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Preface

Nonlinear optics and photonics is a broad field of history as venerable as that of
lasers, yet the field has been advanced dramatically with many discoveries and
emerging new frontiers in recent years. This book contains a total of 13 chapters
from more than 50 coauthors affiliated with leading groups in the field of nonlinear
optics and photonics from different institutions well distributed globally (USA,
Australia, China, Japan, Israel, Greece, Italy, Germany, France, Spain, United
Kingdom, and Canada). The content of the book covers both theoretical and
experimental studies on novel phenomena in a variety of optical materials and
photonic systems.

In Chap. 1, the authors present an overview on a new type of optical beams,
namely, self-accelerating Airy beams. Research activities on such nondiffracting
and self-bending optical beams have surged in recent years due to fundamental
interest and many proposed applications of Airy beams. In this chapter, the authors
discuss the generation and control of Airy beams as well as the recent developments
in the area. In Chap. 2, the authors present a review on integrated photonics based
on recently developed high-index doped-silica glass. This material combines the
optimal linear properties of single-mode fibers with the typical nonlinear properties
of other materials, such as semiconductors and nonlinear glasses. This novel glass
material may lead to the new and important possibility such as integration of
complex spiral guiding structures onto chip-size areas.

The next three chapters deal with linear and nonlinear spatial beam dynamics
in photonic lattices and waveguide arrays. In the past decade, the field of discrete
optics has grown rapidly and tremendously because of numerous new findings
in discrete optical systems that have a tight link to many other branches of physics.
In Chap. 3, the authors report their experimental work on wave transport in
amorphous photonic structures, and show that the concept of band-gaps and defect
states has greater importance and wider implications than those traditionally con-
ceived in the context of crystalline structures. In Chap. 4, the authors present
their theoretical and experimental results on all-optically controlled spatial reshap-
ing and localization of multicolor light beams in nonlinear waveguide arrays.
In addition, they review briefly the recent developments on polychromatic light
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control in photonic lattices and waveguide arrays. In Chap. 5, the authors provide a
brief overview on spatial beam dynamics mediated by the interplay between beam
diffraction or lattice coupling and self-focusing/defocusing hybrid nonlinearity.
Such hybrid nonlinearity plays a key role in unusual nonlinear beam dynamics in
both continuous and discrete regimes.

Chapter 6 is about the theory of polariton solitons in semiconductor microcav-
ities. The authors review the physics behind the formation of localized states of
exciton-polaritons, the polariton solitons. In particular, the authors show that pump
momenta associated with a positive or negative effective polariton mass can give
rise to the formation of dark or bright solitons in semiconductor microresonators.
In Chap. 7, the authors review a series of experiments on the study of localized
structures in semiconductor optical devices, including localized single addressable
optical vortices observed in a system formed by two face-to-face VCSELs.
Chapters 8—10 report on various intriguing nonlinear phenomena in different
systems, including scale-free optics, for which diffraction and evanescent wave
formation of subwavelength beams are circumvented by using nonlinearity in
nanodisordered ferroelectrics; spatial dispersive shock waves, in which nonlinearity
enhances diffraction as observed in both local and nonlocal media; and finally
wavelength-scale plasma gratings in air as a result of nonlinear interaction of
intense ultrashort filaments.

Chapters 11 and 12 focus on Terahertz waves. In Chap. 11, the authors discuss
the emerging field of ultrafast nonlinear optics in the terahertz regime, and intro-
duce THz nonlinear spectroscopy through the absorption-bleaching phenomenon
in thin-film semiconductor. In Chap. 12, the authors discuss the generation of
Terahertz radiation via Purcell-enhanced nonlinear frequency mixing, which relies
on the dramatic enhancements of the conversion efficiency of an arbitrary
difference-frequency down-conversion process. Finally, in Chap. 13 the authors
discuss the emerging realm of photonic interband transition nanophotonics, where
exciting possibilities linked to the dynamical modulation of photonic structures for
applications in optical isolation and tunable resonance are presented.

Most of the chapters included in this book are based on invited presentations
from the Second International Workshop on Nonlinear Optics and Novel Phenom-
ena held at TEDA Applied Physics School of Nankai University, Tianjin, China in
the summer of 2010. The editors wish to take this opportunity to acknowledge the
support from local organizers at Nankai University, and to thank all contributors for
their hard effort and patience to bring this book into reality.

San Francisco, CA, USA Zhigang Chen
Varennes, Canada Roberto Morandotti
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Chapter 1
Self-accelerating Airy Beams: Generation,
Control, and Applications

Yi Hu, Georgios A. Siviloglou, Peng Zhang, Nikolaos K. Efremidis,
Demetrios N. Christodoulides, and Zhigang Chen

1.1 Introduction

More than three decades ago, Berry and Balazs made an important prediction
within the context of quantum mechanics: they proposed theoretically that the
Schrodinger equation describing a free particle can exhibit a nonspreading Airy
wave packet solution [1]. Perhaps, the most remarkable feature of this Airy packet
is its ability to freely accelerate even in the absence of any external potential.
As first noted in Berry’s paper, this Airy packet happens to be unique, e.g., it is the
only nontrivial solution (apart from a plane wave) that remains invariant with time
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in one-dimensional (1D) domain [1, 2]. However, this work has hibernated in
the literature for decades, and it never led to experimental realization of any
self-accelerating Airy wave packet.

Over the years, nonspreading or nondiffracting wave configurations have been
systematically investigated in higher-dimensions (2D and 3D), particularly in the
areas of optics and atom physics [3—8]. What makes the analogy between these two
seemingly different disciplines possible is the mathematical correspondence
between the quantum mechanical Schrodinger equation and the paraxial equation
of diffraction [9]. In terms of experimental realization, optics has thus far provided
a fertile ground in which the properties of such nonspreading localized waves can
be directly observed and studied in detail. Perhaps, the best known example of such
2D diffraction-free optical waves is the so-called Bessel beams as first suggested
and observed by Durnin et al. [3, 4]. This work has since sparked considerable
theoretical and experimental activity and paved the way toward the discovery of
other interesting nondiffracting solutions [5-7]. It should be noted that even though
at first sight these propagation-invariant beams may appear dissimilar, they in fact
share common characteristics. In particular, they are all generated from an appro-
priate conical superposition of plane waves [3—7]. Even more importantly, all these
solutions are known to convey infinite power: a direct outcome of their
nondiffracting nature. Of course, in practice, all these nonspreading beams are
normally truncated by an aperture (because of lack of space and power) and as
such they tend to diffract slightly during propagation [10]. Yet, if the geometrical
size of the limiting aperture greatly exceeds the spatial features of the ideal
propagation-invariant fields, the diffraction process is considerably “slowed
down” over the intended propagation distance and hence for all practical purposes
these beams are called “diffraction-free” [11]. It should be emphasized that no
localized 1D propagation-invariant beam can be synthesized through conical
superposition.

Recently, a specific type of nondiffracting beams, namely, self-accelerating Airy
beams [12, 13] has attracted a great deal of interest due to their unique properties
and many potential applications such as in optical micromanipulation [14—16],
plasma guidance [17, 18], vacuum electron acceleration [19, 20], and routing
surface plasmon polaritons [21]. In contradistinction with the Bessel beams, the
Airy beams do not rely on simple conical superposition of plane waves, and they
possess the properties of self-acceleration in addition to nondiffraction and self-
healing. For the past few years, tremendous research work has been devoted to the
study of Airy beams, from theoretical predictions to experimental observations,
from linear control to nonlinear self-trapping, and from fundamental aspects to
demonstrations of proposed applications.

In this chapter, we provide an overview on generation of linear and nonlinear
control of Airy beams and recent developments in this area. In just a few years,
driven by both fundamental interest and application potential, the number of
research papers dealing with optical Airy beams has risen dramatically.
Thus, we discuss only a selection of our published papers and mention a few
others significant to the field. This overview is by no means all-inclusive, nor is it
meant to be.
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1.2 Generation of Optical Self-accelerating Airy Beams

1.2.1 Ideal Infinite-Energy Airy Beams

We begin our analysis by considering the (1 + 1)D paraxial equation of diffraction
that governs the propagation dynamics of the electric field envelope ¢ associated
with planar optical beams:

Op 10 B
la—é—‘rzw—o (11)

In(1.1), s = x/x represents a dimensionless transverse coordinate, x, is an arbitrary
transverse scale, ¢ = z/kx,” is a normalized propagation distance (with respect to
the Rayleigh range), and k = 2nn/ly is the wave number of the optical wave.
Incidentally, this same equation is also known to govern pulse propagation in
dispersive media.

As first shown in [1], (1.1) admits the following Airy nondispersive solution:

2 .3
s — (g) ]exp(is%—%). (1.2)

Clearly, at the origin (s, 0) = Ai(s), (1.2) shows that the intensity profile of this wave
remains invariant during propagation while it experiences constant transverse accel-
eration. The term (£/2)* in (1.2) describes this ballistic trajectory. Figure 1.1 depicts
the diffraction-free propagation of such an accelerating Airy wave packet as a function
of distance £. An alternative interpretation of this interesting result was given by
Greenberger through the principle of equivalence [22]. More specifically, he remarked
that a stationary Airy wave packet associated with a quantum mechanical particle in a
constant gravitational field will be perceived as accelerating upwards by a free-falling

(s, &) = Al

Fig. 1.1 Propagation
dynamics of a diffraction-free
Airy wave. The corresponding 0

input intensity of the beam -20 -10 0 10 20 30
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Fig. 1.2 Normalized field profile (a) and intensity profile (b) of a finite-energy Airy beam when
o=0.1

observer in whose frame of inertia gravitational forces are absent. As also indicated in
[1], this accelerating behavior is by no means in conflict with Ehrenfest’s theorem
which describes the motion of the center of gravity of a wave packet [1, 9]. This is
simply because the Airy beam is not square integrable (fAiz(x)dx — 00), and thus, its
center of mass cannot be defined [1, 23]. Note that, ideally, the Airy beam would have
infinite energy, thus it keeps the transverse acceleration and diffraction-free propaga-
tion no matter how far it travels, much like a free-falling object that always keeps the
gravitational acceleration in absence of friction or obstacles.

1.2.2 Truncated 1D and 2D Airy Beams: Theory

Infinite-energy Airy beams are impossible in practice. One possible way to realize
such beams is to introduce an exponential aperture function, i.e., let

©(s,0) = Ai(s) exp(as) (1.3)

at the input of the system (¢ = 0). In (1.3) the decay factor « > 0 is a positive
quantity so as to ensure containment of the infinite Airy tail and can thus enable the
physical realization of such beams. Note that the positive branch of the Airy
function decays very rapidly and thus the convergence of the function in (1.3) is
guaranteed. Figure 1.2a depicts the field profile of such a truncated Airy beam at
¢ = 0, whereas Fig. 1.2b plots its corresponding intensity.

Of particular interest is the Fourier spectrum of this beam which in the
normalized k-space is given by:

@ (k) = exp(—ak?®) exp (% (K — 30k — ioc3)>. (1.4
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Fig.1.3 (a)Propagation dynamics of a finite-energy Airy beam as a function of distance, (b) cross
sections of the normalized beam intensity at (i) z = 0 cm, (ii) 31.4 cm, (iii) 62.8 cm, (iv) 94.3 cm,
and (v) 125.7 cm

From (1.4) it becomes directly evident that the wave packet power spectrum is
Gaussian. From Parseval’s theorem, the total power of this finite-energy Airy wave
packet can be directly obtained and is given by:

1 I 203
J ds|p(s, & = 0)* = \ &g SXP (%) (1.5)

By directly solving (1.1) under the initial conditions of (1.3), we find that the Airy
beam evolves according to:

2
s — (g) + iaé

Note that in the limit « = O our solution reduces to the nondispersive wave packet
shown in (1.2). Figure 1.3a shows the propagation of such a planar Airy beam up to a
distance of 1.25 m when xy = 100 pm and the decay parameter is o = 0.1.
The corresponding cross sections of the intensity profiles at various distances are
shown in Fig. 1.3b. For these parameters, the intensity FWHM of the first lobe of this
beam is 171 pm. We note that for a Gaussian beam of this same width, its Rayleigh
range would have been 13.25 cm at a wavelength of 4y = 0.5 pm. For this example,
the intensity features of this beam remain essentially invariant up to 75 cm as clearly
seen in Fig. 1.3. Evidently this wave endures because of the quasi-diffraction free
character of the Airy wave packet. We emphasize that for this same distance, the
front lobe of the beam would have expanded by at least six times. As illustrated in
Fig. 1.3b, the beam starts to deteriorate first from the tail as a result of truncation.
The last feature to disappear (around 100 cm) is the front lobe. After a certain
distance (in this case 120 cm), the beam intensity becomes Gaussian-like, i.e., as
expected from its Gaussian power spectrum in the Fraunhofer limit.

2 43
exp(as—£—£+ia2—+is§). (1.6)

o(s, &) = Ai > " 12 5 Tis3
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Fig. 1.4 A two-dimensional finite-energy Airy beam at the input z = 0 (a) and after propagating
to z = 50 cm (b)

Even more importantly, in spite of its truncation (necessary for its realization),
the Airy wave packet still exhibits its most exotic feature, i.e., its trend to freely
accelerate. This characteristic is rather peculiar given the fact that it may occur in
free space, e.g., in the absence of any index gradients such as from prisms or layered
media. This behavior is reflected in the term s — (£/2) that appears in the argument
of the Airy function in (1.6). These acceleration dynamics can be clearly seen in
Fig. 1.3a, where the beam’s parabolic trajectory becomes evident. For the example
discussed here, the beam will shift by 880 pm at z = 75.4 cm [12].

These results can be readily generalized into 2D domain, i.e., when the initial
field envelope is given by

o(x,y,z=0) = Ai (£> Ai (l) exp <i) exp <L) (1.7)
X0 Yo w1 w2

The intensity profile of such a 2D beam at z = 0 and z = 50 cm is shown in
Fig. 1.4a, b when xy = yo = 100 pm and w; = w, = 1 mm. In this case, the 2D
Airy beam remains almost invariant up to a distance of z = 50 cm along the
longitudinal direction while accelerating in the same manner along the 45° axis in
the x—y transverse direction. This again suggests that experimental realization of
finite-energy Airy beams is possible simply by truncation.

1.2.3 Truncated 1D and 2D Airy Beams: Experiment

From (1.4), one can readily deduce that the angular Fourier spectrum of the
truncated Airy beam is Gaussian and involves a cubic phase (k) resulting from
the Fourier transform of the Airy function itself. This particular form of the
spectrum has important implications in terms of experimental synthesis of
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Fig. 1.5 Experimental setup for generation of truncated Airy beams. SLM spatial light modulator,
BE beam expander, MO microscope objective

the truncated version of Airy packets. As a result, this wave can be generated from a
broad Gaussian beam through a Fourier transformation provided that a cubic phase
is imposed. Experimentally, such a cubic phase can be readily realized with
Gaussian laser beam by using a spatial light modulator (SLM).

A typical experimental setup for Airy beam generation is illustrated in Fig. 1.5.
An air-cooled Argon-ion continuous-wave laser operating at 488 nm emits a
linearly polarized fundamental Gaussian beam that is subsequently collimated to
a width of 6.7 mm (FWHM). This broad Gaussian beam is then reflected from the
front facet of a computer-controlled liquid crystal SLM. The SLM is used to impose
the cubic-phase modulation (from —20n to 207 in 2 cm) that is necessary to
produce the Airy beam. In order to generate a 1D (or 2D) Airy beam, a converging
cylindrical (or circular) lens with a focal length of f = 1.2 m is placed at a distance f
in front of the SLM phase array. After the SLM, the Fourier transform of the phase-
modulated Gaussian beam is then obtained at a distance d = f = 1.2 m behind the
lens. The Airy beam produced is then imaged on a carefully aligned CCD camera
through a 5x microscope objective. The propagation of the Airy beam is then
monitored by translating the imaging apparatus. Figure 1.6a, b shows the phase
masks used to generate the 1D and 2D Airy beams, respectively.

Experimental results of a 1D Airy beam propagation in free-space are shown in
Fig. 1.7, where Fig. 1.7a depicts the intensity profile of the 1D exponentially
truncated Airy beam at the origin (z = 0). In our experiment, xo = 53 pm and
o = 0.11. Figure 1.7b, ¢ shows the corresponding intensity profiles of this Airy
packet at z = 10, 20 cm, respectively. As expected, the beam remains almost
diffraction-free while its main lobe tends to quadratically accelerate. Our
measurements show that the spatial FWHM width of the main lobe (containing
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Fig. 1.6 Phase masks used to generate (a) 1D and (b) 2D-Airy beams. The cubic phase is
“wrapped” between [0, 27t]. In the gray-scale pattern, black corresponds to O and white to 2n radians
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in this case more than 70% of the total beam energy) remains almost invariant up
to a distance of approximately 25 cm and retains its original value of ~90 um. It is
worth noting that this occurs in free space and is by no means a result of
any optical nonlinearity [24]. Figure 1.7d—f depicts the corresponding expected
theoretical behavior of this same Airy packet at these same distances in good
agreement with the experiment. Note that a Gaussian beam of this size would have
diffracted at least 67 times in this same distance, shown in Fig. 1.7g, h.

Our experiment also demonstrated the transverse acceleration of the local
intensity maxima, shown in Fig. 1.8. This parabolic-like trajectory is a result of
acceleration and is well described by the theoretical relation x,;, = 20222 1(16m°x0°),
as long as the beam remains quasi-diffraction free and before diffraction effects
take over. The solid line in Fig. 1.8 corresponds to the latter analytical expression.
As these results indicate, after 30 cm of propagation the beam experiences a
deflection of 820 um comparable to the total size of the packet (=first 10 lobes of
the Airy beam). Again, we emphasize that the acceleration observed here refers to
the local intensity features of the packet. In all cases, the center of gravity (x) of this
wave remains invariant [1, 25] since d{x)/dz (i/2)j(g0x*<p — @y )dx is constant.

Similarly we have also considered 2D Airy beams. The case of an ideal 2D Airy
packet was first suggested by Besieris et al. [26]. In this case a 2D SLM phase pattern
(Fig. 1.6b) was imposed on the Gaussian beam and was then Fourier transformed
through a spherical lens. By doing so we were able to produce finite energy Airy wave
packets of the form in the right side of (1.7). The evolution diffraction dynamics of the
latter 2D field configurations can be readily solved by separation of variables using the
result of (1.6). The intensity distribution of such a wave is shown in Fig. 1.9a, when
W = w,, corresponding to an x—y truncation factor of o« = 0.11. In this case, approxi-
mately 50% of the energy resides in the main intensity lobe at the corner. In general,
the flexibility in separately adjusting the x—y parameters allows one to control the
transverse acceleration vector of this novel 2D nondiffracting beam. In our
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Fig. 1.7 Observed intensity cross sections of a planar Airy beam at (a) z = 0 cm, (b) 10 cm, and
(¢) 20 cm. Corresponding theoretical plots for these same distances (d), (e) and (f). (g and h)
represent a comparison with a Gaussian beam having the same FWHM as the first lobe of the

Airy beam
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Fig. 1.8 Transverse acceleration of an Airy beam when o = 0.11 as a function of distance. Circles
mark experimental results while the solid line represents the expected theoretical deflection

experiments we considered beams with equal scales in x—y, and thus the acceleration
occurred along the 45° axis. For the pattern generated, x, = 53 pm and the aperture
factor is & = 0.11. As in the 1D case, our experimental results indicate that this 2D
beam propagates almost diffraction-free up to a distance of 25 cm. The main lobe
keeps its spot-size (90 um) up to a distance of ~25 cm and the beam moves on a 2D
parabolic trajectory with x; = y,. The propagation and diffraction dynamics of these
2D Airy beams is shown in Fig. 1.9b—g [13].

Up to now, many different methods have been developed to generate Airy
beams. As an alternative of cubic phase mask, 3/2 phase [27] or binary phase
mask [28] can be explored; besides using SLM, Airy beams can also be
implemented through nonlinear processing [29] or assembly of lenses [30]. In
addition, Airy beams can be the direct output of a microchip laser [31].

1.2.4 Spatiotemporal Airy—Bessel Bullets

We point out that, since the Airy beams are the only type of nondiffracting wave
packets found so far that exist in 1D form, they can also be synthesized in the
temporal domain using dispersive elements [32]. This could lead to, for example,
the observation of dispersion-free Airy pulses in optical fibers, in both the normal
and anomalous dispersion regime [33]. This unique character distinguishes the Airy
beams from other diffraction free beams, such as Bessel beams, Mathieu beams,
etc., which have only the profile in 2D form.
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Fig. 1.9 (a) A schematic of a
2D Airy packet. Observed
intensity distribution of a 2D
Airy beam at (b) z = 0 cm,
(¢) 10 cm, and (d) 20 cm.
Corresponding theoretical
results at these same distances
(@), (F), and (g)
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Theoretically, the Airy beams in combination with other nondiffracting field
configurations can also be used to describe multidimensional [(3 + 1)D] finite
energy wave packets in the presence of diffraction and dispersion. In such a case,
the beam envelope in the spatiotemporal domain obeys [34]:

(1.8)

RN N s AN
"oz Ta\ax2 "oy Tar2 ) T

where in (1.8), without any loss of generality, an anomalously dispersive system
was assumed. For example, a localized Airy finite energy spatiotemporal wave
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Fig. 1.10 Isosurface intensity contour plot for a spatiotemporal Airy—Gauss—Bessel wave packet
(with o = 0.15, wy = 9) (a) at the input Z = 0 and (b) after a normalized propagation distance of
Z = 3. The arrow depicts the direction of acceleration

packet can be obtained using Bessel-Gauss beams [10], i.e., at the input v = Ai(T')
exp(al )Jo(r)exp(frz/woz), where r = (X2 + Yz)l/ 2 and wo is the ‘“aperture”
spot-size of the beam. Under these initial conditions, using separation of variables
we find that this wave evolves according to v = ¢(Z, T)U(Z, X, Y), where o(Z, T)
is given by (1.6), and U(Z, X, Y) is given by the solution of Gori et al. [10].
Figure 1.10 depicts an isosurface plot of such an Airy—Bessel-Gauss wave packet
at the input Z = 0 and after propagation to Z = 3. Even in this case the wave
accelerates forward and remains essentially invariant.

Accelerating Airy wave packets can also be implemented in dispersive optical
fibers. Equation (1.4) suggests that in the temporal domain, such an exponentially
decaying Airy pulse can be produced by passing a transform limited Gaussian pulse
through a system with appreciable cubic dispersion [33]. A system of this sort can
be implemented using another fiber at the zero dispersion point or by employing
pulse shaping techniques [35]. Acceleration pulse dynamics can then be observed in
a fiber with either normal or anomalous group velocity dispersion.

Recently, spatiotemporal optical wave packets impervious to both dispersion and
diffraction, referred to as light bullets, have been investigated by a few groups.
In particular, Abdollahpour et al. [36] demonstrated the realization of intense
Airy—Airy—Airy (Airy?) light bullets by combining a spatial Airy beam with an Airy
pulse in time. The Airy® light bullets belong to a family of linear spatiotemporal wave
packets and they can withstand both diffraction and dispersion during their propaga-
tion. It was shown that the Airy” light bullets are robust up to the high intensity regime,
since they are capable of healing the nonlinearly induced distortions of their spatio-
temporal profile. Chong et al. also demonstrated Airy-based light bullets as 3D linear
localized waves in free space [37]. The method employed in the latter work is
independent of any particular material or nonlinearity, as the wave packets were
formed by combining the Bessel beams in the transverse plane with temporal Airy
pulses, which can be extended in a straight manner to explore other transversely
nondiffractive beams. These versatile 3D optical bullets in free space might break
through the limitations brought by other methods for generation of light bullets.
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1.2.5 Radially Symmetric Autofocusing Beams

Quite recently, a new class of 2D and 3D waves that tend to autofocus in an abrupt
fashion has been introduced [38]. While the maximum intensity of such a radial wave
remains almost constant during propagation, it suddenly increases by orders of magni-
tude right before its focal point. These waves can be generated through the use of
radially symmetric Airy waves or by appropriately superimposing Airy wave packets.

To analyze the properties of such waves, let us first consider the Fresnel
diffraction equation in cylindrical coordinates

1 1
u, + = (u,.,- + —u,) =0. (1.9)
2 r

The propagation of an arbitrary radially symmetric initial condition u(r, z = 0) =
uq(r) according to (1.9) can be computed by utilizing the Hankel transform pair

u(r,z) = % J kiio(k)Jo(kr)e ™22 dk,  iig(k) = 2 J ruo(r)Jo(kr)dr.  (1.10)
0 0

In particular, a radially symmetric exponentially apodized Airy beam is considered
as an initial condition

uo(r) = Ai(ro — r) explo(ro — r)], (L.11)

where 7 is the radius of the main Airy ring, and « is the apodization rate. The power
that the Airy ring of (1.11) carries is given by

o0
‘ 1 — 403
P=2n | uolr dr ~ |2 23 g + — 2| (1.12)
200 4o

0

where in the computation of the above integral we extended the lower integration
limit to minus infinity (alternatively for the slightly modified initial condition
Ai(rg — r)e*"0=") — Ai(r — r)e*" ") the above formula for the power becomes
exact). The propagation dynamics of such an Airy ring is depicted in Fig. 1.11
[38]. Qualitatively the dynamics can be described as following: in the early stages
of propagation, r is large enough and the disk r < ry is essentially dark. As a
result, in the region where the amplitude is large the approximation V u =~ u,,
holds, and thus the 1D Airy solution (1.6) with s — r — ro, can approximate the
propagation dynamics. From (1.6), one may expect that the maximum value of the
amplitude is going to slowly decrease along z. On the other hand, as z increases,
the radius of the Airy beam decreases, the power concentrates in a smaller area,
and the maximum amplitude increases. In fact, the numerical simulations show
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Fig. 1.11 Dynamics of radially symmetric Airy beams for oo = 0.05, 79 = 10, and [,x(z = 0) = 1;
(a) detailed plot of the central part of the propagation dynamics; (b) maximum intensity as a function
of z; (¢) Maximum intensity that the Airy beam reaches during propagation for different values of the
initial radius ry; (d) Hankel transform of the initial condition

that these two effects almost balance each other, leading to relatively small
maximum amplitude changes, up to the point where the beam reaches the center
(Fig. 1.11a, b). Close to the focal point, the power of the first Airy ring is
concentrated in a small area around » = 0 and the maximum intensity at the
center rapidly increases. What is behind this very abrupt increase in intensity is
the lateral acceleration of the Airy beams themselves. In this case, large trans-
verse velocities are attained and energy rushes in an accelerated fashion toward
the focus. While the peak intensity remains around unity up to z = 6, it then very
rapidly increases by more than 135 times at the focal point (Fig. 1.11b). For longer
propagation distances, the maximum intensity starts to decrease. As can be seen in
Fig. 1.11b, this decrease is not monotonic, but it exhibits oscillations, which are
generated by the subsequent Airy rings. Interestingly enough, at a final stage the
solution takes the form of a Bessel function with a chirped argument.

In Fig. 1.11c, the maximum intensity that the beam reaches during propagation is
shown as a function of the initial radius r for o« = 0.05. For small values of r,, the
Airy beam does not carry much power and thus the maximum intensity reached is also
relatively small. As the value of r( increases, the maximum intensity also increases
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and for ry ~ 15 it takes its maximum value (/;,,x = 156). For even larger values of r,
diffraction becomes significant and I,,,x starts to decrease. Note that, as shown in
Fig. 1.11c, large intensity contrasts are possible for a wide range of values of 9. Much
higher values of I,,x are possible by further suppressing diffraction (decreasing o).
Figure 1.11d depicts the Hankel transform of the input field profile of this beam as a
function of the radial spectral component k. The transform is a real function that
oscillates between positive and negative values and its envelope is decreasing with k.

Families of abruptly autofocusing beams can also be constructed by
superimposing exact Airy wave solutions. If ¢(x,z) is the 1D exponentially
apodized Airy wave solution as given by (1.6), then we can construct, continuous
or discrete, superpositions of 2D Airy waves ¢ (x',z)¢(y', z) where the coordinates
(¥',y) are rotated and translated with respect to (x,y) [(+,y)" = TR(x,y)",
T represents a translation, and R a rotation matrix]. A particular configuration that
exhibits abruptly autofocusing dynamics consists of a continuous superposition of
2D Airy waves with centers lying on a circle and each one of them propagating
towards the center of the circle [38].

The above Airy families of abruptly autofocusing waves can be generalized by
considering an initial condition of the form

u(r,z =0) = A(r) sinfg(r)], (1.13)

where A(r) is the envelope function and ¢(r) is a sublinear chirped phase

C(r— ro)/j r>ro
r)= = 1.14
q( ) { 0, r<ro ( )
C > 0and 1 < f§ < 2. The term sublinear stems from the fact that the phase of a
linear chirp is quadratic (f = 2). Following a ray optics approach, we find that such
an initial condition generates a caustic that propagates according to

[CB(B— 1)z

) (1.15)
v—1

r=ryg—

where v = (2 — [3)71 [39]. Note that the caustic of the Airy beam is reproduced
by setting = 3/2 resulting to the parabolic trajectory r = ro — (3Cz/4)*. The
exponent of the power law caustic can be engineered by varying the chirp coefficient.
For example, for f§ = 5/3 the exponent of the power law caustic becomes cubic
[39, 40]. In addition, different types of convex trajectories, such as exponential, are
also possible [40].

Three-dimensional abruptly autofocusing waves are also possible. The corres-
ponding anomalous dispersion paraxial equation, which is normalized such that
dispersion and diffraction are equalized, is given by

1 1 2
iu: + 5 (uu + Uy + utf) = iu, + 5 (urr + ;%) =0, (1.16)
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Fig. 1.12 (a) Isointensity hemisphere of the spherical Airy-type wave; (b) maximum intensity for
ro = 15 as a function of z; (¢) maximum intensity that the Airy beam reaches during propagation
for different values of the radius. In (b), (¢) I,.x(z = 0) = 1, « = 0.05

where r = /x% + y2 + £2. Interestingly enough, exact expressions for the evolution
of an abruptly autofocusing wave can be found in the case where the Airy beam is
apodized both exponentially and with a power law 7~ !: In this case, the solution
takes the form [38]

u(r,z) :¢>(ro—r,z)—¢>(r0+r,z), (1.17)

7

where ¢(x,z) is the 1D exponentially apodized Airy wave solution. In Fig. 1.12
dynamical properties of such a spatiotemporal wave are shown.

These radially symmetric autofocusing Airy beams have been recently gene-
rated by two research groups, along with the proposed application of such beams
[15, 41, 42]. We shall discuss these applications in Sect. 1.6.4. Experimental data
corresponding to the theoretical results of Fig. 1.11 are displayed in Fig. 1.13 [15].
The bottom panel shows the autofocusing beam from a side propagating view and
the top panels display snapshots of transverse patterns at different propagation
distances. For better visualization, the intensities in Fig. 1.13a—d have all been
scaled to the same peak intensity; however, the intensity pattern without normali-
zation would illustrate the drastic increase of peak intensity near the “focal point”
of the circular Airy beam. In Fig. 1.13e, the propagation length is about 3 cm and
the beam size changed from 600 to 20 pm. Our findings show a good agreement
between theoretical and experimental results.
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Fig. 1.13 (a—d) Experimental snapshots of transverse intensity patterns of the autofocusing beam
(contrast enhanced) taken at different planes as marked in (e), the direct side-view photography of
the beam taken from scattered light

1.3 Control of Ballistic Motion of Airy Beams

1.3.1 Ballistic Dynamics of 1D Airy Beams

The ballistic motion of optical Airy beams can be analyzed using the (1.1). In order to
investigate the beam trajectories, we consider the input field distribution (s, £ = 0) =
Ai(s)exp(as)exp(ivs), where Ai(s) represents the Airy function, o in the exponential
truncation factor is a small positive parameter, and v is associated with the initial
launch angle (or “velocity”) of this beam. Under these initial conditions and from (1.1),
we find that this finite-energy Airy wave evolves according to:

o(s, &) = Ails — (6/2)2 — v 4 iaf] exp(as — aé? /2 — avé)
x exp{i[—& /12 + (o2 —V? +5)&/2 4 vs — vE?/2)]}. (1.18)

From the argument of the Airy function in (1.18), one can conclude that this beam
follows a ballistic trajectory in the s—¢ plane which is described by the parabola
s = v¢ + (¢/2)%. In physical units, this parabolic deflection of the beam intensity
features is given by x; = 0z + [22/(4k*x>)] where the actual launch angle 6 in
the x—z coordinates is related to the normalized v parameter through 0 = v/(kxg).
The corresponding Newtonian (kinematical) equations describing this ballistics
are d°x/dz* = 1/2k’xo°) = g and dx/dz = gz + 0 where g plays here the role of
“gravity”. The trajectories of an ideal Airy beam (without truncation) are shown in
Fig. 1.14 under different launch conditions, corresponding to three distinct regimes.
More specifically, when this wave is launched upwards (when the launch angle is
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Fig. 1.14 Ballistic dynamics of an ideal Airy beam o = 0 when (a) v = —2, (b) v = 0, and
(¢) v = +2. The circle in (a) represents an opaque obstacle

negative v < 0), the beam will initially ascend until it stalls due to downward
acceleration at 7 = —0 /g = —2k?xy>0. At this apogee point the maximum deflection
iS Xymax = —0°k*xo°. From that point on, the packet will accelerate downwards as
shown in Fig. 1.14a. In fact, this ballistic behavior suggests that the Airy wave packet
can circumvent an opaque object O (depicted schematically in Fig. 1.14a) lying
straight in its path, by following instead a curved trajectory. If on the other hand the
launch angle is zero, the wave will follow a parabolic trajectory (Fig. 1.14b), similar
to that predicted and demonstrated in [1, 12, 13]. The case for v > 0 is shown in
Fig. 1.14c.

The experimental setup used to observe the ballistic dynamics of finite energy
Airy wave packets is shown in Fig. 1.5. The propagation dynamics of these beams
were then recorded as a function of propagation distance by translating the imaging
apparatus. The origin z = 0 is taken at a distance f after the lens, e.g., at the point
where the exponentially truncated Airy function is Fourier generated. The launch
angle 0 is controlled by varying the transverse displacement of the imaging lens
with respect to the axis of the system. This operation is equivalent to the shifting
property of Fourier transforms [43]. The ballistic dynamics of these exponentially
truncated Airy beams are shown in Fig. 1.15 for various launch angles [44].
The parabolic trajectories of the intensity features of these waves were monitored
up to a distance of 25 cm and the wavefront tilt angle varied from —1.33 to 0.83 mrad
in order to realize the three ballistic regimes discussed above. The curves A, B, C in
Fig. 1.15 were obtained for 0 = —1.33, —1.0, —0.5 mrad respectively. As one can
clearly see, for alunch angle of § = —1.33 mrad, the Airy beam reaches its apogee at
2= —2k’x¢>0 ~ 9cm, at which point the beam deflection is X nax = —0%k%xy°
~ 60 um, in excellent agreement with our predictions. Curve D in Fig. 1.15
corresponds approximately to a zero launch angle. On the other hand, curve E, in
Fig. 1.15, is obtained for § = +0.83 mrad. For the latter scenario, the acceleration
displacement is further enhanced because of downward motion. The solid lines in
Fig. 1.15 correspond to the theoretical curves associated with these cases.

Following the analysis of [1, 25], the motion of the center of gravity of these
finite energy Airy wave packets can be studied. As usual, the intensity centroid is
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defined as (s(§)) = (I/N)J"slcp(s §)|2ds where in our case the constant norm is given
by N = “cplzds = (8mor)™ 172 exp(2oc /3). From Ehrenfest’s theorem [9] it can be
shown that d(s)/d¢ = v, from where one can deduce that [25]:

403 — 1

(s) =v&+ P

(1.19)

Equation (1.19) indicates that the center of gravity of these beams moves at a
constant velocity (or remains invariant for v = 0) as a function of propagation
distance. Indeed, experimental results clearly show this linear behavior for the same
launch angles used in Fig. 1.15 [44]. Thus, we emphasize again that the aforemen-
tioned acceleration behavior refers to the trajectories of the local beam intensity
features and is by no means in contradiction with Ehrenfest’s theorem.

1.3.2 Ballistic Dynamics of 2D Airy Beams

To analyze the ballistic dynamics of 2D Airy beams, the normalized (2 + 1)D
paraxial equation of diffraction is employed:

&p 1 &% 1 0

———=0 1.20
Yo T2k o 2k k 0y? ’ (1.20)
where ¢ is the electric field envelope and k = 27nn/4, is the wavenumber of the
optical wave. The evolution of a 2D finite energy accelerating Airy beam, whose
field profile at the origin is given by @(x,y,z=0)= [ Ai(sm) exp(ctsn)
exp(ivmSm), can be obtained in closed form: m=x,y

p(x,y:2) = T nlsm: &), (1.21)

m=x,y
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Fig. 1.16 Motion of the main
lobe of a symmetric

(xo = yo = 77 pm) 2D Airy
beam when launched at

0, = —2 mrad and
0, = 2 mrad

Z L
where

um(srm ém> :Ai[sm - (ém/2)2 - Vmém + iamém] eXP(OCmSm - O‘mémz/z - amvmfm)
X exp{i[—5m3/12 + (0> = Vi + 5m)Em/2
+ VimSm — Vmémz/z)]}ﬂ (122)

Ai(s,,) denotes the Airy function [23], s, = x/xo and s, = y/y, represent dimension-
less transverse coordinates, with xg, yo being arbitrary transverse scales, and &, =
z/kxo* and & = z/kyo* are used to normalize the propagation distance z. a,, in the
exponential function is a small positive parameter associated with the effective
aperture of the system, and v,,, is related to the initial launch angle 6, (or “velocity”)
of this beam through 6,, = v,,/k(xo, o).

From (1.22), one can also directly determine the trajectory of the main (“head”)
lobe of the Airy beam as a function of distance. This 3D curve is given by:

1 2
Xq = wzxgz + QXZ
1 2
=g+ 0 (1.23)

In principle this trajectory can be appropriately tailored through the magnitude and
sign of the launch angles 0,,, and the scales x, yo. Clearly, for zero launch angles 0,
and if xo = yo, the main lobe of the Airy beam will move on a parabola (projected
along the 45° axis in the x—y plane). On the other hand, a “boomerang-like” curve
may be created if for example the “launch” angles are chosen to have opposite
signs, say 0, = —2 mrad and 0, = 2 mrad (while xy = yo = 77 pm), as shown in
Fig. 1.16. What is also very interesting is the fact that these displacements vary
quadratically with the wavelength A.
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Fig. 1.17 (a) Schematic of input Gaussian beam, cubic phase mask, and Fourier lens used
for generation of truncated Airy beam; (b) location of mask (center denoted by white spot) and
input beam (marked by red dashed circle and center denoted by red spot) in Fourier plane;
(c¢) illustration of different trajectories obtained at different D, and D,,, when the peak beam intensity
appears at maximum heights or ranges (marked by red spots). The inset shows the Airy beam profile
at the maximum height of upper curve. The lower curve corresponds to normal excitation at
D, = D,, = 0, so its peak intensity is at the starting point (z = 0); (d) Numerical simulations of
beam propagation for two specific cases corresponding to the upper trajectory shown in (c)

1.3.3 Optimal Control of the Ballistic Motion of Airy Beams

Let us consider a typical optical system for generation of 2D Airy beams as depicted
in Fig. 1.17a, where a Gaussian beam is first modulated by a cubic phase mask and
then passes through a Fourier transform lens. Usually, the Gaussian beam, the
mask, and the Fourier lens are set to be coaxial along z. If the lens is transversely
shifted, a tilting angle will be introduced into the Airy beam. As an example, let us
fix the position of the lens but allow the mask and Gaussian beam to have transverse
displacements in the Fourier plane. To understand the influence of these
displacements, let us first consider the 1D case. The Fourier spectrum of a truncated
Airy beam can be expressed as exp(—ow?) exp[i(w® — 30w — ix’)/3], where o is a
small parameter for the exponential truncation factor, and w is the normalized wave
number. If the Gaussian beam and the phase mask are translated by w, and w,, in the
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Fourier plane, the resulting spectrum exp[—oa(w — wg)z] exp{i[(w — W) —
3oc2(w —wW,) — ioc3]/3} leads to a new truncated Airy beam with a field envelope
¢ expressed as follows:

¢ = Cf (s, E)A[s — wné — (E/2)% + io(E — 2wy + 2w,)] exp(iwns),  (1.24a)
C= exp(—ocwg2 — oWy + 20%w,, — i2oc2wg + 20w, W, ), (1.24b)

f(s5,&) = explos +isE/2 + (—iwp? /2 4 % /2 — 20w, + awy )&

(1.24¢)
+ (—0/2 — iw, [2)E — i3 /12],

where Ai represents the Airy function, and s and £ are normalized transverse and
longitudinal coordinates. From (1.24a), we see that the trajectory changes due to
the translation of the mask as expressed by s = w,,¢ + (£/2)%. The term io(¢ —
2w, + 2w,,) shows that the new peak-intensity position is at & = 2(w, — W),
controlled by translation of both the mask and the Gaussian beam. Similar analyses
can be employed for the 2D case shown in Fig. 1.17b, and the trajectory can now
be expressed as — v2[D,,¢/v/2 + (¢/2)°] with a new peak-intensity position at
&= —V2D, + V2D, (D, and D,, are normalized vertical displacements of
the Gaussian beam and the mask in Fourier plane, respectively). Therefore, by
translating the mask and Gaussian beam with respect to z-axis, the location of peak
beam intensity as well as maximum height and range of the trajectory can be
controlled with ease. Typical 2D numerical results are shown in Fig. 1.17c, d.
For D, = D,, = 0, the Airy beam propagates akin to a body projected horizontally
with the peak intensity appearing at the starting point. Moving the mask to different
vertical positions (D,, ~ —2.3, —3.1) leads to propagation of the Airy beam in a
ballistic trajectory as does a batted baseball. In the case of D, = 0, the peak
intensity always appears at the maximum height. However, by translating also the
Gaussian beam so that D, = —D,,, the peak intensity appears at the maximum
range (“point of fall”’) as demonstrated below.

Experimental results corresponding to above analyses are shown in Fig. 1.18,
where a Gaussian beam is turned into a truncated Airy beam assisted with a SLM
and a Fourier transform lens as shown in Fig. 1.18a. When the beam, mask, and lens
are aligned coaxially, a “horizontally projected” Airy beam is generated with a
decaying intensity (due to diffraction) during propagation (Fig. 1.18a). If the mask
is translated slightly in vertical direction, the resulting Airy beam propagates in
general ballistic trajectories with different ranges (Fig. 1.18b, d) while its peak
intensity appears at the maximum heights. These different trajectories correspond
to different launching angles due to the transverse displacement of the phase mask
relative to the z-axis of the system. By also translating the Gaussian beam the same
distance but to the opposite direction, the trajectory remains the same but the peak
intensity moves to the maximum range (Fig. 1.18c, e). These experimental results
agree well with our theoretical predications.
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Fig. 1.18 Experimental demonstration of controlled trajectories (white dashed curves) of
truncated Airy beams under different excitation conditions. Snapshots of transverse intensity
patterns are shown at marked positions. (a) Normal condition when peak beam intensity is at the
starting point, corresponding to lower curve in Fig. 1.17c; (b, d) peak intensity goes to the
maximum height with shifting of only cubic phase mask; (c, e) peak intensity goes to the “point
of fall” with additionally shifting of the Gaussian beam

If we allow both vertical and horizontal displacements of the phase mask [(D,,,.,
D,,,)] and the Gaussian beam [(D,,, D,,)] as illustrated in Fig. 1.19a, the projectile
motion of the Airy beam can be set into any arbitrary direction. Following similar
theoretical analysis for Egs. (1.24a, b, c), the (x, y) trajectory can be expressed as

[~Dué, =D& — V2(E/2)%]. Clearly, the Airy beam in this case undergoes
uniform motion along horizontal direction while accelerating along vertical direc-
tion. As such, the Gaussian beam (even initially aiming along z-direction) can
propagate to any off-axis location. The horizontal displacements of the mask and
Gaussian beam will not change the location of the peak beam intensity, but they can
change the Airy beam profile from symmetric (when D,,, = D,,) to asymmetric
(when D, # D,,). An example of experimental results is shown in Fig. 1.19b, c.
The peak intensity appears at the maximum height of the trajectory when the
Gaussian beam is on axis (Dg = D,y = 0, shown in Fig. 1.19b) but moves to the
“point of fall” when the beam is displaced vertically (D,, = 0, D,, = —d, shown in
Fig. 1.19¢). In this case, since D, # D,., the Airy beam starts with an asymmetric
profile but evolves into a symmetric profile after restoring its peak intensity. These
experimental observations are corroborated with numerical simulations [45].
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Fig. 1.19 Experimental demonstration of accelerating Airy beams with transverse uniform
motion. (a) Relative positions of cubic phase mask and Gaussian beam in the Fourier plane;
(b, ¢) experimental results of the trajectory and intensity pattern of the Airy beam obtained under
different excitation conditions as depicted in (a)

1.3.4 Airy Trajectory Engineering in Dynamic
Linear Index Potentials

Quite recently, we have successfully demonstrated that, with optically induced linear
index potential, enhancement as well as reduction of Airy beam acceleration can be
realized by changing the index gradient transversely [46]. Here we show our design of
linear longitudinal (z-axis) index potential to engineer the trajectory that the Airy
beam follows. In particular, let us consider the paraxial dynamics of an optical field

1
iuz + Euxx - u= 07 (125)

where d(z)x/2 is the transversely linear index potential with a gradient d(z). In the
Fourier space (1.25) becomes

B — i = i i, (1.26)

which is equivalent to the characteristic system

dz _ dk  di
1 —d(z)/2  —ik%i/2’

(1.27)
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By integrating the above system we obtain the integral formula

1 00
u(x,z):ﬂj di(k, 0)e /) J; <P dsgin(zhr gy (1.28)

—00

where «(z) = k — D(z)/2, D(z) = J; d(s)ds. We focus our attention on Airy type
initial conditions

u(x,z = 0) = Ai(y'x), (1.29)

where y is the width of the Airy wave. By substituting the Fourier transform of
(1.29)

3 1 ik3
into (1.28) we find that
u(x,z) = "I Ai(" Pu(x, 2)), (1.31)
where
Fi(2) 22
= - 1.32
Hs) === x =, (1.32)
_ YFi(2)z D(2)x  Fa(z)  .yzx 223
¢ =i 4 i 5 i 3 +12 112, (1.33)
and
Fi(z) = JD(s)ds, Fa(z) = JD2(s)ds. (1.34)
0 0

We consider that the trajectory of the Airy beam is provided by u(x,z) = 0, i.e.,

(1.35)

which mainly determines caustic trajectory. By generalizing the initial condition as

u(x,z = 0) = Ai(y'3 (x — xo))e'"™, (1.36)
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in which case x is the initial spatial displacement and v is the initial tilt, the
trajectory of the beam becomes

Fi(z)  y2?
— 1.
> + 1 (1.37)

x=xo+ ¥z —

More importantly, we can also solve the inverse problem: given a predefined
Airy beam trajectory x = g(z) we can determine the index gradient d(z) as well as
the initial condition parameters xq, w that are required. Following the relevant
algebra we find that

X0 =g(0), ¥ =¢g(0), dz)=y-2¢"(2). (1.38)

In a similar fashion one can derive expressions for the dynamics of exponentially
and Gaussian apodized Airy beams [47]. In particular, the trajectory of the expo-
nentially apodized Airy beam is essentially the same as compared to the “pure”
Airy beam, whereas the effective trajectory is modified in the case of a Gaussian
apodization. As an example, in Fig. 1.20 we see an exponentially apodized Airy
beam following different trajectories. In all cases, the potential gradient and initial
condition parameters are determined by utilizing (1.38).

1.4 Self-healing of Airy Beams

1.4.1 Self-reconstructing Optical Airy Beams

Perhaps one of the most remarkable properties of any diffraction-free beam is its
very ability to self-reconstruct during propagation. This characteristic is of particu-
lar importance when such waves propagate in inhomogeneous media [48]. The
question naturally arises whether Airy beams can self-heal and to what extent? If so,
how does this process take place and how is it affected by the beam’s acceleration
dynamics? For example, can an Airy beam negotiate adverse environments? In this
section we review the self-healing properties of optical Airy beams. We show that
this family of waves exhibits remarkable resilience against perturbations and tends
to reform during propagation.

1.4.2 Babinet’s Principle for a Nondiffracting Beam

The self-healing properties of a nondiffracting field configuration, when it is partially
blocked by a finite opaque obstacle at z = 0, can be explained from Babinet’s
principle [49]. If the nondiffracting input field is disturbed by a finite energy
perturbation &(x, y), i.e., (x, ¥, z = 0) = Unp(x, y, z = 0) — &(x, y, z = 0), then
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Fig. 1.20 Exponentially apodized Airy beam propagation (¢ = 0.05) along predefined paths.
(a) Power law trajectory x = (z — 1)3; (b) sinusoidal trajectory given by x = g(z) =
2[cos(nz) — 1]; (c¢) logarithmic trajectory x = log(l + 10 z); (d) hyperbolic type trajectory

given by x = g(z) = 2[/(z — 2)* + 1 — 1]H(z — 2) where H(z) is the Heaviside step function

from (1.1) one finds that ic. + (1/2k)VZe = 0. As a result the perturbation ¢ is
expected to rapidly diffract as opposed to the nondiffracting beam that remains
invariant during propagation. As a consequence, at large distances |<p(x, Y, z)|2 =
|UND(x, Y, z)|2, and hence the nondiffracting beam reforms during propagation.
This argument holds for all nondiffracting fields including the accelerating Airy beam.

1.4.3 Transverse Power Flow of an Optical Airy Beam

Of relevance to our discussion is the Poynting vector S associated with Airy optical
beams. In the paraxial regime, S is given by [50]:

— —

R 1, o i
S=84+S,=—|o|Z+—[pVie " — ¢"Vi¢], (1.39)
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where 7, = 1/ y/€o is the impedance of free space. S. denotes the longitudinal
component of the Poynting vector whereas S| the transverse. From Egs. (1.23) and
(1.39) one can directly obtain the direction of the Poynting vector associated with
an ideal 2D Airy («,, = 0) beam. More specifically, the angle y the projection of S
makes with respect to x axis is given by:

s, O+
anp =2 = 2% (1.40)
Se Ovt g

On the other hand, the direction of § relative to the z axis is given by:

1/Sz—i—S2 . \2
T 3 g <0y+2k2y8> . (14D

Note that for ideal Airy beams, the Poynting vector Sis at every point parallel to the
unit tangent vector [ of the trajectory curve of (1.23). This statement is also valid for
finite energy Airy beams during the quasi-diffraction free stage of propagation. At
larger distances, however, small deviations are expected to occur. In addition one
can show that the polarization of the beam can evolve in a similar manner.

The reconstruction of an accelerating optical Airy beam can be monitored
through the transverse component of the Poynting vector S, [51].

tand =

1.4.4 Observation of Self-healing Properties of 2D Airy Beams

In order to study experimentally the self-healing properties of a 2D Airy beam, the
Airy pattern is partially blocked in a controlled manner with a rectangular opaque
obstacle inserted at the desired location, and then monitored for their self-
reconstruction during propagation. In all cases we block a portion of its initial
intensity profile. The most prominent intensity characteristic of an Airy beam
happens to be its main corner lobe (as seen in Fig. 1.9a) which contains a large
percentage of the beam’s total power. In a first experiment, an opaque rectangular
obstacle was employed to obstruct the corner main lobe of the Airy pattern
(Fig. 1.21a). The FWHM of the blocked lobe feature was approximately
130 pm corresponding to xo = yo = 77 pum and « = 0.08. Figure 1.21b depicts
the reformation of this Airy beam after a distance of z = 11 cm. The self-healing
of this beam is apparent. The main lobe is reborn at the corner and persists
undistorted up to a distance of 30 cm (Fig. 1.21c). In our setup, the latter distance
(30 cm) corresponds approximately to four diffraction lengths of the corner lobe.
Our experimental observations are in excellent agreement with numerical results
presented in Fig. 1.21d-f for the same propagation distances.
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Fig. 1.21 Self-healing of an Airy beam when its main lobe is blocked. Observed intensity profile

at (a) the inputz = 0, (b) z = 11 cm, and (¢) z = 30 cm. The corresponding numerical simulations
are shown in (d—f)

Fig. 1.22 Calculated transverse power flow s Jat(@z=1cmand(b)z=11cm

We note that had the main lobe been launched in isolation it would have
experienced a fivefold increase in the beam width over the same propagation
distance, while the peak intensity would have dropped to 5% of its initial value.
This is another manifestation of the nondiffracting nature of Airy beams.

In order to understand this self-healing process it is important to study the internal
transverse power flow S within the perturbed Airy beam. To do so we use the result
of (1.39). Figure 1.22a depicts the transverse flow within the Airy beam atz = 1 cm
when the main lobe has been removed. Evidently the power flows from the side lobes
towards the corner in order to facilitate self-healing. On the other hand, once
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Fig. 1.23 Self-healing of an Airy beam when all the internal lobes are blocked. Observed intensity
profiles at (a) the input z = 0 and (b) z = 16 cm. The corresponding numerical simulations are
shown in (c) and (d)
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Fig. 1.24 Transverse power flow S, revealing the self-healing mechanism at z = 1 cm for the
incomplete Airy beam shown in Fig. 1.23

reconstruction has been reached (at z = 11 cm), then the internal power density
around the newly formed main lobe flows along the 45° axis in the x—y plane (for
Xo = Yo) in order to enable the acceleration dynamics of the Airy beam (Fig. 1.22b).

So far we have experimentally demonstrated that an Airy beam can reconstruct
itself when its main lobe has been blocked. It is of interest to examine whether the
beam could self-heal even after more severe perturbations. In a second set of
experiments we have totally blocked all the internal structure (all inner lobes) of
the Airy pattern (Fig. 1.23a). Remarkably after z = 16 cm of propagation the beam
self-heals and reconstructs in detail its fine intensity structure as depicted in
Fig. 1.23b. Figure 1.23c, d shows the corresponding calculated intensity profiles
for these same distances.
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Fig. 1.25 Self-healing of an Airy beam when propagating in a suspension of 0.5 pum silica
microspheres in pure water. Observed intensity profiles at (a) the input z = 0, (b) z = 5 cm, and
(¢)z=10cm

The internal power flow during the latter self-healing process is shown in
Fig. 1.24. At z = 1 cm, the Poynting vector provides energy towards the blocked
region for rebirth to occur while on the main lobe is directed along 45° in the x—y
plane in order to enable the self-bending of the Airy beam.

In addition, we have also demonstrated experimentally that an Airy beam can
reconstruct itself when a nonsymmetric obstruction is used. This asymmetric
perturbation was carried out by blocking, for example, the first three lobes of an
Airy wave packet along the y axis. Interestingly, in this physical setting, the beam
not only self-heals itself but also the initially blocked part is reborn even brighter
when compared to its surroundings. This is a clear manifestation of the
nondiffracting character of the Airy beam [51]. In addition, this self-regeneration
property can be improved by dual Airy beams [52].

1.4.5 Self-healing of Optical Airy Beams
in Scattering Environments

In the previous section we have demonstrated that optical Airy beams are remark-
ably resilient to amplitude deformations when propagating in free space. The
question is: are such self-healing Airy wave packets also robust in adverse
environments? To address this question we have experimentally studied the propa-
gation of Airy beams in scattering and turbulent media.

In order to study the self-healing dynamics of Airy beams in scattering media we
have again blocked their main corner lobe (Fig. 1.25a). To do so we have prepared
two different samples of silica microspheres (n = 1.45) suspended in pure water
(n = 1.33). The size of the dielectric microparticles was 0.5 and 1.5 pm in diameter
and thus light scattering was predominantly of the Mie type [53]. Both suspensions
were 0.2% in weight concentration while the volume filling factor was 0.1%.
We have ultrasonicated the prepared mixtures for 1 h, to make sure that the silica
particles were monodispersedly suspended in water. The scattering cross section of
the microspheres is estimated to be 0.055 and 3.76 pm? [54] for the small and large
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Fig.1.26 Propagation in a turbulent medium of (a) an optical 2D Airy beam and (b) a comparable
Gaussian beam

particles, respectively. These values lead to significant light scattering, enough to
give a granular appearance when the beam propagates 5 cm in the water—silica
mixture (diameter of 0.5 um) (Fig. 1.25b). A longer (10 cm) cell was used to
observe the complete reformation of the Airy pattern in the same scattering media.
Figure 1.25c depicts the self-healing of an Airy beam after propagating 10 cm in the
same environment. Besides the anticipated drop in the beam intensity due to Mie
scattering, the beam still exhibits in every respect its characteristic pattern.

1.4.6 Resilient Airy Beam Propagation in a Turbulent Medium

We have also studied the effect of turbulence on an Airy beam. The turbulent
environment was realized over a heated rough accordion-shaped aluminum foil
above which violent heat convection air currents were generated. The turbulence
was controlled by adjusting the temperature of the hotplate around 300°F. The Airy
beam was then passed right above the aluminum foil up to a distance of 8 cm. In all
our experiments the resilience of the Airy beam (without any initial amplitude
distortions) against turbulence was remarkable (see Fig. 1.26a and the related video
file in [55]). To some extent this robustness can be qualitatively understood if one
considers the phase structure of the beam: alternations in phase between 0’s and 7’s
result in zero-intensity regions and these singularities can be in turn extremely
stable [56, 57]. For comparison purposes we turned off the cubic phase from the
SLM, thus producing a comparable Gaussian beam. This diffracting Gaussian beam
was then passed through the same turbulent system. Unlike the Airy beam, the
Gaussian beam was strongly deformed and it suffered massive distortions (see
Fig. 1.26b and the related video file in [58]).

Another experiment we did for self-healing of an Airy beam is to reposition the
peak beam intensity to a target even through disordered media using the linear
control method discussed in Sect. 1.3.3. This is illustrated in Fig. 1.27a, where
the peak intensity of a truncated Airy beam is supposed to land on a target located
at (x, y, z) = (0, 0, 25 cm) along a curved trajectory (red dashed curve) after
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Fig. 1.27 (a) Schematic of Airy beam propagation through a disordered medium. The red dashed
(black solid) curve depicts the trajectory in free-space (disordered medium); (b, ¢) intensity pattern
of output Airy beam at z = 25 cm through air (b) and stirred salt—water mixture (c); (d) restoration
of the Airy beam peak intensity at the target after translating the phase mask and input Gaussian
beam; (e) typical output pattern of a Gaussian beam from the salt—water mixture. The white cross
corresponds to the target point at (0, 0, 25 cm)

passing through a disordered medium. However, due to presence of the disordered
media, the Airy beam path (black solid curve) is deflected off the target apart from
diminishing intensity during propagation. Simply by translating the phase mask
and the initial Gaussian beam, the restored peak intensity can be repositioned at the
target. Corresponding experimental results obtained with a turbulent salt—water
mixture are shown in Fig. 1.27b—e. First, we “aim” the Airy beam at the target after
25 cm of propagation through air. Then, salt is added and stirred in water placed in
the beam path. Although the Airy beam is recovered through disordered scatters
due to its self-healing property, its position in the target plane is shifted dramati-
cally (Fig. 1.27c). The large lateral shift of the Airy beam path from Fig. 1.27b, c is
caused mainly by refraction from the salt—water mixture (which has a refractive
index different than that of air), while small variation of the Airy beam in its shape
and location in a given output plane occurs due to turbulence of stirred mixture. By
translating the mask and the Gaussian beam independently, as expected, not only
the Airy beam comes back to the target, but also its peak intensity is restored
(Fig. 1.27d). We emphasize that Fig. 1.27¢c, d were taken as a snapshot to show one
example of the “fluctuating” pattern, as the shape and transverse position of the
self-healing Airy beam vary slightly with time. However, the average intensity
pattern is a well-defined Airy beam with its peak intensity repositioned at the
target. For comparison, keeping all conditions unchanged as for Fig. 1.27d except
for changing the cubic phase into uniform phase in the SLM, the Airy beam returns
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to anormal Gaussian beam which is severely scattered, deformed and shifted after
propagating through the same salt—water mixture (Fig. 1.27e). These results
suggest that Airy beams are excellent candidates for beam reposition to a given
target through disordered or turbulent media, perhaps even with a feed-back
system that could compensate time-dependent fluctuation.

In detail, the evolution of Airy beam intensity distribution in turbulence was
examined in [59], where results show that the centroid position and skewness of an
Airy beam are independent of turbulence. In addition, the numerical work in [60]
found that scintillation of an Airy beam array is significantly reduced in the
turbulent atmosphere.

1.4.7 Restoration and Degeneration of Deformed Airy Beams

Previous sections investigated reconstruction of either perfect or imperfect (with
missing lobes) Airy beams. In this section, we discuss the self-healing of deformed
Airy beams, in which none of the Airy lobes are blocked but the angle between the
two “wings” differs from the regular 90° for the perfect 2D Airy beams. The wave
function of a deformed Airy beam studied here can be expressed by

U = Ai(X /xp)exp(aX /x0)Ai(Y /xo)exp (oY /xo) (1.42)

where X and Y are respectively equivalent to (—+/rx —y/y/r)/v/2 and
(/rx — y/\/T)/V/2, xq is a constant governing the size of the Airy beam, and r
is the parameter determining the degree of deformation of the Airy beam. r = 1
corresponds to the normal case for which the angle between the two “wings” of
the Airy beam is equal to 90° (Fig. 1.28a). After 20 cm of linear propagation, this
regular Airy beam remains nearly diffraction free. For r < 1, the angle between
the two wings of a deformed Airy beam is obtuse as depicted in Fig. 1.28b, c. In
this case, the wings shrink gradually towards the 90° position during propagation,
with a slight increase of its transverse acceleration (see Fig. 1.28b, c, bottom).
Inversely, for r > 1, the angle between the two wings of a deformed Airy beam is
acute as depicted in Fig. 1.28d, e, so the wings expand gradually towards the 90°
position with a slight decrease of its acceleration. Interestingly, when the angle
deviation from 90° is not too big, the deformed Airy beam seems to restore well
during propagation, but at large deviations, the angle can change from obtuse to
acute and vice verse. In particular, it is found that a strongly deformed 2D Airy
beam with a small acute angle degenerates into a quasi-1D Airy beam, as can be
seen from Fig. 1.28e. This was confirmed by more detailed simulations.

To perform experimental demonstration, a cubic phase mask is utilized as before
(see inset in Fig. 1.29a). After 20 cm of propagation in free space, the Airy beam shifts
vertically due to its transverse acceleration. Now we modify the vertical-horizontal
length ratio of the phase mask, which controls the angle between the two wings.
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Fig. 1.28 Numerical simulations of linear propagation of deformed Airy beams. Top and bottom
panels correspond to input and output after 20-cm propagation, respectively. From left to right,
r=1,0.89,0.67, 1.11, and 1.33. (a) A regular Airy beam at a right angle between the two wings,
(b, ¢) deformed Airy beams at an obtuse angle, and (d, e) deformed Airy beams at an acute angle.

Dashed lines mark the position of peak intensity of the regular Airy beam

Fig. 1.29 Experimental observation of linear propagation of deformed Airy beams corresponding
to Fig. 1.28. Top and bottom panels correspond to input and output after 20 cm propagation,
respectively. The values of the parameter r are the same as in Fig. 1.28. The inset in (a) shows the
unstretched cubic phase mask. The white dashed lines mark the position of peak intensity of the
Airy beam at z = 0 cm, and the red line marks the position of peak intensity of the regular Airy
beam at z = 20 cm (b, c¢) deformed Airy beams at an obtuse angle, and (d, e) deformed Airy beams
at an acute angle.

We observe that the Airy beam indeed gradually opens its wings (Fig. 1.29b, c, top)
when the ratio of the mask is reduced (i.e., the mask is stretched horizontally). After
20 cm propagation, the wings contract towards 90° position (Fig. 1.29b, ¢, bottom), in
agreement with simulation. If the ratio is too small, the nondiffraction property of the
Airy beam cannot persist, and the Airy beam cannot be restored as seen in Fig. 1.29c¢.
Likewise, when the ratio of the mask is increased (i.e., the mask is stretched verti-
cally), the wings expand and the angle of the Airy beam increases from an acute angle
towards the 90° position (Fig. 1.29d, €). Apart from the wing flipping, another two
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interesting observations merit mentioning: firstly, as compared to the perfect Airy
beam, increased acceleration is observed for “expanded” Airy beam (Fig. 1.29b, ¢),
whereas decreased acceleration for “compressed” Airy beam (Fig. 1.29d, e). The
larger change in experiment as opposed to that in simulation is due to that the area of
the phase mask (hence, the size of the deformed Airy beam) is not kept constant as the
mask is stretched; secondly, when the Airy beam is strongly deformed at a very small
acute angle, the 2D Airy beam cannot maintain, but rather degenerates into a quasi-1D
Airy beam as seen from the bottom panel of Fig. 1.29e. The experimental results agree
well with our numerical simulations.

In addition, Airy beams without standard shapes are also investigated in other
aspects, such as, combining Airy beams with vortex [61, 62], reducing side lobs of
Airy beams [63], etc. Self-healing dominates the propagation dynamics although
some other interesting phenomena associated with these nonconventional Airy
beams were discussed.

In summary, we have demonstrated both theoretically and experimentally the
self-healing properties of optical Airy beams. By monitoring their internal trans-
verse power flow we have provided insight concerning the self-healing mechanism
of Airy beams. We have also experimentally shown that these optical beams can be
robust in adverse environments such as in scattering and turbulent media. Further-
more, we have demonstrated that an Airy beam can retain its shape and structure
under turbulent conditions as opposed to a comparable Gaussian beam that suffers
from massive distortion. The robust nature of Airy beams may have important
implications in other areas such as atmospheric propagation and microparticle
manipulation as we shall discuss in Sect. 1.6.

1.5 Nonlinear Control and Generation of Airy Beams

1.5.1 Persistence and Breakdown of Airy Beams Driven
by an Initial Nonlinearity

In this section, we study the transition of Airy beams from a nonlinear to a linear
medium driven initially by a self-focusing or -defocusing nonlinearity. Some
unique behaviors of such nonlinearity-controlled Airy beams, including loss or
persistence of acceleration, normal or anomalous diffraction were observed. In
particular, an Airy beam under an initial self-defocusing nonlinearity exhibits
anomalous diffraction and propagates robustly over long distance after exiting the
nonlinear medium, but it breaks down in both Airy-beam pattern and acceleration
when driven by a self-focusing nonlinearity [64].

The experiments were performed in a biased 1 cm-long photorefractive SBN:60
crystal (Fig. 1.30a). As before, to create a truncated Airy beam, a SLM is placed at the
focal plane of the Fourier transform lens. The Airy beam (4 = 532 nm) is extraordi-
narily polarized, propagating first through the biased crystal under the influence
of photorefractive screening nonlinearity, and then through air (free-space) for
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Fig.1.30 (a) Schematic of experimental setup. SLM spatial light modulator, SBN
strontium-barium niobate crystal. (b—d) Output intensity patterns of an Airy beam after 1 cm
through crystal (1* column) plus another 1 ¢cm through air (2" column) when (b) no nonlinearity,
(¢) self-focusing and (d) self-defocusing nonlinearity is present. White dashed line marks the
“head” position of the Airy beam at crystal output. The 3™ column shows Fourier spectra of the
Airy beam corresponding to the 1% column)

another 1 cm. Solely by switching the polarity of the bias field, self-focusing and self-
defocusing nonlinearity is achieved for nonlinear control of the Airy beam. The Airy
beam patterns along with k-space spectra are monitored by CCD cameras.

Typical experimental results are shown in Fig. 1.30b—d. When no bias field is
present, the Airy beam undergoes linear propagation inside the crystal. (The
photorefractive diffusion effect [65] can be neglected due to the large size of the
Airy beam used here—about 50 pm for the main lobe). After another 1 cm of
propagation in air, its main spot (or “head”) is shifted along the vertical direction
(Fig. 1.30b2) in comparison with that right at the existing face of the crystal
(Fig. 1.30bl) due to the transverse acceleration. When a positive dc field of
4 x 10* V/m is applied, the Airy beam experiences a self-focusing nonlinearity
and reduces its overall size with most of its energy distributed to the four spots close
to the Airy head (Fig. 1.30c1). In this case, the nonlinearity seems to cause stagnation
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of Airy beam’s acceleration, and the subsequent free-space propagation shows that
the Airy beam is strongly deformed by the nonlinearity (Fig. 1.30c2). In addition, its
k-space spectrum is “focused” towards the center (Fig. 1.30c3) as compared to the
case without initial nonlinearity (Fig. 1.30b3), suggesting that the Airy beam exhibits
normal diffraction. By reversing the polarity of the bias field (to —4 x 10* V/m) so
that the Airy beam experiences a self-defocusing nonlinearity, its nonlinear output
(Fig. 1.30d1) and subsequent linear propagation (Fig. 1.30d2) behave dramatically
differently. The intensity profile of the Airy beam is less affected by the self-
defocusing nonlinearity, and the peak intensity of the Airy beam after subsequent
linear propagation in air is not decreased but rather increased while persistent in
its acceleration. Furthermore, the Fourier spectrum reshapes into four major spots in
k-space as shown in Fig. 1.30d3, resembling the Broullion zone (BZ) spectrum and
associated anomalous diffraction behavior in photonic lattices [66—68].

These experimental observations were corroborated with numerical simulations.
Propagation of an Airy beam in a biased photorefractive crystal can be described by
the following nonlinear Schrodinger equation

ou i (PU 0*U .

where U is the wave function, ky is the vacuum wave vector, and ng = 2.3 is
the unperturbed refractive index. In the biased crystal, the nonlinearity for an
e-polarized beam can be determined by An = —0.5n03y33E0/(1 + 1UP), in which
y33 = 280 pm/V and E|, is the amplitude of the bias field. The wave function of
an input Airy beam can be expressed as U(x, y, z = 0) = UpAi(X/xg) exp(aX/xo)
Ai(Y/yo) exp(a«Y/yy), where U, is the amplitude, Ai denotes the Airy function, X
and Y are respectively equivalent to (x +y)/v/2 and (—x + y)/v/2, xo and y, are
constants governing the transverse size of the Airy beam, and again « is the decay
factor for the truncated beam profile.

Numerical simulations were performed by solving (1.43) with the split-step
beam propagation method (parameters Up, xy, and o are chosen as 7.3,
13.5 x 107, and 0.11, respectively). Numerical results corresponding to
Fig. 1.30(c1-c3) under the self-focusing initial nonlinearity (Eq = +40 kV/m) are
shown in Fig. 1.31a—c. The propagation can be better visualized from the side-view
evolution as shown in Fig. 1.31d, where the dashed curve marks the path of the
same Airy beam without initial nonlinearity. Clearly, the acceleration is reduced or
lost as compared to the case without the nonlinear control. In Fig. 1.31e—f, we
plotted the transverse energy flow of the output beam corresponding to the areas
marked in Fig. 1.31a, b. Apparently, after initial nonlinear propagation, the direc-
tion of the energy flow goes towards all directions, suggesting that the phase (and
thus the acceleration) of the Airy beam is destroyed by the self-focusing nonline-
arity. This might be due to that nonlinear trapping and interaction among
waveguides induced by the lobes of the Airy beam destructed its phase relation.
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100pm

Nonlinear

Fig.1.31 Numerical simulation of an Airy beam propagating under an initial self-focusing non-
linearity. (a, b) Transverse intensity patterns after (a) 1 cm through crystal plus (b) another 1 cm
through air. (¢) Fourier spectrum of the output Airy beam. (d) Side-view of 2 cm-propagation,
where the dashed curve represents the trajectory of the Airy beam without initial nonlinearity.
(e, f) Calculated transverse energy flow around the main lobe corresponding to the square area
shown in (a, b), respectively

Once the Airy beam is released into free-space, it behaves more like a confined
Gaussian beam, showing normal diffraction without evident acceleration.

With a reversed bias field of £y = —40 kV/m, i.e., under the self-defocusing
nonlinearity, our numerical results show that the Airy beam is somewhat expanded
at the beginning due to the self-defocusing nonlinearity but its shape is nearly
unchanged (Fig. 1.32a). In contrast to the self-focusing case, the Airy beam persists
in its intensity pattern and transverse acceleration during subsequent free-space
propagation (Fig. 1.32b, d). Furthermore, its power spectrum reshapes into a
diamond-like pattern and is concentrated unevenly on four spots (Fig. 1.32c),
resembling the first BZ [66] of an asymmetric square lattice. The energy-flow of
the Airy beam is also quite different from that in the self-focusing case, since the
Poynting vectors of the Airy beam line up towards the same direction around the
Airy “head” (Figs. 1.32e, f). Counterintuitively, the peak intensity of the main lobe
gets even stronger after subsequent linear propagation, as seen from the side-view
evolution (Fig. 1.32d). This phenomenon suggests that the Airy beam might experi-
ence anomalous diffraction after initial self-defocusing nonlinearity, akin to that
observed in photonic lattices [67, 68].

Indeed, if we zoom in the Airy-beam intensity pattern not far from the “head”, it
exhibits a square-like structure with nonuniform intensity distribution and lattice
spacing. Under a self-defocusing nonlinearity, the Airy beam induces an index distri-
bution akin to a nonuniform or chirped “backbone” lattice. This self-induced chirped
lattice could exhibit properties similar to uniformed photonic lattices [69], thereby
change the diffraction of the Airy beam. Using the BZ spectroscopy method [70, 71],
we calculated the BZ spectrum of the induced lattice and found that the lattice
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Fig. 1.32 Numerical simulation of an Airy beam propagating under an initial self-defocusing
nonlinearity. Other description is the same as that for Fig. 1.31

self-induced by the Airy beam indeed shows a BZ structure [64]. Thus, the principle for
anomalous diffraction observed here could be similar to that reported in [66, 68].

1.5.2 Nonlinear Generation and Control of Airy Beams

Airy beams are usually generated by using linear diffractive elements. Recently,
Arie’s group has proposed and demonstrated a method for nonlinear generation
(i.e., through a nonlinear process) of Airy beams [29]. Specifically, it was
done by a second harmonic generation (SHG) process through the design and
fabrication of an asymmetric quadratic nonlinear photonic structure. The asymmetric
structure induces a cubic phase front to the generated SHG output, whose Fourier
transform is an accelerating Airy beam. This nonlinear generation process enables
Airy beams to be obtained at new wavelengths. Indeed, frequency doubling of 1D
and 2D Airy beams in a periodically poled crystal has been achieved in their
experiment [72].

In addition, it was suggested theoretically that the generation of Airy beams
by nonlinear processes opens several possibilities for controlling and
manipulating these beams. As an example, the same group experimentally
demonstrated a method to control the relative intensity along the caustic of
nonlinearly generated Airy beams by controlling the phase matching conditions
of the nonlinear interaction via temperature tuning. By analyzing the interactions
in the Fourier space, they showed that the shaping of the beams is achieved by
having noncollinear interactions. Furthermore, they studied the possibilities for
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all optical control by changing the pump wavelength. This includes for example
nonlinear control of the beam acceleration direction, the wavelength of the output
Airy beam, and the location of the Airy beam peak intensity along the same
curved trajectory [73, 74].

1.5.3 Nonlinear Self-trapping of Airy-like Optical Beams

As discussed above, in practice, all nondiffracting Airy beams must be truncated, to
keep the energy finite. Such truncated beams eventually diffract and lose their
unique structure after long enough linear propagation. Thus, recently, research
efforts have also been devoted to identify nonlinear physical mechanisms that
could allow these highly localized wave packets to propagate in a true
diffraction-free manner, as in the case of optical spatial solitons [75, 76].

It is well known that self-focusing can counteract the effects of dispersion and
diffraction, leading to formation of optical solitons. Spatial soliton beams are usually
symmetric, due to the even (second-order) nature of diffraction, and the typical
nonlinear responses are local and conservative. However, more complex responses,
such as the gradient-sensitive diffusion nonlinearity, can lead to a whole different
class of instability and dynamics. In particular, it was suggested that highly asym-
metric nonlinear action such as diffusion nonlinearity experienced by an asymmetric
beam could lead to invariant propagation of the beam. The prospect of observing a
diffusion-trapped exponentially contained Airy wave packet in nonlinear
photorefractive media with diffusion nonlinearity was first proposed in [24].
Recently, Fleischer’s group has reported the experimental observation of self-
trapped Airy beams in a nonlinear medium. As opposed to screening or photovoltaic
spatial solitons [75] this new class of self-localized beams owes its existence to
carrier diffusion effects. The asymmetric action of two-wave mixing supports the
asymmetric intensity profile of the Airy states, with a balance that is independent of
the beam intensity. Furthermore, the self-trapped wave packets self-bend during
propagation at an acceleration rate that is independent of the thermal energy
associated with the diffusive nonlinearity. These results represent the first example
of Airy solitary-like wave formation using two-wave mixing [77].

Quite recently, Segev’s group has studied self-accelerating self-trapped beams in
nonlinear optical media, exhibiting self-focusing and self-defocusing Kerr and
saturable nonlinearities, as well as a quadratic response. In Kerr and saturable
media such beams are stable under self-defocusing and weak self-focusing, whereas
for strong self-focusing the beams off-shoot solitons while their main lobe
continues to accelerate. These self-trapped Airy-like accelerating beams in nonlin-
ear media propagate along parabolic trajectories and their existence curve of
nonlinear generation was derived [78].
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1.6 Proposed Applications

1.6.1 Optically Clearing Particles Using Airy Beams

Nondiffracting beams, such as the Bessel beam, Mathieu beam, and Airy beam, do
not spread as they propagate. This property is particular useful in many applications
include imaging, micromanipulation, and optical transfection.

Perhaps, one of the exciting applications of Airy beams is particle transportation
and clearing along the curved paths as proposed by Dholakia’s group [14]. They
employed micrometer-sized colloidal particles, although their experiment can be
extended directly to other chemical samples or even biological matter. As seen from
Fig. 1.9a, a 2D truncated Airy beam has the form of a main spot and a number of
side lobes whose intensity decays with increasing distance from the main spot,
which induces optical gradient forces dragging dielectric particles towards the main
spot. Then, these particles are guided along a projective trajectory as the Airy
beams propagate and accelerate transversely. In their experimental setup, a finite
Airy beam is used as a form of micrometer-sized “snowblower” at the bottom to
blow the particles upwards and sideways. Without any motion of the light field,
these samples are cleared towards the direction where the trajectory of the Airy
beams point to. Due to the self-healing property of the Airy beams, such optically
mediated particle clearing could be made more robust. The advanced “optical path
clearing (OPC)” method mediated with Airy beams was demonstrated in the
following work of Dholakia’s group [79]. Rotating multiple Airy beams were
used for clearing regions in a sample in a synchronized effort. The authors also
suggested that the improvement for both clearing performance and efficiency might
be achieved by utilizing dynamic multiple-step clearing approaches based on
multiple Airy beams operated according to a time-sharing protocol.

1.6.2 Generation of Curved Plasma Channels by Airy Beams

In early studies, the plasma channels generated by femtosecond laser pulse were
always along straight lines. Thus, conical radiation originating from straight
filaments at different longitudinal sections of the beam overlaps in the observation
plane, making the analysis of the emission more complicated. To solve this
problem, femtosecond laser beams with a transverse spatial pattern in the form of
a 2D Airy function were employed to write curved plasma channels by Moloney’s
group in collaboration with Christodoulides’ group. Broadband emission from
different longitudinal sections of the filament is therefore along angularly separated
paths, resulting in the spatial separation of this emission in the far field. This
technology has been successfully applied to different media: air and water, for
which, the self-focusing collapse of the beam to a singularity is respectively
arrested by plasma defocusing and the group-velocity dispersion [17, 18].
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1.6.3 Generation and Control of Plasmonic Airy Beams

Another exciting application of Airy beams is their possible use in routing
plasmonic energy. One-dimensional Airy beams have recently been introduced
theoretically by Christodoulides’ group into the field of plasmonics as the only
nondiffracting solution in the planar systems of metal interfaces [21]. The analysis
indicates that a new class of surface plasmons could be introduced that can freely
self-bend during propagation. Due to the strong confinement of surface plasmon
polaritons, the plasmonic Airy beams could be a promising candidate for
subwavelength beam manipulation and on-chip signal processing in the emerging
field of nanoplasmonics. Recently, Kivshar’s group has proposed theoretically
plasmonic Airy beam manipulation by means of linear potentials created by a
wedged metal—dielectric—metal structure with one titling metal plate. They showed
that the plasmonic Airy beam deflection could be enhanced, compensated, or even
reversed, while still maintaining the self-healing properties [80].

Quite recently, the race for experimental generation and control of plasmonic
Airy beams has accelerated, and there are at least three independent groups that
reported successful demonstration of Airy surface plasmons [81-83]. In these
studies, the observed Airy plasmons were excited on a metal-air interface using
specially designed diffraction grating by taking advantage of the subwavelength
confinement and localized propagation of tightly localized surface plasmon
polaritons. The propagation of Airy Plasmon along curved parabolic trajectories
was directly observed, together with their self-healing phenomenon after passing
through surface defects. In particular, it was shown that the ballistic motion of the
Airy plasmons could be reconfigured in real-time by either a computer addressed
spatial light modulator or mechanical means [81].

1.6.4 Optical Manipulation with Morphing Autofocusing
Airy Beams

Beam focusing has always been a subject of practical importance. For many
applications it is desirable to have a wavefront’s energy abruptly autofocused right
onto a target while maintaining a low intensity profile up until that point. This feature
could be useful, for example, in biomedical treatments and other nonlinear settings
such as optical filamentation. Lately, a new class of autofocusing waves, as men-
tioned in Sect. 1.2.5, based on Airy beams has been proposed [38, 39] and observed
[41, 42]. These field configurations rely on radially symmetric or circular Airy
beams, and they can be established entirely on linear effects, i.e., without invoking
any nonlinear self-focusing processes. In addition, a recent theoretical study has also
indicated that a superposition of Airy wavelets can asymptotically “morph” into
Bessel beams in their far-field [84].

Of particular interest is the potential application of these abruptly autofocusing
beams. One example is processing of a thick sample by laser ablation [41]. Another
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example is optical guiding of nonabsorbing microparticles [15]. In the latter exam-
ple demonstrated by Chen’s group, an abruptly autofocusing beam was sent into an
optical tweezers-like setting, where the particles were trapped and transported along
the autofocusing beam. It was suggested that the circular autofocusing Airy beam
might be used as a tapered channel guide for microparticles [15].

1.7 Summary

In this chapter, we provide an overview on self-accelerating Airy beams, their
generation, control, and potential applications. As mentioned, driven by both
fundamental interest and application potential, the number of research papers
dealing with optical Airy beams soared in the last a few years, accompanied with
new discoveries and surprising results. We envision that the research on self-
accelerating Airy beams will keep its accelerating momentum in years to come.

This work was supported by the US National Science Foundation, the Air Force
Office of Scientific Research, and by the 973 program, the National Natural Science
Foundation of China (NSFC), and the Program for Changjiang Scholars and
Innovative Research Team in China.
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in Doped Silica Glass
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2.1 Introduction

Broadband optical communication systems are rapidly becoming the key to overcome
the stringent limitations imposed by standard electronic telecommunication networks.
However, in order to complete the inevitable transition from electronics to photonics,
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several critical requirements must be addressed, including lowering energetic
demands, achieving higher efficiency, increasing bandwidth and flexibility, all within
a compact form factor [1-3]. In particular, it is broadly accepted that future photonic
devices must be CMOS compatible in order to exploit the existing silicon fabrication
technology that has been largely developed during the last 60 years [4—7]. Following
this idea, there has been a tremendous growth of hybrid optoelectronic technologies
that has not only responded to the need of lowering costs, but has also enabled on-chip
ultra-fast signal processing. However, these hybrid solutions are an intermediate step
to achieve the ambitious goal of an all-optical technology, which would bring together
the intrinsic benefit of lowering the production costs and simplifying future ultrafast
communication networks.

Nowadays, the demand to implement a multifunctional all-optical chip, which
could efficiently function as an optical frequency converter [8, 9], signal regenera-
tor [10, 11], multiplexer [12—14], as well as for routing and switching optical
signals [4, 12], is growing rapidly. The preference for optical networks over
electronic ones originates from certain fundamental advantages. First, the optical
operational bandwidth is much larger; secondly, the extremely low loss provided by
modern standard fibers ensures that an optical signal (with a ~THz bit rate) can be
transmitted for more than a hundred kilometers without the need of being
“refreshed” or amplified. Optical systems also provide a greater resistance to
electromagnetic interference and offer low-cost maintenance [15].

However, photonics is also affected by peculiar drawbacks and limitations, as is
any other kind of technology. For instance, bending losses become extremely high
in fibers for chip-scale size bends (<1 cm), limiting the integrability of fibers for
optical networks. Moreover, their weak nonlinearity limits the practical realization
(i.e., due to the additional constraints in terms of low power signals and short
propagation lengths) of some fundamental operations requiring nonlinear optical
phenomena, such as frequency conversion, pulse compression, etc. [16]. A typical
example of a fundamental problem in modern optical communication networks is
the Optical-to-Electrical-to-Optical (OEO) signal decoding. Substantially, it
consists of a wavelength remapping protocol that is necessary in an optic telecom-
munication network whenever we must route a data stream from a channel to
another with a different optical frequency carrier. This operation is becoming
increasingly fundamental in today’s long distance lines, and because of the absence
in the market of an all-optical frequency converter, it is normally performed by
means of an OEO transducer. This equipment operates the necessary I/O wave-
length conversion by first converting the input optical signal into an electric one,
and then encoding the obtained information into an optical output at a different
frequency. Today, one of the main reasons limiting the wide spread of optical and
optoelectronic technologies in modern telecommunications systems is the high cost
required for converting data from the optical domain to the electric one and vice
versa. Intuitively, the solution to this fundamental problem can be addressed by
looking into the domain of nonlinear optics. In fact, only nonlinear processes can be
responsible for phenomena such as the spectral broadening of an optical pulse or the
frequency conversion. It is equally important to note however, that not all of
the operations required for low-cost integrated optical telecommunications systems
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can be satisfied with nonlinear optics. Whereas frequency conversion seems the
natural choice to eliminate OEO conversions, certain key devices such as logical
memories, as well as analog and logic functionality, still need to be developed in the
optical domain, where linear optics may pose as a better solution. Several alterna-
tive material platforms have been developed for photonic integrated circuits (PICs)
[1, 2, 17, 18], including semiconductors such as AlGaAs, silicon, and silicon-on-
insulator (SOD) [3, 5, 17, 19], as well as nonlinear glasses such as chalcogenides
[20], silicon oxynitride [21], and bismuth oxides [2, 22, 23]. In addition, exotic and
novel manufacturing processes have also led to new and promising structures in
these materials and in regular silica fibers. Photonic crystals [24-26], optical
cavities [27], and nanowires [28, 29], all make use of a tight light confinement to
enhance nonlinearities, and allow for submillimeter photonic chips.

Despite the abundance of alternatives, none of the developed material platforms
can simultaneously address all the requirements that a multifunctional CMOS com-
patible all-optical chip should possess. In fact, many nonlinear platforms require
power levels that largely exceed the limit for commercial applications, whereas others
have limiting factors such as saturation due to multiphoton absorption. Moreover, in
certain cases the fabrication technology is simply not sufficiently advanced, resulting
in a severe linear attenuation and an incomplete CMOS compatibility.

It is in response to these issues and limitations, that a new high-index doped
silica glass platform was developed in 2003 by Little Optics [30]. This material,
named Hydex®, combines the best qualities of single-mode fibers (SMFs), namely
low propagation losses, absence of multiphoton absorption, and a robust fabrication
technology, with those of semiconductor materials, such as tight bending radii and
higher nonlinearities. This chapter primarily describes this new material platform,
through the characterization of its linear and nonlinear properties. Our primary goal
is to show important results suitable for a broad set of fundamental all-optical
operations such as the generation of ultra-narrow linewidth and multiple wave-
length sources, supercontinuum generation (SCG), optical pulse compression, time
duration measurement of subpicosecond pulses, and ultrafast optical integration.
Most of these applications make use of very important nonlinear effects and it is
for this reason that this chapter is mainly focused on materials and applications for
nonlinear optics. In the following sections, we present an overview of concurrent
alternative material platforms and photonic structures, discussing their advantages
and limitations. Subsequently, we review some fundamental theoretical concepts
strictly linked with the reported experiments.

2.2 Alternative Material Platforms in Integrated Photonics

2.2.1 Semiconductor Nonlinear Photonics

The most basic component for optical telecommunications systems is the optical
waveguide, which can serve the dual purpose of transporting and modifying the
properties of the light propagating within it. The basic principle for guiding light is



50 M. Ferrera et al.

total internal reflection, which can occur when light propagates in a higher index
core material (n.) that is surrounded by a cladding region of lower index ().

The core refractive index (n.) and the index contrast (An = n. — n,) are nor-
mally used to describe the linear properties of the optical waveguide. In addition,
these two basic parameters can also provide a rough estimate of the nonlinear
properties of the structure.

To explain this, let us consider the material polarization P(w) as a function of the
electric field E(w)

P(0) = e[ (@) - E(0) + 1¥ (-0 : i, ) : E(w:)E(w))

+ 10~ : 0, 07, 00 E(0)E(@)E(0p) + -+,
= e[z () - E(w)] + Py (w), 2.1)

where y® fori = 1,2, 3, ..., indicates the ith order susceptibility tensor of rank
i + 1, Pyp(w) is the nonlinear polarization term, & is the free space permittivity, @
is the (angular) frequency and the notation: E(w)E(w));:iE(w)E(w)E(wy);
indicates tensorial products of the fields [31].

Through Miller’s rule [32], it is possible to approximately express the nonlinear
susceptibilities as a function of the linear susceptibility, 5", which is in turn directly
linked to the material refractive index. This in part explains why high index
materials are normally associated with having a good nonlinear performance.
For example, in typical semiconductors, the nonlinear Kerr coefficient n, takes on
a series of remarkable values ranging from ~107'% to 10™'7 m*W (with a core
refractive index n. > 3; e.g., ~3.5 for Si and ~3.3 GaAs). For comparison, fused
silica (n. = 1.45) possesses an n, ~ 2.6 X 1072 m*W. On the other hand, the
index contrast is the main parameter that estimates the effective area of a
propagating mode in a waveguide and consequently, a large index contrast leads
to a more confined mode and thus higher nonlinearities (which typically scale with
the power density, or intensity, of an optical beam). III-V semiconductors, such as
silicon and AlGaAs, are thus extremely interesting photonic platforms for both
linear and nonlinear applications, since they possess both a large index of refraction
at the telecommunication wavelength (A = 1.55 pm) and a mature waveguide
fabrication technology allowing for submicron structures with a high index contrast.

This chapter deals primarily with third order nonlinear phenomena that are
related to the 1(3) tensor (see (2.1)), as this is the lowest order nonlinearity in
centrosymmetric media (such as glasses) where y® = 0. The strength of these
third-order nonlinear interactions can be estimated through the nonlinear parameter
Y = now/cAqgr [16], where n, is the nonlinear Kerr coefficient determined solely
from the material properties, w is the angular frequency of light, c¢ is the speed of
light in vacuum, and A the effective area of the mode.

Taking this into account, there are three basic strategies to enhance nonlinear
effects in optical devices: (1) selecting a material with a high value of n,, (2)
exploiting low-loss and long structures, and/or (3) fabricating structures that allow
for tight modal confinement. In III-V semiconductors, long structures are typically
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Fig. 2.1 Inverted nano-taper (80 nm in width) for an AlGaAs waveguide (/eft) and a silicon-free
standing nanowire defined by high-resolution, low-energy electron-beam lithography (the pictures
are taken from [37] and H. Lorenz nanophysics group report, http://www.nano.physik.uni-
muenchen.de/, respectively). These images exemplify the advanced fabrication processes behind
AlGaAs and silicon

not favorable as the propagation losses are typically too high. However, their
well-developed fabrication processes do allow for channel or ridge waveguides
open to air with a large index contrast, producing modal effective areas below
1 um?, see Fig. 2.1. Combined with their strong nonlinear coefficient, this can lead to
extremely high values of y exceeding 200,000 W' km™' [10, 29, 33] (to be
compared with SMFs which have y ~ 1 W lkm! [16)]).

These optimal nonlinear features have been extensively used to demonstrate
several nonlinear applications for telecommunications, including all-optical regen-
eration via four-wave mixing (FWM) and self-phase modulation (SPM) [10, 34],
frequency conversion [8, 9, 35], and Raman amplification [36].

However, despite the high nonlinearity of III-V semiconductors, major
limitations still prevent the implementation of these materials for the fabrication
of future integrated devices for optical networks. Their high dispersion at telecom-
munication wavelengths, which is a consequence of being near the band gap of the
material, drastically limits the usable length of a guiding structure. Whereas both Si
and AlGaAs allow for engineering the waveguide dispersion, creating an effective
quasi zero-dispersion window in the spectral region of interest, this in turn requires
subwavelength waveguides in which the intensity mode profile extends over the
waveguide boundaries along the etched sidewalls. As a result, a high degree of
optical scattering is experienced by the light beam, thus causing high propagation
losses of the order of 10 dB/cm for AlGaAs [38—40], and ~1 dB/cm for SOI [8].
In addition, although reducing the modal area enhances the nonlinear properties of
the waveguide, it also drastically reduces the fiber-to-waveguide coupling. This
leads to high insertion losses, which can be overcome only by using either expensive
amplifiers at the output, or complicated tapers at the input. This latter solution often
requires a multistep etching processes [41] (SOI waveguides make use of state-of-
the-art single etch inverse tapers which limits the insertion losses to approximately
5 dB [8, 42]), in turn consistently increasing the device fabrication complexity.
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Finally, another factor that limits semiconductor applicability in nonlinear optics
is multiphoton absorption and specifically two-photon absorption (TPA). This effect
consists in the excitation of electrons from the valence band to the conduction band
via the successive absorption of two (or more) photons, mediated via a virtual state.
This undesirable effect leads to a saturation of the transmitted power and conse-
quently limits the nonlinear performance of the device. Hence, the intrinsic nonlinear
figure of merit for semiconductors, defined as FOM = n,/o,A (where o, is the TPA
coefficient), is particularly low [43]. In addition, another contribution to nonlinear
losses results from multiphoton-induced free carrier absorption [29, 44, 45].

2.2.2 Nonlinear Glasses

For applications in integrated nonlinear optics, the principal competitors to
semiconductors are nonlinear glasses. Throughout the last decade, a great technical
and scientific effort has been dedicated to the development and the characterization of
different families of highly nonlinear glasses, including chalcogenides, silicon
oxynitride, and bismuth oxides [2, 22, 23, 46]. Amongst these, chalcogenide glasses
have shown optimal results mainly due to their high nonlinear refractive index.
However, although these glasses have been largely studied, their fabrication process
is still quite problematic [47, 48] and not compatible with standard CMOS technology.
In addition, they also suffer from other issues such as photosensitivity to intense light,
low hardness, and high thermal expansion coefficients, which make the realization of
commercial chalcogenide optical devices problematic [49]. In addition, most of these
glasses typically have a low FOM [50] due to nonlinear absorption. Whereas other
high-index glasses, such as silicon oxynitride, have negligible nonlinear absorption
(i.e., a virtually infinite figure of merit), they unfortunately also typically require high
temperature annealing to reduce propagation losses, thereby rendering the entire
fabrication process incompatible with CMOS processes.

As anticipated in Sect. 2.1, the material at the center of this chapter is a high-
index doped silica glass called Hydex® [30], which can be viewed as an ideal
compromise between the excellent linear properties of optical fibers (low linear
losses, absence of nonlinear losses, weak dispersion) and that of semiconductors
(high nonlinearity, tight field confinement, small bending radii). Films are first
deposited by using standard chemical vapor deposition. Subsequently, waveguides
are formed using photolithography and reactive ion etching, producing waveguide
sidewalls with exceptional smoothness. The waveguides are then buried in standard
fused silica glass, making the entire fabrication process CMOS compatible without
any need for high temperature annealing. The typical waveguide cross section is
1.45 x 1.5 pm? as shown in Fig. 2.2. The linear index at 2 = 1.55 pm is 1.7, and
propagation losses have been shown to be as low as 0.06 dB/cm [51, 52].
In addition, fiber pigtails have been designed for coupling to and from Hydex
waveguides, with coupling losses of the order of 1.5 dB. The linear properties of
this material platform have already been exploited to achieve filters with >80 dB
extinction ratios [53], as well as optical sensors for biomolecules [54].
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Fig. 2.2 Hydex waveguide overview. Scanning electron microscopy picture of the high-index
glass waveguide prior to the upper SiO, deposition (/ef), and electromagnetic field distribution of
the fundamental mode (right)

In the following section, we present the fundamental theory required to understand
the subsequent experiments described in this chapter. It will be shown that this
material platform can be used to fabricate state-of-the-art resonant structures capable
of producing remarkable nonlinear effects at very low power levels.

2.3 Nonlinear Phenomena: Fundamentals

2.3.1 Nonlinear Light-Matter Interaction

Nonlinear optics is the study of phenomena that occurs as a consequence of an intense
light-matter interaction. Whenever the electric field, associated to a propagating wave,
is strong enough, the corresponding restoring potential of the electrons is an harmonic,
and the material response (i.e., the specific physical quantity under investigation)
depends in a nonlinear manner on the strength of the optical field.

Generally speaking, the broad family of nonlinear processes can be divided into two
main categories which are the parametric and the nonparametric phenomena.
A parametric process implies that the initial and the final quantum-mechanical state
of the system are identical. In this way, parametric processes are mediated via virtual
quantum levels where an electron can be excited for a very brief duration only (related to
the uncertainty principle). In this way, the photon energy is conserved since no phonons
are involved in the process. Common parametric phenomena include ** processes
such as sum and difference frequency generation, second harmonic generation, etc., and
7 phenomena such as third harmonic generation and FWM. Conversely, multiphoton
absorption and Raman scattering are examples of nonparametric processes.
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The nonlinear interaction between light and matter can be described using the
nonlinear polarization introduced in (2.1). Making use of Maxwell’s equation, one
can show that the evolution of the electric field distribution E, in a waveguide
made by locally isotropic and homogenous materials, is given by:

2 2,—1

V2E(w) + %s(a})E(w) + 2%

Pr(@) =0, (2.2)

where ¢ is the space-dependent permittivity defining the waveguide. For a third-
order nonlinearity, the most general representation of Py is given by the interac-
tion of four waves centered at different frequencies:

4
E= ZA,,,(Z, HFu(x,y) expliont — if,,2) + c.c, (2.3)

m=1

where we have explicitly assumed four waveguide modes of (angular) frequency
®,,, propagation constant f3,,, vectorial modal (spatial transverse) distribution F,,,
and envelope A,,. More generally, the modal distribution can be allowed to depend
on the time ¢ and propagation distance z, although this is only necessary for ultra-
short pulses and/or extreme nonlinear propagation.

The mathematical evaluation of the tensorial product of the nonlinear polarization
involves 1944 complex elements, which can lead to a quite daunting analysis.
Fortunately, symmetry properties, approximations, and phase matching requirements
can reduce this to a simple number of terms. Specifically for the purposes of this
chapter, the resultant generalized nonlinear Schrodinger (GNLS) propagation
equations are given by:

O0Ap . 0A, .ﬁZ m 82Am
—A, m . HOD
bz T2 At P T e
o2,m 2
— A,|"A,, — HOL
2'Aeff | |

1 0 ) 0
—y <w_m 5 A Ay + iTrAp 5 A,,,|2> + MIX

rir(af 23, , o)

+2ipA5A3A4 exp(iAfz)

2.4)

Here, the pulse envelope A,, has been normalized such that IA,,* represents the
power propagating in the waveguide of beam m, o, is the linear loss, f,, is
the inverse of the pulse group velocity, 3, , is the group velocity dispersion, and the
last term HOD represents higher order dispersion terms that become important for
ultra-short pulses.
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The terms on the right of (2.4) are a result of the nonlinear polarization. They are
dominated by the nonlinear parameter given by y = n,w/cAcsr = 3Re(x(3))uoco”J
(4anAeff), where n,, is the effective index of the mode. The modal effective area is
defined by the vectorial overlap of the mode profiles:

(151 dy)z

[ [Ful*dxdy
WG

Aett = (2.5)

The modal profiles and the dispersion parameters are obtained by solving the
linear continuous wave version of Maxwell’s equations:
2

Wi Em

Vsz + F, = ﬁilFm (2.6)

cZe

Returning to the right-hand side of (2.4), the first term o, ,, is the TPA coefficient
(related to the imaginary part of ¥**), whereas HOL refers to higher order losses
from higher order multiphoton absorption terms (e.g., three- and four-photon
absorption). The second line on the right side is proportional to the change in time
of the nonlinearity. In particular, the first term accounts for self-steepening, whereas
the second is the Raman effect, caused by the noninstantaneous nature of the
material nonlinearity (Raman response time 7g). The label “MIX” represents cross
terms amongst the various input and generated beams arising from the Raman and
self-steepening effects. We do not express these terms explicitly here as they will not
be significant for any of the experiments reported further below. The third line are
self-phase and cross-phase modulation terms, whereas the last line (explicitly
expressed here for wave m = 1; the other m = 2, 3, and 4 components have a
very similar form) is a specific FWM interaction requiring the phase matching
AP = B4+ B3 — B — By for w1 + w>, = w3 + wy4. Other frequency mixing terms
have been neglected on the assumption of this specific phase matching.

It is important to note that a number of approximations have been made to arrive
at (2.4). Specifically, these relations hold for a glass material system where the
modal profiles (F,,) of the interacting beams have a similar spatial electric field
distribution (i.e., Fy = F, ~ F3 =~ F4). We have also employed the slowly varying
envelope approximation thus requiring pulses to be longer than a few cycles.

As will be shown through the various experiments described below, the GNLS
takes a much simpler form in most experiments. In particular for the Hydex
waveguides described in this chapter, nonlinear losses can be completely neglected,
as verified experimentally in transmission experiments. This is a consequence of the
very large bandgap of glass systems. The absence of multiphoton absorption (for all
power levels used in the experiments reported) is extremely important, as these
nonlinear losses lead to saturation of the total induced nonlinearity, which has been
reported to limit several nonlinear applications in semiconductors [45].
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To conclude this section, it is important to note that most nonlinear effects
scale with three important parameters: the intensity, the waveguide length, and the
nonlinearity (material value of ). In most applications we seek to minimize
the energetic input and maximize the nonlinear effects, as such the only way to
increase the intensity is by minimizing the area of the mode (or increasing the modal
confinement). The notion to research nonlinear optics in a glass material system may
at first appear counter-productive; silicon waveguides provide a much smaller mode
area, a much larger material nonlinearity, and a good fabrication process which
allows long waveguides to be formed. However, a combination of nonlinear losses
and residual linear losses (on the order of ~1 dB/cm) prevents highly nonlinear
devices. Apart from the absence of nonlinear losses, Hydex waveguides also provide
exceptionally low linear losses, thereby allowing for resonant or long winding
structures (recall that the intensity decays as exp(—az) and it can be shown that
this leads to an effective maximum length of the order of o' for nonlinear effects).

2.4 Ultra-narrow Linewidth and Multiple-Wavelength
Integrated Optical Sources

2.4.1 Enhanced Nonlinearities in Integrated Photonic Cavities

Advances in fabrication processes and technologies have allowed for the fabrication
of complex integrated structures capable of locally enhancing optical nonlinearities.
Amongst these we can list optical cavities such as micro-spheres, toroids, disks, and
rings [55-60], and other optical components such as photonic crystals [61, 62]
and spiral waveguides [51, 63, 64]. These devices exploit various strategies to
maximize the nonlinear interactions. In particular, micro-cavities take advantage
of constructive interference to boost the local intensity and hence the nonlinearities;
on the other hand, photonic crystals can rely on an exceptionally high “engineered”
refractive index permitting a tight field confinement and 90° bends, while spiral
waveguides simply tend to reduce the on-chip occupancy of the device while
simultaneously building up an important nonlinearity through a long optical path.
Resonators in particular have found a very broad range of applications in optics,
including high-order filters [53], parametric lasers [65, 66], frequency converters
[52, 55, 67], entangled photon sources [68, 69], and frequency comb generators
[70]. As it will be subsequently detailed, the significant advantage of these
structures is that, at resonant frequencies, a low input optical power can lead to
enormous nonlinear effects due to the field enhancement provided by the cavity.
The four-port micro-ring resonator used in several experiments in this chapter is
portrayed in Fig. 2.3. The waveguide cross-section (of the ring and bus) is shown in
Fig. 2.2. Light is normally coupled from the input (bus) waveguide into the ring
structure via vertical evanescent field coupling [71]. Light circulating inside the
resonator is attenuated by the propagation losses and the ring-to-bus coupling
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Fig. 2.3 (Top) Hydex micro-ring resonator scheme where the evanescent coupling coefficients
(K1, K,) are represented. (Bottom) Intensity profile as a function of frequency for a wave
propagating inside the ring (red curve), together with the theoretical transmission curves evaluated
at the Drop (blue curve) and the Through port (green curve), respectively. The simulation assumes
a FSR of 300 GHz, a Q of 6,863, and losses of o = 0.1/L (input port excited)

(two locations), whereas net gain is simultaneously obtained from an external light
source that is coupled from the input bus waveguides to the ring. By using a direct
analogy with a standard Fabry-Perot cavity, where the reflectivity of the mirrors has

been replaced with the transmission across the bus waveguides, or with 4/ 1 — |K,-|2

where K; and K, are the field coupling coefficients, it is possible to calculate the
beam intensity inside the resonator as a function of the angular frequency w:

Imax
hes = 1 gsin? () (2FSR))) @7

where
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are the maximum intensity inside the cavity, the coefficient of finesse (not to be
confused with the Finesse itself), the free spectral range (FSR) and the round trip
amplitude attenuation factor, respectively ([ is the intensity of the input wave in
the bus waveguide). Moreover, L is the circumference of the ring resonator, n is the
effective refractive index of the structure, and o is (as previously defined) the linear
propagation loss coefficient. The optical intensity spectrum inside such a resonator
is presented in Fig. 2.3 (red curve), where we can identify the FSR (which is
the frequency distance between adjacent resonances) and the linewidth of the
resonance Afgwpm (the full width at half maximum of a resonance peak). The
resonances occur at frequencies f,.; = mc/nL (equally spaced if dispersion is
negligible), according to the condition of constructive interference inside the
cavity, where m is an integer.

In the same image we have also plotted the intensity transmission curves for the
waves detected at the Drop (blue curve) and Through (green curve) output
channels, respectively. The ratio between the light intensity inside the ring and
that injected in the bus waveguides can be an extremely large value under resonance
condition. This effect leads to a drastic increase of the nonlinear effects inside a
low-loss resonator. The quality factor Q and the so-called finesse F' of a resonator
are two important parameters that can be used to quantify this increase, and they are
respectively defined by:

fo
= 2.12
V. (2.12)
FSR
F= : 2.13
AfFWHM ( )

The quality factor can be proved to be proportional to the ratio between the
energy stored in the resonator to the energy dissipated for each round trip inside the
resonator. In the next paragraph, we see that a high Q factor is extremely important
for the enhancement of nonlinear effects.
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Fig. 2.4 Semi-degenerate four-wave mixing (FWM)

2.4.2 Nonlinear Wavelength Conversion in Integrated
Silica Glass Resonators

The possibility of forming high-quality factor resonators primarily depends on the
technological advancement of the fabrication processes. In particular, in order to
have a high-quality factor micro-ring resonator, low propagation and radiative
losses are essential, as well as a weak coupling coefficient between the bus
waveguide and the cavity itself. The high-index doped silica glass ring resonator
discussed in this chapter meets all these criteria, with propagation losses as low as
0.06 dB/cm, and negligible bending losses for radii down to 30 pm [30, 52]. High-Q
resonators are ideal for applications such as narrow linewidth, multiple-wavelength
sources, as shown in this section.

Here, we report on all-optical wavelength conversion via FWM by using a
four-port Hydex micro-ring with a quality factor of 1,200,000, a FSR of
200 GHz, and a radius of 135 pm. Together with its negligible nonlinear absorption
and CMOS compatible fabrication process, this resonator is optimal for integrated
all-optical wavelength conversion.

The FWM we study involves the generation of a new “idler” wavelength by
simultaneously using two different CW sources: a low power signal and a higher
power pump. The quantum interaction amongst the photons is shown in Fig. 2.4
and is called semi-degenerate since two of the photons involved have the same
frequency. For CW excitation, (2.4) predicts the following evolution equations:

OA

8—p + %Ap =iy Ap|2Ap + 2iyA;ASAi exp(iAfz), (2.14a)
Z

OAs o , o .

=+ “—Z‘AS = 2ip|A [P A, + 2ipA2A7 exp(—ipz), (2.14b)
Z
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oA, o
LM %Ai — 20| AP A; + 2094247 exp(—iApz), (2.14c)
zZ

[T T I TSNE ]

where the subscripts “p,” “s,” and refer to the pump, signal, and idler, respec-
tively. All temporal phenomena drop out of the equations due to the CW nature of
the beams, and we neglected some cross-phase modulation terms based on the
assumption that the power of the pump beam, P}, is much greater than that of either
the signal or idler, P, > P, P;. The phase matching term is given by Af = 28, +
Bs — Bi and the frequencies are related through 2w, = w, + w;.

Considering a steady state inside the resonator (i.e., once the cavity is fully
loaded), the above system of equations can be solved in the undepleted pump
regime assuming a small signal gain. Specifically, given no input idler beam, we
find that the wavelength conversion efficiency is given by:

733}
1

Pifou

s—in
1 — exp(—oL + iABL)|*
oL — iASL ’

L% = L*exp(—al) (2.16)

where we made the hypothesis that the propagation losses of all three beams were
identical. There are several important factors in the above solution. First, the net
wavelength conversion efficiency is quadratic with the pump power and also scales
with the nonlinear parameter squared. This is as expected for third order nonlinear
interactions. Moreover, the process scales with the effective length, L.¢, and with the
resonator enhancement factor p to the fourth power. This enhancement factor (p*)
for the Hydex high-Q resonator has been theoretically calculated to be as high as
10'°. This extremely impressive factor results from a combination of low propaga-
tion losses and a careful cavity design with very small coupling coefficients. If we
assume a low loss propagation regime, the resonator enhancement factor p can
be rewritten in terms of the cavity finesse and/or the Q factor as [52]:

F  FSR
pn ISR Q 2.17)
n fo =

This relation unequivocally explains why high finesse and high quality factor
cavities are so widely used in nonlinear optics in order to enhance the efficiency of
wavelength conversion processes.

From (2.16), we see that another limiting factor is the effective length. Indeed, if
we assume perfect phase matching, the effective length reduces to
Lest = o' exp(—aL/2)(1 — exp(—aL)), which for high losses decays exponentially
as function of L, thereby severely affecting the wavelength conversion process.

Wavelength conversion in the high quality factor Hydex micro-ring resonator
was examined experimentally. The set-up used for the semi-degenerate FWM
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Fig. 2.5 Experimental set-up used to characterize the ring resonator and to measure the generated
idler via FWM. Two tunable fiber CW lasers are used, one at the Input port and another at the
Add port, whose polarizations are both set with inline fiber polarization controllers to match
the ring resonances. The output spectrum and power are collected at the Drop and Through ports.
A temperature controller is used to regulate the temperature of the device
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Fig. 2.6 Input-Drop response of the micro-ring resonator (leff) and zoom of a representative
transverse electric (TE) resonance around 1,549 nm (right)

experiments is depicted in Fig. 2.5, and consists of two CW lasers, two polarizers, a
power meter, and a spectrometer. A Peltier cell is also used in order to stabilize the
temperature of the device from thermal fluctuations in the lab. A linear characteri-
zation, performed by simply recording the output power at the Drop port (input port
excited), allowed us to identify the resonances and the ring parameters (Q factor,
FSR) as shown in Fig. 2.6.

For the nonlinear frequency mixing experiment, the wavelength of the pump
laser was tuned to a ring resonance while a second laser, tuned to a different
resonance, stimulated the conversion process. Figure 2.7 summarizes the results
of two different FWM experiments where the pump and signal lasers are tuned to
adjacent resonances, and to two resonances spaced six FSRs apart from each other.
In both cases, the internal conversion efficiency was estimated to be —26 dB with
only 8.8 mW of input power and 1.25 mW of signal power (according to 2.15, and
quoting the wave powers inside the bus waveguide). The onset of cascaded FWM
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Fig. 2.7 FWM experimental results for pump and signal wavelengths tuned to adjacent
resonances for the TE mode (200 GHz) (upper plot) and six resonances apart (~1.2 THz) for the
TM mode (lower plot). The third and fourth idlers in the upper plot demonstrate the onset of
cascaded FWM

can also be observed whereby the pump and first idler interact to generate the third
idler or where the second idler mixes with the signal wave to generate the fourth
idler (red dashed circle in Fig. 2.7a).

This results are in part due to the relatively large (experimentally calculated) vy
factor of 220 W~! km™! [51], as compared to SMFs ~1 W~! km™!, and, more
importantly, due to the low losses, resulting in a large intensity enhancement factor,
which is orders of magnitude higher than in semiconductors, where losses are
typically the limiting factor [8, 38]. Recent results in SOl have also shown impressive,
and slightly higher, conversion efficiencies using CW power levels. However, as can
be seen in [8], saturation due to free carrier absorption via TPA limits the overall
process, whereas in silica-doped Hydex glass it has been shown [51] that no saturation
effects occur for up to more than 25 GW/cm? of intensity (note that the pump intensity
in the ring is only ~0.08 GW/cm? at resonance for 5 mW of input power).

Another critical parameter that was required to achieve these results was phase
matching. Whereas all resonator modes automatically satisfy the phase matching
relation, there is no guarantee that the generated idler wave is at a resonant



2 Advanced Integrated Photonics in Doped Silica Glass 63

30

-31'?47 1.51 1.55 1.59 1.63
Wavelength (um)
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Fig. 2.9 Phase matching diagram associated to FWM in a micro-ring resonator. Explicative
scheme of the idler detuning resonance due to dispersion (/eft). Plot of the idler detuning Avigje,
as a function of both the signal-to-pump frequency distance Av and the pump frequency (right).
The regions in white are areas where FWM is not possible, whereas the colored regions denote
possible FWM with the color indicating the degree of frequency mismatch (black implies perfect
phase matching)

frequency. Indeed, energy conservation dictates the output frequency of the
FWM process to be w; = 2w, — . This frequency will only be aligned to a cavity
resonance provided that the dispersion in the overall resonator is negligible
(see Fig. 2.8—Ieft). The dispersion in this system was evaluated by measuring the
frequency dependence of the FSR, from which the propagation constant was
extracted and fit to a fourth order polynomial (i.e., dispersion parameters up to f4)
as can be seen in Fig. 2.9 [67]. The dispersion is extremely close to 0 in most of the
C-band, and thus allowed for phase matching in our experiments.
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Moreover, this dispersion data can be used to predict the maximum bandwidth
over which FWM is observable. This is obtained by considering that the generated
idler frequency must be within the line width of the closest resonance:

A(D,’ = ‘(U,' — wI'L‘S|<AwFWHM/27 (218)

where w;, ®es, and Aw; are the idler frequency obtained from energy conservation,
the closest ring resonance to the idler, and the correspondent idler detuning, respec-
tively. Whenever this condition is satisfied, the generated idler is within the band-
width of the resonance, phase matching is fulfilled, and FWM is experimentally
achievable [67]. In Fig. 2.8 (right), we plot the above defined frequency shift (note
Avigier = Aw/2m) as a function of the signal to pump frequency distance Av = (w,,
— wy)/2m at a given pump frequency. The region in white represents lack of phase
matching; whereas the colored region represents possible FWM (black implies
perfect phase matching). The curvature in the plot is a result of high order dispersive
terms. It can be seen that FWM can be accomplished in the vicinity of the zero
dispersion point (see Fig. 2.8—right) up to 10 THz (80 nm) away from the pump.
This extraordinary result comes from the low dispersion of the resonator, which
permits appreciable phase matching over a broad bandwidth at low power. At higher
input powers the net phase mismatch also contains a term proportional to the pump
power; a result of cross-phase modulation. It can be shown that the gain bandwidth
increases with pump power for an anomalous dispersion regime [16].

2.4.3 Optical Hyper-parametric Oscillator

The previous section demonstrated the effectiveness of Hydex resonators for
nonlinear optical applications through an experiment of semi-degenerate FWM.
Frequency conversion was obtained using a pump and a signal wave, the latter
being used to stimulate (or seed) the process. However, use of this signal laser is not
mandatory, but allows for an increased efficiency, while simultaneously allowing
the possibility to tune the idler wave in a broad frequency range.

In this subchapter, we exploit hyper-parametric gain to achieve a fully integrated
CMOS compatible multiple wavelength source. By resonantly pumping a single
CW light source in our high-Q (1.2 million) micro-ring resonator, we achieve
parametric oscillation of multiple lines over a very broad (>200 nm) spectral range.

When only the pump photons are present, we call the FWM process spontane-
ous. Effectively, the photons necessary to complete the transition displayed in
Fig. 2.4 are supplied by the quantum vacuum. The vast difference between seeded
and spontaneous FWM is that the vacuum is broadband, leading to broadband
wavelength conversion. However, as (2.4) shows, the idler power depends on the
signal power (vacuum here) which is inherently low.

Notwithstanding this, in a resonator this small gain, proportional to the pump
power, can be large enough to overcome the losses within the cavity. In this case,



2 Advanced Integrated Photonics in Doped Silica Glass 65

oscillation can occur whereby a pair of idlers (to be identified with the signal and
idler of the previous section) can grow out of vacuum via self-seeded parametric
gain. A device capable of achieving this is called an optical hyper-parametric
oscillator (OHPO).

A parametric oscillator is quite similar to a laser in which we have substituted the
active medium with a nonlinear material [72, 73]. In a laser the stimulated emission
stems from the passage of electrons from a higher to a lower energy level, whereas
in a parametric oscillator the process is mediated by virtual levels. Similarly to the
lasing process, the parametric oscillation is a threshold phenomenon that occurs
when the total roundtrip gain equals the roundtrip losses. Once we surpass the
threshold in the cavity, the oscillation wavelength and pump power in the resonator
become clamped, and an increase in pump power further amplifies the oscillating
mode, eventually initiating a process of cascaded FWM that generates a series of
wavelengths at multiples of the initial spacing between the pump frequency and the
oscillating frequency. The majority of OPOs exploit 7 phenomena and are subject
to very stringent phase matching conditions.

Here, the parametric gain is provided by the next highest nonlinearity %, and
the process is said to be “hyper-parametric” [65]. Below the oscillation threshold,
the gain of the vacuum is approximately exponential:

Inoise(z) = noise|_7:() eXP(gZ)7 (2.19)

where g is the parametric gain expressed by:

2|Q|\/ /32> (f:g“ Py, 2)P ) (2.20)

and Q = (v — wp) is the frequency detuning from the pump. Equation (2.20)
assumes dispersion up to fourth order (as characterized experimentally). The factor
g represents a gain (i.e., g > 0) only if we are under the condition of anomalous
dispersion (requiring f8, or/and 4 < 0).

By equating the roundtrip losses to the parametric gain in the resonator, we
deduce that the pump power threshold should be ~54 mW. A plot of (2.20), for a
pump wavelength of 1,544.15 nm and a power of 54 mW, produces the graph
presented in Fig. 2.10, from which we determine the maximum parametric gain to
be at 1,590 nm.

Figure 2.11 shows the setup used for the optical parametric oscillation
experiment. A CW pump laser (Anritsu Tunics Plus, 150 kHz linewidth), amplified
by an EDFA (Amonics HEDFA), was passed through a wavelength tunable band-
pass filter (1 nm, 3 dB bandwidth) to eliminate amplified spontaneous emission
(ASE) from the amplifier. The pump laser was then properly polarized, coupled
into the ring resonator, and tuned to one of its resonances while the power
was monitored by a power meter placed at one of the arm of a 99%-1% splitter.
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Fig. 2.10 Plot of the parametric gain for a pump wavelength of 1,544.15 nm and a power of
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Fig. 2.11 Schematic of the optical hyper-parametric oscillation experimental set-up

During the experiment a “soft thermal lock” condition was established in order to
keep the optical power inside the cavity constant (the temperature increase led to a
modification of the refractive index and hence a shift of the resonance frequencies).
The thermal lock procedure consists in tuning the pump wavelength to one reso-
nance of the ring, then slowly following its drift due to cavity heating, until a
thermal equilibrium is reached. The optical output spectrum for different values of
the input power was then recorded by means of an optical spectrum analyzer (OSA)
(ANDO AQG6317B).

Our pump laser linewidth was fully coupled inside the FWHM of the selected
resonance while no overlap between the laser tail and the ring resonances was
observed (the band-pass filter used reduced the noise to below —70 dB). This
allowed the system to evolve according to parametric oscillation rather than
stimulated FWM. Figure 2.12 shows the output spectra for a TM polarized pump,
tuned to a resonance at 1,544.15 nm, for different values of the input power.

From this set of plots, we can make some important conclusions. The lasing
condition occurs for a resonance located at 1,596.98 nm, which is close to the
location for the peak of the parametric gain predicted by calculations. The threshold
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Fig. 2.12 Output spectra of the hyper-parametric oscillator and oscillation threshold diagram. The
spectra show the evolution of the spontaneous FWM process as a function of the input pump power
at 50.8, 53.8, and 56.8 mW (pump on a resonance at 1,544.15 nm). The last graph (bottom-right)
represents the output power at the drop port for the single oscillating mode at 1,596.98 nm versus
pump power. A differential slope efficiency of 7.4% is extracted from a linear fit (red dashed line)
above threshold

power was determined to be 54 mW (all the powers are quoted inside the bus
waveguide unless stated otherwise) while the single-line slope -efficiency
(above threshold at 1,596.98 nm) was estimated to be 7.4%. For an input power
of 101 mW (at 1,544.15 nm [65]), we obtained a remarkable conversion efficiency
of 9% (9 mW amongst all the oscillating modes). This overall efficiency is an
outstanding result, especially when taking into account that the efficiency of FWM
in ring resonators [8, 67] is typically below —20 dB at these pump powers.
Figure 2.12 also shows that as the pump power keeps increasing the cascade,
FWM takes over with the same spacing imposed by the parametric oscillation.
The experiment was repeated by tuning the pump to other cavity resonances
located into a region of normal dispersion. In these cases, we did not observe
oscillation even for pump powers much larger than the threshold power we used
at 1,544.15 nm. This result is consequently consistent with the predicted behavior
of the parametric gain, requiring anomalous dispersion. It is worth mentioning that
the maximum frequency spacing we have achieved in our optical parametric
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oscillator (52.83 nm or >6 THz) is unprecedented and potentially very useful for
applications where high repetition rates are required.

In fact, if we assume a phase relation amongst the different components of a
broadband frequency comb, the latter, in the time domain, corresponds to a high
repetition rate train of optic pulses. However, the most immediate advantage of
having an integrated multiple wavelength source would be the possibility to
develop a compact and cost-effective wavelength-division multiplexing (WDM)
system. Such an integrated device would also drastically reduce the complexity of
today’s WDM devices, where an array of laser sources could be replaced by one
single source with a resonator.

Here, we have shown how we can exploit integrated optical cavities to generate
coherent narrow linewidth light in a broad spectral range. However, one can think to
use other approaches to design this kind of optical sources. For example, this could be
achieved using a very broadband “white light” source, in conjunction with an ultra-
narrow band pass filter. In this case, there is an added advantage of not being restricted
to cavity resonances and allowing for continuous tuning, which can be an important
tool for spectroscopic applications [74]. The following paragraph elucidates the
possibility to employ Hydex integrated structures for this alternative configuration.

2.4.4 Broad Band Light Generation
in an Integrated Spiral Waveguide

In this paragraph, low loss Hydex glass waveguides will be exploited to study SCG
using a 45-cm long waveguide that is tightly confined on chip via a spiral geometry.
Here, we seek to exploit the length dependence of the nonlinearity. Compared with
the resonators introduced above, this spiral allows a continuous generation of new
frequencies (and not discrete resonances). SCG typically refers to the generation of
broadband light from spectrally narrow pulses through a mixture of nonlinear
effects [75]. The SCG process can be used for a wide range of applications such
as the realization of multiwavelength and tunable sources, spectroscopy, bio-
imaging, pulse compression, and optical coherence tomography.

The waveguide used in our experiments has the same cross-sectional core area as
that used for the ring resonator, namely 1.45 x 1.5 pm? It is contained on a
footprint area as small as 2.25 x 2.25 mm? and is schematically shown in
Fig. 2.13. Due to the significant index contrast (17% between clad and core), spiral
structures can be fabricated with negligible bending loss, thereby allowing the
possibility to exploit the very long interaction length for nonlinear effects.

As aresult of the broad transparency of these waveguides (from the UV to well into
the mid-IR) and the very low dispersion, they naturally offer the best conditions for
very broad SCG. As previous studies have shown [76], SCG is the result of a cascade
of nonlinearities, and has been shown to be very efficient when a pump wavelength
close to a zero-dispersion point is used. Here, we present SCG in the spiral waveguide
by pumping light in proximity of two different zero-dispersion wavelengths, namely at
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Fig. 2.13 Top-down schematic view of the 45-cm long spiral waveguide

1,288 nm where the normal dispersion regime lies at shorter wavelengths, and also
at 1,550 nm where the normal dispersion regime is at longer wavelengths (see ref.
[63] for more details on the various dispersion regimes).

SCG can be numerically modeled assuming a single-beam propagation with the
dominant nonlinear effects being: SPM, cross-phase modulation, intra-pulse four-
wave mixing, soliton fission, Raman self-frequency shift (SFS), and the generation
of Cherenkov radiation. This complex array of nonlinear interactions can be
modeled by the generalized nonlinear equation (2.4):

0A LA B PA B 0'A
8+Aﬂ1 "2 on 68t3 24 o

= iy|A| A—y(——|A| A+iTrA o |A| > (2.21)

This model takes into account dispersion up to fourth order (as measured
experimentally) and takes into account ultra-short pulse phenomena. Since a pre-
cise estimation of the Raman effect in these waveguides is still under investigation,
the Raman response of fused silica was used as a first order approximation for the
simulations below. The input waveform was taken to be a Gaussian pulse with a
small chirp (C = —0.1) in order to match the experimentally measured pulse
spectrum and autocorrelation. In addition, we also consider that the input pulse is
propagating in a quasi-TE mode with the experimentally determined dispersion
coefficients: f, = 10.5 ps®/km, S5 = 0.26 ps’/km, and f4 = 0.0035 ps*/km at
1,550 nm.

The experiment was performed by using a Spectra Physics OPO generating
100 fs pulses (200 fs at 1,300 nm), determined via autocorrelation, with a repetition
rate of 80 MHz. The spectral bandwidth at —20 dB for the input pulse was 110 nm
at 1,550 nm and 55 nm at 1,288 nm [63]. The pulses produced by the OPO were first
attenuated and then sent to a 99/1 fiber coupler. While 99% of the signal was sent to
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Fig. 2.14 (Left) Simulated (in red) and experimentally measured (in blue) input pulse spectra for
the SCG experiment. (Right) SC spectrum at the output of the 45-cm long spiral waveguide when
the input peak power is 1.76 kW. Note that the simulated pulse spectral broadening predicts new
frequency components even beyond the experimental measurements which were limited to the
range of 1,200-1,700 nm by the OSA

the input of the spiral waveguide, the remainder was directed to a power meter to
continuously monitor the input power. The output spectrum was finally recorded by
using an OSA for various input power levels; a detailed experimental set-up can be
found in [63]. The output and input spectrum for the experiments at 1,550 and
1,288 nm are presented in Figs. 2.14 and 2.15, respectively.

At 1,550 nm the input bandwidth is shown to broaden by more than a factor of 3,
achieving more than 300 nm of spectral width using an input peak power of 1.76 kW.
Note that the bandwidth is theoretically predicted to be much broader on the long
wavelength side (>1,700 nm), but this was not detectable experimentally due to the
limited range of our spectrometer. The results are even more impressive at 1,288 nm,
where the broadening is significantly wider (the —30-dB bandwidth is more than
600 nm) and at a lower peak power of 1 kW. As determined from the simulations,
soliton fission, dispersive wave generation, Raman self-frequency shifting coupled
with FWM are the dominant effects responsible for the broadening at 1,550 nm.
The significant differences between the 1,288- and 1,550-nm results are attributed
primarily to the different dispersion regimes, and we anticipate that the higher order
dispersive terms near 1,288 nm are significantly larger than those at 1,550 nm.
Moreover, soliton instability is strictly governed by higher order dispersion terms,
and thus could initiate the onset of SCG earlier at 1,300 nm.

These results are extremely promising, and demonstrate the exploitation of long
structures, possible due to the exceptionally low propagation losses, to generate
significant nonlinear effects, while requiring an extremely small device footprint.
Moreover, the broad transparency of the Hydex glass could be utilized to extend the
spectrum to the visible and into the UV. Together with a narrow band tunable filter,
this device shows much promise as a tunable wavelength source.
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Fig. 2.15 SCG using a pumping wavelength of 1,288 nm. The experimental input (in black) and
output (in red) pulse spectra are shown. The output spectrum, obtained at a peak power of 1 kW,
has a bandwidth of more than 300 nm at —20 dB

2.5 Ultrafast All-Optical Processing

2.5.1 Ultra-short Pulses Frequency Conversion
via FWM in Integrated Glass Waveguides

The final part of this chapter is focused on ultrafast optical processing, with
particular attention to four very important signal processing operations: (1) ultra-
short pulse frequency conversion, (2) optical compression, (3) time width estima-
tion of subpicosecond pulses, and (4) optical temporal integration. While the first
three of these operations have all been carried out by using the 45-cm Hydex spiral
waveguide presented in the previous section, the fourth makes use of the same
micro-ring cavity used for the FWM and OPO experiments previously described.
Moreover, it is important to emphasize that the optical integration presented here is
a linear phenomenon and demonstrates the versatility of this integrated platform
is not limited uniquely to the nonlinear regime.

Whereas the previous section dealt with the generation of new frequencies via
SCG, a more selective frequency conversion with a specific output frequency target
can be more efficient and may find diverse applications. In particular, all-optical
approaches based on ultrafast optical nonlinearities, such as pulse FWM, have been
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successfully employed for optical signal processing. When implemented in a
waveguide geometry, they provide useful instruments able to overcome the band-
width limitations associated with electronic approaches. FWM in waveguides has
been used to demonstrate several fundamental operations on pulses for optical
signal processing, ranging from frequency conversion to signal reshaping, regener-
ation, and amplification [20, 23, 29, 34, 77, 78], and more recently for temporal
signal measurement, which will be discussed in Sect. 5.2. For this reason, there is a
strong interest in demonstrating parametric gain in waveguides. Gain in highly
nonlinear waveguides has been demonstrated in silicon [79] and in some nonlinear
glasses like heavy metal oxides [23] or chalcogenide [78]. In particular, a net
parametric gain of 1.8 dB was first reported in dispersion engineered silicon
nanowires [79] and since then, a net overall gain (including all losses) of 16 dB
was obtained in chalcogenide glass waveguides [78]. However, as mentioned
above, for both of these platforms, linear and nonlinear losses can limit perfor-
mance—particularly for silicon where saturation due to nonlinear absorption of the
pump and subsequent generation of free carriers clamps the maximum achievable
gain at about 10 W of peak pump power [79].

In this section, the remarkable nonlinear properties of the Hydex spiral wave-
guide are explored for wavelength conversion of ultra-short pulses by exploiting
FWM. We report net parametric gain [80] obtained with subpicosecond pump-
probe pulses. We achieve +16.5 dB conversion efficiency, with 40 W of pump
(peak) power, and observe no saturation. The low dispersion of the waveguide
allows us to observe FWM on a remarkably large bandwidth of over 100 nm.

As in the previous section, we modeled pulse propagation in the waveguide with
the GNLS equation (2.21), where we neglected the Raman effect. Equation (2.21)
was integrated via a standard pseudo-spectral approach, and Gaussian pulses were
assumed for both the input pump and the signal envelopes.

The measurements were carried out with an OPO system that generates 180 fs
(bandwidth = 30 nm) long pulses at a repetition rate of 80 MHz. The broadband pulse
source was split and filtered by way of two tunable Gaussian bandpass filters operating
in transmission with a —3 dB bandwidth of 5 nm (equivalent to a pulsewidth of
~700 fs), in order to obtain synchronized and coherent pump and signal pulses at two
different wavelengths. The pump and signal pulses were combined into a standard
SMF using a 90/10 beam splitter and then coupled into the spiral waveguide. Pulse
synchronization was adjusted by means of an optical delay line, while power and
polarization were controlled with a polarizer and a //2 plate. Both pump and probe
polarizations were aligned to the quasi-TE mode of the device.

Figure 2.16 shows the experimental results for three different signal excitations at
s = 1,480, 1,490, and 1,500 nm with 3 mW of power, respectively. The pump
wavelength was set to 4, = 1,525 nm in all the three cases and the pump peak power
coupled inside the waveguides was varied from 3 to 40 W. Cascaded FWM was
observed for pump powers larger than 30 W. The asymmetry visible in the interac-
tion (the cascaded FWM induced by the idler is stronger than the one induced by the
signal) indicates a non-negligible contribution due to the 5 term, consistent with a
low absolute value of 3, [16], as confirmed by our fitting (see Fig. 2.9).
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Fig. 2.16 Experimental (top) and theoretical (bottom) signal intensity spectrum for a 1,525-nm
pump and a 1,480- (a), 1,490- (b), and 1,500-nm (c) signal. The legend lists the pump peak powers,
while the signal peak power is 3 mW

The experiments show a larger gain for wavelengths closer to the pump using
powers that are lower than 13 W, while the gain becomes almost flat (in a range of
over 100 nm) for powers larger than 30 W, as can be seen in Fig. 2.16b. We define
the “on/off” conversion efficiency 7, as the ratio of the idler wave’s i(¢) transmitted
energy to the power of the signal wave s(¢) [79]:

T/2 5
J li(e)dt

-T/2

7; = lim (2.22)

T—oo T/2

J Is(o)dr

)

This allows us to account for various pulse shapes and for the spectral broadening
due to cross-phase modulation, which lowers the spectral intensity. The net “on-
chip” gain is then the on/off gain minus the propagation loss. The experimental on/
off efficiency versus pump peak power is shown in Fig. 2.17c, d along with the
theoretical calculations for both a CW and a pulsed pump. The modeling and
experiment agree quite well. The CW case represents the maximum achievable
gain for a given pump peak power, as it maximizes relation (2.22), and it is
insensitive to detrimental effects, such as spectral broadening and temporal walk-
off, that can limit the efficiency in the pulsed regime. For a 38-W pump power,
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Fig. 2.17 Gain for a 1,480-nm signal: (a) Spectra for a 3-mW peak power signal alone (blue) and
with a 40-W pump (red). (b) CW gain. (¢, d) FWM gain for idler and signal, respectively:
measurement (black dots), simulated pulsed model (red continuous line), and for a CW regime
(red dashed line)

we measured a maximum on/off FWM conversion efficiency of +16.5 dB from
signal to idler. This translates into a net on-chip conversion efficiency of +13.7 dB
and a gain of +12.3 dB, when the overall propagation loss of 2.7 dB is included. We
note that even at the highest pump powers used in these experiments, we do not
observe any signs of saturation and this is largely due to the negligible nonlinear
absorption in this platform.

This demonstration of parametric gain via pulsed FWM in a CMOS compatible
doped silica glass waveguide is promising for all-optical ultrafast signal processing
applications such as frequency conversion, optical regeneration, and ultrafast pulses
generation. As an interesting application of pulsed FWM signal processing, we
show in the next paragraph pulse measurements via time-to-frequency conversion
based on FWM interaction.

2.5.2 Time Lens Measurement of Subpicosecond Optical Pulses

This section is dedicated to the ultrafast optical pulse characterization technique
based on time lenses (TL) [81]. Ultrafast nonlinearities can be conveniently
exploited for temporal signal imaging through the so-called space—time duality
[81-91]. In simple terms, refractive optical elements such as lenses and prisms have
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temporal analogs that perform equivalent functions in the time domain, as they are
represented by the same mathematical equations. The importance of this equiva-
lence is associated to the fact that a vast category of optical instruments for
diffractive beams rely on a suitable combination of lenses and free-space beam
propagation. Thus, equivalent concepts can be employed for processing temporal
signals by properly combining TLs, and dispersive elements.

More specifically, we define a TL as a physical mechanism that induces a
quadratic phase profile on an input temporal optical signal, in analogy to a spatial
lens, which adds a quadratic curvature to the phase front of a transmitted beam. The
best results to date for a TL process have been obtained by using a parametric
process, such as three-wave mixing (TWM) or degenerate FWM [88-92]. In partic-
ular, the FWM approach [90-92] has the advantage of being suitable for centro-
symmetric materials, such as silicon or glass, and thus for fundamental platforms in
integrated optics.

TLs can also be used for time-to-frequency domain conversion. This mechanism
has proven particularly useful for measuring the time-domain intensity profiles of
ultrafast optical waveforms. In the spatial case, it is well known that the optical field
transmitted by a lens at its focal plane is the Fourier Transform (FT) of the spatial
input field distribution one focal length in front of the lens. This concept, when
translated into its temporal counterpart, allows one to capture the time-domain
intensity profile through a simple optical spectrum measurement.

In practice, the pulse under test (PUT) is initially stretched with a dispersive
element of length L and group velocity dispersion f3, (i.e., a spool of SMF), resulting
in a temporal phase curvature ¢r = f5,L, and is then coupled into the waveguide as
the signal for the parametric interaction. This signal (i.e., the PUT with the appro-
priate chirp applied) plays the role of the input waveform to the TL. A highly chirped
Gaussian pulse, much longer in time than the signal duration, acts as the pump of the
parametric interaction and it plays the role of the lens itself. Only the pump chirp ¢p
is relevant, while its temporal amplitude can be neglected. The TL effective phase
curvature resulting from a FWM process is ¢ = ¢p/2, due to the quadratic depen-
dence on the pump profile of the idler for a FWM interaction [90-92]. We note that
for a TWM-based TL, the condition would be ¢r = ¢p [88, 89].

The idler behaves as the (output) waveform transmitted by the TL, since it
acquires the signal temporal shape and the TL phase curvature ¢ that exactly
compensates the signal chirp. In this configuration, the idler energy spectrum maps
the temporal intensity shape of the PUT according to the following time-to-fre-
quency scaling law:

t= ¢ro. (2.23)

A temporal imaging system is then realized by measuring the idler with a
spectrometer. Figure 2.18 summarizes the principle of time-to-frequency conver-
sion using a TL based on FWM.

In our experiments, subpicosecond pulses for the pump and the signal were prepared
from a 17-MHz repetition rate mode-locked fiber source, providing pulses at
A = 1,550 nm. The pulses were spectrally broadened after propagation in a nonlinear
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Fig. 2.18 Principle of time-to-frequency conversion using a TL based on the FWM experienced
by the PUT when interacting with a linearly chirped pump pulse. In the case illustrated here, the
PUT first undergoes a sufficiently large dispersion to enter the so-called temporal Fraunhofer
regime, where the time-domain optical waveform at the input of the TL (signal) is proportional to
the spectral shape (amplitude variation) of the PUT and is phase chirped due to the large dispersion
(i). When the signal interacts with the pump (ii) the nonlinear frequency conversion produces an
idler with the temporal shape of the signal but with a chirp exactly compensated by the pump chirp
(iii). The output of the TL (idler) is transform limited and its temporal shape is proportional to the
spectrum of the PUT. As a result, the spectrum at the TL output is proportional to the temporal
amplitude profile of the PUT (iv)

fiber. As in the previous FWM experiment (described in Sect. 5.1), the PUT and the
pump pulses were coherently synchronized by way of two tunable Gaussian band pass
filters operating in transmission with a —3-dB bandwidth of 5 nm (equivalent to a pulse
width of ~700 fs) and 8 nm (equivalent to a pulse width of ~570 fs), centered at 1,560
and 1,530 nm, respectively. An interferometer was used to shape the PUT in a double
pulse waveform, and a movable mirror controlled their relative delay.

The dispersion of the pulses was controlled using spools of SMF. The pump was
stretched to approximately 100 ps with 2 km of SMF. The signal dispersion was
carefully adjusted to obtain half the dispersion of the pump. Pulses were first amplified
with a standard erbium-doped fiber amplifier (EDFA) and were then coupled into the
45-cm long waveguide. The pump peak power at the input waveguide was 1 W, and an
OSA provided the output spectrum.

Figure 2.19 shows the resulting idler spectrum generated by the device as a
function of the delay between the two peaks of the double pulse waveform used as
PUT. By measuring the spectral separation of the two idler peaks, a calibration
curve was obtained (see Fig. 2.20). The measurement shows the linear trend
expected by relation (2.23). We obtained a calibration factor of 14.2 ps/nm, used
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Fig. 2.19 Idler spectrum for a PUT consisting of two delayed Gaussian pulses, for different
temporal delays. Here, the pump dispersion is equivalent to 2 km of SFM. The first replica (black
Gaussian pulse, at the center of the picture) does not change in time, while the second replica is
recorded for different temporal delays and is represented with different colors
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Fig. 2.20 Calibration curve for the delay between the two Gaussian pulses composing the PUT
(extracted from in Fig. 2.19): experimental data extracted from Fig. 2.19 (black dots) and related
linear interpolation (red line). (b) Maxima of the Gaussian pulses in Fig. 2.19 for different time
delays (black dots) and related parabolic interpolation of the experimental maxima (red curve).
We note that the intensity of the imaged pulses varies because the approximation of a constant
pump intensity does not hold for the large delays used in this experiment

to calculate the corresponding temporal axis of the spectral measurement, shown at
the top of Fig. 2.20, in red. The peak value of the delayed pulse replica in the
measured idler spectrum versus wavelength is shown in Fig. 2.20b: this measure-
ment allowed us to precisely estimate the temporal recording length of our instru-
ment, obtaining a —3-dB time window of 100 ps.
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Fig. 2.21 (a) Idler spectrum (black curve) for a PUT consisting of a transform limited Gaussian
pulse with 5-nm bandwidth. The converted timescale (red axis at top) is obtained using
the calibration factor of 14.2 ps/nm extrapolated from Fig. 2.20. The blue curve is the FT of the
signal (i.e., the PUT) spectrum, representing the transform limited PUT temporal waveform.
(b) Idler spectrum of a temporal shape with a large time bandwidth product, revealing 800-fs
long oscillations over a temporal duration of 40 ps

The image of a single, transform limited Gaussian pulse is shown in Fig. 2.21a,
together with the result of the TL experiment (with the transform limited temporal
shape obtained from the FT of the spectral measurement of the signal), yielding a
Gaussian pulse width of ~700 fs. This was also confirmed by autocorrelation
measurements. In comparison, the TL measurement yields a pulse width of
~900 fs. This is a result of two effects. First, the resolution of our TL-FWM
experiment is ~400 fs: a 7o = 70 fs temporal pump pulse duration in the transform
limited section corresponds to a resolution of 7o/ V2 ~400 fs [89-91]. This broadens
the pulsewidth to ~800 fs. The additional broadening to ~900 fs arises from our TL
system being slightly out of focus; equivalent to propagation through ~5 m of SMF.
Indeed, we could control the signal dispersion with an accuracy of approximately
10 m of SMF, due to synchronization constraints between the signal and the pump.
This is due to the fact that, when the length of the SMF spool used to disperse the
PUT is modified, the relative delay between pump and signal is also affected.

An instrument with a temporal resolution of 400 fs over a time window >100 ps
possesses a time bandwidth product >250. This is comparable with previous results
obtained in silicon [89-91]. Better performances in terms of both output idler
conversion efficiency and time-bandwidth product can be reached for larger
pump excitations, limited by the amplifier used in our set-up but not by our device.
As our platform is not affected by nonlinear absorption, higher power can be
employed without distortion inducing aberrations in the TL. This temporal imaging
instrument is well suited for the measurement of pulses with complex temporal
features over large scales. As is visible from Fig. 2.21b, a temporal shape consisting
of an oscillation with a time scale of 800 fs over a temporal window larger than
40 ps can be successfully imaged.
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2.5.3 All-Optical Pulse Compressor

Our study of pulse compression is primarily based on recent advances in PICs, and
on how they have become a necessity for the future of ultrafast telecommunication
networks. Their development will simultaneously be able to meet the exponentially
growing demand for bandwidth, lower costs, use a smaller footprint, and reduce
energetic consumption compared to today’s electronic technologies. In particular,
the design and fabrication of an all-optical temporal compressor would bring great
benefits to many applications such as optical metrology and imaging, where the
compression of pulses down to subpicoseconds generates a broad bandwidth pulse
particularly suited for optical coherent tomography. However, these kind of ultra-
short pulses are very difficult to be directly obtained from commercially available
laser sources. A standard strategy to circumvent this problem is to exploit devices
that make use of ultrafast nonlinearities. In this case, pulse compression is obtained
by first spectrally broadening a transform limited optical pulse, via nonlinear
propagation in a normally dispersive optical fiber, and then re-phasing it via linear
anomalous dispersion (the order of these two steps can be interchanged) [64, 81, 93].

SPM-based spectral broadening and dispersion for ps and sub-ps pulses can be
effectively modeled according to (2.4) by the following expression:

0A «

OA P, A 2

The other nonlinear terms of (2.4) were dropped on the assumption of (1) lack of
phase matching for frequency conversion, (2) pulse durations around 1 ps, and (3)
moderate power levels as to not excite higher order effects. The equation is
governed by two main effects: dispersion and SPM. Under suitable conditions,
these two effects can act at different length scales and can thus be treated indepen-
dently. To gain some insight on the effect of the nonlinear contribution to (2.24), it
is useful to look at the no-dispersion limit, which can be readily solved to obtain:

A = Agexp(—ayz/2) exp(iy\A0|2[1 —exp(—o2)]/o1), (2.25)

where A’ = A(z,t — f1z). The nonlinear term introduces a nonlinear chirp in the
temporal phase, which in the frequency domain corresponds to spectral broadening
(the generation of new frequencies), i.e., self-phase modulation (SPM). Ultra-short
pulses can be generated by first broadening the spectrum of a propagating optical
pulse in a normally dispersive nonlinear medium, thereby creating new spectral
components via SPM and then by propagating in an anomalous dispersion regime,
thereby rephasing the pulse with an opposite chirp. Technically, this approach can
lead to the shortest possible pulse having a certain frequency content, which is
defined as a transform limited pulse.

Figure 2.22 shows the experimental set-up used to demonstrate pulse compres-
sion in the 45-cm long Hydex spiral waveguide. This can be achieved in Hydex due
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Fig. 2.22 Sketch of the experimental setup for the optical pulse compression measurements

to a weak dispersion regime (for pulses of ps-scale durations or longer) near
1,550 nm. A standard fiber laser (Pritel FFL) was used as an input source, with
pulses having a temporal waist of To = 0.94 ps (1.10 ps FWHM), a total dispersion
quadratic chirp of 0.17 ps/nm (which can be compensated by approximately 10 m of
SMF), a repetition rate of 16.9 MHz, and a central wavelength 4 = 1,550 nm.

The experimental setup is portrayed in Fig. 2.22. By means of a polarization
controller and an attenuator, we were able to arbitrarily set both the polarization and
power. The latter was estimated by using a power meter coupled at the output of a 1%
channel from a 99/1 fiber coupler. For the data analysis, both an autocorrelator and
an OSA were used to characterize the input and output pulse. The total length of the
SMF used was 8 m. More specifically, the distance from the laser to the chip input
was 7.33 m, while an additional 0.66 m of fiber was added to the chip output. Most of
the initial source chirp was compensated during the propagation along the initial
7.33 m of input fiber, and the remaining input pulse residual chirp was estimated to
be equivalent to the value induced by propagating approximately 2 m in an SMF.

Figure 2.23 shows both the pulse autocorrelations (intensity: normalized unit)
and spectra (power: normalized unit) recorded at the chip output right after the
0.66-m of SMF. These plots indicate that the pulse is temporally compressed as
we increase the pulse peak power. The pulse time width estimation was obtained by
fitting the experimental intensity autocorrelation to a Gaussian field defined
by A(T) = Agexp(—(T/Ty)?), where T is a time renormalized to the group velocity,
i.e., T =t — fz. The final results are characterized by pulses with a time waist T
spanning from 0.65 to 0.45 ps and energies (peak powers) from 15 pJ (19 W) to
71.2 pJ (98 W).

The pulse spectrum in Fig. 2.23b clearly shows the double peak feature of an
ongoing SPM arising at high powers. We also performed the experiments using a
reference 1 mm long waveguide, and verified that the compression was due to the
nonlinear chirp acquired by the 45-cm waveguide and did not take place in the input
or output fiber pigtails used to couple from SMFs to the optical chip.
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Fig. 2.23 Pulse compression at different pulse energies: autocorrelation (a) and spectrum
(b) obtained by collecting the output of the spiral waveguide after 0.66 m of SMF. The Gaussian
best-fitted pulse waist is indicated between brackets

We stress that the role played by the output fiber is to compensate for the
nonlinear chirp induced by the integrated device. Although in this work
the compensation is not performed on-chip, the total required dispersion compen-
sation is quite low, at around 10 fs/nm. This level of dispersion can be easily
achieved on-chip by engineering the waveguide parameters. For instance, our
platform could easily allow for modification of the GVD by simply changing the
waveguide width and height [64].

2.5.4 Optical Integrator

In this section, we demonstrate the possibility of exploiting the linear properties of
Hydex for performing ultrafast all-optical processing via the use of novel integrated
photonic devices. Specifically, we report on the possibility of using micro-ring
resonators to perform temporal-integration of complex waveforms with features
down to /8 ps.

The design and fabrication of basic photonic blocks (equivalent to basic
electronic devices) are steps of paramount importance to facilitate the passage
from electronics to photonics [92]. In particular, integrators and differentiators,
which were largely used as fundamental modules for the realization of ALUs
(Arithmetic Logic Units) during the dawn of integrated electronics, have yet to be
implemented all-optically in today’s photonic systems. Here, we focus our attention
on optical integrators [94]. Photonic temporal integrators can be used to fabricate
ultrafast computational units devoted to solve ordinary differential equations
(ODEs), which in turn play a fundamental role in many fields of science and
engineering [95].
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A photonic temporal integrator is a device capable of performing the cumulative
time integral of the complex temporal envelope of an arbitrary optical input [96]. From
basic signal processing theory [97-100], we find that an integrator is characterized by
a temporal impulse response /(f) proportional to the step function u(z):

{u(t) =0 for <0, (2.26)

u(ty=1 for >0,

where ¢ is the time variable. In order to realize such a physical system, we require a
structure capable of storing the intensity of an incoming optical radiation and
subsequently releasing a continuous signal proportional to the total stored field at
each instant of time. This functionality, which in electronics is realized by a simple
capacitor, is challenging in optics due to the intrinsic nature of photons—which
typically cannot be spatially localized over long intervals. An optical integrator is
potentially very useful for a specific set of fundamental applications such as data
processing, pulse shaping, data storage, and optical computing.

In the spectral domain, the transfer function H(w) of an ideal integrator is
expressed by:

1

— 2.27
(w0 — )’ (2.27)

H(w) x

where o is the optical frequency variable, and w is the carrier frequency of the signal
to be processed. From this function, it is immediately clear that an optical integrator
near mq should in principle rely on a transmission >1 and diverge to infinity at w,.
One possible approach to emulate the integrator transfer function is based on the
use of resonant cavities. Considering a Fabry-Perot interferometer, for a certain
fraction of its FSR, its temporal impulse response can be described by [101]:

h(t) o< exp(—kt) - u(r), (2.28)

where k = (—1/T)-In(r?y), T is the round trip propagation time in the cavity (T = 1/
FSR), r is the mirror reflectivity, and 7y represents the round-trip field amplitude
gain, which can be either >1 or <1 depending on whether light is propagating in an
active or an absorbing medium, respectively. Figure 2.24 shows that around a
specific resonance (whose shape is well approximated by a Lorentzian function),
the transfer function of an ideal integrator (black curve) resembles that of an optical
resonator (red curves). In the same image, the comparison is made for two different
resonators (case “a” and “b,” respectively) that only differ in terms of FSRs. The
dashed boxes represent the ranges in which the resonator characteristic resembles
that of the ideal integrator.

From Fig. 2.24, it is also clear how a larger FSR corresponds to a broader
integration bandwidth. Since the FSR is inversely proportional to the physical
dimensions of a cavity, the device size reduction can bring the double advantage
of widening the integration bandwidth while simultaneously reducing the compo-
nent footprint.
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Fig. 2.24 Typical fit between the spectral intensity transfer functions of a general resonator (red curve)
and that of an ideal integrator (black curve). The plot makes a comparison in terms of integration
bandwidth between two resonators (case “a” and “b”) with two different FSRs. A larger FSR
(FSR 1 > FSR 2) corresponds to a broader integration bandwidth (bandwidth 1 > bandwidth 2)

The performance near o, can be improved by using an active device, in which
losses can be compensated by gain [102]. However, the active integrator approach
is also affected by major disadvantages such as a high noise level (produced from
spontaneous emission), a high energy consumption, and remarkable challenges
encountered throughout the fabrication. These limitations are often so severe that
the passive approach is often preferable to its active counterpart, despite significant
drawbacks in terms of throughput (defined as the input—output power efficiency)
and the time-bandwidth product.

Realization of photonic integrators has also been explored through other
techniques, including the use of feedback-based photonic filters [103] and fiber
Bragg gratings (FBG) [99]. These solutions, however, despite representing a fun-
damental improvement, suffer from important limitations. Specifically, the
photonic filter strategy is very limited in terms of processing speed, whereas
the performance of FBG integrators are fundamentally related with the reflectivity,
which cannot be lower than 99.99% for acceptable operation. Here, we show that
the ring resonator described earlier in this chapter presents an ideal alternative for
on-chip all-optical temporal integration.
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Fig. 2.25 Experimental set-up for all-optical integration

Figure 2.25 shows the experimental set-up used for optical integration. In our
system, a fiber laser (PriTel FFL) emits transform limited pulses at a repetition rate
of 16.9 MHz. The pulses have a time duration of approximately 7.5 ps (measured by
using a Fourier transform spectral interferometry technique). The light beam is then
sent to a pulse shaper (Michelson interferometer) which is used to set three different
kinds of waveforms: (1) the optical wave directly generated by the laser source
(obtained by simply shielding one arm of the interferometer—see Fig. 2.26a), (2) a
train of in-phase pulses (inset in Fig. 2.26b), and (3) a pair of n-phase-shifted pulses
(inset in Fig. 2.26c). By coarsely varying the optical path difference of the interfer-
ometer, the temporal distance between the pulses was set at 275 ps for both the
inputs (2) and (3).

The mutual phase-shift between pulses was set by using a piezo controller
mounted on one of the two mirrors of the pulse shaper. The waveforms were then
sent to a polarization controller in order to select a TE ring resonance at 1,559.46 nm.
Light coupled at the Input port is collected at the drop port at resonance, and is
recorded and visualized by a fast oscilloscope (Tektronix CSA8200 signal analyzer)
operating in sampling mode.

The output normalized intensities for the (1), (2), and (3) waveforms are reported
in Fig. 2.26a—c, respectively. The correspondent theoretical cumulative integrals
are represented by the solid red curves. In order to record the fast features of the
system response to the input (1) (see inset (a) in Fig. 2.26a), we also used an
amplified optical detector with a time constant ~8 ps. This optical component was
placed between the ring output and the oscilloscope input (see Fig. 2.25). Since the
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Fig. 2.26 Analysis of the integrator temporal response. The main plots represent both the
experimental (black curve) and the theoretical (red curve) time integrals of the various intensity
optical waveforms under analysis. These input waveforms are reported in the corresponding insets
(blue curves). The measurement is performed for different cases: an ultra-short optical pulse
directly generated by the laser source (a); in-phase pulses with a relative temporal delay of 275 ps
(b); m-phase-shifted pulses with a relative temporal delay of 275 ps (c); and a linearly chirped
(quadratic phase) broadband optical pulse, with a field amplitudle FWHM time duration of
~1,340 ps (d). The impulse response (a, inset (a)) was obtained by using a fast (~8 ps) amplified
photo-detector. The dispersed pulse was calculated by assuming an ideal quadratic phase variation
on the measured temporal amplitude pulse profile according to the linear dispersion value
(~2,000 ps/nm) of the fiber-dispersive element used in our experiments

input pulse and the integrator bandwidths almost coincide, Fig. 2.26a can be
considered the impulse time response of our system.

Figure 2.26a also shows that the integration time window of the ring is as long
as 800 ps (defined as the time required to decay to 80% of the maximum).
The resulting time-bandwidth product of our integrator is consequently evaluated
to be 100, obtained by taking the ratio between the integration time window and the
rising time. This value is one order of magnitude better than what is achievable by
using state-of-the-art electronic integrators [104] and in our case it is accomplished
by using a fully CMOS compatible and passive device [105].

It is worth noticing that the integration of the waveforms (2) and (3) differs only
because our integrator is phase sensitive. This important sensitivity allows for
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certain unique applications, such as optical data storage [106]. In order to underline
this very important characteristic of our device, we also performed the temporal
integral of a waveform obtained by dispersing in time the laser output.

The dispersed input optical waveform was obtained by propagating the laser
pulses through a fiber-dispersive element, resulting in strongly linearly chirped
pulses with an intensity FWHM time duration of ~950 ps (field FWHM time
duration of ~1,340 ps). The chirped pulses were then launched into the ring
resonator and the temporal intensity waveform was measured at the output (drop
port) of the resonator. Figure 2.26d shows the experimental results (black curve)
together with the theoretical time integral (red curve) of the chirped optical pulse.
Despite the complexity of the output waveform, the experimental and theoretical
curves agree well over timescales longer than the resolution of the device (~8 ps).
This last result suggests that it should be possible to recover the temporal phase
information of a given arbitrary optical waveform from the temporal intensity
profile of its integral.

2.6 Outlooks and Conclusions

In this book chapter, we have presented a recently developed high-index doped
silica glass material platform that is potentially useful for a very broad range of
linear and nonlinear applications in integrated photonics. This material combines
the optimal linear properties of SMFs such as very low propagation losses, and a
robust fabrication process, together with those typical of semiconductors and other
nonlinear glasses, such as significant nonlinearities. This material allows for the
fabrication of micrometric waveguides having very low linear losses of the order of
0.06 dB/cm and negligible nonlinear losses for peak intensities tested up to 25 GW/
cm?. The 17% index contrast achievable with respect to a silica glass cladding
allows for a very tight mode confinement down to 1.5 um”>—in turn leading to a
nonlinear y parameter as large as 220 W' km™'. The processes behind the Hydex
waveguides fabrication are fully CMOS compatible with no need for high temper-
ature postannealing and they also allow for very tight bend radii down to 30 pum.
The latter being the key for integrating complex spiral guiding structures onto chip
size areas (<1 cmz).

We have shown that although semiconductors possess a much larger nonlinearity,
this parameter cannot often be fully exploited because of the detrimental (linear and)
nonlinear absorption. In particular, we have presented and described how the Hydex
platform can be employed for the realization of efficient ultra-narrow linewidths and
multiple-wavelength integrated optical sources, as well as for fabricating fundamen-
tal optical blocks for ultrafast optical processing. This was demonstrated through
experiments on semi-degenerate FWM, on the generation of an HOPO, and by
means of a SCG source. In the second part of the chapter, which mostly focused
on the ultrafast signal processing, Hydex devices were used to realize an integrated
pulse frequency converter, optical time lens, compressor, and integrator.
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Only two fundamental structures were explored: a 135-pum radius ring cavity,
and a 45-cm long spiral waveguide. Nonetheless, using these two devices, we
proved: (a) a narrow linewidth (160 MHz FWHM) and efficient (—26 dB) fre-
quency conversion with a predicted tunability range of 160 nm (20 THz); (b) an
optical CW parametric oscillator with a single line efficiency of 7.4% and a
threshold power of 54 mW; (c) a spectral bandwidth broadening of more than
300 nm at both 1,290 and 1,550 nm for an input pulse spectrum of 110 nm
(at —20 dB); (d) parametric gain via pulsed FWM with a maximum on/off conver-
sion efficiency of +16.5 dB from signal to idler (for a 38-W pump power); (e) a time
lens with a temporal resolution of 400 fs over a time window >100 ps
(time bandwidth product >250); (f) pulse compression spanning from 0.65 to
0.40 ps for pulse energies (peak power) varying from 15 pJ (19 W) to 71.2 pJ
(98 W); and (g) all-optical phase-sensitive temporal integration over a bandwidth of
200 GHz. All these results undoubtedly place Hydex technology amongst the most
promising for future ultrafast all-optical telecommunication networks.
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Chapter 3
Linear and Nonlinear Wave Dynamics
in Amorphous Photonic Lattices

Mikael Rechtsman, Alexander Szameit, and Mordechai Segev

Conventional intuition in solid-state physics holds that in order for a solid to have an
electronic band-gap, it must be periodic, allowing the use of Bloch’s theorem. Indeed,
the free-electron approximation seems to imply that Bragg scattering in periodic
potentials is a necessary condition for the formation of a band-gap. But this is
obviously untrue: looking through a window reveals that glassy silica (SiO5), although
possessing no order at all, still displays a band-gap spanning the entire photon energy
range of visible light, without absorption. Several experimental studies have probed
the properties of the band-gap in such “amorphous” electronic systems using spectro-
scopic techniques [1], time-of-flight measurements [2], and others. With the major
progress in photonic crystals [3, 4], it is natural to explore amorphous photonic
structures with band-gaps, where the actual wavefunction can be observed directly,
and hence, many physical issues can be studied at an unprecedented level. Indeed,
amorphous photonic media have been studied theoretically in several pioneering
papers (e.g., [5, 6]), and experiments in the microwave and optical regimes have
demonstrated the existence of a band-gap [5]. However, amorphous band-gap media
have never been studied experimentally in the optical regime. Particularly in optics,
the full beauty of disorder can be revealed: optics offers the possibility to precisely
engineer the potential strength and period, as well as the unique opportunity to employ
nonlinearity under controlled conditions, which could unravel unknown features that
are much harder to access experimentally in other systems. In this chapter, we review
recent developments [7] on amorphous photonic lattices: a two-dimensional array of
randomly organized evanescently coupled waveguides. We demonstrate that the
bands in this medium, comprising inherently localized Anderson states, are separated
by gaps, despite the total lack of Bragg scattering. We find that amorphous photonic
lattices support the existence of strongly localized defect states, whose widths is much
narrower than the Anderson localization length. We show the existence of a region of
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negative effective mass (anomalous diffraction), which could be demonstrated
experimentally by superimposing a weak spatial modulation on the random potential
(refractive index), and observing transport. In this setting, a wavepacket with a
negative effective mass moves opposite to the direction it would have moved had it
had positive effective mass. Finally, we numerically demonstrate the existence of
discrete solitons in amorphous photonic lattices and discuss their similarities and
differences from discrete solitons in a periodic setting.

3.1 The Linear Regime

The presence of a band-gap in the electronic energy spectrum of amorphous solids,
materials whose atoms possess no long-range order, was first put on firm theoretical
grounds by Weaire and Thorpe, who proved rigorously that a gap existed in a model
of amorphous silicon (a-Si) [8]. This called for a reevaluation of the intuition held
by solid-state physicists (which is still common today) that Bragg scattering in
periodic potentials is responsible for the opening of band-gaps at the boundary of
the Brillouin zone. A wide range of experimental and theoretical techniques have
been used to study these fascinating materials, including X-ray photoemission
spectroscopy [9], time-of-flight methods [2], and others on the experimental side,
as well as numerical [10] and analytic [11] methods on the theoretical side.
Recently, interest has been increasing in the topic of band-gaps in amorphous
photonic materials. For example, two-dimensional dielectric composites with a
random geometry have been shown to possess a photonic band-gap [5], a large
photonic band-gap has been found numerically in a tetrahedral network connected
by dielectric cylinders [11], and new classes of two-dimensional noncrystalline
photonic band-gap materials have been introduced [6]. In these, the band-gap is a
range of frequencies for which propagation of electromagnetic waves is forbidden.
A prime example of a technological application of an amorphous photonic system is
the random laser [12], for which strong suppression of electromagnetic transport
is the essential requirement.

In this chapter, review our recent theoretical and experimental results [7] on
amorphous photonic lattices: a new type of optical structure, which provide a test-
bed for the properties of general amorphous systems, and at the same time offer
applications unique to photonics. The lattices are composed of individual
waveguides with no long-range order whatsoever; that is, the structure is neither
periodic nor quasi-periodic. Rather, such amorphous structures lack Bragg diffrac-
tion peaks altogether (to distinguish from quasicrystals which do exhibit pronounced
Bragg diffraction [13, 14]). To this end, we distribute the waveguides similar to the
atoms in a liquid, which is explained in more detail in Methods Section. Such
structures result in random refractive index distributions n(x,y), with one particular
realization shown in Fig. 3.1a. In Fig. 3.1b, we show the microscope image of a
sample corresponding to the design of Fig. 3.1a, fabricated using the “direct laser
writing” method [15]. This system indeed exhibits no periodicity, as proven by the
square of the Fourier transform of the structure function (so-called spatial power
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Fig. 3.1 Amorphous photonic lattice and its band structure (theory and experiments). (a) Refrac-
tive index profile, n(x,y), of an amorphous waveguide structure, as a function the coordinates (x,y),
in the plane transverse to the propagation direction of the beam (z). The index varies from 1.45 to
1.45 + 9 x 10~*. (b) Optical microscope image of the input facet of the amorphous waveguide
structure, as described mathematically in (3.2). (¢) Fourier transform of n(x,y), the refractive index
profile given in (a). There are clearly no Bragg peaks here, indicating the complete lack of
periodicity of this system. (d) Band structure (eigenvalue spectrum) of the optical analog to the
Schrodinger operator, given in (3.1) for the amorphous waveguide structure shown in (a), at
incident wavelength 4 = 633 nm. A large band-gap is clearly present, despite the lack of any
periodicity. (e) The width of the gap as a function of the optical wavelength. (f) The width of the
gap as a function of the variance of the waveguide positions. Clearly, the gap survives a
considerable amount of disorder before it closes
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spectrum) displayed in Fig. 3.1c, indicating the lack of any Bragg peaks. The
positions of the waveguides as shown in Fig. 3.1a, b are generated using a Metropolis
Monte Carlo simulation of a liquid with periodic boundary conditions, where the
component atoms interact via an isotropic pair potential of the Yukawa form,
v(r) = voe==70)/1/r where 1y = 14 um and [ = 2.8 um. The area of the box is
184.2 umz. For our system, we take kgT/vy = 1.0 and the particle number density
isp=2/ \/§r5, where T is the temperature, / is the screening length, and kg is
Boltzmann’s constant. At this temperature and density, the N-particle liquid is well
above its freezing point.

The evolution of the optical wave ¥(x,y,z) in our system is described by the
Schrodinger-type equation

L OF(x,y,2) w2,
orw.y,z) _ | M A '
i 0z 21’10 vl + n(x,y) "I’(Ly,z), (3 1)

where & = A/2m is the reduced wavelength, ny is the ambient refractive index of the
bulk (fused silica, in our experiments), and An(x,y) is the refractive index distribu-
tion caused by the random distribution of identical waveguides. There is an evident
similarity between (3.1) and the quantum mechanical Schrodinger equation, when
one replaces % with the reduced Planck constant 7, the ambient refractive index ng
with the particle mass m, the optical potential An(x,y) by the quantum potential
—V(x,y), and the spatial coordinate z with time ¢. Hence, in optics the quantum-
mechanical evolution in time of a two-dimensional wavefunction is mapped onto
the propagation of an optical wavepacket along the spatial z-direction [16, 17]. The
z-independence of our setting is analogous to the time-independent Hamiltonian in
quantum mechanics. This feature has been used in many recent experiments,
demonstrating concepts from solid-state physics using paraxial optical settings
[16, 17]. One important example is Anderson localization [18], which has recently
been realized in photonic lattices [19, 20] using the transverse localization scheme
[21]. To obtain the band structure of our system, one needs to solve the optical
analog of the time-independent Schrodinger equation, which is derived by a
separation of variables and substituting ¥'(x,y,z) = gp(x,y)e’ﬁz with the propagation
constant § = —E/% into (3.1). The eigenvalue E represents the energy in the
corresponding quantum mechanical setting. However, the resulting eigenvalue
equation cannot be solved by applying Bloch’s theorem, since in our setting An
(x,y) is not a periodic function. Rather, as known from the theory of Anderson
localization in two-dimensions, the eigenmodes are fully localized functions
(““Anderson states”) [22]. Consequently, one must solve using the full refractive
index profile in order to find the eigenvalue spectrum. We do that for the structure
shown in Fig. 3.1a, b using the plane-wave expansion method [4], and generate
Fig. 3.1d, depicting the value of the propagation constant  for an optical wave-
length of 633 nm. In these calculations, we employ periodic boundary conditions on
a system composed of 200 waveguides. All waveguides have identical structure
(slightly elliptic, due to fabrication constraints), and the refractive index step
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defining them is An = 9 x 10~*. As Fig. 3.1d clearly shows, there is a sizeable gap
in the spatial spectrum, despite a total lack of periodicity (and lack of Bragg
scattering). This defies a common argument for the presence of band-gaps [23],
which states that gaps open at the boundary of the Brillouin zone because the
degeneracy of states there is broken by the periodicity of the potential. This
argument fails here because it is based on a perturbation theory where the potential
is assumed to be weak, which is inapplicable for this system. This theory implies
that the presence of Bragg peaks is a necessary condition for the formation of
band-gaps, which clearly contradicts the physical findings in amorphous systems
[5, 6, 8-11].

One of the nice features offered by optical systems described by (3.1) is the ability
to test the features of the system through tuning parameters independently, with the
most notable one being the optical wavelength A, which can be tuned continuously.
Figure 3.1e shows the dependence of the bad-gap width on the optical wavelength,
revealing that the gap is exponentially decreasing with 4 (when all other parameters
are fixed), until it closes at 820 nm. This can be understood directly from (3.1): an
increasing wavelength leads to a larger “kinetic energy” [transverse Laplacian in
(3.1)], and thus a relative weakening of the potential that induces the gap in the first
place. As shown below, this wavelength dependence of the gap provides an efficient
tool for exploring the properties of amorphous photonic media.

Figure 3.1 calls for some intuition for the existence of a band-gap in amorphous
photonic systems, as well as for its wavelength dependence, in spite of the complete
absence of Bragg diffraction peaks. The Bragg peaks are absent due to the random
distribution of waveguides, whereas the existence of a gap has been traditionally
associated with the presence of order [23]. In the amorphous photonic medium
displayed in Fig. 3.1, all waveguides have the same structure, but their spacings are
randomly distributed, having a particular variance around a mean value. As such, it is
instructive to plot the size of the gap as a function of the (normalized) variance of the
interwaveguide spacing (which is directly related to the variance in the coupling
coefficient between adjacent waveguides, and equivalent to the variance in the
hopping parameter in the tight-binding model). We plot that in Fig. 3.1f, for
/A = 633 nm. As this figure clearly shows, there is a sizeable band-gap as long as the
normalized variance does not exceed 18%. When the system has a crystalline structure
and thus the interwaveguide spacing has zero variance, it exhibits Bragg peaks and
has a large band-gap. In a disordered pattern, Bragg resonance is absent. However,
the gap survives even for a rather large variance, until it closes around ~18%,
where the bands merge. This explanation holds not only when the bands arise from
guided modes of the individual waveguide (bound states of a single potential well),
but also when the bands arise from unbound states, as is the case for the experi-
mental structure of Fig. 3.1 (where each waveguide has only one guided mode).

In order to visualize the gap experimentally, we introduce a defect waveguide in
the structure: a single waveguide with a refractive index maximum that is lower by
Ang = 4.5 x 107 than the maxima of all other waveguides. [In tight-binding
calculations, this would correspond to a negative defect]. Band structure
calculations show that this procedure results in a single defect state that resides
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Fig. 3.2 Propagation of a light beam launched into a defect state, at an optical wavelength where the
defectresides in the gap (left column) and at a wavelength where there is no gap (right column) (theory
and experiments). (a) Band structure (eigenvalue spectrum) of the waveguide array given in Fig. 3.1a,
including the presence of a defect waveguide with index of refraction 1.45 to 1.45 + 4.5 x 107, at
incident wavelength 4 = 633 nm. The eigenvalue in the center of the gap corresponds to a strongly
localized mode centered on the defect waveguide. (b) Is analogous to (a), but at incident wavelength
A = 875 nm, where the background potential is too weak to yield a band-gap or a localized defect
mode. (c and d) Are simulated profiles of the propagation of an initial wavepacket with a Gaussian
shape with standard deviation 5 pm, centered on the defect waveguide for incident wavelength of
A = 633 nmand 2 = 875 nm, respectively. At L = 633 nm, the large majority of the wave’s power
stays localized within the defect mode, whereas for 2 = 875 nm, when the defect mode is no longer
present, it diffracts away. (e and f) Are experimental results; they display the beam output from the
waveguide array. In (e), 633 nm light was incident directly on the defect guide; the light excited the
defect mode and thus stayed localized within that particular waveguide. In (f), 875 nm light was
incident on the defect guide; it did not remain localized due to the absence of a gap. Rather, the light
emerging from the amorphous structure is now distributed over hundreds of waveguides
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directly in the band-gap (Fig. 3.2a), for an optical wavelength of A = 633 nm.
By contrast, at 4 = 875 nm, the gap is extremely small; hence, the defect state
occurs where the bands merge (Fig. 3.2b). Consequently, when we launch a
A = 633 nm beam directly into the defect waveguide, the beam stays strongly
confined in both transverse directions throughout propagation, because it excites
a highly localized defect state, as highlighted by the simulation shown in Fig. 3.2¢
(carried out with a standard split-step beam-propagation code). That is, the coupling
to all nearby waveguides is greatly suppressed, in spite of their close proximity,
because light is guided in a defect state residing in a sizeable band-gap. By contrast,
at A = 875 nm there is no gap; hence, a 875-nm beam launched into the same
waveguide does not stay confined but couples (tunnels) to other waveguides,
resulting in major expansion of the beam, as the beam is propagating along z
(Fig. 3.2d). Figure 3.2e and f shows our experimental results, depicting the intensity
structure of the beam at the output facet of the waveguide arrays, for A = 633 nm
and A = 875 nm, respectively. Clearly, the tight confinement of the light in the
defect state in Fig. 3.2e and its lack thereof in Fig. 3.2f echoes the simulation results
of Fig. 3.2c and d, respectively. Thus, by demonstrating the presence of the defect
state, we have experimentally proved the existence of a band-gap in this amorphous
optical system.

The amorphous photonic lattice employed here is fabricated by the laser direct-
writing method in a fused silica sample [15]. We used a Ti—Sapphire laser system
operating at a wavelength of 800 nm, a repetition rate of 100 kHz and a pulse length
of 170 fs. A permanent change in the molecular structure of the material can be
realized by tightly focusing ultrashort laser pulses into a transparent bulk material,
causing nonlinear absorption. In fused silica, this induces a permanent increase in
the refractive index with approximately the dimensions of the focus of the micro-
scope objective focusing the writing beam. By moving the sample transversely with
respect to the beam, a continuous modification of the refractive index is obtained,
which creates a waveguide in the volume of the bulk silica. For the fabrication of
our 2 cm long samples, the average power was adjusted to 32 mW and the writing
velocity was set to 90 mm/min. The waveguides form a transverse refractive index
profile of the form

N 3
n(x,y) =no+) Ane~ (/e 0-90%5) = o 4 An(x, ), 3.2)
=1

which is invariant in the propagation direction z. The ambient refractive index of
the fused silica is ngp = 1.45, N = 200 is the number of waveguides, An; and (x;,y;)
are the refractive index increase and position of the jth waveguide, respectively.
The parameters ¢, = 1.5 um and o, = 1.5 um describe the transverse length and
width of the waveguides, and An(x,y), the deviation from the ambient refractive
index, represents the potential in (3.1).

In many amorphous systems, it is interesting to observe how the band-gap closes
and what happens to defect states residing in the gap as the bands merge.
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We explored this issue in our system in detail, simply by launching a beam into the
defect waveguide, and varying the wavelength. At 4 = 750 nm, the gap is still
present (Fig. 3.3a); hence, the defect state is decoupled from the band, and light
remains confined to the “defect waveguide” where it was launched (Fig. 3.3b).
At 4 = 800 nm, the gap is almost closed (Fig. 3.3¢); hence, the defect state becomes
part of the Urbach tail [24] of the second band, i.e., states that leak into the gap due
to the presence of disorder. Increasing the wavelength even further, the defect state
itself becomes more and more delocalized. Eventually, at 2 = 850 nm, the gap is
closed and the defect state is fully absorbed into the band (Fig. 3.3e, f).

There is a sharp distinction between localization within a defect state and
the phenomenon of Anderson localization. Here, we demonstrate that a defect-
state in an amorphous system is in fact much more localized than Anderson states.
Our system is two-dimensional (x and y, while z plays the role of time, in the
quantum problem), where it is known that all states are inherently localized
with any amount of disorder [22], i.e., the bands are composed of localized
Anderson states. It is therefore interesting to use our amorphous photonic system
to compare transverse (Anderson) localization of light [19-21] with the transverse
localization of light in a defect state residing within the gap. Figure 3.4 shows the
results, exemplifying the fact that a defect state (residing in the gap) is much
more localized than the Anderson localization length. To this end, the experiments
on Anderson localization were carried out through ensemble averaging as explained
in [19]. This is because the corresponding quantum model is an expectation value
problem; hence, one has to average over multiple realizations of the disorder to
obtain a meaningful results (the quantum system is self-averaging given long
enough evolution time, but the propagation distance in our photonic system is not
large enough to experience self-averaging, and hence the ensemble average).
Figure 3.4a, b depicts the ensemble-averaged experimental intensity profile of
light trapped in a defect mode (Fig. 3.4a), averaged over ten samples, and light
that is Anderson localized (Fig. 3.4b), averaged over 30 samples. Comparing
Figs. 3.3b and 3.4a reveals that the defect state is clearly invariant under averaging.
By contrast, examining a wave-packet composed of Anderson modes (which are
part of the band) in a single realization (Fig. 3.4c) shows no confinement whatso-
ever. This emphasizes the importance of averaging over multiple realizations:
when the evolution is short-ranged, as in the transverse localization scheme, only
ensemble-averaging reveals Anderson localization, as nicely shown by Fig. 3.4b.
Figure 3.4d shows the simulated results of the experiment of Fig. 3.4b, with
an ensemble-average taken over 100 realizations of disorder. Comparing the
Anderson localization length and the width of a defect mode that resides in
the gap, shows clearly that the width of the defect states is much smaller that the
localization length. This is evident from the experiment (Fig. 3.4e; cross-sections
taken through Fig. 3.4a, b), and from the simulation (Fig. 3.4f). The intuition behind
this is that the defect state exhibits an isolated eigenvalue; hence, there are no
other states of similar energy with which it may hybridize and thus delocalize.
On the other hand, although the other eigenstates are themselves localized, they
may be thought of as being composed of a set of eigenstates in different
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Fig. 3.3 Transformation of a defect state residing in the gap into states residing in the band, as the
optical wavelength is increased (theory and experiments). (a) Band structure for the disordered
waveguide array with a defect waveguide of index of refraction 1.45 + 4.5 X 107, and at
wavelength 4 = 750 nm. In (b), we show experimental results of the output pattern (the absolute
square of the wavefunction) where the input beam is launched into the defect waveguide. (¢) And
(d) are analogous to (a) and (b) respectively, but for 2 = 800 nm; (e and f) are for A = 850 nm.
At this wavelength, the defect state may be considered to be part of the Urbach tail; as seen here,
the state delocalizes as the band-gap gets smaller and it is drawn into the band
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Fig. 3.4 Defect state in an amorphous photonic lattice compared to the localization length arising
from Anderson states, highlighting that the defect state is much more localized, in spite of the fact that
all states in an amorphous structure are localized (theory and experiments). (a) Experimental
ensemble-average output beam for light launched into the defect waveguide (average taken over ten
samples with different random realizations of the distribution of waveguides, all with the same
statistics). Clearly, ensemble-averaging does not affect the shape of the defect mode. (b) Experimental
ensemble-average output beam for 633 nm light input on 30 different nondefect waveguides in
different local environments of the disordered pattern. The ensemble-average wavepacket exhibits
Anderson localization. (c) A single experimental realization of the output beam when light is incident
on a nondefect waveguide. By itself this beam does not display the exponential decay of Anderson
localization; indeed Anderson localization only emerges upon ensemble-averaging. (d) Numerical
simulation of Anderson localization at 633 nm over 100 realizations of the disordered pattern. (e) Semi-
log plot of the light intensity vs. transverse direction for the ensemble-averaged experiments of
(a and b). The linear behavior of the broader curve indicates exponential decay of the wavefunction,
the hallmark of Anderson localization. The defect state is clearly not Anderson localized. (f) Numerical
results for curves corresponding to those in (e) derived from beam-propagation simulations
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environments hybridizing with one another, hence “spreading out”. Eigenvalue
differences in different local environments account for the ultimate localization
of these wavefunctions, but these differences are extremely small compared to the
relative isolation of the defect state.

The amorphous waveguide array is an excellent test-bed for studying general
properties of waves in amorphous systems. We show here, by use of simulations,
that the concept of effective mass at the band edges carries over faithfully from the
periodic to the amorphous case. In photonic lattices, it is convenient to quantify the
effective mass through the variation of the transverse velocity as a function of
transverse momentum, which can be readily varied as one launches the input optical
beam into the photonic lattice [25]. There, the effective mass is defined as the
inverse of the second derivative of the propagation constant with respect
to the transverse momentum [16, 17]. However, in our amorphous system, the
dispersion relation is discontinuous; hence, one cannot simply vary the transverse
momentum of the launch beam and observe the variation of transverse velocity,
as is done in photonic lattices—relying on having Bloch modes that are inherently
extended states. Here, the Anderson states are all localized, and they have vanishing
transverse velocity (the potential is z-invariant); hence, one cannot use this method.
Instead, we quantify the concept of effective mass directly through Newton’s
second law: we introduce a known variation of the potential (which must vary
much slower than the spacing between waveguides), launch a wavepacket,
and observe its trajectory. An example is shown in Fig. 3.5, where we add a
weak, slowly varying, sinusoidal function to the refractive index variation, namely
An(x,y) — An(x,y) + asin(2nx/L), where L is the width of the sample, and the
coordinate (0,0) is taken to be at the center [26]. Then, we construct a beam
(wavepacket) from a superposition of eigenstates at close vicinity (such that effect
mass can be defined, as in a periodic system), and launch it near the
center coordinate at the input facet, gradually cutting off the wavepacket such
that it lies in the center of the amorphous photonic lattice. With oo > 0O the force
acts in the +x direction. Hence, for a positive effective mass, the beam would be
deflected towards +x, whereas for a negative effective mass it would propagate in
the —x direction, opposite to the force direction. The amount of deflection is
proportional to effective mass (in the lowest order approximation). We demonstrate
this concept through beam-propagation simulations, and display the results in
Fig. 3.5. In Fig. 3.5a and g the beam is composed of modes taken from the center
of the first band and the low-momentum edge of the second band, respectively,
whereas in Fig. 3.5d the beam is composed of modes from the edge of the first band.
Consequently, the beam, which was always launched at the center coordinate of
the input facet (Fig. 3.5b, e, h), is propagating toward +x in the former cases
(Fig. 3.5c, i), and in the —x direction in the latter case (Fig. 3.5f). Hence, the
effective mass is positive at the center of the first band, then negative at the edge of
the first band, positive again at the low-momentum edge of the second band, etc.
That is, the concept of effective mass, which has been extensively studied in
crystalline (perfectly periodic) systems, carries over to amorphous systems.
Undoubtedly, this result suggests interesting experiments, especially in the
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Fig. 3.5 The concept of effective mass and its impact on propagation of wavepackets in amor-
phous photonic lattices (simulations). Simulated propagation of wavepackets composed of five
states near the edges of bands. A slowly varying force is applied by adding a sinusoidal function to
the refractive index n(x,y). The wavepacket is accelerated by the force, and its movement is
proportional to the effective mass. The rows display results with wavepackets taken from the
center of the first band (top), edge of the first band (center), and edge of the second band (bottom).
The columns show, from left to right, the transverse displacement (x) as a function of propagation
distance (z), the input wavepacket launched at the center of the lattice, and the output wavepacket
emerging after 2 cm of propagation, displaced in correspondence with the effective mass. Clearly,
the output wavepacket is displaced to the right (fop), to the left (center) and to the right (bottom),
proving that the effective mass at the band edges is positive, negative and positive, respectively,
which is consistent with periodic lattices

nonlinear regime—where an attractive (self-focusing) nonlinearity would act
exactly the opposite in the regimes of positive and negative effective mass [27].
Unfortunately, utilizing these ideas to demonstrate the concept of effective mass
through transport in our amorphous photonic structure requires propagation
distances that are beyond our current experimental reach. However, it is likely
that such experiments would become practical within a short time.
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3.2 The Nonlinear Regime: Solitons

In the previous section, we discussed amorphous photonic lattices and presented
experimental results in the linear regime. In the present section, we will introduce
nonlinearity and study its effects in these systems. To do so, we will use the discrete
nonlinear Schrodinger equation (rather than the continuous one used in the previous
section) because it is (arguably) simpler, certainly less computationally costly, and
captures the physics related to the first band almost as accurately as the continuous
model. The discrete nonlinear Schrodinger equation for the Kerr nonlinearity (in
reduced units) is written as:

Wil =0, (3.3)

0+ i+
7

where z is the longitudinal propagation coordinate; y is the nonlinear Kerr coeffi-
cient; ¥, is the value of the wavefunction in waveguide i; #(r) = e=3(/a=1) jg a
function of distance that gives the coupling between the waveguides; a is the
average spacing between the waveguides; and the summation is taken over all
waveguides. In the case where the waveguides are arranged periodically, it is well
established that there are stationary solutions to this nonlinear equation—solitons—
that were predicted by Christodoulides and Joseph [28], and were later observed
experimentally by Eisenberg et al. [16] in one dimension and Fleischer et al. [27] in
two dimensions. In the amorphous (or simply disordered) case, the existence of
soliton solutions has been predicted [29, 30], but they have not been observed at the
time of writing. Interestingly, these disordered discrete solitons (as we will show
below) can be either very similar to standard periodic lattice solitons or quite
different from them. Besides being of fundamental interest, the existence of these
solitons are very important to the currently ongoing discussion of Anderson locali-
zation in nonlinear systems [19, 20, 31, 32], and whether in fact nonlinearity can act
to reinforce localization or to destroy it.

In the present work, we focus solely on the focusing Kerr nonlinearity (y > 0)
since calculations show that the results for the defocusing (y > 0) case are very
similar. The amorphous pattern used is depicted in Fig. 3.1a, and is derived (as
described in the previous section) from a snapshot of the simulation of a two-
dimensional liquid. Since we are solving for stationary solutions to (3.3), we seek
solutions that are z-harmonic (i — e’ where f is called the propagation con-
stant), meaning that (3.3) reduces to

— B+ Yt + P = 0. (3.4)
J

Solutions to this equation are solved for using Newton’s method [33]. These
soliton solutions can be parameterized by f, and their so-called “existence curve”
[34] is a plot of their power (square of their L>-norm, given by P = > |1//,-|2) vs. 3,
the propagation constant.
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Fig. 3.6 Existence curves for soliton solutions of (3.4). This is one member of a family of
solutions that monotonically decreases at lower values of f3, then reaches a minimum P (meaning
it has a power threshold), and then increases monotonically as f tends towards infinity. The
effective width of the soliton wavefunction gets smaller with increasing f8. This solution is strongly
reminiscent of the behavior of discrete periodic lattice solitons

There are a number of classes of solutions, as described in ref. [30]. One class of
solutions to (3.4) is shown in Fig. 3.6. At the edge of the band containing the linear
eigenstates (below 5 = 5.5) the power of the soliton decreases as a function of f3,
then reaches a minimum and increases indefinitely. In this case, the soliton
wavefunction steadily decreases in width as a function of increasing f. This is
strongly reminiscent of the behavior of discrete solitons in periodic lattices [33].
This type of behavior is seen for a large number of solutions, not all of them
approaching the band edge as the one shown in Fig. 3.6 does.

Another class of solitons is shown in Fig. 3.7. In this class, solitons bifurcate
directly from the linear modes of the system at zero power, meaning that they are
without a power threshold. This behavior is fundamentally different from that in
periodic lattice solitons, as well as the class of solutions described in the previous
paragraph. As shown in the figure, solitons bifurcate from linear modes at the band
edge (the first mode) as well as those within the band. The latter are observed to
undergo abrupt changes in slope for values of § within, or close to the band, most
likely due to resonant interaction with other modes of the system (avoided crossings).
Note that the solitons bifurcating from within the band are not necessarily more
localized than the linear modes from which they originate. This is shown clearly in
Fig. 3.7. The reason for this is that as the solitons resonantly interact with others, they
take on some of the character of the other (perhaps more delocalized) modes.
However, for sufficiently large f3, these solutions will get smaller and smaller in extent
until they become strongly localized. In this case, the focusing nonlinearity has
induced a potential that is so deep that light cannot escape it.

The physical intuition for the zero power threshold observed for these solutions
may be stated as follows. Disordered systems are characterized by the phenomenon
of Anderson localization [18]. In both one and two dimensions, this means that all
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Fig. 3.7 Existence curves for soliton solutions of (3.4). These existence curves are for solitons of
a different class than that depicted in Fig. 3.6: they bifurcate directly from linear modes at zero
power. The dashed curve bifurcates from the first linear mode (highest propagation constant, f5).
Within increasing propagation constant, the effective width of the mode decreases. The solid curve
is the existence curve of a soliton that bifurcates from a linear mode in the band. The effective
width does not increase decrease monotonically with /3, but it does converge to a single waveguide
as i — o0o. The shaded region denotes the band containing the propagation constants of the linear
modes. Note that periodic boundary conditions are used, therefore the left and right sides of the
arrays may be considered in contact with one another, as well as the top and bottom

of the linear eigenstates of the system become exponentially localized, in contrast to
periodic systems wherein all eigenstates are extended. These localized eigenmodes
may be thought of as defect states of the system, much like a band-gap mode
associated with a vacancy in the lattice or an interstitial site (or any other local
defect). Since the mode is already present, a high “amount” of nonlinearity is not
necessary to localize the mode, and therefore the nonlinear mode may be formed for
arbitrarily small power. This reasoning accounts for the lack of power threshold in
this class of solutions.

3.3 Conclusions

In this chapter, we reviewed experimental and theoretical results [7] on amorphous
photonic structures. We touched here only a few of the intriguing issues related to
this topic. However, it is already evident that amorphous photonic systems provide
an elegant tool to explore the universal features of strong disorder in general. In this
work, we have shown that the concept of a band-gap has much wider importance
and implications than traditionally conceived—in the context of crystalline
structures. We have found disorder-induced defect states, which are fundamentally
different from the Anderson states comprising the bands in amorphous media.
We have shown that the concept of effective mass still holds in amorphous
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systems, and suggested a scheme to measure it experimentally. Finally, we
discussed the issue of solitons in amorphous photonic lattices and described how
they exhibit qualitatively different behavior than periodic lattice solitons. There are
a number of important open questions that remain about solitons in disordered/
amorphous systems. First of all, a full linear stability analysis will be important in
determining which of these solitons are stable and where, as well as whether the
Vakhitov—Kolokolov stability criterion applies [35]. Secondly, a full enumeration
of all soliton solutions is beyond the scope of this chapter, but is necessary for a
completely comprehensive quantitative description. Furthermore, we have only
handled the focusing Kerr nonlinearity here, and therefore other types of nonline-
arity (i.e., higher order, saturable or nonlocal [36]) may exhibit different behavior.
Preliminary calculations on the defocusing Kerr nonlinearity show very similar
results to the focusing case, which is similar to periodic systems. In sum, the
combination of disorder and nonlinearity provides a formidable challenge to optics
and photonics research, but a very important and fascinating one.

These ideas and experiments are only the beginning of a new direction [7]. Many
intriguing questions arise, and new ideas come up. Would nonlinear phenomena
such as spontaneous pattern formation and modulation instability exist in amor-
phous systems? Can this system support shock waves? How do solitons move
through the random potential, like waves or like particles? The experimental setting
described in this chapter will help to explore these and many other questions, and to
eventually understand the true universal spirit of general amorphous systems.
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Chapter 4
Nonlinear Control of Multicolor Beams
in Coupled Optical Waveguides

Dragomir N. Neshev, Andrey A. Sukhorukov, and Yuri S. Kivshar

4.1 Introduction

Photonic structures with a periodic modulation of the optical refractive index play an
important role in the studies of the fundamental aspects of wave dynamics [1, 2].
In particular, photonic crystals, layered media, or closely spaced optical waveguides
enable manipulation of the key phenomena governing optical beam propagation:
spatial refraction and diffraction. Arrays of coupled optical waveguides are
particularly attractive as an experimental testbed due to their easier fabrication and
characterization, as well as because of the opportunities they offer for enhanced
nonlinear effects as a result of the large propagation distances in such structures.
The physics of beam propagation in optical waveguide arrays is governed by
the coupling of light between neighboring waveguides and the subsequent interfer-
ence of the coupled light. Since both the coupling and the interference processes are
sensitive to the light wavelength, the output intensity profiles can be drastically
different for each spectral component of the input beam. This is a particular concern
in many practical cases, including ultra-broad bandwidth optical communications,
manipulation of ultra-short pulses or supercontinuum radiation, where the band-
width of the optical signals can span over a wide frequency range.

Initially, most of the research on light propagation in waveguide arrays has been
focused on monochromatic light propagations; however, recently strong research
attention has attracted the investigation of the rich wave dynamics of multiple color
beams, including studies on the propagation of broad-bandwidth and multicolor
optical beams in periodic photonic structures.
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The most significant focus in such studies is the nonlinear propagation of multicolor
beams because the nonlinearity provides interaction and coupling between the different
spectral components. These interactions lead to a range of new phenomena, such as
phase locking of the spectral components, as well as to novel types of phase transitions
of the nonlinear output beam profiles. This behavior is analogous to the synchronization
of oscillations of nonlinearly coupled oscillators in nonlinear dynamics [3], but can
have rather unique features in case of coupled optical waveguides. The unique features
come from the fact that the nonlinear interaction of spectral components also leads to
the well-known effect of localization of the beam inside the array.

Synchronization of oscillations and wave localization are two most fundamental
nonlinear phenomena that have been driving the field of nonlinear dynamics for
decades. Synchronization and phase locking [4] are known to exist in systems of
different physical origin due to external driving and coupling between elements.
Examples include the synchronous flashing of fireflies and the pulsation of laser
arrays [5, 6]. On the other hand, the localization of waves in nonlinear lattices, such
as waveguide arrays, is also determined by coupling between the individual lattice
sites [7]. As inter-site coupling and nonlinearity govern the two phenomena, a
natural question is if they can be linked together and what kind of novel fundamen-
tal effects can arise due to their interplay.

In this chapter, we describe the two representations of such interplay associated
with different types of nonlinear interactions: (1) coherent interactions—when there is
energy exchange between the spectral components and (2) incoherent interactions—
when the different spectral components interact through cross-phase modulation, but
there is no energy exchange between them. We note that in both cases, the localization
of the multicolor beam is closely linked to phase locking of the spectral components at
the neighboring waveguides; however, in the case of parametric coherent interactions
this phase locking can be also accompanied by a phase transition from in-phase to out-
of-phase state for one of the spectral components.

The chapter is organized as follows. In Sect. 4.2, we provide the general
description of multicolor light propagation in waveguide arrays, and describe the
distinction of the two cases of nonlinear interactions between the spectral
components. In Sect. 4.3, we present the studies on incoherent interaction between
the spectral components, while in Sect. 4.4, we show how the parametric driving
between the spectral components influences the beam dynamics and leads to phase
transition of the phase profile for one of the components. Finally in Sect. 4.5 we
provide some further discussions and outlook to the open problems in the field of
polychromatic light propagation.

4.2 Multicolor Light Propagation

In this section, we discuss the general features of polychromatic beam diffraction in
planar photonic structures with a modulation of the refractive index along the
transverse spatial dimension (Fig. 4.1a), including optically induced lattices and
periodic waveguide arrays [8—19]. The physical mechanism of beam diffraction in
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Fig. 4.1 Light propagation in waveguide arrays. (a) Schematic of the waveguide array structure
excited by a narrow input beam. (b) Characteristic linear propagation of the beam inside the array,
demonstrating discrete diffraction formed due to coupling between the waveguides. (¢) Depen-
dence of the coupling constant C on the wavelength

such structures is based on the coupling between the modes of neighboring
waveguides [12, 20, 21]. When the beam is coupled into a single waveguide at
the input, it experiences discrete diffraction where most of the light is directed into
the wings of the beam (Fig. 4.1b). This is in sharp contrast to the diffraction of
Gaussian beams in bulk materials where the maximum intensity is in the beam
center for any propagation distance.

The light in the array couples from one waveguide to another due to the spatial
overlaps of the waveguide modes. This coupling is characterized by the coupling
constant C. Since the mode profile and confinement depend on the wavelength, the
coupling constant (Fig. 4.1c) and correspondingly the discrete diffraction pattern
exhibit strong spectral dispersion. The mode overlap at neighboring waveguides is
usually much stronger for the red-shifted spectral components [22], which therefore
diffract faster than their blue counterparts. This leads to spatial redistribution of the
colors of the polychromatic beam, which increases along the propagation direction,
see Fig. 4.2a. As a result, at the output the red components dominate in the beam
wings, while the blue components are dominant in the central region, see Fig. 4.2b.

A more accurate mathematical description of the polychromatic beam propaga-
tion for optical sources with a high degree of spatial coherence, such as
supercontinuum light generated in photonic-crystal fibers, can be based on a set
of propagation equations for the polychromatic beam envelope A(x,z) = Z%ZIA,H
(x,z), where A,,(x, z) are the amplitudes of the different frequency components at
vacuum wavelengths 2,,. Since the refractive index contrast in photonic-lattice
structures is usually of the order of 107 to 10_2, we can consider the beam
propagation under the paraxial approximation [23-25]. For a one-dimensional
(1D) array of coupled optical waveguides, such as the one depicted in Fig. 4.1a,
the beam evolution is described by a system of coupled nonlinear Schodinger
equations

DA y) DAy  2m
2 T T T An(x Aw)Ay + Ga(A)A,, =0 4.1
> Artng(J) OX? + Ao 755 2n)An + Gm(A) ’ “1)




114 D.N. Neshev et al.

a b c
50 £ 800 = h
N C. 8 8 '\To[a//n[ u
' < 700 O o[ ™,
o iS) c \ fecy;
§ 25 % 600 g ak 8’699.\ Ongal)_
= R ] ~ G
g g L\ o Ny
A T A S 2. 3. Jap , <=7
; 500 ) \‘Indg ’ p
D‘: 0 T S I N |
-10 0 10 -40 -20 0 20 40 500 600 700 800
Waveguide number Waveguide number Wavelength, nm

Fig. 4.2 Propagation of multicolor (polychromatic) light beams. (a) Numerical simulation of
polychromatic beam diffraction: real-color image of beam evolution inside the array. (b) Spectrally
resolved output intensity profile. (¢) Dependence of photonic bandgap structure on wavelength.
The simulations correspond to the parameters of LiNbO; waveguide arrays [23, 24]

where A = { Ay, A,, ...}, x and z are the transverse and longitudinal coordinates,
respectively, and ny(2,,) is the background refractive index. The function G,,(A)
describes the nonlinear interaction between the frequency components. An(x; A,,)
describes the effective refractive index modulation, which depends on the vertical
mode confinement in the planar guiding structure. Since the vertical mode profile
changes with wavelength, the dispersion of the effective index modulation is
strongly affected by the geometry of the photonic structure.

For an array of optical waveguides in LiNbOj (as in our experiments shown below),
the modulation can be accurately described as An(x; 1) = Anyac(2) cos’(nx/d) ,
where d is the lattice period, and the wavelength dependence of the effective modula-
tion depth An,, (1) can be calculated numerically or determined by matching the
experimentally measured waveguide coupling [23, 24]. Even if the material and
geometrical dispersion effects are weak, the beam propagation would still strongly
depend on its frequency spectrum [25] since the values of A,,, appear explicitly in (4.1).

The linear propagation [G(A) = 0] of optical beams through a periodic lattice
can be fully characterized by decomposing the input profile in a set of spatially
extended eigenmodes, called Bloch waves [26, 27]. The Bloch-wave profiles can be
found as solutions of the linearized equation (4.1) in the form A,,(x,z) = ¥;(x; An)
exp(if;(Ky; Am)z + iKpx/d], where ,(x; L) has the periodicity of the underlying
lattice, B;(Ky; A,,) are the propagation constants, K, are the normalized Bloch
wavenumbers, and j is the band number. At each wavelength, the dependencies of
the longitudinal propagation constant (along z) on the transverse Bloch wavenumber
(along x) are periodic, f/(Ky; A,) = Bi(Ky £ 2m; A,,), and are fully characterized by
their values in the first Brillouin zone, — n© < K}, < m. These dependencies have a
universal character [1, 26, 27], where the spectrum consists of nonoverlapping bands
separated by photonic bandgaps. Consistent with our physical interpretation of mode
coupling, the beam propagation will exhibit strong frequency dispersion. Indeed, the
position and the width of bands and gaps are strongly sensitive to the wavelength of the
light. This is shown in Fig. 4.2¢ which plots the propagation constants of the top and
the bottom of each Bloch band as a function of the wavelength. Clearly, with
increasing of the wavelength, the bands are getting wider and the gaps narrower.
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Importantly, the rate of beam diffraction is determined by the curvature of
the dependencies Bi(Ky; A,,). For an input beam coupled to a single waveguide,
the first band is primarily excited, and the beam diffraction rate is determined by
max,|0” B, /OK?|. The rate of diffraction increases at longer wavelengths where the
band is wider and the gap narrower. Again, this conclusion is in full agreement with
the physical interpretation presented above using the concept of coupling between
waveguide modes.

The nonlinearity can dramatically affect the modes of the system leading to a
number of fundamental effects, such as beam localization, soliton formation, and
phase locking of the spectral components. In general, one can distinguish between
two cases of nonlinear interactions between the spectral components: incoherent
and coherent. For each case, the function G(A) takes a different form that depends
on the specific physical realization of the nonlinearity. The physical effects, how-
ever, can be intuitively explained: In the case of coherent interactions, there is
mixing and exchange of energy between the spectral components, e.g., four-wave
mixing processes with third order nonlinearity [28] or three-wave mixing
interactions due to quadratic nonlinearity [15, 29]. In the case of incoherent
interactions, there is no energy exchange between the frequency components and
they interact through the effect of cross-phase modulation. Such interactions usu-
ally occur in materials with slow nonlinear response, such as thermal [30] or
photorefractive [23, 31, 24].

Here we discuss how coherent and incoherent interactions affect the spatial
beam profile during its propagation inside the array. In particular, we are interested
in the changes of the phase structure of the different spectral components due to the
interplay between linear coupling and nonlinear beam localization. We note that
such interplay can lead to dramatic phase transformations in the beam structure
when the nonlinear localization is inside the Bragg reflection gap of the periodic
structure (Fig. 4.2¢). Such phase transitions are attributed to the finite width of this
gap and do not occur in lattices with positive (self-focusing) nonlinearity when the
localization occurs inside the total internal reflection gap [32] (see also Fig. 4.2¢).
It is therefore an intriguing problem to understand how the phase relations of the
spectral components in the polychromatic beam are established in the localization
process, given the strong dependence of the bandgap spectrum on wavelength.

Below, we discuss two scenarios of phase transitions that occur for polychro-
matic beams with incoherent and coherent type of nonlinear interactions.

4.3 Incoherent Interaction of Spectral Components

In this section, we present the effects of phase locking of the different frequency
components due to the interplay of incoherent nonlinear interactions of the spectral
components and linear coupling between the waveguides.
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4.3.1 Theoretical Approach

At high laser powers, the spectral components of the polychromatic beam interact
incoherently with each other (no new frequency components are generated) due to
the intensity-dependent change of the optical refractive index [33] (cross-phase
modulation). In this case, one can write the nonlinear term in (4.1) as

=

Gn(A) =2 O'(;“j)|Aj‘27 4.2)

J=1

<

where 7 is the nonlinear coefficient for the mth spectral component, M is the total
number of components, and (L) is a weight coefficient describing the sensitivity of
the nonlinearity to wavelength. Importantly, this model of nonlinearity also describes
the photorefractive interaction of polychromatic beams in Lithium Niobate (LiNbO3)
waveguide arrays in the regime of weak saturation, as in our experiments presented
below.

Physically, the nonlinearity in LiNbOj is photorefractive and arises due to
charge excitations by light absorption and corresponding separation of these
charges due to diffusion [34]. A characteristic property of this photovoltaic
photorefractivity is that an increase of the beam intensity leads to a decrease of
the material refractive index [35, 36]. Whereas the nonlocal effects of the
photorefractive nonlinearity may also affect the nonlinear beam propagation [37],
this effect is weak under our experimental conditions.

The spectral response of the nonlinearity depends on the crystal doping and
stoichiometry, and it may vary from crystal to crystal. In general, however, light
sensitivity appears in a wide spectral range with a maximum for the blue
spectral components [38], but the sensitivity extends well in the near infrared
region [39]. In our analysis, we approximate the photosensitivity dependence by a
Gaussian function ¢(4) = exp[—log(2)(4 — ib)z/ii] with & > %, = 400 nm and
A, = 150 nm. Note that by making a transformation;\m = Apy/0(2n), the sensitivity
function can be rescaled to unity, ¢(/4,) = 1, and therefore the presented results are
also directly applicable for other shapes of the sign-definite photosensitivity functions.

In our numerical calculations, we choose a large number of frequency components
(M = 100) in order to accurately model the polychromatic beam power spectrum
generated in experiment. The simulations reveal that the input beam experiences self-
trapping above a critical power level. Figure 4.3a shows the combined output of the
array as a function of total power, and Fig. 4.3b shows the power in the central
waveguide for different spectral components. It is clear from Fig. 4.3 that there is a
sharp transition between the regimes of diffraction and soliton formation, associated
with collective localization of spectral components from blue to red and infrared.
The lower degree of localization of red components is due to the stronger diffraction
and effectively weaker nonlinearly induced potential which is inversely proportional
to the wavelength. The sharp self-trapping occurs because the length of waveguide
array is several times larger than the diffraction lengths for all spectral components.
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Fig. 4.3 Numerically calculated dependence of the output beam characteristics on the input
power: (a) transformation of the output beam profile and (b) fraction of output power in the
central waveguide for different spectral components

Accordingly, all components either diffract or experience collective self-trapping.
This effect differs drastically from the beam reshaping under the conditions when
diffraction of short-wavelength components is very weak [23] as in that case the power
increase provides a gradual onset of localization at the output without a collective
power threshold.

If we analyze in details the propagation of the polychromatic beam, we find that
just above the power threshold for the soliton formation, one can still observe a
strong diffraction at the initial propagation stage, especially for the red-shifted
spectral components (Fig. 4.4a). With propagation, however, a well-localized
polychromatic beam is formed. For higher input powers (Fig. 4.4e), the effect of
diffraction is further reduced and the soliton preserves its input “white” color.

The physical mechanism of beam localization can be understood from the plots
of the density of states vs. the propagation constants. Therefore, we perform a
Fourier transform in z and then integrate the power spectrum over the central region
of six waveguides to exclude the contribution of diffracted waves. The obtained
spectra are presented as density plots (white color correspond to larger amplitudes)
in Fig. 4.4b, f. We observe that at the threshold power for beam self-trapping, the
propagation constants are shifted inside the Bragg-reflection gap through
the nonlinear self-action (Fig. 4.4b). Note that the spectrum for blue components
is shifted deeper inside the gap, whereas the red components have spectra very close
to the gap edge. This explains the weaker localization of red components as shown
in Fig. 4.4c. As the power increases, the spectrum shifts further inside the gap for
all components (Fig. 4.4f), and accordingly the localization becomes stronger
(Fig. 4.4g). Because in both cases the beam shape remains constant with propaga-
tion inside the array and the propagation constant of all spectral components is
inside the Bragg-reflection gap we can conclude that the polychromatic beam forms
a polychromatic gap soliton.



118 D.N. Neshev et al.

25l.

Wavegulde number

Distance z
Distance z

7 %10

o =

o o

[ &) &)

o g |

S Y

- I

[13] 1]

oo oo

m . m S ang,

8‘ : g" 0 s ==

& 500 600 700 800 & 500 600 700 800
Wavelength, nm Wavelength, nm

_:O.S £ 800

“ -

0.7 <700

~ 20

00.6 2600

e g

=5 £ 500
-10 -10 0 10
Wavegulde number Wavegulde number

0.

&0

0.

@

vo.

o

=0 AN /
-10 0 10 -10 0 10
Waveguide number Waveguide number

Fig. 4.4 Numerically calculated beam evolution for two different powers: (a—d) Py ~ 6 and (e-h)
Py ~ 12. Shown are (a, d) the beam propagation dynamics inside the arrays; (b, f) density of states
for the localized state, superimposed on the linear bandgap diagram; (c, g) spectrally resolved
output intensity profiles, and (d, h) output phase profiles of the individual spectral components

Most importantly, the sharp power transition from diffraction to localization is
linked to a phase transition in the beam spatial profile. Above the critical power
level for localization, all spectral components lock their phase structure, such that
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they all have a staggered phase profile. To clarify this phase transition, we plot the
phase profiles of all spectral components in Fig. 4.4d, h. These plots clearly show
the simultaneous appearance of the staggered phase structure for all individual
spectral components, when the beam experiences nonlinear self-trapping. Hence,
such localization represents a uniquely different physical picture compared to the
theoretically studied spatially incoherent white-light solitons in lattices supported
by a focusing nonlinearity [32] where the defined phase relation is not directly
associated with the soliton formation.

4.3.2 Experimental Observation of Multicolor Beam
Self-trapping and SpectralPhase Locking

The key for experimental realization of the predicted phenomena of self-trapping
and phase locking is the combination of periodic structure with a broadband
nonlinear response and high-spatial coherence, high optical intensity polychromatic
light with a broad frequency spectrum. The natural choice of such a light source is
provided by the effect of supercontinuum generation [40]. In the process of
supercontinuum generation, spectrally narrow laser pulses are converted into the
broad supercontinuum spectrum through several processes [41, 42], including self-
phase modulation, soliton formation, soliton break-up due to higher order disper-
sion, and Raman shifting of the solitons, leading to non-solitonic radiation in the
short-wavelength range. Supercontinuum radiation has proven to be an excellent
tool for characterization of bandgap materials [43], it possesses high spatial coher-
ence [40], as well as high brightness and intensity required for nonlinear
experiments [44].

In our experiments, we used a supercontinuum light beam generated by femto-
second laser pulses (140 fs at 800 nm from a Ti:Sapphire oscillator) coupled into
1.5 m of highly nonlinear photonic crystal fiber (Crystal Fiber NL-2.0-740 with
engineered zero dispersion at 740 nm) [23]. The spectrum of the generated
supercontinuum spans over a wide frequency range (typically more than an optical
octave). After re-collimation and attenuation, the supercontinuum beam is
refocused by a microscope objective (x20) to a single channel of the waveguide
array (see Figs. 4.1a and 4.5a).

The optical waveguides are fabricated by in-diffusion of a thin (IOOA) layer of
titanium in a X-cut, 50 mm long monocrystal lithium niobate wafer [18]. The
waveguides are single mode for all spectral components of the supercontinuum.
Arrays with different periodicity and index contrast were tested in our experiments.

After coupling to the array, its output is imaged by a microscope objective (x5)
onto a color CCD camera, where a dispersive 60° (glass SF-11) prism could
be inserted between the imaging objective and the camera (Fig. 4.5a) in order to
resolve spectrally all components of the supercontinuum. Additionally, a reference
supercontinuum beam is used for interferometric measurement of the phase structure
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Fig. 4.5 (a) Experimental setup: The array is excited with a white light focused into a single
waveguide. At the output the light is dispersed vertically by a prism and imaged onto a CCD
camera. Spectrally resolved measurements of the beam profiles at the output face of waveguide
array (d = 10 pm). (b) Polychromatic discrete diffraction at low laser power (0.01 mW). (c¢) Non-
linear localization and formation of polychromatic gap soliton at a higher (6 mW) power [24]

of the output beam [24]. To compensate for the pulse delay and pulse spreading inside
the LiNbO;3; waveguides, this reference beam is sent through a variable delay line,
implemented in a dispersion compensated interferometer, including an additional
5 cm long bulk LiNbOj crystal (to equalize the material dispersion). In this way,
interferometric measurements are possible for ultra-wide spectral range.

To obtain a detailed insight into the spectral distribution at the array output, we
resolve in the vertical direction the individual spectral components by the prism and
acquire a single shot two-dimensional image providing spatial resolution in horizontal
and spectral resolution in the vertical (orthogonal) direction. This technique enables
precise determination of the spectral distribution at the array output. The image in
Fig. 4.5b depicts the spectrally resolved discrete diffraction of the supercontinuum
beam in an array of optical waveguides with a period d = 10 pm when the input beam
is focused to a single waveguide. The diffraction of the beam is weakest for the blue
spectral components, which experience weak coupling, while the diffraction is stron-
gest for the infrared components. We note that the spectral scale in Fig. 4.5b is not
linear due to the nonlinear dispersion of the prism. The spectrally resolved discrete
diffraction provides a visual illustration of the separation of colors in the waveguide
array. This separation occurs as the light is concentrated predominantly in the beam
wings rather than in the center, a typical property of the discrete diffraction. The
obtained diffraction pattern also allows for exact characterization of the linear disper-
sion parameters of the periodic structure and, in particular, waveguide coupling. In our
sample we measured that the discrete diffraction length varies from 1 cm, for the blue
(480 nm), to less than 0.2 cm, for the red (800 nm) spectral components. These values
correspond to a total propagation distance of 5.5 and 27.5 discrete diffraction lengths
for the blue and red spectral components, respectively. The propagation of few dif-
fraction lengths for all spectral components is advantageous for nonlinear experiments,
e.g., formation of solitons [45, 46], and facilitates strong phase transformations in the
nonlinear regime.

In agreement with the theoretical predictions, we observe strong spatial
localization of the supercontinuum light as its input power is increased
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Fig. 4.6 Experimental observation of polychromatic gap soliton: (a—c) Real-color CCD camera
images of the output beam intensity profile: (a) Diffraction profile at low power. (b, ¢) Nonlinear
localization and formation of polychromatic gap soliton with increasing supercontinuum power.
(d) Spectrally resolved measurements of the profile (c). (e) Interferograms of the output beam
profile (c) with a tilted reference supercontinuum beam, imaged at three different wavelengths as
indicated by labels

(Figs. 4.5¢c and 4.6a—c). In a narrow range of input powers (150-250 pW), the
beam profile narrows from over 50 waveguides (Fig. 4.6a) down to three central
waveguides (Fig. 4.6b). This transition, indicating the formation of a polychromatic
soliton, happens over a range of 100 W only and appears extremely sharp com-
paring with the fact that further localization down to a single waveguide of the array
requires additional increase of 1.5 mW (15 times larger) (Fig. 4.6¢). The important
characteristic of this localization is the fact that it combines all wavelength
components (from blue to red) of the supercontinuum spectrum (Fig. 4.6d). Local-
ization around 700-750 nm wavelengths is not visible due to the lower spectral
intensity of these components in the input supercontinuum spectrum, whereas
localization over the six central waveguides is observed at 800 nm wavelength.

Taking advantage of the high spatial coherence of the supercontinuum light,
we also perform interferometric measurement of the localized output profile. In our
white-light interferometer, the reference beam is slightly tilted in the vertical plane in
comparison to the probe beam, thus resulting in interference fringes. The interference
patterns have different periods depending on wavelength, and therefore had to be
imaged separately using a tunable linear filter (LVF, Ocean Optics) mounted in front
of the CCD camera. The interference patterns recorded at high power (1.9 mW) are
presented in Fig. 4.6e. They show that the interference fringes between neighboring
waveguides are shifted by half a period hence, the probe beam phase changes by ©
between the neighboring waveguides. Most remarkably, such staggered phase struc-
ture appears simultaneously in an ultra-broad spectral range from blue (470 nm) tored
(above 630 nm), providing direct evidence that all spectral components are simulta-
neously phase locked to a staggered phase structure in the process of beam localization
and formation of a polychromatic gap soliton.
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4.4 Coherent Parametric Interactions of Spectral Components

Next we describe the effects of phase transformation of polychromatic beams in the
case of coherent nonlinear interactions between the spectral components inside
the waveguide array. In this case, the different spectral components can exchange
energy between each other leading to complex frequency outputs. Therefore, for
simplicity we restrict ourselves to a polychromatic beam consisting of only two
spectral components which are coupled through the parametric process of second
harmonic generation (SHG). We reveal that a new type of abrupt transition in the
phase structure of the beam can occur due to the interplay of waveguide coupling
and parametric driving.

Specifically, we consider the laser beam propagation through an array of closely
spaced optical waveguides in media with quadratic nonlinearity that facilitates
frequency conversion and energy exchange between a fundamental wave (FW)
and a second-harmonic (SH) beam. In such structures, the SH dynamics is governed
by two mechanisms of energy exchange (Fig. 4.7a): (1) an effective driving force
by the FW [47] at each lattice site, and (2) direct coupling of SH waves between the
lattice sites due to the overlap of the neighboring waveguide modes. We show that
each of these mechanisms could lead to synchronization of SH dynamics and
formation of different phase patterns. Mechanism (1) is dominant when the FW
(and the corresponding effective driving force) extends over many lattice sites,
whereas mechanism (2) dominates when the FW exhibits nonlinear self-trapping to
a single lattice site. We specially design our experimental conditions to observe this
interplay, overcoming for the first time the constraint of all previous experiments
where the second mechanism was suppressed due to the inhibition of linear
coupling for the SH modes [7].

The key observation of our studies is that as the optical power is increased and
the beam becomes more localized, the output beam profile at the second harmonic
exhibits a sharp transformation from in-phase (unstaggered) to out-of-phase (stag-
gered) pattern between the neighboring waveguides [29]. This type of behavior is in
sharp contrast to the incoherent case (Sect. 4.3), where all frequency components
were either de-phased or locked to the same phase structure.

4.4.1 Theoretical Approach

We develop the theoretical description of this coherent nonlinear interaction for the
particular case of an array of coupled waveguides in periodically poled lithium
niobate (PPLN) (Fig. 4.7) that features strong quadratic nonlinear response.
To demonstrate the existence of a phase transition, we explore the nonlinear
interaction between the FW, and SHy, modes, whose intensity profiles are shown
in Fig. 4.7a. Both of these modes show linear coupling of comparable strength. This
is in contrast to all previous experiments on discrete quadratic solitons [7] that
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Fig. 4.7 Scheme and dispersion diagrams of the nonlinear coherent system. (a) Strong coupling
between the SH modes. (b) No coupling between the SH modes where the only single component
is only responsible for the beam dynamics inside the array. (fop) Sketch of the PPLN sample with
the corresponding refractive index profile. (middle) Intensity profiles of the FW and SH modes.
(bottom) Dispersion relations of the FW (left) and SH (right) modes

utilized the nonlinear interaction between FW, and SHqo (Fig. 4.7b) where the
SHyo modes experience negligible linear coupling due to their strong localization.

The spatial beam evolution in quadratic nonlinear waveguide arrays can be
modeled by a system of normalized discrete equations for the mode amplitudes at
each waveguide in the array [7],

dA

ld_Zn + CFW(AnJrl +An71)+A;,Bn =0,
.dB, 2
0 + csi(Bn1 + By—1) — APB, + A, = 0. 4.3)

The last terms in these equations account for the effective nonlinearity function
[G(A), as defined in (4.1)], z is the propagation distance normalized to z;, and A, B,,
are the normalized FW and SH mode amplitudes at the nth waveguide, respectively.
Note that the total power in the array P = Pgy + Pgy is conserved, where Pry =
Z,,|A,1|2 and Pgy = Z,,|Bn|2. The real coefficients crw sy = z;m/ (ZL;WSH) deter-
mine the coupling strength between the neighboring waveguides, where Lew, sy°
are the physical coupling lengths. The phase mismatch between the FW and SH
waves (accounting for the periodic poling) is characterized by the value of Af that
depends strongly on the FW frequency.

In the linear regime, the beam dynamics is governed by the dispersion relations
for the Bloch modes of the lattice [48]: A,(z) = Ao(z = 0) exp(ikpwn + ifipyz) for
the FW, and B,(z) = Bo(z = 0) exp(iksyn + ifigyz) , for the SH. Here fpw = 2
cewcos(kpw) and  fgy = 2csy cos(ksy) — Af . The characteristic dispersion
relations are schematically shown in Fig. 4.7(graphs). For propagation constants
outside the linear bands, the waves exhibit evanescent decay due to the
photonic bandgap [49], A, = Kf‘"l and B, = K;‘"l, where i;; = [1 + (1 — nf)l/z]/nj
with 1, = 2cpw/Prw and 1, = 2csy /(P + 4B). We note that for propagation
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constants below the bands (frw < — 2cpw and fgy< — 2csw — 4f), x; < 0, ie.,
the evanescent waves are staggered, with 7 phase oscillations between neighboring
waveguides.

Next, we demonstrate that nonlinear parametric coupling of FW and SH waves
can dramatically modify the phase pattern of the propagating waves. We note that
most efficient SH generation occurs when the waves are spatially localized, due to
enhanced local field intensities. Stronger localization occurs at higher optical
powers due to self-focusing as there is a nonlinear phase shift for both components
arising due to the energy exchange between the FW and the SH [50].

In order to reveal the generic relation between the nonlinear localization and phase
locking, we first analyze the stationary localized states or fixed points of the system.
Their power dependence provides insight into the bifurcation properties of the
system, revealing possible phase transitions. These solutions have the form A,(z)
= A,(z = 0)exp(ifz) and B,(z) = B,(z = 0)exp(2ifiz) [51, 7]. Here f is a real
parameter, which simultaneously defines the FW (fgw = f§) and SH (fsg = 2f)
propagation constants due to nonlinear synchronization. By substituting these
expressions into (4.3), we obtain a set of nonlinear equations for the real amplitudes
of FW and SH.

Whereas the solutions of these equations can be found only numerically, we
identify the phase transition effect analytically by analyzing the tails of localized
solitons, where |An| — 0 and |B,,| — 0 for |n| > 0. The solution for the FW tail is
the same as for linear evanescent waves, A, =~ Kll_ "l. For the SH wave, the
nonlinear term representing the effective FW driving force cannot be neglected
even in the small-amplitude limit. We perform asymptotic analysis and
derive asymptotic expressions for the SH beam tails: B, =~ k, "l if |K2| < K12
and B, ~ (K12) =l if |K2|> K12. In the first case, the SH tail profile corresponds
to a linear evanescent wave solution, whereas in the second case the SH tail is
fully determined by the FW. A nontrivial phase transformation occurs when the
propagation constant is below the bands, <3, = min(—2cpw, —csy — Af/2), since
in this case ¥; < 0. While the FW tails are always staggered, the SH tail exhibits a
phase transition at

Bow = —Chwes £ \/Cétchsﬁ + 2ty — APciycsy- 4.4)

The SH tails are staggered for f < fi,_ and f > fs, and unstaggered for f,_<f<
B, Importantly, for weak or zero coupling of the SH mode (csy =~ 0), B diverges
and no phase transition is possible. Therefore in all previous experiments with
quadratic waveguide arrays, no such phase transition could be observed. Under our
experimental conditions, the coupling lengths are practically constant in the
frequency range around Af = 0, with values Ly ~ Lgw® ~ 20 mm. By choosing
the scaling coefficient z; = 2L{;,,/n, the corresponding normalized coupling
constants are cgpw, sy =~ 1.

The SH structure in the center and in the tails of the solutions can be different.
Figure 4.8 presents the numerically calculated parameter regions for odd-type
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solutions (centered on a lattice site [7, 51]), where the boundaries for phase
transitions in the tails and for the entire soliton are indicated. Figure 4.9a, b
shows the intensity and phase profiles of the odd-type solutions vs. f§ for 45 = 1.
For low absolute values of 5, the FW component of the solution is staggered and the
SH component is unstaggered. If the value of f§ is decreased below f,_, the FW
component becomes very narrow. Hence, the SH is driven only at a few waveguides
and becomes independent of the FW component. Here the SH component
undergoes a phase transition to the staggered state. Such transition has never
been shown before, although soliton solutions with staggered/staggered and stag-
gered/unstaggered FW/SH components have been reported [49, 51, 52]. Unambig-
uous signatures of the phase transition are observed in the spatial Fourier spectrum
(Fig. 4.9c). While the FW spectrum is always confined around the edge of the
Brillouin zone (kgw ~ + m), the SH Fourier spectrum switches between the center
and the edge of the Brillouin zone, corresponding to a transition from unstaggered
to staggered profile.

It is relevant to note that such phase transition is uniquely different to the phase
locking presented in Sect. 4.3. While in both cases, the phases of the spectral
components are well defined, due to the coupling of the spectral components here
we have sharp switching of the phase state of only one component. In contrast, no
phase switching was present in the case of incoherent coupling of the spectral
components. Thus, the phase transition predicted here is a unique feature appearing
due to the parametric process and the energy exchange between spectral components.

Figure 4.9d shows the soliton power corresponding to Fig. 4.9a—. The monotonic
dependence of the power on the propagation constant is generic for all soliton families
exhibiting the phase transition since they all bifurcate from the FW band edge. As such,
all odd-type solitons are stable [51]. For values of the propagation constant below the
phase transition threshold, the SH power of the solution is much smaller than the FW
power (Fig. 4.9¢), and indeed in this regime the SH is fully driven by the FW.

We also analyze even-type solutions of (4.3), where the FW profile is centered
between neighboring lattice sites [7, 51]. We find that similar to the odd solutions, a
phase transition occurs for the SH tails, see Fig. 4.10. However, the SH amplitudes
at the two central sites are forced to have the same phase due to the even symmetry
of the solution. Accordingly, the energy is always concentrated in the center of the
Brillouin zone (Fig. 4.10c). This demonstrates the possibility to partially suppress
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Fig. 4.9 (a—c) Soliton families for Af = 1 (indicated by the dashed line in Fig. 4.8): (a) absolute
values of the mode amplitudes, (b) phases where blue corresponds to 0 and red to w, (¢) absolute
values of the spatial Fourier spectra, (d) total power, and (e) power ratio Psy/Pgw. The dotted lines
in (b-f) mark B . where the SH tail profiles exhibit phase transition
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Fig. 4.10 Soliton families with even symmetry: (a) mode amplitudes, (b) phases, and (¢) Fourier
spectra. Notations and parameters correspond to Fig. 4.9b—d
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the phase transition. Although the even solitons exhibit symmetry-breaking insta-
bility and tend to transform to odd solitons [51], we confirm below that such
instability develops relatively slowly, so that the even symmetry states can be
observed in the experiment.

4.4.2 Experimental Results

Next, we study the predicted phase transition experimentally. In our experiments,
only the FW beam is launched into the LiNbO; waveguide array, leading to
dynamical reshaping involving generation of SH and focusing. Nevertheless, the
key predictions based on the analysis of stationary solutions are fully confirmed.
We excite the array with 5.2 ps pulses generated by a tunable optical parametric
amplifier at FW wavelengths around 1500 nm. The beam is shaped into an elliptic
input beam with a horizontal/vertical FWHM of 63 um/2.8 um. To obtain the
staggered FW profile the beam is tilted at a Bragg angle. The input power,
controlled with a half-wave plate and a polarizer, is monitored before coupling to
the sample. The array consists of 101 parallel waveguides with a pitch of 15 pm,
made by titanium indiffusion in a 71 mm long PPLN crystal [53]. The sample is
contained in an oven and heated to 220 ° C to prevent photorefractive effects. After
the sample, the powers of the transmitted FW and the generated SH components are
measured and their intensity distributions are recorded by an InGaAs and CCD
camera, respectively. To obtain the spatial Fourier spectrum of the SH, we employ a
lens and an additional CCD camera.
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experiment simulation

A
A 4

central waveguide

0 bus 2n 0 T 2n
transverse wavenumber kgy

Fig. 4.12 (a) Excitation scheme of the array showing the transverse translation of the sample. (b)
Experimental and (c¢) numerical dependencies of the SH spatial spectrum on the center of the
excitation for 4B = — 9 and an input peak power of 10kW. The dashed line marks ksy = ©

The upper row of Fig. 4.11 shows results of the power-dependent measurement
of the SH Fourier spectrum for different phase mismatches, as determined by the
input wavelength. For low input powers, the SH Fourier spectrum is concentrated
around ks = 0, 2m, corresponding to unstaggered SH. For FW input powers above
a mismatch-dependent threshold, staggered SH components are generated at ksy
= m. This is an unambiguous signature of the localization-controlled phase transi-
tion, as found for the stationary states.

To validate the interpretation of the experimental results and to explain possible
differences to the stationary case, we carry out simulations of the time-dependent
coupled mode equations including group velocity mismatch and pulse disper-
sion [15]. The simulation results are plotted in the bottom row of Fig. 4.11 and agree
well with the measured data. Measured and simulated FW peak power thresholds
for phase transition of the SH show a decrease from 7.5 kW for Af = —25 to
5.5 kW for Af = 1. In contrast to the predictions for stationary solutions, the SH
transformation is not complete since the wings of the pulse remain in their initial
state. Thus, we always measure nonzero SH powers at ks = 0, 2m.

Another remarkable feature found in the stationary solutions is the absence of the
complete phase transition for even symmetry (see Fig. 4.10). Figure 4.12 shows a set
of experimental results for different transverse shifts of the sample with respect to
the broad input beam (see Fig. 4.12a). The measured SH spectral power at ksy = 7
(Fig. 4.12b) depends strongly on the position of the input beam. When the excitation
is centered on a waveguide (odd), staggered SH is generated according to Fig. 4.11.
For even excitation, centered between two waveguides, the SH power at ksy = 7
vanishes. This shows that the symmetry dependence of the phase transition found in
the stationary solution is a robust generic property. The comparison with the time-
dependent simulations (Fig. 4.12¢) again shows good agreement. The deviations
between measurements and simulations (compare Fig. 4.12b, c) are due to



4 Nonlinear Control of Multicolor Beams in Coupled Optical Waveguides 129

inhomogeneities of sample and input coupling, as well as to the general restrictions
of the coupled mode equations.

4.5 Discussions and Outlook

In this chapter, we have presented our recent theoretical and experimental results on
all-optically controlled spatial reshaping and localization of multi-color light beams in
nonlinear waveguide arrays. In the case of incoherent interactions supported by
defocusing photorefractive nonlinearity, all spectral components develop a staggered
phase structure at larger optical powers leading to the formation of polychromatic
lattice solitons. In contrast, coherent interactions between the fundamental and the SH
spectral components in quadratic nonlinear waveguide arrays lead to a new type of
phase transition for the SH phase structure which abruptly switched between staggered
and unstaggered states, whereas the FW preserves the staggered phase. The observed
localization induced phase transition is a generic phenomenon present in other
nonlinear discrete systems and we anticipate that it can also occur in systems such
as Bose-Einstein condensates on optical lattices and gene networks in living cells [54].

Here, we also outline selected recent developments on polychromatic light
control in photonic lattices and waveguide arrays. This is a vibrant and rapidly
developing research area, where many new approaches for beam shaping in the
linear and nonlinear regimes have been suggested and experimentally demonstrated
in recent years. We have mentioned in Sect. 4.2 that the waveguide mode coupling
tends to be stronger at longer wavelengths. It was suggested in [55] that the intrinsic
wavelength dependence of diffraction strength in waveguide arrays can be compen-
sated in the linear regime by geometrically induced dispersion resulting from
periodic waveguide bending. This approach can underpin broadband diffraction
management, where diffraction can be made wavelength independent in a fre-
quency range of up to 50% of the central frequency. It becomes possible to realize
propagation regimes which are not possible for closely spaced straight waveguides,
in particular diffraction of light can be suppressed in the regime of polychromatic
dynamic localization [55, 56], an effect that generalizes the concept of dynamic
localization originally introduced for electrons in crystals subjected to alternating
electric field [57]. Polychromatic dynamic localization can also be realized in
zigzag lattices [58] with long-range coupling between waveguide modes [59].
Another fundamental effect known as Bloch oscillations, predicted as oscillatory
motion of electrons in crystals subjected to constant electric field [60], can also be
generalized for polychromatic light beams in waveguide arrays containing sections
with different constant curvatures [61].

Furthermore, curved waveguide arrays provide a flexible platform for
manipulating polychromatic light patterns based on Talbot effect [62], and poly-
chromatic beam splitting. These effects have been demonstrated in a three-
waveguide structure realizing light propagation regime analogous to stimulated
Raman adiabatic passage [63]. Finally, in two-dimensional arrays, waveguide
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bending allows one to control effective geometry and dimensionality of the
photonic lattice [64, 56].

In the nonlinear regime, when spectral components interact incoherently, the
longitudinal modulation of the waveguide coupling can facilitate all-optical
switching of polychromatic light between two coupled waveguides [65], whereas
in curved waveguide arrays nonlinearity leads to symmetry breaking and suppres-
sion of dynamic localization at low powers and formation of polychromatic
diffraction-managed solitons only at higher powers [66]. Curved waveguide arrays
support new types of defect-free surface waves [67, 68] which nonlinear switching
was demonstrated with monochromatic light [69]; however, switching of polychro-
matic light has only been considered at the edges of straight waveguide arrays [70].
We can anticipate that polychromatic light switching at edges of curved
waveguides may offer enhanced flexibility for tailoring all-optical spatial-spectral
beam reshaping.

Results on phase transitions mediated by coherent nonlinear interactions
presented in Sect. 4.4 call for further investigations of this fundamental phenome-
non in quadratic waveguide arrays of different configurations. In particular, we
expect that phase transition properties may depend nontrivially on the geometry of
two-dimensional photonic lattices and on the type of excited localized solutions
such as spatial discrete vortex solitons [71, 7] or spatial-spectral vortex
solitons [72]. We also note that the effect of coherent nonlinear interactions on
beam dynamics in longitudinally modulated waveguide arrays has not yet been
considered, and presents an interesting open area for future research.
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Chapter 5
Spatial Beam Dynamics Mediated
by Hybrid Nonlinearity

Peng Zhang, Cibo Lou, Yi Hu, Sheng Liu, Jianlin Zhao,
Jingjun Xu, and Zhigang Chen

5.1 Introduction

Nonlinear wave dynamics has fascinated scientists for over two centuries because
of its fundamental and technological applications in a variety of research areas
including mathematics, physics, aerodynamics, oceanography, chemistry, and
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biology, just to mention a few [1-5]. In optics, nonlinear optical media have served
as an ideal platform for exploring various fundamental issues in nonlinear systems
[6, 7]. The nonlinear material response results in complex changes in the spatio-
temporal structure of light, leading to a host of intriguing nonlinear phenomena
such as light-induced scattering [8], wave mixing [9], phase conjugation [10], and
self-trapping [11-14]. Interestingly, nearly all materials including crystals [15],
liquids [16], and even gases [17] can exhibit perceptible nonlinearity at sufficiently
high light intensities.

In the past two decades, photorefractive media became one of the most popular
materials for exploring nonlinear beam dynamics in both continuous and discrete
regimes. In contradistinction with other standard nonlinear optical materials such
as Kerr [16], saturable [17], and nonlocal [18, 19] materials, photorefractive
crystals exhibit a relatively large nonlinear response at as low as microwatt
power levels with large flexibility [20-25]; nearly all parameters influencing
nonlinear beam propagation can be easily controlled. For example, the amplitude
of the nonlinearity can be adjusted by varying the bias field, and the degree of
saturation can be adjusted by a homogeneous illumination with an additional
background beam. More interestingly, by a simple reversal of the polarity of the
bias field, either self-focusing or self-defocusing nonlinearity can be achieved in
the same crystal [24, 25]. Finally, the nonlinear refractive index changes can be
either erased by uniform light illumination or fixed by electrical means [26].
Thus far, a variety of nonlinear self-trapped states, better known as optical spatial
solitons, including families of fundamental bright solitons, dark and vortex solitons,
vector solitons, and incoherent solitons, along with their particle-like coherent
and incoherent interactions have been extensively explored in photorefractive
media [27-39].

In recent years, there has been a growing research interest in nonlinear beam
dynamics in photonic lattices (also known as closely spaced waveguide arrays)
[40, 41]. Even in the linear regime, light propagation in photonic lattices can exhibit
many intriguing phenomena mediated from the photonic band-gap structures,
including anomalous diffraction and refraction, and Bloch and Rabi oscillations
[42—46] which has no counterpart in continuum systems. In the presence of self-
focusing or self-defocusing nonlinearity, normal or anomalous diffraction of light
can be suppressed, leading to discrete or gap solitons [47, 48]. In photorefractive
media, photonic lattice structures in 1-, 2-, or 3-dimensions with various symmetries
can be created solely by illuminating them with periodic optical fields created either
from multi-beam interference [49] or optical amplitude masks [50]. Such optically
induced photonic lattices exhibit large reconfigurability and provide ideal settings
for studying the basic properties of wave propagations in discrete systems. Up to
now, many discrete phenomena have been demonstrated in these optically induced
photonic lattices [51-59], including linear tunable negative refraction, band-gap
guidance by defects, Anderson localization in disordered lattices, and nonlinear
spectrum reshaping, Bessel ring lattices and rotary solitons, discrete vortex solitons,
embedded solitons, and random phase lattice solitons, following the observation of
fundamental discrete and gap solitons [60—62].
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Generally speaking, the nonlinearities can be divided into two categories: self-
focusing and self-defocusing nonlinearity. Since self-focusing and self-defocusing
nonlinearity can be established by changing the polarity of the bias field in the same
photorefractive crystal [24, 25], a natural question arises: is it possible for a
nonlinear material to support both nonlinearities simultaneously under an identical
experimental setting? If so, how would that affect the nonlinear beam dynamics?
To answer these questions, in this chapter, we introduce a new type of nonlinearity,
the hybrid nonlinearity. This is a type that occurs when self-focusing and self-
defocusing nonlinearity co-exist in the same material under identical conditions.
We show how such hybrid nonlinearity can be created in a biased photorefractive
crystal by formulizing the problem based on Kukhtarev’s band transport model.
Then we present a brief overview of our recent work on the unusual nonlinear beam
dynamics supported by the enhanced anisotropy and nonlocality of the hybrid
nonlinearity in both continuous and discrete regimes. Specifically, elliptical optical
solitons, stabilization of nonlinear optical vortices, and orientation-induced transi-
tion between bright and dark solitons in homogeneous media will be discussed.
Then, in discrete media (photonic lattices), we show our recent work on band-gap
engineering and light manipulation based on ionic-type photonic lattices, optical
“saddle” solitons unique to the hybrid nonlinearity, along with earlier work on
elliptical discrete solitons and orientation-induced transitions of soliton-trains
between different band-gaps.

5.2 Theoretical Formulations

The mechanism dominating the nonlinear process in a biased photorefractive crystal
is the so-called screening effect, where the light excited charge carriers drift to
screen the external electric field, leading to a nonuniform field distribution and
refractive index modulation via the electro-optic effect inside the crystal [24, 25].
In a conventional bias setting, the direction of the external field is always set to be
parallel (for self-focusing) [27] or antiparallel (for self-defocusing) [29] to the
crystalline c-axis of the photorefractive crystal. However, to obtain hybrid nonline-
arity, the direction of the biased electric field is set to be along an arbitrary direction.
Such a bias scheme is termed a nonconventionally biased (NCB) condition [63—-65].

To establish a theoretical model governing the hybrid nonlinearity under NCB
conditions, we consider a coordinate system in biased photorefractive crystals as
illustrated in Fig. 5.1, where an elliptical light beam propagating perpendicular to
the c-axis is shown as an example. The angles of the c-axis and the external bias
field E, with respect to the x-axis are denoted by 6. and 6,, respectively.
To determine the light-induced space charge field under the NCB condition, we
start from Kukhtarev’s band transport model [66]. By neglecting diffusion field and
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Fig. 5.1 Geometry of E, ¥y
the coordinate system for 0
nonconventionally biased
photorefractive crystals
(after ref. [65])

c-axis

photovoltaic effect, the material response of the NCB photorefractive crystal under
static condition can be written as [67]

(s/ + B)(Np — Nj) = pgnN, (5.1a)
V-J=0, (5.1b)

J = eunkE, (5.1¢)

p = e(Nj, — Na —n), (5.1d)

V- (¢E) = p, (5.1e)

where Np, NB, N, and n are the density of donors, ionized donors, acceptors, and
conducting electrons, respectively, f and s are the thermal and photoexcitation
coefficients, [ is the intensity of light beam, yy is the recombination constant, E is
the amplitude of the static electric field, e is the elementary charge, ¢ is the static
dielectric tensor, p and J are the charge and the electric current densities, respec-
tively, and p is the electron mobility.

Taking the approximation Ng ~ N4 [20, 66] and from (5.1a), one can derive a
simple expression for the electron density:

g BASHND —Na) 52)
YrRINVA
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Inserting (5.1¢) and (5.2) into (5.1b) yields

V- [(B+ sI)E] = 0. (5.3)

By denoting the light-induced electrostatic potential as @, the total electric field
inside the crystal takes the form of E = xE( cos 0, + yE( sin 0, — V& with x and y
being unit vectors. Furthermore, by introducing a dimensionless potential p = ®/E,
and a dimensionless light intensity / = /I3, where Iy = f3/s, (5.3) can be rewritten as

(L +1)

oln(1+1) .
Ox s

Vip+ Ve -Vin(l+1) = os0, + o in0,. (5.4)

By solving (5.4), we can readily obtain the light-induced space charge field:
E;, = —EyV, which results in modulation of the refractive index of the crystal
according to linear electro-optic effect.

To quantify the optically induced nonlinear refractive index changes, it is
necessary to first analyze the deformation of the index ellipsoid of the crystal
under a general electric field. Assuming the electric field has components along
all three principal axes, according to the linear electro-optic effect, it can be easily
seen that the directions of the new major axes and the magnitudes of the respective
indices of the ellipsoid will be changed [68]; thereby an initial uni-axial crystal will
be transformed into a biaxial one. However, after quantitative analyses with the
typical experimental parameters, it is found that only the c-axis component of
the electric field can introduce perceptible index modulation in a photorefractive
crystal, i.e., the rotations of the c-axis and the changes of the refractive indices
introduced by the components perpendicular to the c-axis can be neglected [68, 69].
Based on above analyses, the light-induced refractive index changes due to Eg can
be determined by

1 0 Op .

Ane = 3127530 ((;}f cos 0, + aij sin oc) , (5.5)
where 7, is the extraordinary refractive index and )33 is the electro-optic coefficient.
Therefore, the nonlinear beam dynamics in NCB photorefractive crystals obeys the
following dimensionless nonlinear Schrodinger equation:

9 i, _ (9 ¢ .
(& - EV )B(r) = l(ax cos 0, + 9 sin 90)3(1‘)7 (5.6)

where B(r) is the amplitude of the optical field, the dimensionless coordinates
(x, y, z) are related to the physical coordinates (X', y', z’) by the expressions
(x, y) = (kD"*(¥', y') and z = IZ/, where [ = 0.5kn.*y33Eo, and k is the wave
number of light in the crystal.
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5.3 Hybrid Nonlinearity

5.3.1 One-Dimensional Case

When the long axis of the elliptical beam depicted in Fig. 5.1 becomes infinite,
Eq. (5.1a—e) will degenerate into a one-dimensional (1D) problem with Oln(1 + 1)/
O0x = 0 and 0¢/0x = 0. For a bright input beam, we can find the 1D analytical
solution for (5.4): 0p/0y = I sin 0,/(1 + I). Therefore, the equation governing the
nonlinear propagation of the 1D input beams becomes

o i & e 1
(& ) 8—y2>B(y’Z) = isin 0, sin (Jel—_HB(y,z). 3.7

Thus, the normalized light-induced refractive index changes can be described by
An = |EylI sin §..sin 0,/(1 + ). Obviously, the type of the nonlinearity experienced by
1D input beams in NCB crystals depends on the values of 0. and 0,, which defines the
beam orientation relative to the c-axis and bias field. Now, we consider the nonlinear-
ity versus the beam orientation under a fixed bias condition. Figure 5.2 depicts An
versus 0. at different (0, — 0.). It is obvious that, under the conventional bias
condition Ey || ¢, the crystal can exhibit either a self-focusing nonlinearity (An > 0)
at (0, — 0,.) = 0 or a self-defocusing nonlinearity (An < 0) at (0, — 0,.) = &, but not
both for a given (0, — 6..). However, for the NCB case at (0, — 0.) = n/2, for which
the bias field is perpendicular to the c-axis (Ey L c), the crystal can exhibit self-
focusing or self-defocusing nonlinearity depending on the beam orientation. That is to
say, under such a NCB condition, if two stripe beams are launched into the crystal
oriented, respectively, at . = n/4 and —n/4 at same time, they will exhibit self-
focusing and -defocusing nonlinearity simultaneously in the same crystal under
identical bias conditions (see Fig. 5.2), and therefore, hybrid nonlinearity.

The nonlinear beam propagation of a stripe Gaussian beam under the hybrid
nonlinearity has been both experimentally and numerically demonstrated in a
5% 5 x 6.7(c)mm’> SBN:60 crystal. The direction of the bias field (about
1.2 kV) is perpendicular to the c-axis, and is kept constant during our experiments.
The polarization direction of the input beam is always parallel to the c-axis.

Fig. 5.2 Calculated one-
dimensional light-induced
refractive index changes (An)
versus beam orientation (0,.)
at different fixed bias
conditions (0, — 0,) (after
ref. [65])
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Fig. 5.3 Experimental (left and right) and numerical (middle) results of propagations of a
Gaussian beam at 0, — 6. = 7/2, but 6. = 0 (a), —n/4 (b), and /4 (¢). Left: Input beam; Middle:
Evolution of the intensity profile along the dashed line in the left panel; Right: Output beam (after
ref. [65])

Figure 5.3 displays the typical experimental and simulation results. It is clear that
the input beams indeed experience linear diffraction, self-defocusing, and self-
focusing at different orientations under identical bias conditions.

5.3.2 Two-Dimensional Case

To visualize the hybrid nonlinearity in two-dimensional (2D) cases, numerical
procedures have to be employed to solve (5.4-5.6). The light-induced refractive
index changes under different bias conditions induced by an input Gaussian beam
as shown in Fig. 5.4a are depicted in Fig. 5.4b—d, where Fig. 5.4b, ¢ corresponds to
the conventional case Ey || +c¢(0, =0.=0) and Ey || —c(0. ==, 0, =0),
respectively, and Fig. 5.4d corresponds to the typical NCB condition Ey L ¢
0. =0, 0, =mn/2). Figure 5.4e describes the linearly diffracted output beam
pattern, while the nonlinear output beam patterns under different bias conditions,
corresponding to Fig. 5.4b—d, are depicted in Fig. 5.4f—h, respectively. Figure 5.4i
shows the FWHMs of the beam profiles along the dashed lines in Fig. 5.4¢, h versus
the propagation lengths z. From Fig. 5.4, we can see that different bias conditions
will cause different index changes as well as various nonlinear beam propagations.
Under conventional bias conditions, although the peripheral regions of the index
changes possess opposite sign with respect to the central part, the nonlinearity
experienced by the input beam is mainly determined by the index changes of the
central part, resulting in self-focusing in Fig. 5.4f and self-defocusing in Fig. 5.4g.
While under the NCB condition at E, L c, the distribution of the index changes
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Fig. 5.4 Numerical simulations on light-induced refractive index changes and nonlinear beam
propagation of a two-dimensional Gaussian beam, where (a) is the input beam, (b—d) are
corresponding to the refractive index changes induced by (a) under different bias conditions
indicated by the arrows, (e) is the output beam pattern after linear propagation, (f~h) depict the
nonlinear output beam patterns under the same bias conditions with that in (b—d), and (i) depict the
FWHMs of the beams versus propagation lengths z along the dashed lines shown in (e) and (h)
(after ref. [65])

becomes very distinct in comparison with the conventional ones. From Fig. 5.4d, it
can be seen that the index change at the center of the input beam is zero, and the
maxima of the index changes occur at the positions far away from the beam center,
showing a typical nonlocality. More interestingly, along different diagonal
directions across the beam center, the index changes always possess identical
sign, but the sign and the maximum index changes can be dramatically different
in different directions, representing an enhanced anisotropy. From Fig. 5.4h, i, it is
clear that the input beam experiences self-focusing and self-defocusing at the same
time, i.e., hybrid nonlinearity, leading to an elliptical output beam pattern.
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Fig. 5.5 Experimental results on light-induced refractive index changes and nonlinear beam
propagations of a 2D Gaussian beam. (a) and (b) depict the 2D and 3D displays of the measured
refractive index changes at £y L ¢, corresponding to the center part of Fig. 5.4d. (c—g) are the
experimental results for beam propagations, where (c) is the input beam, and (d—g) are the linear
and nonlinear output beam patterns corresponding to Fig. 5.4e-h, respectively (after ref. [65])

The experimental demonstrations are depicted in Fig. 5.5, where the light-induced
refractive index changes at Ey L ¢ (see Fig. 5.5a, b) are directly visualized by
employing digital holography with similar setup as that used in refs. [64, 65, 70].
Figures 5.5d—g display outputs after linear and nonlinear propagation of an input 2D
Gaussian beam (see Fig. 5.5¢) corresponding to Fig. 5.4e-h, respectively.
By comparing Fig. 5.5 with Fig. 5.4, it is clear that the experimental results are in
good agreement with the theoretical predictions.

5.4 Nonlinear Beam Dynamics in Homogenous Media

5.4.1 Transition Between Bright and Dark Solitons

As shown in Sect. 5.3.1, in the presence of hybrid nonlinearity, one can switch the
type of the nonlinearity solely by changing the optical beam orientation. This
enables an optically induced transition from bright to dark solitons without having
to reverse the bias field [71]. From (5.7), one can readily conclude that, in the 1D
case, although hybrid nonlinearity offers the opportunity to create bright and dark
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Fig. 5.6 Experimental results showing transition between bright (c) and dark (d) solitons under
hybrid nonlinearity. (a—b) Geometry of beam orientation. In (c—d), (1-3) are for input, linear
diffracted, and self-trapped beams, respectively (after ref. [71])

solitons in the same setting, the soliton solutions would share forms similar to those
under conventional nonlinearities [24, 25]. To experimentally demonstrate the
optically induced transition between bright and dark solitons, setups similar to
those used in refs. [27, 29] are utilized. The beam orientations at the NCB condition
Ey L careillustrated in Fig. 5.6a, b. Typical experimental results in an SBN crystal
are depicted in Fig. 5.6c—d. As expected, without nonlinearity (no bias field is
applied in this case), both the bright Gaussian beam and dark notch undergo linear
diffraction. By switching on the bias field, in the same crystal and with identical
conditions, the Gaussian beam will experience self-focusing to balance its normal
linear diffraction, resulting in a bright soliton. Meanwhile, the dark notch
experiences self-defocusing resulting in a dark soliton. These experimental results
are in good agreement with the numerical results presented in ref. [71].

5.4.2 Elliptical Optical Solitons

In the presence of enhanced anisotropy and nonlocality, the 2D soliton solutions
under hybrid nonlinearity would take a more complicated form than is seen in
conventional case [64]. From (5.6), the solitonary solutions can be found in the
standard form B(x,y,z) = b(x,y)exp(ifz), where [ is the propagation constant, and
the real envelope b(x, y) satisfies the following equation:

Lo = (22 cost +2%
(ﬁ 2V )b(x,y) = (Bx cos O, + D sin0,. |b(x,y), (5.8)

where ¢ is determined by (5.4) with I = lbCx,y). We numerically solve the
eigenproblem (5.8) by employing the renormalized iterative procedure [72].
By setting 6, = 0. = 0, the conventional condition, we derive the same results as
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Fig. 5.7 Numerical results for elliptical optical solitons under hybrid nonlinearity. Soliton
solutions (left) and their induced refractive index changes (right) at 6, = n/2, but 6. = n/4
(a) and 0. = 0 (b); (¢c) FWHMs of the solitons and their ratio versus /., (after ref. [64])
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Fig. 5.8 Experimental results for observing elliptical soliton formations under hybrid nonlinearity
(a—d) and BPM simulation of soliton evolution process (e). (a) Input Gaussian beam. (b—d) Output
beam profiles for a linearly diffracted beam, and the solitons formed at 6. = 0 but 6, = —7/2 and
n/2, respectively. (e) FWHMs of the beams versus propagation lengths z (after ref. [64])

those presented in refs. [73, 74]. Figure 5.7 shows some typical simulation results
under NCB conditions, from which it can be seen that the hybrid nonlinearity
indeed can support bright solitons. However, due to the enhanced anisotropy, the
solitons are severely distorted, exhibiting nontrivial elliptical profiles. Moreover,
the soliton-induced refractive index changes are dominated by the positive part,
indicating that the solitons mainly experience self-focusing nonlinearity, even
though the crystal has hybrid nonlinearity. This coincides with the previous
discussions on the orientation-dependent nonlinearity in the 1D case.

To experimentally observe such elliptical solitons under hybrid nonlinearity, a
circular Gaussian beam as shown in Fig. 5.8a is launched into an SBN:60 crystal
with the bias field perpendicular to the c-axis. Without nonlinearity, the input beam



144 P. Zhang et al.

would experience linear diffraction, leading to an output intensity pattern with an
increased beam size, as shown in Fig. 5.8b. With a 3.6 kV bias voltage (over 5 mm)
but 0, = + ©/2 and 0, = 0, the circular input beam evolves into an elliptical soliton
at a particular orientation with a typical beam size ratio W /W, ~ 3.5 (see Fig. 5.8c, d).
To confirm such a soliton evolution behavior from a circular Gaussian beam to an
elliptical soliton, a BPM simulation corresponding to our experimental settings, but
with a much longer propagation length is performed. The results are shown in
Fig. 5.8e, from which we can see clearly that a circular Gaussian beam indeed can
evolve into an elliptical soliton under hybrid nonlinearity.

5.4.3 Stabilization and Breakup of Optical Vortices

Vortices are often found in nature and share many common properties in different
physical systems [75]. In optics, vortices are termed as “phase singularities” in light
waves, and carry nontrivial orbital angular momentums (OAMs) [76]. In the past few
decades, the interplay between natural diffraction of helical-phase structures of optical
vortices (OVs) and nonlinear effects has been investigated extensively in various
nonlinear media [30, 31, 77-83]. The intrinsic anisotropy and nonlocality mediated by
photorefractive nonlinear materials lead to unusual features of dynamical vortex
propagation [81-83]. Specifically, it was found that the anisotropy of the nonlinearity
might be responsible for the nonlinear decay of higher-order vortices [82], whereas the
nonlocality could dramatically suppress the azimuthal modulation instability of the
vortex beam for formation of bright ring vortex solitons [80, 83]. Due to the enhanced
anisotropy and nonlocality, one would expect hybrid nonlinearity to play a nontrivial
role in the nonlinear beam dynamics of OVs. In the following, we will show two
examples of suppression of the breakup of a single-charged vortex and aggravation of
the breakup of double-charged higher-order vortices [84].

To analyze the nonlinear propagation of OVs, we first calculate the nonlinear
refractive index change with an input vortex beam taken to be

‘ 2

B(r) = \/Iorexp ( ;L) exp(imb), (5.9

where r = (x* + y»)"? and 0 is the azimuth angle, ¢ is the diameter of the Gaussian

beam in which the vortex embeds, m is a signed integer called topological charge,
and /) is the characteristic intensity of the vortex. By numerically solving (5.4) and
(5.5), the calculated refractive index changes An induced by the vortex beam as
depicted in Fig. 5.9a under different conditions are shown in Fig. 5.9b—d. From
Fig. 5.9b, c, it can be seen that the vortex circular ring induces An possessing
inhomogeneous pseudoelliptical rings with two lobes of either high or low index
change around the center, which implies that the crystal exhibits mainly self-
focusing or -defocusing nonlinearity with some anisotropy. In addition, the two
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Fig. 5.9 Numerical simulations of the refractive index change in a biased photorefractive crystal
induced by a vortex beam. (a) Input vortex beam. (b—d) Index changes at E, | +¢ (6, = 6, = 0),
Ey| —c(0.=m,0,=0),and Ey L ¢ (0. =0, 0, = n/2), respectively (after ref. [84])

peaks of the An coincide with the intensity maximum of the vortex beam, reflecting
relatively weak nonlocality. However, from Fig. 5.9d, we can see that an interesting
structure of An arises under hybrid nonlinearity; it has a symmetric profile, but with
opposite signs along the two diagonal directions and each diagonal direction
involves higher and lower lobes simultaneously, representing a more complex
anisotropic nonlinearity. Moreover, An is almost zero at points where the intensity
of the vortex beam is maximum, exemplifying an enhanced nonlocality.

By solving (5.4), (5.6), and (5.9) with BPM, the nonlinear evolutions of the
single-charged (m = 1) vortex beam depicted in Fig. 5.9a are numerically
simulated under different bias conditions. The results are shown in Fig. 5.10.
Similar to the anisotropic boundary condition as mentioned in ref. [79], the original
anisotropic index change depicted in Fig. 5.9b expedites the breakup of the vortex
beam at E, || +¢ with the self-focusing nonlinearity, as shown in Fig. 5.10a.
The nontrivial interplay between the inherent angular momentum of the vortex
beam and the anisotropic nonlinearity makes the two collapsed fragments undergo
both clockwise and anticlockwise damped rotations in turn during the propagation.
While in the case of Eq || —c, as shown in Fig. 5.10b, the self-defocusing nonline-
arity stretches the vortex beam into an ellipse with its major axis along the c-axis
and leads to the formation of two lobes. Meanwhile, the two lobes gradually flow
clockwise along the elliptical ring, driven by the helical-phase structure. However,
the energy flow will be retarded by the anisotropic nonlinearities, as demonstrated
inref. [81]. Figure 5.10c presents the results of the beam’s evolution in the presence
of the hybrid nonlinearity at £, L c. By comparing with the above two conven-
tional cases, it can be found that the vortex beam experiences a more stable
nonlinear evolutionary process under hybrid nonlinearity. Notwithstanding the
coexistence of self-focusing and -defocusing nonlinearities, it neither collapses
into two separated lobes as happens at Eq || +c, nor does it expand or stretch as
much as it does at Eq || —c. This characteristic nonlinear dynamic manifests the
suppression of the azimuthal modulation instability exerted by the enhanced
nonlocality in the presence of hybrid nonlinearity. Such behaviors are further
confirmed by the dynamics of OAMs during the vortex evolutions as shown in
Fig. 5.10d. It can be seen that, in comparison with the conventional cases, the loss of
OAM during nonlinear propagation is dramatically reduced in the NCB case,
indicating the suppression of azimuthal modulation instability.
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Fig. 5.10 Nonlinear evolution of the single-charged vortex beam at E, || +c (0. = 6, = 0) (a),
Ey|| —c (0. =m,0,=0)D),andEy L c (0, = 0,0, = n/2) (¢). From left to right are the output
intensity profiles at different normalized propagation distances z = 20, 40, 60, 80, and 100,
respectively; (d) OAM versus z (after ref. [84])

The experimental demonstrations of the nonlinear evolution of a single-charged
vortex under different bias conditions are performed in an SBN:60 crystal. Typical
results are shown in Fig. 5.11. The vortex beam is created with a computer-generated
holographic mask and a spatial filter [85]. According to Fig. 5.11d, under self-
focusing nonlinearity (Eq || +c), the single-charged vortex beam, as expected, will
break up into two filaments, which gradually rotate counterclockwise. In Fig. 5.11e,
we find that the anisotropic self-defocusing nonlinearity (E || —c) causes the vortex
beam to stretch along the c-axis, and the ellipticity of the beam profile to increase
gradually with the enhancement of the external bias field. Figure 5.11f displays the
nonlinear output of NCB case with the external field perpendicular to the c-axis.
Although the nonlinear evolution is similar with that in Fig. 5.11e, the orientation of
the induced elliptical output possesses an angle of about 45° with respect to the
c-axis, and the output intensity patterns are much smaller. These experimental
observations agree with the numerical expectations as shown in Fig. 5.10.
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Fig. 5.11 Experimental results of a single-charged vortex under different bias conditions.
(a) Intensity distribution and (b) interferogram of the input vortex beam. (c) Linearly diffracted
output beam. (d—f) Nonlinear output at Eq | +¢ (0, =0.=0), Eq || —c (0. ==, 0, =0),
and Ey L ¢ (0. =0, 0, = n/2), respectively, where results from fop to bottom are obtained at
gradually increased voltages (after ref. [84])

Next, we shall show the nonlinear dynamics of higher-order vortices in the
presence of the hybrid nonlinearity. It has been demonstrated that a higher-order
vortex will break up into an array of vortices with unit charge under the anisotropic
boundary conditions or anisotropic nonlinearities [82]. In a self-focusing medium, the
azimuthal modulation instability of higher-order vortices will be much more severe
than that of single-charged vortices, leading to a quick collapse of the input vortex.
Here, we use the self-defocusing case at Eq || —¢ for comparison. Figure 5.12a, b
display the simulation results of a double-charged vortex beam at £y, L ¢ and
Ey || —c, respectively. It is obvious that, in both cases, the double-charged vortex
decays into two separate single-charged vortices, which can be seen from the fork
fringes in the interferograms as described in the bottom row of Fig. 5.12. However,
although the nonlinear expansion of input beam under the NCB condition is smaller
than that at Eq || —c, the separation of the two resultant dark cores under hybrid
nonlinearity is more distinct. This aggravation of the nonlinear decay might be due to
the enhancement of the anisotropic nonlinearity driven by the NCB field. In addition,
the orientations of the singly charged vortex pairs for the two cases are somewhat
different, mainly determined by the anisotropy of the nonlinearity [65]. With the
hybrid nonlinearity, the bright stripe separating the two dark cores (see Fig. 5.12a) will
experience self-focusing during propagation [65], which will result in further separa-
tion of the two singly charged vortices. However, for the conventional case with
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Fig. 5.12 Numerical (a, b) and experimental (c—e) results showing breakup of double-charged
vortices. Top and bottom correspond to intensity patterns and interferograms, respectively. (a) and
(b) Simulationsatz = 45forEy L ¢ (0, = 0,0, = n/2)and Ey | —c (0. = 7, 0, = 0), respectively;
(c) input vortex; (d) and (e) experimental results corresponding to (a) and (b) (after ref. [84])

self-defocusing, the bright stripe is almost parallel to the c-axis, which means it will
experience less expansion during propagation to make sure the dark cores can be
separated. The simulation results are also confirmed in experiment, as shown in
Fig. 5.12. By launching a double-charged vortex beam (see Fig. 5.12c) into the crystal,
the nonlinear decay of the input vortex is observed with the biased field perpendicular
and antiparallel to the c-axis (see Fig. 5.12d, e), respectively. The experimental
observations agree with the numerical simulations.

5.5 Reconfigurable Photonic Lattices

Wave propagation in periodic systems is of great interest for both its fundamental
and technological applicability [86, 87]. Photonic lattices have served as an ideal
platform for exploring various fundamental issues in discrete systems [40, 41].
The periodicity of the photonic lattice breaks the rotational symmetry of a normally
isotropic medium, leading to a host of new phenomena [42—62] that have also been
studied in a variety of other discrete systems ranging from photonic and phononic
crystals to liquid surface waves, trapped Bose—Einstein condensates (BECs), and
metamaterials [88-91]. In photorefractive crystals, photonic lattices can be
optically induced by illuminating them with a periodic light pattern [49-62].
One of the advantages of such induced lattices is its reconfigurability, namely,
the lattice structure and potential depth can be tuned at ease by varying the intensity
of the lattice-inducing beam or the bias field. In this section, we shall discuss the
lattice reconfiguration and associated discrete phenomena in the presence of hybrid
nonlinearity [92-98].
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5.5.1 Lattice Formation

By solving (5.4) and (5.5) with I(x, y) = cosz(nx//l) cosz(ny//l), where A is the spatial
period of the light field, the optically induced photonic lattices under different bias
conditions can be obtained [93, 94]. The Brillouin zone (BZ) structure of the induced
photonic lattices can be numerically visualized by using the method described in
ref. [99]. In an experiment, such optically induced photonic lattices are created in a
biased SBN:60 crystal by illumination with a periodic light pattern generated by using
an optical amplitude mask, similar to that used in refs. [52, 55, 62]. The index
distributions of the induced lattices are directly measured by the digital hologra-
phy [70], and the BZ spectra are obtained by using the technique described in
ref. [100]. Typical results of the index distributions and the BZ spectra are displayed
in Fig. 5.13 for four lattice structures induced with a same square lattice beam but
under different bias conditions. Clearly, under an identical bias scheme (Ey || ¢ or
Ey L c) different c-axis orientations lead to different lattice structures, whereas with
the same c-axis orientation the induced lattice structure varies with the bias direction.
Not only the shape and orientation of individual lattice site can be changed, but also
the location of the index maxima can be shifted significantly with respect to that of the
intensity maxima of the lattice inducing beam, as driven by the enhanced anisotropy
and nonlocality of the hybrid nonlinearity [65]. The measured index profiles and BZ
spectra are in good agreement with those obtained from simulation [93, 94].

5.5.2 Bloch Mode Transition

We now focus on the behavior of a probe beam propagating linearly through the
above induced lattices. Taking Fig. 5.13c, d as examples, the period and orientation of
these two induced lattices are quite different. It can be found that the first Brillouin
zone (BZ) of the lattice in Fig. 5.13d happens to be overlapping with the second BZ of
the lattice in Fig. 5.13c. Therefore, the high-symmetry M, point in one setting
(Fig. 5.13c) corresponds to the X; point in another setting (Fig. 5.13d), as also
illustrated in the band diagrams in Fig. 5.14a—c. This enables the excitation of
Bloch modes associated with different high-symmetry points [101] in the first band
with the same excitation scheme. Typical results are shown in Fig. 5.14d—g, where the
Bloch modes are excited in these two lattices established under different NCB
conditions. In our experiment, the probe beam is tilted at the same angle to excite
the Bloch modes at M /X point marked by a solid (green) dot in Fig. 5.14a—c. With
both the probe beam and the lattice beam kept constant, a transition between Bloch
modes at M; (Fig. 5.14d, e) and X, (Fig. 5.14f, g) is realized by rotating the biased
crystal 45° about the z-axis. The measured intensity and phase (via interference)
structures confirmed such a transition, in excellent agreement with calculated results.
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Fig. 5.13 Numerical (upper two rows) and experimental (bottom two rows) results of lattice and
Brillouin zone (BZ) reconfiguration. First and third rows show the refractive index distributions,
and second and fourth rows show the corresponding BZ spectra. Solid and dashed arrows in first
row represent the directions of c-axis and bias field, and the white circle corresponds to an intensity
spot of the lattice-inducing beam. Dashed lines in second row indicate the missing Bragg-
reflection lines in BZ of a square lattice. From (a) to (d): 0. = 0, = 0; 0. = 0, = n/4; 0. = n/4,
0, = 3n/4, and 0. = 0, 0, = 7/2 (after ref. [94])

5.5.3 Diffraction Managements

Since beam diffraction in 2D lattices depends on the position of its Bloch momen-
tum vector within the BZ, we show next the transition between normal and
anomalous diffraction using the above overlapping BZs. The region of normal
diffraction for one lattice (Fig. 5.13d) but of anomalous diffraction along k, for
other lattices (Fig. 5.13a—c) can be identified (marked by a black circle in Fig. 5.14).
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Fig. 5.14 Demonstration of Bloch-mode transition by lattice reconfiguration. (a) and (b) illustrate
the first band diagram corresponding to lattices of Fig. 5.13c, d, respectively; (¢) shows the
boundary of the first BZ for (a) and (b); (d—g) are calculated (fop) and experimentally observed
(bottom) intensity (d, f) and phase (e, g) structures of Bloch modes excited at the solid green spots
marked in (a—c) for lattices illustrated (d, e) in Fig. 5.13c and (f, g) in Fig. 5.13d (after ref. [95])

By probing with a tilted Gaussian beam (waist located before the front facet of the
crystal) whose transverse k-vector corresponds to the black circle in Fig. 5.14, we
observe different 2D diffraction patterns coming from different lattices as shown in
Fig. 5.15. Clearly, the beam exhibits normal diffraction in both transverse
directions in Fig. 5.15d but anomalous diffraction along &, in Fig. 5.15a—c. Such
anomalous diffraction has been demonstrated previously either by adjusting the
angle in 1D lattices [43] or the nonlinearity in 2D lattices [101], but here
the transition between linear normal and anomalous diffraction is realized with
the same input tilt simply by reconfiguring the 2D photonic lattices.

5.5.4 Refraction Managements

Next we show that by lattice reconfiguration a probe beam can also excite Bloch
modes from different bands, permitting the transition between normal (positive)
and anomalous (negative) refraction [44]. An example is illustrated in Fig. 5.16,
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Fig. 5.15 Demonstration of 2D normal and anomalous diffraction by lattice reconfiguration. (a—d)
Numerical (fop) and experimental (bottom) results of output diffraction patterns of the same probe
beam (excitation position marked by the circles in k-space of Fig. 5.14a—) from the four lattices
shown in Fig. 5.13a—d, respectively. The crosses indicate the center of input beam (after ref. [95])
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Fig. 5.16 Demonstration of 2D positive and negative refraction by lattice reconfiguration.
(a) Excitation scheme with locations in k-space of the two input beams marked by circles in
inset. (b) Direction of refracted light (marked by arrows) at the first and second band diffraction
curves. (c, f) Illustration of light refraction from the first and second bands. (d—e) Numerical (fop)
and experimental (bottom) results of the output probe beam from lattices in Fig. 5.13a, c,
respectively. The crosses indicate the center of the two beams at input (after ref. [95])
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where the two-beam excitation technique [51] is employed to selectively excite
Bloch modes. The angle between the two input beams is set to be twice of the Bragg
angle, while the added input direction of the two interfering beams is tilted by a half
Bragg angle. Under this condition, the k, component of one of two beams is
positioned inside the first BZ, but that of the other beam is outside (in lattices of
Figs. 5.13a, c). In addition, the interference maxima of the two beams overlap with
the intensity maxima of the lattice inducing beam. However, as seen in Fig. 5.13,
reconfiguration of the lattices could result in a change from on-site to off-site
excitation (e.g., from Fig. 5.13a—c). This in turn leads to a change of excitation of
Bloch modes from the first to second band (Fig. 5.16b), and therefore a change
of apparent refraction of the probe beam from anomalous (Fig. 5.16c, d) to normal
(Figs. 5.16e, f). Two cases are shown in Fig. 5.16d, e, corresponding to outputs from
lattices of Fig. 5.13a, c, respectively. For all two cases, the input direction of the two
beams (or the direction of total energy flow) is initially tilted towards left, and it
bends further to left in Fig. 5.16e, f due to dominant excitation of the second band
Bloch modes by both beams in the periodic structure. However, it bends back to
right (anomalous refraction) in Fig. 5.16c, d due to dominant excitation of the first
band Bloch modes (Fig. 5.16b). From the direction of the energy flow depicted in
Fig. 5.16c, it can be seen that the anomalous refraction just represents a negative
refraction of energy flow, similar to that observed in other periodic systems [102].

5.5.5 Ionic-Type Photonic Lattices

Typically, all photonic lattices investigated theoretically or demonstrated experi-
mentally are composed of either periodic positive or periodic negative potentials,
not both [49-62]. Here, as shown in Fig. 5.13, under the conventional bias conditions
(Eg | ¢), a square lattice solely composed of positive index changes is induced
(see Fig. 5.13a). Simply by rotating the biased crystal by 45°, a non-Bravais lattice
structure with alternating positive and negative index changes is induced
(Fig. 5.13b), which is akin to an ionic crystal structure with alternating positive
and negative charges. Therefore, we name such photonic lattice structures ionic-type
photonic lattices. In the presence of hybrid nonlinearity (E, L c¢), another two
different ionic-type lattices can be established (Fig. 5.13c, d). The three-dimensional
display of the calculated refractive index distribution of Fig. 5.13c is shown in
Fig. 5.17a, from which we can clearly see the egg-crate lattice structure.

By comparing the BZs in Fig. 5.13 with the textbook-calculated BZ for the
square lattice, one can notice that some expected Bragg reflection lines indicated by
the dashed lines in the second row of Fig. 5.13 are missing. This implies that Bragg
reflection along some particular directions either is too weak to be observable or
simply cannot occur (band-gap closed). Such reconfiguration of BZ spectra in ionic
lattices introduces a new way for band-gap “engineering.” For instance, one can
design a particular photonic structure with its band-gap closed in a desired direction
for control of light propagation. Figure 5.17b—e demonstrates a typical example.
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Fig.5.17 (a) 3D display of the index distribution of an ionic-type lattice shown in Fig. 5.13c. (b—e)
Numerical (fop) and experimental (botfom) output patterns of a tilted probe beam with its excitation
location in k-space marked by a white dot in Figs. 5.13b, c. Here (b, d) and (c, e) correspond to
excitation in lattices of Fig. 5.13b, ¢ showing no Bragg-reflection and strong Bragg-reflection,
respectively. The crosses indicate the input position of the probe beam (after ref. [94])

A Gaussian probe beam tilted at the same input angle is launched into the
lattices shown in Fig. 5.13b, ¢, where the excitation locations of the probe beam
in k-space marked by a white dot. Both numerical (Fig. 5.17b, c) and experimental
(Fig. 5.17d, e) results show that the output location of the probe beam is dramati-
cally different in the two different lattices. In particular, no Bragg-reflection
(Fig. 5.17b, d) is observed in the lattice of Fig. 5.13b, but strong Bragg-reflection
(Fig. 5.17c, e) is observed for the same probe beam in the lattice of Fig. 5.13c.

To understand the underlying physics of the BZ spectra reconfigurations as well
as the “band-gap engineering” in the optically induced ionic-type photonic lattices,
we consider a general ionic-type photonic lattice composed of both positive and
negative potentials, as shown in Fig. 5.18, which is a non-Bravais lattice. Assume
that the dielectric constant distribution of the lattice is given by

e(r) =e0+ ZAs(r —r;), (5.10)

where ¢ is the dielectric constant of the uniform background medium, r; denotes the
location of the ith lattice site, and Ae¢ is the magnitude of periodic variation of
the dielectric constant with Ae < 0 and A¢ > 0 representing the positive and
negative lattice potentials, respectively. We point out that the novelty of the non-
Bravais 2D ionic-type lattices arises from the periodic “dips” and “humps” in the
refractive index pattern, which contains at least one dip and one hump in each
lattice site and cannot be “washed out” or turned into simple lattices (composed of
only “dips” or “humps” but not both) merely by resetting the background é.
Different from the 1D ionic-type lattices, which are considered to be simple lattices,
by resetting the background at the maxima or minima of the dielectric constant, the
background has to be chosen properly in the 2D case so that the lattice potentials
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Fig. 5.18 Schematic diagram
of an ionic-type non-Bravais
photonic lattice, where the
dashed and solid circles
represent negative and
positive lattice potentials,
respectively, the dashed
square marks a unit cell, the
white dots indicate the centers
of the unit cells, and P is an
observing point. Other
coordinates are defined in the
text (after ref. [94])
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can be totally separated as described by (5.10). We mention that a chessboard lattice
structure cannot be considered as ionic-type, and it contains single scattering center
in each unit cell. It will turn into a simple lattice composed of only positive or
negative potentials by setting the background at an appropriate level.

To analyze the BZ spectrum [99, 100] and the Bragg reflection in photonic
structures, the geometrical structure factor (GSF) from solid state physics is often
used as an efficient tool [86, 103, 104]. To deduce the GSF of the ionic-type photonic
lattice structures as shown in Fig. 5.18 for a monochromatic light, here we assume
the dielectric constant varies slowly with space and start with the Helmholtz
equation by following the scattering theory for inhomogeneous media [103]

V2U(r) 4 k*e(r) U(r) = 0, (5.11)
which can be rewritten as
V2U(r) + K*U(r) = —4nF(r) U(r), (5.12a)
1 2
F(r) = Koo — 1+ Z:Ag(r -, (5.12b)

where U(r) is the amplitude of the light field propagating through the lattice, and &
is the wave number. Assuming a plane wave propagating in the otherwise uniform
medium is scattered by lattice potentials, we can write U(r) = U“(r) + U(r),
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where U(i)(r) represents the plane wave with (V2 + kz)U@(r) =0 and U(“)(r)
represents the scattered field, (5.12a) becomes

(V2 + &)UV (r) = —4nF (r)U(r). (5.13)

By introducing a Green function G(r — r’) = exp(iklr — r'l)/Ir — rl into (5.13),
in the far field we obtain

ikr
U (r) ~ f(K, k) 67 (5.14a)

(K, k) :J F(r'YU(r)e ®rdr, (5.14b)
Vv

where 1’ is the position of the scatterer, V is the volume of the lattice structure, and k
and K’ are the wave vectors of the incident and scattered fields, respectively.
Considering the periodicity of the lattice structure of N cells, the amplitude of the
scattered light field can be expressed by

k2(80 — 1)

o Nk? .
(kK. k) = /o —iK' T d3 / _J Ae(r' /N iK1 d3 /
F(K' k) ypm JVU(r)e r + i )y e(rYU(r')e r,

(5.15)

where V.. is the volume lof the lattice unit cell. Taking the first order Born
approximation [103] and U(’)(r) = exp(ik-r), (5.15) can be written as

k(g — 1 NK? R
L5(k —K)+— J Ag(r')e'® KT g3y, (5.16)
47-[ Vcell

flkK.k) = 4n

Suppose now that there are n scatterers in an unit cell, and the center location of
the jth scatterer is denoted by r;, then the dielectric constant distribution in the unit
cell can be written as Ae = XAg;. For Ak = k — k' # Oand p = r’ — r; we obtain

/ Nk2 - iAK-r;
1K k) = > fetk, (5.17a)
J

fi= J Ag;(p)e ™ Pdv. (5.17b)
Vcel]

By writing r; as r; = x;a; + y;a, + z;a3 (a;, ap, a3 are the lattice vectors)
and considering Bragg condition Ak = mb; + nb, + [bs (m, n, [ are integers, and
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by, b,, b are the reciprocal lattice vectors), we can define the GSF for photonic
lattices as

& — Zf}eﬂn(mxj+nyj+lz,') . (518)
J

From (5.18), it can be seen that the GSF for photonic lattices shares a similar
form to that of atomic lattices [86]. However, the amplitude of the scattered field f;
is always positive for atomic lattices (since the scattering of X-rays is attributed to
the electron clouds of the atoms, therefore X-ray cannot experience the difference
between positive and negative scattering potentials), whereas for the ionic-type
photonic lattices, f; can be positive or negative indicating there is a © phase
difference between the scattered light fields from negative and positive optical
potentials. In order to highlight this unique property, we introduce a modified GSF
for ionic-type photonic lattices in the form of

& = Zﬁ+ei2n(mvf++z1)*f++lgr+) I ij‘;ei2n(mx‘,;+ny‘,;+lzj,), (5.19)

where the “+” and “—” signs are for positive and negative lattice potentials,
respectively.

Next, let us use the above modified GSF to analyze the missing lines in the BZ
spectra as shown in Fig. 5.13, which are attributed to the coexistence of the positive
and negative potentials in ionic-type lattices. By setting the origin at the center of
the white circles shown in the top panels of Fig. 5.13b—d, we can use the GSF to
analyze the Bragg reflection in the optically induced photonic lattices. Specifically,
the lattice structure shown in Fig. 5.13b contains a positive and a negative potential
with identical potential depth (i.e., f;, = —f;_) centered at (x_, y_) = (0, 0) and
(x4, ¥4) = (%, 0), respectively. Then, from (5.19), it is easy to show that if m is an
even number, the GSF & would be 0, which leads to zero amplitude of scattered
light. Therefore, the Bragg reflection lines corresponding to k-space planes defined
by (m, n) = (0, 1), (0, £2), (£2, £1), (£2, 0) are all missing in Fig. 5.13b.
Likewise, for the lattice shown in Fig. 5.13c, Bragg reflection lines corresponding
to (m, n) = (£1, £1) are missing as in this case & = 0 if m + n ends up an even
number. The lattice in Fig. 5.3d has a unit cell containing two negative potentials at
(x1-,y1-) = (=%, ¥)and (x,_, y,_) = (¥4, —12), and two positive potentials at (xq,
yi4) = (B, V) and (xo4, y24) = (—%2, —Y2). The GSF in this case is found to be O (thus
cancelled Bragg reflection) for the planes of (m, n) = (0, 1), (1, 0), (—1, 0) and
(0, —1) (see Fig. 5.13d). Missing lines are also found for the nonionic-type lattice of
Fig. 5.13a, but they result from a different mechanism of the anisotropic
photorefractive nonlinearity. In this latter case, the induced index changes
(waveguides) are highly elliptical and somewhat connected to adjacent lattice
sites, thus the 2D lattice virtually turns into a quasi-1D lattice along a particular
direction (—45° diagonal in Fig. 5.13a) for which Bragg reflection is weak or absent.
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This anisotropy of the lattice potential should also play a role for the missing lines in
Fig. 5.13b, as explained in ref. [100]. However, our numerical calculation indicates
that the ionic nature of the lattice structure accounts more for these missing lines in
Fig. 5.13b, as these lines can still be visible if we simply remove the positive lattice
potentials. We thus emphasize that missing of the Bragg reflection lines in BZ
spectra and associated band-gap closures are fundamentally new features in ionic-
type photonic lattices. Note that the lattice structure shown in Fig. 5.13d represents a
typical separable (or egg-crate) lattice structure in BEC, which has been investigated
theoretically for dynamical Bloch oscillation of cold atoms [105, 106]. We expect
that such Bragg reflection control could occur in other ionic-type photonic lattices
with different symmetries including triangular, honeycomb, and quasi-crystal
structures. Furthermore, the concept of ionic-type lattices may have direct impact
on photonic crystals and other discrete systems beyond optics.

5.6 Nonlinear Discrete Light Behaviors

As shown in Sect. 5.5, hybrid nonlinearity enables the ability to achieve
reconfigurable photonic lattices to modulate the linear beam dynamics. In the
nonlinear regime, it is well known that discrete (gap) solitons can be formed by
balancing normal (anomalous) diffraction with self-focusing (self-defocusing)
nonlinearity [47, 48, 61, 62]. Considering the highly anisotropic discrete diffraction
behaviors [107] and the enhanced anisotropy of the hybrid nonlinearity, one would
expect novel nonlinear beam dynamics to occur in optically induced photonic
lattices under NCB conditions [93, 96-98].

5.6.1 Transition Between Discrete and Gap Soliton-Trains

Similar to Sect. 5.4.1, as the simplest example, we first demonstrate the orientation-
induced transition between a 1D discrete soliton under self-focusing nonlinearity
and a 1D gap soliton under self-defocusing nonlinearity without the need of
reversing the bias field [96]. Again, the same bias conditions as those used in
Sect. 5.4.1 are employed, with (0, — 0.) = ©/2. By solving (5.7) with I = IB(y,2)I* +
I cosz(ny/d) and B(y,z) = b(y)exp(ifiz), the soliton solutions at different beam
orientations are obtained as shown in Fig. 5.19a, b. As expected, discrete and gap
solitons can be supported in the same crystal under identical bias conditions.
The propagation constants f§ for the discrete solitons lie in the total internal reflection
(or semi-infinite) gap, while those for the gap solitons reside in the first Bragg-reflection
bandgap. All the discrete solitons are uniform in phase, while the gap solitons are
always accompanied by staggered phase structures.
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Fig. 5.19 Numerical (a, b) and experimental (c—h) demonstrations of orientation-induced transi-
tion between 1D discrete and gap solitons under self-focusing (a, g) and self-defocusing nonline-
arity (b, h). (a, b) Soliton profiles at different peak intensities under bias conditions as indicated in
the upper right insets; (¢, d) input and linear output probe beams without lattice; (e) lattice beam
pattern; (f) linear discrete diffraction of the probe beam; (g, h) are showing output soliton beams
(1) and their interferograms with tilted plane waves (5.2) (after ref. [96])
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Experimental demonstrations of these orientation-induced transitions between
discrete and gap solitons are shown in Fig. 5.19c—h, where the photonic lattices are
optically induced in an SBN:60 crystal under hybrid nonlinearity (Ey L c). The
lattice beam and the Gaussian probe beam both can be rotated freely in the
transverse plane. For the convenience of comparison, the experimentally observed
beam patterns are all rotated in transverse plane by 45°. It can be seen that without
nonlinearity, the probe beam undergoes discrete diffraction (Fig. 5.19f). However,
in the presence of nonlinearity, the balance between self-focusing or self-
defocusing and discrete diffraction can leads to stable self-trapped states
(Fig. 5.19g, h). Here, the interferograms clearly illustrate that the discrete and gap
solitons possess uniform and staggered phase structures, respectively. These
observations are in good agreement with the theoretical expectations.

Similarly, if the 1D lattice beams are replaced by the 2D square lattice beams these
orientation-induced transitions can be extended directly to discrete [108] and gap
soliton trains [55]. Figure 5.20 depicts typical numerical and experimental results.
The normalized power curves of the soliton trains at different orientations are depicted
in Fig. 5.20a, where the power is defined over one period along the train direction
[55, 108]. Figure 5.20b corresponds to the soliton solutions in the semi-infinite gap
(curve labeled with b in Fig. 5.20a) under self-focusing nonlinearity, which is
bifurcated from the I'; point. Figure 5.20c corresponds to the gap soliton trains residing
in the first photonic gap (curve labeled with ¢ in Fig. 5.20a) under self-defocusing
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Fig. 5.20 Theoretical (a—c) and experimental (d—g) demonstrations of orientation-induced tran-
sition between discrete and gap soliton trains bifurcated from the I'-point under self-focusing
nonlinearity (b, d, e) and those bifurcated from the M-point under self-defocusing nonlinearity (c,
f, g). (a) Existence curves for soliton trains bifurcated from the band-edge of the first Bloch band
(Bloch bands are shaded); (b, ¢) Soliton solutions at corresponding marked points in (a), showing
the soliton intensity patterns (1), phase structures (2), and Fourier spectra (3); (d, f) Superimposed
input intensity pattern of the stripe and lattice beams (insets show the spectra of the probe beam
excitation); (e, g) Output intensity pattern of the soliton trains (1), interferogram from two
orthogonal directions (2), and soliton output spectra (3). Added squares in (b—g) depict the
boundary of the first BZ (after ref. [97])

nonlinearity. These are bifurcated from the M, point. It is clear that although the
intensity patterns of these soliton trains look somewhat similar, the phase structures
and spectra indicate that they have different origins under different nonlinearities.

In an experiment, to obtain the semi-infinite gap soliton trains, the stripe beam is
oriented horizontally and launched collinearly with the lattice beam (without input
tilt) into the lattice as shown in Fig. 5.20d. In this case, the stripe beam experiences
a self-focusing nonlinearity balancing the normal diffraction to form a discrete
soliton train (Fig. 5.20e1), whose uniform phase structure (Fig. 5.20e2) and k-space
spectrum (Fig. 5.20e3) indicate its constitute modes from the I'" point in the first
band. To obtain the first photonic gap soliton train under the same bias condition,



5 Spatial Beam Dynamics Mediated by Hybrid Nonlinearity 161

the stripe beam is oriented vertically and launched off-site with an input tilt at a
Bragg angle as shown in Fig. 5.20f. In this case, the self-defocusing nonlinearity
experienced by the probe beam balances anomalous diffraction to form a gap
soliton train (Fig. 5.20g). The interferogram shown in Fig. 5.20g illustrates the
“staggered” phase along the two orthogonal directions, representing the character-
istic phase structure of Bloch modes from the M; points [101]. Due to nonlinear
spectrum reshaping, the output spectrum of the gap soliton differs dramatically
from the input spectrum, with most of the energy concentrated in regions around the
four M points in the first BZ [55]. These observations perfectly match the theoreti-
cal results as shown in Fig. 5.20b and c .

5.6.2 Elliptical Discrete Solitons

In Sect. 5.4.2, it was shown that the enhanced anisotropy of hybrid nonlinearity
results in elliptical solitons with nontrivial ellipticity. Here, we study elliptical
discrete solitons in the presence of both a periodic optical potential and hybrid
nonlinearity [93]. By solving (5.4) and (5.8) with I = Ib(x,y)* + cos’(mx/A)
cos*(my/A), the elliptical soliton solutions at different bias conditions can be
obtained. Typical results under E, L c¢ are shown in Fig. 5.21a—d, from which it is
clear that the ellipticity of the solitons will be dramatically increased due to the
enhanced anisotropy. This is in contrast to the discrete solitons formed under
conventional bias conditions. In addition, the orientations of the elliptical solitons
can be altered by changing the relative orientations of lattice beam, bias direction,
and the c-axis. Figure 5.21e-h presents an experimental demonstration of such
elliptical solitons. It is obvious that under linear condition, the input beam undergoes
discrete diffraction. While in the presence of nonlinearity, however, the probe beam
can indeed evolve into an elliptical self-trapped state. It should be noted that the
soliton propagation constants of the elliptical discrete solitons reside in the semi-
infinite gap and the soliton profiles possess uniform phase structures.

5.6.3 Saddle Solitons

In a 2D square lattice, the high-symmetry X-point in the first Bloch band, as shown
in Fig. 5.22, is akin to a saddle point in a diffraction spectrum, where normal and
anomalous diffractions co-exist along orthogonal directions [107]. Specifically,
along the M-X (I'-X) direction, the diffraction curve is convex (concave),
indicating normal (anomalous) diffraction. Therefore, to form a 2D soliton at
such a saddle point, orientation-dependent hybrid nonlinearity is required to bal-
ance the normal and anomalous diffractions simultaneously. This is somewhat
similar to nonlinear X-waves [109] and light bullets [110] balancing beam diffrac-
tion and pulse dispersion at the same time. Synchronous compensation of normal
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Fig. 5.21 Numerical and experimental demonstrations of elliptical discrete solitons under hybrid
nonlinearity. Soliton solutions with different peak intensities at 0, = n/4, 0, = 37n/4 (a, b) and
0. = /8, 0, = 57/8 (c, d); (e, g) linear discrete diffraction of probe beam; (f, h) soliton output.
The bottom row presents the numerical simulations for the experimental results shown in the
middle row, and the bias conditions for (e—f) and (g-h) are corresponding to that for (a—b) and
(c—d), respectively (after ref. [93])

Fig. 5.22 Extended first Bloch band with high symmetry points marked of a typical square
photonic lattice (after ref. [98])



5 Spatial Beam Dynamics Mediated by Hybrid Nonlinearity 163

and anomalous diffractions at the X point is impossible in conventional nonlinear
media. However, quasi-1D saddle solitons have been successfully excited by
balancing the anomalous diffraction along the I'-X direction, while it is an
extended plane wave in the orthogonal M—X direction. The propagation constants
of these 1D soliton trains could reside within the first Bloch band, thus named “in-
band” or “embedded” solitons [58]. In the following, we shall demonstrate the
transition between self-focusing and self-defocusing quasi-1D (in-band) saddle
solitons [97] and the 2D saddle solitons in the presence of hybrid nonlinearity [98].

5.6.3.1 Transition Between Self-Focusing and -Defocusing In-Band Solitons

By employing a numerical procedure and experimental setting similar to the one used
in Sect. 5.6.1, the orientation-induced transition between quasi-1D saddle solitons
under self-focusing and self-defocusing nonlinearities is demonstrated, as shown in
Fig. 5.23. From the power curves of the soliton trains depicted in Fig. 5.23a, it is
obvious that such quasi-1D saddle solitons are indeed bifurcated from the sub-band-
edges (corresponding to the interior X point). When the propagation constant is
embedded in the Bloch band (e.g., the solutions at the points b and c in Fig. 5.23a),
the solutions represent in-band or embedded solitons [58]. Figure 5.23b, c depicts the
intensity patterns, phase structures, and k-space spectra of typical soliton solutions
corresponding to the marked points in Fig. 5.23a. It is clear that there is no qualitative
difference in intensity and phase structure between the two cases of embedded solitons.
However, the orientation of the soliton stripe is rotated 90° in transverse plane as
supported by two different nonlinearities (self-focusing and self-defocusing) and the
spectra near the two X points are somewhat different due to different initial excitations.

Experimental demonstrations of such transitions are shown in Fig. 5.23.
To selectively excite the in-band solitons with a self-focusing nonlinearity, the
stripe beam is oriented horizontally, but launched with an input tilt at a Bragg angle
into the lattice as shown in Fig. 5.23d. Both the phase structure (Fig. 5.23e2) and the
k-space spectrum (Fig. 5.23e3) clearly illustrate the excitation of Bloch modes at
the X point of the first band. In this case, the normal diffraction of the stripe beam
along y-direction is balanced by the self-focusing nonlinearity, so the soliton is
quasi-one-dimensional in x-direction. Likewise, the in-band soliton train supported
by the self-defocusing nonlinearity can be generated by off-site excitation of a
vertically oriented stripe beam without input tilt as shown in Fig. 5.23f. Again the
excitation of modes from the X points is evident in both phase and spectrum
measurements, but now the soliton is quasi-one-dimensional in y-direction, and
the anomalous diffraction of the stripe beam is balanced by the self-defocusing
nonlinearity [101]. As the soliton power increases, the embedded soliton will turn
into a semi-infinite gap soliton under self-focusing nonlinearity (moving up to out
of the band along b branch in Fig. 5.23a) and into a photonic gap soliton under the
self-defocusing nonlinearity (moving down to out of the band along c branch in
Fig. 5.23a) [58]. These solitons have also been experimentally observed.
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Fig. 5.23 Theoretical (a—c) and experimental (d—g) demonstrations of orientation-induced tran-
sition between in-band soliton trains bifurcated from the sub-band-edge X point under self-
focusing (b, d, e) and -defocusing (c, f, g) nonlinearity. (a) Existence curves of the soliton-train
solutions; (b, ¢) soliton-trains at corresponding marked points in (a), showing intensity patterns
(1), phase structures (2), and Fourier spectra (3); (d, f) superimposed input intensity pattern of the
stripe and lattice beams (insets show the spectra of the probe beam excitation); (e, g) output of the
soliton trains (1), interferogram from two orthogonal directions (2), and soliton output spectra (3).
Added squares in (b—g) depict the boundary of the first BZ (after ref. [97])

5.6.3.2 Two-Dimensional Saddle Solitons

By solving (5.4) and (5.8) with different initial conditions from those used in
Sect. 5.6.2, 2D saddle solitons residing in the first Bragg reflection gap can be
obtained as shown in Fig. 5.24. From Fig. 5.24d—f, it can be clearly seen that
the phase structure of the central soliton region (Fig. 5.24e) fits that of the Bloch
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Fig. 5.24 (a) Orientations of crystalline c-axis, bias field, and square lattice-inducing beam; (b)
refractive index distribution of the induced ionic-type lattice; (c) existence curve of 2D saddle
solitons; (d—f) intensity pattern (associated index change shown in inset), phase structure, and
Fourier spectrum of the saddle soliton at the marked point in (¢). Added squares in (f) mark the
boundary of the first BZ (after ref. [98])

mode at the X-point, and that the power spectrum (Fig. 5.24f) is concentrated mostly
at the two X-points within the first BZ. This indicates that the saddle solitons must be
bifurcated from the interior X-points of the first band, although far away from
the soliton center staggered phase characteristic to band-edge M-point modes are
evident. Apparently, these 2D saddle solitons differ from previously observed quasi-
1D embedded or gap solitons (also from first-band X-points), which are localized
only in one direction [58], and from the reduced symmetry solitons created solely
by self-focusing nonlinearity (but from second-band X-points) [111]. We emphasize
that such a 2D saddle soliton does not arise from single (self-focusing or -
defocusing) nonlinearity or single (normal or anomalous) diffraction, but rather it
results from a perfect balance between bi-diffraction and hybrid nonlinearity.
Experimental observations of such 2D saddle solitons are depicted in Fig. 5.25.
To excite the 2D saddle soliton originated from the X-points, the relative orienta-
tion between the c-axis, the bias field, and the lattice beam is as depicted in
Fig. 5.24a. The probe beam is reconfigured into three in-phase spots and launched
into the lattice without any input tilt (illustrated by three green dots in Fig. 5.24a),
with the central spot having a higher intensity. To make sure on-site excitation in
the induced index lattice (which has an off-set with the intensity pattern as seen
in Fig. 5.24a, b), the three beam spots are aimed at the intensity minima of the
lattice beam. The experimentally observed intensity pattern of the saddle soliton is
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Fig. 5.25 Experimental (a—d) and numerical (e-h) results of 2D saddle solitons. The fop row
shows the intensity pattern (a), interferograms (b, ¢) with a tilted plane wave at two orthogonal
directions, and Fourier spectrum (d) of the soliton. The second row shows corresponding numeri-
cal results (after ref. [98])

shown in Fig. 5.25a. From the interference patterns between the soliton beam and
the reference plane wave tilted to two different directions (see Fig. 5.25b, ¢), we can
tell that the soliton possesses uniform and “staggered” phase structure along two
orthogonal directions. This kind of phase structure resembles that of the Bloch
modes at the first-band X-points, as found in our numerical solution of Fig. 5.24e.
And the k-space spectrum of the soliton also shows that most of its power
concentrates at the two X-points of the first BZ (Fig. 5.25d). These results are
also corroborated with our numerical simulations (shown in Fig. 5.25e-h). This
confirms that the 2D saddle solitons are indeed due to a perfect balance between bi-
diffraction and hybrid nonlinearity at the interior X-points of the first band.
In addition, we mention that when the intensity of the lattice-inducing beam is
reduced, the band-gap of the induced photonic lattice becomes narrower or not fully
open, as found before for “backbone” photonic lattices [112]. In this case, quasi-
localized saddle soliton solutions can exist with their propagation constant residing
even in the Bloch band. However, these 2D in-band modes are only quasi-localized.
Long distance propagation reveals that they are not stable [98].

5.7 Summary and Closing Remarks

In summary, we have reviewed recent progresses on the nonlinear beam dynamics
in both continuous and discrete regimes under hybrid nonlinearity. A comprehen-
sive theoretical model has been developed based on Kukhtarev’s band transport
model to describe the nonlinear beam dynamics as well as optically induced
photonic lattices driven by the hybrid nonlinearity in NCB photorefractive crystals.
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The direct experimental visualization of the complex nonlinear refractive index
changes confirms the validity of the theoretical model in the first place. In homoge-
nous bulk crystals, nonlinear beam dynamics including creation of elliptical optical
solitons, suppression of the breakup of optical vortices, and orientation-induced
transitions between bright and dark solitons have been demonstrated. In discrete
media, hybrid nonlinearity enables the creation of a new type of photonic lattices
with alternating positive and negative refractive index potentials, named ionic-type
photonic lattices. These offer new opportunities for band-gap engineering and
control of the flow of light by reconfiguring the lattice structures and BZs. Some
typical examples include band-gap closure and Bragg reflection suppression, soli-
ton transitions between different band-gaps, and interplays between normal and
anomalous diffraction or positive and negative refraction under identical excitation
conditions. Moreover, the enhanced anisotropy and nonlocality of hybrid nonline-
arity result in some novel nonlinear discrete localized states including elliptical
discrete solitons and saddle solitons by simultaneously balancing normal and
anomalous diffractions along different directions.

In closing this chapter, we mention that the hybrid nonlinearity is directly
originated from the anisotropic nature of photorefractive effect. Photorefractive
nonlinearity has played a major role in experimentally exploring nonlinear beam
dynamics in both homogenous and discrete regimes in the past two decades.
Although elliptical solitons and their anomalous interactions due to the weak
photorefractive anisotropy under conventional bias conditions have been studied,
most of the previous studies were based on an isotropic and local approximation of
the photorefractive model. Therefore, hybrid nonlinearity supported by the NCB
conditions brings about opportunities for exploring novel nonlinear beam dynamics
under strong anisotropy and nonlocality in both continuum and discrete regimes.
More generally, the novel concept of hybrid nonlinearity opens a door to study the
nonlinear beam dynamics in anisotropic nonlinear systems in optics and beyond.
Specifically, this raises many intriguing questions, such as, would the asymmetric
diffusive nonlinearity in photorefractive materials lead to self-bending of the aniso-
tropic self-trapping states? If so, then how would solitons move in presence of hybrid
nonlinearity? Is it possible to use the enhanced nonlocality of hybrid nonlinearity to
fulfill wave mixing without diffusive nonlinearity? How does hybrid nonlinearity
impact the modulation instability? Would other nonlinear phenomena, such as
spontaneous pattern formation, self-pumped phase conjugation, exist under hybrid
nonlinearity? In the presence of photonic lattices, would the enhanced anisotropy
lead to symmetry breaking light propagation behaviors? What’s the influence of the
anisotropy on the nonlinear optical surface states? Our setting will help explore these
concepts and understand the true universal nature of anisotropic nonlinear media.
We expect more interesting and exciting results that are yet to come.
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Chapter 6
Theory of Polariton Solitons
in Semiconductor Microcavities

0.A. Egorov, D.V. Skryabin, and F. Lederer

6.1 Introduction

The research into the physics of localized structures (solitons) in nonlinear systems
covers many branches of physical sciences, including optics, fluid dynamics,
particle physics, and biology [1-3]. Depending on the physical setting, localiza-
tion can occur in one, two, or three dimensions. One of the qualitative principles
underpinning the localized structure formation is that the dispersion induced
broadening is compensated by the nonlinearity of an appropriate sign and if loss
is present as in non-Hamiltonian systems, then it has to be compensated by an
external energy source [3]. Most generally, if dispersive spreading happens as for
quantum mechanical particles with positive/negative effective mass, then a focus-
ing/defocusing, or in other words, an attractive/repulsive nonlinearity, is required
to compensate for the dispersion [2]. One of the active topics of recent research has
been the so-called cavity solitons in weakly coupled, wide aperture semiconductor
microcavities [4—11]. Apart from their interesting physics, these structures have
been proposed for use in several information processing schemes [9-14]. How-
ever, applications of cavity solitons in weakly coupled microcavities are
limited due to their slow response times and the relatively weak nonlinearity.
Slow (nanosecond) carrier dynamics is dominant in weakly coupled vertical cavity
surface-emitting lasers (VCSELSs) and it does not catch up with the fast (picosec-
ond) photon lifetime in the cavity [14, 19]. It is also challenging to trap photons in
small volumes and thus dense packing of conventional light-only cavity solitons is
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problematic. In the strong coupling regime, the photons are replaced by polaritons
[15], which are the exciton—photon quasiparticles [16-20]. The effective wave-
length of these polaritons is smaller than that of photons and their lifetime is
comparable to the one of photons and, hence, fast. Their nonlinear interaction,
which is of excitonic origin, is 2-3 orders of magnitude stronger [19-22].
Polaritons are also known to exist in other condensed matter, atomic, and optical
systems [23-28]. In the last few years, extensive studies of polaritons in strongly
coupled microcavities have been largely motivated by the studies regarding
polariton Bose—Einstein condensation [29, 30] and the transition to a superfluid
regime [31, 32]. Recently, these exciton-polaritons have also been observed at
room temperatures, see, €.g., [33, 34], which has further boosted their potential for
practical applications. The strong repulsive interaction of polaritons has been
shown to lead to low-threshold optical bistability [35—37] and parametric wave
mixing [38—45]. In the latter case, the simultaneous matching of momenta and
frequencies of the pump, signal, and idler beams can be achieved provided that the
momentum of the pump exceeds a critical value associated with the so-called
“magic angle” marking the point where the effective polariton mass changes its
sign [44]. Besides Coulomb-induced polariton—polariton repulsion, there are two
other nonlinear mechanisms which govern the dynamics of intracavity polaritons
and lead to the saturation of the coupling strength between excitons and photons
when the exciton density increases [18, 21, 22, 42]. The first effect is phase-space-
filling due to the Pauli exclusion principle and the second one is the
renormalization of the exciton orbital wave function induced by the presence of
other excitons [21]. Both saturation mechanisms are important for GaAs- based
devices with small exciton binding energy and they have been shown to result in
polaritonic bistability [36, 37]. Solitonic and self-localization effects with
polaritons in bulk media have attracted attention since the 1970s until now [24,
46, 47]. In the context of microcavity polaritons, the existence of vortices in
exciton-polariton condensates [48] has been discussed. In a recent experimental
paper [49], the authors claim the observation of localized structures or cavity
solitons in a strongly coupled semiconductor microcavity. Further experimental
investigations of the coherently driven semiconductor microcavities provide the
evidence of polariton droplets moving on top of the background created by the
signal and idler beams participating in parametric conversion [50-52]. In a series
of our own papers, different types of resting and moving self-localized states of
exciton-polaritons in coherently driven semiconductor microcavities have been
reported [53—57]. This chapter reviews the findings of the latter. In Sect. 6.2, we
describe the equations used to model the polariton dynamics. Then we analyze the
linear dispersion of polaritons and study the bistability conditions of the homoge-
neous solutions (HSs). In Sect. 6.3, we derive the simplified nonlinear model in the
polaritonic basis. Section 6.4 discusses stationary and moving dark cavity
polariton solitons. Then, in Sect. 6.5, the formation of moving bright polariton
solitons is considered for the pump beams tilted beyond the “magic angle.” Finally,
in the Sect. 6.6 we describe bright solitons existing close to the upper-polariton
branch due to the saturation of the exciton—photon coupling.
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6.2 Mathematical Model

Below we are dealing with a semiconductor microcavity Fig. 6.1a, where polaritons
may form due to the coupling of quantum well (QW) excitons and microcavity
photons. We start by introducing a standard model [18-20, 31, 53, 54, 57] for the
case of / identical QWs and a sufficiently large exciton density to saturate the
photon—exciton coupling:

OE — iV?E + (y — iA)E = if (|¥|))¥ + Epe’, (6.1)
Y — idVPW + (y — iAWY + il ') = if (|P°)E. (6.2)

Here, E and ¥ are the averages of the photon and exciton creation or annihilation
operators. The normalization is such that (QR/g)|E |2 and (QR/g)| 'I’|2 are the photon
and exciton numbers per unit area. Qg is the Rabi frequency and g is the
exciton—exciton interaction coefficient. A = (w — w.)/Qg 1is the detuning of
the pump frequency o from the identical cavity and exciton resonances (®, = ®).
The cavity is driven by a plane pump wave with the amplitude Ep, &, is the transverse
momentum of the pump wave determined by the angle of incidence. The time ¢ is
measured in units of Qy ' The photon and exciton decay rates, y, are assumed
equal. Full details of the rescaling into physical units can be found in [53, 54]. A unit
of ¢ corresponds to 0. 25 ps and a unit of x to ~ 1um if typical parameters of the
polariton experiments with InGaAs/GaAs QWs are used. The exciton dispersion
coefficient d=h w.n? / Mexec? is normalized to the photon diffraction coefficient,
where m,,. is the effective mass of excitons and » is the effective refractive index
of the cavity. Realistically, it amounts to d ~ 10~#=107>.

b o
2;

goptical pum

Fig. 6.1 (a) Sketch of the microcavity driven by a coherent optical pump. The semiconductor
quantum well (QW) is sandwiched between two Bragg mirrors (BM). (b) Polariton dispersion of
the planar semiconductor microcavity operating in the strong coupling regime. LP and UP depict
lower and upper-polariton branches, respectively, for a single QW configuration (/ = 1) and
infinite exciton mass d = 0
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The term determining the photon—exciton coupling f£(|¥|*) = [1/(1+ |¥|*/n,l)] 172
accounts for the saturation of the exciton—photon interaction with increasing exciton
densities [18]. Here, n; = N,;g/Qg is the normalized exciton saturation density.
Starting with an effective Hamiltonian for the interacting electrons and holes one
arrives at (6.1, 6.2) with saturation effects included [20, 22, 42]. This model is valid for
moderate saturations and fits well the experimental measurements of the Rabi splitting
[18]. The saturation density can be approximated as Ny ~ 0. 1 17/7[613,“;2 where a.,. is
the exciton radius [21]. For InGaAs/GaAs quantum wells, it corresponds to the
dimensionless quantity ng ~ 0. 5—1. 0.

First, we briefly describe the linear polariton dispersion, which is defined as the
dependency of the frequency Q (or energy) from the transverse momentum
components &, and k,. Assuming that E, ¥ ~ e 7"e ¥ +kxtiky and dropping the
pump term and nonlinear effects, we find the eigenvalue problem:

2
Q. (k)p, (”‘l y l;;gz/>pk, (6.3)

where p, = {ex, ¥, } is the polariton basis vector and Q . (k) are the eigenfre-
quencies. e; and ; describe the content of the photonic and excitonic components
of polaritons (Hopfield coefficients) [15]. The solution of the eigenvalue problem
(6.3) yields the linear polariton dispersion relation

(1+d)k?

Q. (k) = 2

1+ % (1 — d)#4, 64)

where k% = k2 + k2 and Q . are the relative frequencies of the upper (UP) and
lower (LP) polanton branches, respectively, see Fig. 6.1b. In the strong coupling
regime, the Rabi splitting exceeds the line-width (Q (k = 0) — Q_(k = 0)>>v).
Provided that d£0 for large momenta, the LP branch extends into the gap between
LP and UP existing for d = 0.

The nonlinearity of polaritons is accounted for by the terms proportional to
the exciton density. The bistable response of the microresonator is one of the
consequences of this nonlinearity and an important prerequisite for the existence
of localized solutions. Neglecting saturation effects (n; — oo) but accounting for
the exciton—exciton repulsion, one finds that E(E}) is multivalued provided that W
(4, kp) > 0, where

(A-kﬁ)l /
WAk = | |a-— 7 | a1y

2+(A—k§)2 "/2+(A—k§)2 Y
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This cumbersome condition determines two intervals of A, where polariton
bistability can be observed [53]. It simplifies for v = 0 and normal incidence of
the pump &, = 0 giving two bistability intervals A>v/land — v/I<A<0. These two
intervals overlap with either the LP or the UP band of the dispersion relation, see
(6.4) and Fig. 6.2. The first interval belongs to the LP branch, and, thus, we call it
the LP bistability [31, 35, 40]. The second one is located within the UP band.

The energy gap between the upper- and lower-polariton branches shrinks for
larger polariton densities due to the saturation of the photon—exciton coupling
(ns#00). More precisely the LP branch shifts upward, i.e., experiences an additional
blue shift, whereas the UP branch is red shifted [36]. Note that exciton—exciton
interaction leads to the blue shift of both branches. The red shift of the UP
branch due to saturation of f(|¥|*) can be sufficiently strong to compete with and
surpass the blue shift due to exciton—exciton interaction. As a result, the bistability
can appear in a new frequency interval 4 near the UP branch [57]. Note that unlike
the conventional bistability of the upper polaritons (UP), this saturation bistability
exists even for a vanishing exciton-exciton interaction term in (6.2). The interplay
of two types of bistabilities of the UP branch can give rise to multistability of HSs.

6.3 Effective Equations in the Polaritonic Basis

To understand the physics behind the polariton soliton formation and to identify
domains of their existence, we proceed by expanding the linear polariton dispersion
around the pump momentum, and derive a single equation for the amplitude of both
the lower (and upper) branch polaritons containing an effective nonlinearity and
multiple dispersion terms. In this derivation, we simplify the nonlinear saturation of
the coupling considering only the first density-dependent term in the Taylor expan-
sion f(|W|*) ~ 1'% — |¥|*/2n,l"/. We also assume that {E, ¥} =~ [ a(r, k)pe™dk,
where a(t, k) is the Fourier amplitude of the kth component. We assume that the
spectrum of the polariton wavepacket is centered around k, and expand Q (k) up
to the fourth order in k& — k, . The resulting equation for the amplitude of the
polariton wave packet

Alt,x) = / a(t Ktk — k)

is

i0/A 4 D19, A + Dy A — iD3OPA — D4O*A + iyA + 0A — ¢ |A[A = inE,, (6.6)
where 0 = A — Q. (k,) is the effective frequency detuning, v the loss, D; = 0
Q.| the transverse group velocity, and D, = (1/2)8%Qi|kp, D; = (1/6)0; Qi s

D,=(1 /24)8?Qi|kp are the dispersion coefficients (Fig. 6.2b). The effective
nonlinearity reads as £ = |lpkp|2(|lpkp|2 +Real(ez;ﬂ . l//kp)”s_l)/l“ekp 24 \x//kp|2) and
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Fig. 6.2 (a) Polariton dispersion: lower (LP) and upper (UP) polariton branches in the strong
coupling regime. (b) Dispersion coefficients of the lower polaritons (LP) vs pump momentum &,
for d = 0. (¢) The effective nonlinear coefficient & of the upper (UP) and lower (LP) polariton
branches vs pump momentum for / = 1 and the saturation densities n; = oo (1), ng =2. 0 (2),
ng=1.0@03),n,=0.54)

n=ei/ (|ekp|2 2). The essential difference between the weak and strong
coupling regimes, relevant to our study, is not the mere existence of the LP branch,
but the fact that it exhibits an inflection point, 8%!2, = Oatk = kp,e, Where the second-
order dispersion changes sign (Fig. 6.2a, b). Note that in general, the effective
transverse mass of polaritons is a 2 x2 tensor. The mass component corresponding
to the direction of the pump momentum changes its sign from positive to negative for
k > kmag, while the mass in the orthogonal direction stays positive. Normahzmg the
excitonic component of the linear polariton eigenmode such that |y, |* = 1 results in
an equivalence of the polariton and exciton densities (|A|*).

The effective nonlinear coefficient for the lower (-) and upper (+) polariton
branches is expressed as

(kf, - ,/41+k§)((k§ T /41+kg) —|—21/ns) o
l((kﬁ$a/4l+k;‘)2+4l) '

and its dependence on the pump momentum is shown in Fig. 6.2c. Due to
the opposing actions of the two types of nonlinear shifts, the effective nonlinearity
of the upper-polariton branch changes its sign for some values of momenta
provided that the saturation density of the exciton—photon interaction is small
enough: ng<nei =1/(1/1+ k2/4 - k,z,/2).

For normal pump incidence, k, = 0, the model ( 6.6) is identical to the one
previously studied in the context of light-only cavity solitons in the case of Kerr
nonlinearity, see, e.g., [4, 7, 58] and reference therein. From these studies, it is
known that the points where the HSs destabilize are the potential bifurcation points

éi (kp) =
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Fig. 6.3 (a) Bistable response of both lower (LP) and upper (UP) polaritons for the positive
effective detuning & = 0. 3 and a defocusing nonlinearity. (b) k,-dependence of the |A| values
corresponding to the turning points (TP) of the bistability loop. (¢) Pump amplitudes required for
bistability. The full lines in (b, ¢) have been obtained using (6.6) and the diamonds depict results of
the original model [(6.1) and (6.2)]

for solitons to emerge [7]. The HS response may be either monostable or bistable
(see Fig. 6.3a). In the latter case, two steady-state HS solutions (stable and unsta-
ble) converge and disappear simultaneously at the limit or turning points (TP) of HS
solutions. This is a saddle-node bifurcation. In accordance with this model, the
operating frequency has to be slightly above the corresponding resonance é > /3
for the defocusing nonlinearity (£ > 0) or slightly below for the &<— /3
focusing case (§ < 0) [58]. As a result, one can find two intervals of polaritonic
bistability associated with the lower and upper-polaritonic branches in agreement
with the conditions for bistability (6.5) without saturation effects. Figure 6.3b, c
shows the example of HS bistability domains for both the lower and the upper-
polariton branches calculated in both the original model [(6.1) and (6.2)] and in the
simplified model in the polaritonic basis (6.6). There is a reasonable agreement
between the results of both models for the lower-polariton branch. It is quite
unexpected that the pump amplitude required for bistability reaches the minimum
for the nonzero moment kj, slightly beyond the “magic angle” (see Fig. 6.3c). It can
be explained by the increase of the effective nonlinear coefficient with k;, for the
lower polaritons (LP), see Fig. 6.2c. Note that a sufficiently strong nonlinear
frequency shift can disturb the linear polariton basis and, therefore, the simplified
model (6.6) ceases to be valid. Such distortion explains the substantial
discrepancies between the bistability domains obtained in the original and in the
simplified models for the upper polariton (UP) branch.

Before proceeding with comprehensive numerical simulations of cavity polariton
soliton (CPS), we discuss three important regimes anticipated from the model (6.6).
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Regime I: For a moderate inclination of the pump beam &, ~ 0, the second-order
dispersion is positive (D, > 0) and prevails against all higher order dispersion terms
(Fig. 6.2b). The effective nonlinearity is defocusing (£ > 0) for the lower- as well
as the upper-polariton branch for a small saturation nonlinearity n, — o< . Dark
CPSs are expected to be stable for these parameters (see Sect. 6.4 and [53]). The
effective nonlinearity term £~ of the lower branch polaritons increases for strong
saturation effects. Therefore, we assume that the saturation of the photon—exciton
coupling does not change qualitatively the nonlinear solutions but reduces the
intensity thresholds required for their excitations.

Regime 2: For a large inclination of the holding beam beyond the “magic angle,” the
leading order dispersion term of the lower-polariton branch changes the sign
D, < 0. In this case, moving bright CPSs can be found for both 1D and 2D
configurations (see Sect. 6.5 and [54, 55, 56]).

Regime 3: For normal incidence of the pump beam k;, ~ 0 and a strong saturation
nonlinearity, the effective nonlinearity ( 6.7) changes the sign at the upper-
polariton branch (Fig. 6.2c). The nonlinearity becomes focusing at this branch
giving rise to a new domain of bistability associated with saturation effects and
the formation of the stable bright cavity polariton solitons (see Sect. 6.6 and [57]).

6.4 Dark Polariton Solitons

In this chapter, we consider solitons with frequencies close to the bottom of the LP
branch for zero and small pump momenta, where the effective polariton mass is
positive along any direction in the cavity plane (regime 1). The saturation of the
exciton—photon coupling does not have any qualitative impact on the results
discussed in this chapter and therefore can be disregarded, ny, — oo. Since any
type of cavity solitons is located on a homogeneous background, it is important that
the linear stability of the background is investigated first. The spectrum of small
perturbations around the background field in the bistable regime has been previ-
ously reported, e.g., in [31]. For sufficiently small pump momenta, the lower state
of the polariton bistability loop can become unstable evidenced by the growth of
perturbations with finite transverse momenta [modulational instability (MI)],
thereby generating a growing modulation of the initially flat polariton state, while
the upper state is generally stable, see Fig. 6.4a.

The soliton branches are known to emanate from the points of MI [7]. First, we
consider the case when the MI point of the lower state of polaritons falls within
the bistability interval of the pump field strength. Applying the Newton method
to solve the stationary (0, = 0) version of (6.1) and (6.2) with 8% + 85 = 8,2, + 71,8,-
(r> = x*> +y?) we have found, perhaps surprisingly, a family of small amplitude
bright solitons splitting from the MI point, see the dashed red line in Fig. 6.4a.
These solitons become more intense for smaller values of £}, further away from the
MI point, see Fig. 6.4d. The increase in intensity with the drop of the pump power is
a ubiquitous signature of the underlying dynamical instability (see below).
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Fig. 6.4 Branches of unstable bright (a), 1D dark (b), and 2D dark (c) cavity polariton solitons
(shown is the squared modulus of the excitonic component) as functions of pump amplitude E, for
A= -0.7,v=0. 1. (d-f) Exciton density distribution |'P(x, y= 0)|2 across the bright (d), 1D
dark (e),and 2D dark (f) soliton profiles for the points marked by 1, 2, 3, 4, and 5 in figures (a—c).
Full and dashed lines in (a—c) mark stable and unstable solutions, respectively

The bright CPS branch terminates at £}, = 0. 1748. At this particular point (Maxwell
point), the lower and upper homogeneous states (HSs) can be connected by a zero
velocity front. When the pump approaches the Maxwell point, the soliton broadens
and its peak intensity tends toward the intensity of the upper homogeneous state.
We also performed a stability analysis of these bright solitons. The linear
perturbations around the radially symmetric solitons have been assumed in the
general form ¢ (r)e’" 4 ¢ (r)e %! where J = 0, 1,2,... [59]. The bright
solitons have been found unstable with respect to the perturbation with the azimuthal
index J = 0. This instability tends to transform the soliton into moving fronts.
The front velocity becomes very small for E, close to the Maxwell point (MP)
and, hence, this class of bright solitons is only weakly unstable there. Pinning of the
fronts to the inhomogeneities of the cavity can provide a further stabilizing effect.
Because of the defocusing nature of the polaritonic nonlinearity the dark solitons,
see, e.g., [7], are expected not only to exist, but also to be genuinely stable. Dark cavity
solitons in the weak coupling regime, have been previously reported in numerical
modeling and experiments, see, e.g., [5, 8, 60]. In our case, the dark polariton solitons
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Fig. 6.5 (a) Amplitude of the homogeneous state (HS) (black line) and min | Y(x, y)|2 for 2D dark
CPSs shown as functions of E,: A = —0.5, y = 0. 1.B1 and B2 mark two branches of dark CPSs.
(b) Zoom of the area from (a) showing the B2 dark CPSs. (¢, d) Exciton density distribution
|'P(x, y = O)|2 across B1 (c) and B2 (d) CPSs for the points marked by 1, 2, 3 and 4 in panels (a)
and (b). Full and dashed lines mark stable and unstable solutions, respectively

detach from the left part of the bistability loop, see Fig. 6.4b, c. Close to this point, the
notch on the homogeneous background is very shallow and it deepens as E
approaches the MP. Near the MP, the dark solitons become very broad and, similarly
to the bright ones, can be qualitatively considered as a superposition of fronts. Note
that the relaxation of the fronts toward the upper HS happens without oscillations
however, the relaxation toward the lower state is oscillatory, see Fig. 6.4e. Thus,
pinning of the two fronts one to another and, hence, stabilization of solitons is possible
only for the dark structures (Fig. 6.4e). The stable branches of dark CPSs are shown by
full lines in Fig. 6.4b, c. The unstable ones correspond to the instabilities with J = 0
(for the 2D case). Note, also, that the existence domain of 1D stable dark solitons wider
than that for 2D ones (compare Fig. 6.4b, c).

For detunings 4 close to the exciton resonance (4 = 0), the MI point shifts toward
the left edge of the bistability interval to pass it eventually (compare Figs. 6.4a and
6.5a). As a result the branch of bright solitons originating at this point disappears, see
Fig. 6.5 (A = —0.5). However, we have found two distinct branches of the dark
solitons marked as B1 and B2 in Fig. 6.5a, b. The B1 branch bifurcates subcritically
from the folding point of the upper HS and becomes stable after the turning point.
Close to this point the B1 solitons have a single well shape, while later they transform
into ring-like structures Fig. 6.5c. Note that close to the turning points the B1 solitons
become unstable suffering from an oscillatory (Hopf) instability [53].
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Fig. 6.6 Development of the symmetry-breaking instabilities of the dark CPSs marked as 5 (row a)
and 6 (row b) in Fig. 6.5b

The B2 solitons exhibit a ring shape over the entire existence domain, see Fig. 6.5d.
It is interesting that the B2 branch does not bifurcate from the HS. B2 solitons are
linearly stable in the narrow interval marked by 4 in Fig. 6.5b. However, they are
mostly unstable with respect to the perturbations breaking the radial symmetry, e.g.,
with J7£0. Examples of this instability with/ = 3 and J = 8 are shown in Fig. 6.6.

Dark polariton solitons start to drift provided that the pump has a nonzero
transverse momentum (k,70). In first approximation, the velocity of motion is
proportional to k, [61].

To prove that drifting structures are indeed solitons, we consider (6.1) and (6.2)
with 0, = 0 and seek moving solitons in the form: E(t,x) = E(¥)e™**, ¥(t,x)
= P(X)e*, where ¥ =x—vr and v is the velocity (yet to be determined).
It turns out that v is close, but not equal, to D, see Fig. 6.2b and (6.6). For the
single QW configuration (/ = 1) and negligible saturation effects (ny = o ), E
and ¥ obey

(2ky = V)O:E — i0E + (y — iA+ ik)E = i¥ + E,,
— 0¥ + (y — iAWY + i|P]*P = iE. (6.8)

The soliton solutions of the above system were found using a modification of the
Newton method allowing to treat v as an unknown variable (see Fig. 6.7a, d).
The branch of moving dark solitons bifurcates subcritically from the left fold of
the bistability loop. The solitons themselves have oscillating tails at their rear, also
known from other moving cavity solitons [62].

In a 2D setting, the nonzero pump momentum breaks the equivalence between the
x- and y- directions. While along the x-coordinate, one should expect the cross section
of the 2D soliton to be similar to that of 1D solitons described above, along the
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Fig. 6.7 Minima of the excitonic components of the 1D dark moving solitons in x-direction (a),
stationary dark solitons localized in y-direction (b),and 2D moving dark CPS (¢) vs E,, at the
inflection point of the polariton dispersion k;, = ki, ~ 0. 88 and A = —0.38. Figures (d)—(f)
show the soliton profiles for the branches given in (a)—(c), respectively

y-direction the soliton tails are expected to be symmetric, since the corresponding
projection of the pump momentum is zero. Indeed if we now look for 1D solitons in the
form E(t,x,y) = E(y)e™*, ¥(t,x,y) = P(y)e’™* we find a branch of stable solitons,
see Fig. 6.7b, e. Thus, the shape of the stable 2D solitons, found through the modeling
of (6.1) and (6.2) and shown in Fig. 6.7c, f, can be understood as a hybridization of 1D
dark solitons independently localized in the x- and y-directions.

Overall, the semi-rigorous criterion for stable and moving dark solitons to exist in
the present system is kp < kpygae. For larger pump momenta, the effective mass
becomes negative, so that the repulsive polariton—polariton interaction favors the
stability of bright solitons, which we are going to describe in the succeeding chapters.

6.5 Bright Polariton Solitons

The effective polariton mass and the second-order dispersion coefficient D, change
their signs from the positive to the negative one at k, > kp,,. For k, equal and close
t0 Kmag, the third-order dispersion expressed by the coefficient D3, see (6.6) and
Fig. 6.2b, becomes the leading linear effect influencing polariton dynamics. As we
increase k;, further, the value of D5 drops and the polariton dispersion is determined
by the competition of the D, and D, terms. Both D, < 0 and D4 > 0 favor the
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Fig. 6.8 Maxima of the excitonic components of the solitons vs E, (a, ¢) and the soliton profiles
(b, d) for different k,. The full/dashed lines in the planes (a) and (c) correspond to stable/unstable
solutions, respectively. Ej and 4 values are: (a, b) 0. 149 and — 0. 38 (¢,d) 0. 19 and — 0. 05. (e)
Diamonds indicate the numerically computed soliton velocity vs k. The dashed line shows D (k).
(f) Diamonds show the soliton width vs k,. Dashed lines show the appropriately scaled /D,
where m = 2, 3, 4

existence of bright solitons for a repulsive nonlinearity. In this regime, D70 and,
hence, any solitons found here are expected to move.

Moving bright solitons have been calculated by using (6.8). Plots illustrating the
dependence of the maximal soliton amplitude on the pump field and the associated
bistability curves for the homogeneous (0,. , = 0) solutions are shown in Fig. 6.8a, c.
Figure 6.8b, d show typical transverse profiles of these bright solitons. They emerge
for k, slightly below k.., and the intervals of their stability expand with increasing k.
Note that (6.6) with the third-order dispersion term D3 supports both bright and dark
localized solutions irrespectively of the sign of nonlinearity [62]. Similarly, the bright
and dark polariton solitons can coexist provided that kj, is close t0 kpqg.

The maximum of the soliton velocity v occurs at k = ke, and decreases rapidly
with increasing k,, see Fig. 6.8¢. This is in remarkable contrast to what happens if
dispersion is parabolic, where the soliton velocity continuously increases with k.
For our choice of parameters v must be multiplied by ~ 4 x10° m/s to give the
physical velocity. It implies that a soliton with v = 0. 25 will traverse across a
typical distance of ~ 100pm in ~ 100 ps. This is 40 times larger than the polariton
lifetime. Hence, the solitons have enough time to be excited, formed, and experi-
mentally observed.
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To characterize the influence of the different dispersion orders on solitons, we
display the soliton width vs the momentum &, see Fig. 6.8f. Changing k, we have
kept constant the detuning of the polariton frequency from the pump frequency, 9,
fixed at & = 0. 3, by adjusting the detuning of the pump field from the cavity
resonance, 4, which explicitly enters into the full model. For large k;, the excitonic
part dominates over the photonic component, see Fig. 6.8. That is why the polariton
solitons can be much narrower than the pure photonic cavity solitons in the weak
coupling regime and may attain widths well below the ones allowed by the photonic
dispersion. The soliton width is expected to scale with the dominant dispersion
coefficients as ~ {/D,, (m = 2, 3, 4). Figure 6.8f compares the numerically found
soliton width (diamonds) with the scaling given by the different dispersion orders
(dashed lines). Third-order dispersion describes well the soliton width for relatively
small k, where D, ~ 0. A further inclination brings D, on the top, while the third-
order dispersion vanishes. A further increase of k, brings fourth-order dispersion
into the play, which starts to compete with D,.

In order to use polariton solitons as information bits, it is desirable to have them
robustly localized in both transverse dimensions. The generalization of the 1D
solutions toward the 2D case is not straightforward because the effective mass of
polaritons has different signs along x and along y, with the latter being perpendicu-
lar to the pump momentum.

To find 2D bright solitons, we have taken the 1D soliton and extended it to infinity
along the y- direction, see Fig. 6.9a, b. Then we multiplied this solitonic stripe with a
broad, but finite top hat function in y-direction, and initialized (6.1) and (6.2) with
this profile. The stripe edges start moving with velocity V ralong y forming moving
fronts, Fig. 6.9d, where V,# 0 does not result in the motion of the soliton center of
mass (since two edges move in opposite directions), while v#0 does. The front in
Fig. 6.9d is analogous to the fronts connecting the upper and lower branches of the
bistable HS [4]. For these fronts there exists the well-known MP, e.g., a special value
of the pump, E, = Eyp, such that the front rests [4]. For E, > E\yp the upper state is
invading the lower one, and it is vice versa for E}, < Eyp, see Fig. 6.9c. The fronts
observed in the present work, however, connect the 1D soliton to the lower branch of
the HS; hence, their MP is different and shifts away, Eyp;7#Enp. Multihump 1D
polariton solitons also exist [55] and can be connected by a front, see Fig. 6.9e.
The MP in this case is again different, see Fig. 6.9c.

We have also performed a similar set of simulations with moving fronts designed to
match practical experiments. In order to achieve this we have added the term
Eo(x, y, Neox — oot representing a pulse, seeding a localized excitation to the
equation for E. Using an elliptically shaped Gaussian beam elongated along
the y-axis and having a Sps duration, we have observed that the soliton profiles
along x are easily generated, while their edges in the y-direction are either converging,
so that the beam is shrinking (E,, < Eyp1), ordiverging (E, > Eypy), so that the beam
is expanding, see Fig. 6.10a, b. Remarkably, in a narrow window of the pump
amplitudes left from the MP the shrinking in y-direction is suppressed, so that the
emerging structures remain localized in both spatial coordinates over long propagation
distances. Performing tedious numerical simulation of (6.1) and (6.2) over the time
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Fig. 6.9 (a) Bistability loop of the homogeneous solution (HS). The dashed line corresponds to
the unstable HS. The dotted line marks the maximum intensity of the 1D CPSs localized along x, as
shown in (b). (b) Soliton stripe moving in x-direction with velocity v = 0. 56. (¢) Velocities V ;of
the single- (solid line) and double- (dashed line) hump fronts. V ;= 0 at the Maxwell points MP1
and MP2. Moving fronts connecting 1D single- (d) and double- (¢) hump CPSs and HS back-
ground. Parameters: £, = 0. 139, A = —0.25,k, = 1. 2,y =0. 1

spans exceeding 2. 5 ns, we have found that the 2D solitons with one and two humps
represent stable attractors for a generic class of initial conditions within a finite interval
of pump intensities, see Fig. 6.10c. The seed momenta applied in our simulation were
ko = 0 (seed orthogonal to the cavity plane) and ko = k,, (seed is collinear with the
pump). Both choices have led to the excitation of 2D CPSs, albeit for different powers.
The ko = k, case appeared to be more efficient. The branches of the single- and
double-hump stable 2D bright solitons terminate at the respective MPs, see
Fig. 6.11. Thus, perhaps surprisingly, stable 2D polariton solitons may exist even if
the polariton mass along the orthogonal directions has opposite signs.

While the MP argument has been useful in finding 2D solitons, it relates to a
specific value of £}, and cannot explain completely why solitons do exist within a finite
interval of E,. Other physical mechanisms are likely to be involved in the soliton
formation. It was proposed in our recent paper [56] that parametric four-wave mixing
of polaritons plays an important role for the localization of polaritons in the direction
transverse to the pump momentum (y). The peculiar shape of the LP dispersion allows
for phase matching of the pump, signal, and idler waves giving rise to strong
parametric generation effects [19, 38, 39, 44]. In nonlinear optics it is well appreciated
that the nonlinear phase shift resulting from parametric wave mixing is not simply
proportional to the polariton density of pump, but involves phases and intensities of all
the participating waves, thereby modifying the soliton existence conditions. This
problem is currently considered by us and will be reported elsewhere.
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Fig. 6.10 (a) Shrinking of the initially localized excitation observed for £}, = 0. 136. (b) Spread-
ing of the initial excitation observed for E, = 0. 141. (¢) Long-term dynamics showing the
dynamical robustness and confirming the attractor properties of 2D CPSs, E}, = 0. 1378. Other
parameters as in Fig. 6.9

a b
0.46 T T T ‘E‘ 04
[El | cPs2
02
0.44 - CPS1 N Q&
! c LS ~
‘E‘ ntM
042 - § :
02
MP2 MP1 h‘é} T
04 ' v
0.137 0.138 Ep 0.139 - -

Fig. 6.11 (a) Maxima of E for different soliton solutions vs the pump E},. CPS1 and CPS2
correspond to single- and double-hump solitons, respectively. Profiles of the photonic components
of the single- (a) and two-hump (b) 2D stable bright polariton solitons for £, = 0. 1378 and
E, = 0. 1373, respectively. Parameters: A = —0.25, k, = 1. 2
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6.6 Bright Solitons Near the Upper-Polariton Branch:
Saturation and Finite Exciton Mass Effects

In the previous two sections, discussing properties of the solitons, we have
disregarded the effect of saturation of the exciton—photon coupling coefficient f
(Rabi frequency) with increasing exciton density by setting ng = oo, see (6.1) and
(6.2). Near the LP branch the dynamics of the system is only quantitatively affected,
because it simply enhances the repulsive interaction of the polaritons. However, for
the UP branch, the saturation effect introduces an effective attractive polariton—
polariton interaction (focusing nonlinearity), which may counterbalance or even
overcome the repulsive one. Indeed decreasing the parameter f(|¥|*), one shifts the
LP branch upward and the UP branch downward, while for ny = oo, an increase of
the exciton density effectively causes a blue shift of both branches. Thus, for upper
branch polaritons accounting for finite values of ng is expected to result in some
qualitative impact on the properties of the homogeneous and solitonic polariton
states. In particular, if the focusing nonlinearity becomes sufficiently strong, then
bright solitons near the UP branch with small and zero velocities can be expected to
exist in both 1D and 2D settings. In this section, we describe these solitons
following our recent work [57].

Changing the detuning parameter 4, so that the pump frequency appears in the
vicinity of the UP branch and solving (6.1) and (6.2) with 0, = 0 in 1D and 2D
cases, we have found bright solitons bifurcating from the left fold of the bistability
loop, Fig. 6.12. The photonic and excitonic components of these solitons have the
bell-like shape. The tails of the structures are nonoscillatory, if the excitonic
dispersion is disregarded, d = 0. However, it turned out that the effect of the finite
exciton mass d is important here, because the tails of the LP branch bend upward for
large k and d#0 and become resonant with the UP branch, see Fig. 6.13a, thereby
opening a channel for energy transfer between the two branches. One of the
manifestations of the d0 effects is that both homogeneous and soliton solutions
undergo MI for 4 > 0 against perturbations with large momenta. Physically, this
instability leads to the generation of almost free excitons [57, 63].

To understand the nature of this excitonic instability, we consider in more detail
how this instability appears for the HSs. The photonic field on the right-hand side of
(6.2) serves as an external force driving the coherent excitons. Therefore, the
excitonic component of the stationary HS solution |‘I’5t| can be expressed as a
function of its photonic part Ey (Fig. 6.13b). Both nonlinear terms in the exci-
tonic equation introduce the negative nonlinear shift of the excitonic detuning,
which can be compensated by 4 > 0. Hence, the dependence of |‘Pst| on |Est| can
become bistable. Assuming ng = co, the condition of this intrinsic bistability
becomes trivial [58]: A>y+/3. To derive a simple expression for the growth rate
of the perturbation with large momenta, we have disregarded the coupling between
the excitonic and photonic components and performed a linear stability analysis
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E

Fig. 6.12 (a) Branches of stable bright CPSs originating from the upper-polariton branch in both
1D and 2D configurations. (b) 2D profile of bright CPS. Parameters: / = 16, y =0. 1, 4 =3. 7,
ng=0.75

Fig. 6.13 (a) Dispersion relation of the lower- (LP) and upper- (UP) polariton branches for
nonzero exciton dispersion (finite mass of excitons) d = 0. 001. The dashed line depicts the case
of vanishing dispersion d = 0. (b) Dependence of the excitonic component on the photon compo-
nent of stationary solution given by (6.2). Solid lines correspond to stable solutions. (¢) Contour
plot of the real part of the growth rate Re) of unstable perturbations in the plane (| ¥/, k) given by
(6.10) for a finite exciton mass d = 0. 001. Parameters: / = 16, vy = 0. 1

using (6.2) only. Looking for the solution close to the stationary one (Eg;, V) in the
form W, + W Rk we have:

1
JE(R) = —p — Ay £ /A2 (k) — As(k), A; = §|‘I’S,|2/<nsl + |‘I‘s,|2)7
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Fig. 6.14 (a, b) Branches of both uniform (CPS) and modulated (MCPS) one-dimensional cavity
polariton solitons for nonzero exciton dispersion (finite mass) d = 0. 001. HS depicts the homo-
geneous solution, and BP1 is a bifurcation point for MCPS. (¢) Amplitude profiles of MCPSs.
Parameters: / = 16,y =0. 1,4 =3.7,n,=0.75

2
As(k) = AP + A (A Ak 3 — 2ns> ,

2
As(k) = ((2 FAN P (A — k) (1 +A1)) . 6.9)

The stationary solution (Eg, W) becomes modulationally unstable (Reki
(k) > 0) provided that its amplitude belongs to the intervals | Ysp1 | < | lI’Sl| <| Y’szl
and |'I’Bp3|<| SPS[| where BP1, BP2, BP3 denote bifurcation points in Fig. 6.13b.
It follows from (6.10) that the period of the unstable perturbations scales as k!

~d'2, Thus, for d~10"* the period is much less than the soliton width. Therefore,
our analysis is valid not only for the HS but also for the soliton solutions.
The equation for the photonic component (6.1) practically does not contribute to
this instability mechanism, since the momentum of unstable excitons is very large
preventing them from efficiently coupling to photons.

The growth of this perturbation on the soliton background develops into a stable
pattern forming a soliton with a sub-wavelength spatial modulation of the excitonic
component, see Fig. 6.14. The formation of the periodic sub-wavelength pattern
does not conflict with the parabolic dispersion approximation used for photons, since
only the excitonic component of CPS is modulated (Fig. 6.14c). The branch of
spatially modulated solitons bifurcates from smooth solitons at the point (BP1)
where the MI sets in (Fig. 6.14a, b). Modulated solitons are essentially the bound
states of polariton solitons and free excitons. Equations (6.1) and (6.2) neglect
phonon effects and the relaxation of excitons with large momenta (k) toward the
ground state [63]. We anticipate that these relaxation mechanisms can further
stabilize the solitons due to the shortening of the exciton lifetime responsible for MI.

In many aspects the 2D case is not only similar to the above-discussed 1D case,
but also exhibits some important distinct features. In particular, unlike in the 1D
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Fig. 6.15 (a) The modulus of the excitonic components of two-dimensional MCPSs for
d = 0. 001 and E,, = 0. 35.(b) Dynamics of two-dimensional oscillating CPSs for the parameters
E, =0.37,d = 0.001. (c) The amplitude branches of unstable two-dimensional CPSs, modulated
CPSs (triangles) and oscillating CPSs (open circles) for a finite exciton mass d = 0. 001. The thick
dot in (c) depicts the point where the modulation starts to develop at the center of the
2D-modulated CPS (bifurcation BP3 in the Fig. 6.13b). Other parameters as in Fig. 6.14

case, the excitonic component of the 2D solitons is not modulated across the entire
soliton profile. In particular, the area of the 2D solitons near their centers can stay
free of spatial modulation, see Fig. 6.15a. This is because 2D solitons have larger
amplitudes, so that the maxima of their excitonic component reach the window of
stability, | Pgpo|<|P«|<|¥ses, see Fig. 6.13b, c.

Increasing the pump amplitude further, the modulated solitons undergo second-
ary instabilities. This instability induces the exponential growth of a periodic
pattern at the soliton center (Fig. 6.15b). However, the soliton does not get
destroyed, but experiences a high-amplitude periodic oscillation. This scenario is
reminiscent soliton explosions in the Ginzburg-Landau model [3] and the
excitability mediated by the localized structures in a nonlinear optical cavity
operating in the weak coupling regime [64]. Direct numerical simulations show
that bright soliton solutions of (6.1) and (6.2) can exist for large values of d, which
can even be in the order of 1. If d > d., (for our set of parameters d., =~ 0. 003),
then the solitons do not experience MI. The diagram summarizing the existence of
the stationary and oscillatory 2D solitons is shown in Fig. 6.15c.

6.7 Summary

We have reviewed the properties of bright and dark polariton solitons having zero
and nonzero transverse momenta and existing in the spectral proximity of either the
lower or the upper-polariton branch. In particular, we have shown the existence of
2D bright solitons for the case when the effective polariton masses along orthogonal
directions have opposite signs. We demonstrated that accounting for the finite
exciton mass and the saturation of the exciton—photon coupling is crucially
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important for the formation and the properties of solitons originating from the
upper-polariton branch. Microcavity polariton solitons described in this contribu-
tion exhibit picosecond excitation times and can be observed for pump powers a
few orders of magnitude lower than those required for pure photonic solitons in the
weak coupling regime of the semiconductor microcavities. Thus, the hybrid, half-
light, half-matter, polariton solitons have potentially significant advantages in all-
optical signal processing applications over the light-only cavity solitons.
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Chapter 7
Observation of “True” Optical
Vortices in a Laser System

S. Barland, E. Caboche, P. Genevet, X. Hachair, M. Giudici,
F. Pedaci, and J.R. Tredicce

7.1 Introduction

Nonlinear dynamics in optics developed mainly during the 1980s in the last century.
Probably the interest in the subject begun in 1975 when Haken [1] demonstrated that
Maxwell-Bloch equations in the single mode approximation were isomorphous to the
Lorenz model equations [2]. Thus, a laser would show deterministic chaos for
appropriate values of the control parameters. Unfortunately, almost no laser is able
to operate at those parameter values because pumping and loss rate for the field were
too high in order to reach Lorenz instabilities. It was only in 1982 that chaotic
operation of a laser was experimentally demonstrated [3]. Since then, a series of
papers have appeared in the literature dedicated to the unpredictable dynamical
behavior in optical systems [4], and particularly in lasers and lasers systems [5].
Furthermore, a new classification of lasers was made based on their dynamical
behavior instead of the characteristics of the material, or the type of pumping
mechanism [6, 7]. At that time, almost all of the work was dedicated to the temporal
behavior of lasers ignoring the spatial coordinates. Only a few papers considered the
temporal instabilities in multimode lasers, which is equivalent to considering
the spatial variation of the amplitude of the field along the direction of propagation
of the light [8—10]. All this activity confirms the important role that lasers, or in a more
general view, optical systems, play on the experimental studies in nonlinear dynamics.
They are an excellent test-bench for more general theories because instabilities occur
at frequency ranges enough fast to allow a fine and constant control of parameter
values as well as an easy way to explore all the interesting control parameter space in
reasonable times. They also had the advantage that there exist reliable models based
on basic principles that are able to reproduce most of the experimental results.
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The interest on spatiotemporal instabilities in lasers grew by the end of the
1980s. It was again some theoretical papers at the origin of developing the activity
on transverse instabilities in lasers. Though the appearance of spatial structures in
the intensity distribution had been very well known since the 1960s, the interpreta-
tion of the observed patterns was mainly done on the basis of a linear theory based
on the empty cavity modes [11-15]. Modulation instabilities (also called Turing
instabilities) [16, 17], cooperative frequency locking among transverse modes [18],
and optical vortices [19] appear as possible observable dynamical behavior in broad
area lasers. Pattern formation and cooperative frequency locking were soon
observed in different experimental setups [20-23], but it was difficult instead to
reach the conditions for which “true” optical vortices would spontaneously appear
in the transverse intensity distribution. However, several papers appear claiming the
observation of optical vortices [24, 25].

Here, we call “true” optical vortices those points in space where the local
solution takes the value corresponding to an unstable fixed point, but it is free
to move in the transverse plane. In lasers above threshold, the unstable fixed
point corresponds to the zero solution of the electromagnetic field. It is well
known that all transverse modes (except the fundamental or Gaussian one) of
an optical cavity have at least one point where the electromagnetic field vanishes
and the circulation of the phase around such point is 27. These are also properties
of “true” optical vortices. However, these points would not be able to have an
intrinsic dynamics and move around because they belong to a fixed structure, like
the nodes of a standing wave. In order to reach the second condition it is necessary
that the correlation length of the structure in the transverse plane be much smaller
than the spatial size of the system and of course of the boundary conditions.
If the laser is able to construct such solution, then we can say that probably we
can observe spatiotemporal chaos or even fully developed optical turbulence.
Unfortunately, most lasers prefer to show simple or more or less complex structures
but always imposing long-range correlations [26] because different spatial
structures covering the whole space are strongly competitive among them [27].
One cavity mode tends to win, due in general to its higher gain, and the winning-
takes-all dynamics destroy the possibility of creating a complex intensity distribu-
tion with a small correlation length. In conclusion, observing experimentally “true”
optical vortices in laser systems is a kind of nightmare requiring a high Fresnel
number, a strong nonlinearity, and almost equal probability for a high number
of transverse modes. Furthermore, the observation of any type of localized struc-
ture, a structure that exist in a spatial region decorrelated from the boundaries and
other region of space, requires a bistable behavior between a homogeneous state
and a pattern [28].

In this chapter, we describe a laser system complying with the necessary
conditions to observe optical vortices. In Sect. 7.2, we describe the experimental
setup. The experimental results and their analysis are “explored” in Sect. 7.3.
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7.2 Experimental Setup

The experimental setup shown in Fig. 7.1 is based on two nominally identical
vertical cavity surface emitter lasers (VCSELSs) put into a face-to-face configuration
[30]. The distance between the two VCSELSs can be varied between 6 and 60 cm.
The diameter of each VCSEL is 200 pum. They are electrically pumped by a
stabilized power supply and stabilized in temperature by a Peltier. Two identical
lenses are placed between the two lasers in self-conjugate planes such that the near-
field distribution of each VCSEL is imaged into the other. This scheme insures that
we can maintain a high Fresnel number despite the relatively long length of the
composed cavity [29, 30]. A 20% beam splitter placed almost exactly in the middle
gives rise to two output beams. One of them is sent to a fast detector in order to
observe temporal oscillations if present and two CCD cameras give the near-field
profiles of the two beams. To insure that the position of the lenses is such that the
self-imaging condition is obtained, we superpose the emission of each VCSEL
separately with its reflection from the mirror of the other.

The two VCSELs provided by ULM photonics operate at a wavelength of
980 nm; thus, they are bottom emitter devices [31]. This feature plays an important
role in allowing a relatively uniform pumping current density over almost the whole
transverse section of the laser. In fact, one of the electrodes is covering the full

CCD

-

* |* CCD

Fig. 7.1 Schematic of the experiment. L/ laser pumped above threshold, L2 laser pumped below
transparency, /L incoherent writing laser, bs beam splitter, D high-bandwidth detector, CCD
charge coupled device camera, 7° temperature controller, C power supply, L/2 half-wave plate,
G grating, AOM acoustooptic modulator, S.F. spatial filter, / iris (reprinted from [29])
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surface and the other is a metallic ring through which the electromagnetic beam is
coming out. Usually, the ring electrode would generate a greater current density on
the border than at the center of the active material. This inhomogeneity is not
important in small area devices but would generate strong gradients in broad area’s
ones. The presence of gradients would affect any spatial structure that is not fixed
by the boundary conditions and, if such structures exist, they will disappear so fast
that it would be impossible to observe them with the state-of-the-art CCD cameras.
The nominal threshold current for the VCSELs we used is 400 mA. One of the two
lasers is pumped above threshold, while the current density on the other one is low
enough to not reach the transparency condition. Thus, the second laser will behave
as an absorber rather than an amplifier or an emitter. In other words, our optical
system can be described as a laser with saturable absorber in a compound cavity.
However, to get interesting dynamical behavior in a laser with saturable absorber, it
is necessary that the resonances of both active and passive media be close enough.
In VCSELs, and in semiconductors in general, the resonance frequency is a
function of the temperature and therefore also a function of the pumping current
due to Joule effect. In our experimental setup, the mismatch between the cavity
resonances is then controlled by the difference in the operating temperature of each
substrate. The strength of the coupling between the two VCSELSs depends also on
the loss rate of the electromagnetic field which, in turn, depends on the reflectivity
of the intracavity beam splitter. A 20% reflectivity beam splitter allowed a good
coupling and at the same time enough output intensity to be detected easily by the
detection system. A diaphragm in the path of one of the output beams is used in
order to detect the temporal behavior of the intensity at a point of the pattern with
the fast detector. The bandwidth was limited at 6 GHz by the LeCroy Wavemaster
8600A oscilloscope. Furthermore, an external beam 15 pm in diameter provided by
an edge emitter semiconductor laser can be used to ignite localized structures in the
system. This so-called “writing beam” is controlled both in frequency and ampli-
tude. Its frequency is selected by an intracavity grating while its intensity can be
switched on and off by an acoustooptic modulator inserted on its optical path.

7.3 Experimental Results

As we describe in Sect. 7.2, the main control parameter of the device is the detuning
between the resonances frequencies of the two VCSELs. Such difference in fre-
quency depends on the temperature of the substrate and the pumping current.
We choose to keep both the temperatures constant and change the pumping currents
in order to study the behavior of the system as the detuning changes. In Fig. 7.2 we
show the local intensity output as a function of the current (I1) of the emitter while
keeping constant the current (I2) of the absorber. By sweeping I1 back and forth,
we can observe different behavior in different regions of parameter space:

1. Region A of Fig. 7.2 corresponds to an increase in intensity of the spontaneous
emission.
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Fig. 7.2 Left: Local intensity output emitted by the system as a function of 11 keeping all other
parameters constant. (A) System below threshold, (B) lasing action takes place, (C) absorption by
L2, yielding bi-stable behavior, (D) pattern formation. Right: Near field of both devices. Dark
areas correspond to high intensities. (a and b) Near-field image of L1 (L2), before the interaction
(IL1 = 180 mA), (c and d) near field of L1 (L2), in the absorption zone (IL1 = 358 mA), (e and f)
near field of L1 (L2), when the pattern is developed (IL1 = 365 mA). L2 is slightly shifted on the
left (reprinted from [30])

2. Region B, coherent emission is obtained but the two VCSELs do not interact
because the detuning is big enough such that the absorber is almost transparent to
the radiation emitted.

3. Region C, the detuning becomes small enough and the absorber begins to
interact with the emitter. The output intensity decreases, and then the absorber
saturates and there is a discontinuous increase of the intensity. Sweeping back
the control parameter, we observe a region of bistability. It is in this region
where localized structures may appear.

4. Region D, a modulational instability develops inducing the appearance of
patterns.

As a matter of fact, the appearance of bright localized structures was reported in
this system and also in an usual laser with saturable absorber [29, 30, 32, 33]. Such
single peak localized structures are usually called “cavity solitons” (CS). Left panel
in Fig. 7.2 shows typical intensity distributions including the presence of CS for
those taken in region C (left panel c and d).

Usually, CS have been observed in VCSEL amplifiers and VCSEL laser with
injected signal [34-37]. If the diameter of the VCSEL is larger than 100 pm, two or
more CS do not interact among them if they are separated by a distance of the order
of 20-25 pm. Furthermore, they can be switched on and off independently by a
coherent or an incoherent beam [36, 37] at relatively high rate because the
switching time is of the order of 50 ps [38]. Thus, CS may constitute the basis for
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Fig. 7.3 Interferometric intensity signal of an LS as a function of I1. The interferometric intensity
signal is obtained by integrating the phase profile of the monitored LS. The dashed blue traces
correspond to decreasing values of 11, while continuous red traces correspond to increasing values
of I1. Variation of the interferometric intensity signal corresponds to a mode hopping of the LS.
The figure shows the multistability of the CS emission frequency. The phase profiles
corresponding to each branch of the hysteresis loop are shown in the insets. The spatial region
monitored is centered on the LS considered and has a diameter of 10 um. Bright zones represent
high intensities (reprinted from [47])

a fast all optical memory [34-38]. On the other hand, CS are very sensitive to
gradients, both intensity and phase ones, then their position, motion and speed can
be controlled by artificially adding gradients to the system [39—41]. This property of
CS, which is a general property of localized structures in nonlinear dynamical
systems, opens the way to some interesting applications like an all optical shift
register or a force microscope [42-45].

A broad area laser with saturable absorber or face-to-face VCSELs do not
require an external injected signal and therefore it is a simpler device easy to
miniaturize. Such optical systems belong to the class of the so-called CS Lasers
(CSL). Another example of CSL is a broad area laser with frequency selective
feedback [46]. The main physical difference imposed by the presence of an external
field is that the phase symmetry is broken. The phase is coupled to the intensity, and
if there are not temporal instabilities, the phase of the output field is determined by
the injected field. It is worthwhile to notice that all localized structures, for which it
was proven that the correlation length in the transverse plane was much smaller
than the size of the system, are a single intensity peak structure when the phase
symmetry is broken.

Instead for a CSL, like the two face-two-face VCSEL, the system is phase
symmetric. In principle, localized structures may appear for the same parameter
values with different phases, and even frequencies being incoherent among them as
it was shown in [47]. Furthermore, single peak structures may coexist with other
multipeak localized structures. In Fig. 7.3 it is shown not only that different
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Fig. 7.4 Bifurcation diagram showing the spontaneous switching of the system between different
solutions. The ring can coexist with an “off” state and/or with a two-humps state (reprinted from [49])

localized structures appear but also that there is a marked multistability among
them [48]. Each type of structure is distinguished by both the intensity distribution
and its operating frequency as transverse modes in a laser.

In a well-defined region of parameter values, three types of structures are
observed which coexist with the homogeneous zero solution. In Fig. 7.4, bifurcation
diagram shows the multistability among the homogeneous, a single (CS), a two
peak, and a ring structures [49]. By increasing the current I1 from 290 mA, we
begin with the homogeneous solution. This solution loses stability at around
297.5 mA and a two peak structure appears which loses stability at 298.2 mA
jumping to the upper branch characterized by a ring-like intensity distribution.
Sweeping back I1, we reach the two peak branch at 297.3 mA which remains stable
till 296 mA. Then, a single peak structure appears. Increasing the current again, the
single peak structure remains stable until 297.2 mA.

Thus, the ring-like structure is bistable with the homogeneous solution and the
two humps structure but we cannot reach its branch from the single peak structure.
This type of bifurcation diagram for localized structures has been already discussed
in the literature [28, 50, 51]. In Fig. 7.5, we can see how such rings can be generated
in different spatial locations [49]. Adding a Mach—Zender interferometer at the
output path of the device, it is possible to observe the interference of each localized
structure with itself or with adjacent ones. A detailed explanation of how the
interference patterns are obtained is found in [37].

The result of the interference of a ring with itself when both arms of the
Mach—Zender interferometer are perfectly aligned is shown in the right panel of
Fig. 7.6. The reference beam for the interference is taken from the region of the
pattern where the ring is located. Interference appears only where there is mutual
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Fig. 7.5 Left: Experimental setup. Two broad area semiconductor lasers (L1 and L2) are coupled
by imaging them onto each other via collimating optics (Coll) and lenses (L). Part of the emitted
beam is extracted from the compound cavity via a beam splitter (BS) for near-field (NF) detection
allowing interferometric measurements and spatial filtering (I). A tiny beam from a tunable laser
can be used to apply a local perturbation to the system (WB). Right: Spontaneously formed
intensity rings in the near field. The two devices (200 m diameter) are laterally shifted with respect
to each other. In the spatial region where they overlap, the absorption can locally saturate and lead
to the formation of several bright bistable rings (reprinted from [49])

Fig. 7.6 Left panel: Near-field intensity of the system, showing two bright spatial structures sitting
on the dark homogeneous background corresponding to non saturated absorption. Right: Interfero-
metric measurement. When both arms of the interferometer are aligned (a small part of the ring
structure being superimposed with the whole ring structure and surrounding region), the phase profile
of the ring structure is indicated by spiral-like interference pattern (reprinted from [49])

coherence between the reference beam and the spatial region with which it
overlaps. A remarkable feature is that the interference pattern appears only where
the ring structure itself is, demonstrating that this structure is de-correlated from the
rest of the pattern. In particular, the neighboring structure does not interfere at all
with the reference beam. This absence of mutual coherence between the fields
emitted in distinct spatial areas shows the lack or extreme weakness of any coherent
coupling between these two areas.
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Fig.7.7 (a) Near-field intensity of a localized vortex. When a part of it is magnified and interferes
with the whole vortex, fringes appear if both beams are tilted with respect to each other. Their
orientation and periodicity is set by the tilt angle. (b and ¢) The dislocation of the fringe pattern
indicates the presence of a phase defect and the direction of the dislocation gives the sign of the
charge (reprinted from [49])

The other striking feature is the presence of a phase discontinuity originating in
the center of the ring, which contains, therefore, a phase defect revealed by the
typical spiral of the phase.

While the chirality of the phase profile of the ring structure is readily apparent in
Fig. 7.6, it can also be conveniently detected by performing an identical measure-
ment, but tilting the two beams with respect to each other. In this case, interference
fringes are detected, as shown in Fig. 7.7. The presence of a dislocation in the
pattern (Fig. 7.7b, c) reveals the existence of a phase defect at the core of the ring
since the circulation of the phase around the center is 27. Even though the chirality
of the ring structure appears to be very robust, we occasionally observed spontane-
ous switching between the two chirality states shown in Fig. 7.7b, c. This switching
can be attributed to exchange of charge with the surrounding zero solution (as was
observed at the boundaries of the system in [39]).

Thus, the observed ring structures in this face-to-face VCSELs device have the
following properties: (1) there is a zero of the electromagnetic field at the core of the
structure; (2) there is a circulation of the phase around the core equal to 27; and (3)
there is no correlation among this structure and other regions of the pattern.

Furthermore, these ring structures can be switched on and off independently at
different locations and they move under the presence of any intensity of phase
gradient.

In other words, we are in the presence of what we defined as a “TRUE OPTICAL
VORTEX?” at the beginning of this manuscript. It is worthwhile to note that this
phenomenon is strongly related to the absence of any phase reference in this system.
In the majority of experiments regarding localized structures in optics which involve
some form of coherent energy input, the phase symmetry is broken and ring
structures are forbidden. In fact, a system with injected field will fix the phase of
the whole localized structures not allowing for not vanishing circulation of the
phase. On the other hand, it is important to also note that the intensity vanishes for
the homogeneous solution from which we can construct the ring-like structure.
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This property of the homogeneous solution is also an important feature because (1)
it will not allow the generation and propagation of phase waves [52] which would
not allow the generation of localized structures and (2) it provides the source of
pairs of defects from which the system construct the ring structure with just one
defect at the core.

We thank L. Gil and G. Tissoni for a very helpful discussion.
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Chapter 8
Scale-Free optics

E. DelRe and C. Conti

8.1 Introduction

The most fascinating images and patterns emerge when light diffracts from minute
structures [1]. Even the image of an otherwise featureless hole produces enthralling
ripples that spread out to invest space and form what is known as an Airy pattern.
It is a basic fact that diffraction becomes dominant when the size of the feature
becomes micrometric, and the transmitted wave has an angular spread 46 that
depends on the size of the aperture d measured in units of the optical wavelength A,
i.e., 40 ~ A /d. From a practical perspective, diffraction represents a major obsta-
cle to imaging of finer details, and a great research effort is continuously exerted to
overcome it. In fact, diffraction spreads the optical wave and blurs the spatial
information encoded in the optical beam. Consider an image composed of separate
pixels of characteristic size d and spacing /. Light emitted from the single pixels will
blur after a propagation of L, ~ [d/)\, i.e., when light from one pixel superimposes
with light from an adjacent one. The result is a progressive loss of the initial
encoded information. Diffraction entails limitations to all imaging applications
that range from astronomical observations to high-resolution optical microscopy.
Efforts aimed at taming the effects of diffraction on waves can be loosely fitted
under the general heading of diffraction compensation. The basic idea is to have
transmitted light not propagate in a homogeneous medium, where diffraction
must intrinsically produce spreading, but in an inhomogeneous medium, in
which the index of refraction 7 is spatially resolved. For example, in an optical
waveguide, diffraction is compensated by an effective lensing effect distributed
along the propagation direction of light [2]. The problem is that exact diffraction
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compensation will take place only for specific waveforms, the guided modes, with
specific shapes and sizes that depend on the features of the waveguide, precisely on
the amplitude of the index of refraction modulation 4n and on the spatial scale d
measured, once again, in units of A [3]. The modes only form a discrete set of
guided solutions that, hence, fail to allow the propagation of an image of arbitrary
size. Even encoding the optical waveform in an extended family of modes in a
multimode fiber simply transfers the distortive mechanism from the standard phase
slippage of angled plane-wave components at the heart of diffraction to inter-modal
phase slippage typical of mode dispersion.

Diffraction compensation can also be enacted through nonlinearity, the basic
example being the optical spatial soliton [4—17]. In this case, the index of refraction
inhomogeneity 4n that gives rise to distributed lensing, termed self-lensing, is pro-
duced by the propagating light beam itself. As for the case of guided modes, here the
soliton waveforms are determined by the peak intensity I, and size of the beam wy
measured in units of the optical wavelength A, giving rise to soliton existence
conditions that amount to strict laws that form rigid constraints on the waves that
can actually propagate without spreading.

The matter can be summarized in the basic observation that since diffraction is
dependent on the size of the wave measured in units of A, also its compensation will
make use of effects that depend on the spatial scales measured in units of A. Put
differently, diffraction introduces an intrinsic spatial scale into the picture, the optical
wavelength, that breaks scale-invariance symmetry and thwarts efforts at transmitting
high-resolution images. For visible beams with A ~ 0.5 um, this implies that the
direct observation of features below several micrometers is in itself a challenge, to the
point that even the once simple task of observing electronic circuitry has become
impractical with optical microscopes and requires more exacting techniques.

Limits to imaging caused by the wave nature of light become even more
dramatic for subwavelength scales, where the very nature of electro-magnetic
radiation does not allow the propagation of waves [3]. Hence the simple fact that
the optical wave has a limited bandwidth, with a spectrum peaked at A, introduces
an even more fundamental limit associated to the evanescent wave spectrum, so that
no plane wave component of transverse (with respect to the propagation direction)
wave vector |k l| > 2nn/h will actually propagate from the emitting/transmitting
object. This implies that an imaging system will simply not be able to detect
features below wg ~ A/2n. For visible light and imaging done in water solution,
this means that features smaller than approximately 200 nm cannot be detected
even with all diffraction compensating techniques in force.

In recent achievements, a profoundly innovative approach to the entire issue has
been proposed and experimentally demonstrated, termed scale-free optics [18]. In
scale-free optics, the issue of diffraction and evanescent wave formation is
circumvented by using nonlinearity to deprive the optical propagation mechanism
of its spatial scale L. We here describe and review scale-free optics with particular
focus on experiments and theory relative to effects observed in nanodisordered
ferroelectrics [19]. The subject is still in its infancy and rests on nonlinear optical
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effects in complex solids [20], which is itself a new branch of optical research. Results
hold the promise of a new general setting for optics where diffraction can be canceled
and where subwavelength beams can propagate, in crystals whose optical response
can be greatly varied through thermal history [21].

8.2 The Development of the Idea

The basic idea underlying scale-free optics is that when light propagates in a
medium in which nonlinearity introduces an intensity-independent response that
amounts to an anti-diffraction, conditions can be found for which diffraction is
completely canceled. Seen in physical terms, this happens when the nonlinearity
introduces an independent spatial scale L that cancels the optical wavelength scale
in the propagation equation. The result is that there is no spatial scale that breaks
scale-invariance. Accordingly, no diffraction intervenes and, in principle, no
limitations associated to evanescent waves hold, so that also subwavelength
features will propagate into the optical system. The idea was originally formulated
in [22], where a set of optical waves in the form of nondiffracting, spreading, and
converging solutions were predicted that supported scale invariance. In fact, the
governing nonlinear model did not contain the wavelength scale A in the diffractive
propagation. Unfortunately, this prediction remained such because at the time the
required material susceptibility was inaccessible: the nonlinear response was exper-
imentally insufficient for the predicted scale-free regime. In fact, the effect emerged
from the interplay between diffraction and a diffusive effect. This diffusive effect,
at accessible temperatures, amounted to a canceling spatial scale L < A and,
congruently, no scale-free effects were ever observed. It was the recent develop-
ment of a new generation of out-of-equilibrium photorefractive ferroelectric
crystals that profoundly changed the scenario [23]. It was found that relevant
compositional disorder in composite optical quality samples [24] introduces a
glass-forming liquid dielectric response [19]. This allowed the observation of an
anomalously enhanced electro-optic susceptibility with L ~ A. It was thus possible
to observe scale-free optics in newly engineered Cu-doped lithium-enriched potas-
sium-tantalate-niobate crystals (KTN:Li) [18]. The theoretical framework and
numerical studies were then extended to encompass a full nonparaxial model, and
this has allowed the prediction of subwavelength beam propagation, a striking
phenomenon that still awaits experimental confirmation [25]. Making use of out-
of-equilibrium nanodisordered ferroelectrics supercooled to their ferroelectric
Curie point T, scale-free optics has opened the way both to programmable optical
effects and to optical response in highly non-ergodic contexts, where the response
of single materials depends strongly on history effects, such as previous thermal
cycles. In a recent set of experiments, this has allowed the observation of the optical
Kovacs effect [26]. Finally, the very notion of scale-free optics suggests an envi-
ronment that supports optical phenomena that are independent the wavelength, i.e.,
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on the color of the beams. This has been recently confirmed by experiments in
KTN:Li, where nonlinear effects occur simultaneously for propagating beams at
two very different wavelengths (“achromatic optics”) [27].

As opposed to diffraction compensation, which is a ubiquitous concept in wave
mechanics and in optics, diffraction cancelation first predicted in [22] demonstrated
in [18] appears as a truly innovative and original solution. An interesting and related
experimental result has also recently been reported in a slow-light apparatus in 2009,
where it was shown that linear conditions can be found in which, on consequence of
strong coupling to diffusing atoms, light can be made to suffer anomalous diffrac-
tion, with some effects in common with paraxial scale-free optical effects [28].

8.3 Scale-Free Optics: A General Picture

In order to grasp the core idea behind scale-free optics, we consider the propagation
of an optical wave in the paraxial scalar approximation. The slowly varying part of
the optical field A (i.e., |A|2 = I is the optical intensity) obeys the paraxial wave
equation

2
2ik0.A + V3A + 2K Ana = 0, 8.1)
n

where k = (w/c)n is the wavenumber, o is the optical angular frequency, # is the
material unperturbed index of refraction, An the nonlinear index of refraction
perturbation, z is the propagation direction of the beam and L = (x, y) are the
two transverse coordinates. The second term in (8.1) ViA is the paraxial diffrac-
tion operator. In a standard diffraction compensation scheme, this term is balanced
for each z by the third term, where An is a scalar point dependent function that is
either fabricated in the material, as in an optical waveguide, or produced by the
wave itself in response to the local light intensity distribution /. In both cases,
diffraction compensation entails a boundary value problem that leads to specific
linear or nonlinear modal solutions (a situation that does not warrant for diffraction
cancelation). We note that the diffraction operator term scales with A/woz, where w
is the characteristic transverse spatial scale of A. The idea behind scale-free optics is
the use of a An that instead of being a function in space, such as a An(x, y, z), is, like
the diffraction term, itself an operator. If this operator AnA scales itself with A/wq> it
amounts to a “diffraction” term that, combined with the original diffraction term,
can lead to diffraction cancelation. For example, if 2(k?/n)AnA = —(L/1)*V? A,
then the result is what amounts to a profoundly altered linear-like propagation in an
effective homogeneous medium of the type

2ikd.A + (1 — (L))" )V2A = 0. (8.2)
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Evidently, for L = ) this implies that diffraction simply ceases to exist. However,
to appreciate the physics involved, in cases in which, for example, L < A (but not
L <)), then the optical propagation can be described by the standard propagation
in a homogeneous material

2ikeyd.A + V2A =0, (8.3)

where ke = ngr(2m/2) and negr = n/(1 — (L/2)%). So what we expect is to observe
something analogous to what occurs in metamaterials, i.e., that the optical wave
behaves according to diffractive laws governed by an effective index of refraction.
In our case, of course, this change in index of refraction strongly depends on the spatial
scale L introduced by the nonlinear interaction giving rise to the operational nature of
An, and the effect itself is limited to the diffractive properties of the localized beams.

The requirements for scale-free optics and diffraction cancelation can be
summarized by the statement that the diffraction term and the nonlinear term in
(8.1) be proportional. This means (1) that the nonlinear interaction be nonlocal and
introduce a spatial scale L that mimics the optical wavelength scale A as regards to
diffraction and (2) that the nonlinearity be intensity independent, exactly like
diffraction. In principle, these two conditions can be met in a great variety of
materials through various nonlocal responses, such as photothermal,
reorientational, and so forth. In what follows, we will describe how these two
conditions can be met in nanodisordered photorefractive ferroelectric crystals [18].

8.4 Diffusive Photorefraction in Supercooled
Ferroelectric KTN:Li

As described above, scale-free optics can, in principle, occur in a great variety
of materials and through a number of physical processes. Here, we focus on scale-
free optics in nanodisordered ferroelectrics, i.e., on the system in which scale-free
effects have been recently demonstrated [18]. Scale-free optics in KTN:Li requires
photorefraction, a nonlinear optical mechanism that is common in ferroelectrics
with deep in-band donor impurities. However, in distinction to the greater part of
photorefractive optics, the response harnessed here must emerge on consequence
of the thermal motion of the photogenerated charges, as they diffuse in the sample
itself, and not of their drift caused by an external applied electric bias field. In order
for the diffusive response to give rise to diffraction cancelation, the electro-optic
response must be quadratic, as occurs in centrosymmetric crystals or in crystals that
are disordered below the wavelength scale (the case of KTN:Li, where the system is
in fact a glass-forming liquid of polar nanoregions—PNRs). This is in distinction to
common conditions for electro-optic experiments, where the samples are in a poled
ferroelectric state and have a linear electro-optic response. A last, but fundamental
ingredient is that the electro-optic response must be anomalously enhanced, since
the space-charge electric fields produced by charge diffusion are invariably
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miniscule, and the quadratic response is in itself generally weak. To achieve this the
material must be engineered to support an accessible non-ergodic phase that allows
a dielectric anomaly to be optically used, a condition that can be obtained if the
critical phase-transition temperature is reached at T without having the crystal
undergo an all-out phase transition, which brings with it opacity and scattering [9].
In what follows, we describe these different ingredients and how they combine to
give rise to a system that supports scale-free optics.

8.4.1 Diffusion-Driven Space-Charge Field

The basic process that constitutes the photorefractive nonlinearity is the formation
of a light-induced electric field E, which changes the local index of refraction by
affecting the underlying crystal through the electro-optic effect, which in our case
boils down to the reorientation of large polar nanoregions (PNRs). The electric field
is caused by the diffusion of mobile electrons excited into the conduction band by
the propagating light. This diffusion, which drives electrons from the more
illuminated areas of the crystal, is halted once a sufficiently strong space-charge
field has formed. It is this charge field that ultimately affects the PNR and alters the
sample index of refraction.

The process is described using the band-transport model, which hinges on the
rate equation

ON, ¥ "
Wz(ﬁ‘i‘sl)(Nd—Nd)—yNNd, (84)
where Ny is the concentration of donor impurities, Ny that of ionized donor
impurities, N the concentration of electrons in the conduction band, 8 the thermal
ionization constant, s the optical cross-section of the donors, / the optical intensity,
and vy is the electron recombination constant. Considering steady-state conditions,
(8.4) leads to

INNT = (B +sI)(Ng —N7), (8.5)
so that

Bl (Na—N)

N
Y Ny

(8.6)

These charges reach thermal equilibrium and obey the transport law for the current
density J
J = quNE + kgTuVN, (8.7)

where ¢ is the electron charge, p is the electron mobility, kg is the Boltzmann
constant, and T is the temperature of the sample. Equation (8.7) expresses the fact
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that the local current density has two separate contributions, the guVE term, which
is the drift term, and the second term kgTu V' N, which is thermal diffusion term. In
turn, the charge density p is

p=q(Nj =N, —N), (8.8)

where N, is the concentration of acceptor impurities (normally N, < Ny) that play a
fundamental role in rendering the spatial charge separation efficient and semiper-
manent. Using (8.6) and (8.8) leads to (neglecting the thermal ionization)

(Nd—Nu _wp )
N=2pa e Tl (8.9)
Y 1+ Nug
Using the Gauss law p = V- (¢E) this leads finally to the expression
( 5— V-((E))
) (8.10)
R

where 6 = (N; — N,)/N,. In standard conditions leading to, for example, photo-
refractive solitons, the spatial scales involved imply that V- (¢E) < 1,sothat N ~ (s/
YI6. In our present case, however, the situation is noticeably different, since the
sample is in its critical state in proximity of its ferroelectric phase-transition tempera-
ture, so that T ~ Tc. In this condition, the sample manifests a dielectric anomaly,
accessible through the PNRs, for which € grows greatly, and we are actually in the
opposite case of V- (¢E) > 6 (and, hence, also V- (¢E) > 1), so that

s
N=—-I 8.11
v (8.11)

The last step is to consider that the crystal is itself not inserted in any form of
circuit so that J = 0 at steady state. From (8.7), this means that

quUNE = —kgTuVN, (8.12)
i.e., that
kgT VN
E=——7"-—. 8.13
7 N (8.13)

Using (8.11) in (8.13) we finally conclude that

kgT VI
E=_22 Y (8.14)
qg 1

We note that this expression is based on the assumption that the thermal ionization
of donors (described by ) is negligible. The general expression will have a I + I4 at

the denominator of (8.14), where I, = f§/s. Whereas it is generally true that 4 is
negligibly small compared to any optical intensity normally used in experiments, yet
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this assumption will forcibly break down at the beam tails, where / will decay to zero.
In general, I, is some orders of magnitude smaller than peak values of /, so it affects
not truly the beam tails, but the very lateral areas of beams that are indistinguishable
from noise. This is in direct distinction to what happens for space-charge fields that
support photorefractive solitons, where the saturation parameter /; plays such a
fundamental role that it is generally artificially enhanced by using a co-propagating
plane wave superimposed on the soliton beam itself. This said, we should, hence,
consider the validity of (8.14) to extend to all optical intensities above the thermal
noise level, which is the equivalent dark illumination of the band-transport mechanism
in the specific crystal. In the case of KTN:Li, no experimental evidence of /4 has been
observed in scale-free optics experiments. However, such studies could in principle be
carried out, simply by artificially enhancing the /.

The expression of the space-charge field in (8.14) forms one of the first tassels in
the mosaic leading to scale-free optics. In fact, the field is independent of the actual
peak intensity of the beam, which factors out in the ratio. This important fact stems,
in this context, from the fact that the mobile electrons described by N are both the
mechanism driving diffusion, through VN, and the mechanism giving rise to
conduction, which is proportional to N and appears at the denominator in the
strength of the electric field formed.

8.4.2 Electro-Optic Response in the Nanodisordered
Dipolar Glass Formed by the PNR

The second tassel in the attainment of scale-free optics in KTN:Li is the quadratic
electro-optic response. It is this response that turns the diffusion-driven electric
field of (8.14) into an operator that approximately achieves the condition for
diffraction cancelation discussed in (8.2).

A ferroelectric is generally characterized by a strong low frequency susceptibil-
ity, which in turn means that a quasi-static electric field E readily generates a
relevant quasi-static crystal polarization P. This polarization, which stems from the
underlying dipolar nature of the crystal lattice structure typical of ferroelectrics,
alters in an anisotropic way the index of refraction of the crystal, an effect that is
known as the electro-optic effect. The most general expression for this effect is

Any = — 30 gy PiP, (8.15)
where g, is the quadratic electro-optic tensor of the crystal lattice, the indices
represent the three spatial axes (i.e., i = 1, 2, 3 = x, y, z), and summation over
repeated indices is assumed. 4n;; is, in general, a matrix that, fixing the relationship
between the high-frequency polarization of the crystal and the optical field, enters
into the optical propagation equations (the Helmholtz equation) and determines the
evolution of the optical field in all its components (i.e., its polarization). In a
paraelectric, the absence of spontaneous polarization leads to the so-called qua-
dratic electro-optic effect, which is none other than the expression in (8.15).
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In a poled ferroelectric phase, the presence of a large spontaneous polarization
makes (8.15) be dominated by linear terms in the external electric field E, giving
rise to what is known as the linear electro-optic effect. In our present case of a
dipolar glass composed of PNRs, we have that each component of the polarization
is caused by the combination of the polarization of the single dipoles and of the
paraelectric region of the crystal in between the regions, both affected by
the optically induced E of (8.14). In general, the response can be described
introducing the effective relative dielectric constant &,

Py = ¢o(¢; — 1)Ex = coykEx, (8.16)

along with the effective susceptibility 7. In our case of a supercooled dipolar glass,
the susceptibility will be thus the combination

L= Apnr T AP (8.17)

where ypnr 1S the susceptibility associated with the PNRs and yp that associated
with the paraelectric surroundings. As we will discuss in what follows, we will
operate in conditions in which the dipolar glass is excited and provides an anoma-
lously enhanced susceptibility, so that in our system ypnr >> ¥p. The PNRs are
equivalent to randomly oriented random birefringent crystals, so that the result is
that averaging on a given volume V (larger than the size of the PNR themselves but
smaller than the optical wavelength) (8.15) leads to

1
Anij = 5”3 (gijxxP,vzc + gijyypi)' (8.18)

which entails, on the basis of simple symmetry considerations, that

3
Any, = 5 (811P)25 + 812P§)7 (8.19)
and
n’ 2 2 8.20
A”yy:_?<g11Py+g12Px)a (8.20)

where g1 = g and g1o = g,y of the specific crystal used.
For the x-component (and analogously for the y-component), we have:

P} = ppne(PY) (8.21)

where ppnr 1s the PNR density and p, the x-component of their local polarization.
As mentioned, the brackets denote an average on a volume V much larger than the
PNR but smaller than the wavelength.

The lattice in the PNRs is in general different from the cubic lattice of the host
crystal, and we have

Px = Pox + O(\jE/? (822)

where a; is the PNR polarizability tensor.
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As the PNR are randomly oriented in the volume V, one readily finds that
(p2) = (P}) = po + E”, (8.23)

where pg is the spontaneous polarization and o > 0 is the mean microscopic
polarizability of the PNR, such that the microscopic polarization due to the PNR
will be written as

P} = P} = Py + oupngE” (8.24)

with Py = ppnrpo and the mean low frequency susceptibility of the non-ergodic
phase is given by

XPNR = PPNRYO- (8.25)

xpnr accounts for the nonlinear optical effects that are due to the PNR.
Finally, the index perturbation for the two polarizations reads as 4n,, = 4n,,
= AnPNR

3
n
Anpyg = —3(811 + g1)eongE”S (8.26)

where we have dropped a constant term with P,

8.4.3 Enhanced Susceptibility and Electro-Optic
Response in Out-of-Equilibrium Ferroelectrics

The last tassel in the design of a system capable of supporting scale-free optics is
the achievement of a huge electro-optic response using the anomalously large ypnr
when the ferroelectric is supercooled into a highly non-ergodic dielectric phase.
In fact, the electric field caused by charge diffusion for a beam with a micrometric
size is very weak. Using (8.14), we find that |E|~ 10-50 V/cm. A sufficient
electro-optic response would require values of y ~ 10°, and these can only be
observed for ferroelectrics undergoing a phase transition. Unfortunately,
a ferroelectric undergoing a phase transition cannot support optical propagation,
because the ferroelectric domains reach beyond the nanometric scales and scatter
the optical beam ultimately giving rise to a strong absorption of the sample [9]. This
limit can be qualitatively grasped considering the strong constraint imposed by
equilibrium physics on the susceptibility and the correlation length in the material
1., which both diverge as the system is brought to its phase transition at T¢. In fact,
equilibrium imposes that

(8.27)
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and

1

r(\ K 7_,
(T —Te)"?

(8.28)

where 9§ is a critical parameter. As the dielectric anomaly is approached to enhance
the response for T ~ T, r. also diverges and, when it reaches the macroscopic
scales of the optical wavelength, light is scattered and the material becomes
incapable of supporting optical propagation. The point is that ferroelectrics with
compositional disorder are known to support also a non-ergodic phase, which does
not obey the constraints of equilibrium [19]. In fact, whereas in standard conditions,
crystal behavior is the macroscopic manifestation of all the possible microstates
compatible with the various external constraints on the system, and its dynamics
consists in the rapid exploration of the microstates and has no memory of previous
history, when a ferroelectric crystal with compositional disorder, i.e., with lattice
sites occupied at random by different chemical elements that do not greatly alter the
lattice structure, is rapidly cooled to its Curie temperature, the crystal develops a
disordered mosaic of electrically polarized domains, a dipolar glass, whose surface
energy and volume energy balance out halting further crystal structural changes.
The crystal is now in a condition in which it is inhomogeneous (at the nanoscale)
and cannot occupy all the microstates compatible with its thermal equilibrium. This
out-of-equilibrium or glass-forming liquid state can never reach equilibrium and
can break the bond between y and r.. It is in this phase that it is possible to harness
the dielectric anomaly associated to the critical temperature T without suffering
the limits of optical scattering.

Working with supercooled ferroelectrics at the Curie point guarantees that the
dielectric anomaly can be accessed without scattering, but the actual details of
the mechanism leading to ypnr as a function of the cooling rate and the details
of the thermal history are phenomenological, as at present no theory for glasses,
let alone dipolar glasses, exists. Below, in describing the experimental apparatus,
we will provide the details of how to tap the non-ergodic phase of KTN:Li.

8.5 Scale-Free Nonlinearity in Nanodisordered Ferroelectrics

8.5.1 Scaling and Approximate Diffraction Cancelation:
The Basic Scale-Free Equation

We are now in a position to establish in what way the diffusive electric field of (8.14)
produces, through the electro-optic response of (8.26), an effect capable of diffrac-
tion cancelation. Clearly, we do not achieve in this manner a truly anti-diffraction
operator x V A, since the response will amount to a term o<(| VI | /)*A. However,
both terms are independent of peak intensity, and both have the same fundamental
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scaling in terms of the spatial extent of the beam, i.e., both are 1/w02. These two
facts guarantee a diffraction cancelation for arbitrary waveforms, and an exact
mathematically rigorous cancelation for the solutions that we discuss in what
follows. For all cases, in conditions in which the nonlinear length scale L ~ A,
scale-free optics is observed.

To put together the different pieces in our physical mosaic, we begin from the
paraxial nonlinear wave equation of (8.1) and insert into the nonlinear response
term An the electro-optic response of the PNR described by (8.26) using the
diffusive photoinduced electric field of (8.14). Thus, a linearly polarized beam
with amplitude A obeys

1 k
0.A+—VIA+-AnA =0 8.29
i0:A + > \%1 +n n , (3.29)
where An is expressed by
w KT\ (3d)* + (9,1)°
An = Anpyg = —8553%%1% (3) W#, (8.30)

and g = g + g1 (that depends on the specific PNR-supporting ferroelectric used).
The nonlinear propagation equation is

2 2.2

. 1 (O:AF)" + (8,141
DA+—V2A-—K-—= Y A=0 8.31
i0, —|—2le \A|4 , (8.31)

where
2
K = kg (’W) _ (8.32)
V2q

The sign of g and, hence, the focusing/defocusing nature of the effect depends on
the specific lattice structure: for KTN:Li g1 + g1 > 0 (g1 = 0. 16 m*C 2,
g1, =—0.02 m*C™?) [29], and the effect is self-focusing. Since g > 0, (8.33) is
also

2 2
0A L* (0:AP)” + (0,|AP)
2ik— LIy i bl A=0. 8.33
i % + Vi pE 4|A|4 ( )

The spatial scale L that is used to factor out the wavelength scale is

L= 4nn260\/§XPNR(KBT/q). (8.34)



8 Scale-Free optics 219
8.5.2 Scale-Free Analytical Solutions

Interestingly, this model admits analytical self-trapped solutions [22] when

L2
8kK = — > 1. (8.35)
A
For the PNR susceptibility, this implies that

°. (8.36)

q
>y = ~ 10
XPNR Z Xt 2kncoKsT~/g, T 81a

In other words, there exists a critical value for the nonlinear optical response due
to the PNR for which L = A. It is this threshold value that is simply inaccessible in
ferroelectrics at equilibrium, as discussed previously [30]. In our experiments, we
achieve this anomalously large response supercooling KTN:Li to its 7c.

We note that the diffraction-free (diverging n. or zero effective wavelength
Jeff = A/neg) solutions of (8.33) are scale free, because there is no relationship
between the peak intensity and the waist. In other words, the waves with a given
waist exist for any power level. The situation is found in the Gaussian solution for
8kK = 1 (xpNr = Yunrs L =)

x2—|—y2 z
A=A — —2i—|. 8.37
oo e 27 ®30

More precisely, in (8.37) the waist w, of the soliton and its amplitude A are free
independent parameters.

8.5.3 Scale-Free Solutions in Conditions of L > A

When ypnr > Y (L > L), the very nature of the propagation equation changes,
because the relative sign of the effective diffraction term switches. In these
conditions, we once again find self-trapped solutions given by

As in the previous case, also here Ay and w, free parameters (i.e., the existence
curve is flat). Remarkably, as ypng grows the beam appears to lose its radial
symmetry, developing a square-like profile (see Fig. 8.1).

y
e[~ i)

A=A 5 1 > -
X — Y\ 8kK—1
cosh ()" - cosh ()

(8.38)
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Fig. 8.1 Squaring-off of the beam profile as the cooling rate is increased for L > A compared to
experimental results

8.6 The Observation of Scale-Free Optical Propagation

Scale-free optical propagation has been demonstrated in nanodisordered lithium-
enriched potassium-tantalate-niobate (KTN:Li) doped with copper impurities.
The experimental setup is schematically illustrated in Fig. 8.2, and is relatively
simple. The idea is to detect the propagation dynamics of a diffracting laser beam
within the crystal. Beams are obtained from standard low power continuous lasers,
such as a He—Ne laser, and the initially diffracting condition is achieved by
appropriately shrinking the laser beam down to micrometric widths at the input
of the sample. The propagation dynamics can be detected in two different and
complementary ways, i.e., through a top-view CCD or through an on-axis CCD (see
Fig. 8.2). The top-view detection is made possible by the enhanced scattering that
intervenes as the crystal is brought into its non-ergodic phase, whereas the on-axis
intensity distributions are detected imaging the input and output planes of the
crystal through an appropriate optics.

Perhaps the most complicated element in the apparatus is the control of the
thermal history 7(¢) of the crystal. This is because the giant electro-optic effect
required to reach the scale-free regime is only achieved when the ferroelectric is
brought into a non-ergodic phase, as described below. To do this, the crystal must
be supercooled to its phase-transition temperature.
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Fig. 8.2 Schematic of
experimental setup used
to observe scale-free optics

8.6.1 The KTN:Li

The heart of the apparatus is the newly engineered optical quality nonlinear
photorefractive crystal, Cu-doped KTN:Li. It is a ferroelectric designed to simulta-
neously host a glass-forming liquid-like phase, maintain an elevated degree of
optical transparency, absent in typical glassy media [21], and have a nanostructured
electro-optical and nonlinear optical response. Scale-free behavior is observed only
for a sufficiently high ypng, a requirement that can be achieved supercooling the
sample into its non-ergodic phase in proximity of its Curie point 7c. In a commonly
accepted model, on approaching the ferroelectric phase transition, the Cu-doped
KTN:Li behaves like a disordered distribution of polarizable dipoles that are
formed by the emergence of the Nb ions from the center of the crystal lattice unit
cells. These form the PNRs, and their size is controlled by the cooling rate o to the
final operating room temperature. It is in fact observed that changing o affects
the size of the PNRs (see Fig. 8.4 below) and consequently the KTN:Li nonlinear-
ity, so that at the same operating temperature (7), the permanent structure of the
PNR provides different and tunable nonlinear responses, a fact which is phenome-
nologically described by a crystal susceptibility xpnr that depends on a.

The non-ergodic phase required for the observations can be pinpointed
dielectrically by measuring the capacitance of the sample as a function of the
temperature 7. Non-ergodicity is signaled by strong thermal hysteresis in
the relative dielectric constant [19]. An example of thermal hysteresis in KTN:Li
is shown in Fig. 8.3.

We note that when a ferroelectric with compositional disorder is brought into a
non-ergodic phase achieved through supercooling to the Curie temperature, it effec-
tively turns into a material that is fundamentally different from a standard
ferroelectrics undergoing a phase transition [9]. If the crystal is slowly cooled to TG,
its interaction with light is mediated by large ferroelectric domains with a strong
spontaneous polarization that is rigidly fixed by the principal axes of the crystal lattice,
evident in the transmission results shown in Fig. 8.4 (note the 45° orientation of the
domain walls). The scale-free regime, in turn, occurs when the crystal is rapidly cooled
to T (supercooled state). Dielectric dynamics are those of a glass-forming liquid, and
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Fig. 8.3 Dielectric characterization of the non-ergodic phase: Low-frequency average dielectric
permittivity €, for fast (blue line) and slow (red line) temperature rates. The shaded region where
the two curves considerably differ represents the region in which the non-ergodic behavior of the
PNR is more pronounced [19]

Fig. 8.4 Comparison of transmission through the KTN:Li sample at 7 for slow and fast cooling
rates. For slow cooling, the transmission indicates the formation of large ferroelectric clusters and
domains with geometrically fixed boundaries. For fast cooling (supercooling), transmission
radically changes, indicating a more homogeneous and disordered dielectric state. The specific
sample used in these experiments is a K; _ Ta; _ ;NbyOs:Li, composite with x = 0. 003,
y = 0. 36, a Curie point at Tc = 14. 5 ° C, and a non-ergodic phase for T < Tz = 17 ° C
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Fig. 8.5 Scale-free propagation. Input intensity distribution (a) fails to spread according to the
standard diffraction laws for a fast cooling rate at the output (b) when L ~ A, and suffers a partial
spreading in the slow cooling rate case, i.e., when L < A

the interaction with light is mediated by PNRs that lock into a disordered network.
Here the size of the PNR depends on the cooling rate (i.e., the previous thermal history
of the sample) and not on the operating temperature, and optical transmission is
fundamentally different, as shown in Fig. 8.4.

8.6.2 Scale-Free Propagation and Supercooling

The analysis of the spreading of the intensity distribution of the beam in propagating
through the crystals shows the basic signatures of a scale-free optical propagation. In
Fig. 8.5, for example, we report how, for a scale-free regime, L ~ A, spreading due
to diffraction is absent, compared to diffraction reported for L/A =~ 0.4 (neg ~ 1.2n).
In the case reported, the scale-free regime is achieved by cooling the KTN:Li sample
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Fig. 8.6 A typical result of FWHM vs beam intensity
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from 35° C to Tc = 14.5° C at the fast rate of oy = 0.07° C/s and the output
intensity distribution has a full-width-half-maximum (FWHM) Ax(L,) ~ Ay(L.)
~ 15 pum equal to the input one, after L, = 6 mm of propagation in the z-direction:
the beam does not spread because diffraction is fundamentally absent (Aeg =~ 0). In
turn, when the KTN:Li sample is slowly cooled with ag = 0. 015° C/s, the intensity
distribution of the input beam widens to Ax(L,) = 43 um and Ay(L,) = 40 pm at the
output only slightly less than what is expected from the standard diffraction of a
Gaussian beam.

8.6.3 Violation of Scale-Dependent Soliton Laws

Absence of beam spreading is not in itself evidence of scale-free optical propaga-
tion. Diffraction can be readily compensated through nonlinear self-focusing, as
occurs for spatial solitons. What is a direct signature of scale-free optics is a
violation of scale-dependent scaling laws that must intervene when diffraction is
compensated. If these laws are in fact violated, diffraction has been canceled.
Experiments in KTN:Li have indeed shown that non-spreading beams of a given
width are observed over a wide range of peak beam intensities, as illustrated in
Fig. 8.6. It can be noted that there are physical systems in which the value of peak
intensity is not important, but the ratio between this value and a second quantity is
relevant. This occurs in all saturated nonlinearities, such as the Kerr-saturated
model valid for photorefractive screening solitons. On the contrary, in the scale-
free case, no saturating parameter is changed.

8.6.4 Instability

One of the most striking phenomena associated to scale-free optics is the observation
of beam instability. In a standard soliton-supporting nonlinearity, beams with
specific symmetries, such as plane waves or stripe beams lead to a characteristic
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Fig. 8.7 Scale-free modulation instability, once again directly dependent on the relationship
between L and A

breakup into patterns formed by solitons. Experiments in KTN:Li in the scale-free
regime have led to the unexpected breakup of a stripe into a “gas” of different
localized beams of different sizes and intensities, with no specific relationship
between the two, in direct response to inhomogeneities in the input beam pattern.
This nonselective instability is in fact a true sign of a scale-free optical propagation,
since it underlines the basic absence of soliton scaling laws [31]. The experimental
demonstration of scale-free instability is shown in Fig. 8.7.

8.6.5 Intensity-Independent Beam Interaction

An important aspect of scale-free propagation is that although the phenomenon is
the product of a peak intensity-independent mechanism, it is profoundly nonlinear
in nature. For one, the effect depends on the shape of the optical wave. This
nonlinearity seems absent once we consider the entire matter in the form of a
diverging effective index of refraction or a vanishing effective wavelength, but
these are not applicable to plane waves, but to localized beams. Experiments that
highlight the nonlinear nature of diffraction cancelation are beam—beam interaction
phenomena, which involve beam attraction (see Fig. 8.8), crossing (Fig. 8.9), and
even beam spiraling (Fig. 8.10), three interaction phenomena that are identical to
those normally associated to solitons.
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Fig. 8.10 Scale-free beam
spiraling
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8.7 Subwavelength Beam Propagation

Scale-free optics affects the diffraction of optical waves, effectively reducing the
spreading and distortion of beams due to diffraction without incurring in the limits
of linear and nonlinear diffraction compensation. The factoring out of the wave-
length from the diffractive dynamics suggests one basic question: does the factoring
out of A extend into the nonparaxial regime and, hence, affect the limits to
propagating waves? Put differently, can scale-free optics be used to allow the
propagation of subwavelength beams with impact, for example, on super-resolution
in optical microscopy? The issue is not a farfetched proposition because what we
term nonparaxiality and the propagation spectrum as opposed to the evanescent
wave spectrum all depend on the use of the wavelength as a fundamental scale!

Remarkably, scale-free solutions exist also for a model which is valid beyond the
paraxial approximation and contains (in the linear limit) also the evanescent waves.
The model here considered is the Helmholtz equation, with the simplification, with
respect to Maxwell’s equations, that vectorial coupling is neglected, an assumption
that can, in most cases, be shown to lead to very small corrections.

The Helmholtz equation is obtained for a monochromatic beam starting from the
vectorial wave equation

VXVxE= (%)21«: (8.39)
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withn? = (ng + An)* 2 n + 2noAnand An given in (8.30). For a linearly polarized
beam E = XFEyA exp(ifiz), with |A|2 = [ the beam intensity (E% = 27Zy/no), and
neglecting vectorial effects (VV - E 220), one has the Helmholtz equation

VA + {(@)2 - /32}4 —0. (8.40)

c

B is the overall wave vector in the z direction, and not its nonlinear perturbation as
in standard paraxial models. Equation (8.40) admits an exact Gaussian solution,
which is scale free, i.e., with an arbitrary amplitude A, and waist wy:

x2 2
A=A exp<—p—%> (8.41)
0 0

with the wavector 3 given by
2 4
= (w”O) - (8.42)

when the condition L = A is satisfied.
A solution exists (i.e., P is real) as long as

2c A
Wo>——=
whno i)

(8.43)

as expected.
The point is that more general solutions exist for L > A, as in the paraxial case.
These are given by

A A eiﬂz
=40 2 o) (8.44)
2x)7 2yy7
cosh ()" cosh ()
where
_ 1
T | (8.45)
}.2
and the wavector is
wng\2 492
= (TO) _ Lz (8.46)
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The corresponding lower limit for the waist is, hence,

)
WOy e (8.47)

Thus, for L > A, the lower limit for the waist is scaled by a factor y: a beam smaller
than the wavelength can propagate in the medium without distortion (for L>+/21)
irrespective of its intensity.

8.8 Conclusions

Scale-free optical propagation appears as a general and new paradigm for the
propagation of undistorted optical beams for imaging and microscopy, with
the promise to allow the propagation of beams with no limits associated to evanes-
cent waves, with obvious impact on super-resolved microscopy.
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Chapter 9
Spatially Dispersive Shock Waves
in Nonlinear Optics

Christopher Barsi, Wenjie Wan, Shu Jia, and Jason W. Fleischer

9.1 Introduction

Shock waves occur when an object immersed in a medium travels faster than waves
in that medium [1]. They are inherently nonlinear, as their speed depends on their
density/intensity, and arise when higher-velocity components of the wave overtake
lower-velocity ones. The result is a transition region, or front, between the undis-
turbed fluid downstream and the perturbed fluid upstream. Although there are many
variants, shock waves come in two basic flavors: dissipative and nondissipative.
Dissipative shock waves relieve their excess energy through heating, e.g., via
viscosity, which results in a monotonically decreasing front connecting the high-
pressure and low-pressure sides. Nondissipative shock waves have an oscillatory
and expanding front, as the excess energy is relieved via the generation of disper-
sive waves. The most familiar examples of shock waves are dissipative, e.g., the
sonic boom of a supersonic airplane, created because air molecules downstream of
the plane cannot be “warned” of its arrival by information-carrying sound waves.
Dispersive shock waves (DSWs) are in a sense more “exotic” because their fronts
rely on wave-dynamical, rather than collisional, effects; in turn, the basic
excitations require a degree of coherence not normally found in classical fluids.
Examples include superfluids, plasmas, and laser systems [2]. In these systems,
DSWs are a fundamental means of energy transport.
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The first consideration of shock waves in optics was modeled on the nonlinear
behavior of classical fluids. Early work focused on temporal pulses in fibers,
showing that short pulses can experience traditional wave steepening and breaking
[3-6]. Later work revealed that spatiotemporal kink states can result from Raman
effects [7—10], polarization dynamics [11, 12], and frequency-dependent gain or loss
[13, 14]. In the spatial domain, kink shock waves were predicted in quadratic media
[15] and in photorefractive crystals [16, 17], and observed in the latter [18]. In these
cases, the model behavior was dissipative, with energy transfer between beams
replacing viscosity as a means of sustaining a well-defined (vs. oscillatory) front.

The study of DSWs in optics gained popularity in the 1990s, as non-return-to-
zero formats in telecommunications created step-like initial conditions that were
ripe for their creation [19-21]. More recently, such waves were demonstrated in bulk
photorefractive crystals [22] and in thermal fluids [23, 24]. Particularly exciting has
been the extension to two transverse dimensions, which has enabled an examination
of wavefront geometry in shock propagation and interaction [22, 25].

In the remainder of this chapter, we discuss recent work on spatially DSWs in
optical beams. In Sect. 9.2, we introduce some basic theory and shock wave
formalism. In Sect. 9.3, we present the experimental observation of DSWs in
self-defocusing photorefractive crystals. In Sect. 9.4, we illustrate the use of
DSWs in material characterization by using their propagation dynamics to measure
optical anisotropy and nonlocal response. In Sect. 9.5, we consider DSWs in
photonic lattices and show their importance in nonlinear tunneling dynamics.
Conclusions are given in Sect. 9.6.

9.2 Basic Theory and Formalism

The particular system considered here is a spatial one in which a continuous optical
wave propagates in a nonlinear medium, mainly along the z axis. To an excellent
approximation, the slowly varying amplitude s of such a field can be described by
the nonlinear Schrodinger equation (NLSE):

O 1

N, Loy ko 2\ y =
T VL¢+nOAn(\\|;\ )\p_o, ©9.1)

where ky = 2mng// is the wavenumber, A/ng is the wavelength in a homogeneous
medium of refractive index ng, and An is a nonlinear index change which depends
on the intensity NI, For the spatial case, the transverse Laplacian describes beam
diffraction, while in the temporal case it describes pulse spreading due to disper-
sion. In most of the discussion that follows, we consider a Kerr-like medium, for
which the index change An = n,\I* (n, < 0 for defocusing).

As is well-known [26-29], (9.1) also describes the (macroscopic) ground-state
wavefunction for a fully condensed quantum state: I\ + (A% /2m)V? Y+
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g|\Ll|2\|J = 0, where m is the mass of the underlying particle, and the nonlinear
coefficient g represents the mean-field contribution of (s-wave) interactions.
In this approximation, the dynamics is more properly described as wave mechanical
rather than quantum, with 7 simply serving as a parameter which normalizes the
wavefunction. Note in particular that wavepacket evolution in time corresponds to
beam propagation in space. Therefore, all of the shock phenomena here can appear
in condensed matter systems as well. Indeed, the fundamental DSW, in both one
[30, 31] and two [25] dimensions, has been demonstrated in Bose—Einstein
condensates.

A fluid interpretation of light propagation follows by applying the polar
(Madelung) transformation [32] \(x,z) = /p(x,z) exp[iS(x, z)] to (9.1), where p
is the intensity of the beam, and S is its coherent phase. Scaling (x,z) — ko(x,z) then
gives the Euler-like fluid equations [33, 34]:

ap

LV (pu) = 0. 9.2)

1

Ju 1
- vé = _V, P+-
,0( +u J_“) 1 +2PVL<\/E

o \% \/;‘)>. (9.3)

This set of equations is a nonlinear eikonal representation, expressing the
conservation of intensity p and momentum pu, where u = VS is the direction
of energy propagation, or equivalent fluid velocity. The self-defocusing nonlinear-
ity gives rise to an effective pressure P = In,lp?/2n, whose gradient drives the
optical flow. Indeed, we note that the nonlinear contribution to the phase S ~ In,l
kop(Az)/ng, so that (9.3) is self-consistent with the definition of velocity. The last
term in (9.3), known as the “quantum pressure” in condensed matter systems, has
the highest-order derivatives and regularizes the system. Without the quantum
pressure, (9.2) and (9.3) represent ideal Eulerian flow, and there would be no
limit to the amount of energy that could accumulate in small spatial scales.
For example, shock waves would develop infinitely sharp fronts and instabilities
would have perturbation growth at arbitrarily short wavelengths.

To gain insight into the dynamics of shock formation, let us consider the case of
a small wave packet/hump propagating on a uniform background p . For simplic-
ity, we consider a (1 + 1)-D system [35], so that the intensity may be written as

p(x,2) = po + Ip(x,2). 9.4

In a fluid sense, the background intensity is a reference density which sets an
effective “sound” speed ¢ = \/|n2|p.,/no. This appears clearly when we linearize
(9.2) and (9.3) for small perturbations. Keeping only the lowest-order terms, i.e.,
neglecting the convective derivative and the quantum pressure, we obtain the
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Fig. 9.1 Dispersive shock wave formation in nonlinear spatial optics. (a) Waterfall and (b)
overhead view of linear propagation of hump-on-background. Simple diffraction yields some
interference, but the localized beam retains its shape. (¢, d) Same views as in linear case but for
nonlinear evolution. The Gaussian hump splits into two and shocks the background

classical wave equation for the phase (optical stream function) S:

PS(x,z) 2 9*S(x,z)
0z2 Ox?

=0 9.5)

As before, u = 0S/0x and, through continuity, 6p = — (ng/ln,1)0S/0x. This stan-
dard equation has the usual traveling wave solutions Jp(x,z) = [dp(x — ¢z,0)
+ 0p(x + ¢z,0)]/2, indicating that the initial perturbed intensity hump splits into
two separated ones traveling with opposite directions.

This nonlinear splitting and repulsion contrasts sharply with linear dynamics.
To see this explicitly, we numerically simulate a Gaussian perturbation dp(x,0)
= 2npooe*x2/ 2 using a split-step beam propagation code. Results are shown in
Fig. 9.1. In the linear case (Fig. 9.1a,b), the hump retains its Gaussian profile as it
propagates, creating small ripples as its tails interfere with the background field. In
the nonlinear case, the perturbation splits into two smaller humps that walk off from
each other (Fig. 9.1c,d). For weak nonlinearity, these humps travel at the linearized
sound speed u = u(p,,) = c. For stronger nonlinearity, the two pieces will propa-
gate with a velocity u = u(p), which depends on the local intensity. Higher-
intensity parts of the profile will travel at faster speeds, leading to wave steepening
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and eventual shock formation. We emphasize that any perturbation with intensity
higher than the background, p>p_, will travel faster than the local sound speed c,
i.e., it will be supersonic.

In shock models with viscosity, e.g., Burgers-type descriptions [36, 37], dissipa-
tion counteracts wave steepening and leads to a monotonically decreasing front
between the high- and low-pressure sides of the shock. For the case here, there is no
absorption; instead, the increasing gradient triggers an increase in spatial dispersion.
More accurately, self-phase modulation within the high-intensity region generates
new (spatial) frequencies, which then disperse into the surrounding medium.
This range of phases creates a series of interference fringes with varying periods,
resulting in an oscillating wave 0 (Fig. 9.1c,d). The inner, nonlinear part of the front
resembles a train of dark (or gray) solitons, whereas the outer part is a low-intensity
region with oscillations that are effectively sound-like. In one dimension, for step-
like initial conditions, the shock profile is given by a Jacobi elliptic function
[25, 38—41]. As the derivation is somewhat involved, it is not repeated here.

9.3 Experimental Realization of DSWs in Spatial Optics

Experiments were performed using the set-up shown in Fig. 9.2. Light from a 532 nm
laser was sent into an 8 mm x 8 mm X 8 mm SBN:75 (Sry75Bag,5sNb,Og) photo-
refractive crystal and then imaged at the output. The initial profile was created using a
Mach—Zehnder interferometer: one arm acted as a low-intensity plane-wave back-
ground, and a lens (cylindrical or spherical) placed in the other arm focused a central
intensity hump onto the input face of the crystal. The nonlinear response of the SBN
crystal was created by applying a voltage bias of —500 V across the crystal and taking
advantage of the photorefractive screening effect [42]. A discussion of the photo-
refractive response, and the influence of various models of it on shock dynamics, is

Laser (532 nm)

Mach - Zehnder

Attenuator SN

L el
A =il

Fig. 9.2 Shock wave experimental setup
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S0pm

Fig. 9.3 Experimental pictures of superfluid-like optical spatial shock waves. (a—c) Input, (d—f)
linear diffraction at output face, and (g—i) nonlinear shock waves at output face. Left column: 1D
stripe. Middle column: 2D ellipse. Right column: 2D circle

deferred to Sect. 9.4. To keep the response as Kerr-like as possible, we held the applied
voltage constant throughout the experiments and changed only the intensity of
the central hump (using a variable attenuator) to probe nonlinearity. To maximize
the response, the input light was polarized extraordinarily.

Typical shock waves are shown in Fig. 9.3. A stripe profile was created using a
single cylindrical lens, an elliptical profile using two cylindrical lenses, and
a circular shock using a spherical lens. The background beam was 10 mW and the
hump-to-background intensity ratio was 20:1. In the linear case (Fig. 9.3d-f),
the initial humps simply diffract, creating small ripples in the tails as the phase
front curves. In the nonlinear case (Fig. 9.3g—i), self-defocusing forces the hump
apart, depletes the central region, and shocks the background to create the
oscillating front characteristic of DSWs.

The strength of shock formation was examined by adjusting the intensity of
the central hump. As expected, the shocks become more violent with increasing
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Fig. 9.4 Shock length, measured from the centerline to the end of oscillations, with respect to
hump-to-background intensity ratio. Top to bottom: three solid curves are plotted of the functions

Dg = as(1 + bs\/p/py,) to fit the 1D stripe, 2D ellipse and 2D circle cases, respectively

hump-to-background contrast, displaying faster wave propagation and more
oscillations within the front (stronger effective repulsion and higher nonlinear
phase). In Fig. 9.4, we plot the measured front length (measured from the centerline
to the end of oscillations) as a function of p/p_, . The solid curves are best fits of the
functions Ds = as(1 + bsy/p/ps), calculated independently for each shape s.
Here, a;, = 54 um is a baseline distance set by the fixed background sound speed
(background intensity and crystal properties), and the b-coefficients are 1.2, 1.0,
0.92 + 0.04 for the stripe, ellipse and circle, respectively.

This square-root velocity scaling follows directly dimensional analysis of (9.3)
(obtained by balancing the convective derivative with the nonlinear pressure).
However, simple scaling arguments cannot determine the coefficient. More signifi-
cantly, photorefractive media are saturable and known to deviate from Kerr-like
responses for high intensity. This is probably why the measured stripe coefficient is
higher than the b = 1.0 scaling predicted by recent 1D theory [25, 35, 38, 43].

To date, the only analytic treatment of dispersive, dissipationless shock waves in
higher dimensions has been one-dimensional shocks propagating at an oblique
angle [41]. The experimental results here show that geometry and the available
expansion directions play a significant role in their dynamics.
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9.4 Material Characterization

The basic DSWs shown above can be interpreted as nonlinear point-spread
functions (though their use to describe image transmission is complicated by the
non-shift-invariant nature of the spatially varying response). The intensity-
dependent self-repulsion of the main central beam enhances diffraction, while the
plane-wave background serves as a reference beam to highlight phase accumulation
from propagation. Naturally, the output pattern depends on the particular nonlinear
properties of the medium. Of course, the pattern also depends on the input, as
demonstrated in Fig. 9.4. With knowledge of both the input and output, however,
measurements of the output shock can be used to characterize a material’s (possibly
unknown) optical response.

Measuring nonlinear diffraction in this way is similar to z-scan techniques,
commonly used to characterize both thin [44] and thick [45, 46] nonlinear samples.
However, the latter methods require multiple measurements along the optical
axis, cannot measure the full transverse index profile, and usually are limited by
assuming Gaussian input beams and Gaussian-like output beams. For more com-
plex nonlinear outputs, matching the shock parameters with model coefficients
allows calibration of the underlying propagator. Further, the shock-formation
characterization technique does not rely on symmetry considerations of the initial
beam, so that the material properties can be studied by optimizing the arbitrary
initial conditions.

We demonstrate the method here on two different types of nonlinear response:
isotropic media with a nonlocal nonlinearity and uniaxial crystalline media with an
anisotropic response.

9.4.1 DSWs with Nonlocal Nonlinearity

Many optical materials respond nonlocally, in that the index of refraction at a
particular location is determined by the intensity not only at that point, but at nearby
portions of the material as well. The spatial extent of the index contribution at that
point is assumed to be determined only by the properties of the medium itself.
Nonlocal phenomena appear in many fields, such as plasma physics [47] and
BEC [48], and can arise in optics through physical processes such as atomic
diffusion [49] and thermal self-action [50, 51]. The spatially extended response
competes with small-scale perturbations, inhibiting dynamics that appear when
wave coupling is local. For example, modulation instability can be suppressed
[52] and incoherent solitons in instantaneous media are possible [53, 54]. Here, we
consider the influence of nonlocality on the high-frequency, oscillatory nature of
dispersive shock fronts [23, 24, 55, 56].
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To begin, we return to the NLSE (9.1) but generalize the nonlinearity to a
nonlocal response. Generically, this response can be modeled by a convolution
operation: An[p(r)] = nyJR(r)p(r — r')dr’, where R(r’) is the medium’s response
function normalized to unity, i.e., fR(r’)dr' = 1 [52], and the integration takes
place over the transverse dimensions of the system. For the thermal medium
considered below, we assume a Gaussian response function R(x) = (nw?)~exp
(—x*/w?), where w represents the range of the nonlocality.

Numerical simulations of dispersive/diffractive shock waves in a nonlocal
nonlinear medium are shown in Fig. 9.5. The input intensity profile is the same as
in Fig. 9.1: a Gaussian hump on a constant, low-level background, and output
profiles are shown as the nonlocal parameter w is increased. As in Fig. 9.3, the
expanding wave consists of two repulsive humps whose fronts are characterized by
oscillations. As the range of nonlocality increases, the central region broadens and
the oscillations in the tails become damped. These effects are intuitively reasonable,
because the convolution in An should both broaden and smooth out the resultant
field. Several limiting forms of the response function are useful to consider. In the
limit of a delta-function response, the nonlinearity reduces to the local Kerr case
An = n,p, and the problem reduces to the system described in Sect. 9.2, i.e., an
initial hump that is “supersonic” compared to the background’s effective sound
speed ¢ = 1/ (|n2]po/M0)- In the limit of a response width narrow compared to the
input, the nonlinearity can be expanded in a Taylor series, giving An = nyp + n,
((x*)/2) (d*p/dx?), where (x*) = w? /2 is the average variance of the nonlocality.
The second term has the same dispersive order as diffraction and has a spatially
dependent effect, weakening the effective repulsive pressure in the central part of
the Gaussian beam while enhancing it in the tails. In the opposite limit of response
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Fig. 9.6 Experimental
evolution of diffractive
shock wave after 1 cm of
propagation in an

ethanol + iodine liquid cell.
(a) Linear case. Inset: input
profile. (b) Initial shock
formation in nonlinear,
nonlocal case. (¢) ~200 ms
later, quasi-steady state
(before convection of fluid)
shock profile. (d) Steady
state, with asymmetry due
to convection

width much greater than input beam width, the overall response (nonlinearity plus
nonlocality) approaches the linear, local case; here, the response of the medium is
equally strong across the entire beam profile, so that the hump does not experience a
nonlinear phase shift relative to the background.

We demonstrate these effects experimentally by considering the self-defocusing
of CW spatial beams in a thermal liquid cell [24, 25]. More specifically, we project
532 nm laser light onto a 1 cm x 1 cm plastic cell containing ethanol doped with
iodine. Physically, the iodine absorbs the green light, which then acts as a thermal
source. The liquid develops a temperature gradient AT, which is proportional to the
index change An via the thermo-optic coefficient, § = 0n/0T. Overall, the system
is quite complex as it involves three coupled systems: thermal diffusion (Poisson
equation) [53-55, 57, 58], fluid dynamics (Navier-Stokes equation), and nonlinear
optical propagation (NLSE). However, for weak heating, convection can be ignored,
so that the fluid can be taken as stationary, and the heating effects can be modeled
accurately by the phenomenological convolution operation above [52, 59, 60].

As in the photorefractive case, a hump-on-background beam is incident onto the
liquid. A shutter is placed in front of the liquid cell so as to observe the time
dynamics of the system. By itself, the plane-wave background causes uniform
heating and thus no relative index change, while the Gaussian hump produces a
spatially dependent nonlinearity. The liquid medium responds to this profile in two
different stages: relatively fast thermal diffusion followed by convection of the fluid
itself (after ~0.5 s of CW heating). The temporal evolution of the output, shown in
Fig. 9.6, demonstrates the development of the different stages of nonlocality. When
the shutter is first open, the liquid has had no time to absorb the light, so the output
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Fig. 9.7 Nonlocal shock length, measured horizontally from centerline to the end of oscillations,
as a function of hump-to-background intensity ratio. Black dots: experimental measurements.
Solid line: best fit of Dy = as(l + bs\/p/px), with a; = 46 pm and by = 0.13. Inset: numerical
simulation, showing consistency of scaling relation as a function of nonlocal response width w'

is simply a linearly diffracted beam (Fig. 9.6a), with some interference fringes due
to interference between the plane wave and the curved Gaussian phase front.
As time progresses, the nonlocal shock begins to form (Fig. 9.6b). The thermal
gradient is weak, but not negligible, so that the beam diameter increases dramati-
cally to about five times the diameter in the linear case. The next panel, Fig. 9.6c,
shows the full beam expansion due to the increased temperature gradient, and hence
nonlocality, in quasi-steady-state. The observed oscillations are signature features
of DSWs [2, 23, 24], and are similar to previous observations in the context of
thermal blooming [50, 51, 61, 62]. For longer times, the shock begins to move
vertically and develop an asymmetry (Fig. 9.6d), due to convection of the liquid
medium itself. At this point, the beam does not propagate simply in a static medium,
as the light and fluid dynamics become coupled [63-65].

As before, increasing the hump-to-background ratio makes the shocks become
more violent, with faster oscillations (higher self-phase modulation) in the tails.
We again characterize the nonlinearity by measuring the shock width and fitting the
resulting plot to the relation Dy = as(l + bsr/p/ poo). This is the same scaling as
obtained in Figs. 9.2-9.4, but the fitting parameters a;, = 46 um and by = 0.13
indicate a rate of spreading much slower than in the local, Kerr case (Fig. 9.7, inset).
For the liquid medium here, the b,-coefficient suggests a nonlocal response of
roughly twice the width of the input hump. Thus, shock propagation allows for
characterization of the two material properties of the liquid: the nonlinear strength
and the degree of nonlocality.
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9.4.2 DSWs in Anisotropic Media

Many nonlinear optics experiments take advantage of anisotropic materials, as
differences in response, e.g., between different polarizations, give another degree
of freedom. The SBN crystal used in Sect. 9.3 is no exception: it is a uniaxial crystal
with a much stronger nonlinear response along its crystalline c-axis than perpendic-
ular to it. To maximize the response, all of the input beams were extraordinarily
polarized. For solitons in SBN, for which self-focusing balances diffraction, circular
inputs normally remain circular [66—69]. For the shock case, in which
self-defocusing enhances diffraction, anisotropy appears. This birefringence can
be seen most clearly by examining the 2D beam in Fig. 9.3, which shows that an
initially circular input (Fig. 9.3g) leads to an output shock wave with a slightly
elliptical shape (Fig. 9.31).

There are two potential causes to the noncircular profile: anisotropic corrections
to linear diffraction [70] or to the nonlinear response [71]. For SBN, the expected
anisotropy in the diffraction operator is 6 = (no/ne)* — 1 ~ 2-3%, but this was not
observed when the voltage was turned off (Fig. 9.3h). However, uniform bulk
changes to the crystal (e.g., internal stress) when the nonlinearity is turned on
cannot be ruled out [72]. Therefore, we consider both possibilities here.

The nonlinear index change of the photorefractive response is rather complex.
The standard model is the one considered by Kuhktarev et al. in which photo-
excitation is followed by charge transport and an electro-optic change in the index
[71]. However, the model cannot be solved in its general form. Instead, two main
limits have been studied: noncollinear wave mixing of broad beams [73—77] and the
steady-state propagation of solitons [42, 78]. Neither limit is applicable to
the dynamic expansion considered here. On the other hand, the different forms
of the material response can be considered in a shock context, where the continu-
ously evolving profile will quickly illustrate differences in the approximations used.

As shock waves are triggered by a spatially localized variation in the intensity, we
base our discussion on the models for photorefractive screening solitons [42, 78].
For these steady-state beams, the combination of electron diffusion and drift leads to
two intensity-dependent terms: a local, saturable term and a nonlocal, diffusive term
that results in self-bending. Since this bending occurs in the direction of the applied
voltage, i.e., along the c-axis, one-dimensional models are normally sufficient to
describe material and soliton response (2D models can account explicitly for
anisotropic boundary conditions [79, 80] and have predicted elliptical soliton for-
mation [81], but circular solitons occur for nearly all experimental parameters
[66-69]). A list of the most popular reduced models is given in Table 9.1.

We now wish to compare these theoretical models with experiment. To examine a
pure point-like spread function, without coupling to a background, we consider a
single Gaussian beam focused onto the input face of an SBN:75 crystal (Fig. 9.8).
Here, a DSW is formed as the center of the beam breaks into its tails. In this example,
the intensity was measured as before, but an additional interference measurement
[82] was used to calculate the phase as well. This is necessary here, as the different
models of the photorefractive response (Table 9.1) have different gradient terms,
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Table 9.1 Models of the photorefractive effect and their effects in the reconstruction

1 An o< I Simplest model generates ellipticity near the focus of the
(e Gaussian beam

2 AnxI,D = e om0 (ﬁ‘ﬁk}" ) Algorithmic modification (8-term in Fresnel propagation
kernel) yields accurate reconstruction

3 An o< H’m Saturation provides circular reconstruction in intensity,
but phase reconstruction is distorted

4 An o< % [log(1 + Isy)] Intensity profile is distorted, and the phase contains

5 An o 2 i spurious modulations

ox
6 Anoc I + K% [log(D)] Results are similar to 1), 1), 3) respectively, but with
7 2 unwanted noise in both intensity and phase and
Anocl + 15 1] incorrect phase curvature
8

An x Hlm + Ka% log(I + Isu)]

Linear Output NL Output

Intensity

Phase

Fig. 9.8 Experimental measurements of linear and nonlinear Gaussian beam propagation. Left:
experimental input. Center: linear (diffracted) output. Right: a dispersive optical shock wave is
formed. Comparison of pure Kerr nonlinearity and Kerr + anisotropic diffraction term. The c-axis
is horizontal in the figures. Scale bar: 50 pm

which manifest themselves in the phase. Because the full complex field is known, it
can be substituted as an initial condition into numerical beam propagation
algorithms that model (9.1).

There are two ways of making the comparisons: forward propagation [83] or
backward propagation [84, 85]. In the former case, the experimental input is fed into
a computer code, whose numerical output is compared with the measured output.
The latter case starts with the output and runs in reverse. For ideal behavior, both
methods are equivalent. In practice, however, back-propagation is more sensitive
and more accurate, as the output profile has finer features, i.e., higher spatial
frequencies, and the input profile provides a cleaner and more stringent target.
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7\
/

Fig. 9.9 Reconstruction of input amplitude (top row) and phase (bottom row) from measured
output for different propagation models. Numbers in each panel indicate which model from
Table 9.1 was used for the reconstruction. The highlighted box shows the best results, obtained
using the new model (9.2) of anisotropic propagation with Kerr-dependent diffraction coefficients

A reverse propagation algorithm is effected simply by replacing the propagation
distance z with —z in the standard split-step Fourier method [84, 85]. As an initial
model, we use the symmetric Kerr nonlinearity, An = —In,lI, which has been
suitable for the experimental measurements made thus far (e.g., see Fig. 9.4).
The coefficient y is calculated by choosing the value that minimizes the sum-of
squares error between the measured input intensity and the reconstructed input
intensity, normalized by the total pixel count M?*:

SSE = M72 Z ( Iin,reconstructed _ Iin,measured>’

mymy memy
M,y

where m, and m, are the pixel counts in the x- and y-dimensions. The result is shown
in Fig. 9.9. Note that even after error minimization, the reconstructed input is highly
elliptical. As expected, the isotropic Kerr nonlinearity is not sufficient in describing
photorefractive propagation.

Perhaps more surprising is the fact that traditional anisotropic models of the
photorefractive response also do not capture the observed behavior, even though
they are highly successful models for soliton propagation. Interestingly, some
models provide a reasonable match for the intensity but fail in the phase, an
indication of the latter’s importance here.

To account for the ellipticity, we return to the anisotropic model of linear
diffraction but parameterize the coefficients with a nonlinear change. More specifi-
cally, we include a voltage-dependent correction of 7% in the x-direction for the
linear propagator, that is, in the Fourier domain

2 K2 2 2
e Cpas KK
4n \ ne ' ne 4n \ ne(1+0) " ne

e —e ,

where 6 = 0.07, and k, and k, are the wavevectors for the x- and y-axis. As shown
in Fig. 9.9, the reconstructed input provides a good match with known one.
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Despite this reasonable agreement with experiment, a first-principles derivation
of the modified propagator has yet to be performed. Likewise, the modification
induced by more complex beam profiles remains to be determined. The results here
simply illustrate that the Gaussian-to-shock evolution can serve as a sensitive probe
for testing and comparing theories with model material responses.

9.5 DSWs in Nonlinear Junctions and Arrays

Up to now, we have studied wave dynamics in homogeneous media, where we have
shown that DSWs are fundamental to energy transport. It should not be surprising,
then, than DSWs play a critical role in the presence of potentials as well. Here, we
give two basic examples: a periodic potential and a single nonlinear junction.

9.5.1 Wave Tunneling in Nonlinear Junctions

It is clear that the introduction of a potential will affect wave propagation, as
reflection and tunneling will create perturbations that launch waves. In the nonlinear
case (for nonsolitonic conditions), energy transport will be dominated by shocks.

Even for a single interface, nonlinearity introduces a variety of new dynamics.
Self-phase modulation modifies boundary conditions, leading to enhanced refrac-
tion and reflection [86, 87] as well as multistability [88], while cross-phase effects
can give rise to splitting solutions for vector beams [89]. For double interfaces, i.e.,
tunneling junctions [90-92], the problem is compounded by the dynamics between
the faces [93, 94]. In the latter case, most work has concentrated on a sequence of
linear—nonlinear connections [86, 90-92]. More recently, potential wells fully
immersed in the nonlinear medium, with nonlinear-nonlinear boundaries, have
been considered [95-100].

Here, we consider the fundamental case of plane-wave scattering from a barrier
potential [94, 101]. A schematic of the geometry is shown in Fig. 9.10. An ordinarily
polarized sheet of light, created using a cylindrical lens, optically induces a
refractive index defect (antiwaveguide) in an 8 x 8 x 8 mm® SBN:60 photo-
refractive crystal [102, 103]. An extraordinarily polarized plane wave is then sent
across this defect. In the experiments, the angle of incidence (and thus initial kinetic
energy) is fixed to 1° and the barrier width is 200 pm.

To begin, we introduce a potential V(x), constant along z, to an initial field that
has constant intensity everywhere. (This setup is different than the traditional
transmission—reflection geometry, discussed below, in which a plane wave is
incident from the right side of the barrier and there is no initial field on the left
side.) This type of profile occurs in many physical situations, such as flow over and
through an obstacle, and facilitates an understanding of dynamics on the transmis-
sion side (as the background field did in the homogeneous case).
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Fig. 9.10 Experimental
scheme of nonlinear wave
tunneling

Induction beam Signal beam

Tunneling dynamics with initial field everywhere are shown numerically in
Fig. 9.11. As before, simulations were performed using a split-step beam propaga-
tion code, this time using a potential V(x) in (9.1) [a force V1V in (9.3)]. A plane
wave is incident from right to left, giving rise to significant dynamics on both sides
of the barrier potential. In the linear case (Fig. 9.11a,c), phase changes at the
interfaces lead to interference fringes, but there is no evolution of the wavefronts
themselves. By contrast, in the nonlinear case (Fig. 9.11b,d), the development of
large phase gradients leads to large flow velocities. Energy is transported farther
away from the interfaces, creating a distributed profile with much lower peak
intensities, and there is significant evolution dynamics. The reflected and transmit-
ted waves both self-steepen as they propagate, eventually breaking into right and
left-going DSWs. These are the phase jumps/dark soliton trains predicted for
nonlinear tunneling in a superfluid [94, 104].

Interestingly, DSWs appear in the shadow region behind the barrier as well. Here,
the darkness of the shadow implies a higher refractive index (the medium is
defocusing), drawing a back-flow towards the barrier and further encouraging the
tunneling of light through it. From the rest frame of the angled wave, the barrier is
being dragged through it. There is now a (dispersive) bow shock created at the front
of the obstacle, while the dynamics behind the barrier is the optical version of a (1D)
fluid wake. Outgoing shock waves develop at the trailing edge, while optical back-
flow starts to follow the barrier due to the induced low-pressure area in the shadow.

Experimental observations of tunneling dynamics are shown in Fig. 9.12. In the
linear case, there are interference fringes upon reflection and transmission, with
the highest intensity peaks appearing at the barrier edges. In the nonlinear case,
these peaks propagate faster, appearing a significant distance from the junction
walls. Tunneling and back-flow are enhanced, leading to an intensity decay from
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Fig. 9.11 Numerical simulation of full-field scattering by a barrier. Plane wave incidence onto a
barrier centered in x = 0 with FWHM ~100 pm from right (red arrow). x is the spatial transverse
axis, z is propagation axis. (a, ¢) Linear case. (b, d) Nonlinear case. Note the difference in scale.
Shown are out4put pictures for (a, b) weak (An/ng = 2 x 1074, (¢, d) strong barrier heights (An/
ng = 6 x 10~ )

the interfaces that is more gradual than in the linear case. As predicted [94], dark
solitons in the fluid wake appear only if the barrier height exceeds a threshold value
(=2 x 10~ for 1° incidence) and these nonlinear effects become more pronounced
as the barrier height is increased.

In tunneling experiments, a common metric of performance is the amount of
energy transmission through the barrier. To measure this, we block half of the plane
wave at the input, so there is only initial field energy on one side of the defect.
As before, we fix the angle of incidence to 1°. Figure 9.13 shows the end result of
tunneling, obtained by integrating the total energy transmitted through the barrier.
In the linear case, there is the usual transmission for low potentials and total internal
reflection for higher barriers, resulting in an exponentially decaying evanescent
wave. In the nonlinear case, there are two distinct behaviors, depending on whether
the initial incidence angle (beam kinetic energy) is above or below the barrier
height [101]. For small barrier heights, linear transport is more efficient, as the self-
defocusing nonlinearity (repulsive interaction) creates an enhanced pressure upon
reflection. For stronger potentials, however, the self-repellant force of the tunneled
light encourages further transport across the barrier, resulting in enhanced trans-
mission. Paradoxically, this nonlinear effect increases for narrower and higher
barrier potentials [94], as the nonlinear pressure within the sandwich layer becomes
more pronounced.
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Fig. 9.13 Wave transmission/tunneling through a small barrier potential. (a) Numerical simula-
tion of transmission through the junction. (b) Experimental results

k=0 k =m/D

1st band
2nd band

3rd band
4th band

Fig. 9.14 Linear transmission spectrum, showing initial propagation constants and field profiles
of representative modes. Modes numbered 1 and 3 are the initial background k-vectors, and the
arrows indicate the effect of defocusing nonlinearity

9.5.2 DSWs in Nonlinear Arrays

When many junctions are arranged in an array, the geometry becomes a photonic
lattice. For periodic potentials, the result is the familiar appearance of transmission
bands, forbidden gaps, and Brillouin zones for wave dynamics.

Figure 9.14 shows the linear transmission spectrum and underlying Floquet-Bloch
modes of the waveguide array. As the system is spatial, rather than temporal, the
eigenvalue is the propagation constant § = k. (k,) rather than the wave energy (fre-
quency) w. As in other photonic systems, the geometry of the transmission bands
characterizes the dispersion (diffraction) of modes. Momentum regions with concave
curvature (the odd-numbered modes in Fig. 9.14) experience normal diffraction while
regions with convex curvature experience anomalous diffraction [105, 106].
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Fig. 9.15 Experimental setup of shock waves in nonlinear arrays. Light from a 532 nm laser gets
split by a polarizing beam splitter. The ordinarily polarized beam passes through a Mach—Zehnder
interferometer (A) to induce a waveguide array in an SBN:75 crystal. The extraordinarily
polarized beam passes through a modified Mach—Zehnder interferometer (B) to create a Gauss-
ian-on-background input shock profile. Light exiting the crystal is imaged into two CCD cameras,
one for the intensity in position (x) space, one for the power spectrum in momentum (k) space
(obtained by performing an optical Fourier transform). To excite a second-band Bloch background
for a higher-band shock, the plane wave arm in (B) is blocked and the interferometer in (A) is
partially polarized in the extraordinary direction

When nonlinearity is present, the propagation constant moves off the linear
transmission bands. If f shifts into a gap, then the wave is decoupled from the
linear modes and can be localized in its own self-induced defect [106]. Examples of
such lattice solitons occur with self-focusing nonlinearity for modes 1 [107] and 3
[108] and self-defocusing nonlinearity for mode 2 [103] in Fig. 9.14. If f§ shifts in
the opposite direction, e.g., self-focusing for modes 2 and 4 and self-defocusing for
modes 1 and 5, then coupling with linear modes is facilitated. This is the regime of
lattice shock waves.

To observe lattice shocks experimentally, we use the setup shown in Fig. 9.15
[109]. It consists of three basic parts: (1) an ordinarily polarized pair of plane waves
to optically induce a lattice structure [102, 103], (2) an extraordinarily polarized
hump-on-background profile, similar to the input in Fig. 9.2, and (3) an imaging
system to observe the light exiting the crystal. At the exit face of the crystal, the
output is imaged into two CCD cameras, one for the direct (near-field) intensity in
position (x) space and one for the Fourier (far-field) intensity in momentum (k)
space.

Experimental shock waves are shown in Fig. 9.16. For reference, a DSW in the
homogeneous crystal (no induced array) is shown in Fig. 9.16a. The input, not
shown, has a hump-to-background intensity ratio of 10:1. This is the same 1D shock
wave discussed in Sect. 9.3.
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100 nm
| i |

Fig. 9.16 Output pictures of dispersive shock waves in homogeneous and lattice systems. The
Gaussian-on-background input intensity ratio is 10:1. (a, b) homogeneous system; (¢, d) against
fundamental, first-band background (mode 1); (e, f) against second-band, cosine background
(mode 3). In (c—f), the period of the lattice is 30 pm. Left and right columns show intensity in
position (x) space and power spectrum in momentum (k) space, respectively

Figure 9.16c shows the output of the same hump-on-background profile
launched into a waveguide array with period D = 30 pm. In this case, the intensity
ratio of hump to background remains 10:1 while the hump-to-lattice ratio is 1:1.
Due to the lattice potential, the front does not propagate as fast, and the smaller-
scale oscillations are lost. The slower speed arises from the periodic energy barrier
as the wave tunnels from site to site, while the size of the waveguide (potential well)
sets the spatial scale for oscillations.

Further insight into the basic shock behavior can be obtained from the power
spectrum, shown in Fig. 9.16b,d. For the homogeneous shock, there is a large peak
at k = 0, due to the plane-wave background, surrounded by two broader bands: an
inner one representing large-scale envelope modulations and an outer one
representing the small-scale oscillations in the shock tails. For the lattice shock,
the central peak remains but two additional side peaks appear, one each at the
double-Bragg angles +2kg = +27n/D. The reasons for these can be seen in
Fig. 9.17, where we propagate each of the input components separately through
the nonlinear array. For the Gaussian input beam (Fig. 9.17a,b), the output intensity
profile is a Gaussian exp[—x?] modulated by the periodic lattice cos(kgx) exp[—x?].
The corresponding profile in k-space (obtained by a simple Fourier transform) is
exp|—(k — kg)? /4] + exp[— (k + kg)*/4]. The nonlinear output spectrum of the
plane-wave input is shown in Fig. 9.17c,d. As can be seen, this uniform input
excites a broad spectrum of modes across the first band, with dominant peaks at
k = 0 and k = £2kg. The latter peaks are a direct result of the lattice periodicity,
aided by the nonlinearity pushing down the propagation constant (from mode 1 in
Figs. 9.3-9.9 to mode 5). Note that it is mode 5 from the third band, rather than
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-
--
.-
Fig. 9.17 Output pictures of different initial intensity profiles in optical lattices. (a, b) Bright
Gaussian hump with width 15 pm, intensity ratio 1:1 to the lattice; (¢, d) plane background wave,
with intensity ratio 1:10 to the lattice; (e, f) cosine background wave, with intensity ratio 1:10 to

the lattice. The period of the lattice is 30 pm. Left and right columns show intensity in position (x)
space and power spectrum in momentum (k) space, respectively

mode 4 from the second band, because of the concave curvature of the band; also,
excitation of this mode sharpens the edges within the waveguides (its dipole
structure is phase-shifted), rather than contributing an intensity dip in the wave-
guide centers. The fact that the broad output peaks at +kg from the Gaussian input
(Fig. 9.17b) do not appear in the discretized shock spectrum (Fig. 9.16d) means that
the energy initially in the Gaussian hump has been effectively coupled to the
background light.

Interpretation of the previous results is complicated by the fact that the
background plane wave is not a pure eigenmode of the underlying array. To excite
a cleaner lattice shock wave, we launch the initial Gaussian input against the
cosine Floquet-Bloch mode at the edge of the first Brillouin zone (mode 3 in
Fig. 9.14). This mode is excited by partially rotating the polarization of the array
beams (Fig. 9.15a) in the extraordinary direction and recalibrating the intensity
ratios. Compared with the previous shock wave (Fig. 9.16c), the Bloch shock
wave (Fig. 9.16e) has much more intensity and higher spatial resolution in
the shock tails. As shown by the power spectrum in Fig. 9.16f, this real-space
behavior arises from wave coupling to higher-order modes. The two high peaks
at kg are from the initial cosine mode, with the spread around these peaks showing
clear coupling to other modes within the band. In contrast with the broad first-band
excitation in Fig. 9.16d, there is a sharp cutoff halfway through the Brillouin zone as
the band curvature changes sign. As before, though, the nonlinearity couples the
initial background mode to the next-higher mode modulo 27/D. These are the
peaks appearing at an additional +2kg in Figs. 9.16f and 9.17f.
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9.6 Discussion and Conclusion

Similar to the soliton, the DSW is a basic unit for energy transport. However,
solitons require a special balance between nonlinearity and dispersion/diffraction,
while DSWs arise from the action of these forces in concert. This distinction makes
soliton dynamics more particle-like, while the behavior of dispersive shocks is
inherently wave-like. Indeed, DSWs are naturally dynamic creatures, with wave
steepening and front spreading an integral part of their character.

When a wave encounters a potential in a self-defocusing medium, the
subsequent radiation is dominated by dispersive shocks. This includes flow around
material obstacles [41, 110-112] as well as self-induced potentials from collision
and reflection [101, 113]. In the former case, the evolution of 1D shock waves
propagating in two dimensions has led to the observation of fluid-like instabilities
[114] and the onset of turbulence [41]. In the case of collisions, interacting fronts
give rise to a nonlinear Huygens’ principle, in which superposition of waves creates
high-intensity sources for new shocks [22]. The result can lead to multi-phase flow
[113] and, in arrays, self-focusing from mutual pressure [115-117]. When the
potential allows tunneling, e.g., in nonlinear junctions, shock interaction at
the boundary can lead to nontrivial transmission and hysteresis [101].

When external pressure leads to collapse, e.g., of a dark stripe, the resulting
gradient catastrophe generates a fan of dark soliton filaments [118]. Similar soliton
emission occurs in the temporal domain in supercontinuum generation [119] and
optical rogue waves [120], in which dispersive waves and solitons created with
opposite dispersion properties interact in optical fiber [121]. In the spatial domain,
supercontinua have been observed in arrays [117, 122], where the four-wave
mixing of Bloch modes leads to a wide spectrum of daughter shocks. Opposite
shock-soliton behavior has also been observed for beams in self-focusing media, in
which wave diffraction from a sharp edge was increased due to shock-generated
solitons radiating outward from the edge [112].

The increased sensitivity to phase and intensity changes suggests that nonlinear
optical systems hold much potential for sensing and imaging applications. Indeed,
the basic DSW can be considered as a nonlinear point spread function. This aspect
was used above in Sect. 9.4 as a probe for material characterization and can serve as
a type of optical limiter. For use in imaging, however, care must be taken, as the
intensity-dependent propagation is not shift-invariant and superposition does not
hold. On the other hand, the dispersive (rather than dissipative) dynamics of the
shock waves means that both energy and entropy are conserved. With suitable
knowledge of the nonlinear propagator, interactions can be deconvolved, enabling
new forms of dynamical imaging [85].

The ability to easily control the input, directly image the output, and create
complex potentials gives optics a considerable advantage over other systems that
support DSWs. Particular modes and waveforms can be excited nearly at will, with
measurement possible in the full position-momentum (x,k) phase space. In this
chapter, we have highlighted only the first generation of experiments, showing
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basic shock waves in homogeneous, interface, and lattice systems. Many more
examples, including interactions, boundary layer flow, instabilities, and turbulence,
remain to be demonstrated. Indeed, any (nonviscous) dynamics possible in fluids
should arise in optics as well. Likewise, observations with light may back-react on
the fluid systems which inspired them, particularly with regard to flow control.
These will be subjects for future work.
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Chapter 10
Nonlinear Interaction of Intense
Ultrashort Filaments

Heping Zeng and Jia Liu

10.1 Introduction

Rapid advance in laser technology has greatly increased the attainable high-peak-
intensity range of ultrashort lasers. By using well-developed adaptive correction of
the wave-front distortion with deformable mirrors, intense femtosecond pulses
could be tightly focused into a nearly diffraction-limited point with a peak intensity
up to 2 x 10*> W/em? [1]. Such a high intensity could only be reached in vacuum
without multiphoton ionization to detrimentally influence the pulse focusing and
tight focusing produced a limited spatial region of high-peak intensity, while many
applications require tightly guided high-peak intensities along sufficiently long
interaction distances. To meet this requirement, a number of approaches have
been investigated and guiding of intense pulses has been demonstrated in hollow
capillary [2], relativistic channeling [3], plasma waveguide [4], and self-channeled
filaments [5-9]. Among all these demonstrated approaches, plasma guiding of
intense pulses was demonstrated as an efficient solution to avoid detrimental
defocusing caused by further multiphoton ionization as charged particles within
plasma typically have quite high ionization potentials and thus the already-existed
plasma experiences negligible laser-induced changes to alter the pulse propagation
dynamics. Although pulse propagation might be influenced by hydrodynamic
plasma expansion, tightly guiding in plasma waveguide could reach up to
5 x 10" W/cm? [10]. Obviously, such a tight focusing or guiding of intense
laser pulses is quite difficult in air or other neutral media due to unavoidable
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defocusing from multiphoton-ionization-induced plasma. There always exists a
counterbalance between Kerr self-focusing and plasma-defocusing in neutral
media, bringing about robust self-guided channels that facilitate abundant self-action
nonlinear processes, such as spatial self-cleaning [5], intensity-clamping [11],
and self-phase locking of nonlinearly coupled multicolor pulses [6]. Filamentary
propagation of intense femtosecond laser pulses has been so far demonstrated quite
useful for super-continuum white-light generation [7], pulse self-compression
down to a few cycles in duration [8, 9], harmonic generation [6], and so on. All
the nonlinear processes not only enforce observable changes on the spatiotemporal
dynamics of the intense ultrashort pulses during their nonlinear propagation but
also prohibit a tight focusing or guiding in small cores. The focusable peak intensity
could not increase to quite a high level since any possible tendency to increase
the peak intensity to quite a high level would be defeated by the accompanied
multiphoton-ionization-induced plasma defocusing. In air, the peak intensity in
filamentary self-guided waveguides was found to be clamped down to about
5 x 10" W/em? [11]. As the input power increases much higher than the critical
self-focusing threshold, multiple filaments occur [12] and as a result, filament-
mediated nonlinear interactions take place in spatially separated channels. Recent
experimental explorations on the interaction of multiple femtosecond filaments
have already revealed quite a lot intriguing features of spatiotemporal light bullets
with abundant self-action and cross-coupling nonlinearities [13—17]. In molecular
gases, the spatiotemporal phase modulation induced by molecular alignment
[18, 19] offers an additional degree of freedom to control filamentation [20-25]
and filament interaction [26, 27]. Nonlinear filament interaction and its dynamic
control may not only stimulate potential applications with nonlinearly coupled
multiple filaments instead of single filaments but also solve current challenge on
coalescence of multiple intense ultrashort pulses to beat the tightly guided peak
intensity beyond the intensity-clamping limit.

On the other hand, current available nonlinear optical waveguides cannot guide
high-peak-intensity ultrashort pulses. Standard optical fibers guide light via total
internal reflection, and high-fidelity delivery of ultrashort laser pulses was limited
so far less than the nanojoule level. A new paradigm of light guidance was realized
in photonic-crystal fibers [28, 29] by creating photonic band gaps with periodic
wavelength-scale lattice of microstructures in glass to trap light in hollow fiber core
of refractive index lower than that of the cladding, wherein optical nonlinearities
are reduced by a factor of 1,000 lower than the conventional silica-core fibers, and
thus supports megawatt optical solitons of femtosecond pulses [30]. Peak intensities
are still limited by the material damage at the input and high-peak-intensity
photonic-crystal waveguides or nonlinear waveguide couplers are so far unrealized.
Photonic-crystal waveguides could be also created in an all-optical way by record-
ing interference pattern in photosensitive media [31], typically applicable to guide
low-intensity beams. Photo-sensitivity in solid materials could be used to record
dynamic structures of four-wave mixing for high-density disk storage [32] and
three-dimensional (3D) photonic crystals [33]. It is also well-known that nonlinear
interference of non-collinear beams could establish transient holographic gratings
by virtue of nonlinear changes of the refractive index within a limited interaction
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length, which induced nonlinear diffraction rather than tightly guiding. In bulk
quadratic nonlinear crystals, two-dimensional (2D) transient Kerr grating [34]
could be formed on the basis of nonlinear wave-packet breakup involved
in cascaded quadratic nonlinear couplings during second harmonic generation.
By using the preformed 2D transient grating, synchronized super-continuum seed
pulses were diffracted and the diffracted seeds were amplified in the corresponding
diffraction directions, resulting in 2D up-converted multicolor arrays along the
diffraction directions [34]. Laser-induced gratings could be extended to gaseous
media (such as air) through multiphoton ionization and other higher-order optical
nonlinear effects with self-projected high-intensity femtosecond laser pulses.
At high-peak intensities, the transient Kerr gratings were mediated by filamentation
in spatially localized region. Well-localized plasma channels could not only estab-
lish nonlinear waveguides to facilitate nonlinear interaction of the laser pulses but
also enforce filamentation into different plasma microstructures that could last with
a duration much longer than the excitation pulses. Periodic plasma microstructures
could be used as plasma photonic components with ultrahigh intensity damage
thresholds to sustain intense laser fields. In addition, nonlinear interaction of
preformed plasma microstructures with intense laser pulses exhibits unique dynam-
ics with multiphoton-sensitive responses of extremely high nonlinearities.
All-optical control of the plasma channels is expected to stimulate intriguing
studies of solitonary-like waves in nonlinear waveguides at ultrahigh peak
intensities, including nonlinear filament interaction, fusion [13, 14] and spiraling
[15-17] of interacting multiple filaments, and so on. In particular, the full potential
of photonic crystal waveguides could be maximized to guide high-peak-intensity
pulses over relatively long lengths by creating a wavelength-scale periodic plasma
density modulation to change the local refractive index periodically in the
surrounding gaseous phase media. This could be realized with spatial interference
grating established by using non-collinearly overlapped intense femtosecond pulses
to assist coalescence of multiple filaments into a lattice of strongly coupled parallel
self-channels along the entire waveguide length, dubbed hereby as plasma lattices,
which could be extended from 1D plasma gratings excited by two non-collinear
interfering pulses to 2D plasma photonic crystals by using three non-collinear and
non-coplanar interfering pulses.

In this review, we show that coalescence of interfering non-collinear intense
femtosecond pulses assisted periodic wavelength-scale self-channeling into
photonic-crystal plasma waveguides with encircling air molecules, wherein
high-peak-intensity light bullets were tightly guided with strong self-channeled
spatiotemporal couplings and survived as particle-like attraction and repulsion.
Two non-collinearly intersected filaments were fused several millimeters long in
their interaction region and then departed along their corresponding incident
directions. Spatially localized Kerr self-focusing around constructive interference
intensity peaks followed its counterbalance with local plasma defocusing and
accordingly, the non-collinearly propagated intense ultrashort pulses in air were
efficiently coalesced into regularly spaced filament bundles, one-dimensional (1D)
or 2D plasma lattice with periodic plasma density modulation. Such a periodic
modulation not only supported efficient coupling and coalescence of multiple
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intense femtosecond pulses at arbitrary incident angles but also influenced the
nonlinear frequency conversions. Third harmonic generation was observed to
enhance at least two orders of magnitude in the presence of preformed plasma
lattices. As a result of the periodically distributed refractive index modulation,
long-lifetime 1D and 2D plasma gratings were generated, which were clearly
confirmed by the Bragg diffraction and in-line holographic imaging. We anticipate
that our results are of significant importance in creating photonic-crystal waveguides
for high-order harmonic generation and high-intensity relativistic optics.

10.2 Nonlinear Spatiotemporal Coupling
of Interacting Filaments

If two intense femtosecond pulses are non-collinearly overlapped in air, their spatial
interference redistributes the intensity according to the interference fringes and
local intensity peaks are located around the constructive interference peaks. Self-
focusing occurs at first around the interference intensity peaks, which further
makes the local intensity increase, followed by an increased multiphoton ionization
probability. Self-focusing around the interference peaks is then counterbalanced by
multiphoton-ionization-induced plasma defocusing and higher-order terms of the
nonlinear refractive index, giving rise to filamentation in periodically localized
regions with periodic plasma density modulation along the interference fringes.
As a consequence, wavelength-scale periodic lattice of plasma microstructures are
created, where strongly coupled parallel self-channels are formed along a relatively
long distance, manifesting as long-distance projection of the constructive and
destructive interference fringes along the bisector of the non-collinearly overlapped
filaments. In distinct contrast with transient holographic gratings, the plasma
microstructures induce tightly guiding rather than nonlinear diffraction, and accord-
ingly, input pulses will be eventually guided into a bundle of plasma self-channels
of local reduction in the refractive index encircled by air, which have wavelength-
scale structures similar to those of photonic-crystal fibers. Extremely high-peak
intensities could be guided in the wavelength-scale plasma self-channels with
strong spatiotemporal couplings, wherein the counter-balance among self-focusing,
plasma defocusing, and beam diffraction could be roughly estimated by

ml = p(I)/2p. + (1.2220)* / (87ngd?), (10.1)

with the nonlinear refractive index n,, critical plasma density p. above which the
plasma becomes opaque, and self-channel diameter d. As the electron densities are
dramatically increased within localized channels of diameters much smaller than
the beam waist, the clamping intensity / is expected to increase dramatically.
Intrinsically different from internal light reflection of the conventional fiber [35]
or diffraction in photonic band gap fibers [28-30], intense pulse guiding in the
plasma lattices is caused by the strong spatiotemporal couplings in the plasma self-
channels. Such unique intrinsic features are anticipated to stimulate various
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Fig. 10.1 Camera-captured pictures of the intersected non-collinear filaments from the top view
as the intersecting filaments were (a) delayed far away and (b) synchronized with observable
filament interaction, and the observed spatial distributions of the interacting filaments in the far-
field region, indicating no filament interaction (c¢) and strong spatiotemporal couplings (d),
respectively

technological and scientific breakthroughs in various fields, such as high precision
frequency measurements [36], high-intensity nonlinear optics [6], ultrafast pulse
compression [8, 9], control of spontaneous emissions [37], sharp bending of intense
pulses [38], and zero-threshold white-light lasing [39].

The experiments were performed with a Ti:sapphire chirped pulse amplifier
(1 kHz repetition rate, 50 fs, 800 nm, 2.0 mJ). The output laser pulse was equally
split into a pump and probe beams that were then focused with two f = 1,000 mm
high reflection coated concave mirrors, inducing two non-collinear filaments in air
that slightly crossed nearby their foci with a variable crossing angle from 2° to 16°.
Without any temporal overlapping, the induced filaments exhibited no observable
couplings and as shown in Fig. 10.1a, independent self-guiding was accompanied
by spatial self-cleaning [5] in the filament core over a typical length about ~40 mm,
leading to a significant improvement of the spatial distribution of the output pulses
in the far-field region (Fig. 10.1c). As these two incident ultrashort pulses with the
same polarization were synchronized in the intersection region, the local field
intensity in the overlapped region increased significantly due to their intensity
interference, and the corresponding plasma density increased as well. Self-focusing
around the interference peaks attracted surrounding laser energies to the plasma
subchannels, resulting in fusion of the non-collinear filaments into plasma lattice.
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Strong nonlinear interaction was observed when two filaments were synchronized.
As expected, periodic distributions of the local intensity in the overlapping
region could be produced due to the constructive and destructive interference
of the incident pulses. Such intensity modulation of the interaction region could
thus in turn modulate the local refractive index. The refractive index of air is
closely associated to the electronic Kerr effect and ionization-induced plasma.
The electronic Kerr effect produces a refractive index change along the excita-
tion polarization axis as

e = 1o, (10.2)

while the perpendicular component is proportional to

1
NKerr | = 5”Kerr|\7 (10.3)

where n, is the Kerr nonlinear coefficient related to the third-order susceptibility,
1 is the peak intensity of the laser pulse. The positive coefficient n, in air leads to a
refractive index increase in the presence of intense pulse. However, the Gaussian
beam distribution causes a convex lens-like wave-front bending, leading to the self-
focusing of a laser beam. Meanwhile, ionization takes place with the increased
pulse intensity, together with a burst of generation of electrons or plasma.
At sufficiently high-peak intensities that multiphoton ionization of air molecules
becomes observable, plasma generated during pulse propagation in air makes a
significant reduction of the refractive index in the interaction regions according to
the phenomenon expression

n=ny—p(r,t)/2p,., (10.4)

where the decrease of the refractive index n, caused by the local density of free
electrons p(r, ) is normalized with respect to that of the critical plasma density
Pe = EoMeto le* (m. and e are the electron mass and charge, w, is central frequency
of the laser pulse). The refractive index variation induced by plasma is eventually
balanced by that from Kerr nonlinearity. The Kerr and plasma refractive index
variation and the balance itself are sensitive to the local peak intensity.

As shown in Fig. 10.1b, a new bright white fluorescence bulb emerged as a result
of filament fusion [40]. Such fusion could sustain a finite propagation distance due
to the energy loss from multiphoton ionization, diffraction, fluorescence, and so on.
As shown in Fig. 10.2a, the fusion length decreased from 4.2 to 0.2 mm as the non-
collinear crossing angle varied from 2.0° to 16.0°. The far-field distributions were
modulated with butterfly-like expansion of each filament and thread-like fringes
between the two filaments (Fig. 10.1d).

In order to investigate the details about the observed butterfly-like patterns, we
chose five points and used a fiber-coupled spectrometer to measure the corresponding
spectrum. As shown in Fig. 10.2b, the spectrum is gradually broadened from point A
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Fig. 10.2 (a) The length of the filament fusion as a function of the crossing angle between two
non-collinearly intersected filaments. (b) The spectrum distribution at five different positions in
the butterfly-like pattern

to point D and blue-shifted frequency components appear as spectral humps. Spectral
breakups were observed in the upper side of the butterfly-like pattern. The observed
spectral broadening and splitting could be ascribed to the strong spatiotemporal
coupling in the interaction region, as well as the complicated self-phase and cross-
phase modulations. As a whole, the butterfly-like patterns angularly dispersed in a
spectral range from 650 to 830 nm, while the inner thread-like fringes ranged from
775 to 825 nm. The observed spectral difference implied that the far-field butterfly-
like patterns and inner thread-like fringes should be originated from quite different
nonlinear processes. As the coalesced filaments in the plasma lattice experienced
fission into different propagation directions with quite different energy distributions,
the spatiotemporal modulation and plasma density modulation experienced by the
propagating pulses were completely different. Butterfly-like bending in the far-field
region revealed the spatial inhomogeneous plasma density distribution in the crossing
plane and planar plasma waveguides of small thickness vertical to crossing plane,
while the mysterious inner thread-like fringes demonstrated self-guided propagation
within the plasma waveguide even after the filament fission out of the plasma lattice.

10.3 Visualization of the Plasma Density Modulation

The wavelength-scale plasma density modulation and self-projection of the
interfering pulses in the interaction region could be directly imaged by inserting
therein a thin plate at a grazing angle, facilitating a direct imaging of the self-
projected intensity interference fringes to explore the spatial periodicity of the
guided laser intensity and visualize the filamentary propagation of the laser fields
with a high spatial resolution determined by the 4-f optical imaging system to reveal
the periodic plasma density modulation. The plasma microstructures were
accompanied by spatially inhomogeneous fluorescence change of the ionized
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molecules and thus their spatial distribution could be captured by collecting the
plasma fluorescence from ionized molecules into an imaging system, enabling a
nearly diffraction-limited spatial resolution for the plasma microstructures.
As plasma self-channels experienced hydrodynamic expansion and ultrafast expo-
nential plasma decay after the interacting filaments, the ultrafast dynamics of the
preformed plasma should be recorded in a holographic way with a time-delayed
femtosecond probe pulse passing through the interaction region, which measured the
dynamic change of the local refractive index with a spatial resolution determined by
the 4-f optical imaging system. The holographic imaging provided spatial informa-
tion on the ultrafast evolution of the plasma density modulation and an accurate
lifetime measurement of the preformed plasma lattice. Throughout this review
article, we used all the three methods to visualize the non-collinearly interfering
filaments and the filament coalescence in the interaction region as well as the
nonlinear interaction of preformed plasma lattices with intense femtosecond pulses,
such as nonlinear Bragg diffraction from preformed plasma gratings, 1D and 2D
plasma density modulations, nonlinear energy transfer among interacting filaments,
filament-interaction-mediated spatiotemporal phase modulation, filamentation sup-
pression in the weak interference fringes, multicolor filament interaction, third
harmonic generation modulated by plasma lattice, and some other intriguing
phenomena.

10.3.1 Direct Imaging of Plasma Channel at a Grazing Angle

The filament interaction region could be directly imaged with a setup schematically
shown in Fig. 10.3a, where a thin plate was inserted at a grazing angle nearby the
filament-crossing point. The thin plate reflected part of the laser fields [41], which
were directly recorded by a CCD camera after a 4-f configuration optical imaging
system. The recorded intensity distribution revealed the laser intensity distribution
in the filament interaction region.

The inset in Fig. 10.3a presents the captured intensity distribution for the cases
without and with filament interaction, respectively. No intensity modulation was
observed when the filaments were intentionally delayed far away so that no
interference took place, while periodic intensity modulation and spatial localization
of the laser fields occurred inside the interaction region for synchronized
intersecting filaments, which were observed to exhibit distinct dependence on the
intensity interference fringes (Fig. 10.3b). The observed spatial intensity distribu-
tion changed its modulation depth as the incident laser intensity varied. Sharp
intensity peaks became more observable as two incident lasers increased in inten-
sity. Nevertheless, the observed central modulation depth became almost saturated
as both laser pulses underwent filamentation. As shown in the insets of Fig. 10.3a,
the observed intensity modulation was enveloped with a spatial intensity profile
quite different from the individual incident filaments, indicating that the laser
fields in the interaction region were completely redistributed with spatiotemporal
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Fig. 10.3 (a) The schematic measurement of the interaction region by direct imaging of plasma
channels with a thin plate inserted at a grazing angle. (b)The transverse fringe periods and the
corresponding intensity distributions (insets) of the non-collinearly intersected filaments at differ-
ent crossing angles from ref. [41]

cross-couplings and spatial modulation of the plasma density. In comparison with
individual incident filaments, the thickness of the filamentary interference fringes
was enlarged (vertical to the filament-crossing plane) while the width of the whole
profile was almost the same (parallel with the filament-crossing plane), implying
that there occurred spatially well-localized filamentation around each interference
peaks. In the filament-crossing plane, laser energies were attracted in the fringe self-
channels with more serious plasma defocusing around the interference peaks, while
along the direction vertical to the filament-crossing plane, the filamentary fringe
peaks were expanded with an enlarged thickness by plasma defocusing. As a whole,
the counterbalance between Kerr self-focusing and plasma focusing equivalently
functioned as periodically distributed cylindrical lens arrays around the interference
fringes due to the inhomogeneous intensity distribution in the interaction region.

Assuming that the inserted thin plate was tilted at a grazing angle 0, with respect
to the bisector of the incident filaments of core diameter D, the captured image was
L ~ 2D/sin(0,) in length and accordingly, the captured intensity distribution actu-
ally came from the intensity integrated over a length L of the overlapped filaments.
The measured spatial distribution illustrated the filamentary propagation along the
filament bisector. The filamentary self-guiding with an observation length L clearly
indicated self-projection of intensity interference along the bisector, with the spatial
intensity modulation period determined by

A = J¢/2sin(0/2), (10.5)

where 0 is the crossing angle of the non-collinear beams, /. is the central wave-
length. Figure 10.3b shows the measured intensity modulation periods at different
crossing angles 0 (red dotted), which fits well with the interference fringe (blue-
squared curve).



268 H. Zeng and J. Liu

Fig. 10.4 Typical 4.0
fluorescence spectrum of - @ .
. ) S S — Air
a linearly polarized laser- =, o
. . = W =
induced filament in air in 3.0 P S I Y
: 2 Nl oY ~

the range of 330—450 nm. o e sfazgeoe R
The corresponding transition o E O EFLEEER e %

\ © m Z mmm 4™, * 5
band are marked near the ~ 204 = e o = o o e W
spectral lines a2 VOV VL | VU . -

g EA N - =z = =

(e}

O 1.01

0.0 .“"J

325 350 375 400 425 450
Wavelength (nm)

10.3.2 Fluorescence Detection of the Femtosecond Filaments

Multiphoton ionization of air molecules occurs during intense femtosecond
filamentation and some ionized molecules are excited to highly lying electronic
states, which subsequently undergoes electronic transitions to emit characteristic
fluorescence of plasma [42]. For filaments in air, the observed visible and near UV
fluorescence were mainly assigned to the second positive band system of N, and the
first negative system of N, [43—45]. The first negative system (B22u+—X22g+),
from well marked sequences and degraded to shorter wavelengths, is the main
system of N,", originated from the laser-induced multiphoton ionization or
tunneling ionization of neutral nitrogen molecule, while the second positive band
system (C3Hu—B3l'Ig) comes from the transitions [42]:

N2 + N2 — N4+,
N4t + e — No(C’I1,) + N.

Figure 10.4 depicts the typical filamentation fluorescence spectra, measured by a
fiber-coupled gated imaging spectrometer (ANDOR, Mechelle 5000), with the
transition bands marked near the corresponding spectral lines.

As shown in Fig. 10.1b, strong interaction/coupling with a bright white fluores-
cence bulb was observed, indicating a significant fluorescence enhancement in the
interaction region. A fluorescence microscope with an optical imaging system and a
UV-intensified CCD camera (DS-QilMc, Nikon), as schematically shown in
Fig. 10.5a, was used to monitor the plasma structure near the interaction region,
whose image was captured by a CCD camera and digitized by computer software.
A band-pass filter from 250 to 380 nm was used to filter out the fluorescence from
the neutrals and excited ions.
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Fig. 10.6 The fluorescence images and the related transverse profiles of the observed 1D plasma
channels with different forming cross angles of (a) 2.7°, (b) 4.4°, and (c) 5.3°

Figure 10.5b and c¢ shows the measured fluorescence profiles of the interaction
region without and with interactions. We observed an enormous enhancement of
the fluorescence with a distinct periodic distribution in the overlapping region,
justifying the existence of intensity and refractive index modulation inside the
interaction region. As mentioned above, the spatial size of the plasma channel
could be simply manipulated by changing the crossing angle of the non-collinear
filaments. Figure 10.6 shows the fluorescence images and transverse profiles of the
observed 1D plasma channels between two filaments with different crossing angles
2.7°,4.4°, and 5.3°. The corresponding spatial periodic modulation period could be
calculated from (10.5). The corresponding period of the 1D plasma lattices was
measured to be 8.8, 10.4, and 17.0 um, respectively. The measured periods fit well
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Fig. 10.7 The experimental setup for holographic recording of the plasma dynamics. A weak
probe pulse propagates through the filament after a certain time delay. The magnification of the
system is determined by f5/f1. L1, L2 lenses

with the calculated interference fringe periods. As the crossing angle increased, the
number of the plasma self-channels increased approximately as N ~ [D/A] (D
represents the typical core diameter of the interfering filaments), while the self-
channel width decreased. According to the observed fluorescence images, the
periodic modulation near the filament bisector exhibited a nearly homogeneous
distribution, with a flattened envelope of the spatial profile. Those observations
again confirmed that the intensity and plasma density at the filament overlapping
centers were modulated with homogeneously saturated depths as the interfering
filaments were coalesced into plasma self-channels.

10.3.3 Holographic Recording of the Plasma Dynamic Evolution

Holographic recording serves as an important tool to record fast processes by
making holograms, and it allows one to catch even ultrafast events and retain all
the involved information. For example, a hologram contains the information
about the shape, size, and brightness of an object, or the pulse’s amplitude and
phase information in the case of laser pulse propagation. Up to now, in the field of
high-intensity laser physics, the holographic imaging has been applied in the studies
of ultrafast events like filamentation dynamics [46, 47], greasing the speed of light,
and watching the molecular dynamics of chemical reactions [48].

Here, we implemented holographic imaging in capturing plasma wake generated
by the filamentary propagation of intense femtosecond pulses in neutral medium.
The setup of the in-line digital holography is shown in Fig. 10.7. Briefly, an 800-nm
probe pulse, propagating perpendicularly to the filament, was used to record the
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structure of filament interaction region in air. Weak probe was used here to order to
minimize detrimental influence induced by the probe pulse itself on the preformed
plasma microstructures. The image was magnified by a 4-f configuration imaging
system with a factor of M = f,/f;. The CCD camera was placed at the image plane
(at the position L = 0 as shown in Fig. 10.7) to record the magnified image of the
interaction region. If the CCD camera was placed at a distance L from the image
plane, what captured was actually the interference between the transmitted and
diffracted probe pulse after the interacting filaments [48], which could be used to
retrieve the phase and refractive index change induced by the filamentation chan-
nel, and estimate the involved electron density distribution. As compared with the
above two methods, the holographic recording technique provided a proficient
approach to decode the time evolution of the plasma self-channels.

10.4 Plasma Waveguide Induced by Filament Interaction

As mentioned above, we observed strong spatiotemporal couplings in the interaction
region when two intersected filaments were synchronized. The N, fluorescence
imaging technique provided a straightforward observation of the periodic structure
in the interaction region. As shown in Fig. 10.5c, a significant enhancement of the
fluorescence and also notable periodic modulation in the overlapping region were
observed as compared with that of a single filament. Apart from the fluorescence
enhancement, modulated far-field distribution of butterfly-like spatial beam profiles
and thread-like fringes were observed. Note that the thread-like fringes could not
be originated from diffraction of the incident pulse, since diffraction should be a
bright spot rather than thread-like fringes. The thread-like fringes were measured to
exhibit a spectrum in the range from 775 to 825 nm. The thread-like fringes had quite
similar structures with the observed periodic plasma microstructures, suggesting
their intrinsic origin as self-guiding within the plasma self-channels, which could be
understood as follows. Interfering pulses built up a local intensity modulation in the
interaction region, Kerr self-focusing was at first launched around the constructive
interference peaks [49], where filamentary propagation was reached via spatially
localized counterbalance between self-focusing and plasma defocusing, leading to
tight guiding of the incident laser pulses and a wavelength-scale periodic plasma
density modulation. After a few millimeters of coalesced propagation, filamentary
self-guiding could no longer maintain its counterbalance due to diffraction and other
losses, the guided lasers within the plasma self-channels were partly projected in the
far-field region as thread-like fringes as experimentally observed. Most of the pulse
energies were diffracted out of the plasma self-channels at Bragg angles, i.e., along
the directions almost the same as the incident pulses. Slight beam bending was
observed due to inhomogeneous spatial distribution of the generated plasma density,
which functioned equivalently as a plasma lens to deform the incident pulse wave-
fronts. Strong spatiotemporal couplings inside the plasma self-channels brought
about significant cross-phase modulations and spatial-resolved changes of the
diffracted pulses.
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As a whole, the filament interaction processes functioned equivalently as X-type
nonlinear waveguide couplers for high-peak intensity laser pulses. Two interfering
pulses launched individual filamentation and then were coalesced into plasma
self-channels along the intensity interference peaks at the input port of the
plasma waveguide coupler. After a few millimeters of coalesced co-propagation
with strong spatiotemporal couplings, the tightly guided laser pulses underwent
filament fission and most of the laser energies were diffracted along the incident
pulse directions and a small portion of guided pulses were projected along
the plasma lattice, which could be regarded as the output port of the plasma
waveguide coupler. Interestingly, the output pulses along the incident directions
were demonstrated to have almost the same intensity ratio as the incident pulses.
This presented a solid evidence that the coalesced filamentary propagation in the
plasma self-channels came from self-projection of the interference intensity fringes,
i.e., the filament interference maintained its fringe contrast during the whole
coalesced propagation. As we had two beams at the input port, two main output
beams and multiple fringes at the output port, the generated plasma microstructures
could be used as two-to-multiple nonlinear waveguide couplers. The strong
spatiotemporal and plasma-laser couplings within the plasma couplers may find
interesting application in tailoring the spatiotemporal dynamics of the involved
intense ultrashort pulses.

Due to the aperture size limitation, our CCD camera could only detect a small
spatial range of the whole interaction region. In order to further confirm our
clarification, we captured the fluorescence image of the whole interaction region
by moving the optical imaging system and CCD camera along the bisector of
the interacting filaments, as shown in Fig. 10.8a. Interestingly, the interference existed
not only in the center of the interaction region but also in the starting and
ending regions where spatial overlapping was not so obvious. The energy reservoir
played a vital role in the formation and persistence of coalesced filament interaction
and plasma microstructures [50], and most of the filament energy was distributed in
its energy reservoir. Strong energy reservoir was generated with a surrounding
energy attraction in the center of the filament interaction region, and weak
but regularly separated intensity modulation also occurred in starting and ending
regions of very small spatial overlapping due to the interference between the
energy reservoirs. From this point of view, the observed non-collinear filament
interference as shown in Fig. 10.8 differed a lot from the standard optical interference
of weak lasers.

Non-collinear pulses at arbitrary incident angles could be efficiently coupled
into the periodic plasma structure (1D lattice) by automatic balance between the
incident beam wave-vectors and plasma lattice periodicity, as shown in Fig. 10.8c.
This took place owing to

K\ + Ky = 21/A, (10.6)
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Fig.10.8 (a) Measured fluorescence profiles of the interaction region of the intersected filaments.
(¢) The observed fringe-like spatial distribution of plasma fluorescence inside the filament
interaction region. (b, d) The three-dimensional plot of the leading and trailing parts of the
interaction to illustrate guiding of the incident pulse

where K, represents the wave-vectors of the incident pulses and 27/A is the
wave-vector of the wavelength-scale plasma microstructures. As the plasma density
modulation was formed by the incident pulses themselves, the wave-vector
matching was adaptively reached for efficiently coupling the incident pulses
under Bragg conditions.

Figure 10.8b and d shows the three-dimensional plots of the leading and trailing
parts of the interaction region, which confirmed fusion and guiding of the input
pulse along the corresponding bisector, consistent with the observed far-field
profiles. However, after a few millimeters, the preformed plasma lattice was split
into individual filaments (Fig. 10.8d) due to the collapse of the counterbalance
between self-focusing and plasma defocusing. Interestingly, a slight bending of the
incident pulses was observed at the input and output ports. The curved pulse
propagations at the leading and trailing regions of the filament interaction
manifested that laser—plasma interaction actually changed the plasma density
gradually, resulting in a gradient plasma density and refractive index changes in
the leading and trailing regions during the interference of energy reservoirs. This
also differed dramatically from the standard optical interference, showing clearly
that interfering filament interaction was accompanied by strong spatiotemporal and
laser—plasma interaction, where highly nonlinear photosensitive responses of
multiphoton-ionization-induced plasma microstructures played a vital role in fila-
mentary self-projection of the intensity interference. It presents another solid
evidence of plasma microstructures consistent with direct imaging and dynamic
probing of interacting filaments and plasma density modulation.
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10.5 Dynamics of the Plasma Channels

The time evolution of 1D plasma channels was studied by the above-mentioned
holographic imaging technique by imaging the beam pattern of a third perpendicu-
larly propagated weak probe beam with controllable time delays. In the experiment,
two lenses with the focal lengths of fj = 40 mm and f, = 200 mm were used to
magnify the image with a factor of M = f5/f; = 5.

The plasma density modulation changes the refractive index as
on(r,t) = —p(r,1)/2p,, as illustrated in (10.4). Assuming the preformed plasma
microstructures had a thickness d, and the plasma changed the probe pulse verti-
cally passing through the plasma volume with a phase delay

5¢)(l", t) = _p(ra t)d/zpc (10.7)

The wavelength-scale microstructures are described by the spatial dependence in
p(r,t) and 6¢(r,t), a time-delayed probe laser pulse passing through the plasma
microstructures experienced a position-dependent phase shift, which interfered
with the transmitted part and got an interference holography closely associated
with the phase shift. As the probe pulse was changed in the time delay, the ultrafast
dynamics of the preformed plasma density p(r, ) could be thoroughly studied with
a high spatial resolution.

The images of plasma channels at different time delays are shown in Fig. 10.9a—f.
We clearly observed periodic plasma microstructures with a probe time delay of
0.25 ps (Fig. 10.9a). With such a small delay t ~ 0.25 ps, the interacting filaments
were overlapped with a short length ¢t ~ 0.075 mm. The captured holographic
imaging thus covered a short length. We could distinguish the interfering filament
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Fig. 10.9 The time evolution of the 1D plasma channels at different time delays (a) 0.25 ps, (b)
2 ps, (€) 5 ps, (d) 10 ps, (e) 50 ps, and (f) 100 ps
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fronts and their interference self-projection as well. The interfering plasma wakes
built at the filament fronts with parallel plasma self-channels projected along the
interference peaks.

The plasma subfilament channels moved forward with almost the same plasma
density modulation depth at larger time delays as the interacting filaments
propagated in the interaction region (Fig. 10.9b). Gradient blurring of holographic
image was observed, which was ascribed to the hydrodynamic plasma expansion
that tended to make the plasma density spatially distributed homogeneously. In this
way, the plasma density modulation became weaker as plasma expansion went
further. The gradually blurred images in Fig. 10.9c—f represent the plasma channels
at delays of 5, 10, 50, and 100 ps, from which we can conclude that the plasma
density remained to be spatially modulated with a lifetime up to ~100 ps.

10.6 Two-Dimensional Plasma Waveguides

In this part, we demonstrate that more complicated 2D plasma lattices could be
generated by simply adding another interaction filament, i.e., three intersected
filaments could produce 2D photonic plasma lattice in air.

In the experiment, a 50 fs pulse of 1 kHz repetition rate and 2.4 mJ pulse energy
from a Ti:sapphire laser system at 800 nm were equally split into three pulses (A, B,
and C), and were independently focused with a lens (f = 60 cm) and two high-
reflection concave mirrors (f = 100 cm), with changeable crossing angles from 3°
to 6°. Each pulse produced a single filament as a result of the counterbalance
between self-focusing and plasma defocusing. Two step-stage time-delay lines
were used to finely control the relative time delays. As sketched in Fig. 10.10,
pulses A and B were manipulated in the horizontal plane while pulses B and C in the
vertical plane. As shown in Fig. 10.10b—e, for each of the two pulses, 1D intensity
modulation of the interaction region was observed as previous observation [41].
Meanwhile, an interference induced 2D periodically modulated intensity was
observed when all the three pulses were synchronized (A, B, and C), suggesting a
localization of the laser fields inside the interaction region. The experimental
observations clearly showed that with three or more pulses crossed nearby their
common foci at different crossing planes, similar to the formation of the 1D plasma
lattice, the interference patterns consequently induced 2D periodic plasma density
modulation and the input pulses were eventually guided by the 2D plasma lattices.

Once again, the holographic imaging technique was used to observe the plasma
lattice structures by recording the spatial distribution of a perpendicularly
propagated weak probe beam. Moreover, by introducing the probe beam from
below to top and from left to right through the interaction region, the difference
of 1D and 2D plasma density modulation was clearly visualized, as shown in
Fig. 10.11a—d. Figure 10.11a—d depicts the images of the 1D and 2D plasma
gratings when the probe pulse was delayed ~5.0 ps after the plasma lattice
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Aand B Aand C BandC ABandC

Fig. 10.10 (a) The sketch geometry for 2D plasma lattices generated by three non-collinearly
intersected pulses A, B, and C. (b—e) The 3D distributions of the measured 1D and 2D intensity
modulation patterns for different crossly overlapped pulses (marked beneath the patterns)

Fig. 10.11 The measured holographic images of the (a, ¢) 1D and (b, d) 2D plasma gratings from
different views. (a, b) Top view (bottom to top), (¢, d) Side view (left to right). The probe pulse
was delayed ~5.0 ps after the plasma lattice formation
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formation, in which (a) and (b) represent the top view (bottom to top) while (c) and
(d) are the side view (left to right). For the case of two interacting filaments (A and
B), owing to the refractive index modulation, the weak probe beam pattern clearly
verified the 1D photonic lattice structure in the top view. However, in the side view,
no periodic structures were observed, indicating no evident refractive index differ-
ence. When another synchronized pulse C was introduced, the photonic lattices
were extended from 1D to 2D. The image of 2D plasma lattices in the top view
became somehow vague (Fig. 10.11b), while some periodic structures emerged in
the side view (Fig. 10.11d), clearly indicating the formation of a 2D plasma
photonic lattice.

10.7 The Formation of Plasma Grating

As already discussed above, non-collinear intensity interference resulted in periodic
intensity distribution in the interaction region, and the interference fringes were
projected through filamentation and the corresponding multiphoton ionization
created a spatially modulated plasma density [40, 41]. Consequently, local refrac-
tive index was modulated periodically according to the plasma density modulation.
Such a dynamic refractive index modulation could function as a diffraction grating,
similar to the classic optical diffraction grating with a periodic structure to split and
diffract the incident light beams to several beams in different directions. Based on
the diffraction characteristics, the gratings could be sorted as thin and thick ones.
A thin grating exhibits little angular dependence and wavelength selectivity, with
the thickness D and the period A of the grating follows D/A < 10, while a thick
grating with D/A > 10 shows relatively strong angular and wavelength selectivity
[51]. As the plasma grating period A = 4./2sin(0/2) could be easily tuned by
changing the intersection angle 0 of the non-collinear beams, the plasma grating
could behave as either a thin or thick grating, where A, is the central wavelength. In
our experiment, the typical plasma grating thickness was D ~ 100 pum, a thin
grating was formed with the crossing angle 0 < 4.6° in the case of A. = 800 nm.
In the case of a thin grating, an incident light beam at wavelength A was diffracted to
an angle ¢,, according to the condition

Alsin(0+p,,) — sin(0)] = m4, (10.8)

where m = 0, +1, £2. .. denote the diffraction order, 0 is the angle of the incidence
onto the grating.

The characteristics of 1D and 2D plasma gratings could be revealed by the
diffraction of a time-delayed TH pulse. As nonlinear frequency conversion such as
third harmonics could be efficiently generated within an intense femtosecond
filament in air [6], in which the phase of the fundamental-wave (FW) pulse and
the generated TH pulse are nonlinearly locked within a long distance. The probe
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Fig. 10.12 The 3D distribution of the diffracted third harmonic pulse by 1D plasma grating with
different crossing angles of (a) 6 = 4.3°, (b) 8 = 5.5°, and (¢) 60 = 6.8°, respectively. (d) The
comparison of the experimental result (red-circular line) and calculated (blue-square line)
dependences of the +1 order diffraction angle on the crossing angle 6

pulse was generated with an intense pulse undergoing filamentary propagation
through the preformed plasma gratings. The experiments were realized with three
pulses (A, B, and C) independently focused to form three intersected filaments.
Synchronized pulse A and B were manipulated in the horizontal plane to form a
plasma grating. Pulse C was placed in the same plane of pulses A and B, with an
incident angle 0° onto the grating. As 1D plasma density grating was formed by
pulses A and B, the time-delayed TH pulse from pulse C was diffracted according to

Pm = 2mSin(0/2)}vTH/ipw, (109)

where m = 0, £1, +2. .. denotes the diffraction order, 6 is the cross angle of pulses
A and B that determines the grating period, ,, is the corresponding diffraction
angles, Arg and Agw are the wavelengths of the TH and FW pulses, respectively. By
blocking the pulses A and B after their interaction region, as shown in Fig. 10.12a—c,
photographs of the diffracted TH pulse from pulse C after a low-pass filter (filter out
the FW pulse) were taken by a digital camera on a paper screen placed perpendicu-
larly to the propagation direction of pulse C at a distance of ~150 cm away from the
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Fig. 10.13 The measured dynamic evolution of the intensity of the diffracted TH pulse generated
from pulse C by the plasma grating created by pulses A and B [(0 = 4.3°)]

intersecting point. The crossing angles between the pulses A and B were set to be
~4.3°,5.5°, and 6.8°, respectively. As determined by the diffraction condition, the
+1 orders moved apart from the TH pulse as the crossing angle 0 increased,
consistent with the decrease of the plasma grating period. Figure 10.12d shows a
simulated dependence of the +1 order diffraction angle (blue-squared line) as a
function of the crossing angle 6, which agreed well with experimental
measurements (red-circular line). According to the dynamic diffraction of the
time-delayed pulses, the preformed plasma gratings were evidenced to last a few
tens picoseconds after the excitation pulses, in agreement with the plasma lifetime
measured by using the above-mentioned holographic imaging technique.
We emphasize that the plasma grating period in this work could be readily tuned
by adjusting the cross angle between the incident filaments which meanwhile could
be applicable to high-peak-intensity pulses, in contrast with the periodic plasma
structures fabricated with a spatial-light modulator [52, 53] that sustained only low
pulse energies.

The dynamic evolution of the plasma grating was characterized by recording the
diffracted TH pulse as a function of the time delay of pulse C with respect to
the plasma grating forming pulses A and B (4.3° crossed). Figure 10.13 displays the
normalized integrated spatial distribution of the diffracted TH pulse when the time
delay of the pulse C with respect to the plasma grating formed by pulses A and B
was tuned from 1.0 to 65.0 ps. Before the formation of the plasma grating, no
diffraction of the TH pulse was observed. The intensity of the 1 order of the
diffracted TH pulse decreased gradually as the time delay increased up to several
tens picoseconds, confirming the long-lifetime plasma grating in contrast with
transient Kerr gratings that exist only within the pulse duration [34].

2D plasma grating could be produced with three interacting filaments in different
planes. 2D diffraction of the simultaneously generated TH pulses was resulted.
The diffraction was caused by the corresponding plasma grating preformed by
either the interfering pulses A and B, B and C, A and C, or three of them.
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Fig. 10.14 (a) The measured diffraction pattern of the generated third harmonic pulses as a two-
dimensional plasma grating created by the interaction of three femtosecond pulses. (b) The sketch
map of the observed diffraction pattern from the two-dimensional plasma grating

As diffraction was observed under the situation that all the three pulses A, B, and C
are synchronized, it behaved in a quite similar way as the transient Kerr grating
observed in the quadratic nonlinear crystals [34]. Nevertheless, the observed Kerr
nonlinearity of air molecules was dramatically enhanced in the presence of plasma
density modulation. The TH pulses were diffracted and meanwhile amplified due to
the strong interaction among the three intersecting filaments. Here, no low-pass
filter was used to remove the FW pulses in the photograph. In addition to £1
diffraction orders beside the FW pulse, as shown in Fig. 10.14a, three new TH
pulses were observed as labeled by A,, B,, and C,, which were due to the additional
diffraction of the preformed 2D plasma grating.

Figure 10.14b schematically shows the observed TH diffraction pattern from the
2D plasma grating, which can be divided into two parts: the first part marked in
the dashed ellipse was originated from the diffraction of the 1D plasma grating as
discussed above, the second part labeled as A, (B,, and C,) was originated from the
additional diffraction of the 2D plasma grating. For example, the TH pulse labeled
C,1 and C_ is the 1 diffraction orders of the TH pulse (generated from the pulse
C) diffracted by the 1D plasma grating formed by the pulses A and B. According to
the diffraction condition of a thin plasma grating (10.9), the 1 orders diffraction
angle is expected to be +2.67°, which is in good agreement with the measured
values of +£2.58°. Since all the three pulses were temporally overlapped, two
additional plasma gratings could be formed by the pulses A and C and pulses B
and C, which could be treated as an equivalent plasma grating marked with silver
lines. This equivalent plasma grating diffracted the generated TH pulse in pulse C
and the +1 diffraction order led to the observed TH pulse labeled as C,. Based on
the measured diffracted TH pulse at C,, the period of the equivalent plasma grating
was estimated to be ~4.6 um. The new TH pulses of A, and B, could be similarly
understood to be the +1 order diffraction of the generated TH pulses in pulses A and
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B by the correspondingly equivalent plasma gratings. These overall led to the
observed 2D diffraction pattern of the generated TH pulses as shown in
Fig. 10.14a, which were simultaneously amplified by the strong filament
interactions. From this point of view, 2D plasma grating presented here is not
only the superposition of three independent 1D plasma gratings but also should
be treated as a complicated volume grating.

10.8 Plasma Grating for Efficient Energy Transfer Between
Intense Femtosecond Filaments

Wavelength-scale plasma density modulation could form a dynamic plasma grating
for efficient energy transfer from one filament to the other. This could be realized on
the basis of the second-order diffraction from the preformed plasma grating with the
experimental setup as schematically shown in Fig. 10.15. A 50-fs pulse of 1 kHz
repetition rate, 800 nm and 2.2 mJ pulse energy from a Ti:sapphire laser system was
equally split into two parts as the pump and probe pulses. A BBO crystal (type I,
29.2°-cut, and 500-pm thick) placed in the arm of pump was used for second
harmonic (SH) generation. A dichotic mirror was used to separate the 800 and
400 nm pulses, and the SH pulse passed through a motorized delay line and then
collinearly combined with the FW pulse. In the probe arm, a combination of a half-
wave plate (HWP) and a neutral density attenuator (ND) was used to control the
polarization and the energy of the probe pulse. The pump and probe pulses were
separately focused by two lens with f = 100 cm, producing two filaments in air
with the crossing angle variable from 2° to 4°. When the pump and probe pulses
were synchronized, a 1D plasma grating was formed.

Different from previous studies, there was also frequency-doubled 400 nm
pulses in the pump arm. Interestingly, an efficient energy transfer of the time-
delayed SH pulse from the pump to the probe was observed to be accompanied with
the formation of the 1D plasma grating. Figure 10.16 presents the photographs and

Fig. 10.15 The schematic of
the experimental setup. BS
beam splitter, HWP half-wave
plate, LI, L2 lenses, ND
neutral density attenuator
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Fig. 10.16 Far-field images of the incident pump and probe pulses (a) with and (b) without
filament interactions and the corresponding 3D plots of the far-field images (c, d)

the corresponding 3D plot of the pump and probe beams with (b, d) and without
(a, c) plasma grating, captured by a digital camera on a paper screen placed at a
distance of ~100 cm away from the intersecting point. No SH pulse was observed in
the probe beam (Fig. 10.16a) when the pump and probe were not synchronized,
while reversely a bright blue spot emerged, collinearly propagated with the probe
beam. The diffraction of the SH pulse by the thin plasma grating was determined by
the Bragg diffraction condition. In this experiment, we dealt with the situation with
small angles 6 and ¢,,. The Bragg diffraction formula could be reduced to ¢,, =
m0OAsy/Arw. For the case of the incident SH along the pump arm, the first- and
second-order diffraction angle should be 0/2 and 0, respectively. The observed
results presented in Fig. 10.16b strongly support our explanation on diffraction of
the incident SH pulses from the plasma grating.

Interestingly, the first-order diffraction was much weaker than the second-order
one. This counterintuitive phenomenon could be explained as defocusing and
absorption of the first order by the plasma lattice. The energy of the incident and
diffracted SH pulses was measured to be 220 and 5 pJ, with a calculated diffraction
efficiency of 2.3%.

We further studied the dependence of the transferred SH pulse along the probe
beam upon the time delays between the SH pulse and the grating forming pulse
[54]. Two dichroic mirrors were used to separate the SH pulses at the end of the
filament interaction. A photodetector and locking-in amplifier were used to further
optimize the results. The inset in Fig. 10.17 shows the relative SH pulse energy in
the pump and probe arms recorded by scanning the pump-robe delay under the
condition of a fixed SH pulse delay of —100 fs. A clear variation of SH energy was



10 Nonlinear Interaction of Intense Ultrashort Filaments 283

Fig. 10.17 The measured 2
normalized intensity of 1.01% _—\f_‘
the transferred SHpulse inthe ~ — ]% 04 Purp 09 S
probe arm as a function of ‘é’ ;0 ) brobe ﬁ 08 J
the delay of the SH pulse with = E
respect to the FW pulses. e 200 0_7/ %
Inset: SH signal variation = 0.5 T 00 50 0 50 100 @
in the pump (blue curve) > Delay (fs) /
and probe (red curve) arms E /’ L 2
for a fixed SH pulse delay g .
of —100 fs E s yd

0.0 o—s" ——o—o

-30 -20 -10 0 10
Time Delay (ps)

observed only when the pump and probe pulses were synchronized. The pump
decrease was accompanied with the probe increase, which clearly indicate that
the transferred SH pulse was originated from the pump. As shown in Fig. 10.17, the
energy reached a maximum at the zero time delay and only existed when the SH
pulse was negatively delayed with respect to the FW pulse. Moreover, the gradually
decreased SH diffraction signal as a function of the time delay clearly demonstrated
a plasma density decay inside the long-lifetime plasma grating (up to few tens
picoseconds).

10.9 Enhanced Third Harmonic Generation
with Plasma Gratings in Air

Coherent nonlinear optical frequency conversion is an important aspect of nonlinear
optics for its intriguing application in remote sensing [55], single-photon frequency
up-conversion [56], and coherent ultraviolet light sources [57]. Much effort has been
devoted to improve the energy conversion efficiency by controlling the phase-
matching condition between harmonics. In the above, we proclaimed the existence
of plasma grating by efficient TH enhancement and diffraction in air. According to
the self-guiding model, the clamped filament intensity at a level of 10'*~10'* W/cm?
was high enough to produce stable TH generation, whose phase was self-locked with
the FW pulse during filamentation [6]. Such self-phase locking may provide a
possible way to overcome dispersion restriction to achieve phase matching. How-
ever, as the filament was terminated, the balance collapse between the self-focusing
and plasma defocusing would result in a rapid decrease of the TH pulses.

In this part, we focus on efficient TH generation assisted by plasma grating in air
and compare TH generation with that from a single filament. In the experiments, we
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Fig. 10.18 (a) The schematic experimental setup for the TH energy and spatial distribution
measurement. (b) The measured spectra of the TH pulses with and without interaction [41]

explored dependence of the TH enhancement on the crossing angle, polarizations,
and the intensity ratios between two intersected filaments. A 1D plasma grating was
formed with pump and probe filaments non-collinearly crossed at 3°. In order to
study TH enhancement, a fused silica prisms pair at the end of the probe filament
was used to separate the TH pulse from the FW pulse. The energy and spatial
distributions were, respectively, recorded by a photomultiplier tube (PMT) and a
CCD camera, as shown in Fig. 10.18a. Strong spatial and temporal coupling of the
interacting filaments was observed when the pump and probe pulses were
synchronized in the intersecting point. Strong filament interaction brought about
enhanced TH generation in comparison with a single probe filament [41].
The spectra of the generated TH pulses with and without filament interaction are
depicted in Fig. 10.18b. The peak TH intensity was enhanced at ~770 times
(at the spectral peak around 267 nm) in the presence of filament interaction.
Spatial evolution of the TH enhancement along the filament propagation and the
corresponding pulse energy are presented in Fig. 10.19. The TH pulse decreased
rapidly with the propagation distance (solid diamond curve), originated from the
plasma defocusing and diffraction of the laser beam, while remained almost
constant inside the filament owing to the nonlinear phase locking with the FW
pulse. The spatial profiles of the generated TH pulse along its propagation direction
captured by a CCD camera are also presented in Fig. 10.19, which clearly visualizes
the multiring structures of the TH inside the filament, whose divergence angles
were measured to be 2.25, 4.09, and 5.85 mrad, respectively. We conclude that the
inner rings were generated from the Fraunhofer diffraction of the generated on-axis
TH core. By assuming a filament diameter of ~170 um, we estimated divergence
angles of 2.26 and 4.2 mrad for the first and second rings, respectively. Without
filament interaction, a sharp decrease of the TH energy was observed at the propaga-
tion distances from 102 to 120 cm, where the multiring structures disappeared.
In the presence of filament interaction, the generated TH pulses could be
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Fig. 10.19 The measured TH pulse energy variation as a function of propagation distance in the
cases with and without filament interaction. The TH spatial distributions at three positions of 100,
102, and 120 cm are presented in the insets

maintained along a relatively longer distance (solid-circled curve) with sustained ring-
shape profiles, indicating the elongation of filament with self-confined diameter due to
the filament interaction. From this point of view, two interacting filaments could
be used as a method to control filament propagation [17,41] and increase the nonlinear
phase-locking distance, which would be further beneficial for broadband TH genera-
tion in filaments.

Since the TH enhancement was based on the filament interaction, which was
closely dependent on the experimental parameters such as polarization, crossing
angle, driving intensity, and time delay, we systematically investigated the changes
in TH conversion energy for a range of parameters. The nonlinear increase of the
TH enhancement factor observed at different pump intensities at a non-collinear
crossing angle of 9° is shown in Fig. 10.20a. The total TH intensity increased
slowly with the control pulses at small intensities. A dramatic TH enhancement was
observed with the control peak intensity above 64 GW/cm?®. As the control peak
intensity increased higher than 100 GW/cm?, the TH enhancement was switched to
a gradual increase with the control pulses and reached its maximum at 220 GW/
cm?. The phase-matching condition became destroyed above 220 GW/cm?, leading
to a decrease of the TH conversion efficiency.

Figure 10.20b presents a comparison of the TH enhancements driven by pump
and probe pulses with different crossing angles. At an increased crossing angle, the
requisite control peak intensity should be increased to optimize the TH conversion
efficiency. This was mainly caused by non-collinear projection of pump and control
pulses into the assembled waveguide, which induced different geometric changes of
the TH phase-mismatch under different incidence angles. The geometric effects on
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phase matching were further evidenced by the dependence of the TH enhancement
on the crossing angle shown in Fig. 10.20c. Although the assembled waveguide
sustained longer lengths at smaller crossing angles, the TH conversion efficiency
reached its maximum at a crossing angle ~ 13° under fixed pump and control
intensities, and the corresponding enhancement of the generated TH intensity
(integrated over the TH spectral range) was further optimized up to 174 times
with the control peak intensity around 200 GW/cm? (see Fig. 10.20b). The relative
polarization of the control and pump pulses also affected the formation of the
plasma lattice and the subsequent TH enhancement. As shown in Fig. 10.20d,
when the pump and control pulses were temporarily walked off, the enhancement
of the TH pulse was still exist for tens of picoseconds, indicating the third-order
nonlinearity variation induced by the laser-induced plasma. The inset in Fig. 10.20d
presents the detailed TH intensity variation around zero time delay.
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10.10 Broadband Third Harmonic Enhancement by Interaction
of Intense Few-Cycle and Long Femtosecond Filaments

By using nonlinear interaction between non-collinearly crossed few-cycle and
synchronized long filaments, an intensity-enhanced and spectrum-broadened third
harmonic (TH) pulses could be generated. We studied the TH enhancement and its
dependence on the relative polarization, crossing angle, intensity, and time delay
between the two filaments with an experimental setup schematically shown in
Fig. 10.21. An output from an amplified Ti:sapphire laser system (50-fs, 800-nm,
1 kHz) was firstly split into two parts after a beam splitter with one of them was
further coupled into an argon-filled hollow fiber and then compressed by using
chirped mirror pairs to produce few-cycle pulses (probe) with the pulse duration of
~7 fs. A translation stage and a HWP were used in another (pump) arm to precisely
control the temporal delay between the pump and probe pulses and the pump pulse
polarization, respectively. Both the pump and probe pulses with the corresponding
incident pulse energies of 0.55 and 0.50 mJ were focused in air to cross non-
collinearly by using two separate lenses with the same focal length of 100 cm.
The non-collinear crossing angle was varied from 4.0 to 12.0°. The generated TH
pulses were separated from the FW probe pulses by using a pair of silica prisms,
which were then measured by a PMT and a spectrometer.

As the long and few-cycle pulses were delayed without temporal overlapping,
both pulses propagated in air with no interaction even though they were non-
collinearly crossed, and each filament was formed with the typical length of
~3 cm as a result of the counterbalance between the Kerr self-focusing and plasma
defocusing. Self-guided filamentation enabled efficient nonlinear frequency con-
version since the phase of the FW and the newly component could be locked to
fulfill phase-matching condition [6, 41]. However, when the filament of FW
disappeared, the TH would give its energy back to the FW due to the phase
mismatching, leading to the rapid decrease of the TH energy. This was consistent

N

Ti: Sapphire Pump

Fig. 10.21 Experimental
setup for broadband TH
generation in the presence of
nonlinear interaction between
non-collinearly crossed
few-cycle and long-pulse
filaments. BS beam splitter,
HWP half-wave plate, PMT
photomultiplier tube, L/, L2
lens
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Fig. 10.22 (a) The fluorescence image of the interaction region. (b) The TH energy versus the
propagation distance for the cases with (blue square) and without (red square) filament interac-
tion. Measured spectra of TH wave generated by few-cycle pulse at different propagation distance
of (¢) 100, (d) 102.5, (e) 105, and (f) 107.5 cm, when the non-collinear filament interaction was
turned on (blue solid curve) and turned off (red-dashed curve). The crossing angle was set to be 5°
and the incident pulse energies of the few-cycle and long pulses were, respectively, set to be 0.50
and 0.55 mJ

with the experimental observation shown in Fig. 10.22b (red-squared curve). As the
synchronized pump pulse was launched, the energy back conversion from the TH to
the FW was suppressed in a long propagation distance [the blue-squared curve in
Fig. 10.22b], enhancing TH in the far-field region. All these indicated that the
interaction between pump and probe pulses improved the phase-matching condition
between the FW and TH pulses, which was further confirmed by the TH spectral
distribution at different propagation distances with and without pump pulses
(Fig. 10.22c—f). For a single filament generated by few-cycle pulse, the
corresponding TH spectrum ranged from 240 to 310 nm at the laser focus around
100 cm [red-dotted curve in Fig. 10.22c]. As the propagation distance increased, the
spectral bandwidth was narrowed with a decreased intensity, as shown in



10 Nonlinear Interaction of Intense Ultrashort Filaments 289

a I} b x
— [$]
5 1.0 £ 15
< c
z @
S §
2 g
L 051 £199
~ @

T
-
T T T T T 5 T T T T
0.0 20.0 40.0 600 80.0 6 8 10 12
Polarization angle (degree) Crossing angle (degree)

§ 121 c /‘ 1.0 d Q
[&] —
8 'S 4 ]
g 97 / S
Q ‘ >
IS <)
g / 5 0.57
5 ° » 5 .
£ >® T
]  ad =
T 31 & °
= oo? 0.0-

*-0-¢ :

200 300 400 500 600 -200 -100 0 100 200

Pump power (mW) Time delay (fs)
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Fig. 10.22d—f. When the synchronized pump pulse was added, the TH spectra at
different positions (102.5, 105, and 107.5 cm) showed a similar bandwidth and
intensity with that at the focus position.

The evolution of TH energy and spectral distribution confirmed that the TH
enhancement in the far-field was originated from the decrease of TH energy back
conversion to the FW pulses along their propagations due to phase-matching
improvement by adding the synchronized pump pulse. This phenomenon could
be understood by considering the filament elongation caused by the nonlinear
filament interaction. The synchronized pump pulse significantly increased the
intensity in the overlapped region due to the interference between pump and
probe pulses. As a result, enhanced nonlinear effects dramatically affected the
temporal distribution of the optical field. Meanwhile, the spatial distribution also
followed the interference pattern. The modification on the spatial and temporal
characteristics of non-collinear filaments could be used to control the filamentation
process and lengthen the filamentary propagation.

Figure 10.23a shows the TH energy as a function of the polarization. The maximum
and minimum TH enhancement factors were observed as their polarizations were
parallel and orthogonal, respectively, where parallel polarizations corresponded to the
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formation of the plasma lattice. As shown in Fig. 10.23b for TH enhancement at
different crossing angles, TH energy increased gradually with the increase of the
crossing angle till it reached the maximum enhancement factor of 17 around a crossing
angle of 9°. Filamentary propagation as the result of the counterbalance between self-
focusing and plasma-defocusing was determined by the combined effects of different
pulse characteristics, the optimal filament elongation was achieved with an appropri-
ate crossing angle (9° for pulse duration and energy used in our experiments) to
support the maximum of the TH energy measured in the far-field region. Further
increase of the non-collinear crossing angle resulted in a reduction of the TH energy.
Accordingly, we could adjust the crossing angle to manipulate the filament elongation
and then change the TH energy in the far-field region. In addition, the filament
interaction could be changed by adjusting the pump intensity and pump—probe time
delay. Figure 10.23c and d depicts the generated TH as a function of the pump
intensity and relative time delay. The TH enhancement changed under different
filament interaction conditions, presenting further evidence that the TH enhancement
was determined by the interaction between pump and probe filaments.

10.11 The Formation of an Intense Filament Controlled
by Interference of Ultraviolet Femtosecond Pulses

Ultraviolet (UV) femtosecond laser pulses could be generated through nonlinear
frequency mixing processes, such as third harmonic generation of the near-infrared
femtosecond pulses with cascaded second-order nonlinear processes in the quadratic
nonlinear crystals [58—60]. Experimentally, an output from a chirped pulse amplified
laser system (800 nm, ~50 fs, 22 mJ, 10 Hz) was applied for TH pulse generation by
cascaded nonlinear frequency mixing, as shown in Fig. 10.24. Three successive BBO
crystals were used. The first BBO crystal (BBO1, 200 pm, 29.2°-cut, type I) was used
for frequency doubling. The group velocity mismatching between the generated SH
and the residual FW pulses was compensated by a second BBO crystal (BBO2,
200 pm, 29.2°-cut) with its crystallographic axis rotated 45° with respect to BBOI.
The third BBO crystal (BBO3, 200 um, 44.3°-cut, type I) enabled the TH generation

BBO1 BBO2 BBO3
SHG Comp THG
800nm

1.6 mJ 267 nm

>

22 mJ/50 fs, 800 nm

400nm

800nm to 267 nm n>7%

Fig. 10.24 Schematic of efficient TH generation by cascaded nonlinear frequency mixing with
three successive BBO crystals. A conversion efficiency of 7% was obtained
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Fig. 10.25 Fluorescence images of the preformed plasma gratings with crossing angles of (a)
2.17° (b) 1.52°, and (c) 1.27°, and (d—f) the corresponding fluorescence profiles

through frequency summing of the FW and SH pulses. The TH pulse was separated
from the FW pulse with high-reflection mirrors of the TH pulses.

Similar to non-collinear near-IR filament interaction that induced efficient
plasma waveguides [40] and plasma gratings [54], strong nonlinear interaction
occurred for two non-collinearly crossed UV femtosecond filaments [61]. Experi-
mentally, we generated an intense TH pulse of 1.6 mJ (~7% efficiency). The TH
pulse was then equally split into two beams, and focused by using an f = 250 mm
curve mirror with a changeable crossing angle. When two UV pulses were
synchronized, strong spatiotemporal coupling and great fluorescence enhancement
similar to that of the near-IR filament interaction were observed. The formation of
plasma grating was directly visualized by the fluorescence detection method. As the
interacting UV filaments intersected at decreased crossing angles, the plasma
modulation period increased and the number of plasma self-channels in the inter-
action region decreased. As the UV pulses could be tightly self-guided in filaments
of smaller core diameters, only quite a few plasma self-channels were observed in
the UV filament overlapping region. Figure 10.25d—f shows the detected fluores-
cence at three different crossing angles 6 = 2.17°, 1.52°, and 1.27°, with the
corresponding measured fluorescence profiles plotted in Fig. 10.25a—c. Two bright
plasma self-channels were observed for 0 = 1.52°. Interestingly, a single intense
UV filament with a core diameter of 5 pm was produced for 0 = 1.27°, as shown in
Fig. 10.25f. At sufficiently small crossing angles, the UV pulse interference pro-
duced only a few intensity interference peaks in the overlapping region, while UV
femtosecond pulses exhibited a large multiphoton ionization probability that caused
a serious plasma defocusing. The filament interaction could thus be controlled to
have only one central intensity interference peak to sustain filamentary propagation
while filamentation was suppressed for all side interference peaks. Accordingly,
laser energies were attracted to the central interference peak that assisted filament
coalescence into a single filament (Fig. 10.25c, f) [31, 62].
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10.12 Conclusions

In summary, non-collinear filament interaction in air was demonstrated to generate
plasma lattices of unique wavelength-scale plasma microstructures and periodic
density modulation, as a result of Kerr self-focusing at local intensity peaks of the
constructive interference followed by its counterbalance with local plasma
defocusing. The observed plasma lattices could function as efficient plasma
waveguides and plasma gratings that sustained high-peak intensities, fascinating a
growing research highlight and stimulating a variety of interesting applications in
the field of high-intensity laser physics. We review here some of our recent
experimental results based on the periodic plasma density modulation induced by
nonlinear interaction of filaments. Our main results are summarized as follows.
(a) The formation of self-guided periodic wavelength-scale channels was evidenced
by the direct observation of the filament interaction, which revealed wavelength-
scale spatial periodicities dependent on the crossing angles and intensity ratios
between the non-collinearly overlapped intense femtosecond filaments. We showed
that the periodic plasma density modulation could be used to guide the input pulses
equivalently as a photonic-crystal waveguide, which enables attractive applications
in ultrahigh intense laser optics. (b) Plasma grating assisted diffraction and efficient
energy transfer of a delayed second harmonic pulse from one filament to the other
were observed in air. The grating dependences on the intensity ratios and relative
polarizations of the interacting filaments were studied in details. We anticipate
important applications of plasma grating in the field of laser plasma interactions and
ultra-intense laser optics. (c) Significant third harmonic enhancement was observed
as a result of elongation of laser filament induced by plasma lattices. The experi-
mental results may stimulate further studies for filamentation nonlinear optics, and
pave a way for efficient generation of bright ultrashort ultraviolet pulses. (d) UV
filaments were coupled to induce interesting fusion and coalesce into a single
intense UV filament with a quite small diameter. This could be considered as a
new method to control the UV femtosecond filamentation in air. As one of the most
significant and interesting phenomena, filament interaction induced periodic
plasma microstructures still have plentiful mysterious features and applications,
and further experimental and theoretical investigation of the plasma interaction are
necessary to understand the dynamics of the involved nonlinear interaction.
We expect that such kind of plasma photonic crystal like periodic structure would
be vastly applied in the field of ultra-intense laser physics, chemistry, and material
science, such as to stretch, compress, and control the propagation of ultra-intense
laser pulses, to trap atoms and molecules for chemical reaction in plasma
waveguides, to photo-dissociate molecules, to accelerate electrons and ions in the
plasma channels, and so on.
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Chapter 11
The Dawn of Ultrafast Nonlinear Optics
in the Terahertz Regime

F. Blanchard, L. Razzari, F.H. Su, G. Sharma, Roberto Morandotti, T. Ozaki,
M. Reid, and F.A. Hegmann

11.1 Introduction

The terahertz (THz) frequency range is a specific region of the electromagnetic
spectrum also known as the far-infrared (FIR) region. More precisely, THz waves
cover the region from 100 GHz to 20 THz, thus bridging the gap between microwaves
and infrared light. Physically, 1 THz is equivalent to a wavelength of 300 um in
vacuum, to 33.3 cm™ ! in terms of wave numbers, to a photon energy of 4 meV, or to a
temperature of 48 K. THz waves have the ability to penetrate various materials
including non-metallic compounds (papers and plastics), organics, gases, and liquids,
thus being a powerful tool for spectroscopic sensing [1]. This portion of the electro-
magnetic spectrum has been accessible for some time by various means including
molecular gas lasers, gyrotrons, and free-electron lasers [2]. Due to complexity, cost,
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Table 11.1 Properties of recent high-intensity THz sources

OR by OR by OR by
Two- Optical tilted- tilted- tilted-
Large color rectification  pulse-front pulse-front pulse-front
photoconductive plasma (OR) in in LINbO; in LiNbO3 in LiNbO;
switch [24] [13] ZnTe [16] [17] [25] [26]
Energy (uJ) 0.8 0.03 1.5 10 50 3
Peak electric 150 kV/cm 400 kV/ 230 kV/cm 250 kV/cm 1.0 MV/cm
field cm
Bandwidth  0.1-2 0.3-7 0.1-3 0.1-0.7 0.1-0.5 0.1-2.5
(THz)
THz spot 1.6 mm 300 pm
diameter
(FWHM)

and limited frequencies of operation, these sources have traditionally made it difficult
to gain full access to the terahertz frequency range. Nevertheless, there were several
pioneering works in nonlinear FIR spectroscopy already in the early 1970s, about one
decade after the advent of the laser (readers may find a review in [3]). In particular,
saturated absorption in the FIR region was first studied in 1970, which led to the
optically pumped FIR gas laser [4]. In the 1980s, the first demonstration of THz
radiation coherently generated and detected was made. This result coincided with the
development of ultrafast lasers and was obtained using a photoconductive antenna
emitter [5], where photoexcited carriers induced by an ultrafast laser pulse are
accelerated by a biasing electric field. The resulting time varying current J(¢) radiates
an electromagnetic transient, E o< 9J/0t, whose amplitude and phase depend on
various parameters such as carrier mobility, carrier lifetime, bias field, and on the
impurity doping concentration [6]. This allowed the birth of coherent time-domain
THz spectroscopy (TDTS) [1], which provided unprecedented insights into the nature
of molecular vibrations, carrier dynamics in semiconductors, and protein kinetics
[7-12]. Even with 30 years of rapid advances in the study of light—matter interactions
at THz frequencies, lack of efficient emitters and sensitive detectors in this frequency
range has for long time slowed down THz linear and nonlinear spectroscopy.

More recently, innovative generation schemes based on nonlinear optical processes
have successfully reached sufficient THz peak power to access the fascinating world
of nonlinear optics temporally resolved with subpicosecond resolution [13-20]. In
Table 11.1, we show various laser-based techniques to generate high-intensity THz
pulses with electric fields greater than 100 kV/cm at the focus. Notice that this table
does not describe all the achievements obtained in the field, and one can find a more
complete review of THz generation sources in references [21-23]. However, to date
and in the context of nonlinear optics at THz frequencies, generating high-intensity
THz pulses clearly points toward two promising techniques that are optical rectifica-
tion and two-color plasma based sources, as shown in Table 11.1.
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This book chapter is organized as follows: in Sect. 11.2 we present an overview
of the THz generation and detection schemes suitable to perform nonlinear coherent
TDTS with subpicosecond time resolution, and we discuss both the advantages and
limitations. We then review in Sect. 11.3 a set of absorption bleaching experiments
performed on an n-doped semiconductor using a THz Z-scan technique, preceded
by a brief description of the recent nonlinear optical phenomena observed at THz
frequencies. Finally, in Sect. 11.4, we describe a THz pump—THz probe setup that
enables mapping of the conduction band structure in semiconductors.

11.2 Handling THz Waves

11.2.1 Detection Schemes

There are a number of methods used to detect FIR radiation. Thermal detection as
well as coherent detection using electro-optic crystals and photoconductors can be
used for detecting pulsed terahertz radiation. Traditionally, radiation in the near-
infrared through the visible wavelength range at higher frequencies can be detected
with great sensitivity with devices such as photomultipliers, photoconductors, and
photodiodes. These devices essentially operate on the same principle: a photon has
sufficient energy to generate a free electron or a charge—carrier pair, which are
detected electronically. These methods work sufficiently well when the photon
energies of the radiation to be detected are large enough to generate the charge
carriers. The photon energy at 1 THz is about 4 meV, making it very difficult to
employ such standard techniques for photon detection. At the same time, very
sensitive detection of electromagnetic radiation can be achieved for very long
wavelengths by purely electronic means. For example, the detection of radio
waves using antennas can be very efficient. However, it becomes more and more
difficult to operate antennas, as well as the corresponding electronics, at higher
frequencies approaching the THz range. Therefore, a somewhat unique technology
is required for detecting radiation in the THz frequency range, lying between the
well-developed detection technology for the visible and the well-established detec-
tion technology for the microwave portion of the electromagnetic spectrum.
There are basically two types of detection that one would consider—direct
detection and coherent detection of THz radiation. Direct detection would likely
be considered with incoherent sources of THz radiation or when the THz source has
a narrow frequency range. Examples of direct detection would be thermal detectors
such as pyroelectric or bolometric detectors. For higher sensitivity, a nonlinear
detector such as a Schottky barrier diode or a hot electron bolometer can be used in
a heterodyne configuration [27]. Recently, a bolometer-type uncooled THz camera
became available [28, 29] allowing direct visualization of the THz radiation beam
intensity profile. For the case of coherent detection, the three primary methods are
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Fig. 11.1 Concept of EO sampling. (a) THz-electric-field-induced birefringence into EO crystal
by Pockels effect. Polarizer and photodiodes convert phase modulations into amplitude
modulations. (b) Example of a THz trace recovered by moving the optical delay stage of the
probe beam line

photoconductive sampling [5], electro-optic (EO) sampling [30], and more recently
laser-plasma based detection [31]. The readers may find a complete description of
photoconductive sampling and free-space EO sampling in [32], and a demonstra-
tion of broadband THz detection using laser-plasma in [33]. In Fig. 11.1, we show
the concept of EO sampling as first introduced by Wu and Zhang [30].

As shown in Fig. 11.1, an optical probe beam is passed co-linearly with a
terahertz field inside an EO material. The terahertz field acts as a bias field for the
linear electro-optic effect (Pockels effect), which induces a polarization modulation
on the probe beam. The polarization modulation is measured using a Wollaston
polarizer prism and a pair of photodiodes to monitor the differential polarization
signal (S and P), which is balanced (i.e., equal to zero) in the absence of a terahertz
field. The differential photodiode signal (Ai) is measured with a lock-in amplifier,
and the terahertz signal is mapped out in time by varying the probe delay (+Af) with
respect to the terahertz pulse. In this configuration, a high signal-to-noise ratio
(SNR) >10,000 capability is feasible, comparable to photoconductive sampling
[34]. Typically, EO sampling is done at the central part of a focused THz spot that
gives the peak THz electric field. Limitations in the detected bandwidth mainly
arise from the choice of the EO crystal and the temporal pulse width of the sampling
probe beam. For detecting THz waves, zinc telluride (ZnTe) [30] and gallium
phosphide (GaP) [35] crystals are commonly used, due to the relatively good
matching between the THz phase velocity and the optical group velocity at
800 nm (i.e., the emission wavelength of Ti:sapphire lasers). To estimate the
peak THz-electric-field-induced birefringence into the EO crystal, the modulation
ratio between the two photodiodes signals (i; and ip) is used [36]:

is —

ip . 2m 4
— = 0~0=— EL 11.1
i sin 7 nyrs1 EL, ( )

where ng, L, and r4; are the index of refraction, thickness, and the electro-optical
coefficient of the sensor material, respectively. E is the peak THz electric field, 4 is
the probe beam wavelength, and 0 is the modulation detected by the two
photodiodes signals i and ip,.
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11.2.2 Generation by Optical Rectification

Optical rectification (OR) is a well-known second-order nonlinear process that
takes place in media lacking inversion symmetry. Already in the 1970s, optical
rectification in a nonlinear medium was known to generate FIR light [37]. In spite
of this, experimental and theoretical evidence of rectification in (110) crystal
semiconductors was only demonstrated in 1994 [38]. This approach is normally
more straightforward than the use of a photoconductive antenna, since no external
electronic components are required. Other advantages are the wide bandwidth
capability associated with optical rectification [39] when matching between the
group velocity of the optical pumping wavelength and the phase velocity of
the emitted THz radiation is achieved. For efficient generation of THz radiation,
Hebling et al. have proposed the idea of using a Cerenkov-type scheme based on a
tilted front laser pulse propagation in lithium niobate (LiNbO3) [40]. In this scheme,
the large refractive index mismatch between the optical pump and the THz wave
can be overcome while taking advantage of the higher nonlinear coefficient of
LiNbO; when compared to a standard GaP or ZnTe crystal. Thanks to this
pioneering technique [40], efficiencies greater than 6 x 10~* were demonstrated
using 16 mJ of pump laser energy [17] and 30 puJ of THz energy, with a relatively
low peak frequency at 0.35 THz [25, 41].

Physically speaking, optical rectification is a process in which a laser pulse that
is traveling through a nonlinear crystal induces a time-dependent polarization
change that radiates an electromagnetic wave. The temporal dependence of the
radiated field is given by

9*P(t)
o’

ERS o (11.2)

where Ef4 is the radiated THz field and P(f) is the polarization change,
expressed by

P(1) x 1*(0; —@, ) Eop (—0)E(®). (11.3)

Here E; is the electric field of the optical pump and %* is the second-order electric
susceptibility of the material. It is worth mentioning that the polarization of the
radiated THz field depends on the crystal orientation as well as on the incident
pump polarization. Ideally, the frequency content of the radiated THz field is
strictly related to the bandwidth of the incident pump beam. For example, a laser
pulse of duration t = 100 fs can lead to a rectification with 1/t ~ 10 THz band-
width. However, in typical experimental conditions, one can expect a limitation in
the bandwidth of the radiated field due to the imperfect matching between the group
velocity of the optical pump and the phase velocity of the radiated THz field, as well
as to the presence of phonon absorption lines in the generating crystal.
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Matching between the optical group velocity and the THz phase velocity is
crucial for an efficient optical rectification as well as for the electro-optic (EO)
sampling technique (often used to characterize THz optical pulses) [34]. The phase
matching condition for the generation of THz radiation via optical rectification is
equivalent to that of difference frequency mixing [39], and is given by:

k (00p + Q) — k(00p) = k(Q). (11.4)

Here k is the wave vector, .y, is the angular frequency of the pump beam, and Q is
one particular frequency of the radiated THz wave-packet. When using this expres-
sion, we can depict the radiated THz waves as the superposition of all the frequency
content in the optical pump beam. Additionally, Q depends on the second-order
dispersion coefficient of the crystal, as well as on the pump beam spectrum and on
the phase shift between the pump and the THz waves.
From (11.4), we can write:
k(Q) [ak]
— == (11.5)
Q 0w opt

which states that the phase velocity of the THz waves matches the group velocity of

the pump beam [39]. Furthermore, we can introduce the coherence length of an
optical rectification process, in which THz waves have a positive buildup [39].

e

WTHZ |1 y) Ay n 7
THz |topt — “opt — HTHz
d Jop

t

I = (11.6)

where c is the speed of light, nry, is the refractive index at THz frequencies, nqp is
the refractive index of the pump beam, and 4 is the wavelength of the pump beam.

Due to the reasons mentioned above, ZnTe is one of the nonlinear materials of
choice for the generation and the detection of THz radiation for a collinear phase
matching configuration. To better understand the details of THz emission via
optical rectification, we will examine the case of a (110) ZnTe crystal. Zincblende
crystals have a cubic structure with a43m “point group,” thus implying that only the
electro-optic tensor components 714 = 7,5 = I'36 are non-zero. In order to simplify
our mathematical description, a lab coordinate system, x'y'z’, with the X'y’ plane on
the (110) plane of the crystal can be constructed (see Fig. 11.2 for details) [42].

We define 0 as the angle between the y' direction [001] of the lab reference
coordinates and the polarization vector of the optical pump beam. The generated
THz electric field Ety, is projected in the reference plane x'y’, where x’ is in the
direction [—110], according to the formula:

ETHZA/ sin 29
(ETHZy/> x <sin2(0))' (11.7)
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Fig. 11.2 (a) (110) plane in xyz coordinate. (b) Coordinate x’y’z’ on the (110) plane

From (11.7), the emitted THz energy is thus proportional to sin*(26) + sin*(0)
[38]. According to the newly defined axis given in Fig. 11.2, the polarization
orientation o of the irradiated THz waves is given by:

— gan—l 2
o = tan (tan(0)>' (11.8)

We notice that when 0 = 90°, then o = 0 and the THz wave is polarized
perpendicularly to the optical pump beam. From the above expression for the
THz energy, we can easily infer that the maximum emitted THz radiation is
found for tan(0) = V2, so that « = 0 = 54.7°.

The highest THz field ever reported based on optical rectification in ZnTe was
obtained at the advanced laser light source (ALLS) laboratory, which is a facility
allowing for multiple laser beam interactions, from X-rays to IR, with sufficient
power to change significantly the properties of matter and probe its dynamics
(http://lmn.emt.inrs.ca/EN/ALLS.htm). The main technology used in this facility
is based on ultrafast Ti:sapphire lasers (800 nm) and the THz source is attached to a
laser beam line that supplies energies as high as 70 mJ (after a vacuum compressor),
delivered by ~ 40-fs-wide laser pulses at a repetition rate of 100 Hz. A schematic
of the ALLS THz source is shown in Fig. 11.3 and includes three main parts: a THz
generation chamber held under vacuum (~10~° torr), an 800-nm probe beam line
propagating in air, and a dry-nitrogen-purged section, where the THz beam travels a
distance of over 2 m. The THz source has been built using nonlinear optical
rectification for a collinear velocity matching configuration using a large aperture
ZnTe crystal, as described and characterized in [16].

In this system, THz pulse waveforms are detected using free-space EO sampling in
a second (110) ZnTe crystal of 0.5 mm thickness. The waveform could be
reconstructed by using an optical delay stage (A). A lock-in amplifier connected to
the output of the balanced photodiodes and referenced to the chopper was used to
acquire the THz waveforms. A second optical delay line (B) is also available to set up
more complex experiments requiring an auxiliary optical pump or a weak THz probe.
The generated THz energy was measured using a pyroelectric detector (Coherent-
Molectron J4-05) with a specified sensitivity of 2,624 V/J at 1.06 um, which we
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Fig. 11.4 THz pulse energy emitted from the large aperture ZnTe source as a function of the
incident 800 nm laser pulse energy per unit area. The corresponding energy conversion efficiency
is also shown. The inset depicts the magnified portion of the THz energy scaling (below 300 pJ/
cm? of pump intensity) obtained using a pyroelectric detector [16]

previously calibrated at THz frequencies using a second pyroelectric detector from
Microtech Instruments (based on a LiTaOj; crystal [16]). An interesting result obtained
using the large aperture ZnTe source is the scaling of the THz energy versus laser
pump energy, shown in Fig. 11.4. The pump beam irradiating the ZnTe crystal has a
fluence ranging from 28 pJ/cm? (1 mJ) to 1.33 mJ/cm? (48 mJ) with a Gaussian shape
and a total area of 36 cm®. At the maximum pump energy of 48 mJ, the THz pulse
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energy is as high as 1.5 pJ, corresponding to an energy conversion efficiency of
3.1 x 107> and an average THz power of 150 uW (for a 100 Hz repetition rate
pump pulse train).

The highest THz fields generated to date by laser-based sources in the
0.1-2.5 THz frequency range are achieved using optical rectification by tilted-
pulse-front techniques in LiNbO; crystals [26]. As we mentioned earlier, efficient
THz generation needs the group velocity of the optical pump beam to match the
phase velocity of the THz wave, that is v§}, = v?}lﬁz. Many high dielectric constant
materials, including LiNbO; and other ferroelectric materials offer a very high EO
coefficient; however, the velocity matching of optical and THz waves in these
crystals cannot be achieved collinearly. For these materials, the refractive index in
the THz range is more than two times larger than that in the visible range. This
problem is overcome by tilting the pulse front of the optical beam using a diffrac-
tion grating, as first proposed by Hebling et al. [40] and as subsequently
demonstrated by the same group [43, 44]. In particular, recent theoretical
predictions show how to fulfill the condition where the grating image coincided
with the tilted-pulse-optical-pulse-front [45], and a successful experimental dem-
onstration in a 4-f scheme [26] confirmed the importance of generating a collimated
THz beam when a high power laser source is available. These dual successes now
give an unprecedented tool (i.e., following the demonstration of a peak electric field
as high as 1.0 MV/cm in the 0.1-2.5 THz range [26]) to continuously alter the
lattice momenta of the electrons in the solid and thus, to explore their properties
within the entire Brillouin zone.

11.3 High-Field Transport and Nonlinear THz
Dynamics in Semiconductors

The investigation of high-frequency and high-field transport effects in
semiconductors is of great interest in condensed matter physics in order to under-
stand the behavior of fast semiconductor devices operating under extreme
conditions. In the last 25 years, intense microsecond to nanosecond (and more
rarely, picosecond) terahertz (THz) pulse sources in conjunction with incoherent
(i.e., total energy) detection methods have been used to explore the nonlinear
optical properties of semiconductors in the FIR region of the spectrum, which has
enabled studies of high-field transport, band structure, and carrier—phonon
interactions in semiconductors [46, 47]. For example, Mayer and Keilmann [47]
first observed third harmonic generation in the FIR in doped semiconductors using
40 ns, 20 cm ™! pulses from a FIR laser source, providing new insight into nonlinear
electron transport dynamics in semiconductors. More recently, by using coherent
detection methods, the electric field of the THz pulse, rather than its intensity, has
been mapped in time, giving access to both amplitude and phase information that
can be used to extract the real and imaginary parts of the index of refraction
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(or equivalently, the complex conductivity or dielectric function) without the use of
Kramers—Kronig relations. In addition, the brightness of the newly developed THz
pulse sources together with the possibility of coherent detection gives orders of
magnitude better sensitivity than conventional thermal sources based on bolometric
detection. As mentioned previously, the rich information contained in the energy
range of THz waves (0.41-12.3 meV) allows one to perform spectroscopy on
numerous materials [7—12]. In particular, quasi particle scattering rates in doped
semiconductors are in the THz range, and so THz pulses can be used to characterize
their overall conductivities [48]. However, since significant advances in high power
single-cycle THz pulse generation have occurred relatively recently, only a limited
number of experiments investigating the nonlinear optical response of semiconduc-
tor materials at THz frequencies and at picosecond timescales have been reported
so far. For instance, the nonlinear response of n-type GaAs, excited by a THz pulse
with an electric field amplitude of 50 kV/cm, has been reported [14]. In addition,
THz intensity dependent cross-phase modulation has been observed in electro-optic
crystals, in turn leading to spectral shifting, broadening, and modulation of co-
propagating laser pulses [15]. Lattice anharmonicity and self-phase modulation in
LiNbO;3 [19] and THz-electric-field-induced impact ionization in InSb [49] have
been reported using intense THz pulses. Moreover, these sources have allowed the
observation of a decrease in THz absorption due to intervalley scattering in doped
GaAs, Si, and Ge using THz pump-THz probe techniques [50], as well as the
observation of ballistic transport of electrons in GaAs across half the Brillouin zone
by time-resolved high-field THz measurements [51].

11.3.1 Nonlinear Absorption Bleaching

One of the most common and straightforward nonlinear optical characterization
techniques is the open-aperture Z-scan where the transmission of a sample is
measured as it passes through the focus of an intense optical beam, thus giving
access to nonlinear transmission properties. Widely used in multiphoton absorption
studies [52], it has been shown to be effective even for characterizing saturable
absorbers [53]. Indeed, THz saturable absorbers have recently been proposed [54].
Generally, since most types of nonlinear phenomena are detectable through the
Z-scan technique, one must perform open and closed aperture Z-scan to identify
the origin of the transmission change (i.e., index of refraction or nonlinear absorp-
tion changes). On the other hand, when a Z-scan technique is used in combination
with a THz EO sampling coherent detection scheme, as opposed to incoherent
detection, the full temporal waveform evolution is available. This additional feature
can directly confirm the presence, or not, of refractive index changes, simply by
looking at the phase changes of the temporal waveform. In particular, it is also
worth stressing that THz Z-scan gives access to the dynamics of a nonlinear process
by simply measuring the change in transmission of a single THz pulse, which is
usually not possible at optical frequencies. A schematic of a typical Z-scan tech-
nique is shown in Fig. 11.5.



11 The Dawn of Ultrafast Nonlinear Optics in the Terahertz Regime 307

THz
l z=0

sample
moving in z
LU TS
for open aperture ~» D —

|

to detection unit

Fig. 11.5 Schematic of the THz Z-scan technique

In order to investigate free-carrier-related nonlinearities at terahertz frequencies,
we can take advantage of a well-known material widely used in optoelectronics,
namely, indium gallium arsenide (InGaAs). The sample used here is a 500-nm-
thick n-type Ings; Gagq;As epilayer (carrier concentration of approximately
2 x 10" cm™) grown by metal oxide chemical vapor deposition on a lattice-
matched, 0.5-mm-thick semi-insulating indium phosphide (InP) substrate. Its linear
transmission characteristic at low THz fields shows that only 3% of the incident
THz pulse energy passes through; this strong drop in transmission is mainly due to
the high conductivity of the epilayer, where the InP substrate alone has an overall
transmission (including absorption and reflection losses) of about 60%.

In Fig. 11.6a, the InGaAs sample is illuminated with 0.8 pJ terahertz pulses with
peak electric field of around 200 kV/cm at the focus. In that first experiment, a
Z-scan measurement was performed on the sample using an incoherent detection
method, measuring the transmitted THz pulse energy with a standard pyroelectric
detector. A significant transmission enhancement (red line, Fig. 11.6a) is observed
around z = 0 mm (focus position) of the Z-scan. In a situation where the same
technique is applied to the substrate alone, no effect is observed (as shown by the
black line in Fig. 11.6a). The nonlinear transmission becomes clearer when looking
at the temporal profile of the transmitted THz electric field at different z-positions, as
shown in Fig. 11.5b. Taking into account that a linear transmission of the THz pulses
is obtained for a position far from focus (i.e., Izl > 6 mm), Fig. 11.6b shows no
significant temporal shift between each transmitted pulses, thus indicating that the
imaginary part of the conductivity is not appreciably changing. Knowing that by
calculating the time integral of the modulus squared of electric field, we obtain a
quantity proportional to energy, one can corroborate the data obtained in Fig. 11.6a
with the one measured in (b). Figure 11.6c shows the evaluation of the transmitted
energy calculated using the coherent measurement shown in Fig. 11.6b, which is
found to be consistent with the direct energy measurement obtained in Fig. 11.6a.
Additional information can be extracted from Fig. 11.6b by looking at the
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Fig. 11.6 (a) Z-scan normalized transmission of the total THz pulse energy measured with a
pyroelectric detector after the sample (the red line refers to the InGaAs epilayer on an InP substrate
and the black curve to the InP substrate only). (b) Transmitted THz pulse electric field for different
positions of the Z-scan. (¢) Normalized time integral associated with the modulus squared of the
transmitted electric field as a function of the z position along the scan. (d) Normalized electric field
differential transmission as a function of time for different z position along the scan (adapted from
ref. [55])

transmission changes with time, showing dynamical features on a timescale compa-
rable to the THz pulse duration. These subtle changes become more evident in
Fig. 11.6d, where the normalized electric field differential transmission is plotted as
a function of time for different z position along the scan. This operation is obtained
by taking the difference between each peak electric field of the transmitted pulses
near the focus position with the pulse in the linear transmission regime (i.e., Iz| > 6
mm). The dynamics of the bleaching process shows an initial increase in transmis-
sion over a period of 1 ps (with a peak at + = 2.2 ps) followed by a slower decay.
A nonlinear bleaching of terahertz absorption, similar to the one discussed here,
was reported some 20 years ago in a pioneering work on FIR nonlinear optics [47]; in
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that case, n-doped Germanium and Gallium Arsenide were used. The origin of the
effect was tentatively attributed to an electric-field-induced scattering of carriers into
upper conduction band valleys. In these valleys, electrons acquire a significantly
higher effective mass, reducing the macroscopic conductivity of the sample and thus
increasing its transmission. In their case, ns-long THz pulses were used in conjunction
with incoherent detection, which does not allow the observation of subpicosecond
dynamics. In the case of excitation by few cycle, coherently detected, picosecond THz
pulses, free carriers in the I” valley, are accelerated by the terahertz electric field during
each of its oscillations. When they acquire enough kinetic energy to overcome the
nearest intervalley separation, they may scatter into an upper valley where, as previ-
ously stated, the effective mass is higher and thus the transmission is enhanced.
The electrons in this upper valley then scatter back to the I valley, so that eventually
the transmission starts to drop again, with a time constant related to the intervalley
relaxation time. In the particular case described above, as described in Fig. 11.7, the
closest upper valley in Ing 53 Gag47As is the L valley (Ar_; = 0.55 eV), the effective
masses in the two valleys are mr = 0.03745m, and m;, = 0.26m,, respectively, and
the L-I" intervalley relaxation time is known to be about 3.1 ps [56].

11.3.2 Dynamic Intervalley-Electron-Transfer Model

In order to characterize the absorption bleaching phenomenon in doped
semiconductors, a simple Drude model incorporating I'-L intervalley scattering
can be used to describe the temporal dynamics of the observed nonlinear THz
transmission. The THz transmission of our samples, which can be idealized as a
thin conducting sheet with thickness d on an insulating substrate with index n, can
be expressed as follows [7]:

Etrans(t) (2YOEinc (t) - ]d) (1 19)

:Y()JrYs
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Here, E.s and Ej,. are the transmitted and incident THz fields, respectively,

Yo = (3779)71 and Y5 = nY are the free-space and substrate admittances, respec-
tively, and J is the current density in the film, which is given by:

J = nrvre + npvee, (11.10)

where e is the electronic charge, nr- and n; are the electron densities, and vr- and v,
are the drift velocities of the I' and L valley electrons, respectively. The electron
velocities driven by the transmitted THz field E,.,, and the population of electrons
in the I valley nr- can be described by the dynamic equations:

Ov; - €Erans Vi
ot m} 7’

1

i=T,L, (11.11)

dnr  nr  ng
—_— =t — 11.12
dt trp Tur’ ( )

ng = ng + nr. (11.13)

Here, tr, 7, and m-, m; denote the intravalley scattering times and the effective
masses in the two valleys, while ;! and 7} are the scattering rates from one valley
to another, and #, is the total electron density.

During the absorption bleaching process, the transmitted field E.,,s accelerates
the electrons in the conducting layer of the sample and induces the population
transfer between the different valleys of the conduction band. This in turn affects
the current density J in (11.9), and hence modifies the transmitted field. This
feedback is responsible for the rich and surprising dynamical features associated
with the effect under investigation. The change in electron populations in the I" and
L valleys is determined by the intervalley scattering rates. The LT transfer rate ;7!
is kept constant [57], while the I'-L scattering rate tr; is a function of the average
kinetic energy of the electrons in the I' valley [58]:

1 3
s=§mﬁ%+§@ﬂ, (11.14)

This average kinetic energy is associated to the electrons in the I' valley with kg
and Ty the Boltzmann constant and the lattice temperature, respectively. The
scattering rate ‘L'FLI is zero at low energies but starts to increase rapidly at a threshold
value &y to a maximum value T, at high energies.

0, e <en(l —b) =g,
‘EELI(.SF) = { smooth function for & <er<ey, (11.15)

TELIO, er > en(l + b)=¢,.
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Since intervalley scattering takes place via emission or absorption of optical
phonons, the energy-dependent function of the valley transfer rate, tr; (er), is
tentatively made “smooth.” The smooth function is inserted via a seventh-order
polynomial section that is continuous up to the third derivative [58]. Here, &y, and b
are the threshold energy and smooth width parameter, respectively.

Electric-field-driven intervalley scattering is a well-known mechanism in high-
field transport physics, and it can introduce negative differential resistance and Gunn
oscillations in direct bandgap semiconductors [59]. The critical DC field required to
excite these phenomena in Ing s3 Gag 47As is usually in the range of 2.5-4 kV/cm
[60]. As one can see in Fig. 11.6, however, at THz frequencies, the effect of
absorption bleaching vanishes rapidly, as the peak electric field inside the epilayer
drops below 14 kV/cm (at the position z = £4 mm in the Z-scan). This indicates that
the critical field required to excite the same phenomenon can be higher than its DC
counterpart. Figure 11.8 shows how the model presented above can describe both the
transmitted energy and the time-domain experimental results first shown in
Fig. 11.6, strongly suggesting that the intervalley scattering mechanism is responsi-
ble for the observed nonlinear absorption bleaching process (red curves are
simulated data in Fig. 11.8). The fitting procedure allows one to quantify
the scattering rates of heavily doped InGaAs, as studied here. The I'-L intervalley
scattering rate is found to be about 3.33 x 10" s7! (tp, = 30 fs), close to the
value measured in GaAs [61], while the L-I" intervalley relaxation rate is found to
be about 2.50 x 10'"' s™' (t;; = 4 ps), similar to that found in ref. [56]. Using
this model, the rapid transmission change along the Z-scan (Fig. 11.8c) can also
be described.

11.4 Mapping of the Conduction Band

Traditionally, the electron effective mass is measured using cyclotron resonance
(CR) [60-62]. Pioneering CR studies revealed the anisotropy of the electron
effective masses in anisotropic conduction bands, such as in Si and Ge [62].
The nonparabolicity of the conduction band o was first found by CR in the 1960
and also by probing the curvature of the band while varying the excitation energy
[63], and the same technique was used to study nonparabolicity in bulk Ings3
Gag47As [64], showing an increase in the electron effective mass (often called
cyclotron mass) as a function of the CR energy (up to 30 meV at 4.2 K). However,
CR measurements are obtained only if the carriers are able to complete several
closed orbits around the magnetic field prior to suffering collisions with phonons or
impurities. Therefore, CR is mainly performed in pure crystals and at low tempera-
ture (i.e., liquid helium temperatures below 4 K). Nevertheless, dc field-induced
anisotropy of the small-signal microwave conductivity at 35 GHz showed an
anisotropic behavior in n-doped InSb samples at low temperatures (77 K) with
respect to the polarization of the applied microwave probing field [65]. In those
experiments [65], the lower microwave conductivity seen in the parallel
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configuration compared to the perpendicular case at high dc fields was attributed to
an anisotropy in the intravalley scattering times due to the enhanced electron
heating in the parallel direction [65, 66]; however, effects due to band
nonparabolicity were not considered. Kaw et al. [67] later showed that the band
nonparabolicity was important for understanding the anisotropic microwave con-
ductivity of hot electrons in InSb, but noted a reduction in anisotropy when
nonparabolic effects were included, contrary to other models [68]. Further
experiments [69] at higher frequencies in the 75 GHz range revealed a microwave
anisotropy in InSb at low temperatures opposite to that seen at 35 GHz. It is also
important to note that the dc field in these experiments had to be pulsed in order to
minimize thermal heating of the sample [69].
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Fig. 11.9 (a) Schematic of the TPTP experimental setup. (b) Electric field profile of the terahertz
pump beam emitted by the ZnTe optical rectification source. Inset: amplitude spectrum of the THz
pump pulse. (¢) Electric field profile of the transmitted terahertz probe beam at various times delay
between the THz pump and THz probe pulses (adapted from ref. [70])

11.4.1 Polarization Dependence

A novel approach to map the conduction band nonparabolicity in heavily doped
semiconductors and at room temperature has been recently proposed using a THz
pump—THz probe (TPTP) scheme [70]. This methodology based on TPTP scans is
similar to the TDTS technique described previously, with the addition of a THz
pump pulse that excites the sample into a non-equilibrium state. In that specific case,
the lock-in amplifier is synchronized to detect changes in the THz probe beam at the
chopper frequency modulating the THz pump beam. This reads a voltage propor-
tional to the electric field of the THz probe pulse. The temporal scanning between
pump and probe beams is obtained by using the delay stage (B) in Fig. 11.3. The
TPTP experiment is shown schematically in Fig. 11.9a. In this TPTP scheme, an
additional ZnTe crystal 0.5-mm thick was used to generate the THz probe pulses
transmitted through the sample and detected by free-space electro-optic sampling.
Both the ZnTe crystal for the probe beam and the ZnTe crystal for detection could be
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rotated to produce (and detect) probe polarization states either parallel or perpendic-
ular to the THz pump beam. A black polyethylene sheet, which is transparent to the
THz radiation, was used before the sample to block any remaining 800-nm light
transmitted through the ZnTe crystal used for generating the THz probe pulse. It has
to be mentioned that the non-collinear geometry of the TPTP experiment presented
in Fig. 11.9 allowed the THz pump and probe beams transmitted through the sample
to be geometrically separated. Cross-talk between the two THz beams is therefore
avoided by simply placing a metallic beam block in the path of the transmitted THz
pump beam after the second off-axis parabolic mirror.

Figure 11.9b shows an example of the temporal profile of the THz pump pulses
produced by the ZnTe source, and the inset shows the corresponding amplitude
spectrum of the THz pump pulse. In Fig. 11.9c, various THz probe pulses
waveforms transmitted through the Ing 53 Gag47As sample are presented, showing
an increased transmission when overlapped with the THz pump pulse at a zero
relative time delay, while the phase is unaffected. This allowed the transmission of
the main positive peak of the THz probe pulse to be monitored as a function of
pump—probe delay time, which is a common method for probing ultrafast carrier
dynamics in semiconductors in optical pump-THz probe (OPTP) experiments
[56, 71, 72]. As mentioned previously, an independent polarization control of the
probe beam is obtained by changing the ZnTe crystals orientation for both THz
probe emitter and detector. This additional feature allows for the detection of
anisotropic behavior of samples under investigation.

Figure 11.10a is a schematic of the polarization-dependent TPTP technique and
Figs. 11.10b and c are the normalized transmission of the main peak of the THz probe
pulse as a function of pump—probe delay time. The presence of the THz pump pulse
results in an increase in transmission of the peak electric field of the THz probe pulse.
Figure 11.10b shows the transmission change for a probe polarization perpendicular to
the pump beam polarization, while Fig. 11.10c shows the same measurement
performed for the parallel polarization configuration. In the latter case in
Fig. 11.10c, a fast, large amplitude oscillation is observed on top of a slower compo-
nent similar to that shown in Fig. 11.10b. In particular, when the probe beam is
blocked, no residual signal from the pump beam is detected; both beams have to be
present inside the sample in order to observe the large amplitude oscillations for the
parallel polarizations shown in Fig. 11.10c. Moreover, moving the sample to an off-
focus position (or completely removing it from the THz beam) eliminated any
modulation signal of the THz probe transmission. This would suggest that the
observed signals cannot be attributed to any interference effects between the THz
pump and THz probe waveforms at the detector crystal. Furthermore, the presence of
small oscillations in the perpendicular polarization case, as shown in Fig. 11.10b, is
inconsistent with the requirement of a parallel polarization for the interference effects.
As discussed earlier for Fig. 11.9c, the lack of any significant phase shift in the
transmitted THz waveform implies that the observed signal is due to the modulation
of the peak amplitude of the THz probe pulse. To further corroborate this conclusion,
no signal was observed as a function of the pump—probe delay time when the THz
detection point was set to a zero-crossing of the THz probe waveform. The increase in
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the transmission of the THz probe beam for cross-linear (XL) polarization, as shown in
Fig. 11.10b, is due to a decrease in sample conductivity arising primarily from the
THz-pump-pulse-induced intervalley scattering of carriers from the high mobility I"
valley to the lower mobility L valley in InGaAs [55, 73]. As shown in Fig. 11.10b, the
decay of the transient absorption bleaching signal observed for perpendicular
polarizations is about 3.3 ps, which is consistent with relaxation times of about
3.1 ps for carrier scattering from the L valley back to the central I" valley reported in
the OPTP experiments performed on Ings3; Gag47As [56]. This dynamics is also
consistent with the Z-scan results discussed in the previous section.

11.4.2 Effective Mass Anisotropy

In this study, the interpretation of the anisotropic nature of the large ultrafast
modulation of the THz probe transmission observed in the co-linear (CL) TPTP
geometry is based on the nonparabolicity of the isotropic conduction band in
InGaAs. This anisotropy is depicted in Fig. 11.11a and arises from the different
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Fig. 11.11 (a) Schematic of an isotropic, nonparabolic band for an electron with energy (ky, k).
The electric field of the THz pump pulse is polarized along the x-direction and drives the electron
high in the band to k,, where the THz probe pulse senses an anisotropic effective mass due to
different band curvatures parallel and perpendicular to the pump field direction, as given by
(11.18a) and (11.18b), respectively. (c¢) Electron effective masses as a function of energy
normalized to the masses at the bottom of the I valley for cross- (d) and co-linear (e) polarizations
(adapted from ref. [70])

orientations in k vector that probes the effective mass for electrons high in the band.
As shown in Fig. 11.11b, the energy ¢ of an electron in an isotropic, nonparabolic
band with wave vector components k. and Kk, along the x and y directions,
respectively, is given by [73]:

2

h 2 g2
ol +ow) = 5 - (kx-i—ky), (11.16)
where « is the nonparabolicity factor of the band and my, is the effective mass at the
bottom of the band. The polarization of the electric field of the THz pump pulse is
along the Kk,-axis, such that the parallel and perpendicular TPTP configurations
correspond to the electric field of the THz probe pulse polarized along the x and y
directions, respectively. If the THz pump field drives an electron to a state
with crystal momentum 7Kk, in the x-direction, then the band effective masses of
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the carrier at (K., Kk,) = (K, 0) parallel and perpendicular to the x-direction
are given by:

1 d&
mt = (11.17a)
) S -
1 d
mt =t , (11.17b)
h” dk, ko =k 0.k, =0
for the two components, respectively, which can be expressed as:
3/2
201k y0)*
mX:m()(l—f—M) ZMO(1+20C8)3, (11.18a)
mo
1/2
20(7ikyo)°
my = my (1 —&—M) = mp(1 + 20¢). (11.18b)
mo

Figure 11.11c shows the difference in effective masses normalized to the
effective mass at the bottom of the band for the perpendicular and parallel cases
as a function of the electron energy according to (11.18a) and (11.18b) with
o = 1.33 eV~! [74]. As one can see, the band masses m, and m, are equivalent
only at the bottom of the band, but m, > m, for energies higher up in the band
(see Fig. 11.11d and e). The dotted line in Fig. 11.11b—d is the band masses without
the nonparabolicity factor.

The anisotropic electron dynamics induced by the strong electric field of the THz
pump pulse can be explained by including the anisotropic effective mass equations
(11.18a) and (11.18b) in the dynamic intervalley-electron-transfer model
introduced in Sect. 11.3.2 The strong THz pump electric field modulates the
electron population in the I' valley and the electron effective mass in such a manner
to drive the electron far away from the I" point in k space. Both pump and probe
THz electric fields drive the electron according to the Drude motion equation.
However, the weak probe THz electric field is only able to provide the electron
with a much lower kinetic energy than the thermal energy. Therefore, the probe
THz-field-induced intervalley scattering and effective mass modulation can
be neglected. The time-dependent transmission of the main peak of the THz
probe pulse with respect to the time delay of the THz pump pulse at the sample
can be solved numerically. The calculated peak THz probe transmission as a
function of the pump—probe delay time and corresponding evolution of the I" valley
electron density are shown in Fig. 11.12 (red curves). The calculated electron
velocities and corresponding normalized effective masses, m./my and m,/my, are
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blue line) directions as a function of pump—probe delay time. The THz pump field (dashed line) is
also shown

shown in Fig. 11.13, and Table 11.2 summarizes the best-fit parameters used in the
dynamic intervalley-electron-transfer model for Z-scan and TPTP measurements.
As shown in Fig. 11.12, the calculations agree with the experimental data to some
extent. The fast oscillations and longer-term response observed in the parallel case,
Figs. 11.10b and 11.12a, are thus due to a combination of the change in the electron
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Table 11.2 Summary of best-fit parameters used in the model to describe the Z-scan and TPTP
results

Z-scan simulations TPTP simulation
Parameter Symbol parameters parameters Units
Nonparabolicity factor [74]  or I valley: 1.33 I valley: 1.33 ev™!
L valley: 0.59 L valley: 0.59
I valley scattering rate ! 1.00 x 10" 0.56 x 10" s
L valley scattering time 77! 1.67 x 10" 1.67 x 10" s
Threshold energy & 0.13 0.25 eV
I'-L intervalley scattering b 333 x 10" 3.33 x 10" s
rate [61]
L-T intervalley scattering et 250 x 10" 2.50 x 10" s
rate [56]

effective mass (fast oscillations) and the THz-pump-induced intervalley scattering
(pedestal with picosecond decay time). As shown in Fig. 11.13, the model is able to
reproduce the stronger oscillations seen in the parallel (CL) case compared to the
perpendicular (XL) case due to the strong anisotropy in effective mass for electrons
high in the band. A more rigorous theoretical approach also shows that the observed
TPTP polarization anisotropy arises from effective mass anisotropy of hot carriers
due to band nonparabolicity [70].

11.5 Perspectives and Conclusions

In this chapter, we have presented an introduction of THz nonlinear spectroscopy
through the absorption bleaching phenomenon in an n-doped Ing 53 Gag47As thin
film semiconductor. The absorption bleaching was first observed using a THz
Z-scan technique and then confirmed using a more sophisticated technique based
on a THz-pump-THz-probe experiment. The subpicosecond time resolution of this
technique, coupled with the control of probe polarization, reveals the anisotropic
nature of the hot electron effective mass inside an isotropic and nonparabolic
conduction band. A classical model for the nonlinear conductivity at THz
frequencies can be used to understand the origin of the absorption bleaching and
confirms the origin of the anisotropic response of the THz probe signal, agreeing
with more rigorous models. This new tool may open the way to directly mapping
energy bands in semiconductors.



320

F. Blanchard et al.

References

1.

11.

12.
13.

14.

15.

18.

19.

20.

21.

22.

23.

24.

D. Grischkowsky, S. Keiding, M. van Exter, C. Fattinger, Far-infrared time-domain spectros-
copy with terahertz beams of dielectrics and semiconductors. J. Opt. Soc. Am. B 7, 2006
(1990)

. P.D. Coleman, Reminiscences on selected millennium highlights in the quest for tunable

terahertz-submillimeter wave oscillators. IEEE J. Sel. Top. Quant. Electron. 6, 1000 (2000)

. F. Keilmann, Nonlinear far-infrared spectroscopy of solids. Infrared Phys. 31, 373 (1991)
. T.Y. Chang, T.J. Bridges, Laser action at 452, 496, and 541 pm in optically pumped CH;F.

Opt. Commun. 1, 423 (1970)

.D.H. Auston, P.R. Smith, Generation and detection of millimeter waves by picosecond

photonconductivity. Appl. Phys. Lett. 43, 631 (1983)

. J.T. Darrow, X.-C. Zhang, D.H. Auston, J.D. Morse, Saturation properties of large-aperture

photoconducting antennas. IEEE J. Quant. Electron. 28, 1607 (1992)

. M.C. Nuss, J. Orenstein, Terahertz Time-Domain Spectroscopy, in Millimeter and Submilli-

meter Wave Spectroscopy of Solids, ed. by G. Gruner (Springer, Berlin, 1998)

. D.M. Mittleman, Sensing with Terahertz Radiation (Springer, Berlin, 2003)
. B. Ferguson, X.-C. Zhang, Materials for terahertz science and technology. Nat. Mater. 1, 26

(2002)

. P.U. Jepsen, D. Cooke, M. Koch, Terahertz spectroscopy and imaging—Modern techniques

and applications. Laser Photon. Rev. §, 124 (2011)

R. Ulbricht, E. Hendry, J. Shan, T.F. Heinz, M. Bonn, Carrier dynamics in semiconductors
studied with time-resolved terahertz spectroscopy. Rev. Mod. Phys. 83, 543 (2011)

J.B. Baxter, G.W. Guglietta, Terahertz spectroscopy. Anal. Chem. 83, 4342 (2011)

T. Bartel, P. Gaal, K. Reimann, M. Woerner, T. Elsaesser, Generation of single-cycle THz
transients with high electric-field amplitudes. Opt. Lett. 30, 2805 (2005)

P. Gaal, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, K.H. Ploog, Nonlinear terahertz
response of n-type GaAs. Phys. Rev. Lett. 96, 187402 (2006)

Y. Shen, T. Watanabe, D.A. Arena, C.-C. Kao, J.B. Murphy, T.Y. Tsang, X.J. Wang, G.L.
Carr, Nonlinear cross-phase modulation with intense single-cycle terahertz pulses. Phys. Rev.
Lett. 99, 043901 (2007)

. F. Blanchard, L. Razzari, H.-C. Bandulet, G. Sharma, R. Morandotti, J.-C. Kieffer, T. Ozaki,

M. Reid, H.F. Tiedje, H.K. Haugen, F.A. Hegmann, Generation of 1.5 pJ single-cycle terahertz
pulses by optical rectification from a large aperture ZnTe crystal. Opt. Express 15, 13212
(2007)

. K.-L. Yeh, M.C. Hoffmann, J. Hebling, K.A. Nelson, Generation of 10 pJ ultrashort terahertz

pulses by optical rectification. Appl. Phys. Lett. 90, 171121 (2007)

J. Dai, N. Karpowicz, X.-C. Zhang, Coherent polarization control of terahertz waves generated
from two-color laser-induced gas plasma. Phys. Rev. Lett. 103, 023001 (2009)

J. Hebling, K.-L. Yeh, M.C. Hoffmann, K.A. Nelson, High-power THz generation, THz
nonlinear optics, and THz nonlinear spectroscopy. IEEE J. Sel. Top. Quant. Electron. 14,
345 (2008)

S. LeinB, T. Kampfrath, K.V. Volkmann, M. Wolf, J.T. Steiner, M. Kira, S.W. Koch, A.
Leitenstorfer, R. Huber, Terahertz coherent control of optically dark paraexcitons in Cu,O.
Phys. Rev. Lett. 101, 246401 (2008)

K. Reimann, Table-top sources of ultrashort THz pulses. Rep. Prog. Phys. 70, 1597 (2007)
M.C. Hoffmann, J.A. Fiilop, Intense ultrashort terahertz pulses: generation and applications.
J. Phys. D: Appl. Phys. 44, 083001 (2011)

F. Blanchard, G. Sharma, L. Razzari, X. Ropagnol, H.-C. Bandulet, F. Vidal, R. Morandotti,
J.-C. Kieffer, T. Ozaki, H.F. Tiedje, H.K. Haugen, M. Reid, F.A. Hegmann, Generation of
intense THz radiation via optical methods. IEEE J. Sel. Top. Quant. Electron. 17, 5 (2011)
D. You, R.R. Jones, P.H. Bucksbaum, D.R. Dykaar, Generation of high-power sub-cycle
500-fs electromagnetic pulses. Opt. Lett. 18, 290 (1993)



25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

The Dawn of Ultrafast Nonlinear Optics in the Terahertz Regime 321

A.G. Stepanov, S. Henin, Y. Petit, L. Bonacica, J. Kasparian, J.-P. Wolf, Mobile source of
high-energy single-cycle terahertz pulses. Appl. Phys. B 101, 11 (2010)

H. Hirori, A. Doi, F. Blanchard, K. Tanaka, Single-cycle terahertz pulses with amplitudes
exceeding 1 MV/cm generated by optical rectification in LiNbOs3. Appl. Phys. Lett. 98, 091106
(2011)

E. Gerecht, C.F. Musante, Y. Zhuang, K.S. Yngvesson, T. Goyette, J.C. Dickinson,
J. Waldman, P.A. Yagoubov, G.N. Goftsman, B.M. Voronav, E.M. Gershenzon, NbN hot
electron bolometric mixers—a new technology for low-noise THz receivers. IEEE Trans.
Microw. Theory Tech. 47, 2519 (1999)

N. Oda, M. Sano, H. Yoneyama, T. Sasaki, S. Kurashina, I. Hosako, N. Sekine, K. Fukunaga, Y.
Ogawa, S. Komatsubara, T. Sudoh, T. Irie, H. Atake, Y. Ikeda, Development of bolometer-type
uncooled THz-QVGA sensor and camera, in 34th International Conference on Infrared
Millimeter and Terahertz Waves (IRMMW-THz), vol. 1,2009, Busan, Korea (South), 21-25 Sep
L. Marchese, M. Bolduc, B. Tremblay, M. Doucet, H. Oulachgar, L. Le Noc, C. Alain,
H. Jerominek, A. Bergeron, A microbolometer-based THz Imager, in Proc. SPIE 7671, 2010
Monday 5 April 2010, Orlando, Florida, USA

Q. Wu, X.-C. Zhang, Free-space electro-optic sampling of terahertz beams. Appl. Phys. Lett.
67, 3523 (1995)

J. Dai, X. Xie, X.-C. Zhang, Detection of broadband terahertz waves with laser-induced
plasma in gases. Phys. Rev. Lett. 97, 103903 (2006)

D. Dragoman, M. Dragoman, Terahertz fields and applications. Prog. Quant. Electr. 28,
1 (2004)

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C.
Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, K. Johnson, A coherent
heterodyne time-domain spectrometer covering the entire terahertz gap. Appl. Phys. Lett. 92,
011131 (2008)

Q. Wu, M. Litz, X.-C. Zhang, Broadband detection capability of ZnTe electro-optic field
detectors. Appl. Phys. Lett. 21, 2924 (1996)

Q. Wu, X.-C. Zhang, 7 terahertz broadband GaP electro-optic sensor. Appl. Phys. Lett. 70,
1784 (1997)

A. Yariv, Quantum Electronics, 3rd edn. (Wiley, New York, 1989)

H.K. Yang, P.L. Richards, Y.R. Shen, Generation of far-infrared radiation by picosecond light
pulses in LiNbO3. Appl. Phys. Lett. 19, 320 (1971)

A. Rice, Y. Jin, X.F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, M. Alexander, Terahertz optical
rectification from (110) zincblende crystals. Appl. Phys. Lett. 64, 1324 (1994)

A. Nahata, A.S. Weling, T.F. Heinz, A wideband coherent terahertz spectroscopy system using
optical rectification and electro-optic sampling. Appl. Phys. Lett. 69, 2321 (1996)

J. Hebling, G. Almasi, I.Z. Kozma, J. Kuhl, Velocity matching by pulse front tilting for large
area THz-pulse generation. Opt. Express 10, 1161 (2002)

A.G. Stepanov, L. Bonacina, S.V. Chekalin, J.-P. Wolf, Generation of 30 pJ single-cycle
terahertz pulses at 100 Hz repetition rate by optical rectification. Opt. Lett. 33, 2497 (2008)
A. Naaman, Generation and manipulation of THz waves, Ph.D. thesis, Oregon State Univer-
sity, 2006

A.G. Stepanov, J. Hebling, J. Kuhl, Efficient generation of subpicosecond terahertz radiation
by phase-matched optical rectification using ultrashort laser pulses with tilted pulse fronts.
Appl. Phys. Lett. 83, 3000 (2003)

J. Hebling, A.G. Stepanov, G.A. Asi, B. Bartal, J. Kuhl, Tunable THz pulse generation by
optical rectification of ultrashort laser pulses with tilted pulse fronts. Appl. Phys. B 78, 593
(2004)

J.A. Fiilop, L. Palfalvi, G. Almasi, J. Hebling, Design of High-energy terahertz sources based
on optical rectification. Opt. Express 18, 12311 (2010)

S.D. Ganichev, W. Prettl, Intense Terahertz Excitation of Semiconductors (Oxford University
Press, Oxford, 2006)




322 F. Blanchard et al.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

A. Mayer, F. Keilmann, Far-infrared nonlinear optics. IL. %(3) contributions from the dynamics
of free carriers in semiconductors. Phys. Rev. B 33, 6962 (1986)

T.1. Jeon, D. Grischkowsky, Nature of conduction in doped silicon. Phys. Rev. Lett. 78, 1106
(1997)

M.C. Hoffmann, J. Hebling, H.Y. Hwang, K.-L. Yeh, K.A. Nelson, Impact ionization in InSb
probed by terahertz pump-terahertz probe spectroscopy. Phys. Rev. B 79, 161201 (2009)
M.C. Hoffmann, J. Hebling, H.Y. Hwang, K.-L. Yeh, K.A. Nelson, THz-pump/THz-probe
spectroscopy of semiconductors at high field strengths [Invited]. J. Opt. Soc. Am. B 26, A29
(2009)

W. Kuehn, P. Gaal, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, Coherent ballistic motion
of electrons in a periodic potential. Phys. Rev. Lett. 104, 146602 (2010)

E. W. Van Stryland, M. Sheik-Bahae, Z-Scan in Characterization Techniques and Tabulations
for Organic Nonlinear Materials. ed. by M. G. Kuzyk and C. W. Dirk (Marcel Dekker, Inc.,
1998), pp. 655-692.

B. Gu, Y.X. Fan, J. Wang, J. Chen, J.P. Ding, H.-T. Wang, B. Guo, Characterization of
saturable absorbers using an open-aperture Gaussian-beam Z scan. Phys. Rev. A 73, 065803
(2006)

M.C. Hoffmann, D. Turchinovich, Semiconductor saturable absorbers for ultrafast terahertz
signals. Appl. Phys. Lett. 96, 151110 (2010)

L. Razzari, F.H. Su, G. Sharma, F. Blanchard, A. Ayesheshim, H.C. Bandulet, R. Morandotti,
J.C. Kieffer, T. Ozaki, M. Reid, F.A. Hegmann, Nonlinear ultrafast modulation of the optical
absorption of intense few-cycle terahertz pulses in n-doped semiconductors. Phys. Rev. B 79,
193204 (2009)

S.E. Ralph, Y. Chen, J. Woodall, D. McInturff, Subpicosecond photoconductivity of Ing s3
Gag 47As: Intervalley scattering rates observed via THz spectroscopy. Phys. Rev. B 54, 5568
(1996)

K. Blotekjaer, Transport equations for electrons in two-valley semiconductors. IEEE Trans.
Electron Dev. 17, 38 (1970)

A.M. Anile, S.D. Hern, Two-valley hydrodynamical models for electron transport in gallium
arsenide: simulation of Gunn oscillations. VLSI Des. 15, 681 (2002)

J. Singh, Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge
University Press, Cambridge, 2003)

M.A. Haase, V.M. Robbins, N. Tabatabaie, G.E. Stillman, Subthreshold electron velocity-field
characteristics of GaAs and Ing 53 Gag 47As. J. Appl. Phys. 57, 2295 (1985)

P.C. Becker, H.L. Fragnito, C.H.B. Cruz, J. Shah, R.L. Fork, J.E. Cunningham, J.E. Henry,
C.V. Shank, Femtosecond intervalley scattering in GaAs. Appl. Phys. Lett. 53, 2089 (1988)
G. Dresselhaus, A.F. Kip, C. Kittel, Cyclotron resonance of electrons and holes in silicon and
germanium crystals. Phys. Rev. 98, 368 (1955)

E.D. Palik, G.S. Picus, S. Teitler, R.F. Wallis, Infrared cyclotron resonance in InSb. Phys. Rev.
122, 475 (1961)

R.J. Nicholas, C.K. Sarkar, L.C. Brunel, S. Huant, J.C. Portal, M. Razeghi, J. Chevrier, J.
Massies, H.M. Cox, Shallow donor spectroscopy and polaron coupling in Gag 47Ing s3As.
J. Phys. C 18, L427 (1985)

K. Richter, E. Bonek, On the anisotropic microwave conductivity in the hot-electron region of
n-InSb. Phys. Stat. Sol. 31, 579 (1969)

D. Mukhopadhyay, B.R. Nag, Microwave incremental conductivity of InSb at 77 K in the
presence of high steady electric field. Electron. Lett. 5, 20 (1969)

P.K. Kaw, P.K. Dubey, A.K. Chakravarti, Hot-electron anisotropy of microwave conductivity
in nonparabolic semiconductors. J. Appl. Phys. 41, 3102 (1970)

M.S. Sohda, S.K. Sharma, P.K. Dubey, dc field-induced anisotropy of microwave conductivity
in nonparabolic semiconductors at low temperatures. J. Appl. Phys. 42, 5713 (1971)

E. Bonek, Millimeter-wave investigation of electronic conduction in semiconducting III-V
compounds. J. Appl. Phys. 43, 5101 (1972)



11

70.

71.

72.

73.

74.

The Dawn of Ultrafast Nonlinear Optics in the Terahertz Regime 323

F. Blanchard, D. Golde, F.H. Su, L. Razzari, G. Sharma, R. Morandotti, T. Ozaki, M. Reid, M.
Kira, S.W. Koch, F.A. Hegmann, Effective mass anisotropy of hot electrons in nonparabolic
conduction bands of n-doped InGaAs films using ultrafast terahertz pump-probe techniques.
Phys. Rev. Lett. 107, 107401 (2011)

F.H. Su, F. Blanchard, G. Sharma, L. Razzari, A. Ayesheshim, T.L. Cocker, L.V. Titova, T.
Ozaki, J.C. Kieffer, R. Morandotti, M. Reid, F.A. Hegmann, Terahertz pulse induced interval-
ley scattering in photoexcited GaAs. Opt. Express 17, 9620 (2009)

D.G. Cooke, F.A. Hegmann, E.C. Young, T. Tiedje, Electron mobility in dilute GaAs bismide
and nitride alloys measured by time-resolved terahertz spectroscopy. Appl. Phys. Lett. 89,
122103 (2006)

M. Lundstrom, Fundamentals of Carrier Transport, 2 edition (Cambridge University Press,
2 edition November 20, 2000), p. 14

S.R. Ahmed, B.R. Nag, M. Deb Roy, Hot-electron transport in Ings3 Gag 47As. Solid State
Electron. 28, 1193 (1985)



Chapter 12
Generation of Terahertz Radiation via
Purcell-Enhanced Nonlinear Frequency Mixing

J. Bravo-Abad and M. Soljaci¢

12.1 Introduction

As illustrated throughout this book, nonlinear micro- and nanostructured material
systems offer unique fundamental ways for tailoring a variety of nonlinear optical
processes in a broad spectrum of frequency regimes. In this chapter, we show how
the combination of concepts associated with nonlinear optics and those usually
ascribed to quantum optics enable identifying novel routes in this general endeavor
towards the ultimate control of nonlinear optical phenomena.

The discovery of the quantum Purcell effect more than 60 years ago [1], opened
up the fascinating possibility of manipulating, almost at will, the rate of spontane-
ous emission (SE) of a quantum light emitter by modifying the electromagnetic
(EM) density of states of the environment in which the emitter is embedded. With
the advent of concepts such as photonic crystals (PhCs) [2-4] and the rapid
development of improved nanofabrication techniques, the ability to control the
SE of atoms, molecules, or quantum dots, has become of great importance for a
broad spectrum of important applications in fields as diverse as illumination,
biological and chemical sensing, harvesting of solar energy, and communications
[5]. A very promising route that arises in this context consists in revisiting the
original inspiration of these concepts in the context of classical electrodynamics
[6, 7] and applying them to the realm of nonlinear optics.

In particular, the application of a classical analog of SE enhancement of a
radiating system inside a cavity to boost the power radiated by a classical current
distribution could be greatly advantageous to solve some of the main challenges [8]
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arising in the path towards the convergence of photonics and electronics. One of the
most remarkable illustrations of this concept resides in the enhancement of
the conversion efficiency of nonlinear frequency-mixing processes whose conver-
sion efficiency is intrinsically very low. Of special interest due to its considerable
importance for applications [9, 10], is the case of efficient terahertz (THz)
generation. In particular, the application of these general principles to develop
a compact and powerful source of coherent THz radiation able to operate efficiently
at room temperature (RT) shows great promise for a truly practical implementation
of wide spectrum of applications in areas so diverse as medicine [11], sensing [12],
spectroscopy [13] or security screening [14]. Moreover, the approach described in
this chapter establishes a simple alternative to other approaches requiring involved
experimental setups, such as the development of room temperature THz quantum-
cascade lasers [15] or those approaches requiring more intricate phase-matching
setups and powerful lasers [16, 17].

This chapter is organized as follows. In Sect. 12.2, we first review the theoretical
foundation of the classical analog of the quantum Purcell effect (Sect. 12.2.1). Then,
we show how an approach based on a coupled-mode theory allows generalizing that
classical analog to the case of a nonlinear frequency mixing process occurring inside
an EM resonant cavity (Sect. 12.2.2). In Sect. 12.3, we show how the application of
the general principles obtained from the proposed picture, combined with the unique
properties of PhCs, enables low-power efficient THz generation at room-temperature
using a compact device based on conventional material systems. Finally, in
Sect. 12.4 we provide a set of conclusions for this chapter.

12.2 Theory of Purcell-Enhanced Nonlinear
Frequency Mixing

12.2.1 Classical Analog of the Quantum Purcell Effect

To gain physical insight into the approach introduced in this chapter, let us briefly
review the theoretical foundation of the analog between the SE process of a two-
level atom in a lossless and inhomogeneous dielectric cavity and the power radiated
by a classical decaying source placed in the same cavity. We first recall that the
enhancement of the SE rate of a two-level atom in a dielectric lossless cavity is
given by the so-called Purcell factor F,, = (3Q/47*Ves)(1/ n)’, where Q and Vg
are the quality factor and the effective modal volume of the cavity, respectively.
/ stands for the resonant wavelength (in air) of the cavity, and # is the refractive
index of the material where the emitter is located. Here, we have assumed that
the source is located at the maximum electric-field position inside the cavity, that
the frequency of the atomic transition coincides with the resonant frequency of the
cavity, and also that there is no polarization mismatch between the electric dipole
moment of the emitter and the cavity field. The SE rate (y) of the considered
two-level atom, located at r = r( and interacting with the EM field of the cavity,
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can be expressed in terms of the classical Green’s function of the dielectric structure
(Gg{ﬁ(r, r')) as [18-20].

4 62 2'V12 0]
1= s arrarins o= gm0z

where the subindices o and f§ denote the a-th and f-th Cartesian components of the
corresponding vector (o, f = {x, g z}). Prag = <1|13|2> is the matrix element of
the electron momentum operator P, w stands for the frequency of the considered
atomic transition, whereas 7y, represents the corresponding dipole dephasing rate [21].

Next, in order to build the connection between the quantum Purcell effect and its
classical counterpart, we take into account that the total energy radiated by a
classical dipole current of the form J,,(r) = (e/m)j(w) d(r — ro)p;,, can also be
written in terms of Gy 4(r,1’) as

21 2 . o
Erad = —? ﬁplZ,aplZ,ﬂ () J dw[](w)|2 Im |:Ga’/)>(l'0,l'(]):| . (122)

Now, assuming j(w) = 1/(i(wg — ®) 4 7;5), by direct comparison of (12.1)
and (12.2) we obtain

Era cav
Yeav _ Cradcav (12.3)

Vtree E rad, free

where y,, and Y. stand for the SE rate of the atom in the cavity and in free space,
respectively, whereas Erag cav and Epa free are the total energy radiated by J,(r) in
the cavity and free space, respectively.

NOtiCing that Erad,cav/Erad‘free = Prad,cav/Prad,free (Where Prad.cav and Prad,free are
the average powers radiated by the classical current source inside the cavity and in
free space, respectively), the combination of (12.3) with the expression for the
Purcell factor F, given above suggests a route for extracting efficiently the power
radiated by an arbitrary classical current distribution simply by optimizing ratio
Q/ Vgt characterizing the cavity in which the current is embedded in. We point out
that, to our knowledge, (12.3) has been used extensively to compute SE rates of
quantum light emitters embedded in complex nanostructures by means of standard
computational methods developed for classical electromagnetism (such as the
finite-difference-time-domain, FDTD, method), but surprisingly, there has been
limited interest in using (12.3) to identify new strategies to enhance conversion
efficiencies of nonlinear frequency mixing processes.

12.2.2 Coupled-Mode Theory Analysis

Our goal in this section is to present the theoretical foundation of the nonlinear
coupled mode theory (CMT) used throughout this chapter.
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Fig. 12.1 Schematic illustration of the coupled-mode theory applied to obtain the power radiated
by an arbitrary classical current distribution embedded in a single-mode cavity and asymmetrically
coupled to a waveguide. The main parameters used in this coupled-mode description are also
displayed in the sketch

12.2.2.1 Coupled-Mode Theory Approach to Classical Purcell Enhancement

To formulate the generalization of approach discussed above to the case of an
arbitrary current distribution J7(r,¢), we apply a coupled-mode theory analysis to
this problem [22, 23]. To compute the total power emitted by Jr(r,?) inside the
cavity, we assume, without loss of generality, that all the radiated power is collected
by a waveguide asymmetrically coupled (through evanescent fields) to the cavity
(see schematics of Fig. 12.1). If, for simplicity, we further assume that the cavity is
single-mode, the electric field inside the cavity Er(r,¢) can be written as

By’ (r)
(1/2) [ dr s (1) |E (1)

ET(I', t) = aT(t) exp(fin[) ‘2 ) (12.4)

where Eg) ) (r) is the electric field profile of the cavity mode. wr is the cavity

resonant frequency, while nr(r) stands for spatially dependent refractive index of
the cavity at the corresponding resonance frequency. The function ar(¢) stands for
the slowly varying electric field amplitude. The normalization of Er(r,7) has been
chosen so the time-dependent electric field energy stored in the resonant cavity
mode U(t) is simply given by U(r) = |a(1)|*.

Now, by considering the resonant cavity mode as a CMT port [22], one can
obtain the following equation of motion governing the temporal evolution of ar(¢).

da(t)
dr

= *ina(t) - (Frad + I_‘IO + rabs)a(z) + gin(l)y (125)

where ', ['1o, and 'y are the cavity decay rates due to radiative losses, decay
into the waveguide, and linear absorption, respectively (the corresponding quality
factors are Qr.g = @t1/21 14, Q10 = w1/2l0, and Qups = @1/2T 4, respectively).
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The function g;,(¢) is the driving term of the system. In the considered problem, it
has a clear physical interpretation: it represents the power radiated by the current
distribution J1(r, 7) inside the cavity. From the Poynting theorem and simple energy
conservation arguments, one finds that g;,(#) can be expressed as

1 Jardern[EP ()]

=7
b 1wy B e

&in (12.6)

3

Here, we have assumed that Jr(r,f) = jT(r, t) exp(—iwrt) and we have also
introduced the expression for Ex(r, ) given in (12.4).

Thus, for a given Jr(r, ) the temporal evolution of the energy inside the cavity,
|aT(t)|2, is obtained by inserting (12.6) into (12.5) and solving the resulting first-
order differential equation. Once at(¢) is known, the total emitted power Py (¢) can
be computed simply by using Pr(z) = 2Ijoar(f)[*.

In particular, after some straightforward algebra, the instantaneous THz emitted
power Pt can be expressed analytically as

2
PT’S:4< o ~2> <QT) (QT>“erT(f»fﬂE(O’(r)}*/ET,max . (127
nceg Ay ) \Qio/ \ Vp

where Qr stands for the total quality factor of the cavity. Ar is the resonant
wavelength in air (Ar = 27c/wr), whereas Et max denotes the maximum value of

|[Er(r)|. In (12.7), we have also defined Vi = Vy/(ir/nr)’, where Vrp is the
effective modal volume of the resonator.

From (12.7), the Purcell enhancement of the power radiated by Jr(r,?) is
apparent through the factor O/ Vr. As we discuss below, it is precisely this
enhancement factor, together with the unprecedentedly large values for Ot/ Vr,
that can be realized in photonic microresonators [5, 24] that enable increase of the
conversion efficiency of optical nonlinear frequency conversion processes to an
extent that cannot be achieved by means of any other currently known physical
mechanism. Note also that the factor Ot/Qio appearing in (12.7) reflects the
necessity to match the intrinsic absorption rate inside the cavity to the decay rate
to the waveguide. This Q-matching condition permits the efficient extraction of
power generated in the cavity, a general property that appears in a broad range
of different contexts (thermal, EM, mechanical, etc.) that require efficient emission
of energy from a high-Q system [22, 25].

12.2.2.2 Purcell-Enhanced Second-Order Nonlinear Frequency Mixing

We now turn to the case of a general nonlinear frequency mixing process involving
a pump and idler frequencies (denoted hereafter by w; and w,, respectively) in a 3%
crystal. In this case, the current distribution Jr(r,¢) arises from the temporal
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variation of the nonlinear polarization vector Jp(r, t) = OPN"(r, ) /0t. In particular,
we focus on the case of difference-frequency generation (DFG); the generalization
of this approach to other second-order nonlinear frequency mixing process is
straightforward. If we assume that the electric fields w; (where i = 1,2) are given
by E;(r, 1) = a;(t) exp(—iw;t)E, g (r)/+/U; (where U; is the EM energy stored in the
system at frequency w;), using (12.7), we find that the instantaneous power Pt
emitted at the final frequency wr = w; — w; takes the following form

24 ¢co mn
Py =2 0T Or —QT ay (O ax (6) | Buge (12.8)
g ir Qo

where [ represents the nonlinear coupling strength between the EM fields

involved in the nonlinear difference-frequency mixing. This magnitude can be
written as [26]

Jar 3 { e w)] Jex m}{ PIRHOLHG {E&?(r)}*}

2 b)
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(12.9)

ﬂeff =

where /( k>(r) stands for the spatial distribution of the second-order nonlinear

susceptlblhty tensor (here, the subindices {i,j,k} denote the Cartesian components
{x,y.z}, respectively, of the corresponding electric field vectors).

An important figure of merit for the scheme proposed in this chapter is the
enhancement factor (7,;,) of the output power P predicted by (12.8) with respect
to the value of Pt that one would obtain using traditional approaches to enhance
the conversion efficiency of a DFG process. In particular, we find relevant the
comparison of our scheme with the case in which the nonlinear coupling coefficient
(Besr) 18 increased simply by reducing the nonlinear interaction area of the modes
involved in the frequency mixing process, using for instance a waveguide for the
pump, idler and final frequencies (an approach that has been used extensively in the
past for enhancing the conversion efficiency of DFG in different wavelength
regimes [27, 28]). For simplicity, in this comparison we assume operation in the
undepleted regime [i.e., we take a;(f) = a;(0) and a,(f) = a(0) in (12.8)].
Additionally, we assume that in our system, both the pump and idler fields are
temporally confined, this confinement being characterized by Q-factors Q; and O,
for w; and w;, respectively. As we discuss below for a particular potential
implementation of our scheme, this temporal confinement not only permits enhanc-
ing Prg, but also allows introducing a generalization of the canonical phase-
matching condition [28], which leads to efficient DFG process even in systems
in which the implementation of standard phase matching techniques (such as
birefringence) is difficult or even impossible. Keeping these assumptions in mind,
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after some algebra, one finds that it is possible to write an accurate analytical
approximation for 7., as

23 X1 Ao RTNTetih ettMaett Awe OT O
Moy %122 T T,etzlgtt 2,eff Tg_TTT 0>, (12.10)
L nn; L3 Qo Vi

where 11, 4, and At stand for the wavelengths corresponding to the pump, idler, and
final frequencies, respectively. n;, ny, and ny denote the value of the refractive
indexes at w1, w,, and wr, respectively, of the dielectric medium where the frequency
mixing takes place. The parameters 7ny s, M2.fr, and nrer represent the effective
refractive indices of the waveguide configuration for the corresponding modes at @,
s, and wr, respectively. Ay, is the transversal area of the waveguide system,
whereas Ly, stands for the corresponding length of the waveguide. Note also that
in order to make a meaningful comparison between the cavity system and its
waveguide counterpart, when deriving (12.10), we have assumed that in both cases
there exists an optimal overlap between E;(r, ), E;(r, 7) and Er(r, ¢). Furthermore,
for this comparison we have assumed that perfect phase matching is achieved for the
waveguide case.

Equation (12.10) summarizes well the comparison between the different
mechanisms that play a role to enhance the conversion efficiency of a DFG process
in a waveguide configuration and the scheme to enhance the conversion efficiency
described in this chapter. Specifically, we have found that, as we numerically
demonstrate below for a particular structure, in the case of THz generation via a
%> DFG process in realistic nonlinear optical material configurations (in which
considering the absorption losses at the final THz frequency is a key aspect in
determining the ultimate conversion efficiency), it is possible to reach values
Tlenn10°. We emphasize that this large value for 7, is obtained even if the
corresponding phase-matching condition is satisfied in the waveguide system,
which is often challenging to implement due to the vast difference between the
wavelengths corresponding to the pump and idler modes and the final THz modes.
Thus, we believe that the scheme discussed in this chapter could be of a paramount
importance for increasing the conversion efficiency of nonlinear frequency conver-
sion processes whose conversion efficiency is intrinsically low due for instance to
the lack of a phase-matching mechanism in the considered frequency range, or due
to the small value of y® of the materials of interest. This conclusion is the first
important result of this chapter.

12.3 Practical Implementation: Efficient Thz Generation
at Room Temperature

In this section we show how the general approach described in Sect. 12.2 can be
implemented in practice using the unique properties of PhCs to achieve simulta-
neous spectral and spatial EM mode engineering. Specifically, in this section we
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Fig. 12.2 Schematics of the proposed triply resonant photonic structure, which essentially
consists of a ring resonator embedded in a THz-scale square-lattice photonic crystal. The ring
resonator is side coupled to both an index-guided waveguide transporting the pump and idler
powers (P1i, and Py;,) and a THz-scale PhC waveguide, which allows to extract efficiently the THz
power (Pry,) from the system

-

explore the extent to which the considered approach can be implemented in a
realistic triply resonant nonlinear structure [29] that can be applied to solve the
current lack of efficient sources and detectors operating at room temperature in
the so-called THz frequency gap. We point out that although in this section we have
analyzed the THz emission properties of a specific triply resonant structure, we
have found that the approach introduced here can be implemented in a variety of
different photonic structures and a variety of material systems. To illustrate this
fact, similar results as those discussed in this section have been obtained for a PhC
configuration different from the one presented here (see ref. [30]).

12.3.1 Triply Resonant Photonic Structure: Linear Mode Analysis

Figure 12.2 displays a schematic of the proposed triply resonant system [29]. The
power carried by two NIR beams of wavelengths w; and w, (playing the role of
idler and pump beams, respectively, their corresponding powers being Py, and Poiy,)
is coupled, by means of an index-guided waveguide, to two high-order whispering
gallery modes (WGM) supported by a dielectric ring resonator. These WGM at 4;
and /, are characterized by angular momenta m; and m;, respectively. The ring
resonator also acts as a dipole-like defect for A, when embedded in an otherwise
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Fig. 12.3 Left panel: electric field profile E. corresponding to the resonant mode appearing at
1 THz in the structure shown in Fig. 12.2. The different geometrical parameters used in the
optimization of the structure are also shown. Right panel shows an enlarged view of the electric
field profile E, corresponding to a whispering gallery with m; = 572 circulating inside the
dielectric ring shown in the left panel. Shaded areas in both the main and inset figures represent
GaAs regions, while white areas represent air

perfectly periodic THz-wavelength scale PhC formed by a square lattice of
dielectric rods (see the corresponding electric field profile in Fig. 12.3). Thus, the
7? nonlinear frequency down-conversion interaction that takes place between the
two NIR WGM’s circulating inside the ring resonator yields a current distribution
that radiates inside the PhC cavity at the frequency difference wr = ®w; — w,; the
rate at which the radiation is emitted is strongly enhanced by the PhC environment
in which the ring resonator is embedded. In order to extract efficiently the THz
output power (Pr) from the PhC cavity, we introduce into the system a PhC
waveguide created by reducing the radius of a row of rods (see Fig. 12.2). In
addition, in order to break the degeneracy existing between the x- and y-oriented
dipole defect modes, the radius of two of the nearest neighbor rods of the ring
resonator is reduced with respect to the radius of the other rods in the PhC. This
configuration permits having a large value for the Purcell factor (Qr/ VT), along
with a high-Q resonant confinement also for the pump and idler frequencies.
Figure 12.3 shows the structure that results from optimizing the geometrical
parameters of the system for efficient generation at 1 THz. For this optimization we
have assumed that the wavelengths of pump and idler beams are ; = 1,550 nm and
Ay = 1,542 nm, and that the structure is implemented in GaAs (in which the
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relevant component of the nonlinear susceptibility tensor is dj4 = 274 pm/V,
see ref. [31]). The optimal values obtained for the different geometrical parameters
displayed in Fig. 12.3 are the following, a =102 um, d; =40.8 um,
d, =25.1 um, d; = 18.8 um, and w = 0.8 um. The internal and external radii
defining the ring resonator are 30.5 and 40.1 pum, respectively. These results
correspond to two-dimensional (2D) simulations. In order to obtain an accurate
estimation of the performance of the actual three-dimensional (3D) counterpart of
the considered structure, we have assumed that the electric field profile for each of
the three fields in the perpendicular direction to the plane shown in Fig. 12.3 is
roughly the same as the mode profile computed for the 2D case; and that its
extension in the third dimension is approximately Ar/4. This assumption does not
affect the generality of our conclusions, since it is feasible to design 3D photonic-
crystal structures with 2D electric field cross sections very similar to the ones shown
in this chapter [32]. We also point out that the value for the final THz frequency was
chosen for illustration purposes. The proposed approach has a general character: we
have obtained similar results as those shown in this chapter for different final THz
frequencies.

In order to maximize the strength of the nonlinear coupling coefficient that
governs the energy transfer between the pump, idler and THz fields, the whole
structure must be designed so the dependence of the THz electric field profile on
the azimuthal coordinate 6 inside the ring cancels the modulation introduced in the
nonlinear susceptibility tensor by the local variation of the pump and idler fields
with respect to the axes of the nonlinear ¢ (ystal [33 34] This modulation is given
by the dependence on 0 of the product E; E *(r), which in the case of the
considered WGMs is given by a factor exp[z@(mz — my % 2)]. Note that both the
radial and azimuthal components of E (r) are proportional to exp(im; 6) (where
i =1,2). Since, m turn, PN (r, t) is proportional to the product of the Cartesian
components of E )( ), a factor exp(£26) must be included, multiplying the phase-
matching factor exp[i0(my, — m; £ 2)] appearing in the integrand of the numerator
in the right-hand side of (12.9). A similar discussion for the case of second-
harmonic generation can be found in refs. [33, 34]. For GaAs, and for the above
cited values for 4; and /,, we have found that this condition is fulfilled by two
WGMs with m; = 572 and m, = 575, and a dipole defect mode (mt = 1) in the
THz-scale PhC.

The above discussion can be viewed as a generalization of the canonical phase-
matching condition often found in nonlinear optics. Specifically, note that in
standard phase-matching techniques the overall efficiency of a DFG process relies
entirely on finding a suitable nonlinear material whose dispersion relation permits
fulfilling simultaneously frequency and linear momentum conservation in the
considered frequency mixing process. However, in the approach introduced here
the linear momentum conservation is replaced by the conservation of what is
effectively analogous angular momentum.

As shown above, the values of m, m,, and mr can be tailored almost at will
simply by modifying the geometrical parameters that define the THz-scale PhC.
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This yields a general and versatile route to phase-matching that does not depend
exclusively on the intrinsic properties of naturally existing nonlinear optical
materials. This fact could be particularly relevant in those systems in which the
canonical phase-matching condition (derived from frequency and linear momenta
conservation) cannot be fulfilled.

12.3.2 Numerical Analysis of the Nonlinear Regime

To compute accurately the nonlinear optical dynamics of the structure shown in
Fig. 12.2, we have applied a temporal coupled-mode theory (TCMT) formalism
similar to that described in refs. [23, 26]. In these references it is shown that this
theoretical framework permits characterizing accurately several nonlinear fre-
quency mixing processes, including those in which there exists a large difference
between the wavelength corresponding to the pump and the final frequency.
Standard numerical methods used in nonlinear nanophotonics (such as the nonlin-
ear finite-difference-time-domain, FDTD, method) are not suitable for being
applied to this problem, mainly due to the vast difference between the wavelength
corresponding to the pump and the final THz frequency (the THz wavelength is
about two orders of magnitude larger than the pump wavelength in the cases of
interest).

Figure 12.4 summarizes the results obtained in the continuous-wave (cw) regime
for the case in which Py;;, = Py, (the dependence of the results on the ratio Poiy /P1in
is discussed below) and quality factors Q; = Q, = 3.5 x 10° and Qp = 10°.
These values for Q are compatible with both the absorption coefficient of GaAs
at 1 THz (¢ = 0.5cm™") [35] and the experimental values for the quality factor
obtained in similar configurations for the considered ring resonator and the PhC
cavity [5, 36]. Notice that in Fig. 12.4, following ref. [26], we have defined
Py = 1 T /(4]B.|*Q10:Q1). The physical interpretation P is the following: it
corresponds to the critical power in which the maximum conversion efficiency is
reached in the limit P;, — 0. For the particular structure analyzed in this work
Py =3.17W. Notice that to compute this value of P, for the actual 3D structure
sketched in Fig. 12.2, we have assumed that the electric field profiles in the perpen-
dicular direction to the plane shown in Fig. 12.3 are the same as those obtained in the
2D simulations, and that its extension in the third dimension for each of the three
fields is approximately At /4.

As seen in Fig. 12.4, for values of Pin>0.07 Py, the conversion efficiency
(defined here as ratio between the output power at THz and total input power at NIR
frequencies) starts departing from the conversion efficiency predicted by the
undepleted approximation, eventually reaching the maximum value predicted by
the Manley—Rowe quantum limit. Specifically, from the steady-state solution of the
TCMT equations, in the considered case when P, = Pain, one can find that the
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Fig. 12.4 Ratio between total output powers emitted by the system at pump, idler and final THz
frequencies (w1, ®, and wr, respectively) versus total input power Pyoy in- P1in = Pain is assumed in
these calculations. Horizontal dashed line displays the maximum possible conversion efficiency
Nmax given by the Manley—Rowe quantum limit. For comparison, the conversion efficiency
obtained from the undepleted-pump approximation (i.e., by assuming that pump and idler powers
remain constant in the considered frequency mixing process) is also shown (see cyan line). Dotted
line displays the effect of linear absorption losses on the conversion efficiency. Labels A-C
correspond to input powers considered in the time-dependent analysis displayed in Fig. 12.5a—c

maximum conversion efficiency (i.e., the maximum possible value of the ratio
Prs/(P1in + P2in)) can be written as

I'lI'tr /o
Mhnax = ‘ZT(w—T) (12.11)

where I't = O1/0O7110 and I'j = Q1/Q1 10. This analytical expression is confirmed
by our numerical simulations (see Fig. 12.4). As clearly shown in Fig. 12.4, at the
critical value of Py;, at which this maximum conversion efficiency is reached (in our
case Py, = 0.17P, or equivalently P ; = 0.54W), the pump power that is
coupled to the ring resonator is completelﬂz down-converted inside the system to
power at THz and idler frequencies, giving rise to a sharp minimum in Py, and a
maximum in Py,.. We also point out that the net effect of the absorption losses in the
conversion efficiency consists simply in downscaling the results obtained in the
lossless case by a factor I'1I't (see the dotted line in Fig. 12.4).



12 Generation of Terahertz Radiation via Purcell-Enhanced. . . 337

102'; Max. efficiency
4 _PZm:PHn
10"+
g ]
ELD 10 1 A
- 11
c10 4

{Region of B\

10'23: mono-stability Region of

multi-stability

10°
107 v | —
10° 10™* 10° 10% 10" 10° 10' 10° 10°

I:)1in / PO
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case Pyj, = Pain. Yellow and blue areas represent the regions of monostability and multistability,
respectively, in the space of parameters {P1in, P2in }

We turn now to the case in which Py;, # Pai,. As shown in ref. [30], for this case,
the conversion efficiency (also defined as the maximum possible value of the ratio
Prs/(Piin + Pa2in)), it is no longer given by (12.11), but it now depends on the
specific ratio between the input pump power Pi;, and total input power P i, + Paip.
Specifically, when Py;, # Paj, this maximum conversion efficiency can be written
in terms of the maximum conversion efficiency 7,,,, deduced for the case Pji, =
Poin [see (12.11)], as [30]

2P lin
None = _ 12.12
nmax nmax le + len ( )
In addition, from this analysis one finds that, in this case in which Py, # Py, the

critical powers at which the maximum conversion efficiency takes place (P{;, and
P5;,) satisfy the following expression

C c |2
%:&E _h (12.13)
P() 4601 Fz PO )

This function is plotted as a solid red line in Fig. 12.5. Note that in the limit
Piin — 0, the value of 7,,,,, — 0. On the other hand, in the limit P»;, — 0, we obtain
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Mmax — 27max the factor 2 simply coming from the fact that in that limit the total
NIR input power is reduced by one half.! Note also that as Py o 1 /01020r, one
can adjust the value of P{;, just by varying the product Q10>0r.

We have also analyzed the stability of the steady-state solutions of the consid-
ered problem in the {Py;,, P2, } parameter space. To that end, we have applied a
similar analysis to the one described in ref. [26]. Figure 12.5 summarizes the results
of this analysis. As seen in this Figure, for the considered system there are two areas
of stability: one area (which includes the region of maximum conversion efficiency)
characterized by just one steady-state solution for each combination {Pii,, Pain }
(displayed as the yellow area in Fig. 12.5), and a large region of the parameter space
{P2in, P1in} in which the considered structure presents a multistable response,
i.e., where there is more than one steady-state solution for a given pair of values
{P1in, P2in} (see the blue area in Fig. 12.5). This has important consequences when
interpreting the experimental data of a possible device based on these ideas.

In order to completely characterize the THz generation process in the analyzed
structure, we have also studied the temporal evolution of the response of the system
to Gaussian pulse excitations. We consider the case in which Pi,(¢) = Pain (). In
these calculations, we also assume that the temporal width of the NIR pulses
corresponds to the lifetime of the THz-scale cavity (try, =~ 16ns). The value of
TtH, 1s much larger than the lifetime of the WGM modes at the pump and idler
frequencies (~ 0.8 ns). Thus, on physical grounds, we expect similar maximum
conversion efficiencies as those found in the cw analysis described above.
Figure 12.6a—c show the results corresponding to three representative values for
the peak power of Py in(f) (labeled as A, B, and C, respectively, in Fig. 12.4). As
seen in Fig. 12.6a, when the maximum of Pmt,m(t) is equal to the critical power,
P{ in» the pump input pulse is completely consumed after spending approximately
60 ns in the system (i.e., Py (¢) = 0 after 60 ns); and, simultaneously, the power of
the transmitted idler pulse (P, (¢)) value reaches a peak value that is approximately
twice the peak value corresponding to the input idler pulse (P, (¢)). For peak values
of Piorin (f) much lower than the critical power, the almost undepleted behavior can
be clearly observed (see Fig. 12.6b): the peak powers of the pump and idler pulses
are barely modified as they travel through the system. On the other hand, Fig. 12.6¢
clearly shows how, for input NIR peak powers well beyond the critical power,
the pump pulse is completely consumed at ¢ =~ 40 ns. However, in contrast to the
case displayed in Fig. 12.6a, Fig. 12.6c shows how after 7 ~ 40 ns the up-
conversion process that mix wr with w; to yield w; starts being relevant, and,
consequently P, (¢) begins increasing with time; which in turn reduces the
overall THz conversion efficiency of the process. Finally, Fig. 12.6d displays a
summary of our time-dependent simulations in terms of the ratio between the
output THz energy and total input NIR energy defined as Ery, = [ drPr(r)

'In the limit Paiy < Piin, assuming a lossless triply resonant cavity (i.e., I'y = I't = 1), the
maximum conversion efficiency given by (12.12) approaches the conventional Manley-Rowe
quantum limit wr/w;.
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Fig. 12.6 Analysis of the temporal response of the system shown in Fig. 12.1 to Gaussian
excitation pulses. Panels (a), (b), and (c) correspond to the peak values for Py i, shown by labels
A, B, and C, respectively in Fig. 12.4. In (a—c), the scale on the left vertical axis corresponds to the
NIR power of the pump and idler frequencies, both for the input and transmitted pulses; whereas
the scale on the right vertical axis corresponds to the THz output power. Inset of (c¢), shows an
enlarged view of the temporal dependence of P, (¢) between ¢t = 0 and 50 ns. Panel (d) displays
the ratio between the total output energy (Ety,) and the total NIR input energy (Enir) as a function
of Exir. Horizontal line in this panel displays the maximum possible conversion efficiency given
by the Manley—Rowe quantum limit

and ENgr = ffooo dt [P1in (1) 4 Pain(2)], respectively). As displayed in Fig. 12.6d, the
maximum conversion efficiency can be reached for an input energy
EXur =~ 0.02 pJ. Similarly to the calculation of Py, Ef;z has been computed by
assuming that the height of the structure along the z-axis (see Fig. 12.2) is At/4 for
all three fields. The value obtained in this way represents a reduction in Exr of
three orders of magnitude with respect to the most efficient schemes for THz
generation in nonlinear crystals reported up to date. Furthermore, we emphasize
that in addition to powerful lasers, current efficient schemes for THz generation
require intricate phase-matching setups, whereas in the system introduced in this
manuscript maximum theoretically possible efficiency can be achieved in an

integrated structure having a total area of approximately 1 mm?.
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12.4 Conclusions

In conclusion, using a physical picture inspired on a classical analogy of the
quantum Purcell effect, we have described a novel route to identify the optimal
conditions that enable reaching dramatic enhancements of the conversion efficiency
of arbitrary difference-frequency down-conversion process. The approach
presented in this chapter has also allowed us to generalize the canonical phase-
matching condition found in the considered frequency mixing processes. This
generalization enables efficient DFG processes even in the case of nonlinear optical
materials where standard phase-matching techniques are difficult or impossible to
implement in certain frequency regimes. By means of detailed numerical
simulations, we have illustrated the relevance of the proposed scheme by
demonstrating complete conversion to THz energy of a 0.02 pJ NIR pump pulse
in a realistic 1 mm?-footprint structure created from GaAs. Alternatively, we have
demonstrated that in the continuous-wave regime, the pump powers required to
reach quantum-limited conversion efficiency can be reduced up to three orders of
magnitude with respect to the conventional approaches for THz generation
employed up to date. In contrast to previous high-efficiency THz generation
schemes, the concept described in this chapter and ref. [29] opens the way to
efficient THz generation from sources that are compact, turn-key, and low-cost,
which we believe could enable a broader use of THz sources.
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Chapter 13
Photonic Transition in Nanophotonics

Zongfu Yu and Shanhui Fan

13.1 Introduction

Photonic transition [1] is induced by refractive index modulation. Many photonic
structures, including photonic crystals, or waveguides, can be described by a
photonic band structure. When these structures are subject to temporal refractive
index modulation, photon states can go through interband transitions, in a direct
analogy to electronic transitions in semiconductors. Such photonic transitions have
been recently demonstrated experimentally in silicon microring resonators [2]. In
this chapter, we review two applications using the photonic transitions.

As the first application, we show that based on the effects of photonic transitions,
a linear, broadband, and nonreciprocal isolator [3] can be accomplished by
spatial-temporal refractive index modulations that simultaneously impart fre-
quency and wavevector shifts during the photonic transition process. This work
demonstrates that on-chip isolation can be accomplished with dynamic photonic
structures, in standard material systems that are widely used for integrated
optoelectronic applications.

In the second application, we show that a high-Q optical resonance can be
created dynamically, by inducing a photonic transition between a localized state
and a one-dimensional continuum through refractive index modulation [4]. In this
mechanism, both the frequency and the external linewidth of a single resonance are
specified by the dynamics, allowing complete control of the resonance properties.

This chapter is organized as follows: in Sect. 13.2, we review photonic transition
induced by dynamic modulation; in Sects. 13.3 and 13.4, we describe the optical
isolator and tunable cavity based on photonic transition, respectively; Sect. 13.5 is
the conclusion part.
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13.2 Photonic Transition in a Waveguide

We start by describing the photonic transition process in a silicon waveguide.
The waveguide (assumed to be two-dimensional for simplicity) is represented by
a dielectric distribution ¢&(x) that is time-independent and uniform along the
z-direction (Fig. 13.1b). Such a waveguide possesses a band structure as shown in
Fig. 13.1a, with symmetric and antisymmetric modes located in the first and second
band, respectively. An interband transition, between two modes with frequencies
and wavevectors (w1, k), (w2, k2) located in these two bands, can be induced by
modulating the waveguide with an additional dielectric perturbation:

¢ (x,z,t) = d(x) cos(Qt — gz), (13.1)

where J(x) is the modulation amplitude distribution along the direction transverse
to the waveguide. Q = w, — m; is the modulation frequency. Figure 13.1c shows
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the profile of the modulation. Such a transition, with k; # k,, is referred to as an
indirect photonic transition, in analogy with indirect electronic transitions in
semiconductors.

We assume that the wavevector ¢ approximately satisfies the phase-matching
condition, i.e., Ak =k, — k; — ¢ = 0. In the modulated waveguide, the electric
field becomes:

E(x,z,1) = ay (2)E, (x)e/ TR 1 g (2)E, (x)e!(rer) (13.2)

where Ej,(x) are the modal profiles, satisfying the orthogonal condition: (for
simplicity, we have assumed the TE modes where the electric field has components
only along the y-direction)

Voi o0 "
2_2),- J E(X)El-Ej = 5,‘j. (133)

—00

In (13.3), the normalization is chosen such that \a,,|2 is the photon number flux
carried by the nth mode. By substituting (13.2) into the Maxwell’s equations, and
using slowly varying envelope approximation, we can derive the coupled mode
equation:

d(a\ 0 izllcexp(—iAkz) ar 134
dz\ay ) iﬁexp(iAkz) 0 a )’ (134)

4
I = z : (13.5)

¢ ff 5(X)E1 () Ea (x)dx

where

is the coherence length. With an initial condition @;(0) =1 and a,(0) = 0, the
solution to (13.4) is:

al(z) _ e—izAk/Z [COS (2il 2+ (Z(Ak)2)

c

i AR (i n? + (l(-Ak)2> (13.6)
) 2 21( .
() = ez T g (i %+ (l(‘Ak)2>
2 + (I Ak)? ‘

In the case of perfect phase-matching, i.e., Ak = 0, a photon initially in mode 1
will make a complete transition to mode 2 after propagating over a distance of
coherence length /. (Fig. 13.2a). In contrast, in the case of strong phase-mismatch,
i.e., [[Ak>>1, the transition amplitude is negligible (Fig. 13.2b).
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13.3 Photonic Transition for Integrated Optical Isolator

In this section, we use the photonic transition described in the previous section to
achieve on-chip optical isolation. In an optical network, isolators are an essential
component used to suppress back-reflection, and hence interference between dif-
ferent devices. Achieving on-chip optical signal isolation has been a fundamental
difficulty in integrated photonics. The need to overcome this difficulty, moreover,
is becoming increasingly urgent, especially with the emergence of silicon
nanophotonics, which promises to create on-chip optical systems at an unprece-
dented scale of integration.

To create complete optical signal isolation requires simultaneous breaking of
both the time-reversal and the spatial inversion symmetry. In bulk optics, this is
achieved using materials exhibiting magneto-optical effects. Despite many efforts
[5-8], however, on-chip integration of magneto-optical materials, especially in
silicon in a CMOS compatible fashion, remains a great difficulty. Alternatively,
optical isolation has also been observed using nonlinear optical processes [9, 10], or
in electroabsorption modulators [11]. In either case, however, optical isolation
occurs only at specific power ranges, or with associated modulation side bands.
In addition, there have been works aiming to achieve partial optical isolation in
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Fig. 13.3 Finite-difference time-domain simulation of an isolator based on photonic transitions.
The box indicates the regions where the refractive index is modulated. Blue/red shows the
amplitude of electric fields. Arrows indicate propagation directions

reciprocal structures that have no inversion symmetry (for example, chiral
structures) [12]. In these systems, the apparent isolation occurs by restricting the
allowed photon states in the backward direction, and would not work for arbitrary
backward incoming states. None of the above nonmagnetic schemes can provide
complete optical isolation.

In this part, we review and expand upon our recent works [3, 13] on creating
complete and linear optical isolation using photonic transition. In these works, the
temporal profile of the modulation used to induce the transition is chosen to break
the time-reversal symmetry, while the spatial profile of the modulation is chosen to
break the spatial-inversion and the mirror symmetry. As seen by the finite-
difference time-domain simulations, when a silicon waveguide is under a modula-
tion that induces an interband photonic transition, light of frequency w; in forward
direction is converted to a higher frequency mode @, by the modulation
(Fig. 13.3a). At the same time, light of frequencies w; or w, in the backward
direction are not affected by the modulation (Fig. 13.3b, c). Combined with an
absorption filter centered at ,, this structure can absorb all lights incident from one
direction at w;, while passing those in the opposite direction, and thus creates a
complete isolator behavior. It was also shown that the finite-difference time-domain
simulations can also be well reproduced by coupled-mode theory [3].

We use the coupled mode theory as described in Sect. 13.2 to discuss
the performance and design considerations for our dynamic isolator schemes. The
waveguide system in Sect. 13.2 exhibits strong nonreciprocal behavior: the
modulation in (13.1) does not phase-match the mode at (w;, —k;) with any other
mode of the system (Fig. 13.1a). Thus, while the mode at (w1, ;) undergoes a
complete photonic transition, its time-reversed counterpart at (w;, —k;) is not
affected at all. Such nonreciprocity arises from the breaking of both time-reversal
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and spatial-inversion symmetries in the dynamics: The modulation in (13.1) is not
invariant with either t — —forz — —z.

As a specific example, we consider a silicon (¢ = 12.25) waveguide of 0.27 pm
wide, chosen such that the first and second bands of the waveguide have the same
group velocity around wavelength 1.55 um (or a frequency of 193 THz). The
modulation has a strength dpyax/es = 5 X 1074, a frequency Q/2n = 20 GHz and
a spatial period 27t/|g| = 0.886 um. (All these parameters should be achievable in
experiments.) The modulation is applied to half of the waveguide width so that
the even and odd modes can couple efficiently. The modulation length L is chosen
as the coherence length /.0 = 2.19 mm (Fig. 13.1b) for operation frequency g
at 1.55 pum wavelength. Figure 13.4a shows the transmission for forward and
backward directions. The bandwidth is 5 nm with contrast ratio above 30 dB.

For the loss induced by refractive index modulation schemes, e.g., carrier
injection modulation, the contrast ratio remains approximately the same as the
lossless case, since the modulation loss applies to transmission in both directions.
Thus the isolation effect is not affected. As an example, the modulation strength
used here /e, = 5 x 107 results in a propagating loss of 1.5 cm ™' in silicon
[14]. This causes an insertion loss about —3.5 dB while the bandwidth remains
approximately unchanged (Fig. 13.4b).
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In general, nonreciprocal effects can also be observed in intraband transitions
involving two photonic states in the same photonic band. However, since typically
Q<< w1, and the dispersion relation of a single band can typically be approximated
as linear in the vicinity of @;, cascaded process [2], which generates frequencies at
w; + nQ with n > 1, is unavoidable, and it complicates the device performance.
In contrast, the interband transition here eliminates the cascaded processes.

We would like to emphasize that the modulation frequency can be far smaller
than the bandwidth of the signal. This is in fact one of the key advantages of using
interband transition. The transition occurs from a fundamental even mode to a
second-order odd mode. The generated odd mode can be removed with the use of
mode filters that operate based on modal profiles. Examples of such mode filters can
be found in [15, 16]. It is important to point out that such mode filters are purely
passive and reciprocal, and can be readily implemented on chip in a very compact
fashion. Moreover, later in this section, we discuss an implementation of an isolator
without the use of modal filters.

13.3.1 Detailed Analysis of the Isolator Performance

Below in this section, based on the coupled mode theory, we analyze in details
various aspects regarding the performance of the proposed isolator including in
particular its operational bandwidth and device size.

13.3.1.1 Bandwidth

The dynamic isolator structure creates contrast between forward and backward
propagations by achieving complete frequency conversion only in the forward
direction. As discussed above, the modulation is chosen such that, it induces a
phase-matched transition from an even mode at the frequency wg to an odd mode at
the frequency of wy + Q. The length of the waveguide is chosen to be the coherence
length I.(wp) for this transition, such that complete conversion occurs at this
frequency @y for the incident light. In order to achieve a broad band operation,
one would need to achieve near-complete conversion for all incident light having
frequencies o in the vicinity of wg as well. From (13.6), broad band operation
therefore requires that

Ak(w) =0
l(w) =L =1.(wo). (13.7)
The first condition in (13.7) implies that the phase-matching condition needs to
be achieved over a broad range of frequencies, and the second condition implies

that the coherence length should not vary as a function of frequency. Deviations
from these conditions result in a finite operational bandwidth.
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We consider the phase-matching condition first. In the vicinity of the design
frequency @y, the wavevector mismatch can be approximated by Ak = k(w)—
ka(o + Q) — g = (1/va1(0) = (1/va(o + Q)Ao + 1/2((d*%:(0)/do?)-
(Pl + Q) /dw*)A?|| .-

Thus, to minimize the phase mismatch, it is necessary, first of all, that the two
bands have the same group velocities, i.e., the two bands are parallel to each other.
Moreover, it is desirable that the group velocity dispersion of the two bands
matches with one another. As a quantitative estimate, assuming that /.(w) ~ L
for all frequencies, Fig. 13.5a shows the forward transmission as a function of LAk.
For a transmission below —30 dB, this requires a phase mismatch of LAk<0.1. As a
concrete example for comparison purposes, Fig. 13.6a shows the phase mismatch
LAk as a function of wavelength for the structure simulated in Fig. 13.4. Notice that
LAk<0.1 over a bandwidth of 5 nm due to the mismatch of group velocity
dispersion in the two guided mode bands. Thus the operating bandwidth of this
device for 30 dB contrast is on the order of 5 nm.

For the second condition in (13.7), we note that in most waveguide structures,
since the coherence length is determined by the modal profile, it generally varies
slowly as a function of frequency. For example, for a waveguide with parameters
chosen in Sect. 13.2, the coherence length varies <2% over 20 nm bandwidth
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around 1.55 pm wavelength (Fig. 13.6b). As a simple estimate of how coherence
length variation impacts device performance, assuming that Ak(w) =0 over a
broad frequency range, we calculate the forward transmission as a function of
coherence length given the modulation length L = I.(w = wy) (Fig. 13.5b). For
2% variation of the coherence length, the forward transmission remains below
—30 dB. Comparing Fig. 13.6a, b, therefore, we conclude that for the structure
simulated in Fig. 13.4, the 5-nm bandwidth is primarily limited by group velocity
dispersion of the two waveguide bands. Since the structure used in Fig. 13.4 is a
rather simple, we believe that substantial further enhancement of operating band-
width is achievable by optimization of waveguide geometry.

13.3.1.2 Device Size

The size of the isolator is determined by the coherence length /.. Starting from
(13.5), and taking into account the normalization of E field (13.3), the coherence
length can be written as

P _2m feve o 1 Ve (13.8)
to | S(E ()E(x)dx T V192 7oc

—00
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where y = (|7 d(x \/j (x)|E1 Pdx [° e(x)|E2|*dx) characterizes
the effect of modulatlon. In derlvmg (13.8), we assume that w; = w, = 2nc/ A,
where A is the wavelength in vacuum, since the modulation frequency is typically
far smaller than the optical frequency. Moreover, the two bands are assumed to
be parallel to each other, i.e., Vg1 = Vg = v,. Equation (13.8) indicates that the
device size is proportional to the group velocity and is inversely proportional to the
modulation strength. For a rough estimate, with a modulation strength
7~ (8/¢e) ~ 107%, operating at a wavelength of 4 ~ 1.5 um and v, =~ ¢/3, the
coherence length /. ~ 5 mm. To reduce the size, one can use stronger modulation
strength and/or slow light waveguides.

13.3.1.3 Near-Phase-Matched Transition in the Backward Direction

In general, due to energy conservation constraint, a mode with a frequency of m,
can only make a transition to modes at w; & €. In our design, the modulation is
chosen to create a phase-matched transition in the forward direction. However, for
most electro-optic or acoustic-optic modulation schemes, the modulation frequency
Q<100GHz is much smaller than the optical frequency. Consequently, as can
be seen from Fig. 13.7a, in the backward direction the transition to the mode in
the second band with a frequency w3 = w; — Q becomes nearly phase-matched.
The wavevector mismatch of this transition is:

ZQ
Akb = —kz(a)l - Q) + ki (wl) q~ (139)

Vg

Such a transition results in loss in the backward direction and thus a reduction of
contrast between the forward and backward directions.

To calculate such transmission loss in the backward direction, we replace Ak in
(13.6) with Akj. In general, in order to suppress such backward transmission loss,
one needs to have:

Ak, -L> 1. (13.10)

Combining with (13.8), the condition of (13.10) is then transformed to:

2. Q > 1. (13.11)
c v

Remarkably, we note from (13.11) that for electro-optic or acoustic-optic mod-
ulation schemes, the effects of weak refractive index modulationy and low modu-
lation frequency Q cancel each other out. The use of weak refractive index
modulation results in a long coherence length, which helps in suppressing the
transition processes that are not phase matched. And it is precisely such a cancel-
ation that enables the construction of dynamic isolators with practical modulation

mechanisms.
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For the example shown in Fig. 13.4, the near-phase-matched transition in the
backward direction has a Ak, = 27/2.06 mm and thus Ak,L = 6.7, which results in
a loss of —0.22 dB for the backward transmission (Fig. 13.7b).

13.3.2 Design Flexibility

In the previous sections, we have shown that by using interband transition, one can
create nonreciprocal mode conversion in a waveguide. Such a waveguide works as
an isolator when combined with a modal filter. The performance of such device can
be analyzed and optimized using coupled mode theory. In this section, we present
two examples to show that such nonreciprocal photon transition can be exploited in
a wide range of structures to form nonreciprocal optical devices that satisfy diverse
performance requirements. In the first example, we design a four-port isolator/
circulator using nonreciprocal phase shift in the interband transitions. In the second
example, we use a nonreciprocal ring resonator to demonstrate a compact design for
optical isolation.
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Fig. 13.8 Schematic (a) and
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the dashed red box
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13.3.2.1 Four-Port Circulator

Figure 13.8a shows the design of a four-port circulator [13]. The structure consists
of a Mach—Zehdner interferometer, in which one waveguide arm is subject to the
dynamic modulation described above. In contrast to the design in Sect. 13.3,
however, here the length of the modulation region is chosen to be twice the
coherence length L = 2/.. Thus, light passing through the modulated waveguide
in the forward direction will return to the incident frequency (Fig. 13.2a). However,
such light experiences a nonreciprocal phase shift due to the photonic transition
effect. The use of a Mach—Zehnder interferometer configuration then allows one to
construct a circulator. Here no filter is required, which significantly reduces the
device complexity.

For concreteness, we assume that the interferometer has two arms with equal
length, and uses two 50/50 waveguide couplers. For such an interferometer, the
transmission is described by

by _ L1 i\ (T exp(ip,) 0 )(1 i)(b,,)
<b1)OUT_2(i 1)( 0 exp(iv,) J\i 1)\ b ) (13.12)

Here, the sub-script “IN” and “OUT” label the input or output. b, ; are the input or
output amplitudes in the upper/lower arm. ¢, is the phase acquired due to propaga-
tion in the absence of modulation.
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In (13.12), the transmission coefficient through the upper arm has an addition
contribution from the photon transition:

. I.Ak .
T = e 8K/ | cos [ — \/ 72+ (ILAK) ) + i ————— sin 2 (L.AK) ) |,
21 )2 21

2 + (I.Ak ¢
(13.13)

which influences both the transmission amplitude and the phase as the wave passes
through the upper arm. In our design, we assume a phase-matching modulation with
Ak =0 for the forward direction, and use a modulated region with L = 2I..
Equation (13.13) shows T = —1. In contrast, for the light in the backward direction
in the upper arm, in general the phase matching condition is not satisfied. Hence,
T =~ 1. Thus, in this design, the modulation does not create any frequency conver-
sion. Instead its sole effect is to induce a nonreciprocal phase shift in the upper arm.

The interferometer in Fig. 13.8 exploits such nonreciprocal phase to create a
circulator. We have used the coupled mode theory developed in Sect. 13.3, to
simulate this structure, assuming the same waveguide parameters as in Fig. 13.4.
The results, shown in Fig. 13.8, indicate that lights injected into port 1 completely
output through port 3, while in the time reversed case, lights injected into port
3 ends up in port 2. Therefore, this device has exactly the same response function of
a four-port circulator. Unlike conventional design, however, no magnetic
components are used inside the structure. Alternatively, the device can also func-
tion as a two-port isolator. Figure 13.8b shows the transmission spectra in both
directions between ports 1 and 4: lights incident from port 4 transmit to port 1 while
the reverse transmission is completely suppressed. The contrast ratio for the two
directions is above 30 dB for a bandwidth of 5 nm (Fig. 13.8b).

13.3.2.2 Nonreciprocal Ring Resonator

As discussed before, the device size is determined by the coherence length,
which typically is above millimeters unless slow light waveguides are used.
Substantial reduction of the device footprint can be accomplished using resonator
structure at the expense of a smaller operating bandwidth [3]. As an example, we
consider a ring resonator (Fig. 13.9a) that supports two anticlockwise rotating
resonances, at frequencies w; and w,, respectively. Each resonance is further
characterized by its wavevector k; and k; in the waveguide that forms the ring.
These two resonances are coupled by applying a dielectric constant modulation
along the ring with a profile d(x) cos[(w; — w2)t — (ki — ky)z], where z measures
the propagation distance on the circumference of the ring in counterclockwise
direction.
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To describe the action of this structure, we note that upon completing one round
trip, the circulating amplitudes a;, and b;, of these two modes (Fig. 13.9b) are

related by:
a Tu T\ /(b
- , 13.14
(dz> (Tzl Tzz)(bz) ( )

where the matrix elements are related to the transition amplitudes for a single round
trip, and can be calculated using (13.4). Each of these modes is also coupled to an
external waveguide as described by:

by r jtl 0 0 ai
B, . jll r 0 0 Ay
b, - 0 0 mn Jjb a (13.15)
B, 0 0 j[z r A2

The external waveguide is also assumed to support two modes with opposite
symmetry at the frequencies w;,w, respectively. Here, the subscripts label the
two frequencies. A;, and a;> (Bizandb;;) are the photon flux amplitudes in
the external and ring waveguides before (after) the coupler. The coefficients r,  are
taken to be real [17] and "%,2 + tiz =1

With incident light in mode 1 (i.e., A} = 1, A, = 0) of the external waveguide,
combining (13.14) and (13.15), we have

= Ty, — riraTy + rzDet[T]
1 =Ty — Ty + rirDet[T)’

B, (13.16)
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where Det stands for determinant. Thus, the condition for complete frequency
conversion (i.e., By = 0) is

rn—Ty —rirTn + l‘zDel‘[T] =0. (13.17)

In the case that ring is lossless, Def[T] = 1 and Ty = T, = cos((n/2)(L/1.)),
where /. is the coherence length and L is circumference of the ring. Complete
conversion between the two modes can be achieved when the length of the ring is
chosen to be

n L -+
—— ) =—. 13.18
€08 <2 l(> 14+nrmr ( )

With r, — 1, L/l. — 0, the device therefore can provide complete frequency
conversion even when its length is far smaller than the coherence length.

As an example, now we use the same waveguide discussed in Fig. 13.4 to form a
ring with a radius » = 12.3 um. Such a ring supports two resonant modes: a first
band resonant mode at 1.55 pum and a second band mode that is 50 GHz higher in
frequency. (This is always achievable by fine tuning the radius and width of the
waveguide.) A phase matching modulation is applied to the ring with a coherence
length /. = 2.37 mm. At the design wavelength 1.55 pm, the forward transmission
is completed suppressed (Fig. 13.10). Here, the complete isolation is achieved with
a device size much smaller than the coherence length.

In this section, we have provided some of detailed theoretical considerations for
the dynamic isolator structures that we have recently proposed. In contrast to
previously considered isolators based on material nonlinearity [9, 10] where isola-
tion is only achievable for a range of incident power, the photonic transition effect
studied here is linear with respect to the incident light: the effect does not depend
upon the amplitude and phase of the incident light. Having a linear process is
crucial because the device operation needs to be independent of the format, the
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timing and the intensity of the pulses used in the system. In conclusion, the structure
proposed here shows that on-chip isolation can be accomplished with dynamic
modulation, in standard material systems that are widely used for integrated
optoelectronic applications.

13.4 Photonic Transition for Tunable Resonance

In this section, we review the tunable resonance based on photonic transition.
Resonance appears when a localized state couples to a continuum. In photonics,
of particular interest is when the localized state is supported by an optical
microcavity, and the continuum is one-dimensional such as in a waveguide. Such
waveguide-cavity configurations find applications in filters, sensors, switches,
slow-light structures, and quantum information processing devices.

In all applications of resonance, it is essential to accurately control its spectral
properties. For the waveguide-cavity resonances, some of the important spectral
properties are the resonance frequency, and the external linewidth due to waveguide-
cavity coupling. The inverse of such linewidth defines the corresponding quality
factor (Q) of the cavity.

In this part, we show that a single high-Q resonance can be created by
dynamically inducing a photonic transition between a localized state and a one-
dimensional continuum. Since the coupling between the continuum and the
localized state occurs solely through dynamic modulations, both the frequency
and the external linewidth of a single resonance are specified by the dynamics,
allowing complete control of its spectral properties.

We start by first briefly reviewing the Anderson—-Fano model [18, 19], which
describes the standard waveguide-cavity systems:

H=w.c"c+ kaa,fakdk +V J (ctay + af c)dk. (13.19)

Here, w, is the frequency of a localized state that is embedded inside a one-
dimensional continuum of states (Fig. 13.11a) defined by w;. ¢t (c) and a; " (ay)
are the bosonic creation (annihilation) operators for localized and continuum states,
respectively. V describes the interaction between them. Such a model supports a
resonance atwy = ., with an external linewidthy = 27(V?/v,) (defined as the full

width at half maximum of the resonance peak). Here, v, = %

wo'
In contrast to the standard Fano-Anderson model, our mechanism is described by
the Hamiltonian: (Fig. 13.11b)

H=aw.c"c+ Ja)ka;rakdk + (V + Vp cos(Qt) J (ctay + af c)dk. (13.20)
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Fig. 13.11 Two different coupling mechanisms between a localized state and a one-dimensional
continuum. (a) Static case: The frequency . of the localized state lies in the band of the
continuum. The static coupling between them results in a resonance at wy = .. (b) Dynamic
case: The localized state has its frequency w, that falls outside the continuum. A modulation at a
frequency € creates a photonic transition that couples them, resulting in a resonance at
wy = o +Q

Here, unlike in (13.19), we assume that w;>w, for any k. Consequently, the
static coupling term V [ (¢*ax + a;f ¢)dk no longer contributes to the decay of the
resonance. Instead, it only results in a renormalization of w.. The localized state
decays solely through the dynamic term Vp cos(Qr) [ (¢*ay + a; ¢)dk, which arises
from modulating the system. Such modulation induces a photonic transition
between the localized state and the continuum.

For the Hamiltonian of (13.20), one can derive an input—output formalism [20] in
the Heisenberg picture, relating C(¢) = c(t)e ¥ to the input field operator ajy(t) as:

d
—C = —i(o, +Q)C—%C+iﬁam, (13.21)
wherey = 21(((Vp/2)?)/v,) withv, = % o g Foran incident wave ayy in the

waveguide, the modulated system therefore creates a single resonance at the
frequency wo = o, + Q. Importantly, unlike the static system in (13.19), here
both the frequency wg and the external linewidth y of the resonance are controlled
by the dynamic modulation.

We now realize the Hamiltonian in (13.20) in a photonic crystal heterostructure
[21] (Fig. 13.12a). The structure consists of a well and two barrier regions, defined
in a line-defect waveguide in a semiconductor (¢ = 12.25) two-dimensional
photonic crystal. In the barrier regions, the crystal has a triangular lattice of air
holes with a radius r = 0.3a, where a is the lattice constant. The waveguide
supports two TE (H.,E,,E,) modes with even and odd modal symmetry
(Fig. 13.12c, light gray lines). In the well region, the hole spacing ¢’ along the
waveguide is increased to 1.1a, which shifts the frequencies of the modes down-
ward (Fig. 13.12c¢, dark lines) compared to those of the barriers. As a result, the odd
modes in the well and the barriers do not overlap in frequencies. Thus, the well can
support localized states, which are essentially standing waves formed by two
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Fig. 13.12 (a) A photonic crystal heterostructure. The width of the waveguide measured from the
centers of the holes on the two sides is 1.33a. The highlighted rectangle represents the modulated
region, which has dimensions of 2a x 9.7a. (b) Electric field (E,) profile of a localized state in the
well. Red and blue represent positive and negative maximum amplitudes. (¢) Dispersion relation of
the photonic crystal waveguide modes. The dark and light gray lines are for modes in the well and
barriers, respectively. Solid (dashed) lines represent modes with even (odd) modal symmetry.
Shadowed regions are the extended modes of the crystal region of the well

counter-propagating odd modes in the well. Figure 13.12b shows one such localized
state at the frequency . = 0.2252(27nc/a), with its corresponding waveguide
mode at the wavevector ¢, = —0.37(2n/a) indicated by a red dot in Fig. 13.12c.
Without modulation such a localized state cannot leak into the barrier and hence
cannot be excited by wave coming from the barrier.

To induce a photonic transition, we modulate the dielectric constant of the well
in the form of ¢p = Ae(y) cos(Qt — gx). Here, the modulation frequency Q is
chosen such that an even mode in the well at the frequency w, + Q can leak into
the barriers. The modulation wavevector ¢ is selected to ensure a phase-matched
transition between this even mode and the odd mode at (w,,q.) that forms the
localized state. Since these two modes have different symmetry, the modulation has
an odd transverse profile: A¢(y) = sign(y)Ae, with y = 0 located at the waveguide
center.

In the presence of the modulation, we consider an even mode incident from the
left barrier, with a frequency w in the vicinity of . + €. As it turns out, for the even
modes, the transmission coefficients into and out of the well are near unity. Thus,
inside the well, the amplitudes of the even mode (Fig. 13.13, blue arrow) at the two
edges,A,—o and A,_;, are the input and output amplitudes of the system. As the even
mode propagates forward from x = 0 to x = L, the modulation induces a transition
to a copropagating odd mode at w — Q (Fig. 13.13, red arrow). This transition
process is described by [3]:

<Ax—L) _ <exp(quw) 0 > ( 1- 772 ”7 ) (Ax—0>
B 0 exp(iLgw-0) in 1—n2)\ B0/’
(13.22)



13 Photonic Transition in Nanophotonics 361

x=0 x=L

00000QROO0OO0O0OOOOPOOOOO
)OOOOOOOOOOOOOOOOOOOOC

vvvvvv»-F«O)AAANNVV»JML)vvvvvv»
.Ban¢vvvvv»fyL)

: R ®) !

: AN
pIojoloNolololoNolololoXoloXoReIoRoNo 00N ¢
oXoXolololtloNoJoXoXoXoXoNoNoNoXoNoXoXON0)

Fig. 13.13 The microscopic theory for photonic transition in the photonic crystal heterostructure.
Incident light from the barrier at a frequency w, as represented by the blue arrows, couples to a
mode of the well at the frequency w — Q, as represented by the red arrows. The dashed lines
indicate the edges of the well

where B,—¢ and B,—; are the amplitudes of the copropagating odd mode at w — Q at
the two edges, ¢, and ¢,_q are the wavevectors of the two modes. For weak
modulation, the transition rate 7 = (A¢/e)Lk<<1, where « is the overlap factor
between the two modes and the modulation profile.

Once the fields reach x =L, the odd mode is completely reflected, and
propagates back to x = 0. We note that no significant photon transition occurs in
the backward propagation, since the modulation profile does not phase-match
between (w, —¢q,,) and (0 — Q, — ¢,—q). Consequently,

Bio = exp(iLguw_q + i2¢)Bx_y, (13.23)

where ¢ is the reflection phase at the well edge. Also, since there is a localized state
at ., the round trip phase at . is 2(Lgy, + ¢) = 2nn where n is an integer.
Therefore, the round trip phase for the odd mode at ® — Q ~ w, can be
approximated as

2L
2(Lgp-0+ ¢) =2an+ (0 — Q— ;) — . (13.24)
gc
where v = (cji_f’ . Combined (13.22)—(13.24), the transmission spectrum is:
W=,
5 i(ﬂ)*wg)% . oy
po Ao VIowoel TR o- ol (13.25)

o CiLq‘”Ax:O B 1— €l<w wo)m \/I—t_ﬁi @ — Mo + 1%7

where 7 = (Ae/e)* (kK2Lvge /2).

The detailed microscopic theory thus predicts all-pass filter response for this
dynamic system consisting of a waveguide coupled to a standing-wave localized
state. In contrast, in the static system, coupling of a waveguide to a standing-wave
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localized state always produces either band-pass or band-reflection filters. Moreover,
the resonant frequency

Wy = w, +Q (13.26)

and the quality factor
= @ = (i)z 2600 13 27
Q= Y Ae/ K2Lvg, (13.27)

are completely controlled by the modulation, in agreement with the phenomeno-
logical model (13.21).

We numerically test the theory using finite-difference time-domain (FDTD)
simulations. We simulate a well with a length of 9.9a. Such a well supports the
localized state shown in Fig. 13.12b. The length of the modulated region L = 9.7a
(Fig. 13.12a). We excite the even modes in the left barrier, with a Gaussian pulse
centered at 0.235(2nc/a), and a width of 0.001(2nc/a). Without the modulation,
the transmission coefficient (Fig. 13.14a) is near unity. With the modulation (with a
strength  Ag/e = 1.63 x 1072, a frequency Q =9.8 x 1073(2nc/a), and a
wavevector g = 0.196(2n/a)), the transmission spectrum shows little change
(Fig. 13.14b). However, the group delay now exhibits a resonant peak with a quality
factor Q, = 1.09 x 10* (Fig. 13.14c, blue line). The structure indeed becomes a
high-Q all-pass filter.

The properties of this resonance are controlled by the modulation. The resonant
frequency changes linearly with respect to the modulation frequency, as predicted
(Fig. 13.14e). (When varying the modulation frequency, we also change the modu-
lation wavevector at the same time to satisfy the phase-matching condition.) The
resonance frequency 1is largely independent of the modulation strength
(Fig. 13.14e). The width of the resonance, and the peak delay, can be adjusted by
changing the modulation strength (Fig. 13.14d). As a comparison between theory
(13.27) and simulations, Fig. 13.14f plots the quality factor as a function of the
modulation strength at the fixed modulation frequency Q = 9.8 x 107*(2nc/a).
The simulation agrees excellently with the theory. The theory curve is generated
with only one fitting parameter: the modal overlap factor x = 0.99a~!, which
agrees well to a direct and separate calculation of the well waveguide by itself
that yields xk = 1.16a~". The difference can be attributed to the finite-size effect of
the well-barrier interfaces.

We now comment on some of the challenges in the practical implementations.
For the simulated structure above, according to (13.27), a modulation strength of
Ae/e =5 x 1073, which is achievable using carrier injection in semiconductors
[14], results in an external quality factor of Q, = 1.1 x 10°. In comparison, the
radiation quality factors of photonic crystal heterostructure cavities exceeded 10° in
experiments [22].
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Fig.13.14 Theory and simulation for the photonic transition process for the structure in Fig. 13.12.
(a) Transmission spectrum for the unmodulated structure. (b) Transmission spectrum in the
presence of modulation. The modulation has a frequency Q = 9.8 x 1073(2nc/a) and a strength
of Ae/e = 1.63 x 1072, (¢c) Group delay spectra, with A¢ /e fixed at 1.63 x 1072, The blue, red and
green lines correspond to Q =9.8 x 1073,11.3 x 1073 and 12.8 x 1073(2nc/a), respectively.
(d) Group delay spectra, with Q fixed at 9.8 x 1073(2nc/a). The blue, red, and green lines
correspond to Ag/e = 1.63 x 1072,3.27 x 1072and 6.53 x 1072, (e) Resonant frequency as a
function of the modulation frequency. The blue and red circles corresponds to modulation strength
of Ag/e = 1.63 x 1072 and 3.27 x 1072 respectively. Circles are simulation results as determined
the peak location of group delay spectra, and the line is from analytical calcualtion. (f) Quality
factor as a function of modulation strength. Circles are simulation results as determined from the
peak width in (d), the line is from analytic calculation

Regarding the required modulation frequencies, in the simulation, Q = 9.8 x
1073(2nc/a) represents a modulation frequency of 8.1 THz, when the resonance
frequency wy = 0.235(27c¢/a) corresponds to the wavelength of 1.55 um. This is in
principle achievable, since many index modulation scheme has intrinsic response
time below 0.1 ps [23].

As final remarks, in our scheme, the tuning range for the resonant frequency is
ultimately limited by the intrinsic response time of the material. Thus, the resonant
frequency of the structure have a much wider tuning range, and can be reconfigured
with a much higher speed, compared with conventional mechanisms. Moreover, the
modulation frequency can typically be specified to a much higher accuracy [24],
resulting in far more accurate control of the resonant frequency. Lastly, the
localized state here is “dark™ since it does not couple to the waveguide in the
absence of modulation. Our scheme, which provides a dynamic access to such a
dark state, is directly applicable for stopping and storage of light pulses, since the
existence of a single dark state is sufficient [25].
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13.5 Conclusion

In this chapter, we review the application of photonic transition for optical isolation
and tunable resonance. These applications rely on photonic structures that can be
dynamically modulated. Experimental techniques to achieve these dynamic
structures have undergone fast development. One of the prominent techniques is
to use carrier injection to modulate refractive index. Moreover, novel technique
based on optical force has also emerged, such as the optomechanical modulation
[26]. These developments open exciting opportunities for dynamic photonic
structures.
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second order nonlinear frequency, 330
standard phase matching
techniques, 330
waveguide configuration, 331
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Diffraction
cancelation (see Diffraction cancelation)
dynamic refractive index
modulation, 277
ellipticity, 244
intensity-dependent self-repulsion, 238
laser beam, 284
nonlinear measurement, 238
optical diffraction grating, 277
photonic band gap fibers, 262
plasma gratings, 262
spatial resolution, 266
thin plasma grating, 282
transverse Laplacian, 232
Diffraction cancelation
diffusion-driven electric field, 214
electro-optic response, 211
scale-free equation
diffusive photoinduced electric
field, 218
electro-optic response, 217
“Diffraction-free” beams, 2
Diffraction management
Bloch-mode transition, 151
lattice reconfiguration, 151, 152
numerical and experimental results, lattice
and BZs, 150
Dipolar glass
electrically polarized
domains, 217
PNR, 214-216
“Direct laser writing” method,
94, 99
Discrete soliton
anisotropy, hybrid nonlinearity, 161
behavior, periodic lattices, 106
disordered, 105
elliptical, 161
numerical and experimental
demonstrations, 161, 162
photonic lattices, 148
transition, gap trains
description, 158
nonlinear spectrum reshaping, 161
numerical and experimental
demonstrations, 158—159
photonic, 160-161
theoretical and experimental
demonstrations, 159-160
wave propagations, 134
Disorder
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ferroelectric crystal, 217
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solitons, 253
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See Nonlinear optics
Dissipative soliton, 231, 232
Duchesne, D., 47
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Dynamic photonic structures
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refractive index, 364
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Egorov, O.A., 171
Ehrenfest’s theorem, 4, 19
Electron effective mass anisotropy
band masses, 317
best-fit parameters, z-scan and TPTP
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electric field, THz pump pulse, 316
intervalley electron transfer model, 317
isotropic conduction band,
InGaAs, 315, 316
peak THz probe field, 317, 318
picosecond decay time, 319
x-direction, 317
Electro-optic (EO) sampling
coherent detection scheme, 306
laser-plasma detection, 300
optical probe beam, 300
photodiodes signals, 300
polarization modulation, 300
temporal pulse, 300
THz radiation, optical
rectification, 302
Energy-transfer
Bragg diffraction, 266
intense femtosecond filaments
HWP, 281
plasma grating, 292
pump and probe arms,
282, 283
wavelength-scale plasma density
modulation, 281
Enhancement
broadband third harmonic
(see Femtosecond)
periodic distribution, 269
plasma grating, 283
pump and probe pulses, 285
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sampling
Exciton-exciton scattering, 173
Exciton polaritons
existence, vortices, 172
room temperature, 172
semiconductor microcavity, 172

F
Fan, S., 343
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electromagnetic spectrum, 297
harmonic generation, 305
optically pumped gas laser, 298
optical rectification, 301
Femtosecond
broadband third harmonic enhancement
fluorescence image, interaction
region, 288
optimal filament elongation, 290
spectral distribution, 289
spectrometer, 287
fluorescence detection
filamentation spectra, 268
multiphoton ionization,
air molecules, 268
optical imaging system, 268
periodic modulation, 270
transverse profiles, 269
intense laser pulses, 259, 260
nonlinear frequency conversions., 261-262
plasma grating, energy transfer
HWP, 281
normalized intensity, 282, 283
photodetector, 282
pump and probe pulses, 281-282
plasma lattices, 266
UV femtosecond pulses
plasma gratings, 291
third harmonic generation, 290
Ferrera, M., 47
Filamentation
laser pulses, 266
modulated plasma density, 277
molecular alignment, 260
multiphoton ionization, 268
nonlinear optics, 292
nonlinear refractive index, 262
plasma microstructures, 261
transient Kerr gratings, 261
FIR region. See Far-infrared region
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Fluid dynamics, 240, 241
Fourier transform spectral interferometry
technique, 84
Four-port circulator
coupled mode theory, 355
input/output, 354
interferometer, 354
Mach—Zehdner interferometer, 354
nonreciprocal phase shift, upper arm, 355
transmission coefficient, photon
transition, 355
transmission spectrum, 354
two-port isolator, 355
Four-wave-mixing (FWM)
all-optical wavelength conversion, 59
dispersion data, 64
efficiency, 67
energy conservation, 63
generation, “idler” wavelength, 59
interaction, 55
semi-degenerate, 60—-61, 64
ultra-short pulses frequency conversion
Hydex spiral waveguides, 72
“on/off” conversion efficiency
vs. pump peak power, 73, 74
OPO system, 72
parametric gain, 74
signal intensity spectrum, 73
signal processing operations, 71
Free carrier nonlinear dynamics
InGaAs, 307
optoelectronics, 307
Free spectral range (FSR)
frequency dependence, 63
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Fresnel diffraction equation, 13
FSR. See Free spectral range (FSR)
FWM. See Four-wave-mixing (FWM)
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polychromatic, 117, 121
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GNLS. See Generalized nonlinear
Schrodinger (GNLS)
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applications, 292
energy transfer, intense femtosecond
filaments (see Femtosecond)
fluorescence detection
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diffraction characteristics, 277
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measured dynamic evolution, 279
optical diffraction grating, 277
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n-type GaAs, 306

picosecond timescales, 306

Holographic recording, plasma dynamic
evolution
electron density distribution, 271
laser pulse propagation, 270
Homogeneous solutions (HSs)
amplitude, 180
B1 branch bifurcation, 180
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elliptical optical solitons,
142-143
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nonlinear discrete light behaviors
(see Nonlinear discrete light
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nonlinear wave dynamics, 133
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result, 139
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nonlinear beam propagation, 138
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(see Reconfigurable lattices,
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self-focusing/self-defocusing, 134-135
theoretical formulations
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nonlinear beam dynamics, 137
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Hydex®, 49, 52
Hydrodynamics, 275
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diffraction, 207
optical beams, 229
wave nature of light, 208
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interferometric measurements, 120
optical waveguides, 119
polychromatic discrete diffraction, 120
polychromatic gap soliton, 121
supercontinuum radiation, 119
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Fourier transform, 117
Gaussian function, 116
nonlinearity, LiNbO3, 116
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phase profiles, 119
polychromatic beam interaction, 116
polychromatic gap soliton, 117
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transition, 352-353
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laser pulse propagation, 301
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Hydex, 60
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Moving soliton, 181, 182
MP. See Maxwell point (MP)
Multicolor beams, coupled optical waveguides
coherent parametric interactions
(see Coherent parametric
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incoherent interaction (see Incoherent
interaction, spectral components)
and interference process, 111
light propagation
in arrays, 112, 113
Bragg reflection gap, 115
coherent and incoherent
interactions, 115
1D arrays, 113
defined, Bloch waves, 114
discrete diffraction, 113
fundamental effects,nonlinearity, 115
numerical simulation, 113, 114
output intensity profile, 113, 114
photonic bandgap structure, 113, 114
vertical mode profile change, 114
monochromatic light propagations, 111
nonlinear interactions, 112
parametric driving, 112
phase locking, spectral components, 112
photonic structures, 111
synchronization and phase locking, 112
Multiple scattering, 100

N
NCB. See Nonconventionally biased (NCB)
Negative refraction
Bloch modes, 151
2D positive demonstration, 152
index change, 153
ionic-type photonic lattice, 154, 166
Neshev, D.N., 111
Newtonian equations, 17
Newton’s second law, 103
NLSE. See Nonlinear Schrodinger
equation (NLSE)
Nonconventionally biased (NCB)
defined, 135
geometry, coordinate system, 136
Nondiffraction
Airy beams, wave packets, 10
beam, Babinet’s principle, 26-27
2D, 8
1D Airy beams, 43
field configurations, 11
and self-healing, 2
wave configurations, 2
Nondispersion
Airy, 43
wave packet, 5
Non-ergodic systems
compositional disorder, 217

373

dielectric characterization, 221, 222
dielectric phase, 216
optical response, 209
phase-transition temperature, 212
Nonlinear beam dynamics
bright and dark solitons, 141-142
elliptical optical solitons, 142—143
stabilization and breakup, optical
vortices, 144—-148
Nonlinear coupling coefficient
frequency mixing process, 330
idler and final frequencies, 330
THz electric field profile, 334
Nonlinear discrete light behaviors
description, 158
discrete and gap soliton-trains, 158-161
elliptical discrete solitons, 161
saddle solitons (see Saddle solitons)
Nonlinear dynamical systems See also High
field electrons transport in
semiconductors
experimental studies, 195
localized structures, 200
optics, 195
Nonlinear frequency mixing. See Terahertz
(THz) generation
Nonlinear interaction, intense ultrashort
filaments
dynamics, plasma channels, 274-275
electron density distribution, 267
energy transfer, 281-283
formation, plasma grating, 277-281
intense few-cycle and femtosecond
filaments, 287-290
laser technology, 259
multiple pulses, 260
periodic wavelength-scale
self-channeling, 261
plasma density modulation, 261
plasma waveguide, 271-272
spatiotemporal coupling, 262-265
third harmonic generation, plasma
gratings, 283-286
two-dimensional plasma waveguides,
275277
ultraviolet femtosecond pulses, 290-291
visualization, plasma density
modulation, 265-271
Nonlinearity See also Hybrid nonlinearity
discrete Schrodinger equation, Kerr, 105
existence curves, soliton solutions, 106, 107
propagation constant, 105
solitons bifurcating, 106
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Nonlinear optics
applications, integrated, 52
electromagnetic spectrum, 297
energy transport, 231
experimental realization
Mach—Zehnder interferometer, 235
shock wave setup, 235
square-root velocity scaling, 237
superfluid-like spatial shock waves, 236
finesse and quality factor cavities, 60
FIR spectroscopy (see Far-infrared (FIR)
region)
high-field transport, semiconductors
absorption bleaching, 306-309
dynamic intervalley electron transfer
model, 309-311
high-intensity THz, 298
Hydex resonators effectiveness, 64
intense light-matter interaction, 53
junctions and arrays
DSWs, 249-252
wave tunneling, 245-248
mapping, conduction band
anisotropic microwave, 312
CR ( see Cyclotron resonance)
InSb, low temperatures, 312
mass anisotropy, 315-319
polarization dependence, 313-315
thermal heating, 312
material characterization
anisotropic media, 242-245
diffraction measurement, 238
DSWs, 238-241
z-scan techniques, 238
materials and applications, 49
optical beams, 232
photoconductive antenna emitter, 298
photorefractive crystals, 232
research, glass material system, 56
semiconductor applicability, 52
spectroscopic sensing, 297
TDTS (see Time-domain THz
spectroscopy (TDTS))
theory and formalism
Burgers-type descriptions, 235
classical wave equation, 233-234
NLSE, 232
nonlinear spatial optics., 234
quantum pressure, 233
THz waves
detection, 299-300
OR generation, 301-305
z-scan technique (see Z-scan)
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Nonlinear periodic structures
dependence, photonic bandgap
structure, 114, 115
linear dispersion parameters, 120
self-trapping and phase
locking, 119
Nonlinear regime
conversion efficiency, 335
Gaussian pulse excitations, 338
input pump power, 337
maximum conversion
efficiency, 336
NIR energy, 338
output powers emitted ratio,
335, 336
phase-matching setups, 339
ring resonator and PhC cavity, 335
solid red line, 337
standard numerical methods, 335
steady-state solutions, 338
TCMT (see Temporal coupled-mode
theory (TCMT))
THz and idler frequencies, 336
THz conversion efficiency, 338
transmitted idler pulse, 338
Nonlinear Schrodinger
equation (NLSE)
nonlocal response, 239
optical propagation, 240
optical wave, 232
Nonlinear self-defocusing
Airy beam, 36, 38, 39
and self-focusing, 37
Nonlinear self-focusing
Airy beam, 37
field configurations, 43
and self-defocusing, 37, 41
Nonlocality
electron diffusion, 242
enhanced anisotropy, 142
hybrid nonlinearity, 135, 149
index change, 140
intensity, vortex beam, 145
nonlinearity, DSWs
atomic diffusion, 238
experimental evolution, diffractive
shock wave, 240
NLSE, 240
nonlocal shock length, 241
numerical simulations, 239
optical materials, 238
novel nonlinear beam dynamics, 167
photorefractive nonlinear materials, 144
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Non-paraxiality, 209, 227
Nonreciprocal nanophotonics.
See Photonic transition
Nonreciprocal ring resonator
anticlockwise rotating
resonances, 355
circulating amplitudes, 355, 356
coherence length, 355
counterclockwise, 355
dielectric constant, 355
dynamic isolator, 357
external waveguide, 356
frequency conversion, 357
optoelectronics, 358
photonic transition effect, 357
transmission spectra, 357

(0]
OHPO. See Optical hyper-parametric
oscillator (OHPO)
OPC. See Optical path clearing (OPC)
OPO. See Optical parametric oscillator (OPO)
Optical cavities
beam intensity calculation, 57-58
finesse, resonator, 58
four-port micro-ring resonator, 56, 57
integrated, 68
light confinement, 49
micro-cavities, 56
Optical flow
anisotropy, 232
self-defocusing nonlinearity, 233
stream function, 234
Optical hyper-parametric oscillator (OHPO)
broadband “white light” source, 68
CMOS, wavelength source, 64
parametric gain, 65, 66
pump power, 67
“soft thermal lock” condition, 66
Optical induction
Bragg reflection, 157
bright to dark solitons, 141, 142
discrete and gap solitons, 159
ionic-type photonic lattices, 154
NCB photorefractive crystals, 166
nonlinear refractive index change, 137
novel nonlinear beam dynamics, 158
photonic lattice, 134
photorefractive crystals, 141, 142
potential and hybrid nonlinearity, 161
Optical integrator
all-optical integration, 84
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characterization, 82
and differentiators, 81
dispersed input optical waveform, 86
Fabry-Perot interferometer, 82
FSR, integration bandwidth, 82, 83
integrator temporal response,
analysis, 85
optical data storage, 85-86
realization, photonic, 83
spectral domain, 82
Optical isolation
linear, 347
nonreciprocal ring resonator, 353
on-chip, 346
photonic transition application, 364
Optically induced photonic lattices
Bragg reflection, 157
discrete phenomena, 134
hybrid nonlinearity, NCB, 166
reconfigurability and settings, 134
Optical nonlinearity, 190
Optical parametric oscillator (OPO)
measurements, 72
Spectra physics, 69
Optical particle manipulation, 42
Optical path clearing (OPC), 42
Optical pump-THz probe (OPTP),
314, 315
Optical rectification
amplifier lock and optical delay
line, 303
axis definition, 303
Brillouin zone, 305
crystal semiconductors, 301
free-space EO sampling, 303
LiNbOj (see Lithium niobate (LiNbO3))
LiNbOj; and EO coefficient, 305
polarization change expression, 301
temporal dependence, 301
THz
electric field formula, 302
energy vs. laser pump energy, 304
optical group and phase velocity, 302
positive waves, 302
pulses and ZnTe crystal, 303, 304
radiated field, 301
radiation and frequency mixing, 302
waves vs. pump beam spectrum, 302
tilted-pulse-optical-pulse-front, 305
time-dependent polarization, 301
Ti:sapphire lasers, 303
ZnTe, 302
Optical time lens, 86
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Optical-to-Electrical-to-Optical (OEO)
signal decoding
communication networks, 48
frequency conversion, 48-49
Optical vortices, laser system
cavity mode, 196
experimental results
bifurcation diagram, 201
CS lasers, 200
defined, CS, 199
interference fringe, 203
interferometric intensity signal, 200
local intensity output, 198
mutual coherence, 202
near-field intensity, 201, 202
regions, parameter space, 198—199
ring structures, 203
semiconductor lasers, 201, 202
“true optical vortex”, 203
VCSELs, 199
experimental setup
defined, writing beam, 198
schematic, 197
state-of-the-art CCD cameras, 198
ULM photonics, 197
VCSELs, 197
nonlinear dynamics, 195
parameter values, 195
spatiotemporal instability, 196
stabilization and breakup
description, 144
experimental results, 146—-147
nonlinear evolutions, 145-146
nonlinear propagation, OVs, 144
numerical and experimental
results, 147-148
numerical simulations, refractive
index change, 144, 145
transverse modes, 196
OPTP. See Optical pump-THz probe (OPTP)
Out-of-equilibrium ferroelectrics
ferroelectric domains, 216
optical scattering, 217
phase transition, 216
Ozaki, T., 297

P

Parametric gain
hyper-parametric gain, 64, 65
net, 72
pulsed FWM, 74, 87
resonator, 65

self-seeded, 65
waveguides, 72
Park, Y.-W., 47
Parseval’s theorem, 19
Pasquazi, A., 47
Peccianti, M., 47
Pedaci, F., 195
Periodic modulation
enhancement, fluorescence, 271
filament bisector, 270
Periodic structure
Bragg reflection, 115
diffraction pattern, 120
dynamic refractive index
modulation, 277
Phase-matching
DFG process, 334
generalization, canonical, 334
harmonic generation, 334
pump and idler modes, 331
THz generation, 339
waveguide, 331
Photonic bandgap, 134
Photonic crystal cavities
2D electric field cross sections, 334
THz frequency, 334
THz-scale square-lattice, 332
Photonic lattices
amorphous (see Amorphous)
geometry, 249
junctions, array, 249
reconfigurable (see Reconfigurable
lattices, photonic)
Photonic microresonator
intrinsic absorption rate, 329
optical nonlinear frequency, 329
Q system, 329
Photonic transition
high-Q optical resonance, 343
integrated optical isolator
analysis, 349-353
design flexibility, 353-338
refractive index modulation, 343
spatial-temporal refractive index and
wavevector shifts, 343
tunable resonance, 358-363
waveguide, 344-346
Photorefraction
diffusion-driven space-charge field
band-transport model, 212
Gauss law, 213
optical intensities, 214
thermal equilibrium, 212
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electro-optic response
Helmholtz equation, 214
high-frequency polarization, 214
nonlinear optical effects, 216
random birefringent crystals, 215
out-of-equilibrium ferroelectric,
216-217
PNR, 211
Photorefractive effect
hybrid nonlinearity, 167
models and effects, reconstruction,
242-243
Plane-wave expansion method, 95, 96
Plasma channel, 42
PNRs. See Polar nanoregions (PNRs)
Polariton solitons
Bose—Einstein condensation and
transition, 172
bright (see Bright soliton, polariton)
dark (see Dark soliton, polariton)
equations, 175-178
HSs, 172
mathematical model, 173-175
nonlinear systems, 171
positive/negative effective mass, 171
and self-localization effect, 172
upper-polariton branch, 187-190
VCSELs, 171
Polarization dependence
absorption bleaching signal, 315
amplitude oscillation, 314
metallic beam block, 314
OPTP, 314
pump-probe delay time and

transmission change, 314, 315

temporal scanning, pump and probe
beams, 313
TPTP, 313
ZnTe crystal, 313
Polar nanoregions (PNRs)
disordered network, 222223
electro-optic response,
214-216
tunable nonlinear responses, 221
Power threshold
physical intuition, zero, 106
solitons bifurcate, 106
Poynting theorem, 329
Pulse shaping techniques, 12
Purcell, E., 326
Purcell enhancement See also Terahertz
(THz) generation
atomic transition, 326
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classical dipole current, 327
CMT (see Coupled mode
theory (CMT))
dielectric structure, 327
dipole dephasing rate, 327
electric dipole moment, emitter, 326
electromagnetism, 327
inhomogeneous dielectric
cavity, 326
quantum light emitters, 327

Q
Quality factor
absorption coefficient, GaAs, 335
linear absorption, 328
resonant wavelength, 326
ring resonator and PhC, 335
Quantum pressure, 233-234
Quantum well (QW)
Bragg mirrors, 173
defined, 173
InGaAs/GaAs, 174
QW. See Quantum well (QW)

R
Rabi splitting, 174
Random medium
coupled waveguides, 93
2D dielectric composites, 94
Razzari, L., 47, 297
Rechtsman, M., 93
Reconfigurable lattices, photonic
advantages, 148
Bloch mode transition
demonstration, 149, 151
description, 149
description, 148
diffraction management (see Diffraction
management)
ionic-type (see Ionic-type photonic lattice)
lattice formation
numerical and experimental results,
149, 150
structure, BZs, 149
refraction management
Bloch modes, 153
demonstration, 2D positive and
negative, 151, 152
Reid, M., 297
Resonant cavity mode
nonlinear frequency mixing, 326
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Resonant cavity mode (cont.)
temporal evolution, 328
time-dependent electric field, 328
Ring resonators
dielectric, 332
dipole-like defect, 332
2D simulations, 333, 334
index-guided waveguide, 332
PhC cavity, 333
triply resonant photonic structure, 332
Room temperature (RT)
linear mode analysis (see Triply-resonant
nonlinear cavity)
numerical analysis, nonlinear regime (see
Nonlinear regime)
PhC configuration, 332
simultaneous spectral and spatial EM, 331
THz frequency gap, 332
RT. See Room temperature (RT)

S
Saddle solitons
quasi-1D and 2D, 163
self-focusing and-defocusing, 163-164
square photonic lattice, 161, 162
two-dimensional, 164—166
Scale-free optics
diffraction compensation, 208
diffusive effect, 209
experimental setup, 220-221
imaging and microscopy, 229
imaging system, 208
instability, 224-225
intensity-independent beam interaction
crossing and attraction, 225, 226
spiraling, 225, 227
Kovacs effect, 209
KTN:Li
comparison, transmission, 222, 223
dielectric characterization, non-ergodic
phase, 221, 222
lensing effect, 207
nonlinearity, nanodisordered ferroelectrics,
217-220
optical angular frequency, 210
photorefraction, supercooled
ferroelectric KTN
diffusion-driven space-charge field,
212-214
electro-optic response, 214-216
out-of-equilibrium ferroelectric,
216-217
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PNR, 211
scale-free propagation and supercooling,
223-224

spatial scale, 208
subwavelength beam propagation
Helmholtz equation, 227-228
vectorial wave equation, 227
violation of scale-dependent
soliton laws, 224
wave mechanics, 210
SCG. See Supercontinuum generation (SCG)
Schrodinger equation, 1, 2, 38, 96, 105
SE. See Spontaneous emission (SE)
Second harmonic generation (SHG), 122
Second order nonlinearity
analytical approximation, 331
conversion effciency, DFG
(see Difference-frequency
generation (DFG))
final frequency, 330
nonlinear difference-frequency mixing
magnitude, 330
nonlinear frequency conversion
processes, 331
nonlinear polarization vector, 329-330
pump and idler frequencies, 329
standard phase matching techniques, 330
transversal area, waveguide
system, 331
Segev, M., 93
Self-accelerating Airy beams
applications
curved plasma channels, 42
generation and control, plasmonic, 43
optically clearing particles, 42
optical manipulation, morphing
autofocusing, 43-44
ballistic motion (see Ballistic motion,
Airy beams)
Bessel beams, 2
“diffraction-free”, 2
ideal infinite-energy
Ehrenfest’s theorem, 4
paraxial equation, diffraction, 3
propagation dynamics, diffraction-free
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