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Preface

These notes are the result of a one-semester graduate course that was first taught
during the Spring 2003 Semester at the CUNY Graduate Center and has been offered
several times since. The students in the courses were all physicists, so a familiarity
with quantum mechanics at the first-year graduate level was assumed. The hope
was that after taking the course, students could explore the original literature in the
subject on their own.

The course covers a range of topics in quantum information but, given the
limited amount of time, is not by any means exhaustive. We begin with the density
matrix and its representations. Next we study entanglement, starting with Bell’s
inequalities and continuing with tests for entanglement, in particular, the Peres
partial transposition test. It is also possible to quantify entanglement, and we show
how this can be done for both pure and mixed states, finishing with a discussion of
concurrence as a measure of entanglement for states of two qubits. Entanglement
is a resource that can be used for quantum communication. Teleportation and dense
coding are examples of this. Next, we consider quantum dynamics. In particular, we
study generalized quantum dynamics that generalize the standard unitary evolution
of quantum states. The Kraus representation of quantum maps is derived and applied
to examples, such as the depolarizing channel. There are also certain kinds of maps
that are impossible, such as the cloning map, a map that produces a perfect copy of
an arbitrary input state.

We then move on to the study of quantum measurements. Just as quantum
maps generalize the standard unitary evolution, positive operator valued measures
(POVMs) generalize the standard projective measurements. Here we develop an
extensive theory of generalized measurements that are described by POVMs. The
problem of discriminating between two nonorthogonal quantum states provides a
useful illustration of this type of measurement, and the two commonly employed
strategies, the minimum-error strategy and the unambiguous state discrimination
strategy, are discussed. These POVMs lead to a discussion of quantum cryptography.
In particular, the B92 proposal and the original BB84 proposal are studied from this
perspective. Many of the fascinating applications of quantum information theory in
the area of quantum communication, such as secret sharing, rely on the impossibility
of certain maps.
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viii Preface

In quantum computation, the other major area of quantum information pro-
cessing, consequences of the superposition principle are exploited. In the area
of quantum algorithms, we focus primarily on the Deutsch–Jozsa algorithm, the
Bernstein–Vazirani algorithm, the Grover search algorithm, and period finding. We
also explore a technique that has been useful in finding new algorithms, the quantum
walk. In a real quantum computation it is necessary to protect against errors, and for
this quantum error-detecting codes are necessary. We develop the general theory of
such codes and discuss some examples such as the Shor code and CSS codes.

We also have a chapter on quantum machines, devices that perform certain
operations on quantum systems. These may be single purpose or programmable,
and we discuss the limits on programmable machines. We conclude with an example
of a programmable state discriminator, in which the states to be discriminated are
provided as a program rather than hardwired into the machine.

This covers a lot of material, but it also leaves out a lot. In a single semester we
cannot touch on subjects such as the applications of information theory to quantum
information or the physical implementations of quantum information protocols, both
of which are important subjects. We also do not treat the Shor algorithm for finding
the prime factors of a number, not because it is not important but because it requires
some background in number theory. When teaching a one-semester course, time
constraints are a very real consideration, and we felt that an adequate presentation
of the Shor algorithm and its background would take too much time. Our choice
of subjects has been guided by the requirement of providing a firm foundation for
further study and by our own interests as we have explored the field.

The chapters are completed with problems and a cursory list of the most relevant
literature. The references are not meant to be exhaustive but to serve as a guide to
further reading.

We should also mention two standard sources that we found useful in preparing
the notes from which this book originated. One is Quantum Computation and
Quantum Information by Michael Nielsen and Isaac Chuang. The second is the
set of lecture notes by John Preskill for Physics 219 at Caltech, which can be found
at http://www.theory.caltech.edu/people/preskill/ph229/. These cover some of the
topics we discuss in more depth and also treat many topics that we do not. A
more recent book, which can also supplement what we present here, is Quantum
Information by Stephen Barnett.

Over the years, we benefitted from numerous discussions and close collabora-
tions with many colleagues and friends. Among them we want to particularly thank
Erika Andersson, Emilio Bagan, Stephen Barnett, Sam Braunstein, Vladimir Bužek,
Luiz Davidovich, Berge Englert, Edgar Feldman, Ulrike Herzog, Igor Jex, Miguel
Orszag, Daniel Reitzner, Wolfgang Schleich, Aephraim Steinberg, Mario Ziman,
and M. Suhail Zubairy.

Finally, we are most grateful for the love and support of our families to whom
this book is dedicated.

New York, NY, USA János A. Bergou
New York, NY, USA Mark Hillery
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Chapter 1
Introduction

The field of quantum information encompasses the study of the representation,
storing, processing, and accessing of information by quantum mechanical systems.
The field grew from the investigations of the physical limits to computation initiated
by Charles Bennett and Rolf Landauer. One of the first questions studied was
whether quantum mechanics imposes any limits on what a computer can do, and
it was shown by Richard Feynman that it does not. Earlier work by Paul Benioff
had explored the possibilities of quantum Turing machines. Shortly after Feynman’s
work, David Deutsch realized that not only is quantum mechanics not a problem for
computation, it can also be an advantage. The major breakthrough in the field was
Peter Shor’s factoring algorithm, which showed that a quantum computer can find
the prime factors of integers in a time that scales as a polynomial of the size of the
integer.

1.1 The Qubit

The basic unit of classical information is the bit, which can be 0 or 1. The
corresponding object in quantum information is the qubit, which is a two-level
quantum system. The two levels are often denoted by |0〉 and |1〉, which correspond
to logical 0 and 1, respectively. Natural physical systems that can be used to
represent a qubit are electronic or nuclear spins and the polarization of a photon. The
key difference between a bit and a qubit is that the latter can exist in a superposition
state

|ψ〉= α|0〉+β |1〉, (1.1)

while the former is definitely either 0 or 1. This leads to significant differences
in what can be done with information represented by bits and that represented by
qubits.

J.A. Bergou and M. Hillery, Introduction to the Theory of Quantum Information
Processing, Graduate Texts in Physics, DOI 10.1007/978-1-4614-7092-2 1,
© Springer Science+Business Media New York 2013
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2 1 Introduction

Fig. 1.1 Bloch sphere
representation of the qubit
in Eq. (1.2)

A convenient representation of the state of a qubit is given by the Bloch sphere.
The state is parameterized by two angles, 0 ≤ θ ≤ π and 0 ≤ φ < 2π

|ψ〉= cos(θ/2)|0〉+ eiφ sin(θ/2)|1〉. (1.2)

It is represented by a point on the unit sphere whose polar angle is θ and whose
azimuthal angle is φ . That is, the vector from the origin to the point representing the
state makes an angle of θ with the z axis, and its component in the x-y plane makes
an angle of φ with the x axis. The state |0〉 is the North Pole of the sphere, and the
state |1〉 is the South Pole. The Bloch sphere of a qubit is shown in Fig. 1.1.

The Bloch sphere is often useful in illustrating how the state of a qubit is changed
by a quantum map.

The state of n qubits is spanned by the tensor product basis

|0〉⊗ . . . |0〉⊗ |0〉 = |0 . . .00〉
|0〉⊗ . . . |0〉⊗ |1〉 = |0 . . .01〉

...

|1〉⊗ . . . |1〉⊗ |1〉 = |1 . . .11〉. (1.3)

Note that we have expressed these states as |x〉, where x is an n-digit binary number.
The most general n-qubit state can be expressed as

|Ψ〉=
2N−1

∑
x=0

cx|x〉. (1.4)
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1.2 Quantum Gates

Quantum gates are unitary operators that act on one or more qubits. They are unitary,
because they represent the effect of some kind of time evolution on the state of
the qubit, and the time development transformation is a unitary operator. Because
of this fact, quantum gates must be reversible, that is, if we know the output state of
the gate, we can infer what the input state was. This rules out quantum versions of
certain classical gates. For example, the AND gate is a gate with a two-bit input and
a one-bit output. The output is given by the product of the inputs, which implies
that the output 0 can be produced by the inputs 00, 01, or 10. Thus, this gate is not
reversible and, therefore, has no quantum version.

On the other hand, the NOT gate, which simply flips a bit, 0 → 1 and 1 → 0,
is reversible, so a quantum version, which performs the operations, |0〉 → |1〉 and
|1〉 → |0〉, exists. It has the following action on a general qubit state

α|0〉+β |1〉→ α|1〉+β |0〉. (1.5)

If we represent the qubits state as a two-component column vector,

α|0〉+β |1〉=
(

α
β

)
, (1.6)

then the quantum NOT gate can be represented as the Pauli matrix, σx

(
0 1
1 0

)(
α
β

)
=

(
β
α

)
. (1.7)

The X gate is represented in Fig. 1.2.
Here and in the following the left line represents the input qubit and the right line

the output qubit.
There are also quantum gates that have no classical analogue. One particularly

useful one is the Hadamard gate. It is a single-qubit gate and is represented by the
circuit symbol in Fig. 1.3.

The Hadamard gate performs the following transformation:

H|0〉 = 1√
2
(|0〉+ |1〉)

H|1〉 = 1√
2
(|0〉− |1〉). (1.8)

X
Fig. 1.2 Circuit symbol for
the NOT or X gate

H
Fig. 1.3 Circuit symbol for
the Hadamard gate
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Fig. 1.4 Circuit symbol
for the C-NOT gate

There is no classical analogue of this gate, because it takes the computational basis
states {|0〉, |1〉} and maps them into superposition states. Note that H2 = I, where I
is the identity operator.

A third important gate, which does have a classical analogue, is the Controlled-
NOT gate (or C-NOT gate for short), which is also known as the exclusive OR gate
(or XOR gate for short). It is a two-qubit gate and its circuit symbol is given in
Fig. 1.4.

The inputs are again on the left and the outputs on the right. The upper qubit is
called the control qubit and the lower one the target qubit. The state of the control
qubit is not changed by the gate, and the change in the state of the target qubit
depends on what the state of the control qubit is. In particular, if the control bit is
|0〉, nothing happens to the target qubit, but if the control bit is |1〉, then the target
qubit is flipped. In more detail, if the first qubit is the control and the second the
target, we have

|0〉|0〉 → |0〉|0〉 |0〉|1〉 → |0〉|1〉
|1〉|0〉 → |1〉|1〉 |1〉|1〉 → |1〉|0〉. (1.9)

From these relations the matrix elements of the transformation corresponding to the
C-NOT gate can be read out. This and the verification that the matrix is unitary are
left as a problem at the end of this chapter.

1.3 Quantum Circuits

At this stage, we are ready to introduce the circuit model of quantum computing.
In this model, qubits are represented by lines and quantum gates, i.e., unitary
operators, by their symbols. In particular, single-qubit gates are denoted by their
symbol on the line representing the qubit, two-qubit gates are denoted by their
symbol connecting two lines corresponding to two qubits, and so on. What makes
the circuit representation extremely useful is that the set of gates consisting of
the C-NOT and all single-qubit rotations is a universal set, which means that any
unitary transformation on any number of qubits can be constructed from them.
We shall not give the proof of this statement here. It is the reason that many
schemes for physically implementing quantum information protocols concentrate
on the construction of C-NOT gates. Instead of a more formal discussion, in the next
section, we will give an example illustrating how this type of description works.
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1.4 The Deutsch Algorithm

The standard introductory example that is used to illustrate the fact that quantum
information processing can be more powerful than classical information processing
is Deutsch’s problem. Consider a function, f , that maps the set {0,1} to {0,1}.
If f (0) = f (1), then the function is constant, and if f (0) �= f (1), then we call
f balanced. The problem is, given an unknown function, we want to determine
whether it is constant or balanced. Classically we have to evaluate the function twice
to determine this, but, using a quantum circuit, it is only necessary to evaluate it
once. The quantum circuit that solves Deutsch’s problem is shown in Fig. 1.5.

Let us see how this circuit works. The lines represent qubits, and the action
proceeds from left to right. The gate labeled Uf is a two-qubit gate called an f-
Controlled-NOT (f-CNOT). Like the C-NOT gate it has both a control (upper) qubit
and a target (lower) qubit. The control qubit is not changed by the action of the gate,
but the target bit has f (x) added to it, modulo 2, where x is the value of the control
bit. That is, if the input to the gate is |x〉|y〉, where x and y are the values of the
control and target qubits, respectively, and are either 0 or 1, then the output is given
by |x〉|y+ f (x)〉. We have been given this gate, but we do not know what f is.

We shall now follow the qubits through the circuit. We start them in the state

|Ψ0〉= |0〉1
1√
2
(|0〉2 −|1〉2), (1.10)

where qubit 1 is the upper qubit and qubit 2 is the lower qubit. After the first gate
the state is

|Ψ1〉= 1
2
(|0〉1 + |1〉1)(|0〉2 −|1〉2), (1.11)

and after the f-CNOT it is

|Ψ2〉 = 1
2
[|0〉1(|0+ f (0)〉2 −|1+ f (0)〉2)

+|1〉1(|0+ f (1)〉2 −|1+ f (1)〉2). (1.12)

Noting that

|0+ f (x)〉2 −|1+ f (x)〉2 = (−1) f (x)(|0〉2 −|1〉2), (1.13)

H H

Uf
Fig. 1.5 Quantum circuit
for Deutsch’s problem
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we have that

|Ψ2〉= 1
2
[(−1) f (0)|0〉1 +(−1) f (1)|1〉1](|0〉2 −|1〉2). (1.14)

Finally, after passing through the second Hadamard gate, the state is

|Ψ3〉 = 1

2
√

2
{|0〉1[(−1) f (0) + (−1) f (1)]

+|1〉1[(−1) f (0)− (−1) f (1)]}(|0〉2 −|1〉2). (1.15)

Examining this expression, we see that if the function is constant, the first qubit
is in the state |0〉 and if the function is balanced the first qubit is in the state |1〉.
Therefore, by measuring the first qubit in the computational basis, we can determine
whether f is constant or balanced. Note that the f-CNOT was used only once, so that
the function was only evaluated once. The reason this procedure works is that what
goes into the f-CNOT gate is a superposition of two input values, |0〉 and |1〉, and the
function is evaluated on both of them at once (in the expression for |Ψ2〉, both f (0)
and f (1) appear). By carefully manipulating these values we can obtain information
about the global properties of the function.

What we cannot do is obtain more than one value of the function if we evaluate
it only once. Suppose we send the state (1/

√
2)(|0〉1 + |1〉1)|0〉2 into the f-CNOT

gate. We have

1√
2
(|0〉1 + |1〉1)|0〉2 → 1√

2
(|0〉1| f (0)〉2 + |1〉1| f (1)〉2). (1.16)

If we measure this state in the computational basis, we will obtain one of the values
of f , and which one we obtain will be random. The measurement destroys the
information about the other value of f that is present in the state. The lesson here
is that we can use superpositions to evaluate a function on many different values
of its argument simultaneously, but we have to be clever about how we use this
information.

The example of Deutsch’s problem tells us several things. The first is that there
are gains to be had by representing information by quantum systems. The second
is that finding how to produce these gains is far from straightforward. And last but
not least, it shows that the final step in the algorithm is a measurement to read out
the final state of the system. These are general features of all protocols and in the
following chapters we will take an in-depth look at all of these ingredients.

First, in Chap. 2, we take a look on pure and mixed quantum states and how they
can be used to represent information. In Chap. 3 we study their intrinsic quantum
features, entanglement as a resource for quantum information and quantum com-
puting, in particular. Generalized dynamics, operations and Kraus representation, is
the subject of Chap. 4. The theory of quantum measurements, including generalized
measurements, is presented in Chap. 5. Thus, the first five chapters contain what we
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can call the toolbox of quantum information theory. We then put these tools to good
use in the rest of the book. In Chap. 6 we take a look at quantum communication;
Chap. 7 deals with quantum computing (quantum algorithms, in particular). We
included a rapidly evolving field, quantum machines, in Chap. 8. Finally, Chap. 9
deals with the main enemy: the inevitable influence of the environment, leading to
decoherence and the protecting of quantum information (quantum error correction,
in particular).

1.5 Problems

1. (a) Find the matrix corresponding to the Hadamard gate in the computational
basis. (b) Find the matrix corresponding to the C-NOT gate in the two-qubit
computational basis. (c) Check to see if the matrices in (a) and (b) are unitary.

2. Let us denote the unitary operator that implements a C-NOT gate by Dab, where
a is the control bit and b is the target bit. Let |ψ〉=α|0〉+β |1〉 be a general qubit
state, and let |± x〉 be the states given by |± x〉= (|0〉± |1〉)/√2.

(a) We want to see what happens if the states |±x〉 are the input target bit states.
Find the states Dab|ψ〉a|± x〉b.

(b) We can use the C-NOT to implement a one-parameter group of operations
on a qubit probabilistically. Start by calculating

Dab|ψ〉a(cosθ |+ x〉b + isinθ |− x〉b).

Now measure the target qubit to see if it is in |0〉b, or |1〉b. Find the
probability that it is in |0〉b, and show that if it is, the control qubit is in
the state exp(iθσz)|ψ〉a, where σz|0〉= |0〉 and σz|1〉=−|1〉.

3. The function that we considered in connection with Deutsch’s algorithm is a
special case of the so-called Boolean functions. A Boolean function f (n) maps
the set of binary numbers {0,1, . . . ,2n − 1} to {0,1}. We have shown that there

are four different Boolean functions for n = 1, f (1)1 , f (1)2 , f (1)3 , f (1)4 . Two of them
are constant and two of them are balanced.

(a) Work out the truth table for each of these functions.
(b) Find the corresponding f-C-NOT gate for each.
(c) Show that they are unitary.

4. (a) A SWAP gate is a two-qubit gate that has the action |ψ〉a|φ〉b → |φ〉a|ψ〉b.
Show that a SWAP gate can be constructed from three C-NOT gates.

(b) A Controlled-PHASE gate is a two-qubit gate, with qubit a as the control
qubit and qubit b as the target qubit. The control qubit does not change, and if
the control qubit is in the state |0〉a neither does the target qubit. If the control
bit is in the state |1〉a, then the gate acts as |1〉a|0〉b →|1〉a|0〉b and |1〉a|1〉b →
−|1〉a|1〉b. Show that a controlled-PHASE gate can be constructed from a
C-NOT gate and two single-qubit gates.
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Chapter 2
The Density Matrix

We are going to require a more general description of a quantum state than that given
by a state vector. The density matrix provides such a description. Its use is required
when we are discussing an ensemble of pure states or when we are describing a
subsystem of a larger system.

2.1 Ensembles and Subsystems

Let us look at ensembles first. Suppose that we have a collection of objects, some
of which are in the quantum state |ψ1〉, some of which are in |ψ2〉, and so on. In
particular, if we choose an object from the ensemble, the probability that it is in
state |ψ j〉 is p j. We want to find the expectation value of some observable, Q, in this
ensemble. We pick one of the objects in the ensemble and measure Q, pick another,
and do the same. We repeat this process many times. If all of the objects were in
the state |ψ j〉, the expectation value of Q would be 〈ψ j|Q|ψ j〉, but in reality, objects
with this state appear only with a probability p j. Therefore, the expectation of Q in
the ensemble is given by

〈Q〉= ∑
j

p j〈ψ j|Q|ψ j〉= Tr(Qρ), (2.1)

where we have defined the operator ρ , which is the density matrix corresponding to
the ensemble, to be

ρ = ∑
j

p j|ψ j〉〈ψ j|. (2.2)

Now let us look at subsystems. Suppose we have a large system composed of two
subsystems, A and B. The Hilbert spaces for the quantum states of the subsystems
are HA and HB, so that the Hilbert space for the entire system is HA ⊗HB. Let
{|m〉A} be an orthonormal basis for HA and {|n〉B} be an orthonormal basis for HB.

J.A. Bergou and M. Hillery, Introduction to the Theory of Quantum Information
Processing, Graduate Texts in Physics, DOI 10.1007/978-1-4614-7092-2 2,
© Springer Science+Business Media New York 2013
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Now if XA is an observable on subsystem A, then the operator corresponding to it in
the total Hilbert space is XA ⊗ IB, where IB is the identity on HB. If |Ψ〉 is the state
of the entire system, then the expectation value of XA is given by

〈XA〉 = 〈Ψ|XA ⊗ IB|Ψ〉
= ∑

m
∑
n
〈Ψ|XA ⊗ IB(|m〉A|n〉B)(A〈m|B〈n|)|Ψ〉

= ∑
m

A〈m|
(

∑
n

B〈n|Ψ〉〈Ψ|n〉B

)
XA|m〉A. (2.3)

If we now define

ρA = ∑
n

B〈n|Ψ〉〈Ψ|n〉B = TrB(|Ψ〉〈Ψ|), (2.4)

then we have that

〈XA〉= TrA(ρAXA). (2.5)

The operator ρA is known as the reduced density operator for subsystem A, and it
can be used to evaluate the expectation value of any observable that pertains only to
subsystem A.

Now let us look at two examples. First, we have an ensemble in which half of the
qubits are in the state |0〉 and the other half are in the state |1〉. The density matrix
for this ensemble is

ρ =
1
2
|0〉〈0|+ 1

2
|1〉〈1|. (2.6)

Suppose we want to find the expectation value of σz in this ensemble, where
σz|0〉=|0〉 and σz|1〉=−|1〉. We have that

〈σz〉= Tr(σzρ) = 0. (2.7)

Next, we have a two-qubit state

|Ψ〉= 1√
2
(|0〉A|1〉B + |1〉A|0〉B), (2.8)

and we would like to find the reduced density matrix for subsystem A. We have that

ρA = Tr(|Ψ〉〈Ψ|) = 1
2

IA. (2.9)

Defining σzA = σz ⊗ IB, we have that

〈σAz〉= Tr(σzρA) = 0. (2.10)
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Note that if ρ is a one-dimensional projection, i.e., ρ = |ψ〉〈ψ |, then for any
observable Q,

〈Q〉= Tr(ρQ) = 〈ψ |Q|ψ〉, (2.11)

so that the density matrix corresponds to the system being in the state |ψ〉. If ρ is of
this form we call it a pure state. If not, it is called a mixed state.

2.2 Properties

In order for an operator to be a density matrix, it must satisfy several properties.
In fact, any operator satisfying these properties is a valid density matrix:

1. Tr(ρ) = 1.
This follows from the fact that

Tr(ρ) = Tr

(
∑

j
p j|ψ j〉〈ψ j|

)
= ∑

j
p j = 1. (2.12)

2. A density matrix is hermitian, ρ = ρ†.
3. A density matrix is positive, 〈ψ |ρ |ψ〉 ≥ 0 for all |ψ〉.

This follows from

〈ψ |ρ |ψ〉= ∑
j

p j|〈ψ |ψ j〉|2 ≥ 0. (2.13)

We also note that an operator is positive if and only if all of its eigenvalues are
greater than or equal to zero, which implies that the eigenvalues of any density
matrix must satisfy this property. In addition, because the trace of a density
matrix is one and the trace is just the sum of the eigenvalues, we have that if
λ j is an eigenvalue of a density matrix, then 0 ≤ λ j ≤ 1.

We now want to use these requirements to find additional properties of the set of
density matrices. The first is a simple way of identifying pure states.

Theorem. The density matrix ρ is a pure state if and only if Tr(ρ2) = 1.

Proof. If ρ is pure, then ρ = |ψ〉〈ψ |, and ρ2 = ρ . This immediately implies that
Tr(ρ2) = 1. Now assume that Tr(ρ2) = 1. Because ρ is hermitian, we can express
it as

ρ = ∑
j

λ jPj, (2.14)

where λ j are the nonzero eigenvalues of ρ and Pj are the corresponding spectral
projections. This immediately implies that

ρ2 = ∑
j

λ 2
j Pj. (2.15)
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Denoting the rank of Pj by n j we have that

Tr(ρ) = 1 ⇒ ∑
j

λ jn j = 1

Tr(ρ2) = 1 ⇒ ∑
j

λ 2
j n j = 1, (2.16)

and subtracting these two equations gives us

∑
j
(λ j −λ 2

j )n j = 0. (2.17)

Because each eigenvalue is between 0 and 1, each term in the above sum is greater
than or equal to zero, which further implies that each term must be equal to zero.
The only way this can happen is if each λ j is equal to zero or one, and we have
assumed that λ j > 0, so that λ j = 1. The only way that this can be consistent with
the fact that the sum of the eigenvalues times their multiplicities is one is if only
one of them is nonzero, and this eigenvalue has a multiplicity of one. Therefore, ρ
is equal to a rank-one projection, which means that it is a pure state. ��

2.3 Pure States and Mixed States of a Qubit

In the previous chapter we introduced the Bloch sphere as a convenient repre-
sentation for state vectors of qubits, that is, qubit pure states. If we extend this
representation to include the interior of the sphere, it can be used to represent mixed
states of qubits as well. In order to see this we expand a general qubit density matrix,
which is a 2×2 matrix, in terms of the identity matrix and the Pauli matrices, which
form a complete basis for the space of a set of 2× 2 matrices:

ρ =
1
2
(I + nxσx + nyσy + nzσz). (2.18)

This satisfies the condition Tr(ρ) = 1, and the fact that ρ is hermitian implies that
nx, ny, and nz are real. This equation implies that

ρ =
1
2

(
1+ nz nx − iny

nx + iny 1− nz

)
, (2.19)

which further implies that det ρ = (1− |n|2)/4. The fact that ρ is positive means
that its determinant must be greater than or equal to zero and, therefore, 1 ≥ |n|. We
represent the density matrix ρ by the vector n, which lies in the unit ball.

We know that if ρ is a pure state, its corresponding vector will have its endpoint
on the surface of the Bloch sphere. Let us show the converse. If |n|= 1 then Tr(ρ)=1
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and det ρ = 0. This implies that one of the eigenvalues of ρ is zero and the other is
one. If |u〉 is the eigenvector with eigenvalue one, where ‖u‖= 1, then ρ = |u〉〈u|,
and ρ is a pure state.

Given a qubit density matrix, ρ , we can easily find the vector corresponding to
it. The identity Tr(σ jσk) = δ jk, where j,k ∈ {x,y,z}, gives us that

n j = Tr(ρσ j). (2.20)

Most density matrices can correspond to many different ensembles. We give
some examples. In the first example, we define the states

|± x〉= 1√
2
(|0〉± |1〉), (2.21)

which are eigenstates of σx. Then we can write the density matrix of a maximally
mixed state in two ways,

ρ =
1
2

I =
1
2
(|0〉〈0|+ |1〉〈1|) = 1

2
(|+ x〉〈+x|+ |− x〉〈−x|). (2.22)

The first decomposition corresponds to an ensemble in which half of the elements
are in the state |0〉 and half in the state |1〉, and the second corresponds to an
ensemble in which half of the elements are in the state |+ x〉 and half in the state
| − x〉. These ensembles are different, but they are described by the same density
matrix.

In the second example, we define the states

|u±〉= 1√
4± 2

√
2

[
(
√

2± 1)|0〉± |1〉
]
. (2.23)

Then

ρ =
1
2
(|0〉〈0|+ |+ x〉〈+x|) =

(
1
2
+

√
2

4

)(
|u+〉〈u+|+

(
1
2
−

√
2

4

)
|u−〉〈u−|

)
,

(2.24)

again describing two different ensembles by the same density matrix.
In general, if ρ1 and ρ2 are density matrices, so is

ρ(θ ) = θρ1 +(1−θ )ρ2, (2.25)

where 0 ≤ θ ≤ 1. This implies that the set of density matrices is convex. Most
density matrices can be expressed as a sum of other density matrices in many
different ways, and each of these decompositions will, in general, correspond to
a different ensemble. The two examples above were just special cases of this
general statement. This, however, is not true for pure sates; they have a unique
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decomposition. To see this suppose that ρ = |ψ〉〈ψ | is a pure state density matrix
and that it can also be expressed as a convex sum of two other density matrices,
ρ(θ ) = θρ1 +(1−θ )ρ2. Then if |ψ⊥〉 satisfies 〈ψ⊥|ψ〉= 0, then

0 = 〈ψ⊥|ρ(θ )|ψ⊥〉= θ 〈ψ⊥|ρ1|ψ⊥〉+(1−θ )〈ψ⊥|ρ2|ψ⊥〉. (2.26)

Since both terms on the right-hand side are ≥ 0, it follows that

〈ψ⊥|ρ1|ψ⊥〉= 〈ψ⊥|ρ2|ψ⊥〉= 0. (2.27)

This equation is true for any vector orthogonal to |ψ〉. Therefore, ρ1 = ρ2 = |ψ〉〈ψ |
and the representation of any pure state is unique. Pure states cannot be expressed as
a sum of other density matrices. These are the only states with this property, because
if ρ is mixed, it is given by ρ = ∑ j p j|ψ j〉〈ψ j|, which is just a convex sum of pure
states.

2.4 Pure State Decompositions and the Ensemble
Interpretation

Next we turn our attention to the ways in which a density matrix can be decomposed
into pure states. The main result is summarized in the following:

Theorem. ρ can be expressed as ∑i pi|ψi〉〈ψi| and ∑i qi|φi〉〈φi| iff

√
pi|ψi〉= ∑

j

Ui j
√

q j|φ j〉,

where Ui j is a unitary matrix and we “pad” whichever set of vectors is smaller with
additional 0 vectors so that the sets have the same number of elements.

Proof. Let |ψ̃i〉 = √
pi|ψi〉 and |φ̃i〉 = √

qi|φi〉. We first prove the if part, meaning
that the condition is sufficient. To this end we suppose |ψ̃ j〉 = ∑ j Ui j|φ̃i〉 for Ui j

unitary. Then

∑
i
|ψ̃i〉〈ψ̃i| = ∑

i, j,k

Ui jU
∗
ik|φ̃ j〉〈φ̃k|= ∑

j,k

(
∑

i
U†

kiUi j

)
|φ̃ j〉〈φ̃k|

= ∑
j,k

δ jk|φ̃ j〉〈φ̃k|= ∑
j
|φ̃ j〉〈φ̃ j |. (2.28)

To prove the only if part, that the condition is also necessary, is considerably more
work. We now suppose

ρ =
N1

∑
i
|ψ̃i〉〈ψ̃i|=

N2

∑
i
|φ̃i〉〈φ̃i|, (2.29)
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and assume N1 ≥N2. Since ρ is a positive operator, it has the spectral representation

ρ =
Nk

∑
k=1

λk|k〉〈k|=
Nk

∑
k=1

|k̃〉〈k̃|, (2.30)

where 〈k|k′〉 = δk,k′ and |k̃〉 =
√

λk|k〉. First, we want to show that |ψ̃i〉 lies in the
subspace spanned by {|k〉}. To do this, let Hk denote the space spanned by {|k〉}.
Suppose |ψ〉 ∈ H⊥

k , then

〈ψ |ρ |ψ〉= 0 =
N1

∑
i=1

|〈ψ̃i|ψ〉|2. (2.31)

From here 〈ψ̃i|ψ〉= 0 follows and so |ψ̃i〉 ∈ (H⊥
k )

⊥ =Hk. Therefore, we can express
|ψ̃i〉 as

|ψ̃i〉=
Nk

∑
k=1

cik|k̃〉. (2.32)

We can use this representation in Eq. (2.29) to obtain

ρ =
N1

∑
i=1

|ψ̃i〉〈ψ̃i|=
Nk

∑
k,k′=1

(
N1

∑
i=1

cikc∗ik′

)
|k̃〉〈k̃′|=

Nk

∑
k=1

|k̃〉〈k̃|. (2.33)

Since the operators |k̃〉〈k̃′| are linearly independent we have that ∑N1
i=1 cikc∗ik′ = δkk′ .

Thus cik form Nk orthogonal vectors of dimension N1 and N1 ≥ Nk. In other words,
cik (k = 1, . . . ,Nk) form the first Nk columns of a matrix containing N1 rows that
can be extended to an N1 ×N1 unitary matrix in the following way. Find N1 −Nk

orthonormal vectors of dimension N1 that are orthogonal to the vectors cik and call
them c′ik, where i = 1, . . . ,N1 and k = Nk + 1, . . . ,N1. Obviously, the matrix

Cik ≡
{

cik for k = 1, . . . ,Nk

c′ik for k = Nk + 1, . . . ,N1
(2.34)

for i = 1, . . . ,N1 is an N1 ×N1 unitary matrix. If we introduce the vectors

⎛
⎝ |ψ̃〉

⎞
⎠=

⎛
⎜⎝

|ψ̃1〉
...

|ψ̃N1〉

⎞
⎟⎠ , (2.35)

and

⎛
⎝ |k̃N1〉

⎞
⎠=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|k̃1〉
...

|k̃Nk 〉
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.36)
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where the last N1 −Nk elements of
(|k̃N1〉

)
are 0, we can write

⎛
⎝ |ψ̃〉

⎞
⎠=

⎛
⎜⎜⎝

. . .

Cik
. . .

⎞
⎟⎟⎠
⎛
⎝ |k̃N1〉

⎞
⎠ , (2.37)

or, formally,

|ψ̃〉=C|k̃N1〉. (2.38)

In an entirely similar way, we can show that |φ̃i〉 also lies in the subspace spanned
by {|k〉}. Therefore, we can express |φ̃i〉 as

|φ̃i〉=
Nk

∑
k=1

dik|k̃〉. (2.39)

We can use this representation in Eq. (2.29) to obtain

ρ =
N2

∑
i=1

|φ̃i〉〈φ̃i|=
Nk

∑
k,k′=1

(
N2

∑
i=1

dikd∗
ik′

)
|k̃〉〈k̃′|=

Nk

∑
k=1

|k̃〉〈k̃|. (2.40)

Since the operators |k̃〉〈k̃′| are linearly independent we have that ∑N2
i=1 dikd∗

ik′ = δkk′ .
Thus dik form Nk orthogonal vectors of dimension N2 and N1 ≥ N2 ≥ Nk. In other
words, dik (k = 1, . . . ,Nk) form the first Nk columns of a matrix containing N2 rows
that can be extended to an N2×N2 unitary matrix in the following way. Find N2−Nk

orthonormal vectors of dimension N2 that are orthogonal to the vectors dik and call
them d′

ik, where i = 1, . . . ,N2 and k = Nk + 1, . . . ,N1. Obviously, the matrix

D′
ik ≡

{
dik for k = 1, . . . ,Nk

d′
ik for k = Nk + 1, . . . ,N2

(2.41)

for i = 1, . . . ,N2 is an N2 ×N2 unitary matrix. Then we introduce the vector

⎛
⎝ |φ̃ 〉

⎞
⎠=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|φ̃1〉
...

|φ̃N2〉
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.42)
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where the last N1−N2 elements are 0 and unitarily extend D′
ik into an N1×N1 matrix

Dik by the following definition:

D =

⎛
⎜⎜⎜⎜⎝

. . .

D′
ik 0

. . .

0 I

⎞
⎟⎟⎟⎟⎠ , (2.43)

so that it is Eq. (2.41) for the first N2 dimensions and identity for the remaining
N1 −N2 dimensions. With these definitions we can now write

⎛
⎝ |φ̃〉

⎞
⎠=

⎛
⎜⎜⎜⎜⎝

. . .

D′
ik 0

. . .

0 I

⎞
⎟⎟⎟⎟⎠

⎛
⎝ |k̃N1〉

⎞
⎠ , (2.44)

or, formally,

|φ̃ 〉= D|k̃N1〉. (2.45)

Comparing Eqs. (2.38) and (2.45), we finally obtain

|ψ̃〉=CD†|φ̃ 〉. (2.46)

Since the matrix U =CD† is unitary by construction, this completes the proof. ��

2.5 A Mathematical Aside: The Schmidt Decomposition
of a Bipartite State

In the previous section we have looked at the possible decompositions of the density
matrix in terms of convex sums of pure state density matrices. The decomposition
is not unique, but the possible decompositions of the same density matrix are
connected via the theorem proved in the previous section. Namely, the renormalized
pure states, with appropriate zero vectors included if their numbers are different, are
connected via a unitary transformation. Each of these decompositions gives rise to
a different ensemble interpretation. The ensembles are not unique, but the various
decompositions cannot be discriminated.

In this section we want to take a look at the other possible interpretation in which
the mixed state density matrix emerges as the state of the subsystem of a larger
system that itself is in a pure state. Therefore, we now examine the different ways
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in which a given density matrix ρ can be represented as the reduced density matrix
for part of a pure bipartite state. To do this, we first need to derive the Schmidt
decomposition of a bipartite state.

Let |ψ〉AB ∈HA ⊗HB, and {|ui〉A} be an orthonormal basis for HA and {|v j〉B}
be an orthonormal basis for HB. Then an arbitrary bipartite state can be expanded
as a double sum over the product basis {|ui〉|v j〉}, as

|ψ〉AB = Σi, jci j|ui〉A|v j〉B. (2.47)

It is easy to see that this double sum expression can be written as a single sum,

|ψ〉AB = Σi|ui〉|ṽi〉B, (2.48)

where we introduced |ṽi〉 = Σ jci j|v j〉B. The price to pay is that {|ṽi〉B} are not, in
general, orthonormal. Therefore, it is somewhat surprising that for bipartite states,
there exists a single sum expansion where only diagonal elements of a product basis,
{|ui〉|wi〉}, enter.

In order to show this, suppose that {|ui〉} is the basis in which ρA =
TrB(|ψ〉ABAB〈ψ |) is diagonal,

ρA = Σiλi|ui〉〈ui|, (2.49)

where 0 ≤ λi ≤ 1. But we also have

ρA = TrB[Σ(i, j)(|ui〉A|ṽi〉B)(A〈u j|B〈ṽ j|)] = Σ(i, j)B〈ṽ j|ṽi〉B|ui〉AA〈u j|. (2.50)

Therefore, we must have B〈ṽ j|ṽi〉B = δi jλi and hence {|ṽi〉} are orthogonal.
Let {|ui〉A | i = 1, . . . ,N,whereN ≤ dimHA} correspond to nonzero values of λi

and set |wi〉B = 1√
λi
|ṽi〉B. Hence {|wi〉B} are orthonormal. Then

|ψ〉AB = ΣN
i=1

√
λi|ui〉A|wi〉B, (2.51)

where N ≤ dimHA and by a similar argument N ≤ dimHB. Note that

ρB = TrA(|ψ〉ABAB〈ψ |) = ΣN
i=1λi|wi〉BB〈wi|, (2.52)

so that {|wi〉} are eigenstates of ρB having nonzero eigenvalues and ρA and ρB

have the same nonzero eigenvalues. The double sum expansion in Eq. (2.47) always
exists. It is somewhat surprising that the single sum expansion of Eq. (2.51), in terms
of orthonormal basis vectors, also exists for bipartite systems. This later is called the
Schmidt decomposition.
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2.6 Purification, Reduced Density Matrices,
and the Subsystem Interpretation

Equipped with the Schmidt decomposition, we now look at purifications. Suppose,
we have a density matrix

ρA = ΣN
i=1 pi|ψi〉AA〈ψi|, (2.53)

where |ψi〉 ∈HA. We want to find a state |Φ〉AB ∈HA ⊗HB on a larger space so that

ρA = TrB(|Φ〉ABAB〈Φ|). (2.54)

|Φ〉AB is called a purification of ρA.
One way to do this is to choose dim(HB) ≥ N and let {|ui〉} be an orthonormal

basis for HB. Then

|Φ〉AB = Σi
√

pi|ψi〉A|ui〉B (2.55)

is called a purification of ρA.
Purifications are not unique. But if two purifications are in the same Hilbert

space, we can still say something about their mutual relationship. Suppose we have
two different states, |Φ1〉AB and |Φ2〉AB, both of which are in HA ⊗HB and both
of which are purifications of ρA. How are they related? To answer this question,
we use the Schmidt decomposition, |Φ1〉AB = Σk

√
λk|uk〉A|vk〉B and |Φ2〉AB =

Σk

√
λk|uk〉A|wk〉B. A part of both states, eigenvalues and eigenvectors of ρA, is the

same. {|vk〉B} and {|wk〉B} form orthonormal sets, so there is at least one unitary
operator on HB, which we call UB, such that

|wk〉B =UB|vk〉B. (2.56)

Then |Φ2〉AB = (IA ⊗UB)|Φ1〉AB.

2.7 Problems

1. This problem combines elements from Chaps. 1 and 2 as it uses circuits with
mixed states. We shall consider a complicated quantum circuit, one consisting of
three qubits and four C-NOT gates. One of its uses is as a “quantum cloner.” The
operator for this circuit is given by U = DcaDbaDacDab (remember that Dab is a
C-NOT gate with a as the control qubit and b as the target qubit).

(a) Find U(|ψ〉a|Ψ+〉bc, where

|Ψ+〉bc =
1√
2
(|0〉b|0〉c + |1〉b|1〉c),

and U(|ψ〉a|0〉b|+ x〉c). What you should find is that in the first case |ψ〉
comes out of output a and in the second case it comes out of output b.
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(b) Now find

|Φ〉abc =U |ψ〉a(c1|Ψ+〉bc + c2|0〉b|+ x〉c),

and find the condition on the constants c1 and c2 so that the input state is
normalized. The idea here is that by combining the effects of the two input
states in part (a), some of the information about |ψ〉 will end up in qubit a
and some will end up in qubit b. How much ends up in each qubit depends
on the values of c1 and c2.

(c) Find the reduced density matrixes for the outputs of qubits a and b, i.e., find

ρa = Trbc(|Φ〉abc abc〈Φ|) ρb = Trac(|Φ〉abc abc〈Φ|)

In both cases your answer should be of the form

ρ = s|ψ〉〈ψ |+ 1− s
2

I,

where 0 ≤ s ≤ 1. Find s in the case that ρa = ρb. Notice that what this device
does is to produce two imperfect copies of the state |ψ〉.

2. The Schmidt representation for states of a bipartite system is extremely con-
venient, and so it is natural to ask if such a representation exists for tripartite
systems. Unfortunately, the answer is no. Show that there exist three-qubit states
that cannot be written in the form

|Ψ〉abc =
1

∑
j=0

√
λ j|u j〉a|v j〉b|wj〉c,

where {u j| j = 0,1}, {v j| j = 0,1}, and {wj| j = 0,1} are orthonormal bases.
3. Suppose that Alice can prepare a density matrix only in the computational basis.

She prepares a bipartite state of the form

ρ =
1

∑
j,k=0

p jk| j〉〈 j|⊗ |k〉〈k|.

She sends one qubit to Bob and one qubit to Charlie. If Bob and Charlie do not
measure in the computational basis, the correlations they can obtain are limited.
Show that if they measure in the | ± x〉 basis their results will be uncorrelated,
that is, they are equally likely to get the same result as opposite results.
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Chapter 3
Entanglement

3.1 Definition of Entanglement

We begin with some definitions. Consider a quantum state in a tensor product Hilbert
space, H=HA ⊗HB. A pure state is not entangled if it is of product form

|ψ〉AB = |φ1〉A ⊗|φ2〉B, (3.1)

otherwise, it is entangled. A density matrix, ρAB, is separable if it is a mixture of
product states, i.e., if it is of the form

ρAB =∑
i

piρAi ⊗ρBi, (3.2)

where 0 ≤ pi ≤ 1, and ∑i pi = 1. If ρAB is not separable, it is entangled. For
a pure state that is not entangled, measurements on systems A and B are not
correlated. For a separable density matrix there are only classical correlations
between measurements conducted on the two systems. As we shall see, entangled
states can lead to much stronger correlations than are possible classically. Finally,
we call a state maximally entangled if it is entangled and its reduced density matrices
are proportional to the identity.

Let us briefly look at some two-qubit examples. The pure state |0〉A|0〉B is not
entangled, and neither is the density matrix

ρAB =
1
3
|0〉A A〈0|⊗ |0〉B B〈0|+ 2

3
|1〉A A〈1|⊗ |1〉B B〈1|. (3.3)

J.A. Bergou and M. Hillery, Introduction to the Theory of Quantum Information
Processing, Graduate Texts in Physics, DOI 10.1007/978-1-4614-7092-2 3,
© Springer Science+Business Media New York 2013
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On the other hand, the so-called Bell states,

|Φ±〉AB =
1√
2
(|01〉AB ±|10〉AB)

|Ψ±〉AB =
1√
2
(|00〉AB ±|11〉AB), (3.4)

are maximally entangled.

3.2 Bell Inequalities

Because entangled states can have correlations that go beyond what is possible
classically, they are a valuable resource in quantum communication protocols, for
example, as we shall see, in teleportation and dense coding. Before getting to these,
however, let us see what is meant by nonclassical correlations, which means having
a look at Bell inequalities.

These inequalities arose from a consideration of alternatives to quantum mechan-
ics known as local hidden-variable theories. The idea behind them is that, unlike
in quantum mechanics, observables have actual values but we do not know what
they are, because they depend on some “hidden variables” about which we know
nothing. In quantum mechanics, observables do not have values until we measure
them. Bell inequalities show that under very general assumptions, hidden variables
produce predictions that conflict with quantum mechanics. These can then be tested
experimentally, and the experiments support quantum mechanics.

The basic setup for Bell inequalities consists of two observers, Alice and Bob,
and a source that produces two-particle states. One particle is sent to Alice and
the other to Bob. Alice can measure one of two observables for her particle, a1

and a2. These observables can each be either 1 or −1. Similarly, Bob can measure
either b1 or b2, and these can also be either 1 or −1. The idea is to run this
Gedankenexperiment many times and use the results to compute the quantities
〈aib j〉.

Let us first see how a hidden-variable theory would describe this situation. The
source produces, along with the particles, instruction sets that go with them. For
example, one instruction set might say, if Alice measures a1 she will get 1 if she
measures a2, she gets −1, and if Bob measures b1 he gets −1 and if he measures
b2 he gets −1, or more briefly, (a1 = 1,a2 = −1,b1 = −1,b2 = −1). We do not
know which instruction set the source will produce, and so this, the instruction
set, is our hidden variable. The adjective local is applied to this kind of a hidden-
variable theory, because the instructions to Alice’s particle do not depend on what
Bob decides to measure. That is, the instruction set does not say something like, if
Alice measures a1, then she gets 1 if Bob measures b1 and −1 if Bob measures
b2. We shall consider only local theories. We assume that each instruction set



3.2 Bell Inequalities 25

occurs with some probability. This is equivalent to assuming that we have a joint
probability distribution for the variables, a1, a2, b1, and b2, which we shall denote
as P(a1,a2,b1,b2). We would then compute the expectation value 〈a1b1〉, as

〈a1b1〉=
1

∑
a1=−1

. . .
1

∑
b2=−1

a1b1P(a1,a2,b1,b2). (3.5)

We now want to consider the quantity

S = 〈a1b1〉+ 〈a1b2〉+ 〈a2b1〉− 〈a2b2〉

=
1

∑
a1=−1

. . .
1

∑
b2=−1

[a1(b1 + b2)+ a2(b1 − b2)]P(a1,a2,b1,b2). (3.6)

Call the term in brackets multiplying the probability distribution X . We see that
X = a1(b1 +b2) if b1 = b2 and X = a2(b1 −b2) if b1 =−b2. In both cases, |X |= 2,
so that

|S| ≤ 2
1

∑
a1=−1

. . .
1

∑
b2=−1

P(a1,a2,b1,b2) = 2. (3.7)

This is a Bell inequality. Note that we can derive similar inequalities simply by
interchanging a1 and a2, b1 and b2, or both.

Now let us describe the same experiment using quantum mechanics, and assume
that we are measuring the spins of two spin-1/2 particles. Assume

a1 = σxa a2 = σya

b1 = σxb b2 = σyb, (3.8)

and that the source puts out particles in the state

|Ψ〉= 1√
2
(|00〉+ eiπ/4|11〉), (3.9)

where

σx|0〉= |1〉 σy|0〉 = i|1〉
σx|1〉= |0〉 σy|1〉 =−i|0〉. (3.10)

Note that |Ψ〉 is an entangled state. We have that 〈a1b1〉, 〈a1b2〉, and 〈a2b1〉 are all
equal to

√
2/2 and 〈a2b2〉 is equal to −√

2/2. This gives us S = 2
√

2, which violates
the Bell inequality.

From this we can conclude two things. First, quantum mechanics cannot be de-
scribed by a local hidden-variable theory. Second, in the hidden-variable theory, the
correlations came from a classical joint distribution function. Therefore, quantum
mechanics can produce stronger correlations than classical systems can.
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Next we want to study the connection of the Bell inequality to entanglement. We
shall do this by showing that if |Ψ〉 is not entangled, then the Bell inequality will
be satisfied. If |Ψ〉 is a product state then the expectation values appearing in the
Bell inequality factorize, i.e., 〈aib j〉 = 〈ai〉〈b j〉. Define xi = 〈ai〉 and y j = 〈b j〉, for
i, j = 1,2, where −1 ≤ xi ≤ 1 and −1 ≤ y j ≤ 1. Let us denote by R the region in the
y1,y2 plane given by {−1 ≤ y j ≤ 1| j = 1,2}. We then have that

S = x1(y1 + y2)+ x2(y1 − y2). (3.11)

Now suppose that y1 − y2 = c > 0, where c ≤ 2. This line intersects the boundary
of R on the line y1 = 1 at the point y1 = 1, y2 = 1− c and on the line y2 = −1 at
the point y1 = c− 1, y2 = −1. This implies that c− 2 ≤ y1 + y2 ≤ 2− c. Similarly,
if y1 − y2 = c < 0, where c > −2, then this line intersects the boundary of R on the
line y1 = −1 at the point y1 = −1, y2 = −1− c and on the line y2 = 1 at the point
y1 = c+ 1, y2 = 1. This implies that −c− 2 ≤ y1 + y2 ≤ 2+ c. We can summarize
both of these cases by the inequality, for |c| ≤ 2,

|c|− 2 ≤ y1 + y2 ≤ 2−|c|. (3.12)

We, therefore, have that if y1 − y2 = c, then S = x1(y1 + y2)+ x2c, and

− 2 ≤ |x1|(|c|− 2)−|x2||c| ≤ S ≤ |x1|(2−|c|)+ |x2||c| ≤ 2. (3.13)

Hence, we can conclude that for a pure state that is not entangled, the Bell inequality
will be satisfied. This conclusion can be easily extended to separable states, because
a separable state is just an incoherent superposition of product states, and for each
of the product states the Bell inequality is satisfied.

Now, that we have seen what kind of states satisfy the Bell inequality, let us
address the opposite end and find the maximum violation of this inequality that
quantum mechanics can provide. This is given by Tsirelson’s inequality. In order to
derive the Tsirelson bound, we note the a j and b j are hermitian operators with eigen-
values ±1 and hence a2

j = b2
j = I. Let us further define the operator C = a1b1+a1b2

+a2b1 − a2b2. We then have

2
√

2−C =
1√
2
(a2

1 + a2
2 + b2

1 + b2
2)−C =

1√
2

(
a1 − b1 + b2√

2

)2

+
1√
2

(
a2 − b1 + b2√

2

)2

≥ 0. (3.14)

Therefore, 〈C〉 ≤ 2
√

2. Similarly, by changing all the negative signs to positive ones
in the above equation, one can show that 〈C〉 ≥ −2

√
2, and, since S = 〈C〉, we have

that

|S| ≤ 2
√

2, (3.15)

which is Tsirelson’s inequality.
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Table 3.1 Bob’s possible operations and the resulting two-qubit state
at Alice’s site

Bob’s operation I σx σy σz

Alice’s state |Φ−〉 |Ψ−〉 −i|Ψ+〉 −|Φ+〉

3.3 Representative Applications of Entanglement:
Dense Coding and Teleportation

In this section we look at some interesting applications of entanglement that reveal
its power as a resource for quantum information-related tasks.

3.3.1 Dense Coding

In this protocol two parties, traditionally called Alice and Bob, can communicate
two bits of classical information by exchanging only one qubit. The key is
entanglement, of course. We assume that Alice and Bob share an entangled pair of
qubits in the state |Φ−〉= 1√

2
(|01〉AB −|10〉AB. Out of a pair of qubits in this state,

Alice has one of the qubits, labeled A, in her possession while the other, labeled B,
is in Bob’s possession. Bob then performs one of four operations on his qubit and
sends it back to Alice. The four operations and the resulting two-qubit state, now
entirely at Alice’s site, are listed in Table 3.1.

The point is that Alice now has one of four orthogonal states and she can
distinguish them perfectly. After performing a measurement in the Bell basis, Alice
will know with certainty which of the four operations Bob performed. Bob sent
only one particle, a single qubit, to Alice, but Alice can perfectly distinguish among
four classical alternatives, i.e., one (entangled) qubit carried two classical bits of
information.

3.3.2 Teleportation

Alice has a qubit, say A1 in some quantum state |ψ〉, in her possession. She wants
to transfer the quantum state of her qubit A1 onto Bob’s qubit B. Alice may not even
know what |ψ〉 is. Measuring |ψ〉 and transmitting the classical information that is
the result will not work; it is not enough information to reconstruct the state.

In the teleportation procedure Alice and Bob share an entangled pair A2, B in the
state |ψ〉A2B = 1√

2
(|01〉A2B − |10〉A2B). The total state of the three qubits, the one

whose state is to be teleported and the entangled pair, is then



28 3 Entanglement

Table 3.2 Alice’s measurement outcomes and Bob’s subsequent operations

Alice’s measurement yields |Φ+〉 |Φ−〉 |Ψ+〉 |Ψ−〉
Bob performs σz I (nothing) σzσx σx

|ψ〉A1 |ψ〉A2B =
1√
2
(α|0〉A1 +β |1〉A1)(|01〉A2B −|10〉A2B)

=
1√
2
(α|00〉A1A2 |1〉B −α|10〉A1A2 |0〉B

+β |10〉A1A2 |1〉B −β |11〉A1A2 |0〉B)

=
1
2
{|Φ+〉A1A2(−σz|ψ〉B)+ |Φ−〉A1A2(−|ψ〉B)

+ |Ψ+〉A1A2(−σxσz|ψ〉B)+ |Ψ−〉A1A2(σx|ψ〉B)}. (3.16)

The key is in the last line. When the total three-qubit state is decomposed in
terms of the four Bell basis states of the two qubits of Alice, the state of Bob’s
qubit associated with each of these terms is related in a simple way to the state
to be teleported. When Alice measures her state in the Bell basis, she tells Bob
over a classical channel what she got, and then Bob can apply the appropriate
operator to his qubit to recover Alice’s state. The four possible outcomes of
Alice’s measurement and the operations Bob performs corresponding to each of
the measurement results are listed in Table 3.2.

All information about |ψ〉 is transferred to Bob; none is left with Alice. After
teleportation Alice is left in possession of a Bell state. If someone else prepared the
state of the original A1 qubit for Alice, she will never learn its state in the process.
Nevertheless, the state will be faithfully teleported to Bob’s qubit B.

3.4 Conditions of Separability

How can we tell if a given density matrix is separable? Necessary and sufficient
conditions are known to exist for the simplest particular cases only. In general, there
are no known necessary and sufficient conditions to determine whether the state is
separable or entangled. There are, however, some sufficient conditions.

One of them is Bell inequality. For two qubits, choose a1 =�n1 ·�σ , a2 =�n2 ·�σ ,
b1 =�n3 ·�σ , b2 =�n4 ·�σ , with�n j being unit vectors. If ρAB violates a Bell inequality
for some choice of the unit vectors {�n j| j = 1, . . . ,4}, it is entangled. This is not a
particularly strong criterion as there is a large class of entangled states that satisfies
Bell inequalities.

A stronger and more general test was found by Peres, which is known as the
positive partial transpose (PPT) criterion. Consider a density matrix on HA ⊗HB of
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arbitrary dimensions. We have the density matrix elements in some product basis
ρmμ;nν = A〈m|⊗ B〈μ |ρ |n〉A ⊗|ν〉B.

The partial transposition of ρ is the density matrix with the matrix elements

ρTB
mμ;nν = ρmν;nμ . (3.17)

The operator ρTB depends on the basis in which the transpose is defined, but its
eigenvalues do not. We say a state is PPT if ρTB ≥ 0. A separable state is always
PPT. This is because if ρAB is separable then ρTB

AB = Σi piρAi ⊗ ρT
Bi, and if ρBi ≥ 0,

then ρT
Bi ≥ 0.

Therefore, if a partial transpose is not positive, the state is entangled. Thus, the
PPT condition is sufficient. For 2⊗ 2 (two-qubit) and 2⊗ 3 (qubit-qutrit) systems
the converse is also true: if a state is entangled the partial transpose is not positive.
Thus, for these systems, the PPT condition is also necessary.

As an example, consider the two-qubit state

ρAB = p|Φ−〉ABAB〈Φ−|+(1− p)|00〉ABAB〈00|. (3.18)

It can be shown that if p ≤ 1√
2

all Bell inequalities will be satisfied by this state.
Let us, however, apply the PPT condition to the same state. In the computational

basis {|00〉, |01〉, |10〉, |11〉}, the above density matrix can be written as

ρ =

⎛
⎜⎜⎝

1− p 0 0 0
0 p

2 − p
2 0

0 − p
2

p
2 0

0 0 0 0

⎞
⎟⎟⎠ . (3.19)

Its partial transpose with respect to B is

ρ =

⎛
⎜⎜⎝

1− p 0 0 − p
2

0 p
2 0 0

0 0 p
2 0

− p
2 0 0 0

⎞
⎟⎟⎠ . (3.20)

The eigenvalues can be determined from the secular equation det(ρTB − λ I) = 0,
which yields ( p

2
−λ

)2
(

λ 2 − (1− p)λ − p2

4

)
= 0, (3.21)

so that the eigenvalues are λ1,2 = p
2 and λ3,4 = 1

2 [(1 − p)± (1 − 2p+ 2p2)1/2].
Three of them are obviously positive. The fourth one is λ4 =

1
2{(1− p)− [(1− p)2

+p2]1/2} < 0 for p > 0. Therefore, for p > 0, the partial transpose is not positive
and the state is entangled. Note that the Bell inequalities are not violated for p≤ 1√

2
,

so the PPT condition is stronger than the condition of violating the Bell inequality.
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Another way of detecting entangled states is by means of entanglement
witnesses. An entanglement witness, W , is a hermitian operator that satisfies
two properties. The first is that Tr(ρsW ) ≥ 0 for all separable density matrices,
ρs. The second is that there is at least one entangled density matrix, ρe, such
that Tr(ρeW ) < 0. Since W is a hermitian operator, it is, at least in principle, an
observable and can be measured. Entanglement witnesses provide a method of
experimentally determining whether a state is entangled.

Constructing an entanglement witness for a state whose partial transpose is
negative is straightforward. Suppose that ρTB has a negative eigenvalue, λ− with
a corresponding eigenvector |η〉. Making use of the fact that for any two operators,
X and Y on HA ⊗HB, Tr(XTBY ) = Tr(XY TB), we have that

Tr
(
ρ(|η〉〈η |)TB

)
= Tr

(
ρTB(|η〉〈η |)) = λ− < 0. (3.22)

On the other hand, for ρs separable,

Tr
(
ρs(|η〉〈η |)TB

)
= Tr

(
ρTB

s (|η〉〈η |))> 0, (3.23)

because ρTB
s is a positive operator. Therefore, (|η〉η |)TB is an entanglement witness

for the state ρ .
There are many other separability conditions that have been developed during the

last few years, so our discussion of this subject will be far from complete. What we
will do is cover a few conditions that can be used with continuous-variable systems.
With these systems, because they are infinite dimensional, applying the partial
transpose condition can be difficult. Hence, having simpler conditions can be useful.
All of these conditions can be derived from the partial transpose condition, but our
derivations will not explicitly make use of this condition.

Let us consider two particles on a line or, alternatively, two modes of the
electromagnetic field. Each particle has a position operator, x j, and a momentum
operator, p j, where j = 1,2 and [x j, p j] = i. In the case of field modes, these would
be the quadrature operators x j = (a†

j + a j)/
√

2 and p j = i(a†
j − a j)/

√
2, where a j

and a†
j , j = 1,2, are the annihilation and creation operators for the modes. The

commutation relations obeyed by x j and p j imply that (Δx j)(Δp j) ≥ 1/2, where
(Δx j)

2 = 〈x2
j〉− 〈x j〉2, and similarly for (Δp j)

2. Now define the two operators

u = |α|x1 +
1
α

x2

v = |α|p1 − 1
α

p2, (3.24)

where α is a real number. What we will show is that for all separable states

(Δu)2 +(Δv)2 ≥ α2 +
1

α2 . (3.25)
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That means that if this condition is violated for a particular state, that state is
entangled. However, if the condition is satisfied, we can conclude nothing about the
entanglement of the state. Violation of this inequality, then, is a sufficient condition
for entanglement, but not a necessary one.

We now want to prove this statement. We assume that the density matrix is
separable, so it can be expressed as

ρ = ∑
k

pkρ1k ⊗ρ2k. (3.26)

We than have that

(Δu)2 +(Δv)2 = ∑
k

pk(〈u2〉k + 〈v2〉k)−〈u〉2 −〈v〉2

= ∑
k

pk

(
α2〈x2

1〉k +
1

α2 〈x2
2〉k +α2〈p2

1〉k +
1

α2 〈p2
2〉k

)

+2
α
|α| ∑k

pk(〈x1〉k〈x2〉k −〈p1〉k〈p2〉k)−〈u〉2 −〈v〉2, (3.27)

where expectation values with respect to ρ1k ⊗ ρ2k are denoted by a subscript k
and expectation values with respect to the entire density matrix, ρ , do not have a
subscript. Continuing

(Δu)2 +(Δv)2 = ∑
k

pk

(
α2(Δx1)

2
k +

1
α2 (Δx2)

2
k +Δ(p1)

2
k +

1
α2 (Δp2)

2
k

)

+∑
k

pk〈u〉2
k −

(
∑
k

pk〈u〉k

)2

+∑
k

pk〈v〉2
k −

(
∑
k

pk〈v〉k

)2

. (3.28)

The Schwarz inequality implies that

(
∑
k

pk〈u〉k

)2

≤ ∑
k

pk〈u〉2
k , (3.29)

and similarly for v. Therefore, we have that

(Δu)2 +(Δv)2 ≥ ∑
k

pk

(
α2(Δx1)

2
k +

1
α2 (Δx2)

2
k

+Δ(p1)
2
k +

1
α2 (Δp2)

2
k

)
. (3.30)
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Now the uncertainty relation between x1 and p1 implies that

(Δx1)
2
k +(Δp1)

2
k ≥ (Δx1)

2
k +

1

4(Δx1)2
k

≥ 1, (3.31)

and similarly for x2 and p2. Inserting these inequalities into Eq. (3.30) gives us the
desired result.

The case α = 1 gives a particularly simple result. In that case, we find that a state
is entangled if

(Δ(x1 + x2))
2 +(Δ(p1 − p2))

2 < 2. (3.32)

Noting that [x1 + x2, p1 − p2] = 0, both uncertainties can be made as small as we
wish. What we see from the above inequality is that if they are sufficiently small,
the state must be entangled.

Only a subset of entangled states will result in a violation of the inequality in
Eq. (3.25). For example, the two-mode state (|0〉1|1〉2 + |1〉1|0〉2)/

√
2, that is, one

photon in mode 1 and no photons in mode 2 plus no photons in mode 1 and one
photon in mode 2, is an entangled state, but its entanglement will not be detected by
Eq. (3.25). Consequently, there is room for more entanglement conditions. We will
discuss one final condition, which will, in fact, show that the two-mode state we just
mentioned is entangled.

We will prove this condition for an arbitrary system. Let A be an operator on HA

and B be an operator on HB. For a product state on HA ⊗HB, we have that

|〈AB†〉|= |〈A〉〈B†〉|= |〈AB〉| ≤ 〈A†AB†B〉1/2. (3.33)

Now consider the density matrix for a general separable state given by ρ = ∑k pkρk,
where ρk is a density matrix corresponding to a pure product state and pk is the
probability of ρk. The probabilities satisfy the condition ∑k pk = 1. We then have
that

|〈AB†〉| ≤ ∑
k

pk|Tr(ρkAB†)|

≤ ∑
k

pk(〈A†AB†B〉k)
1/2, (3.34)

where 〈A†AB†B〉k = Tr(ρkA†AB†B). We can now apply the Schwarz inequality to
obtain

|〈AB†〉| ≤
(

∑
k

pk

)1/2(
∑
k

pk〈A†AB†B〉k

)1/2

≤ (〈A†AB†B〉)1/2. (3.35)
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If a state violates this inequality, it is entangled. Note that this condition is very
general, because we have not specified what A and B have to be. This condition can
apply to finite dimensional spaces, infinite dimensional spaces, or a mixture of the
two.

If we now go back to our two-mode state and choose A = a1 and B = a2, we find
that for this state, |〈a1a†

2〉| = 1/
√

2 and 〈a†
1a1a†

2a2〉 = 0. This clearly violates the
above inequality and thus proves that the state is entangled.

3.5 Entanglement Distillation and Formation

As we just saw in the examples of the previous sections, maximally entangled
states of a pair of qubits are useful resources for several basic tasks in quantum
communication, including dense coding and teleportation. In fact, they are so useful
that they deserve their own name. If Alice and Bob share one maximally entangled
two-qubit state, e.g., a singlet, then we say they share 1 ebit. Ebits, which are
shared entanglement, are important resources and we now want to consider two
other processes where they prove to be useful. These are:

• Entanglement distillation. Alice and Bob share n non-maximally entangled
states. How many maximally entangled pairs (e.g., singlets or ebits) can they
produce from them using only local operations and classical communication
(LOCC)?

• Entanglement formation. Alice and Bob share n ebits and want to produce copies
of some non-maximally entangled state |ψ〉AB. How many copies of |ψ〉AB can
they produce from them using only LOCC? Note that this is essentially the
inverse of entanglement distillation, so we might as well just call it entanglement
dilution.

3.5.1 Local Operations and Classical Communication [LOCC]

Of course, the first question we have to answer is: What is meant by LOCC? The
meaning of classical communication is intuitively obvious and does not require
further clarification. Local operations, on the other hand, need some explanation.
They are operations performed by one party (either Alice or Bob) alone. The
possibilities include:

(i) Appending ancillary systems, not entangled with the other party
(ii) Unitary operations

(iii) Orthogonal measurements
(iv) Throwing away part of the system

Note that the possibilities do not include the exchange of qubits.
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Now, equipped with the concept of LOCC, we shall look at two simple examples
that make use of these possibilities.

3.5.2 Entanglement Distillation: Procrustean Method

In this protocol, which is not optimal, Alice and Bob initially share the non-
maximally entangled state |ψ〉AB = cosθ |00〉AB + sinθ |11〉AB, where cosθ > sinθ ,
and want to extract the maximally entangled Bell state |ψ+〉= 1√

2
(|00〉AB+ |11〉AB).

Note that 0 ≤ θ ≤ π
4 . The protocol has three steps.

Step 1. Alice appends ancilla qubit A′ in state |0〉A′ , so that the total state becomes
|ψ〉AB ⊗|0〉A′ = cosθ |00〉AA′ ⊗ |0〉B + sinθ |10〉AA′ ⊗ |1〉B.

Step 2. Alice applies a unitary transformation UA that performs the mapping

UA|10〉AA′ = |10〉AA′,

UA|00〉AA′ = tanθ |00〉AA′ +(1− tan2 θ )1/2|01〉AA′ ,

so that the total state becomes

(UA ⊗ IB)(|ψ〉AB ⊗|0〉A′) = [sinθ |00〉AA′ +(1−2sin2 θ )1/2|01〉AA′]⊗|0〉B

+sinθ |10〉AA′ ⊗ |1〉B

=
√

2sin θ |0〉A′ ⊗ 1√
2
(|00〉AB + |11〉AB)

+(1− 2sin2 θ )1/2|1〉A′ ⊗ |10〉AB.

Step 3. Alice measures the state of qubit A′ and if she finds |0〉A′ , Alice and
Bob keep the result because they just generated the ebit state |ψ+〉AB.
Otherwise they throw away the result and repeat the steps.

The probability of success is ps = 2sin2 θ = 1−cos(2θ ). Thus, if Alice and Bob
initially share n copies of |ψ〉AB, the expected number of ebits resulting from this
procedure is n[1− cos(2θ )].

3.5.3 Entanglement Formation

Again, the method is not optimal but demonstrates the power of entanglement.
Initially, Alice and Bob share 1 ebit in the |φ−〉AB state and they want to generate
the state |ψ〉AB = cosθ |00〉AB+ sinθ |11〉AB. The protocol has two steps:
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Step 1. Alice prepares the state |ψ〉AA′ = cosθ |00〉AA′ + sinθ |11〉AA′ in her
laboratory.

Step 2. Alice uses the ebit (the singlet state shared with Bob) to teleport the state
of particle A′ to Bob.

The net result is that after the teleportation Alice and Bob share the state |ψ〉AB =
cosθ |00〉AB+ sinθ |11〉AB.

3.6 Entanglement Measures

Up until now we spoke of entanglement in qualitative terms only. In this section we
want to introduce entanglement measures that will tell us how entangled a state is.
We will begin with pure states and gradually extend our measures to mixed states.

3.6.1 The von Neumann Entropy as an Entanglement Measure
for Pure Bipartite States: A First Set of Properties

For a pure bipartite state |ψ〉AB, we use the von Neumann entropy of one of the
reduced density matrices as a measure of entanglement, E ,

E(|ψ〉AB) = S(ρA) = S(ρB). (3.36)

Here S(ρ) = −Tr(ρ log2 ρ) = −Σiλi log2 λi is the von Neumann entropy. Note that
if |ψ〉AB = |ψ〉A⊗|ψ〉B then E(|ψ〉AB) = 0 since the von Neumann entropy of a pure
state is 0.

The properties of E that make it a good entanglement measure can be listed as
follows:

• The entanglement of independent systems is additive.

Proof. If we have two independent pure state bipartite systems then tracing
out one member of each system will leave the remaining two particles in
independent mixed states, TrBB′{|ψ〉AB ⊗ |ψ ′〉A′B′AB〈ψ | ⊗ A′B′ 〈ψ ′|} = ρA ⊗ ρA′ ,
where ρA = TrB(|ψ〉ABAB〈ψ |) and ρA′ = TrB′(|ψ ′〉A′B′A′B′ 〈ψ ′|). So, now we
need to show that S(ρA ⊗ ρA′) = S(ρA) + S(ρA′). To this end we employ the
diagonal representations, ρA = Σnλn|n〉〈n| and ρA′ = Σn′λn′ |n′〉〈n′|, yielding
ρA ⊗ ρA′ = Σnλnλn′(|n〉〈n|) ⊗ (|n′〉〈n′|). This finally gives S(ρA ⊗ ρA′) =
−Tr{Σn,n′λnλn′ log2(λnλn′)(|n〉〈n|) ⊗ (|n′〉〈n′|)} = − Σn,n′λnλn′(log2(λn)
+ log2(λn′)) = S(ρA)+ S(ρA′). ��
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• E is conserved under local unitary operations.

Proof. This follows from the cyclic property of the trace and can be shown in a
straightforward manner. The most general local unitary operation can be written
as |ψ ′〉AB =UA⊗UB|ψ〉AB from which it immediately follows that ρ ′=UAρAU−1

A
and using the cyclic property of the trace operation we have that S(ρ ′

A) = S(ρA).
��

• E or, rather, the average value of E cannot be increased by LOCC.
The proof will be presented later (see Sects. 3.6.4–3.6.6).

• Entanglement can be concentrated and distilled with asymptotic efficiency
E using LOCC only [C. Bennett, H. Bernstein, S. Popescu, and B. Schumacher,
Phys. Rev. A 53, 2046 (1996)]. Note that this is the best that can be done if E
does not increase under LOCC.

What this means is the following:

(i) Alice and Bob share k copies of |ψ〉AB and from these produce n singlet pairs.
Then, as k → ∞, n

k → E(|ψ〉AB), using LOCC only.
(ii) Alice and Bob share k copies of |Φ−〉AB (singlets) and from these produce n

copies of |ψ〉AB. Then, as k → ∞, k
n → E(|ψ〉AB), using LOCC only.

3.6.2 A Useful Auxiliary Quantity: Relative Entropy and
Klein’s Inequality

To find further properties of the von Neumann entropy it is useful if we first
introduce an auxiliary quantity, the so-called relative entropy. We define the relative
quantum entropy of a state ρ relative to another state σ by

S(ρ ‖ σ) = Tr(ρ logρ)−Tr(ρ logσ). (3.37)

An important feature of the relative entropy is that it is nonnegative, i.e., satisfies
the Klein’s inequality,

S(ρ ‖ σ)≥ 0. (3.38)

Proof. Let ρ = Σi pi|ui〉〈ui| and σ = Σiqi|vi〉〈vi| the diagonal representations of
ρ and σ . Then S(ρ ‖ σ) = Σi pi(log pi − 〈ui| logσ |ui〉) and since 〈ui| logσ |ui〉 =
Σ j logq j · |〈ui|v j〉|2 we have that

S(ρ ‖ σ) = Σi pi(log pi − logq j · |〈ui|v j〉|2). (3.39)

Now, we want to use that logx is a concave function of x. This means that
any straight line connecting two points logx1 and logx2 on the curve logx lies
below logx. Mathematically, the line y = logx1 +

logx2−logx1
x2−x1

(x−x1) for x1 ≤ x ≤ x2



3.6 Entanglement Measures 37

lies below logx. If we introduce s = x−x1
x1−x2

, this relationship can be written as
logx1 + s(logx2 − logx1) ≤ log[x1 + s(x2 − x1)], or, after rearranging, we obtain
(1− s) logx1 + s logx2 ≤ log[(1− s)x1 + sx2].

If we introduce ri = Σi|〈ui|v j〉|2q j then the last inequality immediately gives
Σi|〈ui|v j〉|2 · logq j ≤ logri. Using this, in turn, in Eq. (3.39) gives

S(ρ ‖ σ)≥ Σi pi log
pi

ri
. (3.40)

Since logx ln 2 = lnx ≤ x− 1, the right-hand side of this equation satisfies

Σi pi log
pi

ri
=−Σi pi log

ri

pi
≥ Σi pi

(
1− ri

pi

)
· 1

ln2
= Σi(pi − ri) · 1

ln2
= 0. (3.41)

In light of Eq. (3.40), this just completes the proof of the Klein’s inequality,
Eq. (3.38). ��

3.6.3 The von Neumann Entropy: A Second Set of Properties

The Klein’s inequality is a very powerful tool in studying the properties of the von
Neumann entropy further. So, after this little mathematical detour, we return to the
properties of S(ρ):

• For a d−dimensional system

0 ≤ S(ρ)≤ logd. (3.42)

Proof. The lower bound is obvious from the definition of the von Neumann
entropy. We can obtain the upper bound by setting σ = 1

d I in the relative entropy.
Then the Klein’s inequality implies S(ρ ‖ σ) = −S(ρ)−Σi〈ui|ρ log( 1

d I)|uI〉 =
−S(ρ)+ logd and due to the Klein’s inequality −S(ρ)+ logd ≥ 0 which just
gives us the upper bound for the von Neumann entropy. ��

• Suppose pi are probabilities, |i〉 orthonormal states for system A and {ρi} a
set of density matrices for system B. Then

S(Σi pi|i〉〈i|⊗ρi) = H({pi})+Σi piS(ρi), (3.43)

where H({pi}) = −Σi pi log pi is the Shannon entropy associated with the
probability distribution {pi}.

Proof. For fixed i, let {ui j} be the eigenstates of ρi with eigenvalues {λi j}. Using
the basis |i〉⊗ |ui j〉 to take the trace in the definition of the entropy gives



38 3 Entanglement

S(Σi pi|i〉〈i|⊗ρi) = −ΣiΣ j piλi j log(piλi j)

= −ΣiΣ j piλi j(log pi + logλi j)

= −Σi pi log pi +Σi piS(ρi), (3.44)

which just proves Eq. (3.43). ��
• Subadditivity of the entropy.

Here we set out to prove the subadditivity property of the entropy, which states
that if ρA = TrBρAB and ρB = TrAρAB, then

S(ρAB)≤ S(ρA)+ S(ρB). (3.45)

Proof. In order to prove this property we again apply Klein’s inequality, this
time with ρ = ρAB and σ = ρA ⊗ρB. We then have

S(ρAB ‖ ρA ⊗ρB) = Tr(ρAB logρAB)−Tr[ρAB log(ρA ⊗ρB)]≥ 0, (3.46)

and also

Tr(ρAB logρA ⊗ρB) = Tr[ρAB(logρA ⊗ IB + IA ⊗ logρB)]

= Tr(ρA logρA)+Tr(ρB logρB). (3.47)

Putting now Eqs. (3.46) and (3.47) together gives

− S(ρAB)+ S(ρA)+ S(ρB)≥ 0, (3.48)

which proves the result. ��
A note is in order here. In a different context, the subadditivity inequality,
Eq. (3.45), is known as the triangle inequality. This is one of the most important
properties of quantities that are considered to be proper measures.

• Finally, we can put all of the previous properties together to prove a result
that will actually say something about the effect of local measurement on
entanglement.
If pi ≥ 0 and Σi pi = 1 and ρi are density operators, then

S(Σi piρi)≥ Σi piS(ρi). (3.49)

Proof. We assume that ρi are density matrices of system A. Let us introduce an
auxiliary system B, with an orthonormal basis {|i〉}, and define ρAB = Σi piρi ⊗
|i〉〈i|. From this definition it follows that ρA = Σi piρi and ρB = Σi pi|i〉〈i| and also
S(ρA) = S(Σi piρi) and S(ρB) = H({pi}).
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Applying the property given in Eq. (3.43) to this case we have that S(ρAB) =
H({pi})+Σi piS(ρi). Applying the triangle inequality, Eq. (3.45), we finally have

H({pi})+Σi piS(ρi)≤ S(Σi piρi)+H({pi}), (3.50)

which proves the theorem. ��
We have seen so far that two of the four permissible local operations, namely,

appending an additional system and applying local unitary transformations, have no
effect on entanglement. Now, we are in the position to look at the effect of local
measurements.

3.6.4 The Effect of Local Measurements on Entanglement

For the following considerations we again assume that Alice and Bob initially
share the pure state |ψ〉AB and Alice performs a measurement on her particle. The
possible outcomes of the measurement are labeled by k and the corresponding
orthogonal projectors by PA

k . In other words, PA
k are the spectral projectors of the

observable measured. She gets the result k with probability pk = AB〈ψ |PA
k |ψ〉AB

and after this outcome was detected the state collapses to the unnormalized state
PA

k |ψ〉ABAB〈ψ |PA
k .

If Alice does not communicate the result of her measurement to Bob, then Bob’s
density matrix cannot change, because otherwise superluminal communication
would be possible. So, in this case, after the measurement, Bob’s density matrix is

ρB = TrA

{
Σk pkPA

k |ψ〉ABAB〈ψ |PA
k · 1

AB〈ψ |PA
k |ψ〉AB

}

= TrA{ΣkPA
k |ψ〉ABAB〈ψ |PA

k }. (3.51)

Clearly, TrA{ΣkPA
k |ψ〉ABAB〈ψ |PA

k } = TrA(|ψ〉ABAB〈ψ |) = ρB, so we also see from
the mathematics that Bob’s density matrix is unchanged by the measurement.

If Alice does communicate her result to Bob, then Bob’s density matrix can
change, and so can the entanglement. In some cases it may even increase. The
average entanglement will, however, always decrease. We define the average entan-

glement as E = Σk pkE(|ψ(k)〉AB) where |ψ(k)〉AB =
(

AB〈ψ |PA
k |ψ〉AB

)−1/2
Pk|ψ〉AB,

since Alice and Bob share the state |ψ(k)〉AB with probability pk. Let ρ (k)
B =

TrA(|ψ(k)〉ABAB〈ψ(k)|), then Σk pkE(|ψ(k)〉AB) =Σk pkS(ρ (k)
B ). Now, using Eq. (3.51),

we have that

Σk pkρ (k)
B = TrA{Σk pk|ψ(k)〉ABAB〈ψ(k)|}= ρB, (3.52)
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and also E(|ψ〉AB) = S(ρB). Finally, using the subadditivity property, S(ρB) ≥
Σk pkS(ρ (k)

B ), we obtain

E(|ψ〉AB)≥ Σk pkE(|ψ(k)〉). (3.53)

Therefore, local measurements can only decrease the average entanglement shared
by Alice and Bob.

3.6.5 Towards the Entanglement of Mixed States

Before looking at the last operation, throwing away part of the system, we have to
define the entanglement of mixed states. This is because if we start with a pure state
and throw away—that is to say trace out—part of it, we generally end up with a
mixed state.

The basic idea of approaching this problem is the following. Let us start
with a bipartite mixed state ρAB and decompose it into pure states, ρAB =
Σk pk|ψ(k)〉ABAB〈ψ(k)|. Alice and Bob want to create n copies of ρAB, how many
singlet pairs will they need to do it? They can do it by creating npk copies of
|ψ(k)〉AB, for each k, and combining all the particles will erase the information of
which singlet pair went with which value of k.

In order to create npk copies of |ψ(k)〉AB, they will need npkE(|ψ(k)〉AB) singlet
pairs, so to create n copies of ρAB, they will need ΣknpkE(|ψ(k)〉AB) singlet pairs.
We can then define the entanglement of ρAB as

E(ρAB) = ΣkE(|ψ(k)〉AB). (3.54)

However, there is a problem. The pure state decomposition of ρAB is not unique.
We are interested in the minimum number of singlets to form ρAB, so we define the
entanglement of formation of ρAB as

E(ρAB) = inf Σk pkE(ρAB), (3.55)

where the infimum (largest lower bound) is taken over all possible pure state
decompositions of ρAB. Finding this, except in some special cases, is hard.

3.6.6 The Effect of Throwing Away Part of the System Locally
on Entanglement

Equipped with the concept of the entanglement of formation, which can be
considered to be one possible entanglement measure for mixed states, we can finally
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turn our attention to addressing the problem: How throwing away part of a system
locally affects entanglement?

In order to proceed with answering this last remaining question, let us assume
that Alice and Bob initially share the pure state |ψ〉AA′B. Alice now throws away
system A′, so that they are now sharing ρAB = TrA′(|ψ〉AA′B · AA′B〈ψ |). Then the
following theorem holds:

Theorem. The entanglement of the composite system cannot be increased by
throwing away part of the system locally,

E(ρAB)≤ E(|ψ〉AA′B). (3.56)

Proof. We have ρB = TrA(ρAB) = TrAA′(|ψ〉AA′B · AA′B〈ψ |) and also E(|ψ〉AA′B)
= S(ρB). To calculate E(ρAB) we decompose it into pure states, ρAB = Σk pk

|ψk〉〈ψk|. Then E(ρAB) ≤ Σk pkE(|ψk〉〈ψk|) = Σk pkS(ρBk), where ρB = TrA(ρAB)
= Σk pkρBk. We also have that ρB = TrA(ρAB) = TrkρBk. Finally, from here, we have
that

E(|ψ〉AA′B) = S(Σk pkρBk)≥ Σk pkS(ρBk)≥ E(ρAB), (3.57)

which, when reading backwards, proves the theorem. ��
What we have shown by all of the manipulations in this section is that if Alice

and Bob start by sharing a pure state, they cannot increase their shared entanglement
by LOCC. This result can be extended in a straightforward way to the case in which
they are initially sharing a mixed state.

3.6.7 Bound Entanglement

It should be pointed out that not all entangled states can be distilled. That is, there are
some entangled states from which a singlet state cannot be obtained by LOCC for
any number of copies of the original state. Such states are called bound entangled.
It can be shown that if a bipartite entangled state has a PPT, the state is bound
entangled.

Let us give an example of a bound entangled state. In order to show that it is
entangled, we will need an entanglement condition known as the range criterion.
It states that if a density matrix ρ on HA ⊗HB is separable, then there exists a
family of product vectors, |ψAk〉⊗ |ψBk〉 such that it spans the range of ρ and the
vectors |ψAk〉⊗ |ψ∗

Bk〉 span the range of ρTB , where |ψ∗
Bk〉 is the complex conjugate

of |ψBk〉, and the complex conjugation is performed in the same basis as the partial
transpose.

In order to construct the bound entangled state we will need something called an
unextendible product basis. This is a set of orthogonal product vectors in HA ⊗HB

that has fewer elements than the dimension of the space and is such that there is
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no product vector in the space that is orthogonal to all of the vectors in the set. An
example for the case of two qutrits is

|v0〉= 1√
2
|0〉(|0〉− |1〉) |v2〉= 1√

2
|2〉(|1〉− |2〉)

|v1〉= 1√
2
(|0〉− |1〉)|2〉 |v3〉= 1√

2
(|1〉− |2〉)|0〉

|v4〉= 1
3
(|0〉+ |1〉+ |2〉)(|0〉+ |1〉+ |2〉). (3.58)

Now define the projection P = ∑4
j=0 |v j〉〈v j |. The claim is that the density matrix

ρ =
1
4
(I−P), (3.59)

is a bound entangled state. First, it is entangled due to the range criterion. If there
were a product vector in the range of ρ that would mean that the unextendible
product basis could be extended, which it cannot. Hence, by the range criterion,
ρ cannot be separable, so it must be entangled. The next step is to show that ρTB

is positive. In this case, ρ = ρTB , so that ρTB is clearly positive. Therefore, by the
result mentioned in the first paragraph of this section, ρ is bound entangled.

3.7 Concurrence

In the case of two qubits it is possible to find the entanglement of formation of a
general state explicitly. In order to do this, we have to introduce a quantity called
concurrence. However, before we can define the concurrence, we must first define
the so-called tilde state for a bipartite qubit pure state |ψ〉AB, as

|ψ̃〉AB = (σy ⊗σy)|ψ∗〉. (3.60)

In this expression |ψ∗〉 is the complex conjugate of |ψ〉 in the standard basis, i.e., if
|ψ〉= Σ1

j,k=0c jk| j〉|k〉, then |ψ∗〉= Σ1
j,k=0c∗jk| j〉|k〉.

The concurrence C(|ψ〉AB) of |ψ〉AB is then defined as

C(|ψ〉) = |〈ψ |ψ̃〉|. (3.61)

Why does this quantity have anything to do with entanglement? Let us look at the
single-qubit state, |ψ〉=α|0〉+β |1〉, and its conjugate, |ψ∗〉=α∗|0〉+β ∗|1〉. Using
σy|0〉= i|1〉 and σy|1〉=−i|0〉, we get |ψ̃〉=σy|ψ∗〉= i(α∗|1〉−β ∗|0〉) from which
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〈ψ |ψ̃〉= 0 (3.62)

follows directly for single-qubit states. Let us now consider the Schmidt
decompositions of |ψ〉AB and |ψ̃〉AB, |ψ〉AB = Σ2

j=1

√
λ j|u j〉A|v j〉B and |ψ̃〉AB =

Σ2
j=1

√
λ j|ũ j〉A|ṽ j〉B. In view of the orthogonality property of single-qubit

states, Eq. (3.62), we have that |ũ1〉 ∝ |u2〉 and |ũ2〉 ∝ |u1〉, so 〈ψ |ψ̃〉 =√
λ1λ2(〈u1|ũ2〉〈v1|ṽ2〉+ 〈u2|ũ1〉〈v2|ṽ1〉). Setting |u1〉 = α|0〉+ β |1〉 and |u2〉 =

eiφA(β ∗|0〉 −α∗|1〉) gives 〈u1|ũ2〉 = ie−iφA and 〈u2|ũ1〉 = −ie−iφA and, similarly,
〈v1|ṽ2〉 = ie−iφB and 〈v2|ṽ1〉 = −ie−iφB , so all of the relevant inner products are
simple phase factors. This leads to 〈ψ |ψ̃〉 = √

λ1λ2(−2e−i(φA+φB)), which finally
yields

C(|ψ〉) = 2
√

λ1λ2 (3.63)

for the concurrence, with λ1 +λ2 = 1. The state is maximally entangled when λ1 =
λ2 =

1
2 , giving the maximum value of C = 1. For a product state, on the other hand,

λ1 = 0 or λ2 = 0, giving C = 0, so C is a monotonically increasing function of
entanglement.

The entanglement of |ψ〉AB can be expressed as a function of C,

E(|ψ〉AB) = E(C(|ψ〉AB)), (3.64)

where

E(C) = h

(
1+

√
1−C2

2

)
, (3.65)

and

h(x) =−x logx− (1− x) log(1− x) (3.66)

is the binary entropy associated with the probability distribution {x,1− x}.
Finally, let us look at mixed states. Suppose ρ = Σk pk|ψk〉〈ψk|, then

C(ρ) = inf Σk pkC(|ψk〉), (3.67)

where the infimum is taken over all possible pure state decompositions of ρ . The
function E(C) is monotonically increasing, so

E(C(ρ)) = inf E(Σk pkC(|ψk〉)), (3.68)

and it is also convex; therefore,

inf E(Σk pkC(|ψk〉))≤ inf Σk pkE(C(|ψk〉)) = E(ρ). (3.69)

From here it follows that

E(C(ρ))≤ E(ρ). (3.70)
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To close this long chapter we list two more properties of the concurrence without
presenting their proofs [W. Wooters, PRL 80, 2245 (1998)]:

1. This last inequality is actually an equality.
2. There is an explicit formula for C(ρ). Let us first define ρ∗ as the complex

conjugate of ρ in the standard basis and then ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy). Let
λi for i = 1, . . . ,4 denote the square roots of the eigenvalues of ρρ̃ , arranged in
decreasing order. Then

C(ρ) = max{0,λ1 −λ2 −λ3 −λ4}. (3.71)

3.8 Problems

1. Wigner’s inequality is another inequality that will be satisfied by a local hidden-
variable theory but can be violated by quantum mechanics. In order to derive it
consider the following situation. A source sends one particle to Alice and one
to Bob. Alice measures one of three observables, a j, j = 1,2,3, and Bob also
measures one of three, b j, j = 1,2,3. Each of these observables gives the value
1 or −1. The source has the property that whenever Alice and Bob measure
corresponding observables, that is, the value of j is the same, then the results
are anticorrelated. For example, if Alice measures a1 and Bob measures b1, then
they will never get the same result, but if Alice measures a1 and Bob measures
b2, then they can get any result. Let p(a j = m,bk = n) denote the probability
that when Alice measures a j and Bob measures bk, Alice gets the value m and
Bob gets n. Wigner’s inequality states that if this source is described by a local
hidden-variable theory, then

p(a1 = 1,b2 = 1)+ p(a2 = 1,b3 = 1)≥ p(a1 = 1,b3 = 1).

We want to prove this statement.

(a) If the source is described by a local hidden-variable theory, then it can be
described by a joint probability distribution P(a1,a2,a3;b1,b2,b3). Using the
constraint on the source that measurements of corresponding observables
must be anticorrelated show that we must have that

P(a1,a2,a3;b1,b2,b3) = 0,

unless a j =−b j, j = 1,2,3.
(b) Use your result in part (a) to prove Wigner’s inequality.
(c) We now want to show that quantum mechanics can satisfy the constraint yet

violate the inequality. We choose
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a1 =
1
2

σz +

√
3

2
σx a2 = σz a3 =

1
2

σz −
√

3
2

σx,

and similarly for b j. Here, σx|0〉= |1〉 and σx|1〉= |0〉. The source produces
particles in the singlet state

|Φ−〉= 1√
2
(|0〉|1〉− |1〉|0〉),

and one of these particles goes to Alice and the other to Bob. This selection of
observables and source satisfies the constraint. Show that they do not satisfy
Wigner’s inequality.

2. Teleportation does not just work for qubits; it works for a quantum system of any
dimension. Suppose we want to teleport an N-dimensional quantum state. Let
{| j〉| j = 0, . . . ,N −1} be an orthonormal basis for our N-dimensional space, and
define the states

|χn,m〉= 1√
N

N−1

∑
j=0

e2π i jn/N| j〉| j+m (mod N)〉,

for two N-dimensional quantum systems. These will take the place of the Bell
states for our more general teleportation procedure.

(a) Show that 〈χn,m|χn′,m′ 〉= δn,n′δm,m′ .
(b) We start with the state |φ〉A′ |χ0,0〉AB, where

|φ〉=
N−1

∑
j=0

α j| j〉,

is the state we want to teleport. Show that by measuring the A′A particles
in the |χn,m〉 basis and using the result of this measurement to perform the
correct unitary transformation on the B particle, we can transfer the state |φ〉
onto the B particle.

3. We want to consider one step of an entanglement concentration procedure due
to A. Sanpera and C. Macchiavello. Start with two pairs of particles, where each
pair is in the state consisting of the mixture of qubit Bell states

ρ = p|Ψ+〉〈Ψ+|+(1− p)|Ψ−〉〈Ψ−|,

where p > 1/2 and |Ψ±〉= (|00〉± |11〉)/√2. Let us call the pairs AB and A′B′,
where Alice has particles A and A′ and Bob has particles B and B′. Alice applies
exp(iπσx/4) to each of her particles, and Bob applies exp(−iπσx/4) to both of
his. Alice then sends both of her particles into a C-NOT gate, where A is the
control qubit and A′ is the target, and Bob sends his into a C-NOT gate with B
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as the control qubit and B′ as the target. Alice and Bob now measure particles A′
and B′ in the {|0〉, |1〉} basis and keep the pair AB if their results agree. Show that
if their results agree, then the proportion of the Bell state |Ψ+〉 in the pair AB has
increased, so that the pair has become more entangled.

4. Consider the following two-qubit density matrix

ρAB = p|Φ−〉AB AB〈Φ−|+ 1− p
4

I,

where |Φ−〉AB = (|0〉A|1〉B −|1〉A|0〉B)/
√

2.

(a) Use the positive partial transpose condition to find out for what values of p
this density matrix is entangled.

(b) Find the concurrence of this density matrix as a function of p.

5. A general bipartite qubit state can be written in the standard basis as |ψ〉AB =
a00|00〉+ a01|01〉+ a10|10〉+ a11|11〉. The coefficients can be arranged to form
a matrix in a natural way

A =

(
a00 a01

a10 a11

)
.

Show that C(|ψ〉AB) = 2|detA|, where detA is the determinant of the matrix A
and | . . . | is the absolute value of the quantity inside.

6. Consider the two-qubit state

ρ = p|ψ〉〈ψ |+ (1− p)
4

I,

where |ψ〉= a|01〉+b|10〉. Using the partial transpose condition, find the values
of p for which the partial transpose of ρ will have a negative eigenvalue. For
p in that range, use the eigenvector corresponding to the negative eigenvalue to
construct an entanglement witness for ρ . Express the entanglement witness as a
4× 4 matrix in the computational basis.

7. Define the two-mode state (1/
√

2)(a†
1 + a†

2)|0〉. Consider the mixed state

ρ = p|ψ01〉〈ψ01|+ 1− p
4

P01,

where 0 ≤ p ≤ 1 and P01 is the projection operator onto the space spanned by the
vectors {|0〉1|0〉2, |0〉1|1〉1, |1〉1|0〉1, |1〉1|1〉2}. Using the entanglement condition

|〈a1a†
2〉|2 > 〈a†

1a1a†
2a2〉,

find a range of p for which ρ is definitely entangled.
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Chapter 4
Generalized Quantum Dynamics

Time evolution in textbook quantum mechanics is represented by unitary maps
|ψ〉 → U |ψ〉 and ρ → UρU†, where U = e−itH . This is not the most general
evolution possible. We can couple our system to another one, evolve both with a
unitary operator that will, in general, create entanglement between the two systems,
and then trace out the second system. The resulting evolution for the original system
alone will be non-unitary, in general, and can be described by a non-unitary quantum
map.

4.1 Quantum Maps or Superoperators

4.1.1 Quantum Maps and Their Kraus Representation

Let us introduce the unitary map |ψ〉A ⊗ |ψ〉B → UAB(|ψ〉A ⊗ |ψ〉B) where |ψ〉A ⊗
|ψ〉B ∈ HA ⊗HB. We apply the identity operator IA ⊗ IB to the unitary map, where
IB = Σm|m〉BB〈m| and {|m〉B} is an orthonormal basis for HB, yielding

UAB(|ψ〉A ⊗|ψ〉B) = IA ⊗Σm|m〉BB〈m|(UAB|ψ〉A ⊗|ψ〉B). (4.1)

We can introduce a shorthand for the expression appearing in the right-hand side:

B〈m|UAB(|ψ〉A ⊗|ψ〉B) ∈HA ≡ Am|ψ〉A, (4.2)

which defines the operator Am. In terms of Am, Eq. (4.1) can be written as

UAB(|ψ〉A ⊗|ψ〉B) = ΣmAm|ψ〉A ⊗|m〉B, (4.3)

J.A. Bergou and M. Hillery, Introduction to the Theory of Quantum Information
Processing, Graduate Texts in Physics, DOI 10.1007/978-1-4614-7092-2 4,
© Springer Science+Business Media New York 2013
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where ΣmA†
mAm = IA as can be easily seen from its definition. We have just obtained

the following mapping:

ρA = |ψ〉AA〈ψ |
→ TrB{ΣmΣm′Am|ψ〉A ⊗|m〉BB〈m′|⊗ A〈ψ |A†

m′ }
= ΣmAmρA†

m. (4.4)

This gives us what is called the operator sum, or Kraus representation of the
quantum map T (or superoperator T ),

T (ρ) = ΣmAmρA†
m. (4.5)

In the next section we will present a systematic study of the most important
properties of quantum maps.

4.1.2 Properties of Quantum Maps

Note that T has a number of important and useful properties.

1. T maps hermitian operators to hermitian operators.
2. T is trace preserving.
3. T maps positive operators to positive operators.

These properties follow directly from the definition of T .
We defined the quantum map and the corresponding Kraus representation as the

remainder of a unitary map, defined on a larger Hilbert space, after tracing out part
of the system. The converse is also true. Given a Kraus representation, it is possible
to find a larger Hilbert space, HA ⊗HB, a vector |φ〉B ∈HB, and a unitary operator
UAB such that

Am|ψ〉A = B〈m|UAB(|ψ〉A ⊗|φ〉B). (4.6)

We now prove this statement constructively. Let us choose HA to have dimension N
and HB to have dimension M. Further, let {|mB〉} be an orthonormal basis for HB,
and choose |φB〉 to be an arbitrary state of HB. Let us then define a transformation
UAB via

UAB(|ψ〉A ⊗|φ〉B) = ∑
m

Am|ψ〉A ⊗|m〉B, (4.7)

which implies the Eq. (4.6). UAB is inner product preserving,

(
∑
m′

A〈ψ ′|⊗ B〈m′|A†
m′

)(
∑
m

Am|ψ〉A ⊗|m〉B

)
= ∑

m
A〈ψ ′|A†

mAm|ψ〉A

= A〈ψ ′|ψ〉A, (4.8)
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so it is unitary on the one-dimensional subspace spanned by |φB〉 and it can be
extended to a full unitary operator on HA ⊗HB because, e.g., on the subspace that
is orthogonal to |φB〉, it can be the identity.

The Kraus representation of a superoperator is not unique. Let {|m′
B〉} be a

different orthonormal basis for HB, and

Bm′ = 〈m′
B|UAB(|ψA〉⊗ |φB〉), (4.9)

and we have

T (ρA) = Σm′Bm′ρAB†
m′ . (4.10)

If |m′
B〉=ΣmUm′m|mB〉 then 〈m′

B|= ΣmU†
mm′ 〈mB| and we have that Bm′ = ΣmU†

mm′Am.
We shall eventually show that any two Kraus representations for the same superop-
erator are related in this way.

First we want to show that a superoperator satisfying conditions 1–3 has a Kraus
representation. Actually, we have to replace 3 by a stronger condition:

3′. T is completely positive.

This means the following. We know that T maps bounded operators to bounded
operators, T : bounded operators on HA → bounded operators on HA. Let us append
an ancilla space HB to HA and extend T to a bounded operator on this larger space,
so it is in the set of bounded operators B(HA ⊗HB), by T → T ⊗ IB. If, for any HB,
T ⊗ IB is positive, then we say that T is completely positive.

Physically what this means is the following. T describes the evolution of the
system A, and system B does not evolve. T is completely positive if ρA ⊗ ρB →
T (ρA)⊗ ρB is a density matrix for any ρA and ρB. An example of a map that is
positive, but not completely positive, is the transpose. It preserves eigenvalues, so it
is positive. On the other hand (ρ)T

A ⊗ IB is just a partial transpose and we have seen
that the partial transpose is not positive.

We now want to prove that a superoperator satisfying 1–3′ has a Kraus repre-
sentation. Before proceeding, we note the following method that we will use in the
proof. Let A be an operator on HA, where dimHA = N. Suppose dimHB ≥ N and let
{| jA〉} and {| jB〉} be the orthonormal bases of HA and HB, respectively. Consider
the state

|ψAB〉= ΣN
j=1

1√
N
| jA〉⊗ | jB〉. (4.11)

If |φA〉 ∈ HA, we can express it in terms of |ψAB〉 as a “partial inner product” with a
vector |φ∗

B〉 ∈ HB, where |φA〉= ΣN
j=1c j| jA〉 and |φ∗

B〉= ΣN
j=1c∗j | jB〉. Then

〈φ∗
B |ψAB〉= (ΣN

j=1c j〈 jB|)ΣN
j′=1

1√
N
| j′A〉⊗ | j′B〉=

1√
N
|φA〉. (4.12)

The mapping |φA〉 → |φ∗
B〉 is antilinear and norm preserving. We can calculate the

effect of A⊗ IB on |ψAB〉 similarly,
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〈φ∗
B |(A⊗ IB)|ψAB〉 = (ΣN

j=1c j〈 jB|)ΣN
j′=1

1√
N

A| j′A〉⊗ | j′B〉

=
1√
N

A(ΣN
j=1c j| jA〉) = 1√

N
A|φA〉. (4.13)

Equipped with this method we can now proceed with the proof. Suppose T is a
superoperator satisfying 1, 2, and 3′. T acts on B(HA). T ⊗ IB acting on B(HA)⊗
B(HB) is positive. This implies that if ρAB = |ψAB〉〈ψAB| and

ρ ′
AB = (T ⊗ IB)(ρAB), (4.14)

then ρ ′
AB is also a density matrix. It can be expanded as an ensemble of pure states

ρ ′
AB = Σμ qμ |φAB,μ〉〈φAB,μ |. By a derivation entirely similar to those in Eqs. (4.12)

and (4.13), we obtain

T (|φA〉〈φA|) = N〈φ∗
B |(T ⊗ IB)(ρAB)|φ∗

B〉
= NΣμ qμ〈φ∗

B |φAB,μ〉〈φAB,μ |φ∗
B〉. (4.15)

Now define Aμ : |φA〉 →
√

Nqμ〈φ∗
B |φAB,μ〉. Aμ is a linear operator on HA, and we

have

T (|φA〉〈φA|) = ΣμAμ |φA〉〈φA|A†
μ , (4.16)

which we can extend for any density matrix ρA to

T (ρA) = ΣμAμρAA†
μ . (4.17)

Because T is trace preserving for any ρA, we have that ΣμTr(ρAA†
μAμ) = 1 from

which Σμ A†
μAμ = I follows.

We actually need to show that

T (MA) = Σμ AμMAA†
μ (4.18)

for any MA ∈ B(HA). We can do this by showing it is true for a basis of B(HA).
Such an operator basis is given by {(| jA〉〈kA|) | j,k = 1, . . . ,N}. We know the above
equation is true for any operator of the form MA = Σncn|φA,n〉〈φA,n|. Defining

|φA,1〉= 1√
2
(| jA〉+ |kA〉) |φA,3〉= 1√

2
(| jA〉+ i|kA〉)

|φA,2〉= 1√
2
(| jA〉− |kA〉) |φA,4〉= 1√

2
(| jA〉− i|kA〉)

, (4.19)
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we find

| jA〉〈kA|= 1
2
(|φA,1〉〈φA,1|− |φA,2〉〈φA,2|)+ i

2
(|φA,3〉〈φA,3|− |φA,4〉〈φA,4|). (4.20)

From here it follows immediately

T (| jA〉〈kA|) = ΣμAμ | jA〉〈kA|A†
μ . (4.21)

This completes the proof.
We now want to use the construction of the operators Aμ to make some statements

about their properties.

4.1.3 Properties of the Kraus Operators

The first question we address is: How many Kraus operators do we need? The
mapping in Eq. (4.14) maps HA ⊗HB, where HB = span{| jB〉}, into itself, and
this space has dimension N2. Diagonalizing ρ ′

AB we will find at most N2 vectors
in the expansion of ρ ′

AB. Therefore, there is a Kraus representation with at most N2

operators.
The next question we address is the uniqueness of the Kraus representation. It

is clear that the Kraus representation is not unique, because the decomposition of
ρ ′

AB is not unique. We want to see how different Kraus representations of the same
superoperator are related. The idea here is to show that each Kraus representation
is related to a decomposition of ρ ′

AB and then use the theorem about different
decompositions of density matrices.

If we have that for any MA ∈ B(HA)

T (MA) = ΣμAμMAA†
μ , (4.22)

then

(T ⊗ IB)(|ψAB〉〈ψAB|) = (T ⊗ IB)

(
1
N

ΣN
j, j′=1| jA〉⊗ | jB〉〈 j′A|⊗ 〈 j′B|

)

=
1
N

ΣμΣ j, j′Aμ | jA〉⊗ | jB〉〈 j′A|A†
μ ⊗〈 j′B|. (4.23)

Define
√

qμ |φAB,μ〉= 1√
N

Σ jAμ | jA〉⊗ | jB〉 where ‖φAB,μ‖= 1, so then

ρ ′
AB = Σμqμ |φAB,μ〉〈φAB,μ |. (4.24)

Now suppose we have two different Kraus representations for T , T (MA) =

ΣμAμMAA†
μ and T (MA) = ΣμDμMAD†

μ . These each give us a decomposition
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of ρ ′
AB, ρ ′

AB = Σμqμ |φAB,μ〉〈φAB,μ | = Σν q′ν |φ ′
AB,ν〉〈φ ′

AB,ν |, where
√

qμ |φAB,μ〉 =
1√
N

Σ jAμ | jA〉⊗ | jB〉 and
√

q′ν |φ ′
AB,ν〉= 1√

N
Σ jDμ | jA〉⊗ | jB〉.

We know that there exists a unitary matrix Uνμ such that

√
q′ν |φ ′

AB,ν〉= ΣμUνμ
√

qμ |φAB,μ〉, (4.25)

or

Σ jDν | jA〉⊗ | jB〉= ΣμΣ jUνμAμ | jA〉⊗ | jB〉. (4.26)

We can read out from here that

Dν | jA〉= ΣμUνμAμ | jA〉, (4.27)

but {| jA〉} is a basis, so, finally,

Dν = ΣμUνμAμ . (4.28)

From here, we can conclude that any two Kraus representations of the same
superoperator are related by a unitary matrix.

4.2 An Example: The Depolarizing Channel

We shall now look at an example of a superoperator on qubits, the depolarizing
channel. A quantum channel is, in general, a quantum map that maps density
matrixes to density matrixes. The idea of the depolarizing channel is that qubit has
probability of (1− p) of nothing happening, p

3 of σx acting on it (bit flip), p
3 of σz

acting on it (phase flip), and p
3 of σy acting on it (both). One way to do this is to

tensor our qubit Hilbert space with a four-dimensional “environment” Hilbert space,
HA ⊗HE . We have a unitary operator acting on this tensor product Hilbert space

UAE |ψA〉⊗ |0E〉 =
√

1− p|ψA〉⊗ |0E〉+
√

p
3
(σx|ψA〉⊗ |1E〉

+ σy|ψA〉⊗ |2E〉+σz|ψA〉⊗ |3E〉) , (4.29)

and, after tracing out the environment we get

T (|ψA〉〈ψA|) = TrE(UAE |ψA〉⊗ |0E〉〈ψA|⊗ 〈0E |U−1
AE )

= (1− p)|ψA〉〈ψA|+ p
3

σx|ψA〉〈ψA|σx

+
p
3

σy|ψA〉〈ψA|σy +
p
3

σz|ψA〉〈ψA|σz. (4.30)
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From here we can read out the Kraus operators: A0 =
√

1− pI, A1 =
√

p
3 σx,

A2 =
√

p
3 σy, and A3 =

√
p
3 σz. It is easy to check that Σ3

μ=0A†
μAμ = I, which is

a direct consequence of the unitarity of UAE .
It is interesting to see what happens to the Bloch sphere under this mapping. Let

ρ =
1
2
(I +n ·σ), (4.31)

and use

σ jσkσ j =

{−σk k �= j
σ j j = k

. (4.32)

Then

T (σx) = (1− p)σx+
p
3

σx − 2p
3

σx =

(
1− 4p

3

)
σx, (4.33)

and, similarly, T (σy) = (1− 4p
3 )σy and T (σz) = (1− 4p

3 )σz. So, finally

T (ρ) =
1
2
(I +n′ ·σ), (4.34)

where n′ = (1− 4p
3 )n.

This tells us that the map representing the depolarizing channel just causes the
entire Bloch sphere to contract by a factor of |1− (4p/3)|.

4.3 Impossible Maps

4.3.1 The Cloning Map and the No-Cloning Theorem

It is also useful to know that certain maps are impossible. One of them is the
“cloning” map that would duplicate quantum states. Suppose we have a device that
does copy qubit quantum states. A general input for such a device is of the form
|ψa〉⊗ |0b〉 ⊗ |Qc〉 where |ψa〉 is the state of qubit a to be copied, |0b〉 is a blank
initial state of qubit b that becomes the copy, and |Qc〉 is an ancillary state which
can be interpreted as the initial state of the copier. What we want is the unitary map

U(|ψa〉⊗ |0b〉⊗ |Qc〉) = |ψa〉⊗ |ψb〉⊗ |Qψ,c〉 (4.35)

Since the copier must work for arbitrary states, so, in particular, it must copy basis
states

U(|0a〉⊗ |0b〉⊗ |Qc〉) = |0a〉⊗ |0b〉⊗ |Q0,c〉,
U(|1a〉⊗ |0b〉⊗ |Qc〉) = |1a〉⊗ |1b〉⊗ |Q1,c〉. (4.36)
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These relations determine how a general state is copied. If |ψ〉= α|0〉+β |0〉, then
multiplying the first equation by α and the second by β and adding them together
gives

U(|ψa〉⊗ |0b〉⊗ |Qc〉) = α|0a〉⊗ |0b〉⊗ |Q0,c〉+β |1a〉⊗ |1b〉⊗ |Q1,c〉, (4.37)

and this is not the same as Eq. (4.35). This is known as the no-cloning theorem. It is a
direct consequence of the linearity of quantum mechanics and implies that quantum
information is very different from classical information, which can be copied. The
fact that quantum information cannot be copied can also be used to our advantage.
In particular, it is one of the reasons why quantum cryptography works.

4.3.2 Faster than Light Communication

If cloning were possible, superluminal communication would be, too. To demon-
strate this, suppose that Alice and Bob initially share an ebit, |ψAB〉= 1√

2
(|0A〉|1B〉−

|1A〉|0B〉). In the |±〉 = 1√
2
(|0〉 ± |1〉) basis, the same state can be written as

|ψAB〉 = − 1√
2
(|+A〉|−B〉 − |−A〉|+B〉). Alice now measures her particle either in

the {|0〉, |1〉} basis or in the {|+〉, |−〉} basis, while Bob clones his particle, making
2N copies. He then measures N in the {|0〉, |1〉} basis and N in the {|+〉, |−〉} basis.
The basis in which all measurements produce the same results tells Bob which basis
Alice measured in.

4.4 Problems

1. We want to show that a superoperator is invertible if and only if it is unitary,
i.e., M(B) = UBU†, for any B ∈ B(H). It is clear that if M is unitary, then it is
invertible. We need to now show the opposite, i.e., that if M is invertible, then it
is unitary. Let

M(|ψ〉〈ψ |) = ∑
μ

Mμ |ψ〉〈ψ |M†
μ .

The superoperator N is the inverse of M if N ◦M = I, or

∑
μ,ν

NνMμ |ψ〉〈ψ |M†
μN†

ν = |ψ〉〈ψ |,

for all |ψ〉.
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(a) Use the fact that

∑
μ,ν

|〈ψ |NνMμ |ψ〉|2 = 1,

which is implied by the above equation, and the normalization conditions on
the operators Mμ and Nν to show that NνMμ = λνμ I.

(b) Use the result in part (a) to show that M†
μ ′Mμ is a multiple of the identity for

any μ and μ ′.
(c) Use the result in part (b) to show that M is unitary.

2. (a) Let |ψ1〉 and |ψ2〉 be two one-qubit states. Find a value of φ for which the
map

|ψ1〉|ψ2〉 → 1√
2
(|ψ2〉|ψ1〉+ eiφ |ψ1〉|ψ2〉,

can be realized as a unitary operation.
(b) The above transformation can be used to spread the information in a single

qubit over two qubits. Suppose |ψ1〉 = |0〉 and |ψ2〉 = |ψ〉. Now suppose
we lose one of the qubits. Find the reduced density matrix of the remaining
qubit and its fidelity to the state |ψ〉. By spreading the information contained
in one qubit over two, we retain some information about the original qubit
even though one of the qubits is lost.

(c) For a general one-qubit state |ψ〉, find a value of φ so that the transformation

|0〉|0〉|ψ〉 → 1√
3
[|0〉|0〉|ψ〉+ eiφ(|0〉|ψ〉|0〉+ |ψ〉|0〉|0〉)].

can be realized by a unitary operator.
3. A C-NOT gate is a rather versatile device that can be used to realize a number of

maps.

(a) Suppose the input state is (
√

p0|0〉+√
p1|1〉)⊗|ψ〉, where p0 + p1 = 1, |ψ〉

is a general one-qubit state, and the first qubit is the control qubit, and the
second is the target qubit. We send this state through the C-NOT gate and
trace out the control qubit. Find the Kraus operators for the resulting map on
the target qubit.

(b) Now consider the input state |ψ〉⊗ (1/
√

2)(eiθ |0〉+e−iθ |1〉). Send this state
through the C-NOT and trace out the target qubit. Find the Kraus operators
for the resulting map on the control qubit.

4. The SWAP operator on two qubits acts as S|ψ〉a ⊗ |φ〉b = |φ〉a ⊗ |ψ〉b. A
partial SWAP operator is given by P(θ ) = cosθ Iab + isin θS, where Iab is the
identity operator on two qubits. It can be thought of as an operator that partially
exchanges the information between two qubits.
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(a) Show that if we consider the two-qubit density matrix given by ρa ⊗ ξb,
where ρa and ξb are one-qubit density matrices, that

ρ ′
a = Trb[P(θ )ρa ⊗ ξbP†(θ )],

is given by

ρ ′
a = cos2 θρa + sin2 θξa + icosθ sinθ [ξa,ρa].

(b) Expressing ρa and ρ ′
a in Bloch form

ρa =
1
2

Ia + r ·σ , ρ ′
a =

1
2

Ia + r′ ·σ ,

find r′ in terms of r.
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Chapter 5
Quantum Measurement Theory

5.1 Outline

Measurements are an integral part of quantum information processing. Reading
out the quantum information at the end of the processing pipeline is equivalent to
learning what final state the system is in at the output since information is encoded
in the state. In fact, information is the state itself. Since finding out the state of
a system can be done only by performing measurements on it, we need a thorough
understanding of the quantum theory (and practice) of measurements. To this end we
will begin with a simplified model of a quantum measurement, due essentially to von
Neumann, and from this model we’ll read out the postulates of standard quantum
measurement theory. Then, by analyzing the underlying assumptions, we’ll show
that some of the postulates can be replaced by more relaxed ones and this will lead us
to the concept of generalized measurements (POVMs) which are particularly useful
in measurement optimization problems. Next, by invoking Neumark’s theorem we
will show how to actually implement positive operator valued measures (POVMs)
experimentally. As illustrations of these general concepts we will study two state
discrimination strategies in some detail, namely, the unambiguous discrimination
and the minimum-error discrimination of two quantum states. As an example for the
application of the ideas developed in this chapter we will analyze the B92 quantum
key distribution (QKD) protocol in Sect. 6.3. QKD is the crucial ingredient of most
quantum cryptographic protocols and in the B92 proposal all of the concepts of this
chapter come together in a particularly clean and instructive way.

5.2 Standard Quantum Measurements

We begin with a brief review of a simplified model of a quantum measurement.
Let us assume that we want to measure a physical quantity to which, in quantum
mechanics, there corresponds a hermitian operator X . The measurement then
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consists of the following process. We couple this observable to a so-called pointer
variable, the states of which we assume to be macroscopically distinguishable.
This is equivalent to assuming that the states of the pointer variable are essentially
classical and it is our basic assumption that classical states can be readily measured.
For example, our pointer can be a freely propagating heavy particle, and the pointer
variable that we observe is simply its position. The initial state of the pointer is a
narrow but not too narrow wave packet. What we mean by this is the following. On
the one hand, the wave packet must be narrow enough so that the possible pointer
positions are clearly distinguishable; there is no overlap among them. On the other
hand, the wave packet should not be narrower than necessary because if it is it will
spread too fast during the time of the measurement. Let us make this a little more
quantitative. From the uncertainty principle, ΔxΔp� h̄, we obtain Δp� h̄/Δx which
leads to an uncertainty Δv = h̄/mΔx in the speed of the pointer particle. Thus, during
the time of the measurement, the spread of the initial wave packet increases as

Δx(t) = Δx+
h̄t

mΔx
. (5.1)

This expression is a minimum for a given measurement time t if the spread of the

initial wave packet is Δxopt =
√

h̄t
m , yielding

Δxmin(t)≡ ΔxSQL = 2

√
h̄t
m
, (5.2)

where SQL stands for Standard Quantum Limit. The initial wave packet should not
be prepared narrower than Δxopt which in most cases is not a serious restriction
since m is large.

Next, we introduce a coupling between the system and the pointer. The full
Hamiltonian is given by

H = H0 +
P2

2m
+ h̄gXP, (5.3)

where, on the right-hand side, H0 is the Hamiltonian of the system, the next term is
the kinetic energy of the pointer, and the last term is the coupling between the system
and the pointer, g being the coupling constant. Since we want to observe the position
of the pointer, we choose the coupling between the complementary quantity, the
canonical momentum P of the pointer, and the observable X of the system that we
want to measure. For simplicity, we assume that the observable X commutes with
the unperturbed Hamiltonian H0 of the system. The above Hamiltonian leads to the
time evolution described by the unitary operator

U(t) = e−igtXP. (5.4)
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The observable X is hermitian, so it does have a spectral representation, X =

∑ j λ jPj = ∑ j λ j| j〉〈 j| where λ j are the (real) eigenvalues, | j〉 the corresponding
eigenstates, and Pj = | j〉〈 j| the projector on the subspace spanned by | j〉. The
eigenstates form a complete set in the Hilbert space of the system which is
equivalent to saying that the projectors span the identity, ∑ j Pj = 1. Using this last
relation we can write the time evolution operator as

U(t) = ∑
j

e−ix jP| j〉〈 j|, (5.5)

where we introduced the notation

x j = gtλ j. (5.6)

Now, we assume that the joint system-pointer system was initially prepared in
the state ∑ j c j| j〉 ⊗ |ψ(x)〉 where |ψS〉 = ∑ j c j| j〉 is an arbitrary initial state of
the system and |ψ(x)〉 is the initial state of the pointer which we assume to be a
well-localized wave packet around x = 0, as discussed above. If we apply the time
evolution operator, Eq. (5.5), to this initial state, we obtain the joint system—pointer
state after the measurement time t:

|ψSP〉= ∑
j

c j| j〉|ψ(x− x j)〉. (5.7)

What we see from here is that there is a very strong correlation between the state
of the pointer and the state of the system. We assume that the pointer is essentially
classical, so we will always find it in one of the new positions at x = x j. When
it is found at x = x j the state of the system is c j| j〉. Since x j = gtλ j is uniquely
related to the eigenvalue λ j, we can say that by observing the position of the pointer
after the measurement we have measured the observable X and found one of its
eigenvalues λ j as the measurement result. Furthermore, the (non-normalized) state
of the system, if this particular value was found, is just c j| j〉. Taking the inner
product of |ψS〉 = ∑ j c j| j〉 with | j〉 gives c j = 〈 j|ψS〉, which tells us that the non-
normalized postmeasurement state is | j〉〈 j|ψS〉=Pj|ψS〉. The normalized state after

the measurement, if the particular outcome λ j was found, is |φ j〉= Pj |ψS〉
|c j | .

These findings are summarized by the postulates of quantum measurement theory
in a more formal way. However, before we list these postulates, we want to have an
expression for the resolution of the above measurement. Obviously, we can resolve
the different pointer positions if their distance is larger than the SQL, Δx j = x j+1

−x j = gtΔλ j ≥ xSQL. When we use the relation between the pointer position and the
eigenvalues, Eq. (5.6), we will find the resolution limit, as

Δλ j ≥ 2
g

√
h̄

mt
, (5.8)
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which is the minimum separation of the eigenvalues that can be resolved in
a quantum measurement. As expected, with increasing measurement time the
resolution improves.

We are now in the position to read out the postulates of the quantum measurement
theory from the preceding discussion. Let us assume that we are measuring the
observable X which has the spectral representation X = ∑ j λ j| j〉〈 j|. From the
hermiticity of X it follows that the eigenvalues λ j are real. For simplicity we assume
that the eigenvalues are nondegenerate and the corresponding eigenvectors, {| j〉},
form a complete orthonormal basis set. Then

1. The projectors Pj = | j〉〈 j| span the entire Hilbert space, ∑ j Pj = 1.
2. From the orthogonality of the states we have PiPj = Piδi j. In particular, P2

i = Pi

from which it follows that the eigenvalues of any projector are 0 and 1.
3. A measurement of X yields one of the eigenvalues λ j.

4. The state of the system after the measurement is |φ j〉= Pj |ψ〉√
〈ψ|Pj |ψ〉 if the outcome

is λ j.
5. The probability that this particular outcome is found as the measurement result

is p j = ||Pjψ〉||2 = 〈ψ |P2
j |ψ〉= 〈ψ |Pj|ψ〉 where we used the property 2.

6. If we perform the measurement but we do not record the results, the post-
measurement state can be described by the density operator ρ = ∑ j p j|φ j〉〈φ j |
= ∑ j Pj|ψ〉〈ψ |Pj.

These six postulates adequately describe what happens to the system during the
measurement if it was initially in a pure state. If the system is initially in the
mixed state ρ the last three postulates are to be replaced by their immediate
generalizations:

4a. The state of the system after the measurement is ρ j =
PjρPj

Tr(PjρPj)
=

PjρPj
Tr(Pjρ)

if the

outcome is λ j.
5a. The probability that this particular outcome is found as the measurement result

is p j = Tr(PjρPj) = Tr(P2
j ρ) = Tr(Pjρ) where, again, we used the property 2.

6a. If we perform the measurement but we do not record the results, the post-
measurement state can be described by the density operator ρ̃ = ∑ j p jρ j =

∑ j PjρPj.

Of course, 4a–6a reduce to 4–6 for the pure state density matrix ρ = |ψ〉〈ψ |.
Therefore, in what follows we use the density matrix to describe a general (pure
or mixed) quantum state unless we want to emphasize that the state is pure.

Let us summarize the message of these postulates. They essentially tell us that
the measurement process is random; we cannot predict its outcome. What we
can predict is the spectrum of the possible outcomes and the probability that a
particular outcome is found in an actual measurement. This leads us to the ensemble
interpretation of quantum mechanics. The state |ψ〉 (or ρ for mixed states) describes
not a single system but an ensemble of identically prepared systems. If we perform
the same measurement on each member of the ensemble we can predict the possible
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measurement results and the probabilities with which they occur, but we cannot
predict the outcome of an individual measurement, except, of course, when the
probability of a certain outcome is 0 or 1. With the help of these postulates we
can then calculate the moments of the probability distribution, {p j}, generated by
the measurement. The first moment is the average of a large number of identical
measurements performed on the initial ensemble. It is called the expectation value
of X and is denoted as 〈X〉,

〈X〉=∑
j

λ j p j = ∑
j

λ jTr(Pjρ) = Tr(Xρ), (5.9)

where we used the spectral representation of X . The second moment, 〈X2〉 =
Tr(X2ρ), is related to the variance σ ,

σ2 = 〈(X −〈X〉)2〉= 〈X2〉− 〈X〉2. (5.10)

Higher moments can also be calculated in a straightforward manner, but typically
the first and second moments are the most important ones to consider.

5.3 Positive Operator Valued Measures

Now we are in the position to put the postulates of standard measurement theory
under closer scrutiny. What the last three postulates provide us with is, in fact,
an algorithm to generate probabilities. The generated probabilities are nonnegative,
0 ≤ p j ≤ 1, and the probability distribution is normalized to unity, ∑ j p j = 1, which
is a consequence of the first two postulates. Furthermore, the number of possible
outcomes is bounded by the number of terms in the orthogonal decomposition of the
identity operator of the Hilbert space. Obviously, one cannot have more orthogonal
projections than the dimensionality, NA, of the Hilbert space of the system, so
j ≤ NA. It would, however, be often desirable to have more outcomes than the
dimensionality while keeping the positivity and normalization of the probabilities.
We will first show that this is formally possible: if we relax the above rather
restrictive postulates and replace them with more flexible ones we can still obtain
a meaningful probability generating algorithm. Then we will show that there are
physical processes that fit these more general postulates.

Let us begin with the formal considerations and take a closer look at Postulate
5a (or 5) which is the one that gives us the prescription for the generation
of probabilities. We notice that in order to get a positive probability with this
prescription it is sufficient if P2

j is a positive operator; we do not need to require
the positivity of an underlying Pj operator. So let us try the following. We introduce
a positive operator, Π j ≥ 0, which is the generalization of P2

j , and prescribe p j =
Tr(Π jρ). Of course, we want to ensure that the probability distribution generated
by this new prescription is still normalized. Inspecting the postulates we can easily
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figure out that normalization is a consequence of Postulate 1 and, therefore, requires
that ∑ j Π j = I, that is, the positive operators still represent a decomposition of the
identity. We will call a decomposition of the identity in terms of positive operators,
∑ j Π j = I, a POVM, and Π j ≥ 0 the elements of the POVM. These generalizations
will form the core of our new postulates 1′ and 5′.

As observed in the previous paragraph, for a POVM to exist, we do not have
to require orthogonality and positivity of the underlying Pj operators. Therefore,
the underlying operators that, via Postulates 4 (or 4a) and 6 (or 6a), determine
the postmeasurement state can be just about any operators, even non-hermitian
ones. For projective measurements orthogonality was essentially a consequence of
Postulate 2, which was our most constraining postulate because it restricted the
number of terms in the decomposition of the identity to at most the dimensionality
of the system. Let us now see how far we can get by abandoning it.

If we abandon Postulate 2 then the operators that generate the probability
distribution are no longer the same as the ones that generate the postmeasurement
states and we have a considerable amount of freedom in choosing them. Let us
denote the operators that generate the postmeasurement state by A j, they are the
generalizations of the orthogonal projectors, Pj. In other words, we define the non-
normalized postmeasurement state by A j|ψ〉 and the corresponding normalized state

after the measurement by |φ〉 = A j|ψ〉/
√
〈ψ |A†

jA j|ψ〉. This expression will form

the essence of our new Postulate 4′. It immediately tells us that Π j has the structure
Π j = A†

jA j which by construction is a positive operator. Let us now use our freedom
in designing the postmeasurement state. First note that, since the POVM elements

are positive operators, Π1/2
j exists. Obviously, this is a possible choice for A j. So is

A j =UjΠ
1/2
j , (5.11)

where Uj is an arbitrary unitary operator. This is the most general form of the
detection operators, satisfying A†

jA j = Π j, and the above expression corresponds
to their polar decomposition. What we see is that the POVM elements Π j determine

the absolute value operators through |A j| = Π1/2
j but leave their unitary part open.

The A j operators represent a generalization of the projectors Pj, whereas Π j is
a generalization of P2

j . The set {A j} is called the set of detection operators and
these operators figure prominently in our new postulates 2′,4′, and 6′ replacing the
corresponding ones of the standard measurements.

With this we completed the goal we set out at the beginning of this section,
namely, the generalization of all of the postulates of the standard measurement
theory to more flexible ones while keeping the spirit of the old ones. It is now time
to list our new postulates.

1′. We consider the decomposition of the identity, ∑ j Π j = 1, in terms of positive
operators, Π j ≥ 0. Such a decomposition is called a POVM and the Π j the
elements of the POVM.
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2′. The elements of the POVM, Π j, can be expressed in terms of the detection
operators A j as Π j = A†

jA j where, in general, the detection operators are

non-hermitian ones, restricted only by the requirement ∑ j A†
jA j = I. Then, by

construction, the POVM elements are positive operators. Conversely, for a given
POVM the detection operators can be expressed in terms of the POVM elements

as A j =UjΠ
1/2
j where Uj is an arbitrary unitary operator.

3′. A detection yields one of the alternatives corresponding to an element of the
POVM.

4′. The state of the system after the measurement is |φ j〉 = A j |ψ〉√
〈ψ|A†

j A j |ψ〉
if it was

initially in the pure state |ψ〉, and ρ j =
A jρA†

j

Tr(A jρA†
j )
=

A jρA†
j

Tr(A†
j A jρ)

if it was initially

in the mixed state ρ . The inclusion of the arbitrary unitary operator Uj into
the detection operator gives us a great deal of flexibility in designing the
postmeasurement state.

5′. The probability that this particular alternative is found as the measurement result
is p j = Tr(A jρA†

j) = Tr(A†
jA jρ) = Tr(Π jρ) where we used the cyclic property

of the trace operation.
6′. If we perform the measurement but we do not record the results, the postmea-

surement state is described by the density operator ρ̃ = ∑ j p jρ j = ∑ j A jρA†
j .

Very often we are not concerned with the state of the system after such operation is
performed but only with the resulting probability distribution. For this, it is sufficient
to consider Postulates 1′ and 5′ defining the probability of finding alternative j
as the detection result. Note, that at no step did we require the orthogonality of
the Π j’s. Since orthogonality is no longer a requirement, the number of terms in
this decomposition of the identity is not bounded by NA. In fact, the number of
terms can be arbitrary. Obviously, what we arrived at is a generalization of the
von Neumann projective measurement. It is a surprising generalization as it tells
us that just about any operation that satisfies Postulates 1′ and 2′ is a legitimate
operation that generates a valid probability distribution. It is also a rather natural
generalization of the standard quantum measurement since it provides us with a
well-defined algorithm that generates a well-behaved probability distribution. So
this procedure can be regarded as a generalized measurement, and, indeed, for most
purposes, it is a sufficient generalization of the standard quantum measurement.

A further note is in place here. Very often a projector projects on a one-
dimensional subspace, which is spanned by the vector |ω j〉, in which case it can
be written as Pj = |ω j〉〈ω j|. The corresponding generalization to a non-hermitian
detection operator can be written as A j = c j|ω̃ j〉〈ω j| where 〈ω j|ω j〉= 〈ω̃ j |ω̃ j〉= 1,
and c j is a complex number inside the unit circle |c j|2 ≤ 1, and 〈ω j|ω̃ j〉 is arbitrary.
Then

Π j = |c j|2|ω j〉〈ω j |, (5.12)

but 〈ω j|ωk〉 �∼ δ jk, and, hence, it is explicit that the POVM is not an orthog-
onal decomposition of the identity. Since A j|ψ〉 = c j〈ω j|ψ〉|ω̃ j〉, we see that
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|ω̃ j〉 is proportional to the postmeasurement state |φ j〉, and p j = 〈ψ |Π j|ψ〉 =
〈ψ |A†

jA j|ψ〉= |c j|2|〈ω j|ψ〉|2. So, we have that

|c j|2 = p j

|〈ω j|ψ〉|2 , (5.13)

and

Π j =
p j

|〈ω j|ψ〉|2 |ω j〉〈ω j|. (5.14)

Of course, up to this point all this is just a formal mathematical generalization
of the standard quantum measurement. The important question is, how can we
implement such a thing physically? In the next section we set out to answer this
question and then we will study examples of POVMs.

5.4 Neumark’s Theorem and the Implementation of a POVM
Via Generalized Measurements

First, let us take a look at what happens if we couple our system to another system
called ancilla, let them evolve, and then measure the ancilla. The Hilbert space of
this larger system is HA⊗HB, using the tensor product extension, where the Hilbert
space of the original system is HA and the Hilbert space of the ancilla is HB. We
want to gain information about the state of the system that we now denote as |ψA〉.
We assume that the system and the ancilla are initially independent; their joint initial
state is |ψA〉⊗ |ψB〉. Let {|mB〉} be an orthonormal basis for HB and UAB a unitary
operator acting on HA⊗HB. The probability pm of measuring |mB〉 is then given by

pm = ‖(IA ⊗|mB〉〈mB|)UAB(|ψA〉⊗ |ψB〉)‖2. (5.15)

Define

Am|ψA〉 ≡ 〈mB|UAB(|ψA〉⊗ |ψB〉). (5.16)

Then Am is a linear operator on HA that depends on |mB〉, |ψB〉, and UAB. With the
help of this definition we can write the measurement probability as

pm = ‖Am|ψA〉⊗ |mB〉‖2 = 〈ψA|A†
mAm|ψA〉. (5.17)

Note that

∑
m
〈ψA|A†

mAm|ψA〉 = ∑
m
(〈ψA|⊗ 〈ψB|)U†

AB|mB〉〈mB|UAB(|ψA〉⊗ |ψB〉)

= 1. (5.18)
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Since this is true for any |ψA〉, we must have that

∑
m

A†
mAm = IA, (5.19)

where IA is the identity in HA.
The non-normalized state of the total “system plus ancilla” after the measurement

is Am|ψA〉⊗ |mB〉, so the (normalized) postmeasurement state of the system alone is

|φA〉= 1√
〈ψA|A†

mAm|ψA〉
Am|ψA〉. (5.20)

Clearly, the (normalized) state of the ancilla after the measurement is |φB〉 = |mB〉,
up to an arbitrary phase factor. After the measurement is done and outcome |mB〉 is
found, the ancilla is no longer of interest and can be discarded.

The set {A†
mAm} thus gives a decomposition of the identity in terms of positive

operators. Therefore, we can identify the set with a POVM where {A†
mAm} are its

elements. In fact, what we see here is the first half of Neumark’s theorem: If we
couple our system to an ancilla, let them evolve so that they become entangled,
and perform a measurement on the ancilla, which collapses the ancilla to one of
the basis vectors of the ancilla space, then this procedure will also transform the
system because the ancilla degrees of freedom are now entangled to the system. The
transformation of the state of the system is, however, neither unitary nor a projection.
It can adequately be described as a POVM, so the above procedure corresponds to
a POVM in the system Hilbert space. Thus, we have just found a procedure that,
when we look at the system only, looks like a POVM. We now know that there are
physical processes that can adequately be described as POVMs.

Next we address the question, given the set of operators {Am} acting on HA

such that ∑m A†
mAm = I, can this be interpreted as resulting from a measurement on

a larger space? That is, can we find H = HA ⊗HB, |ψB〉, {|mB〉} ∈ HB, and UAB

acting on H such that

Am|ψA〉= 〈mB|UAB(|ψA〉⊗ |ψB〉) (5.21)

holds?
The answer to this question is yes, and we will now prove it constructively. Let

us choose HB to have dimension M and let {|mB〉} be an orthonormal basis for HB,
and choose |ψB〉 to be an arbitrary but fixed initial state in HB. Let us further define
a transformation UAB via

UAB(|ψA〉⊗ |ψB〉) = ∑
m

Am|ψA〉⊗ |mB〉, (5.22)

which implies the Eq. (5.21). UAB is inner product preserving,
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(
∑
m′
〈ψ ′

A|A†
m′ ⊗ 〈m′

B|
)(

∑
m

Am|ψA〉⊗ |mB〉
)

= ∑
m
〈ψ ′

A|A†
mAm|ψA〉

= 〈ψ ′
A|ψA〉, (5.23)

so it is unitary on the one-dimensional subspace spanned by |ψB〉 and it can be
extended to a full unitary operator on HA ⊗HB because, e.g., on the subspace that
is orthogonal to |ψB〉 it can be the identity.

This completes the proof of Neumark’s theorem which asserts that there is a one-
to-one correspondence between a POVM and the above procedure which sometimes
is itself called a generalized measurement. Hence, a generalized measurement can
be regarded as the physical implementation of a given POVM.

To close this section we will now illustrate these general considerations on an
example. The example is an application of the minimum-error state discrimination
strategy that will be discussed in the next section. Suppose one is given a qubit
which is prepared equally likely in either of the following three states:

|ψ0〉 = −1
2

(
|0〉+

√
3 |1〉

)
,

|ψ1〉 = −1
2

(
|0〉−

√
3 |1〉

)
,

|ψ2〉 = |0〉, (5.24)

that is, the probability that |ψ j〉 (for j = 0,1,2) is prepared is 1/3. These three states
form an overcomplete set of symmetric states that is known as the trine ensemble.
For the minimum-error discrimination consider the operators

Π j = A†
jA j =

2
3
|ψ j〉〈ψ j |. (5.25)

Since Π j ≥ 0 and together they span the Hilbert space of the qubit, ∑2
j=0 Π j = 1, we

have a legitimate POVM. If we use this POVM and if we get result j, we guess that
we were given |ψ j〉. The probability of being correct is p j = 〈ψ j|A†

jA j|ψ j〉 = 2/3

and the probability of making an error is q j = 〈ψ j′ |A†
jA j|ψ j′ 〉 = 1/6 (for j �= j′).

In fact, the above POVM is the optimal one for minimum-error discrimination, p j

takes its maximum possible value, and q j is the minimum allowed by the laws of
quantum mechanics.

For a physical implementation of this optimal POVM along the lines of Neu-
mark’s theorem let us define the (non-normalized) qutrit vectors

|v0〉 =
√

2
3
|0〉+ 1

2
√

6
(|1〉+ |2〉),

|v1〉 = 1

2
√

2
(|1〉− |2〉),
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|u0〉 = 1

2
√

2
(|1〉− |2〉),

|u1〉 = 1
2

√
3
2
(|1〉+ |2〉), (5.26)

where {|mB〉} (for mB = 0,1,2) is an orthonormal basis in the qutrit Hilbert space
which is our HB. Note that 〈v0|v1〉 = 〈u0|u1〉 = 0 and ‖v0‖2 + ‖v1‖2 = ‖u0‖2 +
‖u1‖2 = 1. Let us further introduce the transformation U with the definition,

U |0A〉|0B〉= |0A〉|v0,B〉+ |1A〉|v1,B〉,
U |1A〉|0B〉= |0A〉|u0,B〉+ |1A〉|u1,B〉, (5.27)

where A refers to the system and B to the ancilla. As discussed before, it is sufficient
to define this transformation on a single initial state |ψB〉 of the ancilla which we
conveniently choose as |ψB〉 = |0B〉. Then U can be extended to a full unitary
transformation on the ancilla space by choosing it to be the identity on the subspace
orthogonal to |0B〉.

Obviously, any system state can be represented as |ψA〉 = α|0A〉+ β |1A〉 with
|α|2 + |β |2 = 1. Multiplying the first of the equations in (5.27) by α and the
second by β , adding them together and taking the |mB〉 component of the resulting
expression, yields

〈mB|(U(|ψA〉|0B〉) = |0A〉(α〈m|v0〉+β 〈m|u0〉)+ |1A〉(α〈m|v1〉+β 〈m|u1〉).
(5.28)

Using α = 〈0A|ψA〉 and β = 〈1A|ψA〉, this expression defines Am as the operator
acting on |ψA〉. Then Am is explicitly given by

Am = |0A〉(〈0A|〈m|v0〉+ 〈1A|〈m|u0〉+ |1A〉(〈0A|〈m|v1〉+ 〈1A|〈m|u1〉). (5.29)

Finally, a comparison to Eq. (5.24) reveals that A j can be written in the compact
form,

A j =

√
2
3
|ψ j〉〈ψ j |. (5.30)

A direct substitution shows that Eq. (5.25) is satisfied by this A j. Thus, we have
just found a physical implementation of the optimal POVM for the minimum-error
discrimination of the trine states.

What we have done here can be summarized in the following way. We needed
three outcomes of our generalized measurement, so we introduced a three-
dimensional ancilla space, called a qutrit. Then we unitarily entangled our system
with the ancilla, and, after this interaction, a projective measurement on the ancilla
degrees of freedom was performed. The POVM then emerges as the residual effect
on the original system due to entanglement of the system to the ancilla when a von
Neumann measurement is performed on the ancilla only.
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This method corresponds to the tensor product extension of the Hilbert space.
The Hilbert space of the combined system is the tensor product of the Hilbert spaces
of the two subsystems. There are two conceptually different ways of extending a
Hilbert space, the tensor product extension being one of them. The other method
is the direct sum extension. The extended Hilbert space is then the direct sum of
the Hilbert space spanned by the states of the original system and of the Hilbert
space spanned by the auxiliary states, being also called ancilla states. For the trine
ensemble, it is possible to associate the three two-dimensional non-normalized
detection states

√
2/3|ψ j〉 with three orthonormal states in three dimensions,

given by

|ψ̃ j〉=
√

2
3
|ψ j〉+

√
1
3
|2〉, (5.31)

where the ancillary basis state |2〉 is orthogonal to the two basis states, |0〉 and
|1〉, of the system. By performing the von Neumann measurement that consists of
the three projections |ψ̃ j〉〈ψ̃ j | ( j = 0,1,2) in the enlarged, i.e., three-dimensional
Hilbert space, the required generalized measurement is realized in the original two-
dimensional Hilbert space of the qubit. In effect, the direct sum extension of the
Hilbert space relies on the assumption that the original qubit secretly consists of
two components of a qutrit.

5.5 Examples: Strategies for State Discrimination

As examples of a measurement optimization task we will consider two schemes for
the optimal discrimination of quantum states. The first is unambiguous discrim-
ination and the second is discrimination with minimum error. We will see that
the optimum measurement for the first strategy is a POVM while the optimum
measurement for the second is a standard von Neumann measurement. The two
main discrimination strategies evolved rather differently from the very beginning.
Unambiguous discrimination started with pure states and only very recently was
it extended to discriminating among mixed quantum states. Minimum-error dis-
crimination addressed the problem of discriminating between two mixed quantum
states from the very beginning and the result for two pure states follows as a special
case. The two strategies are, in a sense, complementary to each other. Unambiguous
discrimination is relatively straightforward to generalize for more than two states,
at least in principle, but it is difficult to treat mixed states. The error-minimizing
approach, initially developed for two mixed states, is hard to generalize for more
than two states.
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5.5.1 Unambiguous Discrimination of Two Pure States

Unambiguous discrimination is concerned with the following problem. An ensem-
ble of quantum systems is prepared so that each individual system is prepared in one
of two known states, |ψ1〉 or |ψ2〉 with probability η1 or η2 (such that η1 +η2 =
1), respectively. The preparation probabilities are called a priori probabilities or,
simply, priors. The states are, in general, not orthogonal, 〈ψ1|ψ2〉 �= 0 but linearly
independent. The preparer, Alice, then draws a system at random from this ensemble
and hands it over to an observer, called Bob, whose task is to determine which one of
the two states he is given. The observer also knows how the ensemble was prepared,
i.e., has full knowledge of the two possible states and their priors but does not know
the actual state that was drawn. All he can do is to perform a single measurement or
perhaps a POVM on the individual system he receives.

In the unambiguous discrimination strategy the observer is not allowed to make
an error, i.e., he is not permitted to conclude that he was given one state when
actually he was given the other. First we show that this cannot be done with 100%
probability of success. To this end, let us assume the contrary and assume we have
two detection operators, Π1 and Π2, that together span the Hilbert space of the two
states,

Π1 +Π2 = I. (5.32)

For unambiguous detection we also require that

Π1|ψ2〉 = 0,

Π2|ψ1〉 = 0, (5.33)

so that the first detector never clicks for the second state and vice versa, and
we can identify the detector clicks with one of the states unambiguously. The
probability of successfully identifying the first state if it is given is p1 = 〈ψ1|Π1|ψ1〉
and the probability of successfully identifying the second state if it is given is
p2 = 〈ψ2|Π2|ψ2〉. Multiplying Eq. (5.32) with 〈ψ1| from the left and |ψ1〉 from
the right and taking into account (5.33) give p1 = 1, and, similarly, we obtain
p2 = 1, and it appears as though we could have perfect unambiguous discrimination.
However, multiplying Eq. (5.32) with 〈ψ1| from the left and |ψ2〉 from the right
and taking into account (5.33) again gives 0 = 〈ψ1|ψ2〉 which can be satisfied for
orthogonal states only. In fact, we have just proved that perfect discrimination of
nonorthogonal quantum states is not possible.

Equation (5.32) allows two alternatives only; it assumes that we can have two
operators that unambiguously identify the two states all the time. Since this is
impossible, we are forced to modify this equation and have to allow for one other
alternative. We introduce a third POVM element, Π0, such that Eq. (5.33) is still
satisfied but Eq. (5.32) is modified to

Π1 +Π2 +Π0 = I. (5.34)
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The first and second POVM elements will continue to unambiguously identify the
first and second state, respectively. However, Π0 can click for both states, and,
thus, this POVM element corresponds to an inconclusive detection result. It should
be emphasized that this outcome is not an error; we will never identify the first
state with the second and vice versa; we simply will not make any conclusion
in this case. We can now introduce success and failure probabilities in such a
way that 〈ψ1|Π1|ψ1〉 = p1 is the probability of successfully identifying |ψ1〉 and
〈ψ1|Π0|ψ1〉 = q1 is the probability of failing to identify |ψ1〉 (and similarly for
|ψ2〉). For unambiguous discrimination we have 〈ψ2|Π1|ψ2〉 = 〈ψ1|Π2|ψ1〉 = 0
from Eq. (5.33). Using this, we obtain from Eq. (5.34) p1 + q1 = p2 + q2 = 1.
This means that if we allow inconclusive detection results to occur with a certain
probability then in the remaining cases the observer can conclusively determine the
state of the individual system.

It is rather easy to see that a simple von Neumann measurement can accomplish
this task. Let us denote the Hilbert space of the two given states by H and
introduce the projector P1 for |ψ1〉 and P̄1 for the orthogonal subspace, such that
P1 + P̄1 = I, the identity in H. Then we know for sure that |ψ2〉 was prepared if in
the measurement of {P1, P̄1} a click in the P̄1 detector occurs. A similar conclusion
for |ψ1〉 can be reached with the roles of |ψ1〉 and |ψ2〉 reversed. Of course, when a
click along P1 (or P2) occurs, then we learn nothing about which state was prepared,
this outcome thus corresponding to the inconclusive result. In the von Neumann
setups one of the alternatives is missing. We either identify one state or we get an
inconclusive result, but we miss the other state completely. This scenario is actually
allowed by Eq. (5.34).

We now turn our attention to the determination of the optimum measurement
strategy for unambiguous discrimination. It is the strategy, or measurement setup,
for which the average failure probability is a minimum (or, equivalently, the average
success probability is a maximum). We want to determine the operators in Eq. (5.34)
explicitly. If we introduce |ψ⊥

j 〉 as the vector orthogonal to |ψ j〉 ( j = 1,2) then the
condition of unambiguous detection, Eq. (5.33), mandates the choices

Π1 = c1|ψ⊥
2 〉〈ψ⊥

2 |, (5.35)

and

Π2 = c2|ψ⊥
1 〉〈ψ⊥

1 |. (5.36)

Here c1 and c2 are positive coefficients to be determined from the condition of
optimality.

Inserting these expressions in the definition of p1 and p2 gives c1 =
p1/|〈ψ1|ψ⊥

2 〉|2 and a similar expression for c2. Finally, introducing cosΘ =
|〈ψ1|ψ2〉| and sinΘ = |〈ψ1|ψ⊥

2 〉|, we can write the detection operators as

Π1 =
p1

sin2 Θ
|ψ⊥

2 〉〈ψ⊥
2 |,

Π2 =
p2

sin2 Θ
|ψ⊥

1 〉〈ψ⊥
1 |. (5.37)
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Now, Π1 and Π2 are positive semidefinite operators by construction. However, there
is one additional condition for the existence of the POVM which is the positivity of
the inconclusive detection operator,

Π0 = I −Π1 −Π2. (5.38)

This is a simple 2×2 matrix in H and the corresponding eigenvalue problem can be
solved analytically. Nonnegativity of the eigenvalues leads, after some tedious but
straightforward algebra, to the condition

q1q2 ≥ |〈ψ1|ψ2〉|2, (5.39)

where q1 = 1− p1 and q2 = 1− p2 are the failure probabilities for the corresponding
input states.

Equation (5.39) represents the constraint imposed by the positivity requirement
on the optimum detection operators. The task we set out to solve can now be
formulated as follows. Let

Q = η1q1 +η2q2 (5.40)

denote the average failure probability for unambiguous discrimination. We want to
minimize this failure probability subject to the constraint, Eq. (5.39). Due to the
relation, P = η1 p1 +η2 p2 = 1−Q, the minimum of Q also gives us the maximum
probability of success. Clearly, for the optimum the product q1q2 should be at its
minimum allowed by Eq. (5.39), and we can then express q2 with the help of q1 as
q2 = cos2 Θ/q1. Inserting this expression in (5.40) yields

Q = η1q1 +η2
cos2 Θ

q1
, (5.41)

where q1 can now be regarded as the independent parameter of the problem.
Optimization of Q with respect to q1 gives qPOVM

1 =
√

η2/η1 cosΘ and qPOVM
2 =√

η1/η2 cosΘ. Finally, substituting these optimal values into Eq. (5.40) gives the
optimum failure probability,

QPOVM = 2
√

η1η2 cosΘ. (5.42)

Let us next see how this result compares to the average failure probabilities of
the two possible unambiguously discriminating von Neumann measurements that
were described at the beginning of this section. The average failure probability for
the first von Neumann measurement, with its failure direction along |ψ1〉, can be
written by simple inspection as

Q1 = η1 +η2|〈ψ1|ψ2〉|2, (5.43)
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since |ψ1〉 gives a click with probability 1 in this direction, but it is only prepared
with probability η1 and |ψ2〉 gives a click with probability |〈ψ1|ψ2〉|2, but it is only
prepared with probability η2.

By entirely similar reasoning, the average failure probability for the second von
Neumann measurement, with its failure direction along |ψ2〉, is given by

Q2 = η1|〈ψ1|ψ2〉|2 +η2. (5.44)

What we can observe is that Q1 and Q2 are given as the arithmetic mean of two
terms and QPOVM is the geometric mean of the same two terms for either case. So,
one would be tempted to say that the POVM performs better always. This, however,
is not quite the case; it does so only when it exists. The obvious condition for the
POVM solution to exist is that both qPOVM

1 ≤ 1 and qPOVM
2 ≤ 1. Using η2 = 1−η1, a

little algebra tells us that the POVM exists in the range cos2 Θ/(1+ cos2 Θ)≤ η1 ≤
1/(1+cos2 Θ). If η1 is smaller than the lower boundary, the POVM goes over to the
first von Neumann measurement and if η1 exceeds the upper boundary the POVM
goes over to the second von Neumann measurement. This can be easily seen from
Eqs. (5.37) and (5.38) since p1 = 1−q1 = 0 for q1 = 1 and Π0 becomes a projection
along |ψ1〉 (and correspondingly for p2 = 0).

These findings can be summarized as follows. The optimal failure probability,
Qopt, is given as

Qopt =

⎧⎪⎨
⎪⎩

QPOVM if cos2 Θ
1+cos2 Θ ≤ η1 ≤ 1

1+cos2 Θ ,

Q1 if η1 <
cos2 Θ

1+cos2 Θ ,

Q2 if 1
1+cos2 Θ < η1.

(5.45)

The optimum POVM operators are given by

Π1 =
1− qopt

1

sin2 Θ
|ψ⊥

2 〉〈ψ⊥
2 |,

Π2 =
1− qopt

2

sin2 Θ
|ψ⊥

1 〉〈ψ⊥
2 |. (5.46)

These expressions show explicitly that Π1 = 0 and Π2 is the projector |ψ⊥
1 〉〈ψ⊥

1 |
when qopt

1 = 1 and qopt
2 = cos2 Θ, i.e., the POVM goes over smoothly into a projective

measurement at the lower boundary and, similarly, into the other von Neumann
projective measurement at the upper boundary.

Figure 5.1 displays the failure probabilities, Q1, Q2, and QPOVM vs. η1 for a fixed
value of the overlap, cos2 Θ.

The above result is very satisfying from a physical point of view. The POVM
delivers a lower failure probability in its entire range of existence than either
of the two von Neumann measurements. At the boundaries of this range it
merges smoothly with the one von Neumann measurement that has a lower failure
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Fig. 5.1 Failure probability, Q, vs. the prior probability, η1. Dashed line: Q1, dotted line: Q2,
solid line: QPOVM. For the figure we used the following representative value: |〈ψ1|ψ2〉|2 = 0.1.
For this the optimal failure probability, Qopt is given by Q1 for 0 < η1 < 0.09, by QPOVM for
0.09 ≤ η1 ≤ 0.91, and by Q2 for 0.91 < η1

probability at that point. Outside this range the state preparation is dominated by
one of the states and the optimal measurement becomes a von Neumann projective
measurement, using the state that is prepared less frequently as its failure direction.

5.5.2 Minimum-Error Discrimination of Two Quantum States

In the previous section we have required that, whenever a definite answer is returned
after a measurement on the system, the result should be unambiguous, at the
expense of allowing inconclusive outcomes to occur. For many applications in
quantum communication, however, one wants to have conclusive results only. This
means that errors are unavoidable when the states are nonorthogonal. Based on the
outcome of the measurement, in each single case then a guess has to be made as
to what the state of the quantum system was. In the optimal strategy we want to
minimize the probability of making a wrong guess; hence, this procedure is known
as minimum-error discrimination. The problem is to find the optimum measurement
that minimizes the probability of errors.

Let us state the optimization problem a little more precisely. In the most general
case, we want to distinguish, with minimum probability of error, among N given
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states of a quantum system (where N ≥ 2). The states are given by the density
operators ρ j ( j = 1,2, . . . ,N) and the jth state occurs with the given a priori
probability η j, such that ∑N

j=1 η j = 1. The measurement can be formally described
with the help of a POVM, where the POVM elements, Π j, correspond to the
possible measurement outcomes. They are defined in such a way that Tr(ρΠ j) is
the probability to infer the state of the system to be ρ j if it has been prepared in a
state ρ . Since the probability is a real nonnegative number, the detection operators
once again have to be positive semidefinite. In the error-minimizing measurement
scheme the measurement is required to be exhaustive and conclusive in the sense
that in each single case one of the N possible states is identified with certainty and
inconclusive results do not occur. This leads to the requirement

N

∑
j=1

Π j = IDS , (5.47)

where IDS denotes the identity operator in the DS-dimensional physical state space
of the quantum system. The overall probability Perr to make an erroneous guess for
any of the incoming states is then given by

Perr = 1−Pcorr = 1−
N

∑
j=1

η jTr(ρ jΠ j) (5.48)

with ∑ j η j = 1. Here we introduced the probability Pcorr that the guess is correct.
In order to find the minimum-error measurement strategy, one has to determine the
POVM that minimizes the value of Perr under the constraint given by Eq. (5.47).
By inserting these optimum detection operators into Eq. (5.48), the minimum-error
probability Pmin

err ≡ PE is determined. The explicit solution to the error-minimizing
problem is not trivial and analytical expressions have been derived only for a few
special cases.

For the case that only two states are given, either pure or mixed, the minimum-
error probability, PE , was derived in the mid-1970s by Helstrom in the framework
of quantum detection and estimation theory. We find it more instructive to start
by analyzing the two-state minimum-error measurement with the help of an
alternative method that allows us to gain immediate insight into the structure of the
optimum detection operators, without applying variational techniques. Starting from
Eq. (5.48) and making use of the relations η1 +η2 = 1 and Π1 +Π2 = IDS that have
to be fulfilled by the a priori probabilities and the detection operators, respectively,
we see that the total probability to get an erroneous result in the measurement is
given by

Perr = 1−
2

∑
j=1

η jTr(ρ jΠ j) = η1Tr(ρ1Π2)+η2Tr(ρ2Π1). (5.49)
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This can be alternatively expressed as

Perr = η1 +Tr(ΛΠ1) = η2 −Tr(ΛΠ2), (5.50)

where we introduced the hermitian operator

Λ = η2ρ2 −η1ρ1 =
DS

∑
k=1

λk|φk〉〈φk|. (5.51)

Here the states |φk〉 denote the orthonormal eigenstates belonging to the eigenvalues
λk of the operator Λ. The eigenvalues are real, and without loss of generality we can
number them in such a way that

λk < 0 for 1 ≤ k < k0,

λk > 0 for k0 ≤ k ≤ D,

λk = 0 for D < k ≤ DS. (5.52)

By using the spectral decomposition of Λ, we get the representations

Perr = η1 +
DS

∑
k=1

λk〈φk|Π1|φk〉= η2 −
DS

∑
k=1

λk〈φk|Π2|φk〉. (5.53)

Our optimization task now consists in determining the specific operators Π1, or Π2,
respectively, that minimize the right-hand side of Eq. (5.53) under the constraint that

0 ≤ 〈φk|Π j|φk〉 ≤ 1 ( j = 1,2) (5.54)

for all eigenstates |φk〉. The latter requirement is due to the fact that Tr(ρΠ j) denotes
a probability for any ρ . From this constraint and from Eq. (5.53) it immediately
follows that the smallest possible error probability, Pmin

err ≡ PE , is achieved when the
detection operators are chosen in such a way that the equations 〈φk|Π1|φk〉= 1 and
〈φk|Π2|φk〉= 0 are fulfilled for eigenstates belonging to negative eigenvalues, while
eigenstates corresponding to positive eigenvalues obey the equations 〈φk|Π1|φk〉= 0
and 〈φk|Π2|φk〉= 1. Hence the optimum POVM operators can be written as

Π1 =
k0−1

∑
k=1

|φk〉〈φk|, Π2 =
DS

∑
k=k0

|φk〉〈φk|, (5.55)

where the expression for Π2 has been supplemented by projection operators
onto eigenstates belonging to the eigenvalue λk = 0, in such a way that
Π1 +Π2 = IDS . Obviously, provided that there are positive as well as negative
eigenvalues in the spectral decomposition of Λ, the minimum-error measurement for
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discriminating two quantum states is a von Neumann measurement that consists
in performing projections onto the two orthogonal subspaces spanned by the set
of states {|φ1〉, . . . , |φk0−1〉}, on the one hand, and {|φk0〉, . . . , |φDS 〉}, on the other
hand. An interesting special case arises when negative eigenvalues do not exist. In
this case it follows that Π1 = 0 and Π2 = IDS which means that the minimum error
probability can be achieved by always guessing the quantum system to be in the
state ρ2, without performing any measurement at all. Similar considerations hold
true in the absence of positive eigenvalues, so a measurement does not always aid
minimum-error discrimination. By inserting the optimum detection operators into
Eq. (5.50), the minimum-error probability is found to be

PE = η1 −
k0−1

∑
k=1

|λk|= η2 −
D

∑
k=k0

|λk|. (5.56)

Taking the sum of these two alternative representations and using η1 +η2 = 1, we
arrive at

PE =
1
2

(
1−∑

k

|λk|
)

=
1
2
(1−Tr|Λ|) , (5.57)

where |Λ| =
√

Λ†Λ. Together with Eq. (5.48) this immediately yields the well-
known Helstrom formula for the minimum-error probability in discriminating ρ1

and ρ2,

PE =
1
2
(1−Tr|η2ρ2 −η1ρ1|) = 1

2
(1−‖η2ρ2 −η1ρ1‖) . (5.58)

In the special case that the states to be distinguished are the pure states |ψ1〉 and
|ψ2〉, this expression reduces to

PE =
1
2

(
1−

√
1− 4η1η2|〈ψ1|ψ2〉|2

)
. (5.59)

This expression, which is the one found in textbooks, can be cast to the equivalent
form,

PE = ηmin

(
1− 2ηmax(1−|〈ψ1|ψ2〉|2)

ηmax −ηmin +
√

1− 4ηminηmax|〈ψ1|ψ2〉|2

)
, (5.60)

where ηmin (ηmax) is the smaller (greater) of the prior probabilities, η1 and η2. This
form lends itself to a transparent interpretation. The first factor on the right-hand
side is what we would get if we always guessed the state that is prepared more often,
without any measurement at all. Thus, the factor multiplying ηmin is the result of the
optimized measurement.

The setup of the detectors that achieve the optimum error probabilities is
particularly simple for the case of equal a priori probabilities. Two orthogonal
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detectors, placed symmetrically around the two pure states, will do the task. The
simplicity is particularly striking when one compares this setup to the corresponding
POVM setup for optimal unambiguous discrimination.

Finally, we present an interesting relation, without proof, that is always satisfied
between the minimum-error probability of the minimum-error detection and the
optimal failure probability of unambiguous detection. It reads as

PE ≤ 1
2

Qopt. (5.61)

This means that for two arbitrary states (mixed or pure), prepared with arbitrary
a priori probabilities, the smallest possible failure probability in unambiguous
discrimination is at least twice as large as the smallest probability of errors in
minimum-error discrimination of the same states.

5.6 Problems

1. Find the eigenvalues of the POVM element, given in Eq. (5.38), corresponding
to inconclusive outcomes and show that the condition of their positivity can be
cast to the form given in Eq. (5.39).

2. For optimum unambiguous discrimination between two pure quantum states,
the POVM elements are given in Eq. (5.46) and by Π0 = I −Π1 −Π2. Find an
implementation in terms of a generalized measurement via Neumark’s theorem,
introducing the ancilla by using the tensor product extension of the Hilbert space.

3. The derivation of the general formula for the minimum-error probability is given
in the text.

(a) Show that for the special case of two pure states, ρ1 = |ψ1〉〈ψ1| and ρ2 =
|ψ2〉〈ψ2|, Eq. (5.58) reduces to Eq. (5.59).

(b) The general expression for the optimal detection operators is given in
Eq. (5.55). Find their explicit expression for the pure state case of part (a).

4. (a) Show that QPOVM in Eq. (5.42) and PE in Eq. (5.59) satisfy the inequal-
ity (5.61).

(b) If you are very ambitious, prove the inequality.
5. (a) Let us consider the so-called trine states

|ψ1〉= |0〉 |ψ2〉=− 1
2(|0〉+

√
3|1〉)

|ψ3〉=− 1
2(|0〉−

√
3|1〉).

These are states of a single qubit. We are given a qubit that is guaranteed to
be in one of these three states, and we want to find a POVM that does the
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following. If we obtain result 1 (corresponding to operators A1 and A†
1), then

we know that the qubit we were given was not in state |ψ1〉. If we get result 2,
it was not in state |ψ2〉, and if we get result 3, then it was not in state |ψ3〉.
Find a POVM that does this.

(b) Now let us look at the four states (the tetrad states)

|ψ1〉= 1√
3
(−|0〉+

√
2e−2π i/3|1〉) |ψ2〉= 1√

3
(−|0〉+√

2e2π i/3|1〉)

|ψ3〉= 1√
3
(−|0〉+

√
2|1〉) |ψ4〉= |0〉.

We want to consider the minimum-error detection scenario for these states.
That is, we are given a qubit in one of these four states, and we want to find
which one, with the requirement that our probability of making a mistake
is the smallest possible. The POVM that accomplishes this is given by the
operators A j = (1/

√
2)|ψ j〉〈ψ j|, where j = 1, . . . ,4. Verify that

4

∑
j=1

A†
jA j = I,

and find the probability that a state will be correctly identified. Also find the
probability that an error will be made, that is, that we are given |ψ j〉 but we
identify it as |ψ j′ 〉, where j �= j′.

6. When we derived POVMs we used a Hilbert space that was a tensor product
between the space for the system we wanted to measure and the space for an
ancilla. It is also possible to derive a POVM by considering the direct sum of
two Hilbert spaces. In particular, if we are measuring states that are confined to a
subspace of a larger space, then we can describe projective measurements on the
entire space as POVMs on the subspace. Let us see how this works by means of
an example.

(a) Consider again the trine states, but now let us suppose that they are states
of a qutrit rather than of a qubit. The entire Hilbert space, H3, has the
orthonormal basis, {|0〉, |1〉, |2〉}, and the subspace, S, in which the trine
states lie, is spanned by the basis elements |0〉 and |1〉. The POVM operators
for the minimum-error scenario are given by A j =

√
2/3|ψ j〉〈ψ j | (the states

|ψ j〉, for j = 1,2,3 are given in part (a) of problem 1. Find one-dimensional
projections Pj, acting on H3 that satisfy

〈ψ |Pj|ψ〉= 〈ψ |A†
jA j|ψ〉,

for any state |ψ〉 ∈ S.
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(b) Suppose that we want to measure the projections Pj and that we can easily
measure the projections corresponding to the basis states {|0〉, |1〉, |2〉}.
We can then measure the projections Pj by measuring the projections | j〉〈 j|
if we can find a unitary transformation, U , such that | j〉〈 j| =UPjU−1. This
implies that

|〈 j|U |ψ〉|2 = 〈ψ |Pj|ψ〉,
so that the probability of measuring | j〉 in the transformed state is the same
as that of measuring Pj in the original state. Find such a unitary operator in
this case.
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Chapter 6
Quantum Cryptography

6.1 Outline

Quantum communication is the most advanced area of quantum information
processing and quantum computing. This is where the most fundamental features
of quantum mechanics are only a short step away from spectacular practical
applications. We have already seen two such applications: dense coding and
teleportation. In this chapter we shall deal with what is arguably the most successful
area of all of quantum information and quantum computing: quantum cryptography.

Cryptography is the art of secret communication. It has been around since ancient
times. What distinguishes quantum cryptography from classical cryptography is that
classical information can be copied at will. Therefore, no classical cryptographic
protocol is entirely secure, although there are classical cryptographic protocols that
are very hard to break in practice. Quantum information, on the other hand, i.e.,
unknown quantum states, cannot be cloned (cf. the no-cloning theorem). Quantum
cryptography enables two parties, traditionally called Alice and Bob, to exchange
information in a provably secure way. The security stems from the fact that if an
eavesdropper, traditionally called Eve, tries to intercept the messages, her presence
can be detected by the unavoidable disturbance she causes by trying to access the
information.

In the next section of this chapter we give a very brief introduction to the ideas
behind classical cryptography. At the heart of any provably secure cryptographic
protocol lies the process of establishing a secret key. Quantum key distribution
(QKD) solves this problem using fundamental principles of quantum mechanics.
Alice and Bob can then use the secret key to encode and decode their messages. In
the following two sections we will briefly describe a number of QKD protocols that
clearly show what fundamental features of quantum mechanics are being used as
resources.

Quantum cryptography is now a highly developed subject, and what we will
present here just scratches the surface. Our intent is to provide an introduction to
some of the basic ideas on which the subject is based.

J.A. Bergou and M. Hillery, Introduction to the Theory of Quantum Information
Processing, Graduate Texts in Physics, DOI 10.1007/978-1-4614-7092-2 6,
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6.2 The One-Time Pad

The first documented cases of secret communication date back about thirty
centuries. Since then its history can be described as the ongoing struggle between
code makers and code breakers. Sometimes, code makers outsmart the code
breakers; sometimes the code breakers are ahead in the game. With quantum
mechanics, code makers finally seem to be gaining the upper hand.

To be precise, the word code refers to the particular kind of secret communication
where a word or even a full sentence is replaced with a word, a number, or a symbol.
Initially very popular, its use has decreased over time to give way to the cipher,
which acts at the level of the smallest building blocks: the letters. In a cipher letters
are being replaced by letters, numbers, or symbols.

If letters of a message are simply rearranged, we are talking about transposition.
The alternative to transposition is substitution when letters are being substituted. An
early example for a substitution cipher is the Caesar shift, used by Julius Caesar for
the purpose of his military correspondence. In this cipher each letter in the message
is simply replaced with the letter that is three places further down the alphabet. So,
for example, Caesar becomes Fdhvdu.

This code is very easy to break. We can make things a little more difficult for
an eavesdropper if we use different shifts for different messages, that is, we do not
always shift by three. Then, in addition to the message, the shift has to be sent to the
receiver. This is the simplest example of a key. The key, in this case the shift, enables
the receiver to decrypt the message. Things get much harder for the eavesdropper
if we use different shifts for different letters in a single message. This, of course,
makes the key much longer; rather than one number (shift) for each message, we
have one for each letter in a message. The advantage, however, is that if we have a
random key, and only use it once, the code is unbreakable. This procedure is known
as a one-time pad.

This simple example for a cipher shows two distinct ingredients of encryption:
the algorithm and the key. The algorithm specifies the encryption and decryption
procedures, but in order to use it, one has to have a key known by both the sender
and receiver. The algorithm can be publicly known, so that the security of the system
depends on restricting knowledge of the key. Thus, a major problem in cryptography
is how to distribute a secure key to only the legitimate users. This is the problem
of key distribution. One can resort to couriers with briefcases handcuffed to their
wrists, but in the electronic age, something more sophisticated is needed. What we
will show in this chapter is that quantum mechanics can be used to distribute secure
keys. The resulting prescriptions are known as QKD protocols.
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6.3 The B92 Quantum Key Distribution Protocol

Both of the state discrimination strategies discussed in the previous chapter come
very nicely together in the so-called B92 QKD protocol. In 1992 Charles Bennett
proposed using the unambiguous discrimination of two nonorthogonal states as the
basis of a form of quantum cryptography. Quantum cryptography is a method of
generating a secure shared key by quantum mechanical means that is discarded after
being used only once. So, it is the quantum version of the one-time pad cipher.

In cryptography the sender is often called Alice and the receiver Bob. We will
use this nomenclature in what follows. As we have seen, the question is, then, how
to generate, or distribute, a secret key between Alice and Bob. The B92 protocol
provides one possible solution to this problem, using quantum mechanical means.
Here is how it works:

1. Alice generates a random sequence of 0s and 1s, that is, a random classical bit
string.

2. Alice encodes each data bit in a qubit, |ψ0〉 = |0〉 if the corresponding bit is 0,
and |ψ1〉 = 1√

2
(|0〉+ |1〉) if the corresponding bit is 1. This way she generates a

random string of qubits.
3. Alice then sends the resulting string of qubits to the receiver, Bob.
4. Bob applies optimum unambiguous state discrimination strategy to each qubit

he receives. Using Eq. (5.42), the success probability for Bob’s measurement is
P = 1−QPOVM = 1− 1√

2
≈ 0.293.

From now on, Alice and Bob will exchange only classical information.
5. Bob tells Alice, over a public classical channel, in which instances the discrimi-

nation succeeded but not the result.
6. They keep only those bits when the discrimination was successful and delete

those when it failed. After this they share the so-called raw key.

The raw key is the same for Alice and Bob, since Alice knows what she sent in
those instances when Bob successfully identified the state of the qubit and Bob was
using unambiguous discrimination, so there is no error. This is true as long as an
eavesdropper and noise are both absent.

So, why is this procedure secure if there is an eavesdropper? Suppose the
eavesdropper, called Eve, has intercepted a qubit. She cannot determine whether it is
in the state |ψ0〉 or |ψ1〉. One thing she can do is to apply the optimum unambiguous
state discrimination procedure. Then she will fail with a probability of 1√

2
≈ 71%.

When she does, she has no idea what state was sent, so she must guess which one to
send to Bob. Since the two states are prepared with equal probability, Eve will guess
half the time right and half the time wrong. This means that the probability that Bob
will receive a wrong bit is 1

2
√

2
≈ 35.3%. These errors can easily be detected if Alice

and Bob add one more step to their protocol.

7′. Alice and Bob publicly compare some of their bits. If there are no errors there
is no eavesdropper and they keep the remaining bits. If there are errors, in the
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range of 35%, there is likely to be an eavesdropper. They then simply throw out
all bits and try again.

But wait a second. Eve’s goal, besides learning as much as possible about the
key, is also to introduce as few errors as possible. There are unavoidable errors in
any communication scheme, partly due to the imperfections of the communication
channel and partly due to the imperfect detection. Eve’s goal is to remain below
this unavoidable noise level in order to avoid being detected. So, suppose she
has intercepted the particle but she now chooses the minimum-error strategy to
determine which state was sent. Using Eq. (5.59), her error rate will now be
1
2(1− 1√

2
) ≈ 14.6% which is much less than the error rate that she introduces if

she uses the unambiguous discrimination strategy. In addition, she still learns the
key with a fidelity of about 85%. However, even this rather low error rate can still
be detected if Alice and Bob modify the last step of their protocol.

7. Over a classical communication channel, Alice and Bob publicly compare some
of their bits. If there are no errors there is no eavesdropper and they keep the
remaining bits. If there are errors, in the range of 14%, there is likely to be an
eavesdropper. They then simply throw out all bits and try again.

This requirement is much more stringent than the one in Step 7 of the original
protocol. It is still possible to detect the presence of an eavesdropper but the require-
ments on the channel quality and detector efficiency are much more demanding than
in the case when Eve uses the same strategy as Bob. So, here we had an example
where one state discrimination strategy is optimal for the intended recipient and the
other for the eavesdropper and to analyze the worst case scenario for Alice and Bob
we have to consider all of their possibilities. There are many other QKD protocols
but this one is perhaps the clearest example of how important optimal detection
strategies are for quantum communication.

6.4 The BB 84 Protocol

The first, and most famous, QKD protocol was developed by Bennett and Brassard
in 1984, and is known as the BB 84 protocol. It is actually possible to buy
commercial quantum cryptography systems that make use of this protocol. It is a
four-state protocol in which Alice and Bob make use of two sets of bases to establish
a shared key.

Alice sends qubits to Bob, each state being a member of one of two sets of
orthonormal bases, the z basis, {|0〉, |1〉} or the x basis {|+ x〉, | − x〉}, where
|±x〉= (|0〉±|1〉)/√2. She decides which state to send at random, i.e. she chooses
a basis at random and a state from that basis at random. The states |0〉 and |+ x〉
correspond to a bit value of 0 and |1〉 and |−x〉 correspond to a bit value of 1. Upon
receiving the qubit, Bob measures it in one of the two bases, choosing which basis
to use at random. If he uses the same basis as the one Alice chose, he will obtain the
same state that Alice sent. For example, if Alice sends |0〉 and Bob measures in the
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z basis, he will obtain |0〉. If, however, Bob chooses the wrong basis, his results will
be random. If Alice sent |0〉 and Bob measures in the x basis, he will obtain |+ x〉
with a probability of 1/2 and | − x〉 with a probability of 1/2. After measuring a
qubit, Bob announces over a public channel which basis he used, but not the result
of the measurement. Alice then tells Bob whether the basis he used was the same as
the one she chose. If they agree, they keep the bit value corresponding to that qubit.
If they disagree, they throw out that bit.

In the intercept-resend attack, the eavesdropper, Eve, captures the qubit that Alice
sent, measures it, and then, based on her measurement result, prepares another qubit
to send on to Bob. Her problem is that she does not know in which basis to measure
Alice’s qubit, so she has to guess. If she guesses correctly, and Alice and Bob use
the same basis, she knows the value of that key bit, and she has not been detected.
However, with a probability of 1/2 she will guess incorrectly, and measure the qubit
in the wrong basis, and obtain a random result, which she will then use to prepare
a qubit to send to Bob. For example, suppose Alice sends |0〉 but Eve measures in
the x basis. She will, with a probability of 1/2, obtain |+ x〉 and send that on to
Bob, and will obtain |− x〉, also with a probability of 1/2, and send that on to Bob.
Now suppose that Bob chooses the same basis as Alice, in this case the z basis. In
either case, whether Eve sent |+ x〉 or |− x〉, he will obtain |0〉 with a probability
of 1/2 and |1〉 with a probability of 1/2. If he obtains |0〉, then Eve’s intervention
goes undetected, and she knows the value of the bit. However, if Bob obtains |1〉,
when he should have obtained |0〉 had there been no eavesdropper, Eve’s presence
will be revealed. Consequently, Eve will introduce errors in the case when Alice and
Bob use the same basis. This will happen with a probability of 1/4; a probability
of 1/2 that Eve chooses the wrong basis times a probability of 1/2 that if she does,
Bob obtains a measurement result different from what Alice sent. Alice and Bob can
detect these errors by publicly comparing a subset of the bits for which they chose
the same bases. If there are no errors, there was no eavesdropping, but if there are
errors, there was an eavesdropper present. In that case they throw out all of the bits
and start over.

Eve can try a different kind of attack in which she entangles the incoming qubit
with an ancilla. When she receives Alice’s qubit, she appends an ancilla qubit to it
in the state |0〉 and then applies a two-qubit unitary operation, U , which acts as

U |0〉a|0〉e = |0〉a|φ00〉e + |1〉a|φ01〉e

U |1〉a|0〉e = |0〉a|φ10〉e + |1〉a|φ11〉e, (6.1)

where the subscript a designates Alice’s qubit and the subscript e designates Eve’s
qubit. Because U is unitary, the states of Eve’s qubit must satisfy

‖φ00‖2 + ‖φ01‖2 = 1 ‖φ10‖2 + ‖φ11‖2 = 1

〈φ00|φ10〉+ 〈φ01|φ11〉 = 0. (6.2)

After entangling her qubit with Alice’s, Eve sends Alice’s qubit on to Bob.
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We will not do a complete analysis of this attack, but we will show that if Eve
is to introduce no errors, then she can obtain no information. If no errors are to be
produced when Bob measures in the z basis, then we must have |φ01〉 = |φ10〉 = 0.
Now let us see what happens in the x basis. First, we have that

U |± x〉a|0〉e =
1√
2
[|0〉a(|φ00〉e ±|φ10〉e)

+|1〉a(|φ01〉e ±|φ11〉e)]. (6.3)

Now if there are to be no errors when Bob measures in the x basis, then when Alice’s
qubit is |+ x〉a, the right-hand side of the above equation must be proportional to
|+ x〉, which implies that

|φ00〉e + |φ10〉e = |φ01〉e + |φ11〉e, (6.4)

and when Alice sends |− x〉a, the state after applying U should be proportional to
|− x〉, which implies that

|φ00〉e −|φ10〉e =−(|φ01〉e −|φ11〉e). (6.5)

Combining these conditions with the one we obtained from the z basis, |φ01〉 =
|φ10〉 = 0, we see that we must also have |φ00〉 = |φ11〉. These two conditions,
however, imply that Eve’s qubit is not entangled with Alice’s qubit at all, and,
therefore, Eve transfers no information about Alice’s qubit to her ancilla qubit. Thus,
if Eve is to introduce no errors, she will gain no information.

6.5 The E91 Protocol

In 1991 Artur Ekert proposed a protocol based on shared entanglement rather than
on one party sending particles directly to another. Suppose a source sends one qubit
to Alice and another to Bob and suppose that these qubits are in a singlet state. Alice
and Bob, independently and randomly, decide to whether to measure their qubit in
the x or y bases, where |±y〉= (|0〉± i|1〉)/√2. Alice and Bob then announce which
basis they used. If they used the same basis, their result will be anticorrelated, e.g.,
if Alice got |+x〉, Bob will have gotten |−x〉. Since each knows what the other got,
they can use this information to establish a key.

Ekert also proposed that they use their measurement results for the cases in which
they chose different bases to test whether a Bell inequality is violated or not. If Eve
had taken over the source and were sending Alice and Bob particles in definite states,
for example, a |+ x〉 to Alice and a |− x〉 to Bob, then the Bell inequality would not
be violated, and Alice and Bob would detect her.
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6.6 Quantum Secret Sharing

Secret sharing is a cryptographic protocol in which a secret is split into several parts
with each part being given to a different party. In order to recover the secret, all of
the parties have to cooperate. It is a means of providing extra security. For example,
a bank manager may split the combination of the vault into two pieces and give
each piece to a different person. The reasoning is that if at least one of the persons is
honest, an honest person will keep a dishonest one from doing anything wrong once
the vault is open. If both people are dishonest, this will not work, but the probability
of encountering two dishonest people is lower than encountering one, so an extra
measure of security is gained.

Classically one can split a key very easily. Suppose Alice possesses a sequence
of zeroes and ones, which she wants to use as a key. She creates a random sequence
of zeroes and ones and adds it, bitwise and modulo 2, to the key sequence, to create,
what we will call, a sum sequence. She sends the sum sequence to Bob and the
random sequence to Charlie. In order to find Alice’s key sequence, Bob and Charlie
have to cooperate. In particular, if Bob and Charlie add their sequences bitwise and
modulo 2, the random sequence cancels out and they are left with Alice’s original
sequence.

One can combine this procedure with QKD to form a quantum secret sharing
protocol that provides protection against eavesdropping. Alice uses, for example,
BB84, to establish keys with Bob and Charlie. The actual key she will use to encode
any messages is just the sum (bitwise and modulo 2) of these two keys. Therefore,
in order to decode any message that Alice sends them, Bob and Charlie will have
to cooperate, in particular they will have to combine their two keys to find the one
Alice is actually using.

Another way of approaching this problem is to use entanglement. Suppose Alice
prepares one of two entangled states

|Ψ0〉 = cosθ |00〉+ sinθ |11〉
|Ψ1〉 = cosθ |00〉− sinθ |11〉, (6.6)

where |Ψ0〉 corresponds to a bit value of 0 and |Ψ1〉 corresponds to a bit value of 1.
She sends one qubit to Bob and the other to Charlie. As we will see, Bob and Charlie
have to cooperate in order to find out which state Alice sent. Bob now measures his
qubit in the x basis. Define the single qubit states

|ψ±〉= cosθ |0〉± sinθ |1〉. (6.7)

If Alice sent |Ψ0〉, then if Bob gets |+ x〉, Charlie will have the state |ψ+〉, and if
Bob gets |− x〉, then Charlie will have the state |ψ−〉. Similarly, if Alice sent |Ψ1〉,
then if Bob gets |+ x〉, Charlie will have the state |ψ−〉, and if Bob gets |− x〉, then
Charlie will have the state |ψ+〉. Charlie now performs optimal unambiguous state
discrimination for the states |ψ±〉 on his qubit. He will succeed with a probability of
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1−|cos(2θ )|. He tells Alice and Bob when his measurement succeeds and when it
fails. They throw out the instances in which it failed. In the case in which Charlie’s
measurement succeeds, he has either the result |ψ+〉 or the result |ψ−〉, and Bob has
either |+ x〉 or |− x〉. Neither of them alone can determine which state Alice sent,
but if they combine their results, they can. Therefore, the information about which
state, and thereby which key bit, Alice sent is split between Bob and Charlie.

An eavesdropper is faced with the same situation as in the B92 protocol,
distinguishing between two nonorthogonal states, in this case |Ψ0〉 and |Ψ1〉. Eve
will invariably misidentify the state she receives some of the time, and she will
then send the wrong state on to Bob and Charlie. That will lead to the situation in
which Bob and Charlie receive a different state from the one that Alice sent, and this
will result in errors in the shared key. These errors can be detected if Alice, Bob,
and Charlie compare a subset of their key bits. If there are no errors, there was no
eavesdropper present, and the key is secure.

6.7 Problems

1. Suppose we are using a singlet state |φ−〉 = (|0〉|1〉− |1〉|0〉)/√2 in the Ekert
91 protocol, and Alice and Bob are measuring in the x and y bases. We want to
find a Bell inequality that is maximally violated under these conditions. Suppose
the two observables that Alice is using in the Bell inequality are σx and σy. Find
two observables for Bob of the form, n̂1 ·σ and n̂2 ·σ , where n̂1 and n̂2 are unit
vectors in the x− y plane such that the expression appearing in the resulting Bell
inequality

|〈σx(n̂1 ·σ)〉+ 〈σx(n̂2 ·σ)〉+ 〈σy(n̂1 ·σ)〉− 〈σy(n̂2 ·σ)〉|

is equal to 2
√

2 for the singlet state. It is useful to first prove that for any unit
vectors ê and n̂, 〈φ−|(ê ·σ)(n̂ ·σ)|φ−〉=−ê · n̂.

2. Alice and Bob are using the B92 protocol with states |ψ0〉 and |ψ1〉. Eve captures
the qubit going from Alice to Bob and entangles it with an ancilla qubit and then
sends Alice’s original qubit on to Bob. Eve wants to measure the ancilla qubit
to gain information about the qubit Alice sent to Bob. In particular, Eve uses the
unitary entangling operation U to perform

U |ψ0〉A|0〉E = |ψ0〉A|v00〉E + |ψ⊥
0 〉A|v01〉E

U |ψ1〉A|0〉E = |ψ1〉A|v11〉E + |ψ⊥
1 〉A|v10〉E ,

where 〈ψ j|ψ⊥
j 〉 = 0, for j = 0,1, and the vectors |v jk〉 for j,k = 0,1 are not

necessarily normalized. Show that if Eve is to create no errors she will gain no
information about Alice’s qubit.
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3. Another way to do quantum secret sharing is to use the GHZ state |Ψ〉abc =
(1/

√
2)(|000〉abc + |111〉abc). Define the x and y bases as |± x〉= (1/

√
2)(|0〉±

|1〉) and | ± y〉 = (1/
√

2)(|0〉± i|1〉. Alice, Bob, and Charlie each have one of
the qubits in the GHZ state. Show that if Alice and Bob both measure in the same
basis, and Charlie measures in the x basis, then if Bob and Charlie communicate
their measurement results to each other, they can determine the result of Alice’s
measurement. In addition, show that if Alice and Bob measure in different bases,
and Charlie measures in the y basis, then, again, if Bob and Charlie communicate
their measurement results to each other, they can determine the result of Alice’s
measurement. Therefore, Alice can establish a joint key with Bob and Charlie,
but Bob and Charlie have to cooperate to obtain it.
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Chapter 7
Quantum Algorithms

In this chapter we shall look at a number of quantum algorithms. We are going to
compare their performance, in terms of number of steps, to classical algorithms that
accomplish the same task.

7.1 The Deutsch–Jozsa Algorithm

We shall start with a generalization of the Deutsch algorithm, known as the Deutsch–
Jozsa algorithm. The problem can be stated as follows: Given a Boolean function on
n-digit binary numbers, f : {0,1}n →{0,1}, which is promised to be either constant
or balanced, determine which.

Classically, 2(n−1) + 1 function evaluations are necessary in the worst case
scenario. There is a quantum algorithm that requires only one function evaluation.
The corresponding quantum circuit is shown in Fig. 7.1.

In order to understand how this circuit works we shall analyze the state of the
n+ 1 qubit system at each step, i.e., at the input, after the first set of Hadamard
gates, after the f-Controlled-NOT gate, and after the second set of Hadamard gates
which constitutes the output state generated by the circuit.

Since Hadamard gates are placed before and after the f-CNOT gate, we begin
by analyzing the action of a set of Hadamard gates on a general binary number
state which, in turn, is defined as follows. Let x = xn−1xn−2 . . .x0, where x j ∈ {0,1},
stand for an n-digit binary number. Then the binary number state |x〉 of an n qubit
system in the computational basis is given by |x〉 = |xn−1〉⊗ |xn−2〉 . . .⊗ |x0〉. The
action of the Hadamard gate on a single qubit in the computational basis state can
be summarized as H|x j〉 → 1√

2
(|0〉+(−1)x j |1〉), so

J.A. Bergou and M. Hillery, Introduction to the Theory of Quantum Information
Processing, Graduate Texts in Physics, DOI 10.1007/978-1-4614-7092-2 7,
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|0〉 H H

|0〉 H H

.

|0〉 H H

|−x〉 Uf

Fig. 7.1 Quantum circuit for
the Deutsch–Jozsa problem

Πn−1
j=0|x j〉 →

(
1√
2

)n n−1

∏
j=0

(|0〉+(−1)x j |1〉)

=

(
1√
2

)n 2n−1

∑
z=0

(
∏

j= such that z j=1

(−1)x j

)
|z〉

=

(
1√
2

)n 2n−1

∑
z=0

(
n−1

∏
j=0

(−1)x jz j

)
|z〉. (7.1)

Notice that ∏n−1
j=0(−1)x jz j = (−1)∑n−1

j=0 x jz j = (−1)

[
∑n−1

j=0 x jz j mod 2
]
. Let us define the

dot product as x · z ≡ ∑n−1
j=0 x jz j mod 2, then

|x〉 →
(

1
2

)n/2 2n−1

∑
z=0

(−1)x·z|z〉. (7.2)

In other words, a given n-digit binary number state is turned into an equally
weighted superposition of all 2n binary number states of the n qubits and the sign of
each term is determined by the parity of the dot product between the given state and
binary state in the term.

If now we apply this to the input state of the n control qubits, |ψin〉 = |0〉, we
obtain the state of the n-qubit system after the first set of Hadamards as

|ψ1〉=
(

1
2

)n/2 2n−1

∑
z=0

|z〉. (7.3)

Next we analyze the action of the f-CNOT gate on this state. To this end we note
that the f-Controlled-NOT gate acts as |x〉|y〉→ |x〉|y+ f (x) mod 2〉 where |x〉 is the
state of the n control qubits and |y〉 is the state of the single target qubit. Therefore,
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|x〉⊗ 1√
2
(|0〉− |1〉)→ |x〉⊗ (| f (x)〉− |1+ f (x)〉)

= (−1) f (x)|x〉⊗ 1√
2
(|0〉− |1〉). (7.4)

Combining this with |ψ1〉 in Eq. (7.3), we obtain the state after the f-CNOT gate as

|ψ2〉⊗ 1√
2
(|0〉− |1〉) =

(
1
2

)(n+1)/2 2n−1

∑
x=0

(−1) f (x)|x〉⊗ (|0〉− |1〉). (7.5)

Finally, applying Eq. (7.2) to this state yields the output state after the final set of
Hadamard gates as

|ψin〉⊗ 1√
2
(|0〉− |1〉) →

(
1
2

)n+1/2 2n−1

∑
x,z=0

(−1) f (x)+x·z|z〉⊗ (|0〉− |1〉)

= |ψout〉⊗ 1√
2
(|0〉− |1〉). (7.6)

The amplitude of the initial state, |ψin〉= |0〉, in the output state is easily obtained
as 〈0|ψout〉=

(
1
2

)n
∑2n−1

x=0 (−1) f (x), and

〈0|ψout〉=
{

0 if f(x) balanced,
(−1) f (0) if f(x) constant → |ψout〉= (−1) f (0)|0〉. (7.7)

Therefore measuring each of the n output qubits we have with certainty that:

1. f(x) = constant if we find all qubits in their 0 state.
2. f(x) = balanced if not all of them are found in their 0 state.

Note that this is accomplished with only one function evaluation.

7.2 The Bernstein–Vazirani Algorithm

We can use the Deutsch-Jozsa circuit to solve another problem, which is due to
Bernstein and Vazirani. Suppose

f (x) = a · x+ b (mod 2), (7.8)

where a ∈ {0,1}n and b ∈ {0,1}. Our goal is to determine a (we do not know a
or b). Classically, because a contains n bits of information, we are going to have to
evaluate f (x) n times at least. One method is to evaluate it for x = 0, giving b, and
then for x j = 0 . . .010 . . .0, where the 1 is in the jth place, for j = 1, . . . ,n.

With this f (x) our state at the output of the quantum circuit is
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|Ψout〉=
(

1
2

)n 2n−1

∑
x,y=0

(−1)b(−1)x·(a+y)|y〉. (7.9)

where (a+ y) in the exponent stands for bitwise addition.
We show that ∑2n−1

x=0 (−1)x·z = 0 unless z ∈ {0,1}n = 0. This can be seen as
follows. First, we rewrite the sum as

2n−1

∑
x=0

(−1)x·z =
2n−1

∑
x=0

n−1

∏
j=0

(−1)x jz j =
1

∑
xn−1=0

. . .
1

∑
x0=0

n−1

∏
j=0

(−1)x jz j . (7.10)

Suppose now zk = 1, then

∑
x
(−1)x·z =

1

∑
xn−1=0

. . .
1

∑
xk+1=0

1

∑
xk−1=0

. . .
1

∑
x0=0

n−1

∏
j=0, j �=k

(−1)x jz j (1+(−1)) = 0 , (7.11)

where the last two terms in the bracket arise from xk = 0 yielding the +1 and xk = 1
yielding the (−1). Therefore,

∑
x
(−1)x·z = 2nδz,0,

and
|Ψout〉= (−1)b|a〉, (7.12)

so that measuring the n output qubits in |Ψout〉 gives us a with only one function
evaluation.

7.3 Quantum Search: The Grover Algorithm

Typically, Grover’s problem can be stated as the search for one marked entry in an
unsorted database. Mathematically, it can be formulated as the following problem.
Let f (x) = 0 or 1 where x is an n bit binary number. In particular

f (x) =

{
1 if x = x0,

0 if x �= x0.
(7.13)

x0 is unknown and we would like to find it. The search is schematically depicted in
Fig. 7.2.

Black box or oracle f(x)x
Fig. 7.2 Scheme of the
search problem
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The central question is: How many function evaluations are necessary? Classi-
cally, if N = 2n, then O(N) evaluations are necessary. On a quantum computer it
can be done with O(

√
N) evaluations. (Our treatment is taken from R. Jozsa, quant-

ph/990121.)
To this end, define the following operators:

Uf |x〉 = (−1) f (x)|x〉= (−1)δx,x0 |x〉,
U0|x〉 = (−1)δx,0 |x〉= (I− 2|0〉〈0|)|x〉,

UH = (H)⊗n. (7.14)

An alternative form of Uf is given by Uf = I − 2|x0〉〈x0| and we already know the
circuit for this operator.

Grover’s algorithm consists in applying the operator Q = −UHU0UHUf to the
initial state, |w0〉 = UH |0〉 = 1√

N ∑N−1
x=0 |x〉, O(

√
N) times and then measuring the

state in the computational basis. The answer will be, with probability greater than
1
2 , x0 (actually, with a probability close to 1).

How does this work? First define Uw0 = UHU0UH = I − 2|w0〉〈w0| and S =
span{|w0〉, |x0〉} which is a two-dimensional subspace. For any |ψ〉 = c1|w0〉
+c2|x0〉 ∈ S, we have

Q|ψ〉 = −Uw0Uf (c1|w0〉+ c2|x0〉) =−Uw0 [c1(|w0〉− 2√
N
|x0〉)− c2|x0〉]

= c1|w0〉+
(

2√
N
+ c2

)
(|x0〉− 2√

N
|x0〉) ∈ S, (7.15)

so that Q maps S into itself. Therefore, all of the action in Grover’s algorithm takes
place in a 2D subspace. Note also that if c1 and c2 are real so are the coefficients of
|w0〉 and |x0〉. As we start by applying Q to |w0〉, we actually need only to consider
S′ = {c1|w0〉+ c2|x0〉|c1,c2 real}, i.e. S′ is a real 2D subspace.

Now look at Q more closely. The operator Uf in S′ is just a reflection about the
line parallel to |x⊥0 〉. Note:

|x⊥0 〉= (|w0〉+ |x0〉〈x0|w0〉)/(1−|〈x0|w0〉|2)1/2,

and

|w⊥
0 〉= (|x0〉+ |w0〉〈w0|x0〉)/(1−|〈x0|w0〉|2)1/2.

We also have that, in the subspace S′, |w0〉〈w0|+ |w⊥
0 〉〈w⊥

0 |= I. From here, it follows
that −Uf =−(I−2|w0〉〈w0|) = I−2|w⊥

0 〉〈w⊥
0 |=Uw⊥

0
and this is a reflection about

the line through |w0〉. Therefore, Q corresponds to two consecutive reflections,

Q =Uw⊥
0

Uf = (reflection about w0)(reflection about x⊥0 ). (7.16)

The geometry of the two reflections is shown in Fig. 7.3.
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Fig. 7.3 Geometry
associated with the Grover
search algorithm

Fig. 7.4 Two subsequent
reflections of v1, R2R1, first
through M1 followed by
another through M2,
correspond to an effective
rotation by the angle 2α

Theorem 1 Let M1 and M2 be two mirror lines in Euclidean plane R2 intersecting
at point O and α be the angle from M1 to M2. The operation of reflection through
M1 followed by reflection through M2 is a rotation by 2α about O.

Proof. The proof uses pictorial but nevertheless rigorous arguments. Let M1 be
parallel to v1 and M2 parallel to v2. If the theorem holds for v1 and v2 it holds
for any superposition of them, hence for any vector. Let R1 be the reflection through
M1 and R2 be the reflection through M2. We will now separately study what happens
to v1 and v2, as a result of these two reflections. First, look at v1. A reflection of v1

through M1 = v1 maps v1 onto itself. A subsequent reflection of v1 through M2 = v2

corresponds to an effective rotation of v1 by the angle 2α in the counterclockwise
direction. The situation is shown in Fig. 7.4.

Next, look at v2. The situation is shown in Fig. 7.5. A reflection of v2 through
M1 = v1 rotates v2 by the angle 2α in the clockwise direction. A subsequent
reflection of R1v2 around M2 = v2 corresponds to an effective rotation of v2 by
the angle 2α relative to its original orientation.

Therefore, Q is a rotation in S′ by angle 2α , where α is the angle between |w0〉
and |x⊥0 〉. Furthermore,

cosα = 〈w0|x⊥0 〉=
(

1− 1√
N

) 1
2

,
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Fig. 7.5 Two subsequent
reflections of v2, R2R1, first
through M1 followed by
another through M2,
correspond to an effective
rotation by the angle 2α

and

sinα = 〈w0|x0〉=
(
1− cos2 α

) 1
2 =

1√
N
.

��
Starting with the state (in the |x0〉, |x0⊥〉 basis)

|w0〉 = |x0〉|〈x0|w0〉+ |x0⊥〉〈x0⊥|w0〉
= sinα|x0〉+ cosα|x0⊥〉 , (7.17)

we have

Qn = |w0〉= sinαn|x0〉+ cosαn|x0⊥〉, (7.18)

where αn = (2n+1)α . We want to choose n so that αn is close to π/2. For large N,
α ∼= 1√

N
so we want (2n+ 1) 1√

N
∼= π

2 . Therefore, n = closest integer to π
4

√
N − 1

2 .

Let us call this value n̄. Then the probability of measuring x0 = |〈x0|Qn̄|w0〉|2 =
sin2 αn̄ � 1 and the probability of measuring x �= x0 = |〈x|Qn̄|w0〉|2 = cos2 αn̄ =
O( 1

N2 ).

Is the speed up from N calls of the black box that evaluates the function to
√

N
calls the best we can do? The answer is yes. To show this assume the algorithm
works by alternating function calls with unitary evolution. The function call is
described by Ux = I − 2|x〉〈x|; hence

Ux|y〉=
{ |y〉 if y �= x,
−|x〉 if y = x.

(7.19)

After k function calls the state of the system is

|ψx
k 〉=UkUxUk−1Ux . . .U1Ux|ψin〉. (7.20)
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Then the strategy is as follows. Compare |ψx
k 〉to|ψk〉 = UkUk−1 . . .U1|ψin〉 to

show that if the probability of finding x is great, in particular, if |〈x|ψx
k 〉 > 1

2 , then
k must be of the order of

√
N. In particular, we find upper and lower bounds for

Dk = ∑x ‖ψx
k −ψk‖2.

We begin with establishing the upper bound. First, note that

Dk+1 = ∑
x
‖Uxψx

k −ψk‖2 = ∑
x
‖Ux(ψx

k −ψk)+ (Ux − I)ψk‖2, (7.21)

and

Dk+1 ≤ ∑
x
(‖ψx

k −ψk‖+ ‖(Ux− I)ψk‖)2

= ∑
x
(‖ψx

k −ψk‖2 + 4‖ψx
k −ψk‖|〈x|ψk〉|+ |〈x|ψk〉|2)

≤ Dk + 4

(
∑
x
‖ψx

k −ψk‖2
)1/2(

∑
x
|〈x|ψk〉|2

)1/2

+ 4

≤ Dk + 4
√

Dk + 4. (7.22)

Now, we will use this result and induction to show Dk ≤ 4k2. First, we have D0 = 0.
Now

D1 = ∑
x
‖U1Uxψin −U1ψin‖2 = ∑

x
‖Uxψin −ψin‖2, (7.23)

but (Ux − I)|ψin〉=−2|x〉〈x|ψin〉, so we have that

D1 = 4∑
x
|〈x|ψin〉|2 = 4. (7.24)

So, it is clearly true that Dk ≤ 4k2 for k = 0,1. Now, assuming it is true for k

Dk+1 ≤ Dk + 4
√

Dk + 4 ≤ 4k2 + 8k+ 4= 4(k+ 1)2. (7.25)

Therefore, Dk ≤ 4k2.
Next we establish the lower bound. To this end, let us define Qx = I−|x〉〈x|, then

we have that

‖ψx
k −ψk‖2 = ‖|x〉(〈x|ψx

k 〉− 〈x|ψk〉)+Qx(ψx
k −ψk)‖2

= |〈x|ψx
k 〉− 〈x|ψk〉|2 + ‖Qx(ψx

k −ψk)‖2

≥ |〈x|ψx
k 〉|2 + |〈x|ψk〉|2 − 2|〈x|ψx

k 〉| · |〈x|ψk〉|
+‖Qxψx

k‖2 + ‖Qxψk)‖2 − 2|〈Qxψx
k |ψk〉|

≥ 2− 2|〈x|ψk〉|− 2‖Qxψx
k‖ . (7.26)
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Now suppose we assume that after k steps, when we measure the state |ψx
k 〉, our

probability of finding x is greater than 1/2, i.e., |〈x|ψx
k 〉|2 > 1/2. We also have that

|〈x|ψx
k 〉|2 + ‖Qxψx

k‖2 = 1 from which ‖Qxψx
k‖2 ≤ 1/2 follows, so ‖ψx

k −ψk‖2 ≥
2− 2|〈x|ψk〉|−

√
2 and

Dk ≥ ∑
x
(2− 2|〈x|ψk〉|−

√
2)

≥ N(2−
√

2)− 2

(
∑
x

12
)1/2(

∑
x
|〈x|ψk〉|2

)1/2

≥ N(2−
√

2)− 2
√

N. (7.27)

Putting the bounds together gives

4k2 ≥ N(2−
√

2)− 2
√

N (7.28)

and from here

k ≥ (2−√
2)1/2

2

√
N

(
1− 2√

N

1

2−√
2

)1/2

(7.29)

follows. So, reducing the number of function calls from N to
√

N is indeed the best
we can do and the Grover search algorithm is optimal.

7.4 Period Finding: Simon’s Algorithm

Now we take a look at Simon’s algorithm which is a simple period-finding
algorithm. A more sophisticated version is one of the major components of Shor’s
factoring algorithm.

Consider a function F : Z
⊗n
2 → Z

⊗n
2 which is 2 → 1. In particular

f (x) = f (y) iff y = x⊕ ξ where x,y,ξ ∈ Z
⊗n
2 . (7.30)

Here ⊕ stands for component-wise mod 2 addition, i.e., for w,z ∈ Z
⊗n
2 we have that

w⊕ z = (w1 + z1 (mod 2), . . . ,wn + zn (mod 2)) and ξ is fixed. The object is to find
ξ with only poly(n) function evaluations.

Start with |0 . . .0〉 and apply a Hadamard gate to each qubit to get 2−n/2 ∑x |x〉.
Now apply Uf , which has the following action

Uf |x〉|y〉= |x〉|y⊕ f (x)〉. (7.31)

So

Uf

(
1

2n/2 ∑
x
|x〉|0〉

)
=

1

2n/2 ∑
x
|x〉| f (x)〉. (7.32)



102 7 Quantum Algorithms

Now measure the second register. This gives some result, x0, and leaves the first
in the state 1√

2
(|x0〉+ |x0 ⊕ ξ 〉), where x0 is random. This randomness makes

measuring the above state useless, if we want to determine ξ . Instead, apply H⊗n to
the state. This gives us

1

2(n+1)/2 ∑
y

[
(−1)x0·y +(−1)(x0⊕ξ )·y

]
|y〉

=
1

2(n+1)/2 ∑
y
(−1)x0·y

[
1+(−1)ξ ·y

]
|y〉

=
1

2(n−1)/2 ∑
{y|y·ξ=0}

(−1)x0·y|y〉. (7.33)

Now measure this state. We get some value of y, call it y1, such that y1 ·ξ = 0. With
O(n) iterations of this procedure, we obtain n independent equations of the form
y j ·ξ = 0, j = 1, . . . ,n, and we can solve this linear system to determine ξ .

7.5 Quantum Fourier Transform and Phase Estimation

The quantum Fourier transform is a component of a number of quantum algorithms,
the Shor factoring algorithm in particular. We will not treat the Shor algorithm in this
book, as it has been covered extensively in many other places. We will show instead
how the quantum Fourier transform can be used to find an unknown eigenvalue of a
unitary transformation.

Let |a〉 be a member of the computational basis in the m-qubit Hilbert space.
The m-bit binary number a can be expressed as a = 2m−1a1 + 2m−1a2 + · · ·+ 20am,
where each of the a j is either 0 or 1. The quantum Fourier transform, UF , takes |a〉
into the state

UF |a〉= 1
2m

2m−1

∑
y=0

e2π ia·y/2m |y〉. (7.34)

The inverse transformation is given by

U−1
F |a〉= 1

2m

2m−1

∑
y=0

e−2π ia·y/2m |y〉. (7.35)

This transformation can be implemented efficiently using only one- and two-qubit
gates.

Now let us see how we can use the quantum Fourier transform to estimate an
unknown eigenvalue. The circuit is shown in Fig. 7.6.

Suppose that we have the unitary operator U , where U |ψ〉= exp(2π iφ)|ψ〉 and
0 ≤ φ < 1. We are given one copy of |ψ〉 and gates that perform Controlled-Uk
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|0〉 H •
...

|0〉

|0〉

H •

H •

|ψ〉 U U2 U2m−1

Fig. 7.6 Quantum circuit for phase estimation

operations for k = 1,2,22, . . .2m−1. We want to find φ , which we do not know, to
m-bit accuracy. We start with each of the qubits in the m control lines in the state
(|0〉+ |1〉)/√2, so that the initial state of our computation is

2−m/2

[
m−1

∏
j=0

(|0〉 j + |1〉 j)

]
⊗|ψ〉. (7.36)

We now apply the Controlled-U2 j
gates, the control being the jth qubit and the

target being the system in the state |ψ〉. This results in the state

2−m/2

[
m−1

∏
j=0

(|0〉 j + e2π i2 jφ |1〉 j)

]
⊗|ψ〉= 2−m/2

2m−1

∑
y=0

e2π iφy|y〉⊗ |ψ〉, (7.37)

where |y〉 is an m-qubit computational basis state. Now if φ is of the form a/2m,
where a is an m-digit binary number, we can simply apply the inverse quantum
Fourier transform to the above state, and the result will be |a〉. We will then have
learned φ .

Now let us see what happens if φ is not of the form a/2m. Let φ = (a/2m)+ δ ,
where a is the closest m-bit binary number to 2mφ . This implies that 0 < |δ |
≤ 2−(m+1). We now apply the inverse Fourier transform to the state in Eq. (7.37)
yielding

2−m
2m−1

∑
y=0

2m−1

∑
x=0

e−2π ix·y/2m
e2π iφy|x〉= 2−m

2m−1

∑
y=0

2m−1

∑
x=0

e2π i(a−x)·y/2m
e2π iδy|x〉, (7.38)

where we have dropped |ψ〉 since it is not entangled with the rest of the state and
plays no further role. Now let us look at the coefficient of the state |a〉 in the above
equation. It is given by

2−m
2m−1

∑
y=0

e2π iδy = 2−m

(
1− e2π iδ2m

1− e2π iδ

)
. (7.39)
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We now want to bound the magnitudes of the numerator and denominator of this
fraction. In order to do so we note that

|1− eiθ |=
√

2(1− cosθ )1/2 = 2sin(θ/2). (7.40)

Now for 0 ≤ β ≤ π/2, we have that (2/π)β ≤ sinβ ≤ β . Setting β = θ/2 we have
that for 0 ≤ θ ≤ π ,

2θ
π

≤ |1− eiθ | ≤ θ . (7.41)

Note that because |1− eiθ | = |1− e−iθ |, the above inequalities can be modified to
hold in the range −π ≤ θ ≤ π by inserting absolute value signs appropriately

2|θ |
π

≤ |1− eiθ | ≤ |θ |. (7.42)

Now because |δ | ≤ 1/2m+1, we have that 2πδ2m ≤ π and, therefore, |1−e2π iδ2m | ≥
4δ2m, and we also have that |1− e2π iδ | ≤ 2πδ . This implies that the probability of
obtaining the state |a〉 when measuring the output state of the circuit is

2−2m

∣∣∣∣∣
1− e2π iδ2m

1− e2π iδ

∣∣∣∣∣
2

≥ 2−2m
(

4δ2m

2πδ

)2

=
4

π2 . (7.43)

Therefore, the probability of obtaining the best m-bit approximation to φ is
(4/π2) = 0.4. A more detailed analysis shows that the probability of getting an
error greater than k/2m is less than 1/(2k− 1).

One possible use for this algorithm is related to the Grover search. Suppose we
are given a black box Boolean function that is of one of two types. There is either
one input, x0, which we do not know, for which f (x0) = 1, with all other inputs,
x �= x0 yielding f (x) = 0, or all inputs yield f (x) = 0. We would like to find which
type of black box function we have. One approach is to run the Grover algorithm
and see if we get the same answer almost all of the time. If so, we have the first kind
of black box. If we get different answers each time, then we have the second type. A
second approach is to use the phase estimation algorithm. The operator Q =Uw⊥

0
Uf

has different eigenvalues for the two different types of oracles. In the case that all
inputs yield f (x) = 0, we have that Uf = I, which implies that Q = Uw⊥

0
. In that

case, Q is just a reflection, so that its eigenvalues are just ±1. In particular, the state
|w0〉 is an eigenstate with eigenvalue 1. If one of the inputs yields f (x0) = 1, then,
in the subspace S′, Q can be expressed as a 2× 2 matrix in the {|w0〉, |w⊥

0 〉} basis

Q =

(
cos2α −sin2α
sin2α cos2α

)
, (7.44)
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where α is the angle between |w0〉 and |x⊥0 〉 and is O(N−1/2). This matrix has
eigenvalues e±2iα , and the eigenstates are |α±〉= (|w0〉∓ i|w⊥

0 〉)/
√

2. Now suppose
that N, the number of possible inputs to our Boolean function, is N = 2n. In order to
discriminate between the two types of oracles, we need to determine the eigenvalues
of Q to O(2−n/2), because 1− e2iα is of this order. We then make use of the phase
estimation algorithm with m > n/2 and an input state into the target qubits of the
Controlled-Q2 j

gates of |w0〉. Now |w0〉 is not an eigenstate of Q, but it is the sum
of two eigenstates |w0〉 = (|α+〉+ |α−〉)/

√
2. The output of the phase estimation

circuit will be approximately of the form (|a+〉|α+〉+ |a−〉|α−〉)/
√

2 where a+/2m

is a good estimate of α/2π and a−/2m is a good estimate of (2π −α)/2π . If we
simply measure the first m qubits of the output state in the computational basis, we
will obtain, with equal probability, an estimate of either a+ or a−. If either one of
these is different from zero, then we know that there is an x0 such that f (x0) = 1.

The procedure we have just outlined is most useful when there is more than
one value of x such that f (x) = 1, and we want to find out how many values
of x satisfying this condition there are. This is a procedure known as quantum
counting. In that case the eigenvalues of Q depend on the number of solutions, and
by estimating the eigenvalues we can determine that number.

7.6 Quantum Walks

Finding new quantum algorithms has not been easy, and one approach one might try
to find new ones is to see if there are particular mathematical structures that have
proved useful in classical algorithms and then try to generalize them to the quantum
realm. One area in which this approach has been fruitful is in algorithms based on
random walks. There are a number of classical algorithms based on random walks,
and we shall present an example of one shortly. It has been possible to define a
quantum version of a random walk, known as a quantum walk, and there are now
new quantum algorithms that are based on quantum walks. In this section we will
describe what a quantum walk is and some of the things they can do.

The simplest example of a classical random walk is one on a line. The walk starts
at a point, which we shall call the origin. The walker then flips an unbiased coin.
If it comes up heads, he takes one step to the right, if tails, one step to the left (all
steps are the same length). This process is repeated for the desired number of steps,
n. The result can be described by a probability distribution, p(x;n), which is the
probability of being at position x after n steps. The position is measured in units of
step length and is positive to the right of the origin (which is x = 0) and negative to
the left. For example, for a walk of two steps, the only possible final positions are
x =−2,0,2 and we find that p(−2;2) = p(2;2) = 1/4 and p(0;2) = 1/2.

It is also possible to perform random walks on more general structures known as
graphs. A graph consists of a set of vertices, V , and a set of edges, E . Each edge
connects two of the vertices, and an edge is labeled by an unordered pair of vertices,
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which are just the vertices connected by that edge. In general, not all of the vertices
will be connected by an edge. A graph in which each pair of vertices is connected
by an edge is known as a complete graph, and if there are N vertices, there will
be N(N − 1)/2 edges in a complete graph. In order to perform a random walk on
a graph, we choose one vertex on which to start. For the first step, we see which
vertices are connected to the vertex we are on by an edge, and then we randomly
choose one of them, each having the same probability, and then move to that vertex.
So, for example, if our starting vertex is connected to three other vertices, then we
would end up on each of those vertices with a probability of 1/3. We then repeat
this process for the new vertex in order to make the second step and keep repeating
it for as many steps as we wish.

A simple example of an algorithm based on a random walk is one that determines
whether two vertices in a graph are connected or not. In order to determine whether
there is a path connecting a specified vertex u to another specified vertex v, we can
start a walker at u, execute a random walk for a certain number of steps, and see
after each step whether we have reached v. It can be shown that if the graph has N
vertices and we run the walk for 2N3 steps, then the probability of not reaching v if
there is a path from u to v is less than one half. So if we run a walk of this length m
times and do not reach v during any of these walks, the probability of this occurring
if there is a path from u to v is less than 1/2m. Therefore, we shall say that if during
one of these walks we find v, then there is a path from u to v, and if after m walks
of length 2N3 during which we do not reach v, then there is no path from u to v.
Our probability of making a mistake is less than 2−m. This gives us a probabilistic
algorithm for determining whether there is a path from u to v.

There are a number of different ways to define a quantum walk, but we shall
only explore one of them, known as the scattering quantum walk. In this walk, the
particle resides on the edges and can be though of as scattering when it goes through
a vertex. In particular, suppose an edge connects vertices v1 and v2. There are two
states corresponding to this edge, and these states are assumed to be orthogonal.
There is the state |v1v2〉 which corresponds to the particle being on the edge and
going from vertex v1 to v2 and the state |v2,v1〉, which corresponds to the particle
being on the edge and going from v2 to v1. The set of these states for all of the edges
form an orthonormal basis for the Hilbert space of the walking particle.

Next we need a unitary operator that will advance the walk one time step. We
obtain this operator by combining the action of local unitaries that describe what
happens at the individual vertices. Let us consider a vertex v, and let ωv be the
linear span of the set of edge states entering v and Ωv be the span of the set of
edge states leaving v. Because each edge attached to v has two states, one entering
and one leaving v, ωv and Ωv have the same dimension. The local unitary, Uv,
at v maps ωv to Ωv . We are going to require that the action of Uv be completely
symmetric, that is, we want it to act on all of the edges in the same way. In particular,
suppose there are n edges attached to v. We want the amplitude for the particle to be
reflected back onto the edge from which it entered v to be −r and the amplitude for
it to be transmitted through the vertex and leave by a different edge to be t. That is,
if we denote the vertices attached to v by 1,2, . . .n and if the particle enters v from
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Fig. 7.7 A star graph
consists of a central vertex 0
and N outer vertices. The
outer vertices are connected
to the central vertex by N
edges. For the figure N = 8

vertex j, then

Uv | j,v〉 =−r|v, j〉+ t
n

∑
k=1,k �= j

|v,k〉. (7.45)

In order for Uv to be unitary, we must have that the state on the right-hand side of
this equation be normalized

|r|2 +(n− 1)|t|2 = 1, (7.46)

and that output states resulting from orthogonal input states be orthogonal

− r∗t − rt∗+(n− 2)|t|2 = 0. (7.47)

If, for convenience, we also require that r and t be real, we find that

r =
n− 2

n
t =

2
n
. (7.48)

Note that with this choice, r + t = 1. The action of the unitary operator U that
advances walk one step is given by the combined action of all of the operators Uv at
the different vertices.

Let us look at a walk on a simple graph known as a star graph, shown in Fig. 7.7.
It consists of a central vertex with N edges attached to it and N vertices attached
to the other ends of these edges. We shall denote the central vertex by 0 and the
outer vertices by 1,2, . . .N. The local unitary corresponding to the central vertex is
described by the operator Uv above with r = (N − 2)/N and t = 2/N. The outer
vertices reflect the particle except for one, which we shall assume is vertex 1, that
reflects the particle and flips the phase of the state as well. That is the marked vertex,
the one that is different from the others, that we are trying to find. Therefore, we have
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U |0, j〉= | j,0〉 for j ≥ 2 and U |0,1〉=−|1,0〉. We shall start the walk in the state

|ψinit〉= 1√
N

N

∑
j=1

|0, j〉. (7.49)

Because of the symmetry of the problem the walk takes place in only a subspace of
the entire Hilbert space, and the dimension of this subspace is small. In particular,
if we define

|ψ1〉 = |0,1〉
|ψ2〉 = |1,0〉

|ψ3〉 = 1√
N − 1

N

∑
j=2

|0, j〉

|ψ4〉 = 1√
N − 1

N

∑
j=2

| j,0〉 (7.50)

then the action of U on these states is given by

U |ψ1〉 = −|ψ2〉
U |ψ2〉 = −r|ψ1〉+ t

√
N − 1|ψ3〉

U |ψ3〉 = |ψ4〉
U |ψ4〉 = r|ψ3〉+ t

√
N − 1|ψ1〉. (7.51)

From this we see that the four-dimensional subspace spanned by these vectors is
invariant under U . Our initial state, which can be expressed as

|ψinit〉= 1√
N
|ψ1〉+

√
N − 1

N
|ψ3〉, (7.52)

is also in this subspace, and so the entire quantum walk will take place in the four-
dimensional invariant subspace. This drastically simplifies finding the state of the
particle after n steps.

Now from the way this walk has been set up, you might suspect that it will simply
mimic the action of the Grover algorithm. If that is the case, you are right. In order to
see this, we first note that the action of U in the invariant subspace can be described
by a 4× 4 matrix

M =

⎛
⎜⎜⎝

0 −r 0 t
√

N − 1
−1 0 0 0
0 t

√
N − 1 0 r

0 0 1 0

⎞
⎟⎟⎠ , (7.53)
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where the matrix elements of M are given by Mjk = 〈ψ j |U |ψk〉. In order to find
out how the walk behaves, we first find the eigenvalues and eigenvectors of U . The
characteristic equation for the eigenvalues, λ , of M is

λ 4 − 2rλ 2 + 1 = 0. (7.54)

We will solve the equation in the large N limit. In that case, we express the
equation as

λ 4 − 2λ 2 + 1+ 2tλ 2 = 0. (7.55)

We ignore the last term on the left-hand side, which is small when N is large, in order
to find zeroth order solutions, λ0. This gives λ0 =±1. We now set λ = λ0+δλ , and
substitute it back into the equation. Keeping terms of up to second order in small
quantities we find that for λ0 = 1

δλ 2 +
1
2

t(1+ 2δλ ) = 0, (7.56)

and for λ0 =−1 we find

δλ 2 +
1
2

t(1− 2δλ ) = 0. (7.57)

In both cases, the solutions are to lowest order in 1/N

δλ =±i

√
t
2
, (7.58)

which is of order N−1/2.
It is also necessary to find the eigenstates of M. Setting Δ =

√
t/2, we have that

for λ = 1+ iΔ and λ = 1− iΔ, the eigenstates are, respectively,

|u1〉= 1
2

⎛
⎜⎜⎝

−1
1
−i
−i

⎞
⎟⎟⎠ |u2〉= 1

2

⎛
⎜⎜⎝

−1
1
i
i

⎞
⎟⎟⎠ , (7.59)

and for λ =−1+ iΔ and λ =−1− iΔ, the eigenstates are, respectively,

|u3〉= 1
2

⎛
⎜⎜⎝

1
1
−i
i

⎞
⎟⎟⎠ |u4〉= 1

2

⎛
⎜⎜⎝

1
1
i
−i

⎞
⎟⎟⎠ . (7.60)
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In terms of the eigenstates, we see that

|ψinit〉= i
2
(|u1〉− |u2〉+ |u3〉− |u4〉)+O(N−1/2). (7.61)

Noting that 1± iΔ ∼= e±iΔ and −1± iΔ ∼=−e∓iΔ, we have that

Un|ψinit〉 = i
2
[einΔ|u1〉− e−inΔ|u2〉

+(−1)n(e−inΔ|u3〉− einΔ|u4〉)]+O(N−1/2), (7.62)

or

Un|ψinit〉= 1
2

⎛
⎜⎜⎝

sin(nΔ)
−sin(nΔ)
cos(nΔ)
cos(nΔ)

⎞
⎟⎟⎠+

1
2
(−1)n

⎛
⎜⎜⎝

sin(nΔ)
sin(nΔ)
cos(nΔ)
−cos(nΔ)

⎞
⎟⎟⎠ , (7.63)

up to order N−1/2.
From this result, we see that when nΔ is close to π/2, the particle will be located

on the edge connected to the marked vertex. If n is even it will be in the state |0,1〉
and if n is odd it will be in the state −|1,0〉. By simply measuring the location of the
particle, in particular, which edge it is on, we will find which vertex is the marked
one. Note that if nΔ is close to π/2, then n is of order

√
N. Classically, in order to

find the marked vertex, we would have to check each vertex, which would require
O(N) operations, whereas if we run a quantum walk, we can find the marked vertex
in O(

√
N) steps. Therefore, we obtain a quadratic speedup.

So far, we have only used a quantum walk to do something we already knew how
to do, find a marked element in a list. Let us see if we can use it to do something
else. Suppose that instead of a marked vertex, our star graph has an extra edge. That
is, there is an edge between two of the outer vertices, and we would like to find out
where it is. A quantum walk can provide a quadratic speedup for this type of search
as well. The graph is depicted in Fig. 7.8.

Let’s assume the extra edge is between vertices 1 and 2. That means that besides
the states |0, j〉 and | j,0〉, for j = 1,2, . . .N, we also have the states |1,2〉 and |2,1〉.
For simplicity we shall assume that vertices 1 and 2 just transmit the particle. Our
unitary operator will now act as U |0, j〉= | j,0〉 for j > 2, and

U |0,1〉= |1,2〉 U |0,2〉= |2,1〉
U |1,2〉= |2,0〉 U |2,1〉= |1,0〉. (7.64)

Its action on the states | j,0〉 is as before. The walk resulting from this choice of U
can also be analyzed easily, because it stays within a five-dimensional subspace of
the entire Hilbert space. Define the states
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Fig. 7.8 A star graph with an
extra edge between two outer
vertices

|ψ1〉 = 1√
2
(|0,1〉+ 0,2〉)

|ψ2〉 = 1√
2
(|1,0〉+ |2,0〉)

|ψ3〉 = 1√
N − 2

N

∑
j=3

|0, j〉

|ψ4〉 = 1√
N − 2

N

∑
j=3

| j,0〉

|ψ5〉 = 1√
2
(|1,2〉+ |2,1〉). (7.65)

These states span a five-dimensional space we shall call S. The unitary transforma-
tion, U , that advances the walk one step acts on these states as follows:

U |ψ1〉 = |ψ5〉
U |ψ2〉 = −(r− t)|ψ1〉+ 2

√
rt|ψ3〉

U |ψ3〉 = |ψ4〉
U |ψ4〉 = (r− t)|ψ3〉+ 2

√
rt|ψ1〉

U |ψ5〉 = |ψ2〉. (7.66)

For our initial state we choose



112 7 Quantum Algorithms

|ψinit〉 = 1√
2N

N

∑
j=1

(|0, j〉− | j,0〉)

=
1√
N
(|ψ1〉− |ψ2〉)

+

√
N − 2

2N
(|ψ3〉− |ψ4〉), (7.67)

which is in S. Since the initial state is in S and S is an invariant subspace of U ,
the entire walk will remain in S, and so we find ourselves in a situation similar to
the previous one. This search, however, is more sensitive to the choice of initial state
than the previous one. While we didn’t mention it before, in the previous search we
could also have taken a superposition of all ingoing states instead of all outgoing
ones as our initial state. In the present case, the minus sign in the first expression for
initial state is essential; if it is replaced by a plus sign, the search will fail.

In order to find the evolution of the quantum state for this walk, we proceed as
before and find the eigenvalues and eigenstates of U restricted to S. The matrix that
describes the action of U on S is given by

M =

⎛
⎜⎜⎜⎜⎜⎝

0 −(r− t) 0 2
√

rt 0
0 0 0 0 1
0 2

√
rt 0 (r− t) 0

0 0 1 0 0
1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠
. (7.68)

The characteristic equation for this matrix is

λ 5 − (r− t)λ 3 +(r− t)λ 2 − 1 = 0. (7.69)

One root of this equation is λ = 1, and if we factor out (λ − 1) from the above
equation, we are left with

λ 4 +λ 3 + 2tλ 2 +λ + 1 = 0. (7.70)

As before, we will use a perturbation expansion to find the roots of this equation with
the transmission amplitude, t, as the small parameter. The zeroth order solutions are
found by setting t = 0, which gives us the large N limit, and we find

λ 4 +λ 3 +λ + 1 = (λ + 1)(λ 3 + 1) = 0, (7.71)

so the zeroth order roots are −1 twice, eiπ/3, and e−iπ/3. Setting λ = −1+ δλ ,
substituting into the above equation and keeping terms of up to (δλ )2 gives

3(δλ )2 − 4tδλ + 2t = 0, (7.72)
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whose solution, keeping lowest order terms, is

δλ =±i

√
2t
3
= O(N−1/2). (7.73)

If we set λ = e±iπ/3 + δλ , we find that δλ = O(N−1), so these roots and their
corresponding eigenvalues are not of interest, because they will not yield a quadratic
speedup.

We now need to find the eigenvectors. If the components of the eigenvectors are
denoted by x j, where j = 1, . . .5, the eigenvector equations are

− (r− t)x2+ 2
√

rtx4 = (−1± iΔ)x1

x5 = (−1± iΔ)x2

2
√

rtx2 +(r− t)x4 = (−1± iΔ)x3

x3 = (−1± iΔ)x4

x1 = (−1± iΔ)x5, (7.74)

where now Δ = (2t/3)1/2. To lowest order (the terms that were dropped are of order
1/

√
N or smaller) the eigenvector corresponding to the eigenvalue −1+ iΔ is

|v1〉= 1√
6

⎛
⎜⎜⎜⎜⎜⎝

1
1

−i
√

3/2
i
√

3/2
−1

⎞
⎟⎟⎟⎟⎟⎠
, (7.75)

and the eigenvector corresponding to the eigenvalue −1− iΔ is

|v2〉= 1√
6

⎛
⎜⎜⎜⎜⎜⎝

1
1

i
√

3/2
−i
√

3/2
−1

⎞
⎟⎟⎟⎟⎟⎠
. (7.76)

We find that, up to terms of order N−1/2, our initial state can be expressed as

|ψinit〉= i√
2
(|v1〉− |v2〉). (7.77)

Expressing the eigenvalues corresponding to |v1〉 and |v2〉 as

− 1+ iΔ ∼=−e−iΔ − 1− iΔ ∼=−eiΔ (7.78)
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we find that the state after n steps is

Un|ψinit〉= (−1)n
√

3

⎛
⎜⎜⎜⎜⎜⎝

sin(nΔ)
sin(nΔ)√

3/2cos(nΔ)
−√3/2cos(nΔ)

−sin(nΔ)

⎞
⎟⎟⎟⎟⎟⎠
. (7.79)

From this equation, we can see that when nΔ = π/2, the particle is located on one
of the edges leading to the extra edge or on the extra edge itself. This will happen
when n = O(

√
N).

We now need to discuss how to interpret this result. It is reasonable to assume
that if we are given a graph with an extra edge in an unknown location, we only
have access to the edges connecting the central vertex to the outer ones, and not to
the extra edge itself (if we had access to the extra edge, then we would have to know
where it is). That is, in making a measurement, we can only determine which of the
edges connecting central vertex to the outer ones the particle is on. If it is on the
extra edge, we will not detect it. So, after n steps, where nΔ = π/2, we measure the
edges to which we have access to find out where the particle is. With probability
2/3 it will be on an edge connected to the extra edge, and with probability 1/3, it
will be on the extra edge itself, in which case we won’t detect it.

In comparing this procedure to a classical search for the extra edge, we shall
assume that classically the graph is specified by an adjacency list, which is an
efficient specification for sparse graphs. For each vertex of the graph, one lists
the vertices that are connected to it by an edge. In our case, the central vertex is
connected to all of the other vertices, the vertices not connected to the extra edge
are connected only to the central vertex, and two of the outer vertices are connected
to the central vertex and to each other. Searching this list classically would require
O(N) steps to find the extra edge, while the quantum procedure will succeed in
O(

√
N) steps. Therefore, we again obtain a quadratic speedup by using a quantum

walk.
We have just examined the use of quantum walks in search problems, but they

have been useful in developing other types of algorithms as well. One example is
element distinctness. One has a function in the form of a black box, that is, one puts
in an input x and the output is f (x), but we have no knowledge about the function.
We can only send in inputs and obtain outputs. Our task is to find two inputs, if
they exist, that give the same output. This can be accomplished by using a kind of
quantum walk, which requires fewer queries to the black box than is necessary on a
classical computer. It is also possible to use quantum walks to evaluate certain types
of Boolean formulas with fewer queries than are possible classically.
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7.7 Problems

1. Suppose we have a star graph with a loop on one of its outer vertices, say vertex
1. The other vertices simply reflect the particle, U |0, j〉 = | j,0〉, for j > 1. The
loop has one quantum state, which we shall denote by |l1〉. The unitary operator
has the action U |0,1〉= |l1〉 and U |l1〉= |1,0〉. Show that starting with the initial
state in Eq. (7.67) the particle making the walk will become localized on the loop
and the edge connected to the loop in O(

√
N) steps.

2. We have a Controlled-U gate, which acts on two qubits. Qubit a is the control
qubit and qubit b is the target qubit, so that |0〉a| j〉b → |0〉a| j〉b and |1〉a| j〉b →
|1〉aU | j〉b for j = 0,1. Suppose that the eigenvalues of U are ±1. Our task is to
generate two qubits, one in the +1 eigenstate, |u+〉, and one in the −1 eigenstate,
|u−〉, with one use of the gate. Show, making use of the rotational invariance of
the singlet state

|φs〉= 1√
2
(|0〉|1〉− |1〉|0〉),

that if we start with the three-qubit state

|Ψin〉abc = |+ x〉a|φs〉bc

and send qubits a and b through the Controlled-U gate and make the proper
measurement of qubit a, then one of the remaining qubits will be in the state
|u+〉 and the other will be in the state |u−〉, and we will know which qubit is in
which state.

3. Suppose we have a black box that evaluates the Boolean function f (x), where x is
the n-bit string x1,x2, . . .xn. This function is a sum of linear and quadratic terms
in the variables x j and each variable appears in only one term. By considering
the function f (x)+ f (x̄), where x̄ is the n-bit string x1 +1,x2+1, . . .xn +1, show
that we can use the Bernstein–Vazirani algorithm to determine which variables
appear in quadratic terms with two function evaluations. How many evaluations
would be required classically?
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Chapter 8
Quantum Machines

8.1 Introduction

If we are given quantum information in the form of qubits in a particular state,
we have seen that we can process that information by sending the qubits through
different sequences of gates. A particular collection of gates constitutes a quantum
machine that manipulates the information encoded in the qubits in a particular way.
A quantum machine can perform either a single task or, if it is programmable, a
number of different tasks, the exact task depending on the program.

In this chapter we want to look at several different quantum machines. The first
two, a quantum cloner and a Universal-NOT (or, more concisely, U-NOT) gate,
are single task machines. They both perform, approximately, tasks that cannot be
performed exactly. We then move on to programmable machines. We will first
prove a general result that shows there is no deterministic, universal programmable
quantum processor. We will then examine two different probabilistic programmable
machines. The first is based on the same circuit as the cloner. We will show, as an
example, how it can be used to implement a quantum phase gate in any basis, the
basis being determined by the program. The second unambiguously discriminates
between two states, but the two states it is discriminating between are given in the
form of a program and not hardwired into the machine.

8.2 Cloners and U-NOT Gates

As we have seen, a device that perfectly clones a quantum state is impossible to
construct. However, if we relax the requirement that the copies be perfect, it is
possible to copy quantum information. A second operation that is not possible to
perform exactly is the U-NOT operation. This ideally would take a qubit in an
arbitrary state |ψ〉 = α|0〉+ β |1〉 and send it into the orthogonal state |ψ⊥〉 =
β ∗|0〉−α∗|1〉. The indication that this is an impossible operation is the appearance

J.A. Bergou and M. Hillery, Introduction to the Theory of Quantum Information
Processing, Graduate Texts in Physics, DOI 10.1007/978-1-4614-7092-2 8,
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1

2

3

Fig. 8.1 Quantum circuit for the cloning machine

of complex conjugates. The perfect U-NOT operation is an anti-unitary one, but
quantum operations must be unitary. It is, nonetheless, possible to construct an
approximate U-NOT gate, and, it turns out, approximate cloners and approximate
U-NOT gates are closely related.

Let us begin with the cloner. Consider the circuit shown in Fig. 8.1.
The circuit consists of three qubits being acted upon by four Controlled-NOT

gates. The input qubit is qubit number 1, and it is its state we wish to copy. In order
to see how this works, let us consider what happens with different input states for
the remaining two qubits. Define the two two-qubit states

|Ξ00〉 = 1√
2
(|0〉|0〉+ |1〉|1〉)

|Ξ0x〉 = 1√
2
|0〉(|0〉+ |1〉). (8.1)

Now if qubit 1 is in the state |ψ〉1 and qubits 2 and 3 are in one of the two states
above, then the cloning circuit will implement the following transformations:

|ψ〉1|Ξ00〉23 → |ψ〉1|Ξ00〉23

|ψ〉1|Ξ0x〉23 → |ψ〉2|Ξ00〉13. (8.2)

Examining these equations, we see that in the first the quantum information from the
first qubit appears in output 1, and in the second it appears in output 2, so what this
circuit does is move the information from the first qubit around, and the location to
which it gets moved is determined by the state sent into inputs 2 and 3. This suggests
that if instead of sending either |Ξ00〉 or |Ξ0x〉 into inputs 2 and 3, we send in a linear
combination of them, some of the quantum information from qubit 1 will appear in
output 1 and some of it will appear in output 2, thereby cloning the state. This is, in
fact, exactly what happens. If we choose

|Ψ〉23 = c0|Ξ00〉23 + c1|Ξ0x〉23, (8.3)

as the input state for qubits 2 and 3, with c0 and c1 real for simplicity, and c2
0 + c2

1 +
c0c1 = 1 so that the state is normalized, the reduced density matrices for outputs 1
and 2 are
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ρ (out)
1 = (c2

0 + c0c1)|ψ〉〈ψ |+ c2
1

2
I

ρ (out)
2 = (c2

1 + c0c1)|ψ〉〈ψ |+ c2
0

2
I. (8.4)

Note that by choosing c0 and c1 we can control how much information about |ψ〉
goes to which output. In particular, if we choose c0 = c1 = 1/

√
3, then the

information is divided equally, and we find that

ρ (out)
1 = ρ (out)

2 =
5
6
|ψ〉〈ψ |+ 1

6
|ψ⊥〉〈ψ⊥|, (8.5)

where |ψ⊥〉 is the qubit state orthogonal to |ψ〉. Therefore, the fidelity of the cloner

output ρ (out)
1 (or ρ (out)

2 since they are the same in this case) to the ideal output,

|ψ〉, which is given by 〈ψ |ρ (out)
1 |ψ〉, is 5/6. A fidelity of one would imply perfect

cloning, so what we have here is a device that produces two copies of the input qubit
that are pretty good approximations to it. Note that the fidelity does not depend on
the input state, that is, all states are cloned equally well. This feature of this cloning
machine is known as universality.

Note that the cloner employs three qubits, and we have only discussed the final
state of two of them. One might wonder if the output state of the third qubit is of
interest. This is, in fact, where the connection with the U-NOT gate enters. The
output state of the third qubit is given by

ρ (out)
3 = c0c1|ψ∗〉〈ψ∗|+ 1

2
(1− c0c1)I, (8.6)

where |ψ∗〉=α∗|0〉+β ∗|1〉 and I is the two-by-two identity matrix. If we now apply
the unitary operator U0 =−iσy, which has the effect U0|0〉=−|1〉 and U0|1〉= |0〉,
to this density matrix, and make use of the fact that I = |ψ〉〈ψ |+ |ψ⊥〉〈ψ⊥|, we find

U0ρ (out)
3 U−1

0 =
1
2
(1+ c0c1)|ψ⊥〉〈ψ⊥|+ 1

2
(1− c0c1)|ψ〉〈ψ |. (8.7)

In the case that c0 = c1 = 1/
√

3 this becomes

U0ρ (out)
3 U−1

0 =
2
3
|ψ⊥〉〈ψ⊥|+ 1

3
|ψ〉〈ψ |. (8.8)

This is, in fact, the best approximation to the state orthogonal to that of the input
qubit that can be realized, a fact we will not prove here. Note that the fidelity of the
output to the ideal output state, |ψ⊥〉, is 2/3. Therefore, the cloner with the addition
of a U0 gate to the third output not only clones states, but it also realizes the best
possible approximate U-NOT gate.
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The same result for the U-NOT operation can be achieved by measuring the
original qubit. We measure |ψ〉 along a random direction in our two-dimensional
Hilbert space

|η〉= cos(θ/2)|0〉+ eiφ sin(θ/2)|1〉, (8.9)

that is, we measure the projection |η〉〈η |. If we obtain the result 1, we produce the
state |η⊥〉, where

|η⊥〉= e−iφ sin(θ/2)|0〉− cos(θ/2)|1〉, (8.10)

and if we get 0, we produce the state |η〉. The density matrix resulting from this
procedure is

ρ (out)(η) = |〈ψ |η〉|2|η⊥〉〈η⊥|+ |〈ψ |η⊥〉|2|η〉〈η |. (8.11)

If we now average this over η we find

ρ (out) =
1

4π

∫ 2π

0
dφ

∫ π

0
dθ sin(θ )ρ (out)(η)

=
2
3
|ψ⊥〉〈ψ⊥|+ 1

3
|ψ〉〈ψ |. (8.12)

Therefore, the best approximate U-NOT gate can be achieved in two different ways:
One is to use the cloning circuit, and the second is to the measure the qubit in
a random direction and then produce a qubit whose direction is opposite to that
indicated by our measurement result.

One might wonder if a similar strategy can be applied to cloning. That is, one
measures the original qubit in a random direction |η〉, and if one gets 1, one
produces two qubits in the state |η〉|η〉, and if one gets 0, one produces two qubits in
the state |η⊥〉|η⊥〉. This procedure does work, but, unlike in the case of the U-NOT,
it is not optimal. One finds after averaging over η that the fidelity of the output state
to the ideal output state, |ψ〉|ψ〉, is 2/3, which is less than the 5/6 achieved by the
cloning circuit.

8.3 Programmable Machines: A General Result

We now want to consider programmable quantum machines, which we shall
often refer to as quantum processors. Programmable machines have a number of
advantages over machines that perform a single function. First, they are much more
flexible. In order to change what they do, you just change the program rather than
rewiring the entire quantum circuit. Second, they offer the possibility of performing
several operations on the data in parallel, by using superpositions of program
states, where each element of the superposition corresponds to a different operation.
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Programmable machines have two inputs, one for the data, which is to be acted
upon, and one for the program, which will specify the operation to be performed
on the data. Both the data and the program are quantum states. In particular, the
processor is a unitary operator acting on the Hilbert space Hd ⊗Hp, where Hd is
the data Hilbert space and Hp is the program Hilbert space. Ideally, we would like
to be able to program any unitary operator acting on the data. For example, if our
data space is two-dimensional, we would like to be able to have a program for each
element of SU(2). Such a processor would be universal, that is, it could be used to
deterministically perform any unitary operation on a qubit. Unfortunately, as shown
by Nielsen and Chuang, it is impossible to construct such a processor.

In order to show this, we need to examine the resources that are necessary in
order to implement a given set of operations on the data. What Nielsen and Chuang
showed is that if the program |Ξ1〉p ∈Hp implements the unitary operator U1 on the
data state, and |Ξ2〉p ∈Hp implements the unitary operator U2, then p〈Ξ1|Ξ2〉p = 0.
This implies that for every unitary operator that the processor can implement on the
data state, we need an extra dimension in the program space. Since the number of
operations in SU(2) is uncountably infinite, a program space that is finite, or even
countably finite, would not be big enough to account for every operation.

Let us now prove the no-go theorem for deterministic programmable quantum
processors. We assume the processor is represented by a unitary operator, G, acting
in Hd ⊗Hp, where Hd is the data space and Hp is the program space. We suppose
that we have a program |Ξ1〉p ∈Hp that implements the unitary operator U1 on Hd ,
in particular

G(|ψ〉d ⊗|Ξ1〉p) =U1|ψ〉d ⊗|Ξ′
1〉p. (8.13)

Now it could be the case that the output in the program space depends on the state
|ψ〉d that is sent into the data input. In order to show that this is not the case, assume
that

G(|ψ1〉d ⊗|Ξ1〉p) = U1|ψ1〉d ⊗|Ξ′
1〉p

G(|ψ2〉d ⊗|Ξ1〉p) = U1|ψ2〉d ⊗|Ξ′′
1〉p. (8.14)

Taking the inner products of the left-hand sides of the above equations and equating
that to the inner product of the right-hand sides, and assuming that d〈ψ1|ψ2〉d �= 0,
give us p〈Ξ′

1|Ξ′′
1〉p = 1, thereby implying that the program state outputs are identical.

Now suppose that the program state |Ξ1〉p implements the operator U1 and the
program state |Ξ2〉p implements U2. We then have that

G(|ψ〉d ⊗|Ξ1〉p) = U1|ψ〉d ⊗|Ξ′
1〉p

G(|ψ〉d ⊗|Ξ2〉p) = U2|ψ〉d ⊗|Ξ′
1〉p. (8.15)

Taking inner products we find

p〈Ξ2|Ξ1〉p = d〈ψ |U−1
2 U1|ψ〉d p〈Ξ′

2|Ξ′
1〉p. (8.16)
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We will examine both the case p〈Ξ′
2|Ξ′

1〉p �= 0 and the case p〈Ξ′
2|Ξ′

1〉p = 0. If
p〈Ξ′

2|Ξ′
1〉p �= 0, we have

p〈Ξ2|Ξ1〉p

p〈Ξ′
2|Ξ′

1〉p
= d〈ψ |U−1

2 U1|ψ〉d , (8.17)

and we note that the left-hand side does not depend on |ψ〉d , so the right-hand side
cannot either. That implies that U−1

2 U1 is a multiple of the identity, and since both
of the operators are unitary, we must have U2 = eiθU1 for some θ between 0 and 2π .
Now if, on the other hand, p〈Ξ′

2|Ξ′
1〉p = 0, then we see that we must also have that

p〈Ξ2|Ξ1〉p = 0. Summarizing, what we have found is that if U1 and U2 are different,
that is, they are not multiples of each other, then they must correspond to orthogonal
program states. Therefore, the dimension of the program space must be at least as
great as the number of unitary operators that the processor can perform.

Similar reasoning can be employed to show that a deterministic scheme employ-
ing measurement is also impossible. We can call this a measure-and-correct scheme.
Suppose that we send a program and data into our processor, and at the output
measure the program state in a fixed basis. Each measurement outcome corresponds
to a different unitary operator being applied to the data state, but for each program
state the resulting operators are related to each other in the same way. That means
that for any program state, if we do not obtain the desired measurement result, we
can correct the resulting output state by applying an operator that does not depend
on the program state.

Let us look at a simple example. Suppose that both the data and program spaces
are two-dimensional and that our processor acts as follows:

G(|ψ〉d ⊗|Ξ1〉p) =
1√
2
(U1|ψ〉d ⊗|0〉p +VU1|ψ〉d ⊗|1〉p)

G(|ψ〉d ⊗|Ξ2〉p) =
1√
2
(U2|ψ〉d ⊗|0〉p +VU2|ψ〉d ⊗|1〉p). (8.18)

Here, V is a fixed unitary operator. Such a processor is capable of deterministically
applying four different unitary operators to the data state, U1, VU1, U2, and VU2.
For example, suppose we want to apply U1. We use the program |Ξ1〉 and then
measure the program state in the basis {|0〉, |1〉}. If we obtain |0〉 we are done,
and if we obtain |1〉, then we can apply V−1 to the data state. In either case, we
obtain the output state U1|ψ〉d . We will also be able to deterministically obtain
the superpositions c1U1 + c2U2 and c1VU1 + c2VU2, where c1 and c2 are complex
numbers. It appears that we have beaten the no-go theorem, because we are able
to deterministically realize four unitary operators with a two-dimensional program
space. Unfortunately, it will not work. If we take the inner products of the two
equations above, we find that

p〈Ξ1|Ξ2〉p = d〈ψ |U−1
1 U2|ψ〉d . (8.19)
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The left-hand side does not depend on |ψ〉d , which, as before, implies that U1 and
U2 are related by a phase factor and that the program states are multiples of each
other. Therefore, we can only realize two operators in this way, U1 and VU1, and we
have not gained anything.

8.4 Probabilistic Processors

The no-go result we proved in the previous section only applies to deterministic
processors. If the processor is probabilistic, its limitations no longer apply. Let us
first illustrate this with a simple example and then proceed to a more complicated
one. Suppose our data system is a qubit, and we want to implement the one
parameter group of transformations, U(α) = exp(iασz), where 0 ≤ α < 2π . This
can be accomplished with a success probability of 1/2 by using a qubit program
and a Controlled-NOT gate. The Controlled-NOT gate has two inputs, a control
input and a target input, and in the case we wish to consider here, the target qubit is
the program and the control qubit is the data. The program states are

|Ξ(α)〉= 1√
2
(eiα |0〉+ e−iα |1〉). (8.20)

If the data state input is |ψ〉, the output of this processor is then

|Ψout〉= 1√
2
(U(α)|ψ〉|0〉+U−1(α)|ψ〉|1〉). (8.21)

By measuring the program state output in the basis {|0〉, |1〉} and keeping the result
only if we get |0〉, which happens with a probability of 1/2, we obtain the data
state output U(α)|ψ〉, which is the desired result. Note that in this case, a single
processor is able to realize, with a one-qubit program space, a continuous group of
transformations. The cost is that in each application, the desired transformation is
only realized with a probability of 1/2.

Now let us look at a more complicated example. We will begin by going back
and considering the three-qubit circuit for the approximate cloner. Qubit 1 will now
be our data state, and qubits 2 and 3 will be our program. We will denote the data
state by |ψ〉1 and the program state by |Ξ〉23. Define the two-qubit Bell states to be

|Ψ±〉 = 1√
2
(|00〉± |11〉)

|Φ±〉 = 1√
2
(|01〉± |10〉). (8.22)
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If these states are used as programs in our processor, we find that

|ψ〉1|Ψ+〉23 → |ψ〉1|Ψ+〉23

|ψ〉1|Ψ−〉23 → σz|ψ〉1|Ψ−〉23

|ψ〉1|Φ+〉23 → σx|ψ〉1|Φ+〉23

|ψ〉1|Φ−〉23 → (−iσy)|ψ〉1|Φ−〉23, (8.23)

where σx, σy, and σz are the Pauli matrices. Suppose we want to implement the
operator

Uφ = |φ⊥〉〈φ⊥|− |φ〉〈φ |= I − 2|φ〉〈φ | (8.24)

on the data state, where |φ〉 and |φ⊥〉 are specified, orthogonal one-qubit states. The
operator Uφ is similar to σz, but instead of flipping the phase of the state |1〉 and
leaving |0〉 unchanged, it flips the phase of the state |φ〉 and leaves the phase of |φ⊥〉
unchanged. In order to find a program state that will implement this operator, we
first express it in terms of the Pauli matrices. Setting |φ〉= μ |0〉+ν|1〉, we find

Uφ = −(μν∗+ μ∗ν)σx +(μν∗ − μ∗ν)(−iσy)

+(|ν|2 −|μ |2)σz. (8.25)

We can now apply the operation Uφ to |ψ〉1 by sending in the program state

|Ξφ 〉 = −(μν∗+ μ∗ν)|Φ+〉23 +(μν∗− μ∗ν)|Φ−〉23

+(|ν|2 −|μ |2)|Ψ−〉23, (8.26)

and measuring the program outputs to see if they are in the state (|Φ+〉23

+|Φ−〉23 + |Φ−〉23)/
√

3. This will occur with a probability of 1/3. When we do
obtain this result, the output of the data state is Uφ |ψ〉1. Note that both the
measurement we make and its probability of success do not depend on the state |φ〉.
We can express the program vector in a neater form if we introduce the operator,
Uin, defined by

Uin|00〉 = −|10〉 Uin|10〉=−|11〉
Uin|01〉 = |00〉 Uin|11〉= |01〉. (8.27)

The program state can then be expressed as

|Ξ〉23 =
1√
2

Uin(|φ〉2|φ⊥〉3 + |φ⊥〉2|φ〉3). (8.28)

Summarizing, with this device we can implement a phase flip in any basis, and the
basis itself is specified by the program state.
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Now let us return to our simple Controlled-NOT processor. Suppose that we want
to increase the probability of a successful outcome. One possibility is to try again
if we get the wrong result of our measurement on the program state. If we obtained
the result |1〉 from our measurement, then the data qubit is in the state U−1(α)|ψ〉.
We can take this qubit and run it through the processor again, but this time use the
program |Ξ(2α)〉. If we do so, the output state is

|Ψ′
out〉=

1√
2
(U(α)|ψ〉|0〉+U−1(3α)|ψ〉|1〉). (8.29)

We again measure the program state and keep the result if we get |0〉. This again
happens with a probability of 1/2. Adding this second step has increased our overall
success probability to 3/4, and the procedure can be repeated to bring the success
probability as close to one as we wish. What we need to do, however, is to collect
qubits in the proper program states, that is, besides a qubit in the state |Ξ(α)〉, we
need an additional one in the state |Ξ(2α)〉.

We can also accomplish the same thing by enlarging our program space. Our data
space still consists of one qubit, but the program space now contains two qubits. Let
us label the three inputs: input 1 being the data input, input 2 the first program input,
and input 3 the second program input. The processor now consists of two gates. The
first is a controlled-NOT gate whose control qubit is qubit 1 and whose target qubit
is qubit 2. The second gate is a Toffoli gate. This gate has two control qubits and
one target qubit. The states of the control qubits are not changed, and if they are in
the states |0〉|0〉, |0〉|1〉, or |1〉|0〉, neither is the state of the target qubit. However, if
they are in the state |1〉|1〉, then σx is applied to the target qubit. In our processor,
qubits 1 and 2 are the control qubits and qubit 3 is the target qubit. The input state
is |ψ〉1|Ξ(α)〉2|Ξ(2α)〉3, and the output state is

|Ψ′′
out〉=

1
2
[U(α)|ψ〉1(|0〉2|0〉3 + |0〉2|1〉3 + |1〉2|0〉3)+U−1(3α)|ψ〉|1〉2|1〉3].

(8.30)

At the output we measure the program qubits in the computational basis and keep the
data state output if we get |0〉|0〉, |0〉|1〉, or |1〉|0〉. If we do, the data output is in the
state U(α)|ψ〉, and we have achieved our goal. This happens with a probability of
3/4. By increasing the dimension of the program space further, we can increase our
probability of success. We have, therefore, two strategies for increasing the success
probability for a probabilistic processor.

8.5 A Programmable State Discriminator

In a previous chapter, we discussed unambiguous state discrimination. One is given
a qubit, which is in one of two known states, |ψ1〉 or |ψ2〉, and one’s task is to
determine which of the two states the qubit is in. In the case of unambiguous
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discrimination, one cannot make a mistake, but the procedure is allowed to fail.
We found a POVM that optimally accomplishes this task. It has three outcomes:
the state is |ψ1〉, the state is |ψ2〉, and failure. The optimal POVM is the one that
minimizes the probability of failure.

The actual state-distinguishing device, a realization of the optimal POVM, for
two known states depends on the two states, |ψ1〉 and |ψ2〉, i.e., these two states are
“hard wired” into the machine. What we now wish to do is to see if we can construct
a machine in which the information about |ψ1〉 and |ψ2〉 is supplied in the form of
a program. In particular, we want the program to consist of the two-qubit states that
we wish to distinguish. In other words, we are given two qubits: one in the state
|ψ1〉 and another in the state |ψ2〉. We have no knowledge of the states |ψ1〉 and
|ψ2〉. Then we are given a third qubit that is guaranteed to be in one of these two
program states, and our task is to determine, as best we can, in which one. We are
allowed to fail, but not to make a mistake.

In order to solve this problem, what we need to do is to find a POVM, and our
task is then reduced to the following measurement optimization problem. One has
two input states:

|Ψin
1 〉 = |ψ1〉A|ψ2〉B|ψ1〉C,

|Ψin
2 〉 = |ψ1〉A|ψ2〉B|ψ2〉C, (8.31)

where the subscripts A and B refer to the program registers (A contains |ψ1〉 and
B contains |ψ2〉), and the subscript C refers to the data register. Our goal is to
unambiguously distinguish between these inputs, keeping in mind that one has no
knowledge of |ψ1〉 and |ψ2〉. In particular, one wants to find a POVM that will
accomplish this.

Let the elements of our POVM be Π1, corresponding to unambiguously detecting
|Ψin

1 〉, Π2, corresponding to unambiguously detecting |Ψin
2 〉, and Π0, corresponding

to failure. The probabilities of successfully identifying the two possible input states
are given by

〈Ψin
1 |Π1|Ψin

1 〉= p1 〈Ψin
2 |Π2|Ψin

2 〉= p2, (8.32)

and the condition of no errors implies that

Π2|Ψin
1 〉= 0 Π1|Ψin

2 〉= 0. (8.33)

In addition, because the alternatives represented by the POVM exhaust all possibil-
ities, we have that

I = Π1 +Π2 +Π0. (8.34)

The fact that we know nothing about |ψ1〉 and |ψ2〉 means that the only way we
can guarantee satisfying the above conditions is to take advantage of the symmetry
properties of the states, i.e., that |Ψin

1 〉 is invariant under interchange of the first and
third qubits and |Ψin

2 〉 is invariant under interchange of the second and third qubits.
That means that Π1 should give zero when acting on states that are symmetric in
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qubits B and C, while Π2 should give zero when acting on states that are symmetric
in qubits A and C. Defining the antisymmetric states for the corresponding pairs of
qubits

∣∣∣ψ(−)
BC

〉
=

1√
2
(|0〉B|1〉C −|1〉B|0〉C),

∣∣∣ψ(−)
AC

〉
=

1√
2
(|0〉A|1〉C −|1〉A|0〉C), (8.35)

we introduce the projectors onto the antisymmetric subspaces of the corresponding
qubits as

Pas
BC =

∣∣∣ψ(−)
BC

〉〈
ψ(−)

BC

∣∣∣ ,
Pas

AC =
∣∣∣ψ(−)

AC

〉〈
ψ(−)

AC

∣∣∣ . (8.36)

We can now take for Π1 and Π2 the operators

Π1 = c1IA ⊗Pas
BC,

Π2 = c2IB ⊗Pas
AC, (8.37)

where IA and IB are the identity operators on the spaces of qubits A and B,
respectively, and c1 and c2 are as yet undetermined nonnegative real numbers. Using
the above expressions for Π j, where j = 1,2 in Eq. (8.32), we find that

p j = 〈Ψin
j |Π j|Ψin

j 〉 = c j
1
2
(1−|〈ψ1|ψ2〉|2). (8.38)

The average probability, P, of successfully determining which state we have,
assuming that the input states occur with equal probability is given by

P =
1
2
(p1 + p2) =

1
4
(c1 + c2)(1−|〈ψ1|ψ2〉|2), (8.39)

and we want to maximize this expression subject to the constraint that Π0 = I −
Π1 −Π2 is a positive operator.

Let S be the 4-dimensional subspace of the entire eight-dimensional Hilbert

space of the three qubits, A, B, and C, that is spanned by the vectors |0〉A|ψ(−)
BC 〉,

|1〉A|ψ(−)
BC 〉, |0〉B|ψ(−)

AC 〉, and |1〉B|ψ(−)
AC 〉. In the orthogonal complement of S, S⊥, the

operator Π0 acts as the identity, so that in S⊥, Π0 is positive. Therefore, we need to
investigate its action in S. First, let us construct an orthonormal basis for S. Applying
the Gram-Schmidt process to the four vectors, given above, that span S, we obtain
the orthonormal basis



128 8 Quantum Machines

|Φ1〉 = |0〉A

∣∣∣ψ(−)
BC

〉
,

|Φ2〉 = 1√
3

(
2|0〉B

∣∣∣ψ(−)
AC

〉
−|0〉A

∣∣∣ψ(−)
BC

〉)
,

|Φ3〉 = |1〉A

∣∣∣ψ(−)
BC

〉
,

|Φ4〉 = 1√
3

(
2|1〉B

∣∣∣ψ(−)
AC

〉
−|1〉A

∣∣∣ψ(−)
BC

〉)
. (8.40)

In this basis, the operator Π0, restricted to the subspace S, is given by the 4× 4
matrix

Π0 =

⎛
⎜⎜⎜⎝

1− c1 − 1
4 c2 −

√
3

4 c2 0 0

−
√

3
4 c2 1− 3

4 c2 0 0

0 0 1− c1 − 1
4 c2 −

√
3

4 c2

0 0 −
√

3
4 c2 1− 3

4 c2

⎞
⎟⎟⎟⎠ (8.41)

Because of the block diagonal nature of Π0, the characteristic equation for its
eigenvalues, λ , is given by the biquadratic equation

[λ 2 − (2− c1− c2)λ + 1− (2− c1− c2)+
3
4

c1c2]
2 = 0. (8.42)

It is easy to obtain the eigenvalues explicitly, but for our purposes, the conditions
that guarantee that they are nonnegative are more useful. These can be read out from
the above equation, yielding

2− c1− c2 ≥ 0,

1− (2− c1− c2)+
3
4

c1c2 ≥ 0. (8.43)

The second is the stronger of the two conditions. When it is satisfied the first one is
always met, but the first one can still be used to eliminate nonphysical solutions. We
can use the second condition to express c2 in terms of c1,

c2 ≤ 2− 2c1

2− (3/2)c1
. (8.44)

For the maximum probability of success, we chose the equal sign. Inserting the
resulting expression into (8.39) gives

P =
1
4

(
c1 +

2− 2c1

2− (3/2)c1

)
(1−|〈ψ1|ψ2〉|2). (8.45)
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We can easily find c1 = c1,opt for which the right-hand side of this expression is
maximum and using this together with Eq. (8.44) we obtain

c1,opt = c2,opt =
2
3
. (8.46)

These values, in conjunction with Eq. (8.37), completely specify the POVM.
Inserting these optimal values into (8.39) gives

PPOVM =
1
3
(1−|〈ψ1|ψ2〉|2). (8.47)

If we know the states |ψ1〉 and |ψ2〉, the probability of successfully determining
the state is 1− |〈ψ1|ψ2〉|. This is always greater than or equal to the probability in
the previous equation, but this is to be expected. Knowledge of the states |ψ1〉 and
|ψ2〉 corresponds to being given an infinite number of examples of each state, which
we can then measure to determine exactly what the states are. Our programmable
device only has access to one example of each state. It is, however, a very flexible
device. Note that the POVM elements do not in any way depend on the states |ψ1〉
and |ψ2〉, which means that it will work for any two program states.

8.6 Problems

1. If we restrict the class of states that we would like to clone, we can achieve higher
fidelities for the clones than is possible with a device that is designed to clone all
states optimally. An example of this is phase-covariant cloning. Suppose we want
to clone only states of the form

|ψ(θ )〉= 1√
2
(|0〉+ eiθ |1〉).

Consider the following cloning transformation, U , acting on two qubits

U |0〉1|0〉2 = |0〉1|0〉2

U |1〉1|0〉2 = cosη |1〉1|1〉2 + sinη |0〉1|1〉2.

The input state to this cloner is |ψ(θ )〉1|0〉2, and the angle η controls how the
information about the input state is split between outputs 1 and 2. Find the
reduced density matrices of the outputs 1 and 2, the fidelities of these outputs
to the input state, |ψ(θ )〉, and show that in the case η = π/4 these fidelities
exceed 5/6.

2. Consider the cloner discussed in Sect. 8.2. Show that the fidelities of the output
states [see Eq. (8.4)] satisfy the relation
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√
(1−F1)(1−F2) = F1 +F2 − 3

2
,

where F1 is the fidelity of the output state in output 1 to the input state and F2 is
the fidelity of the output state in output 2 to the input state.

3. Let us again consider our cloning circuit composed of four C-NOT gates. Show
that it performs the following transformations:

|ψ〉1|0〉2|− x〉3 → (σz|ψ〉2)|Ψ−〉13

|ψ〉1|+ x〉2|1〉3 → (σx|ψ〉3)|Φ+〉12

Now show that if the input state is |ψ〉1(α|Ψ+〉23 +β |0〉2|− x〉3 + γ|+ x〉2|1〉3),
with the normalization condition

|α +β |2 + |α + γ|2 + |β − γ|2 = 2,

the reduced density matrices of the outputs are

ρ1 =

[∣∣∣∣α +
β + γ

2

∣∣∣∣
2

− |β − γ|2
4

]
ρin +

|β − γ|2
2

I

ρ2 =

[∣∣∣∣β +
(α − γ)

2

∣∣∣∣
2

− |α + γ|2
4

]
σzρinσz +

|α + γ|2
2

I

ρ3 =

[∣∣∣∣γ + (α −β )
2

∣∣∣∣
2

− |α +β |2
4

]
σxρinσx +

|α +β |2
2

I,

where ρin = |ψ〉〈ψ |. This implies that the cloner can not only split quantum
information, but it can split it and then cause operations to be performed on the
parts.

4. Suppose we want to use the probabilistic processor composed of four C-NOT
gates to implement the operation Vφ = |φ〉〈φ⊥|+ |φ⊥〉〈φ | on the data state. Find
a program state that will cause this to happen with a probability of 1/3, and show
that if the program state is expressed in the form Uin|Ξ′〉23, then the state |Ξ′〉23

can be expressed very simply in terms of |φ〉 and |φ⊥〉.
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Chapter 9
Decoherence and Quantum Error Correction

One of the biggest problems in building a quantum computer is noise or decoher-
ence. Qubits are coupled to other systems whether we want them to be or not, e.g.,
atoms couple to the electromagnetic field and spins couple to other spins via dipole–
dipole interactions. These unwanted couplings can cause errors, and we need to
protect quantum information against these errors.

In most of this chapter, we will study quantum error-correcting codes. These
allow us to protect quantum information from the effects of decoherence. We will
begin with a discussion of the general theory of quantum error-correcting codes
and then discuss in detail one particular class of these codes, the Calderbank-Shor-
Steane (CSS) codes. We will conclude with a very short introduction to another
technique for protecting quantum information from decoherence, decoherence-free
subspaces.

9.1 General Theory of Quantum Error-Correcting Codes

Classically, to protect against errors, we can just repeat the bit. We can encode one
bit in three as 0 → 000 and 1 → 111. Errors can flip bits, that is, change a 0 to a 1 or
vice versa. To decode the bit, we use majority voting; if there are more 0’s than 1’s,
we call it 0, and if there are more 1’s than 0’s, we call it 1. This will protect against
one bit-flip error.

Let’s look at this in terms of probabilities. Suppose that the probability of one bit-
flip error is p and that the occurrence of errors in the different bits is independent.
Then the probability of no errors is (1− p)3, of one error 3p(1− p)2, of two errors
3p2(1− p), and of three errors p3. The probability that the error correction fails is
just the sum of the probabilities that two or three errors occur, or p2(3− 2p). This
will be smaller than the probability of an error in an unencoded bit if p2(3−2p)< p,
which is true if p < 1/2. If this condition is satisfied, then it is better to encode the
bit than not.
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Table 9.1 Truth table for the
operations Z1Z2 and Z2Z3 on
either |000〉 or |111〉

Z1Z2 Z2Z3

No flips 1 1
Bit 1 flipped −1 1
Bit 2 flipped −1 −1
Bit 3 flipped 1 −1

We would like to do something similar for qubits, but we face several problems
in doing so. The task we would like to accomplish is harder, because we do not
just want to protect |0〉 and |1〉, but any state of the form a|0〉+ b|1〉. Some of the
problems we face in protecting qubit states are:

1. Qubits are susceptible to more kinds of errors than are classical bits. There are
phase errors that send |0〉→ |0〉 and |1〉→−|1〉, which has the effect of changing
a|0〉+b|1〉 to a|0〉−b|1〉. In addition, there are general small errors that have the
effect a|0〉+ b|1〉→ (a+O(ε))|0〉+(b+O(ε))|1〉, where ε � 1 is a parameter
that characterizes the size of the error.

2. We have to be very careful about how we look at a qubit to detect the error,
because by looking at a state, we mean measuring it, and measuring a state can
change it.

3. We cannot just copy the qubit state, because of the no-cloning theorem.

What this means is that we have to be careful and clever.
The first quantum error-correcting code was due to Peter Shor, and we will

examine it in detail. We start by analogy with the classical case and encode |0〉
by |000〉 and |1〉 by |111〉, which means that the state a|0〉+b|1〉 will be encoded as
a|000〉+ b|111〉. We would like to see if this encoding will help detect and correct
bit-flip errors. Note that any single-qubit state is mapped into the subspace of three-
qubit states spanned by |000〉 and |111〉.

If we just measure each qubit in the {|0〉, |1〉} basis, to detect a bit-flip, we will
destroy any superpositions, so something else is required. Notice that in the states
|000〉 and |111〉, all of the qubits are in the same state, in particular, qubits 1 and
2 are in the same state and qubits 2 and 3 are in the same state. Denoting σz by Z
(we will also denote σx by X), let us measure Z1Z2 and Z2Z3 and see what happens.
Acting on either |000〉 or |111〉, we have summarized the results in Table 9.1.

So, by looking at the result, we can tell which bit flipped. In addition, any state
of the form a|000〉+ b|111〉, or this state with a single bit flipped, is an eigenstate
of Z1Z2 and Z2Z3, so measuring them does not change the state. Therefore, if one
bit flips, we can determine which one it is by measuring these two observables, and
we will not change the state. We can then correct the error by flipping that bit back.
For example, if bit 2 flipped, we would have a|000〉+ b|111〉→ a|010〉+ b|101〉;
measuring Z1Z2 and Z2Z3 would give us −1 and −1, telling that it was bit 2 that
flipped and not altering the state. We could then apply X2 to the state to flip bit 2
back to its proper value.
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This procedure also works if there is only some amplitude for one bit to flip.
Suppose

|000〉 → (1− ε2)1/2|000〉+ ε|010〉
|111〉 → (1− ε2)1/2|111〉+ ε|101〉, (9.1)

which implies that

a|000〉+ b|111〉→ (1− ε2)1/2(a|000〉+ b|111〉)+ ε(a|010〉+b|101〉). (9.2)

Now let us see what happens when we make our measurements. Measuring Z1Z2,
we obtain 1 with probability 1− ε2 and −1 with probability ε2. If we obtain 1,
the state is restored and becomes a|000〉+ b|111〉. If we obtain −1, the state is
a|010〉+b|101〉. Now let’s measure Z2Z3. If we obtained 1 for the first measurement,
we will also obtain one for the second, since the state is now restored to what it
should be. In that case, we have obtained 1 for both measurements, so we do nothing.
If we obtained −1 for the first measurement, we will obtain −1 for the second, since
bit 2 is definitely flipped. Having obtained −1 for both measurements, we apply X2

to correct the error.
At this point, we can correct one bit-flip error, but now, we need to worry about

phase-flip errors. Phase-flip errors behave like bit-flip errors if we look at them in
a different basis. Note that a phase-flip error turns the state |+ x〉 into | − x〉 and
|−x〉 into |+x〉, which is the same effect a bit-flip error has in the basis {|0〉, |1〉}. If
we encode |0〉 → |+ x,+x,+x〉 and |1〉 → |− x,−x,−x〉, then we can detect single-
bit phase-flip errors. To detect the error, we measure X1X2 and X2X3, which tells
us in which bit the error occurred. We then correct the error by applying Z to the
appropriate bit.

We now want to combine the bit- and phase-flip codes, so that we can protect
against both kinds of errors. Think of starting with the phase-flip code and encoding
each of the qubits in it with the bit-flip code. This gives us a nine-qubit code, which
is the Shor code. In detail, the encoding is given by

|0〉 → 1

2
√

2
(|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)

|1〉 → 1

2
√

2
(|000〉− |111〉)(|000〉− |111〉)(|000〉− |111〉). (9.3)

We can find bit-flip errors by measuring products of Z operators. In particular,
measuring Z1Z2 and Z2Z3 will detect bit-flip errors in the first three-qubit cluster,
measuring Z4Z5 and Z5Z6 will detect bit-flip errors in the second three-qubit cluster,
and Z7Z8 and Z8Z9 will detect bit-flip errors in the third three-qubit cluster. Once
the bit-flip has been detected, we can apply an X operator to the appropriate qubit
to flip it back.
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A phase-flip error in any qubit will cause the sign in one of the clusters to flip.
We can find which cluster by measuring ∏6

j=1 Xj and ∏9
j=4 Xj. If both give 1, then

there is no error, if the first gives 1 and the second −1, the error is in the first cluster,
if both give −1, the error is in the second cluster, and if the first gives −1 and the
second 1, the error is in the third cluster. Once we have determined in which cluster
the error occurred, we can apply a Z operator to any of the qubits in that cluster to
correct the error. Note that this code will correct an error in one qubit, but not more.

So far we have only considered bit-flip and phase-flip errors. It doesn’t seem as
though this would be sufficient, but it is. To see why, we must take a more general
look at quantum error correction. We start by considering a single qubit interacting
with its environment. Let the qubit Hilbert space be HA and the environment Hilbert
space be HE . We shall call the initial state of the environment |0〉E and the operator
that describes the evolution of the qubit and the environment UAE . We have that

UAE(|0〉A ⊗|0〉E) = |0〉A ⊗|e00〉E + |1〉A ⊗|e01〉E

UAE(|1〉A ⊗|0〉E) = |0〉A ⊗|e10〉E + |1〉A ⊗|e11〉E . (9.4)

The states |e jk〉E are not necessarily orthogonal or normalized, but they must obey
the constraints imposed by the unitarity of UAE . For example, we must have that
‖e00‖2 +‖e01‖2 = 1 and ‖e10‖2 +‖e11‖2 = 1. We now want to see the effect of UAE

acting on a general qubit state, i.e., on |ψ〉A ⊗ |0〉E , where |ψ〉A = a|0〉A + b|1〉A.
After some work we find that

UAE(|ψ〉A ⊗|0〉E) = a(|0〉A ⊗|e00〉+ |1〉A ⊗|e01〉E)

+b(|0〉A ⊗|e10〉E + |1〉A ⊗|e11〉E)

= I|ψ〉A ⊗|eI〉E +X |ψ〉A ⊗|eX〉E

+Y |ψ〉A ⊗|eY 〉E +Z|ψ〉A ⊗|eZ〉Z , (9.5)

where I is the identity operator, Y = iXZ, and

|eI〉E =
1
2
(|e00〉+ |e11〉) |eX〉E =

1
2
(|e01〉+ |e10〉)

|eY 〉E =
i
2
(|e10〉− |e01〉) |eZ〉E =

1
2
(|e00〉− |e11〉). (9.6)

Therefore, we can expand the action of UAE on the qubit in terms of the Pauli
matrices. This is a consequence of the fact that these matrices plus the identity
form basis for 2× 2 matrices. Note that the vectors |eI〉E , |eX〉E , |eY 〉E , and |eZ〉E

are not necessarily normalized or orthogonal. For n qubits we can expand the
unitary evolution operator that mixes the qubits and the environment in terms of
{I,X ,Y,Z}⊗n. Let us call the members of this set Ea so that

UAE(|ψ〉A ⊗|0〉E) = ∑
a

Ea|ψ〉A ⊗|ea〉E . (9.7)
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Note that Ea is unitary and that HA is now the n-qubit Hilbert space.
When designing a code, we choose a subset E ⊆ {I,X ,Y,Z}⊗n; these are the

errors we want to be able to correct. Typically, E is chosen to be all Ea of weight
t or less. The weight of Ea is the number of operators it contains that are not the
identity. Next, we choose a code subspace, Hc ⊆ HA, which will contain the code
words, and suppose {| j̄〉A} is an orthonormal basis of that space. Suppose we had
for Ea,Eb ∈ E

A〈 j̄|E†
b Ea|k̄〉A = δabδ j̄k̄. (9.8)

This implies that each error in E maps the code space into a different subspace
and that all of these subspaces are orthogonal, i.e., EaHA is orthogonal to EbHA for
a �= b, and hence these subspaces are distinguishable. Within one of these subspaces,
errors map code words (the basis elements | j̄〉A) onto orthogonal states, that is,
Ea| j̄〉A is orthogonal to Ea|k̄〉A for j̄ �= k̄.

This means that we can find which error occurred (into which orthogonal
subspace it mapped the code word), and we can correct it. If we found that Ea

occurred, we just apply E†
a . In fact, we can correct any error that is a combination

of the elements of E . If

|ψ〉A ⊗|0〉E → ∑
a

Ea|ψ〉A ⊗|ea〉E , (9.9)

then we can measure the observable ∑a λaPa, where the λa are distinct, and Pa

projects onto EaHA. If we obtain λa′ , then the state becomes Ea′ |ψA⊗|ea′ 〉E , and we
can apply E†

a′ to correct the error. Therefore, by being able to correct a finite number
of errors, in particular the elements of E , we are able to correct an infinite number
of them, i.e., any combination of the errors in E .

It turns out that the condition in Eq. (9.8) is too strong. The Shor code does not
obey it, and it still works. In that code, different phase-flip errors in the same cluster
lead to identical states. A code satisfying Eq. (9.8) is called a nondegenerate code.
Codes that do not satisfy it are called degenerate.

Before discussing the general condition for a quantum code to correct a set of
errors, let us show that both errors and the recovery process can be represented
as superoperators. Let {|μ〉E} be an orthonormal basis for HE . We can expand
the states |ea〉E appearing in Eq. (9.9) in this basis, and this allows us to express
Eq. (9.9) as

UAE |ψ〉A ⊗|0〉E = ∑
μ

Mμ |ψ〉A ⊗|μ〉E , (9.10)

where

Mμ = ∑
a

E〈μ |ea〉E Ea. (9.11)

The unitarity of UAE implies that ∑μ M†
μMμ = I. Tracing out the environment, we

see that the error takes the density matrix in the code subspace, ρA, to

TE(ρA) = ∑
μ

MμρAM†
μ . (9.12)
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We see, then, that errors can be represented as superoperators.
Now let us look at the recovery process. Let ρ ′

A be the state of n qubits after
the error. We measure ρ ′

A, the measurement being described by a POVM with
operators R̃ν , and if we get result ν we apply the operator Uν to correct the error.
Therefore, with probability pν = Tr(R̃†

ν R̃ν ρ ′
A), we obtain the state

ρAν =
1
pν

Uν R̃νρ ′
AR̃†

νU†
ν . (9.13)

Defining Rν = Uν R̃ν , we have that the entire density matrix after the correction
procedure has been applied is

R(ρ ′
A) = ∑

ν
pνρAν = ∑

ν
Rνρ ′

AR†
ν . (9.14)

Note that

∑
ν

R†
νRν = ∑

ν
R̃†

ν R̃ν = I, (9.15)

because {R̃ν} is a POVM, and therefore R is a superoperator.
We are now in a position to show that the condition for a quantum code to be able

to correct an error described by the superoperator TE , which has Kraus operators
Mμ , is

A〈 j̄|M†
μ ′Mμ |k̄〉A =Cμ ′μδ j̄k̄, (9.16)

for all Mμ and Mμ ′ , where Cμ ′μ is an arbitrary hermitian matrix. In order to analyze
this claim, we will work on an extended space HA ⊗HE ⊗HB, which will allow us
to use state vectors instead of density matrices. On this space TE can be represented
as UAE ⊗ IB, that is, a unitary operator that acts on HA ⊗HE and the identity on
HB, and R can be represented as UAB ⊗ IE , that is, a unitary operator that acts on
HA ⊗HB and the identity on HE . In detail we have

TE : | j̄〉A ⊗|0〉E ⊗|ν〉B → ∑
μ

Mμ | j̄〉A ⊗|μ〉E ⊗|ν〉B

R : | j̄〉A ⊗|μ〉E ⊗|0〉B → ∑
ν

Rν | j̄〉A ⊗|μ〉E ⊗|ν〉B. (9.17)

If the recovery operation is to correct the error on the code subspace, we must have

R◦TE : | j̄〉A ⊗|0〉E ⊗|0〉B → ∑
μ,ν

RνMμ | j̄〉A ⊗|μ〉E ⊗|ν〉B = | j̄〉A ⊗|Ψ〉EB, (9.18)

where |Ψ〉EB is independent of j̄. Taking the inner product of both sides with
E〈μ ′|B〈ν ′|, we have that

Rν ′Mμ ′ | j̄〉A = λμ ′ν ′ | j̄〉A, (9.19)
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where λμ ′ν ′ = E〈μ ′|B〈ν ′|Ψ〉EB is independent of j̄. This implies that for any |ψ〉A

in the code space, RνMμ |ψ〉A = λμν |ψ〉A, so that for |φ〉A in the code space

A〈φ |Rν Mμ |ψ〉A = λμν A〈φ |ψ〉A = A〈(Rν Mμ)
†φ |ψ〉A. (9.20)

This further implies that (RνMμ)
†|φ〉A = λ ∗

μν |φ〉A for |φ〉A in the code space. We
now have

M†
σ Mμ | j̄〉A = M†

σ (∑
ν

R†
νRν)Mμ | j̄〉A = (∑

ν
λ ∗

σνλμν)| j̄〉A. (9.21)

so that, setting Cσ μ = ∑ν λ ∗
σνλμν ,

A〈k̄|M†
σ Mμ | j̄〉A =Cσ μδk̄ j̄. (9.22)

Therefore, we have shown that if the recovery operation is able to correct the error,
the condition in Eq. (9.16) must be satisfied.

Now let us show the reverse, if the condition in Eq. (9.16) is satisfied, then
we can recover from the error produced by TE . First, let us define a new Kraus
representation for TE by

M̃μ = ∑
μ ′

uμμ ′Mμ ′ , (9.23)

where uμμ ′ is a unitary matrix. This gives us

A〈k̄|M̃†
σ M̃μ | j̄〉A = δk̄ j̄ ∑

σ ′μ ′
u∗σσ ′Cσ ′μ ′uμμ ′ = δk̄ j̄ ∑

σ ′μ ′
u∗σσ ′Cσ ′μ ′(u∗)†

μ ′μ . (9.24)

We can now choose u∗ to diagonalize C, so that the above equation becomes

A〈k̄|M̃†
σ M̃μ | j̄〉A = δk̄ j̄C̃μδσ μ . (9.25)

Note that because ∑μ M̃†
μ M̃μ = I, we have that ∑μ C̃μ = 1. For each C̃ν �= 0 define

Rν =
1√
C̃ν

∑̄
k

|k̄〉A〈k̄|M̃†
ν . (9.26)

First we note that

RνM̃μ | j̄〉A =
1√
C̃ν

∑̄
k

|k̄〉A〈k̄|M̃†
νM̃μ | j̄〉A =

√
C̃ν δμν | j̄〉A. (9.27)

Going back to our representation of the superoperators on HA ⊗HE ⊗HB, we have
that

∑
μν

RνM̃μ | j̄〉A ⊗|μ〉E ⊗|ν〉B = | j̄〉A ⊗∑
μ

√
C̃ν |μ〉E ⊗|μ〉B = | j̄〉A|Ψ〉EB, (9.28)
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so that it does recover the original state in the code space. Finally, we need to verify
that ∑ν R†

νRν = I. We begin by noting that

∑
ν

R†
νRν = ∑

ν
∑̄

j

1

C̃ν
M̃ν | j̄〉A〈 j̄|M̃†

ν . (9.29)

Now let us apply this operator to any vector of the form M̃σ |k̄〉A,

∑
ν

R†
νRνM̃σ |k̄〉A = ∑

ν
∑̄

j

1

C̃ν
M̃ν | j̄〉A〈 j̄|M̃†

νM̃σ |k̄〉A

= ∑
ν

∑̄
j

1

C̃ν
M̃ν | j̄〉AC̃νδνσ δ j̄k̄ = M̃σ |k̄〉A. (9.30)

Defining HM̃ = span{M̃σ |ψ〉A} for all M̃σ and |ψ〉A ∈ Hc, we see that ∑ν R†
ν Rν is

just the projection onto HM̃ . To complete the recovery operation, we just add to it
P⊥̃

M
, the projection onto the orthogonal complement of HM̃ . Adding this operator

does not affect our recovery operation, because this operation takes place in HM̃ ,
and P⊥̃

M
maps any state in this space to zero.

Summarizing, what we have shown is that we can recover from an error TE with
Kraus operators Mμ , if and only if Eq. (9.16) is satisfied. Now this does not appear
to be too impressive; we can recover from one error. However, the situation is better
than it seems. The same recovery procedure will work for any error whose Kraus
operators are linear combinations of the Mμ . In order to see this consider an error
TF with Kraus operators

Fσ = ∑
μ

m′
σ μMμ = ∑

μ
mσ μM̃μ . (9.31)

Applying our recovery operator to a code word affected by Fσ gives us

RνFσ | j̄〉A =
1√
C̃ν

∑̄
k

∑
μ

mσ μ |k̄〉A〈k̄|M̃†
νM̃μ | j̄〉A =

√
C̃ν mσν | j̄〉A. (9.32)

Going back to our description of the error and recovery operations on the extended
space HA ⊗HE ⊗HB, we have

∑
νσ

RνFσ | j̄〉A ⊗|σ〉E ⊗|ν〉B = | j̄〉A ⊗∑
νσ

√
C̃ν mσν |σ〉E ⊗|ν〉B = | j̄〉A|Ψ〉EB, (9.33)

so the error is corrected.
Now that we know what is necessary to correct errors, let us go back and consider

the basic errors Ea ∈ E from which we built up all of the others. Define TE to have
Kraus operators

√
paEa, where 0 ≤ pa ≤ and ∑a pa = 1. Then, if and only if our

code space satisfies

A〈 j̄|E†
b Ea|k̄〉A =Cbaδ j̄k̄, (9.34)
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can we recover from TE . But if we can recover from TE , then we can recover from
any error whose Kraus operators are linear combinations of the Ea ∈E . For example,
if E consists of bit flips, phase flips, or both on t qubits or fewer, then we can recover
from all errors on t qubits or fewer if our code satisfies the above condition.

9.2 An Example: CSS Codes

Now we want to look at a particular class of quantum codes, the CSS codes. Before
we do, however, it is necessary to learn something about classical linear codes. A
linear code that encodes k bits of information into n bits is called an [n,k] code. It
can be described by an n× k matrix (n rows and k columns) whose elements are 0
or 1. This matrix, G, is known as the generator matrix for the code. A k-digit binary
number is encoded into an n-digit code word by writing it as a column vector of
length k and then multiplying this vector by the generator matrix to give a column
vector of length n, which is the code word. All of the operations here are modulo 2,
so the elements of the vectors and matrix are members of the field F2 that contains
the elements 0 and 1, and whose operations, addition and multiplication, are done
modulo 2. As an example, consider the [6,2] code with generator matrix

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0
1 0
1 0
0 1
0 1
0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (9.35)

This encodes two bits into six as follows:

(
0
0

)
→

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

(
1
0

)
→

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (9.36)

etc. The space of code words, C, is spanned by the columns of G. These should be
linearly independent over F2 so that the encoding is unique. Every vector in C will
be a code word.

Another way to specify the code subspace is by means of constraints. Our code
subspace has dimension k and lies in an n-dimensional space, so we can specify it
by imposing n−k constraints. This can be done by means of an n−k by n matrix H.
The code subspace is the set of n-component vectors that is mapped to 0 by H.
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If the n− k constraints are independent, then the rows of H will be independent.
H is called the parity-check matrix, and, as we shall see, it is useful in correcting
errors.

Clearly G and H are related. Since the columns of G are in the code subspace,
we have that HG = 0. Let’s find H for the [6,2] code. It will be a 4× 6 matrix,
and its rows need to be orthogonal to the columns of G. That means we need four
linearly independent six-component vectors that are orthogonal to the two columns
of G. We start by noticing that (1 1 0)T and (1 0 1)T are linearly independent and
are orthogonal to (1 1 1)T , where T denotes transpose. We can, therefore, choose

H =

⎛
⎜⎜⎝

1 1 0 0 0 0
1 0 1 0 0 0
0 0 0 1 1 0
0 0 0 1 0 1

⎞
⎟⎟⎠ . (9.37)

The parity-check matrix is useful for detecting and correcting errors, because
an error will usually send the code word out of the code subspace, and we can
detect this by acting on the corrupted code word with H. To see how this works, we
first define the weight of an n-component vector consisting of 0’s and 1’s to be the
number of 1’s. We can represent a corrupted code word x by x+ e, where e is an
n-component vector representing the error. Each 1 in e causes a bit-flip error in x,
so that the number of bit-flip errors is equal to the weight of e. Note that because
Hx= 0, we have that H(x+e)=He, and we call He the syndrome of error e. Define
the distance of a code to be the minimum weight of any nonzero code word, i.e., of
any nonzero x ∈ C. The Hamming distance, which we shall just call the distance,
between two code words x and y is just the number of places in which they differ,
which is the same as the weight of x+ y. We shall denote this distance by d(x,y).
As a result of these definitions, we see that for x �= y, d(x,y) will be greater than or
equal to the weight of the code, because since x+ y ∈ C, its weight must be greater
than or equal to the weight of the code. Therefore, if a code C has a distance of
2t+1, then errors of weight t will not change one code word into another. Each error
will produce a unique syndrome so that we can correct it. To see this, note that if
e1 �= e2 but He1 =He2, then H(e1+e2) = 0 so that we would have e1+e2 ∈C. This,
however, is not possible, because the weight of e1+e2 is less than or equal to 2t, but
the weight of the code is 2t +1. Therefore, He1 �= He2, and the error syndromes are
unique. Once we know which error has occurred, say e, we can correct it by adding
e to the corrupted code word, because (x+ e)+ e = x.

For each code C, there is a dual code C⊥. This comes from the observation that
HG = 0 implies that GT HT = 0, so that we can interpret HT as a generator matrix
for an [n,n− k] code and GT as its parity-check matrix. This equation implies that
each code word in C⊥ is orthogonal to all of the columns of G, so that each code
word in C⊥ is orthogonal to all of the code words in C. Because vectors in Fn

2 can be
orthogonal to themselves, C and C⊥ can intersect. A code is called weakly self-dual
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if C ⊆C⊥ and self-dual if C =C⊥. For an [n,k] code to be self-dual, we must have
n = 2k.

In concluding our brief introduction to classical linear codes, we want to prove
an identity relating C and C⊥, which will come in useful shortly. The identity is

∑
x∈C

(−1)x·y =
{

2k y in C⊥

0 y not in C⊥ . (9.38)

The first part is easy. If y ∈C⊥, and x ∈C, then x · y = 0. Now, using the fact that C
has 2k code words, we get the first result. The second part follows from the identity,
where w ∈ {0,1}k,

∑
v∈{0,1}k

(−1)v·w = 0, (9.39)

for w �= 0. We can express x ∈C as x = Gv for some v ∈ {0,1}k, so we have that

∑
x∈C

(−1)x·y = ∑
v∈{0,1}k

(−1)(Gv)·y = ∑
v∈{0,1}k

(−1)v·(GT y) = 0, (9.40)

if GT y �= 0. But, GT y �= 0 implies that y is not in C⊥.
Now we can use these classical codes to define a quantum code. Let C1 be an

[n,k1] classical code and C2 be an [n,k2] classical code, where k1 > k2 and C2 ⊂C1.
We further suppose that C1 has a distance d1 and C⊥

2 has a distance d⊥
2 . We define

two elements of C1, x and y, to be equivalent if and only if x+ y ∈ C2. This breaks
C1 up into |C1|/|C2| = 2k1−k2 equivalence classes, or cosets. We define an n-qubit
quantum state for each coset as

|x+C2〉= 1√|C2| ∑
y∈C2

|x+ y〉. (9.41)

The fact that the cosets are disjoint means that these states are orthogonal for x and
x′ in different cosets. These states span a 2k1−k2 -dimensional subspace of the n-qubit
space, so this is an [n,k1 − k2] quantum code; it encodes k1 − k2 qubits in n qubits.

Let us see what happens when we apply H⊗n, a Hadamard gate to each qubit, to
this state. Remember that

H⊗n|x〉= 1

2n/2

2n−1

∑
y=0

(−1)x·y|y〉 (9.42)

so

H⊗n|x+C2〉 = 1√|C2| ∑
y∈C2

1

2n/2

2n−1

∑
u=0

(−1)(x+y)·u

=
1

2(n+k2)/2

2n−1

∑
u=0

(−1)x·u ∑
y∈C2

(−1)y·u|u〉
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=
1

2(n−k2)/2 ∑
u∈C⊥

2

(−1)x·u|u〉. (9.43)

What we get is a superposition, with phases, of code words in C⊥
2 . As we shall see,

it will be possible to correct bit-flip errors in the original code and phase-flip errors
in C⊥

2 .
Now suppose d1 > 2t f +1 and d⊥

2 > 2tp+1. Our code will then be able to correct
t f bit-flip errors and tp phase-flip errors. Let e1 be a vector with weight less than t f ,
and e2 be a vector with weight less than tp. The ones in e1 correspond to bit flips
and the ones in e2 correspond to phase flips. The errors have the effect

|x+C2〉 → 1√|C2| ∑
y∈C2

(−1)(x+y)·e2 |x+ y+ e1〉. (9.44)

To correct the bit-flip errors we append an n-qubit ancilla and apply a unitary
operator that takes

Uf |v〉|0〉= |v〉|H1v〉, (9.45)

where H1 is the parity-check matrix for C1. We then have that

Uf

(
1√|C2| ∑

y∈C2

(−1)(x+y)·e2 |x+ y+ e1〉
)
|0〉

=

(
1√|C2| ∑

y∈C2

(−1)(x+y)·e2 |x+ y+ e1〉
)
|H1e1〉. (9.46)

Now measure the ancilla in the computational basis. The result tells us which qubits
have been flipped, as C1 can correct up to t f bit-flip errors. Apply X to these bits to
flip them back, and throw away the ancilla. Our state is now

1√|C2| ∑
y∈C2

(−1)(x+y)·e2 |x+ y〉. (9.47)

Now apply H⊗n to this state

H⊗n 1√|C2| ∑
y∈C2

(−1)(x+y)·e2 |x+ y〉

=
1√|C2| ∑

y∈C2

1

2n/2

2n−1

∑
u=0

(−1)(x+y)·(e2+u)|u〉

=
1

2(n−k2)/2 ∑
u+e2∈C⊥

2

(−1)x·(u+e2)|u〉
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=
1

2(n−k2)/2 ∑
u′∈C⊥

2

(−1)x·u′ |u′+ e2〉, (9.48)

where u′ = u+ e2. Now append an n-qubit ancilla and apply a unitary operator that
takes

Up|v〉|0〉= |v〉|GT
2 v〉, (9.49)

where G2 is the generator for C2 so that GT
2 is the parity-check matrix for C⊥

2 . Doing
so gives us

Up

⎛
⎝ 1

2(n−k2)/2 ∑
u′∈C⊥

2

(−1)x·u′ |u′+ e2〉
⎞
⎠

=

⎛
⎝ 1

2(n−k2)/2 ∑
u′∈C⊥

2

(−1)x·u′ |u′+ e2〉
⎞
⎠ |GT

2 e2〉. (9.50)

We again measure the ancilla in the computational basis, and this tells us which bits
have flipped. Apply X to these bits to flip them back, and discard the ancilla. We
now have the state

1

2(n−k2)/2 ∑
u′∈C⊥

2

(−1)x·u′ |u′〉. (9.51)

Now apply H⊗n, and from Eq. (9.43) and the fact that H2 = I, we have

H⊗n 1

2(n−k2)/2 ∑
u′∈C⊥

2

(−1)x·u′ |u′〉= 1√|C2| ∑
y∈C2

|x+ y〉, (9.52)

and all of the errors have been corrected. Note that if we assume that t f = tp = t,
what we have shown is that we can correct t bit flips, t phase flips, and t products
of bit flips and phase flips. This implies that we can correct all errors on t qubits or
fewer.

An example of a CSS code is the 7-qubit Steane code, which can correct errors
in one qubit. It is based on the classical [7,4] Hamming code. A Hamming code is
derived by choosing an integer r ≥ 2 and then taking for the parity-check matrix,
H, the matrix whose columns are the 2r − 1 bit strings of length r, excluding the
string with all zeroes. This gives an r by 2r − 1 parity-check matrix, which implies
the generator is a 2r − 1 by 2r − r− 1 matrix, so we have a [2r − 1,2r − r− 1] code.
If r = 3, this gives a [7,4] code. The parity-check matrix for this code is

H =

⎛
⎝1 0 1 0 1 0 1

0 1 1 0 0 1 1
0 0 0 1 1 1 1

⎞
⎠ . (9.53)
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This code has distance 3. To see this first note that the string x3 = (1110000)T ,
which has weight 3, satisfies Hx3 = 0, so it is in the code. If x1 were a code word
of weight 1, then Hx1 = 0 would imply that one of the columns of H would have to
be zero, which is not the case. Therefore, there are no weight-one code words. If x2

is a code word of weight 2, we could express it as x2 = x1 + x′1, where x1 and x′1 are
both of weight one and x1 �= x′1. Then H(x1 +x′1) = Hx1 +Hx′1 = 0 implies that two
columns of H must be identical, which is also not the case. Therefore, there are no
weight-two code words, and the distance of the code is 3. The generator matrix for
this code is

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1
0 1 0 1
1 1 0 1
0 0 1 0
1 0 1 0
0 1 1 0
1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (9.54)

Note that the rows of H are in the code, and they are just the first three columns of
G. These vectors are orthogonal to themselves.

The matrix HT is the generator of the dual code, which is a [7,3] code. In this
case C⊥ ⊂ C, and C⊥ consists of all of the code words in C with an even weight.
This code also has a distance of 3.

To construct the CSS code, we take C1 = C and C2 = C⊥, so that C⊥
2 = C has

weight 3. This implies that the Steane code can correct one-qubit errors. It is a [7,1]
quantum code, (k1−k2 = 4−3= 1). There are only two cosets in this case, each with
eight members. Letting y j, for j = 1,2,3,4 be the columns of G, we have that the
members of the coset containing the identity are given by c1y1 + c2y2 + c3y3, where
c j ∈ {0,1}, and the members of the other coset are given by c1y1+c2y2 +c3y3 +y4.
Note that the members of the first coset have even weight, while the members of the
second have odd weight.

9.3 Decoherence-Free Subspaces

So far we have focussed on error-correcting codes as a way of defeating the effects
of decoherence. There are a number of other approaches, and we will give here a
very brief introduction to one of them. This method takes advantage of the fact that
if qubits are subject to the same errors, there are subspaces that remain free from the
effects of decoherence.

Let us start with a single qubit and suppose it is subject to random-phase errors.
In particular, we have that

|0〉 → |0〉 |1〉 → eiφ |1〉, (9.55)
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where φ is distributed according to probability distribution p(φ). Let us suppose that
the qubit is initially in the state |ψ〉 = a|0〉+ b|1〉 and see what happens to it under
the action of this type of decoherence (phase decoherence). Defining the operator
R(φ) = exp[iφ(I−σz)/2], which has the action R(φ)|0〉= |0〉 and R(φ)|1〉= eiφ |1〉,
we have that after the effects of the decoherence, the density matrix of the qubit is
given by

ρ =

∫ 2π

0
dφ p(φ)R(φ)|ψ〉〈ψ |R†(φ)

= |a|2|0〉〈0|+ |b|2|1〉〈1|+ a∗bz|1〉〈0|+ ab∗z∗|0〉〈0|, (9.56)

where

z =
∫ 2π

0
dφ p(φ)eiφ . (9.57)

Since |z| ≤ 1, and is usually less than one, phase decoherence causes the magnitude
of the off-diagonal elements of the initial density matrix to decrease. An extreme
case is when the phase is uniformly distributed (p(φ) = 1/2π), in which case z = 0,
and the off-diagonal elements will vanish. This would lead to a complete destruction
of the phase information in the initial state |ψ〉.

Now let us consider two qubits, and we shall assume that they are subject to the
same random-phase errors. That means that after the phase decoherence has taken
place, the two-qubit state |Ψ〉 will become

ρ =

∫ 2π

0
dφ p(φ)R(φ)⊗R(φ)|Ψ〉〈Ψ|R†(φ)⊗R†(φ). (9.58)

Note that under the action of this kind of decoherence, the states |0〉|1〉 → eiφ |0〉|1〉
and |1〉|0〉 → eiφ |1〉|0〉 are affected in the same way. Furthermore, we see that any
superposition of them

R(φ)⊗R(φ)(a|0〉|1〉+ b|1〉|0〉) = eiφ (a|0〉|1〉+ b|1〉|0〉), (9.59)

is just multiplied by an overall phase. When a state of this type is inserted into
Eq. (9.58), the overall phase simply cancels out and the state is unchanged. There-
fore, states of the form (a|0〉|1〉+ b|1〉|0〉) are not affected by phase decoherence

We can take advantage of this fact and protect the state of a single qubit from
phase decoherence by encoding it into two qubits in the subspace spanned by |0〉|1〉
and |1〉|0〉. In particular we can encode the single-qubit state |0〉 as |0〉|1〉 and the
single-qubit state |1〉 as |1〉|0〉. As long as the phase decoherence affects both qubits
in the same way, this encoding will ensure that any state of a single qubit will be
free from the effects of phase decoherence.



148 9 Decoherence and Quantum Error Correction

9.4 Problems

1. Show that the three-qubit bit-flip code, |0〉 → |0〉⊗3 and |1〉 → |1〉⊗3, satisfies
the quantum error correction condition for the error sets {I,X1,X2,X3} and
{I,Y1,Y2,Y3}, but not for the combined set {I,X1,X2,X3,Y1,Y2,Y3}.

2. For a nondegenerate [n,k] quantum code, each error maps the code space into a
different subspace, and all of those subspaces are orthogonal. Suppose we want
to be able to correct up to t single-qubit errors, X ,Y, or Z.
(a) Show that

t

∑
j=0

(
n
j

)
3 j ≤ 2n−k.

This is the quantum Hamming bound.
(b) Find the smallest value of n allowed by this bound for k = 1 and t = 1,2.

3. Find the decoherence-free subspaces for three qubits all undergoing the same
random-phase noise errors.

4. One type of code we did not discuss is one that protects against erasure errors.
A one-qubit erasure error is equivalent to losing one qubit. We are going to look
at the case of qutrits. Consider the following encoding for a qutrit:

|0〉 → 1√
3
(|000〉+ |111〉+ |222〉)

|1〉 → 1√
3
(|012〉+ |120〉+ |201〉)

|2〉 → 1√
3
(|021〉+ 102〉+ |210〉).

We now use this encoding to encode a general one-qutrit state |ψ〉 = α|0〉+
β |1〉+ γ|2〉 into a three qutrit state.

(a) Show that if we lose two of the qutrits, there is no information about the state
|ψ〉 remaining.

(b) Show that if we only lose one of the qutrits, we can perfectly recover the
state |ψ〉.
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