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Supervisor’s Foreword

The physics of disordered and nonlinear systems is one of the leading mainstreams
in modern research. This topic is largely interdisciplinary and commits together a
variety of different disciplines, like nonlinear waves, diffusive processes, quantum
mechanics, photonics, and ultimately the whole field of nanotechnology, as
reducing spatial dimensions always leads to enhanced field intensities (and hence
nonlinear effects) while also introducing disorder because of fabrication tolerances.

Disorder and nonlinearity are also ubiquitous in the so-called science of com-
plex systems, which deals with things like swarming, traffic, soft-matter, and many
other frameworks, where one can identify a number of interacting agents (from
ants to photons). Wave propagation in random media and, specifically, optical
propagation in disordered systems, is well within the science of complex systems,
even if this connection is so far only barely developed. When I first decided to
assign a thesis on the Photonics of Complex Systems, I was looking for a smart
student able to tackle the problem in its whole generality without losing in
mathematical formalities and, hopefully, also able to realize some practical
implementations either in numerical simulations or, even better, in experiments.
This activity was to be placed within the project of the European Research Council
âLight and Complexityâ aimed to create a general interdisciplinary amount of
knowledge between the fields of statistical mechanics of disordered systems and
photonics.

There was the possibility of making many different theses, either on nonlinear
optics or on lasers; there was also the open choice between an experimental work
or a theoretical one. When I first met Dr. Folli, I had not in mind the possibility she
could be able of putting all of this in a single Ph.D. For such an achievement, there
was the need of a very talented student with a background in fundamental physics,
nonlinear waves, statistical mechanics, and a large amount of courage and
imagination.

The overall work of Dr. Folli can be read with several perspectives: as a first
attempt to conciliate different forms of localization in nonlinear random waves, as
the application of methods of statistical mechanics to nonlinear optics, as the
demonstration that disorder and nonlinearity may open new applications (e.g., two
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level lasers), and last, but not least, as the opening of a new experimental line:
lasing in shaken matter.

Dr. Folli has hence written a work which can be considered as a paradigmatic
model for a thesis in Complex Photonics, and the amount of the presented results is
certainly impressive for the content, the degree of inter-disciplinarity, and the
novelty. This thesis will certainly stimulate a number of developments in the field.

Rome, 17 February 2012 Prof. Dr. Claudio Conti
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Chapter 1
Introduction

Fortunately, we are living in a nonlinear world. While
linearization beautifies physics, nonlinearity provides
excitement in physics

Y. R. Shen

The real world embraces nonlinearity and disorder and works with their mutual
interplay. All the natural and artificial bodies are nonlinear and disordered, especially
in the interaction with strong fields, the pivotal topic of this thesis. Here, we will
explore several features of this interplay: we will discuss new intriguing phenomena
(like the use of nonlinearity to control the stability of light localizations, the emission
through two-levels laser action, the first observation of competitive laser spectra by
granular media, etc.), that open up novel avenues for research in several fields, from
medical imaging to nonlinear optics. In this preface, we give an overview about these
two mechanisms, with special emphasis on localization phenomena.

1.1 Light and Nonlinearity

Electrons, the principal players in determining the optical properties of a medium,
cannot be truly considered harmonic oscillators when subject to intense electromag-
netic fields. 1 Hence, the nonlinear response of the optical media must be included
in Maxwell ’s equations, which govern the propagation of electromagnetic waves:

∇ × E(r, t) = −∂t B(r, t)

∇ × H(r, t) = +∂t D(r, t),
(1.1)

1 The restoring force, related to the Coulomb field of the ion core and that binds the electron to its
equilibrium position, is not simply elastic and, hence, the energy levels are no longer equidistant.

V. Folli, Nonlinear Optics and Laser Emission through Random Media, 1
Springer Theses, DOI: 10.1007/978-94-007-4513-1_1,
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2 1 Introduction

where E, B and H are respectively the electric, magnetic induction and magnetic
fields. The constitutive relationships define the coupling between the fields and the
medium. For what concerns the electric field2:

D(r, t) = ε0E(r, t)+ P(r, t), (1.2)

where D is the electric displacement and P is the electric polarization. The polariza-
tion is usually a complicated nonlinear function of the electric field that fully describes
the response of the medium to the applied field. In principle, the combined resolu-
tion of the Maxwell’s and the constitutive equations with the appropriate boundary
conditions gives all the information on the matter-radiation interaction. This is only
possible for a limited class of phenomena. The remaining universe must be treated
via approximations. For example, the following power-series expansion of the elec-
tric polarization in term of the electric field, only valid for sufficiently weak fields,
allows to distinguish the linear contribution in the matter response with respect to
the nonlinear one:

P = χ(1)E + χ(2)EE + χ(3)EEE + · · ·, (1.3)

and enables to solve the resulting linear system of equations [χ(1),(2),(3) are the
susceptibility tensors]. The most interesting manifestations of the light-matter inter-
action however occur on higher order than the linear and this thesis wants to address
these regimes.

We will discuss about the nonlinearity in relation to the formation of localized
wave-forms. In fact, first we investigate the non-resonant regime, where the spatial
nonlinearity (terms higher than the first in the power expansion of polarizability)
can compensate for the diffraction effects related to the finite size of the transverse
beam, through an optically induced change of the refractive index. Analytically, the
relevant wave equation for the electric field is

∇ × ∇ × E(r, t)+ 1/c2∂t t E(r, t) = μ0∂t t P(r, t), (1.4)

where c is the light velocity and μ0 the magnetic constant, and admits spatially
localized solutions, the so-called solitons,3 which can propagate without altering their

2 We assume no free charges present and no magnetization of the medium.
3 The first reported observation of solitons was made by J. S. Russel in 1984 by studying water
waves but, once first observed and understood, the solitary waves are found in every branch of the
physics of wave propagation [1–5]. He wrote

I was observing the motion of a boat which was rapidly drawn along a narrow channel by
a pair of horses, when the boat suddenly stopped—not so the mass of water in the channel
which it had put in motion; it accumulated round the prow of the vessel in a state of violent
agitation, then suddenly leaving it behind, rolled forward with great velocity, assuming the
form of a large solitary elevation, a rounded, smooth and well-defined heap of water, which
continued its course along the channel apparently without change of form or diminution of
speed. I followed it on horseback, and overtook it still rolling on at a rate of some eight or
nine miles an hour, preserving its original figure some thirty feet long and a foot to a foot
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shapes. Secondly we address the resonant interaction between radiation and matter,
in which case the solitary wave can be still observed (e.g. in the so called the Self-
Induced Transparency [6, 7]) but its manifestation is due to a different mechanism. In
fact, the conservation of the light pulse shape is no longer related to a compensation
phenomenon between the diffraction and the modulation of the refractive index in
the Maxwell’s equations, but to a “synchronized swinging” between absorption and
stimulated emission. Furthermore, the electric field is much more intense and the
perturbation series above is no longer valid. The material response is calculated
from the ab-initio Bloch equations, determining the polarization density, and the
complete set of Maxwell’s and Bloch’s equations defines the interaction processes.
In the corpus of this thesis, we will investigate both the non-resonant and resonant
nonlinearities and both kinds of solitary waves in presence of randomness.

1.2 Light and Disorder

Disorder is everywhere. It is “invasive” and one should learn to harness it to own
interests, avoiding unrealistic approximations that rule out fascinating questions.
Without taking into account randomness, related to the presence of scatterers, imper-
fections or fluctuations in the refractive index, the most relevant physical phenomena
observed in complex systems remain unexplored, like turbulence, chaotic dynamics,
light and electronics localizations, frustrated dynamics of spin-glass materials, etc.
In last years, there has been a massive growth of interest in the study of light propa-
gation in random media, both for practical purposes (mostly in the medical research
field) and for basic research. We support this latter point and we aimed at under-
standing the role of disorder in the propagation of light in nonlinear systems. In fact,
disorder is the main actor along with nonlinearity in “trapping” light. In other words,
the randomness in the material, when strong enough, permits light to stay localized
in narrow spatial regions, the Anderson localized states of light [8]. By varying the
strength and the characteristics of disorder, one can confine light practically in any
point. The aim of this dissertation is to understand when and how nonlinearity and
disorder can compete or cooperate in order to stabilize light localization.

(Footnote 3 continued)
and a half in height. Its height gradually diminished, and after a chase of one or two miles
I lost it in the windings of the channel. Such, in the month of August 1834, was my first
chance interview with that singular and beautiful phenomenon which I have called the Wave
of Translation

—Report of the fourteenth meeting of the British Association for the Advancement of Science,
York, September 1844 (London 1845), pp. 311–390, Plates XLVII–LVII.
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1.3 Overview of This Thesis

The chapter organization of this thesis consists of two distinct parts. Part I extends
from Chaps. 2–5 and is related to non-resonant regime of interaction between light
and matter in a nonlinear disordered framework. Part II extends over Chaps. 6–9 and
makes an excursus on the nonlinearity-disorder topic in resonant media.

• Part I—Chap. 2: a theoretical background of nonlinear optics. The Nonlinear
Schroedinger Equation, the ikon of all the studies on solitary waves is analyzed in
the local and nonlocal case of the matter response with a focus on the formation
of solitons.

• Part I—Chap. 3: we add disorder by first introducing fluctuations in the refractive
index. An analytical perturbative approach is developed and a numerical algorithm
is implemented to study the dynamics of solitary waves. The role of nonlocality is
examined.

• Part I—Chap. 4: increasing the strength of disorder, we create a second kind of
light localization: the Anderson states. The competitive interplay by nonlinearity
and disorder is analyzed, by invoking the limit of high nonlocality. The developed
analytical perturbative approach is found in agreement with the numerical results.

• Part I—Chap. 5: the spatial scale-length of the interplay between nonlinearity and
disorder is varied by studying the disordered ferroelectric materials. We analyze
the family of localized wave-forms, emerging in these materials, and we use the
linearization techniques to reveal a new kind of light instability.

• Part II—Chap. 6: the basic theory for the study of resonant media. We present the
general equations, describing ab-initio matter-radiation interaction: the Maxwell-
Bloch’s system and the numerical approach via the discretization of the system
and the use of Finite-Difference-Time-Domain (FDTD) algorithm.

• Part II—Chap. 7: we retrace the steps of Part I by adding disorder in the Maxwell-
Bloch’s equations, both perturbative and structural, and studying the propagation
of the solitary waves. The difference with the first part is that now the material
responds on the same time-scale of the pulse time-life and the nonlinearity plays
a role much more pronounced.

• Part II—Chap. 8: we use the theory of spin glasses to analytically solve the problem
of nonlinear disordered systems in interaction with resonant light when a large
number of localized modes is present.

• Part II—Chap. 9: in this chapter, we present the experimental section. The emission
spectra dependence on the strength of disorder is analyzed. We exploit one of the
paradigms of the statistical mechanics of disordered systems: granular matter. Its
properties principally depend on the dynamical effects, and hence can be controlled
by using mechanical solicitations, as shear or shaking. We experimentally observe
that the random laser characteristics can be varied and controlled by the state of
motion of the granular.
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Chapter 2
Nonlinear Schroedinger Equation

The main aim of this thesis is the study of the interaction between nonlinearity
and disorder, the pivotal processes underlying the localization of light. Knowing
how the manipulation of an optical system by modifying the mutual competition
between disorder and nonlinearity can result in localized wave-forms is an intrigu-
ing challenge and a significant target of modern optics. In this section, we discuss the
Nonlinear Schroedinger equation (NLS), a paradigmatic universal nonlinear model
that describes several physical phenomena in the framework of several disciplines,
from the nonlinear optics to the quantum condensate. In a simple way, this equa-
tion allows to understand how the nonresonant nonlinearity (specifically the Kerr
effect) can promote the formation of localized wave-forms through the balance of
two opposite effects: wave dispersion and nonlinear response. The NLS represents
the starting point to study the complex interplay between nonlinearity and disorder.

2.1 Introduction

We start by the Maxwell’s Equations. They describe the propagation of an electro-
magnetic wave in a medium with refractive index n. In the time domain they read as,

∇ × E = −μ0∂t H

∇ × H = ε0n2∂t E,
(2.1)

where x, y, z are the spatial coordinates while t is the temporal variable. The vectors
E and H are respectively the electric and the magnetic fields. The relative electric
permittivity is εr and the relative magnetic permeability is μr . The refractive index
is n = √

εrμr , and depends by the relative values of the considered material; ε0 is
the electric constant and μ0 is the magnetic constant. We study the propagation of
an electromagnetic field into a dielectric medium in which no current and no charges
are present. From Eq. (2.1), we obtain the wave equation for the electric field:

V. Folli, Nonlinear Optics and Laser Emission through Random Media, 9
Springer Theses, DOI: 10.1007/978-94-007-4513-1_2,
© Springer Science+Business Media Dordrecht 2012



10 2 Nonlinear Schroedinger Equation

∇ × ∇ × E = −μ0ε0n2∂2
t E. (2.2)

We write the monochromatic solution of Eq. (2.2) as:

E(x, y, z, t) = Re[E(x, y, z)e−iωt ] (2.3)

and by using the paraxial approximation (we are considering a z-collimated laser
beam) for which it is possible to approximate ∇×∇×E = ∇(∇·E)−∇2E ≈ −∇2E,
we write the Helmholtz equation for the electric field:

∇2E + ω2

c2 n2E = 0. (2.4)

In an homogeneous medium with n(r) = n0, the simplest solution of Eq. (2.4)
in one-dimensional case is the plane wave E(z) = Eeikz x̂, for which the Helmholtz
equation gives the wave vector k = ω

c n0. We want to treat the interaction of light in
a nonlinear medium, in which the permittivity and the permeability depend on the
electromagnetic field. In this specific case, for sake of simplicity, we consider the
case in which μr = 1 while the electric permittivity is a function of the electric field
ε = ε(E).1 If the medium is nonlinear, we can write n(r) = n0 +�n(r).We let the
general solution amplitude to be space-dependent because nonlinearity can spatially
modulate the propagating field:

E(x, y, z) = E(x, y, z)eikz x̂. (2.5)

By inserting Eq. (2.5) in Eq. (2.4) and within the paraxial approximation, for
which the longitudinal variation is slow enough and ∂2

z E ≈ 0,we write the amplitude
equation:

2ik∂z E + ∇2⊥E + 2k2�n

n0
E = 0 (2.6)

where we have neglected the higher order term in�n and we have used the relation
k = ω

c n0. The Eq. (2.6) represents the propagation of a laser beam, collimated along
ẑ (paraxial approximation), in the presence of an index modulation �n induced by
the nonlinear effects. The power flux is related to the z-component of the Poynting
vector, Pz = nE2

2Z0
= I, where Z0 = √

μ0/ε0 is the impedance of the vacuum. We

hence define an optical field A for which the optical intensity is I = |A|2, in this
way the complex envelope is related to E by A = √

n/2Z0 E . The equation for A is
simply obtained from which for E:

2ik∂z A + ∇2⊥ A + 2k2�n

n0
A = 0. (2.7)

In the following, we put particular attention to the one-dimensional case (that
corresponds to take ∇2⊥ = ∂2

x ), in order to simplify the successive analysis of the
interplay between nonlinearity and disorder.

1 Once the disorder is added to the system, the permittivity, and hence the refractive index, will
become explicitly dependent on the spatial coordinate, ε = ε(r, E).
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2.2 Local Case

In this section, we consider the simplest example of nonlinear system, the Kerr
medium. In this kind of material, only the cubic nonlinearity in the paraxial approx-
imation is retained. The refractive index linearly increases with the beam intensity.
The refractive index perturbation depends only on the intensity in a given point
�n(r) = n2 I (r), and:

n(r) = n0 + n2 I (r). (2.8)

Equation (2.7) becomes:

2ik∂z A + ∂2
x A + 2k2 n2

n0
|A|2 A = 0. (2.9)

This is the well-known nonlinear Schroedinger equation (NLS), a universal non-
linear equation describing several nonlinear phenomena, including the Bose-Einstein
condensation when it is expressed in the adimensional form, by rescaling the coor-

dinates z → 2kx2
0 z, x → x0x and the field amplitude A →

√
n0/(2k2x2

0 |n2|)ψ :

i∂zψ + ∂2
xψ ± |ψ |2ψ = 0, (2.10)

where the sign plus (minus) is associated to the self-focusing n2 > 0 (self-defocusing
n2 < 0) character of the medium.

2.2.1 Plane Wave Solution

Equation (2.10) admits a plane wave stationary solution for which the field is not
dependent on x. By writing ψ(z) = ψ0exp(iβz) and inserting this solution in (2.10),
we obtain that β = ψ2

0 such that

ψ(z) = ψ0exp(iC I z), (2.11)

where C is a constant and I is the dimensional intensity. This physically means that,
during its propagation in the nonlinear medium, the plane wave field has an intensity
dependent phase.

2.2.2 Modulation Instability

The plane wave solution is unstable when a small transverse perturbation is applied.
Let us analyze the stability properties of (2.11) and write it as:



12 2 Nonlinear Schroedinger Equation

Fig. 2.1 Gain versus
wave-vector for various
plane-wave amplitudes
ψ0 = 1 (dotted line), ψ0 = 2
(dot-dashed line), ψ0 = 3
(continuous- bold line),
ψ0 = 4 (dashed line),
ψ0 = 5 (continuous-thin
line)
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ψ(z, x) = [ψ0 + p(z, x)]eiψ2
0 z, (2.12)

where p(z, x) = α+(z)eikx x + α∗−(z)e−ikx x . We put this solution in (2.10) and by
linearizing, we obtain an equation system for α±:

i α̇+ − k2
xα+ + ψ2

0 (α− + α+) = 0

−i α̇− − k2
xα− + ψ2

0 (α− + α+) = 0,
(2.13)

where kx is the wave-vector. We assume that α± = α̂±eλz and obtain the equation
for the gain λ:

λ2 = k2
x (2ψ

2
0 − k2

x ). (2.14)

When (for a specific range of kx ), the second term is positive, we have an unstable
growth of the introduced periodic perturbation, despite it can be chosen as small as
we want. The perturbation hence grows exponentially during the wave propagation.
The gain of the perturbation has a maximum growth rate for a fixed value of the wave
vector, kx = ψ0, as it can be seen in Fig. 2.1. There exists a value of the period of the
perturbation that grows more successfully than others. This leads to the formation of
a periodical pattern of field distribution for which there are alternating regions where
the field is much more intense.

In Fig. 2.2, we show the numerical simulations for a plane-wave solution of
the NLS equation when a small perturbation is added to the unperturbed solution.
We see that an initial homogeneous field distribution, describing the front wave of
the plane wave, breaks into a periodical pattern. It is important to stress that, as it can
be seen by Eq. (2.14), the modulation instability at which the light beam is subject,
is managed by the self-focusing nonlinearity (through the ψ2

0 intensity term) and the
diffraction, related to the wave-vector kx .
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Fig. 2.2 Numerical
simulations of the nonlinear
Schroedinger equation start
from a plane-wave perturbed
with 1% perturbation noise.
The figure shows that,
starting from an homogenous
field distribution, periodical
pattern emerges, eventually
developing into an ensemble
of localized waves (solitons)

Fig. 2.3 Propagation of a
one-dimensional Gaussian
beam by integrating the
nonlinear Schroedinger
equation through the beam
propagation method, in the
diffraction case (a) obtained
for a low power input, and in
the self-trapped case (b)
when the input beam is high

2.2.3 The Bound States

As we have seen in the previous section, the plane-wave solution is unstable
under transverse spatial perturbation. So, the NLS solution cannot be obtained by
applying small perturbations to the plane-wave solution. We must look for new sta-
tionary solutions. It can be shown that in nonlinear Kerr media, the nonlinear term in
Eq. (2.10) curves the wave phase-front in a way related to the sign of the nonlinear
term. We are considering attractive Kerr media for which the positive sign of the non-
linear term involves a convergent effect on the propagating wave. For a beam with a
finite transverse extent, we expect that a stable solution can be derived by balancing
the diffraction mechanism (a spreading of the propagating beam, a concave curva-
ture of the phase-front) with the nonlinear focusing mechanism. Figure 2.3 shows
this mechanism. In panel (a), we consider a low intensity beat. By Eq. (2.10), the
nonlinear term can be neglected and the diffraction causes the beam dispersion. In
panel (b), the input beam has higher intensity, the nonlinear compensation yields to
the formation of a self-trapped beam. The simplest localized solution for Eq. (2.10)
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Fig. 2.4 1D kerr soliton
shape for three different
amplitude values u0 = 2
(continuous-bold line),
u0 = 4 (dashed line), u0 = 6
(continuous-thin line)

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

1

2

3

4

5

6

7

coordinate x

so
lit

o
n

 p
ro

fi
le

 u
(x

)

takes the form ψ(x, z) = u(x)eiβz, with

u(x) = u0 sech(x/w0), (2.15)

where the width is w0 = u0√
2

and β = u2
0/2 is directly related to the amplitude of the

wave. It is important to observe that the balance of the nonlinearity with the diffraction
term results into a flat phase-front and that, in order to exist, the localized solution has
to satisfy a fixed relation between the width of the beam (associated to the diffraction)
and the beam amplitude u0, determining the strength of the nonlinearity. As shown
in Fig. 2.4, by increasing the amplitude (and hence the power P = ∫

dx |u|2) of the
input beam, the soliton width shrinks such that u0w0 = constant. This relationship
is known as the “existence curve” of the solitary waves.

2.3 Nonlocal Case

Over the years, the role of a nonlocal nonlinear response, with special emphasis on
the optical spatial solitons (OSS) [1], appeared with an increasing degree of impor-
tance [2–8]; on one hand because it must be taken into account for the quantitative
description of experiments and, on the other hand, because it is a leading mechanism
for stabilizing multidimensional solitons [9]. Nonlocality in nonlinear wave prop-
agation is found in those physical systems exhibiting long range correlations, like
nematic liquid crystals (LC) [3], photorefractive media (PR) [10], thermal [4, 11,
12] and thermo-diffusive [13] nonlinear susceptibilities, soft-colloidal matter (SM)
[14], BEC [15, 16], and plasma-physics [17, 18].

Let us consider a typical nonlocal nonlinear medium in which the change in the
refractive index is related to the intensity of the wave in a finite region, it is a nonlocal
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function of the wave field. This effect can be represented in general form, for the
focusing case, as

�n(x, I ) =
∫ +∞

−∞
dx ′K (x − x ′)I (x ′, z), (2.16)

where K (x−x ′) is the response function. Its form depends on the specific nonlinearity
under consideration and it is associated to a length-scale σ that measures the degree
of nonlocality. Thanks to the paraxial approximation, the nonlocal response along z
can be typically neglected. In a local system, σ tends to zero, the response is punctual
R(x −x ′) = δ(x −x ′) and the refractive index locally changes with the light intensity
(in Kerr media). In general, however, there always exists a degree of nonlocality in
the physical systems that support the wave propagation. The local approximation
can be done when the spatial correlations in the optical response are much smaller
of the wavelength (below 100 nm). By inserting Eq. (2.16) in (2.7) and repeating the
rescaling of the physical variables, we obtain the adimensional nonlocal nonlinear
Schroedinger equation:

i∂zψ + ∂2
xψ + ψK ∗ |ψ |2 = 0, (2.17)

where K ∗ |ψ |2 is the convolution integral that measures the correlation between the
optical field and the punctual response K of the nonlinear medium. In the Fourier
domain, the convolution integral becomes ρ̃ = S(kx )|ψ̃ |2 where the tilde denotes the
Fourier transform and S(kx ) is the “structure factor” (that is the Fourier transform of
K (x)). It is often useful to write Eq. (2.17) as a system of two differential equations:

i∂zψ + ∇2
xψ + ρψ = 0

G(ρ) = |ψ |2, (2.18)

where K is the Green function of the differential operator G.

2.3.1 Plane Wave Solution

Hereafter, we will consider the general nonlocal Kerr nonlinearity with a nonlocal
exponential response function:

K (x) = 1

2σ
exp

(
−|x |
σ

)
, (2.19)

where σ, as we have seen above, represents the degree of the nonlocality. The expres-
sion for the structure factor

S(kx ) = 1

1 + σ 2k2
x

(2.20)
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is obtained as the Fourier transform of the response function. In this case, we have
that the differential operator G acts on ρ as −σ 2ρxx + ρ. This corresponds, for
example, to the re-orientational nonlinearity of nematic liquid crystals or to the
thermal nonlinearity in lead-glasses [3, 4]. By calculating the corresponding Green

function, the solution for ρ takes the form ρ = ∫ e−|x−x ′|/σ
2σ |ψ |2(x ′)dx ′. As in the

local case, the plane wave

ψ(z) = ψ0eiβz

ρ = ρ0,
(2.21)

where ψ0 = constant, is a solution of the Eq. (2.22) if β = ρ0 and ρ0 = ψ2
0 .

2.3.2 Modulation Instability

The modulation instability theory can be developed through the same procedures
used in the local case. Let us start by considering the nonlocal nonlinear Schroedinger
equation for an exponential nonlocal response

i∂zψ + ∇2
xψ + ρψ = 0

−σ 2ρxx + ρ = |ψ |2, (2.22)

and add a small perturbation for the amplitude and the density of the form

ψ(z, x) = [ψ0 + p(z, x)]eiψ0z

ρ(x) = ρ0 + r(x),
(2.23)

where p(z, x) = α+(z)eikx x + α∗−(z)e−ikx x while r(x) = r+eikx x + r∗−e−ikx x . By
inserting the expression for ρ in the second equation of (2.22), one obtains:

r± = ψ0S(kx )(α+ + α−). (2.24)

By linearizing the first equation of (2.22), the dispersion relation give us the following
growth rate for the perturbation:

λ = |kx |
√

2ψ2
0 S(kx )− k2

x , (2.25)

it should be noted that the local limit result (2.14) returns for σ → 0, S(kx ) → 1.
In Fig. 2.5, we show the dependence of the growth rate of the transverse pertur-

bation by the wave-vector for the local case (σ = 0) and the nonlocal case (σ = 1).
As it can be seen, the nonlocality tends to shrink the bandwidth of the modulation
instability phenomenon and to reduce the maximum growth rate of the perturbation
[see Fig. 2.6]. This effect will be strongly taken into account in the next chapters
where we will study the interplay between nonlinearity and disorder and where the
nonlocality will help us to understand and analytically solve the physical involved
phenomena.
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Fig. 2.5 Gain versus
wave-vector for σ = 0, the
local case (dashed line) and
for σ = 1, the nonlocal case
(continuous line)
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2.3.3 The Bound States

Now, we focus on the stable solutions ψ(x, z) = u(x)eiβz of the nonlocal nonlinear
Schroedinger equation in the case of exponential response:

−βu + uxx + uρ = 0, (2.26)

where ρ(x) = ∫
dx ′K (x − x ′)u2(x ′) and, as seen above, K (x) = e−|x |/σ /2σ. The

exact solutions, at variance with what happens in the local case, cannot be found
analytically.

In Fig. 2.7, we show the numerically obtained profiles for u(x) and ρ(x). It can be
noticed that, as the nonlocality increases, the response ρ widens with respect to the
field profile. This leads to the possibilty of an analytical approach typically denoted
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Fig. 2.7 The field profile u(x) and the response function ρ(x) for different degrees of nonlocality,
for β = 1. Shown is the local case (blue line), σ = 3 (green line), σ = 7 (red line) and σ = 10
(cyan line)

as the highly nonlocal limit described in the following paragraph, where the response
function is approximated by a parabolic profile.

2.3.4 Highly Nonlocal Limit

In this section, we analyze the limit of a strongly nonlocal response. This is the case
in which the local response distribution, induced by the optical field, is much broader
than the spatial extension of the field itself (see Fig. 2.8. u(x) samples the response
function at x ′ ≈ 0 in the integral,

ρ(x) =
∫

dx ′K (x − x ′)u2(x ′) 
 K (x)P, (2.27)

where P = ∫
dx ′u2(x ′) is the power of the soliton. We can then expand the nonlocal

response K (x) (which is a bell shaped function) in Taylor series:

K (x) 
 K0 − 1

2
K2x2, (2.28)

where K0 and K2 are positive constants and the minus sign takes into account the
focusing solution. In the parabolic approximation, an analytical solution exists. The
equation for u(x) takes the following form:

−βu + uxx + P(K0 − K2

2
x2)u = 0. (2.29)
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Fig. 2.8 The pulse profile (filled curve) and the response function profile (continuous line) for the
local case (left panel) and the highly nonlocal case (right panel)

Equation (2.29) admits a Gaussian solution,

u(x) = u0 exp(−x2/2x2
0 ) (2.30)

where u0 =
√

P
x0

√
π
. The spatial extension of the localized wave is related to the

soliton power by the relationship,

x4
0 P = 2

K2
= constant, (2.31)

that is also known as the “existence curve” of the nonlocal solitons.
The highly nonlocal limit will allow to solve the disordered version of this kind of

systems and the nonlocality, as we will see, play a crucial role in the management of
the localized light phenomena, acting as a filter between nonlinearity and disorder,
and averaging out several effects related to randomness.
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Chapter 3
Weakly Disordered Nonlinear
Schroedinger Equation

By using a perturbational approach, we analyze the evolution of solitary waves in a
nonlocal medium in the presence of perturbative disorder. An increasing degree of
nonlocality may largely hamper the Brownian motion of self-trapped wave-packets.
The result is valid for any kind of nonlocality and in the presence of non-paraxial
effects. We compare the analytical predictions with numerical simulations based on
stochastic partial differential equations.

3.1 Introduction

In the last sections of the Chap. 2, we have explored the effect of the nonlocality in the
NLS equation. We have seen that the nonlocality acts as a spatial filter on the wave
propagation, limiting modulation instability. In fact, the modulation of the refractive
index by the nonlinearity in the Fourier space can be written as �̃n(k) = S(k) Ĩ (k),
where k is the wave-vector, S is the structure factor (the Fourier transform of the
spatial response) and Ĩ is the Fourier intensity profile of the solitary wave (SW).
As the intensity of the beam increases (for the existence curve, the wave shrinks),
Ĩ widens. In the product �̃n(k) however, S(k) filters out the “in excess field” by
limiting all the instability phenomena. The nonlocality is present in physical systems
displaying long-range correlations (see references in Chap. 2) and hence it must be
often taken into consideration. However, it is important to note that considering a
nonlocal response implies taking into account disorder. In fact, as detailed below,
the large spatial region that interacts with the propagating electromagnetic field into
a nonlocal medium commonly includes material fluctuations that get in the system
a certain degree of disorder. Here, we analyze the evolution of solitary waves in a
nonlocal nonlinear medium in the presence of disorder. We expect that, as the degree
of nonlocality increases, the effect of the random fluctuations of the material will also
increase and the soliton propagation will be mostly influenced in its Brownian motion.
However we find that the random walk of the soliton displacement is obstructed by
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the high nonlocality that averages out all the short-range correlations and reduces
the soliton fluctuations induced by the presence of disorder.

In the following, we start our analysis by adding disorder in the NLS equation, by
a linear random potential term: V (x, y, z, t)ψ that corresponds to take a refractive-
index perturbation as �n(r, I ) = �n(I )+�nran(r), where �nran(r, t) takes into
account the effect of the spatial randomness due to the material fluctuations.1

3.2 The Model

For sake of notation, we write the evolution coordinate as z. The model we consider
is written as

i∂zψ + ∇2
xψ + ρψ = 0 (3.1)

G(ρ) = |ψ |2 + η(x, z) (3.2)

where ψ is the relevant wave field, x is the position vector, G is a linear differ-
ential operator, which does not include derivatives with respect to the evolution
coordinate z; for example, for the exponential nonlocality, G(ρ) = −∇2

xρ + σ 2ρ,

with σ 2 the degree of nonlocality [1]. In (3.2) η(x, z) is a Langevin noise such
that 〈η(x, z)η(x ′, z′)〉 = η2

N δ(x − x ′)δ(z − z′). The origin of η depends on the
specific physical problem: (i) temperature (nematic director) ρ fluctuations for ther-
mal (LC) media; (ii) SM particle density ρ fluctuations; (iii) space-charge field ρ
fluctuations for PR (eventually induced by modulation of the background field);
(iv) finite-temperature results into terms like η for plasmas and BEC [2].

In the Fourier domain (3.2) is written as ρ̃ = S(q)( ˜|ψ |2 + η̃), where the tilde
denotes the Fourier transform, S(q) is the “structure factor” [3], and the correspond-
ing Green function is denoted by K (x), such that

i∂zψ + ∇2
xψ + V (x, z)ψ + ψK∗ |ψ |2 = 0, (3.3)

where V (x, z) = K∗ η is a colored random noise (the asterisk “*” denoting the
x-convolution integral). The local regime corresponds to K (x) = δ(x), while in
the highly nonlocal regime K (x) = K0 [4]. Letting φ = ψ exp(iβz), Eq. (3.3) is
written as

1 We stress that there exist two typologies of disorder: the first one, considered in this chapter,
is the random fluctuations of the physical variables related to the medium response. This disorder
depends on the spatial variable and on the evolution coordinate and it can be treated as a perturbation.
The other one is the so-called structural disorder. It is much stronger with respect to the first one
and permits also several forms of light localization. The former one is expected to describe material
fluctuations as, e.g. due to the temperature, the latter accounts for externally induced potentials, as
considered in the Chap. 4.

http://dx.doi.org/10.1007/978-94-007-4513-1_4
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i∂zφ + ∇2
xφ − βφ + φK∗ |φ|2 = is(x, ψ,ψx , ψxx , . . . , z) (3.4)

where s is taken as a perturbation term, depending on ψ and its transverse derivative
at any order, and β is the nonlinear wave-vector. Equation (3.4) is a generalization of
(3.3), accounting for any kind of perturbation, e.g. in the presence of material losses
s = −αφ, with α the loss coefficient. Equation (3.3) corresponds to s = Vφ.

3.3 Soliton Perturbation Theory in Nonlocal Media

Soliton perturbation theory was previously developed for one dimensional (1D) soli-
tons of the integrable local nonlinear Schroedinger (NLS) equation (see, e.g. [5]),
and it is based on the knowledge of the exact soliton solutions. Here this approach
is generalized to a non-integrable model, in the presence of an arbitrary nonlocality,
and then applied to the SW Brownian motion. The SW profile is given, in the absence
of the perturbation (s = 0), by the real-valued solution u(x) of

−βu + ∇2
x u + u

∫
K (x − x ′)u2(x ′)dx ′ = 0. (3.5)

To simplify the notation, we consider hereafter the 1D case, while the results below
equally apply to the multi-dimensional case. The un-perturbed SW is written as

φ0 = u(x − X + 2�z, β) exp(iθ − i�x − i�2z) (3.6)

where X is the center of the self-trapped wave, θ is the phase, and 2� is the velocity.
The analysis can be limited to SW with� = 0.By letting φ = φ0+φ1, the linearized
evolution equation is

∂zφ1 = L(φ1)+ s, (3.7)

with

L(φ1) = − iβφ1 + iφ1,xx

+ iφ0 K ∗ (φ0φ
∗
1 + φ∗

0φ1)+ iφ1 K ∗ |φ0|2. (3.8)

Without loss of generality, the first order perturbation can be decomposed in a term
representing a small variation of the solitary-wave parameters and the remaining
part, denoted as the radiation term φr . The former is proportional to the derivatives
of φ0 with respect to the various parameters, X, �, θ, β, and φ1 is written as

φ1 = fXδX + fθ δθ + fβδβ + ( f� − X fθ )δ�+ φr , (3.9)

while having introduced the auxiliary functions
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fθ = iφ0

fβ = ∂βφ0

fX = ∂Xφ0

f� = −i(x − X)φ0,

(3.10)

and being δX (z), δθ(z), δβ(z) and δ�(z) the z-dependent perturbations to SW para-
meters.

We introduce the adjoint functions f̂ given by f̂θ = i fβ, f̂β = −i fθ , f̂� =
−i fX , f̂ X = i f�, and such that ( f̂a, fb) = Naδa,b with a and b two SW parameters
(X, �, θ, or β) and introducing the scalar product ( f̂ , f ) = � ∫

( f̂ )∗ f dx . It is
Nθ = Nβ = (1/2)(d P/dβ) = P ′/2 and NX = N� = (1/2)P, with P = (φ0, φ0)

the SW power.
Following the original argument in [6], f and f̂ are localized around the SW

position X, as a consequence, their scalar products with φr are vanishing because the
radiation term spreads for long times, and ( f̂ , φr ) = 0.This assumption is confirmed
by the agreement with the numerical simulations reported below.

We apply the operator L on the auxiliary functions, obtaining:

L( fθ ) = 0

L( fβ) = iφ0 ≡ fθ
L( fX ) = 0

L f� = 2eiθu X ≡ 2 fX .

(3.11)

By using the following relation for the adjoint operator, L̂(i f ) = −iL( f ), we are
able to write the action of L̂ on th adjoint auxiliary functions:

L̂( f̂θ ) = −i fθ

L̂( f̂β) = 0

L̂( f̂ X ) = 2i fX

L̂ f̂� = 0,

(3.12)

and then, projecting these relations over the adjoining functions Eq. (3.7), we derive
the following equations for the dynamics of the SW parameters:

δθ̇ − Xδ�̇ = δβ + 2Sθ
P ′ , δβ̇ = 2Sβ

P ′ ,

δ Ẋ = −2δ�+ 2SX

P
, δ�̇ = 2S�

P
,

(3.13)

where Sα =
(

f̂α, s
)
, and the dot is the derivative with respect to the evolution

coordinate z.
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3.4 Application to the Disordered Nonlocal NLS

Equation (3.13) hold for any s; for a random perturbation in the density ρ, as given
by η(x, z) above, we can write:

s = iV (x, z)ueiθ , (3.14)

where V (x, z) = ∫
K (x − x ′)η(x ′, z)dx ′ and η is the random potential seen above.

The Eq. (3.13) become

δθ̇ = Xδ�+ δβ + 1

P ′
d

dβ

∫
u2(x − X)(K ∗ f )dx,

δβ̇ = 0, δ Ẋ = −2�,

δ�̇ = − 2

P

∫
u(x − X)ux (x − X)(K∗ f )dx,

(3.15)

from which

δ�(z) = − 2

P

∫ t

0

∫ ∫
u(x − X) ux (x − X)K (x − x ′) f (x ′, z′)dx ′dxdz′.

(3.16)
Writing δ�(z)δ�(z′) after (3.16) and averaging over disorder leads to

〈δ�(z)δ�(z′)〉 = 4〈 f 〉
P2 C min(z, z′) (3.17)

where

C =
∫ ∫ ∫

u(x1 − X)ux (x1 − X)u(x3 − X)

× ux (x3 − X)K (x1 − x2)K (x3 − x2)dx1dx2dx3 (3.18)

The deviation from the mean position is found as

δX (z) = −2
∫ z

0
δ�(z′)dz′ (3.19)

from which 〈δX〉 = 0 and

〈δX (z)2〉 = 4
∫ z

0

∫ z

0
〈�(z1)�(z2)〉dz1dz2 = 16η2

N C

3P2 z3. (3.20)

The previous result is the nonlocal counterpart of the so-called Gordon–Haus effect,
firstly introduced for describing the random fluctuations of solitons in amplified light-
wave systems [5, 6]. Equation (3.20) states that the random fluctuations, measured by
〈δX (z)2〉, grow with the cubic of the propagation distance, and decay with the square
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Fig. 3.1 Amplitude of the
fluctuations C for the
exponential nonlocality
versus σ 2, after Eq. (3.20),
for various soliton powers P
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of the SW power. A significant role is played by quantity C, which, in general, depends
on the specific soliton and nonlocality profile. In the local regime K (x−y) = δ(x−y)
it is

C =
∫

[u(x1 − X)ux (x1 − X)]2 dx1. (3.21)

The relevant result is found in the highly nonlocal limit K (x) → K0, which gives,
for a bell-shaped soliton profile [u(x) = u(−x)],

C = K 2
0

[∫
u(x1 − X)ux (x1 − X)dx1

]2

= 0, (3.22)

irrespectively of the specific shape of K (x). As a result, in the highly nonlocal
regime the random fluctuations of the fundamental soliton vanish. Physically, this
corresponds to the fact that the noise is filtered out by a narrow S(q) as the degree of
nonlocality increases. We stress that this results is independent on the specific kind
of nonlocality. For example, with reference to the exponential nonlocality S(q) =
(1+σ 2q2)−1 [1], we show in Fig. 3.1 the C parameter Vs σ 2 for various P (note that
β changes along each curve, because σ 2 varies) as calculated after the bound-state
solutions of Eq. (3.5). As expected when σ 2 increases (σ 2 = 0 corresponds to the
local case), the predicted fluctuation decreases. Equation (3.5) is also valid in the
two-dimensional case for each transverse coordinate.

To validate the previous analytical results, we resorted to the numerical integra-
tion of the stochastic partial differential equation resulting from a 1D exponential
nonlocality; we adopted a pseudo-spectral stochastic Runge-Kutta [7, 8]. Figure 3.2
a shows a typical evolution starting from a bound state and displaying the random
deviation of the SW. In Fig. 3.2b, we report various trajectories for a fixed SW power.
Figure 3.3 shows the calculated standard standard deviation for various degrees of
nonlocality: the analytical prediction after Eq. (3.20) is indistinguishable from the
numerical results.
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Fig. 3.2 a Typical dynamics of a solitary wave [Eq. (3.3)] as obtained from the numerical solutions
of (3.4) in the presence of randomness and exponential nonlocality (P = 6, σ 2 = 5, ηN = 0.01);
b Center of mass trajectories of the same bound-state (P = 6 , σ 2 = 5) for 100 disorder realizations
(ηN = 0.01)

Fig. 3.3 Comparison of the
numerically (continuous
lines, P = 6, ηN = 0.01)
and theoretically (circles for
σ 2 = 2, squares for σ 2 = 5
and diamonds for σ 2 = 10)
calculated standard deviation
of the solitary wave position
versus the evolution
coordinate for three degrees
of nonlocality and 100
disorder realizations
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3.5 Nonparaxial Corrections

Before concluding, we consider the effect of non-paraxiality on the SW fluctuations.
Ultra-thin nonlocal OSS were considered in [3, 9]; in this framework, non-paraxiality
at the lowest order is described by the perturbation s = −εψxxxx , where ε =
(λ/4πnw0) is ratio, within some numerical constants, between the wavelength and
the spatial beam waist [3] and is determined by taking into account the next order
terms in the expansion of the traverse operator of the backward scalar wave equation

of the optical field A and normalizing it: i∂z A +
√

k2 + ∇2⊥ A + ω�n
c A = 0. It turns

out that Eq. (3.20) still holds true in the ultra-focused regime, with the addition of a
linear increase of the phase along propagation:

δθnon-paraxial = −z
2ε

P ′

∫
uβuxxxx dx, (3.23)
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corresponding to the perturbation to the SW nonlinear wave-vector due to the non-
paraxial term. This analysis shows that even in the non-paraxial regime, the nonlo-
cality limits the fluctuations of the beam.

In this chapter, we are concerned with solitons (the “localized product” of the non-
linearity) evolving in a weakly disordered medium. As known by [10], the refractive
index fluctuations act as random forces that push and pull the baricenter of the solitary
wave, causing its Brownian motion. We have theoretically shown that nonlocality
largely affects the dynamics of a soliton in the presence of disorder; this results in
a random walk of the soliton position, which is hampered by the filtering action of
the nonlocal regime, and ideally vanishes for a infinite degree of nonlocality. These
results are expected to be specifically relevant for Bose-Einstein condensates, liq-
uid crystals and soft-colloidal matter, and suggest to employ highly nonlocal media
for routing information by self-trapped beams in order to moderate the effect of
randomness.

References

1. Królikowski W, Bang O (2000) Phys Rev E 63:016610
2. Stoof H (1999) J Low Temp Phys 114:11
3. Conti C, Ruocco G, Trillo S (2005) Phys Rev Lett 95:183902
4. Snyder AW, Mitchell DJ (1997) Science 276:1538
5. Iannone E, Matera F, Mecozzi A, Settembre M (1998) Nonlinear optical communication net-

works. Wiley, New York
6. Gordon JP, Haus HA (1986) Opt Lett 11:665
7. Werner MJ, Drummond PD (1997) J Comput Phys 132:312
8. Qiang J, Habib S (2000) Phys Rev E 62:7430
9. Conti C, Peccianti M, Assanto G (2004) Phys Rev Lett 92:113902

10. Kartashov YV, Vysloukh VA, Torner L (2008) Phys. Rev. A 77:051802



Chapter 4
Disordered Nonlinear Schroedinger Equation

Here, we deal with the nonlinear Schroedinger equation in the presence of structural
disorder. The strength of disorder allows the formation of light localizations, the
Anderson states. The effect of focusing and defocusing nonlinearities, present in the
model equation, on Anderson localization in highly nonlocal media is theoretically
and numerically investigated. A perturbative approach is developed to solve the
nonlocal nonlinear Schroedinger equation in the presence of a random potential. We
find closed form expressions showing that nonlocality stabilizes Anderson states.
Numerical analysis validates the theoretical results. A regime in which multiple
Anderson localizations are excited and compete by nonlocality is also outlined.

4.1 Introduction

In this chapter, we investigate the effect of a generic random potential (not neces-
sary perturbative) on the nonlinear Schroedinger equation (NLS). The disorder is
called structural and is strong enough to allow light localization in a different way
with respect to the solitary waves (SW), due to nonlinearity. Indeed, a sufficient
strength of disorder fosters the transition from a diffusive regime to a wave-function
exponentially decaying over a characteristic distance l; this scenario is commonly
referred to as Anderson localization (AL) [1]. By an analytical point of view, when
the nonlinearity is absent, the considered equation reduces to the Anderson model,
the system admits exponentially localized states. When the nonlinearity is present,
the resulting equation is the NLS with a random potential term. This model cannot
be analytically solved and problems arise also in the numerical computations. As
shown below, including nonlocality can allow to address various issues concern-
ing the disordered NLS: first, the nonlocality in the nonlinear response can largely
affect the localized wave-forms, depending on the degree of nonlocality σ [2–6].
In addition, the interplay between the disorder induced localization length l and the
characteristic length of nonlocality σ has never been considered before. Finally, as
seen, in the highly-nonlocal limit, the NLS equation can be easily linearized and it
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will be possible to derive closed form expressions to analytically describe the role
of nonlinearity on Anderson localizations.

4.2 Anderson Localization

Anderson localization is a general phenomenon for wave propagation in random
media. If the strength of disorder is enough, a spatial confinement of light in relatively
narrow regions takes place, caused by interference effects due to multiple scattering.
A transition from a diffusive regime to a localized state occurs and the transport
properties of the medium drastically change. Originally the Anderson transition was
referred to a particular issue in the study of the conductance of electrons, the metal-
insulator transition. The diffusion of electrons into a metallic system can be described
through the multiple scattering phenomena by impurities of the solid. The mean-
free path measures the average length between two consecutive electronic collisions
during its motion into the material and it decreases as the disorder is growth. By
increasing the strength of disorder over a critical value, the diffusive motion of the
electrons is halted and the material turns into an insulating state. The concept of
electronic spatial confinement was first introduced by Anderson [1] in 1958 in order
to explain the absence of diffusion. Later, a similar explanation was applied in the
study of the photons transport in disordered systems [7–14] and the light localization
due to the disorder was experimentally observed [9, 15]. This phenomenon is also
present in the physics of Bose-Einstein condensation [16, 17]

The Anderson model is written in terms of the following Hamiltonian,

H0 = −∂2
x + V (x); (4.1)

where V (x) is a random potential, the eigenstates are written as

H0ψn = βnψn (4.2)

with (ψn, ψm) = δnm . The Eq. (4.1) simply describes a free-particle moving in a
random potential. When the disorder is strength enough, H0 sustains exponentially
localized states in a finite region, corresponding to negative eigenvalues βn . The
fundamental state can be approximated by:

ψ0(x) = 1√
l
e−|x−x0|/ l (4.3)

where the average localization length l is determined by the strength of the random
potential V0 and describes the spatial extension of the region of light localization,
while x0 is the location of the eigenfunction with eigenvalue β0. In the following,
without loss of generality, we assume that the horizontal axis has been shifted such
that x0 = 0. The (4.3) states are called Anderson localizations and the characteristic
localized shape is shown in Fig. 4.1 for the ground state in the case of a Gaussianly
distributed random potential. In Fig. 4.2a, b we report the numerically calculated
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Fig. 4.1 The black line represents the ground-state, as retrieved by a Gaussian random potential
(red line)
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Fig. 4.2 Histogram over 200 realizations of disorder for the ground-state β0 (a), the corresponding
waist (b), critical power (c) (V0 = 10, σ = 10)

distribution of eigenvalue β0 and the localization lengths (calculated as the standard
deviation or waist) for a Gaussianly distributed V (x) with zero mean and standard
deviation V0.

In order to understand the link between the energies β0 of the bound states and the
relative localization lengths l, from Eq. (4.2) one can calculate the average value of
the Hamiltonian on ψ0: 〈β0〉 = 〈(ψ0, H0ψ0)〉 ∼= −1/ l2. The lowest energy state has
the highest degree of localization and hence the localization length is also a direct
measurement of the eigenstates stability.
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4.3 The Model

When both disorder than Kerr nonlocal nonlinearity are taken into account, then
the model describing the underlying field propagation phenomena is the random
nonlocal nonlinear Schroedinger equation that reads as

iψz + ψxx = V (x)ψ − sψ
∫ +∞

−∞
χ(x ′ − x)|ψ(x ′)|2dx ′ (4.4)

whereψ = ψ(x, z), V (x) is the random potential and χ(x) is the response function
of the nonlocal medium normalized such that

∫
χ(x)dx = 1; s ± 1 corresponds

to a focusing (s = 1) or defocusing (s = −1) nonlinearity. In this chapter, we
consider both the nonlinearities because the comparison can help to understand the
role of nonlocality on the Anderson localization stability. Equation (4.4) applies
to a variety of physical problems, including nonlinear optics and Bose Einstein
condensation [18].

4.4 Highly Nonlocal Limit

Equation (4.4) does not admit an analytical solution. Doing the highly nonlocal
approximation can be a valid approach to solve the problem. The nonlocality is
described by χ(x), which is typically bell-shaped with a characteristic length σ. For
an average localization length l much shorter than the nonlocality degree σ of the
medium, the response function χ(x ′ − x) can be expanded around the localization
center, x ′ = 0, and one has in (4.4)

ψ

∫ +∞

−∞
χ(x ′ − x)|ψ(x ′)|2dx ′ = ψPχ(x). (4.5)

In such highly nonlocal limit (HNL), the nonlinearity is reduced to a linear term
that can be initially treated as a perturbation to the Anderson model, an interaction
Hamiltonian Hint = sχ(x)P,where P = ∫ +∞

−∞ |ψ(x)|2dx is overall energy, or beam
power, which is conserved during evolution. Hence in the HNL, the random NLS
(4.4) can be written through the Hamiltonian:

H = H0 + P Hint, (4.6)

being P the expansion term (we deal with a Kerr nonlinearity perturbation). Now, we
can simply solve the whole linear model in the framework of the standard perturbative
theory. We stress that this limit is valid in the regime of a wave dominated by a single
localization, which, without loss of generality, is taken centered at x0 = 0. This
also holds true as far as during the dynamics, additional localization are generated
among those located in proximity of x = 0. Conversely, if two distant localizations
are excited, χ(x) will be composed by two nonlocal responses centered in the two
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Anderson states, this case will be investigated elsewhere. The HNL allows to apply
the standard perturbation theory of quantum mechanics for deriving closed form
expressions for the effect of nonlinearity on the Anderson states. We write the general
solution as an expansion in P:

ψ = √
P

(
ψ0 + Pψ(1) + P2ψ(2) + · · ·

)
, (4.7)

where we take at the leading order ψ = √
Pψ0 to focus on the effect of nonlocal

nonlinearity on the fundamental state. By following the standard perturbation the-
ory, we obtain the correction to the Anderson ground state (at second order in P)
eigenvalue:

β0(P) = β0 + s Pχ00 + P2
∑

n �=0

|χn0|2
β0 − βn

, (4.8)

with the matrix elements of the nonlocality given by

χnm =
∫
χ(x)ψn(x)ψm(x)dx . (4.9)

We first observe that as the degree of nonlocality increases, χ(x) can be treated
as a constant in (4.9), such that χmn = χ(0)δnm . This shows that the perturbation to
the Hamiltonian is diagonal, therefore, in the HNL, the effect of the nonlocality is to
shift the eigenvalue such that

β0(P) = β0 + sχ(0)P. (4.10)

We stress that this equation is valid at any order in P: the overall Hamiltonian H =
H0 + Hint is diagonal in the same states of H0, hence Anderson localizations turn out
to be eigenstates also in the presence of the nonlocality. These localizations are hence
expected to be extremely robust in the focusing case with respect to the nonlinearity.

In (4.10),χ(0) depends on the specificχ(x), and will explicitly contain the degree
of nonlocality, as detailed below.

4.5 Instability of Anderson States

The effect of nonlinearity on Anderson states becomes relevant when the term linear
in P is comparable with β0 (higher order corrections vanish in the HNL); this allows
to define through Eq. (4.8), the critical power Pc:

Pc = |β0|∫ +∞
−∞ |ψ0(x)|2χ(x)dx

. (4.11)
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In the specific case of a defocusing medium (s = −1), this is the power needed
to change the sign of the eigenvalue β0(P), from negative to positive; such that the
localization is destroyed. Conversely, for a focusing medium (s = 1), this can be
interpreted as the power were the average degree of localization is strongly affected
by nonlinearity, indeed as l(P) ∼= 1/

√〈β(P)〉, one has

l(P) ∼= l√
1 + s P/〈Pc〉 (4.12)

such that at critical power, the localization length is reduced by a factor
√

2 for the
focusing case s = 1, and diverges for the defocusing case s = −1.This shows that for
P > Pc no localized states are expected for s = −1, as the corresponding eigenvalue
changes sign. This trends applies as far as additional effects, like the excitation of
further localizations, occurs, as discussed below. From Eq. (4.11), we obtain the
expression for Pc in the HNL, Pc ≡ P̂c = |β0|/|χ(0)| with 〈P̂c〉 ∼= σ/2l2 [χ(0) =
1/2σ for an exponential nonlocality]. Because of the Cauchy-Schwarz inequality,
one has

∫ +∞
−∞ |ψ0(x)|2χ(x)dx < 1, and one readily sees that for a finite nonlocality

Pc < P̂c; as the nonlocality increases the power needed to destabilize the Anderson
states grows.

A useful measure to quantify the effect of a nonlocal nonlinearity on Anderson
states is the residual value of β(P) at the critical power Pc, which can be written as

δβ(σ ) = β0(s Pc)

β0
=

∑

n �=0

|χn0|2
|χ00|2(1 − βn/β0)

. (4.13)

δβ only depends on the disorder realization and on the degree of nonlocality; δβ = 0
if higher order corrections O(P2) to β(P) are vanishing. As it is determined by the
off-diagonal elements χn0, δβ can be taken as the “residual coupling” due to the
nonlocal nonlinearity, which vanishes in the HNL limit. In Fig. 4.3 , we numerically
show [for an exponential χ(x), see below] that δβ goes to zero when increasing σ : as
the nonlocality increases the nonlinear coupling ofψ0 with other states is moderated,
hence it tend to behave as an eigenstate of the system even if nonlinearity is present
(however, its degree of localization may be largely affected).

4.6 Nonlocal Responses

The critical power Eq. (4.11) for a few specific cases of the response function χ(x)
[2] is given by:
Rectangular:

χ = 1/(2σ) f or |x | < σ

0 elsewhere
(4.14)
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Fig. 4.3 Left axis: critical
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and hence,

Pc = 2σ |β0|/(1 − e−2σ/ l); (4.15)

Exponential:

χ(x) = e−|x |/σ /(2σ), (4.16)

and hence,

Pc = |β0|(2σ + l); (4.17)

Gaussian:

χ(x) = e−x2/σ 2
/
√
πσ 2, (4.18)

and hence,

Pc = l|β0| exp(−σ 2/ l2)Erfc(σ/ l); (4.19)

Quadratic:

χ(x) = χ(0)+ χ2x2, (4.20)

[e.g. for a Gaussian χ(0) = 1/
√
πσ 2 and χ2 = −χ(0)/σ 2],

Pc = |β0|/|χ(0)|(1 − l2/2σ 2), (4.21)

the last response function (4.20) is frequently used to approximate any bell-shaped
nonlocal response.

In all of these cases, the critical power is linearly dependent on the unperturbed
eigenvalue of the state. So, the higher the strength of the disorder V0, the lower β0,

the higher the power needed to affect the localization.
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Fig. 4.4 Evolution of the ground-state intensity for a fixed disorder realization, for σ = 10, V0 =
10; focusing (attractive) case s = 1, for P = 0.04Pcr (a) and for P = 4Pcr (c); defocusing
(repulsive) case s = −1, for P = 0.04Pcr (b) and for P = 4Pcr (d). The superimposed dashed
line in the panels represents the ground-state at the initial time

In Fig. 4.3, we report the behavior of the critical power as a function of the nonlo-
cality degree σ for the analyzed response functions. Furthermore, we emphasize that
the critical power, directly depending on the unperturbed eigenvalue, has a statistical
distribution depending on the disorder configuration. For a given σ and V0, one has
a distribution of critical powers, as shown in Fig. 4.2c.

4.7 Numerical Results

We numerically solved Eq. (4.4) for fixed disorder configurations: we first obtain
the eigenstates, then by using a pseudo-spectral Runge-Kutta algorithm, we evolve
the Anderson localizations in a nonlocal medium with a given χ(x) [an exponential
response hereafter, similar results are obtained for other χ(x)].

Figure 4.4 shows the dynamics of the ground-state intensity: for P < Pc the state
remains almost unperturbed [panels (a), attractive case; panel (b), repulsive case].
By increasing the power beyond the critical threshold, we observe two different
phenomena. In the focusing case, the state becomes more localized (c), displaying
fluctuations due to the beating between the ground state and other localized modes,
as detailed below. In the defocusing case, we observe the breaking of the Anderson
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Fig. 4.5 Energy fraction and wavefunction waist for focusing (a), (c) and defocusing (b), (d) cases,
for various powers, P = 0.04Pcr (continuous line), P = 0.64Pcr (dashed line), P = 2Pcr (dotted
line), P = 4Pcr (diamond line), (σ = 10, V0 = 10).Results averaged over 10 disorder realizations;
the vertical axis is limited in panels (b, d) to improve the comparison among the various cases

localization. In Fig. 4.4, we report on a single realization of the disorder; in the
following we consider various realizations, for each of them the critical power is
calculated.

Figure 4.5 shows the fraction energy in the ground state and of its localization
length for various powers. At any instant z, we expandψ in terms of the eigenmodes:

ψ =
∑

n

an(z)ψn(x) exp(−iβnz) (4.22)

where
∑

n |an|2 = P. We define the ground state energy fraction of Fig. 4.5 as
E0(z) = |a0(z)|2/P with E0(z = 0) = 1. In the focusing case (s = 1), the localized
shape is not substantially affected (Fig. 4.5a); conversely for s = −1 there is a drastic
change in the energy distribution as P > Pc. These trends are also confirmed by
the localization length, which decreases for s = 1 [see panel (4.5c)], while in the
defocusing case, the perturbation delocalizes the eigenmode. Note that these results
are obtained when considering Eq. (4.4), hence for a finite degree of nonlocality.

4.8 Beating of Anderson Localizations

We consider the case of a residual coupling between the fundamental mode and
an additional state located in its spatial proximity (all the other states are expected
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to have vanishing χ0n, corresponding to a low overlap, because of distant locations
with respect to the localization length). We derive the following coupled mode-theory
equations in the HNL of (4.4), while assuming that only two modes are excited

i ȧ0 = Pχ0qaq exp(−i	βz)+ Pχ00a0 (4.23)

i ȧq = Pχ0qa0 exp(i	βz)+ Pχqqaq , (4.24)

with 	β = βq − β0. We assumed that there is some other mode with index n = q,
which is mostly coupled with the initial fundamental one n = 0. The solutions to

Eq. (4.24) is written, with obvious notation, as a0,q = â0,q exp
(
±i 	β2 z + iκz

)
and

two possible values κ± for κ are found. The general solutions is readily found, here
we only report the HNL regime, when χ00 = χqq , and at the lowest order in χ0q one
finds

	κ = κ+ − κ− =
√
	β2

4
+ P2χ2

0q (4.25)

and the wave intensity |ψ(x)|2 oscillates with period 2π/	κ that decreases with
power, as also numerically verified (not reported). We stress that this result is expected
to be mostly relevant in the focusing case, as in the defocusing case the Anderson
localization is inhibited by the nonlinearity hence all the modes tend to be delocal-
ized; we note indeed that the critical power for higher order modes is lower than the
fundamental one. In the focusing case, the degree of localization is enhanced, there-
fore a regime in which only few modes interact (and in particular only two modes)
can be achieved.

In conclusion, in this chapter we have investigated the way structural disorder
and nonlinearity interact in the highly nonlinear limit. By increasing the degree of
nonlinear nonlocality, the stability of Anderson localizations increases, these states
turn out to be very robust with respect to the nonlinear effects. Mainly related to
the fact that the nonlinear nonlocality reduces the coupling between Anderson states
(a rather counter-intuitive result, which however is confirmed by our numerical analy-
sis), such an interplay between disorder and nonlinearity can be exploited for light
trapping and can be extended to several related problems, as quantum phase diffusion
and coherence [19], ultrashort pulses in fibers [20], second harmonic generation [21]
and Bose-Einstein condensation [17].
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Chapter 5
Scale-Free Nonlinearity in Disordered
Ferroelectrics

So far in this work, we have considered disorder and nonlinearity as two phenom-
ena living on the same spatial scale-length, which compete for what concerns the
stability of localized wave-forms. The structural disorder of Chap. 4 or the material
fluctuations of Chap. 3 are of the same order of magnitude of the beam waist. In
this chapter, the emerging phenomena of the interaction between nonlinearity and
disorder are explored when the randomness lies on a much smaller scale-length with
respect to the spatial scale of the solitonic regime. At first analysis, light propaga-
tion through such a system should not display any kind of nonlinear effect: the light
beam should not feel the disordered atomic configuration and hence should propa-
gate unperturbed in such a kind of materials. On the contrary, we consider a specific
effect when disorder is the cause of the nonlinear response to the electromagnetic
field: this is a result of the mutual interaction between nonlinearity and disorder that
gives a positive feedback for the activation of solitary waves. Recently, the observa-
tion of a novel class of optical spatial solitons [1, 2] has been reported in disordered
out-of-equilibrium ferroelectrics [3, 4]. In this kind of media, the diffusion-driven
photorefractive nonlinearity [5] can be largely enhanced to sustain “scale-free” non-
diffractive beams, which can have arbitrary amplitude and waist (within the limit of
validity of the paraxial approximation). In this chapter, we will discuss this kind of
light localization and we will unveil the existence of a “scale-free” instability, char-
acterized by the remarkable absence of a dominant spatial scale during, at variance
with what happens in standard MI, where there is a wave-vector which is mostly
amplified with respect to the others.

5.1 Diffusive Nonlinearity in Disordered Ferroelectrics

Here, we review the basic phenomenology underlying the photorefractive diffusive
nonlinearity, which gives rise to scale-free phenomena.

The photorefractive effect appears in materials exhibiting both the electro-optic
effect than the photo-generation of free-carriers. The electro-optic phenomenon

V. Folli, Nonlinear Optics and Laser Emission through Random Media, 41
Springer Theses, DOI: 10.1007/978-94-007-4513-1_5,
© Springer Science+Business Media Dordrecht 2012

http://dx.doi.org/10.1007/978-94-007-4513-1_4
http://dx.doi.org/10.1007/978-94-007-4513-1_3


42 5 Scale-Free Nonlinearity in Disordered Ferroelectrics

appears when the refractive index depends on the local low-frequency electric-field
[6]. In this context, we study isotropic photorefractive crystals in which the depen-
dence of the refractive index perturbation �n on the electric field is quadratic,

�n = −n3
0

2
gε2

0χ
2 E2

DC , (5.1)

where n0 is the refractive index of the isotropic medium, g is the component of the
second-order electro-optic tensor, χ is the susceptibility related to the low-frequency
electric field EDC .

Now, we obtain the explicit expression of the low-frequency electric-field. When
the light beam enters the crystal, the neighboring electrons absorb the light and can
be excited in the conduction band of the semiconductor from the impurity levels. The
free electrons can diffuse through the medium and the free-charge diffusion current
density can be written as:

J = D

q
∇ρ, (5.2)

where D is the diffusion coefficient, ρ is the charge density and q is the electron
charge. The migration of the free-charges is balanced by the drift current:

Jdrift = μρEDC , (5.3)

where μ is the electron mobility. At equilibrium, one obtains the low-frequency
electric field by setting Eq. (5.2) equal to Eq. (5.3):

EDC = kB T

q

∇ρ
ρ
, (5.4)

with kB T = D/μ, where kB is the Boltzmann constant and T is the temperature
of the system. Being the charge density proportional to the photon density, Eq. (5.4)
can be written in term of the field intensity,

EDC = kB T

q

∇ I

I
, (5.5)

and hence, the electro-optic effect induced by the photo-generation of free-
carriers is

�n(I ) = −n3
0

2
gε2

0χ
2 (kB T )2

q2

(∇ I )2

I 2 . (5.6)

By inserting Eq. (5.6) in Eq. (2.7), we obtain the nonlinear equation for the photore-
fractive diffusive nonlinearity:

2ik
∂A

∂z
+ ∇2⊥ A − L2

λ2

(∂x |A|2)2 + (∂y |A|2)2
4|A|4 A = 0, (5.7)

http://dx.doi.org/10.1007/978-3-642-27531-9_2
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where we neglected the term in (∂z I )2 in Eq. (5.5) because of the paraxial approx-
imation; being I = |A|2 the optical intensity and L is a characteristic length of the
diffusive nonlinearity

L = 4πn2ε0
√

gχP N R(kB T/q), (5.8)

where g > 0, due to the focusing nature of the nonlinearity and χP N R is the mean
low frequency susceptibility (χabove) that is mainly due to the so-called polar nano-
regions (PNR), a metastable effect obtained when the considered system is rapidly
cooled below a characteristic temperature. These regions exhibit a huge polarizabil-
ity, as demonstrated in [3], and they are the main reason allowing to observe the
propagation of self-localized wave-forms.

We rewrite Eq. (5.7) in dimensionless units as

i
∂ψ

∂z
+ 1

2
∇2

xyψ − σ
(∂x |ψ |2)2 + (∂y |ψ |2)2

|ψ |4 ψ = 0, (5.9)

where x = X/W0, y = Y/W0 and z = Z/Z0, with Z0 = kW 2
0 /2 the diffraction

length, W0 an arbitrary beam waist, and σ = L2/8λ2, with σ = 1/8 for L = λ. The
Eq. (5.9) admits solitonic solutions that, as we will see below, are “scale-free”.

5.2 Scale-Free Solitons

The Eq. (5.9) depends on the ratio L/λ that describes the mutual competition between
the diffractive effects and the nonlinearity. The wavelength λ controls the distortion
of the laser beam through the diffraction while the strength of nonlinearity is dictated
by the characteristic length L , related to the formation of the PNR and not directly
connected to the beam waist in the scale-free regime. When L ≥ λ, the nonlinear
optical response is no longer negligible and the formation of self-trapped beams of
arbitrary intensity and waist, marked by a flat “existence curve”, is observable.

When L = λ, the scale-free solution is a Gaussian function ψ(x, y, z) =
ψ0(x, y)eiβz, with

ψ0(x, y) = ψ0exp

(
− x2 + y2

w2
0

)
(5.10)

whereβ = −2/w2
0.Both w0 thatψ0 are arbitrary constants. For L > λ, the scale-free

solutions become ψ(x, y, z) = ψ0(x, y)eiγ 2βz with:

ψ0(x, y) = ψ0

[
cosh

(√
2

x

w0

)
cosh

(√
2

y

w0

)]−γ 2

(5.11)
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Fig. 5.1 Scale-free solutions for L = λ, that is σ = 0.125 (Gaussian shape) (a), and for L > λ

(generalized solution) in the weakly nonlinear regime σ = 0.25 (b), and in the high nonlinear
regime σ = 1 (c)

and

1

γ
=

√(
L

λ

)2

− 1. (5.12)

As it can be seen in Fig. (5.1), when we increase the strength of the nonlinearity
with respect to diffraction, the general solution (5.11) develops a square profile,
losing its radial symmetry.

5.3 Scale-Free Instability

In this section, we consider one-dimensional solitons, also called the diffraction-free
stripe solutions, ψ(x, z) = ψ0(x)eiβz,

ψ0(x) = ψ0 exp

(
− x2

w2
0

)
, (5.13)

with β = −1/w2
0, and ψ0 and w0 arbitrary independent parameters, such that this

self-trapped beam exists at any intensity level and for any waist (within the validity
of the paraxial approximation).

5.3.1 Absence of Modulational Instability

We then consider perturbations to the exact solution, which is written as

ψ = [ψ0(x)+ p(x, y, z)] exp(iβz). (5.14)
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The linearized evolution equation for the perturbation p reads, with obvious
notation, as

i∂z p + 1

2
∇2

xy p − 4σ

[
ψ2

0x

ψ2
0

p + ψ0x

(
p + p∗

ψ0

)

x

]
= βp. (5.15)

From (5.15), one readily sees that ifψ0(x) = ψ0(w0 → ∞) no instability is expected
(i.e. no solution such that p exponentially grows with z); showing indeed that the
scale-free model (5.9) is not exhibiting the standard MI. This result is in striking con-
trast with the well known fact that MI always accompanies the existence of solitary
waves solutions, as for Kerr, saturable or quadratic nonlinearities [1, 2]. Conversely,
in the scale-free model, one has self-trapped bright beams, but no instability for the
plane-wave solutions; we show in the following that another kinds of instability may
indeed occur.

5.3.2 Theory of Scale-Free Instabilities

We first note that (5.15) does not imply an exponential growth for a perturbation
whose spatial profile in the x direction is the same as the pump beam ψ0, i.e. for p
such that

p = ψ0(x)α+(z)eiky y + ψ0(x)α−(z)∗e−iky y , (5.16)

indeed the term containing p∗ in (5.15) disappears, so that there is no instability. Note
that as Eq. (5.15) does not contain coefficients explicitily dependent on y, p can be
expressed as a plane wave expansion with respect to y without loss of generality.
We then write the perturbation as

p = ψ1(x)α+(z)eiky y + ψ1(x)α−(z)∗e−iky y , (5.17)

withψ1(x) a spatial profile, different fromψ0(x). To keep the treatment as simple as
possible, we limit to the Gaussian case for L = λ (σ = 1/8), and we take the profile
for the perturbation ψ1 as a Gaussian with waist different from that of the pump ψ0,

i.e.

ψ1 = N 1 exp(− x2

w2
1

) (5.18)

where N 2
1 =

√
2/πw2

1, such that (ψ1, ψ1) = 1, with the scalar product (a, b) =∫
x a∗b.We use Eq. (5.17) in (5.15) and project over ψ1, which corresponds to make

an expansion in an Hermite-Gauss basis with respect to x and only retaining the first
term of the expansion. We find the coupled equations for the amplitudes α± after
(5.17):



46 5 Scale-Free Nonlinearity in Disordered Ferroelectrics

±2i α̇± +
(

−k2
y + 1

w2
0

− 1

w2
1

)
α± + w2

1 − w2
0

w4
0

α∓ = 0. (5.19)

Note that the last term coupling α± in (5.19) is that responsible for the instabilities
and it is proportional to w2

1 − w2
0, hence for w1 = w0, we recover the result stated

above, i.e. the absence of instability for a perturbation with the same x− size of the
pump beam. Analogously, the instability disappears for w0 → ∞, corresponding to
the plane-wave case, also discussed above.

For w1 
= w0, one finds that (5.19), admits exponentially amplified solutions,
which are written as α± = α̂± exp(λz), with the gain λ given by

4λ2(ky,w1) = (w2
1 − w2

0)
2

w8
0

−
(

k2
y − 1

w2
1

+ 1

w2
0

)2

; (5.20)

letting r = w1/w0, one has

4λ2(ky, r)w
4
0 = (r2 − 1)2 −

[
(kyw0)

2 + 1 − 1/r2
]2

. (5.21)

The most unstable perturbation corresponds to the values r and ky that
maximes λ2.As detailed below, the analysis of Eq. (5.21) allows to identify two kinds
of instabilities: with respect to perturbations with waist greater than the pump beam
(r > 1), and the opposite case (r < 1), denoted hereafter as defocusing and frage-
menting instabilities, respectively.

5.3.3 Defocusing Instability

For a perturbation with w1 > w0, the condition λ2 > 0 predicts the maximum gain
at ky = 0 and given by

λD =
√
(r2 − 1)2 − (1 − 1/r2)2

2w2
0

. (5.22)

λD is positive only for r > 1, and is shown in Fig. 5.2a. This maximum gain
is not limited, and grows with r, thus revealing a self-propelling instability, such
that if a perturbation with waist greater than the beam is superimposed, the beam
tends to spread (the perturbation gains energy) and the spreading rate increases with
the waist of the beam. Note that the gain is maximum at ky = 0, denoting an
instability that does not tend to alter the striped shape of the beam by introducing
periodical modulations. This process is also more pronounced for small waists, as the
maximum gain λD goes like w−2

0 .We show in Fig. 5.3, an example of this instability,
as obtained by numerically solving Eq. (5.9). The evolution reveals a defocusing
of the beam, which is hence unstable, and is compared with the linear case σ = 0
(linear propagation); for σ > 0, the effect is more pronounced as the waist w0 is
reduced.
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Fig. 5.2 a Gain versus the ratio of the waist between the perturbation and the pump for r > 1
(maximum gain attained at ky = 0); b Left scale: gain versus r for r < 1; right scale: corresponding
maximally amplied period
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Fig. 5.3 Simulation of the defocusing instability after Eq. (5.9). a Output beam at z = 4 for
σ = 0.125, with a striped beam with w0 = 1; b as in a with σ = 0 (linear propagation);
c as in a with w0 = 0.5; d beam waist in the x directions for a, dotted line, for b, dashed line,
for c, continuous line

5.3.4 Fragmenting Instability

For r < 1 (perturbation smaller than the pump, i.e. w1 < w0), the gain is maximum
at a ky > 0, fixed by r, and given by

ky,max =
√

1/r2 − 1

w0
. (5.23)

The corresponding maximum growth rate λR is

λF = 1 − r2

2w2
0

. (5.24)
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Fig. 5.4 Simulation of the fragmenting instability. The stripe solution is perturbed by a Gaussian
noise with 10% noise; a input beam; b out beam at z = 10 (w0 = 1, σ = 0.125)

However, as r < 1, the maximum gain corresponds to r = 0 (vanishing w1) with
diverging ky,max, denoting the tendency of the beam to break up into very tiny spots,
with no preferential spatial scale, in great contrast with the standard MI. Additionally,
we note that, for a fixed r, the gain scales as the inverse squared waist, hence the
more focused is the beam, the more pronounced in the instability. This is another
remarkable difference with standard MI; e.g. in Kerr media as the pump power is
increased, the gain increases as well; conversely in the scale-free model, the power
does not affect the gain, which, on the contrary, increases when decreasing the beam
spot. Note also that the gain level for the fragmenting instability is lower than for the
defocusing one and is limited by the upper value λF (r = 0) = 1/(2w2

0), need longer
propagation distances are needed to appreciate its development. A notable outcome
is that tiny details superimposed to the pump are amplified upon propagation. In
Fig. 5.4, we show an example of the fragmenting instability, by the evolution of a
stripe perturbed by a Gaussian noise with 10% amplitude with respect to the pump.

In conclusion, in this chapter, we have focused our attention on localized scale-free
wave-forms resulting from a new kind of interaction between nonlinearity and disor-
der. The existence of novel kind of instabilities in nonlinear beam propagation was
outlined. The overall picture show that the specific kind of nonlocality, which charac-
terizes the scale-free model, furnishes peculiar mathematical and physical properties
that largely distinguish the considered nonlinear optical process from previously
investigated systems. The capability of the predicted unstable processes to amplify
tiny beam perturbations, at any spatial scale (withing the paraxial approximation)
looks to open interesting perspectives for imaging applications.
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Part II
Resonant Systems



Chapter 6
The Maxwell-Bloch Equations

The last 40 years have witnessed an intensive and targeted growth of interest in
the field of nonlinear optics [1], as a fascinating new field of research both with a
vastness of applications in several systems related to communications, optical com-
puting, etc. Furthermore, the analytical techniques, involved in the study of nonlinear
optical phenomena, can be applied in other branches of the nonlinear physics, being
tools of general character, as the perturbative approach used several times in the
present thesis. The continuous development of ultra-short pulsed lasers allowed a
sophisticated enlargement of the analysis of nonlinear optics on a wide range of sys-
tems, specifically concerning the matter-radiation interaction in the highly nonlinear
regime.

In order to obtain the exact informations about the light behavior into a nonlinear
medium, it is often necessary to employ numerical approaches. The choice of the
more accurate numerical modeling is dependent on the specific nonlinear phenom-
enon.
In recent years, relevant attention was dedicated to the transient regime of light-
matter interaction on nanometer spatial scales, in which it is essential to exactly
know the time-dependent response of the medium. The natural solution for this kind
of problems, particularly in the resonant media, is a time-domain algorithm, employ-
ing a first-principles approach. In this respect, continuing the subject of this thesis,
we analytically and numerically develop a methodical technique that permits to study
the interaction of ultra-short pulses with matter in the presence of disorder, both in
the perturbative (analytical solution) and in the non-perturbative regime (numerical
approach).

6.1 Introduction

The pivotal compass of the present chapter is to understand how to proceed in the
study of transient coherent phenomena. In fact, ultra-short pulses, emitted by the
lasers of last generation, have a time duration on the order of the femtoseconds. These

V. Folli, Nonlinear Optics and Laser Emission through Random Media, 53
Springer Theses, DOI: 10.1007/978-94-007-4513-1_6,
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pulses can be considerably shorter than the relaxation times of the light absorbing
atoms and they are characterized by highly intense fields, which result in a nonlinear
reaction in the matter response. These phenomena are usually transient and coher-
ent, hence we have to develop time domain algorithms. Furthermore, we stay in a
parameter region in which the usual approximations cannot be considered valid,1 we
must use first principles modeling, without making assumptions and retain a quantum
treatment of the matter. In what follows, we will see as the ab-initio numerical simu-
lations on the Maxwell-Bloch equations allow to true physics to emerge. In the first
section, we derive the Maxwell-Bloch equations that couples the Maxwell equation
with a two-states quantum system. In the second section, we explain the numerical
method, the Finite Differences Time Domain algorithm (FDTD), by following the
guideline of Ziolkowski and coworkers [2–4]. Finally, we look for the solitary-wave
solutions.

6.2 Generalities

In this first section, we sketch the pivotal steps for the derivation of Maxwell-Bloch
system [2], in which we start by the Maxwell’s equations in matter (coupled via
the polarization) and by the Bloch’s system, describing the atomics dynamics of a
N-levels system, through the density matrix formalism and the pseudo-spin equation.
Finally, we connect each with each other by expressing the polarization in terms of
pseudo-spin vectors. Let us start by writing the Maxwell’s Equation in matter:

∂t H = − 1

μ0
∇ × E

∂t E = 1

ε0
∇ × H − 1

ε0
∂t P,

(6.1)

where E and H are respectively the magnetic and the electric field, the polarization
P(r, t) = −Neq(r, t) depends on the electronic charge e, on the atomic density N
and on the q(r, t), which is the displacement of an electron from its equilibrium
position, r. In the quantum mechanical description, it is expressed as the expectation
value of the position operator, q = 〈ψ|Q|ψ〉 and ψ is the quantum wave function.
The wave-function ψ obeys to the Schroedinger Equation:

i�∂tψ = Ĥψ, (6.2)

where the Hamiltonian is Ĥ = Ĥ0 + Ĥint. Ĥ0 is the unperturbed diagonal
Hamiltonian describing the atom behavior when no external field are present. Ĥint is

1 The Slowly Varying Envelope Approximation (SVEA) assumes that the spatial and temporal
variations on scale comparable to the wavelength or the optical cycle of the field envelope of
the forward (the back-reflected wave is neglected: in the disordered case considered here, this
assumption is not longer valid) traveling wave can be neglected.
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the light-matter interaction Hamiltonian and can be expressed in terms of the electric
field and the position operator:

Ĥint = −|e|E · Q. (6.3)

Ĥint is the quantized potential energy of a dipole with momentum p = eQ in an
external field E.

We generalize the Schroedinger equation through the density-of-states operator
ρ in order to calculate the observables (the expectation values) also when the system
does not admit a wave function description, through the relation q = 〈Q̂〉 = T r{ρQ̂}.
The density-of-states matrix evolve in time according to the Liouville equation:

i�∂t ρ̂ = [Ĥ , ρ̂]. (6.4)

In order to obtain the expression for q to pass to the polarization equation, we have
to solve the Liouville equation (6.4) and use the calculated density to obtain the
expectation value of the operator Q̂. We solve (6.4) by expanding the Hamiltonian
in the adjoint representation of the Lie algebra SU(N ),where N is the number of the
atomic levels. By studying the rotational symmetry of the SU(N ),group, it has been
shown that both ρ̂ and Ĥ can be expressed in terms of N 2 − 1 generators, λi , of the
SU(N) group:

ρ̂(t) = 1

N
Î + 1

2

∑N 2−1

j=1
s j (t)λ̂ j

Ĥ(t) = 1

2
�

[
2

N

(∑N

k=1
ωk

)
Î +

∑N 2−1

j=1
γ j (t)λ̂ j

]
,

(6.5)

where,

si (t) = T r ρ̂(t)λ̂i

γi (t) = 1

�
T r Ĥ(t)λ̂i ,

(6.6)

for definition, with [λ̂i , λ̂ j ] = 2iεi jk λ̂k, where εi jk is the antisymmetric tensor.
By inserting Eq. (6.5) in Eq. (6.4), we obtain:

ṡ1(t)λ̂1 + ṡ2(t)λ̂2 + ṡ3(t)λ̂3 =
∑

i

γi (t)
∑

j

s j (t)εi jk λ̂k . (6.7)

The ortogonality condition for the SU (2) group gives Trλ̂i λ̂ j = 2δ̂i j . For a two-level
system, the SU (2) group is represented by the Pauli matrices as generators λ̂i . The
Eq. (6.7) becomes

ṡ1 = γ2s3ε231 + γ3s2ε321

ṡ2 = γ1s3ε132 + γ3s1ε312

ṡ3 = γ1s2ε123 + γ2s1ε213.

(6.8)
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At last, we calculate the components of γ(t) by explicit the total Hamiltonian.
The unperturbed contribution for a two-level system with energies: E0 = 0 and
E1 = �ω0, where ω0 is the atomic transition resonance frequency between the
ground state and the excited one,

Ĥ0 =
(

0 0
0 �ω0.

)
(6.9)

Under the dipole approximation,2 the interaction term is Ĥint = −|e|Q̂ · E(R, t),
where R is the atomic baricenter position. Ĥint has to be calculated on the atomic
levels, |0〉, |1〉. The displacement operator is off-diagonal:

Q̂ = q0

(
0 1
1 0,

)
(6.10)

where q0 is the typical atomic length scale on order of q0 = 10−10 m. The total
Hamiltonian can be written as:

Ĥ = �

(
0 −�R

−�R ω0,

)
(6.11)

where we have introduced the Rabi frequency �R = |e|q0
�

E . Finally, known Ĥ , the
γ(t) vector is

γ(t) = {−2�R, 0,−ω0}. (6.12)

By replacing Eq. (6.12) in Eq. (6.8), we obtain the “Pseudo-Spin” equations, repre-
senting the evolution of the density-of-state matrix elements:

ṡ1 = ω0s2

ṡ2 = 2�Rs3 − ω0s1

ṡ3 = −2�Rs2,

(6.13)

with the normalization condition |s1|2 +|s2|2 +|s3|2. Physically, s1 is the dispersive
component of the polarization (the in-phase term), s2 is the absorptive one (the
quadrature component), while s3 represents the population inversion between the
two atomic levels. In order to comprehensively describe the underlying near-resonant
physics, we have to include the “dissipative” terms. We phenomenologically take into
account the damping effects by introducing diagonal terms related to characteristic
decay rates:

∂t

⎛
⎝

s1
s2
s3

⎞
⎠ =

⎛
⎝

0 ω0 0
−ω0 0 2�R

0 −2�R 0

⎞
⎠

⎛
⎝

s1
s2
s3

⎞
⎠ −

⎛
⎜⎝

1
T2

0 0
0 1

T2
0

0 0 1
T1

⎞
⎟⎠

⎛
⎝

s1
s2

s3 − s30

⎞
⎠ (6.14)

2 The electromagnetic field can be considered constant on the atomic scale.
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where T1 is the excited-state lifetime, T2 is the dephasing time and s03 represents the
initial profile of the atomic population (in the active medium s03 = 1).

We do some assumptions on the electromagnetic field that is a uniform plane-
wave, propagating along ẑ and polarized along x̂ : E(r, t) = Ex (z, t)x̂ and H(r, t) =
Hy(z, t)ŷ, so the dipole is aligned along the electric field direction and the polariza-
tion is P = Px x̂ = −N |e|T r(ρ̂Q̂)x̂ . In fact, the single component of Q̂ is Q̂x = q0λ̂1
that gives

Px = −N |e|q0s1, (6.15)

by using the SU(2) representation (6.5). The coupling of the Maxwell’s equations
(6.1) to the Bloch’s system (6.14) through (6.15) gives:
Maxwell Equations:

∂t Hy = − 1

μ0
∂z Ex

∂t Ex = − 1

ε0
∂z Hy + N |e|q0

ε0
ω0s2 − N |e|q0

ε0T2
s1.

(6.16)

Bloch Equations:

ṡ1 = − 1

T2
s1 + ω0s2

ṡ2 = −ω0s1 − 1

T2
s2 + 2

|e|q0

�
Ex s3

ṡ3 = −2
|e|q0

�
Ex s2 − 1

T1
(s3 − s30).

(6.17)

The resulting system of equations is resolved through the numerical approach,
sketched in the following section.

6.3 The Numerical Approach

We now introduce the parallel finite difference time domain (FDTD) technique in
order to obtain the exact solution for the Maxwell Bloch equations. In the next
chapter, we generalize the obtained results to a random medium.

We follow the discretization approach of [2], based upon a predictor-corrector
iterative scheme that gives the solution of the Maxwell-Bloch equations with each
time update.

We use the standard grid finite-differences discretizations of the spatial and tem-
poral derivatives (the unique approximation of the FDTD algorithm). The electric
and magnetic field components are arranged on this spatio-temporal grid with steps
�z/2 and �t/2. Being numerically complicated to treat the exponential decay of
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s1, s2 and s3, we factorize out it by imposing si (z, t) = e−t/T2 ui (z, t) with i = 1, 2
and s3(z, t) = s03 + e−t/T1 u3(z, t). The MB equations become:

∂t Ex = − 1

ε0
∂z Hy + Au1 − Bu2

∂t u1 = ω0u2

∂t u2 = ω0u1 + C+Ex u3 + DEx

∂t u3 = −C−Ex u2,

(6.18)

where A(t) = N |e|q0
ε0T2

e−t/T2 , B(t) = N |e|q0
ε0

ω0e−t/T2 , C+(t) = 2 |e|q0
�

e−t (1/T1−1/T2),

C−(t) = 2 |e|q0
�

e−t (1/T2−1/T1).

The magnetic field equation is solved at the steps (m + 1
2 )�z and (n + 1

2 )�t. The
electric field and the matter equations are solved for m�z and n�t. So, the FDTD
discretized Maxwell-Bloch equations are:
Discretized Maxwell-Bloch Equations:

Hy(m + 1

2
, n + 1

2
) = Hy(m + 1

2
, n − 1

2
)− �t

μ0�z
[Ex (m + 1, n)− Ex (m, n)]

(6.19)

Ex (m, n + 1) = Ex (m, n)− �t

ε0�z

[
Hy(m + 1

2
, n + 1

2
)− Hy(m − 1

2
, n + 1

2
)

]

− A(n + 1

2
)
1

2
[u1(m, n + 1)+ u1(m, n)]�t

+ B(n + 1

2
)
1

2
[u2(m, n + 1)+ u2(m, n)]�t (6.20)

u1(m, n + 1) = u1(m, n)+ ω0
1

2
[u2(m, n + 1)+ u2(m, n)]�t (6.21)

u2(m, n + 1)= u2(m, n)− ω0
1

2
[u1(m, n + 1)+ u1(m, n)]�t + C+(n + 1

2
)

1

2
[Ex (m, n + 1)+ Ex (m, n)]

1

2
[u3(m, n + 1)+ u3(m, n)]�t

+ D(n + 1

2
)
1

2
[Ex (m, n + 1)+ Ex (m, n)]�t (6.22)

u3(m, n + 1)= u3(m, n)− C−(n + 1

2
)
1

2
[Ex (m, n + 1)+ Ex (m, n)]�t

1

2
[u2(m, n + 1)+ u2(m, n)] . (6.23)

The five coupled scalar equations above permit to simulate the electromagnetic field
propagation inside the sample without any assumptions neither on the field or on the
matter.
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6.4 The Soliton Solution of the MB Equations

In this section, we look at the localized solution for the Maxwell-Bloch system. As it
can be demonstrate, the only form of light localization that can propagate in a resonant
medium is the Self-Induced Transparency (SIT). This is an intense ultra-short pulse
that, under certain conditions, can travel undistorted in strongly absorbing media
[5–10]. Intrinsically to exist, a SIT transports an inversion of population between
two energy levels. In fact, in the intense-signal limit, in which the medium relaxation
times are sufficiently longer than the pulse duration and the period of interaction, the
Rabi flopping behavior is predominant. It predicts that, if a sufficiently strong signal
with a duration T such that,�R T = 2π,where�R is the Rabi frequency, the required
traveling inversion of population is achieved. In fact, the “2π pulse”, during its going
through the system, flips the completely absorbing medium into a completely inverted
one and again into the initial completely absorbing configuration, all that within a
Rabi oscillation, so no energy losses are present. The pulse travels unattenuated and
a complete population inversion is transported in the strongly absorbing medium, as
described by the soliton solution of the Maxwell-Bloch equations [11, 12]. Hence,
the SIT is the only pulse that carries a population inversion and it is the only stable
pulse in the self-consistent interaction between radiation and matter: this is a direct
consequence of so-called the Area Theorem (see for example [13]).

Now, we only sketch the main steps, used to obtain the SIT equation: the starting
point is the Maxwell-Bloch system. Then, we assume the near-resonant condition
|ω − ω0| � ω0 where we remind that ω0 is the central transition frequency and
hence, the polarization is inhomogeneously distributed. It allows to assume that
the overall polarization is weak compared to the intensity of the electric field. By
doing the Slowly Varying Envelope Approximation (SVEA) and the multi-scale
expansion, we obtain the MB equation in the SVEA approximation for the retarded
time ξ = t − z/vg and space variable z, vg is the pulse velocity:

[
∂

∂z
+

(
1

c
− 1

vg

)
∂

∂ξ
− iμ

]
A = k B (6.24)

∂ξB = AN

2
(6.25)

∂ξN = − (
B∗ A + B A∗) , (6.26)

where we call A the (slowly-varying) electric field, B is the atomic polarization
and N is the population invertion, μ is the detuning from resonant frequency ω0,

k = (4πω0 Nd2)/c�, d is the dipole moment, and c the vacuum light velocity.
This system admits a localized solution when the SIT-pulse area satisfies the

“existence curve”:
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Apulse

2π
= �Rτp

2
, (6.27)

where Apulse is the pulse area and τp is its duration. This relation means that a 2π
pulse makes a complete two-level transition from the ground state to the excited one
and back again to the ground state in one Rabi period TR = 2π/�R, maintaining
the shape of the excited pulse (the profile of the inversion population also remains
constant). The envelope profile has a secant shape and depends on the four solitonic
parameters, β (the amplitude), X (the pulse position), � (the detuning from the
resonance frequency) and θ (the pulse phase),

A(z, t) = 2β sech (β(ξ − X)) exp (−i�ξ + iθ) . (6.28)

Ziolkowski and coworkers [2] investigated the MB system without invoking any
approximations, the SIT soliton has been shown to propagate undistorted beyond
the SVEA approximation. In the next chapter, we will do the same procedure by
introducing also randomness and we will look at analytical perturbed soliton solutions
(in the SVEA approximation) and at numerical ab-initio solutions, describing the
general behavior of localized wave-forms in disordered resonant media.
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Chapter 7
Disordered Maxwell-Bloch Equations

As done in the section concerning non resonant nonlinearities, we introduce spatial
disorder to investigate the fascinating regime of interaction between light and matter
when the two competing light localizing mechanisms (nonlinearity and disorder) are
effective on the same spatial scale [1–3]. The nonlinearity allows the propagation
of a localized wave-form (the SIT soliton) while the disorder can induce the spatial
confinement of the wave in characteristic narrow regions of the sample (the Anderson
localization phenomenon). The outgoing response of the electromagnetic field has
an intriguing feature: the interaction of a SIT soliton with Anderson localizations
provides a valuable route for a two-level laser-like action.

7.1 Introduction

In a two-level laser medium at thermal equilibrium, the distribution of the ratio of
atoms in each state is given by the Boltzmann distribution:

N2/N1 = exp
−(E2 − E1)

kB T
, (7.1)

where N1 and N2 are the number of atoms respectively in the lower state with
energy E1 and in the excited state with energy E2, T measures the thermodynamic
temperature and kB is the Boltzmann constant. Since (E2 − E1)/kB T is always
positive, it follows that a population inversion in which N2 is larger than N1 at
the thermal equilibrium is not achievable, specially in optical-frequency regime.
Working with standard lasers, in which the output signal is time-indipendent, prevents
the possibility to produce a two-level population inversion N1 > N2 and obtain
an amplifier. At the best, by assuming to use a sufficiently strong pumping wave,
the population in the excited level becomes equal to that one of the ground state
(N1 = N2), resulting in two-level saturation, when the medium will be transparent.
This implies that for activating a two-level laser emission, there is the need to work
in a transient (out-of-equilibrium) regime in which (7.1) is not longer valid. In fact,
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if a very strong electromagnetic field is applied, it is expected that specific dynamics
of the interaction between the pump wave and active media might induce some
metastable phenomenon of population inversion, being on timescales faster than the
molecular relaxation ones [4–6]. It would be interesting and very useful for laser
physics to create an amplifier directly working between just two-levels to reduce
all the energy losses related to the usage of additional non-radiative decay levels,
otherwise needed to activate the desired population inversion. If it was possible to
transfer in the system a stable population inversion profile, as an ideal two-level
amplifier, and localize it in some resonant cavity, we would have a real two-level
laser. But this idea cannot work in linear steady-state regime in which, as we have
seen, the only manner to achieve a population inversion is by exploiting the fast
non-radiative decays and using more than two-levels.

To do this, it is necessary to invoke some non-linear out-of-equilibrium phenom-
enon in the field of coherent resonant interaction processes of matter and pulsed
radiation: the SIT soliton can travel undisturbed in strongly absorbing media and can
be employed for such a purpose; the SIT represents a traveling population inversion.

To find a way to localize a SIT pulse in the active system in order to create a
resonant cavity, which confines the soliton and generates laser-like action is the goal
of this chapter. The easiest way to localize the light is by using a photonic crystal.
Thanks to the specific properties of this structure, the electromagnetic propagation is
already blocked along fixed directions and the amount of disorder necessary to create
some localized states is limited [7, 8], especially in one-dimension. We consider a
one dimensional structure with disordered spatial regions formed by resonant cavities
that generate overlapping localized modes, the Anderson localizations, resonant with
the input soliton. A system like this is also called a “stochastic resonator”, [9, 10]
and its mechanism is underlying the behavior of random lasers [11–17].

We have considered a one-dimensional photonic crystal with a band gap in a
fixed range, determined by the specific structure of the alternating refractive indexes.
Then, a SIT soliton at frequency within the photonic band gap is generated and is
reflected by the ordered medium. By adding disorder, localized modes near the band
edges of the spectrum are created with tails inside the forbidden gap [18]. The SIT
pulse will becomes resonant with some Anderson localizations in the gap [8, 19] and
a slowing-down of the light is numerically observed and analytically confirmed for
certain characteristics both of the structure that of the pulse. By adding disorder and
increasing the scattering strength, it is possible to observe by the simulations reported
below that the soliton is first slowed and finally trapped in a specific spatial region
of the medium in which the coupling with the spatially localized states is largely
enhanced [20]. Once the soliton is localized in the cavity, laser emission directly by
the two-levels atoms is achieved.

In this chapter, we employ analytical and numerical approaches, the first mak-
ing use of a perturbative analysis of the SIT equations, the second with the support
of massively parallel numerical calculations of the full MB equations. The starting
point of both ways is the use of the Maxwell-Bloch system that describes, as seen
in the previous chapter, the interaction processes between the electromagnetic field
(Maxwell’s equations) and the two-levels medium, whose polarization is modeled
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by the Bloch’s system. First, a random perturbation is added and the role of the dis-
order in the soliton propagation is theoretically analyzed in the perturbative limit. In
later section, we numerically examine both the perturbative and the non-perturbative
regimes by using a parallel Finite Difference Time Domain (FDTD) code [21] and
we look at the radiation-matter dynamics in several scenarios.

7.2 Soliton Perturbation Theory in Resonant Media

We first address the role of a random perturbation [22, 23] on a two-level 2π pulse
by the reduced Maxwell-Bloch (MB) equations.

The MB equations with retarded time ξ = t − z/vg and space z (vg is the velocity
of the SIT pulse) read as

[
∂

∂z
+

(
1

c
− 1

vg

)
∂

∂ξ
− iμ

]
A = k B + S1 (7.2)

∂ξB = AN

2
+ S2 (7.3)

∂ξN = − (
B∗ A + B A∗) + S3, (7.4)

being: A the (slowly-varying) electric field, B the atomic polarization and N
the population invertion, S1,2,3 the perturbations, μ the detuning from resonant
frequency ω0, k = (4πω0 Nd2)/c�, d is the dipole moment, and c the vacuum
light velocity. Let �A = �As + �A1 with �A1 a perturbation and �As = (As, Bs, Ns) the
soliton:

As = uE = 2βE
cosh (w)

Bs = pE = β2

β2 +�2

[
tanh (w)− i�

β

] E
cosh (w)

Ns = n = −1 + 2β2

β2 +�2

1

cosh2 (w)

(7.5)

where w =β (ξ − X) and E = exp{−i�(ξ − X) + iθ}, μ ≡ �k/(β2 + �2).

β, X, �, θ are the amplitude, position, detuning, and the phase of the soliton, being
1/vg = 1/c + k/(2β2 + 2�2). The linearized system is

(
∂z �A1

)
× I1 = L1( �A1)+ �Sp, (7.6)

where I1 = diag(1, 0, 0), �Sp is the perturbation and



64 7 Disordered Maxwell-Bloch Equations

L1

( �A1

)
=

⎛
⎜⎜⎝

iμA1 −
(

1

c
− 1

vg

)
∂ξ A1 + k B1

−∂ξB1 + 1
2 (A1 Ns + As N1)

∂ξN1 + 2�(B∗
s A1 + B∗

1 As)

⎞
⎟⎟⎠ . (7.7)

Taking the SIT pulse resonant with the medium (� = μ = 0), we derive equations
for its parameters by first introducing the auxiliary functions [22] �fX = ∂X �As, �fθ =
∂θ �As, �fβ = ∂β �As and �f� = ∂� �As, and letting

�A1 = �fXδX + �fβδβ + �fθδθ + �f�δ�+ �aR , (7.8)

where δX (z), δθ(z), δβ(z) and δ�(z) are the time-dependent perturbations to soli-
ton parameters and �aR is the radiation term (�aR = 0 hereafter, as it rapidly
spreads and is absorbed. We let �Sp = ([VB(z)p + iVA(z)u] E, 0, 0) , such that
〈VA,B(z)VA,B(z′)〉 = 〈V 2

A,B〉δ(z − z′), where VA,B are the electric field and polar-

ization perturbation. Letting the adjoint functions [22] �̂fθ = i �fβ, �̂fβ = −i �fθ, �̂f� =
−i �fX ,

�̂fX = i �f�X , such that ( �̂fa, �fb) = Naδa,b, with a and b two parame-
ters in (X, �, θ, or β); we have Nθ = Nβ = −1/(3β2) and NX = N� =
−2πβ − 1/(3β). Projecting over �̂fk we get

δ Ẋ = −k/β3δβ + VB(z)/2β
2, δθ̇ = −k/β2δ�+ VA(z) (7.9)

and δβ̇ = δ�̇ = 0, which gives

〈δX (z)2〉 = 〈V 2
B〉z

4β4 . (7.10)

Equation (7.10) describes the random fluctuations of SIT solitons in the limit of
small uncorrelated disorder, and states that they grow linearly with the propagation
distance, and decay when increasing of the soliton power: as the velocity of the soliton
is reduced, its random walking becomes more pronounced. This result describes an
index perturbation with weak index-contrast, as shown below in Figs. 7.2a, 7.3a,
b and c for εr1 and εr2, in the comparison with FDTD simulations. Specifically,
Eq. (7.10) predicts that slower SIT solitons are those mostly affected by disorder,
and hence they are expected to interact more effectively with Anderson states also in
the high index contrast regime. As we numerically show in the following (Figs. 7.2b,
7.3c for εr3, 7.4 and 7.5), as the strength of disorder increases (when the theoretical
analysis reported above is not expected to the valid), this leads to localization and
laser-like action.
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Fig. 7.1 a The simulation region is 200 µm long, the homogeneous two-level medium extends from
7.5 to 50 µm. The disordered two-level medium (εr = 1) extends from 50 to 150 µm; the initial
population is equal to ρ30 = −1 and randomly alternated by a dielectric non-resonant medium with
a different refractive index (ρ30 = 0, εr = 11), as shown in the inset. A snapshot of the SIT pulse
is shown before impinging on the structure; b SIT pulse spectrum for τ = 100 fs (dashed line);
spectrum of a transmitted short pulse without the resonant medium showing the photonic-band
gap (continuous line, γ = 0); transmitted spectrum in absence of resonant medium with γ = 0.5
showing the disorder induced resonances in the forbidden band

7.3 Anderson Localization in Resonant Media

Following Ref. [21], we numerically solve the one-dimensional full MB equations
by a parallel FDTD algorithm and study the evolution of the SIT pulse in a non-
linear disordered SIT medium; we denote as ρ3 the population inversion of the
FDTD equations (corresponding to N in Eq. (7.3) when adopting the rotating wave
approximation) and E is the real-valued electric field, whose slowly-varying complex
envelope is A in (7.2). Note that we use a different notation for the field here because
the FDTD equations are more general that the reduced MB Eqs. (7.2, 7.3) [21].

As sketched in Fig. 7.1, the SIT pulse propagates into the grid from the left
boundary (z = 0), from vacuum (z < 7.5 µm) to a homogeneous SIT medium
(atom density Natoms = 1024 m−3); its carrier frequency is resonant with the medium
ω0 = 2π f0, with f0 = 2 × 1014 s−1, and the pulse duration τ is chosen to satisfy
the 2π area theorem. The relaxation time of the density matrix equations are T1 =
T2 = 1.0 × 10−10 s (T1,2 	 τ ). The initial population inversion in the SIT medium
is ρ30 = −1, while in the dielectric layers ρ30 = 0 and the two-level atoms are not
present. We neglect absorption in the dielectric layers because much smaller than
in the resonant two-level system. The input pulse, with peak E0 = (2�/d)β, enters
the two-level medium, initially set in the ground state ρ30 = −1, and generates the
SIT soliton, which, after propagating in the homogeneous resonant region, interacts
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Fig. 7.2 SIT population inversion ρ3 in a the low-index case (εr = 1.5, γ = 0, analogous results
for γ > 0) and in b the high index case (εr = 11, γ = 1),where surface Anderson states are excited.
The insets show the corresponding E profiles. ρ3 appears periodically modulated as ρ3 = 0 in the
dielectric layers with εr > 1

with the random structure as shown in Fig. 7.1. The total length of the structure is
200 µm, the random active medium extends from 50 to 150 µm, where we add a
fixed degree of disorder by inserting slices of a non absorbing medium with relative
permittivity εr . The disordered structure is created by introducing random layers
in the homogeneous two level medium. The degree of disorder is quantified by a
parameter γ: the relative permittivity distribution has a square-wave profile from 1
to εr (inset in Fig. 7.1a) given by the sign of the function sin(2πz/d + 2πγζ), with
ζ a uniform deviate in [0, 1] extracted in each point of the grid. If γ = 0 an ordered
periodical structure is attained: the dielectric layers are equidistant, with constant
width 200 nm and period 400 nm (d = 400 nm) and displays a band-gap centered
at ω0 overlapped with the spectrum of the SIT soliton (see Fig. 7.1b).

For γ = 0, increasing εr creates a one dimensional band-gap structure; for γ > 0,
increasing εr enforces the effect of disorder, and as shown in Fig. 7.2b in the absence
of the two-level system; the localized states first appears in proximity of the band-
edge of the ordered structure. We use this approach to selectivity create a distribution
of Anderson states with a spectrum superimposed to that of the input SIT pulse. In the
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Fig. 7.3 a SIT pulse trajectories calculated for γ = 0.1, εr = 6, for three different initial pulse
amplitudes E01 = 4.2186 × 109 V/m, E02 = 4E01, E03 = 8E01; b corresponding standard
deviations; c SIT pulse trajectories for three relative permittivities εr1 = 2.5, εr2 = 6, εr3 = 11
when E0 = E01.Note that the curves for εr1,2 are cut (they proceed as straight lines) for comparison
with the case εr3. The results are averaged over 100 realizations of the disorder

following, the described disordered structure is embedded in a two-level system and
SIT solitons are launched in the homogeneous region (z < 50 µm) and then interact
with the random system (z > 50 µm).Non-solitonic pulses are rapidly absorbed and
do not propagate.

Figure 7.2 shows a temporal snapshot of the population inversion distribution in
low index (εr = 1.5, γ = 0) ordered case and in the high index disordered case
(εr = 11, γ = 1): in the former case, the wave propagates with limited distortion
and the inversion population is transported through the medium, in agreement with
what expected by the perturbation theory reported above (analogous results for low
index-contrast εr ∼= 1 are obtained for γ > 0, see Fig. 7.3b, c); in the latter case,
the spatial distribution of the inversion population localizes in proximity of the input
face of the sample. This shows that surface Anderson states are involved in the
process [20]; as we will report in future work multiple SIT pulses can be employed
to enlarge the trapped inversion region.

Panels a, b in Fig. 7.3 show the trajectories and the corresponding standard devi-
ation of the SIT pulse, calculated for different input peak values and for a fixed
strength of disorder. In the low index contrast disordered case, following the previ-
ous theoretical analysis [see Eq. (7.10)], as the initial peak value increases, the soliton
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Fig. 7.4 a Temporal profile of the input SIT-pulse with τ = 100 f s and E0 = 4.2186 × 109 V/m;
b transmitted pulse without disordered structure; c emitted signal for an highly scattering medium
(εr = 11, γ = 1) The horizontal scale in panels b, c is overlapped with panel a

propagates faster in the structure, and the slope in Fig. 7.3a increases and the cor-
responding fluctuations are reduced (Fig. 7.3b). Conversely, slow solitons perform
a more pronounced random walk in the disordered structure. As the index contrast
is increased (beyond the regime of validity of the perturbational approach reported
above), this allows a localization processes as shown for εr3 in Fig. 7.3c displaying
soliton trajectories for different strengths of the disorder (fixed γ and increasing εr ).
In the cases εr1 and εr2 the trajectories proceeds as straight lines, denoting a propa-
gating pulse, conversely for εr3 the trajectory bends and the soliton slows down and
is trapped. In the other words, in the low-index contrast case, the soliton displays
a weakly perturbed motion; as the strength of disorder increases (when increasing
εr with fixed γ), its trajectory becomes more fluctuating, until the wave gets local-
ized; correspondingly the system starts emitting laser-like radiation, as a population
inversion region is formed in correspondence of an optical cavity.

Figure 7.4 shows the output of the device for low and high index contrast for a
fixed γ. For a small εr the input SIT pulse in 4a is transmitted as shown in 4b, where
the pulse exits at about 0.5 ps. On the contrary, for high εr , the pulse is trapped in
the structure and, after a transient, the output (in Fig. 7.4c) corresponds to a laser-like
emission from the the two-level system. Note the difference in the vertical scale: for
Fig. 7.4b all the energy is transmitted, while for Fig. 7.4c, it is partially reflected (see
also Fig. 7.5) and partially trapped in the light-emitting localized states.

In Fig. 7.5a, we show the reflected temporal signal, comprising of the portion of
the SIT pulse, which is not trapped in the disordered structure and is reflected (large
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Fig. 7.5 a Temporal profiles of the reflected electric field in the highly scattering case in Fig.
7.4c, including the input pulse, its reflected fraction, and the subsequent two-level laser emission;
b corresponding spectrum (continuous line) compared with the input SIT pulse (dashed line)

peak around 0.3 ps), and the subsequent emission from the population inversion
trapped in the disorder medium; its spectrum in 5b displays characteristic peaks
signaling the excited Anderson localizations with frequencies in the forbidden gap.
The energy trapped in the localized modes decay with their characteristic lifetimes
(of the order of 0.5 ps).

In this chapter, we have generalized the results of the previous non-resonant
section to a resonant disordered system. We investigated the interaction of a SIT
soliton (nonlinear localized wave-form) with Anderson localizations (light localiza-
tion due to disorder) through theory and parallel Maxwell-Bloch simulations. We
have shown that an increasing scattering strength of disorder progressively slows
down the soliton, up to blocking the pulse in the random system. This process is
accompanied by the excitation of modes in a disordered cavity in the presence of
population inversion. This results into a two-level laser-like action. The interplay
between various forms of light localizations, namely solitons and Anderson states,
can hence lead to novel processes of light-matter interactions in complex systems.
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Chapter 8
Glassy Behavior of Laser

The thesis so far has treated the relative feedback between nonlinearity and disorder
in the radiation-matter interaction processes by using a perturbative approach for
what concerns the theoretical analysis. Furthermore, we dealt with a limited number
of localizations. In the Chap. 7, for example, we studied the interaction of a single
localized wave-form (just one soliton) with the surface Anderson localizations. We
have treated both nonlinearity that disorder as a perturbation. One can argue if is
it possible to study the emerging phenomena by treating nonlinearity and disorder
on the same level. What happens if we simultaneously consider the light-matter
interaction when a large number of localizations are taken into account? Is it possible
to employ some method dealing with physical systems with multiple bodies? In order
to apply the mean-field theories for many bodies systems, we treat with a standard
Random Laser ( RL). Later we discuss with details the physical features of this kind of
laser, for now it is enough to know that a RL is an optical device sustaining laser action
in a disordered medium. This system presents a large number of electromagnetic
modes with overlapping resonances. So the RL displays all the features we are
looking for: many disorderly distributed states interacting in a nonlinear manner. We
are dealing with a complex system and we need an analytical framework able to treat
the multi bodies problem. Through some approximations, it is possible to express
the interacting light in the disordered resonant system via very general equations,
relating to a mean-field spin-glass model [1]. The Spin-Glass theory is an approach
to obtain the dynamical and thermodynamical behaviors of a complex system. We
solve our model with the replica method, a subtle trick for which the physical system
is replicated n-times in order to calculate the partition function and all the physical
observables. By operating on the degree of disorder and nonlinearity (through the
energy furnished to the system), we are able to obtain the phase-diagram of the RL,
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describing the very interesting complex landscape of behavior of the nonlinear waves
in random systems.

8.1 Introduction

The number of different disciplines converging in the field of disordered lasers is
impressive; random lasers embrace photonics [2], wave-transport and localization
[3–6], spin-glass theory [7], random-matrices [8], soft- and bio-matter [9–11], non-
linear and quantum physics [12–18]. Notwithstanding the several theoretical and
experimental investigations [19, 2], many are the open issues and the development
of the field cannot be compared with that of standard lasers (SL), even if the first
theoretical prediction of RL [20] is dated not very far from the first theoretical work
on SL [21]. In this respect, a comprehensive theory of stimulated emission able to
range from ordered to disordered lasers will be certainly an important step. This the-
ory should be able to parametrize the strength of disorder and should predict specific
regimes attainable in SL and RL. The literature dealing with the two kinds of lasers is
still largely disjoint. Furthermore, nano-structured lasers unavoidably display some
degree of disorder due to fabrication tolerances; hence, understanding the effect of
randomness in the light emission has important practical relevance. The main ques-
tion addressed in this chapter is: consider a SL operating in mode-locking (ML)
and progressively increase the amount of structural disorder, at which value should
one expect that the mode-locking is frustrated? Which kind of states are expected?
Through the spin-glass theory [1], we derive a phase-diagram unveiling the interplay
between randomness and nonlinearity and identify different phases characterized by
not-vanishing complexity, which measures the number of energetically equivalent
ML states. Previous theoretical work has dealt with the two regimes: the ordered
case where the ML is demonstrated to be given by a ferromagnetic-like transition
[22–24] and the completely disordered limit [7]. The former case being relevant
to fiber or dye/solid-state standard passive ML [25]; the latter being more oriented
on stimulated emission in the presence of multiple scattering [19, 26]. Our analysis
unifies the scenario and is based on the following steps: (1) perform a statistical aver-
age of the disordered free-energy of the system; (2) identify the order parameters;
(3) evaluate the free-energy; (4) build the phase-diagram; (5) compute the complexity.

Our main finding in this chapter can be summarized as follows: the self-starting
ML process maintains its standard “ferromagnetic” character (i.e. an abrupt transi-
tion from a continuous wave operation to a pulsed regime) as far as the structural
fluctuations are sensitively smaller than the average value of the mode coupling coef-
ficients. Conversely, for large disorder the transition acquires a glassy character and
the complexity is not vanishing; this implies that there exists a large number of ML
states distributed in a given free energy interval and large fluctuations from pulse to
pulse are expected. Also an intermediate regime occurs: a random ferromagnet, i.e.
ferromagnetic behavior with a non-zero complexity.
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8.2 The Model

We start from the Hamiltonian for the coupled mode equations in standard
lasers [27],

H =
∑

m

γmama∗
m +

∑

s−p+q−r=0

γspqr asa∗
pala

∗
m , (8.1)

for the amplitudes am for the cavity modes. In absence of disorder γspqr = γ, that
is the difference between the saturable absorption and the gain constants. For self-
starting passive ML γ < 0. Without loss of generality, we assume that the spatial
distribution of the gain medium is randomized. Correspondingly γspqr is taken as a
random variable with mean γ and variance measuring the strength of disorder. The
linear term in Eq. (8.1) is diagonal because of the mode-orthogonality (not valid for
open systems). Letting am = Am exp(iφm), and taking the mode-amplitude Am as
quenched, under general hypotheses [27, 28] and a straightforward rescaling, the
mode-phase dynamics of a RL can be cast into a dynamical problem with a random
Hamiltonian

HJ [φ] = −
N∑

i1<i2, j1<j2

i1<j1

Jij cos(φi1 + φi2 − φ j1 − φ j2) (8.2)

where N is the number of electromagnetic modes, φi are their phases, i = (i1, i2)

and the quenched couplings have a Gaussian distribution with Jij = J0/N 3 and

(Jij − Jij)2 = σ2
J /N 3. The overbar denotes the average over the disorder, which is

quantified by the ratio RJ ≡ σJ/J0. The limit RJ → 0 (RJ → ∞) corresponds to
the ordered (disordered) case. The normalized pumping threshold for ML is P =√
β J0 =

√
β̄/RJ , where β̄ = βσJ and β is the inverse temperature [28]. In our

units, when RJ → 0, P = Pord ∼= 3.339 (see Fig. 8.1), in agreement with the
ordered case [7]1; as detailed below, the deviation from this value quantifies an
increase of the standard ML threshold Pord due to disorder. The specific value for
Pord will depend on the class of lasers under consideration (e.g. a fiber loop laser
or a random laser with paint pigments), but the trend of the passive ML threshold
with the strength of disorder RJ in Fig. 8.1 (FM/PM transition line, see below) has
a universal character. P contains J0: for a fixed disorder the threshold will depend
on the nonlinear mode-coupling.

1 A factor of 8 has to be considered because of the over-counting of terms in Ref. [7].
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Fig. 8.1 Phase diagram in
the plane (RJ ,P). Three
phases are found: PM (low
P), FM (high P /weak
disorder) and SG (high P
/strong disorder). The full
lines are thermodynamic
transitions, the dashed line
represents the dynamic
PM/SG transition. The
transition line to the FM
phase (both from PM and
from SG) are obtained using
the RS approximation. The
circles are exact 1 RSB FM
solutions. In the insets
complexity vs. free energy
curves are plotted in the SG
phase (right inset, at
β̄ = 9.9; in the main plot:
P = √

9.9/RJ , tiny-dashed
line) and in the FM phase
next to the SG/FM transition
(left inset, at
RJ = 0.28, P = 5.92; full
circle in the main plot). The
latter is two order of
magnitude smaller
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8.3 Averaged Free Energy

The average free energy is calculated with the replica trick [1]. By considering n
copies of the system, Eq. (8.2), the free energy averaged over the disorder can be
computed as

β� = − 1

N
log Z J = − 1

N
lim
n→0

Zn
J − 1

n
. (8.3)

The thus replicated partition function, Zn
J , takes the form

Zn
J ∝

∫
DX exp [−nN G(X)] ∼ e−nN G(XSP) (8.4)

where X denotes all the order parameters and the integral is evaluated by means of the
saddle point approximation. Spin-glass systems described by more-than-two-body
interactions, cf. Eq. (8.2), are known to have low temperature phases provided by a
“one step” Replica Symmetry Breaking (1RSB) Ansatz [29, 30]. Under this Ansatz,
taking the n → 0 limit, β� reads
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β� = − β̄RJ

8
|m̃|4 − β̄2

32

[
1 − (1 − m)

(
|q1|4 + |r1|4

)

− m
(
|q0|4 + |r0|4

)
+ |rd |2

]
− 	

[1 − m

2

(
λ̄1q1 + μ̄1r1

)

+ m

2

(
λ̄0q0 + μ̄0r0

) − μ̄drd − ν̄m̃
]

+ λR
1

2

− 1

m

∫
D[0] log

∫
D[1]

[∫ 2π

0
dφ exp L(φ; 0, 1)

]m

(8.5)

where 0 = {x0, ζ
R
0 , ζ

I
0 }, 1 = {x1, ζ

R
1 , ζ

I
1 }, D[a] is the product of three Normal

distributions and

L(φ; 0, 1) ≡	
{

eiφ
[
ζ̄1

√
�λR − |�μ| + ζ̄0

√
λR

0 − |μ0|

+ x1
√

2�μ̄+ x0
√

2μ̄0 + ν̄
]

+ e2iφ
(
μ̄d − μ̄1

2

)}
(8.6)

with �λ = λ1 − λ0, �μ = μ1 − μ0. We define the following averages over the
action eL, cf. Eq. (8.6): cL ≡ 〈cosφ〉L, sL ≡ 〈sin φ〉L. The values of λ0,1,μ0,1,μd

and ν are

λ0,1 = β̄2

4

(
q0,1

)3 ; μ0,1 = β̄2

4
|r0,1|2r0,1 (8.7)

μd = β̄2

8
|rd |2rd; ν = β̄RJ

2
|m̃|2m̃ (8.8)

The remaining parameters are obtained by solving the self-consistency equations:

q1 = 〈〈c2
L〉m〉0 + 〈〈s2

L〉m〉0 (8.9)

q0 = 〈〈cL〉2
m〉0 + 〈〈sL〉2

m〉0 (8.10)

r1 = 〈〈c2
L〉m〉0 − 〈〈s2

L〉m〉0 + 2i〈〈cLsL〉m〉0 (8.11)

r0 = 〈〈cL〉2
m〉0 − 〈〈sL〉2

m〉0 + 2i〈〈cL〉m〉0〈〈sL〉m〉0 (8.12)

rd = 〈〈〈e2iŒ〉L〉m〉0; m̃ = 〈〈〈eiŒ〉L〉m〉0 (8.13)

where

〈(. . .)〉m ≡
∫ D[1](. . .)

[∫ 2π
0 dφeL(φ;0,1)

]m

∫ D[1]
[∫ 2π

0 dφeL(φ;0,1)
]m (8.14)
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〈(. . .)〉0 ≡
∫

D[0](. . .) (8.15)

The overlap parameters q0,1 are real-valued, whereas r0,1, rd and m̃ are complex.
“One step” parameters X0,1 (X = q, r) enter with a probability distribution that can
be parametrized by the replica symmetry breaking parameter m: P(X) = mδ(X −
X0)+ (1 − m)δ(X − X1).

8.4 Complexity

The resulting ten independent parameters that can be evaluated by solving Eqs. (8.9)–
(8.13) must be combined with a further equation for the parameter m. This is linked
to the expression for the complexity of the system, i.e. the average logarithm of the
number of states of the system present at a given free energy level f. The complex-
ity can be computed, e.g. as the Legendre transform of the replicated free energy,
Eq. (8.5):

� = min
m

[−βm�(m)+ βm f ] = βm2 ∂�

∂m

=3

4
β2m2

(
|q1|4 + |r1|4 − |q0|4 − |r0|4

)

+
∫

D[0] log
∫

D[1]
[∫ 2π

0
dφ exp L(φ; 0, 1)

]m

− m
∫

D[0]〈log
∫ 2π

0
dφ exp L(φ; 0, 1)〉m (8.16)

where the single state free energy f = ∂(m�)/∂m is conjugated to m. Since the
above expression is proportional to ∂�/∂m, equating � = 0 provides the missing
equation to determine the order parameters values.

8.5 The Phase Diagram

By varying the normalized pumping rate P and the degree of disorder RJ , we find
three different phases, as shown in Fig. 8.1. For low P and RJ the only phase
present is completely disordered: all order parameters are zero and we have a “para-
magnet” (PM); the laser emission is expected to be given by a noisy continuous
wave emission, and all the mode-phases are uncorrelated. The PM exists every-
where in the whole plane (RJ , P), becoming thermodynamically sub-dominant as
P and RJ increase. For large disorder, as P grows, a discontinuous transition occurs
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Fig. 8.2 Discontinuity of the
order parameters at the
transition point in P. Left
jump in q1 at the PM/SG
(RJ = 4.0). Right
discontinuous m̃, r, q, rd at
the PM/FM transition
(RJ = 0.26). In the FM
phase the thermodynamics is
computed in the RS
approximation
(q1 = q0 = q, r1 = r0 = r)
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from the PM to a spin-glass (SG) phase in which the phases φ are frozen at given
values, though not displaying any ordered pattern in space. First, along the line

Pd =
√
β̄d/RJ (β̄d = 6.322), a dynamic transition occurs. Indeed, the lifetime of

metastable states is infinite in the mean-field model and the dynamics gets stuck in the
highest lying excited states. The thermodynamic state is, however, still PM. Across

the full line (cf. Fig. 8.1) Ps =
√
β̄s/RJ (β̄s = 7.094) a true thermodynamic phase

transition occurs. The order parameter q1 discontinuously jumps at the transition to a
non-zero value q1 > q0 = 0 and m̃ = r0 = r1 = rd = 0 (see Fig. 8.2). The SG phase
exists for any value of RJ and β̄ > β̄s . However, for small RJ , a random ferromag-
netic (FM) phase turns out to dominate over the SG and the PM phases. The transi-
tion line PM/FM is the standard passive ML threshold (see e.g. [27, 31]) and from
Fig. 8.1 we see that it takes place at growing P for increasing RJ .

To precisely describe the FM phase in the 1RSB Ansatz we have to solve eleven
coupled integral equations [Eqs. (8.9)–(8.13) and � = 0, cf. Eq. (8.16)]. In the
region where this FM1rsb phase is thermodynamically dominant, however, the PM
and the SG solutions also satisfy the same set of equations. Starting the iterative reso-
lution with random initial conditions, determining the SG/FM1rsb and the PM/FM1rsb
transition lines becomes numerically very demanding. An approximation is obtained
by considering the Replica Symmetric (RS) solution for the FM phase (FMrs). This
reduces the number of independent parameters to seven (q1 = q0, r R,I

1 = r R,I
0 , r R,I

d
and m̃ R,I ). The corresponding transition line is shown in Fig. 8.1. The exact FM
phase is provided by a 1RSB solution and some sampled points are represented by
the circles in the phase diagram.

The 1RSB ansatz also enables to determine the not-vanishing extensive complex-
ity, which signals the presence of a large quantity of excited states with respect to
ground states. This also implies the occurrence of dynamic transitions besides the
thermodynamic one, as anticipated. These take place between PM and SG, where
the state structure always displays a non-trivial �( f ), and in the FM phase, though
the magnitude of � turns out to be smaller. In the left inset of Fig. 8.1 we show,
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e.g. �( f ) in the FM1RSB phase at (RJ ,P) = (0.28, 5.92). This has to be compared
with the SG complexity at the same temperature that is sensitively larger and does
not depend on the “disorder/order ratio”: the maximum complexity drops of about
two orders of magnitude at the SG/FM1rsb transition, thus unveiling a corresponding
high to low complexity transition.

In summary, in this chapter, we have seen how the nonlinearity-disorder interplay
can be analytically studied, by treating both on the same level of importance. By using
the spin-glass theory, we are able to analytically include in a single treatment the
underlying physics of the laser action phenomena when an increasing degree of disor-
der is present. We can obtain the phase diagram for these optical devices, displaying
three thermodynamic phases: the standard mode-locked phase (ferromagnetic-like),
the paramagnetic phase (continuos wave emission) and the glassy mode-locking
phases. The phase diagram permits a complete overview of the laser physics and
predicts the mode-locking-like transition for the random laser (the glassy phase).

Our results can be experimentally tested in a variety of different physical systems,
from laser powders to standard laser cavities, and are relevant for any disordered non-
linear interaction process. The ML dynamics is expected to be strongly affected by
the existence of several valleys in the free energy (i.e. a not vanishing complexity).
In this respect, lasing in disordered system is an important framework for investigat-
ing out of equilibrium dynamical systems, including quantum effects.
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Chapter 9
The Granular Laser

In the last chapter, we have seen how to analytically treat the interplay between non-
linearity and disorder in the framework of the spin glass theory. The emerging results
show how the increasing degree of disorder can drastically change the underlying
thermodynamics by switching the optical device from a standard laser to a random
one while controlling the furnished energy permits to observe the nonlinear emerg-
ing phenomena, like the mode-locked transition. By an experimental point of view,
the latter mechanism is much simpler to control and hence the related literature is
much wider than the former one. Here, we want to visually demonstrate through a
set of experiments that the random laser emission depends not only on the furnished
energy, the nonlinear processes, but primarily on the structural informations, that is
the degree of disorder inside. In order to study how random laser features are affected
and controlled by the state of the motion of the sample, and then on the disordered
considered configuration, we have to choose the more appropriate physical system.
Here, we use shaken granular materials.

9.1 Introduction

In random lasers (RL) stimulated emission is achieved by disorder-induced light
scattering [1]. RL were reported in colloidal systems, composed by small particles
suspended in thermal equilibrium in a solution, or in materials exhibiting a fixed
disorder, achieved, e.g. by porous systems or nano-fabrication. RL in shaked grains
were not reported. Granular materials (sands, powders, seeds, cements, etc.) [2–4] are
an extensively studied branch of statistical mechanics, with several important appli-
cations in chemistry or engineering. Phenomena like the occurrence of spontaneous
onset of convection, segregation of mixtures, emergence of patterns and granular
waves, non-equilibrium stationary states, glassy relaxations have been considered
by several authors, also driven by relevant industrial and technological applications
[2–4]. These very simple systems, composed by agglomerations of mesoscopic par-
ticles that, in specific regimes, are characterized by a large number of metastable
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states and an extreme sensitivity (e.g. in the transmission of sound) on the micro-
scopic arrangement of grains. Their properties are not substantially affected by ther-
mal phenomena, but can be controlled by using mechanical solicitations, as shear
and shaking, being one of the paradigms of the statistical mechanics of disordered
system and still lacking of general and universal theoretical descriptions. Granular
gases [5], i.e. gases of massive particles in rapid movement undergoing inelastic col-
lisions, are obtained by putting under mechanical oscillation a material composed
by grains. In the presence of a driving solicitation, a gravity-sedimented ensemble
of grains switches, above a critical mechanical energy, from a solid-like state to a
gaseous one, whose essential feature is the strong enhancement of fluctuations and
the non-equilibrium character [6, 7]: even in such a dilute configuration, regions
with very high density may appear. Such a state can only be maintained by continu-
ously furnishing mechanical energy to system. This circumstance may have relevant
implications when considering the RL, which happens when energy is furnished to
the system not only mechanically but also optically by employing a light-emitting
active medium, as described below. The specific and characteristic arrangements of
the shaken grains not only can alter the RL features, but, in the gaseous-like phase,
may also lead to a novel form of laser emission in a dynamical random structure,
which can be controlled by acting on the external mechanical solicitation. Such a sit-
uation is not achievable in formerly considered RL; indeed, in the fixed disorder case
[1], the specific structure cannot be externally changed, while the formerly adopted
colloidal random lasers were realized by mixing an active medium (laser dyes as Rho-
damineB) [8] and powders of dielectric high-index nano-particles, [9–12], which are
too light to exhibit a switchable granular behavior, or were not considered under
shaking. Various authors also investigated RL by metallic nano-particles [13–16],
however, so far, only particles with diameters of the order of tens of nanometers
were considered, which, as in the cases discussed above, do not exhibit granular
behavior, while not being substantially affected by gravity. In these systems, thermal
equilibrium largely limits the kind of observable fluctuations with respect to out-of-
equilibrium granulars. In this chapter, we consider a granular system composed by
metallic grains with millimeter size, able to macroscopically change its structural
features when the status of motion is altered. We study how the dynamic structural
phases affect the RL emission. As we will see, we find that an alteration of the state
of motion of the grains forming the disordered laser cavity dramatically changes
the laser emission, and sustain novel and competitive forms of RL. We first do an
overview of random lasers, then we show the experimental setup and characterize a
typical diffusive random laser in order to give a reference system. Finally, we present
the experiments on the granular laser and we relate our conclusions.

9.2 Introduction to Random Laser

The term LASER is the acronym for Light Amplification by Stimulated Emission of
Radiation. The Laser emission is hence the result of a piloted process of interaction
between radiation and matter. The pivotal units of a laser are two, mutually needful:
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(a)

(b)

Fig. 9.1 a A schematic example of standard laser. The positive feedback mechanism for light
amplification is supplied by an external closed resonant cavity. b The active medium contains the
scattering elements that provide the internal and spatially distributed positive feedback

active medium and positive feedback. The active medium supports the amplifica-
tion of light through stimulated emission thanks to the optical feedback element that
partially traps the traveling light and forces it to repeatedly cross the active region.
The positive feedback can be created externally to the active medium, and corre-
spondingly the resonant cavity is closed, on the contrary the cavity can be open
and the feedback is internally distributed, e.g. by optical scattering. The working
principle of the first one is by exploiting the first order radiation-matter interaction,
that is the emission/absorption processes and prevent, as much as possible, the second
order term, the scattering events. In the second kind of laser, instead, the use of an
open cavity implies to mix together optical feedback and optical gain (see Fig. 9.1).
We need to use a “second-order” medium in which the scattering process supplies
the positive feedback. It is evident that, in this case, the losses are higher and the
laser threshold rises due to the pronounced light diffusion. In the first kind of laser,
the amplifying element is homogeneous as much as possible to avoid light scattering
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processes, we want a “first-order” medium 1; this is commonly referred to as stan-
dard laser. Usually, the amplifying medium is placed between two reflecting (one
partially) mirrors, which forms a closed optical cavity (in the specific example of
Fig. 9.1, it is a Fabry-Perot cavity). The light travels back and forth between the
mirrors and the longitudinal modes sustained by the cavity are amplified in the gain
region. The constructive interference condition, kL +φ1+φ2 = 2πn, determines the
resonance frequencies. Hence, the frequency and the output direction of the beam are
determined by the cavity geometry, being L the length of the resonator and φ1, φ2 the
phases due to reflection by the mirrors. Once the optical gain of the resonant modes
exceeds their cavity losses, the laser emission is achieved.

In the second type of laser, the scattering processes are usually determined by
inserting disorder into the active region, the resulting device is commonly referred
to as a random laser [1, 17, 18]. Light diffusion with gain was initially studied by
Letokhov [19]. In fact, Letokhov was the first to introduce the idea of a stochastic
resonator: an open cavity containing a multiple scattering medium. Depending on the
typology of scatters, the cavity can support a large number of overlapping modes in a
specific frequency range. If gain is supplied to the system, this nonresonant feedback
can sustain laser-like action. The light is both amplified and multiply scattered. We
could say, for sake of synthesis, that the random lasing process is an instability of
the amplification of light, when this is enhanced above a critical value, and occuring
in the presence of adequate multiple scattering events in a disordered medium. In a
nutshell, the light, in order to be amplified inside an open disordered cavity, has to
be retained as long as the laser threshold is reached. In practice, there exist two ways
to realize this condition: to induce light to make a long random walk through the
sample (the diffusive random laser) or to create closed loops between scatterers in
which light can be trapped for long time, determined to the gain length (the localized
random laser). The way the disordered sample works, depends on the relative scale
of randomness and sample size with respect to the wavelength. This can be explained
by defining some relevant length scales:

1. Amplification: in order to describe the amplification processes through stimulated
emission, two related lengths are defined; the gain length lg and the amplification
length lamp. The first one is the path length necessary for the light to be amplified
in intensity by a factor e; lamp is the average value of lg on all the possible gain
paths between scatterers. In an ordered medium, lamp equals lg .

2. Scattering: in a random medium, one of the most important physical quantities
is the strength of disorder. The scattering mean free path ls gives the average
distance between two consecutive scattering events. The transport mean free path
lt is the average distance over which the propagation direction of the incident
light is completely randomized.

When L � lt � λ, the scattering processes can be treated within the diffu-
sive approximation; here L is the size of the sample and λ is the wavelength. The

1 We use “first order” to denote the fact that scattering is neglected, indeed scattering events in
the light-matter interaction Hamiltonian appears at second-order.
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amplification length can be written as lamp = √
Dt, where D is the diffusion coef-

ficient and t is the time. In a three-dimensional (3D) system, D = vlt/3 and

lamp =
√

lt lg
3 , where v is the velocity of the light in the medium. The “photon-

particles” move in the sample by making a sort of Brownion motion. The light
propagation can be described by introducing a gain term in the diffusive equation
[20]:

∂ I (r, t)

∂t
= D∇2 I (r, t)+ S(r, t)− τi I (r, t), (9.1)

where I (r, t) is the diffusive light intensity, S is the source of diffusing light and
τi is the characteristic time over which the diffusing light is absorbed by the sample.
This is the reason for which this kind of laser is also called “random laser with
diffusive feedback” [8, 21, 22]. Every time the light is scattered, is also amplified.
So, after N scattering events, the light leaves the samples, having covered a mean
distance d = ls × N . The amount of amplification increases with d. So the overall
gain depends linearly by the covered distance d that is dependent on the size L of the
sample. Hence, in a 3D system, the gain is linearly dependent on the total volume
of the sample. To the other side, the losses are determined by the flux of energy
leaking out the sample boundaries; it can be easily shown that they depend linearly
on the area of the boundary surface. As a result, a critical volume exists such that
the overall gain exceeds the losses [19]. The system becomes hence “unstable” and
starts emitting coherent radiation.

The condition for the second kind of random lasers is for ke × ls ∼ 1, where ke

is the effective wave-vector of the light into the sample. As the strength of disorder
increases, the mean free path becomes shorter, and the scatterers lye on distances
comparable with the wavelength. In very strong scattering regime, the light is trapped
inside the sample. In fact, when the scatterers are closer than one wavelength, each
scattering events cannot be considered independent with of the others (as it hap-
pens in the diffusive regime). In this scenario, the light beam keeps memory of its
phase during scattering and there exists a not vanishing probability that the multi-
ply scattered waves propagate in opposite directions along the same closed loops
(see Fig. 9.2). This leads the counter-propagating waves to interfere constructively
with each other in such a kind of cavity. The resonance modes, sustained by these
closed paths, promote the localization of light. In fact, by adding enough gain to
overcome the losses through the boundaries of the localized resonance zones, it is
possible to observe the presence of narrow intense peaks in random lasing spectra
[23]. In the localized regime, the eigen-modes, coupled with the closed paths, decay
exponentially in space on a characteristic distance ξ, which measures the spatial
extension of the region in which the light is trapped and gives the size of the resonant
micro-cavities. This kind of localized modes are often referred to as the Anderson
localization of light [24].

In summary, by increasing the strength of disorder beyond a threshold related to
the scattering length, the probability of looped paths inside the sample increases,
the interference events become predominant, a transition from a diffusive regime, in
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Fig. 9.2 Closed random light path. The light can be trapped inside the sample and can constructively
interfere, resulting in localized lasing emission once the gain is supplied

which the light spreads over the whole sample, to a localized one can be observed.
The latter resonant phenomenon gives name to this second class of random lasers,
i.e. “coherent random lasers”.

9.3 Experimental Setup and Procedures

In order to implement our ideas about a granular laser that, due to its specific nature,
is able to change its emission spectrum with the state of motion, we have employed an
experimental setup, sketched in Fig. 9.3 and explained with details in the following.

The basic idea of our experimental study is as follows. The random laser is a
photonic device in which the positive feedback for coherent emission is enhanced
by diffusion (“incoherent” random laser) and strong scattering (“coherent” random
laser) of the incident light, related to the presence of disordered scatterers in the
active medium. The emitted spectrum depends on the strength of the disorder. If we
find a way to affect the disorder configuration, we can change the scattering mean
free path of light inside the sample. By varying the path length of the incident light
with respect to the wavelength, it is feasible to switch from a diffusive random laser
to a localized one. The considered way to obtain a sample with controllable disorder
is to use a granular material subjected to an external applied force.

In this section, we discuss the experimental setup and the used procedures.
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Fig. 9.3 Scheme of the experimental setup

In the first subsection, we describe the optical arrangement for the static analysis
(continuous line in Fig. 9.3) with the continuous laser source. In the second one, we
will analyze the experimental setup for the light emission study with the pulsed laser
(dashed line in Fig. 9.3).

9.3.1 Continuous Wave Analysis

Here, the leading purpose is to draw a “phase-diagram” for the granular material
furnishing the status of aggregation of the grains when an external force is applied.
So, we measure the transmitted power of an incident continuous light beam by
varying the amplitude of oscillations applied to the sample and the height of the
input light with respect to the bottom vibrating plate. In this way, it is possible to
obtain information about the internal structure and the collective arrangement of the
grains (and hence about the density) in the couette, when it is still or put into motion.

We have used a continuous laser source (a IR 1,064 nm Laser, L2 in Fig. 9.3),
the input beam is steered across the sample by using 45◦ dielectric mirrors. The sam-
ple is put on a vertically vibrating “plate”, obtained by a sound woofer, such that we
can vary the amplitude and the frequency of the oscillations through an audio ampli-
fier. We have chosen a woofer that allows to generate the low acoustic frequencies,
a range of values in which the granular response is maximized. All the structure is
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Fig. 9.4 Scheme of granular shaking device. The vertical translational stage is motorized and
controlled by software

placed on a vertical motorized translation stage having a 25 mm translational range
(see Fig. 9.4).

The transmitted intensity is detected by an optical power meter detector that is
placed beyond the sample (Fig. 9.3). We control by software the optical instruments
by using a Matlab� Routine through which we can synchronously move the trans-
lational stage with the sound sent to the loudspeaker, by driving the bottom basis of
the sample by using a sinusoidal acoustic signal. For the static analysis, we follow
three “protocols” for each sample.

Protocol 0—Measurement of the height of the granular

Once the sample is put in the couette, the first analysis must furnish the precise height
of the granular with respect to the basis of the couette. In fact, as we will see, this
is a fundamental information for what concerns the “phase-diagram” of the granular
sample. This is a measure taken when the sample is still. We fix the height of the laser
beam at the basis of the couette when the vertical translation stage is at the ending
point (25 mm outstretched). We record the transmitted power and then, we decrease
of 1 mm the height of the stage and hence, respectively, the laser beam advances of
1 mm in the lower zone of the sample. We correspondingly record the power. In this
way, the sample is vertically scanned; when the light beats the granular medium, no
transmitted power is detected, conversely as the last layer of grains is surpassed, the
incident light is entirely transmitted. The transition between these two regimes is
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Fig. 9.5 The transmitted
power from the ZnO powder
versus the height of the beam
laser with respect to the
bottom of the solution
sample
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almost discontinuous, the smoothing depending on the size of the laser spot which
is 3 mm 2 (an example is given in Fig. 9.5).

Protocol 1—Measurement of the resonance frequency

We find the frequency at which, once in motion, the sample can maximally oscillate,
for a given amplitude in order to access the highest dynamic range in our setup. This
is apparently a measure that depends only on the instrumentation that we use to send
an oscillating force to the sample (see Fig. 9.4). Whenever we change the sample, we
repeat this protocol in order to guarantee that the response function of the acoustic
apparatus is always the same.

This kind of measure is as follows. We fix the height of the laser beam approxi-
mately just above the top layer of the granular particles. This is the zone of maximum
sensitivity to an external solicitation, because it is the one with fewer spatial con-
straints. We start at rest, we record the transmitted power. Then we send, through
a Matlab� Routine, a sinusoidal signal y = a sin( 2π f x

Fs
), where Fs = 8,192 Hz is

the sample frequency, f is the signal frequency and x = 1 : nx is a time-vector with
nx = T Fs, T being the overall sound duration. We make a frequency scan ranging
from 10 to 100 Hz. For what concerns the amplitude of the signal, values of |y|
are in the normalized range [0, 1], as determined by the used sound-card of the pc.
The amplitude is kept low, at 0.1, in order to better distinguish the resonance zone.
In fact, for small stimulations, the top layer of the sample will vibrate slightly and
the transmitted signal remains almost unperturbed. When we achieve the resonance
zone, the top layer is significantly moved. The superficial grains will jump on the
surface, intercepting the passing laser beam and blocking it. Correspondingly, the
transmitted power is affected.

Once we increase the frequency and go over the resonance zone, the oscilla-
tions return small and the signal is again transmitted. So, by plotting the transmitted
power versus frequency, the resonance frequency is found (in Fig. 9.11 we show an
example).

2 The laser spot is measured by a scanning blade technique
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Protocol 2—The “phase-diagram” of the granular

Once known the height of the sample in the couette and the resonance frequency,
so we can determine what we indicate as the “phase-diagram” of the sample. In the
protocol 2, we do two scanning loops in the height and in the oscillation amplitude.
We fix the frequency at the resonance value, approximately at 70 Hz. We send the
sound with several values of amplitudes, chosen in the range [0, 1]. For every fixed
value of amplitude, we make a vertical scan of the couette and record the transmitted
power for each height. In this way, we will have several curves of the transmitted
power versus height at different oscillation amplitudes. By studying the trend of
the superimposed curves, it is possible to find those values of amplitude for which
the sample switches in behavior from a blocked or frozen state to a gaseous one.
In fact, when the vibrating force is low, only the top layers can vibrate. The transmitted
power has a similar trend with respect to the static case, with almost discontinuous
transition by noise to the input power value, in correspondence of the height of the
sample in the couette (as in Fig. 9.12, see the curves at small oscillation amplitudes).
When the sound amplitude grows and the oscillations become larger, also the deeper
grains (those at the bottom of the couette) can move by following the acoustic signal.
The top density reduces, the grains are spread in a wider volume and the chances for
the input beam to go through the couette decrease because the probability to intercept
a grain becomes larger. The transition between the on/off values becomes smoother
and smoother (as in Fig. 9.12, see the curves at larger amplitudes). There exists a
threshold in the amplitude value, for which the grains can explore all the volume of
the couette and the input beam is stopped at all heights. Here we are in the gaseous
phase (in Fig. 9.12, the curves for a > 0.1.)

9.3.2 Laser Emission Analysis

The aim of the laser emission analysis is to explore how the random laser spectra
by a granular system can change when an external vibrating force is applied on the
sample. We expect that an alteration of the state of motion of the grains forming the
disordered laser cavity dramatically changes the optical properties of the sample.
In fact, the vibration does not only change the configuration of disorder, but, modi-
fying the internal arrangement of the grains on larger volumes, increases the mean
free path and affects the diffusion of light inside with respect to the case in which
the grains are deposited and tightly packed. But, if, on the one hand, the motion can
promote the diffusive random lasers, because light can more easily enter the sample,
on the other hand it is possible that, as the amplitude of the oscillation is increased,
the grain distance increases and cavities can be created. In this regime, we expect
something similar to the localized random laser.

The experimental setup is sketched in (Fig. 9.3), the turquoise dashed path identi-
fies the pulsed light beam. The sample on the woofer is optically pumped by using a
frequency-doubled output of a pulsed Q-switched Nd:YAG laser (λ = 532 nm) with
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a 10 Hz repetition rate (the pulse duration is 7 ns). The emitted radiation from the
input face is collected by a diffuser and sent to a spectrograph with an electrically
cooled CCD array detector (operating temperature −70◦C.) The energy of the laser
beam is controlled by acting on the flash lamp delay of the laser and by using non-
reflective neutral filters. A measure of the incident laser light is obtained by using a
broadband no-polarizing 50% beam splitter that splits the beam in two branches, one
on the sample and the other one on the energy meter. We use high power dielectric
mirrors optimized for 532 nm wavelength in order to steer the beam in the setup.

Protocol 3—The lasing oscillations

By using the phase-diagram obtained above, we optically excite the sample both
in static that in motion in order to study the emission spectra. As a rule, we fix
the position of the 532 nm pump beam with respect to the height with reference to
the static curve (at the bottom, in the middle of the sample, at the top and above
the deposit). For each height, we choose several amplitudes, corresponding to the
blocked and to the gaseous phase. For these positions and oscillation amplitudes,
we send the 532 nm pump beam with an increasing energy and retrieve the emission
spectra (as, e.g. in Fig. 9.7).

In the following, we will study how the state of motion for a specific sample can
change the scattering length and affect the optical features of the system. To this
aim, we will first compare, in the same conditions, two samples. The first one is a
reference model, a “standard” random laser, obtained by a colloidal system that is
always in the same “granular phase” when it is mixed with the active medium (when
at the rest and vibrated). The second one displays two phases, blocked and gaseous,
depending on the applied acoustic signal. The easiest way to create these two samples
is varying the diameters and the densities with respect to the active medium. In the
next chapters, we call the former “the diffusive random laser” and the latter “the
granular random laser”.

9.3.3 Oscillation Amplitude Calibration

In the following chapters, we use a normalized parameter a in order to describe the
oscillation amplitude of the woofer. Hence, a corresponds to a real oscillation. In order
to measure it, we use a piezoelectric accelerometer (Dytran, IEPE ACCELEROM-
ETERS, SERIES 3056B, 100 mV/g). We fix the amplitude a and the frequency f of
the sinusoidal signal that we send to the woofer through the Matlab� Routine; the
volume knob is turned at halfway. Once we measured the half-peak voltage, given a
conversion factor for which 1 V corresponds to 10 times the gravity acceleration, we
can obtain the spatial displacement corresponding to that chosen a. In fact, given a
sinusoidal signal for which the spatial position is y = A∗sin(2π f t), the accelerome-
ter measures its maximum acceleration, ÿmax = Aω2, in unity of g. So, for example,
when a = 0.1, the observed half-peak voltage is 1,500 mV, that corresponds at
15 times g. Being the frequency set to 70 Hz and Aω2 = 15g, we obtain that A is
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equal to 0.76 mm. In the next, the normalized amplitude values will be a=0, 0.07,
0.1, 0.2, 0.3, for which A=0, 0.53, 0.76, 1.5, 2.3 mm.

9.4 The Diffusive Random Laser

We consider a sample consisting of Zinc Oxide (ZnO) powder in RhodamineB (RhB).
The nanoparticles of ZnO are polydisperses with an average diameter of 100 nm, thus
this sample cannot be considered a granular system because, as we have seen, the
lower size limit for the particles in granular materials is about 1 µm.We used 0.358 g
of Zinc Oxide and 2.842 g of RhodamineB in order to have a concentration of about
20 mM, a typical concentration for diffusive random laser [8]. We will refer in the
following to this sample as the “diffusive sample”.

9.4.1 Continuous Wave Analysis

When the sample is at rest, ZnO deposits on the bottom and we can measure the height
of the powder in the test-tube. For this sample, this kind of measure is unnecessary
because, once the couette is vibrated, the ZnO powder is mixed with the solution and
an homogeneous mixture is obtained. We do not have a height-dependent spectral
emission. The results obtained so far are the same both in static (once the mixture
is obtained) that in motion. Here, we report this analysis for sake of completeness
and to give the reader chances to compare all the investigated samples by taking into
account all the used protocols.

As explained above (protocol 0), the transmitted power of the continuous laser
beam through the sample is measured by varying the height of laser beam with respect
to the sample with the vertical translation stage. We have used an accuracy of 1 mm,
higher accuracy is unnecessary since the laser spot is about 3 mm. The trend of the
transmitted power give us the value of the ZnO deposit height.

We report in Fig. 9.5 the measured transmitted power as a function of the laser
beam height. As we can be seen, the height of ZnO powder can be set about hZnO =
5 ± 3 mm, as it can be easily verified by measuring the deposit in the couette by a
ruler.

We first followed protocol 1, described in the previous chapter. We set the height
of the laser beam with respect to the couette at z = 7 mm, in the more sensible
transmission region. Then we performed a frequency scan to detect the resonant
frequency of the acoustic setup.

We sent a sinusoidal sound, for 8 s, for a frequency range of 10 ÷ 200 Hz, with
steps of 10 Hz. The amplitude of oscillation is set to 0.1 (see protocol 1, Sect. 9.3 for
details). From one vibrating stimulation to another, there is a 2 s pause, not enough
to deposit ZnO.
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Fig. 9.6 The transmitted
power from the ZnO powder
in RhB versus the frequency
of the oscillating plate,
measured at z = 7 mm
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Until the frequency is less than 70 Hz, resonance of the speaker, the vibration is
too low to homogeneously mix the ZnO powder in the RhB solution. The transmitted
power is about 0.03 mW, as for the still sample (see Fig. 9.5 at z = 7 mm, the power
is on 0.03 mW). At 70 Hz, the loudspeaker displays the most pronounced response.
The oscillations create an homogeneous mixture after a few seconds, the input laser
is scattered by the random medium, and the transmitted power goes to zero (see
Fig. 9.6). We have reported here a wide frequency range in order to make indisputable
the fact that, once the ZnO is mixed with the RhodamineB and the homogeneity
is reached, the further increase of the oscillation frequency does not change the
characteristics of the compound and the power measured to the output face remains
equal to zero (see Fig. 9.6).

By this analysis, we have a further confirmation that the ZnO solution can not be
considered a granular system. As the physical properties are independent of the state
of motion, once the sample has been shaken.

At this point, follow the protocol 2 is absolutely not significant. Once the ZnO
particles are homogeneously dispersed in the RhodamineB, the transmitted power is
always zero, both at high than at low oscillation amplitude. Hence the protocol 2 to
determine the “phase-diagram” is not necessary (at variance with what happens for
the samples described in the next chapter).

9.4.2 Laser Emission Analysis

The colloidal solution is optically pumped by using a frequency-doubled pulsed
Nd:YAG laser (λ = 532 nm) with 10 Hz repetition rate, as described in Chap. 3.
Because, for this low concentration, there is no dependence of the instantaneous
disordered configuration, we have captured the emitted spectrum with an exposure
time of 1 s. So, the resulting spectrum is the average response for ten pump pulses.
The spectral resolution is about 0.3 nm. Figure 9.7 shows the emission spectra for
various pump energies. It can be seen that there exists a laser threshold. At low pump

http://dx.doi.org/10.1007/978-94-007-4513-1_3
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Fig. 9.7 The emission
spectra from the
RhodamineB dye solution
with ZnO disperse
nanoparticles (100 nm) with
a concentration of 20 mM.
The input pump pulse energy
is respectively from bottom
to the top, a 0.09, 0.14,
0.47 mJ, b 0.69, 1.29,
1.67 mJ, c 2.32, 2.83,
3.36 mJ. The amplitude of
the spectra has been scaled
up by factor of, respectively,
1, 2, 4, 6, 8, 10, 12, 14, 16

energy (Fig. 9.7a), the spectrum consists of the typical homogeneously broadened
fluorescence peak.

As the incident pump pulse energy is increased and the laser threshold is reached,
a drastic narrowing of the emission spectrum is observed (Fig. 9.7b), corresponding
to an optical gain exceeding the total loss. A main peak appears at about 582 nm and,
as it can be seen in Fig. 9.8, the peak intensity of the emitted radiation increases
abruptly and, correspondingly, the spectral line-width of the emission spectra is
shrunk (see Fig. 9.9).

The dramatic growth of the peak intensity and the simultaneous reduction of the
spectral waist are the typical behaviors of the diffusive random laser, as reported for
the first time by Lawandy et al. [8].

We made use of this sample as a pivot of the typical and well-known behavior of
a diffusive random laser. In fact, having a reference model will serve to guide for our
investigations of the granular samples described in the next chapter. The comparison
between the diffusive random laser and the granular random laser will direct our
interpretations of the new physical phenomena emerging in the latter.
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Fig. 9.8 Peak spectrum
versus the incident pump
pulse energy
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Fig. 9.9 The emission
spectral waist, calculated as
the standard deviation,
versus the pump pulse energy
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9.5 The Granular Random Laser

Being a random laser a laser device in which the emitted radiation is the achievement
of a “feedback mechanism, based on a disorder-induced light scattering” [1], our
purpose is to study what can happen if we create a random laser with tunable disorder,
specifically by using a granular system in a dye solution with an external applied
force that modifies the structural arrangement of the grains. In this chapter will
report on a transition from an incoherent random laser to a coherent one, that is
continuously achievable in a granular sample by a variation of the state of motion.
An absolutely new phenomenon appears in which the two types of laser compete in
a very interesting disorder-dependent way.

In the following, we will denote as the “granular” sample the sample done by
solid amagnetic steel spherical grains (diameter of 1 mm) immersed in a solution of
water and RhodamineB (1 mM) and placed in a squared couette with edge L = 1 cm
and height h = 3 cm. We have used 5.23 g of metal particles (about 1,300 grains)
and 3.93 g of RhodamineB.

The sample can be considered a granular material. However, following the relevant
literature, this system was not previously considered for random lasing. In fact, the
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Fig. 9.10 The transmitted
power from the metallic
particles of size 1 mm in
RhodamineB, versus the
height of the beam laser with
respect to the bottom of the
granular sample. The system
is at rest
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typical colloidal random lasers are realized by mixing an active medium (laser dyes
as RhodamineB) and powders of dielectric high-index particles, supporting multiple
scattering to provide the positive feedback of the radiation in an open cavity.

Various authors also reported evidences of random lasers by metallic nanopar-
ticles [13–16]. However, so far, only particles with diameters of the order of tens
of nanometers were considered. These kinds of systems do not exhibit intersecting
granular behavior.

Conversely, we looked for a system able to macroscopically change its structural
characteristics by the state of motion. Neither a liquid nor a solid sample or a colloidal
one should have this peculiarity, so we have choose a granular material initially
composed by metallic grains with millimeter sizes. In such a system, we can study
the result of a complex interplay between amplified light in the presence of disorder
and the collective nonlinear behavior of a structurally tunable ensemble of grains.

9.5.1 Continuous Wave Analysis

We first consider the measurement of the height of the metallic particles in the sample
(protocol 0, see Sect. 9.3 for details). As shown in Fig. 9.10, the metallic grains are
deposited to the bottom plate for a height of h Al = 8 ± 3 mm.

We then set the height of the granular with respect to the input beam to z =
8 mm in order to perform the frequency scan in the region mostly affected by spatial
displacements of the particle top layers. The amplitude of oscillation is set at halfway,
a = 0.5. The frequency scan is a sample-independent measurement, the resonance
frequency is in general only determined by the loudspeaker. However, the use of a
loudspeaker to oscillate a couette is not its typical application and it is easy to break
the internal resistor with the consequent damping of the oscillations. Therefore, for
safety, before starting any vibrating experiments, we test the woofer, by repeating
the protocol 1, reported in Fig. 9.11. As can be seen by comparing this plot with
Fig. 9.6, there is a drastic difference between the colloidal sample and the granular



9.5 The Granular Random Laser 97

Fig. 9.11 The transmitted
power from the metallic
particles of size 1 mm in
RhodamineB, versus the
frequency of the vibrating
plate, measured at the edge
region of the granular
sample, z = 8 mm
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one. For the latter, a threshold above which the grains are homogeneously mixed is
not present and the transmitted response shows a specific resonance.

As before, we use a sinusoidal sound with a duration of 8 s. Between two succes-
sive sounds, there is a temporal pause of 2 s. The frequency range is 10÷100 Hz and
the frequency step is 10 Hz.

As shown in Fig. 9.11, the resonance is around 70 Hz, as also reported before.
We then consider the most important step of the structural “continuous wave”

section (protocol 2), in which we retrieve the phase-diagram of the granular material.
We first set the frequency of the vibrating plate at 70 Hz, corresponding to the

resonance in Fig. 9.11, and by turning the volume knob of the audio amplifier at a
value such that any amplitude saturation in the vibrating dynamics or any damage
related to high-volume sound is avoided. Then, we place the vertical translational
stage at the starting point and for a fixed amplitude of the oscillations of the bottom
plate, a vertical scan is made until the ending point of the stage is reached after
2.5 cm. For every height, we send a sound for 4 s followed by a pause with a duration
long enough to allow the translational stage to arrive to the succeeding programmed
position.

In Fig. 9.12, we show the transmitted power for five different oscillation ampli-
tudes. There exists a threshold value, around a=0.1, for which the system realizes
a transition from a blocked to a gaseous state. In fact, in the former configuration,
the sinusoidal sound is not enough to move the whole granular and the particles
of amagnetic steel remain deposited at the bottom. Only the top layer particles are
vibrated as can be observed by a direct observation of the couette. The intensity of
the transmitted light abruptly changes when varying the height of the light beam with
respect to the measured height of the granular. However, the transition is smoother
with respect to the static case (see Fig. 9.10) because, due to the motion of the top
layers, the grains are spread in a effective larger volume, the density is effectively
reduced but being sufficient just one grain to reflect the input light, the mean trans-
mitted power passing through the couette is lower than the still case at the same
height (compare the red curve of Fig. 9.12, a=0.07, with the static case of Fig. 9.10
between 8 ÷ 13 mm.).
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Fig. 9.12 The transmitted power from the metallic particles of size 1 mm in RhodamineB (the
granular sample), versus the height of the beam laser with respect to the bottom of the granular
sample for five different amplitudes of the vibrating applied force, from the top to the bottom
respectively a=0.01 (black line), 0.07 (red line), 0.1 (blue line), 0.2 (green line), 0.3 (magenta line)

Once the system has made the transition and the granular is in the gaseous
phase, the grains are scattered in the whole available volume (the couette) and the
mean transmitted power goes to zero at all heights (the green and magenta lines of
Fig. 9.12). In this situation, the strength of disorder is high: this is expected to be
an interesting scenario for the appearance of coherent multiple scattering processes
and, in the next section, we study the spectrum of the emitted light for this sample
at rest and put into motion.

9.5.2 Laser Emission Analysis

We verbatim follow the guidelines of protocol 3, described in Sect. 9.3.
Initially, we use an exposure time of 1 s in order to retrieve a mean emission

spectrum (we have ten pulses per second from the pump 532 nm Laser).
In Fig. 9.13 we show various spectra, for various heights and oscillation ampli-

tudes. This provide an overall picture of the attainable experimental regimes. Below
we will analyze the specific behaviors.

Bottom region

Let us to examine what happens in the deeper layers of granular (see Fig. 9.14).
We set the height of the incident pulse to z = 3 mm. With the reference to the
phase-diagram analysis, drawing a vertical line to z = 3 mm in Fig. 9.12, it can
be seen that, for all the amplitudes, the transmitted power is always equal to zero.
Hence in the deep granular, there is no difference between the several amplitudes of
oscillation. By increasing the amplitude of oscillation, we pass from a high density
state to a lower density configuration. But on average, there will always be some grain
that will stop the optical transmission. This does not imply that the mean density is
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Fig. 9.13 Emission spectra for a granular sample of metallic particles in RhodamineB. Panel a
corresponds to an oscillation with a=0 (sample at rest), b a=0.07, c a=0.1 and d a=0.2. In each
panels, the three bottom spectra correspond to z = 3 mm (inside the granular, at rest), the three
middle spectra to z = 7 mm (border zone at rest), and the top spectra to z = 13 mm (outside the
granular, at rest). For each z, we show the spectra for three different excitation energies [0.04 mJ
(blue line), 1.6 mJ (green line) and 3.8 mJ (red line)]. The spectra are arbitrarily scaled for the sake
of comparison

Fig. 9.14 Sketch of the
couette at low amplitude, the
arrow indicates the position
of the beam with respect to
the bottom when the sample
is at rest

almost the same in all four cases but merely that the probability that, during the
measuring time, a sphere of radius 1 mm can pass into a cylinder of radius 1.5 mm
and length 10 mm (the linear dimension of the couette) is always nearly one. At a first
glance, when considering the laser emission, there should be the same mean shape of
the emitted spectra for the various oscillation amplitudes, however we expect that
there will also exist some differences between the case at rest, in which the spheres
are densely stacked together and the case in which, due to the strong oscillations,
the interstices between neighboring spheres are increased. In Fig. 9.15, we report the
emitted spectra, as measured for two different energy . As it can be seen, except for the
blue line of panel (a), once the pumping energy is fixed, the spectra are quite similar.
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Fig. 9.15 Spectra of emission for granular sample of metallic particles in RhodamineB at z = 3 mm
at pumping energy of 1.6 mJ (a), and 3.8 mJ (b). The blue line corresponds to a=0, green line to
a=0.07, red line to a=0.1, sky-blue line to a=0.2

In both cases, we exceeded the laser threshold. A main peak is well visible around
600 nm. By increasing the input pump pulse energy, a narrowing of the spectrum
is observable, with an increasing peak intensity [compare panel (a) with panel (b)],
as in standard “diffusive” random lasers [8, 25]. However there are some noticeable
features related to the variation of the amplitudes: a blue shift of the peak position
with the amplitude (compare blue, green, red, sky-blue line), the appearance of a
second peak in the high energy case [panel (b)] when the strength of the oscillation is
increased (green, red but specially sky-blue lines). In correspondence of the excess
threshold for laser at approximately 630 nm [sky-blue line in panel (b)], it is registered
a red-shift of the main peak at 600 nm.

In order to explain and understand these emerging spectra, it is worthwhile visu-
alize the arrangement of the grains for the several amplitudes. When the system is at
the rest, the grains are deposited one of top of each other in a more or less ordered
way. Depending on the particular configuration that the packed hard-spheres have
assumed, we can have a variable density in the same portion of volume. We have to
focus our attention at the negative of the packed spheres: the interstitial gaps between
them forming an interconnecting network of cavities. Here, the light can bounce and
diffuse. Hence, we can have two cases: in the first one, the light can pass through
interstitial holes and diffuses in the sample. It results in a diffusive random laser
emission spectrum. In the other case, as we will see below, the light is reflected by
one sphere to another one, keeping a closed loop into an homogeneous reflecting cav-
ity (interstitial holes): a coherent interfering feedback can be activated and discrete
narrow peaks emerge in the spectrum.

Back to Fig. 9.15, the blue line of panel (a) is distinct to the other ones because
here we are at rest and the energy is still too low to activate lasing in the superficial
interstices: the cavities losses exceed the gain. By increasing the energy, however, the
laser threshold is reached and the peak is well visible [blue line of panel (b), sample
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Fig. 9.16 Position of the
diffusive peak versus the
amplitude of oscillation for
the pumping energy of 1.6 mJ
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at rest]. Back to panel (a), by increasing the amplitude, for the same energy, we can
observe laser action (see red, green, sky-blue lines) because the increased interstitial
network, due to oscillations, involves a correspondent increment of the amount of
available active medium. The main peak around 600 nm, in both panels, is hence
related to a diffusive behavior of the light into the sample. In order to explain the
blue-shift versus the amplitude of the oscillations, we made the following argument
based on the propagation of the electromagnetic wave in a medium is described by
the electromagnetic wave equation. For monochromatic wave, the angular frequency
is inversely related to the refractive index of the medium. It simply means that in
a random medium increasing the index contrast tends to lower the electromagnetic
resonances. On the other hand, the high-frequency modes are mostly promoted in a
low-index contrast medium. By increasing the amplitude of oscillations, we stretch
the mean free path of the light. By considering a fixed portion of couette volume, a
longer mean free path is equivalent to consider a more diluted system with an effective
index contrast kept lower. So, the activated modes, as the amplitude is increased, will
be those with a lower wavelength. This may explain the blue-shift of the diffusive
peak at 600 nm, reported Fig. 9.16.

Finally, in panel (b) we observe an interesting phenomenon, the appearance of a
second peak with the increasing of amplitude (see sky-blue line, a=0.2) at approx-
imately 630 nm. In our view, it can be related to the presence of closed cavities in
which the light can constructively interfere, a mechanism different and in some sense
competitive with the diffusive process discussed above. Indeed, this kind of laser
emission could be compared to the standard random laser localizations, supporting
by a random system when the mean free path is comparable with the wavelength: the
Anderson states. Here, thanks to the interstitial cavities between metallic spheres,
we have an ordered cavity3 in which the free mean path is much longer than the
wavelength. The constructive interference can occur in a standard way, and the laser
emission can be observed when the gain exceeds the losses [see sky-blue line of
panel (b) in Fig. 9.15]. In correspondence of the activation of this coherent laser, we
observe a broadening of the diffusive random laser at 600 nm with a red-shifted peak

3 Without scatterers inside.
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Fig. 9.17 Position of the
diffusive peak versus the
amplitude of oscillation for
the pumping energy of
3.79 mJ
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Fig. 9.18 Sketch of the
couette at low amplitude, the
arrow indicates the position
of the beam with respect to
the bottom when the sample
is at rest

[see Fig. 9.19 and compare sky-blue with red line of panel (b) in Fig. 9.15]. This
may eventually due to the fact that, when also the localized laser starts to emit, the
available energy is distributed between two lasers, and hence the diffusive laser has
wider linewidth (Fig. 9.17).

Concluding, at this stage we can conjecture two competing phenomena: intersti-
tial diffusion and interstitial localization. In the granular region, the former appears
dominant.

Edge region

In the region of boundary between the metallic spheres and the liquid region of
Rhodamine (Fig. 9.18), the emitted spectra are not heavily different with respect to
those seen in the section above. In fact in the edge region, the incident pulsed beam
can affect mostly the granular or the liquid, depending on the size of the spot, on the
beam position with respect to the edge and hence, on the amplitude of oscillations.

If we draw a vertical line in Figs. 9.12 and 9.10 at z = 7 mm, we can see that
the transmitted power is approximately equal to the incident power when a = 0,
while for all other amplitudes it is zero. This implies that, when the sample is at rest
or slightly moved (a = 0 or 0.07), the incident continuous beam is able to cross the
sample, going through the RhodamineB. The corresponding measured spectrum is
the fluorescence of the RhB, as shown in Fig. 9.19, panel (a) and (b), blue and green
lines. However, as before, in the high pump energy case, panel (b), it is sufficient that
a small portion of the laser spot invests the granular region to observe a small bump
around 600 nm, corresponding to the activation of the diffusive random laser (blue
line). At incident pump energy of 1.6 mJ, panel (a), the same occurs to the spectrum
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Fig. 9.19 Spectra of emission for GR0 sample in the edge region, at z = 7 mm at pumping energy
of 1.6 mJ (a), and 3.8 mJ (b). In both panel a=0 (blue line), a=0.07 (green line), a=0.1 (red line),
a=0.2 (sky-blue line)

at a = 0.07, green line, bump at 600 nm. In fact, a small oscillation allows the beam
laser to interact with more grains with respect to the static case. The light start to
diffuse through the interstitial holes. By increasing the amplitude of oscillation (red
and sky-blue lines), the diffusive laser threshold is largely exceeded, thanks to the
increasing availability of active medium, and we can see the characteristic diffusive
peak at 600 nm. In these dynamic conditions, an increase of the beam energy support
also the localized random laser as shown in panel (b), green, red, sky-blue lines,
peaks around 630 nm.

If we compare Fig. 9.15 with Fig. 9.19, we see that in the former case, the diffusive
laser threshold is kept lower with respect to the edge case. In fact, in the latter case,
a portion of the input energy is lost in the RhodamineB and so strong oscillations
are required in panel (a) to reach the proper granular density for diffusive regime.
To the other side, however, in the high energy condition, the threshold for localized
random laser is lower with respect to the granular region case. This is maybe due to
the higher freedom of movement for the grains in the edge region and so, there is
a greater explorability of the configuration space and small vibrations are sufficient
to reach the condition for interfering scattering emission. Also here, there exists an
evident blue-shift for the diffusive peak above the localized laser threshold, and a
successive red-shift when the localized regime is enhanced, which we ascribe to the
competition between the two lasing phenomena (Fig. 9.19).

Liquid region

Getting into the liquid region (Fig. 9.20), the trend is still the same observed so far.
In panel (a) of Fig. 9.21, the broad photoluminescence band is perfectly preserved
also at a = 0.07 (green line). In fact, the oscillations are not enough strong to drive
the metallic grains and intercept the laser beam that is nearly at the top of the couette.
The photoluminescence band narrows down, upon increasing the amplitude of the
oscillations. The emission spectrum is peaked at 600 nm. The diffusive random laser
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Fig. 9.20 Sketch of the
couette at low amplitude, the
arrow indicates the position
of the beam with respect to
the bottom when the sample
is at rest
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Fig. 9.21 Spectra of emission for GR0 sample in the liquid region, at z = 13 mm at pumping
energy of 1.6 mJ (a), and 3.8 mJ (b). In both panel a=0 (blue line), a=0.07 (green line), a=0.1
(red line), a=0.2 (sky-blue line)

is enhanced. In panel (b), we observe the appearance of the localized peak also at
a=0, 0.07, at 630 nm. This is maybe related to the spot that howsoever is able to
intercept a small granular region. Lastly, it must be noted that, although the red line
corresponds to a lower amplitude with respect to the sky-blue line, in the former
case the localized peak is much more pronounced. This shows that there exists an
optimal amplitude of oscillation which corresponds to the best mean free path for
the localized lasing. In Fig. 9.22, it is shown the dependence of the peak intensity on
amplitude for the diffusive (a) and localized (b) lasers.

For what concerns the trend for the diffusive peak, in panel (a) the peak intensity
grows with the amplitude of oscillations, similarly to what happens by increasing
the pump energy in standard experiments. This is easily explained by observing that
the increasing of the amplitude of oscillations implies an increasing of the interstitial
holes. Correspondingly, the available active medium is larger and the threshold for
lasing decreases.

On the other hand, for the localized case, panel (b) shows a peak for a=0.1, at
which the distances between grains become optimal for interfering scattering and
we can observe laser emission. In panel (c) and (d), the relative peak intensities are
reported, which confirms the existence of an optimal oscillation amplitude.
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Fig. 9.22 Peak intensity for the diffusive laser (a) and for the localized one (b). In panel (c), we
show the ratio between the diffusive peak intensity and the localized one. In panel (d), we show the
inverse of (c)

9.5.3 Emission at Constant Power

In order to show that the structural information encoded by laser emission is richer
than that obtained by optical transmission via continuous laser source (“continuous
wave analysis”), we have investigated the emission spectra at the same constant
transmission power for the continuous wave laser. In Fig. 9.23, a horizontal line for
a fixed transmitted power is drawn in order to intersect the phase-diagram curves of
the granular for several amplitudes. The lines drawn from their points of intersection
meet the abscissa axes for different heights. For every intersection point, a couple of
values for the oscillation amplitude and pump energy are considered, at which the
same transmitted signal corresponds.

We have therefore studied the emitted spectra by the granular sample in these
conditions. In the insets, in correspondence to the several intersecting points, the
measured emitted spectra are reported at energy 3.8 mJ. Despite the static informa-
tion4 is the same for all three cases, the spectra are not identical. This follows from
the fact that the continuous laser source is not affected by the specific instantaneous
granular configuration that simply influences the optical transmitted power by stop-
ping the incident beam. The laser emission, indeed, is a resonant phenomenon that
dramatically depends on the shape and dimension of the feedback cavity, and hence,
the emitted spectra are strongly dependent of the specific structure, generated by
fixing amplitude of the oscillations and height of the laser beam.

4 i.e. the transmission.
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Fig. 9.23 Phase-diagram of the granular sample. The intersecting points of the constant line for
fixed transmission power with the granular curves are studied by a dynamical point of view. The
insets show the relative spectra. The black line corresponds to a=0.01, red line to a=0.07 and blue
line to a=0.1. The chosen heights are accordingly z=7, 13, 17

9.5.4 Shot-to-Shot Variation

The laser localized emission occurs due the specific random arrangement of the
metallic particles. The emitted spectra then depend not only on the input energy,
on the height of the beam and on the amplitude of the oscillations, but also on the
peculiar history of the random events. We have a statistics associated to the shot-to-
shot variation and this evidence suggests various conjectures about the explanation
of the narrow peaks, observing in the measured spectra. The enhancement of the
localized peaks around 630 nm must be related to the presence of multiple interfering
processes. In Fig. 9.24, we sketch a light beam caught between three metallic spheres.
The light path is L = L1 + L2 + L3 and the condition for interference is kL = 2πn,
where k is the wave vector and n is an integer number. In our case, if the above pivotal
condition for constructive interference is satisfied, the system makes a transition to a
localized state and we observe a peaked spectrum. If the peculiarities of the observed
spectra were something related to a single particle phenomenon, we should not have
a shot-to-shot variation as indeed shown in Fig. 9.25. This aspect must be related
to the instantaneous configuration of the random medium and so, it is a collective
phenomenon of the granular.

9.5.5 Sample with Doubled Radius (2 mm)

Henceforth, the next samples will be used jointly to show that the above observed
spectra are a coherent phenomenon related to the formation of interference patterns



9.5 The Granular Random Laser 107

Fig. 9.24 Interference condition

Fig. 9.25 Spectra
corresponding to ten pulses
for a=0.1, z=10. The input
energy is 4.6 mJ. Each
spectrum is a single shot
corresponding to an
instantaneous configuration
of the granular
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of three or more reflecting metallic spheres. We consider a sample with 3.194 g of
amagnetic steel spherical grains with a doubled diameter (2 mm) with respect to the
above sample in 2.968 g of RhodamineB.

In Fig. 9.26 we show the “phase-diagram” (Protocol 2) for this sample, while in
Fig. 9.27 report the observed spectra. The results follows those described above for
the smaller particles (1 mm), again displaying the two competitive peaks.
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Fig. 9.26 The
phase-diagram for the
granular sample at doubled
radius. The dashed black line
corresponds to a = 0, the
red line to a = 0.07, the blue
line to a = 0.1 and the green
line to a = 0.2
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Fig. 9.27 Spectra of emission for granular sample of amagnetic steel spherical particles of size
2 mm, in RhodamineB. Panel a corresponds to an oscillation with a = 0, b a = 0.07, c a = 0.1
and d a = 0.2. In each panels, the three bottom spectra correspond to z = 3 mm (inside the
granular, at rest), the three middle spectra to z = 7 mm (border zone at rest), and the top spectra
to z = 13 mm (outside the granular, at rest). Each triad corresponds to three different excitation
energy [respectively 0.04 mJ (blue line), 1.6 mJ (green line) and 3.8 mJ (red line)]. The amplitude
of the three triads has been shifted up by a factor of 0, 1.5, 3 respectively. The fluorescence band
(in blue) has been scaled down a factor 0.5

9.5.6 The Two-Dimensional Granular Laser

To show that the reported localized laser emission is indeed a three-dimensional (3D)
phenomenon related to interfering scattered light between three or more reflecting
spheres, we consider a two-dimensional (2D) granular sample with the grain diameter
1 mm. A thin couette 2.5 cm high and 2 mm deep is chosen in order that the particles



9.5 The Granular Random Laser 109

0 5 10 15 20 25
0

0.005

0.01

0.015

0.02

0.025

0.03

Height (mm)

T
ra

n
sm

it
te

d
 P

o
w

er
 (

m
W

)

Fig. 9.28 The transmitted power for the two-dimensional granular sample versus the height, for
four amplitudes of oscillation a=0 (a), a=0.1 (b), a=0.5 (c), a=1 (d). Here, the volume knob
of the audio amplifier is recalibrated with respect to the above experiments, so that the relative
amplitudes correspond to different normalized values for a

can be only vertically stacked. The couette device, half-containing metallic particles,
is completely filled with RhodamineB.

We repeated all the protocols. For this sample, being a granular medium, there
exist two phases, the blocked and the gaseous ones as shown in Fig. 9.28.

For what concerns the dynamical analysis, we went to look for the localized narrow
peaks in the gaseous phase. We have fixed three heights of the laser beam with respect
to the basis of the couette, in the granular region z = 5, in the edge region z = 16
and in the liquid region z = 20 (see the dashed line in Fig. 9.28). For every height,
we measure the emitted spectra for several values of input energy, both in the static
[panel (a) of Fig. 9.29] that in the gaseous phases [panel (b)]. As it can be seen by
the measured spectra, there is not evidence for localized peaks. Hence the additional
emission can be ascribed to a specific three dimensional arrangement of spheres,
achieved during shaking. This fact also allows to rule out the effect of plasmonic
resonances, which are expected to play a negligible rule for the considered size of
the grain (1 mm), which is much greater than the wavelength. Plasmonic resonances
are indeed know to be relevant for nanoparticles [13–16]. Plasmonic resonances are
also rule out by the fact that the localized peak changes from shot to shot (Fig. 2G),
and hence depend on the collective configuration of several spheres, and not on the
single sphere. The diffusive laser is well observable only in the deep granular once
the laser threshold is exceeded.

In Figs. 9.30 and 9.31, we report the behavior of the peak intensity and of the spec-
tral waist in the gaseous phase, at z=16 mm, which confirm the diffusive character
of the observed lasing emission.

By concluding, the fact that in 2D we do not observe localized emission demon-
strates that the reported effect, the localized peak of the granular sample reported
above, is not due to the single particle (otherwise it should appear in 2D and 3D) but
is related to the collective organization of the sample in 3D.
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Fig. 9.29 Spectra of emission for the 2D metallic sample. Panel a corresponds to the static case
while in panel b the measured spectra are reported for a=1, enhanced the gaseous phase. In each
panel, the bottom triad is for z=5 mm (granular region), the middle triad is for z=16 mm (edge
region) and the top one is for z=20 mm (liquid region). The excitation energies are 0.16, 1.7 and
3.9 mJ (blue, green and red lines respectively). The fluorescence band is scaled down on a factor
0.5 while the amplitudes of the spectra are arbitrarily scaled
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Fig. 9.30 The emission intensity of the peak spectrum versus the incident pump pulse energy. The
error bars are included into the marker size. In the inset, the corresponding spectra are reported with
0.22 mJ (blue line), 0.38 mJ (green line) 1.53 mJ (red line), 2.94 mJ (black line), 3.85 mJ (magenta
line), 4.42 mJ (yellow line)
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Fig. 9.31 The emission
spectrum waist, calculated as
standard deviation, versus
the pump pulse energy
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9.5.7 The Heterogeneous Granular Sample

Finally, to show that the localized peak is a coherent phenomenon related to a reso-
nant feedback mechanism, we made an heterogeneous granular sample. The random
medium used in this experiment is realized by adding 0.217 g of ZnO powder (100 nm
of diameter) to 4.04 g of amagnetic steel spherical grains with size 1 mm. The parti-
cles are immersed in 4.0 g of RhodamineB. The ZnO particles introduce a disorder on
a length scale much shorter than the dimension of the amagnetic particles. If the light
in the pure granular sample could create interfering closed path between reflecting
metallic particles, here the presence of ZnO powder breaks the condition of construc-
tive interference, and inhibits the coherent feedback mechanism of the light between
adjacent mirrors. By measuring the emission spectra from these samples we found
that the localized peak at 630 nm disappears (see Fig. 9.32) and the diffusive one is
similar to that observed in the diffusive random laser (see Fig. 9.7). The top spectra of
panel (a), related to still sample in the liquid-edge region, show a red shift with a peak
around 600 nm due to the fact that, when the sample is at rest, the ZnO is deposited
on the bottom and the light is mostly scattered by the metal grains of the top layers
(compare these spectra with the edge spectra of Fig. 9.13). When the oscillating force
is applied to the bottom of the couette and the heterogeneous granular medium starts
to oscillate, the ZnO powder is homogeneously mixed to the RhodamineB and at all
heights the dielectric diffusive peak is well visible. The diffusion by the ZnO powder
is dominant with respect to the diffusion by metallic particles because the mean free
path of the light between scatters is mainly determined by the scattering by dielectric
spheres.

We tested various samples with different concentrations of ZnO, in all of the con-
sidered cases the diffusive peak due to ZnO dominates, and the localized disappears.

In this final chapter, we have reported on the first experimental evidence of laser
emission in granular gases. These results, placed between modern photonics and
statistical mechanics, not only demonstrate that RL in granular materials are sensitive
to the specific grain distribution and their emission can be controlled by the status
of motion of the system, but they also unveil the existence of a new form of random
lasing that can be mechanically controlled and competed with the standard RL.
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Fig. 9.32 Spectra of emission for heterogeneous granular sample. Panel a corresponds to blocked
phase, panel b to gaseous phase. In each panels, the three bottom spectra correspond to beam inside
the granular, for the three middle spectra, we are in the border zone, and the top spectra are the
emitted light in the liquid region above the granular region at rest. Each triad corresponds to three
different excitation energies [respectively 0.04 mJ (blue line), 1.6 mJ (red line) and 3.8 mJ (green
line)]. Spectra have been scaled by an arbitrary factor for the sake of comparison

These open the way to a variety of further investigations, as light emission in matter
under common granular processes like compactification, metastable granular states,
mixed systems, accelerated flow under gravity, supercontinuum generation, and the
interaction of laser emission with granular waves. The possibility of achieving a
controlled non-equilibrium scenario in granular systems provides a variety of novel
tools for random photonic devices, and ultimately, for assessing the interplay between
the status of motion of mesoscopic matter and light emission.
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Chapter 10
Conclusions

Investigating the interaction between radiation and matter in the presence of
nonlinearity and disorder is the leitmotif of this work.

Over the past few decades, two prominent branches of photonics have been
separately developed: soliton theory and Anderson localization of light. Both of
these themes deal with the mechanisms of localization of the electromagnetic field
resulting from interaction problem between light and matter.

On one hand, solitons are spatially localized light fields, their existence is due to
nonlinearity; their are the upshot of coherent balancing between the natural propen-
sity to diffract of a light beam and the focusing effect of nonlinearity.

To the other hand, disorder also induces localization through to the so-called
Anderson states; a topic characterized by a huge amount of literature in past years,
mostly due to the interdisciplinary character embracing a wide class of disciplines,
from optics to computer science, from medical research to quantum mechanics. The
Anderson localization needs disorder, as it promotes multiple scattering of light;
interference effects hamper diffusive processes and cause wave localization.

A coherent and systematic treatment of the interplay between nonlinearity and
disorder, in the regimes where cooperate or where compete for what concerns the
localization phenomena is still missing. We wonder whether an hypothetic phase
diagram with two control parameters, disorder and nonlinearity, exists. And if so,
we expect that the two limit solutions, solitons and Anderson localizations, which
are respectively the modes of nonlinearity and disorder, can interact each other in the
intermediate regimes. This interaction would give rise to new intriguing phenomena,
presenting the features of both. We have studied the effect of disorder on the stability
of nonlinear solutions, the solitons, and viceversa, the effect of nonlinearity on the
stability of disorder modes, the Anderson states. Nonlocality is additional effect
that we used to mediate the interplay between nonlinearity and disorder, while also
allowing remarkable technical simplifications.

This work develops by employing analytical, numerical and experimental methods
and the analysis covers both the non-resonant and the resonant regimes, embracing
issues from nonlinear optics to laser physics.

V. Folli, Nonlinear Optics and Laser Emission through Random Media, 115
Springer Theses, DOI: 10.1007/978-94-007-4513-1_10,
© Springer Science+Business Media Dordrecht 2012
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Dealing with complex systems, the first step in the development of the theoretical
approach is within the perturbative regime when nonlinearity or disorder are treated
as perturbations to well-known systems. The application of the methods mutuated by
spin-glass theory allowed to extend the theory beyond the perturbative framework,
even if at the cost of a substantial increase in the conceptual and mathematical com-
plexity; such an approach allows to derive indeed a phase-diagram in terms of amount
of disorder and nonlinearity. Furthermore, the behavior of the electromagnetic field
beyond perturbations was studied by a first-principle numerical approach: in the
non-resonant regime, we make use of the Beam Propagation Method to solve the
Nonlinear Schroedinger equation with randomness; for the resonant regime, a paral-
lel algorithm using a Finite Difference Time Domain (FDTD) scheme is employed to
simulate ab-initio the dynamics of the electromagnetic field. Finally, a set of exper-
iments was performed in the resonant regime to characterize the role of a tunable
disorder in the random laser emission spectra. The first “granular” laser was imple-
mented in order to study and control the emission phenomena by turning and change
the disorder distribution and its strength. Indeed, we use granular matter, for which
it is possible to change the state of aggregation under the action of external stresses,
thanks to its morphologic characteristics.

The first section of the present work embraces the interaction processes between
nonlinearity and disorder in the non-resonant regime, when the nonlinear optical
properties of materials are active in their transparency region. In the Chap. 1, we
briefly describe the main notions about light propagation in nonlinear systems. We
introduce the iconic equation of nonlinear optics, the nonlinear Schroedinger equa-
tion (NLS), and we show its localized solutions, the solitary waves. In Chap. 2, we
study the dynamics of the solitons in the presence of a perturbative disorder. Through
a theoretical and numerical approach, we observe that an increasing degree of
non-locality in the nonlinear response of the material acts as a filter on the Brown-
ian motion of the self-trapped waves, averaging out the noise. In the limit of highly
non-locality, the random fluctuations of the soliton vanishes. We believe that the
obtained results are applicable on a wide range of physical phenomena, as for exam-
ple Bose-Einstein condensates, thermo-diffusive materials, soft-colloidal matter,
liquid crystals, all those materials in which the non-locality can be high. In Chap. 3,
the inverse scenery is reported, namely the case in which the disorder is the putative
mechanism responsible of the wave trapping, giving rise to the formation of Ander-
son localizations. The effect of perturbative focusing and defocusing nonlinearities is
studied on their stability both in the analytical and numerical framework. We address
again the role of non-locality and show that an increasing degree of non locality tends
to stabilize the Anderson states. The applicability of this topic is large, primarily in
the study of all phenomena working with the propagation of localized wave-forms in
strongly disordered systems. In Chap. 4, disorder and nonlinearity live on two distinct
length-scales. Now, their mutual interaction favors the activation of solitary waves
and their stability. In the second part of this work, we enter the resonant regime. The
radiation-matter interaction is active and microscopic. In Chap. 6, we briefly report
the basic equations of the problem, the Maxwell-Bloch equations, and we show that
also in this regime, under specific conditions, solitary waves can be observed, the

http://dx.doi.org/10.1007/978-94-007-4513-1_1
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SIT solitons. Within the same scheme of the first part, in Chap. 7 we initially perturb
the soliton dynamics, by introducing random fluctuations of material density. Then,
we add structural disorder and we observe the active interaction between the solitary
waves and the Anderson states, induced by the presence of disorder. New intriguing
features will appear, the coupling between a SIT soliton and Anderson states causes
the trapping of the solitary waves in closed cavities in proximity of the Anderson
modes, generating a kind of two-level laser device, which coherent emission from
the disordered structure can be measured. Chapter 8 shows the generalization of the
problem, the active interaction between nonlinearity and disorder, by studying from a
theoretical point of view, based on a statistical approach, the phase diagram of lasers.
By changing the control parameters, disorder and nonlinearity, into the framework
of the Spin Glass theory, the statistical distribution of laser modes is determined and
we show as it be possible to switch between the standard and random lasers, simply
controlling the degree of disorder and non linearity. In Chap. 9, we implement a new
kind of random laser, exploiting the structural characteristics of granular matter. In
the presented device, the disorder is easily tunable by changing the external solicita-
tions and the system allows to switch between diffusive random laser emission and
the localized one.

In conclusions, in this research, we give a unified view of electromagnetic local-
ization, and we study the two main mechanisms that allow light trapping: disorder
and nonlinearity. In particular, we study their interplay between the well-known soli-
tons and Anderson localizations. When this processes act on the same ground, there
exists a wide and fascinating class of new phenomena, yet to be discovered, that
we have here partially investigate. All of these physics can be used and exploited to
increment new technologies and the research driven by localized states of light, from
optical communications to medical imaging.
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