal migration are disrupted with low level thyroid
hormone (TH) disruption. (A) In the cortex of offspring born to iodine deficient rat dams (LID-2), cells are evident in
the white matter (wm) of the corpus callosum (top) and the distinction between layers within the cortex are blurred
(bottom). Source: From Ref. 118. (B) TH reductions induced over three days during gestation with methimazole
(MMI) also impaired neuronal migration. Left is bromodeoxyruracil (BrdU)-positive cells, right is double labelling of
BrdU and NeuN, indicating that cortical neurons persist in the white matter (wm) at PN40. Source: From Ref. 114.
(C) Moderate degrees of TH insufficiency limited to the prenatal period induced by propylthiouracil (PTU) produced
an abnormal cluster of cells, a heterotopia, in the corpus callosum (top left is control, bottom left is treated). Cells
within the heterotopia were neurons as they stained positively with NeuN (top right), and some were inhibitory,
staining positively for parvalbumin (bottom right). Source: From Ref. 157. Collectively, these data indicate that per-
manent structural changes are induced by mild or transient reductions in TH in the absence of other overt toxicity.
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rather than preferential medial direction of travel. These observations indicate that the migra-
tory potential of the neurons was not changed by TH insufficiency. Rather the transient hypo-
thyroxinemia in the dam altered the cortical milieu upon which appropriate migration occurs.

Collectively, these findings indicate that severe hormone deficiencies and hypothyroid-
ism are not necessary to disrupt normal brain development. Modest reductions in hormones
are sufficient to induce a delay in the temporal development of the radial glial scaffold, prevent
the normal pattern of neuronal migration, and promote a disorganization of cortical layering.
THs modulate both proximal and distal cues responsible for guiding the migrational map of
both excitatory and inhibitory neurons. Alterations in temporal patterning of cortical neuronal
migration and subtle changes in cytoarchitectonic organization indicate that the normal trajectory
of brain development has been disrupted.

In the presence of altered cortical development, it is not unlikely that the establishment of
normal brain functions is also compromised and has significant consequences for the organism.
Impaired migration of inhibitory neurons may contribute to increased susceptibility to seizures
observed by Auso et al. (114) following brief and transient reductions in maternal THs. In our
laboratory, we have also observed an enhanced responsiveness to pentylenetetrazol-induced sei-
zures in PTU-exposed animals (Gilbert, unpublished observations). Expression of parvalbumin, a
calcium-binding protein in inhibitory neurons is suppressed in cortex and hippocampus of hypo-
thyroid animals and may alter physiological properties on these local circuit neurons (159,160).
Reductions in synaptic inhibition and excitatory synaptic transmission in the hippocampus of
adult rats developmentally exposed to PTU have also been reported (161-166). Perinatal exposure
to environmental contaminants that reduce circulating levels of T4 (e.g., PCBs, diphenyl ethers,
perchlorate) also alter synaptic function in the hippocampus and cortex (14,15,20,167-172).

TH and Myelination

Myelination is a predominantly postnatal process that extends in rodents from ~PN10 until
beyond PN30 and from before birth to three years of age in humans (173). The myelin coating
of neuronal axons in the CNS provides the electrical insulation for rapid and efficient conduc-
tion of electrical impulses that forms the basis of intercellular synaptic transmission and
communication in the brain. Oligodendrocytes are a specialized type of glial cell responsible
for synthesis, assembly, and maintenance of CNS myelin. The formation of myelin by oligoden-
drocytes requires the coordination and synthesis of large quantities of specific proteins and
lipids and the integration of these into a highly organized multilamellar structure (174).

The role of TH in myelination has been well documented. Oligodendrocytes express TH
receptors, and in cell culture systems, the addition of TH promotes the differentiation and pro-
liferation of oligodendrocyte precursors as well as the amount of myelin each mature
oligodendrocyte produces (175,176). TH accelerate the rate of accumulation but not typically
the final concentration of specific oligodendrocyte mRNAs and proteins, and regulate the tem-
poral expression of a number of key enzymes involved in the synthesis of complex lipids and
protein constituents of the myelin membrane. The wave of myelination that starts in caudal
brain regions and progresses rostrally is delayed in hypothyroid animals (48,66,174,177).

A number of classic myelin markers are reduced in the brains of hypothyroid animals.
CNPase (2'3’-cyclic nucleotide 3’-phosphodiesterase) is a myelin protein expressed in early
stages of oligodendrocyte development, whereas proteolipid protein (PLP), myelin basic pro-
tein (MBP), and myelin associated glycoprotein (MAG) appear later during the construction of
the myelin sheath. The expression of myelin associated oligodendrocyte basic protein (MOBP)
is associated with myelin compaction. CNPase, PLP, MAG, and MBP are down regulated in the
cerebellum, cortex, striatum, and corpus callosum as a function of MMI- or PTU-induced hypo-
thyroidism (48,66,152,174,177-182). MBP is reduced on PN10 in cerebellum and cortex of hypo-
thyroid animals but recovery occurs despite continued reductions in T3 (183,184). In contrast,
permanent downregulation of MOBP and PLP expression are evident in corpus callosum and
cerebellum (178). Iodine deficiency is also associated with reductions in MBP-immunoreactivity
in the internal capsule on PN10 and PN15, which were no longer evident by PN20 (180). The
pattern was similar to that induced by MMI but transient and less severe, consistent with the
more modest effects of iodine deficiency relative to MMI on brain T3. Recently, microarrays
have been used to identify genes responsive to mild disruptions of the thyroid axis (71). In the
hippocampus of PN14 pups, a number of myelin genes were significantly downregulated at
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very low doses of PTU producing modest reductions in circulating levels of T4 (Table 2). These
data suggest that myelin genes may provide a very sensitive biomarker of low level TH
disruption.

The corpus callosum and anterior commissure have long been a focus for the study of
THs on the myelination process. These extensive fiber pathways represent the primary means
of communication between the two cerebral hemispheres. They are present in the embryo,
undergo substantial postnatal development, and contain a large number of heavily myelinated
fibers. The number of axons in corpus callosum and anterior commissure of hypothyroid rats
does not differ, but the density of fibers is increased, the cross-sectional area is smaller, and the
ratio of myelinated to unmyelinated fibers is substantially reduced (185-187).

Myelination has not been well studied in animals with other than severe TH deficien-
cies. In a recent paper by Sharlin et al. (182) the number of oligodendrocytes and astrocytes
was examined in rat pups exposed perinatally to a series of low doses of PTU that produced
graded levels of TH insufficiency (Fig. 9). PTU induced a dose-dependent reduction in the
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Figure 9 Oligodendrocytes and astrocytes derive from a common glial precursor cell. Under conditions of severe
thyroid hormone insufficiency, there is a reduction in oligodendrocytes and myelination of axons in the corpus cal-
losum and anterior commissure is impaired. Oligodendrocyte expression is also reduced following low level thyroid
hormone disruption. Offspring (PN15) of dams exposed to 0, 1, 2, or 3 ppm PTU from GD6 until pups were sacrificed
and brains prepared for in situ hybridization of mRNA for myelin associated glycoprotein (MAG) to mark oligodendro-
cytes, or glial fibrillary acidic protein (GFAP) to identify astrocytes. The reduction in MAG-positive cells was matched
by a parallel increase in astrocytes staining for GFAP. A positive correlation between number of GFAP-positive cells
and serum T4 and a negative correlation between MAG-positive cell number and serum T4 suggests that TH
insufficiency altered cell fate specificity in the developing brain. Source: From Ref. 182.
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expression of MAG, as well as the number of oligodendrocytes in corpus callosum and
anterior commissure. This alteration in MAG expression was accompanied by a commensu-
rate increase in the density of astrocytes expressing GFAP. The total number of cells, MAG
and GFAP-expressing, did not differ between control and PTU-treated animals at any dose
level, but the ratio of oligodendrocytes to astrocytes was significantly reduced at all but the
lowest dose. Because oligodendrocytes and astrocytes derive from a common glial precur-
sor cell, these observations suggest that adequate TH is essential in directing cells into the
oligodendrocyte over the astrocytic cell lineage (73,74,188). Importantly, these findings are
the first to demonstrate that shifts in fate specificity can occur at moderate levels of hormone
insufficiency.

TH and Development of the Hippocampus

In a series of papers, Madeira and colleagues (189-191) examined the impact of neonatal hypo-
thyroidism on development of the hippocampal formation in rats. No change in volume of the
CA1 pyramidal cell layer was seen, but the neuronal volume and cell number were reduced in
hypothyroid animals. In the neonatal brain, the pyramidal cells of Ammon’s horn show a grada-
tion of progressive differentiation over time from area CA1 to CA4. Pyramidal neurons of hypo-
thyroid animals have fewer synapses and an impoverished dendritic arbor, the extent of
impairment dependent upon the position of the cells within the layer. Area CA3-4 pyramidal
neurons are born later and were more affected than neurons within area CA1 (190,192). The
apparent greater vulnerability of CA3-4 over CA1 neurons may be a function of timing of PTU
initiation, exposure in this model beginning late in gestation when pyramidal cells of CA1 had
already differentiated.

In contrast to pyramidal cells, granule cells (the principal cell type of the dentate gyrus
region of the hippocampal formation) are born postnatally, and are more affected by hypothy-
roidism initiated just before birth. PTU decreased the volume of the GCL, the density of cells
within the layer, and estimates of total granule cell number (189). Migration of granule cells
from the proliferative zone to the GCL is retarded by thyroid deficiency as is dendritic arboriza-
tion and synaptogenesis assessed by immunohistochemistry for the synaptic protein, synapto-
physin (145,192,193). Studies of this nature have not been performed in models other than
severe neonatal hypothyroidism so it is not known if such changes will be evident in hip-
pocampus with more modest hormone insufficiency. Some evidence of a blurring of cell layers
was reported in area CAl by Auso et al. (114) in response to brief episodes of maternal
hypothyroxinemia in the mid to late gestational period.

Functional impairments in hippocampal synaptic transmission have been reported follow-
ing developmental TH deficiencies. In models of severe hypothyroidism, beginning either in the
early or late gestation period and continuing to weaning, excitatory synaptic function is disrupted in
area CA1 of slices taken from hypothyroid animals in the preweaning period (162,164-166). These
changes in synaptic transmission are permanent as deficiencies are also evident in slices from
adult animals exposed developmentally but tested following return to euthyroidism (161,194).
In a much more restricted dosing paradigm, similar to that described by Auso et al. (114), Opazo
and colleagues (119) also reported deficits in hippocampal synapatic plasticity in adult offspring
following a brief and transient reduction in TH in utero. These electrophysiological observations
were associated with impaired performance in a spatial learning task. In vivo recordings from
the dentate gyrus in adult offspring of hypothyroid dams also exhibit permanent suppression of
excitatory and inhibitory synaptic function (20,159,163,195). The latter observations by Gilbert
and Sui (163) and Opazo et al. (119) are noteworthy as they were evident at modest levels of TH
insufficiency (Fig. 10). Alterations in synaptic function have also been demonstrated in adult
offspring of PCB- and perchlorate-exposed dams, environmental contaminants that produce a
state of hypothyroxinemia in the dam (20).

TH and Development of the Sensory Organs

The Auditory System

THs are essential for normal development of the auditory system (196). Hearing impair-
ment is the most frequent sensorineural defect in humans and is commonly associated with



THYROID HORMONE AND BRAIN DEVELOPMENT 97

Perchlorate PTU

12

Population spike amplitude 10
10 -e- 0ppm
-+ 30 ppm

8 -~ 300 ppm
-¥ 1000 ppm

Population spike amplitude

Population spike amplitude (mV)

=
E
(0]
=)
2
2
of :
g ]
4r &
S
ot g 1
>
s
(S a .
100 300 500 700 900 1200 1500 50 200 400 600 800 1000 1500
(A) Intensity (1A) (B) Intensity (uA)
1= Paired pulse depression -0-0 ppm S5 Paired pulse depression ~#-0ppm
S 250+ -0-30 ppm 2 250
= —A-300 ppm x i
= 200¢ <¥-1000 ppm - 20
2 150} 2 150}
a 2
N 100 f-——————— — 100 —
5 8
S s0f g %01
ol— T ' . ob— Co ' :
10 20 30 70 250 10 20 30 70 250
(©) Interpulse interval (msec) (D) Interpulse interval (msec)

Figure 10 Permanent impairments of synaptic function in hippocampus following low level thyroid hormone
(TH) disruption during development. Developmental exposure to propylthioruacil (PTU) or perchlorate reduce
excitatory (A, B) and inhibitory (C, D) synaptic transmission in the dentate gyrus of adult offspring. These treat-
ments produced moderate reductions in serum TH with no effects on growth or development, yet permanently
altered function within these neural circuits. Source: From Refs. 20,159,163.

thyroid disorders, including congenital hypothyroidism (197). In rodents, changes in the
relative availability of TH in late fetal and early neonatal life results affect the expression of
functionally important proteins involved in the structural development and physiology of
the inner ear (76). In addition to structural defects at the sensory organ level, hearing
impairments may also derive from hypomyelination of the auditory nerve and delayed
maturation of central auditory system (198). Aberrant synaptic connections in the auditory
cortex, reductions in synaptic spine densities and hypomyelination of the interhemispheric
connections, and loss of topographic specificity have been described in hypothyroid
animals (186,187).

Structural defects in the auditory system are reflected in behavioral and electrophysiolog-
ical indices of hearing impairment (76,198). Graded levels of hormone insufficiency induced by
PTU in the late gestational/early postnatal period are also associated with varying degrees of
hearing loss measured behaviorally (199). These impairments were evident in adults following
transient exposure to PTU and were produced at doses and concentrations of serum hormones
that were without effects on other physical and behavioral measures of hypothyroidism. These
data are significant as they were the first to demonstrate dose-dependency of the hearing defi-
cits at moderate levels of hormone insufficiency. Using brainstem auditory evoked potentials,
Knipper et al. (198) also demonstrated irreversible elevation of hearing thresholds with very
brief periods of exposure to MMI (GD17 to PN3), in the absence of cochlear structural defects,
implicating impairment in central auditory processing systems. Low frequency hearing loss
and structural damage to hair cells has been observed in animals perinatally exposed to PCBs,
an environmental contaminant with thyroidal action, an effect that could be blocked by
concomitant treatment with T4 (16,199,200). Crofton (5), summarizing a number of studies,
demonstrated a strong correlation between degree of T4 reduction and the magnitude of the
induced hearing loss.
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The Visual System

Visual system development, particularly retinal development, is regulated by TH. Frank
hypothyroidism results in fewer dividing retinal progenitor cells, reduced retinal thick-
ness, and impaired photoreceptors with improperly formed outer segments (201,202).
Structural alterations in development of the retina have not been examined in models of
modest reductions in TH.

In rodents, retinal progenitor cells generate cones from E10 to E16, and rod cells are then
generated from this pool of cones. TH activated transcription factors are necessary for instruc-
tion of photoreceptor cell fate decisions (76). Rodents, like most mammals have two opsin
proteins that respond maximally at different wavelengths: S-opsin to short and M-opsin to
longer wavelengths. In early retinal development, THs determine the “developmental choice”
of which opsin gene to express (203). The default for cone development is to express S-opsins
(blue) and this begins between E10 and E16. TH regulates the switch from S-opsin to M-opsin
(red-green) cone expression around PN10. There is a dorsal ventral gradient of opsin expression
on the mouse retina that also displays an ontogenetic profile. This gradient and profile is
mirrored by TH expression in the retina.

Data to date have revealed that experimental elevation of T3 at the time of S-opsin onset
(mid-late gestation and just after birth) inhibits S-opsin expression. Treatment with T3 at the
time of M-opsin activation (~PN10) increases M-opsin expression. TH receptor knock-out mice
also show disruption of the S- and M-opsin gradient in the retina and an overexpression of
S-opsins at the expense of M-opsin mRNA (203). Although not studied directly, these data sug-
gest that minor hormone insufficiencies may produce subtle alterations in the expression of
S- and M-opsin in the developing retina, and that the nature of the effects will be dependent
upon developmental window over which it occurs. Animal studies of visual function following
modest perturbations of the thyroid axis deserve further investigation, especially in light of
evidence of color vision and contrast sensitivity deficits in children suffering congenital hypo-
thyroidism (204). Preliminary findings in rats treated perinatally with PTU reveal irreversible
impairments in visual contrast sensitivity. Whether these deficits are dependent upon disrup-
tion at the retinal or central visual processing level has not been determined (Boyes and Gilbert,
personal communication).

Behavioral Deficits Following Developmental Hypothyroidism

As outlined above, recent reports indicate that children born to women experiencing mod-
est subclinical perturbations of the thyroid axis during pregnancy have reduced IQ scores
and subtle deficits in cognition, memory, and visuo-spatial ability (115,124,125,131,137). In
experimental models of developmental hypothyroidism, increases in locomotor activity,
hearing loss, and reduced seizure thresholds accompany severe hormonal deprivation
beginning in the late gestational or early postnatal period (114,199,205). Others have reported
deficits in passive avoidance, spatial learning, and operant conditioning (21,206-212), but
these observations are often limited to animals suffering fairly severe hormonal depriva-
tion. Given the critical observations in human infants that very modest perturbations of the
thyroid axis can alter cognition, animal research efforts have begun to focus on the timing
and degree of hormone insufficiency as well as the nature and persistence of functional
deficits. These include increased seizure responsiveness, reductions in synaptic transmis-
sion, alterations in hippocampal LTP, and spatial learning deficits (20,114,119,166,195,213).
These recent findings demonstrate synaptic and behavioral deficits that persist in the adult
despite return to the euthyroid state and are induced at relatively modest perturbations in
the thyroid axis.

Knock-out models have also been assessed for subtle alterations in behavior, including
tests of anxiety and learning. As described above, TH receptor knock-outs and other mutants
that exhibit perturbations of the thyroid axis exhibit a phenotype that is much milder than that
apparent in conditions of severe chemical-induced hypothyroidism. TR o accounts for ~75% of
all TH receptors in brain and as such the effects of TH are most likely to be mediated via this
receptor (214). TR B has a more circumscribed localization in purkinje cells of the cerebellum,
the hypothalamus, the retina, and the cochlea (40,76). Hearing loss, visual deficits, and cerebellar
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ataxia are evident in these mice, but no alterations in open field behavior, spatial learning in a
Morris water maze, or in context fear conditioning were observed (215). TR o knockouts dis-
play increased anxiety in locomotor tests in an open field, spending a greater percentage of
time in the periphery than in the central regions of the open field. Acquisition of fear condition-
ing was similar in knockout and wildtype animals, but delays in extinction were evident in the
knockouts (216). These behavioral deficits were associated with reductions in parvalbumin
immunoreacitivity in GABAergic interneurons in the hippocampus and decreases in GABA-
mediated synaptic inhibition as described above in chemically-induced hypothyroid-
ism (20,160). In another model, a mutation introduced to the TR o that greatly reduces the
affinity of the receptor for T3 resulted in a reduction in the number of parvalbumin immunore-
active neurons. A similar behavioral phenotype of locomotor dysfunction, increased anxiety in
open field and elevated plus maze, and memory deficits in the delayed object recognition task
was also produced (217).

NEUROLOGICAL IMPAIRMENTS ACCOMPANYING ADULT

ONSET HYPOTHYROIDISM

Hypothyroidism is a prevalent condition in humans with an incidence of 8% in the adult popu-
lation (218). The nongenomic actions of TH described previously may be one mechanism
whereby TH insufficiencies beginning in adulthood lead to psychiatric disturbances, demen-
tias and major depression (219,220). In young and middle-aged adults, thyroid dysfunction is
associated with both neurological and behavioral abnormalities, including mood disturbances
and cognitive dysfunction (221). Cognitive decline in the elderly and in cases of geriatric
dementia and Alzheimer’s disease are often associated with decreases in TH that can be
partially alleviated by treatment with thyroxine (222-226).

Animal models of adult onset hypothyroidism have demonstrated increased reactivity to
stress in the forced swim model of depression (227). Spatial learning and hippocampal plastic-
ity in the form of LTP are also impaired in adult rats subjected to thyroidectomy, effects that are
reversed by treatment with T3 or T4 (228-231). Adult onset hypothyroidism induced by PTU
also reduces activity-dependent synaptic plasticity in the hippocampal-prefrontal cortex circuit
(232). In contrast to electrophysiological assessments in adult offspring following hypothyroid-
ism limited to the developmental period, reductions in synaptic plasticity in adult onset hypo-
thyroidism exist in the absence of alterations in baseline synaptic responsiveness. This
distinction suggests different life stages over which hormone insufficiency is induced may
result in different patterns of disruption of synaptic function, both of which, however, may
ultimately present as behavioral impairment (163,230). Another primary distinction between
the impact of thyroid dysfunction in the developing and the adult organism is the reversibility
of deficits. Hypothyroidism beginning in adulthood can be effectively treated with hormone
therapy, in contrast to impairments produced by developmental TH insufficiencies that persist
despite return to euthyroidism in adulthood (119,159,163).

Disruption of the thyroid axis by physical, chemical or genetic manipulations is associ-
ated with a reduction in the generation and survival of new of neurons in the dentate gyrus of
the adult hippocampus and olfactory bulb (233-236). This process, known as adult neurogen-
esis, has been implicated in learning, memory and affective disorders such as depression (237-
241). Initial reports using PTU or MMI demonstrated a specific decline in the survival of newly
born granule cells in the hippocampus in thyroid-deficient rats (233,234). Disruption of the
thyroid axis by thyroidectomy, however, produced deficits in cell proliferation and maturation
without impacting survival (236). Consistent with these reports, administration of T3 into the
dorsal hippocampus of adult rats improves performance on an emotional memory task (242),
whereas hypothyroidism initiated in adulthood impairs spatial learning, hippocampal LTP,
and increases stress, anxiety, and depression in a variety of animal models (227,230,231,236,243).
Collectively, these findings suggest that in addition to the established role of TH in early neu-
rogenesis, TH are essential components of the endocrine environment that modulates neural
stem cell progenitor growth, migration, and apoptosis in the mature nervous system.
TH modulation of adult neurogenesis may represent one mechanism underlying cognitive
impairments and mood disorders in adults with TH imbalance.
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IMPLICATIONS FOR NEUROTOXICITY OF TH DISRUPTORS

A number of recent developments indicate that the HPT axis is controlled in ways not fully
appreciated previously, but that are important for thyroid toxicology. New information accu-
mulating over the past decade has significantly increased our understanding of the regulation
of TH in the brain and other tissues and requires a refinement to the traditional model of the
HPT axis. New insights into feedback control mechanisms, plasma membrane transporters,
and metabolizing enzymes demonstrate modulation of thyroid action to a degree of precision
and regional specificity not previously recognized. Incorporation of these findings into our
conceptual framework requires modifications to the classic model of the HPT depicted in Fig-
ure 1. Refining the model of TH function will also necessarily influence the course of research
in neurotoxicology of anti-thyroid agents, as well as the specific kinds of endpoints evaluated
in a screening and testing program designed to identify thyroid toxicants (244). We feel that
there are three particular areas of uncertainty about the thyroid system that will continue to
require attention.

1. Determining the relationship between alterations in circulating levels of TH and TH action
in the production of adverse effects.

2. Determining the relationship between life stage, vulnerability to thyroid toxicants, and
specific adverse consequences.

3. Identification of biomarkers of thyroid toxicity that reflect adverse “downstream” effects.

Determining the Relationship Between Circulating Levels of TH and TH Action

The general dogma of thyroid endocrinology is that serum total and free THs (T4 and/or T3)
are linearly related to TH receptor occupancy and define TH action in tissues (57). Modest
reductions in serum T3 lead to activation of the thyroid axis and increases in TSH. However,
recent findings in thyroid toxicology indicate that this mutual balance with synchronous con-
trol of T4 and TSH is not always observed (10,245,246). PCBs, for example, are well known to
cause a reduction in circulating total and free TH (10,245), yet administration of PCB mixtures
such as Aroclor 1254 do not also increase serum TSH (10). Furthermore, animal studies have
not typically evaluated the dose-dependent relationship between circulating levels of TH and
cellular levels of genes regulated by TH. Nor has there been an adequate examination of the
relationship of circulating TH and developmental events. In light of recent human findings of
neurodevelopmental impairments following subclinical hypothyroxemia (115), the animal
research community has been challenged to develop models of moderate degrees of TH disruption
that more directly parallel the human conditions.

As data from low-level TH disruption begins to accumulate, how best can these models
be characterized? Serum hormones are used diagnostically and provide a valuable metric to
compare human and animal findings, and to contrast animal studies among themselves. Fig-
ure 11 presents a scheme of TH insufficiency ranging from mild to severe, based on relation-
ships of T3, T4, and TSH derived from classic TH disruptors, MMI, and PTU. The graphic
presents a gradation of symptomotology that parallels increasing degrees of TH disruption.
There is a wealth of information on mechanisms of thyroid action at the molecular, cellular,
structural and behavioral levels based on animal models and human conditions of severe hypo-
thyroidism. There is now accumulating a research base that has begun to characterize the
impacts and mechanisms of much more subtle disturbances to the thyroid axis and to define
gradations in the degree of TH insufficiency that lead to graded levels of neurological dysfunc-
tion. However, not all TH disruptors are created equal. It is becoming increasingly clear that
physiological responses to toxicants that interfere with the thyroid axis are not well represented
in models derived from PTU or MML. Is it wise then to base decisions of public health standards
on concepts derived from these models?

Determining the Relationship Between Life Stage, Vulnerability

to Thyroid Toxicants, and Specific Adverse Consequences

In the adult, the range of fluctuations in hormone levels is large and the consequences of even
a relatively protracted time of hormonal imbalance, although undesirable, is not irrecoverable.
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In the fetus and neonate, however, the range over which hormones can change is small as the
timing of critical developmental events dependent on TH signaling must be exquisitely
maintained. Neither is the fetus or the neonate equipped with the same compensatory responses
as the adult (as previously summarized in Table 1). Even modest and transient alterations in the
thyroid axis have the potential to produce irreversible changes in brain development that ripple
well beyond the initiating event.

Given genetic variation among individuals (52,247), the narrow range of variation of TH
on an individual level (248), and the number of checks and balances incorporated into the
mammalian physiology to maintain optimal hormone levels, how do we determine if the sys-
tem has been perturbed, and if perturbed, perturbed to a sufficient degree to have an adverse
impact on brain development? In the evaluation of environmental contaminants that are thy-
roid disruptors, the issue is more complicated. Environmental contaminants disrupt the thy-
roid axis through a variety of mechanisms and exhibit significant deviations from the profile of
hormone disruption depicted in Figure 11.

Identification of Biomarkers of Thyroid Toxicity That Reflect

Adverse “Downstream” Effects

Clinical measures of thyroid function, most often total T3 and T4, have guided the measure-
ment and interpretation of altered thyroid status in rodent models. Contaminants, such as
PCBs and pesticides, reduce circulating levels of T4 without changing T3 or TSH (7,11,249). At
what level does a measurable change in circulating T4 become of toxicological significance?
When does an increase in TSH represent a simple adaptive response to a minor fluctuation
within the normal physiological range or an indication of hormone disruption with physiolog-
ical consequences? How reflective are circulating levels of total TH in the blood of critical tis-
sue concentrations of free TH in a specific brain region requiring that signal at this particular
time? Is there a critical magnitude or duration of hormone change that can be identified where

Clinical diagnosis

Normal

Hypothyroxenemia Hypothyroidism
Moderate Severe
Neuronal migration errors
T4 Gene expression changes
Neurophysiological impairments
Subtle learning deficits Normal growth/development
Synaptic plasticity deficits Body weight deficits
Learning deficits Stunted growth
Visual deficits Undernutrition
T3 Poor hair quality
Deafness
Immature facial features
Graded Delayed development
disruption Mild Altered gah‘/loz_:omotion
of thyroid ) Modest Gene expression changes
axis Brain TH not Moderat Brain structure abnormalities
reflected in serum?  Low dose PTU/MMI oderate
Transient MMI Intermediate doses PTU/MMI Severe
Mild iodine deficiency ~Moderate iodine deficiency High dose PTU/MMI
TSH Neonatal thyroidectomy

Severe iodine deficiency

Figure 11 Gradient of thyroid hormone insufficiency. Both human and animal studies reveal that graded degrees
of TH insufficiency can lead to different phenotypes. Initial models of TH function as depicted in Figure 1 were
based on conditions of severe hypothyroidism (dotted line to far right). This depiction of graded levels of TH disrup-
tion is based on animal studies using MMI, PTU, ID, treatments that primarily act to reduce the synthesis of TH at
the level of the thyroid gland. Environmental contaminants that perturb the thyroid axis through different mecha-
nisms do not necessarily maintain these same relationships between T3, T4, and TSH, yet impact brain develop-
ment. Defining these relationships across structural and mechanistically distinct chemicals represents a significant
challenge to the field of thyroid toxicology. The degree to which serum TH can be disturbed without adverse
consequences on brain development has not been adequately defined. Abbreviations: MMI, methimazole; PTU,
propylthiouracil; TH, thyroid hormone; TSH, thyroid-stimulating hormone; ID, iodine deficiency.
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“adaptive” responses are indicative of disturbances that harbor significant physiological
consequences? As described above, it is now clear that other targets exist within the thyroid
system that may be prey to environmental toxicants and that will not be reflected in changes in
serum hormone (e.g., TH receptors, local tissue specific deiodinases, transport proteins). The
use of traditional molecular techniques and more recently genomic microarrays have identi-
fied numerous genes whose expression is altered by low level TH disruption, the functional
consequences of these changes have yet to be determined (71,182). To adequately address these
issues considerably more information on dose-response relationships at low levels of thyroid
disruption of a variety of measures, hormonal, genomic, cellular, physiological, and functional
will be required.
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INTRODUCTION

The dopaminergic nervous system in brain has been the most-intensively studied of all the
known neuronal phenotypes, owing in large part to the availability of neurotoxins able to pro-
duce selective destruction and thereby model Parkinson disease (PD) (1-3), attention-deficit
hyperactivity disorder (ADHD) (4-8), and Lesch-Nyhan syndrome (9-11). The first available
dopaminergic neurotoxin was 6-hydroxydopamine (6-OHDA), discovered before 1970 and
used in more than 9000 published studies (3,11,12). Substituted AMPHs were similarly found
to be neurotoxic to dopaminergic as well as serotoninergic nerves (13). However, it was the
neurotoxin MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) that reinvigorated studies of
the dopaminergic system, owing to its inadvertent use in the early 1980s by humans abusing
drugs and its rapid (days) production of an irreversible parkinsonian state (14-16). MPTP is
widely used to produce animal modeling of PD. Over the past 15 years the cytotoxin rotenone,
a mitochondrial complex I inhibitor of oxidative phosphorylation, has been widely used chron-
ically in low amount to model PD because this treatment results in the production of protein
aggregates in brain similar to that accompanying human PD (17). Most recently, MPTP admin-
istrated chronically in low amount has been shown to also result in the presence of protein
aggregates in the brain of animal models of PD (18).

However, even before the discovery of selective neurotoxins, there was already a debate
as to the potential of dopamine metabolites perhaps producing neurotoxic effects, since many
metabolites are oxidizing agents and some can resonate into a quinone counterpart. In this
paper we will discuss the liability of the dopaminergic system to neurotoxins from several
distinct vantage points. Initially, the focus will be on traditional selective neurotoxins, princi-
pally 6-OHDA, substituted AMPH, and MPTP. Next, the use of low dosage rotenone and
MPTP will be discussed in relation to their utility in modeling PD. Focus will then move to
non-classical neurotoxins, to introduce the concept of neurotoxicity occurring in the absence of
cell injury. Finally, endogenously produced species endowed with neurotoxic or neuroprotective
properties will be presented and discussed.

CLASSICAL NEUROTOXINS FOR DOPAMINERGIC NERVES

Although many neurotoxins are able to directly damage dopaminergic nerves, this paper will
focus on 6-OHDA, MPTP—the two most-selective and most-frequently used dopaminergic
neurotoxins—and substituted AMPHs.

6-OHDA

6-OHDA was originally proposed to be a metabolite of dopamine (DA) and/or norepineph-
rine (NE) (19-21). However, in 1967, 6-OHDA was shown to be overtly neurotoxic to sym-
pathetic noradrenergic neurons (22,23). Soon, 6-OHDA was also shown to be toxic to
dopaminergic nerves in brain (24). 6-OHDA selectivity for dopaminergic neurons owes to
the high affinity of 6-OHDA to the DA transporter (DAT), providing the means for selective
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Table 1 Changes in mRNA expression of Iron Genes Involved in Iron Homeostasis in the Substantia Nigra and
Cortex of PD Patients Compared with Controls in Post Mortem Tissue

Descriptor Gene SnM Sni Cortex
p-value
Upregulated
IRP-binding protein 1 IRP1 ns ns ns
IRP-binding protein 2 IRP2 0.025 ns ns
Transferrin Tf 0.0001 0.0030 ns
Transferrin receptor 2 TfR2 ns 0.0017 ns
Transferrin receptor 2 TfR2 ns 0.0184 ns
Ferritin H FTH1 0.0019 ns ns
Ferritin H pseudogene 1 FTHP1 0.0010 0.0348 ns
Ferritin L FTL 0.0291 ns ns
Ferritin L FTL 0.0335 ns ns
Ferritin L FTL ns 0.006 ns
Caeruloplasmin Cp 0.0276 0.0276 ns
Caeruloplasmin Cp ns 0.0343 ns
Caeruloplasmin Cp ns 0.0336 ns
Hephastin HEPH ns 0.009 ns
Haemochromatosis HFE 0.0416 0.0005 ns
Haemochromatosis HFE ns 0.0111 ns
Haemochromatosis HFE ns 0.0295 ns
Haemochromatosis HFE ns 0.0039 ns
Ferroportin FPN1 0.0192 ns ns
Ferroportin FPN1 0.0353 ns ns
Solutecarrier family11 SLC11A2 ns ns 0.0291
Downregulated
Ferrochetalase 0.006 0.0223 ns
Sideroflexin 1 0.006 0.0314 ns
Friedreich ataxia 0.031 ns ns

accumulation of 6-OHDA in DA nerves. Inside the nerve 6-OHDA autooxidizes to both
ortho- and para-quinones which rearrange to form a multitude of reactive intermediaries,
each of which is a potent oxidant (12,25). Also, both the ortho- and para-quinones are overtly
neurotoxic (26), as well as generated malonyldialdehyde (27,28). Further, 6-OHDA gener-
ates superoxides, which then promote intraneuronal formation of hydrogen peroxide (H,0,)
and hydroxyl radical (HO®) (29-32). In light of the abundance of iron in the substantia nigra
pars compacta (SNpc) (Table 1) (33), the Fenton reaction [Fe** + H,0, — HO"] conceivably
can take place in SNpc to aid in PD progression (34,35). The iron chelator desferoxamine
reduces 6-OHDA neurotoxicity, although other neuroprotective mechanisms may be
involved (36-39). Ultimately, these reactive oxygen species (ROS) uncouple oxidative phos-
phorylation, leading to energy depletion (37,38,40), oxidation of unsaturated lipids,
disruption of proteins, and inactivation of enzymes (12).

Substituted AMPHs

In the 1960s para-chloroamphetamine (PCA) was shown to induce a long-lasting reduction in brain
5-HT levels (41), and a few years later a neurotoxic effect was confirmed (42). Soon afterwards,
other AMPH derivatives, methamphetamine (METH), and methylene-dioxy-methamphetamine
(MDMA) were found to be neurotoxic, and these were investigated as well, particularly in light of
their explosive abuse among youngsters in Western countries. Repeated METH induces a marked
reduction in striatal DA, L-3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid
(HVA) (43), consequent to destruction of nigrostriatal dopaminergic neurons (44), while sparing of
DA levels in the nucleus accumbens (i.e., “mesolimbic” pathway) (4548). However, in rats the
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METH effect is not selective for DA terminals, since marked serotonin (5-HT) loss in several
brain areas is observed as well (46-48). Despite inducing marked 5-HT loss in rats and primates,
MDMA is considered to be a relatively selective DA neurotoxin in mice (49-55). In selected
mouse strains (e.g., C57Bl) repeated low-dose METH (5 mg/kg x 2, i.p.) induces selective
nigrostriatal DA degeneration in the absence of significant 5-HT loss (56-58). High-dose METH
(up to 10 mg/kg x 4) damages both DA and 5-HT neurons (59).

METH acts at several molecular targets in monoaminergic neurons. METH competitively
and selectively inhibits monoamine oxidase A (MAO-A) fully at 10 M (60), the level achieved
when mice are treated with a METH i.p. dose of 2 mg/kg (61). METH (and AMPHs in general)
is a substrate for DAT, through which it is transported into DA terminals (62) “displacing” and
releasing DA from cytoplasmic sites. At higher concentrations METH enters DA neurons by
passive diffusion (63). Finally, AMPHs bind to the VMAT (vesicular monoamine transporter)
and are transported into vesicles or, for higher i.c. concentrations, diffuse into the vesicles
through their membrane (64,65); DA would be released from the vesicles into the cytosol due
to the alkalinization of vesicle contents (with an impairment of the electrochemical drive
usually present into these organelles).

In the last decades several investigators explored the mechanisms by which AMPHs (and
METH in particular) induce nigrostriatal toxicity. It is now widely accepted that DA release
plays a pivotal role in this toxicity (66,67). This is confirmed by the fact that the tyrosine hydrox-
ylase inhibitor o-methyl-para-tyrosine (AMPT) prevents DA toxicity (68). For decades free
radical formation and excitotoxicity have been recognized as the main contributors to toxicity.
In fact, DA per se can induce free radical formation either by auto-oxidation (69,70) or by H,O,
formation during MAO metabolism. Cadet et al. (51) reported that METH-induced neurotoxic-
ity was attenuated in copper/zinc superoxide dismutase transgenic mice. In the early 1980s
Seiden and Vosmer (71), reporting high levels of 6-OHDA in the striatum of METH-treated
rats, hypothesized that there was non-synaptic formation of 6-OHDA from DA. However, the
finding has not been replicated.

Excitotoxicity has been proposed as one of the mechanisms involved in METH toxicity.
Nash and Yamamoto (72) demonstrated that METH-induced DA release was associated with
massive glutamate release in the striatum, in line with the observation by Sonsalla et al. (73).
Moreover, dizolcipine (MK-801) prevented METH-induced DA toxicity. METH-induced 5-HT
neuronal lesioning is likely related to the massive release of DA, since DA uptake inhibitors
or DAT knock out prevents damage (74,75). Again, DA synthesis inhibitors or nigrostriatal
pre-lesioning prevents METH-induced 5-HT loss (74,76).

MPTP

The discovery of MPTP neurotoxicity by ].W. Langston, a young Santa Barbara neurologist, was
serendipitous. He was intrigued by the fact that in only a few months he was visited by a number
of young parkinsonian outpatients. This contrasts with the epidemiologic characteristic of PD as
a disease of aging (14). After diagnosing each one as a heroin addict, and analyzing for heroin, he
was intrigued by the presence of MPTP, a contaminant by-product of the synthetic heroin deriva-
tive 1-methyl-4-phenyl-propion-oxypiperidine. In light of an isolated report by Davis et al. (77)
a few years before, he ultimately confirmed in animal experiments that MPTP was indeed a
neurotoxin with selectivity for dopaminergic neurons (for an extensive review, see 78).

MPTP is a meperidine derivative, highly lipophilic, and able to cross the blood-brain
barrier. Once in the brain MPTP is converted by glial MAO-B to the toxic metabolite 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridinium ion (MPP*) via the enzymatic action of MAO-B. MPP*
has high affinity for the DAT and is transported into DA neurons (79), after which MPP* selec-
tively inhibits complex I of the mitochondrial respiratory chain, producing (i) energetic failure
of the cell and (ii) formation of ROS due to leakage of electrons from the impaired respiratory
chain. Furthermore, MPTP induces an increase of free cytosolic DA, as well as DA release,
events which are likely indirectly related to the energy depletion per se.

MODELING PARKINSON’S DISEASE

Introduction

PD is a neurological disorder with a prevalence in the general population of 50-200/100,000
(depending on the different areas/studies). Most cases are idiopathic (i.e., no observed external
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cause), even though in the last few decades many familial cases have been described as well,
and in some of them the underlying genetic defect has been identified. In the last decades it has
been established from autopsy specimens that in PD, apart from the DA nigrostriatal system,
several other pathways/areas undergo neurodegenerative changes as well, in particular, nora-
drenergic neurons of the nucleus locus coeruleus (LC) (80,81). Since the very early pathological
description of PD brain, the existence of eosinophilic neuronal inclusions, so-called Lewy
Bodies (LBs), have also been noted in the nigrostriatal system. These LBs are localized in DA
neurons of the SNpc, noradrenergic neurons of the LC, catecholamine cells of the medulla
oblongata, serotonergic neurons of the raphe nuclei, and specific cholinergic neurons (82,83).
Furthermore, atypical LBs (i.e., smaller and with a more heterogeneous ultrastructure as com-
pared to classical LBs) are observed in telencephalic structures such as cingulate cortex, insular
cortex, amygdale, and frontotemporal cortex (82).

Apart from the spatial distribution of LB in PD, Braak et al. (84) have proposed a scenario
for time-related recruitment of lesioned regions. According to this schema of disease progres-
sion, there is a caudal-rostral diffusion of neurodegenerative features, starting from the medulla,
through a recruitment of mesencephalic structures (and, at this stage showing the onset of
motor disturbances due to involvement of SNpc), and up to telencephalic structures. This
hypothesis concerning the progression of PD pathology diverts from the simplistic description
of PD as a neurodegenerative disorder of nigrostriatal DA neurons (or additional involvement
of LC NE-pathways), and relates PD to a diffuse “multisystemic” disorder (i.e., multiple neuronal
phenotypes). Since the early 1960s several attempts have been made to produce experimental
animal models that could help to elucidate the pathophysiology of PD and thus gain insight
into therapeutic strategies. As a general rule, the ideal animal model of a human disorder
should have the following features: (i) pathology analogous to that of the human disorder;
(ii) a neurochemical pattern of derangement resembling that of the human disorder; (iii) symp-
tomatic features that mimic the human disorder; and (iv) a reversal of behavioral deficits by
treatments effective in the human disorder. Below, we will show the current state of the art in
the modelistic approaches for PD in experimental animals, with a special emphasis on rodents,
since they are more easily adaptable to laboratory studies. Additionally, LB involvement in PD
will be addressed in relation to their role in the neurodegenerative disease progression.

6-OHDA and Neonatal Lesioning of Rodents to Model PD

When administered systemically in perinatal rats, 6-OHDA tends to more-selectively damage
noradrenergic versus dopaminergic nerves in brain (12,85,86). However, when administered
into the cerebrospinal fluid (CSF) of perinatal rodents, following treatment with the NE
transporter inhibitor desipramine, 6-OHDA produces near-total destruction of nigrostriatal dop-
aminergic neurons in the relative absence of noradrenergic fiber damage (87-89). Prominent DA
D, receptor supersensitivity (RSS; DARSS) develops in the lesioned rats. Not overt at first, and
unable to be observed after the first or second treatment with a D, agonist, the third and subse-
quent D, agonist treatments “unmask” the DARSS—and this is termed a priming process. That
is, the third and subsequent D, agonist treatments produce a spectrum of exaggerated stereo-
typies and enhanced locomotor activity. Such rats, marked by greater than 99% dopaminergic
denervation of striatum, have been proposed as a rodent model for severe PD (90).

6-OHDA and Adulthood Lesioning of Rodents to Model PD

In adult rats 6-OHDA must be administered directly into the brain because of its inability to
cross the blood-brain barrier (86). Ungerstedt (1) was the first to model PD with 6-OHDA.
When infused into the medial forebrain bundle (MFB) of adult rats, 6-OHDA produces as much
as 97% loss of nigrostriatal neurons ipsilateral to the lesion, and similar loss of noradrenergic
fibers traversing the MFB (91). Alternatively, if infused into the striatum, 6-OHDA induces a
slow-progressing neuronal death to less than 50% of SNpc neurons. Finally, 6-OHDA infusion
into the lateral ventricles produces degeneration of both SNpc dopaminerg neurons as well as
LC noradrenergic neurons, since 6-OHDA has high affinity for both DATs and noradrenaline
transporters (NETs). 6-OHDA damage to NE neurons can be prevented by pretreatment of
rodents with the NET inhibitor desmethylimipramine (DMI) (92), although the desired effect
still may not be achieved (93).
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The effectiveness of 6-OHDA in producing ipsilateral destruction of DA traversing the
MFB is gauged by the number of contralateral rotations induced in rats, about two weeks later,
by the predominate DA D, agonist apomorphine; or number of ipsilateral rotations induced by
AMPH, which reverses the DAT to release DA onto D, receptors that have become supersensi-
tized. Apomorphine is considered to be a better indicator than AMPH (94). Rats lesioned
unilaterally, as adults, do not demonstrate the akinesis, adipsia, and aphagia accompanying
bilateral lesioning of the same pathway (1,91).

Although 6-OHDA was reported to be a metabolite in caudate nucleus following METH
treatment of rats (71), that finding is unable to be replicated. Nevertheless, 6-OHDA even
recently has been proposed as an endogenous neurotoxin in PD brain (95,96). The 6-OHDA
model of PD has been of value in reference to postsynaptic (i.e., in the intrinsic GABAergic or
cholinergic striatal neurons) adaptations to DA denervation, including DA receptor subtype
expression (e.g., 97), expression of second messengers (98) or immediate early genes (99) or
neuropeptides (100) in subpopulations of medium sized spiny neurons. A compensatory
increase in DA turnover in the 6-OHDA model of PD is now established (101) and considered
to be critical in the therapeutic management of PD (3,102). Finally, the 6-OHDA hemiparkinso-
nian rat model of PD has been valuable in assessing the dyskinetic potential of different thera-
peutics including chronic L-3,4-dihydroxyphenylalanine (I-DOPA) (103). A caveat, however,
relates to the assumption that motor complications following DOPA therapy of PD are strictly
related to the post-synaptic modifications. In conclusion, the 6-OHDA hemiparkinsonian rat
model is considered to be important in addressing issues related to PD progression, therapeutic
complications and treatment-related pharmacodynamic issues. Obviously, any model can
address only appropriate questions: in the case of the 6-OHDA model, a surprisingly high
number of questions can still be answered to by its appropriate use.

Substituted-AMPH Lesioning to Model PD

AMPH derivatives constitute another class of compounds that have been used in the last decade
to induce experimental parkinsonism. In primates and humans there are conflicting results con-
cerning the neurotoxic effects of AMPHSs. Since the early 1970s it has been known that AMPHs
produce long-lasting nigrostriatal DA loss in Rhesus monkeys (104) and other monkey
strains (105-107). Up to now there is no evidence of METH-induced parkinsonism in people
abusing METH. Positron emission tomography (PET) or single-photon-emission-tomography
(SPECT) has been used to show that there is a reduction in striatal DAT in METH abusers, and
despite early data on persistence of the effect, there is recovery of DAT number after months of
METH withdrawal (108-110). This interpretation, however, is not unequivocal. For instance, (i)
it is not clear to what extent the reduction in DAT striatal levels is related to down-regulation
of the DAT molecule, versus true DA terminal loss and (i) recovery in striatal DAT levels after
METH withdrawal might represent either a re-innervation rendered by the sprouting from
surviving terminals, or simply recovery in the expression of DAT in the original number of
terminals. A recent detailed description of the monoaminergic neurotoxic effects of AMPH
derivatives in different species can be found in Mc Cann and Ricaurte (111). Now there is
evidence from post-mortem analysis that previous METH abusers bear neuronal inclusions in
midbrain monoaminergic neurons (112).

The Rotenone Model of PD

Heikkila and colleagues (113) were the first to demonstrate that the pesticide and rodenticide
rotenone, infused by stereotaxic means into brain, was neurotoxic to catecholamine neurons.
Rotenone, a known inhibitor of complex I in the mitochondrial respiratory chain (114,115),
was engaged since it had been discovered that another complex I inhibitor, namely MPTP,
produced parkinsonism in humans (see section “The MPTP model of PD” on p. 117). Cellular
energy failure and production of superoxide were considered to be the causes of neuronal cell
death (116). Generally administered systemically, rotenone induces a varied pattern of neu-
ronal degeneration, according to its dosage, route of administration, and the animal species
under study. Surprisingly, when administered to rats at a daily dose of 7-18 mg/day, rotenone
failed to produce destruction of DA terminals or DA perikarya (117). Rather, there was selec-
tive damage within the globus pallidus and caudate putamen, confined to the rostral
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medio-lateral part of striatum and lateral pallidus, contiguous to the lesioned part of striatum
(117). In another study performed several years later in mice (118), rotenone again failed to
induce nigrostriatal degeneration, despite the presence of marked acute toxicity/lethality.
Subsequent studies in rats gave conflicting results. In particular, Greenamyre’s group (17), by
administering rotenone as a constant daily i.v. dose via an Alzet osmotic minipump, demon-
strated, for the first time, rotenone-induced nigrostriatal cell loss. By treating groups of rats in
this way for as long as five weeks, with different daily doses of rotenone, they determined that
was the most effective in inducing nigrostriatal lesioning. Lewis rats, more sensitive than
Sprague Dawleys, had SNpc neuronal loss along with a 55% loss of striatal DA innervation,
but no cell damage at striatal level—confirming the utility of this method to model PD.
Remarkably, in the nigral dopaminergic neurons there was accumulation of fibrillary intracel-
lular inclusions immunopositive for ubiquitin and o-synuclein. This was the first demonstra-
tion of LB-like nigral inclusions in an animal model of PD. Several years later, the same group
reproduced all of the morphological/neurochemical changes in Lewis rats treated 28 or 56
days with rotenone administered s.c. via Alzet minipumps releasing 2-3 mg/kg/day. Finally,
with either approach, many rats with severe DA loss developed bradykinesia/rigidity and
hunched posture, thus reproducing some cardinal signs of PD.

Despite the positive results obtained with these methods, the authors highlighted limita-
tions of the procedure. First, there is large inter-animal variability for each dose and, at least for
the method used by Betardet et al. (17), and associated acute toxicity/lethality. Again, striatal
DA denervation involved mainly the central part of striatum, sparing the dorsolateral part of it
[except in a few, severely lesioned animal, as described in the original paper by Betarbet et al.
(17)], which is invariably affected in PD. Second, the selective DA nigrostriatal toxicity described
in the two studies was not replicated in subsequent studies in which a similar protocol and
dose regimen was used (119-121). In the latter studies a constant degeneration of striatal
intrinsic neurons was observed, closely resembling what was already shown by Ferrante et al.
(117) with the already mentioned “sub-chronic” pattern of rotenone administration. In conclu-
sion, probably the use of rotenone in rodents does not produce models bearing enough repro-
ducibility in different laboratories/species to be used routinely to replicate PD in rodents. By
the fact that rotenone (2-3 mg/kg/day) induces neuronal degeneration after a low steady
aministration, it is apparent that the low steady levels attained in brain are far lower than
the levels needed to inhibit complex I of the mitochondrial respiratory chain (122). Selective
DA lesioning by rotenone is now associated with intraneuronal ROS formation related to
enzymatic or DA auto-oxidation, with generation of peroxide and HO*. The prominent role
of oxidative stress, rather than bioenergy deficit, has been demonstrated by Sherer et al. (123)
in organotypic midbrain culture, in human neuroblastoma cell culture (SK-N-MC), and in vivo
in his rat chronic s.c. model (122). Obviously, if one also takes into account the reports in which
a striatal neuronal lesion occurs, in this case the toxic ROS-mediated effects cannot be demon-
strated as easily as for the DA-rich neurons/terminals. Again, a features arising from the Betarbet
in vivo model, in which there was lesioning of NE and 5-HT neurons in selected areas (as
constantly observed in PD as well), could not obviously be explained easily by oxidative stress
induced by DA metabolism.

Despite a lack of chronic damaging effects of rotenone in mice, Thiffault et al. (118) showed
that systemic rotenone acutely increases DA turnover, similarly to what was observed for
toxic doses of MPTP—suggesting that this might be a common aspect of toxins acting on com-
plex I of respiratory chain. However, the authors did not explore the mechanisms of increased
DA turnover, but discussed this finding in light of previous data, suggesting that in hypoxic
conditions DA release and turnover might be increased by a failure of the energy-dependent
re-uptake mechanisms (124-127).

The MPTP Model of PD

MPTP has been used most frequently in mice to model PD because of their size, cost, and ease of
handling. However, it is in primates that systemic MPTP most closely reproduces the signs and
symptoms of PD. Even a very low dose of MPTP (vs. the dose used in rodents) induces a marked
loss of nigrostriatal DA, accompanied by marked bradykinesia and rigidity (128); and the effects
are reversed by L-DOPA. Further, it is possible to induce a hemiparkinsonian syndrome by
injecting MPTP into the carotid artery. Animals so-treated also have a longer survival time (129).
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MPTP is typically administered by an i.p. route, either as a single dose or by repeated
administrations every few hours (for a review on technical issues, see 78). A single 30 mg/kg
dose of MPTP induces a moderate nigrostriatal DA loss of several months duration (130); a
higher single dose increases acute toxicity and lethality. Conversely, repeated low-doses of
MPTP induce severe nigrostriatal DA loss (78,131).

In mice MPTP produces additional LC neuronal lesioning (132), similar in extent to
the DA loss, and this has been considered as a further positive element for confirming the use-
fulness of the mouse MPTP model in reproducing PD (132). This duality of effect is a constant
feature also in MPTP-treated primates (83,133). Behavioral counterparts of PD are present in
MPTP-treated primates, but are absent in MPTP-treated mice. Obviously, there are huge
phylogenetic differences in neuronal complexity and connectivity of the motor circuit and
motor behavior of primates versus rodents, and this can account for differences in the MPTP
behavioral effect in each species.

The role of excitatory amino acids (EAAs) in MPTP toxicity has been explored in several
animal species (131). MK-801, a selective non-competitive blocker of NMDA receptors, pre-
vents intranigral MPP* nigrostriatal toxicity in rats (134), although this effect has not been
confirmed in MPTP-treated mice (135). MK-801, as well as CPP, is neuroprotective in pri-
mates (136,137). Thus, EAAS are considered to be important in the pathogenesis of PD, and the
several NMDA blockers are under development.

The role of the noradrenergic nucleus LC in modulating/determining the neurotoxic
effects of MPTP has been explored: (i) a prior 6-OHDA lesion of LC transforms a sub-threshold
MPTP dose into one that is frankly toxic to SNpc DA neurons (138,139) and (ii) a prior DSP-4
[N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine] lesion of LC NE terminals increases MPTP
nigrostriatal damage in mice, an effect that is likely due to increased MPTP toxicity (131). Also,
NE neuronal damage does not alter the distribution of MPP* in mice (131,140). Enhancement of
MPTP toxicity by LC lesioning has been shown with METH (58) and 6-OHA in different species
(e.g., monkey) (140), lending credence to a role of NE in PD pathogenesis.

As already indicated, the most crucial issue relating to MPTP modeling of PD is the
presence or absence of LBs. With the sole exception—but not confirmed by others’ studies—of
findings in primate brains described by Forno et al. (141), of the occurrence of LBs in the brain
of patients, primates, or rodents treated with the single or few injections of MPTP. In 2002
Meredith et al. reported the description of lysosomal inclusion formation into the SN of mice
treated with repeated MPTP* probenecid (142). More recently, chronic s.c. infusion of a small
daily amount of MPTP was found to induce formation of inclusion bodies strictly resembling
LBs (18). Surprisingly, i.c.v. continuous infusion (143) of a low daily dose of MPP* in rats has
been shown to be able to overcome this species resistance to MPTP toxicity, inducing a selective
nigrostriatal loss and, at least at ultrastructural level, cellular alterations which have been
interpreted as an early stage of LB formation. These two latter studies will be discussed more
in detail in a following paragraph.

The Occurrence of Neuronal Inclusions in PD Models

As already mentioned above, the pathological hallmark of PD is the presence of LBs in the
SNpc, LC and other subcortical nuclei and cortical areas. LBs are defined as pale inclusions
inside neuronal processes or cell bodies, in specimens stained with routine staining techniques.
More recently, it has been demonstrated that such inclusions can be selectively stained with
antibodies anti-o-synuclein protein (144). In the recent years it has been proposed a staging of
PD according to the distribution of LBs in the brain (84). According to such staging scale, LBs
appear first in the lower brain stem, and afterward in the midbrain and cortex, in a caudal-
rostral progression fashion. LBs are not specific for PD since they have been found in other
neurodegenerative diseases, even though less abundantly and consistently. Furthermore, a
specific form of Dementia, Dementia with LBs (also called Diffuse Lewy Body disease), has
been named specifically after this kind of inclusion because of the widespread distribution of
LBs as the main pathological marker.

As already mentioned in the specific paragraph above, recently some authors have been
able to induce the occurrence of inclusions reminiscent of LBs in rodents. This was considered
crucial for defining a PD model as a true pathogenetic model for PD. A first report of the occur-
rence of o-synuclein-immunopositive deposits into the SNpc and cortex of mice was observed
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by Meredith and colleagues (142) who treated mice with repeated daily MPTP injections,
combined with probendecid. The latter compound was administered in order to slow the clear-
ance of MPTP from the brain. As already described above, in 2000 Greenamyre and colleagues
had induced the occurrence of inclusions in the SNpc by continuous s.c. administration of rote-
none to rats (17); specifically, such intracellular bodies were electron dense cytoplasmic inclu-
sions with a homogeneous dense core surrounded by fibrillary elements. Since these inclusions
were immunopositive for ubiquitin and o-synuclein they were considered by these authors as
equivalent to LB (17). This led Fornai et al. (18) to reconsider results obtained with the neuro-
toxin MPTP. In fact, it is well known that MPTP shares the inhibition of the complex I of the
mitochondprial respiratory chain mechanism with rotenone. Until that time, MPTP was, as rote-
none, usually administered acutely or in a schedule consisting of a few injections few hours
apart from each other. Therefore, the lack of LB formation could have been due to the fact that
by this approach DA neurons were injured too fast. In other words, it could be possible that the
speed of intoxication might influence subsequent neuropathology. In line with this hypothesis,
Fornai et al. (18) demonstrated that chronic s.c. administration of MPTP in mice induces the
occurrence of LB-like inclusions as well.

In the three paradigms of administration described above (17,18,142), the crucial factor in
determining the occurrence of inclusion bodies was likely to be due to the chronic paradigm
of administration used. In particular, recent studies have demonstrated that some molecular/
cellular steps play a key role in the formation of LB, and that these are likely to be fully recruited
when low but prolonged, and appropriate, neurotoxic insults are repeated for long enough.
Conversely, if acute, strong neurotoxic insults occur, they are strong enough to induce the acti-
vation of those molecular/cellular steps leading directly to severe cell impairment, and eventu-
ally up to cell death. In particular, in the formation of LB in nigral DA neurons in PD, a key role
appears to be played by the so-called Ubiquitin-Proetasome-System (UPS) and its relation to
cytoplasmic DA and a-synuclein. These aspects deserve, in our opinion, specific paragraphs,
which follow below.

Role of the UPS in PD

The UPS acts as an intracellular protein-clearing system (145,146) which consists of a multien-
zymatic pathway placed mainly in the endoplasmic reticulum, which becomes activated dur-
ing oxidative stress to process misfolded protein. The UP system becomes activated either in
the physiological degradation of misfolded proteins occurring during oxidative stress, or in the
degradation of abnormal proteins. In these conditions of excessive oxidative stress, or excess of
altered proteins, the UPS may not be able to clear damaged proteins, which ultimately would
accumulate and impair neuronal function, to lead to death of the cell (146). Furthermore, a
similar effect can occur when there is a primary reduction in the efficacy of the UP system. This
is indirectly confirmed by the occurrence of familiar forms of PD (bearing LB and pathological
features similar to those observed in idiopathic PD) associated with mutations of UP compo-
nents such as UchL-1 and parkin (147,148). Furthermore, impairment of the proteasome has
been described also in idiopathic PD (149,150). Recent experimental findings confirm this
hypothesis. In particular, direct infusion of a UPS inhibitor into the striatum induces selective
degeneration of nigrostriatal terminals, and retrograde cell loss in the SNpc, while sparing both
striatal serotonin levels and GABA cells; in spared nigral neurons, the presence of a-synuclein,
parkin, E1 and ubiquitin immunostained inclusions was observed (151).

Remarkably, a selective nigrostriatal lesion has been observed also after systemic admin-
istration of proteasome inhibitors (152). In our study we observed after intrastriatal infusion
of proteasome inhibitor that inclusion bodies occur in surviving nigral DA neurons. Such inclu-
sions are formed by multilamellar envelops delimitating an electron-dense core (“whorls”).
The inclusions appeared ultrastructurally very close to what is observed in vivo following
chronic MPTP (153), METH (150), or MDMA (53,54). What we found as membrane whorls in
transmission electron microscopy correspond to the autophagic granules first described by
light microscopy in vitro after METH (154,155), and they are likely to represent an early step
during the slow formation of authentic inclusions (not membrane-limited), and, presumably,
up to “true” LBs. In fact, similar to LB, lactacystin-induced inclusions observed in vivo are
exclusively cytoplasmic, never affect glial cells and their filamentous component is strongly
immunopositive for o-synuclein.
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Role of DA in Selective Neurotoxicity

Catecholamine-containing structures are the most significantly affected ones in PD, and con-
tain the highest amount of inclusions (84). Among them, nigrostriatal neurons are constantly
affected. In light of this observation DA itself could play a critical role in such toxicity. In other
words, DA-containing neurons are at higher risk of damage under stressful conditions when
other classes of neurons are not affected. This might explain why there is selective DA toxicity
even in circumstances of ubiquitous impairment of the UPS, such as in selected forms of famil-
iar PD or in animals after systemic administration of UPS inhibitors (152). The neurotoxic effects
of DA itself might be related to its auto oxidation into DA-quinones. Toxic adducts between
DA-quinones and a-synuclein could initiate critical biochemical steps towards PD pathogenesis
(see section “Merging DA and o-Synuclein” on this page) (156-158).

In vitro, cell lines bearing the synthesis and storing apparati for DA display dramatic
sensitivity to the effects of neurotoxins which increase cytosolic DA content. This is the case for
METH (74,159), malonate (73,160), and MPTP (161). Thus, DA-containing neurons represent
by themselves a system in delicate metabolic equilibrium consequent to the presence of high
cytoplasmic levels of DA (156,159,162). a-synuclein could play a role in the deleterious effects
of the oxidative stress produced by DA auto oxidation.

Role of a.-Synuclein

o-Synuclein is a protein considered to play a role in membrane-associated processes at the
presynaptic level (163). Because a-synuclein selectively accumulates in LB (143), and its muta-
tion is present in selected familial PD forms (164-166), a-synuclein may be a key player in PD
pathogenesis. In conformity with this, the injection of either human wild-type or mutant
o-synuclein-expressing viral vectors into nigrostriatal pathways of animal models was shown
to cause dopaminergic neurodegeneration and formation of inclusions that contain a-synuclein
(167). In vitro, over-expression of either wild-type or mutant a-synuclein produces the forma-
tion of cytoplasmic aggregates (168,169). a-Synuclein is a substrate for the UPS, and it has been
suggested that under specific conditions that UPS might not be able to cope with the rate of
formation of damaged and/or mutant a-synuclein: this might lead to a-synuclein-aggregate
formation (146).

Merging DA and o.-Synuclein

A report of Conway et al. (156) suggests that o-synuclein and DA might interact to stabilize
the a-synuclein protofibrils and to inhibit their conversion to fibrils (156,170). An increased
amount of free cytosolic DA can induce the formation of DA-derived quinone (DAQ), a
highly reactive metabolite which can covalently bind to proteins. In particular, cytoplasmic
DAQ may be a crucial factor in determining the accumulation of pathogenic protofibrils
(156). In humans, there is indirect evidence for the presumed crucial role of free cytosolic DA
in neuronal degeneration occurring in PD. For instance, there is an inverse correlation
between the expression of VMAT, and degenerative phenomena. Neurons of the ventral teg-
mental area (VTA), which are more resistant to PD cell death, express high levels of VMAT,,
which sequesters cytoplasmic DA into vesicles. High expression of VMAT,, coupled with low
levels of DAT produce very low levels of free cytosolic DA in VTA compared with SNpc DA
neurons. Furthermore, monoaminergic regions more susceptible to degenerative phenomena
in PD (i.e., SNpc and LC) are rich in neuromelanin, and the latter is a by-product of DAQ
deriving from cytosolic DA (156).

As already indicated, an abnormal increase of cytoplasmic DA correlates with oxida-
tion of cytoplasmic a-synuclein protofibrils, attributal to DA derivatives, which might be
the final target to cluster cytoplasmic inclusions within DA neurons. Thus, DA cells are
critically bound to an efficient UPS to clear damaged proteins formed by ROS interaction.
Interestingly, in PD LBs are exclusively cytoplasmic and this might be due to the specific
composition and dynamics of protein aggregates. Furthermore, when inclusion bodies arise
in PC12 cells subsequent to treatment with METH, (1) they localize exclusively within cyto-
plasm (54) and (2) the occurrence of inclusions within PC12 cells is DA-dependent, since
the presence of inclusions can be changed by modulating the synthesis and the metabolism
of DA (53,151).
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a-Synuclein and Parkinson’s Disease

o-Synuclein is considered to be the best immunological marker of LBs. An excessive increase of
free DA promotes conversion of a-synuclein oligomers to protofibrils stabilized by DAQ, and
eventually inclusion formation and degeneration (171,172). In particular, the conversion of
o-synuclein oligomers to protofibrils and their accumulation within neurons seems to play
a fundamental role in the neurodegenerative process, since protofibrils may be neurotoxic
intermediates while fibrils may be indifferent or even protective. These findings suggest that
fibrillation and LB formation may be the last attempt by the cell to survive, by removing proto-
fibrils. The central role of a-synuclein is confirmed by the occurrence of two mutations in
o-synuclein (A53T and A30T) causing an early-onset autosomal dominant form of familial PD,
suggesting that this protein plays a central role in PD. Furthermore, even normal, non-mutated
o-synuclein produces neurotoxicity and LBs, when in excess, as in inherited Parkinsonism due
to three alleles coding for a-synuclein.

NON-CLASSICAL NEUROTOXINS FOR DOPAMINERGIC NERVES

Agents acting directly at DA receptors are able to replicate neurological or psychiatric disorders
without producing damage directly to dopaminergic nerves. Two agents, quinpirole and halo-
peridol, respective DA D, receptor agonist and antagonist, are discussed for this “neurotoxic
effect,” because of their relevance to human disorders.

Dopaminergic Neurotoxicity in the Absence of a Lesion

Quinpirole, a DA D, Agonist

Szechtman and colleagues (173,174) initially found that repeated treatments with the DA D,
agonist quinpirole resulted in enhanced responses to a later quinpirole challenge. By treating
rats during early postnatal ontogeny, for short periods (i.e., P0-P11 or P12-P22 or P23-P33 or
P0-P28) and even with low-dose (50 pg/kg i.p.) quinpirole (175), it was possible to produce
long-lived D, RSS, as manifested by enhanced quinpirole-induced effects in adulthood.

When administered once-a-day from birth, quinpirole (1 mg/kg) had seemingly little
effect until rat pups were about two weeks old. At that age, quinpirole acutely produced intense
gnawing and/or eating (176). At 19 days of age there was more locomotor activity, stereotyped
behaviors (176), and the appearance of a darting-like behavior. At 21 days of age, if rats were
place in chambers without lids, quinpirole acutely produced vertical jumping over a period of
hours, and resulting in several hundred jumps. Simultaneously, there was prominent paw
treading. The same quinpirole effect could be observed over the span of the following week,
but by 35 days of age, jumping was no longer observed after quinpirole treatment (175). In rats
placed in single chambers, quinpirole produced an enhanced yawning response (vs. control)
(177,178) accompanied by penile erection (179,180). In a hot-plate test, quinpirole-primed rats
displayed an antinociceptive effect that added to opiate antinociceptive action (179). At a later
age, rats that had been treated with quinpirole daily during postnatal development displayed
spacial memory deficits with enhanced skilled reaching (180). In some ways these rats model
schizophrenia, and it is possible that quinpirole-priming is an alternative to the phencyclidine
model. The induced D, RSS was life-long (181,182), and it was not induced by the predomi-
nately D, receptor agonist 7-hydroxy-N-N-di-n-propyl-2-aminotetralin (7-OH-DPAT) (183). If
not acutely challenged with drugs, rats displaying D, RSS were indistinguishable from control.
Enhanced behavioral responses to AMPH in these rats were associated with an approximate
five-fold enhancement of AMPH-induced release of DA in the striatum, as demonstrated by
in vivo microdialysis (184). When 6-OHDA was administered to neonatal rats to selectively
destroy nigrostriatal dopaminergic innervation, repeated quinpirole treatments failed to pro-
duce an enhanced yawning response (185,186), while the ability of quinpirole to induce vertical
jumping was preserved (unpublished). When the 5-HT neurotoxin, 5,7-dihydroxytryptamine,
was administered to neonatal rats, D, RSS was observed in adulthood (1 87). Despite the nom
de plume, “supersensitivity,” it is quite possible that “D,RSS” reflects D, autoreceptor sub-
sensitivity (8,184,188-190), which conceivably would result in enhancement of D, agonist-
induced behaviors. The description of behavioral alterations in quinpirole-primed rats is
provided as an example of a neurotoxic effect produced by a substance (e.g., quinpirole) that
seemingly does not produce overt destruction of a nerve but yet produces permanent behavioral
alterations that persist for the life of the species (191).
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Haloperidol, a DA D, Antagonist

Waddington and colleagues noted the appearance of spontaneous orofacial movements,
resembling tardive dyskinesia in humans, in rats treated daily, for months, with the DA D,
receptor antagonist haloperidol. The orofacial dyskinesia persisted for as long as haloperidol
continued to be administered, but when haloperidol was discontinued as a treatment the oro-
facial dyskinesia disappeared within a month (192,193). When haloperidol was administered to
6-OHDA-lesioned rats, daily for one year, there was an approximate two-fold increase in the
number of spontaneous orofacial dyskinesias (vs. non-lesioned rats receiving haloperidol), and
the effect persisted for at least eight months after haloperidol had been withdrawn as a treat-
ment (194). These findings represent other examples by which a neurotoxic effect is produced in
the apparent absence of overt neuronal destruction (193); and the production of a permanent
abnormality by a non-toxic substance (i.e., haloperidol) when a prior neurotoxic effect (i.e., by
6-OHDA) was produced. One might wonder if environmental exposure to substances, or phar-
maceutical treatments by humans, might produce undesired “neurotoxic” effects if there is
even minute damage in brain.

ENDOGENOUS NEUROTOXINS AND NEUROPROTECTANTS

FOR DOPAMINERGIC NERVES

Introduction

Many features of PD (tremor, muscle rigidity, akinesia) are associated with DA deficiency in
neostriatum, consequent to neurodegeneration and cell death of nigrostriatal dopaminergic
neurons. Although the causes of idiopathic PD are still unknown, both environmental and
endogenous toxins have been proposed as etiologic factors. The neurotoxin hypothesis of PD,
originally proposed after discovery of 6-OHDA, gathered insurmountal momentum with the
discovery of MPTP, the contaminant in “synthetic heroin” (i.e., China white) which produced
irreversible Parkinson syndrome in substance abusers in California (14). On the assumption
that MPTP-like neurotoxins may trigger PD, CSF as well as extracts of postmortem brains of PD
patients have been taken and analyzed for putative endogenous MPTP-like compounds. Two
groups of amine related compounds, which appeared chemically similar to MPTP, were
detected in both human brain and CSF: B-carbolines (BCs-synonym norharmanes) and
1,2,3,4-tetrahydroisoquinolines (TIQs) (195-197). These heterocyclic compounds are formed
endogenously from phenylalanine/tyrosine (TIQs) and tryptophan or indoloamines (BCs),
respectively, and exert a wide spectrum of psychopharmacological and behavioral
effects (198-200). The observation of various psychopharmacological effects of TIQs and BCs
suggest an important role of the trace amines as neuromodulators. The TIQs and BCs may bind
to their own high affinity sites on neuronal membranes associated with or located close to
the receptors of neurotransmitters, and some of them such as 1,2,3,4-TIQ or its derivatives
(salsolinol, 1-methyl-1,2,3,4-TIQ) bind directly to catecholamine brain receptors: dopaminergic
D, /s and noradrenergic o, (201-203). Research on TIQs and BCs has intensified, because of
their possible role(s) in pathological conditions, notably PD and alcoholism. Recently, from a
clinical perspective, a promising role has been explored for 1-methyl-1,2,3,4-TIQ (1MeTIQ) as a
neuroprotectant, anticonvulsant and anti-abuse substance (204-209).

p-Carbolines

Due to its structural similarity to MPTP the BCs have also been suggested as possible endoge-
nous toxins leading to parkinsonism. BCs may be formed in vivo from condensation between
tryptophan derivatives and aldehydes. Mass spectroscopy validated the presence of
1,2,3,4-tetrahydro-B-carboline (THBC; Fig. 1) in rat brain (210), and the aldehyde chloral as well
as trichloroethylene (a solvent widely used in industry) may rapidly react with endogenous
tryptamine to form the new 1-trichloromethyl-1,2,3,4-THBQ (TaClo) (211). BCs were detected
in the human brain, CSF, and blood (195,212). Interestingly, N-methylated aromatic BC ions can
be superimposed on MPP*, the neurotoxic metabolite of MPTP (196). The unsubstituted BC
easily crosses the blood-brain barrier. In vivo microdialysis studies in mice revealed that
2-me-BC* but not 2,9-dimethyl-B-carbolinium ion (2,9-dime-BC*) penetrates the blood-brain
barrier, possibly owing to transformation of 2-me-BC* to a neutral base (after a proton has been
split off at position 9) under physiological conditions (213). The conversion of the unsubstituted
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Figure 1 Chemical structure of tetrahydro-B-carboline.

BC norharman (NH) to the BC cations occurs endogenously in particulate fractions of the
mammalian brain via S-adenosyl-methionine-dependent N-methylations, sequentially form-
ing 2-mono-N-methylated (2-me-BC*) and neurotoxic 2,9-di-N,N-methylated (2,9-dime-BC*)
B-carbolinium cations (214,215).

Neurotoxic Effects of BCs

Intracerebral injections of some analogs of BC such as N-methylated B-carboline 2-methyl-
norharman (structural resemblance to MPP*) into SN or MFB of rats results in a depletion
of striatal DA and its metabolites. Indeed, three weeks after intranigral B-carboline (2-methyl-
norharman) striatal DA and its metabolite DOPAC and HVA are reduced 40-60% (216). However,
the lesion produced by 2-methyl-norharman appeared to be non-specific, affecting both
dopaminergic and non-dopaminergic cells and fibers. NH, the precursor of 2,9-dime-BC* is
present in human brain, and was measured in the parietal association cortex (0.58 pmol/g
tissue) and even in higher concentration in SN (16 pmol/g tissue) (217). The endogenous
neurotoxin found in human brain, 2,9-dime-BC*, when injected into rat SN, potently induces
apoptosis, and a reduction in striatal DA at three weeks (218). These findings strongly implicate
BCs as endogenous neurotoxins. Clinical studies have shown elevated levels of BCs in the CSF
and plasma of medication-free Parkinsonian patients (212). Also, subchronic TaClo had long-
term neurotoxic effects in rats, reducing spontaneous locomotor activity and reducing
apomorphine-induced activity at 12 weeks (219). Accordingly, it is hypothesized that TaClo
may exert a progressive neurotoxic effect on the dopaminergic nigrostriatal system. Other stud-
ies have shown that the N-methylated TaClo is more toxic than TaClo (220), and Bonnet et al.
(221) showed that dimethylation of the amino moiety at positions 2 and 9 leads to even greater
neurotoxicity. Recently, the methylated B-carbolinium ion (2,9-DIME-BC*) was shown to pro-
duce a dose-dependent degeneration of nigrostriatal neurons, leading to deficits in dopaminer-
gic neurotransmission and an increase of muscle resistance and electromyographic activity—a
syndrome resembling muscle rigidity in PD (222). Although neurotoxic effects of BCs are well
documented, the mechanisms by which the BCs induce their neurotoxic effects are still unclear.

Mechanisms of BC Neurotoxicity

Analogues of MPTP and MPP* lacking an N-methyl group are virtually devoid of toxicity (223).
Therefore activation of neurotoxicity of BCs requires an N-methylation. Numerous endogenous
compounds undergo methylation by N-methyltransferases (phenylethanolamine, histamine,
indolethylamine), as well as selected BCs (224,225). The resultant oxidation products,
B-carboliniums, inhibit NAD* linked O, consumption in rat liver mitochondria. Janetzky and
coworkers (226) have demonstrated that TaClo, and its N-methylated derivative are strong
inhibitors of complex I (total inhibition at 400 uM and 250 pM, respectively). These results thus
indicate that respiratory inhibition may underlie the neurotoxicity of BCs, as observed in
primary cell cultures of mouse mesencephalon containing dopaminergic neurons (227) and
in vivo (216,220). While N-methylation of BCs has been explored, the possible oxidation (aro-
matization) of N-methyl-THBQs to N-methyl-B-carbolinium cations resembling MPP* has not
been investigated. As with MPTP oxidation, MAO and cytochrome P450 could be key enzymes
involved in BC oxidation. As shown by Herraiz et al. (228) the N-methyl-THBQ analogs
2-methyl-THBQ (2-ME-BC) and 2,9-dimethyl-THBQ (2,9-DIME-BC) are oxidized to neurotoxic
B-carbolinium cations by heme peroxidases; but unlike MPTP, not by MAO or P450. This sug-
gests a novel bioactivation to derivative pyridinium-like cations resembling the aggressive
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neurotoxin MPP*. Conceivably, production of THBQs, continuously and/or for prolonged
period (perhaps years), could result in their accumulation, with N-methylation and oxidation
by heme peroxidases to P-carbolinium toxins that progressively destroy SN neurons.
B-carbolinium toxins have been detected in normal and Parkinsonian human brains (195,217),
and if heme peroxidases are involved in toxicity of BCs, inhibitors of these enzymes could act
as neuroprotectants.

Endogenous Ligands of Benzodiazephine Receptors (BDZ)

BCs have affinity equal to that of the most potent BDZs at the GABA | receptor, and thus BCs
potently displace radiolabeled BDZs from this site. Some ligands exerted effects opposite to
those of BDZ anxiolytics and came to be known as “inverse agonists” whose common feature
was an antagonism to pharmacological BDZ effects. The first inverse agonists to be discovered
were methyl-B-carboline-3-carboxylate (B-CCM) and methyl-6,7-dimethoxy-4-ethyl-B-
carboline-3-carboxylate (DMCM) which produced convulsant and anxiogenic effects when
given alone (229,230). The behavioral effects of B-CCM and DMCM are blocked by Ro 15-1788,
a specific antagonist of GABA , receptor, indicating that these compounds indeed interact with
BDZ receptors. Inverse agonists are thought to induce their effects by allosterically modulating
the GABA , receptor complex by reducing the frequency of channel opening. According to this
scheme, normal agonists positively modulate the GABA , receptor complex and thus potentiate
GABA action, whereas inverse agonists negatively modulate the receptor and therefore lead to
heightened anxiety and brain excitability.

1,2,3,4-Tetrahydroisoquinolines

The presence of TIQs in mammals including humans is well established. The first publications
started in the early 1970s and were associated with alcohol intake. Biotransformation of ethanol
by alcohol dehydrogenase to acetaldehyde may induce alterations in the metabolism of cat-
echolamines (DA and noradrenaline), and produce aberrant aldehyde metabolites such as TIQ
alkaloids (231). The endogenous catecholamines and their aldehyde oxidative metabolites may
undergo a Pictet-Spengler type of condensation to yield TIQ alkaloids. TIQs are present in
human brain at low levels (1-10 ng/g brain tissue), thus a highly sensitive and specific method
is required to analyze TIQs in the brain (232,233). Interest in TIQs in PD was again aroused in
the early 1980s owing to the discovery of MPTP as a parkinsonism-producing neurotoxin, espe-
cially in humans and monkeys (14,234) (Fig. 2). MPTP similarly to neurodegeneration observed
in PD produced a severe loss of the pigmented DA neurons in the SN pars compacta (SNc), a
marked reduction in the concentration of DA and its major metabolite HVA, and a significant
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Figure 2 MPTP-like TIQs. Abbreviations: TIQ, 1,2,3,4-tetrahydroisoquinoline; 1MeTIQ, 1-methyl-1,2,3,4-
tetrahydroisoquinoline, a neuroprotective compound; 1BzTIQ, 1-benzyl-1,2,3,4-tetrahydroisoquinoline, a neurotoxic
compound; Salsolinol, 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline.
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N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP)

l MAO-2B

l

N-methyl-4-phenyl-pyridinium ion
(MPP*)

Figure 3 Bioactivation of MPTP to a neurotoxin ion MPP+ by MAO-B.

decrease in DAT binding sites in the nucleus caudatus and putamen (235,236). Efforts have
been made to find MPTP-like neurotoxins in the brain of parkinsonism patients. In this regard,
it should be noted that MPTP per se is a pro-toxin oxidized by MAO-B to the overtly neurotoxic
MPP+ (237-239) (Fig. 3).

Neurotoxic Effects of TIQs and Their Mechanism of Action

It was assumed, that if any MPTP-like neurotoxins exist in the brain, they might be N-methylated
and later oxidized by MAO to produce active MPP*-like neurotoxins. TIQs are both endoge-
nous and exogenous (i.e., in various foods such as banana, cheese, flour, egg, wine, beer, milk)
(240). Substances related to the selective dopaminergic neurotoxin MPTP, have been suggested
as potential etiologic factors that may contribute to the development of PD (241). The exoge-
nously administered TIQs readily cross the blood-brain barrier. These alkaloids are presumably
activated via N-methylation and are oxidized by MAO to form a neurotoxic N-methylisoquin-
olinium ion, the same as MPP* (242). Notably, however, while MPTP acts rapidly to produce
irreversible neurotoxic changes mainly restricted to the nigrostriatal dopaminergic system after a
single dose (243,245), TIQs do not produce immediate neurotoxicity (204,244).

Long-term exposure to a low concentration of neurotoxin is now regarded as a preferable
means to model chronic neurological disorders such as PD. Initially it was found that only
prolonged administration of TIQ and analogs (TIQ, salsolinol) at high dose (50-100 mg/kg)
evoke behavioral and biochemical symptoms in monkeys and rodents, analogous to those in
PD (201,204,244-246). Later, however, various members of this group were found to produce a
range of effects—from potent neurotoxicity to neuroprotection, as exemplified by the highly
neurotoxic 1BzTIQ and salsolinol (201,247-251), mildly neurotoxic TIQ (201,244,246), and the
neuroprotective 1IMeTIQ (202,204-206,252,253). Salsolinol and 1BzTIQ are two endogenous
neurotoxins in which concentrations increase about three times in the CSF of patients with PD,
and these TIQs have been proposed as etiological factors for PD (247,254). Recently it was
shown by Shavali and coworkers (251,255) that 1BzTIQ activates apoptotic-signaling pathways,
increases o-synuclein expression, significantly depletes glutathione levels, and induces cell
death in human dopaminergic cells in culture. Interestingly, the proparkinsonian properties of
1BzTIQ were prevented by 1MeTIQ (256).

Apart from the propensity to form quaternary ions, the neurodegenerative effects of some
TIQs may be caused by the facilitation of DA catabolism by N-oxidation. The oxidative MAO-
dependent pathway of DA catabolism, leading to DOPAC, is known to produce potentially
cytotoxic ROS (for instance, hydrogen peroxide, superoxide, and hydroxyl radicals), which
may play an important role in the progressive and selective loss of the nigrostriatal dop-
aminergic neurons that occurs in aging and in PD (257-259). Conversely, the enhanced catabo-
lism of DA through catechol-O-methyltransferase (COMT)-dependent O-methylation, leading
to 3-methoxytyramine (3-MT), may be an important antioxidant defense mechanism (259).
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In fact, recently it was shown that various TIQs differ in their effects on MAO-dependent and
COMT-dependent DA catabolism. Neurotoxic 1BzTIQ shifts DA catabolism towards MAO-
dependent N-oxidation, whereas neuroprotective 1MeTIQ strongly inhibits the MAO-dependent
pathway and shifts DA catabolism towards COMT-dependent O-methylation (204). As MAO-
dependent N-oxidation of DA generates free hydroxyl radicals, such differences in the bio-
chemical effects of TIQs could explain the differences in their neurotoxic/neuroprotective
profile (260). In this report in rats, simple noncatecholic TIQs (e.g., TIQ, 1IMeTIQ, N-MeTIQ)
acted as moderate or weak (1BzTIQ) MAO, and MAO,-inhibitors. 1MeTIQ inhibited more
potently MAO, than MAO,, whereas catecholic TIQ, salsolinol, exerted a rather weak effect on
MAQO activity but markedly inhibited striatal tyrosine hydroxylase activity (260). MAO, pres-
ent in the mitochondrial outer membrane, produces hydrogen peroxide by oxidation of mono-
amines, thereby inducing oxidative stress which is thought to predispose towards neuronal
degeneration. MAO inhibition by some of the TIQs may protect neurons from cell death.

Neuroprotective Effect of TIQ and 1MeTIQ and Their Mechanism of Action

The pharmacological properties of TIQs suggest that these compounds may have much greater
potential than being merely substances for studying PD. Particularly interesting are their prop-
erties as antidopaminergic agents with an atypical mechanism of action that suggests that they
may specifically antagonize the active conformation of the DA receptor (201,203). This suggests
that TIQs may possess a potential as either atypical antipsychotics or agents useful in prevent-
ing substance abuse disorders. Among them the most interesting and promising substance
from a clinical vantage is 1IMeTIQ. 1MeTIQ is a mixture of (R)- and (S)-enantiomers enzymati-
cally synthesized from 2-phenylethylamine (PEA) and pyruvate by 1MeTIQ-synthesizing
enzyme (a membrane-bound protein localized in the mitochondrial-synaptosomal frac-
tion) (256,261). In a stereoselective study, it has been documented that the neuroprotective
action of 1IMeTIQ is closely correlated with the presence of (R)-1MeTIQ enantiomer as well as
mixture of (R)- and (S)-enantiomers (262). In biochemical studies assessing activity of 1IMeTIQ
synthesizing enzyme (IMeTIQ-ase), it has been reported that parkinsonism-inducing sub-
stances (e.g., MPTP and BCs) considerably inhibited the activity of 1MeTIQ-ase (213,261). It is
also well established by behavioral and biochemical study, that (R,5S)-1MeTIQ demonstrates
neuroprotective activity by antagonizing the behavioral and biochemical effects of dopaminer-
gic neurodegeneration induced by numerous experimental neurotoxins such as MPTP, 1BzTIQ,
and rotenone (205,206,247,252,263). Pharmacologically, IMeTIQ and its analog lacking a methyl
group, namely TIQ, inhibited MAO-dependent N-oxidation and the formation of DOPAC
during DA degradation, and shifted catabolism of this neurotransmitter toward the COMT-
dependent O-methylation—this resulted in the reduction of free radical production and
production of neuroprotective activity (204,264). Recently, it was demonstrated that IMeTIQ
shares many activities with TIQ, including inhibition of glutamate-induced free-radical genera-
tion in an abiotic system, and reduction of indices of neurotoxicity (e.g., caspase-3 activity and
lactate dehydrogenase release) in a mouse embryonic primary cell culture (202). However, in
granular cell cultures obtained from seven-day-old rats, 1IMeTIQ prevented glutamate-induced
cell death and *Ca?" influx, whereas TIQ did not. Such a profile of action for IMeTIQ suggests
a specific effect of this compound on excitatory amino acid (EAA) receptors. Additionally, it was
shown in an in vivo microdialysis experiment that 1IMeTIQ prevented kainate-induced release
of EAAs from rat frontal cortex (202).

In comparing the chemical structure of 1IMeTIQ with other compounds containing the
TIQ skeleton and attendant molecular mechanisms of action, one can find similarities between
1MeTIQ and N-cetyl-1-(4-chlorophenyl)-6,7-dimethoxy-TIQ; and 1,1-pentamethylene-TIQ,
derivatives which are non-competitive AMPA /kainate receptor antagonists and endowed with
the ability to protect animals in maximal electroshock seizure, pentylenetetrazole seizure, and
audiogenic DBA /2 mouse seizure models (265,266). In fact, 1MeTIQ exerts anticonvulsant
effects by increasing the threshold for electroconvulsions and enhancing potentiation of the
antiseizure action of carbamazepine and valproate against maximal electroshock (208).

In light of this series of experiments 1MeTIQ offers a unique and complex mechanism of
neuroprotection in which inhibitory effects on MAOQO, resulting in free radical scavenging
properties, and antagonism of the glutamatergic system may play important mechanistic
roles. Other TIQ family members awaiting discovery may provide greater insight into their
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neurotoxic/neuroprotective properties, and provide additional opportunity towards utilizing
TIQ analogs in pharmaceutical development.

SUMMARY

Dopaminergic nerves represent a system at risk for injury. The neurotransmitter DA per se is
a putative neurotoxin in that its metabolism by MAO generates the ROS H,0,, which in the
presence of iron (Fe?*), generates the highly reactive hydroxyl radical, which is capable of
rapid inactivation of enzymes, proteins, DNA, RNA, unsaturated lipids, and any—SH moiety
with which it comes into contact. Conditions for this scenario are ripe in the substantia nigra,
in which neuromelanin in DA nerves serves as a sink for Fe**. In addition, there are endoge-
nously produced neurotoxic species for DA nerves, such as the DA metabolite aminochrome;
or BCs, etc. Selective (exogenous) neurotoxins, of which there are many, replicate PD, the neu-
rodegenerative disorder in which pars compacta substantia nigra DA neurons spontaneously
degenerate with aging. MPTP has been used to model this disorder for more than two decades,
6-OHDA has been used even longer; and most recently, rotenone has been invoked to produce
DA destruction to model PD. The life of a DA nerve is a precarious one, beset with internal
challenges from cytoplasmic DA metabolism, as well as the attack by extraneuronal in situ
DA-neurotoxins, and potential ultimate exposure to environmental (e.g., rotenone and such)
or inadvertent intake of overt neurotoxins (e.g., MPTP).
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