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H. Venghaus, Berlin

H. Weber, Berlin

H. Weinfurter, München



Springer Series in

OPTICAL SCIENCES

The Springer Series in Optical Sciences, under the leadership of Editor-in-Chief William T. Rhodes, Georgia
Institute of Technology, USA, provides an expanding selection of research monographs in all major areas of
optics: lasers and quantum optics, ultra fast phenomena, optical spectroscopy techniques, optoelectronics,
quantum information, information optics, applied laser technology, industrial applications, and other topics of
contemporary interest.
With this broad coverage of topics, the series is of use to all research scientists and engineers who need up-to-
date reference books.
The editors encourage prospective authors to correspond with them in advance of submitting a manuscript.
Submission of manuscripts should be made to the Editor-in-Chief or one of the Editors. See also www.springer.
com/series/624

Editor-in-Chief

William T. Rhodes
Georgia Institute of Technology
School of Electrical and Computer Engineering
Atlanta, GA 30332-0250, USA
E-mail: bill.rhodes@ece.gatech.edu

Editorial Board

Ali Adibi

Georgia Institute of Technology
School of Electrical and Computer
Engineering Atlanta, GA 30332-0250, USA
E-mail: adibi@ee.gatech.edu

Toshimitsu Asakura

Hokkai-Gakuen University
Faculty of Engineering
1-1,Minami-26, Nishi 11, Chuo-ku
Sapporo,Hokkaido 064-0926, Japan
E-mail: asakura@eli.hokkai-s-u.ac.jp

Theodor W. Hänsch
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Preface

Nonlinear optics and photonics is a broad field of history as venerable as that of

lasers, yet the field has been advanced dramatically with many discoveries and

emerging new frontiers in recent years. This book contains a total of 13 chapters

from more than 50 coauthors affiliated with leading groups in the field of nonlinear

optics and photonics from different institutions well distributed globally (USA,
Australia, China, Japan, Israel, Greece, Italy, Germany, France, Spain, United
Kingdom, and Canada). The content of the book covers both theoretical and

experimental studies on novel phenomena in a variety of optical materials and

photonic systems.

In Chap. 1, the authors present an overview on a new type of optical beams,

namely, self-accelerating Airy beams. Research activities on such nondiffracting

and self-bending optical beams have surged in recent years due to fundamental

interest and many proposed applications of Airy beams. In this chapter, the authors

discuss the generation and control of Airy beams as well as the recent developments

in the area. In Chap. 2, the authors present a review on integrated photonics based

on recently developed high-index doped-silica glass. This material combines the

optimal linear properties of single-mode fibers with the typical nonlinear properties

of other materials, such as semiconductors and nonlinear glasses. This novel glass

material may lead to the new and important possibility such as integration of

complex spiral guiding structures onto chip-size areas.

The next three chapters deal with linear and nonlinear spatial beam dynamics

in photonic lattices and waveguide arrays. In the past decade, the field of discrete

optics has grown rapidly and tremendously because of numerous new findings

in discrete optical systems that have a tight link to many other branches of physics.

In Chap. 3, the authors report their experimental work on wave transport in

amorphous photonic structures, and show that the concept of band-gaps and defect

states has greater importance and wider implications than those traditionally con-

ceived in the context of crystalline structures. In Chap. 4, the authors present

their theoretical and experimental results on all-optically controlled spatial reshap-

ing and localization of multicolor light beams in nonlinear waveguide arrays.

In addition, they review briefly the recent developments on polychromatic light

v



control in photonic lattices and waveguide arrays. In Chap. 5, the authors provide a

brief overview on spatial beam dynamics mediated by the interplay between beam

diffraction or lattice coupling and self-focusing/defocusing hybrid nonlinearity.

Such hybrid nonlinearity plays a key role in unusual nonlinear beam dynamics in

both continuous and discrete regimes.

Chapter 6 is about the theory of polariton solitons in semiconductor microcav-

ities. The authors review the physics behind the formation of localized states of

exciton-polaritons, the polariton solitons. In particular, the authors show that pump

momenta associated with a positive or negative effective polariton mass can give

rise to the formation of dark or bright solitons in semiconductor microresonators.

In Chap. 7, the authors review a series of experiments on the study of localized

structures in semiconductor optical devices, including localized single addressable

optical vortices observed in a system formed by two face-to-face VCSELs.

Chapters 8–10 report on various intriguing nonlinear phenomena in different

systems, including scale-free optics, for which diffraction and evanescent wave

formation of subwavelength beams are circumvented by using nonlinearity in

nanodisordered ferroelectrics; spatial dispersive shock waves, in which nonlinearity

enhances diffraction as observed in both local and nonlocal media; and finally

wavelength-scale plasma gratings in air as a result of nonlinear interaction of

intense ultrashort filaments.

Chapters 11 and 12 focus on Terahertz waves. In Chap. 11, the authors discuss

the emerging field of ultrafast nonlinear optics in the terahertz regime, and intro-

duce THz nonlinear spectroscopy through the absorption-bleaching phenomenon

in thin-film semiconductor. In Chap. 12, the authors discuss the generation of

Terahertz radiation via Purcell-enhanced nonlinear frequency mixing, which relies

on the dramatic enhancements of the conversion efficiency of an arbitrary

difference-frequency down-conversion process. Finally, in Chap. 13 the authors

discuss the emerging realm of photonic interband transition nanophotonics, where

exciting possibilities linked to the dynamical modulation of photonic structures for

applications in optical isolation and tunable resonance are presented.

Most of the chapters included in this book are based on invited presentations

from the Second International Workshop on Nonlinear Optics and Novel Phenom-
ena held at TEDA Applied Physics School of Nankai University, Tianjin, China in

the summer of 2010. The editors wish to take this opportunity to acknowledge the

support from local organizers at Nankai University, and to thank all contributors for

their hard effort and patience to bring this book into reality.

San Francisco, CA, USA Zhigang Chen

Varennes, Canada Roberto Morandotti
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Chapter 1

Self-accelerating Airy Beams: Generation,

Control, and Applications

Yi Hu, Georgios A. Siviloglou, Peng Zhang, Nikolaos K. Efremidis,

Demetrios N. Christodoulides, and Zhigang Chen

1.1 Introduction

More than three decades ago, Berry and Balazs made an important prediction

within the context of quantum mechanics: they proposed theoretically that the

Schr€odinger equation describing a free particle can exhibit a nonspreading Airy

wave packet solution [1]. Perhaps, the most remarkable feature of this Airy packet

is its ability to freely accelerate even in the absence of any external potential.

As first noted in Berry’s paper, this Airy packet happens to be unique, e.g., it is the

only nontrivial solution (apart from a plane wave) that remains invariant with time
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in one-dimensional (1D) domain [1, 2]. However, this work has hibernated in

the literature for decades, and it never led to experimental realization of any

self-accelerating Airy wave packet.

Over the years, nonspreading or nondiffracting wave configurations have been

systematically investigated in higher-dimensions (2D and 3D), particularly in the

areas of optics and atom physics [3–8]. What makes the analogy between these two

seemingly different disciplines possible is the mathematical correspondence

between the quantum mechanical Schr€odinger equation and the paraxial equation

of diffraction [9]. In terms of experimental realization, optics has thus far provided

a fertile ground in which the properties of such nonspreading localized waves can

be directly observed and studied in detail. Perhaps, the best known example of such

2D diffraction-free optical waves is the so-called Bessel beams as first suggested
and observed by Durnin et al. [3, 4]. This work has since sparked considerable

theoretical and experimental activity and paved the way toward the discovery of

other interesting nondiffracting solutions [5–7]. It should be noted that even though

at first sight these propagation-invariant beams may appear dissimilar, they in fact

share common characteristics. In particular, they are all generated from an appro-

priate conical superposition of plane waves [3–7]. Even more importantly, all these

solutions are known to convey infinite power: a direct outcome of their

nondiffracting nature. Of course, in practice, all these nonspreading beams are

normally truncated by an aperture (because of lack of space and power) and as

such they tend to diffract slightly during propagation [10]. Yet, if the geometrical

size of the limiting aperture greatly exceeds the spatial features of the ideal

propagation-invariant fields, the diffraction process is considerably “slowed

down” over the intended propagation distance and hence for all practical purposes

these beams are called “diffraction-free” [11]. It should be emphasized that no

localized 1D propagation-invariant beam can be synthesized through conical

superposition.

Recently, a specific type of nondiffracting beams, namely, self-accelerating Airy
beams [12, 13] has attracted a great deal of interest due to their unique properties

and many potential applications such as in optical micromanipulation [14–16],

plasma guidance [17, 18], vacuum electron acceleration [19, 20], and routing

surface plasmon polaritons [21]. In contradistinction with the Bessel beams, the

Airy beams do not rely on simple conical superposition of plane waves, and they

possess the properties of self-acceleration in addition to nondiffraction and self-

healing. For the past few years, tremendous research work has been devoted to the

study of Airy beams, from theoretical predictions to experimental observations,

from linear control to nonlinear self-trapping, and from fundamental aspects to

demonstrations of proposed applications.

In this chapter, we provide an overview on generation of linear and nonlinear

control of Airy beams and recent developments in this area. In just a few years,

driven by both fundamental interest and application potential, the number of

research papers dealing with optical Airy beams has risen dramatically.

Thus, we discuss only a selection of our published papers and mention a few

others significant to the field. This overview is by no means all-inclusive, nor is it

meant to be.

2 Y. Hu et al.



1.2 Generation of Optical Self-accelerating Airy Beams

1.2.1 Ideal Infinite-Energy Airy Beams

We begin our analysis by considering the (1 + 1)D paraxial equation of diffraction

that governs the propagation dynamics of the electric field envelope ’ associated

with planar optical beams:

i
@’

@x
þ 1

2

@2’

@s2
¼ 0: (1.1)

In (1.1), s ¼ x/x0 represents a dimensionless transverse coordinate, x0 is an arbitrary
transverse scale, x ¼ z/kx0

2 is a normalized propagation distance (with respect to

the Rayleigh range), and k ¼ 2pn/l0 is the wave number of the optical wave.

Incidentally, this same equation is also known to govern pulse propagation in

dispersive media.

As first shown in [1], (1.1) admits the following Airy nondispersive solution:

’ðs; xÞ ¼ Ai s� x
2

� �2
" #

exp is
x
2
� ix3

12

� �
: (1.2)

Clearly, at the origin’(s, 0) ¼ Ai(s), (1.2) shows that the intensity profile of this wave
remains invariant during propagation while it experiences constant transverse accel-
eration. The term (x/2)2 in (1.2) describes this ballistic trajectory. Figure 1.1 depicts

the diffraction-free propagation of such an acceleratingAirywave packet as a function

of distance x. An alternative interpretation of this interesting result was given by

Greenberger through the principle of equivalence [22].More specifically, he remarked

that a stationary Airy wave packet associated with a quantummechanical particle in a

constant gravitational field will be perceived as accelerating upwards by a free-falling

Fig. 1.1 Propagation

dynamics of a diffraction-free

Airy wave. The corresponding

input intensity of the beam

is shown in the inset

1 Self-accelerating Airy Beams: Generation, Control, and Applications 3



observer in whose frame of inertia gravitational forces are absent. As also indicated in

[1], this accelerating behavior is by no means in conflict with Ehrenfest’s theorem

which describes the motion of the center of gravity of a wave packet [1, 9]. This is

simply because the Airy beam is not square integrable (
Ð
Ai2(x)dx ! 1), and thus, its

center of mass cannot be defined [1, 23]. Note that, ideally, the Airy beamwould have

infinite energy, thus it keeps the transverse acceleration and diffraction-free propaga-

tion no matter how far it travels, much like a free-falling object that always keeps the

gravitational acceleration in absence of friction or obstacles.

1.2.2 Truncated 1D and 2D Airy Beams: Theory

Infinite-energy Airy beams are impossible in practice. One possible way to realize

such beams is to introduce an exponential aperture function, i.e., let

’ s; 0ð Þ ¼ Ai(sÞ expðasÞ (1.3)

at the input of the system (x ¼ 0). In (1.3) the decay factor a > 0 is a positive

quantity so as to ensure containment of the infinite Airy tail and can thus enable the

physical realization of such beams. Note that the positive branch of the Airy

function decays very rapidly and thus the convergence of the function in (1.3) is

guaranteed. Figure 1.2a depicts the field profile of such a truncated Airy beam at

x ¼ 0, whereas Fig. 1.2b plots its corresponding intensity.

Of particular interest is the Fourier spectrum of this beam which in the

normalized k-space is given by:

F0ðkÞ ¼ expð�ak2Þ exp
i

3
ðk3 � 3a2k � ia3Þ

� �
: (1.4)

Fig. 1.2 Normalized field profile (a) and intensity profile (b) of a finite-energy Airy beam when

a ¼ 0.1
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From (1.4) it becomes directly evident that the wave packet power spectrum is

Gaussian. From Parseval’s theorem, the total power of this finite-energy Airy wave

packet can be directly obtained and is given by:

ð1
�1

ds ’ðs; x ¼ 0Þj j2 ¼
ffiffiffiffiffiffiffiffi
1

8pa

r
exp

2a3

3

� �
: (1.5)

By directly solving (1.1) under the initial conditions of (1.3), we find that the Airy

beam evolves according to:

’ðs; xÞ ¼ Ai s� x
2

� �2

þ iax

" #
exp as� ax2

2
� ix3

12
þ ia2

x
2
þ is

x
2

� �
: (1.6)

Note that in the limit a ¼ 0 our solution reduces to the nondispersive wave packet

shown in (1.2). Figure 1.3a shows the propagation of such a planar Airy beam up to a

distance of 1.25 m when x0 ¼ 100 mm and the decay parameter is a ¼ 0.1.

The corresponding cross sections of the intensity profiles at various distances are

shown in Fig. 1.3b. For these parameters, the intensity FWHMof the first lobe of this

beam is 171 mm. We note that for a Gaussian beam of this same width, its Rayleigh

range would have been 13.25 cm at a wavelength of l0 ¼ 0.5 mm. For this example,

the intensity features of this beam remain essentially invariant up to 75 cm as clearly

seen in Fig. 1.3. Evidently this wave endures because of the quasi-diffraction free

character of the Airy wave packet. We emphasize that for this same distance, the

front lobe of the beam would have expanded by at least six times. As illustrated in

Fig. 1.3b, the beam starts to deteriorate first from the tail as a result of truncation.

The last feature to disappear (around 100 cm) is the front lobe. After a certain

distance (in this case 120 cm), the beam intensity becomes Gaussian-like, i.e., as

expected from its Gaussian power spectrum in the Fraunhofer limit.

Fig. 1.3 (a) Propagation dynamics of a finite-energy Airy beam as a function of distance, (b) cross

sections of the normalized beam intensity at (i) z ¼ 0 cm, (ii) 31.4 cm, (iii) 62.8 cm, (iv) 94.3 cm,

and (v) 125.7 cm
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Even more importantly, in spite of its truncation (necessary for its realization),

the Airy wave packet still exhibits its most exotic feature, i.e., its trend to freely

accelerate. This characteristic is rather peculiar given the fact that it may occur in

free space, e.g., in the absence of any index gradients such as from prisms or layered

media. This behavior is reflected in the term s � (x/2)2 that appears in the argument

of the Airy function in (1.6). These acceleration dynamics can be clearly seen in

Fig. 1.3a, where the beam’s parabolic trajectory becomes evident. For the example

discussed here, the beam will shift by 880 mm at z ¼ 75.4 cm [12].

These results can be readily generalized into 2D domain, i.e., when the initial

field envelope is given by

’ðx; y; z ¼ 0Þ ¼ Ai
x

x0

� �
Ai

y

y0

� �
exp

x

w1

� �
exp

y

w2

� �
: (1.7)

The intensity profile of such a 2D beam at z ¼ 0 and z ¼ 50 cm is shown in

Fig. 1.4a, b when x0 ¼ y0 ¼ 100 mm and w1 ¼ w2 ¼ 1 mm. In this case, the 2D

Airy beam remains almost invariant up to a distance of z ¼ 50 cm along the

longitudinal direction while accelerating in the same manner along the 45� axis in
the x–y transverse direction. This again suggests that experimental realization of

finite-energy Airy beams is possible simply by truncation.

1.2.3 Truncated 1D and 2D Airy Beams: Experiment

From (1.4), one can readily deduce that the angular Fourier spectrum of the

truncated Airy beam is Gaussian and involves a cubic phase (k3) resulting from

the Fourier transform of the Airy function itself. This particular form of the

spectrum has important implications in terms of experimental synthesis of

Fig. 1.4 A two-dimensional finite-energy Airy beam at the input z ¼ 0 (a) and after propagating

to z ¼ 50 cm (b)
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the truncated version of Airy packets. As a result, this wave can be generated from a

broad Gaussian beam through a Fourier transformation provided that a cubic phase

is imposed. Experimentally, such a cubic phase can be readily realized with

Gaussian laser beam by using a spatial light modulator (SLM).

A typical experimental setup for Airy beam generation is illustrated in Fig. 1.5.

An air-cooled Argon-ion continuous-wave laser operating at 488 nm emits a

linearly polarized fundamental Gaussian beam that is subsequently collimated to

a width of 6.7 mm (FWHM). This broad Gaussian beam is then reflected from the

front facet of a computer-controlled liquid crystal SLM. The SLM is used to impose

the cubic-phase modulation (from �20p to 20p in 2 cm) that is necessary to

produce the Airy beam. In order to generate a 1D (or 2D) Airy beam, a converging

cylindrical (or circular) lens with a focal length of f ¼ 1.2 m is placed at a distance f
in front of the SLM phase array. After the SLM, the Fourier transform of the phase-

modulated Gaussian beam is then obtained at a distance d ¼ f ¼ 1.2 m behind the

lens. The Airy beam produced is then imaged on a carefully aligned CCD camera

through a 5� microscope objective. The propagation of the Airy beam is then

monitored by translating the imaging apparatus. Figure 1.6a, b shows the phase

masks used to generate the 1D and 2D Airy beams, respectively.

Experimental results of a 1D Airy beam propagation in free-space are shown in

Fig. 1.7, where Fig. 1.7a depicts the intensity profile of the 1D exponentially

truncated Airy beam at the origin (z ¼ 0). In our experiment, x0 ¼ 53 mm and

a ¼ 0.11. Figure 1.7b, c shows the corresponding intensity profiles of this Airy

packet at z ¼ 10, 20 cm, respectively. As expected, the beam remains almost

diffraction-free while its main lobe tends to quadratically accelerate. Our

measurements show that the spatial FWHM width of the main lobe (containing

Fig. 1.5 Experimental setup for generation of truncated Airy beams. SLM spatial light modulator,

BE beam expander, MO microscope objective
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in this case more than 70% of the total beam energy) remains almost invariant up

to a distance of approximately 25 cm and retains its original value of�90 mm. It is

worth noting that this occurs in free space and is by no means a result of

any optical nonlinearity [24]. Figure 1.7d–f depicts the corresponding expected

theoretical behavior of this same Airy packet at these same distances in good

agreement with the experiment. Note that a Gaussian beam of this size would have

diffracted at least 6–7 times in this same distance, shown in Fig. 1.7g, h.

Our experiment also demonstrated the transverse acceleration of the local

intensity maxima, shown in Fig. 1.8. This parabolic-like trajectory is a result of

acceleration and is well described by the theoretical relation xd ¼ l0
2z2/(16p2x0

3),

as long as the beam remains quasi-diffraction free and before diffraction effects

take over. The solid line in Fig. 1.8 corresponds to the latter analytical expression.

As these results indicate, after 30 cm of propagation the beam experiences a

deflection of 820 mm comparable to the total size of the packet (�first 10 lobes of

the Airy beam). Again, we emphasize that the acceleration observed here refers to

the local intensity features of the packet. In all cases, the center of gravity hxi of this
wave remains invariant [1, 25] since dhxi/dz / (i/2)

Ð
(’x

*’ � ’x’
*)dx is constant.

Similarly we have also considered 2D Airy beams. The case of an ideal 2D Airy

packet was first suggested by Besieris et al. [26]. In this case a 2D SLM phase pattern

(Fig. 1.6b) was imposed on the Gaussian beam and was then Fourier transformed

through a spherical lens. By doing so wewere able to produce finite energyAiry wave

packets of the form in the right side of (1.7). The evolution diffraction dynamics of the

latter 2D field configurations can be readily solved by separation of variables using the

result of (1.6). The intensity distribution of such a wave is shown in Fig. 1.9a, when

w1 ¼ w2, corresponding to an x–y truncation factor of a ¼ 0.11. In this case, approxi-

mately 50% of the energy resides in the main intensity lobe at the corner. In general,

the flexibility in separately adjusting the x–y parameters allows one to control the

transverse acceleration vector of this novel 2D nondiffracting beam. In our

Fig. 1.6 Phase masks used to generate (a) 1D and (b) 2D-Airy beams. The cubic phase is

“wrapped” between [0, 2p]. In the gray-scale pattern, black corresponds to 0 andwhite to 2p radians
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Fig. 1.7 Observed intensity cross sections of a planar Airy beam at (a) z ¼ 0 cm, (b) 10 cm, and

(c) 20 cm. Corresponding theoretical plots for these same distances (d), (e) and (f ). (g and h)

represent a comparison with a Gaussian beam having the same FWHM as the first lobe of the

Airy beam

1 Self-accelerating Airy Beams: Generation, Control, and Applications 9



experiments we considered beams with equal scales in x–y, and thus the acceleration
occurred along the 45� axis. For the pattern generated, x0 ¼ 53 mm and the aperture

factor is a ¼ 0.11. As in the 1D case, our experimental results indicate that this 2D

beam propagates almost diffraction-free up to a distance of 25 cm. The main lobe

keeps its spot-size (90 mm) up to a distance of ~25 cm and the beam moves on a 2D

parabolic trajectory with xd ¼ yd. The propagation and diffraction dynamics of these

2D Airy beams is shown in Fig. 1.9b–g [13].

Up to now, many different methods have been developed to generate Airy

beams. As an alternative of cubic phase mask, 3/2 phase [27] or binary phase

mask [28] can be explored; besides using SLM, Airy beams can also be

implemented through nonlinear processing [29] or assembly of lenses [30]. In

addition, Airy beams can be the direct output of a microchip laser [31].

1.2.4 Spatiotemporal Airy–Bessel Bullets

We point out that, since the Airy beams are the only type of nondiffracting wave

packets found so far that exist in 1D form, they can also be synthesized in the

temporal domain using dispersive elements [32]. This could lead to, for example,

the observation of dispersion-free Airy pulses in optical fibers, in both the normal

and anomalous dispersion regime [33]. This unique character distinguishes the Airy

beams from other diffraction free beams, such as Bessel beams, Mathieu beams,

etc., which have only the profile in 2D form.

Fig. 1.8 Transverse acceleration of an Airy beam when a ¼ 0.11 as a function of distance.Circles
mark experimental results while the solid line represents the expected theoretical deflection
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Theoretically, the Airy beams in combination with other nondiffracting field

configurations can also be used to describe multidimensional [(3 + 1)D] finite

energy wave packets in the presence of diffraction and dispersion. In such a case,

the beam envelope in the spatiotemporal domain obeys [34]:

i
@C
@Z

þ 1

2

@2C
@X2

þ @2C
@Y2

þ @2C
@T2

� �
¼ 0; (1.8)

where in (1.8), without any loss of generality, an anomalously dispersive system

was assumed. For example, a localized Airy finite energy spatiotemporal wave

Fig. 1.9 (a) A schematic of a

2D Airy packet. Observed

intensity distribution of a 2D

Airy beam at (b) z ¼ 0 cm,

(c) 10 cm, and (d) 20 cm.

Corresponding theoretical

results at these same distances

(e), (f ), and (g)
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packet can be obtained using Bessel–Gauss beams [10], i.e., at the input y ¼ Ai(T )
exp(aT )J0(r)exp(�r2/w0

2), where r ¼ (X2 + Y2)1/2 and w0 is the “aperture”

spot-size of the beam. Under these initial conditions, using separation of variables

we find that this wave evolves according to y ¼ ’(Z, T )U(Z, X, Y), where ’(Z, T )
is given by (1.6), and U(Z, X, Y) is given by the solution of Gori et al. [10].

Figure 1.10 depicts an isosurface plot of such an Airy–Bessel–Gauss wave packet

at the input Z ¼ 0 and after propagation to Z ¼ 3. Even in this case the wave

accelerates forward and remains essentially invariant.

Accelerating Airy wave packets can also be implemented in dispersive optical

fibers. Equation (1.4) suggests that in the temporal domain, such an exponentially

decaying Airy pulse can be produced by passing a transform limited Gaussian pulse

through a system with appreciable cubic dispersion [33]. A system of this sort can

be implemented using another fiber at the zero dispersion point or by employing

pulse shaping techniques [35]. Acceleration pulse dynamics can then be observed in

a fiber with either normal or anomalous group velocity dispersion.

Recently, spatiotemporal optical wave packets impervious to both dispersion and

diffraction, referred to as light bullets, have been investigated by a few groups.

In particular, Abdollahpour et al. [36] demonstrated the realization of intense

Airy–Airy–Airy (Airy3) light bullets by combining a spatial Airy beam with an Airy

pulse in time. The Airy3 light bullets belong to a family of linear spatiotemporal wave

packets and they can withstand both diffraction and dispersion during their propaga-

tion. It was shown that the Airy3 light bullets are robust up to the high intensity regime,

since they are capable of healing the nonlinearly induced distortions of their spatio-

temporal profile. Chong et al. also demonstrated Airy-based light bullets as 3D linear

localized waves in free space [37]. The method employed in the latter work is

independent of any particular material or nonlinearity, as the wave packets were

formed by combining the Bessel beams in the transverse plane with temporal Airy

pulses, which can be extended in a straight manner to explore other transversely

nondiffractive beams. These versatile 3D optical bullets in free space might break

through the limitations brought by other methods for generation of light bullets.

Fig. 1.10 Isosurface intensity contour plot for a spatiotemporal Airy–Gauss–Bessel wave packet

(with a ¼ 0.15, w0 ¼ 9) (a) at the input Z ¼ 0 and (b) after a normalized propagation distance of

Z ¼ 3. The arrow depicts the direction of acceleration
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1.2.5 Radially Symmetric Autofocusing Beams

Quite recently, a new class of 2D and 3D waves that tend to autofocus in an abrupt

fashion has been introduced [38]. While the maximum intensity of such a radial wave

remains almost constant during propagation, it suddenly increases by orders ofmagni-

tude right before its focal point. These waves can be generated through the use of

radially symmetric Airy waves or by appropriately superimposing Airy wave packets.

To analyze the properties of such waves, let us first consider the Fresnel

diffraction equation in cylindrical coordinates

iuz þ 1

2
urr þ 1

r
ur

� �
¼ 0: (1.9)

The propagation of an arbitrary radially symmetric initial condition u(r, z ¼ 0)¼
u0(r) according to (1.9) can be computed by utilizing the Hankel transform pair

uðr; zÞ ¼ 1

2p

ð1
0

k~u0ðkÞJ0ðkrÞe�ik2z=2dk; ~u0ðkÞ ¼ 2p
ð1
0

ru0ðrÞJ0ðkrÞdr: (1.10)

In particular, a radially symmetric exponentially apodized Airy beam is considered

as an initial condition

u0ðrÞ ¼ Aiðr0 � rÞ exp½aðr0 � rÞ�; (1.11)

where r0 is the radius of the main Airy ring, and a is the apodization rate. The power
that the Airy ring of (1.11) carries is given by

P ¼ 2p
ð1
0

u0j j2r dr �
ffiffiffiffiffi
p
2a

r
e2a

3=3 r0 þ 1� 4a3

4a

� �
; (1.12)

where in the computation of the above integral we extended the lower integration

limit to minus infinity (alternatively for the slightly modified initial condition

Aiðr0 � rÞeaðr0�rÞ � Aiðr � r0Þeaðr�r0Þ the above formula for the power becomes

exact). The propagation dynamics of such an Airy ring is depicted in Fig. 1.11

[38]. Qualitatively the dynamics can be described as following: in the early stages

of propagation, r0 is large enough and the disk r < r0 is essentially dark. As a

result, in the region where the amplitude is large the approximation r?u � urr
holds, and thus the 1D Airy solution (1.6) with s ! r � r0, can approximate the

propagation dynamics. From (1.6), one may expect that the maximum value of the

amplitude is going to slowly decrease along z. On the other hand, as z increases,
the radius of the Airy beam decreases, the power concentrates in a smaller area,

and the maximum amplitude increases. In fact, the numerical simulations show
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that these two effects almost balance each other, leading to relatively small

maximum amplitude changes, up to the point where the beam reaches the center

(Fig. 1.11a, b). Close to the focal point, the power of the first Airy ring is

concentrated in a small area around r ¼ 0 and the maximum intensity at the

center rapidly increases. What is behind this very abrupt increase in intensity is

the lateral acceleration of the Airy beams themselves. In this case, large trans-

verse velocities are attained and energy rushes in an accelerated fashion toward

the focus. While the peak intensity remains around unity up to z � 6, it then very

rapidly increases by more than 135 times at the focal point (Fig. 1.11b). For longer

propagation distances, the maximum intensity starts to decrease. As can be seen in

Fig. 1.11b, this decrease is not monotonic, but it exhibits oscillations, which are

generated by the subsequent Airy rings. Interestingly enough, at a final stage the

solution takes the form of a Bessel function with a chirped argument.

In Fig. 1.11c, the maximum intensity that the beam reaches during propagation is

shown as a function of the initial radius r0 for a ¼ 0.05. For small values of r0, the
Airy beam does not carry much power and thus themaximum intensity reached is also

relatively small. As the value of r0 increases, the maximum intensity also increases
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Fig. 1.11 Dynamics of radially symmetric Airy beams for a ¼ 0.05, r0 ¼ 10, and Imax(z ¼ 0) ¼ 1;

(a) detailed plot of the central part of the propagation dynamics; (b) maximum intensity as a function

of z; (c) Maximum intensity that the Airy beam reaches during propagation for different values of the

initial radius r0; (d) Hankel transform of the initial condition
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and for r0 � 15 it takes its maximum value (Imax � 156). For even larger values of r0,
diffraction becomes significant and Imax starts to decrease. Note that, as shown in

Fig. 1.11c, large intensity contrasts are possible for a wide range of values of r0. Much

higher values of Imax are possible by further suppressing diffraction (decreasing a).
Figure 1.11d depicts the Hankel transform of the input field profile of this beam as a

function of the radial spectral component k. The transform is a real function that

oscillates between positive and negative values and its envelope is decreasing with k.
Families of abruptly autofocusing beams can also be constructed by

superimposing exact Airy wave solutions. If fðx; zÞ is the 1D exponentially

apodized Airy wave solution as given by (1.6), then we can construct, continuous

or discrete, superpositions of 2D Airy waves fðx0; zÞfðy0; zÞ where the coordinates
ðx0; y0Þ are rotated and translated with respect to ðx; yÞ [ðx0; y0ÞT ¼ TRðx; yÞT ,
T represents a translation, and R a rotation matrix]. A particular configuration that

exhibits abruptly autofocusing dynamics consists of a continuous superposition of

2D Airy waves with centers lying on a circle and each one of them propagating

towards the center of the circle [38].

The above Airy families of abruptly autofocusing waves can be generalized by

considering an initial condition of the form

uðr; z ¼ 0Þ ¼ AðrÞ sin½qðrÞ�; (1.13)

where A(r) is the envelope function and q(r) is a sublinear chirped phase

qðrÞ ¼ Cðr � r0Þb; r� r0
0; r<r0

�
; (1.14)

C > 0 and 1 < b < 2. The term sublinear stems from the fact that the phase of a

linear chirp is quadratic (b ¼ 2). Following a ray optics approach, we find that such

an initial condition generates a caustic that propagates according to

r ¼ r0 � ½Cbðb� 1Þz�n
n� 1

; (1.15)

where n ¼ ð2� bÞ�1
[39]. Note that the caustic of the Airy beam is reproduced

by setting b ¼ 3/2 resulting to the parabolic trajectory r ¼ r0 � ð3Cz=4Þ2. The
exponent of the power law caustic can be engineered by varying the chirp coefficient.

For example, for b ¼ 5/3 the exponent of the power law caustic becomes cubic

[39, 40]. In addition, different types of convex trajectories, such as exponential, are

also possible [40].

Three-dimensional abruptly autofocusing waves are also possible. The corres-

ponding anomalous dispersion paraxial equation, which is normalized such that

dispersion and diffraction are equalized, is given by

iuz þ 1

2
ðuxx þ uyy þ uttÞ ¼ iuz þ 1

2
urr þ 2

r
ur

� �
¼ 0; (1.16)
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where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ t2

p
. Interestingly enough, exact expressions for the evolution

of an abruptly autofocusing wave can be found in the case where the Airy beam is

apodized both exponentially and with a power law r�1: In this case, the solution

takes the form [38]

uðr; zÞ ¼ fðr0 � r; zÞ � fðr0 þ r; zÞ
r

; (1.17)

where fðx; zÞ is the 1D exponentially apodized Airy wave solution. In Fig. 1.12

dynamical properties of such a spatiotemporal wave are shown.

These radially symmetric autofocusing Airy beams have been recently gene-

rated by two research groups, along with the proposed application of such beams

[15, 41, 42]. We shall discuss these applications in Sect. 1.6.4. Experimental data

corresponding to the theoretical results of Fig. 1.11 are displayed in Fig. 1.13 [15].

The bottom panel shows the autofocusing beam from a side propagating view and

the top panels display snapshots of transverse patterns at different propagation

distances. For better visualization, the intensities in Fig. 1.13a–d have all been

scaled to the same peak intensity; however, the intensity pattern without normali-

zation would illustrate the drastic increase of peak intensity near the “focal point”

of the circular Airy beam. In Fig. 1.13e, the propagation length is about 3 cm and

the beam size changed from 600 to 20 mm. Our findings show a good agreement

between theoretical and experimental results.
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Fig. 1.12 (a) Isointensity hemisphere of the spherical Airy-type wave; (b) maximum intensity for

r0 ¼ 15 as a function of z; (c) maximum intensity that the Airy beam reaches during propagation

for different values of the radius. In (b), (c) Imax(z ¼ 0) ¼ 1, a ¼ 0.05
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1.3 Control of Ballistic Motion of Airy Beams

1.3.1 Ballistic Dynamics of 1D Airy Beams

The ballistic motion of optical Airy beams can be analyzed using the (1.1). In order to

investigate the beam trajectories, we consider the input field distribution’(s, x ¼ 0)¼
Ai(s)exp(as)exp(ins), where Ai(s) represents the Airy function, a in the exponential

truncation factor is a small positive parameter, and n is associated with the initial

launch angle (or “velocity”) of this beam.Under these initial conditions and from (1.1),

we find that this finite-energy Airy wave evolves according to:

’ðs; xÞ ¼ Ai½s� ðx=2Þ2 � nxþ iax� expðas� ax2=2� anxÞ
� expfi½�x3=12þ ða2 � n2 þ sÞx=2þ ns� nx2=2Þ�g: (1.18)

From the argument of the Airy function in (1.18), one can conclude that this beam

follows a ballistic trajectory in the s–x plane which is described by the parabola

s ¼ nx + (x/2)2. In physical units, this parabolic deflection of the beam intensity

features is given by xd ¼ yz + [z2/(4k2x0
3)] where the actual launch angle y in

the x–z coordinates is related to the normalized n parameter through y ¼ n/(kx0).
The corresponding Newtonian (kinematical) equations describing this ballistics

are d2x/dz2 ¼ 1/(2k2x0
3) ¼ g and dx/dz ¼ gz + y where g plays here the role of

“gravity”. The trajectories of an ideal Airy beam (without truncation) are shown in

Fig. 1.14 under different launch conditions, corresponding to three distinct regimes.

More specifically, when this wave is launched upwards (when the launch angle is

Fig. 1.13 (a–d) Experimental snapshots of transverse intensity patterns of the autofocusing beam

(contrast enhanced) taken at different planes as marked in (e), the direct side-view photography of

the beam taken from scattered light
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negative n < 0), the beam will initially ascend until it stalls due to downward

acceleration at ẑ ¼ �y=g ¼ �2k2x0
3y. At this apogee point the maximum deflection

is xdmax ¼ �y2k2x0
3. From that point on, the packet will accelerate downwards as

shown in Fig. 1.14a. In fact, this ballistic behavior suggests that the Airy wave packet

can circumvent an opaque object O (depicted schematically in Fig. 1.14a) lying

straight in its path, by following instead a curved trajectory. If on the other hand the

launch angle is zero, the wave will follow a parabolic trajectory (Fig. 1.14b), similar

to that predicted and demonstrated in [1, 12, 13]. The case for n > 0 is shown in

Fig. 1.14c.

The experimental setup used to observe the ballistic dynamics of finite energy

Airy wave packets is shown in Fig. 1.5. The propagation dynamics of these beams

were then recorded as a function of propagation distance by translating the imaging

apparatus. The origin z ¼ 0 is taken at a distance f after the lens, e.g., at the point
where the exponentially truncated Airy function is Fourier generated. The launch

angle y is controlled by varying the transverse displacement of the imaging lens

with respect to the axis of the system. This operation is equivalent to the shifting

property of Fourier transforms [43]. The ballistic dynamics of these exponentially

truncated Airy beams are shown in Fig. 1.15 for various launch angles [44].

The parabolic trajectories of the intensity features of these waves were monitored

up to a distance of 25 cm and the wavefront tilt angle varied from�1.33 to 0.83mrad

in order to realize the three ballistic regimes discussed above. The curves A, B, C in

Fig. 1.15 were obtained for y ¼ �1.33, �1.0, �0.5 mrad respectively. As one can

clearly see, for a lunch angle of y ¼ �1.33mrad, the Airy beam reaches its apogee at

ẑ ¼ �2k2x0
3y � 9 cm, at which point the beam deflection is xdmax ¼ �y2k2x0

3

� 60 mm, in excellent agreement with our predictions. Curve D in Fig. 1.15

corresponds approximately to a zero launch angle. On the other hand, curve E, in

Fig. 1.15, is obtained for y ¼ +0.83 mrad. For the latter scenario, the acceleration

displacement is further enhanced because of downward motion. The solid lines in

Fig. 1.15 correspond to the theoretical curves associated with these cases.

Following the analysis of [1, 25], the motion of the center of gravity of these

finite energy Airy wave packets can be studied. As usual, the intensity centroid is

Fig. 1.14 Ballistic dynamics of an ideal Airy beam a ¼ 0 when (a) v ¼ �2, (b) v ¼ 0, and

(c) v ¼ +2. The circle in (a) represents an opaque obstacle
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defined as hs(x)i ¼ (1/N)
Ð
s│’(s, x)│2dswhere in our case the constant norm is given

by N ¼ Ð
│’│2ds ¼ (8pa)�1/2 exp(2a3/3). From Ehrenfest’s theorem [9] it can be

shown that dhsi/dx ¼ n, from where one can deduce that [25]:

sh i ¼ vxþ 4a3 � 1

4a
: (1.19)

Equation (1.19) indicates that the center of gravity of these beams moves at a

constant velocity (or remains invariant for n ¼ 0) as a function of propagation

distance. Indeed, experimental results clearly show this linear behavior for the same

launch angles used in Fig. 1.15 [44]. Thus, we emphasize again that the aforemen-

tioned acceleration behavior refers to the trajectories of the local beam intensity

features and is by no means in contradiction with Ehrenfest’s theorem.

1.3.2 Ballistic Dynamics of 2D Airy Beams

To analyze the ballistic dynamics of 2D Airy beams, the normalized (2 + 1)D

paraxial equation of diffraction is employed:

i
@’

@z
þ 1

2k

@2’

@x2
þ 1

2k

@2’

@y2
¼ 0; (1.20)

where ’ is the electric field envelope and k ¼ 2pn/l0 is the wavenumber of the

optical wave. The evolution of a 2D finite energy accelerating Airy beam, whose

field profile at the origin is given by ’ x; y; z ¼ 0ð Þ ¼ Q
m¼x;y

AiðsmÞ expðasmÞ
expðinmsmÞ, can be obtained in closed form:

’ðx; y; zÞ ¼
Y
m¼x;y

umðsm; xmÞ; (1.21)

Fig. 1.15 Experimental

results of Airy beam ballistics

for (A) y ¼ �1.33 mrad,

(B) �1.0 mrad,

(C) �0.5 mrad, (D)

+0.17 mrad, and

(E) +0.83 mrad
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where

umðsm; xmÞ ¼Ai½sm � ðxm=2Þ2 � nmxm þ iamxm� expðamsm � amxm
2=2� amnmxmÞ

� expfi½�xm
3=12þ ðam2 � nm2 þ smÞxm=2

þ nmsm � nmxm
2=2Þ�g; ð1:22Þ

Ai(sm) denotes the Airy function [23], sx ¼ x/x0 and sy ¼ y/y0 represent dimension-

less transverse coordinates, with x0, y0 being arbitrary transverse scales, and xx ¼
z/kx0

2 and xy ¼ z/ky0
2 are used to normalize the propagation distance z. am in the

exponential function is a small positive parameter associated with the effective

aperture of the system, and nm is related to the initial launch angle ym (or “velocity”)

of this beam through ym ¼ nm/k(x0, y0).
From (1.22), one can also directly determine the trajectory of the main (“head”)

lobe of the Airy beam as a function of distance. This 3D curve is given by:

xd ¼ 1

4k2x30
z2 þ yxz

yd ¼ 1

4k2y30
z2 þ yyz : (1.23)

In principle this trajectory can be appropriately tailored through the magnitude and

sign of the launch angles ym, and the scales x0, y0. Clearly, for zero launch angles ym
and if x0 ¼ y0, the main lobe of the Airy beam will move on a parabola (projected

along the 45� axis in the x–y plane). On the other hand, a “boomerang-like” curve

may be created if for example the “launch” angles are chosen to have opposite

signs, say yx ¼ �2 mrad and yy ¼ 2 mrad (while x0 ¼ y0 ¼ 77 mm), as shown in

Fig. 1.16. What is also very interesting is the fact that these displacements vary

quadratically with the wavelength l0.

Fig. 1.16 Motion of the main

lobe of a symmetric

(x0 ¼ y0 ¼ 77 mm) 2D Airy

beam when launched at

yx ¼ �2 mrad and

yy ¼ 2 mrad
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1.3.3 Optimal Control of the Ballistic Motion of Airy Beams

Let us consider a typical optical system for generation of 2D Airy beams as depicted

in Fig. 1.17a, where a Gaussian beam is first modulated by a cubic phase mask and

then passes through a Fourier transform lens. Usually, the Gaussian beam, the

mask, and the Fourier lens are set to be coaxial along z. If the lens is transversely
shifted, a tilting angle will be introduced into the Airy beam. As an example, let us

fix the position of the lens but allow the mask and Gaussian beam to have transverse

displacements in the Fourier plane. To understand the influence of these

displacements, let us first consider the 1D case. The Fourier spectrum of a truncated

Airy beam can be expressed as exp(�aw2) exp[i(w3 � 3a2w � ia3)/3], where a is a
small parameter for the exponential truncation factor, and w is the normalized wave

number. If the Gaussian beam and the phase mask are translated by wg and wm in the

Fig. 1.17 (a) Schematic of input Gaussian beam, cubic phase mask, and Fourier lens used

for generation of truncated Airy beam; (b) location of mask (center denoted by white spot) and
input beam (marked by red dashed circle and center denoted by red spot) in Fourier plane;

(c) illustration of different trajectories obtained at differentDg andDmwhen the peak beam intensity

appears at maximum heights or ranges (marked by red spots). The inset shows the Airy beam profile

at the maximum height of upper curve. The lower curve corresponds to normal excitation at

Dg ¼ Dm ¼ 0, so its peak intensity is at the starting point (z ¼ 0); (d) Numerical simulations of

beam propagation for two specific cases corresponding to the upper trajectory shown in (c)
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Fourier plane, the resulting spectrum exp[�a(w � wg)
2] exp{i[(w � wm)

3 �
3a2(w � wm) � ia3]/3} leads to a new truncated Airy beam with a field envelope

f expressed as follows:

f ¼ Cf ðs; xÞAi½s� wmx� ðx=2Þ2 þ iaðx� 2wg þ 2wmÞ� exp iwmsð Þ; (1.24a)

C ¼ expð�awg
2 � awm

2 þ i2a2wm � i2a2wg þ 2awmwgÞ; (1.24b)

f ðs; xÞ ¼ exp½asþ isx=2þ ð�iwm
2=2þ ia2=2� 2awm þ awgÞx

þ ð�a=2� iwm=2Þx2 � ix3=12�; (1.24c)

where Ai represents the Airy function, and s and x are normalized transverse and

longitudinal coordinates. From (1.24a), we see that the trajectory changes due to

the translation of the mask as expressed by s ¼ wmx + (x/2)2. The term ia(x �
2wg + 2wm) shows that the new peak-intensity position is at x ¼ 2(wg � wm),

controlled by translation of both the mask and the Gaussian beam. Similar analyses

can be employed for the 2D case shown in Fig. 1.17b, and the trajectory can now

be expressed as � ffiffiffi
2

p ½Dmx=
ffiffiffi
2

p þ ðx=2Þ2� with a new peak-intensity position at

x ¼ � ffiffiffi
2

p
Dm þ ffiffiffi

2
p

Dg (Dg and Dm are normalized vertical displacements of

the Gaussian beam and the mask in Fourier plane, respectively). Therefore, by

translating the mask and Gaussian beam with respect to z-axis, the location of peak
beam intensity as well as maximum height and range of the trajectory can be

controlled with ease. Typical 2D numerical results are shown in Fig. 1.17c, d.

For Dg ¼ Dm ¼ 0, the Airy beam propagates akin to a body projected horizontally

with the peak intensity appearing at the starting point. Moving the mask to different

vertical positions (Dm � �2.3, �3.1) leads to propagation of the Airy beam in a

ballistic trajectory as does a batted baseball. In the case of Dg ¼ 0, the peak

intensity always appears at the maximum height. However, by translating also the

Gaussian beam so that Dg ¼ �Dm, the peak intensity appears at the maximum

range (“point of fall”) as demonstrated below.

Experimental results corresponding to above analyses are shown in Fig. 1.18,

where a Gaussian beam is turned into a truncated Airy beam assisted with a SLM

and a Fourier transform lens as shown in Fig. 1.18a. When the beam, mask, and lens

are aligned coaxially, a “horizontally projected” Airy beam is generated with a

decaying intensity (due to diffraction) during propagation (Fig. 1.18a). If the mask

is translated slightly in vertical direction, the resulting Airy beam propagates in

general ballistic trajectories with different ranges (Fig. 1.18b, d) while its peak

intensity appears at the maximum heights. These different trajectories correspond

to different launching angles due to the transverse displacement of the phase mask

relative to the z-axis of the system. By also translating the Gaussian beam the same

distance but to the opposite direction, the trajectory remains the same but the peak

intensity moves to the maximum range (Fig. 1.18c, e). These experimental results

agree well with our theoretical predications.
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If we allow both vertical and horizontal displacements of the phase mask [(Dmx,

Dmy)] and the Gaussian beam [(Dgx, Dgy)] as illustrated in Fig. 1.19a, the projectile

motion of the Airy beam can be set into any arbitrary direction. Following similar

theoretical analysis for Eqs. (1.24a, b, c), the (x, y) trajectory can be expressed as

½�Dmxx;�Dmyx�
ffiffiffi
2

p ðx=2Þ2�. Clearly, the Airy beam in this case undergoes

uniform motion along horizontal direction while accelerating along vertical direc-

tion. As such, the Gaussian beam (even initially aiming along z-direction) can

propagate to any off-axis location. The horizontal displacements of the mask and

Gaussian beam will not change the location of the peak beam intensity, but they can

change the Airy beam profile from symmetric (when Dmx ¼ Dgx) to asymmetric

(when Dmx 6¼ Dgx). An example of experimental results is shown in Fig. 1.19b, c.

The peak intensity appears at the maximum height of the trajectory when the

Gaussian beam is on axis (Dgx ¼ Dgy ¼ 0, shown in Fig. 1.19b) but moves to the

“point of fall” when the beam is displaced vertically (Dgx ¼ 0,Dgy ¼ �d, shown in
Fig. 1.19c). In this case, since Dmx 6¼ Dgx, the Airy beam starts with an asymmetric

profile but evolves into a symmetric profile after restoring its peak intensity. These

experimental observations are corroborated with numerical simulations [45].

Fig. 1.18 Experimental demonstration of controlled trajectories (white dashed curves) of

truncated Airy beams under different excitation conditions. Snapshots of transverse intensity

patterns are shown at marked positions. (a) Normal condition when peak beam intensity is at the

starting point, corresponding to lower curve in Fig. 1.17c; (b, d) peak intensity goes to the

maximum height with shifting of only cubic phase mask; (c, e) peak intensity goes to the “point

of fall” with additionally shifting of the Gaussian beam
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1.3.4 Airy Trajectory Engineering in Dynamic
Linear Index Potentials

Quite recently, we have successfully demonstrated that, with optically induced linear

index potential, enhancement as well as reduction of Airy beam acceleration can be

realized by changing the index gradient transversely [46]. Here we show our design of

linear longitudinal (z-axis) index potential to engineer the trajectory that the Airy

beam follows. In particular, let us consider the paraxial dynamics of an optical field

iuz þ 1

2
uxx � dðzÞx

2
u ¼ 0; (1.25)

where dðzÞx=2 is the transversely linear index potential with a gradient dðzÞ. In the

Fourier space (1.25) becomes

~uz � dðzÞ
2

~uk ¼ �i
k2

2
~u; (1.26)

which is equivalent to the characteristic system

dz

1
¼ dk

�dðzÞ=2 ¼ d~u

�ik2~u=2
: (1.27)

Fig. 1.19 Experimental demonstration of accelerating Airy beams with transverse uniform

motion. (a) Relative positions of cubic phase mask and Gaussian beam in the Fourier plane;

(b, c) experimental results of the trajectory and intensity pattern of the Airy beam obtained under

different excitation conditions as depicted in (a)
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By integrating the above system we obtain the integral formula

uðx; zÞ ¼ 1

2p

ð1
�1

~uðk; 0Þe�ði=2Þ
Ð z

0
kðsÞ2ds

eikðzÞxdk; (1.28)

where kðzÞ ¼ k � DðzÞ=2, DðzÞ ¼ Ð z
0
dðsÞds. We focus our attention on Airy type

initial conditions

uðx; z ¼ 0Þ ¼ Aiðg1=3xÞ; (1.29)

where g is the width of the Airy wave. By substituting the Fourier transform of

(1.29)

~uðk; z ¼ 0Þ ¼ 1

g1=3
exp

ik3

3g

� �
(1.30)

into (1.28) we find that

uðx; zÞ ¼ efðx;zÞAiðg1=3mðx; zÞÞ; (1.31)

where

mðx; zÞ ¼ F1ðzÞ
2

þ x� gz2

4
; (1.32)

f ¼ i
gF1ðzÞz

4
� i

DðzÞx
2

� i
F2ðzÞ
8

þ i
gzx
2

� i
g2z3

12
; (1.33)

and

F1ðzÞ ¼
ðz
0

DðsÞds; F2ðzÞ ¼
ðz
0

D2ðsÞds: (1.34)

We consider that the trajectory of the Airy beam is provided by mðx; zÞ ¼ 0, i.e.,

x ¼ �F1ðzÞ
2

þ gz2

4
; (1.35)

which mainly determines caustic trajectory. By generalizing the initial condition as

uðx; z ¼ 0Þ ¼ Aiðg1=3ðx� x0ÞÞeiCx; (1.36)
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in which case x0 is the initial spatial displacement and y is the initial tilt, the

trajectory of the beam becomes

x ¼ x0 þCz� F1ðzÞ
2

þ gz2

4
: (1.37)

More importantly, we can also solve the inverse problem: given a predefined

Airy beam trajectory x ¼ g(z) we can determine the index gradient d(z) as well as
the initial condition parameters x0, y that are required. Following the relevant

algebra we find that

x0 ¼ gð0Þ; C ¼ g0ð0Þ; dðzÞ ¼ g� 2g00ðzÞ: (1.38)

In a similar fashion one can derive expressions for the dynamics of exponentially

and Gaussian apodized Airy beams [47]. In particular, the trajectory of the expo-

nentially apodized Airy beam is essentially the same as compared to the “pure”

Airy beam, whereas the effective trajectory is modified in the case of a Gaussian

apodization. As an example, in Fig. 1.20 we see an exponentially apodized Airy

beam following different trajectories. In all cases, the potential gradient and initial

condition parameters are determined by utilizing (1.38).

1.4 Self-healing of Airy Beams

1.4.1 Self-reconstructing Optical Airy Beams

Perhaps one of the most remarkable properties of any diffraction-free beam is its

very ability to self-reconstruct during propagation. This characteristic is of particu-

lar importance when such waves propagate in inhomogeneous media [48]. The

question naturally arises whether Airy beams can self-heal and to what extent? If so,

how does this process take place and how is it affected by the beam’s acceleration

dynamics? For example, can an Airy beam negotiate adverse environments? In this

section we review the self-healing properties of optical Airy beams. We show that

this family of waves exhibits remarkable resilience against perturbations and tends

to reform during propagation.

1.4.2 Babinet’s Principle for a Nondiffracting Beam

The self-healing properties of a nondiffracting field configuration, when it is partially

blocked by a finite opaque obstacle at z ¼ 0, can be explained from Babinet’s

principle [49]. If the nondiffracting input field is disturbed by a finite energy

perturbation e(x, y), i.e., ’(x, y, z ¼ 0) ¼ UND(x, y, z ¼ 0) � e(x, y, z ¼ 0), then
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from (1.1) one finds that iez + (1/2k)∇⊥
2e ¼ 0. As a result the perturbation e is

expected to rapidly diffract as opposed to the nondiffracting beam that remains

invariant during propagation. As a consequence, at large distances │’(x, y, z)│2 ¼
│UND(x, y, z)│

2, and hence the nondiffracting beam reforms during propagation.

This argument holds for all nondiffracting fields including the acceleratingAiry beam.

1.4.3 Transverse Power Flow of an Optical Airy Beam

Of relevance to our discussion is the Poynting vector ~S associated with Airy optical
beams. In the paraxial regime, ~S is given by [50]:

~S ¼ ~Sz þ ~S? ¼ 1

2�0
’j j2ẑþ i

4�0k
½’r?’� � ’�r?’�; (1.39)

Fig. 1.20 Exponentially apodized Airy beam propagation (a ¼ 0.05) along predefined paths.

(a) Power law trajectory x ¼ (z � 1)3; (b) sinusoidal trajectory given by x ¼ g(z) ¼
2[cos(pz) � 1]; (c) logarithmic trajectory x ¼ log(1 + 10 z); (d) hyperbolic type trajectory

given by x ¼ gðzÞ ¼ 2½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� 2Þ2 þ 1

q
� 1�Hðz� 2Þ where H(z) is the Heaviside step function
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where �0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
m0=e0

p
is the impedance of free space. ~Sz denotes the longitudinal

component of the Poynting vector whereas ~S? the transverse. From Eqs. (1.23) and

(1.39) one can directly obtain the direction of the Poynting vector associated with

an ideal 2D Airy (am ¼ 0) beam. More specifically, the angle y the projection of ~S
makes with respect to x axis is given by:

tanC ¼ Sy
Sx

¼
yy þ z

2k2y3
0

yx þ z
2k2x3

0

: (1.40)

On the other hand, the direction of ~S relative to the z axis is given by:

tan d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2x þ S2y

q
Sz

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yx þ z

2k2x30

� �2

þ yy þ z

2k2y30

� �2
s

: (1.41)

Note that for ideal Airy beams, the Poynting vector ~S is at every point parallel to the
unit tangent vector l̂ of the trajectory curve of (1.23). This statement is also valid for

finite energy Airy beams during the quasi-diffraction free stage of propagation. At

larger distances, however, small deviations are expected to occur. In addition one

can show that the polarization of the beam can evolve in a similar manner.

The reconstruction of an accelerating optical Airy beam can be monitored

through the transverse component of the Poynting vector ~S? [51].

1.4.4 Observation of Self-healing Properties of 2D Airy Beams

In order to study experimentally the self-healing properties of a 2D Airy beam, the

Airy pattern is partially blocked in a controlled manner with a rectangular opaque

obstacle inserted at the desired location, and then monitored for their self-

reconstruction during propagation. In all cases we block a portion of its initial

intensity profile. The most prominent intensity characteristic of an Airy beam

happens to be its main corner lobe (as seen in Fig. 1.9a) which contains a large

percentage of the beam’s total power. In a first experiment, an opaque rectangular

obstacle was employed to obstruct the corner main lobe of the Airy pattern

(Fig. 1.21a). The FWHM of the blocked lobe feature was approximately

130 mm corresponding to x0 ¼ y0 ¼ 77 mm and a ¼ 0.08. Figure 1.21b depicts

the reformation of this Airy beam after a distance of z ¼ 11 cm. The self-healing

of this beam is apparent. The main lobe is reborn at the corner and persists

undistorted up to a distance of 30 cm (Fig. 1.21c). In our setup, the latter distance

(30 cm) corresponds approximately to four diffraction lengths of the corner lobe.

Our experimental observations are in excellent agreement with numerical results

presented in Fig. 1.21d–f for the same propagation distances.
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We note that had the main lobe been launched in isolation it would have

experienced a fivefold increase in the beam width over the same propagation

distance, while the peak intensity would have dropped to 5% of its initial value.

This is another manifestation of the nondiffracting nature of Airy beams.

In order to understand this self-healing process it is important to study the internal

transverse power flow ~S? within the perturbed Airy beam. To do so we use the result

of (1.39). Figure 1.22a depicts the transverse flow within the Airy beam at z ¼ 1 cm

when themain lobe has been removed. Evidently the power flows from the side lobes

towards the corner in order to facilitate self-healing. On the other hand, once

Fig. 1.22 Calculated transverse power flow ~S? at (a) z ¼ 1 cm and (b) z ¼ 11 cm

Fig. 1.21 Self-healing of an Airy beam when its main lobe is blocked. Observed intensity profile

at (a) the input z ¼ 0, (b) z ¼ 11 cm, and (c) z ¼ 30 cm. The corresponding numerical simulations

are shown in (d–f )
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reconstruction has been reached (at z ¼ 11 cm), then the internal power density

around the newly formed main lobe flows along the 45� axis in the x–y plane (for
x0 ¼ y0) in order to enable the acceleration dynamics of the Airy beam (Fig. 1.22b).

So far we have experimentally demonstrated that an Airy beam can reconstruct

itself when its main lobe has been blocked. It is of interest to examine whether the

beam could self-heal even after more severe perturbations. In a second set of

experiments we have totally blocked all the internal structure (all inner lobes) of

the Airy pattern (Fig. 1.23a). Remarkably after z ¼ 16 cm of propagation the beam

self-heals and reconstructs in detail its fine intensity structure as depicted in

Fig. 1.23b. Figure 1.23c, d shows the corresponding calculated intensity profiles

for these same distances.

Fig. 1.23 Self-healing of an Airy beam when all the internal lobes are blocked. Observed intensity

profiles at (a) the input z ¼ 0 and (b) z ¼ 16 cm. The corresponding numerical simulations are

shown in (c) and (d)

Fig. 1.24 Transverse power flow ~S? revealing the self-healing mechanism at z ¼ 1 cm for the

incomplete Airy beam shown in Fig. 1.23
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The internal power flow during the latter self-healing process is shown in

Fig. 1.24. At z ¼ 1 cm, the Poynting vector provides energy towards the blocked

region for rebirth to occur while on the main lobe is directed along 45� in the x–y
plane in order to enable the self-bending of the Airy beam.

In addition, we have also demonstrated experimentally that an Airy beam can

reconstruct itself when a nonsymmetric obstruction is used. This asymmetric

perturbation was carried out by blocking, for example, the first three lobes of an

Airy wave packet along the y axis. Interestingly, in this physical setting, the beam

not only self-heals itself but also the initially blocked part is reborn even brighter

when compared to its surroundings. This is a clear manifestation of the

nondiffracting character of the Airy beam [51]. In addition, this self-regeneration

property can be improved by dual Airy beams [52].

1.4.5 Self-healing of Optical Airy Beams
in Scattering Environments

In the previous section we have demonstrated that optical Airy beams are remark-

ably resilient to amplitude deformations when propagating in free space. The

question is: are such self-healing Airy wave packets also robust in adverse

environments? To address this question we have experimentally studied the propa-

gation of Airy beams in scattering and turbulent media.

In order to study the self-healing dynamics of Airy beams in scattering media we

have again blocked their main corner lobe (Fig. 1.25a). To do so we have prepared

two different samples of silica microspheres (n ¼ 1.45) suspended in pure water

(n ¼ 1.33). The size of the dielectric microparticles was 0.5 and 1.5 mm in diameter

and thus light scattering was predominantly of the Mie type [53]. Both suspensions

were 0.2% in weight concentration while the volume filling factor was 0.1%.

We have ultrasonicated the prepared mixtures for 1 h, to make sure that the silica

particles were monodispersedly suspended in water. The scattering cross section of

the microspheres is estimated to be 0.055 and 3.76 mm2 [54] for the small and large

Fig. 1.25 Self-healing of an Airy beam when propagating in a suspension of 0.5 mm silica

microspheres in pure water. Observed intensity profiles at (a) the input z ¼ 0, (b) z ¼ 5 cm, and

(c) z ¼ 10 cm
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particles, respectively. These values lead to significant light scattering, enough to

give a granular appearance when the beam propagates 5 cm in the water–silica

mixture (diameter of 0.5 mm) (Fig. 1.25b). A longer (10 cm) cell was used to

observe the complete reformation of the Airy pattern in the same scattering media.

Figure 1.25c depicts the self-healing of an Airy beam after propagating 10 cm in the

same environment. Besides the anticipated drop in the beam intensity due to Mie

scattering, the beam still exhibits in every respect its characteristic pattern.

1.4.6 Resilient Airy Beam Propagation in a Turbulent Medium

We have also studied the effect of turbulence on an Airy beam. The turbulent

environment was realized over a heated rough accordion-shaped aluminum foil

above which violent heat convection air currents were generated. The turbulence

was controlled by adjusting the temperature of the hotplate around 300�F. The Airy
beam was then passed right above the aluminum foil up to a distance of 8 cm. In all

our experiments the resilience of the Airy beam (without any initial amplitude

distortions) against turbulence was remarkable (see Fig. 1.26a and the related video

file in [55]). To some extent this robustness can be qualitatively understood if one

considers the phase structure of the beam: alternations in phase between 0’s and p’s
result in zero-intensity regions and these singularities can be in turn extremely

stable [56, 57]. For comparison purposes we turned off the cubic phase from the

SLM, thus producing a comparable Gaussian beam. This diffracting Gaussian beam

was then passed through the same turbulent system. Unlike the Airy beam, the

Gaussian beam was strongly deformed and it suffered massive distortions (see

Fig. 1.26b and the related video file in [58]).

Another experiment we did for self-healing of an Airy beam is to reposition the

peak beam intensity to a target even through disordered media using the linear

control method discussed in Sect. 1.3.3. This is illustrated in Fig. 1.27a, where

the peak intensity of a truncated Airy beam is supposed to land on a target located

at (x, y, z) ¼ (0, 0, 25 cm) along a curved trajectory (red dashed curve) after

Fig. 1.26 Propagation in a turbulent medium of (a) an optical 2D Airy beam and (b) a comparable

Gaussian beam
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passing through a disordered medium. However, due to presence of the disordered

media, the Airy beam path (black solid curve) is deflected off the target apart from

diminishing intensity during propagation. Simply by translating the phase mask

and the initial Gaussian beam, the restored peak intensity can be repositioned at the

target. Corresponding experimental results obtained with a turbulent salt–water

mixture are shown in Fig. 1.27b–e. First, we “aim” the Airy beam at the target after

25 cm of propagation through air. Then, salt is added and stirred in water placed in

the beam path. Although the Airy beam is recovered through disordered scatters

due to its self-healing property, its position in the target plane is shifted dramati-

cally (Fig. 1.27c). The large lateral shift of the Airy beam path from Fig. 1.27b, c is

caused mainly by refraction from the salt–water mixture (which has a refractive

index different than that of air), while small variation of the Airy beam in its shape

and location in a given output plane occurs due to turbulence of stirred mixture. By

translating the mask and the Gaussian beam independently, as expected, not only

the Airy beam comes back to the target, but also its peak intensity is restored

(Fig. 1.27d). We emphasize that Fig. 1.27c, d were taken as a snapshot to show one

example of the “fluctuating” pattern, as the shape and transverse position of the

self-healing Airy beam vary slightly with time. However, the average intensity

pattern is a well-defined Airy beam with its peak intensity repositioned at the

target. For comparison, keeping all conditions unchanged as for Fig. 1.27d except

for changing the cubic phase into uniform phase in the SLM, the Airy beam returns

Fig. 1.27 (a) Schematic of Airy beam propagation through a disordered medium. The red dashed
(black solid) curve depicts the trajectory in free-space (disordered medium); (b, c) intensity pattern

of output Airy beam at z ¼ 25 cm through air (b) and stirred salt–water mixture (c); (d) restoration

of the Airy beam peak intensity at the target after translating the phase mask and input Gaussian

beam; (e) typical output pattern of a Gaussian beam from the salt–water mixture. The white cross
corresponds to the target point at (0, 0, 25 cm)
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to a normal Gaussian beam which is severely scattered, deformed and shifted after

propagating through the same salt–water mixture (Fig. 1.27e). These results

suggest that Airy beams are excellent candidates for beam reposition to a given

target through disordered or turbulent media, perhaps even with a feed-back

system that could compensate time-dependent fluctuation.

In detail, the evolution of Airy beam intensity distribution in turbulence was

examined in [59], where results show that the centroid position and skewness of an

Airy beam are independent of turbulence. In addition, the numerical work in [60]

found that scintillation of an Airy beam array is significantly reduced in the

turbulent atmosphere.

1.4.7 Restoration and Degeneration of Deformed Airy Beams

Previous sections investigated reconstruction of either perfect or imperfect (with

missing lobes) Airy beams. In this section, we discuss the self-healing of deformed

Airy beams, in which none of the Airy lobes are blocked but the angle between the

two “wings” differs from the regular 90o for the perfect 2D Airy beams. The wave

function of a deformed Airy beam studied here can be expressed by

U ¼ Ai X=x0ð Þexp aX=x0ð ÞAi Y=x0ð Þexp aY=x0ð Þ (1.42)

where X and Y are respectively equivalent to (� ffiffi
r

p
x� y=

ffiffi
r

p Þ= ffiffiffi
2

p
and

(
ffiffi
r

p
x� y=

ffiffi
r

p Þ= ffiffiffi
2

p
, x0 is a constant governing the size of the Airy beam, and r

is the parameter determining the degree of deformation of the Airy beam. r ¼ 1

corresponds to the normal case for which the angle between the two “wings” of

the Airy beam is equal to 90� (Fig. 1.28a). After 20 cm of linear propagation, this

regular Airy beam remains nearly diffraction free. For r < 1, the angle between

the two wings of a deformed Airy beam is obtuse as depicted in Fig. 1.28b, c. In

this case, the wings shrink gradually towards the 90� position during propagation,
with a slight increase of its transverse acceleration (see Fig. 1.28b, c, bottom).

Inversely, for r > 1, the angle between the two wings of a deformed Airy beam is

acute as depicted in Fig. 1.28d, e, so the wings expand gradually towards the 90�

position with a slight decrease of its acceleration. Interestingly, when the angle

deviation from 90� is not too big, the deformed Airy beam seems to restore well

during propagation, but at large deviations, the angle can change from obtuse to

acute and vice verse. In particular, it is found that a strongly deformed 2D Airy

beam with a small acute angle degenerates into a quasi-1D Airy beam, as can be

seen from Fig. 1.28e. This was confirmed by more detailed simulations.

To perform experimental demonstration, a cubic phase mask is utilized as before

(see inset in Fig. 1.29a). After 20 cm of propagation in free space, the Airy beam shifts

vertically due to its transverse acceleration. Now we modify the vertical–horizontal

length ratio of the phase mask, which controls the angle between the two wings.
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We observe that the Airy beam indeed gradually opens its wings (Fig. 1.29b, c, top)

when the ratio of the mask is reduced (i.e., the mask is stretched horizontally). After

20 cm propagation, the wings contract towards 90o position (Fig. 1.29b, c, bottom), in

agreement with simulation. If the ratio is too small, the nondiffraction property of the

Airy beam cannot persist, and the Airy beam cannot be restored as seen in Fig. 1.29c.

Likewise, when the ratio of the mask is increased (i.e., the mask is stretched verti-

cally), the wings expand and the angle of the Airy beam increases from an acute angle

towards the 90o position (Fig. 1.29d, e). Apart from the wing flipping, another two

Fig. 1.29 Experimental observation of linear propagation of deformed Airy beams corresponding

to Fig. 1.28. Top and bottom panels correspond to input and output after 20 cm propagation,

respectively. The values of the parameter r are the same as in Fig. 1.28. The inset in (a) shows the

unstretched cubic phase mask. The white dashed lines mark the position of peak intensity of the

Airy beam at z ¼ 0 cm, and the red line marks the position of peak intensity of the regular Airy

beam at z ¼ 20 cm (b, c) deformed Airy beams at an obtuse angle, and (d, e) deformed Airy beams

at an acute angle.

Fig. 1.28 Numerical simulations of linear propagation of deformed Airy beams. Top and bottom
panels correspond to input and output after 20-cm propagation, respectively. From left to right,

r ¼ 1, 0.89, 0.67, 1.11, and 1.33. (a) A regular Airy beam at a right angle between the two wings,

(b, c) deformed Airy beams at an obtuse angle, and (d, e) deformed Airy beams at an acute angle.

Dashed lines mark the position of peak intensity of the regular Airy beam
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interesting observations merit mentioning: firstly, as compared to the perfect Airy

beam, increased acceleration is observed for “expanded” Airy beam (Fig. 1.29b, c),

whereas decreased acceleration for “compressed” Airy beam (Fig. 1.29d, e). The

larger change in experiment as opposed to that in simulation is due to that the area of

the phase mask (hence, the size of the deformed Airy beam) is not kept constant as the

mask is stretched; secondly, when the Airy beam is strongly deformed at a very small

acute angle, the 2DAiry beam cannotmaintain, but rather degenerates into a quasi-1D

Airy beam as seen from the bottom panel of Fig. 1.29e. The experimental results agree

well with our numerical simulations.

In addition, Airy beams without standard shapes are also investigated in other

aspects, such as, combining Airy beams with vortex [61, 62], reducing side lobs of

Airy beams [63], etc. Self-healing dominates the propagation dynamics although

some other interesting phenomena associated with these nonconventional Airy

beams were discussed.

In summary, we have demonstrated both theoretically and experimentally the

self-healing properties of optical Airy beams. By monitoring their internal trans-

verse power flow we have provided insight concerning the self-healing mechanism

of Airy beams. We have also experimentally shown that these optical beams can be

robust in adverse environments such as in scattering and turbulent media. Further-

more, we have demonstrated that an Airy beam can retain its shape and structure

under turbulent conditions as opposed to a comparable Gaussian beam that suffers

from massive distortion. The robust nature of Airy beams may have important

implications in other areas such as atmospheric propagation and microparticle

manipulation as we shall discuss in Sect. 1.6.

1.5 Nonlinear Control and Generation of Airy Beams

1.5.1 Persistence and Breakdown of Airy Beams Driven
by an Initial Nonlinearity

In this section, we study the transition of Airy beams from a nonlinear to a linear

medium driven initially by a self-focusing or -defocusing nonlinearity. Some

unique behaviors of such nonlinearity-controlled Airy beams, including loss or

persistence of acceleration, normal or anomalous diffraction were observed. In

particular, an Airy beam under an initial self-defocusing nonlinearity exhibits

anomalous diffraction and propagates robustly over long distance after exiting the

nonlinear medium, but it breaks down in both Airy-beam pattern and acceleration

when driven by a self-focusing nonlinearity [64].

The experiments were performed in a biased 1 cm-long photorefractive SBN:60

crystal (Fig. 1.30a). As before, to create a truncated Airy beam, a SLM is placed at the

focal plane of the Fourier transform lens. The Airy beam (l ¼ 532 nm) is extraordi-

narily polarized, propagating first through the biased crystal under the influence

of photorefractive screening nonlinearity, and then through air (free-space) for
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another 1 cm. Solely by switching the polarity of the bias field, self-focusing and self-

defocusing nonlinearity is achieved for nonlinear control of the Airy beam. The Airy

beam patterns along with k-space spectra are monitored by CCD cameras.

Typical experimental results are shown in Fig. 1.30b–d. When no bias field is

present, the Airy beam undergoes linear propagation inside the crystal. (The

photorefractive diffusion effect [65] can be neglected due to the large size of the

Airy beam used here—about 50 mm for the main lobe). After another 1 cm of

propagation in air, its main spot (or “head”) is shifted along the vertical direction

(Fig. 1.30b2) in comparison with that right at the existing face of the crystal

(Fig. 1.30b1) due to the transverse acceleration. When a positive dc field of

4 � 104 V/m is applied, the Airy beam experiences a self-focusing nonlinearity

and reduces its overall size with most of its energy distributed to the four spots close

to theAiry head (Fig. 1.30c1). In this case, the nonlinearity seems to cause stagnation

Fig. 1.30 (a) Schematic of experimental setup. SLM spatial light modulator, SBN
strontium–barium niobate crystal. (b–d) Output intensity patterns of an Airy beam after 1 cm

through crystal (1st column) plus another 1 cm through air (2nd column) when (b) no nonlinearity,

(c) self-focusing and (d) self-defocusing nonlinearity is present. White dashed line marks the

“head” position of the Airy beam at crystal output. The 3rd column shows Fourier spectra of the

Airy beam corresponding to the 1st column)
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of Airy beam’s acceleration, and the subsequent free-space propagation shows that

the Airy beam is strongly deformed by the nonlinearity (Fig. 1.30c2). In addition, its

k-space spectrum is “focused” towards the center (Fig. 1.30c3) as compared to the

casewithout initial nonlinearity (Fig. 1.30b3), suggesting that theAiry beam exhibits

normal diffraction. By reversing the polarity of the bias field (to �4 � 104 V/m) so

that the Airy beam experiences a self-defocusing nonlinearity, its nonlinear output

(Fig. 1.30d1) and subsequent linear propagation (Fig. 1.30d2) behave dramatically

differently. The intensity profile of the Airy beam is less affected by the self-

defocusing nonlinearity, and the peak intensity of the Airy beam after subsequent

linear propagation in air is not decreased but rather increased while persistent in

its acceleration. Furthermore, the Fourier spectrum reshapes into four major spots in

k-space as shown in Fig. 1.30d3, resembling the Broullion zone (BZ) spectrum and

associated anomalous diffraction behavior in photonic lattices [66–68].

These experimental observations were corroborated with numerical simulations.

Propagation of an Airy beam in a biased photorefractive crystal can be described by

the following nonlinear Schr€odinger equation

@U

@z
¼ i

2k0n0

@2U

@x2
þ @2U

@y2

� �
þ ik0DnU; (1.43)

where U is the wave function, k0 is the vacuum wave vector, and n0 ¼ 2.3 is

the unperturbed refractive index. In the biased crystal, the nonlinearity for an

e-polarized beam can be determined by Dn ¼ �0.5n0
3g33E0/(1 + |U|2), in which

g33 ¼ 280 pm/V and E0 is the amplitude of the bias field. The wave function of

an input Airy beam can be expressed as U(x, y, z ¼ 0) ¼ U0Ai(X/x0) exp(aX/x0)
Ai(Y/y0) exp(aY/y0), where U0 is the amplitude, Ai denotes the Airy function, X
and Y are respectively equivalent to ðxþ yÞ= ffiffiffi

2
p

and �xþ yð Þ= ffiffiffi
2

p
, x0 and y0 are

constants governing the transverse size of the Airy beam, and again a is the decay

factor for the truncated beam profile.

Numerical simulations were performed by solving (1.43) with the split-step

beam propagation method (parameters U0, x0, and a are chosen as 7.3,

13.5 � 10�6, and 0.11, respectively). Numerical results corresponding to

Fig. 1.30(c1–c3) under the self-focusing initial nonlinearity (E0 ¼ +40 kV/m) are

shown in Fig. 1.31a–c. The propagation can be better visualized from the side-view

evolution as shown in Fig. 1.31d, where the dashed curve marks the path of the

same Airy beam without initial nonlinearity. Clearly, the acceleration is reduced or

lost as compared to the case without the nonlinear control. In Fig. 1.31e–f, we

plotted the transverse energy flow of the output beam corresponding to the areas

marked in Fig. 1.31a, b. Apparently, after initial nonlinear propagation, the direc-

tion of the energy flow goes towards all directions, suggesting that the phase (and

thus the acceleration) of the Airy beam is destroyed by the self-focusing nonline-

arity. This might be due to that nonlinear trapping and interaction among

waveguides induced by the lobes of the Airy beam destructed its phase relation.

38 Y. Hu et al.



Once the Airy beam is released into free-space, it behaves more like a confined

Gaussian beam, showing normal diffraction without evident acceleration.

With a reversed bias field of E0 ¼ �40 kV/m, i.e., under the self-defocusing

nonlinearity, our numerical results show that the Airy beam is somewhat expanded

at the beginning due to the self-defocusing nonlinearity but its shape is nearly

unchanged (Fig. 1.32a). In contrast to the self-focusing case, the Airy beam persists

in its intensity pattern and transverse acceleration during subsequent free-space

propagation (Fig. 1.32b, d). Furthermore, its power spectrum reshapes into a

diamond-like pattern and is concentrated unevenly on four spots (Fig. 1.32c),

resembling the first BZ [66] of an asymmetric square lattice. The energy-flow of

the Airy beam is also quite different from that in the self-focusing case, since the

Poynting vectors of the Airy beam line up towards the same direction around the

Airy “head” (Figs. 1.32e, f). Counterintuitively, the peak intensity of the main lobe

gets even stronger after subsequent linear propagation, as seen from the side-view

evolution (Fig. 1.32d). This phenomenon suggests that the Airy beam might experi-

ence anomalous diffraction after initial self-defocusing nonlinearity, akin to that

observed in photonic lattices [67, 68].

Indeed, if we zoom in the Airy-beam intensity pattern not far from the “head”, it

exhibits a square-like structure with nonuniform intensity distribution and lattice

spacing. Under a self-defocusing nonlinearity, the Airy beam induces an index distri-

bution akin to a nonuniform or chirped “backbone” lattice. This self-induced chirped

lattice could exhibit properties similar to uniformed photonic lattices [69], thereby

change the diffraction of the Airy beam. Using the BZ spectroscopy method [70, 71],

we calculated the BZ spectrum of the induced lattice and found that the lattice

Fig. 1.31 Numerical simulation of an Airy beam propagating under an initial self-focusing non-

linearity. (a, b) Transverse intensity patterns after (a) 1 cm through crystal plus (b) another 1 cm

through air. (c) Fourier spectrum of the output Airy beam. (d) Side-view of 2 cm-propagation,

where the dashed curve represents the trajectory of the Airy beam without initial nonlinearity.

(e, f ) Calculated transverse energy flow around the main lobe corresponding to the square area
shown in (a, b), respectively
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self-inducedby theAirybeam indeed shows aBZstructure [64].Thus, the principle for

anomalous diffraction observed here could be similar to that reported in [66, 68].

1.5.2 Nonlinear Generation and Control of Airy Beams

Airy beams are usually generated by using linear diffractive elements. Recently,

Arie’s group has proposed and demonstrated a method for nonlinear generation

(i.e., through a nonlinear process) of Airy beams [29]. Specifically, it was

done by a second harmonic generation (SHG) process through the design and

fabrication of an asymmetric quadratic nonlinear photonic structure. The asymmetric

structure induces a cubic phase front to the generated SHG output, whose Fourier

transform is an accelerating Airy beam. This nonlinear generation process enables

Airy beams to be obtained at new wavelengths. Indeed, frequency doubling of 1D

and 2D Airy beams in a periodically poled crystal has been achieved in their

experiment [72].

In addition, it was suggested theoretically that the generation of Airy beams

by nonlinear processes opens several possibilities for controlling and

manipulating these beams. As an example, the same group experimentally

demonstrated a method to control the relative intensity along the caustic of

nonlinearly generated Airy beams by controlling the phase matching conditions

of the nonlinear interaction via temperature tuning. By analyzing the interactions

in the Fourier space, they showed that the shaping of the beams is achieved by

having noncollinear interactions. Furthermore, they studied the possibilities for

Fig. 1.32 Numerical simulation of an Airy beam propagating under an initial self-defocusing

nonlinearity. Other description is the same as that for Fig. 1.31
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all optical control by changing the pump wavelength. This includes for example

nonlinear control of the beam acceleration direction, the wavelength of the output

Airy beam, and the location of the Airy beam peak intensity along the same

curved trajectory [73, 74].

1.5.3 Nonlinear Self-trapping of Airy-like Optical Beams

As discussed above, in practice, all nondiffracting Airy beams must be truncated, to

keep the energy finite. Such truncated beams eventually diffract and lose their

unique structure after long enough linear propagation. Thus, recently, research

efforts have also been devoted to identify nonlinear physical mechanisms that

could allow these highly localized wave packets to propagate in a true

diffraction-free manner, as in the case of optical spatial solitons [75, 76].

It is well known that self-focusing can counteract the effects of dispersion and

diffraction, leading to formation of optical solitons. Spatial soliton beams are usually

symmetric, due to the even (second-order) nature of diffraction, and the typical

nonlinear responses are local and conservative. However, more complex responses,

such as the gradient-sensitive diffusion nonlinearity, can lead to a whole different

class of instability and dynamics. In particular, it was suggested that highly asym-

metric nonlinear action such as diffusion nonlinearity experienced by an asymmetric

beam could lead to invariant propagation of the beam. The prospect of observing a

diffusion-trapped exponentially contained Airy wave packet in nonlinear

photorefractive media with diffusion nonlinearity was first proposed in [24].

Recently, Fleischer’s group has reported the experimental observation of self-

trapped Airy beams in a nonlinear medium. As opposed to screening or photovoltaic

spatial solitons [75] this new class of self-localized beams owes its existence to

carrier diffusion effects. The asymmetric action of two-wave mixing supports the

asymmetric intensity profile of the Airy states, with a balance that is independent of

the beam intensity. Furthermore, the self-trapped wave packets self-bend during

propagation at an acceleration rate that is independent of the thermal energy

associated with the diffusive nonlinearity. These results represent the first example

of Airy solitary-like wave formation using two-wave mixing [77].

Quite recently, Segev’s group has studied self-accelerating self-trapped beams in

nonlinear optical media, exhibiting self-focusing and self-defocusing Kerr and

saturable nonlinearities, as well as a quadratic response. In Kerr and saturable

media such beams are stable under self-defocusing and weak self-focusing, whereas

for strong self-focusing the beams off-shoot solitons while their main lobe

continues to accelerate. These self-trapped Airy-like accelerating beams in nonlin-

ear media propagate along parabolic trajectories and their existence curve of

nonlinear generation was derived [78].
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1.6 Proposed Applications

1.6.1 Optically Clearing Particles Using Airy Beams

Nondiffracting beams, such as the Bessel beam, Mathieu beam, and Airy beam, do

not spread as they propagate. This property is particular useful in many applications

include imaging, micromanipulation, and optical transfection.

Perhaps, one of the exciting applications of Airy beams is particle transportation

and clearing along the curved paths as proposed by Dholakia’s group [14]. They

employed micrometer-sized colloidal particles, although their experiment can be

extended directly to other chemical samples or even biological matter. As seen from

Fig. 1.9a, a 2D truncated Airy beam has the form of a main spot and a number of

side lobes whose intensity decays with increasing distance from the main spot,

which induces optical gradient forces dragging dielectric particles towards the main

spot. Then, these particles are guided along a projective trajectory as the Airy

beams propagate and accelerate transversely. In their experimental setup, a finite

Airy beam is used as a form of micrometer-sized “snowblower” at the bottom to

blow the particles upwards and sideways. Without any motion of the light field,

these samples are cleared towards the direction where the trajectory of the Airy

beams point to. Due to the self-healing property of the Airy beams, such optically

mediated particle clearing could be made more robust. The advanced “optical path

clearing (OPC)” method mediated with Airy beams was demonstrated in the

following work of Dholakia’s group [79]. Rotating multiple Airy beams were

used for clearing regions in a sample in a synchronized effort. The authors also

suggested that the improvement for both clearing performance and efficiency might

be achieved by utilizing dynamic multiple-step clearing approaches based on

multiple Airy beams operated according to a time-sharing protocol.

1.6.2 Generation of Curved Plasma Channels by Airy Beams

In early studies, the plasma channels generated by femtosecond laser pulse were

always along straight lines. Thus, conical radiation originating from straight

filaments at different longitudinal sections of the beam overlaps in the observation

plane, making the analysis of the emission more complicated. To solve this

problem, femtosecond laser beams with a transverse spatial pattern in the form of

a 2D Airy function were employed to write curved plasma channels by Moloney’s

group in collaboration with Christodoulides’ group. Broadband emission from

different longitudinal sections of the filament is therefore along angularly separated

paths, resulting in the spatial separation of this emission in the far field. This

technology has been successfully applied to different media: air and water, for

which, the self-focusing collapse of the beam to a singularity is respectively

arrested by plasma defocusing and the group-velocity dispersion [17, 18].
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1.6.3 Generation and Control of Plasmonic Airy Beams

Another exciting application of Airy beams is their possible use in routing

plasmonic energy. One-dimensional Airy beams have recently been introduced

theoretically by Christodoulides’ group into the field of plasmonics as the only

nondiffracting solution in the planar systems of metal interfaces [21]. The analysis

indicates that a new class of surface plasmons could be introduced that can freely

self-bend during propagation. Due to the strong confinement of surface plasmon

polaritons, the plasmonic Airy beams could be a promising candidate for

subwavelength beam manipulation and on-chip signal processing in the emerging

field of nanoplasmonics. Recently, Kivshar’s group has proposed theoretically

plasmonic Airy beam manipulation by means of linear potentials created by a

wedged metal–dielectric–metal structure with one titling metal plate. They showed

that the plasmonic Airy beam deflection could be enhanced, compensated, or even

reversed, while still maintaining the self-healing properties [80].

Quite recently, the race for experimental generation and control of plasmonic

Airy beams has accelerated, and there are at least three independent groups that

reported successful demonstration of Airy surface plasmons [81–83]. In these

studies, the observed Airy plasmons were excited on a metal–air interface using

specially designed diffraction grating by taking advantage of the subwavelength

confinement and localized propagation of tightly localized surface plasmon

polaritons. The propagation of Airy Plasmon along curved parabolic trajectories

was directly observed, together with their self-healing phenomenon after passing

through surface defects. In particular, it was shown that the ballistic motion of the

Airy plasmons could be reconfigured in real-time by either a computer addressed

spatial light modulator or mechanical means [81].

1.6.4 Optical Manipulation with Morphing Autofocusing
Airy Beams

Beam focusing has always been a subject of practical importance. For many

applications it is desirable to have a wavefront’s energy abruptly autofocused right

onto a target while maintaining a low intensity profile up until that point. This feature

could be useful, for example, in biomedical treatments and other nonlinear settings

such as optical filamentation. Lately, a new class of autofocusing waves, as men-

tioned in Sect. 1.2.5, based on Airy beams has been proposed [38, 39] and observed

[41, 42]. These field configurations rely on radially symmetric or circular Airy

beams, and they can be established entirely on linear effects, i.e., without invoking

any nonlinear self-focusing processes. In addition, a recent theoretical study has also

indicated that a superposition of Airy wavelets can asymptotically “morph” into

Bessel beams in their far-field [84].

Of particular interest is the potential application of these abruptly autofocusing

beams. One example is processing of a thick sample by laser ablation [41]. Another
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example is optical guiding of nonabsorbing microparticles [15]. In the latter exam-

ple demonstrated by Chen’s group, an abruptly autofocusing beam was sent into an

optical tweezers-like setting, where the particles were trapped and transported along

the autofocusing beam. It was suggested that the circular autofocusing Airy beam

might be used as a tapered channel guide for microparticles [15].

1.7 Summary

In this chapter, we provide an overview on self-accelerating Airy beams, their

generation, control, and potential applications. As mentioned, driven by both

fundamental interest and application potential, the number of research papers

dealing with optical Airy beams soared in the last a few years, accompanied with

new discoveries and surprising results. We envision that the research on self-

accelerating Airy beams will keep its accelerating momentum in years to come.
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Chapter 2

Advanced Integrated Photonics

in Doped Silica Glass

Marcello Ferrera, David Duchesne, L. Razzari, Marco Peccianti,

Alessia Pasquazi, Yong-Woo Park, Jose Azaña, Roberto Morandotti,

Brent E. Little, Sai T. Chu, and David J. Moss

2.1 Introduction

Broadband optical communication systems are rapidly becoming the key to overcome

the stringent limitations imposed by standard electronic telecommunication networks.

However, in order to complete the inevitable transition from electronics to photonics,
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several critical requirements must be addressed, including lowering energetic

demands, achieving higher efficiency, increasing bandwidth and flexibility, all within

a compact form factor [1–3]. In particular, it is broadly accepted that future photonic

devices must be CMOS compatible in order to exploit the existing silicon fabrication

technology that has been largely developed during the last 60 years [4–7]. Following

this idea, there has been a tremendous growth of hybrid optoelectronic technologies

that has not only responded to the need of lowering costs, but has also enabled on-chip

ultra-fast signal processing. However, these hybrid solutions are an intermediate step

to achieve the ambitious goal of an all-optical technology, which would bring together

the intrinsic benefit of lowering the production costs and simplifying future ultrafast

communication networks.

Nowadays, the demand to implement a multifunctional all-optical chip, which

could efficiently function as an optical frequency converter [8, 9], signal regenera-

tor [10, 11], multiplexer [12–14], as well as for routing and switching optical

signals [4, 12], is growing rapidly. The preference for optical networks over

electronic ones originates from certain fundamental advantages. First, the optical

operational bandwidth is much larger; secondly, the extremely low loss provided by

modern standard fibers ensures that an optical signal (with a ~THz bit rate) can be

transmitted for more than a hundred kilometers without the need of being

“refreshed” or amplified. Optical systems also provide a greater resistance to

electromagnetic interference and offer low-cost maintenance [15].

However, photonics is also affected by peculiar drawbacks and limitations, as is

any other kind of technology. For instance, bending losses become extremely high

in fibers for chip-scale size bends (�1 cm), limiting the integrability of fibers for

optical networks. Moreover, their weak nonlinearity limits the practical realization

(i.e., due to the additional constraints in terms of low power signals and short

propagation lengths) of some fundamental operations requiring nonlinear optical

phenomena, such as frequency conversion, pulse compression, etc. [16]. A typical

example of a fundamental problem in modern optical communication networks is

the Optical-to-Electrical-to-Optical (OEO) signal decoding. Substantially, it

consists of a wavelength remapping protocol that is necessary in an optic telecom-

munication network whenever we must route a data stream from a channel to

another with a different optical frequency carrier. This operation is becoming

increasingly fundamental in today’s long distance lines, and because of the absence

in the market of an all-optical frequency converter, it is normally performed by

means of an OEO transducer. This equipment operates the necessary I/O wave-

length conversion by first converting the input optical signal into an electric one,

and then encoding the obtained information into an optical output at a different

frequency. Today, one of the main reasons limiting the wide spread of optical and

optoelectronic technologies in modern telecommunications systems is the high cost

required for converting data from the optical domain to the electric one and vice

versa. Intuitively, the solution to this fundamental problem can be addressed by

looking into the domain of nonlinear optics. In fact, only nonlinear processes can be

responsible for phenomena such as the spectral broadening of an optical pulse or the

frequency conversion. It is equally important to note however, that not all of

the operations required for low-cost integrated optical telecommunications systems
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can be satisfied with nonlinear optics. Whereas frequency conversion seems the

natural choice to eliminate OEO conversions, certain key devices such as logical

memories, as well as analog and logic functionality, still need to be developed in the

optical domain, where linear optics may pose as a better solution. Several alterna-

tive material platforms have been developed for photonic integrated circuits (PICs)

[1, 2, 17, 18], including semiconductors such as AlGaAs, silicon, and silicon-on-

insulator (SOI) [3, 5, 17, 19], as well as nonlinear glasses such as chalcogenides

[20], silicon oxynitride [21], and bismuth oxides [2, 22, 23]. In addition, exotic and

novel manufacturing processes have also led to new and promising structures in

these materials and in regular silica fibers. Photonic crystals [24–26], optical

cavities [27], and nanowires [28, 29], all make use of a tight light confinement to

enhance nonlinearities, and allow for submillimeter photonic chips.

Despite the abundance of alternatives, none of the developed material platforms

can simultaneously address all the requirements that a multifunctional CMOS com-

patible all-optical chip should possess. In fact, many nonlinear platforms require

power levels that largely exceed the limit for commercial applications, whereas others

have limiting factors such as saturation due to multiphoton absorption. Moreover, in

certain cases the fabrication technology is simply not sufficiently advanced, resulting

in a severe linear attenuation and an incomplete CMOS compatibility.

It is in response to these issues and limitations, that a new high-index doped

silica glass platform was developed in 2003 by Little Optics [30]. This material,

named Hydex®, combines the best qualities of single-mode fibers (SMFs), namely

low propagation losses, absence of multiphoton absorption, and a robust fabrication

technology, with those of semiconductor materials, such as tight bending radii and

higher nonlinearities. This chapter primarily describes this new material platform,

through the characterization of its linear and nonlinear properties. Our primary goal

is to show important results suitable for a broad set of fundamental all-optical

operations such as the generation of ultra-narrow linewidth and multiple wave-

length sources, supercontinuum generation (SCG), optical pulse compression, time

duration measurement of subpicosecond pulses, and ultrafast optical integration.

Most of these applications make use of very important nonlinear effects and it is

for this reason that this chapter is mainly focused on materials and applications for

nonlinear optics. In the following sections, we present an overview of concurrent

alternative material platforms and photonic structures, discussing their advantages

and limitations. Subsequently, we review some fundamental theoretical concepts

strictly linked with the reported experiments.

2.2 Alternative Material Platforms in Integrated Photonics

2.2.1 Semiconductor Nonlinear Photonics

The most basic component for optical telecommunications systems is the optical

waveguide, which can serve the dual purpose of transporting and modifying the

properties of the light propagating within it. The basic principle for guiding light is
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total internal reflection, which can occur when light propagates in a higher index

core material (nc) that is surrounded by a cladding region of lower index (ns).
The core refractive index (nc) and the index contrast (Dn ¼ nc � ns) are nor-

mally used to describe the linear properties of the optical waveguide. In addition,

these two basic parameters can also provide a rough estimate of the nonlinear

properties of the structure.

To explain this, let us consider the material polarization P(o) as a function of the
electric field E(o)

PðoÞ ¼ e0½wð1ÞðoÞ � EðoÞ þ wð2Þð�o : oi;ojÞ : EðoiÞEðojÞ

þ wð3Þð�o : oi;oj;okÞ..
.
EðoiÞEðojÞEðokÞ þ � � ��;

¼ e0½wð1ÞðoÞ � EðoÞ� þ PNLðoÞ; (2.1)

where w(i) for i ¼ 1, 2, 3, . . . , indicates the ith order susceptibility tensor of rank

i + 1, PNL(o) is the nonlinear polarization term, e0 is the free space permittivity, o
is the (angular) frequency and the notation: E(oi)E(oj);⋮E(oi)E(oj)E(ok);

indicates tensorial products of the fields [31].

Through Miller’s rule [32], it is possible to approximately express the nonlinear

susceptibilities as a function of the linear susceptibility, w(1), which is in turn directly
linked to the material refractive index. This in part explains why high index

materials are normally associated with having a good nonlinear performance.

For example, in typical semiconductors, the nonlinear Kerr coefficient n2 takes on
a series of remarkable values ranging from ~10�18 to 10�17 m2/W (with a core

refractive index nc > 3; e.g., ~3.5 for Si and ~3.3 GaAs). For comparison, fused

silica (nc ¼ 1.45) possesses an n2 ~ 2.6 � 10�20 m2/W. On the other hand, the

index contrast is the main parameter that estimates the effective area of a

propagating mode in a waveguide and consequently, a large index contrast leads

to a more confined mode and thus higher nonlinearities (which typically scale with

the power density, or intensity, of an optical beam). III–V semiconductors, such as

silicon and AlGaAs, are thus extremely interesting photonic platforms for both

linear and nonlinear applications, since they possess both a large index of refraction

at the telecommunication wavelength (l ¼ 1.55 mm) and a mature waveguide

fabrication technology allowing for submicron structures with a high index contrast.

This chapter deals primarily with third order nonlinear phenomena that are

related to the w(3) tensor (see (2.1)), as this is the lowest order nonlinearity in

centrosymmetric media (such as glasses) where w(2) ¼ 0. The strength of these

third-order nonlinear interactions can be estimated through the nonlinear parameter

g ¼ n2o/cAeff [16], where n2 is the nonlinear Kerr coefficient determined solely

from the material properties, o is the angular frequency of light, c is the speed of

light in vacuum, and Aeff the effective area of the mode.

Taking this into account, there are three basic strategies to enhance nonlinear

effects in optical devices: (1) selecting a material with a high value of n2, (2)
exploiting low-loss and long structures, and/or (3) fabricating structures that allow

for tight modal confinement. In III–V semiconductors, long structures are typically
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not favorable as the propagation losses are typically too high. However, their

well-developed fabrication processes do allow for channel or ridge waveguides

open to air with a large index contrast, producing modal effective areas below

1 mm2, see Fig. 2.1. Combined with their strong nonlinear coefficient, this can lead to

extremely high values of g exceeding 200,000 W�1 km�1 [10, 29, 33] (to be

compared with SMFs which have g ~ 1 W�1 km�1 [16]).

These optimal nonlinear features have been extensively used to demonstrate

several nonlinear applications for telecommunications, including all-optical regen-

eration via four-wave mixing (FWM) and self-phase modulation (SPM) [10, 34],

frequency conversion [8, 9, 35], and Raman amplification [36].

However, despite the high nonlinearity of III–V semiconductors, major

limitations still prevent the implementation of these materials for the fabrication

of future integrated devices for optical networks. Their high dispersion at telecom-

munication wavelengths, which is a consequence of being near the band gap of the

material, drastically limits the usable length of a guiding structure. Whereas both Si

and AlGaAs allow for engineering the waveguide dispersion, creating an effective

quasi zero-dispersion window in the spectral region of interest, this in turn requires

subwavelength waveguides in which the intensity mode profile extends over the

waveguide boundaries along the etched sidewalls. As a result, a high degree of

optical scattering is experienced by the light beam, thus causing high propagation

losses of the order of 10 dB/cm for AlGaAs [38–40], and ~1 dB/cm for SOI [8].

In addition, although reducing the modal area enhances the nonlinear properties of

the waveguide, it also drastically reduces the fiber-to-waveguide coupling. This

leads to high insertion losses, which can be overcome only by using either expensive

amplifiers at the output, or complicated tapers at the input. This latter solution often

requires a multistep etching processes [41] (SOI waveguides make use of state-of-

the-art single etch inverse tapers which limits the insertion losses to approximately

5 dB [8, 42]), in turn consistently increasing the device fabrication complexity.

Fig. 2.1 Inverted nano-taper (80 nm in width) for an AlGaAs waveguide (left) and a silicon-free

standing nanowire defined by high-resolution, low-energy electron-beam lithography (the pictures

are taken from [37] and H. Lorenz nanophysics group report, http://www.nano.physik.uni-

muenchen.de/, respectively). These images exemplify the advanced fabrication processes behind

AlGaAs and silicon
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Finally, another factor that limits semiconductor applicability in nonlinear optics

is multiphoton absorption and specifically two-photon absorption (TPA). This effect

consists in the excitation of electrons from the valence band to the conduction band

via the successive absorption of two (or more) photons, mediated via a virtual state.

This undesirable effect leads to a saturation of the transmitted power and conse-

quently limits the nonlinear performance of the device. Hence, the intrinsic nonlinear

figure of merit for semiconductors, defined as FOM ¼ n2/a2l (where a2 is the TPA
coefficient), is particularly low [43]. In addition, another contribution to nonlinear

losses results from multiphoton-induced free carrier absorption [29, 44, 45].

2.2.2 Nonlinear Glasses

For applications in integrated nonlinear optics, the principal competitors to

semiconductors are nonlinear glasses. Throughout the last decade, a great technical

and scientific effort has been dedicated to the development and the characterization of

different families of highly nonlinear glasses, including chalcogenides, silicon

oxynitride, and bismuth oxides [2, 22, 23, 46]. Amongst these, chalcogenide glasses

have shown optimal results mainly due to their high nonlinear refractive index.

However, although these glasses have been largely studied, their fabrication process

is still quite problematic [47, 48] and not compatiblewith standardCMOS technology.

In addition, they also suffer from other issues such as photosensitivity to intense light,

low hardness, and high thermal expansion coefficients, which make the realization of

commercial chalcogenide optical devices problematic [49]. In addition, most of these

glasses typically have a low FOM [50] due to nonlinear absorption. Whereas other

high-index glasses, such as silicon oxynitride, have negligible nonlinear absorption

(i.e., a virtually infinite figure of merit), they unfortunately also typically require high

temperature annealing to reduce propagation losses, thereby rendering the entire

fabrication process incompatible with CMOS processes.

As anticipated in Sect. 2.1, the material at the center of this chapter is a high-

index doped silica glass called Hydex® [30], which can be viewed as an ideal

compromise between the excellent linear properties of optical fibers (low linear

losses, absence of nonlinear losses, weak dispersion) and that of semiconductors

(high nonlinearity, tight field confinement, small bending radii). Films are first

deposited by using standard chemical vapor deposition. Subsequently, waveguides

are formed using photolithography and reactive ion etching, producing waveguide

sidewalls with exceptional smoothness. The waveguides are then buried in standard

fused silica glass, making the entire fabrication process CMOS compatible without

any need for high temperature annealing. The typical waveguide cross section is

1.45 � 1.5 mm2 as shown in Fig. 2.2. The linear index at l ¼ 1.55 mm is 1.7, and

propagation losses have been shown to be as low as 0.06 dB/cm [51, 52].

In addition, fiber pigtails have been designed for coupling to and from Hydex

waveguides, with coupling losses of the order of 1.5 dB. The linear properties of

this material platform have already been exploited to achieve filters with >80 dB

extinction ratios [53], as well as optical sensors for biomolecules [54].
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In the following section, we present the fundamental theory required to understand

the subsequent experiments described in this chapter. It will be shown that this

material platform can be used to fabricate state-of-the-art resonant structures capable

of producing remarkable nonlinear effects at very low power levels.

2.3 Nonlinear Phenomena: Fundamentals

2.3.1 Nonlinear Light-Matter Interaction

Nonlinear optics is the study of phenomena that occurs as a consequence of an intense

light-matter interaction.Whenever the electric field, associated to a propagating wave,

is strong enough, the corresponding restoring potential of the electrons is an harmonic,

and the material response (i.e., the specific physical quantity under investigation)

depends in a nonlinear manner on the strength of the optical field.

Generally speaking, the broad family of nonlinear processes can be divided into two

main categories which are the parametric and the nonparametric phenomena.

A parametric process implies that the initial and the final quantum-mechanical state

of the system are identical. In this way, parametric processes are mediated via virtual

quantumlevelswhere anelectron canbeexcited for averybrief durationonly (related to

the uncertainty principle). In thisway, the photon energy is conserved since no phonons

are involved in the process. Common parametric phenomena include w(2) processes
such as sumanddifference frequencygeneration, secondharmonic generation, etc., and

w(3) phenomena such as third harmonic generation andFWM.Conversely,multiphoton

absorption and Raman scattering are examples of nonparametric processes.

Fig. 2.2 Hydex waveguide overview. Scanning electron microscopy picture of the high-index

glass waveguide prior to the upper SiO2 deposition (left), and electromagnetic field distribution of

the fundamental mode (right)
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The nonlinear interaction between light and matter can be described using the

nonlinear polarization introduced in (2.1). Making use of Maxwell’s equation, one

can show that the evolution of the electric field distribution E, in a waveguide

made by locally isotropic and homogenous materials, is given by:

r2EðoÞ þ o2

c2
eðoÞEðoÞ þ o2e�1

0

c2
PNLðoÞ ¼ 0; (2.2)

where e is the space-dependent permittivity defining the waveguide. For a third-

order nonlinearity, the most general representation of PNL is given by the interac-

tion of four waves centered at different frequencies:

E ¼
X4
m¼1

Amðz; tÞFmðx; yÞ expðiomt� ibmzÞ þ c:c; (2.3)

where we have explicitly assumed four waveguide modes of (angular) frequency

om, propagation constant bm, vectorial modal (spatial transverse) distribution Fm,

and envelope Am. More generally, the modal distribution can be allowed to depend

on the time t and propagation distance z, although this is only necessary for ultra-

short pulses and/or extreme nonlinear propagation.

The mathematical evaluation of the tensorial product of the nonlinear polarization

involves 1944 complex elements, which can lead to a quite daunting analysis.

Fortunately, symmetry properties, approximations, and phase matching requirements

can reduce this to a simple number of terms. Specifically for the purposes of this

chapter, the resultant generalized nonlinear Schr€odinger (GNLS) propagation

equations are given by:

@Am

@z
þ am

2
Am þ b1;m

@Am

@t
þ i

b2;m
2

@2Am

@t2
þ HOD

¼

� a2;m
2Aeff

Amj j2Am � HOL

�g
1

om

@

@t
Amj j2Am þ iTRAm

@

@t
Amj j2

� �
þMIX

þig Amj j2 þ 2
X

p 6¼m
Ap

�� ��2� �
Am

þ2igA�
2A3A4 exp iDbzð Þ

8>>>>>>>>>><
>>>>>>>>>>:

(2.4)

Here, the pulse envelope Am has been normalized such that |Am|
2 represents the

power propagating in the waveguide of beam m, a1,m is the linear loss, b1,m is

the inverse of the pulse group velocity, b2,m is the group velocity dispersion, and the

last term HOD represents higher order dispersion terms that become important for

ultra-short pulses.
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The terms on the right of (2.4) are a result of the nonlinear polarization. They are

dominated by the nonlinear parameter given by g ¼ n2o/cAeff ¼ 3Re(w(3))m0om/

(4nm
2Aeff), where nm is the effective index of the mode. The modal effective area is

defined by the vectorial overlap of the mode profiles:

Aeff ¼

ÐÐ
1

Fmj j2dx dy
� �2

Ð Ð
WG

Fmj j4dx dy : (2.5)

The modal profiles and the dispersion parameters are obtained by solving the

linear continuous wave version of Maxwell’s equations:

r2Fm þ o2
mem
c2e0

Fm ¼ b2mFm: (2.6)

Returning to the right-hand side of (2.4), the first term a2,m is the TPA coefficient

(related to the imaginary part of w(3)), whereas HOL refers to higher order losses

from higher order multiphoton absorption terms (e.g., three- and four-photon

absorption). The second line on the right side is proportional to the change in time

of the nonlinearity. In particular, the first term accounts for self-steepening, whereas

the second is the Raman effect, caused by the noninstantaneous nature of the

material nonlinearity (Raman response time TR). The label “MIX” represents cross

terms amongst the various input and generated beams arising from the Raman and

self-steepening effects.We do not express these terms explicitly here as they will not

be significant for any of the experiments reported further below. The third line are

self-phase and cross-phase modulation terms, whereas the last line (explicitly

expressed here for wave m ¼ 1; the other m ¼ 2, 3, and 4 components have a

very similar form) is a specific FWM interaction requiring the phase matching

Db ¼ b4 + b3 � b2 � b1 for o1 + o2 ¼ o3 + o4. Other frequency mixing terms

have been neglected on the assumption of this specific phase matching.

It is important to note that a number of approximations have been made to arrive

at (2.4). Specifically, these relations hold for a glass material system where the

modal profiles (Fm) of the interacting beams have a similar spatial electric field

distribution (i.e., F1 � F2 � F3 � F4). We have also employed the slowly varying

envelope approximation thus requiring pulses to be longer than a few cycles.

As will be shown through the various experiments described below, the GNLS

takes a much simpler form in most experiments. In particular for the Hydex

waveguides described in this chapter, nonlinear losses can be completely neglected,

as verified experimentally in transmission experiments. This is a consequence of the

very large bandgap of glass systems. The absence of multiphoton absorption (for all

power levels used in the experiments reported) is extremely important, as these

nonlinear losses lead to saturation of the total induced nonlinearity, which has been

reported to limit several nonlinear applications in semiconductors [45].
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To conclude this section, it is important to note that most nonlinear effects

scale with three important parameters: the intensity, the waveguide length, and the

nonlinearity (material value of w(3)). In most applications we seek to minimize

the energetic input and maximize the nonlinear effects, as such the only way to

increase the intensity is by minimizing the area of the mode (or increasing the modal

confinement). The notion to research nonlinear optics in a glass material systemmay

at first appear counter-productive; silicon waveguides provide a much smaller mode

area, a much larger material nonlinearity, and a good fabrication process which

allows long waveguides to be formed. However, a combination of nonlinear losses

and residual linear losses (on the order of ~1 dB/cm) prevents highly nonlinear

devices. Apart from the absence of nonlinear losses, Hydex waveguides also provide

exceptionally low linear losses, thereby allowing for resonant or long winding

structures (recall that the intensity decays as exp(�az) and it can be shown that

this leads to an effective maximum length of the order of a�1 for nonlinear effects).

2.4 Ultra-narrow Linewidth and Multiple-Wavelength

Integrated Optical Sources

2.4.1 Enhanced Nonlinearities in Integrated Photonic Cavities

Advances in fabrication processes and technologies have allowed for the fabrication

of complex integrated structures capable of locally enhancing optical nonlinearities.

Amongst these we can list optical cavities such as micro-spheres, toroids, disks, and

rings [55–60], and other optical components such as photonic crystals [61, 62]

and spiral waveguides [51, 63, 64]. These devices exploit various strategies to

maximize the nonlinear interactions. In particular, micro-cavities take advantage

of constructive interference to boost the local intensity and hence the nonlinearities;

on the other hand, photonic crystals can rely on an exceptionally high “engineered”

refractive index permitting a tight field confinement and 90	 bends, while spiral

waveguides simply tend to reduce the on-chip occupancy of the device while

simultaneously building up an important nonlinearity through a long optical path.

Resonators in particular have found a very broad range of applications in optics,

including high-order filters [53], parametric lasers [65, 66], frequency converters

[52, 55, 67], entangled photon sources [68, 69], and frequency comb generators

[70]. As it will be subsequently detailed, the significant advantage of these

structures is that, at resonant frequencies, a low input optical power can lead to

enormous nonlinear effects due to the field enhancement provided by the cavity.

The four-port micro-ring resonator used in several experiments in this chapter is

portrayed in Fig. 2.3. The waveguide cross-section (of the ring and bus) is shown in

Fig. 2.2. Light is normally coupled from the input (bus) waveguide into the ring

structure via vertical evanescent field coupling [71]. Light circulating inside the

resonator is attenuated by the propagation losses and the ring-to-bus coupling
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(two locations), whereas net gain is simultaneously obtained from an external light

source that is coupled from the input bus waveguides to the ring. By using a direct

analogy with a standard Fabry-Perot cavity, where the reflectivity of the mirrors has

been replaced with the transmission across the bus waveguides, or with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Kij j2

q
where K1 and K2 are the field coupling coefficients, it is possible to calculate the

beam intensity inside the resonator as a function of the angular frequency o:

Ires ¼ Imax

ð1þ gsin2ðo=ð2FSRÞÞÞ ; (2.7)

where

Imax ¼ I0
K1j j2

ð1� rÞ2 ; (2.8)

Fig. 2.3 (Top) Hydex micro-ring resonator scheme where the evanescent coupling coefficients

(K1, K2) are represented. (Bottom) Intensity profile as a function of frequency for a wave

propagating inside the ring (red curve), together with the theoretical transmission curves evaluated

at the Drop (blue curve) and the Through port (green curve), respectively. The simulation assumes

a FSR of 300 GHz, a Q of 6,863, and losses of a ¼ 0.1/L (input port excited)
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g ¼ 4r

ð1� rÞ2 ; (2.9)

FSR ¼ c

nL
; (2.10)

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� K1j j2Þð1� K2j j2Þ

q
exp �aL=2ð Þ; (2.11)

are the maximum intensity inside the cavity, the coefficient of finesse (not to be

confused with the Finesse itself), the free spectral range (FSR) and the round trip

amplitude attenuation factor, respectively (I0 is the intensity of the input wave in

the bus waveguide). Moreover, L is the circumference of the ring resonator, n is the
effective refractive index of the structure, and a is (as previously defined) the linear
propagation loss coefficient. The optical intensity spectrum inside such a resonator

is presented in Fig. 2.3 (red curve), where we can identify the FSR (which is

the frequency distance between adjacent resonances) and the linewidth of the

resonance DfFWHM (the full width at half maximum of a resonance peak). The

resonances occur at frequencies fres ¼ mc/nL (equally spaced if dispersion is

negligible), according to the condition of constructive interference inside the

cavity, where m is an integer.

In the same image we have also plotted the intensity transmission curves for the

waves detected at the Drop (blue curve) and Through (green curve) output

channels, respectively. The ratio between the light intensity inside the ring and

that injected in the bus waveguides can be an extremely large value under resonance

condition. This effect leads to a drastic increase of the nonlinear effects inside a

low-loss resonator. The quality factor Q and the so-called finesse F of a resonator

are two important parameters that can be used to quantify this increase, and they are

respectively defined by:

Q ¼ f0
DfFWHM

; (2.12)

F ¼ FSR

DfFWHM
: (2.13)

The quality factor can be proved to be proportional to the ratio between the

energy stored in the resonator to the energy dissipated for each round trip inside the

resonator. In the next paragraph, we see that a high Q factor is extremely important

for the enhancement of nonlinear effects.
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2.4.2 Nonlinear Wavelength Conversion in Integrated
Silica Glass Resonators

The possibility of forming high-quality factor resonators primarily depends on the

technological advancement of the fabrication processes. In particular, in order to

have a high-quality factor micro-ring resonator, low propagation and radiative

losses are essential, as well as a weak coupling coefficient between the bus

waveguide and the cavity itself. The high-index doped silica glass ring resonator

discussed in this chapter meets all these criteria, with propagation losses as low as

0.06 dB/cm, and negligible bending losses for radii down to 30 mm [30, 52]. High-Q
resonators are ideal for applications such as narrow linewidth, multiple-wavelength

sources, as shown in this section.

Here, we report on all-optical wavelength conversion via FWM by using a

four-port Hydex micro-ring with a quality factor of 1,200,000, a FSR of

200 GHz, and a radius of 135 mm. Together with its negligible nonlinear absorption

and CMOS compatible fabrication process, this resonator is optimal for integrated

all-optical wavelength conversion.

The FWM we study involves the generation of a new “idler” wavelength by

simultaneously using two different CW sources: a low power signal and a higher

power pump. The quantum interaction amongst the photons is shown in Fig. 2.4

and is called semi-degenerate since two of the photons involved have the same

frequency. For CW excitation, (2.4) predicts the following evolution equations:

@Ap

@z
þ ap

2
Ap ¼ ig Ap

�� ��2Ap þ 2igA�
pAsAi expðiDbzÞ; (2.14a)

@As

@z
þ as

2
As ¼ 2ig Ap

�� ��2As þ 2igA2
pA

�
i expð�iDbzÞ; (2.14b)

Fig. 2.4 Semi-degenerate four-wave mixing (FWM)
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@Ai

@z
þ ai

2
Ai ¼ 2ig Ap

�� ��2Ai þ 2igA2
pA

�
s expð�iDbzÞ; (2.14c)

where the subscripts “p,” “s,” and “i” refer to the pump, signal, and idler, respec-

tively. All temporal phenomena drop out of the equations due to the CW nature of

the beams, and we neglected some cross-phase modulation terms based on the

assumption that the power of the pump beam, Pp, is much greater than that of either

the signal or idler, Pp 
 Ps, Pi. The phase matching term is given by Db ¼ 2bp +
bs � bi and the frequencies are related through 2op ¼ os + oi.

Considering a steady state inside the resonator (i.e., once the cavity is fully

loaded), the above system of equations can be solved in the undepleted pump

regime assuming a small signal gain. Specifically, given no input idler beam, we

find that the wavelength conversion efficiency is given by:

� � Pi�out

Ps�in

¼ g2P2
p�inL

2
effr

4; (2.15)

L2eff ¼ L2 expð�aLÞ 1� exp �aLþ iDbLð Þ
aL� iDbL

����
����
2

; (2.16)

where we made the hypothesis that the propagation losses of all three beams were

identical. There are several important factors in the above solution. First, the net

wavelength conversion efficiency is quadratic with the pump power and also scales

with the nonlinear parameter squared. This is as expected for third order nonlinear

interactions.Moreover, the process scales with the effective length, Leff, andwith the
resonator enhancement factor r to the fourth power. This enhancement factor (r4)
for the Hydex high-Q resonator has been theoretically calculated to be as high as

1010. This extremely impressive factor results from a combination of low propaga-

tion losses and a careful cavity design with very small coupling coefficients. If we

assume a low loss propagation regime, the resonator enhancement factor r can

be rewritten in terms of the cavity finesse and/or the Q factor as [52]:

r � F

p
¼ FSR

f0
� Q
p
: (2.17)

This relation unequivocally explains why high finesse and high quality factor

cavities are so widely used in nonlinear optics in order to enhance the efficiency of

wavelength conversion processes.

From (2.16), we see that another limiting factor is the effective length. Indeed, if

we assume perfect phase matching, the effective length reduces to

Leff ¼ a�1 exp �aL=2ð Þ 1� exp �aLð Þð Þ, which for high losses decays exponentially
as function of L, thereby severely affecting the wavelength conversion process.

Wavelength conversion in the high quality factor Hydex micro-ring resonator

was examined experimentally. The set-up used for the semi-degenerate FWM
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experiments is depicted in Fig. 2.5, and consists of two CW lasers, two polarizers, a

power meter, and a spectrometer. A Peltier cell is also used in order to stabilize the

temperature of the device from thermal fluctuations in the lab. A linear characteri-

zation, performed by simply recording the output power at the Drop port (input port

excited), allowed us to identify the resonances and the ring parameters (Q factor,

FSR) as shown in Fig. 2.6.

For the nonlinear frequency mixing experiment, the wavelength of the pump

laser was tuned to a ring resonance while a second laser, tuned to a different

resonance, stimulated the conversion process. Figure 2.7 summarizes the results

of two different FWM experiments where the pump and signal lasers are tuned to

adjacent resonances, and to two resonances spaced six FSRs apart from each other.

In both cases, the internal conversion efficiency was estimated to be �26 dB with

only 8.8 mW of input power and 1.25 mW of signal power (according to 2.15, and

quoting the wave powers inside the bus waveguide). The onset of cascaded FWM

Fig. 2.6 Input-Drop response of the micro-ring resonator (left) and zoom of a representative

transverse electric (TE) resonance around 1,549 nm (right)

Fig. 2.5 Experimental set-up used to characterize the ring resonator and to measure the generated

idler via FWM. Two tunable fiber CW lasers are used, one at the Input port and another at the

Add port, whose polarizations are both set with inline fiber polarization controllers to match

the ring resonances. The output spectrum and power are collected at the Drop and Through ports.

A temperature controller is used to regulate the temperature of the device
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can also be observed whereby the pump and first idler interact to generate the third

idler or where the second idler mixes with the signal wave to generate the fourth

idler (red dashed circle in Fig. 2.7a).

This results are in part due to the relatively large (experimentally calculated) g
factor of 220 W�1 km�1 [51], as compared to SMFs ~1 W�1 km�1, and, more

importantly, due to the low losses, resulting in a large intensity enhancement factor,

which is orders of magnitude higher than in semiconductors, where losses are

typically the limiting factor [8, 38]. Recent results in SOI have also shown impressive,

and slightly higher, conversion efficiencies using CW power levels. However, as can

be seen in [8], saturation due to free carrier absorption via TPA limits the overall

process, whereas in silica-dopedHydex glass it has been shown [51] that no saturation

effects occur for up tomore than 25GW/cm2 of intensity (note that the pump intensity

in the ring is only ~0.08 GW/cm2 at resonance for 5 mW of input power).

Another critical parameter that was required to achieve these results was phase

matching. Whereas all resonator modes automatically satisfy the phase matching

relation, there is no guarantee that the generated idler wave is at a resonant

Fig. 2.7 FWM experimental results for pump and signal wavelengths tuned to adjacent

resonances for the TE mode (200 GHz) (upper plot) and six resonances apart (~1.2 THz) for the

TM mode (lower plot). The third and fourth idlers in the upper plot demonstrate the onset of

cascaded FWM
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frequency. Indeed, energy conservation dictates the output frequency of the

FWM process to beoi ¼ 2op � os. This frequency will only be aligned to a cavity

resonance provided that the dispersion in the overall resonator is negligible

(see Fig. 2.8—left). The dispersion in this system was evaluated by measuring the

frequency dependence of the FSR, from which the propagation constant was

extracted and fit to a fourth order polynomial (i.e., dispersion parameters up to b4)
as can be seen in Fig. 2.9 [67]. The dispersion is extremely close to 0 in most of the

C-band, and thus allowed for phase matching in our experiments.

Fig. 2.8 Group velocity dispersion (i.e., b2) of the resonator obtained by fitting the experimentally

measured resonance frequencies. The fit includes dispersion terms up to fourth order and it is

performed for both the TE (red curve) and TM (blue curve) modes

Fig. 2.9 Phase matching diagram associated to FWM in a micro-ring resonator. Explicative

scheme of the idler detuning resonance due to dispersion (left). Plot of the idler detuning Dnidler
as a function of both the signal-to-pump frequency distance Dn and the pump frequency (right).
The regions in white are areas where FWM is not possible, whereas the colored regions denote

possible FWM with the color indicating the degree of frequency mismatch (black implies perfect

phase matching)
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Moreover, this dispersion data can be used to predict the maximum bandwidth

over which FWM is observable. This is obtained by considering that the generated

idler frequency must be within the line width of the closest resonance:

Doi ¼ oi � oresj j<DoFWHM=2; (2.18)

where oi, ores, and Doi are the idler frequency obtained from energy conservation,

the closest ring resonance to the idler, and the correspondent idler detuning, respec-

tively. Whenever this condition is satisfied, the generated idler is within the band-

width of the resonance, phase matching is fulfilled, and FWM is experimentally

achievable [67]. In Fig. 2.8 (right), we plot the above defined frequency shift (note

Dnidler ¼ Do/2p) as a function of the signal to pump frequency distance Dn ¼ (op

� os)/2p at a given pump frequency. The region in white represents lack of phase

matching; whereas the colored region represents possible FWM (black implies

perfect phase matching). The curvature in the plot is a result of high order dispersive

terms. It can be seen that FWM can be accomplished in the vicinity of the zero

dispersion point (see Fig. 2.8—right) up to �10 THz (80 nm) away from the pump.

This extraordinary result comes from the low dispersion of the resonator, which

permits appreciable phase matching over a broad bandwidth at low power. At higher

input powers the net phase mismatch also contains a term proportional to the pump

power; a result of cross-phase modulation. It can be shown that the gain bandwidth

increases with pump power for an anomalous dispersion regime [16].

2.4.3 Optical Hyper-parametric Oscillator

The previous section demonstrated the effectiveness of Hydex resonators for

nonlinear optical applications through an experiment of semi-degenerate FWM.

Frequency conversion was obtained using a pump and a signal wave, the latter

being used to stimulate (or seed) the process. However, use of this signal laser is not

mandatory, but allows for an increased efficiency, while simultaneously allowing

the possibility to tune the idler wave in a broad frequency range.

In this subchapter, we exploit hyper-parametric gain to achieve a fully integrated

CMOS compatible multiple wavelength source. By resonantly pumping a single

CW light source in our high-Q (1.2 million) micro-ring resonator, we achieve

parametric oscillation of multiple lines over a very broad (>200 nm) spectral range.

When only the pump photons are present, we call the FWM process spontane-

ous. Effectively, the photons necessary to complete the transition displayed in

Fig. 2.4 are supplied by the quantum vacuum. The vast difference between seeded

and spontaneous FWM is that the vacuum is broadband, leading to broadband

wavelength conversion. However, as (2.4) shows, the idler power depends on the

signal power (vacuum here) which is inherently low.

Notwithstanding this, in a resonator this small gain, proportional to the pump

power, can be large enough to overcome the losses within the cavity. In this case,
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oscillation can occur whereby a pair of idlers (to be identified with the signal and

idler of the previous section) can grow out of vacuum via self-seeded parametric

gain. A device capable of achieving this is called an optical hyper-parametric

oscillator (OHPO).

A parametric oscillator is quite similar to a laser in which we have substituted the

active medium with a nonlinear material [72, 73]. In a laser the stimulated emission

stems from the passage of electrons from a higher to a lower energy level, whereas

in a parametric oscillator the process is mediated by virtual levels. Similarly to the

lasing process, the parametric oscillation is a threshold phenomenon that occurs

when the total roundtrip gain equals the roundtrip losses. Once we surpass the

threshold in the cavity, the oscillation wavelength and pump power in the resonator

become clamped, and an increase in pump power further amplifies the oscillating

mode, eventually initiating a process of cascaded FWM that generates a series of

wavelengths at multiples of the initial spacing between the pump frequency and the

oscillating frequency. The majority of OPOs exploit w(2) phenomena and are subject

to very stringent phase matching conditions.

Here, the parametric gain is provided by the next highest nonlinearity w(3), and
the process is said to be “hyper-parametric” [65]. Below the oscillation threshold,

the gain of the vacuum is approximately exponential:

InoiseðzÞ ¼ Inoisejz¼0 expðgzÞ; (2.19)

where g is the parametric gain expressed by:

g ¼ 2 Oj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� b4

24
O2 þ b2

2

� �
b4
24

O4 þ b2
2
O2 þ 2gPp

� �s
; (2.20)

and O ¼ (o � op) is the frequency detuning from the pump. Equation (2.20)

assumes dispersion up to fourth order (as characterized experimentally). The factor

g represents a gain (i.e., g > 0) only if we are under the condition of anomalous

dispersion (requiring b2 or/and b4 < 0).

By equating the roundtrip losses to the parametric gain in the resonator, we

deduce that the pump power threshold should be ~54 mW. A plot of (2.20), for a

pump wavelength of 1,544.15 nm and a power of 54 mW, produces the graph

presented in Fig. 2.10, from which we determine the maximum parametric gain to

be at 1,590 nm.

Figure 2.11 shows the setup used for the optical parametric oscillation

experiment. A CW pump laser (Anritsu Tunics Plus, 150 kHz linewidth), amplified

by an EDFA (Amonics HEDFA), was passed through a wavelength tunable band-

pass filter (1 nm, 3 dB bandwidth) to eliminate amplified spontaneous emission

(ASE) from the amplifier. The pump laser was then properly polarized, coupled

into the ring resonator, and tuned to one of its resonances while the power

was monitored by a power meter placed at one of the arm of a 99%-1% splitter.

2 Advanced Integrated Photonics in Doped Silica Glass 65



During the experiment a “soft thermal lock” condition was established in order to

keep the optical power inside the cavity constant (the temperature increase led to a

modification of the refractive index and hence a shift of the resonance frequencies).

The thermal lock procedure consists in tuning the pump wavelength to one reso-

nance of the ring, then slowly following its drift due to cavity heating, until a

thermal equilibrium is reached. The optical output spectrum for different values of

the input power was then recorded by means of an optical spectrum analyzer (OSA)

(ANDO AQ6317B).

Our pump laser linewidth was fully coupled inside the FWHM of the selected

resonance while no overlap between the laser tail and the ring resonances was

observed (the band-pass filter used reduced the noise to below �70 dB). This

allowed the system to evolve according to parametric oscillation rather than

stimulated FWM. Figure 2.12 shows the output spectra for a TM polarized pump,

tuned to a resonance at 1,544.15 nm, for different values of the input power.

From this set of plots, we can make some important conclusions. The lasing

condition occurs for a resonance located at 1,596.98 nm, which is close to the

location for the peak of the parametric gain predicted by calculations. The threshold

Fig. 2.10 Plot of the parametric gain for a pump wavelength of 1,544.15 nm and a power of

54 mW

Fig. 2.11 Schematic of the optical hyper-parametric oscillation experimental set-up
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power was determined to be 54 mW (all the powers are quoted inside the bus

waveguide unless stated otherwise) while the single-line slope efficiency

(above threshold at 1,596.98 nm) was estimated to be 7.4%. For an input power

of 101 mW (at 1,544.15 nm [65]), we obtained a remarkable conversion efficiency

of 9% (9 mW amongst all the oscillating modes). This overall efficiency is an

outstanding result, especially when taking into account that the efficiency of FWM

in ring resonators [8, 67] is typically below �20 dB at these pump powers.

Figure 2.12 also shows that as the pump power keeps increasing the cascade,

FWM takes over with the same spacing imposed by the parametric oscillation.

The experiment was repeated by tuning the pump to other cavity resonances

located into a region of normal dispersion. In these cases, we did not observe

oscillation even for pump powers much larger than the threshold power we used

at 1,544.15 nm. This result is consequently consistent with the predicted behavior

of the parametric gain, requiring anomalous dispersion. It is worth mentioning that

the maximum frequency spacing we have achieved in our optical parametric

Fig. 2.12 Output spectra of the hyper-parametric oscillator and oscillation threshold diagram. The

spectra show the evolution of the spontaneous FWM process as a function of the input pump power

at 50.8, 53.8, and 56.8 mW (pump on a resonance at 1,544.15 nm). The last graph (bottom-right)
represents the output power at the drop port for the single oscillating mode at 1,596.98 nm versus

pump power. A differential slope efficiency of 7.4% is extracted from a linear fit (red dashed line)
above threshold
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oscillator (52.83 nm or >6 THz) is unprecedented and potentially very useful for

applications where high repetition rates are required.

In fact, if we assume a phase relation amongst the different components of a

broadband frequency comb, the latter, in the time domain, corresponds to a high

repetition rate train of optic pulses. However, the most immediate advantage of

having an integrated multiple wavelength source would be the possibility to

develop a compact and cost-effective wavelength-division multiplexing (WDM)

system. Such an integrated device would also drastically reduce the complexity of

today’s WDM devices, where an array of laser sources could be replaced by one

single source with a resonator.

Here, we have shown how we can exploit integrated optical cavities to generate

coherent narrow linewidth light in a broad spectral range. However, one can think to

use other approaches to design this kind of optical sources. For example, this could be

achieved using a very broadband “white light” source, in conjunction with an ultra-

narrow band pass filter. In this case, there is an added advantage of not being restricted

to cavity resonances and allowing for continuous tuning, which can be an important

tool for spectroscopic applications [74]. The following paragraph elucidates the

possibility to employ Hydex integrated structures for this alternative configuration.

2.4.4 Broad Band Light Generation
in an Integrated Spiral Waveguide

In this paragraph, low loss Hydex glass waveguides will be exploited to study SCG

using a 45-cm long waveguide that is tightly confined on chip via a spiral geometry.

Here, we seek to exploit the length dependence of the nonlinearity. Compared with

the resonators introduced above, this spiral allows a continuous generation of new

frequencies (and not discrete resonances). SCG typically refers to the generation of

broadband light from spectrally narrow pulses through a mixture of nonlinear

effects [75]. The SCG process can be used for a wide range of applications such

as the realization of multiwavelength and tunable sources, spectroscopy, bio-

imaging, pulse compression, and optical coherence tomography.

The waveguide used in our experiments has the same cross-sectional core area as

that used for the ring resonator, namely 1.45 � 1.5 mm2. It is contained on a

footprint area as small as 2.25 � 2.25 mm2, and is schematically shown in

Fig. 2.13. Due to the significant index contrast (17% between clad and core), spiral

structures can be fabricated with negligible bending loss, thereby allowing the

possibility to exploit the very long interaction length for nonlinear effects.

As a result of the broad transparency of these waveguides (from the UV to well into

the mid-IR) and the very low dispersion, they naturally offer the best conditions for

very broad SCG. As previous studies have shown [76], SCG is the result of a cascade

of nonlinearities, and has been shown to be very efficient when a pump wavelength

close to a zero-dispersion point is used. Here, we present SCG in the spiral waveguide

by pumping light in proximity of two different zero-dispersion wavelengths, namely at
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1,288 nm where the normal dispersion regime lies at shorter wavelengths, and also

at 1,550 nm where the normal dispersion regime is at longer wavelengths (see ref.

[63] for more details on the various dispersion regimes).

SCG can be numerically modeled assuming a single-beam propagation with the

dominant nonlinear effects being: SPM, cross-phase modulation, intra-pulse four-

wave mixing, soliton fission, Raman self-frequency shift (SFS), and the generation

of Cherenkov radiation. This complex array of nonlinear interactions can be

modeled by the generalized nonlinear equation (2.4):
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This model takes into account dispersion up to fourth order (as measured

experimentally) and takes into account ultra-short pulse phenomena. Since a pre-

cise estimation of the Raman effect in these waveguides is still under investigation,

the Raman response of fused silica was used as a first order approximation for the

simulations below. The input waveform was taken to be a Gaussian pulse with a

small chirp (C ¼ �0.1) in order to match the experimentally measured pulse

spectrum and autocorrelation. In addition, we also consider that the input pulse is

propagating in a quasi-TE mode with the experimentally determined dispersion

coefficients: b2 ¼ 10.5 ps2/km, b3 ¼ 0.26 ps3/km, and b4 ¼ 0.0035 ps4/km at

1,550 nm.

The experiment was performed by using a Spectra Physics OPO generating

100 fs pulses (200 fs at 1,300 nm), determined via autocorrelation, with a repetition

rate of 80 MHz. The spectral bandwidth at �20 dB for the input pulse was 110 nm

at 1,550 nm and 55 nm at 1,288 nm [63]. The pulses produced by the OPO were first

attenuated and then sent to a 99/1 fiber coupler. While 99% of the signal was sent to

Fig. 2.13 Top-down schematic view of the 45-cm long spiral waveguide
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the input of the spiral waveguide, the remainder was directed to a power meter to

continuously monitor the input power. The output spectrum was finally recorded by

using an OSA for various input power levels; a detailed experimental set-up can be

found in [63]. The output and input spectrum for the experiments at 1,550 and

1,288 nm are presented in Figs. 2.14 and 2.15, respectively.

At 1,550 nm the input bandwidth is shown to broaden by more than a factor of 3,

achievingmore than 300 nm of spectral width using an input peak power of 1.76 kW.

Note that the bandwidth is theoretically predicted to be much broader on the long

wavelength side (>1,700 nm), but this was not detectable experimentally due to the

limited range of our spectrometer. The results are evenmore impressive at 1,288 nm,

where the broadening is significantly wider (the �30-dB bandwidth is more than

600 nm) and at a lower peak power of 1 kW. As determined from the simulations,

soliton fission, dispersive wave generation, Raman self-frequency shifting coupled

with FWM are the dominant effects responsible for the broadening at 1,550 nm.

The significant differences between the 1,288- and 1,550-nm results are attributed

primarily to the different dispersion regimes, and we anticipate that the higher order

dispersive terms near 1,288 nm are significantly larger than those at 1,550 nm.

Moreover, soliton instability is strictly governed by higher order dispersion terms,

and thus could initiate the onset of SCG earlier at 1,300 nm.

These results are extremely promising, and demonstrate the exploitation of long

structures, possible due to the exceptionally low propagation losses, to generate

significant nonlinear effects, while requiring an extremely small device footprint.

Moreover, the broad transparency of the Hydex glass could be utilized to extend the

spectrum to the visible and into the UV. Together with a narrow band tunable filter,

this device shows much promise as a tunable wavelength source.

Fig. 2.14 (Left) Simulated (in red) and experimentally measured (in blue) input pulse spectra for
the SCG experiment. (Right) SC spectrum at the output of the 45-cm long spiral waveguide when

the input peak power is 1.76 kW. Note that the simulated pulse spectral broadening predicts new

frequency components even beyond the experimental measurements which were limited to the

range of 1,200–1,700 nm by the OSA
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2.5 Ultrafast All-Optical Processing

2.5.1 Ultra-short Pulses Frequency Conversion
via FWM in Integrated Glass Waveguides

The final part of this chapter is focused on ultrafast optical processing, with

particular attention to four very important signal processing operations: (1) ultra-

short pulse frequency conversion, (2) optical compression, (3) time width estima-

tion of subpicosecond pulses, and (4) optical temporal integration. While the first

three of these operations have all been carried out by using the 45-cm Hydex spiral

waveguide presented in the previous section, the fourth makes use of the same

micro-ring cavity used for the FWM and OPO experiments previously described.

Moreover, it is important to emphasize that the optical integration presented here is

a linear phenomenon and demonstrates the versatility of this integrated platform

is not limited uniquely to the nonlinear regime.

Whereas the previous section dealt with the generation of new frequencies via

SCG, a more selective frequency conversion with a specific output frequency target

can be more efficient and may find diverse applications. In particular, all-optical

approaches based on ultrafast optical nonlinearities, such as pulse FWM, have been

Fig. 2.15 SCG using a pumping wavelength of 1,288 nm. The experimental input (in black) and
output (in red) pulse spectra are shown. The output spectrum, obtained at a peak power of 1 kW,

has a bandwidth of more than 300 nm at �20 dB
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successfully employed for optical signal processing. When implemented in a

waveguide geometry, they provide useful instruments able to overcome the band-

width limitations associated with electronic approaches. FWM in waveguides has

been used to demonstrate several fundamental operations on pulses for optical

signal processing, ranging from frequency conversion to signal reshaping, regener-

ation, and amplification [20, 23, 29, 34, 77, 78], and more recently for temporal

signal measurement, which will be discussed in Sect. 5.2. For this reason, there is a

strong interest in demonstrating parametric gain in waveguides. Gain in highly

nonlinear waveguides has been demonstrated in silicon [79] and in some nonlinear

glasses like heavy metal oxides [23] or chalcogenide [78]. In particular, a net

parametric gain of 1.8 dB was first reported in dispersion engineered silicon

nanowires [79] and since then, a net overall gain (including all losses) of 16 dB

was obtained in chalcogenide glass waveguides [78]. However, as mentioned

above, for both of these platforms, linear and nonlinear losses can limit perfor-

mance—particularly for silicon where saturation due to nonlinear absorption of the

pump and subsequent generation of free carriers clamps the maximum achievable

gain at about 10 W of peak pump power [79].

In this section, the remarkable nonlinear properties of the Hydex spiral wave-

guide are explored for wavelength conversion of ultra-short pulses by exploiting

FWM. We report net parametric gain [80] obtained with subpicosecond pump-

probe pulses. We achieve +16.5 dB conversion efficiency, with 40 W of pump

(peak) power, and observe no saturation. The low dispersion of the waveguide

allows us to observe FWM on a remarkably large bandwidth of over 100 nm.

As in the previous section, we modeled pulse propagation in the waveguide with

the GNLS equation (2.21), where we neglected the Raman effect. Equation (2.21)

was integrated via a standard pseudo-spectral approach, and Gaussian pulses were

assumed for both the input pump and the signal envelopes.

The measurements were carried out with an OPO system that generates 180 fs

(bandwidth ¼ 30 nm) long pulses at a repetition rate of 80MHz. The broadband pulse

sourcewas split and filtered byway of two tunableGaussian bandpass filters operating

in transmission with a �3 dB bandwidth of 5 nm (equivalent to a pulsewidth of

~700 fs), in order to obtain synchronized and coherent pump and signal pulses at two

different wavelengths. The pump and signal pulses were combined into a standard

SMF using a 90/10 beam splitter and then coupled into the spiral waveguide. Pulse

synchronization was adjusted by means of an optical delay line, while power and

polarization were controlled with a polarizer and a l/2 plate. Both pump and probe

polarizations were aligned to the quasi-TE mode of the device.

Figure 2.16 shows the experimental results for three different signal excitations at

ls ¼ 1,480, 1,490, and 1,500 nm with 3 mW of power, respectively. The pump

wavelength was set to lp ¼ 1,525 nm in all the three cases and the pump peak power

coupled inside the waveguides was varied from 3 to 40 W. Cascaded FWM was

observed for pump powers larger than 30 W. The asymmetry visible in the interac-

tion (the cascaded FWM induced by the idler is stronger than the one induced by the

signal) indicates a non-negligible contribution due to the b3 term, consistent with a

low absolute value of b2 [16], as confirmed by our fitting (see Fig. 2.9).
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The experiments show a larger gain for wavelengths closer to the pump using

powers that are lower than 13 W, while the gain becomes almost flat (in a range of

over 100 nm) for powers larger than 30 W, as can be seen in Fig. 2.16b. We define

the “on/off” conversion efficiency �i, as the ratio of the idler wave’s i(t) transmitted

energy to the power of the signal wave s(t) [79]:

�i ¼ lim
T!1

RT=2
�T=2

iðtÞj j2dt

RT=2
�T=2

sðtÞj j2dt
: (2.22)

This allows us to account for various pulse shapes and for the spectral broadening

due to cross-phase modulation, which lowers the spectral intensity. The net “on-

chip” gain is then the on/off gain minus the propagation loss. The experimental on/

off efficiency versus pump peak power is shown in Fig. 2.17c, d along with the

theoretical calculations for both a CW and a pulsed pump. The modeling and

experiment agree quite well. The CW case represents the maximum achievable

gain for a given pump peak power, as it maximizes relation (2.22), and it is

insensitive to detrimental effects, such as spectral broadening and temporal walk-

off, that can limit the efficiency in the pulsed regime. For a 38-W pump power,
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Fig. 2.16 Experimental (top) and theoretical (bottom) signal intensity spectrum for a 1,525-nm

pump and a 1,480- (a), 1,490- (b), and 1,500-nm (c) signal. The legend lists the pump peak powers,

while the signal peak power is 3 mW
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we measured a maximum on/off FWM conversion efficiency of +16.5 dB from

signal to idler. This translates into a net on-chip conversion efficiency of +13.7 dB

and a gain of +12.3 dB, when the overall propagation loss of 2.7 dB is included. We

note that even at the highest pump powers used in these experiments, we do not

observe any signs of saturation and this is largely due to the negligible nonlinear

absorption in this platform.

This demonstration of parametric gain via pulsed FWM in a CMOS compatible

doped silica glass waveguide is promising for all-optical ultrafast signal processing

applications such as frequency conversion, optical regeneration, and ultrafast pulses

generation. As an interesting application of pulsed FWM signal processing, we

show in the next paragraph pulse measurements via time-to-frequency conversion

based on FWM interaction.

2.5.2 Time Lens Measurement of Subpicosecond Optical Pulses

This section is dedicated to the ultrafast optical pulse characterization technique

based on time lenses (TL) [81]. Ultrafast nonlinearities can be conveniently

exploited for temporal signal imaging through the so-called space–time duality

[81–91]. In simple terms, refractive optical elements such as lenses and prisms have

Fig. 2.17 Gain for a 1,480-nm signal: (a) Spectra for a 3-mW peak power signal alone (blue) and
with a 40-W pump (red). (b) CW gain. (c, d) FWM gain for idler and signal, respectively:

measurement (black dots), simulated pulsed model (red continuous line), and for a CW regime

(red dashed line)
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temporal analogs that perform equivalent functions in the time domain, as they are

represented by the same mathematical equations. The importance of this equiva-

lence is associated to the fact that a vast category of optical instruments for

diffractive beams rely on a suitable combination of lenses and free-space beam

propagation. Thus, equivalent concepts can be employed for processing temporal

signals by properly combining TLs, and dispersive elements.

More specifically, we define a TL as a physical mechanism that induces a

quadratic phase profile on an input temporal optical signal, in analogy to a spatial

lens, which adds a quadratic curvature to the phase front of a transmitted beam. The

best results to date for a TL process have been obtained by using a parametric

process, such as three-wave mixing (TWM) or degenerate FWM [88–92]. In partic-

ular, the FWM approach [90–92] has the advantage of being suitable for centro-

symmetric materials, such as silicon or glass, and thus for fundamental platforms in

integrated optics.

TLs can also be used for time-to-frequency domain conversion. This mechanism

has proven particularly useful for measuring the time-domain intensity profiles of

ultrafast optical waveforms. In the spatial case, it is well known that the optical field

transmitted by a lens at its focal plane is the Fourier Transform (FT) of the spatial

input field distribution one focal length in front of the lens. This concept, when

translated into its temporal counterpart, allows one to capture the time-domain

intensity profile through a simple optical spectrum measurement.

In practice, the pulse under test (PUT) is initially stretched with a dispersive

element of length L and group velocity dispersion b2 (i.e., a spool of SMF), resulting

in a temporal phase curvature fF ¼ b2L, and is then coupled into the waveguide as
the signal for the parametric interaction. This signal (i.e., the PUT with the appro-

priate chirp applied) plays the role of the input waveform to the TL. A highly chirped

Gaussian pulse, much longer in time than the signal duration, acts as the pump of the

parametric interaction and it plays the role of the lens itself. Only the pump chirp fP

is relevant, while its temporal amplitude can be neglected. The TL effective phase

curvature resulting from a FWM process is fF ¼ fP/2, due to the quadratic depen-

dence on the pump profile of the idler for a FWM interaction [90–92]. We note that

for a TWM-based TL, the condition would be fF ¼ fP [88, 89].

The idler behaves as the (output) waveform transmitted by the TL, since it

acquires the signal temporal shape and the TL phase curvature fF that exactly

compensates the signal chirp. In this configuration, the idler energy spectrum maps

the temporal intensity shape of the PUT according to the following time-to-fre-

quency scaling law:

t ¼ fFo: (2.23)

A temporal imaging system is then realized by measuring the idler with a

spectrometer. Figure 2.18 summarizes the principle of time-to-frequency conver-

sion using a TL based on FWM.

In our experiments, subpicosecond pulses for the pump and the signal were prepared

from a 17-MHz repetition rate mode-locked fiber source, providing pulses at

l ¼ 1,550 nm. The pulses were spectrally broadened after propagation in a nonlinear
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fiber. As in the previous FWM experiment (described in Sect. 5.1), the PUT and the

pump pulses were coherently synchronized by way of two tunable Gaussian band pass

filters operating in transmission with a�3-dB bandwidth of 5 nm (equivalent to a pulse

width of ~700 fs) and 8 nm (equivalent to a pulse width of ~570 fs), centered at 1,560

and 1,530 nm, respectively. An interferometer was used to shape the PUT in a double

pulse waveform, and a movable mirror controlled their relative delay.

The dispersion of the pulses was controlled using spools of SMF. The pump was

stretched to approximately 100 ps with 2 km of SMF. The signal dispersion was

carefully adjusted to obtain half the dispersion of the pump. Pulseswere first amplified

with a standard erbium-doped fiber amplifier (EDFA) and were then coupled into the

45-cm longwaveguide. The pump peak power at the inputwaveguidewas 1W, and an

OSA provided the output spectrum.

Figure 2.19 shows the resulting idler spectrum generated by the device as a

function of the delay between the two peaks of the double pulse waveform used as

PUT. By measuring the spectral separation of the two idler peaks, a calibration

curve was obtained (see Fig. 2.20). The measurement shows the linear trend

expected by relation (2.23). We obtained a calibration factor of 14.2 ps/nm, used

Fig. 2.18 Principle of time-to-frequency conversion using a TL based on the FWM experienced

by the PUT when interacting with a linearly chirped pump pulse. In the case illustrated here, the

PUT first undergoes a sufficiently large dispersion to enter the so-called temporal Fraunhofer

regime, where the time-domain optical waveform at the input of the TL (signal) is proportional to

the spectral shape (amplitude variation) of the PUT and is phase chirped due to the large dispersion

(i). When the signal interacts with the pump (ii) the nonlinear frequency conversion produces an

idler with the temporal shape of the signal but with a chirp exactly compensated by the pump chirp

(iii). The output of the TL (idler) is transform limited and its temporal shape is proportional to the

spectrum of the PUT. As a result, the spectrum at the TL output is proportional to the temporal

amplitude profile of the PUT (iv)
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to calculate the corresponding temporal axis of the spectral measurement, shown at

the top of Fig. 2.20, in red. The peak value of the delayed pulse replica in the

measured idler spectrum versus wavelength is shown in Fig. 2.20b: this measure-

ment allowed us to precisely estimate the temporal recording length of our instru-

ment, obtaining a �3-dB time window of 100 ps.

Fig. 2.19 Idler spectrum for a PUT consisting of two delayed Gaussian pulses, for different

temporal delays. Here, the pump dispersion is equivalent to 2 km of SFM. The first replica (black

Gaussian pulse, at the center of the picture) does not change in time, while the second replica is

recorded for different temporal delays and is represented with different colors

Fig. 2.20 Calibration curve for the delay between the two Gaussian pulses composing the PUT

(extracted from in Fig. 2.19): experimental data extracted from Fig. 2.19 (black dots) and related

linear interpolation (red line). (b) Maxima of the Gaussian pulses in Fig. 2.19 for different time

delays (black dots) and related parabolic interpolation of the experimental maxima (red curve).
We note that the intensity of the imaged pulses varies because the approximation of a constant

pump intensity does not hold for the large delays used in this experiment
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The image of a single, transform limited Gaussian pulse is shown in Fig. 2.21a,

together with the result of the TL experiment (with the transform limited temporal

shape obtained from the FT of the spectral measurement of the signal), yielding a

Gaussian pulse width of ~700 fs. This was also confirmed by autocorrelation

measurements. In comparison, the TL measurement yields a pulse width of

~900 fs. This is a result of two effects. First, the resolution of our TL-FWM

experiment is ~400 fs: a t0 ¼ 70 fs temporal pump pulse duration in the transform

limited section corresponds to a resolution of t0=
ffiffiffi
2

p
~400 fs [89–91]. This broadens

the pulsewidth to ~800 fs. The additional broadening to ~900 fs arises from our TL

system being slightly out of focus; equivalent to propagation through ~5 m of SMF.

Indeed, we could control the signal dispersion with an accuracy of approximately

10 m of SMF, due to synchronization constraints between the signal and the pump.

This is due to the fact that, when the length of the SMF spool used to disperse the

PUT is modified, the relative delay between pump and signal is also affected.

An instrument with a temporal resolution of 400 fs over a time window >100 ps

possesses a time bandwidth product>250. This is comparable with previous results

obtained in silicon [89–91]. Better performances in terms of both output idler

conversion efficiency and time-bandwidth product can be reached for larger

pump excitations, limited by the amplifier used in our set-up but not by our device.

As our platform is not affected by nonlinear absorption, higher power can be

employed without distortion inducing aberrations in the TL. This temporal imaging

instrument is well suited for the measurement of pulses with complex temporal

features over large scales. As is visible from Fig. 2.21b, a temporal shape consisting

of an oscillation with a time scale of 800 fs over a temporal window larger than

40 ps can be successfully imaged.

Fig. 2.21 (a) Idler spectrum (black curve) for a PUT consisting of a transform limited Gaussian

pulse with 5-nm bandwidth. The converted timescale (red axis at top) is obtained using

the calibration factor of 14.2 ps/nm extrapolated from Fig. 2.20. The blue curve is the FT of the

signal (i.e., the PUT) spectrum, representing the transform limited PUT temporal waveform.

(b) Idler spectrum of a temporal shape with a large time bandwidth product, revealing 800-fs

long oscillations over a temporal duration of 40 ps
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2.5.3 All-Optical Pulse Compressor

Our study of pulse compression is primarily based on recent advances in PICs, and

on how they have become a necessity for the future of ultrafast telecommunication

networks. Their development will simultaneously be able to meet the exponentially

growing demand for bandwidth, lower costs, use a smaller footprint, and reduce

energetic consumption compared to today’s electronic technologies. In particular,

the design and fabrication of an all-optical temporal compressor would bring great

benefits to many applications such as optical metrology and imaging, where the

compression of pulses down to subpicoseconds generates a broad bandwidth pulse

particularly suited for optical coherent tomography. However, these kind of ultra-

short pulses are very difficult to be directly obtained from commercially available

laser sources. A standard strategy to circumvent this problem is to exploit devices

that make use of ultrafast nonlinearities. In this case, pulse compression is obtained

by first spectrally broadening a transform limited optical pulse, via nonlinear

propagation in a normally dispersive optical fiber, and then re-phasing it via linear

anomalous dispersion (the order of these two steps can be interchanged) [64, 81, 93].

SPM-based spectral broadening and dispersion for ps and sub-ps pulses can be

effectively modeled according to (2.4) by the following expression:

@A

@z
þ a
2
Aþ b1

@A

@t
þ i

b2
2

@2A

@t2
¼ ig Amj j2Am: (2.24)

The other nonlinear terms of (2.4) were dropped on the assumption of (1) lack of

phase matching for frequency conversion, (2) pulse durations around 1 ps, and (3)

moderate power levels as to not excite higher order effects. The equation is

governed by two main effects: dispersion and SPM. Under suitable conditions,

these two effects can act at different length scales and can thus be treated indepen-

dently. To gain some insight on the effect of the nonlinear contribution to (2.24), it

is useful to look at the no-dispersion limit, which can be readily solved to obtain:

A0 ¼ A0 expð�a1z=2Þ expðig A0j j2½1� expð�a1zÞ�=a1Þ; (2.25)

where A0 ¼ A(z,t � b1z). The nonlinear term introduces a nonlinear chirp in the

temporal phase, which in the frequency domain corresponds to spectral broadening

(the generation of new frequencies), i.e., self-phase modulation (SPM). Ultra-short

pulses can be generated by first broadening the spectrum of a propagating optical

pulse in a normally dispersive nonlinear medium, thereby creating new spectral

components via SPM and then by propagating in an anomalous dispersion regime,

thereby rephasing the pulse with an opposite chirp. Technically, this approach can

lead to the shortest possible pulse having a certain frequency content, which is

defined as a transform limited pulse.

Figure 2.22 shows the experimental set-up used to demonstrate pulse compres-

sion in the 45-cm long Hydex spiral waveguide. This can be achieved in Hydex due
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to a weak dispersion regime (for pulses of ps-scale durations or longer) near

1,550 nm. A standard fiber laser (Pritel FFL) was used as an input source, with

pulses having a temporal waist of T0 ¼ 0.94 ps (1.10 ps FWHM), a total dispersion

quadratic chirp of 0.17 ps/nm (which can be compensated by approximately 10 m of

SMF), a repetition rate of 16.9 MHz, and a central wavelength l ¼ 1,550 nm.

The experimental setup is portrayed in Fig. 2.22. By means of a polarization

controller and an attenuator, we were able to arbitrarily set both the polarization and

power. The latter was estimated by using a powermeter coupled at the output of a 1%

channel from a 99/1 fiber coupler. For the data analysis, both an autocorrelator and

an OSA were used to characterize the input and output pulse. The total length of the

SMF used was 8 m. More specifically, the distance from the laser to the chip input

was 7.33m, while an additional 0.66m of fiber was added to the chip output. Most of

the initial source chirp was compensated during the propagation along the initial

7.33 m of input fiber, and the remaining input pulse residual chirp was estimated to

be equivalent to the value induced by propagating approximately 2 m in an SMF.

Figure 2.23 shows both the pulse autocorrelations (intensity: normalized unit)

and spectra (power: normalized unit) recorded at the chip output right after the

0.66-m of SMF. These plots indicate that the pulse is temporally compressed as

we increase the pulse peak power. The pulse time width estimation was obtained by

fitting the experimental intensity autocorrelation to a Gaussian field defined

by AðTÞ ¼ A0 expð�ðT=T0Þ2Þ, where T is a time renormalized to the group velocity,

i.e., T ¼ t � b1z. The final results are characterized by pulses with a time waist T0
spanning from 0.65 to 0.45 ps and energies (peak powers) from 15 pJ (19 W) to

71.2 pJ (98 W).

The pulse spectrum in Fig. 2.23b clearly shows the double peak feature of an

ongoing SPM arising at high powers. We also performed the experiments using a

reference 1 mm long waveguide, and verified that the compression was due to the

nonlinear chirp acquired by the 45-cm waveguide and did not take place in the input

or output fiber pigtails used to couple from SMFs to the optical chip.

Fig. 2.22 Sketch of the experimental setup for the optical pulse compression measurements
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We stress that the role played by the output fiber is to compensate for the

nonlinear chirp induced by the integrated device. Although in this work

the compensation is not performed on-chip, the total required dispersion compen-

sation is quite low, at around 10 fs/nm. This level of dispersion can be easily

achieved on-chip by engineering the waveguide parameters. For instance, our

platform could easily allow for modification of the GVD by simply changing the

waveguide width and height [64].

2.5.4 Optical Integrator

In this section, we demonstrate the possibility of exploiting the linear properties of

Hydex for performing ultrafast all-optical processing via the use of novel integrated

photonic devices. Specifically, we report on the possibility of using micro-ring

resonators to perform temporal-integration of complex waveforms with features

down to �8 ps.

The design and fabrication of basic photonic blocks (equivalent to basic

electronic devices) are steps of paramount importance to facilitate the passage

from electronics to photonics [92]. In particular, integrators and differentiators,

which were largely used as fundamental modules for the realization of ALUs

(Arithmetic Logic Units) during the dawn of integrated electronics, have yet to be

implemented all-optically in today’s photonic systems. Here, we focus our attention

on optical integrators [94]. Photonic temporal integrators can be used to fabricate

ultrafast computational units devoted to solve ordinary differential equations

(ODEs), which in turn play a fundamental role in many fields of science and

engineering [95].

Fig. 2.23 Pulse compression at different pulse energies: autocorrelation (a) and spectrum

(b) obtained by collecting the output of the spiral waveguide after 0.66 m of SMF. The Gaussian

best-fitted pulse waist is indicated between brackets
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A photonic temporal integrator is a device capable of performing the cumulative

time integral of the complex temporal envelope of an arbitrary optical input [96]. From

basic signal processing theory [97–100], we find that an integrator is characterized by

a temporal impulse response h(t) proportional to the step function u(t):

uðtÞ ¼ 0 for t<0;
uðtÞ ¼ 1 for t>0;

�
(2.26)

where t is the time variable. In order to realize such a physical system, we require a

structure capable of storing the intensity of an incoming optical radiation and

subsequently releasing a continuous signal proportional to the total stored field at

each instant of time. This functionality, which in electronics is realized by a simple

capacitor, is challenging in optics due to the intrinsic nature of photons—which

typically cannot be spatially localized over long intervals. An optical integrator is

potentially very useful for a specific set of fundamental applications such as data

processing, pulse shaping, data storage, and optical computing.

In the spectral domain, the transfer function H(o) of an ideal integrator is

expressed by:

HðoÞ / 1

jðo0 � oÞ ; (2.27)

whereo is the optical frequency variable, ando0 is the carrier frequency of the signal

to be processed. From this function, it is immediately clear that an optical integrator

near o0 should in principle rely on a transmission >1 and diverge to infinity at o0.

One possible approach to emulate the integrator transfer function is based on the

use of resonant cavities. Considering a Fabry-Perot interferometer, for a certain

fraction of its FSR, its temporal impulse response can be described by [101]:

hðtÞ / expð�ktÞ � uðtÞ; (2.28)

where k ¼ (�1/T)·ln(r2g), T is the round trip propagation time in the cavity (T ¼ 1/

FSR), r is the mirror reflectivity, and g represents the round-trip field amplitude

gain, which can be either >1 or<1 depending on whether light is propagating in an

active or an absorbing medium, respectively. Figure 2.24 shows that around a

specific resonance (whose shape is well approximated by a Lorentzian function),

the transfer function of an ideal integrator (black curve) resembles that of an optical

resonator (red curves). In the same image, the comparison is made for two different

resonators (case “a” and “b,” respectively) that only differ in terms of FSRs. The

dashed boxes represent the ranges in which the resonator characteristic resembles

that of the ideal integrator.

From Fig. 2.24, it is also clear how a larger FSR corresponds to a broader

integration bandwidth. Since the FSR is inversely proportional to the physical

dimensions of a cavity, the device size reduction can bring the double advantage

of widening the integration bandwidth while simultaneously reducing the compo-

nent footprint.
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The performance near o0 can be improved by using an active device, in which

losses can be compensated by gain [102]. However, the active integrator approach

is also affected by major disadvantages such as a high noise level (produced from

spontaneous emission), a high energy consumption, and remarkable challenges

encountered throughout the fabrication. These limitations are often so severe that

the passive approach is often preferable to its active counterpart, despite significant

drawbacks in terms of throughput (defined as the input–output power efficiency)

and the time-bandwidth product.

Realization of photonic integrators has also been explored through other

techniques, including the use of feedback-based photonic filters [103] and fiber

Bragg gratings (FBG) [99]. These solutions, however, despite representing a fun-

damental improvement, suffer from important limitations. Specifically, the

photonic filter strategy is very limited in terms of processing speed, whereas

the performance of FBG integrators are fundamentally related with the reflectivity,

which cannot be lower than 99.99% for acceptable operation. Here, we show that

the ring resonator described earlier in this chapter presents an ideal alternative for

on-chip all-optical temporal integration.

Fig. 2.24 Typicalfit between the spectral intensity transfer functions of a general resonator (redcurve)
and that of an ideal integrator (black curve). The plot makes a comparison in terms of integration

bandwidth between two resonators (case “a” and “b”) with two different FSRs. A larger FSR

(FSR 1 > FSR 2) corresponds to a broader integration bandwidth (bandwidth 1 > bandwidth 2)
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Figure 2.25 shows the experimental set-up used for optical integration. In our

system, a fiber laser (PriTel FFL) emits transform limited pulses at a repetition rate

of 16.9 MHz. The pulses have a time duration of approximately 7.5 ps (measured by

using a Fourier transform spectral interferometry technique). The light beam is then

sent to a pulse shaper (Michelson interferometer) which is used to set three different

kinds of waveforms: (1) the optical wave directly generated by the laser source

(obtained by simply shielding one arm of the interferometer—see Fig. 2.26a), (2) a

train of in-phase pulses (inset in Fig. 2.26b), and (3) a pair of p-phase-shifted pulses
(inset in Fig. 2.26c). By coarsely varying the optical path difference of the interfer-

ometer, the temporal distance between the pulses was set at 275 ps for both the

inputs (2) and (3).

The mutual phase-shift between pulses was set by using a piezo controller

mounted on one of the two mirrors of the pulse shaper. The waveforms were then

sent to a polarization controller in order to select a TE ring resonance at 1,559.46 nm.

Light coupled at the Input port is collected at the drop port at resonance, and is

recorded and visualized by a fast oscilloscope (Tektronix CSA8200 signal analyzer)

operating in sampling mode.

The output normalized intensities for the (1), (2), and (3) waveforms are reported

in Fig. 2.26a–c, respectively. The correspondent theoretical cumulative integrals

are represented by the solid red curves. In order to record the fast features of the

system response to the input (1) (see inset (a) in Fig. 2.26a), we also used an

amplified optical detector with a time constant ~8 ps. This optical component was

placed between the ring output and the oscilloscope input (see Fig. 2.25). Since the

Fig. 2.25 Experimental set-up for all-optical integration
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input pulse and the integrator bandwidths almost coincide, Fig. 2.26a can be

considered the impulse time response of our system.

Figure 2.26a also shows that the integration time window of the ring is as long

as 800 ps (defined as the time required to decay to 80% of the maximum).

The resulting time-bandwidth product of our integrator is consequently evaluated

to be 100, obtained by taking the ratio between the integration time window and the

rising time. This value is one order of magnitude better than what is achievable by

using state-of-the-art electronic integrators [104] and in our case it is accomplished

by using a fully CMOS compatible and passive device [105].

It is worth noticing that the integration of the waveforms (2) and (3) differs only

because our integrator is phase sensitive. This important sensitivity allows for

Fig. 2.26 Analysis of the integrator temporal response. The main plots represent both the

experimental (black curve) and the theoretical (red curve) time integrals of the various intensity

optical waveforms under analysis. These input waveforms are reported in the corresponding insets

(blue curves). The measurement is performed for different cases: an ultra-short optical pulse

directly generated by the laser source (a); in-phase pulses with a relative temporal delay of 275 ps

(b); p-phase-shifted pulses with a relative temporal delay of 275 ps (c); and a linearly chirped

(quadratic phase) broadband optical pulse, with a field amplitude FWHM time duration of

~1,340 ps (d). The impulse response (a, inset (a)) was obtained by using a fast (~8 ps) amplified

photo-detector. The dispersed pulse was calculated by assuming an ideal quadratic phase variation

on the measured temporal amplitude pulse profile according to the linear dispersion value

(~2,000 ps/nm) of the fiber-dispersive element used in our experiments
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certain unique applications, such as optical data storage [106]. In order to underline

this very important characteristic of our device, we also performed the temporal

integral of a waveform obtained by dispersing in time the laser output.

The dispersed input optical waveform was obtained by propagating the laser

pulses through a fiber-dispersive element, resulting in strongly linearly chirped

pulses with an intensity FWHM time duration of ~950 ps (field FWHM time

duration of ~1,340 ps). The chirped pulses were then launched into the ring

resonator and the temporal intensity waveform was measured at the output (drop

port) of the resonator. Figure 2.26d shows the experimental results (black curve)

together with the theoretical time integral (red curve) of the chirped optical pulse.

Despite the complexity of the output waveform, the experimental and theoretical

curves agree well over timescales longer than the resolution of the device (~8 ps).

This last result suggests that it should be possible to recover the temporal phase

information of a given arbitrary optical waveform from the temporal intensity

profile of its integral.

2.6 Outlooks and Conclusions

In this book chapter, we have presented a recently developed high-index doped

silica glass material platform that is potentially useful for a very broad range of

linear and nonlinear applications in integrated photonics. This material combines

the optimal linear properties of SMFs such as very low propagation losses, and a

robust fabrication process, together with those typical of semiconductors and other

nonlinear glasses, such as significant nonlinearities. This material allows for the

fabrication of micrometric waveguides having very low linear losses of the order of

0.06 dB/cm and negligible nonlinear losses for peak intensities tested up to 25 GW/

cm2. The 17% index contrast achievable with respect to a silica glass cladding

allows for a very tight mode confinement down to 1.5 mm2—in turn leading to a

nonlinear g parameter as large as 220 W�1 km�1. The processes behind the Hydex

waveguides fabrication are fully CMOS compatible with no need for high temper-

ature postannealing and they also allow for very tight bend radii down to 30 mm.

The latter being the key for integrating complex spiral guiding structures onto chip

size areas (<1 cm2).

We have shown that although semiconductors possess amuch larger nonlinearity,

this parameter cannot often be fully exploited because of the detrimental (linear and)

nonlinear absorption. In particular, we have presented and described how the Hydex

platform can be employed for the realization of efficient ultra-narrow linewidths and

multiple-wavelength integrated optical sources, as well as for fabricating fundamen-

tal optical blocks for ultrafast optical processing. This was demonstrated through

experiments on semi-degenerate FWM, on the generation of an HOPO, and by

means of a SCG source. In the second part of the chapter, which mostly focused

on the ultrafast signal processing, Hydex devices were used to realize an integrated

pulse frequency converter, optical time lens, compressor, and integrator.
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Only two fundamental structures were explored: a 135-mm radius ring cavity,

and a 45-cm long spiral waveguide. Nonetheless, using these two devices, we

proved: (a) a narrow linewidth (160 MHz FWHM) and efficient (�26 dB) fre-

quency conversion with a predicted tunability range of 160 nm (20 THz); (b) an

optical CW parametric oscillator with a single line efficiency of 7.4% and a

threshold power of 54 mW; (c) a spectral bandwidth broadening of more than

300 nm at both 1,290 and 1,550 nm for an input pulse spectrum of 110 nm

(at �20 dB); (d) parametric gain via pulsed FWM with a maximum on/off conver-

sion efficiency of +16.5 dB from signal to idler (for a 38-W pump power); (e) a time

lens with a temporal resolution of 400 fs over a time window >100 ps

(time bandwidth product >250); (f) pulse compression spanning from 0.65 to

0.40 ps for pulse energies (peak power) varying from 15 pJ (19 W) to 71.2 pJ

(98W); and (g) all-optical phase-sensitive temporal integration over a bandwidth of

200 GHz. All these results undoubtedly place Hydex technology amongst the most

promising for future ultrafast all-optical telecommunication networks.
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Chapter 3

Linear and Nonlinear Wave Dynamics

in Amorphous Photonic Lattices

Mikael Rechtsman, Alexander Szameit, and Mordechai Segev

Conventional intuition in solid-state physics holds that in order for a solid to have an

electronic band-gap, it must be periodic, allowing the use of Bloch’s theorem. Indeed,

the free-electron approximation seems to imply that Bragg scattering in periodic

potentials is a necessary condition for the formation of a band-gap. But this is

obviously untrue: looking through a window reveals that glassy silica (SiO2), although

possessing no order at all, still displays a band-gap spanning the entire photon energy

range of visible light, without absorption. Several experimental studies have probed

the properties of the band-gap in such “amorphous” electronic systems using spectro-

scopic techniques [1], time-of-flight measurements [2], and others. With the major

progress in photonic crystals [3, 4], it is natural to explore amorphous photonic

structures with band-gaps, where the actual wavefunction can be observed directly,

and hence, many physical issues can be studied at an unprecedented level. Indeed,

amorphous photonic media have been studied theoretically in several pioneering

papers (e.g., [5, 6]), and experiments in the microwave and optical regimes have

demonstrated the existence of a band-gap [5]. However, amorphous band-gap media

have never been studied experimentally in the optical regime. Particularly in optics,

the full beauty of disorder can be revealed: optics offers the possibility to precisely

engineer the potential strength and period, as well as the unique opportunity to employ

nonlinearity under controlled conditions, which could unravel unknown features that

are much harder to access experimentally in other systems. In this chapter, we review

recent developments [7] on amorphous photonic lattices: a two-dimensional array of

randomly organized evanescently coupled waveguides. We demonstrate that the

bands in this medium, comprising inherently localized Anderson states, are separated

by gaps, despite the total lack of Bragg scattering. We find that amorphous photonic

lattices support the existence of strongly localized defect states, whose widths is much

narrower than the Anderson localization length. We show the existence of a region of
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negative effective mass (anomalous diffraction), which could be demonstrated

experimentally by superimposing a weak spatial modulation on the random potential

(refractive index), and observing transport. In this setting, a wavepacket with a

negative effective mass moves opposite to the direction it would have moved had it

had positive effective mass. Finally, we numerically demonstrate the existence of

discrete solitons in amorphous photonic lattices and discuss their similarities and

differences from discrete solitons in a periodic setting.

3.1 The Linear Regime

The presence of a band-gap in the electronic energy spectrum of amorphous solids,

materials whose atoms possess no long-range order, was first put on firm theoretical

grounds byWeaire and Thorpe, who proved rigorously that a gap existed in a model

of amorphous silicon (a-Si) [8]. This called for a reevaluation of the intuition held

by solid-state physicists (which is still common today) that Bragg scattering in

periodic potentials is responsible for the opening of band-gaps at the boundary of

the Brillouin zone. A wide range of experimental and theoretical techniques have

been used to study these fascinating materials, including X-ray photoemission

spectroscopy [9], time-of-flight methods [2], and others on the experimental side,

as well as numerical [10] and analytic [11] methods on the theoretical side.

Recently, interest has been increasing in the topic of band-gaps in amorphous

photonic materials. For example, two-dimensional dielectric composites with a

random geometry have been shown to possess a photonic band-gap [5], a large

photonic band-gap has been found numerically in a tetrahedral network connected

by dielectric cylinders [11], and new classes of two-dimensional noncrystalline

photonic band-gap materials have been introduced [6]. In these, the band-gap is a

range of frequencies for which propagation of electromagnetic waves is forbidden.

A prime example of a technological application of an amorphous photonic system is

the random laser [12], for which strong suppression of electromagnetic transport

is the essential requirement.

In this chapter, review our recent theoretical and experimental results [7] on

amorphous photonic lattices: a new type of optical structure, which provide a test-

bed for the properties of general amorphous systems, and at the same time offer

applications unique to photonics. The lattices are composed of individual

waveguides with no long-range order whatsoever; that is, the structure is neither

periodic nor quasi-periodic. Rather, such amorphous structures lack Bragg diffrac-

tion peaks altogether (to distinguish from quasicrystals which do exhibit pronounced

Bragg diffraction [13, 14]). To this end, we distribute the waveguides similar to the

atoms in a liquid, which is explained in more detail in Methods Section. Such

structures result in random refractive index distributions n(x,y), with one particular

realization shown in Fig. 3.1a. In Fig. 3.1b, we show the microscope image of a

sample corresponding to the design of Fig. 3.1a, fabricated using the “direct laser

writing” method [15]. This system indeed exhibits no periodicity, as proven by the

square of the Fourier transform of the structure function (so-called spatial power

94 M. Rechtsman et al.



Fig. 3.1 Amorphous photonic lattice and its band structure (theory and experiments). (a) Refrac-

tive index profile, n(x,y), of an amorphous waveguide structure, as a function the coordinates (x,y),
in the plane transverse to the propagation direction of the beam (z). The index varies from 1.45 to

1.45 + 9 � 10�4. (b) Optical microscope image of the input facet of the amorphous waveguide

structure, as described mathematically in (3.2). (c) Fourier transform of n(x,y), the refractive index
profile given in (a). There are clearly no Bragg peaks here, indicating the complete lack of

periodicity of this system. (d) Band structure (eigenvalue spectrum) of the optical analog to the

Schr€odinger operator, given in (3.1) for the amorphous waveguide structure shown in (a), at

incident wavelength l ¼ 633 nm. A large band-gap is clearly present, despite the lack of any

periodicity. (e) The width of the gap as a function of the optical wavelength. (f) The width of the

gap as a function of the variance of the waveguide positions. Clearly, the gap survives a

considerable amount of disorder before it closes
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spectrum) displayed in Fig. 3.1c, indicating the lack of any Bragg peaks. The

positions of the waveguides as shown in Fig. 3.1a, b are generated using aMetropolis

Monte Carlo simulation of a liquid with periodic boundary conditions, where the

component atoms interact via an isotropic pair potential of the Yukawa form,

vðrÞ ¼ v0e
�ðr�r0Þ=l=r, where r0 ¼ 14 mm and l ¼ 2.8 mm. The area of the box is

184.2 mm2. For our system, we take kBT/v0 ¼ 1.0 and the particle number density

is r ¼ 2=
ffiffiffi
3

p
r20, where T is the temperature, l is the screening length, and kB is

Boltzmann’s constant. At this temperature and density, the N-particle liquid is well

above its freezing point.

The evolution of the optical wave C(x,y,z) in our system is described by the

Schr€odinger-type equation

i�l @Cðx; y; zÞ
@z

¼ �
�l2
2n0

r2
? þ Dnðx; yÞ

� �
Cðx; y; zÞ; (3.1)

where�l ¼ l=2p is the reduced wavelength, n0 is the ambient refractive index of the

bulk (fused silica, in our experiments), and Dn(x,y) is the refractive index distribu-

tion caused by the random distribution of identical waveguides. There is an evident

similarity between (3.1) and the quantum mechanical Schr€odinger equation, when
one replaces�l with the reduced Planck constant �h, the ambient refractive index n0
with the particle mass m, the optical potential Dn(x,y) by the quantum potential

�V(x,y), and the spatial coordinate z with time t. Hence, in optics the quantum-

mechanical evolution in time of a two-dimensional wavefunction is mapped onto

the propagation of an optical wavepacket along the spatial z-direction [16, 17]. The
z-independence of our setting is analogous to the time-independent Hamiltonian in

quantum mechanics. This feature has been used in many recent experiments,

demonstrating concepts from solid-state physics using paraxial optical settings

[16, 17]. One important example is Anderson localization [18], which has recently

been realized in photonic lattices [19, 20] using the transverse localization scheme

[21]. To obtain the band structure of our system, one needs to solve the optical

analog of the time-independent Schr€odinger equation, which is derived by a

separation of variables and substituting C(x,y,z) ¼ ’(x,y)eibz with the propagation

constant b ¼ �E=�l into (3.1). The eigenvalue E represents the energy in the

corresponding quantum mechanical setting. However, the resulting eigenvalue

equation cannot be solved by applying Bloch’s theorem, since in our setting Dn
(x,y) is not a periodic function. Rather, as known from the theory of Anderson

localization in two-dimensions, the eigenmodes are fully localized functions

(“Anderson states”) [22]. Consequently, one must solve using the full refractive

index profile in order to find the eigenvalue spectrum. We do that for the structure

shown in Fig. 3.1a, b using the plane-wave expansion method [4], and generate

Fig. 3.1d, depicting the value of the propagation constant b for an optical wave-

length of 633 nm. In these calculations, we employ periodic boundary conditions on

a system composed of 200 waveguides. All waveguides have identical structure

(slightly elliptic, due to fabrication constraints), and the refractive index step
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defining them is Dn ¼ 9 � 10�4. As Fig. 3.1d clearly shows, there is a sizeable gap

in the spatial spectrum, despite a total lack of periodicity (and lack of Bragg

scattering). This defies a common argument for the presence of band-gaps [23],

which states that gaps open at the boundary of the Brillouin zone because the

degeneracy of states there is broken by the periodicity of the potential. This

argument fails here because it is based on a perturbation theory where the potential

is assumed to be weak, which is inapplicable for this system. This theory implies

that the presence of Bragg peaks is a necessary condition for the formation of

band-gaps, which clearly contradicts the physical findings in amorphous systems

[5, 6, 8–11].

One of the nice features offered by optical systems described by (3.1) is the ability

to test the features of the system through tuning parameters independently, with the

most notable one being the optical wavelength l, which can be tuned continuously.
Figure 3.1e shows the dependence of the bad-gap width on the optical wavelength,

revealing that the gap is exponentially decreasing with l (when all other parameters

are fixed), until it closes at 820 nm. This can be understood directly from (3.1): an

increasing wavelength leads to a larger “kinetic energy” [transverse Laplacian in

(3.1)], and thus a relative weakening of the potential that induces the gap in the first

place. As shown below, this wavelength dependence of the gap provides an efficient

tool for exploring the properties of amorphous photonic media.

Figure 3.1 calls for some intuition for the existence of a band-gap in amorphous

photonic systems, as well as for its wavelength dependence, in spite of the complete

absence of Bragg diffraction peaks. The Bragg peaks are absent due to the random

distribution of waveguides, whereas the existence of a gap has been traditionally

associated with the presence of order [23]. In the amorphous photonic medium

displayed in Fig. 3.1, all waveguides have the same structure, but their spacings are

randomly distributed, having a particular variance around a mean value. As such, it is

instructive to plot the size of the gap as a function of the (normalized) variance of the

interwaveguide spacing (which is directly related to the variance in the coupling

coefficient between adjacent waveguides, and equivalent to the variance in the

hopping parameter in the tight-binding model). We plot that in Fig. 3.1f, for

l ¼ 633 nm. As this figure clearly shows, there is a sizeable band-gap as long as the

normalized variance does not exceed 18%.When the system has a crystalline structure

and thus the interwaveguide spacing has zero variance, it exhibits Bragg peaks and

has a large band-gap. In a disordered pattern, Bragg resonance is absent. However,

the gap survives even for a rather large variance, until it closes around ~18%,

where the bands merge. This explanation holds not only when the bands arise from

guided modes of the individual waveguide (bound states of a single potential well),

but also when the bands arise from unbound states, as is the case for the experi-

mental structure of Fig. 3.1 (where each waveguide has only one guided mode).

In order to visualize the gap experimentally, we introduce a defect waveguide in

the structure: a single waveguide with a refractive index maximum that is lower by

Dnd ¼ 4.5 � 10�4 than the maxima of all other waveguides. [In tight-binding

calculations, this would correspond to a negative defect]. Band structure

calculations show that this procedure results in a single defect state that resides
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Fig. 3.2 Propagation of a light beam launched into a defect state, at an optical wavelength where the

defect resides in the gap (left column) and at awavelengthwhere there is no gap (right column) (theory
and experiments). (a) Band structure (eigenvalue spectrum) of thewaveguide array given in Fig. 3.1a,

including the presence of a defect waveguide with index of refraction 1.45 to 1.45 + 4.5 � 10�4, at

incident wavelength l ¼ 633 nm. The eigenvalue in the center of the gap corresponds to a strongly

localized mode centered on the defect waveguide. (b) Is analogous to (a), but at incident wavelength

l ¼ 875 nm, where the background potential is too weak to yield a band-gap or a localized defect

mode. (c and d) Are simulated profiles of the propagation of an initial wavepacket with a Gaussian

shape with standard deviation 5 mm, centered on the defect waveguide for incident wavelength of

l ¼ 633 nm and l ¼ 875 nm, respectively. At l ¼ 633 nm, the large majority of the wave’s power

stays localized within the defect mode, whereas for l ¼ 875 nm, when the defect mode is no longer

present, it diffracts away. (e and f) Are experimental results; they display the beam output from the

waveguide array. In (e), 633 nm light was incident directly on the defect guide; the light excited the

defect mode and thus stayed localized within that particular waveguide. In (f), 875 nm light was

incident on the defect guide; it did not remain localized due to the absence of a gap. Rather, the light

emerging from the amorphous structure is now distributed over hundreds of waveguides
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directly in the band-gap (Fig. 3.2a), for an optical wavelength of l ¼ 633 nm.

By contrast, at l ¼ 875 nm, the gap is extremely small; hence, the defect state

occurs where the bands merge (Fig. 3.2b). Consequently, when we launch a

l ¼ 633 nm beam directly into the defect waveguide, the beam stays strongly

confined in both transverse directions throughout propagation, because it excites

a highly localized defect state, as highlighted by the simulation shown in Fig. 3.2c

(carried out with a standard split-step beam-propagation code). That is, the coupling

to all nearby waveguides is greatly suppressed, in spite of their close proximity,

because light is guided in a defect state residing in a sizeable band-gap. By contrast,

at l ¼ 875 nm there is no gap; hence, a 875-nm beam launched into the same

waveguide does not stay confined but couples (tunnels) to other waveguides,

resulting in major expansion of the beam, as the beam is propagating along z
(Fig. 3.2d). Figure 3.2e and f shows our experimental results, depicting the intensity

structure of the beam at the output facet of the waveguide arrays, for l ¼ 633 nm

and l ¼ 875 nm, respectively. Clearly, the tight confinement of the light in the

defect state in Fig. 3.2e and its lack thereof in Fig. 3.2f echoes the simulation results

of Fig. 3.2c and d, respectively. Thus, by demonstrating the presence of the defect

state, we have experimentally proved the existence of a band-gap in this amorphous

optical system.

The amorphous photonic lattice employed here is fabricated by the laser direct-

writing method in a fused silica sample [15]. We used a Ti–Sapphire laser system

operating at a wavelength of 800 nm, a repetition rate of 100 kHz and a pulse length

of 170 fs. A permanent change in the molecular structure of the material can be

realized by tightly focusing ultrashort laser pulses into a transparent bulk material,

causing nonlinear absorption. In fused silica, this induces a permanent increase in

the refractive index with approximately the dimensions of the focus of the micro-

scope objective focusing the writing beam. By moving the sample transversely with

respect to the beam, a continuous modification of the refractive index is obtained,

which creates a waveguide in the volume of the bulk silica. For the fabrication of

our 2 cm long samples, the average power was adjusted to 32 mW and the writing

velocity was set to 90 mm/min. The waveguides form a transverse refractive index

profile of the form

nðx; yÞ ¼ n0 þ
XN
j¼1

Dnje
�
�
ðx�xjÞ2=s2xþðy�yjÞ2=s2y

�3

� n0 þ Dnðx; yÞ; (3.2)

which is invariant in the propagation direction z. The ambient refractive index of

the fused silica is n0 ¼ 1.45, N ¼ 200 is the number of waveguides, Dnj and (xj,yj)
are the refractive index increase and position of the jth waveguide, respectively.

The parameters sx ¼ 1.5 mm and sy ¼ 1.5 mm describe the transverse length and

width of the waveguides, and Dn(x,y), the deviation from the ambient refractive

index, represents the potential in (3.1).

In many amorphous systems, it is interesting to observe how the band-gap closes

and what happens to defect states residing in the gap as the bands merge.
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We explored this issue in our system in detail, simply by launching a beam into the

defect waveguide, and varying the wavelength. At l ¼ 750 nm, the gap is still

present (Fig. 3.3a); hence, the defect state is decoupled from the band, and light

remains confined to the “defect waveguide” where it was launched (Fig. 3.3b).

At l ¼ 800 nm, the gap is almost closed (Fig. 3.3c); hence, the defect state becomes

part of the Urbach tail [24] of the second band, i.e., states that leak into the gap due
to the presence of disorder. Increasing the wavelength even further, the defect state

itself becomes more and more delocalized. Eventually, at l ¼ 850 nm, the gap is

closed and the defect state is fully absorbed into the band (Fig. 3.3e, f).

There is a sharp distinction between localization within a defect state and

the phenomenon of Anderson localization. Here, we demonstrate that a defect-

state in an amorphous system is in fact much more localized than Anderson states.

Our system is two-dimensional (x and y, while z plays the role of time, in the

quantum problem), where it is known that all states are inherently localized

with any amount of disorder [22], i.e., the bands are composed of localized

Anderson states. It is therefore interesting to use our amorphous photonic system

to compare transverse (Anderson) localization of light [19–21] with the transverse

localization of light in a defect state residing within the gap. Figure 3.4 shows the

results, exemplifying the fact that a defect state (residing in the gap) is much

more localized than the Anderson localization length. To this end, the experiments

on Anderson localization were carried out through ensemble averaging as explained

in [19]. This is because the corresponding quantum model is an expectation value

problem; hence, one has to average over multiple realizations of the disorder to

obtain a meaningful results (the quantum system is self-averaging given long

enough evolution time, but the propagation distance in our photonic system is not

large enough to experience self-averaging, and hence the ensemble average).

Figure 3.4a, b depicts the ensemble-averaged experimental intensity profile of

light trapped in a defect mode (Fig. 3.4a), averaged over ten samples, and light

that is Anderson localized (Fig. 3.4b), averaged over 30 samples. Comparing

Figs. 3.3b and 3.4a reveals that the defect state is clearly invariant under averaging.

By contrast, examining a wave-packet composed of Anderson modes (which are

part of the band) in a single realization (Fig. 3.4c) shows no confinement whatso-

ever. This emphasizes the importance of averaging over multiple realizations:

when the evolution is short-ranged, as in the transverse localization scheme, only

ensemble-averaging reveals Anderson localization, as nicely shown by Fig. 3.4b.

Figure 3.4d shows the simulated results of the experiment of Fig. 3.4b, with

an ensemble-average taken over 100 realizations of disorder. Comparing the

Anderson localization length and the width of a defect mode that resides in

the gap, shows clearly that the width of the defect states is much smaller that the

localization length. This is evident from the experiment (Fig. 3.4e; cross-sections

taken through Fig. 3.4a, b), and from the simulation (Fig. 3.4f). The intuition behind

this is that the defect state exhibits an isolated eigenvalue; hence, there are no

other states of similar energy with which it may hybridize and thus delocalize.

On the other hand, although the other eigenstates are themselves localized, they

may be thought of as being composed of a set of eigenstates in different
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Fig. 3.3 Transformation of a defect state residing in the gap into states residing in the band, as the

optical wavelength is increased (theory and experiments). (a) Band structure for the disordered

waveguide array with a defect waveguide of index of refraction 1.45 + 4.5 � 10�4, and at

wavelength l ¼ 750 nm. In (b), we show experimental results of the output pattern (the absolute

square of the wavefunction) where the input beam is launched into the defect waveguide. (c) And

(d) are analogous to (a) and (b) respectively, but for l ¼ 800 nm; (e and f) are for l ¼ 850 nm.

At this wavelength, the defect state may be considered to be part of the Urbach tail; as seen here,

the state delocalizes as the band-gap gets smaller and it is drawn into the band
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Fig. 3.4 Defect state in an amorphous photonic lattice compared to the localization length arising

fromAnderson states, highlighting that the defect state is much more localized, in spite of the fact that

all states in an amorphous structure are localized (theory and experiments). (a) Experimental

ensemble-average output beam for light launched into the defect waveguide (average taken over ten

samples with different random realizations of the distribution of waveguides, all with the same

statistics). Clearly, ensemble-averaging does not affect the shape of the defect mode. (b) Experimental

ensemble-average output beam for 633 nm light input on 30 different nondefect waveguides in

different local environments of the disordered pattern. The ensemble-average wavepacket exhibits

Anderson localization. (c) A single experimental realization of the output beam when light is incident

on a nondefect waveguide. By itself this beam does not display the exponential decay of Anderson

localization; indeed Anderson localization only emerges upon ensemble-averaging. (d) Numerical

simulationofAnderson localization at 633nmover 100 realizations of the disordered pattern. (e) Semi-

log plot of the light intensity vs. transverse direction for the ensemble-averaged experiments of

(a and b). The linear behavior of the broader curve indicates exponential decay of the wavefunction,

the hallmark ofAnderson localization. The defect state is clearly notAnderson localized. (f) Numerical

results for curves corresponding to those in (e) derived from beam-propagation simulations



environments hybridizing with one another, hence “spreading out”. Eigenvalue

differences in different local environments account for the ultimate localization

of these wavefunctions, but these differences are extremely small compared to the

relative isolation of the defect state.

The amorphous waveguide array is an excellent test-bed for studying general

properties of waves in amorphous systems. We show here, by use of simulations,

that the concept of effective mass at the band edges carries over faithfully from the

periodic to the amorphous case. In photonic lattices, it is convenient to quantify the

effective mass through the variation of the transverse velocity as a function of

transverse momentum, which can be readily varied as one launches the input optical

beam into the photonic lattice [25]. There, the effective mass is defined as the

inverse of the second derivative of the propagation constant with respect

to the transverse momentum [16, 17]. However, in our amorphous system, the

dispersion relation is discontinuous; hence, one cannot simply vary the transverse

momentum of the launch beam and observe the variation of transverse velocity,

as is done in photonic lattices—relying on having Bloch modes that are inherently

extended states. Here, the Anderson states are all localized, and they have vanishing

transverse velocity (the potential is z-invariant); hence, one cannot use this method.

Instead, we quantify the concept of effective mass directly through Newton’s

second law: we introduce a known variation of the potential (which must vary

much slower than the spacing between waveguides), launch a wavepacket,

and observe its trajectory. An example is shown in Fig. 3.5, where we add a

weak, slowly varying, sinusoidal function to the refractive index variation, namely

Dn(x,y) ! Dn(x,y) + asin(2px/L), where L is the width of the sample, and the

coordinate (0,0) is taken to be at the center [26]. Then, we construct a beam

(wavepacket) from a superposition of eigenstates at close vicinity (such that effect

mass can be defined, as in a periodic system), and launch it near the

center coordinate at the input facet, gradually cutting off the wavepacket such

that it lies in the center of the amorphous photonic lattice. With a > 0 the force

acts in the +x direction. Hence, for a positive effective mass, the beam would be

deflected towards +x, whereas for a negative effective mass it would propagate in

the �x direction, opposite to the force direction. The amount of deflection is

proportional to effective mass (in the lowest order approximation). We demonstrate

this concept through beam-propagation simulations, and display the results in

Fig. 3.5. In Fig. 3.5a and g the beam is composed of modes taken from the center

of the first band and the low-momentum edge of the second band, respectively,

whereas in Fig. 3.5d the beam is composed of modes from the edge of the first band.

Consequently, the beam, which was always launched at the center coordinate of

the input facet (Fig. 3.5b, e, h), is propagating toward +x in the former cases

(Fig. 3.5c, i), and in the �x direction in the latter case (Fig. 3.5f). Hence, the

effective mass is positive at the center of the first band, then negative at the edge of

the first band, positive again at the low-momentum edge of the second band, etc.

That is, the concept of effective mass, which has been extensively studied in

crystalline (perfectly periodic) systems, carries over to amorphous systems.

Undoubtedly, this result suggests interesting experiments, especially in the
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nonlinear regime—where an attractive (self-focusing) nonlinearity would act

exactly the opposite in the regimes of positive and negative effective mass [27].

Unfortunately, utilizing these ideas to demonstrate the concept of effective mass

through transport in our amorphous photonic structure requires propagation

distances that are beyond our current experimental reach. However, it is likely

that such experiments would become practical within a short time.

Fig. 3.5 The concept of effective mass and its impact on propagation of wavepackets in amor-

phous photonic lattices (simulations). Simulated propagation of wavepackets composed of five

states near the edges of bands. A slowly varying force is applied by adding a sinusoidal function to

the refractive index n(x,y). The wavepacket is accelerated by the force, and its movement is

proportional to the effective mass. The rows display results with wavepackets taken from the

center of the first band (top), edge of the first band (center), and edge of the second band (bottom).
The columns show, from left to right, the transverse displacement (x) as a function of propagation

distance (z), the input wavepacket launched at the center of the lattice, and the output wavepacket

emerging after 2 cm of propagation, displaced in correspondence with the effective mass. Clearly,

the output wavepacket is displaced to the right (top), to the left (center) and to the right (bottom),
proving that the effective mass at the band edges is positive, negative and positive, respectively,

which is consistent with periodic lattices
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3.2 The Nonlinear Regime: Solitons

In the previous section, we discussed amorphous photonic lattices and presented

experimental results in the linear regime. In the present section, we will introduce

nonlinearity and study its effects in these systems. To do so, we will use the discrete

nonlinear Schrodinger equation (rather than the continuous one used in the previous

section) because it is (arguably) simpler, certainly less computationally costly, and

captures the physics related to the first band almost as accurately as the continuous

model. The discrete nonlinear Schrodinger equation for the Kerr nonlinearity (in

reduced units) is written as:

i@zci þ
X
j

tðrijÞcj þ gjcij2ci ¼ 0; (3.3)

where z is the longitudinal propagation coordinate; g is the nonlinear Kerr coeffi-

cient; Ci is the value of the wavefunction in waveguide i; tðrÞ ¼ e�3ðr=a�1Þ is a

function of distance that gives the coupling between the waveguides; a is the

average spacing between the waveguides; and the summation is taken over all

waveguides. In the case where the waveguides are arranged periodically, it is well

established that there are stationary solutions to this nonlinear equation—solitons—

that were predicted by Christodoulides and Joseph [28], and were later observed

experimentally by Eisenberg et al. [16] in one dimension and Fleischer et al. [27] in

two dimensions. In the amorphous (or simply disordered) case, the existence of

soliton solutions has been predicted [29, 30], but they have not been observed at the

time of writing. Interestingly, these disordered discrete solitons (as we will show

below) can be either very similar to standard periodic lattice solitons or quite

different from them. Besides being of fundamental interest, the existence of these

solitons are very important to the currently ongoing discussion of Anderson locali-

zation in nonlinear systems [19, 20, 31, 32], and whether in fact nonlinearity can act

to reinforce localization or to destroy it.

In the present work, we focus solely on the focusing Kerr nonlinearity (g > 0)

since calculations show that the results for the defocusing (g > 0) case are very

similar. The amorphous pattern used is depicted in Fig. 3.1a, and is derived (as

described in the previous section) from a snapshot of the simulation of a two-

dimensional liquid. Since we are solving for stationary solutions to (3.3), we seek

solutions that are z-harmonic (c ! ceibz where b is called the propagation con-

stant), meaning that (3.3) reduces to

� bci þ
X
j

tðrijÞcj þ gjcij2ci ¼ 0: (3.4)

Solutions to this equation are solved for using Newton’s method [33]. These

soliton solutions can be parameterized by b, and their so-called “existence curve”

[34] is a plot of their power (square of their L2-norm, given by P ¼ P
i jcij2) vs. b,

the propagation constant.
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There are a number of classes of solutions, as described in ref. [30]. One class of

solutions to (3.4) is shown in Fig. 3.6. At the edge of the band containing the linear

eigenstates (below b ¼ 5.5) the power of the soliton decreases as a function of b,
then reaches a minimum and increases indefinitely. In this case, the soliton

wavefunction steadily decreases in width as a function of increasing b. This is

strongly reminiscent of the behavior of discrete solitons in periodic lattices [33].

This type of behavior is seen for a large number of solutions, not all of them

approaching the band edge as the one shown in Fig. 3.6 does.

Another class of solitons is shown in Fig. 3.7. In this class, solitons bifurcate

directly from the linear modes of the system at zero power, meaning that they are

without a power threshold. This behavior is fundamentally different from that in

periodic lattice solitons, as well as the class of solutions described in the previous

paragraph. As shown in the figure, solitons bifurcate from linear modes at the band

edge (the first mode) as well as those within the band. The latter are observed to

undergo abrupt changes in slope for values of b within, or close to the band, most

likely due to resonant interaction with other modes of the system (avoided crossings).

Note that the solitons bifurcating from within the band are not necessarily more

localized than the linear modes from which they originate. This is shown clearly in

Fig. 3.7. The reason for this is that as the solitons resonantly interact with others, they

take on some of the character of the other (perhaps more delocalized) modes.

However, for sufficiently large b, these solutions will get smaller and smaller in extent

until they become strongly localized. In this case, the focusing nonlinearity has

induced a potential that is so deep that light cannot escape it.

The physical intuition for the zero power threshold observed for these solutions

may be stated as follows. Disordered systems are characterized by the phenomenon

of Anderson localization [18]. In both one and two dimensions, this means that all

Fig. 3.6 Existence curves for soliton solutions of (3.4). This is one member of a family of

solutions that monotonically decreases at lower values of b, then reaches a minimum P (meaning

it has a power threshold), and then increases monotonically as b tends towards infinity. The

effective width of the soliton wavefunction gets smaller with increasing b. This solution is strongly
reminiscent of the behavior of discrete periodic lattice solitons
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of the linear eigenstates of the system become exponentially localized, in contrast to

periodic systems wherein all eigenstates are extended. These localized eigenmodes

may be thought of as defect states of the system, much like a band-gap mode

associated with a vacancy in the lattice or an interstitial site (or any other local

defect). Since the mode is already present, a high “amount” of nonlinearity is not

necessary to localize the mode, and therefore the nonlinear mode may be formed for

arbitrarily small power. This reasoning accounts for the lack of power threshold in

this class of solutions.

3.3 Conclusions

In this chapter, we reviewed experimental and theoretical results [7] on amorphous

photonic structures. We touched here only a few of the intriguing issues related to

this topic. However, it is already evident that amorphous photonic systems provide

an elegant tool to explore the universal features of strong disorder in general. In this

work, we have shown that the concept of a band-gap has much wider importance

and implications than traditionally conceived—in the context of crystalline

structures. We have found disorder-induced defect states, which are fundamentally

different from the Anderson states comprising the bands in amorphous media.

We have shown that the concept of effective mass still holds in amorphous

Fig. 3.7 Existence curves for soliton solutions of (3.4). These existence curves are for solitons of

a different class than that depicted in Fig. 3.6: they bifurcate directly from linear modes at zero

power. The dashed curve bifurcates from the first linear mode (highest propagation constant, b).
Within increasing propagation constant, the effective width of the mode decreases. The solid curve
is the existence curve of a soliton that bifurcates from a linear mode in the band. The effective

width does not increase decrease monotonically with b, but it does converge to a single waveguide
as b ! 1. The shaded region denotes the band containing the propagation constants of the linear
modes. Note that periodic boundary conditions are used, therefore the left and right sides of the

arrays may be considered in contact with one another, as well as the top and bottom
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systems, and suggested a scheme to measure it experimentally. Finally, we

discussed the issue of solitons in amorphous photonic lattices and described how

they exhibit qualitatively different behavior than periodic lattice solitons. There are

a number of important open questions that remain about solitons in disordered/

amorphous systems. First of all, a full linear stability analysis will be important in

determining which of these solitons are stable and where, as well as whether the

Vakhitov–Kolokolov stability criterion applies [35]. Secondly, a full enumeration

of all soliton solutions is beyond the scope of this chapter, but is necessary for a

completely comprehensive quantitative description. Furthermore, we have only

handled the focusing Kerr nonlinearity here, and therefore other types of nonline-

arity (i.e., higher order, saturable or nonlocal [36]) may exhibit different behavior.

Preliminary calculations on the defocusing Kerr nonlinearity show very similar

results to the focusing case, which is similar to periodic systems. In sum, the

combination of disorder and nonlinearity provides a formidable challenge to optics

and photonics research, but a very important and fascinating one.

These ideas and experiments are only the beginning of a new direction [7]. Many

intriguing questions arise, and new ideas come up. Would nonlinear phenomena

such as spontaneous pattern formation and modulation instability exist in amor-

phous systems? Can this system support shock waves? How do solitons move

through the random potential, like waves or like particles? The experimental setting

described in this chapter will help to explore these and many other questions, and to

eventually understand the true universal spirit of general amorphous systems.
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Chapter 4

Nonlinear Control of Multicolor Beams

in Coupled Optical Waveguides

Dragomir N. Neshev, Andrey A. Sukhorukov, and Yuri S. Kivshar

4.1 Introduction

Photonic structures with a periodic modulation of the optical refractive index play an

important role in the studies of the fundamental aspects of wave dynamics [1, 2].

In particular, photonic crystals, layered media, or closely spaced optical waveguides

enable manipulation of the key phenomena governing optical beam propagation:

spatial refraction and diffraction. Arrays of coupled optical waveguides are

particularly attractive as an experimental testbed due to their easier fabrication and

characterization, as well as because of the opportunities they offer for enhanced

nonlinear effects as a result of the large propagation distances in such structures.

The physics of beam propagation in optical waveguide arrays is governed by

the coupling of light between neighboring waveguides and the subsequent interfer-

ence of the coupled light. Since both the coupling and the interference processes are

sensitive to the light wavelength, the output intensity profiles can be drastically

different for each spectral component of the input beam. This is a particular concern

in many practical cases, including ultra-broad bandwidth optical communications,

manipulation of ultra-short pulses or supercontinuum radiation, where the band-

width of the optical signals can span over a wide frequency range.

Initially, most of the research on light propagation in waveguide arrays has been

focused on monochromatic light propagations; however, recently strong research

attention has attracted the investigation of the rich wave dynamics of multiple color

beams, including studies on the propagation of broad-bandwidth and multicolor

optical beams in periodic photonic structures.
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Themost significant focus in such studies is the nonlinear propagation of multicolor

beams because the nonlinearity provides interaction and coupling between the different

spectral components. These interactions lead to a range of new phenomena, such as

phase locking of the spectral components, as well as to novel types of phase transitions

of the nonlinear output beamprofiles. This behavior is analogous to the synchronization

of oscillations of nonlinearly coupled oscillators in nonlinear dynamics [3], but can

have rather unique features in case of coupled optical waveguides. The unique features

come from the fact that the nonlinear interaction of spectral components also leads to

the well-known effect of localization of the beam inside the array.

Synchronization of oscillations and wave localization are two most fundamental

nonlinear phenomena that have been driving the field of nonlinear dynamics for

decades. Synchronization and phase locking [4] are known to exist in systems of

different physical origin due to external driving and coupling between elements.

Examples include the synchronous flashing of fireflies and the pulsation of laser

arrays [5, 6]. On the other hand, the localization of waves in nonlinear lattices, such

as waveguide arrays, is also determined by coupling between the individual lattice

sites [7]. As inter-site coupling and nonlinearity govern the two phenomena, a

natural question is if they can be linked together and what kind of novel fundamen-

tal effects can arise due to their interplay.

In this chapter, we describe the two representations of such interplay associated

with different types of nonlinear interactions: (1) coherent interactions—when there is

energy exchange between the spectral components and (2) incoherent interactions—

when the different spectral components interact through cross-phase modulation, but

there is no energy exchange between them.We note that in both cases, the localization

of themulticolor beam is closely linked to phase locking of the spectral components at

the neighboring waveguides; however, in the case of parametric coherent interactions

this phase locking can be also accompanied by a phase transition from in-phase to out-

of-phase state for one of the spectral components.

The chapter is organized as follows. In Sect. 4.2, we provide the general

description of multicolor light propagation in waveguide arrays, and describe the

distinction of the two cases of nonlinear interactions between the spectral

components. In Sect. 4.3, we present the studies on incoherent interaction between

the spectral components, while in Sect. 4.4, we show how the parametric driving

between the spectral components influences the beam dynamics and leads to phase

transition of the phase profile for one of the components. Finally in Sect. 4.5 we

provide some further discussions and outlook to the open problems in the field of

polychromatic light propagation.

4.2 Multicolor Light Propagation

In this section, we discuss the general features of polychromatic beam diffraction in

planar photonic structures with a modulation of the refractive index along the

transverse spatial dimension (Fig. 4.1a), including optically induced lattices and

periodic waveguide arrays [8–19]. The physical mechanism of beam diffraction in
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such structures is based on the coupling between the modes of neighboring

waveguides [12, 20, 21]. When the beam is coupled into a single waveguide at

the input, it experiences discrete diffraction where most of the light is directed into

the wings of the beam (Fig. 4.1b). This is in sharp contrast to the diffraction of

Gaussian beams in bulk materials where the maximum intensity is in the beam

center for any propagation distance.

The light in the array couples from one waveguide to another due to the spatial

overlaps of the waveguide modes. This coupling is characterized by the coupling

constant C. Since the mode profile and confinement depend on the wavelength, the

coupling constant (Fig. 4.1c) and correspondingly the discrete diffraction pattern

exhibit strong spectral dispersion. The mode overlap at neighboring waveguides is

usually much stronger for the red-shifted spectral components [22], which therefore

diffract faster than their blue counterparts. This leads to spatial redistribution of the

colors of the polychromatic beam, which increases along the propagation direction,

see Fig. 4.2a. As a result, at the output the red components dominate in the beam

wings, while the blue components are dominant in the central region, see Fig. 4.2b.

A more accurate mathematical description of the polychromatic beam propaga-

tion for optical sources with a high degree of spatial coherence, such as

supercontinuum light generated in photonic-crystal fibers, can be based on a set

of propagation equations for the polychromatic beam envelope Aðx; zÞ ¼ PM
m¼1Am

ðx; zÞ, where Am(x, z) are the amplitudes of the different frequency components at

vacuum wavelengths lm. Since the refractive index contrast in photonic-lattice

structures is usually of the order of 10�4 to 10�2, we can consider the beam

propagation under the paraxial approximation [23–25]. For a one-dimensional

(1D) array of coupled optical waveguides, such as the one depicted in Fig. 4.1a,

the beam evolution is described by a system of coupled nonlinear Sch€odinger
equations

i
@Am

@z
þ lm
4pn0ðlmÞ

@2Am

@x2
þ 2p
lm

Dnðx; lmÞAm þ GmðAÞAm ¼ 0; (4.1)
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Fig. 4.1 Light propagation in waveguide arrays. (a) Schematic of the waveguide array structure

excited by a narrow input beam. (b) Characteristic linear propagation of the beam inside the array,

demonstrating discrete diffraction formed due to coupling between the waveguides. (c) Depen-

dence of the coupling constant C on the wavelength

4 Nonlinear Control of Multicolor Beams in Coupled Optical Waveguides 113



where A ¼ { A1, A2, . . .}, x and z are the transverse and longitudinal coordinates,

respectively, and n0(lm) is the background refractive index. The function Gm(A)

describes the nonlinear interaction between the frequency components. Dn(x; lm)
describes the effective refractive index modulation, which depends on the vertical

mode confinement in the planar guiding structure. Since the vertical mode profile

changes with wavelength, the dispersion of the effective index modulation is

strongly affected by the geometry of the photonic structure.

For an array of optical waveguides in LiNbO3 (as in our experiments shown below),

the modulation can be accurately described as Dnðx; lÞ ¼ DnmaxðlÞ cos2ðpx=dÞ ,
where d is the lattice period, and the wavelength dependence of the effective modula-

tion depth Dnmax(l) can be calculated numerically or determined by matching the

experimentally measured waveguide coupling [23, 24]. Even if the material and

geometrical dispersion effects are weak, the beam propagation would still strongly

depend on its frequency spectrum [25] since the values of lm appear explicitly in (4.1).
The linear propagation [G(A) ¼ 0] of optical beams through a periodic lattice

can be fully characterized by decomposing the input profile in a set of spatially

extended eigenmodes, called Bloch waves [26, 27]. The Bloch-wave profiles can be

found as solutions of the linearized equation (4.1) in the form Amðx; zÞ ¼ cjðx; lmÞ
exp½ibjðKb; lmÞzþ iKbx=d� , where cj(x; lm) has the periodicity of the underlying

lattice, bj(Kb; lm) are the propagation constants, Kb are the normalized Bloch

wavenumbers, and j is the band number. At each wavelength, the dependencies of

the longitudinal propagation constant (along z) on the transverse Bloch wavenumber

(along x) are periodic, bj(Kb; lm) ¼ bj(Kb � 2p; lm), and are fully characterized by
their values in the first Brillouin zone, � p � Kb � p. These dependencies have a

universal character [1, 26, 27], where the spectrum consists of nonoverlapping bands

separated by photonic bandgaps. Consistent with our physical interpretation of mode

coupling, the beam propagation will exhibit strong frequency dispersion. Indeed, the

position and thewidth of bands and gaps are strongly sensitive to thewavelength of the

light. This is shown in Fig. 4.2c which plots the propagation constants of the top and

the bottom of each Bloch band as a function of the wavelength. Clearly, with

increasing of the wavelength, the bands are getting wider and the gaps narrower.
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Fig. 4.2 Propagation of multicolor (polychromatic) light beams. (a) Numerical simulation of

polychromatic beam diffraction: real-color image of beam evolution inside the array. (b) Spectrally

resolved output intensity profile. (c) Dependence of photonic bandgap structure on wavelength.

The simulations correspond to the parameters of LiNbO3 waveguide arrays [23, 24]
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Importantly, the rate of beam diffraction is determined by the curvature of

the dependencies bj(Kb; lm). For an input beam coupled to a single waveguide,

the first band is primarily excited, and the beam diffraction rate is determined by

maxKb
j@2b1=@K

2
bj. The rate of diffraction increases at longer wavelengths where the

band is wider and the gap narrower. Again, this conclusion is in full agreement with

the physical interpretation presented above using the concept of coupling between

waveguide modes.

The nonlinearity can dramatically affect the modes of the system leading to a

number of fundamental effects, such as beam localization, soliton formation, and

phase locking of the spectral components. In general, one can distinguish between

two cases of nonlinear interactions between the spectral components: incoherent

and coherent. For each case, the function G(A) takes a different form that depends

on the specific physical realization of the nonlinearity. The physical effects, how-

ever, can be intuitively explained: In the case of coherent interactions, there is

mixing and exchange of energy between the spectral components, e.g., four-wave

mixing processes with third order nonlinearity [28] or three-wave mixing

interactions due to quadratic nonlinearity [15, 29]. In the case of incoherent
interactions, there is no energy exchange between the frequency components and

they interact through the effect of cross-phase modulation. Such interactions usu-

ally occur in materials with slow nonlinear response, such as thermal [30] or

photorefractive [23, 31, 24].

Here we discuss how coherent and incoherent interactions affect the spatial

beam profile during its propagation inside the array. In particular, we are interested

in the changes of the phase structure of the different spectral components due to the

interplay between linear coupling and nonlinear beam localization. We note that

such interplay can lead to dramatic phase transformations in the beam structure

when the nonlinear localization is inside the Bragg reflection gap of the periodic

structure (Fig. 4.2c). Such phase transitions are attributed to the finite width of this

gap and do not occur in lattices with positive (self-focusing) nonlinearity when the

localization occurs inside the total internal reflection gap [32] (see also Fig. 4.2c).

It is therefore an intriguing problem to understand how the phase relations of the

spectral components in the polychromatic beam are established in the localization

process, given the strong dependence of the bandgap spectrum on wavelength.

Below, we discuss two scenarios of phase transitions that occur for polychro-

matic beams with incoherent and coherent type of nonlinear interactions.

4.3 Incoherent Interaction of Spectral Components

In this section, we present the effects of phase locking of the different frequency

components due to the interplay of incoherent nonlinear interactions of the spectral

components and linear coupling between the waveguides.
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4.3.1 Theoretical Approach

At high laser powers, the spectral components of the polychromatic beam interact

incoherently with each other (no new frequency components are generated) due to

the intensity-dependent change of the optical refractive index [33] (cross-phase

modulation). In this case, one can write the nonlinear term in (4.1) as

GmðAÞ ¼ gm
M

XM
j¼1

sðljÞjAjj2; (4.2)

where g is the nonlinear coefficient for the mth spectral component, M is the total

number of components, and s(l) is a weight coefficient describing the sensitivity of
the nonlinearity to wavelength. Importantly, this model of nonlinearity also describes

the photorefractive interaction of polychromatic beams in Lithium Niobate (LiNbO3)

waveguide arrays in the regime of weak saturation, as in our experiments presented

below.

Physically, the nonlinearity in LiNbO3 is photorefractive and arises due to

charge excitations by light absorption and corresponding separation of these

charges due to diffusion [34]. A characteristic property of this photovoltaic

photorefractivity is that an increase of the beam intensity leads to a decrease of

the material refractive index [35, 36]. Whereas the nonlocal effects of the

photorefractive nonlinearity may also affect the nonlinear beam propagation [37],

this effect is weak under our experimental conditions.

The spectral response of the nonlinearity depends on the crystal doping and

stoichiometry, and it may vary from crystal to crystal. In general, however, light

sensitivity appears in a wide spectral range with a maximum for the blue

spectral components [38], but the sensitivity extends well in the near infrared

region [39]. In our analysis, we approximate the photosensitivity dependence by a

Gaussian function sðlÞ ¼ exp½�logð2Þðl� lbÞ2=l2w� with l > lb ¼ 400 nm and

lw ¼ 150 nm. Note that bymaking a transformation ~Am ¼ Am

ffiffiffiffiffiffiffiffiffiffiffiffi
sðlmÞ

p
, the sensitivity

function can be rescaled to unity, esðlmÞ ¼ 1, and therefore the presented results are

also directly applicable for other shapes of the sign-definite photosensitivity functions.

In our numerical calculations, we choose a large number of frequency components

(M ¼ 100) in order to accurately model the polychromatic beam power spectrum

generated in experiment. The simulations reveal that the input beam experiences self-

trapping above a critical power level. Figure 4.3a shows the combined output of the

array as a function of total power, and Fig. 4.3b shows the power in the central

waveguide for different spectral components. It is clear from Fig. 4.3 that there is a

sharp transition between the regimes of diffraction and soliton formation, associated

with collective localization of spectral components from blue to red and infrared.

The lower degree of localization of red components is due to the stronger diffraction

and effectively weaker nonlinearly induced potential which is inversely proportional

to the wavelength. The sharp self-trapping occurs because the length of waveguide

array is several times larger than the diffraction lengths for all spectral components.
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Accordingly, all components either diffract or experience collective self-trapping.

This effect differs drastically from the beam reshaping under the conditions when

diffraction of short-wavelength components is veryweak [23] as in that case the power

increase provides a gradual onset of localization at the output without a collective

power threshold.

If we analyze in details the propagation of the polychromatic beam, we find that

just above the power threshold for the soliton formation, one can still observe a

strong diffraction at the initial propagation stage, especially for the red-shifted

spectral components (Fig. 4.4a). With propagation, however, a well-localized

polychromatic beam is formed. For higher input powers (Fig. 4.4e), the effect of

diffraction is further reduced and the soliton preserves its input “white” color.

The physical mechanism of beam localization can be understood from the plots

of the density of states vs. the propagation constants. Therefore, we perform a

Fourier transform in z and then integrate the power spectrum over the central region

of six waveguides to exclude the contribution of diffracted waves. The obtained

spectra are presented as density plots (white color correspond to larger amplitudes)

in Fig. 4.4b, f. We observe that at the threshold power for beam self-trapping, the

propagation constants are shifted inside the Bragg-reflection gap through

the nonlinear self-action (Fig. 4.4b). Note that the spectrum for blue components

is shifted deeper inside the gap, whereas the red components have spectra very close

to the gap edge. This explains the weaker localization of red components as shown

in Fig. 4.4c. As the power increases, the spectrum shifts further inside the gap for

all components (Fig. 4.4f), and accordingly the localization becomes stronger

(Fig. 4.4g). Because in both cases the beam shape remains constant with propaga-

tion inside the array and the propagation constant of all spectral components is

inside the Bragg-reflection gap we can conclude that the polychromatic beam forms

a polychromatic gap soliton.
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power: (a) transformation of the output beam profile and (b) fraction of output power in the

central waveguide for different spectral components
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Most importantly, the sharp power transition from diffraction to localization is

linked to a phase transition in the beam spatial profile. Above the critical power

level for localization, all spectral components lock their phase structure, such that

Fig. 4.4 Numerically calculated beam evolution for two different powers: (a–d) P0 ’ 6 and (e–h)

P0 ’ 12. Shown are (a, d) the beam propagation dynamics inside the arrays; (b, f) density of states

for the localized state, superimposed on the linear bandgap diagram; (c, g) spectrally resolved

output intensity profiles, and (d, h) output phase profiles of the individual spectral components
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they all have a staggered phase profile. To clarify this phase transition, we plot the

phase profiles of all spectral components in Fig. 4.4d, h. These plots clearly show

the simultaneous appearance of the staggered phase structure for all individual

spectral components, when the beam experiences nonlinear self-trapping. Hence,

such localization represents a uniquely different physical picture compared to the

theoretically studied spatially incoherent white-light solitons in lattices supported

by a focusing nonlinearity [32] where the defined phase relation is not directly

associated with the soliton formation.

4.3.2 Experimental Observation of Multicolor Beam
Self-trapping and SpectralPhase Locking

The key for experimental realization of the predicted phenomena of self-trapping

and phase locking is the combination of periodic structure with a broadband

nonlinear response and high-spatial coherence, high optical intensity polychromatic

light with a broad frequency spectrum. The natural choice of such a light source is

provided by the effect of supercontinuum generation [40]. In the process of

supercontinuum generation, spectrally narrow laser pulses are converted into the

broad supercontinuum spectrum through several processes [41, 42], including self-

phase modulation, soliton formation, soliton break-up due to higher order disper-

sion, and Raman shifting of the solitons, leading to non-solitonic radiation in the

short-wavelength range. Supercontinuum radiation has proven to be an excellent

tool for characterization of bandgap materials [43], it possesses high spatial coher-

ence [40], as well as high brightness and intensity required for nonlinear

experiments [44].

In our experiments, we used a supercontinuum light beam generated by femto-

second laser pulses (140 fs at 800 nm from a Ti:Sapphire oscillator) coupled into

1.5 m of highly nonlinear photonic crystal fiber (Crystal Fiber NL-2.0–740 with

engineered zero dispersion at 740 nm) [23]. The spectrum of the generated

supercontinuum spans over a wide frequency range (typically more than an optical

octave). After re-collimation and attenuation, the supercontinuum beam is

refocused by a microscope objective (�20) to a single channel of the waveguide

array (see Figs. 4.1a and 4.5a).

The optical waveguides are fabricated by in-diffusion of a thin (100Å) layer of

titanium in a X-cut, 50 mm long monocrystal lithium niobate wafer [18]. The

waveguides are single mode for all spectral components of the supercontinuum.

Arrays with different periodicity and index contrast were tested in our experiments.

After coupling to the array, its output is imaged by a microscope objective (�5)

onto a color CCD camera, where a dispersive 60∘ (glass SF-11) prism could

be inserted between the imaging objective and the camera (Fig. 4.5a) in order to

resolve spectrally all components of the supercontinuum. Additionally, a reference

supercontinuum beam is used for interferometric measurement of the phase structure
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of the output beam [24]. To compensate for the pulse delay and pulse spreading inside

the LiNbO3 waveguides, this reference beam is sent through a variable delay line,

implemented in a dispersion compensated interferometer, including an additional

5 cm long bulk LiNbO3 crystal (to equalize the material dispersion). In this way,

interferometric measurements are possible for ultra-wide spectral range.

To obtain a detailed insight into the spectral distribution at the array output, we

resolve in the vertical direction the individual spectral components by the prism and

acquire a single shot two-dimensional image providing spatial resolution in horizontal

and spectral resolution in the vertical (orthogonal) direction. This technique enables

precise determination of the spectral distribution at the array output. The image in

Fig. 4.5b depicts the spectrally resolved discrete diffraction of the supercontinuum

beam in an array of optical waveguideswith a period d ¼ 10 mmwhen the input beam

is focused to a single waveguide. The diffraction of the beam is weakest for the blue

spectral components, which experience weak coupling, while the diffraction is stron-

gest for the infrared components. We note that the spectral scale in Fig. 4.5b is not

linear due to the nonlinear dispersion of the prism. The spectrally resolved discrete

diffraction provides a visual illustration of the separation of colors in the waveguide

array. This separation occurs as the light is concentrated predominantly in the beam

wings rather than in the center, a typical property of the discrete diffraction. The

obtained diffraction pattern also allows for exact characterization of the linear disper-

sion parameters of the periodic structure and, in particular, waveguide coupling. In our

sample we measured that the discrete diffraction length varies from 1 cm, for the blue

(480 nm), to less than 0.2 cm, for the red (800 nm) spectral components. These values

correspond to a total propagation distance of 5.5 and 27.5 discrete diffraction lengths

for the blue and red spectral components, respectively. The propagation of few dif-

fraction lengths for all spectral components is advantageous for nonlinear experiments,

e.g., formation of solitons [45, 46], and facilitates strong phase transformations in the

nonlinear regime.

In agreement with the theoretical predictions, we observe strong spatial

localization of the supercontinuum light as its input power is increased

Fig. 4.5 (a) Experimental setup: The array is excited with a white light focused into a single

waveguide. At the output the light is dispersed vertically by a prism and imaged onto a CCD

camera. Spectrally resolved measurements of the beam profiles at the output face of waveguide

array (d ¼ 10 mm). (b) Polychromatic discrete diffraction at low laser power (0.01 mW). (c) Non-

linear localization and formation of polychromatic gap soliton at a higher (6 mW) power [24]
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(Figs. 4.5c and 4.6a–c). In a narrow range of input powers (150–250 mW), the

beam profile narrows from over 50 waveguides (Fig. 4.6a) down to three central

waveguides (Fig. 4.6b). This transition, indicating the formation of a polychromatic

soliton, happens over a range of 100 mW only and appears extremely sharp com-

paring with the fact that further localization down to a single waveguide of the array

requires additional increase of 1.5 mW (15 times larger) (Fig. 4.6c). The important

characteristic of this localization is the fact that it combines all wavelength

components (from blue to red) of the supercontinuum spectrum (Fig. 4.6d). Local-

ization around 700–750 nm wavelengths is not visible due to the lower spectral

intensity of these components in the input supercontinuum spectrum, whereas

localization over the six central waveguides is observed at 800 nm wavelength.

Taking advantage of the high spatial coherence of the supercontinuum light,

we also perform interferometric measurement of the localized output profile. In our

white-light interferometer, the reference beam is slightly tilted in the vertical plane in

comparison to the probe beam, thus resulting in interference fringes. The interference

patterns have different periods depending on wavelength, and therefore had to be

imaged separately using a tunable linear filter (LVF, Ocean Optics) mounted in front

of the CCD camera. The interference patterns recorded at high power (1.9 mW) are

presented in Fig. 4.6e. They show that the interference fringes between neighboring

waveguides are shifted by half a period hence, the probe beam phase changes by p
between the neighboring waveguides. Most remarkably, such staggered phase struc-

ture appears simultaneously in an ultra-broad spectral range fromblue (470 nm) to red

(above 630 nm), providing direct evidence that all spectral components are simulta-

neously phase locked to a staggered phase structure in the process of beam localization

and formation of a polychromatic gap soliton.

Phase/Interference

750
700

600

500
550

450

650

0 1 2 3−1−2−3
Waveguide number

W
av

el
en

gt
h,

 n
m

0.01 mW

0.25 mW

1.9 mW

Intensity800

0 1 2 3−1−2−3
Waveguide number

471
nm
471

636

555

W
av

el
en

gt
h

a

b

c
d e

Fig. 4.6 Experimental observation of polychromatic gap soliton: (a–c) Real-color CCD camera

images of the output beam intensity profile: (a) Diffraction profile at low power. (b, c) Nonlinear

localization and formation of polychromatic gap soliton with increasing supercontinuum power.

(d) Spectrally resolved measurements of the profile (c). (e) Interferograms of the output beam

profile (c) with a tilted reference supercontinuum beam, imaged at three different wavelengths as

indicated by labels
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4.4 Coherent Parametric Interactions of Spectral Components

Next we describe the effects of phase transformation of polychromatic beams in the

case of coherent nonlinear interactions between the spectral components inside

the waveguide array. In this case, the different spectral components can exchange

energy between each other leading to complex frequency outputs. Therefore, for

simplicity we restrict ourselves to a polychromatic beam consisting of only two

spectral components which are coupled through the parametric process of second

harmonic generation (SHG). We reveal that a new type of abrupt transition in the

phase structure of the beam can occur due to the interplay of waveguide coupling

and parametric driving.

Specifically, we consider the laser beam propagation through an array of closely

spaced optical waveguides in media with quadratic nonlinearity that facilitates

frequency conversion and energy exchange between a fundamental wave (FW)

and a second-harmonic (SH) beam. In such structures, the SH dynamics is governed

by two mechanisms of energy exchange (Fig. 4.7a): (1) an effective driving force

by the FW [47] at each lattice site, and (2) direct coupling of SH waves between the

lattice sites due to the overlap of the neighboring waveguide modes. We show that

each of these mechanisms could lead to synchronization of SH dynamics and

formation of different phase patterns. Mechanism (1) is dominant when the FW

(and the corresponding effective driving force) extends over many lattice sites,

whereas mechanism (2) dominates when the FW exhibits nonlinear self-trapping to

a single lattice site. We specially design our experimental conditions to observe this

interplay, overcoming for the first time the constraint of all previous experiments

where the second mechanism was suppressed due to the inhibition of linear

coupling for the SH modes [7].

The key observation of our studies is that as the optical power is increased and

the beam becomes more localized, the output beam profile at the second harmonic

exhibits a sharp transformation from in-phase (unstaggered) to out-of-phase (stag-

gered) pattern between the neighboring waveguides [29]. This type of behavior is in

sharp contrast to the incoherent case (Sect. 4.3), where all frequency components

were either de-phased or locked to the same phase structure.

4.4.1 Theoretical Approach

We develop the theoretical description of this coherent nonlinear interaction for the

particular case of an array of coupled waveguides in periodically poled lithium

niobate (PPLN) (Fig. 4.7) that features strong quadratic nonlinear response.

To demonstrate the existence of a phase transition, we explore the nonlinear

interaction between the FW00 and SH02 modes, whose intensity profiles are shown

in Fig. 4.7a. Both of these modes show linear coupling of comparable strength. This

is in contrast to all previous experiments on discrete quadratic solitons [7] that
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utilized the nonlinear interaction between FW00 and SH00 (Fig. 4.7b) where the

SH00 modes experience negligible linear coupling due to their strong localization.

The spatial beam evolution in quadratic nonlinear waveguide arrays can be

modeled by a system of normalized discrete equations for the mode amplitudes at

each waveguide in the array [7],

i
dAn

dz
þ cFWðAnþ1 þ An�1Þþ A�

nBn ¼ 0;

i
dBn

dz
þ cSHðBnþ1 þ Bn�1Þ � DbBn þ A2

n ¼ 0: (4.3)

The last terms in these equations account for the effective nonlinearity function

[G(A), as defined in (4.1)], z is the propagation distance normalized to zs, and An, Bn

are the normalized FW and SHmode amplitudes at the nth waveguide, respectively.
Note that the total power in the array P ¼ PFW þ PSH is conserved, where PFW ¼
∑n│An│

2 and PSH ¼∑n│Bn│
2. The real coefficients cFW;SH ¼ zsp=ð2LcFW;SHÞ deter-

mine the coupling strength between the neighboring waveguides, where LFW, SH
c

are the physical coupling lengths. The phase mismatch between the FW and SH

waves (accounting for the periodic poling) is characterized by the value of Db that

depends strongly on the FW frequency.

In the linear regime, the beam dynamics is governed by the dispersion relations

for the Bloch modes of the lattice [48]: AnðzÞ ¼ A0ðz ¼ 0Þ expðikFWnþ ibFWzÞ for
the FW, and BnðzÞ ¼ B0ðz ¼ 0Þ expðikSHnþ ibSHzÞ , for the SH. Here bFW ¼ 2

cFWcos(kFW) and bSH ¼ 2cSH cosðkSHÞ � Db . The characteristic dispersion

relations are schematically shown in Fig. 4.7(graphs). For propagation constants

outside the linear bands, the waves exhibit evanescent decay due to the

photonic bandgap [49], An ¼ k� nj j
1 and Bn ¼ k� nj j

2 , where kj ¼ ½1þ ð1� �2j Þ1=2�=�j
with �1 ¼ 2cFW=bFW and �2 ¼ 2cSH=ðbSH þ DbÞ . We note that for propagation

Fig. 4.7 Scheme and dispersion diagrams of the nonlinear coherent system. (a) Strong coupling

between the SH modes. (b) No coupling between the SH modes where the only single component

is only responsible for the beam dynamics inside the array. (top) Sketch of the PPLN sample with

the corresponding refractive index profile. (middle) Intensity profiles of the FW and SH modes.

(bottom) Dispersion relations of the FW (left) and SH (right) modes
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constants below the bands (bFW < � 2cFW and bSH<� 2cSH � Db), kj < 0, i.e.,

the evanescent waves are staggered, with p phase oscillations between neighboring

waveguides.

Next, we demonstrate that nonlinear parametric coupling of FW and SH waves

can dramatically modify the phase pattern of the propagating waves. We note that

most efficient SH generation occurs when the waves are spatially localized, due to

enhanced local field intensities. Stronger localization occurs at higher optical

powers due to self-focusing as there is a nonlinear phase shift for both components

arising due to the energy exchange between the FW and the SH [50].

In order to reveal the generic relation between the nonlinear localization and phase

locking, we first analyze the stationary localized states or fixed points of the system.

Their power dependence provides insight into the bifurcation properties of the

system, revealing possible phase transitions. These solutions have the form AnðzÞ
¼ Anðz ¼ 0Þ expðibzÞ and BnðzÞ ¼ Bnðz ¼ 0Þ expð2ibzÞ [51, 7]. Here b is a real

parameter, which simultaneously defines the FW (bFW ¼ b) and SH (bSH ¼ 2b)
propagation constants due to nonlinear synchronization. By substituting these

expressions into (4.3), we obtain a set of nonlinear equations for the real amplitudes

of FW and SH.

Whereas the solutions of these equations can be found only numerically, we

identify the phase transition effect analytically by analyzing the tails of localized

solitons, where │An│ ! 0 and │Bn│ ! 0 for │n│ � 0. The solution for the FW tail is

the same as for linear evanescent waves, An 	 k1
│� n│. For the SH wave, the

nonlinear term representing the effective FW driving force cannot be neglected

even in the small-amplitude limit. We perform asymptotic analysis and

derive asymptotic expressions for the SH beam tails: Bn 	 k2
�│n│ if │k2│ < k1

2

and Bn 	 (k1
2) �│n│ if │k2│> k1

2. In the first case, the SH tail profile corresponds

to a linear evanescent wave solution, whereas in the second case the SH tail is

fully determined by the FW. A nontrivial phase transformation occurs when the

propagation constant is below the bands,b<bl ¼ minð�2cFW ;�cSH � Db=2Þ, since
in this case kj < 0. While the FW tails are always staggered, the SH tail exhibits a

phase transition at

bs� ¼ �c2FWc
�1
SH �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c4FWc

�2
SH þ 2c2FW � Dbc2FWc

�1
SH

q
: (4.4)

The SH tails are staggered for b < bs� and b > bs+ and unstaggered for bs�<b<
bsþ. Importantly, for weak or zero coupling of the SH mode (cSH ’ 0), bs� diverges

and no phase transition is possible. Therefore in all previous experiments with

quadratic waveguide arrays, no such phase transition could be observed. Under our

experimental conditions, the coupling lengths are practically constant in the

frequency range around Db ¼ 0, with values LSH
c ’ LFW

c ’ 20 mm. By choosing

the scaling coefficient zs ¼ 2LcFW=p , the corresponding normalized coupling

constants are cFW, SH ’ 1.

The SH structure in the center and in the tails of the solutions can be different.

Figure 4.8 presents the numerically calculated parameter regions for odd-type
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solutions (centered on a lattice site [7, 51]), where the boundaries for phase

transitions in the tails and for the entire soliton are indicated. Figure 4.9a, b

shows the intensity and phase profiles of the odd-type solutions vs. b for Db ¼ 1.

For low absolute values of b, the FW component of the solution is staggered and the

SH component is unstaggered. If the value of b is decreased below bs�, the FW

component becomes very narrow. Hence, the SH is driven only at a few waveguides

and becomes independent of the FW component. Here the SH component

undergoes a phase transition to the staggered state. Such transition has never

been shown before, although soliton solutions with staggered/staggered and stag-

gered/unstaggered FW/SH components have been reported [49, 51, 52]. Unambig-

uous signatures of the phase transition are observed in the spatial Fourier spectrum

(Fig. 4.9c). While the FW spectrum is always confined around the edge of the

Brillouin zone (kFW ’ � p), the SH Fourier spectrum switches between the center

and the edge of the Brillouin zone, corresponding to a transition from unstaggered

to staggered profile.

It is relevant to note that such phase transition is uniquely different to the phase

locking presented in Sect. 4.3. While in both cases, the phases of the spectral

components are well defined, due to the coupling of the spectral components here

we have sharp switching of the phase state of only one component. In contrast, no

phase switching was present in the case of incoherent coupling of the spectral

components. Thus, the phase transition predicted here is a unique feature appearing

due to the parametric process and the energy exchange between spectral components.

Figure 4.9d shows the soliton power corresponding to Fig. 4.9a–c. The monotonic

dependence of the power on the propagation constant is generic for all soliton families

exhibiting the phase transition since they all bifurcate from the FWband edge. As such,

all odd-type solitons are stable [51]. For values of the propagation constant below the

phase transition threshold, the SH power of the solution is much smaller than the FW

power (Fig. 4.9e), and indeed in this regime the SH is fully driven by the FW.

We also analyze even-type solutions of (4.3), where the FW profile is centered

between neighboring lattice sites [7, 51]. We find that similar to the odd solutions, a

phase transition occurs for the SH tails, see Fig. 4.10. However, the SH amplitudes

at the two central sites are forced to have the same phase due to the even symmetry

of the solution. Accordingly, the energy is always concentrated in the center of the

Brillouin zone (Fig. 4.10c). This demonstrates the possibility to partially suppress

Fig. 4.8 Regions of

existence and different

topologies of the odd

soliton solutions with

cFW ¼ cSH ¼ 1
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a

d e

b c

propagation constant

Fig. 4.9 (a–c) Soliton families for Db ¼ 1 (indicated by the dashed line in Fig. 4.8): (a) absolute
values of the mode amplitudes, (b) phases where blue corresponds to 0 and red to p, (c) absolute
values of the spatial Fourier spectra, (d) total power, and (e) power ratio PSH/PFW. The dotted lines
in (b-f) mark bs � where the SH tail profiles exhibit phase transition

a b c

Fig. 4.10 Soliton families with even symmetry: (a) mode amplitudes, (b) phases, and (c) Fourier

spectra. Notations and parameters correspond to Fig. 4.9b–d
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the phase transition. Although the even solitons exhibit symmetry-breaking insta-

bility and tend to transform to odd solitons [51], we confirm below that such

instability develops relatively slowly, so that the even symmetry states can be

observed in the experiment.

4.4.2 Experimental Results

Next, we study the predicted phase transition experimentally. In our experiments,

only the FW beam is launched into the LiNbO3 waveguide array, leading to

dynamical reshaping involving generation of SH and focusing. Nevertheless, the

key predictions based on the analysis of stationary solutions are fully confirmed.

We excite the array with 5.2 ps pulses generated by a tunable optical parametric

amplifier at FW wavelengths around 1500 nm. The beam is shaped into an elliptic

input beam with a horizontal/vertical FWHM of 63 mm/2.8 mm. To obtain the

staggered FW profile the beam is tilted at a Bragg angle. The input power,

controlled with a half-wave plate and a polarizer, is monitored before coupling to

the sample. The array consists of 101 parallel waveguides with a pitch of 15 mm,

made by titanium indiffusion in a 71 mm long PPLN crystal [53]. The sample is

contained in an oven and heated to 220 ∘ C to prevent photorefractive effects. After

the sample, the powers of the transmitted FW and the generated SH components are

measured and their intensity distributions are recorded by an InGaAs and CCD

camera, respectively. To obtain the spatial Fourier spectrum of the SH, we employ a

lens and an additional CCD camera.

Fig. 4.11 Experimental (upper row) and numerical (bottom row) power dependence of the SH

spatial output spectrum for different normalized mismatches Db. The dashed lines mark the

transition powers
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The upper row of Fig. 4.11 shows results of the power-dependent measurement

of the SH Fourier spectrum for different phase mismatches, as determined by the

input wavelength. For low input powers, the SH Fourier spectrum is concentrated

around kSH ¼ 0, 2p, corresponding to unstaggered SH. For FW input powers above

a mismatch-dependent threshold, staggered SH components are generated at kSH
¼ p. This is an unambiguous signature of the localization-controlled phase transi-

tion, as found for the stationary states.

To validate the interpretation of the experimental results and to explain possible

differences to the stationary case, we carry out simulations of the time-dependent

coupled mode equations including group velocity mismatch and pulse disper-

sion [15]. The simulation results are plotted in the bottom row of Fig. 4.11 and agree

well with the measured data. Measured and simulated FW peak power thresholds

for phase transition of the SH show a decrease from 7.5 kW for Db ¼ �25 to

5.5 kW for Db ¼ 1. In contrast to the predictions for stationary solutions, the SH

transformation is not complete since the wings of the pulse remain in their initial

state. Thus, we always measure nonzero SH powers at kSH ¼ 0, 2p.
Another remarkable feature found in the stationary solutions is the absence of the

complete phase transition for even symmetry (see Fig. 4.10). Figure 4.12 shows a set

of experimental results for different transverse shifts of the sample with respect to

the broad input beam (see Fig. 4.12a). The measured SH spectral power at kSH ¼ p
(Fig. 4.12b) depends strongly on the position of the input beam.When the excitation

is centered on a waveguide (odd), staggered SH is generated according to Fig. 4.11.

For even excitation, centered between two waveguides, the SH power at kSH ¼ p
vanishes. This shows that the symmetry dependence of the phase transition found in

the stationary solution is a robust generic property. The comparison with the time-

dependent simulations (Fig. 4.12c) again shows good agreement. The deviations

between measurements and simulations (compare Fig. 4.12b, c) are due to

transverse wavenumber kSH

experiment simulation

ce
nt

ra
l 
w

av
eg

ui
de

a b c

Fig. 4.12 (a) Excitation scheme of the array showing the transverse translation of the sample. (b)

Experimental and (c) numerical dependencies of the SH spatial spectrum on the center of the

excitation for Db ¼ � 9 and an input peak power of 10kW. The dashed line marks kSH ¼ p
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inhomogeneities of sample and input coupling, as well as to the general restrictions

of the coupled mode equations.

4.5 Discussions and Outlook

In this chapter, we have presented our recent theoretical and experimental results on

all-optically controlled spatial reshaping and localization ofmulti-color light beams in

nonlinear waveguide arrays. In the case of incoherent interactions supported by

defocusing photorefractive nonlinearity, all spectral components develop a staggered

phase structure at larger optical powers leading to the formation of polychromatic

lattice solitons. In contrast, coherent interactions between the fundamental and the SH

spectral components in quadratic nonlinear waveguide arrays lead to a new type of

phase transition for the SHphase structurewhich abruptly switched between staggered

and unstaggered states, whereas the FW preserves the staggered phase. The observed

localization induced phase transition is a generic phenomenon present in other

nonlinear discrete systems and we anticipate that it can also occur in systems such

as Bose-Einstein condensates on optical lattices and gene networks in living cells [54].

Here, we also outline selected recent developments on polychromatic light

control in photonic lattices and waveguide arrays. This is a vibrant and rapidly

developing research area, where many new approaches for beam shaping in the

linear and nonlinear regimes have been suggested and experimentally demonstrated

in recent years. We have mentioned in Sect. 4.2 that the waveguide mode coupling

tends to be stronger at longer wavelengths. It was suggested in [55] that the intrinsic

wavelength dependence of diffraction strength in waveguide arrays can be compen-

sated in the linear regime by geometrically induced dispersion resulting from

periodic waveguide bending. This approach can underpin broadband diffraction

management, where diffraction can be made wavelength independent in a fre-

quency range of up to 50% of the central frequency. It becomes possible to realize

propagation regimes which are not possible for closely spaced straight waveguides,

in particular diffraction of light can be suppressed in the regime of polychromatic

dynamic localization [55, 56], an effect that generalizes the concept of dynamic

localization originally introduced for electrons in crystals subjected to alternating

electric field [57]. Polychromatic dynamic localization can also be realized in

zigzag lattices [58] with long-range coupling between waveguide modes [59].

Another fundamental effect known as Bloch oscillations, predicted as oscillatory

motion of electrons in crystals subjected to constant electric field [60], can also be

generalized for polychromatic light beams in waveguide arrays containing sections

with different constant curvatures [61].

Furthermore, curved waveguide arrays provide a flexible platform for

manipulating polychromatic light patterns based on Talbot effect [62], and poly-

chromatic beam splitting. These effects have been demonstrated in a three-

waveguide structure realizing light propagation regime analogous to stimulated

Raman adiabatic passage [63]. Finally, in two-dimensional arrays, waveguide
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bending allows one to control effective geometry and dimensionality of the

photonic lattice [64, 56].

In the nonlinear regime, when spectral components interact incoherently, the

longitudinal modulation of the waveguide coupling can facilitate all-optical

switching of polychromatic light between two coupled waveguides [65], whereas

in curved waveguide arrays nonlinearity leads to symmetry breaking and suppres-

sion of dynamic localization at low powers and formation of polychromatic

diffraction-managed solitons only at higher powers [66]. Curved waveguide arrays

support new types of defect-free surface waves [67, 68] which nonlinear switching

was demonstrated with monochromatic light [69]; however, switching of polychro-

matic light has only been considered at the edges of straight waveguide arrays [70].

We can anticipate that polychromatic light switching at edges of curved

waveguides may offer enhanced flexibility for tailoring all-optical spatial–spectral

beam reshaping.

Results on phase transitions mediated by coherent nonlinear interactions

presented in Sect. 4.4 call for further investigations of this fundamental phenome-

non in quadratic waveguide arrays of different configurations. In particular, we

expect that phase transition properties may depend nontrivially on the geometry of

two-dimensional photonic lattices and on the type of excited localized solutions

such as spatial discrete vortex solitons [71, 7] or spatial–spectral vortex

solitons [72]. We also note that the effect of coherent nonlinear interactions on

beam dynamics in longitudinally modulated waveguide arrays has not yet been

considered, and presents an interesting open area for future research.
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Chapter 5

Spatial Beam Dynamics Mediated

by Hybrid Nonlinearity

Peng Zhang, Cibo Lou, Yi Hu, Sheng Liu, Jianlin Zhao,

Jingjun Xu, and Zhigang Chen

5.1 Introduction

Nonlinear wave dynamics has fascinated scientists for over two centuries because

of its fundamental and technological applications in a variety of research areas

including mathematics, physics, aerodynamics, oceanography, chemistry, and
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biology, just to mention a few [1–5]. In optics, nonlinear optical media have served

as an ideal platform for exploring various fundamental issues in nonlinear systems

[6, 7]. The nonlinear material response results in complex changes in the spatio-

temporal structure of light, leading to a host of intriguing nonlinear phenomena

such as light-induced scattering [8], wave mixing [9], phase conjugation [10], and

self-trapping [11–14]. Interestingly, nearly all materials including crystals [15],

liquids [16], and even gases [17] can exhibit perceptible nonlinearity at sufficiently

high light intensities.

In the past two decades, photorefractive media became one of the most popular

materials for exploring nonlinear beam dynamics in both continuous and discrete

regimes. In contradistinction with other standard nonlinear optical materials such

as Kerr [16], saturable [17], and nonlocal [18, 19] materials, photorefractive

crystals exhibit a relatively large nonlinear response at as low as microwatt

power levels with large flexibility [20–25]; nearly all parameters influencing

nonlinear beam propagation can be easily controlled. For example, the amplitude

of the nonlinearity can be adjusted by varying the bias field, and the degree of

saturation can be adjusted by a homogeneous illumination with an additional

background beam. More interestingly, by a simple reversal of the polarity of the

bias field, either self-focusing or self-defocusing nonlinearity can be achieved in

the same crystal [24, 25]. Finally, the nonlinear refractive index changes can be

either erased by uniform light illumination or fixed by electrical means [26].

Thus far, a variety of nonlinear self-trapped states, better known as optical spatial
solitons, including families of fundamental bright solitons, dark and vortex solitons,

vector solitons, and incoherent solitons, along with their particle-like coherent

and incoherent interactions have been extensively explored in photorefractive

media [27–39].

In recent years, there has been a growing research interest in nonlinear beam

dynamics in photonic lattices (also known as closely spaced waveguide arrays)

[40, 41]. Even in the linear regime, light propagation in photonic lattices can exhibit

many intriguing phenomena mediated from the photonic band-gap structures,

including anomalous diffraction and refraction, and Bloch and Rabi oscillations

[42–46] which has no counterpart in continuum systems. In the presence of self-

focusing or self-defocusing nonlinearity, normal or anomalous diffraction of light

can be suppressed, leading to discrete or gap solitons [47, 48]. In photorefractive

media, photonic lattice structures in 1-, 2-, or 3-dimensions with various symmetries

can be created solely by illuminating them with periodic optical fields created either

from multi-beam interference [49] or optical amplitude masks [50]. Such optically

induced photonic lattices exhibit large reconfigurability and provide ideal settings

for studying the basic properties of wave propagations in discrete systems. Up to

now, many discrete phenomena have been demonstrated in these optically induced

photonic lattices [51–59], including linear tunable negative refraction, band-gap

guidance by defects, Anderson localization in disordered lattices, and nonlinear

spectrum reshaping, Bessel ring lattices and rotary solitons, discrete vortex solitons,

embedded solitons, and random phase lattice solitons, following the observation of

fundamental discrete and gap solitons [60–62].
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Generally speaking, the nonlinearities can be divided into two categories: self-

focusing and self-defocusing nonlinearity. Since self-focusing and self-defocusing

nonlinearity can be established by changing the polarity of the bias field in the same

photorefractive crystal [24, 25], a natural question arises: is it possible for a

nonlinear material to support both nonlinearities simultaneously under an identical

experimental setting? If so, how would that affect the nonlinear beam dynamics?

To answer these questions, in this chapter, we introduce a new type of nonlinearity,

the hybrid nonlinearity. This is a type that occurs when self-focusing and self-

defocusing nonlinearity co-exist in the same material under identical conditions.

We show how such hybrid nonlinearity can be created in a biased photorefractive

crystal by formulizing the problem based on Kukhtarev’s band transport model.

Then we present a brief overview of our recent work on the unusual nonlinear beam

dynamics supported by the enhanced anisotropy and nonlocality of the hybrid

nonlinearity in both continuous and discrete regimes. Specifically, elliptical optical

solitons, stabilization of nonlinear optical vortices, and orientation-induced transi-

tion between bright and dark solitons in homogeneous media will be discussed.

Then, in discrete media (photonic lattices), we show our recent work on band-gap

engineering and light manipulation based on ionic-type photonic lattices, optical

“saddle” solitons unique to the hybrid nonlinearity, along with earlier work on

elliptical discrete solitons and orientation-induced transitions of soliton-trains

between different band-gaps.

5.2 Theoretical Formulations

Themechanism dominating the nonlinear process in a biased photorefractive crystal

is the so-called screening effect, where the light excited charge carriers drift to

screen the external electric field, leading to a nonuniform field distribution and

refractive index modulation via the electro-optic effect inside the crystal [24, 25].

In a conventional bias setting, the direction of the external field is always set to be

parallel (for self-focusing) [27] or antiparallel (for self-defocusing) [29] to the

crystalline c-axis of the photorefractive crystal. However, to obtain hybrid nonline-
arity, the direction of the biased electric field is set to be along an arbitrary direction.

Such a bias scheme is termed a nonconventionally biased (NCB) condition [63–65].

To establish a theoretical model governing the hybrid nonlinearity under NCB

conditions, we consider a coordinate system in biased photorefractive crystals as

illustrated in Fig. 5.1, where an elliptical light beam propagating perpendicular to

the c-axis is shown as an example. The angles of the c-axis and the external bias

field E0 with respect to the x-axis are denoted by yc and ye, respectively.

To determine the light-induced space charge field under the NCB condition, we

start from Kukhtarev’s band transport model [66]. By neglecting diffusion field and
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photovoltaic effect, the material response of the NCB photorefractive crystal under

static condition can be written as [67]

ðsI þ bÞðND � Nþ
D Þ ¼ gRnN

þ
D ; (5.1a)

r � J ¼ 0; (5.1b)

J ¼ emnE; (5.1c)

r ¼ eðNþ
D � NA � nÞ; (5.1d)

r � ðeEÞ ¼ r; (5.1e)

where ND, N
þ
D, NA, and n are the density of donors, ionized donors, acceptors, and

conducting electrons, respectively, b and s are the thermal and photoexcitation

coefficients, I is the intensity of light beam, gR is the recombination constant, E is

the amplitude of the static electric field, e is the elementary charge, e is the static

dielectric tensor, r and J are the charge and the electric current densities, respec-

tively, and m is the electron mobility.

Taking the approximation Nþ
D � NA [20, 66] and from (5.1a), one can derive a

simple expression for the electron density:

n ¼ bþ sIð Þ ND � NAð Þ
gRNA

: (5.2)

Fig. 5.1 Geometry of

the coordinate system for

nonconventionally biased

photorefractive crystals

(after ref. [65])
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Inserting (5.1c) and (5.2) into (5.1b) yields

r � bþ sIð ÞE½ � ¼ 0: (5.3)

By denoting the light-induced electrostatic potential as F, the total electric field

inside the crystal takes the form of E ¼ x̂E0 cos ye þ ŷE0 sin ye �rF with x̂ and ŷ
being unit vectors. Furthermore, by introducing a dimensionless potential ’ ¼ F/E0

and a dimensionless light intensity I ¼ I/Id, where Id ¼ b/s, (5.3) can be rewritten as

r2’þr’ � r ln 1þ Ið Þ ¼ @ ln 1þ Ið Þ
@x

cos ye þ @ ln 1þ Ið Þ
@y

sin ye: (5.4)

By solving (5.4), we can readily obtain the light-induced space charge field:

Es ¼ �E0∇’, which results in modulation of the refractive index of the crystal

according to linear electro-optic effect.

To quantify the optically induced nonlinear refractive index changes, it is

necessary to first analyze the deformation of the index ellipsoid of the crystal

under a general electric field. Assuming the electric field has components along

all three principal axes, according to the linear electro-optic effect, it can be easily

seen that the directions of the new major axes and the magnitudes of the respective

indices of the ellipsoid will be changed [68]; thereby an initial uni-axial crystal will

be transformed into a biaxial one. However, after quantitative analyses with the

typical experimental parameters, it is found that only the c-axis component of

the electric field can introduce perceptible index modulation in a photorefractive

crystal, i.e., the rotations of the c-axis and the changes of the refractive indices

introduced by the components perpendicular to the c-axis can be neglected [68, 69].
Based on above analyses, the light-induced refractive index changes due to Es can

be determined by

Dne ¼ 1

2
n3eg33E0

@’

@x
cos yc þ @’

@y
sin yc

� �
; (5.5)

where ne is the extraordinary refractive index and g33 is the electro-optic coefficient.
Therefore, the nonlinear beam dynamics in NCB photorefractive crystals obeys the

following dimensionless nonlinear Schr€odinger equation:

@

@z
� i

2
r2

� �
BðrÞ ¼ i

@’

@x
cos yc þ @’

@y
sin yc

� �
BðrÞ; (5.6)

where BðrÞ is the amplitude of the optical field, the dimensionless coordinates

(x, y, z) are related to the physical coordinates (x0, y0, z0) by the expressions

(x, y) ¼ (kl)1/2(x0, y0) and z ¼ lz0, where l ¼ 0.5kne
2g33E0, and k is the wave

number of light in the crystal.
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5.3 Hybrid Nonlinearity

5.3.1 One-Dimensional Case

When the long axis of the elliptical beam depicted in Fig. 5.1 becomes infinite,

Eq. (5.1a–e) will degenerate into a one-dimensional (1D) problem with ∂ln(1 + I)/
∂x ¼ 0 and ∂’/∂x ¼ 0. For a bright input beam, we can find the 1D analytical

solution for (5.4): ∂’/∂y ¼ I sin ye/(1 + I). Therefore, the equation governing the

nonlinear propagation of the 1D input beams becomes

@

@z
� i

2

@2

@y2

� �
Bðy; zÞ ¼ i sin yc sin ye

I

1þ I
Bðy; zÞ: (5.7)

Thus, the normalized light-induced refractive index changes can be described by

Dn ¼ |E0|I sin yc sin ye/(1 + I). Obviously, the type of the nonlinearity experienced by
1D input beams in NCB crystals depends on the values of yc and ye, which defines the
beam orientation relative to the c-axis and bias field. Now, we consider the nonlinear-
ity versus the beam orientation under a fixed bias condition. Figure 5.2 depicts Dn
versus yc at different (ye � yc). It is obvious that, under the conventional bias

condition E0 k c, the crystal can exhibit either a self-focusing nonlinearity (Dn > 0)

at (ye � yc) ¼ 0 or a self-defocusing nonlinearity (Dn < 0) at (ye � yc) ¼ p, but not
both for a given (ye � yc). However, for the NCB case at (ye � yc) ¼ p/2, for which
the bias field is perpendicular to the c-axis (E0 ⊥ c), the crystal can exhibit self-

focusing or self-defocusing nonlinearity depending on the beam orientation. That is to

say, under such a NCB condition, if two stripe beams are launched into the crystal

oriented, respectively, at yc ¼ p/4 and �p/4 at same time, they will exhibit self-

focusing and -defocusing nonlinearity simultaneously in the same crystal under

identical bias conditions (see Fig. 5.2), and therefore, hybrid nonlinearity.
The nonlinear beam propagation of a stripe Gaussian beam under the hybrid

nonlinearity has been both experimentally and numerically demonstrated in a

5 � 5 � 6.7(c)mm3 SBN:60 crystal. The direction of the bias field (about

1.2 kV) is perpendicular to the c-axis, and is kept constant during our experiments.

The polarization direction of the input beam is always parallel to the c-axis.
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Fig. 5.2 Calculated one-

dimensional light-induced

refractive index changes (Dn)
versus beam orientation (yc)
at different fixed bias

conditions (ye � yc) (after
ref. [65])
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Figure 5.3 displays the typical experimental and simulation results. It is clear that

the input beams indeed experience linear diffraction, self-defocusing, and self-

focusing at different orientations under identical bias conditions.

5.3.2 Two-Dimensional Case

To visualize the hybrid nonlinearity in two-dimensional (2D) cases, numerical

procedures have to be employed to solve (5.4–5.6). The light-induced refractive

index changes under different bias conditions induced by an input Gaussian beam

as shown in Fig. 5.4a are depicted in Fig. 5.4b–d, where Fig. 5.4b, c corresponds to

the conventional case E0 k + c (ye ¼ yc ¼ 0) and E0 k � c (yc ¼ p, ye ¼ 0),

respectively, and Fig. 5.4d corresponds to the typical NCB condition E0 ⊥ c
(yc ¼ 0, ye ¼ p/2). Figure 5.4e describes the linearly diffracted output beam

pattern, while the nonlinear output beam patterns under different bias conditions,

corresponding to Fig. 5.4b–d, are depicted in Fig. 5.4f–h, respectively. Figure 5.4i

shows the FWHMs of the beam profiles along the dashed lines in Fig. 5.4e, h versus

the propagation lengths z. From Fig. 5.4, we can see that different bias conditions

will cause different index changes as well as various nonlinear beam propagations.

Under conventional bias conditions, although the peripheral regions of the index

changes possess opposite sign with respect to the central part, the nonlinearity

experienced by the input beam is mainly determined by the index changes of the

central part, resulting in self-focusing in Fig. 5.4f and self-defocusing in Fig. 5.4g.

While under the NCB condition at E0 ⊥ c, the distribution of the index changes

Fig. 5.3 Experimental (left and right) and numerical (middle) results of propagations of a

Gaussian beam at ye � yc ¼ p/2, but yc ¼ 0 (a), �p/4 (b), and p/4 (c). Left: Input beam;Middle:
Evolution of the intensity profile along the dashed line in the left panel; Right: Output beam (after

ref. [65])
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becomes very distinct in comparison with the conventional ones. From Fig. 5.4d, it

can be seen that the index change at the center of the input beam is zero, and the

maxima of the index changes occur at the positions far away from the beam center,

showing a typical nonlocality. More interestingly, along different diagonal

directions across the beam center, the index changes always possess identical

sign, but the sign and the maximum index changes can be dramatically different

in different directions, representing an enhanced anisotropy. From Fig. 5.4h, i, it is

clear that the input beam experiences self-focusing and self-defocusing at the same

time, i.e., hybrid nonlinearity, leading to an elliptical output beam pattern.
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Fig. 5.4 Numerical simulations on light-induced refractive index changes and nonlinear beam

propagation of a two-dimensional Gaussian beam, where (a) is the input beam, (b–d) are

corresponding to the refractive index changes induced by (a) under different bias conditions

indicated by the arrows, (e) is the output beam pattern after linear propagation, (f–h) depict the

nonlinear output beam patterns under the same bias conditions with that in (b–d), and (i) depict the

FWHMs of the beams versus propagation lengths z along the dashed lines shown in (e) and (h)

(after ref. [65])
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The experimental demonstrations are depicted in Fig. 5.5, where the light-induced

refractive index changes at E0 ⊥ c (see Fig. 5.5a, b) are directly visualized by

employing digital holography with similar setup as that used in refs. [64, 65, 70].

Figures 5.5d–g display outputs after linear and nonlinear propagation of an input 2D

Gaussian beam (see Fig. 5.5c) corresponding to Fig. 5.4e–h, respectively.

By comparing Fig. 5.5 with Fig. 5.4, it is clear that the experimental results are in

good agreement with the theoretical predictions.

5.4 Nonlinear Beam Dynamics in Homogenous Media

5.4.1 Transition Between Bright and Dark Solitons

As shown in Sect. 5.3.1, in the presence of hybrid nonlinearity, one can switch the

type of the nonlinearity solely by changing the optical beam orientation. This

enables an optically induced transition from bright to dark solitons without having

to reverse the bias field [71]. From (5.7), one can readily conclude that, in the 1D

case, although hybrid nonlinearity offers the opportunity to create bright and dark

Fig. 5.5 Experimental results on light-induced refractive index changes and nonlinear beam

propagations of a 2D Gaussian beam. (a) and (b) depict the 2D and 3D displays of the measured

refractive index changes at E0 ⊥ c, corresponding to the center part of Fig. 5.4d. (c–g) are the

experimental results for beam propagations, where (c) is the input beam, and (d–g) are the linear

and nonlinear output beam patterns corresponding to Fig. 5.4e–h, respectively (after ref. [65])
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solitons in the same setting, the soliton solutions would share forms similar to those

under conventional nonlinearities [24, 25]. To experimentally demonstrate the

optically induced transition between bright and dark solitons, setups similar to

those used in refs. [27, 29] are utilized. The beam orientations at the NCB condition

E0 ⊥ c are illustrated in Fig. 5.6a, b. Typical experimental results in an SBN crystal

are depicted in Fig. 5.6c–d. As expected, without nonlinearity (no bias field is

applied in this case), both the bright Gaussian beam and dark notch undergo linear

diffraction. By switching on the bias field, in the same crystal and with identical

conditions, the Gaussian beam will experience self-focusing to balance its normal

linear diffraction, resulting in a bright soliton. Meanwhile, the dark notch

experiences self-defocusing resulting in a dark soliton. These experimental results

are in good agreement with the numerical results presented in ref. [71].

5.4.2 Elliptical Optical Solitons

In the presence of enhanced anisotropy and nonlocality, the 2D soliton solutions

under hybrid nonlinearity would take a more complicated form than is seen in

conventional case [64]. From (5.6), the solitonary solutions can be found in the

standard form B(x,y,z) ¼ b(x,y)exp(ibz), where b is the propagation constant, and

the real envelope b(x, y) satisfies the following equation:

b� 1

2
r2

� �
bðx; yÞ ¼ @’

@x
cos yc þ @’

@y
sin yc

� �
bðx; yÞ; (5.8)

where ’ is determined by (5.4) with I ¼ |b(x,y)|2. We numerically solve the

eigenproblem (5.8) by employing the renormalized iterative procedure [72].

By setting ye ¼ yc ¼ 0, the conventional condition, we derive the same results as
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Fig. 5.6 Experimental results showing transition between bright (c) and dark (d) solitons under

hybrid nonlinearity. (a–b) Geometry of beam orientation. In (c–d), (1–3) are for input, linear

diffracted, and self-trapped beams, respectively (after ref. [71])
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those presented in refs. [73, 74]. Figure 5.7 shows some typical simulation results

under NCB conditions, from which it can be seen that the hybrid nonlinearity

indeed can support bright solitons. However, due to the enhanced anisotropy, the

solitons are severely distorted, exhibiting nontrivial elliptical profiles. Moreover,

the soliton-induced refractive index changes are dominated by the positive part,

indicating that the solitons mainly experience self-focusing nonlinearity, even

though the crystal has hybrid nonlinearity. This coincides with the previous

discussions on the orientation-dependent nonlinearity in the 1D case.

To experimentally observe such elliptical solitons under hybrid nonlinearity, a

circular Gaussian beam as shown in Fig. 5.8a is launched into an SBN:60 crystal

with the bias field perpendicular to the c-axis. Without nonlinearity, the input beam

Fig. 5.7 Numerical results for elliptical optical solitons under hybrid nonlinearity. Soliton

solutions (left) and their induced refractive index changes (right) at ye ¼ p/2, but yc ¼ p/4
(a) and yc ¼ 0 (b); (c) FWHMs of the solitons and their ratio versus Imax (after ref. [64])

Fig. 5.8 Experimental results for observing elliptical soliton formations under hybrid nonlinearity

(a–d) and BPM simulation of soliton evolution process (e). (a) Input Gaussian beam. (b–d) Output

beam profiles for a linearly diffracted beam, and the solitons formed at yc ¼ 0 but ye ¼ �p/2 and
p/2, respectively. (e) FWHMs of the beams versus propagation lengths z (after ref. [64])
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would experience linear diffraction, leading to an output intensity pattern with an

increased beam size, as shown in Fig. 5.8b. With a 3.6 kV bias voltage (over 5 mm)

but ye ¼ � p/2 and yc ¼ 0, the circular input beam evolves into an elliptical soliton

at a particular orientationwith a typical beamsize ratioW1/W2 � 3.5 (seeFig. 5.8c, d).

To confirm such a soliton evolution behavior from a circular Gaussian beam to an

elliptical soliton, a BPM simulation corresponding to our experimental settings, but

with a much longer propagation length is performed. The results are shown in

Fig. 5.8e, from which we can see clearly that a circular Gaussian beam indeed can

evolve into an elliptical soliton under hybrid nonlinearity.

5.4.3 Stabilization and Breakup of Optical Vortices

Vortices are often found in nature and share many common properties in different

physical systems [75]. In optics, vortices are termed as “phase singularities” in light

waves, and carry nontrivial orbital angular momentums (OAMs) [76]. In the past few

decades, the interplay between natural diffraction of helical-phase structures of optical

vortices (OVs) and nonlinear effects has been investigated extensively in various

nonlinearmedia [30, 31, 77–83]. The intrinsic anisotropy and nonlocalitymediated by

photorefractive nonlinear materials lead to unusual features of dynamical vortex

propagation [81–83]. Specifically, it was found that the anisotropy of the nonlinearity

might be responsible for the nonlinear decay of higher-order vortices [82], whereas the

nonlocality could dramatically suppress the azimuthal modulation instability of the

vortex beam for formation of bright ring vortex solitons [80, 83]. Due to the enhanced

anisotropy and nonlocality, one would expect hybrid nonlinearity to play a nontrivial

role in the nonlinear beam dynamics of OVs. In the following, we will show two

examples of suppression of the breakup of a single-charged vortex and aggravation of

the breakup of double-charged higher-order vortices [84].

To analyze the nonlinear propagation of OVs, we first calculate the nonlinear

refractive index change with an input vortex beam taken to be

B rð Þ ¼
ffiffiffiffi
I0

p
r exp � rj j2

s2

 !
expðimyÞ; (5.9)

where r ¼ (x2 + y2)1/2 and y is the azimuth angle, s is the diameter of the Gaussian

beam in which the vortex embeds, m is a signed integer called topological charge,

and I0 is the characteristic intensity of the vortex. By numerically solving (5.4) and

(5.5), the calculated refractive index changes Dn induced by the vortex beam as

depicted in Fig. 5.9a under different conditions are shown in Fig. 5.9b–d. From

Fig. 5.9b, c, it can be seen that the vortex circular ring induces Dn possessing

inhomogeneous pseudoelliptical rings with two lobes of either high or low index

change around the center, which implies that the crystal exhibits mainly self-

focusing or -defocusing nonlinearity with some anisotropy. In addition, the two
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peaks of the Dn coincide with the intensity maximum of the vortex beam, reflecting

relatively weak nonlocality. However, from Fig. 5.9d, we can see that an interesting

structure of Dn arises under hybrid nonlinearity; it has a symmetric profile, but with

opposite signs along the two diagonal directions and each diagonal direction

involves higher and lower lobes simultaneously, representing a more complex

anisotropic nonlinearity. Moreover, Dn is almost zero at points where the intensity

of the vortex beam is maximum, exemplifying an enhanced nonlocality.

By solving (5.4), (5.6), and (5.9) with BPM, the nonlinear evolutions of the

single-charged (m ¼ 1) vortex beam depicted in Fig. 5.9a are numerically

simulated under different bias conditions. The results are shown in Fig. 5.10.

Similar to the anisotropic boundary condition as mentioned in ref. [79], the original

anisotropic index change depicted in Fig. 5.9b expedites the breakup of the vortex

beam at E0 k +c with the self-focusing nonlinearity, as shown in Fig. 5.10a.

The nontrivial interplay between the inherent angular momentum of the vortex

beam and the anisotropic nonlinearity makes the two collapsed fragments undergo

both clockwise and anticlockwise damped rotations in turn during the propagation.

While in the case of E0 k �c, as shown in Fig. 5.10b, the self-defocusing nonline-

arity stretches the vortex beam into an ellipse with its major axis along the c-axis
and leads to the formation of two lobes. Meanwhile, the two lobes gradually flow

clockwise along the elliptical ring, driven by the helical-phase structure. However,

the energy flow will be retarded by the anisotropic nonlinearities, as demonstrated

in ref. [81]. Figure 5.10c presents the results of the beam’s evolution in the presence

of the hybrid nonlinearity at E0 ⊥ c. By comparing with the above two conven-

tional cases, it can be found that the vortex beam experiences a more stable

nonlinear evolutionary process under hybrid nonlinearity. Notwithstanding the

coexistence of self-focusing and -defocusing nonlinearities, it neither collapses

into two separated lobes as happens at E0 k +c, nor does it expand or stretch as

much as it does at E0 k �c. This characteristic nonlinear dynamic manifests the

suppression of the azimuthal modulation instability exerted by the enhanced

nonlocality in the presence of hybrid nonlinearity. Such behaviors are further

confirmed by the dynamics of OAMs during the vortex evolutions as shown in

Fig. 5.10d. It can be seen that, in comparison with the conventional cases, the loss of

OAM during nonlinear propagation is dramatically reduced in the NCB case,

indicating the suppression of azimuthal modulation instability.

Fig. 5.9 Numerical simulations of the refractive index change in a biased photorefractive crystal

induced by a vortex beam. (a) Input vortex beam. (b–d) Index changes at E0 k +c (yc ¼ ye ¼ 0),

E0 k �c (yc ¼ p, ye ¼ 0), and E0 ⊥ c (yc ¼ 0, ye ¼ p/2), respectively (after ref. [84])
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The experimental demonstrations of the nonlinear evolution of a single-charged

vortex under different bias conditions are performed in an SBN:60 crystal. Typical

results are shown in Fig. 5.11. The vortex beam is created with a computer-generated

holographic mask and a spatial filter [85]. According to Fig. 5.11d, under self-

focusing nonlinearity (E0 k +c), the single-charged vortex beam, as expected, will

break up into two filaments, which gradually rotate counterclockwise. In Fig. 5.11e,

we find that the anisotropic self-defocusing nonlinearity (E0 k �c) causes the vortex
beam to stretch along the c-axis, and the ellipticity of the beam profile to increase

gradually with the enhancement of the external bias field. Figure 5.11f displays the

nonlinear output of NCB case with the external field perpendicular to the c-axis.
Although the nonlinear evolution is similar with that in Fig. 5.11e, the orientation of

the induced elliptical output possesses an angle of about 45� with respect to the

c-axis, and the output intensity patterns are much smaller. These experimental

observations agree with the numerical expectations as shown in Fig. 5.10.

Fig. 5.10 Nonlinear evolution of the single-charged vortex beam at E0 k +c (yc ¼ ye ¼ 0) (a),

E0 k �c (yc ¼ p, ye ¼ 0) (b), and E0 ⊥ c (yc ¼ 0, ye ¼ p/2) (c). From left to right are the output
intensity profiles at different normalized propagation distances z ¼ 20, 40, 60, 80, and 100,

respectively; (d) OAM versus z (after ref. [84])
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Next, we shall show the nonlinear dynamics of higher-order vortices in the

presence of the hybrid nonlinearity. It has been demonstrated that a higher-order

vortex will break up into an array of vortices with unit charge under the anisotropic

boundary conditions or anisotropic nonlinearities [82]. In a self-focusing medium, the

azimuthal modulation instability of higher-order vortices will be much more severe

than that of single-charged vortices, leading to a quick collapse of the input vortex.

Here, we use the self-defocusing case at E0 k �c for comparison. Figure 5.12a, b

display the simulation results of a double-charged vortex beam at E0 ⊥ c and

E0 k �c, respectively. It is obvious that, in both cases, the double-charged vortex

decays into two separate single-charged vortices, which can be seen from the fork

fringes in the interferograms as described in the bottom row of Fig. 5.12. However,

although the nonlinear expansion of input beam under the NCB condition is smaller

than that at E0 k �c, the separation of the two resultant dark cores under hybrid

nonlinearity is more distinct. This aggravation of the nonlinear decay might be due to

the enhancement of the anisotropic nonlinearity driven by the NCB field. In addition,

the orientations of the singly charged vortex pairs for the two cases are somewhat

different, mainly determined by the anisotropy of the nonlinearity [65]. With the

hybrid nonlinearity, the bright stripe separating the two dark cores (see Fig. 5.12a) will

experience self-focusing during propagation [65], which will result in further separa-

tion of the two singly charged vortices. However, for the conventional case with

Fig. 5.11 Experimental results of a single-charged vortex under different bias conditions.

(a) Intensity distribution and (b) interferogram of the input vortex beam. (c) Linearly diffracted

output beam. (d–f) Nonlinear output at E0 k +c (ye ¼ yc ¼ 0), E0 k �c (yc ¼ p, ye ¼ 0),

and E0 ⊥ c (yc ¼ 0, ye ¼ p/2), respectively, where results from top to bottom are obtained at

gradually increased voltages (after ref. [84])
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self-defocusing, the bright stripe is almost parallel to the c-axis, which means it will

experience less expansion during propagation to make sure the dark cores can be

separated. The simulation results are also confirmed in experiment, as shown in

Fig. 5.12. By launching a double-charged vortex beam (see Fig. 5.12c) into the crystal,

the nonlinear decay of the input vortex is observed with the biased field perpendicular

and antiparallel to the c-axis (see Fig. 5.12d, e), respectively. The experimental

observations agree with the numerical simulations.

5.5 Reconfigurable Photonic Lattices

Wave propagation in periodic systems is of great interest for both its fundamental

and technological applicability [86, 87]. Photonic lattices have served as an ideal

platform for exploring various fundamental issues in discrete systems [40, 41].

The periodicity of the photonic lattice breaks the rotational symmetry of a normally

isotropic medium, leading to a host of new phenomena [42–62] that have also been

studied in a variety of other discrete systems ranging from photonic and phononic

crystals to liquid surface waves, trapped Bose–Einstein condensates (BECs), and

metamaterials [88–91]. In photorefractive crystals, photonic lattices can be

optically induced by illuminating them with a periodic light pattern [49–62].

One of the advantages of such induced lattices is its reconfigurability, namely,

the lattice structure and potential depth can be tuned at ease by varying the intensity

of the lattice-inducing beam or the bias field. In this section, we shall discuss the

lattice reconfiguration and associated discrete phenomena in the presence of hybrid

nonlinearity [92–98].

Fig. 5.12 Numerical (a, b) and experimental (c–e) results showing breakup of double-charged

vortices. Top and bottom correspond to intensity patterns and interferograms, respectively. (a) and

(b) Simulations at z ¼ 45 forE0 ⊥ c (yc ¼ 0, ye ¼ p/2) andE0 k �c (yc ¼ p, ye ¼ 0), respectively;

(c) input vortex; (d) and (e) experimental results corresponding to (a) and (b) (after ref. [84])

148 P. Zhang et al.



5.5.1 Lattice Formation

By solving (5.4) and (5.5)with I(x, y) ¼ cos2(px/L) cos2(py/L), whereL is the spatial

period of the light field, the optically induced photonic lattices under different bias

conditions can be obtained [93, 94]. The Brillouin zone (BZ) structure of the induced

photonic lattices can be numerically visualized by using the method described in

ref. [99]. In an experiment, such optically induced photonic lattices are created in a

biased SBN:60 crystal by illumination with a periodic light pattern generated by using

an optical amplitude mask, similar to that used in refs. [52, 55, 62]. The index

distributions of the induced lattices are directly measured by the digital hologra-

phy [70], and the BZ spectra are obtained by using the technique described in

ref. [100]. Typical results of the index distributions and the BZ spectra are displayed

in Fig. 5.13 for four lattice structures induced with a same square lattice beam but

under different bias conditions. Clearly, under an identical bias scheme (E0 k c or

E0 ⊥ c) different c-axis orientations lead to different lattice structures, whereas with
the same c-axis orientation the induced lattice structure varies with the bias direction.
Not only the shape and orientation of individual lattice site can be changed, but also

the location of the indexmaxima can be shifted significantly with respect to that of the

intensity maxima of the lattice inducing beam, as driven by the enhanced anisotropy

and nonlocality of the hybrid nonlinearity [65]. The measured index profiles and BZ

spectra are in good agreement with those obtained from simulation [93, 94].

5.5.2 Bloch Mode Transition

We now focus on the behavior of a probe beam propagating linearly through the

above induced lattices. Taking Fig. 5.13c, d as examples, the period and orientation of

these two induced lattices are quite different. It can be found that the first Brillouin

zone (BZ) of the lattice in Fig. 5.13d happens to be overlappingwith the secondBZ of

the lattice in Fig. 5.13c. Therefore, the high-symmetry M1 point in one setting

(Fig. 5.13c) corresponds to the X1 point in another setting (Fig. 5.13d), as also

illustrated in the band diagrams in Fig. 5.14a–c. This enables the excitation of

Bloch modes associated with different high-symmetry points [101] in the first band

with the same excitation scheme. Typical results are shown in Fig. 5.14d–g, where the

Bloch modes are excited in these two lattices established under different NCB

conditions. In our experiment, the probe beam is tilted at the same angle to excite

the Bloch modes at M1/X1 point marked by a solid (green) dot in Fig. 5.14a–c. With

both the probe beam and the lattice beam kept constant, a transition between Bloch

modes at M1 (Fig. 5.14d, e) and X1 (Fig. 5.14f, g) is realized by rotating the biased

crystal 45� about the z-axis. The measured intensity and phase (via interference)

structures confirmed such a transition, in excellent agreement with calculated results.
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5.5.3 Diffraction Managements

Since beam diffraction in 2D lattices depends on the position of its Bloch momen-

tum vector within the BZ, we show next the transition between normal and

anomalous diffraction using the above overlapping BZs. The region of normal

diffraction for one lattice (Fig. 5.13d) but of anomalous diffraction along kx for
other lattices (Fig. 5.13a–c) can be identified (marked by a black circle in Fig. 5.14).

Fig. 5.13 Numerical (upper two rows) and experimental (bottom two rows) results of lattice and
Brillouin zone (BZ) reconfiguration. First and third rows show the refractive index distributions,

and second and fourth rows show the corresponding BZ spectra. Solid and dashed arrows in first

row represent the directions of c-axis and bias field, and the white circle corresponds to an intensity
spot of the lattice-inducing beam. Dashed lines in second row indicate the missing Bragg-

reflection lines in BZ of a square lattice. From (a) to (d): yc ¼ ye ¼ 0; yc ¼ ye ¼ p/4; yc ¼ p/4,
ye ¼ 3p/4, and yc ¼ 0, ye ¼ p/2 (after ref. [94])
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By probing with a tilted Gaussian beam (waist located before the front facet of the

crystal) whose transverse k-vector corresponds to the black circle in Fig. 5.14, we

observe different 2D diffraction patterns coming from different lattices as shown in

Fig. 5.15. Clearly, the beam exhibits normal diffraction in both transverse

directions in Fig. 5.15d but anomalous diffraction along kx in Fig. 5.15a–c. Such

anomalous diffraction has been demonstrated previously either by adjusting the

angle in 1D lattices [43] or the nonlinearity in 2D lattices [101], but here

the transition between linear normal and anomalous diffraction is realized with

the same input tilt simply by reconfiguring the 2D photonic lattices.

5.5.4 Refraction Managements

Next we show that by lattice reconfiguration a probe beam can also excite Bloch

modes from different bands, permitting the transition between normal (positive)

and anomalous (negative) refraction [44]. An example is illustrated in Fig. 5.16,

Fig. 5.14 Demonstration of Bloch-mode transition by lattice reconfiguration. (a) and (b) illustrate

the first band diagram corresponding to lattices of Fig. 5.13c, d, respectively; (c) shows the

boundary of the first BZ for (a) and (b); (d–g) are calculated (top) and experimentally observed

(bottom) intensity (d, f) and phase (e, g) structures of Bloch modes excited at the solid green spots
marked in (a–c) for lattices illustrated (d, e) in Fig. 5.13c and (f, g) in Fig. 5.13d (after ref. [95])

5 Spatial Beam Dynamics Mediated by Hybrid Nonlinearity 151



Fig. 5.15 Demonstration of 2D normal and anomalous diffraction by lattice reconfiguration. (a–d)

Numerical (top) and experimental (bottom) results of output diffraction patterns of the same probe

beam (excitation position marked by the circles in k-space of Fig. 5.14a–c) from the four lattices

shown in Fig. 5.13a–d, respectively. The crosses indicate the center of input beam (after ref. [95])

Fig. 5.16 Demonstration of 2D positive and negative refraction by lattice reconfiguration.

(a) Excitation scheme with locations in k-space of the two input beams marked by circles in

inset. (b) Direction of refracted light (marked by arrows) at the first and second band diffraction

curves. (c, f) Illustration of light refraction from the first and second bands. (d–e) Numerical (top)
and experimental (bottom) results of the output probe beam from lattices in Fig. 5.13a, c,

respectively. The crosses indicate the center of the two beams at input (after ref. [95])
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where the two-beam excitation technique [51] is employed to selectively excite

Bloch modes. The angle between the two input beams is set to be twice of the Bragg

angle, while the added input direction of the two interfering beams is tilted by a half

Bragg angle. Under this condition, the kx component of one of two beams is

positioned inside the first BZ, but that of the other beam is outside (in lattices of

Figs. 5.13a, c). In addition, the interference maxima of the two beams overlap with

the intensity maxima of the lattice inducing beam. However, as seen in Fig. 5.13,

reconfiguration of the lattices could result in a change from on-site to off-site

excitation (e.g., from Fig. 5.13a–c). This in turn leads to a change of excitation of

Bloch modes from the first to second band (Fig. 5.16b), and therefore a change

of apparent refraction of the probe beam from anomalous (Fig. 5.16c, d) to normal

(Figs. 5.16e, f). Two cases are shown in Fig. 5.16d, e, corresponding to outputs from

lattices of Fig. 5.13a, c, respectively. For all two cases, the input direction of the two

beams (or the direction of total energy flow) is initially tilted towards left, and it

bends further to left in Fig. 5.16e, f due to dominant excitation of the second band

Bloch modes by both beams in the periodic structure. However, it bends back to

right (anomalous refraction) in Fig. 5.16c, d due to dominant excitation of the first

band Bloch modes (Fig. 5.16b). From the direction of the energy flow depicted in

Fig. 5.16c, it can be seen that the anomalous refraction just represents a negative

refraction of energy flow, similar to that observed in other periodic systems [102].

5.5.5 Ionic-Type Photonic Lattices

Typically, all photonic lattices investigated theoretically or demonstrated experi-

mentally are composed of either periodic positive or periodic negative potentials,

not both [49–62]. Here, as shown in Fig. 5.13, under the conventional bias conditions

(E0 k c), a square lattice solely composed of positive index changes is induced

(see Fig. 5.13a). Simply by rotating the biased crystal by 45�, a non-Bravais lattice
structure with alternating positive and negative index changes is induced

(Fig. 5.13b), which is akin to an ionic crystal structure with alternating positive

and negative charges. Therefore, we name such photonic lattice structures ionic-type

photonic lattices. In the presence of hybrid nonlinearity (E0 ⊥ c), another two

different ionic-type lattices can be established (Fig. 5.13c, d). The three-dimensional

display of the calculated refractive index distribution of Fig. 5.13c is shown in

Fig. 5.17a, from which we can clearly see the egg-crate lattice structure.

By comparing the BZs in Fig. 5.13 with the textbook-calculated BZ for the

square lattice, one can notice that some expected Bragg reflection lines indicated by

the dashed lines in the second row of Fig. 5.13 are missing. This implies that Bragg

reflection along some particular directions either is too weak to be observable or

simply cannot occur (band-gap closed). Such reconfiguration of BZ spectra in ionic

lattices introduces a new way for band-gap “engineering.” For instance, one can

design a particular photonic structure with its band-gap closed in a desired direction

for control of light propagation. Figure 5.17b–e demonstrates a typical example.
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A Gaussian probe beam tilted at the same input angle is launched into the

lattices shown in Fig. 5.13b, c, where the excitation locations of the probe beam

in k-space marked by a white dot. Both numerical (Fig. 5.17b, c) and experimental

(Fig. 5.17d, e) results show that the output location of the probe beam is dramati-

cally different in the two different lattices. In particular, no Bragg-reflection

(Fig. 5.17b, d) is observed in the lattice of Fig. 5.13b, but strong Bragg-reflection

(Fig. 5.17c, e) is observed for the same probe beam in the lattice of Fig. 5.13c.

To understand the underlying physics of the BZ spectra reconfigurations as well

as the “band-gap engineering” in the optically induced ionic-type photonic lattices,

we consider a general ionic-type photonic lattice composed of both positive and

negative potentials, as shown in Fig. 5.18, which is a non-Bravais lattice. Assume

that the dielectric constant distribution of the lattice is given by

eðrÞ ¼ e0 þ
X
i

De r� rið Þ; (5.10)

where e0 is the dielectric constant of the uniform background medium, ri denotes the

location of the ith lattice site, and De is the magnitude of periodic variation of

the dielectric constant with De < 0 and De > 0 representing the positive and

negative lattice potentials, respectively. We point out that the novelty of the non-

Bravais 2D ionic-type lattices arises from the periodic “dips” and “humps” in the

refractive index pattern, which contains at least one dip and one hump in each

lattice site and cannot be “washed out” or turned into simple lattices (composed of

only “dips” or “humps” but not both) merely by resetting the background e0.
Different from the 1D ionic-type lattices, which are considered to be simple lattices,

by resetting the background at the maxima or minima of the dielectric constant, the

background has to be chosen properly in the 2D case so that the lattice potentials

Fig. 5.17 (a) 3D display of the index distribution of an ionic-type lattice shown in Fig. 5.13c. (b–e)

Numerical (top) and experimental (bottom) output patterns of a tilted probe beamwith its excitation

location in k-space marked by a white dot in Figs. 5.13b, c. Here (b, d) and (c, e) correspond to

excitation in lattices of Fig. 5.13b, c showing no Bragg-reflection and strong Bragg-reflection,

respectively. The crosses indicate the input position of the probe beam (after ref. [94])
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can be totally separated as described by (5.10). We mention that a chessboard lattice

structure cannot be considered as ionic-type, and it contains single scattering center

in each unit cell. It will turn into a simple lattice composed of only positive or

negative potentials by setting the background at an appropriate level.

To analyze the BZ spectrum [99, 100] and the Bragg reflection in photonic

structures, the geometrical structure factor (GSF) from solid state physics is often

used as an efficient tool [86, 103, 104]. To deduce the GSF of the ionic-type photonic

lattice structures as shown in Fig. 5.18 for a monochromatic light, here we assume

the dielectric constant varies slowly with space and start with the Helmholtz

equation by following the scattering theory for inhomogeneous media [103]

r2UðrÞ þ k2eðrÞUðrÞ ¼ 0; (5.11)

which can be rewritten as

r2UðrÞ þ k2UðrÞ ¼ �4pFðrÞUðrÞ; (5.12a)

FðrÞ ¼ 1

4p
k2 e0 � 1þ

X
i

De r� rið Þ
" #

; (5.12b)

where U(r) is the amplitude of the light field propagating through the lattice, and k
is the wave number. Assuming a plane wave propagating in the otherwise uniform

medium is scattered by lattice potentials, we can write U(r) ¼ U(i)(r) + U(s)(r),

Fig. 5.18 Schematic diagram

of an ionic-type non-Bravais

photonic lattice, where the

dashed and solid circles
represent negative and

positive lattice potentials,

respectively, the dashed
square marks a unit cell, the

white dots indicate the centers
of the unit cells, and P is an

observing point. Other

coordinates are defined in the

text (after ref. [94])
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where U(i)(r) represents the plane wave with (∇2 + k2)U(i)(r) ¼ 0 and U(s)(r)

represents the scattered field, (5.12a) becomes

r2 þ k2
� �

UðsÞðrÞ ¼ �4pFðrÞUðrÞ: (5.13)

By introducing a Green function G(r � r0) ¼ exp(ik|r � r0|)/|r � r0| into (5.13),
in the far field we obtain

UðsÞðrÞ � f k0; kð Þ e
ikr

r
; (5.14a)

f k0; kð Þ ¼
ð
V

Fðr0ÞUðr0Þe�ik0 �r0d3r0; (5.14b)

where r0 is the position of the scatterer, V is the volume of the lattice structure, and k

and k0 are the wave vectors of the incident and scattered fields, respectively.

Considering the periodicity of the lattice structure of N cells, the amplitude of the

scattered light field can be expressed by

f k0; kð Þ ¼ k2 e0 � 1ð Þ
4p

ð
V

U r0ð Þe�ik0 �r0d3r0 þ Nk2

4p

ð
Vcell

De r0ð ÞU r0ð Þe�ik0 �r0d3r0;

(5.15)

where Vcell is the volume of the lattice unit cell. Taking the first order Born

approximation [103] and U(i)(r) ¼ exp(ik�r), (5.15) can be written as

f k0; kð Þ ¼ k2 e0 � 1ð Þ
4p

d k� k0ð Þ þ Nk2

4p

ð
Vcell

De r0ð Þei k�k0ð Þ�r0d3r0: (5.16)

Suppose now that there are n scatterers in an unit cell, and the center location of

the jth scatterer is denoted by rj, then the dielectric constant distribution in the unit

cell can be written as De ¼ SDej. For Dk ¼ k � k0 6¼ 0 and r ¼ r0 � rj we obtain

f k0; kð Þ ¼ Nk2

4p

Xn
j

fje
iDk�rj ; (5.17a)

fj ¼
ð
Vcell

Dej rð ÞeiDk�rdV: (5.17b)

By writing rj as rj ¼ xja1 + yja2 + zja3 (a1, a2, a3 are the lattice vectors)

and considering Bragg condition Dk ¼ mb1 + nb2 + lb3 (m, n, l are integers, and
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b1, b2, b3 are the reciprocal lattice vectors), we can define the GSF for photonic

lattices as

& ¼
Xn
j

fje
i2p mxjþnyjþlzjð Þ: (5.18)

From (5.18), it can be seen that the GSF for photonic lattices shares a similar

form to that of atomic lattices [86]. However, the amplitude of the scattered field fj
is always positive for atomic lattices (since the scattering of X-rays is attributed to

the electron clouds of the atoms, therefore X-ray cannot experience the difference

between positive and negative scattering potentials), whereas for the ionic-type

photonic lattices, fj can be positive or negative indicating there is a p phase

difference between the scattered light fields from negative and positive optical

potentials. In order to highlight this unique property, we introduce a modified GSF

for ionic-type photonic lattices in the form of

& ¼
X

fjþei2p mxjþþnyjþþlzjþð Þ þ
X

fj�ei2p mxj�þnyj�þlzj�ð Þ; (5.19)

where the “+” and “�” signs are for positive and negative lattice potentials,

respectively.

Next, let us use the above modified GSF to analyze the missing lines in the BZ

spectra as shown in Fig. 5.13, which are attributed to the coexistence of the positive

and negative potentials in ionic-type lattices. By setting the origin at the center of

the white circles shown in the top panels of Fig. 5.13b–d, we can use the GSF to

analyze the Bragg reflection in the optically induced photonic lattices. Specifically,

the lattice structure shown in Fig. 5.13b contains a positive and a negative potential

with identical potential depth (i.e., fj+ ¼ �fj�) centered at (x�, y�) ¼ (0, 0) and

(x+, y+) ¼ (½, 0), respectively. Then, from (5.19), it is easy to show that if m is an

even number, the GSF & would be 0, which leads to zero amplitude of scattered

light. Therefore, the Bragg reflection lines corresponding to k-space planes defined

by (m, n) ¼ (0, �1), (0, �2), (�2, �1), (�2, 0) are all missing in Fig. 5.13b.

Likewise, for the lattice shown in Fig. 5.13c, Bragg reflection lines corresponding

to (m, n) ¼ (�1, �1) are missing as in this case & ¼ 0 if m + n ends up an even

number. The lattice in Fig. 5.3d has a unit cell containing two negative potentials at

(x1�, y1�) ¼ (�½, ½) and (x2�, y2�) ¼ (½,�½), and two positive potentials at (x1+,
y1+) ¼ (½, ½) and (x2+, y2+) ¼ (�½,�½). TheGSF in this case is found to be 0 (thus

cancelled Bragg reflection) for the planes of (m, n) ¼ (0, 1), (1, 0), (�1, 0) and

(0,�1) (see Fig. 5.13d). Missing lines are also found for the nonionic-type lattice of

Fig. 5.13a, but they result from a different mechanism of the anisotropic

photorefractive nonlinearity. In this latter case, the induced index changes

(waveguides) are highly elliptical and somewhat connected to adjacent lattice

sites, thus the 2D lattice virtually turns into a quasi-1D lattice along a particular

direction (�45� diagonal in Fig. 5.13a) for which Bragg reflection is weak or absent.
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This anisotropy of the lattice potential should also play a role for the missing lines in

Fig. 5.13b, as explained in ref. [100]. However, our numerical calculation indicates

that the ionic nature of the lattice structure accounts more for these missing lines in

Fig. 5.13b, as these lines can still be visible if we simply remove the positive lattice

potentials. We thus emphasize that missing of the Bragg reflection lines in BZ

spectra and associated band-gap closures are fundamentally new features in ionic-

type photonic lattices. Note that the lattice structure shown in Fig. 5.13d represents a

typical separable (or egg-crate) lattice structure in BEC, which has been investigated

theoretically for dynamical Bloch oscillation of cold atoms [105, 106]. We expect

that such Bragg reflection control could occur in other ionic-type photonic lattices

with different symmetries including triangular, honeycomb, and quasi-crystal

structures. Furthermore, the concept of ionic-type lattices may have direct impact

on photonic crystals and other discrete systems beyond optics.

5.6 Nonlinear Discrete Light Behaviors

As shown in Sect. 5.5, hybrid nonlinearity enables the ability to achieve

reconfigurable photonic lattices to modulate the linear beam dynamics. In the

nonlinear regime, it is well known that discrete (gap) solitons can be formed by

balancing normal (anomalous) diffraction with self-focusing (self-defocusing)

nonlinearity [47, 48, 61, 62]. Considering the highly anisotropic discrete diffraction

behaviors [107] and the enhanced anisotropy of the hybrid nonlinearity, one would

expect novel nonlinear beam dynamics to occur in optically induced photonic

lattices under NCB conditions [93, 96–98].

5.6.1 Transition Between Discrete and Gap Soliton-Trains

Similar to Sect. 5.4.1, as the simplest example, we first demonstrate the orientation-

induced transition between a 1D discrete soliton under self-focusing nonlinearity

and a 1D gap soliton under self-defocusing nonlinearity without the need of

reversing the bias field [96]. Again, the same bias conditions as those used in

Sect. 5.4.1 are employed, with (ye � yc) ¼ p/2. By solving (5.7) with I ¼ |B(y,z)|2 +
Il0 cos

2(py/d) and B(y,z) ¼ b(y)exp(ibz), the soliton solutions at different beam

orientations are obtained as shown in Fig. 5.19a, b. As expected, discrete and gap

solitons can be supported in the same crystal under identical bias conditions.

The propagation constants b for the discrete solitons lie in the total internal reflection

(or semi-infinite) gap,while those for the gap solitons reside in the first Bragg-reflection

bandgap. All the discrete solitons are uniform in phase, while the gap solitons are

always accompanied by staggered phase structures.
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Experimental demonstrations of these orientation-induced transitions between

discrete and gap solitons are shown in Fig. 5.19c–h, where the photonic lattices are

optically induced in an SBN:60 crystal under hybrid nonlinearity (E0 ⊥ c). The
lattice beam and the Gaussian probe beam both can be rotated freely in the

transverse plane. For the convenience of comparison, the experimentally observed

beam patterns are all rotated in transverse plane by 45�. It can be seen that without

nonlinearity, the probe beam undergoes discrete diffraction (Fig. 5.19f). However,

in the presence of nonlinearity, the balance between self-focusing or self-

defocusing and discrete diffraction can leads to stable self-trapped states

(Fig. 5.19g, h). Here, the interferograms clearly illustrate that the discrete and gap

solitons possess uniform and staggered phase structures, respectively. These

observations are in good agreement with the theoretical expectations.

Similarly, if the 1D lattice beams are replaced by the 2D square lattice beams these

orientation-induced transitions can be extended directly to discrete [108] and gap

soliton trains [55]. Figure 5.20 depicts typical numerical and experimental results.

The normalized power curves of the soliton trains at different orientations are depicted

in Fig. 5.20a, where the power is defined over one period along the train direction

[55, 108]. Figure 5.20b corresponds to the soliton solutions in the semi-infinite gap

(curve labeled with b in Fig. 5.20a) under self-focusing nonlinearity, which is

bifurcated from theG1 point. Figure 5.20c corresponds to the gap soliton trains residing

in the first photonic gap (curve labeled with c in Fig. 5.20a) under self-defocusing

Fig. 5.19 Numerical (a, b) and experimental (c–h) demonstrations of orientation-induced transi-

tion between 1D discrete and gap solitons under self-focusing (a, g) and self-defocusing nonline-

arity (b, h). (a, b) Soliton profiles at different peak intensities under bias conditions as indicated in

the upper right insets; (c, d) input and linear output probe beams without lattice; (e) lattice beam

pattern; (f) linear discrete diffraction of the probe beam; (g, h) are showing output soliton beams

(1) and their interferograms with tilted plane waves (5.2) (after ref. [96])
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nonlinearity. These are bifurcated from the M1 point. It is clear that although the

intensity patterns of these soliton trains look somewhat similar, the phase structures

and spectra indicate that they have different origins under different nonlinearities.

In an experiment, to obtain the semi-infinite gap soliton trains, the stripe beam is

oriented horizontally and launched collinearly with the lattice beam (without input

tilt) into the lattice as shown in Fig. 5.20d. In this case, the stripe beam experiences

a self-focusing nonlinearity balancing the normal diffraction to form a discrete

soliton train (Fig. 5.20e1), whose uniform phase structure (Fig. 5.20e2) and k-space

spectrum (Fig. 5.20e3) indicate its constitute modes from the G point in the first

band. To obtain the first photonic gap soliton train under the same bias condition,

Fig. 5.20 Theoretical (a–c) and experimental (d–g) demonstrations of orientation-induced tran-

sition between discrete and gap soliton trains bifurcated from the G-point under self-focusing
nonlinearity (b, d, e) and those bifurcated from the M-point under self-defocusing nonlinearity (c,

f, g). (a) Existence curves for soliton trains bifurcated from the band-edge of the first Bloch band

(Bloch bands are shaded); (b, c) Soliton solutions at corresponding marked points in (a), showing

the soliton intensity patterns (1), phase structures (2), and Fourier spectra (3); (d, f) Superimposed

input intensity pattern of the stripe and lattice beams (insets show the spectra of the probe beam

excitation); (e, g) Output intensity pattern of the soliton trains (1), interferogram from two

orthogonal directions (2), and soliton output spectra (3). Added squares in (b–g) depict the

boundary of the first BZ (after ref. [97])
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the stripe beam is oriented vertically and launched off-site with an input tilt at a

Bragg angle as shown in Fig. 5.20f. In this case, the self-defocusing nonlinearity

experienced by the probe beam balances anomalous diffraction to form a gap

soliton train (Fig. 5.20g). The interferogram shown in Fig. 5.20g illustrates the

“staggered” phase along the two orthogonal directions, representing the character-

istic phase structure of Bloch modes from the M1 points [101]. Due to nonlinear

spectrum reshaping, the output spectrum of the gap soliton differs dramatically

from the input spectrum, with most of the energy concentrated in regions around the

four M points in the first BZ [55]. These observations perfectly match the theoreti-

cal results as shown in Fig. 5.20b and c .

5.6.2 Elliptical Discrete Solitons

In Sect. 5.4.2, it was shown that the enhanced anisotropy of hybrid nonlinearity

results in elliptical solitons with nontrivial ellipticity. Here, we study elliptical

discrete solitons in the presence of both a periodic optical potential and hybrid

nonlinearity [93]. By solving (5.4) and (5.8) with I ¼ |b(x,y)|2 + cos2(px/L)
cos2(py/L), the elliptical soliton solutions at different bias conditions can be

obtained. Typical results under E0 ⊥ c are shown in Fig. 5.21a–d, from which it is

clear that the ellipticity of the solitons will be dramatically increased due to the

enhanced anisotropy. This is in contrast to the discrete solitons formed under

conventional bias conditions. In addition, the orientations of the elliptical solitons

can be altered by changing the relative orientations of lattice beam, bias direction,

and the c-axis. Figure 5.21e–h presents an experimental demonstration of such

elliptical solitons. It is obvious that under linear condition, the input beam undergoes

discrete diffraction. While in the presence of nonlinearity, however, the probe beam

can indeed evolve into an elliptical self-trapped state. It should be noted that the

soliton propagation constants of the elliptical discrete solitons reside in the semi-

infinite gap and the soliton profiles possess uniform phase structures.

5.6.3 Saddle Solitons

In a 2D square lattice, the high-symmetry X-point in the first Bloch band, as shown

in Fig. 5.22, is akin to a saddle point in a diffraction spectrum, where normal and

anomalous diffractions co-exist along orthogonal directions [107]. Specifically,

along the M–X (G–X) direction, the diffraction curve is convex (concave),

indicating normal (anomalous) diffraction. Therefore, to form a 2D soliton at

such a saddle point, orientation-dependent hybrid nonlinearity is required to bal-

ance the normal and anomalous diffractions simultaneously. This is somewhat

similar to nonlinear X-waves [109] and light bullets [110] balancing beam diffrac-

tion and pulse dispersion at the same time. Synchronous compensation of normal
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Fig. 5.21 Numerical and experimental demonstrations of elliptical discrete solitons under hybrid

nonlinearity. Soliton solutions with different peak intensities at yc ¼ p/4, ye ¼ 3p/4 (a, b) and

yc ¼ p/8, ye ¼ 5p/8 (c, d); (e, g) linear discrete diffraction of probe beam; (f, h) soliton output.

The bottom row presents the numerical simulations for the experimental results shown in the

middle row, and the bias conditions for (e–f) and (g–h) are corresponding to that for (a–b) and

(c–d), respectively (after ref. [93])

Fig. 5.22 Extended first Bloch band with high symmetry points marked of a typical square

photonic lattice (after ref. [98])
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and anomalous diffractions at the X point is impossible in conventional nonlinear

media. However, quasi-1D saddle solitons have been successfully excited by

balancing the anomalous diffraction along the G–X direction, while it is an

extended plane wave in the orthogonal M–X direction. The propagation constants

of these 1D soliton trains could reside within the first Bloch band, thus named “in-

band” or “embedded” solitons [58]. In the following, we shall demonstrate the

transition between self-focusing and self-defocusing quasi-1D (in-band) saddle

solitons [97] and the 2D saddle solitons in the presence of hybrid nonlinearity [98].

5.6.3.1 Transition Between Self-Focusing and -Defocusing In-Band Solitons

By employing a numerical procedure and experimental setting similar to the one used

in Sect. 5.6.1, the orientation-induced transition between quasi-1D saddle solitons

under self-focusing and self-defocusing nonlinearities is demonstrated, as shown in

Fig. 5.23. From the power curves of the soliton trains depicted in Fig. 5.23a, it is

obvious that such quasi-1D saddle solitons are indeed bifurcated from the sub-band-

edges (corresponding to the interior X point). When the propagation constant is

embedded in the Bloch band (e.g., the solutions at the points b and c in Fig. 5.23a),

the solutions represent in-band or embedded solitons [58]. Figure 5.23b, c depicts the

intensity patterns, phase structures, and k-space spectra of typical soliton solutions

corresponding to the marked points in Fig. 5.23a. It is clear that there is no qualitative

difference in intensity and phase structure between the two cases of embedded solitons.

However, the orientation of the soliton stripe is rotated 90� in transverse plane as

supported by two different nonlinearities (self-focusing and self-defocusing) and the

spectra near the twoX points are somewhat different due to different initial excitations.

Experimental demonstrations of such transitions are shown in Fig. 5.23.

To selectively excite the in-band solitons with a self-focusing nonlinearity, the

stripe beam is oriented horizontally, but launched with an input tilt at a Bragg angle

into the lattice as shown in Fig. 5.23d. Both the phase structure (Fig. 5.23e2) and the

k-space spectrum (Fig. 5.23e3) clearly illustrate the excitation of Bloch modes at

the X point of the first band. In this case, the normal diffraction of the stripe beam

along y-direction is balanced by the self-focusing nonlinearity, so the soliton is

quasi-one-dimensional in x-direction. Likewise, the in-band soliton train supported

by the self-defocusing nonlinearity can be generated by off-site excitation of a

vertically oriented stripe beam without input tilt as shown in Fig. 5.23f. Again the

excitation of modes from the X points is evident in both phase and spectrum

measurements, but now the soliton is quasi-one-dimensional in y-direction, and
the anomalous diffraction of the stripe beam is balanced by the self-defocusing

nonlinearity [101]. As the soliton power increases, the embedded soliton will turn

into a semi-infinite gap soliton under self-focusing nonlinearity (moving up to out

of the band along b branch in Fig. 5.23a) and into a photonic gap soliton under the

self-defocusing nonlinearity (moving down to out of the band along c branch in

Fig. 5.23a) [58]. These solitons have also been experimentally observed.
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5.6.3.2 Two-Dimensional Saddle Solitons

By solving (5.4) and (5.8) with different initial conditions from those used in

Sect. 5.6.2, 2D saddle solitons residing in the first Bragg reflection gap can be

obtained as shown in Fig. 5.24. From Fig. 5.24d–f, it can be clearly seen that

the phase structure of the central soliton region (Fig. 5.24e) fits that of the Bloch

Fig. 5.23 Theoretical (a–c) and experimental (d–g) demonstrations of orientation-induced tran-

sition between in-band soliton trains bifurcated from the sub-band-edge X point under self-

focusing (b, d, e) and -defocusing (c, f, g) nonlinearity. (a) Existence curves of the soliton-train

solutions; (b, c) soliton-trains at corresponding marked points in (a), showing intensity patterns

(1), phase structures (2), and Fourier spectra (3); (d, f) superimposed input intensity pattern of the

stripe and lattice beams (insets show the spectra of the probe beam excitation); (e, g) output of the

soliton trains (1), interferogram from two orthogonal directions (2), and soliton output spectra (3).

Added squares in (b–g) depict the boundary of the first BZ (after ref. [97])
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mode at the X-point, and that the power spectrum (Fig. 5.24f) is concentrated mostly

at the twoX-points within the first BZ. This indicates that the saddle solitons must be

bifurcated from the interior X-points of the first band, although far away from

the soliton center staggered phase characteristic to band-edge M-point modes are

evident. Apparently, these 2D saddle solitons differ from previously observed quasi-

1D embedded or gap solitons (also from first-band X-points), which are localized

only in one direction [58], and from the reduced symmetry solitons created solely

by self-focusing nonlinearity (but from second-band X-points) [111].We emphasize

that such a 2D saddle soliton does not arise from single (self-focusing or -

defocusing) nonlinearity or single (normal or anomalous) diffraction, but rather it

results from a perfect balance between bi-diffraction and hybrid nonlinearity.

Experimental observations of such 2D saddle solitons are depicted in Fig. 5.25.

To excite the 2D saddle soliton originated from the X-points, the relative orienta-

tion between the c-axis, the bias field, and the lattice beam is as depicted in

Fig. 5.24a. The probe beam is reconfigured into three in-phase spots and launched

into the lattice without any input tilt (illustrated by three green dots in Fig. 5.24a),

with the central spot having a higher intensity. To make sure on-site excitation in

the induced index lattice (which has an off-set with the intensity pattern as seen

in Fig. 5.24a, b), the three beam spots are aimed at the intensity minima of the

lattice beam. The experimentally observed intensity pattern of the saddle soliton is

Fig. 5.24 (a) Orientations of crystalline c-axis, bias field, and square lattice-inducing beam; (b)

refractive index distribution of the induced ionic-type lattice; (c) existence curve of 2D saddle

solitons; (d–f) intensity pattern (associated index change shown in inset), phase structure, and

Fourier spectrum of the saddle soliton at the marked point in (c). Added squares in (f) mark the

boundary of the first BZ (after ref. [98])
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shown in Fig. 5.25a. From the interference patterns between the soliton beam and

the reference plane wave tilted to two different directions (see Fig. 5.25b, c), we can

tell that the soliton possesses uniform and “staggered” phase structure along two

orthogonal directions. This kind of phase structure resembles that of the Bloch

modes at the first-band X-points, as found in our numerical solution of Fig. 5.24e.

And the k-space spectrum of the soliton also shows that most of its power

concentrates at the two X-points of the first BZ (Fig. 5.25d). These results are

also corroborated with our numerical simulations (shown in Fig. 5.25e–h). This

confirms that the 2D saddle solitons are indeed due to a perfect balance between bi-

diffraction and hybrid nonlinearity at the interior X-points of the first band.

In addition, we mention that when the intensity of the lattice-inducing beam is

reduced, the band-gap of the induced photonic lattice becomes narrower or not fully

open, as found before for “backbone” photonic lattices [112]. In this case, quasi-

localized saddle soliton solutions can exist with their propagation constant residing

even in the Bloch band. However, these 2D in-band modes are only quasi-localized.

Long distance propagation reveals that they are not stable [98].

5.7 Summary and Closing Remarks

In summary, we have reviewed recent progresses on the nonlinear beam dynamics

in both continuous and discrete regimes under hybrid nonlinearity. A comprehen-

sive theoretical model has been developed based on Kukhtarev’s band transport

model to describe the nonlinear beam dynamics as well as optically induced

photonic lattices driven by the hybrid nonlinearity in NCB photorefractive crystals.

Fig. 5.25 Experimental (a–d) and numerical (e–h) results of 2D saddle solitons. The top row
shows the intensity pattern (a), interferograms (b, c) with a tilted plane wave at two orthogonal

directions, and Fourier spectrum (d) of the soliton. The second row shows corresponding numeri-

cal results (after ref. [98])
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The direct experimental visualization of the complex nonlinear refractive index

changes confirms the validity of the theoretical model in the first place. In homoge-

nous bulk crystals, nonlinear beam dynamics including creation of elliptical optical

solitons, suppression of the breakup of optical vortices, and orientation-induced

transitions between bright and dark solitons have been demonstrated. In discrete

media, hybrid nonlinearity enables the creation of a new type of photonic lattices

with alternating positive and negative refractive index potentials, named ionic-type

photonic lattices. These offer new opportunities for band-gap engineering and

control of the flow of light by reconfiguring the lattice structures and BZs. Some

typical examples include band-gap closure and Bragg reflection suppression, soli-

ton transitions between different band-gaps, and interplays between normal and

anomalous diffraction or positive and negative refraction under identical excitation

conditions. Moreover, the enhanced anisotropy and nonlocality of hybrid nonline-

arity result in some novel nonlinear discrete localized states including elliptical

discrete solitons and saddle solitons by simultaneously balancing normal and

anomalous diffractions along different directions.

In closing this chapter, we mention that the hybrid nonlinearity is directly

originated from the anisotropic nature of photorefractive effect. Photorefractive

nonlinearity has played a major role in experimentally exploring nonlinear beam

dynamics in both homogenous and discrete regimes in the past two decades.

Although elliptical solitons and their anomalous interactions due to the weak

photorefractive anisotropy under conventional bias conditions have been studied,

most of the previous studies were based on an isotropic and local approximation of

the photorefractive model. Therefore, hybrid nonlinearity supported by the NCB

conditions brings about opportunities for exploring novel nonlinear beam dynamics

under strong anisotropy and nonlocality in both continuum and discrete regimes.

More generally, the novel concept of hybrid nonlinearity opens a door to study the

nonlinear beam dynamics in anisotropic nonlinear systems in optics and beyond.

Specifically, this raises many intriguing questions, such as, would the asymmetric

diffusive nonlinearity in photorefractive materials lead to self-bending of the aniso-

tropic self-trapping states? If so, then howwould solitonsmove in presence of hybrid

nonlinearity? Is it possible to use the enhanced nonlocality of hybrid nonlinearity to

fulfill wave mixing without diffusive nonlinearity? How does hybrid nonlinearity

impact the modulation instability? Would other nonlinear phenomena, such as

spontaneous pattern formation, self-pumped phase conjugation, exist under hybrid

nonlinearity? In the presence of photonic lattices, would the enhanced anisotropy

lead to symmetry breaking light propagation behaviors? What’s the influence of the

anisotropy on the nonlinear optical surface states? Our settingwill help explore these

concepts and understand the true universal nature of anisotropic nonlinear media.

We expect more interesting and exciting results that are yet to come.
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Chapter 6

Theory of Polariton Solitons

in Semiconductor Microcavities

O.A. Egorov, D.V. Skryabin, and F. Lederer

6.1 Introduction

The research into the physics of localized structures (solitons) in nonlinear systems

covers many branches of physical sciences, including optics, fluid dynamics,

particle physics, and biology [1–3]. Depending on the physical setting, localiza-

tion can occur in one, two, or three dimensions. One of the qualitative principles

underpinning the localized structure formation is that the dispersion induced

broadening is compensated by the nonlinearity of an appropriate sign and if loss

is present as in non-Hamiltonian systems, then it has to be compensated by an

external energy source [3]. Most generally, if dispersive spreading happens as for

quantum mechanical particles with positive/negative effective mass, then a focus-

ing/defocusing, or in other words, an attractive/repulsive nonlinearity, is required

to compensate for the dispersion [2]. One of the active topics of recent research has

been the so-called cavity solitons in weakly coupled, wide aperture semiconductor

microcavities [4–11]. Apart from their interesting physics, these structures have

been proposed for use in several information processing schemes [9–14]. How-

ever, applications of cavity solitons in weakly coupled microcavities are

limited due to their slow response times and the relatively weak nonlinearity.

Slow (nanosecond) carrier dynamics is dominant in weakly coupled vertical cavity

surface-emitting lasers (VCSELs) and it does not catch up with the fast (picosec-

ond) photon lifetime in the cavity [14, 19]. It is also challenging to trap photons in

small volumes and thus dense packing of conventional light-only cavity solitons is
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problematic. In the strong coupling regime, the photons are replaced by polaritons

[15], which are the exciton–photon quasiparticles [16–20]. The effective wave-

length of these polaritons is smaller than that of photons and their lifetime is

comparable to the one of photons and, hence, fast. Their nonlinear interaction,

which is of excitonic origin, is 2–3 orders of magnitude stronger [19–22].

Polaritons are also known to exist in other condensed matter, atomic, and optical

systems [23–28]. In the last few years, extensive studies of polaritons in strongly

coupled microcavities have been largely motivated by the studies regarding

polariton Bose–Einstein condensation [29, 30] and the transition to a superfluid

regime [31, 32]. Recently, these exciton-polaritons have also been observed at

room temperatures, see, e.g., [33, 34], which has further boosted their potential for

practical applications. The strong repulsive interaction of polaritons has been

shown to lead to low-threshold optical bistability [35–37] and parametric wave

mixing [38–45]. In the latter case, the simultaneous matching of momenta and

frequencies of the pump, signal, and idler beams can be achieved provided that the

momentum of the pump exceeds a critical value associated with the so-called

“magic angle” marking the point where the effective polariton mass changes its

sign [44]. Besides Coulomb-induced polariton–polariton repulsion, there are two

other nonlinear mechanisms which govern the dynamics of intracavity polaritons

and lead to the saturation of the coupling strength between excitons and photons

when the exciton density increases [18, 21, 22, 42]. The first effect is phase-space-

filling due to the Pauli exclusion principle and the second one is the

renormalization of the exciton orbital wave function induced by the presence of

other excitons [21]. Both saturation mechanisms are important for GaAs- based

devices with small exciton binding energy and they have been shown to result in

polaritonic bistability [36, 37]. Solitonic and self-localization effects with

polaritons in bulk media have attracted attention since the 1970s until now [24,

46, 47]. In the context of microcavity polaritons, the existence of vortices in

exciton-polariton condensates [48] has been discussed. In a recent experimental

paper [49], the authors claim the observation of localized structures or cavity

solitons in a strongly coupled semiconductor microcavity. Further experimental

investigations of the coherently driven semiconductor microcavities provide the

evidence of polariton droplets moving on top of the background created by the

signal and idler beams participating in parametric conversion [50–52]. In a series

of our own papers, different types of resting and moving self-localized states of

exciton-polaritons in coherently driven semiconductor microcavities have been

reported [53–57]. This chapter reviews the findings of the latter. In Sect. 6.2, we

describe the equations used to model the polariton dynamics. Then we analyze the

linear dispersion of polaritons and study the bistability conditions of the homoge-

neous solutions (HSs). In Sect. 6.3, we derive the simplified nonlinear model in the

polaritonic basis. Section 6.4 discusses stationary and moving dark cavity

polariton solitons. Then, in Sect. 6.5, the formation of moving bright polariton

solitons is considered for the pump beams tilted beyond the “magic angle.” Finally,

in the Sect. 6.6 we describe bright solitons existing close to the upper-polariton

branch due to the saturation of the exciton–photon coupling.
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6.2 Mathematical Model

Below we are dealing with a semiconductor microcavity Fig. 6.1a, where polaritons

may form due to the coupling of quantum well (QW) excitons and microcavity

photons. We start by introducing a standard model [18–20, 31, 53, 54, 57] for the

case of l identical QWs and a sufficiently large exciton density to saturate the

photon–exciton coupling:

@tE� ir2Eþ ðg� iDÞE ¼ if ðjCj2ÞCþ Epe
ikpx; (6.1)

@tC� idr2Cþ ðg� iDÞCþ il�1jCj2C ¼ if ðjCj2ÞE: (6.2)

Here, E and C are the averages of the photon and exciton creation or annihilation

operators. The normalization is such that (OR/g)│E│
2 and (OR/g)│C│2 are the photon

and exciton numbers per unit area. OR is the Rabi frequency and g is the

exciton–exciton interaction coefficient. D ¼ ðo� oc;0Þ=OR is the detuning of

the pump frequency o from the identical cavity and exciton resonances (oc = o0).

The cavity is driven by a plane pumpwave with the amplitude Ep, kp is the transverse
momentum of the pump wave determined by the angle of incidence. The time t is
measured in units of O�1

R . The photon and exciton decay rates, g, are assumed

equal. Full details of the rescaling into physical units can be found in [53, 54]. A unit

of t corresponds to 0. 25 ps and a unit of x to � 1mm if typical parameters of the

polariton experiments with InGaAs/GaAs QWs are used. The exciton dispersion

coefficient d=�hocn
2=mexcc

2 is normalized to the photon diffraction coefficient,

where mexc is the effective mass of excitons and n is the effective refractive index

of the cavity. Realistically, it amounts to d � 10�4�10�5.

Fig. 6.1 (a) Sketch of the microcavity driven by a coherent optical pump. The semiconductor

quantum well (QW) is sandwiched between two Bragg mirrors (BM). (b) Polariton dispersion of

the planar semiconductor microcavity operating in the strong coupling regime. LP and UP depict

lower and upper-polariton branches, respectively, for a single QW configuration (l = 1) and

infinite exciton mass d = 0
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The term determining the photon–exciton coupling f ðjCj2Þ � ½l=ð1þ jCj2=nslÞ�1=2
accounts for the saturation of the exciton–photon interaction with increasing exciton

densities [18]. Here, ns ¼ Nsg=OR is the normalized exciton saturation density.

Starting with an effective Hamiltonian for the interacting electrons and holes one

arrives at (6.1, 6.2) with saturation effects included [20, 22, 42]. Thismodel is valid for

moderate saturations and fitswell the experimentalmeasurements of the Rabi splitting

[18]. The saturation density can be approximated as Ns � 0. 117/paexc
2 where aexc is

the exciton radius [21]. For InGaAs/GaAs quantum wells, it corresponds to the

dimensionless quantity ns ’ 0. 5�1. 0.

First, we briefly describe the linear polariton dispersion, which is defined as the

dependency of the frequency O (or energy) from the transverse momentum

components kx and ky. Assuming that E;C � e�gte�iOTþikxxþikyy and dropping the

pump term and nonlinear effects, we find the eigenvalue problem:

iO�ðkÞ~pk ¼ ik2 �i
ffiffi
l

p
�i

ffiffi
l

p
idk2

� �
~pk; (6.3)

where ~pk ¼ fek;ckg is the polariton basis vector and O � (k) are the eigenfre-

quencies. ek and ck describe the content of the photonic and excitonic components

of polaritons (Hopfield coefficients) [15]. The solution of the eigenvalue problem

(6.3) yields the linear polariton dispersion relation

O�ðkÞ ¼ ð1þ dÞk2
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 1

4
ð1� dÞ2k4

r
; (6.4)

where k2 ¼ k2x þ k2y and O � are the relative frequencies of the upper (UP) and

lower (LP) polariton branches, respectively, see Fig. 6.1b. In the strong coupling

regime, the Rabi splitting exceeds the line-width (Oþðk ¼ 0Þ � O�ðk ¼ 0Þ>>g).
Provided that d 6¼0 for large momenta, the LP branch extends into the gap between

LP and UP existing for d = 0.

The nonlinearity of polaritons is accounted for by the terms proportional to

the exciton density. The bistable response of the microresonator is one of the

consequences of this nonlinearity and an important prerequisite for the existence

of localized solutions. Neglecting saturation effects (ns ! 1) but accounting for

the exciton–exciton repulsion, one finds that E(Ep) is multivalued provided that W
(D, kp) > 0, where

WðD; kpÞ � D�
D� k2p

� �
l

g2 þ D� k2p

� �2

0
B@

1
CA�

ffiffiffi
3

p
g 1þ l

g2 þ D� k2p

� �2

0
B@

1
CA

2
64

3
75: (6.5)
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This cumbersome condition determines two intervals of D, where polariton

bistability can be observed [53]. It simplifies for g = 0 and normal incidence of

the pump kp = 0 giving two bistability intervals D>
ffiffi
l

p
and � ffiffi

l
p

<D<0. These two

intervals overlap with either the LP or the UP band of the dispersion relation, see

(6.4) and Fig. 6.2. The first interval belongs to the LP branch, and, thus, we call it

the LP bistability [31, 35, 40]. The second one is located within the UP band.

The energy gap between the upper- and lower-polariton branches shrinks for

larger polariton densities due to the saturation of the photon–exciton coupling

(ns 6¼1). More precisely the LP branch shifts upward, i.e., experiences an additional

blue shift, whereas the UP branch is red shifted [36]. Note that exciton–exciton

interaction leads to the blue shift of both branches. The red shift of the UP

branch due to saturation of f ðjCj2Þ can be sufficiently strong to compete with and

surpass the blue shift due to exciton–exciton interaction. As a result, the bistability

can appear in a new frequency interval D near the UP branch [57]. Note that unlike

the conventional bistability of the upper polaritons (UP), this saturation bistability

exists even for a vanishing exciton-exciton interaction term in (6.2). The interplay

of two types of bistabilities of the UP branch can give rise to multistability of HSs.

6.3 Effective Equations in the Polaritonic Basis

To understand the physics behind the polariton soliton formation and to identify

domains of their existence, we proceed by expanding the linear polariton dispersion

around the pump momentum, and derive a single equation for the amplitude of both

the lower (and upper) branch polaritons containing an effective nonlinearity and

multiple dispersion terms. In this derivation, we simplify the nonlinear saturation of

the coupling considering only the first density-dependent term in the Taylor expan-

sion f ðjCj2Þ � l1=2 � jCj2=2nsl1=2. We also assume thatfE;Cg ’ R
aðt; kÞ~pkeikxdk,

where a(t, k) is the Fourier amplitude of the kth component. We assume that the

spectrum of the polariton wavepacket is centered around kp and expand O � (k) up
to the fourth order in k � kp . The resulting equation for the amplitude of the

polariton wave packet

Aðt; xÞ ¼
Z 1

�1
aðt; kÞeiðk�kpÞxdðk � kpÞ

is

i@tAþ iD1@xAþ D2@
2
xA� iD3@

3
xA� D4@

4
xAþ igAþ dA� x jAj2A ¼ i�Ep; (6.6)

where d ¼ D� O�ðkpÞ is the effective frequency detuning, g the loss, D1 ¼ @k

O�jkp the transverse group velocity, and D2 ¼ ð1=2Þ@2
kO�jkp , D3 ¼ ð1=6Þ @3

k O�jkp ,
D4 ¼ ð1=24Þ@4

kO�jkp are the dispersion coefficients (Fig. 6.2b). The effective

nonlinearity reads as x ¼ jckp j2ðjckp j2 þ Realðe�
kp
	 ckpÞn�1

s Þ=lðjekp j2 þ jckp j2Þ and
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� ¼ ekp=ðjekp j2 þ jckp j2Þ . The essential difference between the weak and strong

coupling regimes, relevant to our study, is not the mere existence of the LP branch,

but the fact that it exhibits an inflection point,@2
kO� ¼ 0at k = kmag, where the second-

order dispersion changes sign (Fig. 6.2a, b). Note that in general, the effective

transverse mass of polaritons is a 2 
2 tensor. The mass component corresponding

to the direction of the pump momentum changes its sign from positive to negative for

k > kmag, while the mass in the orthogonal direction stays positive. Normalizing the

excitonic component of the linear polariton eigenmode such that jckp
j2 � 1 results in

an equivalence of the polariton and exciton densities ðjAj2Þ.
The effective nonlinear coefficient for the lower (-) and upper (+) polariton

branches is expressed as

x�ðkpÞ ¼
k2p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4lþ k4p

q� �
k2p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4lþ k4p

q� �
þ 2l=ns

� �
l k2p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4lþ k4p

q� �2

þ 4l

� � (6.7)

and its dependence on the pump momentum is shown in Fig. 6.2c. Due to

the opposing actions of the two types of nonlinear shifts, the effective nonlinearity

of the upper-polariton branch changes its sign for some values of momenta

provided that the saturation density of the exciton–photon interaction is small

enough: ns<ncrit ¼ l=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ k4p=4

q
� k2p=2Þ.

For normal pump incidence, kp = 0, the model ( 6.6) is identical to the one

previously studied in the context of light-only cavity solitons in the case of Kerr

nonlinearity, see, e.g., [4, 7, 58] and reference therein. From these studies, it is

known that the points where the HSs destabilize are the potential bifurcation points

kp

-0.2

0

0.2

0.4

0.6

D2

D3

D1

k

-1

-0.5

0

0.5

1

1.5

LP

UP

4-4 -2 4 0 1 2 30 2 0 1 2 3
kp

-0.5

0

0.5

1

1.5

kmag

kmag

D4

LP

UP

(1)

(2)

(3)

(4)

(1)
(2)

(3)

(4)

Ω
ξ

a b c

Fig. 6.2 (a) Polariton dispersion: lower (LP) and upper (UP) polariton branches in the strong

coupling regime. (b) Dispersion coefficients of the lower polaritons (LP) vs pump momentum kp
for d = 0. (c) The effective nonlinear coefficient x of the upper (UP) and lower (LP) polariton

branches vs pump momentum for l = 1 and the saturation densities ns = 1 (1), ns = 2. 0 (2),

ns = 1. 0 (3), ns = 0. 5 (4)
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for solitons to emerge [7]. The HS response may be either monostable or bistable

(see Fig. 6.3a). In the latter case, two steady-state HS solutions (stable and unsta-

ble) converge and disappear simultaneously at the limit or turning points (TP) of HS

solutions. This is a saddle-node bifurcation. In accordance with this model, the

operating frequency has to be slightly above the corresponding resonance d> g
ffiffiffi
3

p
for the defocusing nonlinearity (x > 0) or slightly below for the d<� g

ffiffiffi
3

p
focusing case (x < 0) [58]. As a result, one can find two intervals of polaritonic

bistability associated with the lower and upper-polaritonic branches in agreement

with the conditions for bistability (6.5) without saturation effects. Figure 6.3b, c

shows the example of HS bistability domains for both the lower and the upper-

polariton branches calculated in both the original model [(6.1) and (6.2)] and in the

simplified model in the polaritonic basis (6.6). There is a reasonable agreement

between the results of both models for the lower-polariton branch. It is quite

unexpected that the pump amplitude required for bistability reaches the minimum

for the nonzero moment kp slightly beyond the “magic angle” (see Fig. 6.3c). It can

be explained by the increase of the effective nonlinear coefficient with kp for the
lower polaritons (LP), see Fig. 6.2c. Note that a sufficiently strong nonlinear

frequency shift can disturb the linear polariton basis and, therefore, the simplified

model (6.6) ceases to be valid. Such distortion explains the substantial

discrepancies between the bistability domains obtained in the original and in the

simplified models for the upper polariton (UP) branch.

Before proceedingwith comprehensive numerical simulations of cavity polariton

soliton (CPS), we discuss three important regimes anticipated from the model (6.6).

0
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0.8

0.16
Ep
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Fig. 6.3 (a) Bistable response of both lower (LP) and upper (UP) polaritons for the positive

effective detuning d = 0. 3 and a defocusing nonlinearity. (b) kp-dependence of the │A│ values
corresponding to the turning points (TP) of the bistability loop. (c) Pump amplitudes required for

bistability. The full lines in (b, c) have been obtained using (6.6) and the diamonds depict results of

the original model [(6.1) and (6.2)]
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Regime 1: For a moderate inclination of the pump beam kp � 0, the second-order

dispersion is positive (D2 > 0) and prevails against all higher order dispersion terms

(Fig. 6.2b). The effective nonlinearity is defocusing (x� > 0) for the lower- as well

as the upper-polariton branch for a small saturation nonlinearity ns ! / . Dark

CPSs are expected to be stable for these parameters (see Sect. 6.4 and [53]). The

effective nonlinearity term x� of the lower branch polaritons increases for strong

saturation effects. Therefore, we assume that the saturation of the photon–exciton

coupling does not change qualitatively the nonlinear solutions but reduces the

intensity thresholds required for their excitations.

Regime 2: For a large inclination of the holding beam beyond the “magic angle,” the

leading order dispersion term of the lower-polariton branch changes the sign

D2 < 0. In this case, moving bright CPSs can be found for both 1D and 2D

configurations (see Sect. 6.5 and [54, 55, 56]).

Regime 3: For normal incidence of the pump beam kp � 0 and a strong saturation

nonlinearity, the effective nonlinearity ( 6.7) changes the sign at the upper-

polariton branch (Fig. 6.2c). The nonlinearity becomes focusing at this branch

giving rise to a new domain of bistability associated with saturation effects and

the formation of the stable bright cavity polariton solitons (see Sect. 6.6 and [57]).

6.4 Dark Polariton Solitons

In this chapter, we consider solitons with frequencies close to the bottom of the LP

branch for zero and small pump momenta, where the effective polariton mass is

positive along any direction in the cavity plane (regime 1). The saturation of the

exciton–photon coupling does not have any qualitative impact on the results

discussed in this chapter and therefore can be disregarded, ns ! 1. Since any

type of cavity solitons is located on a homogeneous background, it is important that

the linear stability of the background is investigated first. The spectrum of small

perturbations around the background field in the bistable regime has been previ-

ously reported, e.g., in [31]. For sufficiently small pump momenta, the lower state

of the polariton bistability loop can become unstable evidenced by the growth of

perturbations with finite transverse momenta [modulational instability (MI)],

thereby generating a growing modulation of the initially flat polariton state, while

the upper state is generally stable, see Fig. 6.4a.

The soliton branches are known to emanate from the points of MI [7]. First, we

consider the case when the MI point of the lower state of polaritons falls within

the bistability interval of the pump field strength. Applying the Newton method

to solve the stationary (∂t = 0) version of (6.1) and (6.2) with @2
x þ @2

y ¼ @2
r þ 1

r @r

(r2 ¼ x2 þ y2 ) we have found, perhaps surprisingly, a family of small amplitude

bright solitons splitting from the MI point, see the dashed red line in Fig. 6.4a.

These solitons become more intense for smaller values of Ep further away from the

MI point, see Fig. 6.4d. The increase in intensity with the drop of the pump power is

a ubiquitous signature of the underlying dynamical instability (see below).
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The bright CPS branch terminates at Ep = 0. 1748. At this particular point (Maxwell

point), the lower and upper homogeneous states (HSs) can be connected by a zero

velocity front. When the pump approaches the Maxwell point, the soliton broadens

and its peak intensity tends toward the intensity of the upper homogeneous state.

We also performed a stability analysis of these bright solitons. The linear

perturbations around the radially symmetric solitons have been assumed in the

general form EþðrÞeiJyþkt þ E��ðrÞe�iJyþk� t , where J ¼ 0; 1; 2; . . . [59]. The bright

solitons have been found unstable with respect to the perturbation with the azimuthal

index J = 0. This instability tends to transform the soliton into moving fronts.

The front velocity becomes very small for Ep close to the Maxwell point (MP)

and, hence, this class of bright solitons is only weakly unstable there. Pinning of the

fronts to the inhomogeneities of the cavity can provide a further stabilizing effect.

Because of the defocusing nature of the polaritonic nonlinearity the dark solitons,

see, e.g., [7], are expected not only to exist, but also to be genuinely stable. Dark cavity

solitons in the weak coupling regime, have been previously reported in numerical

modeling and experiments, see, e.g., [5, 8, 60]. In our case, the dark polariton solitons
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Fig. 6.4 Branches of unstable bright (a), 1D dark (b), and 2D dark (c) cavity polariton solitons

(shown is the squared modulus of the excitonic component) as functions of pump amplitude Ep for

D ¼ �0:7, g = 0. 1. (d–f) Exciton density distribution │C(x, y = 0)│2 across the bright (d), 1D

dark (e),and 2D dark (f) soliton profiles for the points marked by 1, 2, 3, 4, and 5 in figures (a–c).

Full and dashed lines in (a–c) mark stable and unstable solutions, respectively
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detach from the left part of the bistability loop, see Fig. 6.4b, c. Close to this point, the

notch on the homogeneous background is very shallow and it deepens as Ep

approaches the MP. Near the MP, the dark solitons become very broad and, similarly

to the bright ones, can be qualitatively considered as a superposition of fronts. Note

that the relaxation of the fronts toward the upper HS happens without oscillations

however, the relaxation toward the lower state is oscillatory, see Fig. 6.4e. Thus,

pinning of the two fronts one to another and, hence, stabilization of solitons is possible

only for the dark structures (Fig. 6.4e). The stable branches of darkCPSs are shown by

full lines in Fig. 6.4b, c. The unstable ones correspond to the instabilities with J = 0

(for the 2Dcase). Note, also, that the existence domain of 1D stable dark solitonswider

than that for 2D ones (compare Fig. 6.4b, c).

For detunings D close to the exciton resonance (D = 0), the MI point shifts toward

the left edge of the bistability interval to pass it eventually (compare Figs. 6.4a and

6.5a). As a result the branch of bright solitons originating at this point disappears, see

Fig. 6.5 (D ¼ �0:5 ). However, we have found two distinct branches of the dark

solitons marked as B1 and B2 in Fig. 6.5a, b. The B1 branch bifurcates subcritically

from the folding point of the upper HS and becomes stable after the turning point.

Close to this point the B1 solitons have a single well shape, while later they transform

into ring-like structures Fig. 6.5c. Note that close to the turning points the B1 solitons

become unstable suffering from an oscillatory (Hopf) instability [53].
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Fig. 6.5 (a) Amplitude of the homogeneous state (HS) (black line) and min │C(x, y)│2 for 2D dark

CPSs shown as functions of Ep: D ¼ �0:5, g = 0. 1.B1 and B2 mark two branches of dark CPSs.

(b) Zoom of the area from (a) showing the B2 dark CPSs. (c, d) Exciton density distribution

│C(x, y = 0)│2 across B1 (c) and B2 (d) CPSs for the points marked by 1, 2, 3 and 4 in panels (a)

and (b). Full and dashed lines mark stable and unstable solutions, respectively
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TheB2 solitons exhibit a ring shape over the entire existence domain, see Fig. 6.5d.

It is interesting that the B2 branch does not bifurcate from the HS. B2 solitons are

linearly stable in the narrow interval marked by 4 in Fig. 6.5b. However, they are

mostly unstable with respect to the perturbations breaking the radial symmetry, e.g.,

with J6¼0. Examples of this instability with J = 3 and J = 8 are shown in Fig. 6.6.

Dark polariton solitons start to drift provided that the pump has a nonzero

transverse momentum (kp 6¼0). In first approximation, the velocity of motion is

proportional to kp [61].

To prove that drifting structures are indeed solitons, we consider (6.1) and (6.2)

with ∂y = 0 and seek moving solitons in the form: Eðt; xÞ ¼ ~Eð~xÞeikpx , Cðt; xÞ
¼ ~Cð~xÞeikpx , where ~x ¼ x� vt and v is the velocity (yet to be determined).

It turns out that v is close, but not equal, to D1, see Fig. 6.2b and (6.6). For the

single QW configuration (l = 1) and negligible saturation effects (ns = / ), ~E
and ~C obey

ð2kp � vÞ@~x
~E� i@2

~x
~Eþ ðg� iDþ ik2pÞ ~E ¼ i ~Cþ Ep;

� v@~x
~Cþ ðg� iDÞ ~Cþ ij ~Cj2 ~C ¼ i ~E: (6.8)

The soliton solutions of the above system were found using a modification of the

Newton method allowing to treat v as an unknown variable (see Fig. 6.7a, d).

The branch of moving dark solitons bifurcates subcritically from the left fold of

the bistability loop. The solitons themselves have oscillating tails at their rear, also

known from other moving cavity solitons [62].

In a 2D setting, the nonzero pump momentum breaks the equivalence between the

x- and y- directions.While along the x-coordinate, one should expect the cross section
of the 2D soliton to be similar to that of 1D solitons described above, along the
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Fig. 6.6 Development of the symmetry-breaking instabilities of the dark CPSsmarked as 5 (row a)

and 6 (row b) in Fig. 6.5b
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y-direction the soliton tails are expected to be symmetric, since the corresponding

projection of the pumpmomentum is zero. Indeed ifwe now look for 1D solitons in the

form Eðt; x; yÞ ¼ ~EðyÞeikpx,Cðt; x; yÞ ¼ ~CðyÞeikpx we find a branch of stable solitons,
see Fig. 6.7b, e. Thus, the shape of the stable 2D solitons, found through the modeling

of (6.1) and (6.2) and shown in Fig. 6.7c, f, can be understood as a hybridization of 1D

dark solitons independently localized in the x- and y-directions.
Overall, the semi-rigorous criterion for stable and moving dark solitons to exist in

the present system is kp � kmag. For larger pump momenta, the effective mass

becomes negative, so that the repulsive polariton–polariton interaction favors the

stability of bright solitons, which we are going to describe in the succeeding chapters.

6.5 Bright Polariton Solitons

The effective polariton mass and the second-order dispersion coefficient D2 change

their signs from the positive to the negative one at kp > kmag. For kp equal and close
to kmag, the third-order dispersion expressed by the coefficient D3, see (6.6) and

Fig. 6.2b, becomes the leading linear effect influencing polariton dynamics. As we

increase kp further, the value of D3 drops and the polariton dispersion is determined

by the competition of the D2 and D4 terms. Both D2 < 0 and D4 > 0 favor the
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existence of bright solitons for a repulsive nonlinearity. In this regime, D1 6¼0 and,

hence, any solitons found here are expected to move.

Moving bright solitons have been calculated by using (6.8). Plots illustrating the

dependence of the maximal soliton amplitude on the pump field and the associated

bistability curves for the homogeneous (∂x, y = 0) solutions are shown in Fig. 6.8a, c.

Figure 6.8b, d show typical transverse profiles of these bright solitons. They emerge

for kp slightly below kmag and the intervals of their stability expand with increasing kp.
Note that (6.6) with the third-order dispersion term D3 supports both bright and dark

localized solutions irrespectively of the sign of nonlinearity [62]. Similarly, the bright

and dark polariton solitons can coexist provided that kp is close to kmag.

The maximum of the soliton velocity v occurs at k = kmag, and decreases rapidly

with increasing kp, see Fig. 6.8e. This is in remarkable contrast to what happens if

dispersion is parabolic, where the soliton velocity continuously increases with kp.
For our choice of parameters v must be multiplied by ’ 4 
106 m/s to give the

physical velocity. It implies that a soliton with v = 0. 25 will traverse across a

typical distance of � 100mm in � 100 ps. This is 40 times larger than the polariton

lifetime. Hence, the solitons have enough time to be excited, formed, and experi-

mentally observed.
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To characterize the influence of the different dispersion orders on solitons, we

display the soliton width vs the momentum kp, see Fig. 6.8f. Changing kp we have
kept constant the detuning of the polariton frequency from the pump frequency, d,
fixed at d = 0. 3, by adjusting the detuning of the pump field from the cavity

resonance, D, which explicitly enters into the full model. For large kp the excitonic
part dominates over the photonic component, see Fig. 6.8. That is why the polariton

solitons can be much narrower than the pure photonic cavity solitons in the weak

coupling regime and may attain widths well below the ones allowed by the photonic

dispersion. The soliton width is expected to scale with the dominant dispersion

coefficients as � ffiffiffiffiffiffiffi
Dm

m
p

(m = 2, 3, 4). Figure 6.8f compares the numerically found

soliton width (diamonds) with the scaling given by the different dispersion orders

(dashed lines). Third-order dispersion describes well the soliton width for relatively

small kp where D2 ’ 0. A further inclination brings D2 on the top, while the third-

order dispersion vanishes. A further increase of kp brings fourth-order dispersion
into the play, which starts to compete with D2.

In order to use polariton solitons as information bits, it is desirable to have them

robustly localized in both transverse dimensions. The generalization of the 1D

solutions toward the 2D case is not straightforward because the effective mass of

polaritons has different signs along x and along y, with the latter being perpendicu-

lar to the pump momentum.

To find 2D bright solitons, we have taken the 1D soliton and extended it to infinity

along the y- direction, see Fig. 6.9a, b. Then wemultiplied this solitonic stripe with a

broad, but finite top hat function in y-direction, and initialized (6.1) and (6.2) with

this profile. The stripe edges start moving with velocity V f along y forming moving

fronts, Fig. 6.9d, where Vf 6¼ 0 does not result in the motion of the soliton center of

mass (since two edges move in opposite directions), while v 6¼0 does. The front in

Fig. 6.9d is analogous to the fronts connecting the upper and lower branches of the

bistable HS [4]. For these fronts there exists the well-knownMP, e.g., a special value

of the pump, Ep = EMP, such that the front rests [4]. For Ep > EMP the upper state is

invading the lower one, and it is vice versa for Ep < EMP, see Fig. 6.9c. The fronts

observed in the present work, however, connect the 1D soliton to the lower branch of

the HS; hence, their MP is different and shifts away, EMP1 6¼EMP. Multihump 1D

polariton solitons also exist [55] and can be connected by a front, see Fig. 6.9e.

The MP in this case is again different, see Fig. 6.9c.

We have also performed a similar set of simulationswithmoving fronts designed to

match practical experiments. In order to achieve this we have added the term

E0(x, y, t)e
ik
0x � io0t representing a pulse, seeding a localized excitation to the

equation for E. Using an elliptically shaped Gaussian beam elongated along

the y-axis and having a 5ps duration, we have observed that the soliton profiles

along x are easily generated, while their edges in the y-direction are either converging,
so that the beam is shrinking (Ep < EMP1), or diverging (Ep > EMP1), so that the beam

is expanding, see Fig. 6.10a, b. Remarkably, in a narrow window of the pump

amplitudes left from the MP the shrinking in y-direction is suppressed, so that the

emerging structures remain localized in both spatial coordinates over long propagation

distances. Performing tedious numerical simulation of (6.1) and (6.2) over the time
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spans exceeding 2. 5 ns, we have found that the 2D solitons with one and two humps

represent stable attractors for a generic class of initial conditionswithin a finite interval

of pump intensities, see Fig. 6.10c. The seed momenta applied in our simulation were

k0 = 0 (seed orthogonal to the cavity plane) and k0 = kp (seed is collinear with the

pump). Both choices have led to the excitation of 2DCPSs, albeit for different powers.

The k0 = kp case appeared to be more efficient. The branches of the single- and

double-hump stable 2D bright solitons terminate at the respective MPs, see

Fig. 6.11. Thus, perhaps surprisingly, stable 2D polariton solitons may exist even if

the polariton mass along the orthogonal directions has opposite signs.

While the MP argument has been useful in finding 2D solitons, it relates to a

specific value ofEp and cannot explain completelywhy solitons do exist within a finite

interval of Ep. Other physical mechanisms are likely to be involved in the soliton

formation. It was proposed in our recent paper [56] that parametric four-wave mixing

of polaritons plays an important role for the localization of polaritons in the direction

transverse to the pumpmomentum (y). The peculiar shape of the LP dispersion allows
for phase matching of the pump, signal, and idler waves giving rise to strong

parametric generation effects [19, 38, 39, 44]. In nonlinear optics it is well appreciated

that the nonlinear phase shift resulting from parametric wave mixing is not simply

proportional to the polariton density of pump, but involves phases and intensities of all

the participating waves, thereby modifying the soliton existence conditions. This

problem is currently considered by us and will be reported elsewhere.
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Fig. 6.9 (a) Bistability loop of the homogeneous solution (HS). The dashed line corresponds to
the unstable HS. The dotted linemarks the maximum intensity of the 1D CPSs localized along x, as
shown in (b). (b) Soliton stripe moving in x-direction with velocity v = 0. 56. (c) Velocities V f of

the single- (solid line) and double- (dashed line) hump fronts. V f = 0 at the Maxwell points MP1
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ground. Parameters: Ep = 0. 139, D ¼ �0:25, kp = 1. 2, g = 0. 1
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Fig. 6.10 (a) Shrinking of the initially localized excitation observed for Ep = 0. 136. (b) Spread-

ing of the initial excitation observed for Ep = 0. 141. (c) Long-term dynamics showing the

dynamical robustness and confirming the attractor properties of 2D CPSs, Ep = 0. 1378. Other

parameters as in Fig. 6.9
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Fig. 6.11 (a) Maxima of E for different soliton solutions vs the pump Ep. CPS1 and CPS2

correspond to single- and double-hump solitons, respectively. Profiles of the photonic components

of the single- (a) and two-hump (b) 2D stable bright polariton solitons for Ep = 0. 1378 and

Ep = 0. 1373, respectively. Parameters: D ¼ �0:25, kp = 1. 2



6.6 Bright Solitons Near the Upper-Polariton Branch:

Saturation and Finite Exciton Mass Effects

In the previous two sections, discussing properties of the solitons, we have

disregarded the effect of saturation of the exciton–photon coupling coefficient f
(Rabi frequency) with increasing exciton density by setting ns = 1, see (6.1) and

(6.2). Near the LP branch the dynamics of the system is only quantitatively affected,

because it simply enhances the repulsive interaction of the polaritons. However, for

the UP branch, the saturation effect introduces an effective attractive polariton–-

polariton interaction (focusing nonlinearity), which may counterbalance or even

overcome the repulsive one. Indeed decreasing the parameter f ðjCj2Þ, one shifts the
LP branch upward and the UP branch downward, while for ns = 1, an increase of

the exciton density effectively causes a blue shift of both branches. Thus, for upper

branch polaritons accounting for finite values of ns is expected to result in some

qualitative impact on the properties of the homogeneous and solitonic polariton

states. In particular, if the focusing nonlinearity becomes sufficiently strong, then

bright solitons near the UP branch with small and zero velocities can be expected to

exist in both 1D and 2D settings. In this section, we describe these solitons

following our recent work [57].

Changing the detuning parameter D, so that the pump frequency appears in the

vicinity of the UP branch and solving (6.1) and (6.2) with ∂t = 0 in 1D and 2D

cases, we have found bright solitons bifurcating from the left fold of the bistability

loop, Fig. 6.12. The photonic and excitonic components of these solitons have the

bell-like shape. The tails of the structures are nonoscillatory, if the excitonic

dispersion is disregarded, d = 0. However, it turned out that the effect of the finite

exciton mass d is important here, because the tails of the LP branch bend upward for

large k and d 6¼0 and become resonant with the UP branch, see Fig. 6.13a, thereby

opening a channel for energy transfer between the two branches. One of the

manifestations of the d 6¼0 effects is that both homogeneous and soliton solutions

undergo MI for D > 0 against perturbations with large momenta. Physically, this

instability leads to the generation of almost free excitons [57, 63].

To understand the nature of this excitonic instability, we consider in more detail

how this instability appears for the HSs. The photonic field on the right-hand side of

(6.2) serves as an external force driving the coherent excitons. Therefore, the

excitonic component of the stationary HS solution │Cst│ can be expressed as a

function of its photonic part Est (Fig. 6.13b). Both nonlinear terms in the exci-

tonic equation introduce the negative nonlinear shift of the excitonic detuning,

which can be compensated by D > 0. Hence, the dependence of │Cst│ on │Est│ can
become bistable. Assuming ns = 1, the condition of this intrinsic bistability

becomes trivial [58]: D>g
ffiffiffi
3

p
. To derive a simple expression for the growth rate

of the perturbation with large momenta, we have disregarded the coupling between

the excitonic and photonic components and performed a linear stability analysis
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using (6.2) only. Looking for the solution close to the stationary one (Est, Cst) in the

form Cst þ dCelðkÞtþikx, we have:

l� kð Þ ¼ �g� A1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 kð Þ � A3 kð Þ

p
;A1 ¼ 1

2
Cstj j2= nslþ Cstj j2

� �
;
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Fig. 6.12 (a) Branches of stable bright CPSs originating from the upper-polariton branch in both

1D and 2D configurations. (b) 2D profile of bright CPS. Parameters: l = 16, g = 0. 1, D = 3. 7,

ns = 0. 75
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A2 kð Þ ¼ A2
1g

2 þ A2
1 D� dk2 � 3 Cstj j2l�1 � 2ns

� �2

;

A3 kð Þ ¼ 2þ A1ð Þ Cstj j2l�1 � D� dk2
� �

1þ A1ð Þ
� �2

: (6.9)

The stationary solution (Est, Cst) becomes modulationally unstable (Rel
(k) > 0) provided that its amplitude belongs to the intervals │CBP1│<│Cst│<│CBP2│
and │CBP3│<│Cst│ where BP1, BP2, BP3 denote bifurcation points in Fig. 6.13b.

It follows from (6.10) that the period of the unstable perturbations scales as k�1

� d1=2. Thus, for d�10�4 the period is much less than the soliton width. Therefore,

our analysis is valid not only for the HS but also for the soliton solutions.

The equation for the photonic component (6.1) practically does not contribute to

this instability mechanism, since the momentum of unstable excitons is very large

preventing them from efficiently coupling to photons.

The growth of this perturbation on the soliton background develops into a stable

pattern forming a soliton with a sub-wavelength spatial modulation of the excitonic

component, see Fig. 6.14. The formation of the periodic sub-wavelength pattern

does not conflict with the parabolic dispersion approximation used for photons, since

only the excitonic component of CPS is modulated (Fig. 6.14c). The branch of

spatially modulated solitons bifurcates from smooth solitons at the point (BP1)

where the MI sets in (Fig. 6.14a, b). Modulated solitons are essentially the bound

states of polariton solitons and free excitons. Equations (6.1) and (6.2) neglect

phonon effects and the relaxation of excitons with large momenta (k) toward the

ground state [63]. We anticipate that these relaxation mechanisms can further

stabilize the solitons due to the shortening of the exciton lifetime responsible for MI.

In many aspects the 2D case is not only similar to the above-discussed 1D case,

but also exhibits some important distinct features. In particular, unlike in the 1D

a b c

Fig. 6.14 (a, b) Branches of both uniform (CPS) and modulated (MCPS) one-dimensional cavity

polariton solitons for nonzero exciton dispersion (finite mass) d = 0. 001. HS depicts the homo-

geneous solution, and BP1 is a bifurcation point for MCPS. (c) Amplitude profiles of MCPSs.

Parameters: l = 16, g = 0. 1, D = 3. 7, ns = 0. 75
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case, the excitonic component of the 2D solitons is not modulated across the entire

soliton profile. In particular, the area of the 2D solitons near their centers can stay

free of spatial modulation, see Fig. 6.15a. This is because 2D solitons have larger

amplitudes, so that the maxima of their excitonic component reach the window of

stability, │CBP2│<│Cst│<│CBP3, see Fig. 6.13b, c.

Increasing the pump amplitude further, the modulated solitons undergo second-

ary instabilities. This instability induces the exponential growth of a periodic

pattern at the soliton center (Fig. 6.15b). However, the soliton does not get

destroyed, but experiences a high-amplitude periodic oscillation. This scenario is

reminiscent soliton explosions in the Ginzburg–Landau model [3] and the

excitability mediated by the localized structures in a nonlinear optical cavity

operating in the weak coupling regime [64]. Direct numerical simulations show

that bright soliton solutions of (6.1) and (6.2) can exist for large values of d, which
can even be in the order of 1. If d > dcr (for our set of parameters dcr � 0. 003),

then the solitons do not experience MI. The diagram summarizing the existence of

the stationary and oscillatory 2D solitons is shown in Fig. 6.15c.

6.7 Summary

We have reviewed the properties of bright and dark polariton solitons having zero

and nonzero transverse momenta and existing in the spectral proximity of either the

lower or the upper-polariton branch. In particular, we have shown the existence of

2D bright solitons for the case when the effective polariton masses along orthogonal

directions have opposite signs. We demonstrated that accounting for the finite

exciton mass and the saturation of the exciton–photon coupling is crucially

Fig. 6.15 (a) The modulus of the excitonic components of two-dimensional MCPSs for

d = 0. 001 and Ep = 0. 35.(b) Dynamics of two-dimensional oscillating CPSs for the parameters

Ep ¼ 0:37; d ¼ 0:001. (c) The amplitude branches of unstable two-dimensional CPSs, modulated

CPSs (triangles) and oscillating CPSs (open circles) for a finite exciton mass d = 0. 001. The thick
dot in (c) depicts the point where the modulation starts to develop at the center of the

2D-modulated CPS (bifurcation BP3 in the Fig. 6.13b). Other parameters as in Fig. 6.14
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important for the formation and the properties of solitons originating from the

upper-polariton branch. Microcavity polariton solitons described in this contribu-

tion exhibit picosecond excitation times and can be observed for pump powers a

few orders of magnitude lower than those required for pure photonic solitons in the

weak coupling regime of the semiconductor microcavities. Thus, the hybrid, half-

light, half-matter, polariton solitons have potentially significant advantages in all-

optical signal processing applications over the light-only cavity solitons.
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Chapter 7

Observation of “True” Optical

Vortices in a Laser System

S. Barland, E. Caboche, P. Genevet, X. Hachair, M. Giudici,

F. Pedaci, and J.R. Tredicce

7.1 Introduction

Nonlinear dynamics in optics developed mainly during the 1980s in the last century.

Probably the interest in the subject begun in 1975 when Haken [1] demonstrated that

Maxwell–Bloch equations in the single mode approximation were isomorphous to the

Lorenz model equations [2]. Thus, a laser would show deterministic chaos for

appropriate values of the control parameters. Unfortunately, almost no laser is able

to operate at those parameter values because pumping and loss rate for the field were

too high in order to reach Lorenz instabilities. It was only in 1982 that chaotic

operation of a laser was experimentally demonstrated [3]. Since then, a series of

papers have appeared in the literature dedicated to the unpredictable dynamical

behavior in optical systems [4], and particularly in lasers and lasers systems [5].

Furthermore, a new classification of lasers was made based on their dynamical

behavior instead of the characteristics of the material, or the type of pumping

mechanism [6, 7]. At that time, almost all of the work was dedicated to the temporal

behavior of lasers ignoring the spatial coordinates. Only a few papers considered the

temporal instabilities in multimode lasers, which is equivalent to considering

the spatial variation of the amplitude of the field along the direction of propagation

of the light [8–10]. All this activity confirms the important role that lasers, or in amore

general view, optical systems, play on the experimental studies in nonlinear dynamics.

They are an excellent test-bench for more general theories because instabilities occur

at frequency ranges enough fast to allow a fine and constant control of parameter

values as well as an easy way to explore all the interesting control parameter space in

reasonable times. They also had the advantage that there exist reliable models based

on basic principles that are able to reproduce most of the experimental results.
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The interest on spatiotemporal instabilities in lasers grew by the end of the

1980s. It was again some theoretical papers at the origin of developing the activity

on transverse instabilities in lasers. Though the appearance of spatial structures in

the intensity distribution had been very well known since the 1960s, the interpreta-

tion of the observed patterns was mainly done on the basis of a linear theory based

on the empty cavity modes [11–15]. Modulation instabilities (also called Turing

instabilities) [16, 17], cooperative frequency locking among transverse modes [18],

and optical vortices [19] appear as possible observable dynamical behavior in broad

area lasers. Pattern formation and cooperative frequency locking were soon

observed in different experimental setups [20–23], but it was difficult instead to

reach the conditions for which “true” optical vortices would spontaneously appear

in the transverse intensity distribution. However, several papers appear claiming the

observation of optical vortices [24, 25].

Here, we call “true” optical vortices those points in space where the local

solution takes the value corresponding to an unstable fixed point, but it is free

to move in the transverse plane. In lasers above threshold, the unstable fixed

point corresponds to the zero solution of the electromagnetic field. It is well

known that all transverse modes (except the fundamental or Gaussian one) of

an optical cavity have at least one point where the electromagnetic field vanishes

and the circulation of the phase around such point is 2p. These are also properties

of “true” optical vortices. However, these points would not be able to have an

intrinsic dynamics and move around because they belong to a fixed structure, like

the nodes of a standing wave. In order to reach the second condition it is necessary

that the correlation length of the structure in the transverse plane be much smaller

than the spatial size of the system and of course of the boundary conditions.

If the laser is able to construct such solution, then we can say that probably we

can observe spatiotemporal chaos or even fully developed optical turbulence.

Unfortunately, most lasers prefer to show simple or more or less complex structures

but always imposing long-range correlations [26] because different spatial

structures covering the whole space are strongly competitive among them [27].

One cavity mode tends to win, due in general to its higher gain, and the winning-

takes-all dynamics destroy the possibility of creating a complex intensity distribu-

tion with a small correlation length. In conclusion, observing experimentally “true”

optical vortices in laser systems is a kind of nightmare requiring a high Fresnel

number, a strong nonlinearity, and almost equal probability for a high number

of transverse modes. Furthermore, the observation of any type of localized struc-

ture, a structure that exist in a spatial region decorrelated from the boundaries and

other region of space, requires a bistable behavior between a homogeneous state

and a pattern [28].

In this chapter, we describe a laser system complying with the necessary

conditions to observe optical vortices. In Sect. 7.2, we describe the experimental

setup. The experimental results and their analysis are “explored” in Sect. 7.3.
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7.2 Experimental Setup

The experimental setup shown in Fig. 7.1 is based on two nominally identical

vertical cavity surface emitter lasers (VCSELs) put into a face-to-face configuration

[30]. The distance between the two VCSELs can be varied between 6 and 60 cm.

The diameter of each VCSEL is 200 mm. They are electrically pumped by a

stabilized power supply and stabilized in temperature by a Peltier. Two identical

lenses are placed between the two lasers in self-conjugate planes such that the near-

field distribution of each VCSEL is imaged into the other. This scheme insures that

we can maintain a high Fresnel number despite the relatively long length of the

composed cavity [29, 30]. A 20% beam splitter placed almost exactly in the middle

gives rise to two output beams. One of them is sent to a fast detector in order to

observe temporal oscillations if present and two CCD cameras give the near-field

profiles of the two beams. To insure that the position of the lenses is such that the

self-imaging condition is obtained, we superpose the emission of each VCSEL

separately with its reflection from the mirror of the other.

The two VCSELs provided by ULM photonics operate at a wavelength of

980 nm; thus, they are bottom emitter devices [31]. This feature plays an important

role in allowing a relatively uniform pumping current density over almost the whole

transverse section of the laser. In fact, one of the electrodes is covering the full

Fig. 7.1 Schematic of the experiment. L1 laser pumped above threshold, L2 laser pumped below

transparency, IL incoherent writing laser, bs beam splitter, D high-bandwidth detector, CCD
charge coupled device camera, T� temperature controller, C power supply, L/2 half-wave plate,

G grating, AOM acoustooptic modulator, S.F. spatial filter, I iris (reprinted from [29])
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surface and the other is a metallic ring through which the electromagnetic beam is

coming out. Usually, the ring electrode would generate a greater current density on

the border than at the center of the active material. This inhomogeneity is not

important in small area devices but would generate strong gradients in broad area’s

ones. The presence of gradients would affect any spatial structure that is not fixed

by the boundary conditions and, if such structures exist, they will disappear so fast

that it would be impossible to observe them with the state-of-the-art CCD cameras.

The nominal threshold current for the VCSELs we used is 400 mA. One of the two

lasers is pumped above threshold, while the current density on the other one is low

enough to not reach the transparency condition. Thus, the second laser will behave

as an absorber rather than an amplifier or an emitter. In other words, our optical

system can be described as a laser with saturable absorber in a compound cavity.

However, to get interesting dynamical behavior in a laser with saturable absorber, it

is necessary that the resonances of both active and passive media be close enough.

In VCSELs, and in semiconductors in general, the resonance frequency is a

function of the temperature and therefore also a function of the pumping current

due to Joule effect. In our experimental setup, the mismatch between the cavity

resonances is then controlled by the difference in the operating temperature of each

substrate. The strength of the coupling between the two VCSELs depends also on

the loss rate of the electromagnetic field which, in turn, depends on the reflectivity

of the intracavity beam splitter. A 20% reflectivity beam splitter allowed a good

coupling and at the same time enough output intensity to be detected easily by the

detection system. A diaphragm in the path of one of the output beams is used in

order to detect the temporal behavior of the intensity at a point of the pattern with

the fast detector. The bandwidth was limited at 6 GHz by the LeCroy Wavemaster

8600A oscilloscope. Furthermore, an external beam 15 mm in diameter provided by

an edge emitter semiconductor laser can be used to ignite localized structures in the

system. This so-called “writing beam” is controlled both in frequency and ampli-

tude. Its frequency is selected by an intracavity grating while its intensity can be

switched on and off by an acoustooptic modulator inserted on its optical path.

7.3 Experimental Results

As we describe in Sect. 7.2, the main control parameter of the device is the detuning

between the resonances frequencies of the two VCSELs. Such difference in fre-

quency depends on the temperature of the substrate and the pumping current.

We choose to keep both the temperatures constant and change the pumping currents

in order to study the behavior of the system as the detuning changes. In Fig. 7.2 we

show the local intensity output as a function of the current (I1) of the emitter while

keeping constant the current (I2) of the absorber. By sweeping I1 back and forth,

we can observe different behavior in different regions of parameter space:

1. Region A of Fig. 7.2 corresponds to an increase in intensity of the spontaneous

emission.
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2. Region B, coherent emission is obtained but the two VCSELs do not interact

because the detuning is big enough such that the absorber is almost transparent to

the radiation emitted.

3. Region C, the detuning becomes small enough and the absorber begins to

interact with the emitter. The output intensity decreases, and then the absorber

saturates and there is a discontinuous increase of the intensity. Sweeping back

the control parameter, we observe a region of bistability. It is in this region

where localized structures may appear.

4. Region D, a modulational instability develops inducing the appearance of

patterns.

As a matter of fact, the appearance of bright localized structures was reported in

this system and also in an usual laser with saturable absorber [29, 30, 32, 33]. Such

single peak localized structures are usually called “cavity solitons” (CS). Left panel

in Fig. 7.2 shows typical intensity distributions including the presence of CS for

those taken in region C (left panel c and d).

Usually, CS have been observed in VCSEL amplifiers and VCSEL laser with

injected signal [34–37]. If the diameter of the VCSEL is larger than 100 mm, two or

more CS do not interact among them if they are separated by a distance of the order

of 20–25 mm. Furthermore, they can be switched on and off independently by a

coherent or an incoherent beam [36, 37] at relatively high rate because the

switching time is of the order of 50 ps [38]. Thus, CS may constitute the basis for

Fig. 7.2 Left: Local intensity output emitted by the system as a function of I1 keeping all other

parameters constant. (A) System below threshold, (B) lasing action takes place, (C) absorption by

L2, yielding bi-stable behavior, (D) pattern formation. Right: Near field of both devices. Dark
areas correspond to high intensities. (a and b) Near-field image of L1 (L2), before the interaction

(IL1 ¼ 180 mA), (c and d) near field of L1 (L2), in the absorption zone (IL1 ¼ 358 mA), (e and f )

near field of L1 (L2), when the pattern is developed (IL1 ¼ 365 mA). L2 is slightly shifted on the

left (reprinted from [30])
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a fast all optical memory [34–38]. On the other hand, CS are very sensitive to

gradients, both intensity and phase ones, then their position, motion and speed can

be controlled by artificially adding gradients to the system [39–41]. This property of

CS, which is a general property of localized structures in nonlinear dynamical

systems, opens the way to some interesting applications like an all optical shift

register or a force microscope [42–45].

A broad area laser with saturable absorber or face-to-face VCSELs do not

require an external injected signal and therefore it is a simpler device easy to

miniaturize. Such optical systems belong to the class of the so-called CS Lasers

(CSL). Another example of CSL is a broad area laser with frequency selective

feedback [46]. The main physical difference imposed by the presence of an external

field is that the phase symmetry is broken. The phase is coupled to the intensity, and

if there are not temporal instabilities, the phase of the output field is determined by

the injected field. It is worthwhile to notice that all localized structures, for which it

was proven that the correlation length in the transverse plane was much smaller

than the size of the system, are a single intensity peak structure when the phase

symmetry is broken.

Instead for a CSL, like the two face-two-face VCSEL, the system is phase

symmetric. In principle, localized structures may appear for the same parameter

values with different phases, and even frequencies being incoherent among them as

it was shown in [47]. Furthermore, single peak structures may coexist with other

multipeak localized structures. In Fig. 7.3 it is shown not only that different

Fig. 7.3 Interferometric intensity signal of an LS as a function of I1. The interferometric intensity

signal is obtained by integrating the phase profile of the monitored LS. The dashed blue traces
correspond to decreasing values of I1, while continuous red traces correspond to increasing values
of I1. Variation of the interferometric intensity signal corresponds to a mode hopping of the LS.

The figure shows the multistability of the CS emission frequency. The phase profiles

corresponding to each branch of the hysteresis loop are shown in the insets. The spatial region

monitored is centered on the LS considered and has a diameter of 10 mm. Bright zones represent
high intensities (reprinted from [47])
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localized structures appear but also that there is a marked multistability among

them [48]. Each type of structure is distinguished by both the intensity distribution

and its operating frequency as transverse modes in a laser.

In a well-defined region of parameter values, three types of structures are

observed which coexist with the homogeneous zero solution. In Fig. 7.4, bifurcation

diagram shows the multistability among the homogeneous, a single (CS), a two

peak, and a ring structures [49]. By increasing the current I1 from 290 mA, we

begin with the homogeneous solution. This solution loses stability at around

297.5 mA and a two peak structure appears which loses stability at 298.2 mA

jumping to the upper branch characterized by a ring-like intensity distribution.

Sweeping back I1, we reach the two peak branch at 297.3 mA which remains stable

till 296 mA. Then, a single peak structure appears. Increasing the current again, the

single peak structure remains stable until 297.2 mA.

Thus, the ring-like structure is bistable with the homogeneous solution and the

two humps structure but we cannot reach its branch from the single peak structure.

This type of bifurcation diagram for localized structures has been already discussed

in the literature [28, 50, 51]. In Fig. 7.5, we can see how such rings can be generated

in different spatial locations [49]. Adding a Mach–Zender interferometer at the

output path of the device, it is possible to observe the interference of each localized

structure with itself or with adjacent ones. A detailed explanation of how the

interference patterns are obtained is found in [37].

The result of the interference of a ring with itself when both arms of the

Mach–Zender interferometer are perfectly aligned is shown in the right panel of

Fig. 7.6. The reference beam for the interference is taken from the region of the

pattern where the ring is located. Interference appears only where there is mutual

Fig. 7.4 Bifurcation diagram showing the spontaneous switching of the system between different

solutions. The ring can coexist with an “off” state and/or with a two-humps state (reprinted from [49])
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coherence between the reference beam and the spatial region with which it

overlaps. A remarkable feature is that the interference pattern appears only where

the ring structure itself is, demonstrating that this structure is de-correlated from the

rest of the pattern. In particular, the neighboring structure does not interfere at all

with the reference beam. This absence of mutual coherence between the fields

emitted in distinct spatial areas shows the lack or extreme weakness of any coherent

coupling between these two areas.

Fig. 7.5 Left: Experimental setup. Two broad area semiconductor lasers (L1 and L2) are coupled

by imaging them onto each other via collimating optics (Coll) and lenses (L). Part of the emitted

beam is extracted from the compound cavity via a beam splitter (BS) for near-field (NF) detection

allowing interferometric measurements and spatial filtering (I). A tiny beam from a tunable laser

can be used to apply a local perturbation to the system (WB). Right: Spontaneously formed

intensity rings in the near field. The two devices (200 m diameter) are laterally shifted with respect

to each other. In the spatial region where they overlap, the absorption can locally saturate and lead

to the formation of several bright bistable rings (reprinted from [49])

Fig. 7.6 Left panel: Near-field intensity of the system, showing two bright spatial structures sitting

on the dark homogeneous background corresponding to non saturated absorption. Right: Interfero-
metric measurement. When both arms of the interferometer are aligned (a small part of the ring

structure being superimposed with the whole ring structure and surrounding region), the phase profile

of the ring structure is indicated by spiral-like interference pattern (reprinted from [49])
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The other striking feature is the presence of a phase discontinuity originating in

the center of the ring, which contains, therefore, a phase defect revealed by the

typical spiral of the phase.

While the chirality of the phase profile of the ring structure is readily apparent in

Fig. 7.6, it can also be conveniently detected by performing an identical measure-

ment, but tilting the two beams with respect to each other. In this case, interference

fringes are detected, as shown in Fig. 7.7. The presence of a dislocation in the

pattern (Fig. 7.7b, c) reveals the existence of a phase defect at the core of the ring

since the circulation of the phase around the center is 2p. Even though the chirality
of the ring structure appears to be very robust, we occasionally observed spontane-

ous switching between the two chirality states shown in Fig. 7.7b, c. This switching

can be attributed to exchange of charge with the surrounding zero solution (as was

observed at the boundaries of the system in [39]).

Thus, the observed ring structures in this face-to-face VCSELs device have the

following properties: (1) there is a zero of the electromagnetic field at the core of the

structure; (2) there is a circulation of the phase around the core equal to 2p; and (3)
there is no correlation among this structure and other regions of the pattern.

Furthermore, these ring structures can be switched on and off independently at

different locations and they move under the presence of any intensity of phase

gradient.

In other words, we are in the presence of what we defined as a “TRUE OPTICAL

VORTEX” at the beginning of this manuscript. It is worthwhile to note that this

phenomenon is strongly related to the absence of any phase reference in this system.

In the majority of experiments regarding localized structures in optics which involve

some form of coherent energy input, the phase symmetry is broken and ring

structures are forbidden. In fact, a system with injected field will fix the phase of

the whole localized structures not allowing for not vanishing circulation of the

phase. On the other hand, it is important to also note that the intensity vanishes for

the homogeneous solution from which we can construct the ring-like structure.

Fig. 7.7 (a) Near-field intensity of a localized vortex. When a part of it is magnified and interferes

with the whole vortex, fringes appear if both beams are tilted with respect to each other. Their

orientation and periodicity is set by the tilt angle. (b and c) The dislocation of the fringe pattern

indicates the presence of a phase defect and the direction of the dislocation gives the sign of the

charge (reprinted from [49])
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This property of the homogeneous solution is also an important feature because (1)

it will not allow the generation and propagation of phase waves [52] which would

not allow the generation of localized structures and (2) it provides the source of

pairs of defects from which the system construct the ring structure with just one

defect at the core.

We thank L. Gil and G. Tissoni for a very helpful discussion.

References

1. H. Haken, Phys. Lett. 53A, 77 (1975)

2. E.N. Lorenz, J. Atmos. Sci. 20, 130 (1963)

3. F.T. Arecchi, R. Meucci, G.P. Puccioni, J.R. Tredicce, Phys. Rev. Lett. 49, 1217 (1982)

4. F.T. Arecchi, N.B. Abraham, L. Lugiato (eds.), Instabilities and Chaos in Quantum Optics,
vol. II (Plenum, New York, NY, 1988)

5. N.B. Abraham, P. Mandel and L.M. Narducci, Dynamical Instabilities and Pulsations in
Lasers, Progress in Optics, 25, pp. 1–190 (1988)

6. F. Arecchi, G. Lippi, G. Puccioni, J. Tredicce, Opt. Commun. 51, 308 (1984)

7. J.R. Tredicce, F.T. Arecchi, G.L. Lippi, G.P. Puccioni, J. Opt. Soc. Am. B 2, 173–183 (1985)

8. N.J. Halas, S.N. Liu, N.B. Abraham, Phys. Rev. A 28, 2915 (1983)

9. L.W. Casperson, Phys. Rev. A 21, 911 (1980)

10. L.W. Casperson, Phys. Rev. A 23, 248 (1981)

11. H. Kogelnik, T. Li, Appl. Opt. 5, 1550 (1966). See, for example

12. H. Kogelnik, in Lasers: A Series of Advances, ed. by A.K. Levine, vol. 1 (Marcel, New York,

NY, 1966), p. 295

13. A. Yariv, Optical Electronics, 3rd edn. (Holt, Rinehart and Winston, New York, NY, 1985)

14. A.E. Siegman, Lasers (University Science Books, Mill Valley, CA, 1986)

15. O. Svelto, Principles of Lasers (Plenum, New York, NY, 1982). Chapter 4

16. A.M. Turing, Phil. Trans. R. Soc. London, Ser. B 237, 36 (1952)

17. L.A. Lugiato, R. Lefever, Phys. Rev. Lett. 58, 2209 (1987)

18. L.A. Lugiato, G.-L. Oppo, M.A. Pernigo, J.R. Tredicce, L.M. Narducci, D.K. Bandy, Opt.

Commun. 68, 63 (1988)

19. P. Coullet, L. Gil, F. Rocca, Opt. Commun. 73, 403 (1989)

20. Z. Chen, N.B. Abraham, S. Balle, E.J. D’Angelo, J.R. Tredicce, Chaos Solitons Fractals

4, 1489 (1994)

21. C. Green, G.B. Mindlin, E.J. D’Angelo, H.G. Solari, J.R. Tredicce, Phys. Rev. Lett. 65, 3124

(1990)
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Chapter 8

Scale-Free optics

E. DelRe and C. Conti

8.1 Introduction

The most fascinating images and patterns emerge when light diffracts from minute

structures [1]. Even the image of an otherwise featureless hole produces enthralling

ripples that spread out to invest space and form what is known as an Airy pattern.

It is a basic fact that diffraction becomes dominant when the size of the feature

becomes micrometric, and the transmitted wave has an angular spread Dy that

depends on the size of the aperture dmeasured in units of the optical wavelength l,
i.e., Dy ’ l / d. From a practical perspective, diffraction represents a major obsta-

cle to imaging of finer details, and a great research effort is continuously exerted to

overcome it. In fact, diffraction spreads the optical wave and blurs the spatial

information encoded in the optical beam. Consider an image composed of separate

pixels of characteristic size d and spacing l. Light emitted from the single pixels will

blur after a propagation of Lz � ld/l, i.e., when light from one pixel superimposes

with light from an adjacent one. The result is a progressive loss of the initial

encoded information. Diffraction entails limitations to all imaging applications

that range from astronomical observations to high-resolution optical microscopy.

Efforts aimed at taming the effects of diffraction on waves can be loosely fitted

under the general heading of diffraction compensation. The basic idea is to have

transmitted light not propagate in a homogeneous medium, where diffraction

must intrinsically produce spreading, but in an inhomogeneous medium, in

which the index of refraction n is spatially resolved. For example, in an optical

waveguide, diffraction is compensated by an effective lensing effect distributed

along the propagation direction of light [2]. The problem is that exact diffraction
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compensation will take place only for specific waveforms, the guided modes, with

specific shapes and sizes that depend on the features of the waveguide, precisely on

the amplitude of the index of refraction modulation Dn and on the spatial scale d
measured, once again, in units of l [3]. The modes only form a discrete set of

guided solutions that, hence, fail to allow the propagation of an image of arbitrary

size. Even encoding the optical waveform in an extended family of modes in a

multimode fiber simply transfers the distortive mechanism from the standard phase

slippage of angled plane-wave components at the heart of diffraction to inter-modal

phase slippage typical of mode dispersion.

Diffraction compensation can also be enacted through nonlinearity, the basic

example being the optical spatial soliton [4–17]. In this case, the index of refraction

inhomogeneity Dn that gives rise to distributed lensing, termed self-lensing, is pro-

duced by the propagating light beam itself. As for the case of guided modes, here the

soliton waveforms are determined by the peak intensity Ip and size of the beam w0

measured in units of the optical wavelength l, giving rise to soliton existence

conditions that amount to strict laws that form rigid constraints on the waves that

can actually propagate without spreading.

The matter can be summarized in the basic observation that since diffraction is

dependent on the size of the wave measured in units of l, also its compensation will

make use of effects that depend on the spatial scales measured in units of l. Put
differently, diffraction introduces an intrinsic spatial scale into the picture, the optical

wavelength, that breaks scale-invariance symmetry and thwarts efforts at transmitting

high-resolution images. For visible beams with l � 0.5 mm, this implies that the

direct observation of features below several micrometers is in itself a challenge, to the

point that even the once simple task of observing electronic circuitry has become

impractical with optical microscopes and requires more exacting techniques.

Limits to imaging caused by the wave nature of light become even more

dramatic for subwavelength scales, where the very nature of electro-magnetic

radiation does not allow the propagation of waves [3]. Hence the simple fact that

the optical wave has a limited bandwidth, with a spectrum peaked at l, introduces
an even more fundamental limit associated to the evanescent wave spectrum, so that

no plane wave component of transverse (with respect to the propagation direction)

wave vector │k ⊥│ > 2pn/l will actually propagate from the emitting/transmitting

object. This implies that an imaging system will simply not be able to detect

features below w0 � l/2n. For visible light and imaging done in water solution,

this means that features smaller than approximately 200 nm cannot be detected

even with all diffraction compensating techniques in force.

In recent achievements, a profoundly innovative approach to the entire issue has

been proposed and experimentally demonstrated, termed scale-free optics [18]. In

scale-free optics, the issue of diffraction and evanescent wave formation is

circumvented by using nonlinearity to deprive the optical propagation mechanism

of its spatial scale l. We here describe and review scale-free optics with particular

focus on experiments and theory relative to effects observed in nanodisordered

ferroelectrics [19]. The subject is still in its infancy and rests on nonlinear optical
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effects in complex solids [20], which is itself a new branch of optical research. Results

hold the promise of a new general setting for optics where diffraction can be canceled

and where subwavelength beams can propagate, in crystals whose optical response

can be greatly varied through thermal history [21].

8.2 The Development of the Idea

The basic idea underlying scale-free optics is that when light propagates in a

medium in which nonlinearity introduces an intensity-independent response that

amounts to an anti-diffraction, conditions can be found for which diffraction is

completely canceled. Seen in physical terms, this happens when the nonlinearity

introduces an independent spatial scale L that cancels the optical wavelength scale

in the propagation equation. The result is that there is no spatial scale that breaks

scale-invariance. Accordingly, no diffraction intervenes and, in principle, no

limitations associated to evanescent waves hold, so that also subwavelength

features will propagate into the optical system. The idea was originally formulated

in [22], where a set of optical waves in the form of nondiffracting, spreading, and

converging solutions were predicted that supported scale invariance. In fact, the

governing nonlinear model did not contain the wavelength scale l in the diffractive

propagation. Unfortunately, this prediction remained such because at the time the

required material susceptibility was inaccessible: the nonlinear response was exper-

imentally insufficient for the predicted scale-free regime. In fact, the effect emerged

from the interplay between diffraction and a diffusive effect. This diffusive effect,

at accessible temperatures, amounted to a canceling spatial scale L � l and,

congruently, no scale-free effects were ever observed. It was the recent develop-

ment of a new generation of out-of-equilibrium photorefractive ferroelectric

crystals that profoundly changed the scenario [23]. It was found that relevant

compositional disorder in composite optical quality samples [24] introduces a

glass-forming liquid dielectric response [19]. This allowed the observation of an

anomalously enhanced electro-optic susceptibility with L � l. It was thus possible
to observe scale-free optics in newly engineered Cu-doped lithium-enriched potas-

sium-tantalate-niobate crystals (KTN:Li) [18]. The theoretical framework and

numerical studies were then extended to encompass a full nonparaxial model, and

this has allowed the prediction of subwavelength beam propagation, a striking

phenomenon that still awaits experimental confirmation [25]. Making use of out-

of-equilibrium nanodisordered ferroelectrics supercooled to their ferroelectric

Curie point TC, scale-free optics has opened the way both to programmable optical

effects and to optical response in highly non-ergodic contexts, where the response

of single materials depends strongly on history effects, such as previous thermal

cycles. In a recent set of experiments, this has allowed the observation of the optical

Kovacs effect [26]. Finally, the very notion of scale-free optics suggests an envi-

ronment that supports optical phenomena that are independent the wavelength, i.e.,
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on the color of the beams. This has been recently confirmed by experiments in

KTN:Li, where nonlinear effects occur simultaneously for propagating beams at

two very different wavelengths (“achromatic optics”) [27].

As opposed to diffraction compensation, which is a ubiquitous concept in wave

mechanics and in optics, diffraction cancelation first predicted in [22] demonstrated

in [18] appears as a truly innovative and original solution. An interesting and related

experimental result has also recently been reported in a slow-light apparatus in 2009,

where it was shown that linear conditions can be found in which, on consequence of

strong coupling to diffusing atoms, light can be made to suffer anomalous diffrac-

tion, with some effects in common with paraxial scale-free optical effects [28].

8.3 Scale-Free Optics: A General Picture

In order to grasp the core idea behind scale-free optics, we consider the propagation

of an optical wave in the paraxial scalar approximation. The slowly varying part of

the optical field A (i.e., │A│2 ¼ I is the optical intensity) obeys the paraxial wave

equation

2ik@zAþr2
?Aþ 2k2

n
DnA ¼ 0; (8.1)

where k ¼ ðo=cÞn is the wavenumber, o is the optical angular frequency, n is the

material unperturbed index of refraction, Dn the nonlinear index of refraction

perturbation, z is the propagation direction of the beam and ⊥ � (x, y) are the

two transverse coordinates. The second term in (8.1) ∇⊥
2 A is the paraxial diffrac-

tion operator. In a standard diffraction compensation scheme, this term is balanced

for each z by the third term, where Dn is a scalar point dependent function that is

either fabricated in the material, as in an optical waveguide, or produced by the

wave itself in response to the local light intensity distribution I. In both cases,

diffraction compensation entails a boundary value problem that leads to specific

linear or nonlinear modal solutions (a situation that does not warrant for diffraction

cancelation). We note that the diffraction operator term scales with A/w0
2, where w0

is the characteristic transverse spatial scale of A. The idea behind scale-free optics is
the use of a Dn that instead of being a function in space, such as a Dn(x, y, z), is, like
the diffraction term, itself an operator. If this operator DnA scales itself with A/w0

2 it

amounts to a “diffraction” term that, combined with the original diffraction term,

can lead to diffraction cancelation. For example, if 2ðk2=nÞDnA ¼ �ðL=lÞ2r2
?A,

then the result is what amounts to a profoundly altered linear-like propagation in an

effective homogeneous medium of the type

2ik@zAþ ð1� ðL=lÞ2Þr2
?A ¼ 0: (8.2)
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Evidently, for L ¼ l this implies that diffraction simply ceases to exist. However,

to appreciate the physics involved, in cases in which, for example, L < l (but not

L � l), then the optical propagation can be described by the standard propagation

in a homogeneous material

2ikeff@zAþr2
?A ¼ 0; (8.3)

where keff ¼ neff ð2p=lÞ and neff ¼ n=ð1� ðL=lÞ2Þ. So what we expect is to observe
something analogous to what occurs in metamaterials, i.e., that the optical wave

behaves according to diffractive laws governed by an effective index of refraction.

In our case, of course, this change in index of refraction strongly depends on the spatial

scale L introduced by the nonlinear interaction giving rise to the operational nature of

Dn, and the effect itself is limited to the diffractive properties of the localized beams.

The requirements for scale-free optics and diffraction cancelation can be

summarized by the statement that the diffraction term and the nonlinear term in

(8.1) be proportional. This means (1) that the nonlinear interaction be nonlocal and

introduce a spatial scale L that mimics the optical wavelength scale l as regards to

diffraction and (2) that the nonlinearity be intensity independent, exactly like

diffraction. In principle, these two conditions can be met in a great variety of

materials through various nonlocal responses, such as photothermal,

reorientational, and so forth. In what follows, we will describe how these two

conditions can be met in nanodisordered photorefractive ferroelectric crystals [18].

8.4 Diffusive Photorefraction in Supercooled

Ferroelectric KTN:Li

As described above, scale-free optics can, in principle, occur in a great variety

of materials and through a number of physical processes. Here, we focus on scale-

free optics in nanodisordered ferroelectrics, i.e., on the system in which scale-free

effects have been recently demonstrated [18]. Scale-free optics in KTN:Li requires

photorefraction, a nonlinear optical mechanism that is common in ferroelectrics

with deep in-band donor impurities. However, in distinction to the greater part of

photorefractive optics, the response harnessed here must emerge on consequence

of the thermal motion of the photogenerated charges, as they diffuse in the sample

itself, and not of their drift caused by an external applied electric bias field. In order

for the diffusive response to give rise to diffraction cancelation, the electro-optic

response must be quadratic, as occurs in centrosymmetric crystals or in crystals that

are disordered below the wavelength scale (the case of KTN:Li, where the system is

in fact a glass-forming liquid of polar nanoregions—PNRs). This is in distinction to

common conditions for electro-optic experiments, where the samples are in a poled

ferroelectric state and have a linear electro-optic response. A last, but fundamental

ingredient is that the electro-optic response must be anomalously enhanced, since

the space-charge electric fields produced by charge diffusion are invariably
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miniscule, and the quadratic response is in itself generally weak. To achieve this the

material must be engineered to support an accessible non-ergodic phase that allows

a dielectric anomaly to be optically used, a condition that can be obtained if the

critical phase-transition temperature is reached at TC without having the crystal

undergo an all-out phase transition, which brings with it opacity and scattering [9].

In what follows, we describe these different ingredients and how they combine to

give rise to a system that supports scale-free optics.

8.4.1 Diffusion-Driven Space-Charge Field

The basic process that constitutes the photorefractive nonlinearity is the formation

of a light-induced electric field E, which changes the local index of refraction by

affecting the underlying crystal through the electro-optic effect, which in our case

boils down to the reorientation of large polar nanoregions (PNRs). The electric field

is caused by the diffusion of mobile electrons excited into the conduction band by

the propagating light. This diffusion, which drives electrons from the more

illuminated areas of the crystal, is halted once a sufficiently strong space-charge

field has formed. It is this charge field that ultimately affects the PNR and alters the

sample index of refraction.

The process is described using the band-transport model, which hinges on the

rate equation

@Nþ
d

@t
¼ ðbþ sIÞðNd � Nþ

d Þ � gNNþ
d ; (8.4)

where Nd is the concentration of donor impurities, Nd
+ that of ionized donor

impurities, N the concentration of electrons in the conduction band, b the thermal

ionization constant, s the optical cross-section of the donors, I the optical intensity,
and g is the electron recombination constant. Considering steady-state conditions,

(8.4) leads to

gNNþ
d ¼ ðbþ sIÞðNd � Nþ

d Þ; (8.5)

so that

N ¼ bþ sI

g
ðNd � Nþ

d Þ
Nþ

d

: (8.6)

These charges reach thermal equilibrium and obey the transport law for the current

density J

J ¼ qmNEþ kBTmrN; (8.7)

where q is the electron charge, m is the electron mobility, kB is the Boltzmann

constant, and T is the temperature of the sample. Equation (8.7) expresses the fact
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that the local current density has two separate contributions, the qmNE term, which

is the drift term, and the second term kBTm ∇ N, which is thermal diffusion term. In

turn, the charge density r is

r ¼ qðNþ
d � Na � NÞ; (8.8)

where Na is the concentration of acceptor impurities (normally Na � Nd) that play a

fundamental role in rendering the spatial charge separation efficient and semiper-

manent. Using (8.6) and (8.8) leads to (neglecting the thermal ionization)

N ¼ s

g
I

Nd�Na

Na
� r

Naq

� �
1þ r

Naq

: (8.9)

Using the Gauss law r ¼ ∇� (eE) this leads finally to the expression

N ¼ s

g
I

d� r�ðEEÞ
qNa

� �
1þ r�ðEEÞ

Naq

; (8.10)

where d ¼ ðNd � NaÞ=Na: In standard conditions leading to, for example, photo-

refractive solitons, the spatial scales involved imply that∇� (eE) � 1, so thatN ’ (s/
g)Id. In our present case, however, the situation is noticeably different, since the

sample is in its critical state in proximity of its ferroelectric phase-transition tempera-

ture, so that T ’ TC. In this condition, the sample manifests a dielectric anomaly,

accessible through the PNRs, for which e grows greatly, and we are actually in the

opposite case of∇� (eE) � d (and, hence, also∇� (eE) � 1), so that

N ¼ � s

g
I: (8.11)

The last step is to consider that the crystal is itself not inserted in any form of

circuit so that J ¼ 0 at steady state. From (8.7), this means that

qmNE ¼ �kBTmrN; (8.12)

i.e., that

E ¼ � kBT

q

rN

N
: (8.13)

Using (8.11) in (8.13) we finally conclude that

E ¼ � kBT

q

rI

I
: (8.14)

We note that this expression is based on the assumption that the thermal ionization

of donors (described by b) is negligible. The general expression will have a I + Id at
the denominator of (8.14), where Id ¼ b=s . Whereas it is generally true that Id is

negligibly small compared to any optical intensity normally used in experiments, yet
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this assumption will forcibly break down at the beam tails, where Iwill decay to zero.
In general, Id is some orders of magnitude smaller than peak values of I, so it affects
not truly the beam tails, but the very lateral areas of beams that are indistinguishable

from noise. This is in direct distinction to what happens for space-charge fields that

support photorefractive solitons, where the saturation parameter Id plays such a

fundamental role that it is generally artificially enhanced by using a co-propagating

plane wave superimposed on the soliton beam itself. This said, we should, hence,

consider the validity of (8.14) to extend to all optical intensities above the thermal

noise level, which is the equivalent dark illumination of the band-transportmechanism

in the specific crystal. In the case of KTN:Li, no experimental evidence of Id has been
observed in scale-free optics experiments. However, such studies could in principle be

carried out, simply by artificially enhancing the Id.
The expression of the space-charge field in (8.14) forms one of the first tassels in

the mosaic leading to scale-free optics. In fact, the field is independent of the actual

peak intensity of the beam, which factors out in the ratio. This important fact stems,

in this context, from the fact that the mobile electrons described by N are both the

mechanism driving diffusion, through ∇N, and the mechanism giving rise to

conduction, which is proportional to N and appears at the denominator in the

strength of the electric field formed.

8.4.2 Electro-Optic Response in the Nanodisordered
Dipolar Glass Formed by the PNR

The second tassel in the attainment of scale-free optics in KTN:Li is the quadratic

electro-optic response. It is this response that turns the diffusion-driven electric

field of (8.14) into an operator that approximately achieves the condition for

diffraction cancelation discussed in (8.2).

A ferroelectric is generally characterized by a strong low frequency susceptibil-

ity, which in turn means that a quasi-static electric field E readily generates a

relevant quasi-static crystal polarization P. This polarization, which stems from the

underlying dipolar nature of the crystal lattice structure typical of ferroelectrics,

alters in an anisotropic way the index of refraction of the crystal, an effect that is

known as the electro-optic effect. The most general expression for this effect is

Dnij ¼ � 1

2
n3gijklPkPl; (8.15)

where gijkl is the quadratic electro-optic tensor of the crystal lattice, the indices

represent the three spatial axes (i.e., i ¼ 1, 2, 3 � x, y, z), and summation over

repeated indices is assumed. Dnij is, in general, a matrix that, fixing the relationship

between the high-frequency polarization of the crystal and the optical field, enters

into the optical propagation equations (the Helmholtz equation) and determines the

evolution of the optical field in all its components (i.e., its polarization). In a

paraelectric, the absence of spontaneous polarization leads to the so-called qua-

dratic electro-optic effect, which is none other than the expression in (8.15).
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In a poled ferroelectric phase, the presence of a large spontaneous polarization

makes (8.15) be dominated by linear terms in the external electric field E, giving

rise to what is known as the linear electro-optic effect. In our present case of a

dipolar glass composed of PNRs, we have that each component of the polarization

is caused by the combination of the polarization of the single dipoles and of the

paraelectric region of the crystal in between the regions, both affected by

the optically induced E of (8.14). In general, the response can be described

introducing the effective relative dielectric constant er

Pk ¼ E0ðEr � 1ÞEk ¼ E0wEk; (8.16)

along with the effective susceptibility w. In our case of a supercooled dipolar glass,
the susceptibility will be thus the combination

w ¼ wPNR þ wP; (8.17)

where wPNR is the susceptibility associated with the PNRs and wP that associated

with the paraelectric surroundings. As we will discuss in what follows, we will

operate in conditions in which the dipolar glass is excited and provides an anoma-

lously enhanced susceptibility, so that in our system wPNR � wP. The PNRs are

equivalent to randomly oriented random birefringent crystals, so that the result is

that averaging on a given volume V (larger than the size of the PNR themselves but

smaller than the optical wavelength) (8.15) leads to

Dnij ¼ � 1

2
n3ðgijxxP2

x þ gijyyP
2
yÞ: (8.18)

which entails, on the basis of simple symmetry considerations, that

Dnxx ¼ � n3

2
g11P

2
x þ g12P

2
y

� �
; (8.19)

and

Dnyy ¼ � n3

2
g11P

2
y þ g12P

2
x

� �
; (8.20)

where g11 ¼ gxxxx and g12 ¼ gxxyy of the specific crystal used.
For the x-component (and analogously for the y-component), we have:

P2
x ¼ r2PNRhp2xi; (8.21)

where rPNR is the PNR density and px the x-component of their local polarization.

As mentioned, the brackets denote an average on a volume V much larger than the

PNR but smaller than the wavelength.

The lattice in the PNRs is in general different from the cubic lattice of the host

crystal, and we have

px ¼ p0x þ axjEj; (8.22)

where aij is the PNR polarizability tensor.
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As the PNR are randomly oriented in the volume V, one readily finds that

hp2xi ¼ hp2yi ¼ p20 þ a20E
2; (8.23)

where p0 is the spontaneous polarization and a0 > 0 is the mean microscopic

polarizability of the PNR, such that the microscopic polarization due to the PNR

will be written as

P2
x ¼ P2

y ¼ P2
0 þ E20w

2
PNRE

2 (8.24)

with P0 ¼ rPNRp0 and the mean low frequency susceptibility of the non-ergodic

phase is given by

wPNR ¼ rPNRa0: (8.25)

wPNR accounts for the nonlinear optical effects that are due to the PNR.

Finally, the index perturbation for the two polarizations reads as Dnxx ¼ Dnyy
� DnPNR

DnPNR ¼ � n3

2
g11 þ g12ð ÞE20w2PNRE2; (8.26)

where we have dropped a constant term with P0
2.

8.4.3 Enhanced Susceptibility and Electro-Optic
Response in Out-of-Equilibrium Ferroelectrics

The last tassel in the design of a system capable of supporting scale-free optics is

the achievement of a huge electro-optic response using the anomalously large wPNR
when the ferroelectric is supercooled into a highly non-ergodic dielectric phase.

In fact, the electric field caused by charge diffusion for a beam with a micrometric

size is very weak. Using (8.14), we find that │E│� 10–50 V/cm. A sufficient

electro-optic response would require values of w � 105, and these can only be

observed for ferroelectrics undergoing a phase transition. Unfortunately,

a ferroelectric undergoing a phase transition cannot support optical propagation,

because the ferroelectric domains reach beyond the nanometric scales and scatter

the optical beam ultimately giving rise to a strong absorption of the sample [9]. This

limit can be qualitatively grasped considering the strong constraint imposed by

equilibrium physics on the susceptibility and the correlation length in the material

rc, which both diverge as the system is brought to its phase transition at TC. In fact,
equilibrium imposes that

w / 1

ðT � TCÞd
; (8.27)
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and

rc / 1

ðT � TCÞd=2
; (8.28)

where d is a critical parameter. As the dielectric anomaly is approached to enhance

the response for T ’ TC, rc also diverges and, when it reaches the macroscopic

scales of the optical wavelength, light is scattered and the material becomes

incapable of supporting optical propagation. The point is that ferroelectrics with

compositional disorder are known to support also a non-ergodic phase, which does

not obey the constraints of equilibrium [19]. In fact, whereas in standard conditions,

crystal behavior is the macroscopic manifestation of all the possible microstates

compatible with the various external constraints on the system, and its dynamics

consists in the rapid exploration of the microstates and has no memory of previous

history, when a ferroelectric crystal with compositional disorder, i.e., with lattice

sites occupied at random by different chemical elements that do not greatly alter the

lattice structure, is rapidly cooled to its Curie temperature, the crystal develops a

disordered mosaic of electrically polarized domains, a dipolar glass, whose surface

energy and volume energy balance out halting further crystal structural changes.

The crystal is now in a condition in which it is inhomogeneous (at the nanoscale)

and cannot occupy all the microstates compatible with its thermal equilibrium. This

out-of-equilibrium or glass-forming liquid state can never reach equilibrium and

can break the bond between w and rc. It is in this phase that it is possible to harness
the dielectric anomaly associated to the critical temperature TC without suffering

the limits of optical scattering.

Working with supercooled ferroelectrics at the Curie point guarantees that the

dielectric anomaly can be accessed without scattering, but the actual details of

the mechanism leading to wPNR as a function of the cooling rate and the details

of the thermal history are phenomenological, as at present no theory for glasses,

let alone dipolar glasses, exists. Below, in describing the experimental apparatus,

we will provide the details of how to tap the non-ergodic phase of KTN:Li.

8.5 Scale-Free Nonlinearity in Nanodisordered Ferroelectrics

8.5.1 Scaling and Approximate Diffraction Cancelation:
The Basic Scale-Free Equation

We are now in a position to establish in what way the diffusive electric field of (8.14)

produces, through the electro-optic response of (8.26), an effect capable of diffrac-

tion cancelation. Clearly, we do not achieve in this manner a truly anti-diffraction

operator / ∇ 2A, since the response will amount to a term /(│∇I│/I)2A. However,
both terms are independent of peak intensity, and both have the same fundamental
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scaling in terms of the spatial extent of the beam, i.e., both are / 1/w0
2. These two

facts guarantee a diffraction cancelation for arbitrary waveforms, and an exact

mathematically rigorous cancelation for the solutions that we discuss in what

follows. For all cases, in conditions in which the nonlinear length scale L ’ l,
scale-free optics is observed.

To put together the different pieces in our physical mosaic, we begin from the

paraxial nonlinear wave equation of (8.1) and insert into the nonlinear response

term Dn the electro-optic response of the PNR described by (8.26) using the

diffusive photoinduced electric field of (8.14). Thus, a linearly polarized beam

with amplitude A obeys

i@zAþ 1

2k
r2

?Aþ k

n
DnA ¼ 0; (8.29)

where Dn is expressed by

Dn ¼ DnPNR ¼ �g
n3

2
E20w

2
PNR

�
KBT

q

�2 ð@xIÞ2 þ ð@yIÞ2
I2

; (8.30)

and g � g11 + g12 (that depends on the specific PNR-supporting ferroelectric used).
The nonlinear propagation equation is

i@zAþ 1

2k
r2

?A� K
ð@xjAj2Þ2 þ ð@yjAj2Þ2

jAj4 A ¼ 0; (8.31)

where

K ¼ kg
nE0wPNRKBTffiffiffi

2
p

q

� �2

: (8.32)

The sign of g and, hence, the focusing/defocusing nature of the effect depends on
the specific lattice structure: for KTN:Li g11 + g12 > 0 (g11 ¼ 0. 16 m4C�2,

g12 ¼ �0:02 m4C�2) [29], and the effect is self-focusing. Since g > 0, (8.33) is

also

2ik
@A

@z
þr2

?A� L2

l2
ð@xjAj2Þ2 þ ð@yjAj2Þ2

4jAj4 A ¼ 0: (8.33)

The spatial scale L that is used to factor out the wavelength scale is

L ¼ 4pn2E0
ffiffiffi
g

p
wPNRðKBT=qÞ: (8.34)
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8.5.2 Scale-Free Analytical Solutions

Interestingly, this model admits analytical self-trapped solutions [22] when

8kK ¼ L2

l2
� 1: (8.35)

For the PNR susceptibility, this implies that

wPNR � wthr ¼
q

2knE0KBT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g11 þ g12

p ’ 105: (8.36)

In other words, there exists a critical value for the nonlinear optical response due

to the PNR for which L ¼ l. It is this threshold value that is simply inaccessible in

ferroelectrics at equilibrium, as discussed previously [30]. In our experiments, we

achieve this anomalously large response supercooling KTN:Li to its TC.
We note that the diffraction-free (diverging neff or zero effective wavelength

leff ¼ l=neff ) solutions of (8.33) are scale free, because there is no relationship

between the peak intensity and the waist. In other words, the waves with a given

waist exist for any power level. The situation is found in the Gaussian solution for

8kK ¼ 1 (wPNR ¼ wthr, L ¼ l)

A ¼ A0 exp � x2 þ y2

w2
0

� �
exp �2i

z

kw2
0

� �
: (8.37)

More precisely, in (8.37) the waist w0 of the soliton and its amplitude A0 are free

independent parameters.

8.5.3 Scale-Free Solutions in Conditions of L > l

When wPNR > wthr (L > l), the very nature of the propagation equation changes,

because the relative sign of the effective diffraction term switches. In these

conditions, we once again find self-trapped solutions given by

As in the previous case, also here A0 and w0 free parameters (i.e., the existence

curve is flat). Remarkably, as wPNR grows the beam appears to lose its radial

symmetry, developing a square-like profile (see Fig. 8.1).

A ¼ A0

e
�� 4iz

kw2
0
ð8kK�1Þ	

cosh ð2xw0
Þ 1
8kK�1 � cosh ð2yw0

Þ
1

8kK�1

: (8.38)
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8.6 The Observation of Scale-Free Optical Propagation

Scale-free optical propagation has been demonstrated in nanodisordered lithium-

enriched potassium-tantalate-niobate (KTN:Li) doped with copper impurities.

The experimental setup is schematically illustrated in Fig. 8.2, and is relatively

simple. The idea is to detect the propagation dynamics of a diffracting laser beam

within the crystal. Beams are obtained from standard low power continuous lasers,

such as a He–Ne laser, and the initially diffracting condition is achieved by

appropriately shrinking the laser beam down to micrometric widths at the input

of the sample. The propagation dynamics can be detected in two different and

complementary ways, i.e., through a top-view CCD or through an on-axis CCD (see

Fig. 8.2). The top-view detection is made possible by the enhanced scattering that

intervenes as the crystal is brought into its non-ergodic phase, whereas the on-axis

intensity distributions are detected imaging the input and output planes of the

crystal through an appropriate optics.

Perhaps the most complicated element in the apparatus is the control of the

thermal history T(t) of the crystal. This is because the giant electro-optic effect

required to reach the scale-free regime is only achieved when the ferroelectric is

brought into a non-ergodic phase, as described below. To do this, the crystal must

be supercooled to its phase-transition temperature.

Fig. 8.1 Squaring-off of the beam profile as the cooling rate is increased for L > l compared to

experimental results
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8.6.1 The KTN:Li

The heart of the apparatus is the newly engineered optical quality nonlinear

photorefractive crystal, Cu-doped KTN:Li. It is a ferroelectric designed to simulta-

neously host a glass-forming liquid-like phase, maintain an elevated degree of

optical transparency, absent in typical glassy media [21], and have a nanostructured

electro-optical and nonlinear optical response. Scale-free behavior is observed only

for a sufficiently high wPNR, a requirement that can be achieved supercooling the

sample into its non-ergodic phase in proximity of its Curie point TC. In a commonly

accepted model, on approaching the ferroelectric phase transition, the Cu-doped

KTN:Li behaves like a disordered distribution of polarizable dipoles that are

formed by the emergence of the Nb ions from the center of the crystal lattice unit

cells. These form the PNRs, and their size is controlled by the cooling rate a to the

final operating room temperature. It is in fact observed that changing a affects

the size of the PNRs (see Fig. 8.4 below) and consequently the KTN:Li nonlinear-

ity, so that at the same operating temperature (T), the permanent structure of the

PNR provides different and tunable nonlinear responses, a fact which is phenome-

nologically described by a crystal susceptibility wPNR that depends on a.
The non-ergodic phase required for the observations can be pinpointed

dielectrically by measuring the capacitance of the sample as a function of the

temperature T. Non-ergodicity is signaled by strong thermal hysteresis in

the relative dielectric constant [19]. An example of thermal hysteresis in KTN:Li

is shown in Fig. 8.3.

We note that when a ferroelectric with compositional disorder is brought into a

non-ergodic phase achieved through supercooling to the Curie temperature, it effec-

tively turns into a material that is fundamentally different from a standard

ferroelectrics undergoing a phase transition [9]. If the crystal is slowly cooled to TC,
its interaction with light is mediated by large ferroelectric domains with a strong

spontaneous polarization that is rigidly fixed by the principal axes of the crystal lattice,

evident in the transmission results shown in Fig. 8.4 (note the 45∘ orientation of the

domainwalls). The scale-free regime, in turn, occurswhen the crystal is rapidly cooled

to TC (supercooled state). Dielectric dynamics are those of a glass-forming liquid, and

Fig. 8.2 Schematic of

experimental setup used

to observe scale-free optics
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Fig. 8.4 Comparison of transmission through the KTN:Li sample at TC for slow and fast cooling

rates. For slow cooling, the transmission indicates the formation of large ferroelectric clusters and

domains with geometrically fixed boundaries. For fast cooling (supercooling), transmission

radically changes, indicating a more homogeneous and disordered dielectric state. The specific

sample used in these experiments is a K1 � xTa1 � yNbyO3:Lix composite with x ¼ 0. 003,

y ¼ 0. 36, a Curie point at TC ¼ 14. 5 ∘ C, and a non-ergodic phase for T < TB ¼ 17 ∘ C

Fig. 8.3 Dielectric characterization of the non-ergodic phase: Low-frequency average dielectric

permittivity er for fast (blue line) and slow (red line) temperature rates. The shaded region where

the two curves considerably differ represents the region in which the non-ergodic behavior of the

PNR is more pronounced [19]
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the interaction with light is mediated by PNRs that lock into a disordered network.

Here the size of the PNR depends on the cooling rate (i.e., the previous thermal history

of the sample) and not on the operating temperature, and optical transmission is

fundamentally different, as shown in Fig. 8.4.

8.6.2 Scale-Free Propagation and Supercooling

The analysis of the spreading of the intensity distribution of the beam in propagating

through the crystals shows the basic signatures of a scale-free optical propagation. In

Fig. 8.5, for example, we report how, for a scale-free regime, L ’ l, spreading due
to diffraction is absent, compared to diffraction reported for L/l ’ 0.4 (neff ’ 1.2n).
In the case reported, the scale-free regime is achieved by cooling the KTN:Li sample

Fig. 8.5 Scale-free propagation. Input intensity distribution (a) fails to spread according to the

standard diffraction laws for a fast cooling rate at the output (b) when L ’ l, and suffers a partial
spreading in the slow cooling rate case, i.e., when L < l
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from 35∘ C to TC ¼ 14.5∘ C at the fast rate of af ¼ 0.07∘ C/s and the output

intensity distribution has a full-width-half-maximum (FWHM) Dx(Lz) ’ Dy(Lz)
’ 15 mm equal to the input one, after Lz ¼ 6 mm of propagation in the z-direction:
the beam does not spread because diffraction is fundamentally absent (leff ’ 0). In

turn, when the KTN:Li sample is slowly cooled with as ¼ 0. 015∘ C/s, the intensity

distribution of the input beamwidens toDx(Lz) ¼ 43 mm andDy(Lz) ¼ 40 mm at the

output only slightly less than what is expected from the standard diffraction of a

Gaussian beam.

8.6.3 Violation of Scale-Dependent Soliton Laws

Absence of beam spreading is not in itself evidence of scale-free optical propaga-

tion. Diffraction can be readily compensated through nonlinear self-focusing, as

occurs for spatial solitons. What is a direct signature of scale-free optics is a

violation of scale-dependent scaling laws that must intervene when diffraction is

compensated. If these laws are in fact violated, diffraction has been canceled.

Experiments in KTN:Li have indeed shown that non-spreading beams of a given

width are observed over a wide range of peak beam intensities, as illustrated in

Fig. 8.6. It can be noted that there are physical systems in which the value of peak

intensity is not important, but the ratio between this value and a second quantity is

relevant. This occurs in all saturated nonlinearities, such as the Kerr-saturated

model valid for photorefractive screening solitons. On the contrary, in the scale-

free case, no saturating parameter is changed.

8.6.4 Instability

One of themost striking phenomena associated to scale-free optics is the observation

of beam instability. In a standard soliton-supporting nonlinearity, beams with

specific symmetries, such as plane waves or stripe beams lead to a characteristic

Fig. 8.6 A typical result of

output intensity distribution

for a scale-free beam (i.e., in

conditions in which

supercooling is enacted so

that L ’ l) that depends only
on the input beam FWHM,

and not on the peak intensity

or on any other saturation

parameter
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breakup into patterns formed by solitons. Experiments in KTN:Li in the scale-free

regime have led to the unexpected breakup of a stripe into a “gas” of different

localized beams of different sizes and intensities, with no specific relationship

between the two, in direct response to inhomogeneities in the input beam pattern.

This nonselective instability is in fact a true sign of a scale-free optical propagation,

since it underlines the basic absence of soliton scaling laws [31]. The experimental

demonstration of scale-free instability is shown in Fig. 8.7.

8.6.5 Intensity-Independent Beam Interaction

An important aspect of scale-free propagation is that although the phenomenon is

the product of a peak intensity-independent mechanism, it is profoundly nonlinear

in nature. For one, the effect depends on the shape of the optical wave. This

nonlinearity seems absent once we consider the entire matter in the form of a

diverging effective index of refraction or a vanishing effective wavelength, but

these are not applicable to plane waves, but to localized beams. Experiments that

highlight the nonlinear nature of diffraction cancelation are beam–beam interaction

phenomena, which involve beam attraction (see Fig. 8.8), crossing (Fig. 8.9), and

even beam spiraling (Fig. 8.10), three interaction phenomena that are identical to

those normally associated to solitons.

Fig. 8.7 Scale-free modulation instability, once again directly dependent on the relationship

between L and l
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Fig. 8.8 Scale-free beam

attraction

Fig. 8.9 Scale-free beam

crossing
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8.7 Subwavelength Beam Propagation

Scale-free optics affects the diffraction of optical waves, effectively reducing the

spreading and distortion of beams due to diffraction without incurring in the limits

of linear and nonlinear diffraction compensation. The factoring out of the wave-

length from the diffractive dynamics suggests one basic question: does the factoring

out of l extend into the nonparaxial regime and, hence, affect the limits to

propagating waves? Put differently, can scale-free optics be used to allow the

propagation of subwavelength beams with impact, for example, on super-resolution

in optical microscopy? The issue is not a farfetched proposition because what we

term nonparaxiality and the propagation spectrum as opposed to the evanescent

wave spectrum all depend on the use of the wavelength as a fundamental scale!

Remarkably, scale-free solutions exist also for a model which is valid beyond the

paraxial approximation and contains (in the linear limit) also the evanescent waves.

The model here considered is the Helmholtz equation, with the simplification, with

respect to Maxwell’s equations, that vectorial coupling is neglected, an assumption

that can, in most cases, be shown to lead to very small corrections.

The Helmholtz equation is obtained for a monochromatic beam starting from the

vectorial wave equation

r
r
 E ¼ on
c

� �2

E; (8.39)

Fig. 8.10 Scale-free beam

spiraling
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withn2 ¼ ðn0 þ DnÞ2 ffi n20 þ 2n0Dn andDn given in (8.30). For a linearly polarized
beam E ¼ x̂E0A expðibzÞ , with │A│2 ¼ I the beam intensity (E2

0 ¼ 2Z0=n0 ), and
neglecting vectorial effects (∇∇ �Effi 0), one has the Helmholtz equation

r2
?Aþ on

c

� �2

� b2
� 	

A ¼ 0: (8.40)

b is the overall wave vector in the z direction, and not its nonlinear perturbation as

in standard paraxial models. Equation (8.40) admits an exact Gaussian solution,

which is scale free, i.e., with an arbitrary amplitude A0 and waist w0:

A ¼ A0 exp � x2

w2
0

� y2

w2
0

� �
(8.41)

with the wavector b given by

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on0
c

� �2

� 4

w2
0

s
; (8.42)

when the condition L ¼ l is satisfied.

A solution exists (i.e., b is real) as long as

w0>
2c

on0
¼ l

pn0
(8.43)

as expected.

The point is that more general solutions exist for L > l, as in the paraxial case.

These are given by

A ¼ A0

eibz

cosh ð2xw0
Þg2 cosh ð2yw0

Þg2
; (8.44)

where

g ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
L2

l2
� 1

q (8.45)

and the wavector is

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on0
c

� �2

� 4g2

w2
0

s
: (8.46)
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The corresponding lower limit for the waist is, hence,

w0>g
l
pn0

: (8.47)

Thus, for L > l, the lower limit for the waist is scaled by a factor g: a beam smaller

than the wavelength can propagate in the medium without distortion (for L>
ffiffiffi
2

p
l)

irrespective of its intensity.

8.8 Conclusions

Scale-free optical propagation appears as a general and new paradigm for the

propagation of undistorted optical beams for imaging and microscopy, with

the promise to allow the propagation of beams with no limits associated to evanes-

cent waves, with obvious impact on super-resolved microscopy.
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Chapter 9

Spatially Dispersive Shock Waves

in Nonlinear Optics

Christopher Barsi, Wenjie Wan, Shu Jia, and Jason W. Fleischer

9.1 Introduction

Shock waves occur when an object immersed in a medium travels faster than waves

in that medium [1]. They are inherently nonlinear, as their speed depends on their

density/intensity, and arise when higher-velocity components of the wave overtake

lower-velocity ones. The result is a transition region, or front, between the undis-

turbed fluid downstream and the perturbed fluid upstream. Although there are many

variants, shock waves come in two basic flavors: dissipative and nondissipative.

Dissipative shock waves relieve their excess energy through heating, e.g., via

viscosity, which results in a monotonically decreasing front connecting the high-

pressure and low-pressure sides. Nondissipative shock waves have an oscillatory

and expanding front, as the excess energy is relieved via the generation of disper-

sive waves. The most familiar examples of shock waves are dissipative, e.g., the

sonic boom of a supersonic airplane, created because air molecules downstream of

the plane cannot be “warned” of its arrival by information-carrying sound waves.

Dispersive shock waves (DSWs) are in a sense more “exotic” because their fronts

rely on wave-dynamical, rather than collisional, effects; in turn, the basic

excitations require a degree of coherence not normally found in classical fluids.

Examples include superfluids, plasmas, and laser systems [2]. In these systems,

DSWs are a fundamental means of energy transport.
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The first consideration of shock waves in optics was modeled on the nonlinear

behavior of classical fluids. Early work focused on temporal pulses in fibers,

showing that short pulses can experience traditional wave steepening and breaking

[3–6]. Later work revealed that spatiotemporal kink states can result from Raman

effects [7–10], polarization dynamics [11, 12], and frequency-dependent gain or loss

[13, 14]. In the spatial domain, kink shock waves were predicted in quadratic media

[15] and in photorefractive crystals [16, 17], and observed in the latter [18]. In these

cases, the model behavior was dissipative, with energy transfer between beams

replacing viscosity as a means of sustaining a well-defined (vs. oscillatory) front.

The study of DSWs in optics gained popularity in the 1990s, as non-return-to-

zero formats in telecommunications created step-like initial conditions that were

ripe for their creation [19–21].More recently, suchwaves were demonstrated in bulk

photorefractive crystals [22] and in thermal fluids [23, 24]. Particularly exciting has

been the extension to two transverse dimensions, which has enabled an examination

of wavefront geometry in shock propagation and interaction [22, 25].

In the remainder of this chapter, we discuss recent work on spatially DSWs in

optical beams. In Sect. 9.2, we introduce some basic theory and shock wave

formalism. In Sect. 9.3, we present the experimental observation of DSWs in

self-defocusing photorefractive crystals. In Sect. 9.4, we illustrate the use of

DSWs in material characterization by using their propagation dynamics to measure

optical anisotropy and nonlocal response. In Sect. 9.5, we consider DSWs in

photonic lattices and show their importance in nonlinear tunneling dynamics.

Conclusions are given in Sect. 9.6.

9.2 Basic Theory and Formalism

The particular system considered here is a spatial one in which a continuous optical

wave propagates in a nonlinear medium, mainly along the z axis. To an excellent

approximation, the slowly varying amplitude c of such a field can be described by

the nonlinear Schr€odinger equation (NLSE):

i
@c
@z

þ 1

2k0
r2

?cþ k0
n0

Dn cj j2
� �

c ¼ 0; (9.1)

where k0 ¼ 2pn0/l is the wavenumber, l/n0 is the wavelength in a homogeneous

medium of refractive index n0, and Dn is a nonlinear index change which depends

on the intensity |c|2. For the spatial case, the transverse Laplacian describes beam

diffraction, while in the temporal case it describes pulse spreading due to disper-

sion. In most of the discussion that follows, we consider a Kerr-like medium, for

which the index change Dn ¼ n2|c|
2 (n2 < 0 for defocusing).

As is well-known [26–29], (9.1) also describes the (macroscopic) ground-state

wavefunction for a fully condensed quantum state: i�h@tcþ ð�h2 2m= Þr2
?cþ
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g cj j2c ¼ 0, where m is the mass of the underlying particle, and the nonlinear

coefficient g represents the mean-field contribution of (s-wave) interactions.

In this approximation, the dynamics is more properly described as wave mechanical

rather than quantum, with �h simply serving as a parameter which normalizes the

wavefunction. Note in particular that wavepacket evolution in time corresponds to

beam propagation in space. Therefore, all of the shock phenomena here can appear

in condensed matter systems as well. Indeed, the fundamental DSW, in both one

[30, 31] and two [25] dimensions, has been demonstrated in Bose–Einstein

condensates.

A fluid interpretation of light propagation follows by applying the polar

(Madelung) transformation [32] cðx; zÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
rðx; zÞp

exp iSðx; zÞ½ � to (9.1), where r
is the intensity of the beam, and S is its coherent phase. Scaling (x,z) ! k0(x,z) then
gives the Euler-like fluid equations [33, 34]:

@r
@z

þr? � ruð Þ ¼ 0: (9.2)

r
@u

@z
þ u � r?u

� �
¼ �r?Pþ 1

2
rr?

1ffiffiffi
r

p r2
?

ffiffiffi
r

p� �
: (9.3)

This set of equations is a nonlinear eikonal representation, expressing the

conservation of intensity r and momentum ru, where u ¼ r?S is the direction

of energy propagation, or equivalent fluid velocity. The self-defocusing nonlinear-

ity gives rise to an effective pressure P ¼ |n2|r
2/2n0 whose gradient drives the

optical flow. Indeed, we note that the nonlinear contribution to the phase S ~ |n2|
k0r(Dz)/n0, so that (9.3) is self-consistent with the definition of velocity. The last

term in (9.3), known as the “quantum pressure” in condensed matter systems, has

the highest-order derivatives and regularizes the system. Without the quantum

pressure, (9.2) and (9.3) represent ideal Eulerian flow, and there would be no

limit to the amount of energy that could accumulate in small spatial scales.

For example, shock waves would develop infinitely sharp fronts and instabilities

would have perturbation growth at arbitrarily short wavelengths.

To gain insight into the dynamics of shock formation, let us consider the case of

a small wave packet/hump propagating on a uniform background r1. For simplic-

ity, we consider a (1 + 1)-D system [35], so that the intensity may be written as

r x; zð Þ ¼ r1 þ drðx; zÞ: (9.4)

In a fluid sense, the background intensity is a reference density which sets an

effective “sound” speed c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2j jr1=n0

p
. This appears clearly when we linearize

(9.2) and (9.3) for small perturbations. Keeping only the lowest-order terms, i.e.,

neglecting the convective derivative and the quantum pressure, we obtain the
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classical wave equation for the phase (optical stream function) S:

@2S x; zð Þ
@z2

� c2
@2S x; zð Þ

@x2
¼ 0 (9.5)

As before, u ¼ ∂S/∂x and, through continuity, dr ¼ � (n0/|n2|)∂S/∂x. This stan-
dard equation has the usual traveling wave solutions drðx; zÞ ¼ drðx� cz; 0Þ½
þ drðxþ cz; 0Þ�=2, indicating that the initial perturbed intensity hump splits into

two separated ones traveling with opposite directions.

This nonlinear splitting and repulsion contrasts sharply with linear dynamics.

To see this explicitly, we numerically simulate a Gaussian perturbation drðx; 0Þ
¼ 2�r1e�x2=2a2 using a split-step beam propagation code. Results are shown in

Fig. 9.1. In the linear case (Fig. 9.1a,b), the hump retains its Gaussian profile as it

propagates, creating small ripples as its tails interfere with the background field. In

the nonlinear case, the perturbation splits into two smaller humps that walk off from

each other (Fig. 9.1c,d). For weak nonlinearity, these humps travel at the linearized

sound speed u ¼ uðr1Þ ¼ c. For stronger nonlinearity, the two pieces will propa-

gate with a velocity u ¼ uðrÞ, which depends on the local intensity. Higher-

intensity parts of the profile will travel at faster speeds, leading to wave steepening

Fig. 9.1 Dispersive shock wave formation in nonlinear spatial optics. (a) Waterfall and (b)

overhead view of linear propagation of hump-on-background. Simple diffraction yields some

interference, but the localized beam retains its shape. (c, d) Same views as in linear case but for

nonlinear evolution. The Gaussian hump splits into two and shocks the background
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and eventual shock formation. We emphasize that any perturbation with intensity

higher than the background, r>r1, will travel faster than the local sound speed c,
i.e., it will be supersonic.

In shock models with viscosity, e.g., Burgers-type descriptions [36, 37], dissipa-

tion counteracts wave steepening and leads to a monotonically decreasing front

between the high- and low-pressure sides of the shock. For the case here, there is no

absorption; instead, the increasing gradient triggers an increase in spatial dispersion.

More accurately, self-phase modulation within the high-intensity region generates

new (spatial) frequencies, which then disperse into the surrounding medium.

This range of phases creates a series of interference fringes with varying periods,

resulting in an oscillating wave 0 (Fig. 9.1c,d). The inner, nonlinear part of the front

resembles a train of dark (or gray) solitons, whereas the outer part is a low-intensity

region with oscillations that are effectively sound-like. In one dimension, for step-

like initial conditions, the shock profile is given by a Jacobi elliptic function

[25, 38–41]. As the derivation is somewhat involved, it is not repeated here.

9.3 Experimental Realization of DSWs in Spatial Optics

Experiments were performed using the set-up shown in Fig. 9.2. Light from a 532 nm

laser was sent into an 8 mm � 8 mm � 8 mm SBN:75 (Sr0.75Ba0.25Nb2O6) photo-

refractive crystal and then imaged at the output. The initial profile was created using a

Mach–Zehnder interferometer: one arm acted as a low-intensity plane-wave back-

ground, and a lens (cylindrical or spherical) placed in the other arm focused a central

intensity hump onto the input face of the crystal. The nonlinear response of the SBN

crystal was created by applying a voltage bias of�500 V across the crystal and taking

advantage of the photorefractive screening effect [42]. A discussion of the photo-

refractive response, and the influence of various models of it on shock dynamics, is

Fig. 9.2 Shock wave experimental setup
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deferred to Sect. 9.4. To keep the response asKerr-like as possible, we held the applied

voltage constant throughout the experiments and changed only the intensity of

the central hump (using a variable attenuator) to probe nonlinearity. To maximize

the response, the input light was polarized extraordinarily.

Typical shock waves are shown in Fig. 9.3. A stripe profile was created using a

single cylindrical lens, an elliptical profile using two cylindrical lenses, and

a circular shock using a spherical lens. The background beam was 10 mW and the

hump-to-background intensity ratio was 20:1. In the linear case (Fig. 9.3d–f),

the initial humps simply diffract, creating small ripples in the tails as the phase

front curves. In the nonlinear case (Fig. 9.3g–i), self-defocusing forces the hump

apart, depletes the central region, and shocks the background to create the

oscillating front characteristic of DSWs.

The strength of shock formation was examined by adjusting the intensity of

the central hump. As expected, the shocks become more violent with increasing

Fig. 9.3 Experimental pictures of superfluid-like optical spatial shock waves. (a–c) Input, (d–f)

linear diffraction at output face, and (g–i) nonlinear shock waves at output face. Left column: 1D
stripe. Middle column: 2D ellipse. Right column: 2D circle
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hump-to-background contrast, displaying faster wave propagation and more

oscillations within the front (stronger effective repulsion and higher nonlinear

phase). In Fig. 9.4, we plot the measured front length (measured from the centerline

to the end of oscillations) as a function of r=r1. The solid curves are best fits of the

functions Ds ¼ asð1þ bs
ffiffiffiffiffiffiffiffiffiffiffiffi
r r1=

p Þ, calculated independently for each shape s.
Here, as ¼ 54 mm is a baseline distance set by the fixed background sound speed

(background intensity and crystal properties), and the b-coefficients are 1.2, 1.0,

0.92 � 0.04 for the stripe, ellipse and circle, respectively.

This square-root velocity scaling follows directly dimensional analysis of (9.3)

(obtained by balancing the convective derivative with the nonlinear pressure).

However, simple scaling arguments cannot determine the coefficient. More signifi-

cantly, photorefractive media are saturable and known to deviate from Kerr-like

responses for high intensity. This is probably why the measured stripe coefficient is

higher than the b ¼ 1.0 scaling predicted by recent 1D theory [25, 35, 38, 43].

To date, the only analytic treatment of dispersive, dissipationless shock waves in

higher dimensions has been one-dimensional shocks propagating at an oblique

angle [41]. The experimental results here show that geometry and the available

expansion directions play a significant role in their dynamics.

Fig. 9.4 Shock length, measured from the centerline to the end of oscillations, with respect to

hump-to-background intensity ratio. Top to bottom: three solid curves are plotted of the functions

Ds ¼ asð1þ bs
ffiffiffiffiffiffiffiffiffiffiffiffi
r r1=

p Þ to fit the 1D stripe, 2D ellipse and 2D circle cases, respectively
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9.4 Material Characterization

The basic DSWs shown above can be interpreted as nonlinear point-spread

functions (though their use to describe image transmission is complicated by the

non-shift-invariant nature of the spatially varying response). The intensity-

dependent self-repulsion of the main central beam enhances diffraction, while the

plane-wave background serves as a reference beam to highlight phase accumulation

from propagation. Naturally, the output pattern depends on the particular nonlinear

properties of the medium. Of course, the pattern also depends on the input, as

demonstrated in Fig. 9.4. With knowledge of both the input and output, however,

measurements of the output shock can be used to characterize a material’s (possibly

unknown) optical response.

Measuring nonlinear diffraction in this way is similar to z-scan techniques,

commonly used to characterize both thin [44] and thick [45, 46] nonlinear samples.

However, the latter methods require multiple measurements along the optical

axis, cannot measure the full transverse index profile, and usually are limited by

assuming Gaussian input beams and Gaussian-like output beams. For more com-

plex nonlinear outputs, matching the shock parameters with model coefficients

allows calibration of the underlying propagator. Further, the shock-formation

characterization technique does not rely on symmetry considerations of the initial

beam, so that the material properties can be studied by optimizing the arbitrary

initial conditions.

We demonstrate the method here on two different types of nonlinear response:

isotropic media with a nonlocal nonlinearity and uniaxial crystalline media with an

anisotropic response.

9.4.1 DSWs with Nonlocal Nonlinearity

Many optical materials respond nonlocally, in that the index of refraction at a

particular location is determined by the intensity not only at that point, but at nearby

portions of the material as well. The spatial extent of the index contribution at that

point is assumed to be determined only by the properties of the medium itself.

Nonlocal phenomena appear in many fields, such as plasma physics [47] and

BEC [48], and can arise in optics through physical processes such as atomic

diffusion [49] and thermal self-action [50, 51]. The spatially extended response

competes with small-scale perturbations, inhibiting dynamics that appear when

wave coupling is local. For example, modulation instability can be suppressed

[52] and incoherent solitons in instantaneous media are possible [53, 54]. Here, we

consider the influence of nonlocality on the high-frequency, oscillatory nature of

dispersive shock fronts [23, 24, 55, 56].
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To begin, we return to the NLSE (9.1) but generalize the nonlinearity to a

nonlocal response. Generically, this response can be modeled by a convolution

operation: Dn[r(r)] ¼ n2
Ð
R(r0)r(r � r0)dr0, where R(r0) is the medium’s response

function normalized to unity, i.e.,
Ð
R(r0)dr0 ¼ 1 [52], and the integration takes

place over the transverse dimensions of the system. For the thermal medium

considered below, we assume a Gaussian response function R(x) ¼ (pw2)�1/2exp

(�x2/w2), where w represents the range of the nonlocality.

Numerical simulations of dispersive/diffractive shock waves in a nonlocal

nonlinear medium are shown in Fig. 9.5. The input intensity profile is the same as

in Fig. 9.1: a Gaussian hump on a constant, low-level background, and output

profiles are shown as the nonlocal parameter w is increased. As in Fig. 9.3, the

expanding wave consists of two repulsive humps whose fronts are characterized by

oscillations. As the range of nonlocality increases, the central region broadens and

the oscillations in the tails become damped. These effects are intuitively reasonable,

because the convolution in Dn should both broaden and smooth out the resultant

field. Several limiting forms of the response function are useful to consider. In the

limit of a delta-function response, the nonlinearity reduces to the local Kerr case

Dn ¼ n2r, and the problem reduces to the system described in Sect. 9.2, i.e., an

initial hump that is “supersonic” compared to the background’s effective sound

speed c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið n2j jr1=n0Þ
p

. In the limit of a response width narrow compared to the

input, the nonlinearity can be expanded in a Taylor series, giving Dn ¼ n2rþ n2
x2
� �

=2
	 


d2r/dx2
	 


, where x2
� � ¼ w2=2 is the average variance of the nonlocality.

The second term has the same dispersive order as diffraction and has a spatially

dependent effect, weakening the effective repulsive pressure in the central part of

the Gaussian beam while enhancing it in the tails. In the opposite limit of response

Fig. 9.5 Numerical

simulation of dispersive

shock waves as a function

of nonlocal response width

(w0, normalized to the width

of the input Gaussian hump).

The red bars on the x-axis
indicate the FWHM of the

initial hump, which has a

25:1 hump-to-background

intensity ratio
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width much greater than input beam width, the overall response (nonlinearity plus

nonlocality) approaches the linear, local case; here, the response of the medium is

equally strong across the entire beam profile, so that the hump does not experience a

nonlinear phase shift relative to the background.

We demonstrate these effects experimentally by considering the self-defocusing

of CW spatial beams in a thermal liquid cell [24, 25]. More specifically, we project

532 nm laser light onto a 1 cm � 1 cm plastic cell containing ethanol doped with

iodine. Physically, the iodine absorbs the green light, which then acts as a thermal

source. The liquid develops a temperature gradient DT, which is proportional to the
index change Dn via the thermo-optic coefficient, b � ∂n/∂T. Overall, the system
is quite complex as it involves three coupled systems: thermal diffusion (Poisson

equation) [53–55, 57, 58], fluid dynamics (Navier-Stokes equation), and nonlinear

optical propagation (NLSE). However, for weak heating, convection can be ignored,

so that the fluid can be taken as stationary, and the heating effects can be modeled

accurately by the phenomenological convolution operation above [52, 59, 60].

As in the photorefractive case, a hump-on-background beam is incident onto the

liquid. A shutter is placed in front of the liquid cell so as to observe the time

dynamics of the system. By itself, the plane-wave background causes uniform

heating and thus no relative index change, while the Gaussian hump produces a

spatially dependent nonlinearity. The liquid medium responds to this profile in two

different stages: relatively fast thermal diffusion followed by convection of the fluid

itself (after ~0.5 s of CW heating). The temporal evolution of the output, shown in

Fig. 9.6, demonstrates the development of the different stages of nonlocality. When

the shutter is first open, the liquid has had no time to absorb the light, so the output

Fig. 9.6 Experimental

evolution of diffractive

shock wave after 1 cm of

propagation in an

ethanol + iodine liquid cell.

(a) Linear case. Inset: input
profile. (b) Initial shock

formation in nonlinear,

nonlocal case. (c) ~200 ms

later, quasi-steady state

(before convection of fluid)

shock profile. (d) Steady

state, with asymmetry due

to convection

240 C. Barsi et al.



is simply a linearly diffracted beam (Fig. 9.6a), with some interference fringes due

to interference between the plane wave and the curved Gaussian phase front.

As time progresses, the nonlocal shock begins to form (Fig. 9.6b). The thermal

gradient is weak, but not negligible, so that the beam diameter increases dramati-

cally to about five times the diameter in the linear case. The next panel, Fig. 9.6c,

shows the full beam expansion due to the increased temperature gradient, and hence

nonlocality, in quasi-steady-state. The observed oscillations are signature features

of DSWs [2, 23, 24], and are similar to previous observations in the context of

thermal blooming [50, 51, 61, 62]. For longer times, the shock begins to move

vertically and develop an asymmetry (Fig. 9.6d), due to convection of the liquid

medium itself. At this point, the beam does not propagate simply in a static medium,

as the light and fluid dynamics become coupled [63–65].

As before, increasing the hump-to-background ratio makes the shocks become

more violent, with faster oscillations (higher self-phase modulation) in the tails.

We again characterize the nonlinearity by measuring the shock width and fitting the

resulting plot to the relation Ds ¼ as 1þ bs
ffiffiffiffiffiffiffiffiffiffiffiffi
r=r1

p	 

. This is the same scaling as

obtained in Figs. 9.2–9.4, but the fitting parameters as ¼ 46 um and bs ¼ 0.13

indicate a rate of spreading much slower than in the local, Kerr case (Fig. 9.7, inset).

For the liquid medium here, the bs-coefficient suggests a nonlocal response of

roughly twice the width of the input hump. Thus, shock propagation allows for

characterization of the two material properties of the liquid: the nonlinear strength

and the degree of nonlocality.

Fig. 9.7 Nonlocal shock length, measured horizontally from centerline to the end of oscillations,

as a function of hump-to-background intensity ratio. Black dots: experimental measurements.

Solid line: best fit of Ds ¼ as 1þ bs
ffiffiffiffiffiffiffiffiffiffiffiffi
r=r1

p	 

, with as ¼ 46 mm and bs ¼ 0.13. Inset: numerical

simulation, showing consistency of scaling relation as a function of nonlocal response width w0
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9.4.2 DSWs in Anisotropic Media

Many nonlinear optics experiments take advantage of anisotropic materials, as

differences in response, e.g., between different polarizations, give another degree

of freedom. The SBN crystal used in Sect. 9.3 is no exception: it is a uniaxial crystal

with a much stronger nonlinear response along its crystalline c-axis than perpendic-
ular to it. To maximize the response, all of the input beams were extraordinarily

polarized. For solitons in SBN, for which self-focusing balances diffraction, circular

inputs normally remain circular [66–69]. For the shock case, in which

self-defocusing enhances diffraction, anisotropy appears. This birefringence can

be seen most clearly by examining the 2D beam in Fig. 9.3, which shows that an

initially circular input (Fig. 9.3g) leads to an output shock wave with a slightly

elliptical shape (Fig. 9.3i).

There are two potential causes to the noncircular profile: anisotropic corrections

to linear diffraction [70] or to the nonlinear response [71]. For SBN, the expected

anisotropy in the diffraction operator is d ¼ (no/ne)
2 � 1 ~ 2–3%, but this was not

observed when the voltage was turned off (Fig. 9.3h). However, uniform bulk

changes to the crystal (e.g., internal stress) when the nonlinearity is turned on

cannot be ruled out [72]. Therefore, we consider both possibilities here.

The nonlinear index change of the photorefractive response is rather complex.

The standard model is the one considered by Kuhktarev et al. in which photo-

excitation is followed by charge transport and an electro-optic change in the index

[71]. However, the model cannot be solved in its general form. Instead, two main

limits have been studied: noncollinear wave mixing of broad beams [73–77] and the

steady-state propagation of solitons [42, 78]. Neither limit is applicable to

the dynamic expansion considered here. On the other hand, the different forms

of the material response can be considered in a shock context, where the continu-

ously evolving profile will quickly illustrate differences in the approximations used.

As shock waves are triggered by a spatially localized variation in the intensity, we

base our discussion on the models for photorefractive screening solitons [42, 78].

For these steady-state beams, the combination of electron diffusion and drift leads to

two intensity-dependent terms: a local, saturable term and a nonlocal, diffusive term

that results in self-bending. Since this bending occurs in the direction of the applied

voltage, i.e., along the c-axis, one-dimensional models are normally sufficient to

describe material and soliton response (2D models can account explicitly for

anisotropic boundary conditions [79, 80] and have predicted elliptical soliton for-

mation [81], but circular solitons occur for nearly all experimental parameters

[66–69]). A list of the most popular reduced models is given in Table 9.1.

We nowwish to compare these theoretical models with experiment. To examine a

pure point-like spread function, without coupling to a background, we consider a

single Gaussian beam focused onto the input face of an SBN:75 crystal (Fig. 9.8).

Here, a DSW is formed as the center of the beam breaks into its tails. In this example,

the intensity was measured as before, but an additional interference measurement

[82] was used to calculate the phase as well. This is necessary here, as the different

models of the photorefractive response (Table 9.1) have different gradient terms,
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which manifest themselves in the phase. Because the full complex field is known, it

can be substituted as an initial condition into numerical beam propagation

algorithms that model (9.1).

There are two ways of making the comparisons: forward propagation [83] or

backward propagation [84, 85]. In the former case, the experimental input is fed into

a computer code, whose numerical output is compared with the measured output.

The latter case starts with the output and runs in reverse. For ideal behavior, both

methods are equivalent. In practice, however, back-propagation is more sensitive

and more accurate, as the output profile has finer features, i.e., higher spatial

frequencies, and the input profile provides a cleaner and more stringent target.

Fig. 9.8 Experimental measurements of linear and nonlinear Gaussian beam propagation. Left:
experimental input. Center: linear (diffracted) output. Right: a dispersive optical shock wave is

formed. Comparison of pure Kerr nonlinearity and Kerr + anisotropic diffraction term. The c-axis
is horizontal in the figures. Scale bar: 50 mm

Table 9.1 Models of the photorefractive effect and their effects in the reconstruction

1 Dn / I Simplest model generates ellipticity near the focus of the

Gaussian beam

2 Dn / I; ~D ¼ e
� z

2k0n0

k2x
1þdþk2y

� �
Algorithmic modification (d-term in Fresnel propagation

kernel) yields accurate reconstruction

3 Dn / I
IþIsat

Saturation provides circular reconstruction in intensity,

but phase reconstruction is distorted

4 Dn / @
@x logðI þ IsatÞ½ � Intensity profile is distorted, and the phase contains

spurious modulations
5 Dn / @

@x I½ �
6 Dn / I þ k @

@x logðIÞ½ � Results are similar to 1), 1), 3) respectively, but with

unwanted noise in both intensity and phase and

incorrect phase curvature
7 Dn / I þ k @

@x I½ �
8 Dn / I

IþIsat
þ k @

@x logðI þ IsatÞ½ �
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A reverse propagation algorithm is effected simply by replacing the propagation

distance z with –z in the standard split-step Fourier method [84, 85]. As an initial

model, we use the symmetric Kerr nonlinearity, Dn ¼ �|n2|I, which has been

suitable for the experimental measurements made thus far (e.g., see Fig. 9.4).

The coefficient g is calculated by choosing the value that minimizes the sum-of

squares error between the measured input intensity and the reconstructed input

intensity, normalized by the total pixel count M2:

SSE ¼ M�2
X
mx;my

Iin;reconstructedmxmy
� Iin;measured

mxmy

� �
;

wheremx andmy are the pixel counts in the x- and y-dimensions. The result is shown

in Fig. 9.9. Note that even after error minimization, the reconstructed input is highly

elliptical. As expected, the isotropic Kerr nonlinearity is not sufficient in describing

photorefractive propagation.

Perhaps more surprising is the fact that traditional anisotropic models of the

photorefractive response also do not capture the observed behavior, even though

they are highly successful models for soliton propagation. Interestingly, some

models provide a reasonable match for the intensity but fail in the phase, an

indication of the latter’s importance here.

To account for the ellipticity, we return to the anisotropic model of linear

diffraction but parameterize the coefficients with a nonlinear change. More specifi-

cally, we include a voltage-dependent correction of 7% in the x-direction for the

linear propagator, that is, in the Fourier domain

e
�ilDz4p

k2x
ne
þk2y

ne

� �
! e

�ilDz4p
k2x

ne 1þdð Þþ
k2y
ne

� �
;

where d ¼ 0.07, and kx and ky are the wavevectors for the x- and y-axis. As shown
in Fig. 9.9, the reconstructed input provides a good match with known one.

Fig. 9.9 Reconstruction of input amplitude (top row) and phase (bottom row) from measured

output for different propagation models. Numbers in each panel indicate which model from

Table 9.1 was used for the reconstruction. The highlighted box shows the best results, obtained

using the new model (9.2) of anisotropic propagation with Kerr-dependent diffraction coefficients
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Despite this reasonable agreement with experiment, a first-principles derivation

of the modified propagator has yet to be performed. Likewise, the modification

induced by more complex beam profiles remains to be determined. The results here

simply illustrate that the Gaussian-to-shock evolution can serve as a sensitive probe

for testing and comparing theories with model material responses.

9.5 DSWs in Nonlinear Junctions and Arrays

Up to now, we have studied wave dynamics in homogeneous media, where we have

shown that DSWs are fundamental to energy transport. It should not be surprising,

then, than DSWs play a critical role in the presence of potentials as well. Here, we

give two basic examples: a periodic potential and a single nonlinear junction.

9.5.1 Wave Tunneling in Nonlinear Junctions

It is clear that the introduction of a potential will affect wave propagation, as

reflection and tunneling will create perturbations that launch waves. In the nonlinear

case (for nonsolitonic conditions), energy transport will be dominated by shocks.

Even for a single interface, nonlinearity introduces a variety of new dynamics.

Self-phase modulation modifies boundary conditions, leading to enhanced refrac-

tion and reflection [86, 87] as well as multistability [88], while cross-phase effects

can give rise to splitting solutions for vector beams [89]. For double interfaces, i.e.,

tunneling junctions [90–92], the problem is compounded by the dynamics between

the faces [93, 94]. In the latter case, most work has concentrated on a sequence of

linear–nonlinear connections [86, 90–92]. More recently, potential wells fully

immersed in the nonlinear medium, with nonlinear–nonlinear boundaries, have

been considered [95–100].

Here, we consider the fundamental case of plane-wave scattering from a barrier

potential [94, 101]. A schematic of the geometry is shown in Fig. 9.10. An ordinarily

polarized sheet of light, created using a cylindrical lens, optically induces a

refractive index defect (antiwaveguide) in an 8 � 8 � 8 mm3 SBN:60 photo-

refractive crystal [102, 103]. An extraordinarily polarized plane wave is then sent

across this defect. In the experiments, the angle of incidence (and thus initial kinetic

energy) is fixed to 1� and the barrier width is 200 mm.

To begin, we introduce a potential V(x), constant along z, to an initial field that

has constant intensity everywhere. (This setup is different than the traditional

transmission–reflection geometry, discussed below, in which a plane wave is

incident from the right side of the barrier and there is no initial field on the left

side.) This type of profile occurs in many physical situations, such as flow over and

through an obstacle, and facilitates an understanding of dynamics on the transmis-

sion side (as the background field did in the homogeneous case).
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Tunneling dynamics with initial field everywhere are shown numerically in

Fig. 9.11. As before, simulations were performed using a split-step beam propaga-

tion code, this time using a potential V(x) in (9.1) [a force r?V in (9.3)]. A plane

wave is incident from right to left, giving rise to significant dynamics on both sides

of the barrier potential. In the linear case (Fig. 9.11a,c), phase changes at the

interfaces lead to interference fringes, but there is no evolution of the wavefronts

themselves. By contrast, in the nonlinear case (Fig. 9.11b,d), the development of

large phase gradients leads to large flow velocities. Energy is transported farther

away from the interfaces, creating a distributed profile with much lower peak

intensities, and there is significant evolution dynamics. The reflected and transmit-

ted waves both self-steepen as they propagate, eventually breaking into right and

left-going DSWs. These are the phase jumps/dark soliton trains predicted for

nonlinear tunneling in a superfluid [94, 104].

Interestingly, DSWs appear in the shadow region behind the barrier as well. Here,

the darkness of the shadow implies a higher refractive index (the medium is

defocusing), drawing a back-flow towards the barrier and further encouraging the

tunneling of light through it. From the rest frame of the angled wave, the barrier is

being dragged through it. There is now a (dispersive) bow shock created at the front

of the obstacle, while the dynamics behind the barrier is the optical version of a (1D)

fluid wake. Outgoing shock waves develop at the trailing edge, while optical back-

flow starts to follow the barrier due to the induced low-pressure area in the shadow.

Experimental observations of tunneling dynamics are shown in Fig. 9.12. In the

linear case, there are interference fringes upon reflection and transmission, with

the highest intensity peaks appearing at the barrier edges. In the nonlinear case,

these peaks propagate faster, appearing a significant distance from the junction

walls. Tunneling and back-flow are enhanced, leading to an intensity decay from

Fig. 9.10 Experimental

scheme of nonlinear wave

tunneling
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the interfaces that is more gradual than in the linear case. As predicted [94], dark

solitons in the fluid wake appear only if the barrier height exceeds a threshold value

(~2 � 10�4 for 1� incidence) and these nonlinear effects become more pronounced

as the barrier height is increased.

In tunneling experiments, a common metric of performance is the amount of

energy transmission through the barrier. To measure this, we block half of the plane

wave at the input, so there is only initial field energy on one side of the defect.

As before, we fix the angle of incidence to 1�. Figure 9.13 shows the end result of

tunneling, obtained by integrating the total energy transmitted through the barrier.

In the linear case, there is the usual transmission for low potentials and total internal

reflection for higher barriers, resulting in an exponentially decaying evanescent

wave. In the nonlinear case, there are two distinct behaviors, depending on whether

the initial incidence angle (beam kinetic energy) is above or below the barrier

height [101]. For small barrier heights, linear transport is more efficient, as the self-

defocusing nonlinearity (repulsive interaction) creates an enhanced pressure upon

reflection. For stronger potentials, however, the self-repellant force of the tunneled

light encourages further transport across the barrier, resulting in enhanced trans-

mission. Paradoxically, this nonlinear effect increases for narrower and higher

barrier potentials [94], as the nonlinear pressure within the sandwich layer becomes

more pronounced.

Fig. 9.11 Numerical simulation of full-field scattering by a barrier. Plane wave incidence onto a

barrier centered in x ¼ 0 with FWHM ~100 mm from right (red arrow). x is the spatial transverse
axis, z is propagation axis. (a, c) Linear case. (b, d) Nonlinear case. Note the difference in scale.

Shown are output pictures for (a, b) weak (Dn/n0 ¼ 2 � 10�4), (c, d) strong barrier heights (Dn/
n0 ¼ 6 � 10�4)
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9.5.2 DSWs in Nonlinear Arrays

When many junctions are arranged in an array, the geometry becomes a photonic

lattice. For periodic potentials, the result is the familiar appearance of transmission

bands, forbidden gaps, and Brillouin zones for wave dynamics.

Figure 9.14 shows the linear transmission spectrum and underlying Floquet-Bloch

modes of the waveguide array. As the system is spatial, rather than temporal, the

eigenvalue is the propagation constant b ¼ kzðkxÞ rather than the wave energy (fre-

quency) o. As in other photonic systems, the geometry of the transmission bands

characterizes the dispersion (diffraction) of modes. Momentum regions with concave

curvature (the odd-numberedmodes in Fig. 9.14) experience normal diffraction while

regions with convex curvature experience anomalous diffraction [105, 106].

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

Strong

Nonlinearity

T
ra

ns
m

is
si
on

 (
a.

u.
)

None
Weak

Simulation Experiment

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1o Nonlinear

T
ra

ns
m

is
si
on

 (
a.

u.
)

1.5o Linear
1.5o Nonlinear
1o Linear

Barrier Height Δn/n0 ( x10-4) Barrier Height Δn/n0 ( x10-4)

a b

Fig. 9.13 Wave transmission/tunneling through a small barrier potential. (a) Numerical simula-

tion of transmission through the junction. (b) Experimental results
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arrows indicate the effect of defocusing nonlinearity
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When nonlinearity is present, the propagation constant moves off the linear

transmission bands. If b shifts into a gap, then the wave is decoupled from the

linear modes and can be localized in its own self-induced defect [106]. Examples of

such lattice solitons occur with self-focusing nonlinearity for modes 1 [107] and 3

[108] and self-defocusing nonlinearity for mode 2 [103] in Fig. 9.14. If b shifts in

the opposite direction, e.g., self-focusing for modes 2 and 4 and self-defocusing for

modes 1 and 5, then coupling with linear modes is facilitated. This is the regime of

lattice shock waves.

To observe lattice shocks experimentally, we use the setup shown in Fig. 9.15

[109]. It consists of three basic parts: (1) an ordinarily polarized pair of plane waves

to optically induce a lattice structure [102, 103], (2) an extraordinarily polarized

hump-on-background profile, similar to the input in Fig. 9.2, and (3) an imaging

system to observe the light exiting the crystal. At the exit face of the crystal, the

output is imaged into two CCD cameras, one for the direct (near-field) intensity in

position (x) space and one for the Fourier (far-field) intensity in momentum (k)

space.

Experimental shock waves are shown in Fig. 9.16. For reference, a DSW in the

homogeneous crystal (no induced array) is shown in Fig. 9.16a. The input, not

shown, has a hump-to-background intensity ratio of 10:1. This is the same 1D shock

wave discussed in Sect. 9.3.

Laser (532nm)

Atten .

Image plane

PBS

SBN
crystal

Spatial
CCD

Fourier CCD

c-axis

Lattice

Shock

(A)

(B)

Fig. 9.15 Experimental setup of shock waves in nonlinear arrays. Light from a 532 nm laser gets

split by a polarizing beam splitter. The ordinarily polarized beam passes through a Mach–Zehnder

interferometer (A) to induce a waveguide array in an SBN:75 crystal. The extraordinarily

polarized beam passes through a modified Mach–Zehnder interferometer (B) to create a Gauss-

ian-on-background input shock profile. Light exiting the crystal is imaged into two CCD cameras,

one for the intensity in position (x) space, one for the power spectrum in momentum (k) space

(obtained by performing an optical Fourier transform). To excite a second-band Bloch background

for a higher-band shock, the plane wave arm in (B) is blocked and the interferometer in (A) is

partially polarized in the extraordinary direction
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Figure 9.16c shows the output of the same hump-on-background profile

launched into a waveguide array with period D ¼ 30 mm. In this case, the intensity

ratio of hump to background remains 10:1 while the hump-to-lattice ratio is 1:1.

Due to the lattice potential, the front does not propagate as fast, and the smaller-

scale oscillations are lost. The slower speed arises from the periodic energy barrier

as the wave tunnels from site to site, while the size of the waveguide (potential well)

sets the spatial scale for oscillations.

Further insight into the basic shock behavior can be obtained from the power

spectrum, shown in Fig. 9.16b,d. For the homogeneous shock, there is a large peak

at k ¼ 0, due to the plane-wave background, surrounded by two broader bands: an

inner one representing large-scale envelope modulations and an outer one

representing the small-scale oscillations in the shock tails. For the lattice shock,

the central peak remains but two additional side peaks appear, one each at the

double-Bragg angles �2kB ¼ �2p/D. The reasons for these can be seen in

Fig. 9.17, where we propagate each of the input components separately through

the nonlinear array. For the Gaussian input beam (Fig. 9.17a,b), the output intensity

profile is a Gaussian exp½�x2�modulated by the periodic lattice cosðkBxÞ exp½�x2�.
The corresponding profile in k-space (obtained by a simple Fourier transform) is

exp½�ðk � kBÞ2=4� þ exp½�ðk þ kBÞ2=4�. The nonlinear output spectrum of the

plane-wave input is shown in Fig. 9.17c,d. As can be seen, this uniform input

excites a broad spectrum of modes across the first band, with dominant peaks at

k ¼ 0 and k ¼ �2kB. The latter peaks are a direct result of the lattice periodicity,
aided by the nonlinearity pushing down the propagation constant (from mode 1 in

Figs. 9.3–9.9 to mode 5). Note that it is mode 5 from the third band, rather than

Fig. 9.16 Output pictures of dispersive shock waves in homogeneous and lattice systems. The

Gaussian-on-background input intensity ratio is 10:1. (a, b) homogeneous system; (c, d) against

fundamental, first-band background (mode 1); (e, f) against second-band, cosine background

(mode 3). In (c–f), the period of the lattice is 30 mm. Left and right columns show intensity in

position (x) space and power spectrum in momentum (k) space, respectively
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mode 4 from the second band, because of the concave curvature of the band; also,

excitation of this mode sharpens the edges within the waveguides (its dipole

structure is phase-shifted), rather than contributing an intensity dip in the wave-

guide centers. The fact that the broad output peaks at �kB from the Gaussian input

(Fig. 9.17b) do not appear in the discretized shock spectrum (Fig. 9.16d) means that

the energy initially in the Gaussian hump has been effectively coupled to the

background light.

Interpretation of the previous results is complicated by the fact that the

background plane wave is not a pure eigenmode of the underlying array. To excite

a cleaner lattice shock wave, we launch the initial Gaussian input against the

cosine Floquet-Bloch mode at the edge of the first Brillouin zone (mode 3 in

Fig. 9.14). This mode is excited by partially rotating the polarization of the array

beams (Fig. 9.15a) in the extraordinary direction and recalibrating the intensity

ratios. Compared with the previous shock wave (Fig. 9.16c), the Bloch shock

wave (Fig. 9.16e) has much more intensity and higher spatial resolution in

the shock tails. As shown by the power spectrum in Fig. 9.16f, this real-space

behavior arises from wave coupling to higher-order modes. The two high peaks

at�kB are from the initial cosine mode, with the spread around these peaks showing

clear coupling to other modes within the band. In contrast with the broad first-band

excitation in Fig. 9.16d, there is a sharp cutoff halfway through the Brillouin zone as

the band curvature changes sign. As before, though, the nonlinearity couples the

initial background mode to the next-higher mode modulo 2p/D. These are the

peaks appearing at an additional �2kB in Figs. 9.16f and 9.17f.

Fig. 9.17 Output pictures of different initial intensity profiles in optical lattices. (a, b) Bright

Gaussian hump with width 15 mm, intensity ratio 1:1 to the lattice; (c, d) plane background wave,

with intensity ratio 1:10 to the lattice; (e, f) cosine background wave, with intensity ratio 1:10 to

the lattice. The period of the lattice is 30 mm. Left and right columns show intensity in position (x)

space and power spectrum in momentum (k) space, respectively
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9.6 Discussion and Conclusion

Similar to the soliton, the DSW is a basic unit for energy transport. However,

solitons require a special balance between nonlinearity and dispersion/diffraction,

while DSWs arise from the action of these forces in concert. This distinction makes

soliton dynamics more particle-like, while the behavior of dispersive shocks is

inherently wave-like. Indeed, DSWs are naturally dynamic creatures, with wave

steepening and front spreading an integral part of their character.

When a wave encounters a potential in a self-defocusing medium, the

subsequent radiation is dominated by dispersive shocks. This includes flow around

material obstacles [41, 110–112] as well as self-induced potentials from collision

and reflection [101, 113]. In the former case, the evolution of 1D shock waves

propagating in two dimensions has led to the observation of fluid-like instabilities

[114] and the onset of turbulence [41]. In the case of collisions, interacting fronts

give rise to a nonlinear Huygens’ principle, in which superposition of waves creates

high-intensity sources for new shocks [22]. The result can lead to multi-phase flow

[113] and, in arrays, self-focusing from mutual pressure [115–117]. When the

potential allows tunneling, e.g., in nonlinear junctions, shock interaction at

the boundary can lead to nontrivial transmission and hysteresis [101].

When external pressure leads to collapse, e.g., of a dark stripe, the resulting

gradient catastrophe generates a fan of dark soliton filaments [118]. Similar soliton

emission occurs in the temporal domain in supercontinuum generation [119] and

optical rogue waves [120], in which dispersive waves and solitons created with

opposite dispersion properties interact in optical fiber [121]. In the spatial domain,

supercontinua have been observed in arrays [117, 122], where the four-wave

mixing of Bloch modes leads to a wide spectrum of daughter shocks. Opposite

shock-soliton behavior has also been observed for beams in self-focusing media, in

which wave diffraction from a sharp edge was increased due to shock-generated

solitons radiating outward from the edge [112].

The increased sensitivity to phase and intensity changes suggests that nonlinear

optical systems hold much potential for sensing and imaging applications. Indeed,

the basic DSW can be considered as a nonlinear point spread function. This aspect

was used above in Sect. 9.4 as a probe for material characterization and can serve as

a type of optical limiter. For use in imaging, however, care must be taken, as the

intensity-dependent propagation is not shift-invariant and superposition does not

hold. On the other hand, the dispersive (rather than dissipative) dynamics of the

shock waves means that both energy and entropy are conserved. With suitable

knowledge of the nonlinear propagator, interactions can be deconvolved, enabling

new forms of dynamical imaging [85].

The ability to easily control the input, directly image the output, and create

complex potentials gives optics a considerable advantage over other systems that

support DSWs. Particular modes and waveforms can be excited nearly at will, with

measurement possible in the full position-momentum (x,k) phase space. In this

chapter, we have highlighted only the first generation of experiments, showing
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basic shock waves in homogeneous, interface, and lattice systems. Many more

examples, including interactions, boundary layer flow, instabilities, and turbulence,

remain to be demonstrated. Indeed, any (nonviscous) dynamics possible in fluids

should arise in optics as well. Likewise, observations with light may back-react on

the fluid systems which inspired them, particularly with regard to flow control.

These will be subjects for future work.
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Chapter 10

Nonlinear Interaction of Intense

Ultrashort Filaments

Heping Zeng and Jia Liu

10.1 Introduction

Rapid advance in laser technology has greatly increased the attainable high-peak-

intensity range of ultrashort lasers. By using well-developed adaptive correction of

the wave-front distortion with deformable mirrors, intense femtosecond pulses

could be tightly focused into a nearly diffraction-limited point with a peak intensity

up to 2 � 1022 W/cm2 [1]. Such a high intensity could only be reached in vacuum

without multiphoton ionization to detrimentally influence the pulse focusing and

tight focusing produced a limited spatial region of high-peak intensity, while many

applications require tightly guided high-peak intensities along sufficiently long

interaction distances. To meet this requirement, a number of approaches have

been investigated and guiding of intense pulses has been demonstrated in hollow

capillary [2], relativistic channeling [3], plasma waveguide [4], and self-channeled

filaments [5–9]. Among all these demonstrated approaches, plasma guiding of

intense pulses was demonstrated as an efficient solution to avoid detrimental

defocusing caused by further multiphoton ionization as charged particles within

plasma typically have quite high ionization potentials and thus the already-existed

plasma experiences negligible laser-induced changes to alter the pulse propagation

dynamics. Although pulse propagation might be influenced by hydrodynamic

plasma expansion, tightly guiding in plasma waveguide could reach up to

5 � 1017 W/cm2 [10]. Obviously, such a tight focusing or guiding of intense

laser pulses is quite difficult in air or other neutral media due to unavoidable
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defocusing from multiphoton-ionization-induced plasma. There always exists a

counterbalance between Kerr self-focusing and plasma-defocusing in neutral

media, bringing about robust self-guided channels that facilitate abundant self-action

nonlinear processes, such as spatial self-cleaning [5], intensity-clamping [11],

and self-phase locking of nonlinearly coupled multicolor pulses [6]. Filamentary

propagation of intense femtosecond laser pulses has been so far demonstrated quite

useful for super-continuum white-light generation [7], pulse self-compression

down to a few cycles in duration [8, 9], harmonic generation [6], and so on. All

the nonlinear processes not only enforce observable changes on the spatiotemporal

dynamics of the intense ultrashort pulses during their nonlinear propagation but

also prohibit a tight focusing or guiding in small cores. The focusable peak intensity

could not increase to quite a high level since any possible tendency to increase

the peak intensity to quite a high level would be defeated by the accompanied

multiphoton-ionization-induced plasma defocusing. In air, the peak intensity in

filamentary self-guided waveguides was found to be clamped down to about

5 � 1013 W/cm2 [11]. As the input power increases much higher than the critical

self-focusing threshold, multiple filaments occur [12] and as a result, filament-

mediated nonlinear interactions take place in spatially separated channels. Recent

experimental explorations on the interaction of multiple femtosecond filaments

have already revealed quite a lot intriguing features of spatiotemporal light bullets

with abundant self-action and cross-coupling nonlinearities [13–17]. In molecular

gases, the spatiotemporal phase modulation induced by molecular alignment

[18, 19] offers an additional degree of freedom to control filamentation [20–25]

and filament interaction [26, 27]. Nonlinear filament interaction and its dynamic

control may not only stimulate potential applications with nonlinearly coupled

multiple filaments instead of single filaments but also solve current challenge on

coalescence of multiple intense ultrashort pulses to beat the tightly guided peak

intensity beyond the intensity-clamping limit.

On the other hand, current available nonlinear optical waveguides cannot guide

high-peak-intensity ultrashort pulses. Standard optical fibers guide light via total

internal reflection, and high-fidelity delivery of ultrashort laser pulses was limited

so far less than the nanojoule level. A new paradigm of light guidance was realized

in photonic-crystal fibers [28, 29] by creating photonic band gaps with periodic

wavelength-scale lattice of microstructures in glass to trap light in hollow fiber core

of refractive index lower than that of the cladding, wherein optical nonlinearities

are reduced by a factor of 1,000 lower than the conventional silica-core fibers, and

thus supports megawatt optical solitons of femtosecond pulses [30]. Peak intensities

are still limited by the material damage at the input and high-peak-intensity

photonic-crystal waveguides or nonlinear waveguide couplers are so far unrealized.

Photonic-crystal waveguides could be also created in an all-optical way by record-

ing interference pattern in photosensitive media [31], typically applicable to guide

low-intensity beams. Photo-sensitivity in solid materials could be used to record

dynamic structures of four-wave mixing for high-density disk storage [32] and

three-dimensional (3D) photonic crystals [33]. It is also well-known that nonlinear

interference of non-collinear beams could establish transient holographic gratings

by virtue of nonlinear changes of the refractive index within a limited interaction
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length, which induced nonlinear diffraction rather than tightly guiding. In bulk

quadratic nonlinear crystals, two-dimensional (2D) transient Kerr grating [34]

could be formed on the basis of nonlinear wave-packet breakup involved

in cascaded quadratic nonlinear couplings during second harmonic generation.

By using the preformed 2D transient grating, synchronized super-continuum seed

pulses were diffracted and the diffracted seeds were amplified in the corresponding

diffraction directions, resulting in 2D up-converted multicolor arrays along the

diffraction directions [34]. Laser-induced gratings could be extended to gaseous

media (such as air) through multiphoton ionization and other higher-order optical

nonlinear effects with self-projected high-intensity femtosecond laser pulses.

At high-peak intensities, the transient Kerr gratings were mediated by filamentation

in spatially localized region. Well-localized plasma channels could not only estab-

lish nonlinear waveguides to facilitate nonlinear interaction of the laser pulses but

also enforce filamentation into different plasma microstructures that could last with

a duration much longer than the excitation pulses. Periodic plasma microstructures

could be used as plasma photonic components with ultrahigh intensity damage

thresholds to sustain intense laser fields. In addition, nonlinear interaction of

preformed plasma microstructures with intense laser pulses exhibits unique dynam-

ics with multiphoton-sensitive responses of extremely high nonlinearities.

All-optical control of the plasma channels is expected to stimulate intriguing

studies of solitonary-like waves in nonlinear waveguides at ultrahigh peak

intensities, including nonlinear filament interaction, fusion [13, 14] and spiraling

[15–17] of interacting multiple filaments, and so on. In particular, the full potential

of photonic crystal waveguides could be maximized to guide high-peak-intensity

pulses over relatively long lengths by creating a wavelength-scale periodic plasma

density modulation to change the local refractive index periodically in the

surrounding gaseous phase media. This could be realized with spatial interference

grating established by using non-collinearly overlapped intense femtosecond pulses

to assist coalescence of multiple filaments into a lattice of strongly coupled parallel

self-channels along the entire waveguide length, dubbed hereby as plasma lattices,

which could be extended from 1D plasma gratings excited by two non-collinear

interfering pulses to 2D plasma photonic crystals by using three non-collinear and

non-coplanar interfering pulses.

In this review, we show that coalescence of interfering non-collinear intense

femtosecond pulses assisted periodic wavelength-scale self-channeling into

photonic-crystal plasma waveguides with encircling air molecules, wherein

high-peak-intensity light bullets were tightly guided with strong self-channeled

spatiotemporal couplings and survived as particle-like attraction and repulsion.

Two non-collinearly intersected filaments were fused several millimeters long in

their interaction region and then departed along their corresponding incident

directions. Spatially localized Kerr self-focusing around constructive interference

intensity peaks followed its counterbalance with local plasma defocusing and

accordingly, the non-collinearly propagated intense ultrashort pulses in air were

efficiently coalesced into regularly spaced filament bundles, one-dimensional (1D)

or 2D plasma lattice with periodic plasma density modulation. Such a periodic

modulation not only supported efficient coupling and coalescence of multiple
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intense femtosecond pulses at arbitrary incident angles but also influenced the

nonlinear frequency conversions. Third harmonic generation was observed to

enhance at least two orders of magnitude in the presence of preformed plasma

lattices. As a result of the periodically distributed refractive index modulation,

long-lifetime 1D and 2D plasma gratings were generated, which were clearly

confirmed by the Bragg diffraction and in-line holographic imaging. We anticipate

that our results are of significant importance in creating photonic-crystal waveguides

for high-order harmonic generation and high-intensity relativistic optics.

10.2 Nonlinear Spatiotemporal Coupling

of Interacting Filaments

If two intense femtosecond pulses are non-collinearly overlapped in air, their spatial

interference redistributes the intensity according to the interference fringes and

local intensity peaks are located around the constructive interference peaks. Self-

focusing occurs at first around the interference intensity peaks, which further

makes the local intensity increase, followed by an increased multiphoton ionization

probability. Self-focusing around the interference peaks is then counterbalanced by

multiphoton-ionization-induced plasma defocusing and higher-order terms of the

nonlinear refractive index, giving rise to filamentation in periodically localized

regions with periodic plasma density modulation along the interference fringes.

As a consequence, wavelength-scale periodic lattice of plasma microstructures are

created, where strongly coupled parallel self-channels are formed along a relatively

long distance, manifesting as long-distance projection of the constructive and

destructive interference fringes along the bisector of the non-collinearly overlapped

filaments. In distinct contrast with transient holographic gratings, the plasma

microstructures induce tightly guiding rather than nonlinear diffraction, and accord-

ingly, input pulses will be eventually guided into a bundle of plasma self-channels

of local reduction in the refractive index encircled by air, which have wavelength-

scale structures similar to those of photonic-crystal fibers. Extremely high-peak

intensities could be guided in the wavelength-scale plasma self-channels with

strong spatiotemporal couplings, wherein the counter-balance among self-focusing,

plasma defocusing, and beam diffraction could be roughly estimated by

n2I ¼ rðIÞ=2rc þ ð1:22l0Þ2=ð8pn0d2Þ; (10.1)

with the nonlinear refractive index n2, critical plasma density rc above which the

plasma becomes opaque, and self-channel diameter d. As the electron densities are

dramatically increased within localized channels of diameters much smaller than

the beam waist, the clamping intensity I is expected to increase dramatically.

Intrinsically different from internal light reflection of the conventional fiber [35]

or diffraction in photonic band gap fibers [28–30], intense pulse guiding in the

plasma lattices is caused by the strong spatiotemporal couplings in the plasma self-

channels. Such unique intrinsic features are anticipated to stimulate various
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technological and scientific breakthroughs in various fields, such as high precision

frequency measurements [36], high-intensity nonlinear optics [6], ultrafast pulse

compression [8, 9], control of spontaneous emissions [37], sharp bending of intense

pulses [38], and zero-threshold white-light lasing [39].

The experiments were performed with a Ti:sapphire chirped pulse amplifier

(1 kHz repetition rate, 50 fs, 800 nm, 2.0 mJ). The output laser pulse was equally

split into a pump and probe beams that were then focused with two f ¼ 1,000 mm

high reflection coated concave mirrors, inducing two non-collinear filaments in air

that slightly crossed nearby their foci with a variable crossing angle from 2� to 16�.
Without any temporal overlapping, the induced filaments exhibited no observable

couplings and as shown in Fig. 10.1a, independent self-guiding was accompanied

by spatial self-cleaning [5] in the filament core over a typical length about ~40 mm,

leading to a significant improvement of the spatial distribution of the output pulses

in the far-field region (Fig. 10.1c). As these two incident ultrashort pulses with the

same polarization were synchronized in the intersection region, the local field

intensity in the overlapped region increased significantly due to their intensity

interference, and the corresponding plasma density increased as well. Self-focusing

around the interference peaks attracted surrounding laser energies to the plasma

subchannels, resulting in fusion of the non-collinear filaments into plasma lattice.

Fig. 10.1 Camera-captured pictures of the intersected non-collinear filaments from the top view

as the intersecting filaments were (a) delayed far away and (b) synchronized with observable

filament interaction, and the observed spatial distributions of the interacting filaments in the far-

field region, indicating no filament interaction (c) and strong spatiotemporal couplings (d),

respectively
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Strong nonlinear interaction was observed when two filaments were synchronized.

As expected, periodic distributions of the local intensity in the overlapping

region could be produced due to the constructive and destructive interference

of the incident pulses. Such intensity modulation of the interaction region could

thus in turn modulate the local refractive index. The refractive index of air is

closely associated to the electronic Kerr effect and ionization-induced plasma.

The electronic Kerr effect produces a refractive index change along the excita-

tion polarization axis as

nKerrk ¼ n2I; (10.2)

while the perpendicular component is proportional to

nKerr? ¼ 1

3
nKerrk; (10.3)

where n2 is the Kerr nonlinear coefficient related to the third-order susceptibility,

I is the peak intensity of the laser pulse. The positive coefficient n2 in air leads to a

refractive index increase in the presence of intense pulse. However, the Gaussian

beam distribution causes a convex lens-like wave-front bending, leading to the self-

focusing of a laser beam. Meanwhile, ionization takes place with the increased

pulse intensity, together with a burst of generation of electrons or plasma.

At sufficiently high-peak intensities that multiphoton ionization of air molecules

becomes observable, plasma generated during pulse propagation in air makes a

significant reduction of the refractive index in the interaction regions according to

the phenomenon expression

n ffi n0 � rðr; tÞ=2rc; (10.4)

where the decrease of the refractive index n0 caused by the local density of free

electrons r(r, t) is normalized with respect to that of the critical plasma density

rc ¼ e0meo0
2/e2 (me and e are the electron mass and charge,o0 is central frequency

of the laser pulse). The refractive index variation induced by plasma is eventually

balanced by that from Kerr nonlinearity. The Kerr and plasma refractive index

variation and the balance itself are sensitive to the local peak intensity.

As shown in Fig. 10.1b, a new bright white fluorescence bulb emerged as a result

of filament fusion [40]. Such fusion could sustain a finite propagation distance due

to the energy loss from multiphoton ionization, diffraction, fluorescence, and so on.

As shown in Fig. 10.2a, the fusion length decreased from 4.2 to 0.2 mm as the non-

collinear crossing angle varied from 2.0� to 16.0�. The far-field distributions were

modulated with butterfly-like expansion of each filament and thread-like fringes

between the two filaments (Fig. 10.1d).

In order to investigate the details about the observed butterfly-like patterns, we

chose five points and used a fiber-coupled spectrometer to measure the corresponding

spectrum. As shown in Fig. 10.2b, the spectrum is gradually broadened from point A
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to point D and blue-shifted frequency components appear as spectral humps. Spectral

breakups were observed in the upper side of the butterfly-like pattern. The observed

spectral broadening and splitting could be ascribed to the strong spatiotemporal

coupling in the interaction region, as well as the complicated self-phase and cross-

phase modulations. As a whole, the butterfly-like patterns angularly dispersed in a

spectral range from 650 to 830 nm, while the inner thread-like fringes ranged from

775 to 825 nm. The observed spectral difference implied that the far-field butterfly-

like patterns and inner thread-like fringes should be originated from quite different

nonlinear processes. As the coalesced filaments in the plasma lattice experienced

fission into different propagation directions with quite different energy distributions,

the spatiotemporal modulation and plasma density modulation experienced by the

propagating pulses were completely different. Butterfly-like bending in the far-field

region revealed the spatial inhomogeneous plasma density distribution in the crossing

plane and planar plasma waveguides of small thickness vertical to crossing plane,

while the mysterious inner thread-like fringes demonstrated self-guided propagation

within the plasma waveguide even after the filament fission out of the plasma lattice.

10.3 Visualization of the Plasma Density Modulation

The wavelength-scale plasma density modulation and self-projection of the

interfering pulses in the interaction region could be directly imaged by inserting

therein a thin plate at a grazing angle, facilitating a direct imaging of the self-

projected intensity interference fringes to explore the spatial periodicity of the

guided laser intensity and visualize the filamentary propagation of the laser fields

with a high spatial resolution determined by the 4-f optical imaging system to reveal

the periodic plasma density modulation. The plasma microstructures were

accompanied by spatially inhomogeneous fluorescence change of the ionized

Fig. 10.2 (a) The length of the filament fusion as a function of the crossing angle between two

non-collinearly intersected filaments. (b) The spectrum distribution at five different positions in

the butterfly-like pattern
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molecules and thus their spatial distribution could be captured by collecting the

plasma fluorescence from ionized molecules into an imaging system, enabling a

nearly diffraction-limited spatial resolution for the plasma microstructures.

As plasma self-channels experienced hydrodynamic expansion and ultrafast expo-

nential plasma decay after the interacting filaments, the ultrafast dynamics of the

preformed plasma should be recorded in a holographic way with a time-delayed

femtosecond probe pulse passing through the interaction region, whichmeasured the

dynamic change of the local refractive index with a spatial resolution determined by

the 4-f optical imaging system. The holographic imaging provided spatial informa-

tion on the ultrafast evolution of the plasma density modulation and an accurate

lifetime measurement of the preformed plasma lattice. Throughout this review

article, we used all the three methods to visualize the non-collinearly interfering

filaments and the filament coalescence in the interaction region as well as the

nonlinear interaction of preformed plasma lattices with intense femtosecond pulses,

such as nonlinear Bragg diffraction from preformed plasma gratings, 1D and 2D

plasma density modulations, nonlinear energy transfer among interacting filaments,

filament-interaction-mediated spatiotemporal phase modulation, filamentation sup-

pression in the weak interference fringes, multicolor filament interaction, third

harmonic generation modulated by plasma lattice, and some other intriguing

phenomena.

10.3.1 Direct Imaging of Plasma Channel at a Grazing Angle

The filament interaction region could be directly imaged with a setup schematically

shown in Fig. 10.3a, where a thin plate was inserted at a grazing angle nearby the

filament-crossing point. The thin plate reflected part of the laser fields [41], which

were directly recorded by a CCD camera after a 4-f configuration optical imaging

system. The recorded intensity distribution revealed the laser intensity distribution

in the filament interaction region.

The inset in Fig. 10.3a presents the captured intensity distribution for the cases

without and with filament interaction, respectively. No intensity modulation was

observed when the filaments were intentionally delayed far away so that no

interference took place, while periodic intensity modulation and spatial localization

of the laser fields occurred inside the interaction region for synchronized

intersecting filaments, which were observed to exhibit distinct dependence on the

intensity interference fringes (Fig. 10.3b). The observed spatial intensity distribu-

tion changed its modulation depth as the incident laser intensity varied. Sharp

intensity peaks became more observable as two incident lasers increased in inten-

sity. Nevertheless, the observed central modulation depth became almost saturated

as both laser pulses underwent filamentation. As shown in the insets of Fig. 10.3a,

the observed intensity modulation was enveloped with a spatial intensity profile

quite different from the individual incident filaments, indicating that the laser

fields in the interaction region were completely redistributed with spatiotemporal
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cross-couplings and spatial modulation of the plasma density. In comparison with

individual incident filaments, the thickness of the filamentary interference fringes

was enlarged (vertical to the filament-crossing plane) while the width of the whole

profile was almost the same (parallel with the filament-crossing plane), implying

that there occurred spatially well-localized filamentation around each interference

peaks. In the filament-crossing plane, laser energies were attracted in the fringe self-

channels with more serious plasma defocusing around the interference peaks, while

along the direction vertical to the filament-crossing plane, the filamentary fringe

peaks were expanded with an enlarged thickness by plasma defocusing. As a whole,

the counterbalance between Kerr self-focusing and plasma focusing equivalently

functioned as periodically distributed cylindrical lens arrays around the interference

fringes due to the inhomogeneous intensity distribution in the interaction region.

Assuming that the inserted thin plate was tilted at a grazing angle yg with respect
to the bisector of the incident filaments of core diameter D, the captured image was

L ~ 2D/sin(yg) in length and accordingly, the captured intensity distribution actu-

ally came from the intensity integrated over a length L of the overlapped filaments.

The measured spatial distribution illustrated the filamentary propagation along the

filament bisector. The filamentary self-guiding with an observation length L clearly

indicated self-projection of intensity interference along the bisector, with the spatial

intensity modulation period determined by

L ¼ lc=2 sinðy=2Þ; (10.5)

where y is the crossing angle of the non-collinear beams, lc is the central wave-

length. Figure 10.3b shows the measured intensity modulation periods at different

crossing angles y (red dotted), which fits well with the interference fringe (blue-

squared curve).
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Fig. 10.3 (a) The schematic measurement of the interaction region by direct imaging of plasma

channels with a thin plate inserted at a grazing angle. (b)The transverse fringe periods and the

corresponding intensity distributions (insets) of the non-collinearly intersected filaments at differ-

ent crossing angles from ref. [41]
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10.3.2 Fluorescence Detection of the Femtosecond Filaments

Multiphoton ionization of air molecules occurs during intense femtosecond

filamentation and some ionized molecules are excited to highly lying electronic

states, which subsequently undergoes electronic transitions to emit characteristic

fluorescence of plasma [42]. For filaments in air, the observed visible and near UV

fluorescence were mainly assigned to the second positive band system of N2 and the

first negative system of N2
+ [43–45]. The first negative system (B2Su

+–X2Sg
+),

from well marked sequences and degraded to shorter wavelengths, is the main

system of N2
+, originated from the laser-induced multiphoton ionization or

tunneling ionization of neutral nitrogen molecule, while the second positive band

system (C3Pu–B
3Pg) comes from the transitions [42]:

N2 + N2 ! N4
+,

N4
+ + e ! N2(C

3Pu) + N.

Figure 10.4 depicts the typical filamentation fluorescence spectra, measured by a

fiber-coupled gated imaging spectrometer (ANDOR, Mechelle 5000), with the

transition bands marked near the corresponding spectral lines.

As shown in Fig. 10.1b, strong interaction/coupling with a bright white fluores-

cence bulb was observed, indicating a significant fluorescence enhancement in the

interaction region. A fluorescence microscope with an optical imaging system and a

UV-intensified CCD camera (DS-QilMc, Nikon), as schematically shown in

Fig. 10.5a, was used to monitor the plasma structure near the interaction region,

whose image was captured by a CCD camera and digitized by computer software.

A band-pass filter from 250 to 380 nm was used to filter out the fluorescence from

the neutrals and excited ions.

Fig. 10.4 Typical

fluorescence spectrum of

a linearly polarized laser-

induced filament in air in

the range of 330–450 nm.

The corresponding transition

band are marked near the

spectral lines
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Figure 10.5b and c shows the measured fluorescence profiles of the interaction

region without and with interactions. We observed an enormous enhancement of

the fluorescence with a distinct periodic distribution in the overlapping region,

justifying the existence of intensity and refractive index modulation inside the

interaction region. As mentioned above, the spatial size of the plasma channel

could be simply manipulated by changing the crossing angle of the non-collinear

filaments. Figure 10.6 shows the fluorescence images and transverse profiles of the

observed 1D plasma channels between two filaments with different crossing angles

2.7�, 4.4�, and 5.3�. The corresponding spatial periodic modulation period could be

calculated from (10.5). The corresponding period of the 1D plasma lattices was

measured to be 8.8, 10.4, and 17.0 mm, respectively. The measured periods fit well

Fig. 10.5 (a) The schematic of the fluorescence detection of the femtosecond filament structures.

Measured N2 fluorescence profile of the interaction region (b) without and (c) with filament

interactions

Fig. 10.6 The fluorescence images and the related transverse profiles of the observed 1D plasma

channels with different forming cross angles of (a) 2.7�, (b) 4.4�, and (c) 5.3�
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with the calculated interference fringe periods. As the crossing angle increased, the

number of the plasma self-channels increased approximately as N ~ [D/L] (D
represents the typical core diameter of the interfering filaments), while the self-

channel width decreased. According to the observed fluorescence images, the

periodic modulation near the filament bisector exhibited a nearly homogeneous

distribution, with a flattened envelope of the spatial profile. Those observations

again confirmed that the intensity and plasma density at the filament overlapping

centers were modulated with homogeneously saturated depths as the interfering

filaments were coalesced into plasma self-channels.

10.3.3 Holographic Recording of the Plasma Dynamic Evolution

Holographic recording serves as an important tool to record fast processes by

making holograms, and it allows one to catch even ultrafast events and retain all

the involved information. For example, a hologram contains the information

about the shape, size, and brightness of an object, or the pulse’s amplitude and

phase information in the case of laser pulse propagation. Up to now, in the field of

high-intensity laser physics, the holographic imaging has been applied in the studies

of ultrafast events like filamentation dynamics [46, 47], greasing the speed of light,

and watching the molecular dynamics of chemical reactions [48].

Here, we implemented holographic imaging in capturing plasma wake generated

by the filamentary propagation of intense femtosecond pulses in neutral medium.

The setup of the in-line digital holography is shown in Fig. 10.7. Briefly, an 800-nm

probe pulse, propagating perpendicularly to the filament, was used to record the

Fig. 10.7 The experimental setup for holographic recording of the plasma dynamics. A weak

probe pulse propagates through the filament after a certain time delay. The magnification of the

system is determined by f2/f1. L1, L2 lenses
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structure of filament interaction region in air. Weak probe was used here to order to

minimize detrimental influence induced by the probe pulse itself on the preformed

plasma microstructures. The image was magnified by a 4-f configuration imaging

system with a factor of M ¼ f2/f1. The CCD camera was placed at the image plane

(at the position L ¼ 0 as shown in Fig. 10.7) to record the magnified image of the

interaction region. If the CCD camera was placed at a distance L from the image

plane, what captured was actually the interference between the transmitted and

diffracted probe pulse after the interacting filaments [48], which could be used to

retrieve the phase and refractive index change induced by the filamentation chan-

nel, and estimate the involved electron density distribution. As compared with the

above two methods, the holographic recording technique provided a proficient

approach to decode the time evolution of the plasma self-channels.

10.4 Plasma Waveguide Induced by Filament Interaction

Asmentioned above, we observed strong spatiotemporal couplings in the interaction

region when two intersected filaments were synchronized. The N2 fluorescence

imaging technique provided a straightforward observation of the periodic structure

in the interaction region. As shown in Fig. 10.5c, a significant enhancement of the

fluorescence and also notable periodic modulation in the overlapping region were

observed as compared with that of a single filament. Apart from the fluorescence

enhancement, modulated far-field distribution of butterfly-like spatial beam profiles

and thread-like fringes were observed. Note that the thread-like fringes could not

be originated from diffraction of the incident pulse, since diffraction should be a

bright spot rather than thread-like fringes. The thread-like fringes were measured to

exhibit a spectrum in the range from 775 to 825 nm. The thread-like fringes had quite

similar structures with the observed periodic plasma microstructures, suggesting

their intrinsic origin as self-guiding within the plasma self-channels, which could be

understood as follows. Interfering pulses built up a local intensity modulation in the

interaction region, Kerr self-focusing was at first launched around the constructive

interference peaks [49], where filamentary propagation was reached via spatially

localized counterbalance between self-focusing and plasma defocusing, leading to

tight guiding of the incident laser pulses and a wavelength-scale periodic plasma

density modulation. After a few millimeters of coalesced propagation, filamentary

self-guiding could no longer maintain its counterbalance due to diffraction and other

losses, the guided lasers within the plasma self-channels were partly projected in the

far-field region as thread-like fringes as experimentally observed. Most of the pulse

energies were diffracted out of the plasma self-channels at Bragg angles, i.e., along

the directions almost the same as the incident pulses. Slight beam bending was

observed due to inhomogeneous spatial distribution of the generated plasma density,

which functioned equivalently as a plasma lens to deform the incident pulse wave-

fronts. Strong spatiotemporal couplings inside the plasma self-channels brought

about significant cross-phase modulations and spatial-resolved changes of the

diffracted pulses.
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As a whole, the filament interaction processes functioned equivalently as X-type

nonlinear waveguide couplers for high-peak intensity laser pulses. Two interfering

pulses launched individual filamentation and then were coalesced into plasma

self-channels along the intensity interference peaks at the input port of the

plasma waveguide coupler. After a few millimeters of coalesced co-propagation

with strong spatiotemporal couplings, the tightly guided laser pulses underwent

filament fission and most of the laser energies were diffracted along the incident

pulse directions and a small portion of guided pulses were projected along

the plasma lattice, which could be regarded as the output port of the plasma

waveguide coupler. Interestingly, the output pulses along the incident directions

were demonstrated to have almost the same intensity ratio as the incident pulses.

This presented a solid evidence that the coalesced filamentary propagation in the

plasma self-channels came from self-projection of the interference intensity fringes,

i.e., the filament interference maintained its fringe contrast during the whole

coalesced propagation. As we had two beams at the input port, two main output

beams and multiple fringes at the output port, the generated plasma microstructures

could be used as two-to-multiple nonlinear waveguide couplers. The strong

spatiotemporal and plasma-laser couplings within the plasma couplers may find

interesting application in tailoring the spatiotemporal dynamics of the involved

intense ultrashort pulses.

Due to the aperture size limitation, our CCD camera could only detect a small

spatial range of the whole interaction region. In order to further confirm our

clarification, we captured the fluorescence image of the whole interaction region

by moving the optical imaging system and CCD camera along the bisector of

the interacting filaments, as shown in Fig. 10.8a. Interestingly, the interference existed

not only in the center of the interaction region but also in the starting and

ending regions where spatial overlapping was not so obvious. The energy reservoir

played a vital role in the formation and persistence of coalesced filament interaction

and plasma microstructures [50], and most of the filament energy was distributed in

its energy reservoir. Strong energy reservoir was generated with a surrounding

energy attraction in the center of the filament interaction region, and weak

but regularly separated intensity modulation also occurred in starting and ending

regions of very small spatial overlapping due to the interference between the

energy reservoirs. From this point of view, the observed non-collinear filament

interference as shown in Fig. 10.8 differed a lot from the standard optical interference

of weak lasers.

Non-collinear pulses at arbitrary incident angles could be efficiently coupled

into the periodic plasma structure (1D lattice) by automatic balance between the

incident beam wave-vectors and plasma lattice periodicity, as shown in Fig. 10.8c.

This took place owing to

K1

! þ K2

! ¼ 2p=L; (10.6)
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where K1;2

!
represents the wave-vectors of the incident pulses and 2p=L is the

wave-vector of the wavelength-scale plasma microstructures. As the plasma density

modulation was formed by the incident pulses themselves, the wave-vector

matching was adaptively reached for efficiently coupling the incident pulses

under Bragg conditions.

Figure 10.8b and d shows the three-dimensional plots of the leading and trailing

parts of the interaction region, which confirmed fusion and guiding of the input

pulse along the corresponding bisector, consistent with the observed far-field

profiles. However, after a few millimeters, the preformed plasma lattice was split

into individual filaments (Fig. 10.8d) due to the collapse of the counterbalance

between self-focusing and plasma defocusing. Interestingly, a slight bending of the

incident pulses was observed at the input and output ports. The curved pulse

propagations at the leading and trailing regions of the filament interaction

manifested that laser–plasma interaction actually changed the plasma density

gradually, resulting in a gradient plasma density and refractive index changes in

the leading and trailing regions during the interference of energy reservoirs. This

also differed dramatically from the standard optical interference, showing clearly

that interfering filament interaction was accompanied by strong spatiotemporal and

laser–plasma interaction, where highly nonlinear photosensitive responses of

multiphoton-ionization-induced plasma microstructures played a vital role in fila-

mentary self-projection of the intensity interference. It presents another solid

evidence of plasma microstructures consistent with direct imaging and dynamic

probing of interacting filaments and plasma density modulation.

Fig. 10.8 (a) Measured fluorescence profiles of the interaction region of the intersected filaments.

(c) The observed fringe-like spatial distribution of plasma fluorescence inside the filament

interaction region. (b, d) The three-dimensional plot of the leading and trailing parts of the

interaction to illustrate guiding of the incident pulse
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10.5 Dynamics of the Plasma Channels

The time evolution of 1D plasma channels was studied by the above-mentioned

holographic imaging technique by imaging the beam pattern of a third perpendicu-

larly propagated weak probe beam with controllable time delays. In the experiment,

two lenses with the focal lengths of f1 ¼ 40 mm and f2 ¼ 200 mm were used to

magnify the image with a factor of M ¼ f2/f1 ¼ 5.

The plasma density modulation changes the refractive index as

dnðr; tÞ ffi �rðr; tÞ=2rc, as illustrated in (10.4). Assuming the preformed plasma

microstructures had a thickness d, and the plasma changed the probe pulse verti-

cally passing through the plasma volume with a phase delay

dfðr; tÞ ffi �rðr; tÞd=2rc: (10.7)

The wavelength-scale microstructures are described by the spatial dependence in

rðr; tÞ and dfðr; tÞ, a time-delayed probe laser pulse passing through the plasma

microstructures experienced a position-dependent phase shift, which interfered

with the transmitted part and got an interference holography closely associated

with the phase shift. As the probe pulse was changed in the time delay, the ultrafast

dynamics of the preformed plasma density rðr; tÞ could be thoroughly studied with

a high spatial resolution.

The images of plasma channels at different time delays are shown in Fig. 10.9a–f.

We clearly observed periodic plasma microstructures with a probe time delay of

0.25 ps (Fig. 10.9a). With such a small delay t ~ 0.25 ps, the interacting filaments

were overlapped with a short length ct ~ 0.075 mm. The captured holographic

imaging thus covered a short length. We could distinguish the interfering filament

Fig. 10.9 The time evolution of the 1D plasma channels at different time delays (a) 0.25 ps, (b)

2 ps, (c) 5 ps, (d) 10 ps, (e) 50 ps, and (f) 100 ps
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fronts and their interference self-projection as well. The interfering plasma wakes

built at the filament fronts with parallel plasma self-channels projected along the

interference peaks.

The plasma subfilament channels moved forward with almost the same plasma

density modulation depth at larger time delays as the interacting filaments

propagated in the interaction region (Fig. 10.9b). Gradient blurring of holographic

image was observed, which was ascribed to the hydrodynamic plasma expansion

that tended to make the plasma density spatially distributed homogeneously. In this

way, the plasma density modulation became weaker as plasma expansion went

further. The gradually blurred images in Fig. 10.9c–f represent the plasma channels

at delays of 5, 10, 50, and 100 ps, from which we can conclude that the plasma

density remained to be spatially modulated with a lifetime up to ~100 ps.

10.6 Two-Dimensional Plasma Waveguides

In this part, we demonstrate that more complicated 2D plasma lattices could be

generated by simply adding another interaction filament, i.e., three intersected

filaments could produce 2D photonic plasma lattice in air.

In the experiment, a 50 fs pulse of 1 kHz repetition rate and 2.4 mJ pulse energy

from a Ti:sapphire laser system at 800 nm were equally split into three pulses (A, B,

and C), and were independently focused with a lens (f ¼ 60 cm) and two high-

reflection concave mirrors (f ¼ 100 cm), with changeable crossing angles from 3�

to 6�. Each pulse produced a single filament as a result of the counterbalance

between self-focusing and plasma defocusing. Two step-stage time-delay lines

were used to finely control the relative time delays. As sketched in Fig. 10.10,

pulses A and B were manipulated in the horizontal plane while pulses B and C in the

vertical plane. As shown in Fig. 10.10b–e, for each of the two pulses, 1D intensity

modulation of the interaction region was observed as previous observation [41].

Meanwhile, an interference induced 2D periodically modulated intensity was

observed when all the three pulses were synchronized (A, B, and C), suggesting a

localization of the laser fields inside the interaction region. The experimental

observations clearly showed that with three or more pulses crossed nearby their

common foci at different crossing planes, similar to the formation of the 1D plasma

lattice, the interference patterns consequently induced 2D periodic plasma density

modulation and the input pulses were eventually guided by the 2D plasma lattices.

Once again, the holographic imaging technique was used to observe the plasma

lattice structures by recording the spatial distribution of a perpendicularly

propagated weak probe beam. Moreover, by introducing the probe beam from

below to top and from left to right through the interaction region, the difference

of 1D and 2D plasma density modulation was clearly visualized, as shown in

Fig. 10.11a–d. Figure 10.11a–d depicts the images of the 1D and 2D plasma

gratings when the probe pulse was delayed ~5.0 ps after the plasma lattice
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Fig. 10.11 The measured holographic images of the (a, c) 1D and (b, d) 2D plasma gratings from

different views. (a, b) Top view (bottom to top), (c, d) Side view (left to right). The probe pulse
was delayed ~5.0 ps after the plasma lattice formation

Fig. 10.10 (a) The sketch geometry for 2D plasma lattices generated by three non-collinearly

intersected pulses A, B, and C. (b–e) The 3D distributions of the measured 1D and 2D intensity

modulation patterns for different crossly overlapped pulses (marked beneath the patterns)
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formation, in which (a) and (b) represent the top view (bottom to top) while (c) and

(d) are the side view (left to right). For the case of two interacting filaments (A and

B), owing to the refractive index modulation, the weak probe beam pattern clearly

verified the 1D photonic lattice structure in the top view. However, in the side view,

no periodic structures were observed, indicating no evident refractive index differ-

ence. When another synchronized pulse C was introduced, the photonic lattices

were extended from 1D to 2D. The image of 2D plasma lattices in the top view

became somehow vague (Fig. 10.11b), while some periodic structures emerged in

the side view (Fig. 10.11d), clearly indicating the formation of a 2D plasma

photonic lattice.

10.7 The Formation of Plasma Grating

As already discussed above, non-collinear intensity interference resulted in periodic

intensity distribution in the interaction region, and the interference fringes were

projected through filamentation and the corresponding multiphoton ionization

created a spatially modulated plasma density [40, 41]. Consequently, local refrac-

tive index was modulated periodically according to the plasma density modulation.

Such a dynamic refractive index modulation could function as a diffraction grating,

similar to the classic optical diffraction grating with a periodic structure to split and

diffract the incident light beams to several beams in different directions. Based on

the diffraction characteristics, the gratings could be sorted as thin and thick ones.

A thin grating exhibits little angular dependence and wavelength selectivity, with

the thickness D and the period L of the grating follows D/L < 10, while a thick

grating with D/L > 10 shows relatively strong angular and wavelength selectivity

[51]. As the plasma grating period L ¼ lc/2sin(y/2) could be easily tuned by

changing the intersection angle y of the non-collinear beams, the plasma grating

could behave as either a thin or thick grating, where lc is the central wavelength. In
our experiment, the typical plasma grating thickness was D ~ 100 mm, a thin

grating was formed with the crossing angle y < 4.6� in the case of lc ¼ 800 nm.

In the case of a thin grating, an incident light beam at wavelength lwas diffracted to
an angle ’m according to the condition

L[sin(yþ’m)� sinðy)] = ml; (10.8)

where m ¼ 0,�1,�2. . . denote the diffraction order, y is the angle of the incidence
onto the grating.

The characteristics of 1D and 2D plasma gratings could be revealed by the

diffraction of a time-delayed TH pulse. As nonlinear frequency conversion such as

third harmonics could be efficiently generated within an intense femtosecond

filament in air [6], in which the phase of the fundamental-wave (FW) pulse and

the generated TH pulse are nonlinearly locked within a long distance. The probe
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pulse was generated with an intense pulse undergoing filamentary propagation

through the preformed plasma gratings. The experiments were realized with three

pulses (A, B, and C) independently focused to form three intersected filaments.

Synchronized pulse A and B were manipulated in the horizontal plane to form a

plasma grating. Pulse C was placed in the same plane of pulses A and B, with an

incident angle 0� onto the grating. As 1D plasma density grating was formed by

pulses A and B, the time-delayed TH pulse from pulse C was diffracted according to

’m = 2msin(y=2ÞlTH=lFW; (10.9)

where m ¼ 0,�1,�2. . . denotes the diffraction order, y is the cross angle of pulses
A and B that determines the grating period, ’m is the corresponding diffraction

angles, lTH and lFW are the wavelengths of the TH and FW pulses, respectively. By

blocking the pulses A and B after their interaction region, as shown in Fig. 10.12a–c,

photographs of the diffracted TH pulse from pulse C after a low-pass filter (filter out

the FW pulse) were taken by a digital camera on a paper screen placed perpendicu-

larly to the propagation direction of pulse C at a distance of ~150 cm away from the

Fig. 10.12 The 3D distribution of the diffracted third harmonic pulse by 1D plasma grating with

different crossing angles of (a) y ¼ 4.3�, (b) y ¼ 5.5�, and (c) y ¼ 6.8�, respectively. (d) The
comparison of the experimental result (red-circular line) and calculated (blue-square line)
dependences of the +1 order diffraction angle on the crossing angle y
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intersecting point. The crossing angles between the pulses A and B were set to be

~4.3�, 5.5�, and 6.8�, respectively. As determined by the diffraction condition, the

�1 orders moved apart from the TH pulse as the crossing angle y increased,

consistent with the decrease of the plasma grating period. Figure 10.12d shows a

simulated dependence of the +1 order diffraction angle (blue-squared line) as a

function of the crossing angle y, which agreed well with experimental

measurements (red-circular line). According to the dynamic diffraction of the

time-delayed pulses, the preformed plasma gratings were evidenced to last a few

tens picoseconds after the excitation pulses, in agreement with the plasma lifetime

measured by using the above-mentioned holographic imaging technique.

We emphasize that the plasma grating period in this work could be readily tuned

by adjusting the cross angle between the incident filaments which meanwhile could

be applicable to high-peak-intensity pulses, in contrast with the periodic plasma

structures fabricated with a spatial-light modulator [52, 53] that sustained only low

pulse energies.

The dynamic evolution of the plasma grating was characterized by recording the

diffracted TH pulse as a function of the time delay of pulse C with respect to

the plasma grating forming pulses A and B (4.3� crossed). Figure 10.13 displays the
normalized integrated spatial distribution of the diffracted TH pulse when the time

delay of the pulse C with respect to the plasma grating formed by pulses A and B

was tuned from 1.0 to 65.0 ps. Before the formation of the plasma grating, no

diffraction of the TH pulse was observed. The intensity of the �1 order of the

diffracted TH pulse decreased gradually as the time delay increased up to several

tens picoseconds, confirming the long-lifetime plasma grating in contrast with

transient Kerr gratings that exist only within the pulse duration [34].

2D plasma grating could be produced with three interacting filaments in different

planes. 2D diffraction of the simultaneously generated TH pulses was resulted.

The diffraction was caused by the corresponding plasma grating preformed by

either the interfering pulses A and B, B and C, A and C, or three of them.

Fig. 10.13 The measured dynamic evolution of the intensity of the diffracted TH pulse generated

from pulse C by the plasma grating created by pulses A and B [(y ¼ 4.3�)]
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As diffraction was observed under the situation that all the three pulses A, B, and C

are synchronized, it behaved in a quite similar way as the transient Kerr grating

observed in the quadratic nonlinear crystals [34]. Nevertheless, the observed Kerr

nonlinearity of air molecules was dramatically enhanced in the presence of plasma

density modulation. The TH pulses were diffracted and meanwhile amplified due to

the strong interaction among the three intersecting filaments. Here, no low-pass

filter was used to remove the FW pulses in the photograph. In addition to �1

diffraction orders beside the FW pulse, as shown in Fig. 10.14a, three new TH

pulses were observed as labeled by A2, B2, and C2, which were due to the additional

diffraction of the preformed 2D plasma grating.

Figure 10.14b schematically shows the observed TH diffraction pattern from the

2D plasma grating, which can be divided into two parts: the first part marked in

the dashed ellipse was originated from the diffraction of the 1D plasma grating as

discussed above, the second part labeled as A2 (B2, and C2) was originated from the

additional diffraction of the 2D plasma grating. For example, the TH pulse labeled

C+1 and C�1 is the �1 diffraction orders of the TH pulse (generated from the pulse

C) diffracted by the 1D plasma grating formed by the pulses A and B. According to

the diffraction condition of a thin plasma grating (10.9), the �1 orders diffraction

angle is expected to be �2.67�, which is in good agreement with the measured

values of �2.58�. Since all the three pulses were temporally overlapped, two

additional plasma gratings could be formed by the pulses A and C and pulses B

and C, which could be treated as an equivalent plasma grating marked with silver

lines. This equivalent plasma grating diffracted the generated TH pulse in pulse C

and the +1 diffraction order led to the observed TH pulse labeled as C2. Based on

the measured diffracted TH pulse at C2, the period of the equivalent plasma grating

was estimated to be ~4.6 mm. The new TH pulses of A2 and B2 could be similarly

understood to be the +1 order diffraction of the generated TH pulses in pulses A and

Fig. 10.14 (a) The measured diffraction pattern of the generated third harmonic pulses as a two-

dimensional plasma grating created by the interaction of three femtosecond pulses. (b) The sketch

map of the observed diffraction pattern from the two-dimensional plasma grating
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B by the correspondingly equivalent plasma gratings. These overall led to the

observed 2D diffraction pattern of the generated TH pulses as shown in

Fig. 10.14a, which were simultaneously amplified by the strong filament

interactions. From this point of view, 2D plasma grating presented here is not

only the superposition of three independent 1D plasma gratings but also should

be treated as a complicated volume grating.

10.8 Plasma Grating for Efficient Energy Transfer Between

Intense Femtosecond Filaments

Wavelength-scale plasma density modulation could form a dynamic plasma grating

for efficient energy transfer from one filament to the other. This could be realized on

the basis of the second-order diffraction from the preformed plasma grating with the

experimental setup as schematically shown in Fig. 10.15. A 50-fs pulse of 1 kHz

repetition rate, 800 nm and 2.2 mJ pulse energy from a Ti:sapphire laser system was

equally split into two parts as the pump and probe pulses. A BBO crystal (type I,

29.2�-cut, and 500-mm thick) placed in the arm of pump was used for second

harmonic (SH) generation. A dichotic mirror was used to separate the 800 and

400 nm pulses, and the SH pulse passed through a motorized delay line and then

collinearly combined with the FW pulse. In the probe arm, a combination of a half-

wave plate (HWP) and a neutral density attenuator (ND) was used to control the

polarization and the energy of the probe pulse. The pump and probe pulses were

separately focused by two lens with f ¼ 100 cm, producing two filaments in air

with the crossing angle variable from 2� to 4�. When the pump and probe pulses

were synchronized, a 1D plasma grating was formed.

Different from previous studies, there was also frequency-doubled 400 nm

pulses in the pump arm. Interestingly, an efficient energy transfer of the time-

delayed SH pulse from the pump to the probe was observed to be accompanied with

the formation of the 1D plasma grating. Figure 10.16 presents the photographs and

Fig. 10.15 The schematic of

the experimental setup. BS
beam splitter,HWP half-wave

plate, L1, L2 lenses, ND
neutral density attenuator
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the corresponding 3D plot of the pump and probe beams with (b, d) and without

(a, c) plasma grating, captured by a digital camera on a paper screen placed at a

distance of ~100 cm away from the intersecting point. No SH pulse was observed in

the probe beam (Fig. 10.16a) when the pump and probe were not synchronized,

while reversely a bright blue spot emerged, collinearly propagated with the probe

beam. The diffraction of the SH pulse by the thin plasma grating was determined by

the Bragg diffraction condition. In this experiment, we dealt with the situation with

small angles y and ’m. The Bragg diffraction formula could be reduced to ’m ¼
mylSH/lFW. For the case of the incident SH along the pump arm, the first- and

second-order diffraction angle should be y/2 and y, respectively. The observed

results presented in Fig. 10.16b strongly support our explanation on diffraction of

the incident SH pulses from the plasma grating.

Interestingly, the first-order diffraction was much weaker than the second-order

one. This counterintuitive phenomenon could be explained as defocusing and

absorption of the first order by the plasma lattice. The energy of the incident and

diffracted SH pulses was measured to be 220 and 5 mJ, with a calculated diffraction
efficiency of 2.3%.

We further studied the dependence of the transferred SH pulse along the probe

beam upon the time delays between the SH pulse and the grating forming pulse

[54]. Two dichroic mirrors were used to separate the SH pulses at the end of the

filament interaction. A photodetector and locking-in amplifier were used to further

optimize the results. The inset in Fig. 10.17 shows the relative SH pulse energy in

the pump and probe arms recorded by scanning the pump–robe delay under the

condition of a fixed SH pulse delay of �100 fs. A clear variation of SH energy was

Fig. 10.16 Far-field images of the incident pump and probe pulses (a) with and (b) without

filament interactions and the corresponding 3D plots of the far-field images (c, d)
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observed only when the pump and probe pulses were synchronized. The pump

decrease was accompanied with the probe increase, which clearly indicate that

the transferred SH pulse was originated from the pump. As shown in Fig. 10.17, the

energy reached a maximum at the zero time delay and only existed when the SH

pulse was negatively delayed with respect to the FW pulse. Moreover, the gradually

decreased SH diffraction signal as a function of the time delay clearly demonstrated

a plasma density decay inside the long-lifetime plasma grating (up to few tens

picoseconds).

10.9 Enhanced Third Harmonic Generation

with Plasma Gratings in Air

Coherent nonlinear optical frequency conversion is an important aspect of nonlinear

optics for its intriguing application in remote sensing [55], single-photon frequency

up-conversion [56], and coherent ultraviolet light sources [57]. Much effort has been

devoted to improve the energy conversion efficiency by controlling the phase-

matching condition between harmonics. In the above, we proclaimed the existence

of plasma grating by efficient TH enhancement and diffraction in air. According to

the self-guidingmodel, the clamped filament intensity at a level of 1013–1014W/cm2

was high enough to produce stable TH generation, whose phase was self-locked with

the FW pulse during filamentation [6]. Such self-phase locking may provide a

possible way to overcome dispersion restriction to achieve phase matching. How-

ever, as the filament was terminated, the balance collapse between the self-focusing

and plasma defocusing would result in a rapid decrease of the TH pulses.

In this part, we focus on efficient TH generation assisted by plasma grating in air

and compare TH generation with that from a single filament. In the experiments, we
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explored dependence of the TH enhancement on the crossing angle, polarizations,

and the intensity ratios between two intersected filaments. A 1D plasma grating was

formed with pump and probe filaments non-collinearly crossed at 3�. In order to

study TH enhancement, a fused silica prisms pair at the end of the probe filament

was used to separate the TH pulse from the FW pulse. The energy and spatial

distributions were, respectively, recorded by a photomultiplier tube (PMT) and a

CCD camera, as shown in Fig. 10.18a. Strong spatial and temporal coupling of the

interacting filaments was observed when the pump and probe pulses were

synchronized in the intersecting point. Strong filament interaction brought about

enhanced TH generation in comparison with a single probe filament [41].

The spectra of the generated TH pulses with and without filament interaction are

depicted in Fig. 10.18b. The peak TH intensity was enhanced at ~770 times

(at the spectral peak around 267 nm) in the presence of filament interaction.

Spatial evolution of the TH enhancement along the filament propagation and the

corresponding pulse energy are presented in Fig. 10.19. The TH pulse decreased

rapidly with the propagation distance (solid diamond curve), originated from the

plasma defocusing and diffraction of the laser beam, while remained almost

constant inside the filament owing to the nonlinear phase locking with the FW

pulse. The spatial profiles of the generated TH pulse along its propagation direction

captured by a CCD camera are also presented in Fig. 10.19, which clearly visualizes

the multiring structures of the TH inside the filament, whose divergence angles

were measured to be 2.25, 4.09, and 5.85 mrad, respectively. We conclude that the

inner rings were generated from the Fraunhofer diffraction of the generated on-axis

TH core. By assuming a filament diameter of ~170 mm, we estimated divergence

angles of 2.26 and 4.2 mrad for the first and second rings, respectively. Without

filament interaction, a sharp decrease of the TH energy was observed at the propaga-

tion distances from 102 to 120 cm, where the multiring structures disappeared.

In the presence of filament interaction, the generated TH pulses could be
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Fig. 10.18 (a) The schematic experimental setup for the TH energy and spatial distribution

measurement. (b) The measured spectra of the TH pulses with and without interaction [41]
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maintained along a relatively longer distance (solid-circled curve) with sustained ring-

shape profiles, indicating the elongation of filament with self-confined diameter due to

the filament interaction. From this point of view, two interacting filaments could

be used as amethod to control filament propagation [17, 41] and increase the nonlinear

phase-locking distance, which would be further beneficial for broadband TH genera-

tion in filaments.

Since the TH enhancement was based on the filament interaction, which was

closely dependent on the experimental parameters such as polarization, crossing

angle, driving intensity, and time delay, we systematically investigated the changes

in TH conversion energy for a range of parameters. The nonlinear increase of the

TH enhancement factor observed at different pump intensities at a non-collinear

crossing angle of 9� is shown in Fig. 10.20a. The total TH intensity increased

slowly with the control pulses at small intensities. A dramatic TH enhancement was

observed with the control peak intensity above 64 GW/cm2. As the control peak

intensity increased higher than 100 GW/cm2, the TH enhancement was switched to

a gradual increase with the control pulses and reached its maximum at 220 GW/

cm2. The phase-matching condition became destroyed above 220 GW/cm2, leading

to a decrease of the TH conversion efficiency.

Figure 10.20b presents a comparison of the TH enhancements driven by pump

and probe pulses with different crossing angles. At an increased crossing angle, the

requisite control peak intensity should be increased to optimize the TH conversion

efficiency. This was mainly caused by non-collinear projection of pump and control

pulses into the assembled waveguide, which induced different geometric changes of

the TH phase-mismatch under different incidence angles. The geometric effects on

Fig. 10.19 The measured TH pulse energy variation as a function of propagation distance in the

cases with and without filament interaction. The TH spatial distributions at three positions of 100,

102, and 120 cm are presented in the insets
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phase matching were further evidenced by the dependence of the TH enhancement

on the crossing angle shown in Fig. 10.20c. Although the assembled waveguide

sustained longer lengths at smaller crossing angles, the TH conversion efficiency

reached its maximum at a crossing angle ~ 13� under fixed pump and control

intensities, and the corresponding enhancement of the generated TH intensity

(integrated over the TH spectral range) was further optimized up to 174 times

with the control peak intensity around 200 GW/cm2 (see Fig. 10.20b). The relative

polarization of the control and pump pulses also affected the formation of the

plasma lattice and the subsequent TH enhancement. As shown in Fig. 10.20d,

when the pump and control pulses were temporarily walked off, the enhancement

of the TH pulse was still exist for tens of picoseconds, indicating the third-order

nonlinearity variation induced by the laser-induced plasma. The inset in Fig. 10.20d

presents the detailed TH intensity variation around zero time delay.
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10.10 Broadband Third Harmonic Enhancement by Interaction

of Intense Few-Cycle and Long Femtosecond Filaments

By using nonlinear interaction between non-collinearly crossed few-cycle and

synchronized long filaments, an intensity-enhanced and spectrum-broadened third

harmonic (TH) pulses could be generated. We studied the TH enhancement and its

dependence on the relative polarization, crossing angle, intensity, and time delay

between the two filaments with an experimental setup schematically shown in

Fig. 10.21. An output from an amplified Ti:sapphire laser system (50-fs, 800-nm,

1 kHz) was firstly split into two parts after a beam splitter with one of them was

further coupled into an argon-filled hollow fiber and then compressed by using

chirped mirror pairs to produce few-cycle pulses (probe) with the pulse duration of

~7 fs. A translation stage and a HWP were used in another (pump) arm to precisely

control the temporal delay between the pump and probe pulses and the pump pulse

polarization, respectively. Both the pump and probe pulses with the corresponding

incident pulse energies of 0.55 and 0.50 mJ were focused in air to cross non-

collinearly by using two separate lenses with the same focal length of 100 cm.

The non-collinear crossing angle was varied from 4.0 to 12.0�. The generated TH

pulses were separated from the FW probe pulses by using a pair of silica prisms,

which were then measured by a PMT and a spectrometer.

As the long and few-cycle pulses were delayed without temporal overlapping,

both pulses propagated in air with no interaction even though they were non-

collinearly crossed, and each filament was formed with the typical length of

~3 cm as a result of the counterbalance between the Kerr self-focusing and plasma

defocusing. Self-guided filamentation enabled efficient nonlinear frequency con-

version since the phase of the FW and the newly component could be locked to

fulfill phase-matching condition [6, 41]. However, when the filament of FW

disappeared, the TH would give its energy back to the FW due to the phase

mismatching, leading to the rapid decrease of the TH energy. This was consistent

Fig. 10.21 Experimental

setup for broadband TH

generation in the presence of

nonlinear interaction between

non-collinearly crossed

few-cycle and long-pulse

filaments. BS beam splitter,

HWP half-wave plate, PMT
photomultiplier tube, L1, L2
lens
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with the experimental observation shown in Fig. 10.22b (red-squared curve). As the

synchronized pump pulse was launched, the energy back conversion from the TH to

the FW was suppressed in a long propagation distance [the blue-squared curve in

Fig. 10.22b], enhancing TH in the far-field region. All these indicated that the

interaction between pump and probe pulses improved the phase-matching condition

between the FW and TH pulses, which was further confirmed by the TH spectral

distribution at different propagation distances with and without pump pulses

(Fig. 10.22c–f). For a single filament generated by few-cycle pulse, the

corresponding TH spectrum ranged from 240 to 310 nm at the laser focus around

100 cm [red-dotted curve in Fig. 10.22c]. As the propagation distance increased, the

spectral bandwidth was narrowed with a decreased intensity, as shown in
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Fig. 10.22 (a) The fluorescence image of the interaction region. (b) The TH energy versus the
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Fig. 10.22d–f. When the synchronized pump pulse was added, the TH spectra at

different positions (102.5, 105, and 107.5 cm) showed a similar bandwidth and

intensity with that at the focus position.

The evolution of TH energy and spectral distribution confirmed that the TH

enhancement in the far-field was originated from the decrease of TH energy back

conversion to the FW pulses along their propagations due to phase-matching

improvement by adding the synchronized pump pulse. This phenomenon could

be understood by considering the filament elongation caused by the nonlinear

filament interaction. The synchronized pump pulse significantly increased the

intensity in the overlapped region due to the interference between pump and

probe pulses. As a result, enhanced nonlinear effects dramatically affected the

temporal distribution of the optical field. Meanwhile, the spatial distribution also

followed the interference pattern. The modification on the spatial and temporal

characteristics of non-collinear filaments could be used to control the filamentation

process and lengthen the filamentary propagation.

Figure 10.23a shows the TH energy as a function of the polarization. Themaximum

and minimum TH enhancement factors were observed as their polarizations were

parallel and orthogonal, respectively, where parallel polarizations corresponded to the
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Fig. 10.23 The dependences of the generated TH pulse on (a) the relative polarization, (b)

crossing angle, (c) intensity ratio, and (d) time delay. The pump (long) and probe (few-cycle)

pulse energies were 0.55 and 0.50 mJ, respectively for (a, b, d), and the crossing angle was fixed to

be 5� for (a, c, d)
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formation of the plasma lattice. As shown in Fig. 10.23b for TH enhancement at

different crossing angles, TH energy increased gradually with the increase of the

crossing angle till it reached themaximum enhancement factor of 17 around a crossing

angle of 9�. Filamentary propagation as the result of the counterbalance between self-

focusing and plasma-defocusing was determined by the combined effects of different

pulse characteristics, the optimal filament elongation was achieved with an appropri-

ate crossing angle (9� for pulse duration and energy used in our experiments) to

support the maximum of the TH energy measured in the far-field region. Further

increase of the non-collinear crossing angle resulted in a reduction of the TH energy.

Accordingly, we could adjust the crossing angle to manipulate the filament elongation

and then change the TH energy in the far-field region. In addition, the filament

interaction could be changed by adjusting the pump intensity and pump–probe time

delay. Figure 10.23c and d depicts the generated TH as a function of the pump

intensity and relative time delay. The TH enhancement changed under different

filament interaction conditions, presenting further evidence that the TH enhancement

was determined by the interaction between pump and probe filaments.

10.11 The Formation of an Intense Filament Controlled

by Interference of Ultraviolet Femtosecond Pulses

Ultraviolet (UV) femtosecond laser pulses could be generated through nonlinear

frequency mixing processes, such as third harmonic generation of the near-infrared

femtosecond pulses with cascaded second-order nonlinear processes in the quadratic

nonlinear crystals [58–60]. Experimentally, an output from a chirped pulse amplified

laser system (800 nm, ~50 fs, 22 mJ, 10 Hz) was applied for TH pulse generation by

cascaded nonlinear frequency mixing, as shown in Fig. 10.24. Three successive BBO

crystals were used. The first BBO crystal (BBO1, 200 mm, 29.2�-cut, type I) was used
for frequency doubling. The group velocity mismatching between the generated SH

and the residual FW pulses was compensated by a second BBO crystal (BBO2,

200 mm, 29.2�-cut) with its crystallographic axis rotated 45� with respect to BBO1.

The third BBO crystal (BBO3, 200 mm, 44.3�-cut, type I) enabled the TH generation

22 mJ/50 fs, 800 nm

BBO1
SHG

BBO2
Comp

BBO3
THG

800nm

400nm

1.6 mJ 267 nm

800nm to 267 nm h>7%

Fig. 10.24 Schematic of efficient TH generation by cascaded nonlinear frequency mixing with

three successive BBO crystals. A conversion efficiency of 7% was obtained
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through frequency summing of the FW and SH pulses. The TH pulse was separated

from the FW pulse with high-reflection mirrors of the TH pulses.

Similar to non-collinear near-IR filament interaction that induced efficient

plasma waveguides [40] and plasma gratings [54], strong nonlinear interaction

occurred for two non-collinearly crossed UV femtosecond filaments [61]. Experi-

mentally, we generated an intense TH pulse of 1.6 mJ (~7% efficiency). The TH

pulse was then equally split into two beams, and focused by using an f ¼ 250 mm

curve mirror with a changeable crossing angle. When two UV pulses were

synchronized, strong spatiotemporal coupling and great fluorescence enhancement

similar to that of the near-IR filament interaction were observed. The formation of

plasma grating was directly visualized by the fluorescence detection method. As the

interacting UV filaments intersected at decreased crossing angles, the plasma

modulation period increased and the number of plasma self-channels in the inter-

action region decreased. As the UV pulses could be tightly self-guided in filaments

of smaller core diameters, only quite a few plasma self-channels were observed in

the UV filament overlapping region. Figure 10.25d–f shows the detected fluores-

cence at three different crossing angles y ¼ 2.17�, 1.52�, and 1.27�, with the

corresponding measured fluorescence profiles plotted in Fig. 10.25a–c. Two bright

plasma self-channels were observed for y ¼ 1.52�. Interestingly, a single intense

UV filament with a core diameter of 5 mm was produced for y ¼ 1.27�, as shown in
Fig. 10.25f. At sufficiently small crossing angles, the UV pulse interference pro-

duced only a few intensity interference peaks in the overlapping region, while UV

femtosecond pulses exhibited a large multiphoton ionization probability that caused

a serious plasma defocusing. The filament interaction could thus be controlled to

have only one central intensity interference peak to sustain filamentary propagation

while filamentation was suppressed for all side interference peaks. Accordingly,

laser energies were attracted to the central interference peak that assisted filament

coalescence into a single filament (Fig. 10.25c, f) [31, 62].
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Fig. 10.25 Fluorescence images of the preformed plasma gratings with crossing angles of (a)

2.17º, (b) 1.52º, and (c) 1.27º, and (d–f) the corresponding fluorescence profiles
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10.12 Conclusions

In summary, non-collinear filament interaction in air was demonstrated to generate

plasma lattices of unique wavelength-scale plasma microstructures and periodic

density modulation, as a result of Kerr self-focusing at local intensity peaks of the

constructive interference followed by its counterbalance with local plasma

defocusing. The observed plasma lattices could function as efficient plasma

waveguides and plasma gratings that sustained high-peak intensities, fascinating a

growing research highlight and stimulating a variety of interesting applications in

the field of high-intensity laser physics. We review here some of our recent

experimental results based on the periodic plasma density modulation induced by

nonlinear interaction of filaments. Our main results are summarized as follows.

(a) The formation of self-guided periodic wavelength-scale channels was evidenced

by the direct observation of the filament interaction, which revealed wavelength-

scale spatial periodicities dependent on the crossing angles and intensity ratios

between the non-collinearly overlapped intense femtosecond filaments. We showed

that the periodic plasma density modulation could be used to guide the input pulses

equivalently as a photonic-crystal waveguide, which enables attractive applications

in ultrahigh intense laser optics. (b) Plasma grating assisted diffraction and efficient

energy transfer of a delayed second harmonic pulse from one filament to the other

were observed in air. The grating dependences on the intensity ratios and relative

polarizations of the interacting filaments were studied in details. We anticipate

important applications of plasma grating in the field of laser plasma interactions and

ultra-intense laser optics. (c) Significant third harmonic enhancement was observed

as a result of elongation of laser filament induced by plasma lattices. The experi-

mental results may stimulate further studies for filamentation nonlinear optics, and

pave a way for efficient generation of bright ultrashort ultraviolet pulses. (d) UV

filaments were coupled to induce interesting fusion and coalesce into a single

intense UV filament with a quite small diameter. This could be considered as a

new method to control the UV femtosecond filamentation in air. As one of the most

significant and interesting phenomena, filament interaction induced periodic

plasma microstructures still have plentiful mysterious features and applications,

and further experimental and theoretical investigation of the plasma interaction are

necessary to understand the dynamics of the involved nonlinear interaction.

We expect that such kind of plasma photonic crystal like periodic structure would

be vastly applied in the field of ultra-intense laser physics, chemistry, and material

science, such as to stretch, compress, and control the propagation of ultra-intense

laser pulses, to trap atoms and molecules for chemical reaction in plasma

waveguides, to photo-dissociate molecules, to accelerate electrons and ions in the

plasma channels, and so on.
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5. F. Théberge, N. Akozbek, W.W. Liu, A. Becker, S.L. Chin, Tunable ultrashort laser pulses

generated through filamentation in gases. Phys. Rev. Lett. 97, 023904 (2006)

6. N. Ak€ozbek, A. Iwasaki, A. Becker, M. Scalora, S.L. Chin, C.M. Bowden, Third-harmonic

generation and self-channeling in air using high-power femtosecond laser pulses. Phys. Rev.

Lett. 89, 143901 (2002)

7. J. Kasparian, R. Sauerbrey, D. Mondelain, S. Niedermeier, J. Yu, J.P. Wolf, Y.B. Andre,

M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, M. Rodriguez, H. Wille, L. Woste,

Infrared extension of the supercontinuum generated by femtosecond terawatt laser pulses

propagating in the atmosphere. Opt. Lett. 25, 1397 (2000)
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12. L. Bergé, S. Skupin, F. Lederer, G. Mejean, J. Yu, J. Kasparian, E. Salmon, J.P. Wolf,

M. Rodriguez, L. Woste, R. Bourayou, R. Sauerbrey, Multiple filamentation of terawatt

laser pulses in air. Phys. Rev. Lett. 92, 225002 (2004)
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Chapter 11

The Dawn of Ultrafast Nonlinear Optics

in the Terahertz Regime

F. Blanchard, L. Razzari, F.H. Su, G. Sharma, Roberto Morandotti, T. Ozaki,

M. Reid, and F.A. Hegmann

11.1 Introduction

The terahertz (THz) frequency range is a specific region of the electromagnetic

spectrum also known as the far-infrared (FIR) region. More precisely, THz waves

cover the region from 100 GHz to 20 THz, thus bridging the gap betweenmicrowaves

and infrared light. Physically, 1 THz is equivalent to a wavelength of 300 mm in

vacuum, to 33.3 cm�1 in terms of wave numbers, to a photon energy of 4 meV, or to a

temperature of 48 K. THz waves have the ability to penetrate various materials

including non-metallic compounds (papers and plastics), organics, gases, and liquids,

thus being a powerful tool for spectroscopic sensing [1]. This portion of the electro-

magnetic spectrum has been accessible for some time by various means including

molecular gas lasers, gyrotrons, and free-electron lasers [2]. Due to complexity, cost,
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and limited frequencies of operation, these sources have traditionally made it difficult

to gain full access to the terahertz frequency range. Nevertheless, there were several

pioneering works in nonlinear FIR spectroscopy already in the early 1970s, about one

decade after the advent of the laser (readers may find a review in [3]). In particular,

saturated absorption in the FIR region was first studied in 1970, which led to the

optically pumped FIR gas laser [4]. In the 1980s, the first demonstration of THz

radiation coherently generated and detected was made. This result coincided with the

development of ultrafast lasers and was obtained using a photoconductive antenna

emitter [5], where photoexcited carriers induced by an ultrafast laser pulse are

accelerated by a biasing electric field. The resulting time varying current J(t) radiates
an electromagnetic transient, E / @J=@t, whose amplitude and phase depend on

various parameters such as carrier mobility, carrier lifetime, bias field, and on the

impurity doping concentration [6]. This allowed the birth of coherent time-domain

THz spectroscopy (TDTS) [1], which provided unprecedented insights into the nature

of molecular vibrations, carrier dynamics in semiconductors, and protein kinetics

[7–12]. Even with 30 years of rapid advances in the study of light–matter interactions

at THz frequencies, lack of efficient emitters and sensitive detectors in this frequency

range has for long time slowed down THz linear and nonlinear spectroscopy.

More recently, innovative generation schemes based on nonlinear optical processes

have successfully reached sufficient THz peak power to access the fascinating world

of nonlinear optics temporally resolved with subpicosecond resolution [13–20]. In

Table 11.1, we show various laser-based techniques to generate high-intensity THz

pulses with electric fields greater than 100 kV/cm at the focus. Notice that this table

does not describe all the achievements obtained in the field, and one can find a more

complete review of THz generation sources in references [21–23]. However, to date

and in the context of nonlinear optics at THz frequencies, generating high-intensity

THz pulses clearly points toward two promising techniques that are optical rectifica-

tion and two-color plasma based sources, as shown in Table 11.1.

Table 11.1 Properties of recent high-intensity THz sources

Large

photoconductive

switch [24]

Two-

color

plasma

[13]

Optical

rectification

(OR) in

ZnTe [16]

OR by

tilted-

pulse-front

in LiNbO3

[17]

OR by

tilted-

pulse-front

in LiNbO3

[25]

OR by

tilted-

pulse-front

in LiNbO3

[26]

Energy (mJ) 0.8 0.03 1.5 10 50 3

Peak electric

field

150 kV/cm 400 kV/

cm

230 kV/cm 250 kV/cm 1.0 MV/cm

Bandwidth

(THz)

0.1–2 0.3–7 0.1–3 0.1–0.7 0.1–0.5 0.1–2.5

THz spot

diameter

(FWHM)

1.6 mm 300 mm
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This book chapter is organized as follows: in Sect. 11.2 we present an overview

of the THz generation and detection schemes suitable to perform nonlinear coherent

TDTS with subpicosecond time resolution, and we discuss both the advantages and

limitations. We then review in Sect. 11.3 a set of absorption bleaching experiments

performed on an n-doped semiconductor using a THz Z-scan technique, preceded

by a brief description of the recent nonlinear optical phenomena observed at THz

frequencies. Finally, in Sect. 11.4, we describe a THz pump–THz probe setup that

enables mapping of the conduction band structure in semiconductors.

11.2 Handling THz Waves

11.2.1 Detection Schemes

There are a number of methods used to detect FIR radiation. Thermal detection as

well as coherent detection using electro-optic crystals and photoconductors can be

used for detecting pulsed terahertz radiation. Traditionally, radiation in the near-

infrared through the visible wavelength range at higher frequencies can be detected

with great sensitivity with devices such as photomultipliers, photoconductors, and

photodiodes. These devices essentially operate on the same principle: a photon has

sufficient energy to generate a free electron or a charge–carrier pair, which are

detected electronically. These methods work sufficiently well when the photon

energies of the radiation to be detected are large enough to generate the charge

carriers. The photon energy at 1 THz is about 4 meV, making it very difficult to

employ such standard techniques for photon detection. At the same time, very

sensitive detection of electromagnetic radiation can be achieved for very long

wavelengths by purely electronic means. For example, the detection of radio

waves using antennas can be very efficient. However, it becomes more and more

difficult to operate antennas, as well as the corresponding electronics, at higher

frequencies approaching the THz range. Therefore, a somewhat unique technology

is required for detecting radiation in the THz frequency range, lying between the

well-developed detection technology for the visible and the well-established detec-

tion technology for the microwave portion of the electromagnetic spectrum.

There are basically two types of detection that one would consider—direct

detection and coherent detection of THz radiation. Direct detection would likely

be considered with incoherent sources of THz radiation or when the THz source has

a narrow frequency range. Examples of direct detection would be thermal detectors

such as pyroelectric or bolometric detectors. For higher sensitivity, a nonlinear

detector such as a Schottky barrier diode or a hot electron bolometer can be used in

a heterodyne configuration [27]. Recently, a bolometer-type uncooled THz camera

became available [28, 29] allowing direct visualization of the THz radiation beam

intensity profile. For the case of coherent detection, the three primary methods are
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photoconductive sampling [5], electro-optic (EO) sampling [30], and more recently

laser-plasma based detection [31]. The readers may find a complete description of

photoconductive sampling and free-space EO sampling in [32], and a demonstra-

tion of broadband THz detection using laser-plasma in [33]. In Fig. 11.1, we show

the concept of EO sampling as first introduced by Wu and Zhang [30].

As shown in Fig. 11.1, an optical probe beam is passed co-linearly with a

terahertz field inside an EO material. The terahertz field acts as a bias field for the

linear electro-optic effect (Pockels effect), which induces a polarization modulation

on the probe beam. The polarization modulation is measured using a Wollaston

polarizer prism and a pair of photodiodes to monitor the differential polarization

signal (S and P), which is balanced (i.e., equal to zero) in the absence of a terahertz

field. The differential photodiode signal (Di) is measured with a lock-in amplifier,

and the terahertz signal is mapped out in time by varying the probe delay (�Dt) with
respect to the terahertz pulse. In this configuration, a high signal-to-noise ratio

(SNR) >10,000 capability is feasible, comparable to photoconductive sampling

[34]. Typically, EO sampling is done at the central part of a focused THz spot that

gives the peak THz electric field. Limitations in the detected bandwidth mainly

arise from the choice of the EO crystal and the temporal pulse width of the sampling

probe beam. For detecting THz waves, zinc telluride (ZnTe) [30] and gallium

phosphide (GaP) [35] crystals are commonly used, due to the relatively good

matching between the THz phase velocity and the optical group velocity at

800 nm (i.e., the emission wavelength of Ti:sapphire lasers). To estimate the

peak THz-electric-field-induced birefringence into the EO crystal, the modulation

ratio between the two photodiodes signals (is and ip) is used [36]:

is � ip
is þ ip

¼ sin y � y ¼ 2p
l
n30r41EL; (11.1)

where n0, L, and r41 are the index of refraction, thickness, and the electro-optical

coefficient of the sensor material, respectively. E is the peak THz electric field, l is
the probe beam wavelength, and y is the modulation detected by the two

photodiodes signals is and ip.

Fig. 11.1 Concept of EO sampling. (a) THz-electric-field-induced birefringence into EO crystal

by Pockels effect. Polarizer and photodiodes convert phase modulations into amplitude

modulations. (b) Example of a THz trace recovered by moving the optical delay stage of the

probe beam line
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11.2.2 Generation by Optical Rectification

Optical rectification (OR) is a well-known second-order nonlinear process that

takes place in media lacking inversion symmetry. Already in the 1970s, optical

rectification in a nonlinear medium was known to generate FIR light [37]. In spite

of this, experimental and theoretical evidence of rectification in (110) crystal

semiconductors was only demonstrated in 1994 [38]. This approach is normally

more straightforward than the use of a photoconductive antenna, since no external

electronic components are required. Other advantages are the wide bandwidth

capability associated with optical rectification [39] when matching between the

group velocity of the optical pumping wavelength and the phase velocity of

the emitted THz radiation is achieved. For efficient generation of THz radiation,

Hebling et al. have proposed the idea of using a Cerenkov-type scheme based on a

tilted front laser pulse propagation in lithium niobate (LiNbO3) [40]. In this scheme,

the large refractive index mismatch between the optical pump and the THz wave

can be overcome while taking advantage of the higher nonlinear coefficient of

LiNbO3 when compared to a standard GaP or ZnTe crystal. Thanks to this

pioneering technique [40], efficiencies greater than 6 � 10�4 were demonstrated

using 16 mJ of pump laser energy [17] and 30 mJ of THz energy, with a relatively

low peak frequency at 0.35 THz [25, 41].

Physically speaking, optical rectification is a process in which a laser pulse that

is traveling through a nonlinear crystal induces a time-dependent polarization

change that radiates an electromagnetic wave. The temporal dependence of the

radiated field is given by

Erad
THz /

@2PðtÞ
@t2

; (11.2)

where Erad
THz is the radiated THz field and P(t) is the polarization change,

expressed by

PðtÞ / w2 0;�o;oð ÞEopt �oð ÞE oð Þ: (11.3)

Here Eopt is the electric field of the optical pump and w2 is the second-order electric
susceptibility of the material. It is worth mentioning that the polarization of the

radiated THz field depends on the crystal orientation as well as on the incident

pump polarization. Ideally, the frequency content of the radiated THz field is

strictly related to the bandwidth of the incident pump beam. For example, a laser

pulse of duration t ¼ 100 fs can lead to a rectification with 1/t � 10 THz band-

width. However, in typical experimental conditions, one can expect a limitation in

the bandwidth of the radiated field due to the imperfect matching between the group

velocity of the optical pump and the phase velocity of the radiated THz field, as well

as to the presence of phonon absorption lines in the generating crystal.
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Matching between the optical group velocity and the THz phase velocity is

crucial for an efficient optical rectification as well as for the electro-optic (EO)

sampling technique (often used to characterize THz optical pulses) [34]. The phase

matching condition for the generation of THz radiation via optical rectification is

equivalent to that of difference frequency mixing [39], and is given by:

k oopt þ O
� �� k oopt

� � ¼ k Oð Þ: (11.4)

Here k is the wave vector, oopt is the angular frequency of the pump beam, and O is

one particular frequency of the radiated THz wave-packet. When using this expres-

sion, we can depict the radiated THz waves as the superposition of all the frequency

content in the optical pump beam. Additionally, O depends on the second-order

dispersion coefficient of the crystal, as well as on the pump beam spectrum and on

the phase shift between the pump and the THz waves.

From (11.4), we can write:

k Oð Þ
O

¼ @k

@o

� �
opt

; (11.5)

which states that the phase velocity of the THz waves matches the group velocity of

the pump beam [39]. Furthermore, we can introduce the coherence length of an

optical rectification process, in which THz waves have a positive buildup [39].

lc ¼ pc

oTHz nopt � lopt
dnopt
dl

��� ���
lopt

� nTHz
; (11.6)

where c is the speed of light, nTHz is the refractive index at THz frequencies, nopt is
the refractive index of the pump beam, and l is the wavelength of the pump beam.

Due to the reasons mentioned above, ZnTe is one of the nonlinear materials of

choice for the generation and the detection of THz radiation for a collinear phase

matching configuration. To better understand the details of THz emission via

optical rectification, we will examine the case of a (110) ZnTe crystal. Zincblende

crystals have a cubic structure with a�43m “point group,” thus implying that only the

electro-optic tensor components r14 ¼ r25 ¼ r36 are non-zero. In order to simplify

our mathematical description, a lab coordinate system, x0y0z0, with the x0y0 plane on
the (110) plane of the crystal can be constructed (see Fig. 11.2 for details) [42].

We define y as the angle between the y0 direction [001] of the lab reference

coordinates and the polarization vector of the optical pump beam. The generated

THz electric field ETHz is projected in the reference plane x0y0, where x0 is in the

direction [�110], according to the formula:

ETHzx0
ETHzy0

� �
/ sin 2y

sin2 yð Þ
� �

: (11.7)
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From (11.7), the emitted THz energy is thus proportional to sin2 2yð Þ þ sin4 yð Þ
[38]. According to the newly defined axis given in Fig. 11.2, the polarization

orientation a of the irradiated THz waves is given by:

a ¼ tan�1 2

tan yð Þ
� �

: (11.8)

We notice that when y ¼ 90�, then a ¼ 0 and the THz wave is polarized

perpendicularly to the optical pump beam. From the above expression for the

THz energy, we can easily infer that the maximum emitted THz radiation is

found for tan(y) ¼ √2, so that a ¼ y ¼ 54.7�.
The highest THz field ever reported based on optical rectification in ZnTe was

obtained at the advanced laser light source (ALLS) laboratory, which is a facility

allowing for multiple laser beam interactions, from X-rays to IR, with sufficient

power to change significantly the properties of matter and probe its dynamics

(http://lmn.emt.inrs.ca/EN/ALLS.htm). The main technology used in this facility

is based on ultrafast Ti:sapphire lasers (800 nm) and the THz source is attached to a

laser beam line that supplies energies as high as 70 mJ (after a vacuum compressor),

delivered by � 40-fs-wide laser pulses at a repetition rate of 100 Hz. A schematic

of the ALLS THz source is shown in Fig. 11.3 and includes three main parts: a THz

generation chamber held under vacuum (�10�6 torr), an 800-nm probe beam line

propagating in air, and a dry-nitrogen-purged section, where the THz beam travels a

distance of over 2 m. The THz source has been built using nonlinear optical

rectification for a collinear velocity matching configuration using a large aperture

ZnTe crystal, as described and characterized in [16].

In this system, THz pulse waveforms are detected using free-space EO sampling in

a second (110) ZnTe crystal of 0.5 mm thickness. The waveform could be

reconstructed by using an optical delay stage (A). A lock-in amplifier connected to

the output of the balanced photodiodes and referenced to the chopper was used to

acquire the THz waveforms. A second optical delay line (B) is also available to set up

more complex experiments requiring an auxiliary optical pump or a weak THz probe.

The generated THz energy was measured using a pyroelectric detector (Coherent-

Molectron J4–05) with a specified sensitivity of 2,624 V/J at 1.06 mm, which we

Fig. 11.2 (a) (110) plane in xyz coordinate. (b) Coordinate x0y0z0 on the (110) plane
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previously calibrated at THz frequencies using a second pyroelectric detector from

Microtech Instruments (based on a LiTaO3 crystal [16]). An interesting result obtained

using the large aperture ZnTe source is the scaling of the THz energy versus laser

pump energy, shown in Fig. 11.4. The pump beam irradiating the ZnTe crystal has a

fluence ranging from 28 mJ/cm2 (1 mJ) to 1.33 mJ/cm2 (48 mJ) with a Gaussian shape

and a total area of 36 cm2. At the maximum pump energy of 48 mJ, the THz pulse

Fig. 11.4 THz pulse energy emitted from the large aperture ZnTe source as a function of the

incident 800 nm laser pulse energy per unit area. The corresponding energy conversion efficiency

is also shown. The inset depicts the magnified portion of the THz energy scaling (below 300 mJ/
cm2 of pump intensity) obtained using a pyroelectric detector [16]

Fig. 11.3 Schematic of the experimental setup for intense THz pulses based on optical rectifica-

tion in a large aperture ZnTe crystal (right-hand side)
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energy is as high as 1.5 mJ, corresponding to an energy conversion efficiency of

3.1 � 10�5 and an average THz power of 150 mW (for a 100 Hz repetition rate

pump pulse train).

The highest THz fields generated to date by laser-based sources in the

0.1–2.5 THz frequency range are achieved using optical rectification by tilted-

pulse-front techniques in LiNbO3 crystals [26]. As we mentioned earlier, efficient

THz generation needs the group velocity of the optical pump beam to match the

phase velocity of the THz wave, that is ngrvis ¼ nphTHz. Many high dielectric constant

materials, including LiNbO3 and other ferroelectric materials offer a very high EO

coefficient; however, the velocity matching of optical and THz waves in these

crystals cannot be achieved collinearly. For these materials, the refractive index in

the THz range is more than two times larger than that in the visible range. This

problem is overcome by tilting the pulse front of the optical beam using a diffrac-

tion grating, as first proposed by Hebling et al. [40] and as subsequently

demonstrated by the same group [43, 44]. In particular, recent theoretical

predictions show how to fulfill the condition where the grating image coincided

with the tilted-pulse-optical-pulse-front [45], and a successful experimental dem-

onstration in a 4-f scheme [26] confirmed the importance of generating a collimated

THz beam when a high power laser source is available. These dual successes now

give an unprecedented tool (i.e., following the demonstration of a peak electric field

as high as 1.0 MV/cm in the 0.1–2.5 THz range [26]) to continuously alter the

lattice momenta of the electrons in the solid and thus, to explore their properties

within the entire Brillouin zone.

11.3 High-Field Transport and Nonlinear THz

Dynamics in Semiconductors

The investigation of high-frequency and high-field transport effects in

semiconductors is of great interest in condensed matter physics in order to under-

stand the behavior of fast semiconductor devices operating under extreme

conditions. In the last 25 years, intense microsecond to nanosecond (and more

rarely, picosecond) terahertz (THz) pulse sources in conjunction with incoherent

(i.e., total energy) detection methods have been used to explore the nonlinear

optical properties of semiconductors in the FIR region of the spectrum, which has

enabled studies of high-field transport, band structure, and carrier–phonon

interactions in semiconductors [46, 47]. For example, Mayer and Keilmann [47]

first observed third harmonic generation in the FIR in doped semiconductors using

40 ns, 20 cm�1 pulses from a FIR laser source, providing new insight into nonlinear

electron transport dynamics in semiconductors. More recently, by using coherent

detection methods, the electric field of the THz pulse, rather than its intensity, has

been mapped in time, giving access to both amplitude and phase information that

can be used to extract the real and imaginary parts of the index of refraction
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(or equivalently, the complex conductivity or dielectric function) without the use of

Kramers–Kronig relations. In addition, the brightness of the newly developed THz

pulse sources together with the possibility of coherent detection gives orders of

magnitude better sensitivity than conventional thermal sources based on bolometric

detection. As mentioned previously, the rich information contained in the energy

range of THz waves (0.41–12.3 meV) allows one to perform spectroscopy on

numerous materials [7–12]. In particular, quasi particle scattering rates in doped

semiconductors are in the THz range, and so THz pulses can be used to characterize

their overall conductivities [48]. However, since significant advances in high power

single-cycle THz pulse generation have occurred relatively recently, only a limited

number of experiments investigating the nonlinear optical response of semiconduc-

tor materials at THz frequencies and at picosecond timescales have been reported

so far. For instance, the nonlinear response of n-type GaAs, excited by a THz pulse
with an electric field amplitude of 50 kV/cm, has been reported [14]. In addition,

THz intensity dependent cross-phase modulation has been observed in electro-optic

crystals, in turn leading to spectral shifting, broadening, and modulation of co-

propagating laser pulses [15]. Lattice anharmonicity and self-phase modulation in

LiNbO3 [19] and THz-electric-field-induced impact ionization in InSb [49] have

been reported using intense THz pulses. Moreover, these sources have allowed the

observation of a decrease in THz absorption due to intervalley scattering in doped

GaAs, Si, and Ge using THz pump–THz probe techniques [50], as well as the

observation of ballistic transport of electrons in GaAs across half the Brillouin zone

by time-resolved high-field THz measurements [51].

11.3.1 Nonlinear Absorption Bleaching

One of the most common and straightforward nonlinear optical characterization

techniques is the open-aperture Z-scan where the transmission of a sample is

measured as it passes through the focus of an intense optical beam, thus giving

access to nonlinear transmission properties. Widely used in multiphoton absorption

studies [52], it has been shown to be effective even for characterizing saturable

absorbers [53]. Indeed, THz saturable absorbers have recently been proposed [54].

Generally, since most types of nonlinear phenomena are detectable through the

Z-scan technique, one must perform open and closed aperture Z-scan to identify

the origin of the transmission change (i.e., index of refraction or nonlinear absorp-

tion changes). On the other hand, when a Z-scan technique is used in combination

with a THz EO sampling coherent detection scheme, as opposed to incoherent

detection, the full temporal waveform evolution is available. This additional feature

can directly confirm the presence, or not, of refractive index changes, simply by

looking at the phase changes of the temporal waveform. In particular, it is also

worth stressing that THz Z-scan gives access to the dynamics of a nonlinear process

by simply measuring the change in transmission of a single THz pulse, which is

usually not possible at optical frequencies. A schematic of a typical Z-scan tech-

nique is shown in Fig. 11.5.
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In order to investigate free-carrier-related nonlinearities at terahertz frequencies,

we can take advantage of a well-known material widely used in optoelectronics,

namely, indium gallium arsenide (InGaAs). The sample used here is a 500-nm-

thick n-type In0.53 Ga0.47As epilayer (carrier concentration of approximately

2 � 1018 cm�3) grown by metal oxide chemical vapor deposition on a lattice-

matched, 0.5-mm-thick semi-insulating indium phosphide (InP) substrate. Its linear

transmission characteristic at low THz fields shows that only 3% of the incident

THz pulse energy passes through; this strong drop in transmission is mainly due to

the high conductivity of the epilayer, where the InP substrate alone has an overall

transmission (including absorption and reflection losses) of about 60%.

In Fig. 11.6a, the InGaAs sample is illuminated with 0.8 mJ terahertz pulses with
peak electric field of around 200 kV/cm at the focus. In that first experiment, a

Z-scan measurement was performed on the sample using an incoherent detection

method, measuring the transmitted THz pulse energy with a standard pyroelectric

detector. A significant transmission enhancement (red line, Fig. 11.6a) is observed

around z ¼ 0 mm (focus position) of the Z-scan. In a situation where the same

technique is applied to the substrate alone, no effect is observed (as shown by the

black line in Fig. 11.6a). The nonlinear transmission becomes clearer when looking

at the temporal profile of the transmitted THz electric field at different z-positions, as
shown in Fig. 11.5b. Taking into account that a linear transmission of the THz pulses

is obtained for a position far from focus (i.e., |z| > 6 mm), Fig. 11.6b shows no

significant temporal shift between each transmitted pulses, thus indicating that the

imaginary part of the conductivity is not appreciably changing. Knowing that by

calculating the time integral of the modulus squared of electric field, we obtain a

quantity proportional to energy, one can corroborate the data obtained in Fig. 11.6a

with the one measured in (b). Figure 11.6c shows the evaluation of the transmitted

energy calculated using the coherent measurement shown in Fig. 11.6b, which is

found to be consistent with the direct energy measurement obtained in Fig. 11.6a.

Additional information can be extracted from Fig. 11.6b by looking at the

Fig. 11.5 Schematic of the THz Z-scan technique
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transmission changes with time, showing dynamical features on a timescale compa-

rable to the THz pulse duration. These subtle changes become more evident in

Fig. 11.6d, where the normalized electric field differential transmission is plotted as

a function of time for different z position along the scan. This operation is obtained
by taking the difference between each peak electric field of the transmitted pulses

near the focus position with the pulse in the linear transmission regime (i.e., |z| > 6

mm). The dynamics of the bleaching process shows an initial increase in transmis-

sion over a period of 1 ps (with a peak at t ¼ 2.2 ps) followed by a slower decay.

A nonlinear bleaching of terahertz absorption, similar to the one discussed here,

was reported some 20 years ago in a pioneering work on FIR nonlinear optics [47]; in

Fig. 11.6 (a) Z-scan normalized transmission of the total THz pulse energy measured with a

pyroelectric detector after the sample (the red line refers to the InGaAs epilayer on an InP substrate

and the black curve to the InP substrate only). (b) Transmitted THz pulse electric field for different

positions of the Z-scan. (c) Normalized time integral associated with the modulus squared of the

transmitted electric field as a function of the z position along the scan. (d) Normalized electric field

differential transmission as a function of time for different z position along the scan (adapted from
ref. [55])
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that case, n-doped Germanium and Gallium Arsenide were used. The origin of the

effect was tentatively attributed to an electric-field-induced scattering of carriers into

upper conduction band valleys. In these valleys, electrons acquire a significantly

higher effective mass, reducing the macroscopic conductivity of the sample and thus

increasing its transmission. In their case, ns-long THz pulses were used in conjunction

with incoherent detection, which does not allow the observation of subpicosecond

dynamics. In the case of excitation by few cycle, coherently detected, picosecond THz

pulses, free carriers in theG valley, are accelerated by the terahertz electric field during

each of its oscillations. When they acquire enough kinetic energy to overcome the

nearest intervalley separation, they may scatter into an upper valley where, as previ-

ously stated, the effective mass is higher and thus the transmission is enhanced.

The electrons in this upper valley then scatter back to the G valley, so that eventually

the transmission starts to drop again, with a time constant related to the intervalley

relaxation time. In the particular case described above, as described in Fig. 11.7, the

closest upper valley in In0.53 Ga0.47As is the L valley (DG�L ¼ 0:55 eV), the effective

masses in the two valleys are mG ¼ 0:03745me and mL ¼ 0:26me, respectively, and

the L–G intervalley relaxation time is known to be about 3.1 ps [56].

11.3.2 Dynamic Intervalley-Electron-Transfer Model

In order to characterize the absorption bleaching phenomenon in doped

semiconductors, a simple Drude model incorporating G–L intervalley scattering

can be used to describe the temporal dynamics of the observed nonlinear THz

transmission. The THz transmission of our samples, which can be idealized as a

thin conducting sheet with thickness d on an insulating substrate with index n, can
be expressed as follows [7]:

EtransðtÞ ¼ 1

Y0 þ YS
2Y0EincðtÞ � Jdð Þ: (11.9)

Fig. 11.7 Mechanism of

intense THz-pulse-induced

intervalley scattering. The

electrons in the conduction

band (CB) are accelerated by

the THz electric field; after

acquiring enough kinetic

energy they may scatter into a

satellite valley (L valley in

this case)
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Here, Etrans and Einc are the transmitted and incident THz fields, respectively,

Y0 ¼ 377Oð Þ�1
and YS ¼ nY0 are the free-space and substrate admittances, respec-

tively, and J is the current density in the film, which is given by:

J ¼ nGnGeþ nLnLe; (11.10)

where e is the electronic charge, nG and nL are the electron densities, and nG and nL
are the drift velocities of the G and L valley electrons, respectively. The electron

velocities driven by the transmitted THz field Etrans and the population of electrons

in the G valley nG can be described by the dynamic equations:

@ni
@t

¼ eEtrans

m�
i

� ni
ti
; i ¼ G; L; (11.11)

dnG
dt

¼ nG
tGL

þ nL
tLG

; (11.12)

n0 ¼ nL þ nG: (11.13)

Here, tG, tL and m�
G, m

�
L denote the intravalley scattering times and the effective

masses in the two valleys, while t�1
LG and t�1

GL are the scattering rates from one valley

to another, and n0 is the total electron density.

During the absorption bleaching process, the transmitted field Etrans accelerates

the electrons in the conducting layer of the sample and induces the population

transfer between the different valleys of the conduction band. This in turn affects

the current density J in (11.9), and hence modifies the transmitted field. This

feedback is responsible for the rich and surprising dynamical features associated

with the effect under investigation. The change in electron populations in the G and

L valleys is determined by the intervalley scattering rates. The L–G transfer rate t�1
LG

is kept constant [57], while the G–L scattering rate t�1
GL is a function of the average

kinetic energy of the electrons in the G valley [58]:

e ¼ 1

2
m�

Gn
2
G þ 3

2
kBTL: (11.14)

This average kinetic energy is associated to the electrons in the G valley with kB
and TL the Boltzmann constant and the lattice temperature, respectively. The

scattering rate t�1
GL is zero at low energies but starts to increase rapidly at a threshold

value eth to a maximum value t�1
GL0 at high energies.

t�1
GL eGð Þ ¼

0; e 	 eth 1� bð Þ ¼ e1;

smooth function for e1<eG<e2;

t�1
GL0; eG 
 eth 1þ bð Þ¼e2:

8>><
>>: (11.15)
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Since intervalley scattering takes place via emission or absorption of optical

phonons, the energy-dependent function of the valley transfer rate, t�1
GL eGð Þ, is

tentatively made “smooth.” The smooth function is inserted via a seventh-order

polynomial section that is continuous up to the third derivative [58]. Here, eth and b
are the threshold energy and smooth width parameter, respectively.

Electric-field-driven intervalley scattering is a well-known mechanism in high-

field transport physics, and it can introduce negative differential resistance andGunn

oscillations in direct bandgap semiconductors [59]. The critical DC field required to

excite these phenomena in In0.53 Ga0.47As is usually in the range of 2.5–4 kV/cm

[60]. As one can see in Fig. 11.6, however, at THz frequencies, the effect of

absorption bleaching vanishes rapidly, as the peak electric field inside the epilayer

drops below 14 kV/cm (at the position z ¼ �4mm in the Z-scan). This indicates that

the critical field required to excite the same phenomenon can be higher than its DC

counterpart. Figure 11.8 shows how themodel presented above can describe both the

transmitted energy and the time-domain experimental results first shown in

Fig. 11.6, strongly suggesting that the intervalley scattering mechanism is responsi-

ble for the observed nonlinear absorption bleaching process (red curves are

simulated data in Fig. 11.8). The fitting procedure allows one to quantify

the scattering rates of heavily doped InGaAs, as studied here. The G–L intervalley

scattering rate is found to be about 3.33 � 1013 s�1 (tGL ¼ 30 fs), close to the

value measured in GaAs [61], while the L–G intervalley relaxation rate is found to

be about 2.50 � 1011 s�1 (tLG ¼ 4 ps), similar to that found in ref. [56]. Using

this model, the rapid transmission change along the Z-scan (Fig. 11.8c) can also

be described.

11.4 Mapping of the Conduction Band

Traditionally, the electron effective mass is measured using cyclotron resonance

(CR) [60–62]. Pioneering CR studies revealed the anisotropy of the electron

effective masses in anisotropic conduction bands, such as in Si and Ge [62].

The nonparabolicity of the conduction band a was first found by CR in the 1960

and also by probing the curvature of the band while varying the excitation energy

[63], and the same technique was used to study nonparabolicity in bulk In0.53
Ga0.47As [64], showing an increase in the electron effective mass (often called

cyclotron mass) as a function of the CR energy (up to 30 meV at 4.2 K). However,

CR measurements are obtained only if the carriers are able to complete several

closed orbits around the magnetic field prior to suffering collisions with phonons or

impurities. Therefore, CR is mainly performed in pure crystals and at low tempera-

ture (i.e., liquid helium temperatures below 4 K). Nevertheless, dc field-induced

anisotropy of the small-signal microwave conductivity at 35 GHz showed an

anisotropic behavior in n-doped InSb samples at low temperatures (77 K) with

respect to the polarization of the applied microwave probing field [65]. In those

experiments [65], the lower microwave conductivity seen in the parallel
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configuration compared to the perpendicular case at high dc fields was attributed to

an anisotropy in the intravalley scattering times due to the enhanced electron

heating in the parallel direction [65, 66]; however, effects due to band

nonparabolicity were not considered. Kaw et al. [67] later showed that the band

nonparabolicity was important for understanding the anisotropic microwave con-

ductivity of hot electrons in InSb, but noted a reduction in anisotropy when

nonparabolic effects were included, contrary to other models [68]. Further

experiments [69] at higher frequencies in the 75 GHz range revealed a microwave

anisotropy in InSb at low temperatures opposite to that seen at 35 GHz. It is also

important to note that the dc field in these experiments had to be pulsed in order to

minimize thermal heating of the sample [69].

Fig. 11.8 (a) Normalized electric field differential transmission as a function of time at the focus

of the Z-scan (Red line: model; black line: experimental data). (b) Peak value (t ¼ 2.2 ps) of the

normalized electric field differential transmission as a function of the z position along the scan. (c)
Comparison with the data from n. (d) Incident electric field dependence of the normalized energy

transmission (adapted from ref. [55])
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11.4.1 Polarization Dependence

A novel approach to map the conduction band nonparabolicity in heavily doped

semiconductors and at room temperature has been recently proposed using a THz

pump–THz probe (TPTP) scheme [70]. This methodology based on TPTP scans is

similar to the TDTS technique described previously, with the addition of a THz

pump pulse that excites the sample into a non-equilibrium state. In that specific case,

the lock-in amplifier is synchronized to detect changes in the THz probe beam at the

chopper frequency modulating the THz pump beam. This reads a voltage propor-

tional to the electric field of the THz probe pulse. The temporal scanning between

pump and probe beams is obtained by using the delay stage (B) in Fig. 11.3. The

TPTP experiment is shown schematically in Fig. 11.9a. In this TPTP scheme, an

additional ZnTe crystal 0.5-mm thick was used to generate the THz probe pulses

transmitted through the sample and detected by free-space electro-optic sampling.

Both the ZnTe crystal for the probe beam and the ZnTe crystal for detection could be

Fig. 11.9 (a) Schematic of the TPTP experimental setup. (b) Electric field profile of the terahertz

pump beam emitted by the ZnTe optical rectification source. Inset: amplitude spectrum of the THz

pump pulse. (c) Electric field profile of the transmitted terahertz probe beam at various times delay

between the THz pump and THz probe pulses (adapted from ref. [70])
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rotated to produce (and detect) probe polarization states either parallel or perpendic-

ular to the THz pump beam. A black polyethylene sheet, which is transparent to the

THz radiation, was used before the sample to block any remaining 800-nm light

transmitted through the ZnTe crystal used for generating the THz probe pulse. It has

to be mentioned that the non-collinear geometry of the TPTP experiment presented

in Fig. 11.9 allowed the THz pump and probe beams transmitted through the sample

to be geometrically separated. Cross-talk between the two THz beams is therefore

avoided by simply placing a metallic beam block in the path of the transmitted THz

pump beam after the second off-axis parabolic mirror.

Figure 11.9b shows an example of the temporal profile of the THz pump pulses

produced by the ZnTe source, and the inset shows the corresponding amplitude

spectrum of the THz pump pulse. In Fig. 11.9c, various THz probe pulses

waveforms transmitted through the In0.53 Ga0.47As sample are presented, showing

an increased transmission when overlapped with the THz pump pulse at a zero

relative time delay, while the phase is unaffected. This allowed the transmission of

the main positive peak of the THz probe pulse to be monitored as a function of

pump–probe delay time, which is a common method for probing ultrafast carrier

dynamics in semiconductors in optical pump–THz probe (OPTP) experiments

[56, 71, 72]. As mentioned previously, an independent polarization control of the

probe beam is obtained by changing the ZnTe crystals orientation for both THz

probe emitter and detector. This additional feature allows for the detection of

anisotropic behavior of samples under investigation.

Figure 11.10a is a schematic of the polarization-dependent TPTP technique and

Figs. 11.10b and c are the normalized transmission of the main peak of the THz probe

pulse as a function of pump–probe delay time. The presence of the THz pump pulse

results in an increase in transmission of the peak electric field of the THz probe pulse.

Figure 11.10b shows the transmission change for a probe polarization perpendicular to

the pump beam polarization, while Fig. 11.10c shows the same measurement

performed for the parallel polarization configuration. In the latter case in

Fig. 11.10c, a fast, large amplitude oscillation is observed on top of a slower compo-

nent similar to that shown in Fig. 11.10b. In particular, when the probe beam is

blocked, no residual signal from the pump beam is detected; both beams have to be

present inside the sample in order to observe the large amplitude oscillations for the

parallel polarizations shown in Fig. 11.10c. Moreover, moving the sample to an off-

focus position (or completely removing it from the THz beam) eliminated any

modulation signal of the THz probe transmission. This would suggest that the

observed signals cannot be attributed to any interference effects between the THz

pump and THz probe waveforms at the detector crystal. Furthermore, the presence of

small oscillations in the perpendicular polarization case, as shown in Fig. 11.10b, is

inconsistent with the requirement of a parallel polarization for the interference effects.

As discussed earlier for Fig. 11.9c, the lack of any significant phase shift in the

transmitted THz waveform implies that the observed signal is due to the modulation

of the peak amplitude of the THz probe pulse. To further corroborate this conclusion,

no signal was observed as a function of the pump–probe delay time when the THz

detection point was set to a zero-crossing of the THz probe waveform. The increase in
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the transmission of the THz probe beam for cross-linear (XL) polarization, as shown in

Fig. 11.10b, is due to a decrease in sample conductivity arising primarily from the

THz-pump-pulse-induced intervalley scattering of carriers from the high mobility G
valley to the lower mobility L valley in InGaAs [55, 73]. As shown in Fig. 11.10b, the

decay of the transient absorption bleaching signal observed for perpendicular

polarizations is about 3.3 ps, which is consistent with relaxation times of about

3.1 ps for carrier scattering from the L valley back to the central G valley reported in

the OPTP experiments performed on In0.53 Ga0.47As [56]. This dynamics is also

consistent with the Z-scan results discussed in the previous section.

11.4.2 Effective Mass Anisotropy

In this study, the interpretation of the anisotropic nature of the large ultrafast

modulation of the THz probe transmission observed in the co-linear (CL) TPTP

geometry is based on the nonparabolicity of the isotropic conduction band in

InGaAs. This anisotropy is depicted in Fig. 11.11a and arises from the different

Fig. 11.10 (a) Polarization-dependent results for a cross- (XL) and a co- (CL) linear TPTP configu-

ration. Normalized transmission of the THz probe peak electric field as a function of pump–probe

delay time for (b) XL-TPTP and (c) CL-TPTP. The THz pump pulse waveform transmitted through

the InGaAs sample (blue line) is also shown for reference (adapted from ref. [70])
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orientations ink vector that probes the effective mass for electrons high in the band.

As shown in Fig. 11.11b, the energy e of an electron in an isotropic, nonparabolic

band with wave vector components kx and ky along the x and y directions,

respectively, is given by [73]:

eð1þ aeÞ ¼ �h2

2m0

k2x þ k2y

	 

; (11.16)

where a is the nonparabolicity factor of the band and m0 is the effective mass at the

bottom of the band. The polarization of the electric field of the THz pump pulse is

along the kx-axis, such that the parallel and perpendicular TPTP configurations

correspond to the electric field of the THz probe pulse polarized along the x and y
directions, respectively. If the THz pump field drives an electron to a state

with crystal momentum �hkx0 in the x-direction, then the band effective masses of

Fig. 11.11 (a) Schematic of an isotropic, nonparabolic band for an electron with energy (kx, ky).

The electric field of the THz pump pulse is polarized along the x-direction and drives the electron

high in the band to kx0, where the THz probe pulse senses an anisotropic effective mass due to

different band curvatures parallel and perpendicular to the pump field direction, as given by

(11.18a) and (11.18b), respectively. (c) Electron effective masses as a function of energy

normalized to the masses at the bottom of the G valley for cross- (d) and co-linear (e) polarizations

(adapted from ref. [70])
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the carrier at ðkx; kyÞ ¼ ðkx0; 0Þ parallel and perpendicular to the x-direction
are given by:

m�1
x ¼ 1

�h2
d2e
dkx

2

����
kx¼kx0;ky¼0;

(11.17a)

m�1
y ¼ 1

�h2
d2e
dky

2

����
kx¼kx0;ky¼0

; (11.17b)

for the two components, respectively, which can be expressed as:

mx ¼ m0 1þ 2a �hkx0ð Þ2
m0

 !3=2

¼ m0ð1þ 2aeÞ3; (11.18a)

my ¼ m0 1þ 2a �hkx0ð Þ2
m0

 !1=2

¼ m0ð1þ 2aeÞ: (11.18b)

Figure 11.11c shows the difference in effective masses normalized to the

effective mass at the bottom of the band for the perpendicular and parallel cases

as a function of the electron energy according to (11.18a) and (11.18b) with

a ¼ 1.33 eV�1 [74]. As one can see, the band masses mx and my are equivalent

only at the bottom of the band, but mx > my for energies higher up in the band

(see Fig. 11.11d and e). The dotted line in Fig. 11.11b–d is the band masses without

the nonparabolicity factor.

The anisotropic electron dynamics induced by the strong electric field of the THz

pump pulse can be explained by including the anisotropic effective mass equations

(11.18a) and (11.18b) in the dynamic intervalley-electron-transfer model

introduced in Sect. 11.3.2 The strong THz pump electric field modulates the

electron population in the G valley and the electron effective mass in such a manner

to drive the electron far away from the G point in k space. Both pump and probe

THz electric fields drive the electron according to the Drude motion equation.

However, the weak probe THz electric field is only able to provide the electron

with a much lower kinetic energy than the thermal energy. Therefore, the probe

THz-field-induced intervalley scattering and effective mass modulation can

be neglected. The time-dependent transmission of the main peak of the THz

probe pulse with respect to the time delay of the THz pump pulse at the sample

can be solved numerically. The calculated peak THz probe transmission as a

function of the pump–probe delay time and corresponding evolution of the G valley

electron density are shown in Fig. 11.12 (red curves). The calculated electron

velocities and corresponding normalized effective masses, mx/m0 and my/m0, are
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shown in Fig. 11.13, and Table 11.2 summarizes the best-fit parameters used in the

dynamic intervalley-electron-transfer model for Z-scan and TPTP measurements.

As shown in Fig. 11.12, the calculations agree with the experimental data to some

extent. The fast oscillations and longer-term response observed in the parallel case,

Figs. 11.10b and 11.12a, are thus due to a combination of the change in the electron

Fig. 11.12 Calculated normalized transmission of the peak THz probe field (red lines) and G
valley electron fraction (green lines), compared with the observed THz probe transmission (black
lines) as a function of the pump–probe delay time for (a) the parallel TPTP and (b) the perpendic-

ular TPTP configurations, respectively

Fig. 11.13 Calculated electron velocity (green line) and effective mass normalized to the

effective mass at the bottom of the band in the parallel (CL, red line) and perpendicular (XL,

blue line) directions as a function of pump–probe delay time. The THz pump field (dashed line) is
also shown
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effective mass (fast oscillations) and the THz-pump-induced intervalley scattering

(pedestal with picosecond decay time). As shown in Fig. 11.13, the model is able to

reproduce the stronger oscillations seen in the parallel (CL) case compared to the

perpendicular (XL) case due to the strong anisotropy in effective mass for electrons

high in the band. A more rigorous theoretical approach also shows that the observed

TPTP polarization anisotropy arises from effective mass anisotropy of hot carriers

due to band nonparabolicity [70].

11.5 Perspectives and Conclusions

In this chapter, we have presented an introduction of THz nonlinear spectroscopy

through the absorption bleaching phenomenon in an n-doped In0.53 Ga0.47As thin

film semiconductor. The absorption bleaching was first observed using a THz

Z-scan technique and then confirmed using a more sophisticated technique based

on a THz-pump–THz-probe experiment. The subpicosecond time resolution of this

technique, coupled with the control of probe polarization, reveals the anisotropic

nature of the hot electron effective mass inside an isotropic and nonparabolic

conduction band. A classical model for the nonlinear conductivity at THz

frequencies can be used to understand the origin of the absorption bleaching and

confirms the origin of the anisotropic response of the THz probe signal, agreeing

with more rigorous models. This new tool may open the way to directly mapping

energy bands in semiconductors.

Table 11.2 Summary of best-fit parameters used in the model to describe the Z-scan and TPTP

results

Parameter Symbol

Z-scan simulations

parameters

TPTP simulation

parameters Units

Nonparabolicity factor [74] aG G valley: 1.33 G valley: 1.33 eV�1

L valley: 0.59 L valley: 0.59

G valley scattering rate tG�1 1.00 � 1013 0.56 � 1013 s�1

L valley scattering time tL�1 1.67 � 1013 1.67 � 1013 s�1

Threshold energy eth 0.13 0.25 eV

G–L intervalley scattering

rate [61]
tGL�1 3.33 � 1013 3.33 � 1013 s�1

L–G intervalley scattering

rate [56]
tLG�1 2.50 � 1011 2.50 � 1011 s�1
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Chapter 12

Generation of Terahertz Radiation via

Purcell‐Enhanced Nonlinear Frequency Mixing

J. Bravo-Abad and M. Soljačić

12.1 Introduction

As illustrated throughout this book, nonlinear micro- and nanostructured material

systems offer unique fundamental ways for tailoring a variety of nonlinear optical

processes in a broad spectrum of frequency regimes. In this chapter, we show how

the combination of concepts associated with nonlinear optics and those usually

ascribed to quantum optics enable identifying novel routes in this general endeavor

towards the ultimate control of nonlinear optical phenomena.

The discovery of the quantum Purcell effect more than 60 years ago [1], opened

up the fascinating possibility of manipulating, almost at will, the rate of spontane-

ous emission (SE) of a quantum light emitter by modifying the electromagnetic

(EM) density of states of the environment in which the emitter is embedded. With

the advent of concepts such as photonic crystals (PhCs) [2–4] and the rapid

development of improved nanofabrication techniques, the ability to control the

SE of atoms, molecules, or quantum dots, has become of great importance for a

broad spectrum of important applications in fields as diverse as illumination,

biological and chemical sensing, harvesting of solar energy, and communications

[5]. A very promising route that arises in this context consists in revisiting the

original inspiration of these concepts in the context of classical electrodynamics

[6, 7] and applying them to the realm of nonlinear optics.

In particular, the application of a classical analog of SE enhancement of a

radiating system inside a cavity to boost the power radiated by a classical current

distribution could be greatly advantageous to solve some of the main challenges [8]
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arising in the path towards the convergence of photonics and electronics. One of the

most remarkable illustrations of this concept resides in the enhancement of

the conversion efficiency of nonlinear frequency-mixing processes whose conver-

sion efficiency is intrinsically very low. Of special interest due to its considerable

importance for applications [9, 10], is the case of efficient terahertz (THz)

generation. In particular, the application of these general principles to develop

a compact and powerful source of coherent THz radiation able to operate efficiently

at room temperature (RT) shows great promise for a truly practical implementation

of wide spectrum of applications in areas so diverse as medicine [11], sensing [12],

spectroscopy [13] or security screening [14]. Moreover, the approach described in

this chapter establishes a simple alternative to other approaches requiring involved

experimental setups, such as the development of room temperature THz quantum-

cascade lasers [15] or those approaches requiring more intricate phase-matching

setups and powerful lasers [16, 17].

This chapter is organized as follows. In Sect. 12.2, we first review the theoretical

foundation of the classical analog of the quantum Purcell effect (Sect. 12.2.1). Then,

we show how an approach based on a coupled-mode theory allows generalizing that

classical analog to the case of a nonlinear frequency mixing process occurring inside

an EM resonant cavity (Sect. 12.2.2). In Sect. 12.3, we show how the application of

the general principles obtained from the proposed picture, combined with the unique

properties of PhCs, enables low-power efficient THz generation at room-temperature

using a compact device based on conventional material systems. Finally, in

Sect. 12.4 we provide a set of conclusions for this chapter.

12.2 Theory of Purcell-Enhanced Nonlinear

Frequency Mixing

12.2.1 Classical Analog of the Quantum Purcell Effect

To gain physical insight into the approach introduced in this chapter, let us briefly

review the theoretical foundation of the analog between the SE process of a two-

level atom in a lossless and inhomogeneous dielectric cavity and the power radiated

by a classical decaying source placed in the same cavity. We first recall that the

enhancement of the SE rate of a two-level atom in a dielectric lossless cavity is

given by the so-called Purcell factor Fp ¼ ð3Q=4p2VeffÞðl=nÞ3, where Q and Veff

are the quality factor and the effective modal volume of the cavity, respectively.

l stands for the resonant wavelength (in air) of the cavity, and n is the refractive

index of the material where the emitter is located. Here, we have assumed that

the source is located at the maximum electric-field position inside the cavity, that

the frequency of the atomic transition coincides with the resonant frequency of the

cavity, and also that there is no polarization mismatch between the electric dipole

moment of the emitter and the cavity field. The SE rate ( g) of the considered

two-level atom, located at r ¼ r0 and interacting with the EM field of the cavity,
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can be expressed in terms of the classical Green’s function of the dielectric structure

Go
a;bðr; r0Þ

� �
as [18–20].

g ¼ � 4

hc3
e2

m2
p12; a p12; b

ð
do

2g12
ðo0 � oÞ2 � g212

Im Go
a;bðr0; r0Þ

h i
; (12.1)

where the subindices a and b denote the a-th and b-th Cartesian components of the

corresponding vector ( a; b ¼ fx; y; zg). p12; a ¼ 1jP̂j2� �
is the matrix element of

the electron momentum operator P̂, o0 stands for the frequency of the considered

atomic transition, whereas g12 represents the corresponding dipole dephasing rate [21].
Next, in order to build the connection between the quantum Purcell effect and its

classical counterpart, we take into account that the total energy radiated by a

classical dipole current of the form JoðrÞ ¼ ðe=mÞjðoÞ dðr� r0Þp12, can also be

written in terms of Go
a;bðr; r0Þ as

Erad ¼ � 2p
c2

e2

m2
p12; a p12; b o0

ð
dojjðoÞj2 Im Go

a;bðr0; r0Þ
h i

: (12.2)

Now, assuming jðoÞ ¼ 1=ðiðo0 � oÞ þ g12Þ, by direct comparison of (12.1)

and (12.2) we obtain

gcav
gfree

¼ Erad;cav

Erad;free
; (12.3)

where gcav and gfree stand for the SE rate of the atom in the cavity and in free space,

respectively, whereas Erad;cav and Erad;free are the total energy radiated by JoðrÞ in
the cavity and free space, respectively.

Noticing that Erad;cav=Erad;free ¼ Prad;cav=Prad;free (where Prad;cav and Prad;free are

the average powers radiated by the classical current source inside the cavity and in

free space, respectively), the combination of (12.3) with the expression for the

Purcell factor Fp given above suggests a route for extracting efficiently the power

radiated by an arbitrary classical current distribution simply by optimizing ratio

Q=Veff characterizing the cavity in which the current is embedded in. We point out

that, to our knowledge, (12.3) has been used extensively to compute SE rates of

quantum light emitters embedded in complex nanostructures by means of standard

computational methods developed for classical electromagnetism (such as the

finite-difference-time-domain, FDTD, method), but surprisingly, there has been

limited interest in using (12.3) to identify new strategies to enhance conversion

efficiencies of nonlinear frequency mixing processes.

12.2.2 Coupled-Mode Theory Analysis

Our goal in this section is to present the theoretical foundation of the nonlinear

coupled mode theory (CMT) used throughout this chapter.
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12.2.2.1 Coupled-Mode Theory Approach to Classical Purcell Enhancement

To formulate the generalization of approach discussed above to the case of an

arbitrary current distribution JTðr; tÞ, we apply a coupled-mode theory analysis to

this problem [22, 23]. To compute the total power emitted by JTðr; tÞ inside the

cavity, we assume, without loss of generality, that all the radiated power is collected

by a waveguide asymmetrically coupled (through evanescent fields) to the cavity

(see schematics of Fig. 12.1). If, for simplicity, we further assume that the cavity is

single-mode, the electric field inside the cavity ETðr; tÞ can be written as

ETðr; tÞ ¼ aTðtÞ expð�ioTtÞ E
ð0Þ
T ðrÞ

ð1=2Þ Ð dr e0 n2TðrÞ Eð0Þ
T ðrÞ

��� ���2 ; (12.4)

where E
ð0Þ
T ðrÞ is the electric field profile of the cavity mode. oT is the cavity

resonant frequency, while nTðrÞ stands for spatially dependent refractive index of

the cavity at the corresponding resonance frequency. The function aTðtÞ stands for
the slowly varying electric field amplitude. The normalization of ETðr; tÞ has been
chosen so the time-dependent electric field energy stored in the resonant cavity

mode UðtÞ is simply given by UðtÞ ¼ jaðtÞj2.
Now, by considering the resonant cavity mode as a CMT port [22], one can

obtain the following equation of motion governing the temporal evolution of aTðtÞ.
daðtÞ
dt

¼ �ioTaðtÞ � ðGrad þ GIO þ GabsÞaðtÞ þ ginðtÞ; (12.5)

where Grad, GIO, and Gabs are the cavity decay rates due to radiative losses, decay

into the waveguide, and linear absorption, respectively (the corresponding quality

factors are Qrad ¼ oT=2Grad, QIO ¼ oT=2GIO, and Qabs ¼ oT=2Gabs, respectively).

Fig. 12.1 Schematic illustration of the coupled-mode theory applied to obtain the power radiated

by an arbitrary classical current distribution embedded in a single-mode cavity and asymmetrically

coupled to a waveguide. The main parameters used in this coupled-mode description are also

displayed in the sketch
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The function ginðtÞ is the driving term of the system. In the considered problem, it

has a clear physical interpretation: it represents the power radiated by the current

distributionJTðr; tÞ inside the cavity. From the Poynting theorem and simple energy

conservation arguments, one finds that ginðtÞ can be expressed as

ginðtÞ ¼ 1

4

Ð
dr

~
JTðr; tÞ E

ð0Þ
T ðrÞ

h i�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ
dr e0 n2TðrÞ Eð0Þ

T ðrÞ
��� ���2

r : (12.6)

Here, we have assumed that JTðr; tÞ ¼ ~
JTðr; tÞ expð�ioT tÞ and we have also

introduced the expression for ETðr; tÞ given in (12.4).

Thus, for a given
~
JTðr; tÞ the temporal evolution of the energy inside the cavity,

jaTðtÞj2, is obtained by inserting (12.6) into (12.5) and solving the resulting first-

order differential equation. Once aTðtÞ is known, the total emitted power PTðtÞ can
be computed simply by using PTðtÞ ¼ 2GIOjaTðtÞj2.

In particular, after some straightforward algebra, the instantaneous THz emitted

power PT;s can be expressed analytically as

PT;s ¼ 4
nT

p c e0 l
2
T

 !
QT

QIO

� 	
QT

~VT

 ! ð
d r JTðr; tÞ½Eð0ÞðrÞ��=ET;max

����
����
2

; (12.7)

where QT stands for the total quality factor of the cavity. lT is the resonant

wavelength in air (lT ¼ 2pc=oT), whereas ET;max denotes the maximum value of

jETðrÞj. In (12.7), we have also defined ~VT ¼ VT=ðlT=nTÞ3, where VT is the

effective modal volume of the resonator.

From (12.7), the Purcell enhancement of the power radiated by JTðr; tÞ is

apparent through the factor QT= ~VT. As we discuss below, it is precisely this

enhancement factor, together with the unprecedentedly large values for QT= ~VT,

that can be realized in photonic microresonators [5, 24] that enable increase of the

conversion efficiency of optical nonlinear frequency conversion processes to an

extent that cannot be achieved by means of any other currently known physical

mechanism. Note also that the factor QT=QIO appearing in (12.7) reflects the

necessity to match the intrinsic absorption rate inside the cavity to the decay rate

to the waveguide. This Q-matching condition permits the efficient extraction of

power generated in the cavity, a general property that appears in a broad range

of different contexts (thermal, EM, mechanical, etc.) that require efficient emission

of energy from a high-Q system [22, 25].

12.2.2.2 Purcell-Enhanced Second-Order Nonlinear Frequency Mixing

We now turn to the case of a general nonlinear frequency mixing process involving

a pump and idler frequencies (denoted hereafter byo1 ando2, respectively) in awð2Þ

crystal. In this case, the current distribution JTðr; tÞ arises from the temporal
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variation of the nonlinear polarization vectorJTðr; tÞ ¼ @PNLðr; tÞ=@t. In particular,
we focus on the case of difference-frequency generation (DFG); the generalization

of this approach to other second-order nonlinear frequency mixing process is

straightforward. If we assume that the electric fields oi (where i ¼ 1; 2) are given

byEiðr; tÞ ¼ aiðtÞ expð�ioitÞEð0Þ
i ðrÞ= ffiffiffiffiffi

Ui

p
(whereUi is the EM energy stored in the

system at frequency oi), using (12.7), we find that the instantaneous power PT;s

emitted at the final frequency oT ¼ o1 � o2 takes the following form

PT;s ¼ 24 c0 pnT
e0 l

4
T

QT

QIO

QT

~VT

ja1ðtÞj2 ja2ðtÞj2 jbeff j2; (12.8)

where beff represents the nonlinear coupling strength between the EM fields

involved in the nonlinear difference-frequency mixing. This magnitude can be

written as [26]

beff ¼

Ð
dr

P
i¼1;2;3

(
E
ð0Þ
Ti ðrÞ

h i�.
ET;max

) P
j;k¼1;2;3

wð2Þijk ðrÞEð0Þ
1j ðrÞ E

ð0Þ
2k ðrÞ

h i�( )
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ
d r n21 E

ð0Þ
1

��� ���2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ

d r n22ðrÞ Eð0Þ
2

��� ���2
r ;

(12.9)

where wð2Þijk ðrÞ stands for the spatial distribution of the second-order nonlinear

susceptibility tensor (here, the subindices {i,j,k} denote the Cartesian components

{x,y,z}, respectively, of the corresponding electric field vectors).

An important figure of merit for the scheme proposed in this chapter is the

enhancement factor (�enh) of the output power PT;s predicted by (12.8) with respect

to the value of PT;s that one would obtain using traditional approaches to enhance

the conversion efficiency of a DFG process. In particular, we find relevant the

comparison of our scheme with the case in which the nonlinear coupling coefficient

(beff ) is increased simply by reducing the nonlinear interaction area of the modes

involved in the frequency mixing process, using for instance a waveguide for the

pump, idler and final frequencies (an approach that has been used extensively in the

past for enhancing the conversion efficiency of DFG in different wavelength

regimes [27, 28]). For simplicity, in this comparison we assume operation in the

undepleted regime [i.e., we take a1ðtÞ ¼ a1ð0Þ and a2ðtÞ ¼ a2ð0Þ in (12.8)].

Additionally, we assume that in our system, both the pump and idler fields are

temporally confined, this confinement being characterized by Q-factors Q1 and Q2

for o1 and o2, respectively. As we discuss below for a particular potential

implementation of our scheme, this temporal confinement not only permits enhanc-

ing PT;s, but also allows introducing a generalization of the canonical phase-

matching condition [28], which leads to efficient DFG process even in systems

in which the implementation of standard phase matching techniques (such as

birefringence) is difficult or even impossible. Keeping these assumptions in mind,
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after some algebra, one finds that it is possible to write an accurate analytical

approximation for �enh as

�enh �
25 l1 l2
p3 l2T

nTnT;effn1;effn2;eff
n21n

2
2

Awg

L2wg

QT

QIO

QT

~VT

Q1Q2; (12.10)

wherel1,l2, andlT stand for the wavelengths corresponding to the pump, idler, and

final frequencies, respectively. n1, n2, and nT denote the value of the refractive

indexes ato1,o2, andoT, respectively, of the dielectric mediumwhere the frequency

mixing takes place. The parameters n1;eff , n2;eff , and nT;eff represent the effective

refractive indices of the waveguide configuration for the corresponding modes ato1,

o2, and oT, respectively. Awg is the transversal area of the waveguide system,

whereas Lwg stands for the corresponding length of the waveguide. Note also that

in order to make a meaningful comparison between the cavity system and its

waveguide counterpart, when deriving (12.10), we have assumed that in both cases

there exists an optimal overlap between E1ðr; tÞ, E2ðr; tÞ and ETðr; tÞ. Furthermore,

for this comparison we have assumed that perfect phase matching is achieved for the

waveguide case.

Equation (12.10) summarizes well the comparison between the different

mechanisms that play a role to enhance the conversion efficiency of a DFG process

in a waveguide configuration and the scheme to enhance the conversion efficiency

described in this chapter. Specifically, we have found that, as we numerically

demonstrate below for a particular structure, in the case of THz generation via a

wð2Þ DFG process in realistic nonlinear optical material configurations (in which

considering the absorption losses at the final THz frequency is a key aspect in

determining the ultimate conversion efficiency), it is possible to reach values

~�enh10
3. We emphasize that this large value for �enh is obtained even if the

corresponding phase-matching condition is satisfied in the waveguide system,

which is often challenging to implement due to the vast difference between the

wavelengths corresponding to the pump and idler modes and the final THz modes.

Thus, we believe that the scheme discussed in this chapter could be of a paramount

importance for increasing the conversion efficiency of nonlinear frequency conver-

sion processes whose conversion efficiency is intrinsically low due for instance to

the lack of a phase-matching mechanism in the considered frequency range, or due

to the small value of wð2Þ of the materials of interest. This conclusion is the first

important result of this chapter.

12.3 Practical Implementation: Efficient Thz Generation

at Room Temperature

In this section we show how the general approach described in Sect. 12.2 can be

implemented in practice using the unique properties of PhCs to achieve simulta-

neous spectral and spatial EM mode engineering. Specifically, in this section we
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explore the extent to which the considered approach can be implemented in a

realistic triply resonant nonlinear structure [29] that can be applied to solve the

current lack of efficient sources and detectors operating at room temperature in

the so-called THz frequency gap. We point out that although in this section we have

analyzed the THz emission properties of a specific triply resonant structure, we

have found that the approach introduced here can be implemented in a variety of

different photonic structures and a variety of material systems. To illustrate this

fact, similar results as those discussed in this section have been obtained for a PhC

configuration different from the one presented here (see ref. [30]).

12.3.1 Triply Resonant Photonic Structure: Linear Mode Analysis

Figure 12.2 displays a schematic of the proposed triply resonant system [29]. The

power carried by two NIR beams of wavelengths o1 and o2 (playing the role of

idler and pump beams, respectively, their corresponding powers beingP1in andP2in)

is coupled, by means of an index-guided waveguide, to two high-order whispering

gallery modes (WGM) supported by a dielectric ring resonator. These WGM at l1
and l2 are characterized by angular momenta m1 and m2, respectively. The ring

resonator also acts as a dipole-like defect for lT, when embedded in an otherwise

Fig. 12.2 Schematics of the proposed triply resonant photonic structure, which essentially

consists of a ring resonator embedded in a THz-scale square-lattice photonic crystal. The ring

resonator is side coupled to both an index-guided waveguide transporting the pump and idler

powers (P1in andP2in) and a THz-scale PhC waveguide, which allows to extract efficiently the THz

power (PTHz) from the system
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perfectly periodic THz-wavelength scale PhC formed by a square lattice of

dielectric rods (see the corresponding electric field profile in Fig. 12.3). Thus, the

wð2Þ nonlinear frequency down-conversion interaction that takes place between the

two NIR WGM’s circulating inside the ring resonator yields a current distribution

that radiates inside the PhC cavity at the frequency difference oT ¼ o1 � o2; the

rate at which the radiation is emitted is strongly enhanced by the PhC environment

in which the ring resonator is embedded. In order to extract efficiently the THz

output power (PT;s) from the PhC cavity, we introduce into the system a PhC

waveguide created by reducing the radius of a row of rods (see Fig. 12.2). In

addition, in order to break the degeneracy existing between the x- and y-oriented
dipole defect modes, the radius of two of the nearest neighbor rods of the ring

resonator is reduced with respect to the radius of the other rods in the PhC. This

configuration permits having a large value for the Purcell factor (QT= ~VT), along

with a high-Q resonant confinement also for the pump and idler frequencies.

Figure 12.3 shows the structure that results from optimizing the geometrical

parameters of the system for efficient generation at 1 THz. For this optimization we

have assumed that the wavelengths of pump and idler beams arel1 ¼ 1; 550 nm and

l2 ¼ 1; 542 nm, and that the structure is implemented in GaAs (in which the

Fig. 12.3 Left panel: electric field profile Ez corresponding to the resonant mode appearing at

1 THz in the structure shown in Fig. 12.2. The different geometrical parameters used in the

optimization of the structure are also shown. Right panel shows an enlarged view of the electric

field profile Ex corresponding to a whispering gallery with m1 ¼ 572 circulating inside the

dielectric ring shown in the left panel. Shaded areas in both the main and inset figures represent

GaAs regions, while white areas represent air
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relevant component of the nonlinear susceptibility tensor is d14 ¼ 274 pm/V,

see ref. [31]). The optimal values obtained for the different geometrical parameters

displayed in Fig. 12.3 are the following, a ¼ 102 mm, d1 ¼ 40:8 mm,

d2 ¼ 25:1 mm, d3 ¼ 18:8 mm, and w ¼ 0:8 mm. The internal and external radii

defining the ring resonator are 30.5 and 40.1 mm, respectively. These results

correspond to two-dimensional (2D) simulations. In order to obtain an accurate

estimation of the performance of the actual three-dimensional (3D) counterpart of

the considered structure, we have assumed that the electric field profile for each of

the three fields in the perpendicular direction to the plane shown in Fig. 12.3 is

roughly the same as the mode profile computed for the 2D case; and that its

extension in the third dimension is approximately lT=4. This assumption does not

affect the generality of our conclusions, since it is feasible to design 3D photonic-

crystal structures with 2D electric field cross sections very similar to the ones shown

in this chapter [32]. We also point out that the value for the final THz frequency was

chosen for illustration purposes. The proposed approach has a general character: we

have obtained similar results as those shown in this chapter for different final THz

frequencies.

In order to maximize the strength of the nonlinear coupling coefficient that

governs the energy transfer between the pump, idler and THz fields, the whole

structure must be designed so the dependence of the THz electric field profile on

the azimuthal coordinate y inside the ring cancels the modulation introduced in the

nonlinear susceptibility tensor by the local variation of the pump and idler fields

with respect to the axes of the nonlinear crystal [33, 34]. This modulation is given

by the dependence on y of the product E
ð0Þ
1 ðrÞ Eð0Þ�

2 ðrÞ, which in the case of the

considered WGMs is given by a factor exp½iyðm2 � m1 � 2Þ�. Note that both the

radial and azimuthal components of E
ð0Þ
i ðrÞ are proportional to expðimi yÞ (where

i ¼ 1; 2). Since, in turn, PNLðr; tÞ is proportional to the product of the Cartesian

components ofE
ð0Þ
i ðrÞ, a factor expð�2yÞmust be included, multiplying the phase-

matching factor exp½iyðm2 � m1 � 2Þ� appearing in the integrand of the numerator

in the right-hand side of (12.9). A similar discussion for the case of second-

harmonic generation can be found in refs. [33, 34]. For GaAs, and for the above

cited values for l1 and l2, we have found that this condition is fulfilled by two

WGMs with m1 ¼ 572 and m2 ¼ 575, and a dipole defect mode (mT ¼ 1) in the

THz-scale PhC.

The above discussion can be viewed as a generalization of the canonical phase-

matching condition often found in nonlinear optics. Specifically, note that in

standard phase-matching techniques the overall efficiency of a DFG process relies

entirely on finding a suitable nonlinear material whose dispersion relation permits

fulfilling simultaneously frequency and linear momentum conservation in the

considered frequency mixing process. However, in the approach introduced here

the linear momentum conservation is replaced by the conservation of what is

effectively analogous angular momentum.

As shown above, the values of m1, m2, and mT can be tailored almost at will

simply by modifying the geometrical parameters that define the THz-scale PhC.
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This yields a general and versatile route to phase-matching that does not depend

exclusively on the intrinsic properties of naturally existing nonlinear optical

materials. This fact could be particularly relevant in those systems in which the

canonical phase-matching condition (derived from frequency and linear momenta

conservation) cannot be fulfilled.

12.3.2 Numerical Analysis of the Nonlinear Regime

To compute accurately the nonlinear optical dynamics of the structure shown in

Fig. 12.2, we have applied a temporal coupled-mode theory (TCMT) formalism

similar to that described in refs. [23, 26]. In these references it is shown that this

theoretical framework permits characterizing accurately several nonlinear fre-

quency mixing processes, including those in which there exists a large difference

between the wavelength corresponding to the pump and the final frequency.

Standard numerical methods used in nonlinear nanophotonics (such as the nonlin-

ear finite-difference-time-domain, FDTD, method) are not suitable for being

applied to this problem, mainly due to the vast difference between the wavelength

corresponding to the pump and the final THz frequency (the THz wavelength is

about two orders of magnitude larger than the pump wavelength in the cases of

interest).

Figure 12.4 summarizes the results obtained in the continuous-wave (cw) regime

for the case in whichP1in ¼ P2in (the dependence of the results on the ratioP2in=P1in

is discussed below) and quality factors Q1 ¼ Q2 ¼ 3:5� 105 and QT ¼ 103.

These values for Q are compatible with both the absorption coefficient of GaAs

at 1 THz (a ¼ 0:5 cm�1) [35] and the experimental values for the quality factor

obtained in similar configurations for the considered ring resonator and the PhC

cavity [5, 36]. Notice that in Fig. 12.4, following ref. [26], we have defined

P0 ¼ o1 G1=ð4jbeff j2Q1Q2QTÞ. The physical interpretation P is the following: it

corresponds to the critical power in which the maximum conversion efficiency is

reached in the limit P2in ! 0. For the particular structure analyzed in this work

P0 ¼ 3:17W. Notice that to compute this value of P0 for the actual 3D structure

sketched in Fig. 12.2, we have assumed that the electric field profiles in the perpen-

dicular direction to the plane shown in Fig. 12.3 are the same as those obtained in the

2D simulations, and that its extension in the third dimension for each of the three

fields is approximately lT=4.
As seen in Fig. 12.4, for values of Ptot;in>0:07P0, the conversion efficiency

(defined here as ratio between the output power at THz and total input power at NIR

frequencies) starts departing from the conversion efficiency predicted by the

undepleted approximation, eventually reaching the maximum value predicted by

the Manley–Rowe quantum limit. Specifically, from the steady-state solution of the

TCMT equations, in the considered case when P1in ¼ P2in, one can find that the
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maximum conversion efficiency (i.e., the maximum possible value of the ratio

PT;s=ðP1in þ P2inÞ) can be written as

�max ¼
G1GT

2

oT

o1

� 	
; (12.11)

where GT ¼ QT=QT;IO and G1 ¼ Q1=Q1;IO. This analytical expression is confirmed

by our numerical simulations (see Fig. 12.4). As clearly shown in Fig. 12.4, at the

critical value ofP1in at which this maximum conversion efficiency is reached (in our

case Pc
tot;in ¼ 0:17P0, or equivalently Pc

tot;in ¼ 0:54W), the pump power that is

coupled to the ring resonator is completely down-converted inside the system to

power at THz and idler frequencies, giving rise to a sharp minimum in P1tr and a

maximum inP2tr. We also point out that the net effect of the absorption losses in the

conversion efficiency consists simply in downscaling the results obtained in the

lossless case by a factor G1GT (see the dotted line in Fig. 12.4).

Fig. 12.4 Ratio between total output powers emitted by the system at pump, idler and final THz

frequencies (o1,o2, andoT, respectively) versus total input powerPtot;in.P1in ¼ P2in is assumed in

these calculations. Horizontal dashed line displays the maximum possible conversion efficiency

�max given by the Manley–Rowe quantum limit. For comparison, the conversion efficiency

obtained from the undepleted-pump approximation (i.e., by assuming that pump and idler powers

remain constant in the considered frequency mixing process) is also shown (see cyan line). Dotted
line displays the effect of linear absorption losses on the conversion efficiency. Labels A–C
correspond to input powers considered in the time-dependent analysis displayed in Fig. 12.5a–c
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We turn now to the case in whichP1in 6¼ P2in. As shown in ref. [30], for this case,

the conversion efficiency (also defined as the maximum possible value of the ratio

PT;s=ðP1in þ P2inÞ), it is no longer given by (12.11), but it now depends on the

specific ratio between the input pump power P1in and total input power P1in þ P2in.

Specifically, when P1in 6¼ P2in this maximum conversion efficiency can be written

in terms of the maximum conversion efficiency �max deduced for the case P1in ¼
P2in [see (12.11)], as [30]

~�max ¼ �max

2P1in

P1in þ P2in

(12.12)

In addition, from this analysis one finds that, in this case in whichP1in 6¼ P2in, the

critical powers at which the maximum conversion efficiency takes place (Pc
1in and

Pc
2in) satisfy the following expression

Pc
2in

P0

¼ o2

4o1

G1

G2

1� Pc
1in

P0

����
����
2

(12.13)

This function is plotted as a solid red line in Fig. 12.5. Note that in the limit

P1in ! 0, the value of ~�max ! 0. On the other hand, in the limitP2in ! 0, we obtain

Fig. 12.5 Stability analysis of the steady-state solutions corresponding to the considered nonlin-

ear frequency conversion process as a function of normalized powers of the pump ðP1inÞ and the

idler ðP2inÞ. Solid line renders the dependence between P1in andP2in that yields the maximum THz

conversion efficiency [as defined in (12.12)] in the analyzed configuration. Blue line represents the
case P1in ¼ P2in. Yellow and blue areas represent the regions of monostability and multistability,

respectively, in the space of parameters P1in;P2inf g
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~�max ! 2�max, the factor 2 simply coming from the fact that in that limit the total

NIR input power is reduced by one half.1 Note also that as P0 / 1=Q1Q2QT, one

can adjust the value of Pc
1in just by varying the product Q1Q2QT.

We have also analyzed the stability of the steady-state solutions of the consid-

ered problem in the fP1in;P2ing parameter space. To that end, we have applied a

similar analysis to the one described in ref. [26]. Figure 12.5 summarizes the results

of this analysis. As seen in this Figure, for the considered system there are two areas

of stability: one area (which includes the region of maximum conversion efficiency)

characterized by just one steady-state solution for each combination fP1in;P2ing
(displayed as the yellow area in Fig. 12.5), and a large region of the parameter space

fP2in;P1ing in which the considered structure presents a multistable response,

i.e., where there is more than one steady-state solution for a given pair of values

fP1in;P2ing (see the blue area in Fig. 12.5). This has important consequences when

interpreting the experimental data of a possible device based on these ideas.

In order to completely characterize the THz generation process in the analyzed

structure, we have also studied the temporal evolution of the response of the system

to Gaussian pulse excitations. We consider the case in which P1inðtÞ ¼ P2inðtÞ. In
these calculations, we also assume that the temporal width of the NIR pulses

corresponds to the lifetime of the THz-scale cavity (tTHz � 16 ns). The value of

tTHz is much larger than the lifetime of the WGM modes at the pump and idler

frequencies (� 0:8 ns). Thus, on physical grounds, we expect similar maximum

conversion efficiencies as those found in the cw analysis described above.

Figure 12.6a–c show the results corresponding to three representative values for

the peak power of Ptot;inðtÞ (labeled as A, B, and C, respectively, in Fig. 12.4). As

seen in Fig. 12.6a, when the maximum of Ptot;inðtÞ is equal to the critical power,

Pc
tot;in, the pump input pulse is completely consumed after spending approximately

60 ns in the system (i.e., P1trðtÞ � 0 after 60 ns); and, simultaneously, the power of

the transmitted idler pulse (P2trðtÞ) value reaches a peak value that is approximately

twice the peak value corresponding to the input idler pulse (P2inðtÞ). For peak values
of Ptot;inðtÞ much lower than the critical power, the almost undepleted behavior can

be clearly observed (see Fig. 12.6b): the peak powers of the pump and idler pulses

are barely modified as they travel through the system. On the other hand, Fig. 12.6c

clearly shows how, for input NIR peak powers well beyond the critical power,

the pump pulse is completely consumed at t � 40 ns. However, in contrast to the

case displayed in Fig. 12.6a, Fig. 12.6c shows how after t � 40 ns the up-

conversion process that mix oT with o2 to yield o1 starts being relevant, and,

consequently P1trðtÞ begins increasing with time; which in turn reduces the

overall THz conversion efficiency of the process. Finally, Fig. 12.6d displays a

summary of our time-dependent simulations in terms of the ratio between the

output THz energy and total input NIR energy defined as ETHz ¼
Ð1
�1 dt PTðtÞ

1 In the limit P2in 	 P1in, assuming a lossless triply resonant cavity (i.e., G1 ¼ GT ¼ 1), the

maximum conversion efficiency given by (12.12) approaches the conventional Manley-Rowe

quantum limit oT=o1.
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and ENIR ¼ Ð1�1 dt ½P1in ðtÞ þ P2inðtÞ�, respectively). As displayed in Fig. 12.6d, the
maximum conversion efficiency can be reached for an input energy

Ec
NIR � 0:02 mJ. Similarly to the calculation of P0, E

c
NIR has been computed by

assuming that the height of the structure along the z-axis (see Fig. 12.2) is lT=4 for

all three fields. The value obtained in this way represents a reduction in ENIR of

three orders of magnitude with respect to the most efficient schemes for THz

generation in nonlinear crystals reported up to date. Furthermore, we emphasize

that in addition to powerful lasers, current efficient schemes for THz generation

require intricate phase-matching setups, whereas in the system introduced in this

manuscript maximum theoretically possible efficiency can be achieved in an

integrated structure having a total area of approximately 1 mm2.

Fig. 12.6 Analysis of the temporal response of the system shown in Fig. 12.1 to Gaussian

excitation pulses. Panels (a), (b), and (c) correspond to the peak values for Ptot;in shown by labels

A, B, and C, respectively in Fig. 12.4. In (a–c), the scale on the left vertical axis corresponds to the
NIR power of the pump and idler frequencies, both for the input and transmitted pulses; whereas

the scale on the right vertical axis corresponds to the THz output power. Inset of (c), shows an
enlarged view of the temporal dependence of P1trðtÞ between t ¼ 0 and 50 ns. Panel (d) displays
the ratio between the total output energy (ETHz) and the total NIR input energy (ENIR) as a function

of ENIR. Horizontal line in this panel displays the maximum possible conversion efficiency given

by the Manley–Rowe quantum limit
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12.4 Conclusions

In conclusion, using a physical picture inspired on a classical analogy of the

quantum Purcell effect, we have described a novel route to identify the optimal

conditions that enable reaching dramatic enhancements of the conversion efficiency

of arbitrary difference-frequency down-conversion process. The approach

presented in this chapter has also allowed us to generalize the canonical phase-

matching condition found in the considered frequency mixing processes. This

generalization enables efficient DFG processes even in the case of nonlinear optical

materials where standard phase-matching techniques are difficult or impossible to

implement in certain frequency regimes. By means of detailed numerical

simulations, we have illustrated the relevance of the proposed scheme by

demonstrating complete conversion to THz energy of a 0.02 mJ NIR pump pulse

in a realistic 1 mm2-footprint structure created from GaAs. Alternatively, we have

demonstrated that in the continuous-wave regime, the pump powers required to

reach quantum-limited conversion efficiency can be reduced up to three orders of

magnitude with respect to the conventional approaches for THz generation

employed up to date. In contrast to previous high-efficiency THz generation

schemes, the concept described in this chapter and ref. [29] opens the way to

efficient THz generation from sources that are compact, turn-key, and low-cost,

which we believe could enable a broader use of THz sources.
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Chapter 13

Photonic Transition in Nanophotonics

Zongfu Yu and Shanhui Fan

13.1 Introduction

Photonic transition [1] is induced by refractive index modulation. Many photonic

structures, including photonic crystals, or waveguides, can be described by a

photonic band structure. When these structures are subject to temporal refractive

index modulation, photon states can go through interband transitions, in a direct

analogy to electronic transitions in semiconductors. Such photonic transitions have

been recently demonstrated experimentally in silicon microring resonators [2]. In

this chapter, we review two applications using the photonic transitions.

As the first application, we show that based on the effects of photonic transitions,

a linear, broadband, and nonreciprocal isolator [3] can be accomplished by

spatial–temporal refractive index modulations that simultaneously impart fre-

quency and wavevector shifts during the photonic transition process. This work

demonstrates that on-chip isolation can be accomplished with dynamic photonic

structures, in standard material systems that are widely used for integrated

optoelectronic applications.

In the second application, we show that a high-Q optical resonance can be

created dynamically, by inducing a photonic transition between a localized state

and a one-dimensional continuum through refractive index modulation [4]. In this

mechanism, both the frequency and the external linewidth of a single resonance are

specified by the dynamics, allowing complete control of the resonance properties.

This chapter is organized as follows: in Sect. 13.2, we review photonic transition

induced by dynamic modulation; in Sects. 13.3 and 13.4, we describe the optical

isolator and tunable cavity based on photonic transition, respectively; Sect. 13.5 is

the conclusion part.
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13.2 Photonic Transition in a Waveguide

We start by describing the photonic transition process in a silicon waveguide.

The waveguide (assumed to be two-dimensional for simplicity) is represented by

a dielectric distribution esðxÞ that is time-independent and uniform along the

z-direction (Fig. 13.1b). Such a waveguide possesses a band structure as shown in

Fig. 13.1a, with symmetric and antisymmetric modes located in the first and second

band, respectively. An interband transition, between two modes with frequencies

and wavevectors ðo1; k1Þ; ðo2; k2Þ located in these two bands, can be induced by

modulating the waveguide with an additional dielectric perturbation:

e0ðx; z; tÞ ¼ dðxÞ cosðOt� qzÞ; (13.1)

where dðxÞ is the modulation amplitude distribution along the direction transverse

to the waveguide. O ¼ o2 � o1 is the modulation frequency. Figure 13.1c shows

Fig. 13.1 (a) Band structure

of a slab waveguide.

(b) Structure of a silicon

(es ¼ 12:25) waveguide.
Modulation is applied to the

dark region. (c) The

modulation profile at two

sequential time steps
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the profile of the modulation. Such a transition, with k1 6¼ k2, is referred to as an

indirect photonic transition, in analogy with indirect electronic transitions in

semiconductors.

We assume that the wavevector q approximately satisfies the phase-matching

condition, i.e., Dk ¼ k2 � k1 � q � 0. In the modulated waveguide, the electric

field becomes:

Eðx; z; tÞ ¼ a1ðzÞE1ðxÞeið�k1zþo1tÞ þ a2ðzÞE2ðxÞeið�k2zþo2tÞ; (13.2)

where E1;2ðxÞ are the modal profiles, satisfying the orthogonal condition: (for

simplicity, we have assumed the TE modes where the electric field has components

only along the y-direction)

vgi
2oi

ð1
�1

eðxÞE�
i Ej ¼ dij: (13.3)

In (13.3), the normalization is chosen such that anj j2 is the photon number flux

carried by the nth mode. By substituting (13.2) into the Maxwell’s equations, and

using slowly varying envelope approximation, we can derive the coupled mode

equation:

d

dz

a1
a2

� �
¼

0 i p
2lc

expð�iDkzÞ
i p
2lc

expðiDkzÞ 0

 !
a1
a2

� �
; (13.4)

where

lc ¼ 4p

e0
Ð1

�1
dðxÞE1ðxÞE2ðxÞdx

; (13.5)

is the coherence length. With an initial condition a1ð0Þ ¼ 1 and a2ð0Þ ¼ 0, the

solution to (13.4) is:

a1ðzÞ ¼ e�izDk=2

"
cos

z

2lc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ðlcDkÞ2

q� �

þi
lcDkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ ðlcDkÞ2
q sin

z

2lc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ðlcDkÞ2

q� �#

a2ðzÞ ¼ ieizDk=2
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ ðlcDkÞ2
q sin

z

2lc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ðlcDkÞ2

q� �
: (13.6)

In the case of perfect phase-matching, i.e., Dk ¼ 0, a photon initially in mode 1

will make a complete transition to mode 2 after propagating over a distance of

coherence length lc (Fig. 13.2a). In contrast, in the case of strong phase-mismatch,

i.e., lcDk>>1, the transition amplitude is negligible (Fig. 13.2b).
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13.3 Photonic Transition for Integrated Optical Isolator

In this section, we use the photonic transition described in the previous section to

achieve on-chip optical isolation. In an optical network, isolators are an essential

component used to suppress back-reflection, and hence interference between dif-

ferent devices. Achieving on-chip optical signal isolation has been a fundamental

difficulty in integrated photonics. The need to overcome this difficulty, moreover,

is becoming increasingly urgent, especially with the emergence of silicon

nanophotonics, which promises to create on-chip optical systems at an unprece-

dented scale of integration.

To create complete optical signal isolation requires simultaneous breaking of

both the time-reversal and the spatial inversion symmetry. In bulk optics, this is

achieved using materials exhibiting magneto-optical effects. Despite many efforts

[5–8], however, on-chip integration of magneto-optical materials, especially in

silicon in a CMOS compatible fashion, remains a great difficulty. Alternatively,

optical isolation has also been observed using nonlinear optical processes [9, 10], or

in electroabsorption modulators [11]. In either case, however, optical isolation

occurs only at specific power ranges, or with associated modulation side bands.

In addition, there have been works aiming to achieve partial optical isolation in

Fig. 13.2 (a) Spatial

evolution of the photon

number flux of two modes

(dashed line mode 1 and solid
line mode 2), when a phase-

matching modulation is

applied to the waveguide.

(b) Maximum photon flux in

mode 2 as a function of phase

mismatch. The transition

becomes essentially

negligible at lcDk>>1
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reciprocal structures that have no inversion symmetry (for example, chiral

structures) [12]. In these systems, the apparent isolation occurs by restricting the

allowed photon states in the backward direction, and would not work for arbitrary

backward incoming states. None of the above nonmagnetic schemes can provide

complete optical isolation.

In this part, we review and expand upon our recent works [3, 13] on creating

complete and linear optical isolation using photonic transition. In these works, the

temporal profile of the modulation used to induce the transition is chosen to break

the time-reversal symmetry, while the spatial profile of the modulation is chosen to

break the spatial-inversion and the mirror symmetry. As seen by the finite-

difference time-domain simulations, when a silicon waveguide is under a modula-

tion that induces an interband photonic transition, light of frequency o1 in forward

direction is converted to a higher frequency mode o2 by the modulation

(Fig. 13.3a). At the same time, light of frequencies o1 or o2 in the backward

direction are not affected by the modulation (Fig. 13.3b, c). Combined with an

absorption filter centered ato2, this structure can absorb all lights incident from one

direction at o1, while passing those in the opposite direction, and thus creates a

complete isolator behavior. It was also shown that the finite-difference time-domain

simulations can also be well reproduced by coupled-mode theory [3].

We use the coupled mode theory as described in Sect. 13.2 to discuss

the performance and design considerations for our dynamic isolator schemes. The

waveguide system in Sect. 13.2 exhibits strong nonreciprocal behavior: the

modulation in (13.1) does not phase-match the mode at ðo1;�k1Þ with any other

mode of the system (Fig. 13.1a). Thus, while the mode at ðo1; k1Þ undergoes a

complete photonic transition, its time-reversed counterpart at ðo1;�k1Þ is not

affected at all. Such nonreciprocity arises from the breaking of both time-reversal

Fig. 13.3 Finite-difference time-domain simulation of an isolator based on photonic transitions.

The box indicates the regions where the refractive index is modulated. Blue/red shows the

amplitude of electric fields. Arrows indicate propagation directions
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and spatial-inversion symmetries in the dynamics: The modulation in (13.1) is not
invariant with either t ! �t or z ! �z.

As a specific example, we consider a silicon ðe ¼ 12:25Þ waveguide of 0.27 mm
wide, chosen such that the first and second bands of the waveguide have the same

group velocity around wavelength 1.55 mm (or a frequency of 193 THz). The

modulation has a strength dmax=es ¼ 5� 10�4, a frequency O=2p ¼ 20GHz and

a spatial period 2p= qj j ¼ 0:886 mm. (All these parameters should be achievable in

experiments.) The modulation is applied to half of the waveguide width so that

the even and odd modes can couple efficiently. The modulation length L is chosen

as the coherence length lc0 ¼ 2:19mm (Fig. 13.1b) for operation frequency o0

at 1.55 mm wavelength. Figure 13.4a shows the transmission for forward and

backward directions. The bandwidth is 5 nm with contrast ratio above 30 dB.

For the loss induced by refractive index modulation schemes, e.g., carrier

injection modulation, the contrast ratio remains approximately the same as the

lossless case, since the modulation loss applies to transmission in both directions.

Thus the isolation effect is not affected. As an example, the modulation strength

used here d=es ¼ 5� 10�4 results in a propagating loss of 1.5 cm�1 in silicon

[14]. This causes an insertion loss about �3.5 dB while the bandwidth remains

approximately unchanged (Fig. 13.4b).

Fig. 13.4 Forward and

backward transmission

spectra without (a) and

with (b) modulation loss
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In general, nonreciprocal effects can also be observed in intraband transitions

involving two photonic states in the same photonic band. However, since typically

O<<o1, and the dispersion relation of a single band can typically be approximated

as linear in the vicinity ofo1, cascaded process [2], which generates frequencies at

o1 þ nO with n > 1, is unavoidable, and it complicates the device performance.

In contrast, the interband transition here eliminates the cascaded processes.

We would like to emphasize that the modulation frequency can be far smaller

than the bandwidth of the signal. This is in fact one of the key advantages of using

interband transition. The transition occurs from a fundamental even mode to a

second-order odd mode. The generated odd mode can be removed with the use of

mode filters that operate based on modal profiles. Examples of such mode filters can

be found in [15, 16]. It is important to point out that such mode filters are purely

passive and reciprocal, and can be readily implemented on chip in a very compact

fashion. Moreover, later in this section, we discuss an implementation of an isolator

without the use of modal filters.

13.3.1 Detailed Analysis of the Isolator Performance

Below in this section, based on the coupled mode theory, we analyze in details

various aspects regarding the performance of the proposed isolator including in

particular its operational bandwidth and device size.

13.3.1.1 Bandwidth

The dynamic isolator structure creates contrast between forward and backward

propagations by achieving complete frequency conversion only in the forward

direction. As discussed above, the modulation is chosen such that, it induces a

phase-matched transition from an even mode at the frequencyo0 to an odd mode at

the frequency ofo0 þ O. The length of the waveguide is chosen to be the coherence
length lcðo0Þ for this transition, such that complete conversion occurs at this

frequency o0 for the incident light. In order to achieve a broad band operation,

one would need to achieve near-complete conversion for all incident light having

frequencies o in the vicinity of o0 as well. From (13.6), broad band operation

therefore requires that

DkðoÞ ¼ 0

lcðoÞ ¼ L ¼ lcðo0Þ: (13.7)

The first condition in (13.7) implies that the phase-matching condition needs to

be achieved over a broad range of frequencies, and the second condition implies

that the coherence length should not vary as a function of frequency. Deviations

from these conditions result in a finite operational bandwidth.
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We consider the phase-matching condition first. In the vicinity of the design

frequency o0, the wavevector mismatch can be approximated by Dk ¼ k1ðoÞ�
k2ðo þ OÞ � q � ðð1=vg1ðoÞÞ � ð1=vg2ðo þ OÞÞÞDo þ 1=2ððd2k1ðoÞ=do2Þ�
ðd2k2o þ OÞ=do2ÞDo2jjo¼o0

.

Thus, to minimize the phase mismatch, it is necessary, first of all, that the two

bands have the same group velocities, i.e., the two bands are parallel to each other.

Moreover, it is desirable that the group velocity dispersion of the two bands

matches with one another. As a quantitative estimate, assuming that lcðoÞ � L
for all frequencies, Fig. 13.5a shows the forward transmission as a function of LDk.
For a transmission below�30 dB, this requires a phase mismatch ofLDk<0:1. As a
concrete example for comparison purposes, Fig. 13.6a shows the phase mismatch

LDk as a function of wavelength for the structure simulated in Fig. 13.4. Notice that

LDk<0:1 over a bandwidth of 5 nm due to the mismatch of group velocity

dispersion in the two guided mode bands. Thus the operating bandwidth of this

device for 30 dB contrast is on the order of 5 nm.

For the second condition in (13.7), we note that in most waveguide structures,

since the coherence length is determined by the modal profile, it generally varies

slowly as a function of frequency. For example, for a waveguide with parameters

chosen in Sect. 13.2, the coherence length varies <2% over 20 nm bandwidth

Fig. 13.5 Forward

transmission as a function of

(a) phase mismatch and (b)

coherence length variation
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around 1.55 mm wavelength (Fig. 13.6b). As a simple estimate of how coherence

length variation impacts device performance, assuming that DkðoÞ ¼ 0 over a

broad frequency range, we calculate the forward transmission as a function of

coherence length given the modulation length L ¼ lcðo ¼ o0Þ (Fig. 13.5b). For

2% variation of the coherence length, the forward transmission remains below

�30 dB. Comparing Fig. 13.6a, b, therefore, we conclude that for the structure

simulated in Fig. 13.4, the 5-nm bandwidth is primarily limited by group velocity

dispersion of the two waveguide bands. Since the structure used in Fig. 13.4 is a

rather simple, we believe that substantial further enhancement of operating band-

width is achievable by optimization of waveguide geometry.

13.3.1.2 Device Size

The size of the isolator is determined by the coherence length lc. Starting from

(13.5), and taking into account the normalization of E field (13.3), the coherence

length can be written as

lc ¼ 4p

e0
Ð1

�1
dðxÞE1ðxÞE2ðxÞdx

¼ 2p
g

ffiffiffiffiffiffiffiffiffiffiffiffi
vg1vg2
o1o2

r
� l0 :

1

g
: vg
c
; (13.8)

Fig. 13.6 Phase mismatch

(a) and coherence length

(b) as a function of

wavelength for the device

simulated in Fig. 13.4
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where g ¼ ðÐ1�1 dðxÞE1ðxÞE2ðxÞdxÞ=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ1
�1 eðxÞjE1j2dx

Ð1
�1 eðxÞjE2j2dx

q
Þ characterizes

the effect of modulation. In deriving (13.8), we assume that o1 � o2 � 2pc=l0,
where l0 is the wavelength in vacuum, since the modulation frequency is typically

far smaller than the optical frequency. Moreover, the two bands are assumed to

be parallel to each other, i.e., vg1 � vg2 � vg. Equation (13.8) indicates that the

device size is proportional to the group velocity and is inversely proportional to the

modulation strength. For a rough estimate, with a modulation strength

g � ðd=eÞ � 10�4, operating at a wavelength of l � 1:5 mm and vg � c=3, the

coherence length lc � 5mm. To reduce the size, one can use stronger modulation

strength and/or slow light waveguides.

13.3.1.3 Near-Phase-Matched Transition in the Backward Direction

In general, due to energy conservation constraint, a mode with a frequency of o1

can only make a transition to modes at o1 � O. In our design, the modulation is

chosen to create a phase-matched transition in the forward direction. However, for

most electro-optic or acoustic-optic modulation schemes, the modulation frequency

Ob100GHz is much smaller than the optical frequency. Consequently, as can

be seen from Fig. 13.7a, in the backward direction the transition to the mode in

the second band with a frequency o3 ¼ o1 � O becomes nearly phase-matched.

The wavevector mismatch of this transition is:

Dkb ¼ �k2ðo1 � OÞ þ k1ðo1Þ þ q � 2O
vg

: (13.9)

Such a transition results in loss in the backward direction and thus a reduction of

contrast between the forward and backward directions.

To calculate such transmission loss in the backward direction, we replace Dk in
(13.6) with Dkb. In general, in order to suppress such backward transmission loss,

one needs to have:

Dkb 	 L 
 1: (13.10)

Combining with (13.8), the condition of (13.10) is then transformed to:

2l0
c

:O
g

 1: (13.11)

Remarkably, we note from (13.11) that for electro-optic or acoustic-optic mod-

ulation schemes, the effects of weak refractive index modulationg and low modu-

lation frequency O cancel each other out. The use of weak refractive index

modulation results in a long coherence length, which helps in suppressing the

transition processes that are not phase matched. And it is precisely such a cancel-

ation that enables the construction of dynamic isolators with practical modulation

mechanisms.
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For the example shown in Fig. 13.4, the near-phase-matched transition in the

backward direction has aDkb ¼ 2p=2:06mm and thusDkbL ¼ 6:7, which results in
a loss of �0.22 dB for the backward transmission (Fig. 13.7b).

13.3.2 Design Flexibility

In the previous sections, we have shown that by using interband transition, one can

create nonreciprocal mode conversion in a waveguide. Such a waveguide works as

an isolator when combined with a modal filter. The performance of such device can

be analyzed and optimized using coupled mode theory. In this section, we present

two examples to show that such nonreciprocal photon transition can be exploited in

a wide range of structures to form nonreciprocal optical devices that satisfy diverse

performance requirements. In the first example, we design a four-port isolator/

circulator using nonreciprocal phase shift in the interband transitions. In the second

example, we use a nonreciprocal ring resonator to demonstrate a compact design for

optical isolation.

Fig. 13.7 (a) The transition

diagram for low frequency

modulation. (b) Spatial

evolution of photon flux in the

backward direction for an

even mode at 1.55 mm
wavelength (dashed line) and
an odd mode (solid line) that
is 20 GHz lower in frequency.

The structure has the same

parameters described in

Sect. 13.2
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13.3.2.1 Four-Port Circulator

Figure 13.8a shows the design of a four-port circulator [13]. The structure consists

of a Mach–Zehdner interferometer, in which one waveguide arm is subject to the

dynamic modulation described above. In contrast to the design in Sect. 13.3,

however, here the length of the modulation region is chosen to be twice the

coherence length L ¼ 2lc. Thus, light passing through the modulated waveguide

in the forward direction will return to the incident frequency (Fig. 13.2a). However,

such light experiences a nonreciprocal phase shift due to the photonic transition

effect. The use of a Mach–Zehnder interferometer configuration then allows one to

construct a circulator. Here no filter is required, which significantly reduces the

device complexity.

For concreteness, we assume that the interferometer has two arms with equal

length, and uses two 50/50 waveguide couplers. For such an interferometer, the

transmission is described by

bu
bl

� �
OUT

¼ 1

2

1 i
i 1

� �
T expði’pÞ 0

0 expði’pÞ
� �

1 i
i 1

� �
bu
bl

� �
IN

: (13.12)

Here, the sub-script “IN” and “OUT” label the input or output. bu=l are the input or
output amplitudes in the upper/lower arm. ’p is the phase acquired due to propaga-

tion in the absence of modulation.

Fig. 13.8 Schematic (a) and

transmission spectrum (b) of

a four port circulator. The

dynamic index modulation is

applied to the waveguide in

the dashed red box
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In (13.12), the transmission coefficient through the upper arm has an addition

contribution from the photon transition:

T ¼ e�izDk=2 cos
z

2lc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ðlcDkÞ2

q� �
þ i

lcDkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ðlcDkÞ2

q sin
z

2lc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ðlcDkÞ2

q� �2
64

3
75;

(13.13)

which influences both the transmission amplitude and the phase as the wave passes

through the upper arm. In our design, we assume a phase-matching modulation with

Dk ¼ 0 for the forward direction, and use a modulated region with L ¼ 2lc.
Equation (13.13) shows T ¼ �1. In contrast, for the light in the backward direction

in the upper arm, in general the phase matching condition is not satisfied. Hence,

T � 1. Thus, in this design, the modulation does not create any frequency conver-

sion. Instead its sole effect is to induce a nonreciprocal phase shift in the upper arm.

The interferometer in Fig. 13.8 exploits such nonreciprocal phase to create a

circulator. We have used the coupled mode theory developed in Sect. 13.3, to

simulate this structure, assuming the same waveguide parameters as in Fig. 13.4.

The results, shown in Fig. 13.8, indicate that lights injected into port 1 completely

output through port 3, while in the time reversed case, lights injected into port

3 ends up in port 2. Therefore, this device has exactly the same response function of

a four-port circulator. Unlike conventional design, however, no magnetic

components are used inside the structure. Alternatively, the device can also func-

tion as a two-port isolator. Figure 13.8b shows the transmission spectra in both

directions between ports 1 and 4: lights incident from port 4 transmit to port 1 while

the reverse transmission is completely suppressed. The contrast ratio for the two

directions is above 30 dB for a bandwidth of 5 nm (Fig. 13.8b).

13.3.2.2 Nonreciprocal Ring Resonator

As discussed before, the device size is determined by the coherence length,

which typically is above millimeters unless slow light waveguides are used.

Substantial reduction of the device footprint can be accomplished using resonator

structure at the expense of a smaller operating bandwidth [3]. As an example, we

consider a ring resonator (Fig. 13.9a) that supports two anticlockwise rotating

resonances, at frequencies o1 and o2, respectively. Each resonance is further

characterized by its wavevector k1 and k2 in the waveguide that forms the ring.

These two resonances are coupled by applying a dielectric constant modulation

along the ring with a profile dðxÞ cos½ðo1 � o2Þt� ðk1 � k2Þz�, where z measures

the propagation distance on the circumference of the ring in counterclockwise

direction.
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To describe the action of this structure, we note that upon completing one round

trip, the circulating amplitudes a1;2 and b1;2 of these two modes (Fig. 13.9b) are

related by:

a1
a2

� �
¼ T11 T12

T21 T22

� �
b1
b2

� �
; (13.14)

where the matrix elements are related to the transition amplitudes for a single round

trip, and can be calculated using (13.4). Each of these modes is also coupled to an

external waveguide as described by:

b1
B1

b2
B2

0
BB@

1
CCA ¼

r1 jt1 0 0

jt1 r1 0 0

0 0 r2 jt2
0 0 jt2 r2

0
BB@

1
CCA

a1
A1

a2
A2

0
BB@

1
CCA: (13.15)

The external waveguide is also assumed to support two modes with opposite

symmetry at the frequencies o1;o2 respectively. Here, the subscripts label the

two frequencies. A1;2 and a1;2 (B1;2 and b1;2) are the photon flux amplitudes in

the external and ring waveguides before (after) the coupler. The coefficients r, t are
taken to be real [17] and r21;2 þ t21;2 ¼ 1.

With incident light in mode 1 (i.e., A1 ¼ 1, A2 ¼ 0) of the external waveguide,

combining (13.14) and (13.15), we have

B1 ¼ r1 � T11 � r1r2T22 þ r2Det½T�
1� r1T11 � r2T22 þ r1r2Det½T� ; (13.16)

Fig. 13.9 (a) Schematic of

ring resonator designed for

nonreciprocal frequency

conversion. The dark regions
are modulated. (b) Schematic

of the modes in the ring-

waveguide coupling region
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where Det stands for determinant. Thus, the condition for complete frequency

conversion (i.e., B1 ¼ 0) is

r1 � T11 � r1r2T22 þ r2Det½T� ¼ 0: (13.17)

In the case that ring is lossless, Det[T] ¼ 1 and T11 ¼ T22 ¼ cosððp=2ÞðL=lcÞÞ,
where lc is the coherence length and L is circumference of the ring. Complete

conversion between the two modes can be achieved when the length of the ring is

chosen to be

cos
p
2

L

lc

� �
¼ r1 þ r2

1þ r1r2
: (13.18)

With r1;2 ! 1, L=lc ! 0, the device therefore can provide complete frequency

conversion even when its length is far smaller than the coherence length.

As an example, now we use the same waveguide discussed in Fig. 13.4 to form a

ring with a radius r ¼ 12:3 mm. Such a ring supports two resonant modes: a first

band resonant mode at 1.55 mm and a second band mode that is 50 GHz higher in

frequency. (This is always achievable by fine tuning the radius and width of the

waveguide.) A phase matching modulation is applied to the ring with a coherence

length lc ¼ 2:37mm. At the design wavelength 1.55 mm, the forward transmission

is completed suppressed (Fig. 13.10). Here, the complete isolation is achieved with

a device size much smaller than the coherence length.

In this section, we have provided some of detailed theoretical considerations for

the dynamic isolator structures that we have recently proposed. In contrast to

previously considered isolators based on material nonlinearity [9, 10] where isola-

tion is only achievable for a range of incident power, the photonic transition effect

studied here is linear with respect to the incident light: the effect does not depend

upon the amplitude and phase of the incident light. Having a linear process is

crucial because the device operation needs to be independent of the format, the

Fig. 13.10 Transmission

spectra of a ring-resonator

isolator. o0 corresponds to

1.55 mm wavelength. The

waveguide-ring transmit

coefficient is assumed to be

r1;2 ¼ 0:95
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timing and the intensity of the pulses used in the system. In conclusion, the structure

proposed here shows that on-chip isolation can be accomplished with dynamic

modulation, in standard material systems that are widely used for integrated

optoelectronic applications.

13.4 Photonic Transition for Tunable Resonance

In this section, we review the tunable resonance based on photonic transition.

Resonance appears when a localized state couples to a continuum. In photonics,

of particular interest is when the localized state is supported by an optical

microcavity, and the continuum is one-dimensional such as in a waveguide. Such

waveguide-cavity configurations find applications in filters, sensors, switches,

slow-light structures, and quantum information processing devices.

In all applications of resonance, it is essential to accurately control its spectral

properties. For the waveguide-cavity resonances, some of the important spectral

properties are the resonance frequency, and the external linewidth due to waveguide-
cavity coupling. The inverse of such linewidth defines the corresponding quality

factor (Q) of the cavity.
In this part, we show that a single high-Q resonance can be created by

dynamically inducing a photonic transition between a localized state and a one-

dimensional continuum. Since the coupling between the continuum and the

localized state occurs solely through dynamic modulations, both the frequency

and the external linewidth of a single resonance are specified by the dynamics,

allowing complete control of its spectral properties.

We start by first briefly reviewing the Anderson–Fano model [18, 19], which

describes the standard waveguide-cavity systems:

H ¼ occ
þcþ

ð
oka

þ
k akdk þ V

ð
ðcþak þ aþk cÞdk: (13.19)

Here, oc is the frequency of a localized state that is embedded inside a one-

dimensional continuum of states (Fig. 13.11a) defined by ok. c
þðcÞ and ak

þðakÞ
are the bosonic creation (annihilation) operators for localized and continuum states,

respectively. V describes the interaction between them. Such a model supports a

resonance ato0 ¼ oc, with an external linewidth g ¼ 2pðV2=vgÞ (defined as the full
width at half maximum of the resonance peak). Here, vg � dok

dk

���
o0

.

In contrast to the standard Fano-Anderson model, our mechanism is described by

the Hamiltonian: (Fig. 13.11b)

H ¼ occ
þcþ

ð
oka

þ
k akdk þ ðV þ VD cosðOtÞ

ð
ðcþak þ aþk cÞdk: (13.20)
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Here, unlike in (13.19), we assume that ok>oc for any k. Consequently, the
static coupling term V

Ð ðcþak þ aþk cÞdk no longer contributes to the decay of the

resonance. Instead, it only results in a renormalization of oc. The localized state

decays solely through the dynamic termVD cosðOtÞ Ð ðcþak þ aþk cÞdk, which arises
from modulating the system. Such modulation induces a photonic transition

between the localized state and the continuum.

For the Hamiltonian of (13.20), one can derive an input–output formalism [20] in

the Heisenberg picture, relatingCðtÞ ¼ cðtÞe�iOt to the input field operator aINðtÞ as:
d

dt
C ¼ �iðoc þ OÞC� g

2
Cþ i

ffiffiffi
g

p
aIN; (13.21)

where g ¼ 2pðððVD=2Þ2Þ=vgÞwith vg ¼ dok

dk

���
o¼ocþO

. For an incident waveaIN in the

waveguide, the modulated system therefore creates a single resonance at the

frequency o0 ¼ oc þ O. Importantly, unlike the static system in (13.19), here

both the frequency o0 and the external linewidth g of the resonance are controlled
by the dynamic modulation.

We now realize the Hamiltonian in (13.20) in a photonic crystal heterostructure

[21] (Fig. 13.12a). The structure consists of a well and two barrier regions, defined

in a line-defect waveguide in a semiconductor (e ¼ 12:25) two-dimensional

photonic crystal. In the barrier regions, the crystal has a triangular lattice of air

holes with a radius r ¼ 0.3a, where a is the lattice constant. The waveguide

supports two TE ðHz;Ex;EyÞ modes with even and odd modal symmetry

(Fig. 13.12c, light gray lines). In the well region, the hole spacing a0 along the

waveguide is increased to 1.1a, which shifts the frequencies of the modes down-

ward (Fig. 13.12c, dark lines) compared to those of the barriers. As a result, the odd

modes in the well and the barriers do not overlap in frequencies. Thus, the well can

support localized states, which are essentially standing waves formed by two

Fig. 13.11 Two different coupling mechanisms between a localized state and a one-dimensional

continuum. (a) Static case: The frequency oc of the localized state lies in the band of the

continuum. The static coupling between them results in a resonance at o0 ¼ oc. (b) Dynamic

case: The localized state has its frequency oc that falls outside the continuum. A modulation at a

frequency O creates a photonic transition that couples them, resulting in a resonance at

o0 ¼ oc þ O
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counter-propagating odd modes in the well. Figure 13.12b shows one such localized

state at the frequency oc ¼ 0:2252ð2pc=aÞ, with its corresponding waveguide

mode at the wavevector qc ¼ �0:37ð2p=aÞ indicated by a red dot in Fig. 13.12c.

Without modulation such a localized state cannot leak into the barrier and hence

cannot be excited by wave coming from the barrier.

To induce a photonic transition, we modulate the dielectric constant of the well

in the form of eD ¼ DeðyÞ cosðOt� qxÞ. Here, the modulation frequency O is

chosen such that an even mode in the well at the frequency oc þ O can leak into

the barriers. The modulation wavevector q is selected to ensure a phase-matched

transition between this even mode and the odd mode at ðoc; qcÞ that forms the

localized state. Since these two modes have different symmetry, the modulation has

an odd transverse profile: DeðyÞ ¼ signðyÞDe, with y ¼ 0 located at the waveguide

center.

In the presence of the modulation, we consider an even mode incident from the

left barrier, with a frequencyo in the vicinity ofoc þ O. As it turns out, for the even
modes, the transmission coefficients into and out of the well are near unity. Thus,

inside the well, the amplitudes of the even mode (Fig. 13.13, blue arrow) at the two

edges,Ax¼0 andAx¼L, are the input and output amplitudes of the system. As the even

mode propagates forward from x ¼ 0 to x ¼ L, the modulation induces a transition

to a copropagating odd mode at o� O (Fig. 13.13, red arrow). This transition

process is described by [3]:

Ax¼L

Bx¼L

� �
¼ expðiLqoÞ 0

0 expðiLqo�OÞ
� � ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

i�

i�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p� �
Ax¼0

Bx¼0

� �
;

(13.22)

Fig. 13.12 (a) A photonic crystal heterostructure. The width of the waveguide measured from the

centers of the holes on the two sides is 1.33a. The highlighted rectangle represents the modulated

region, which has dimensions of 2a� 9:7a. (b) Electric field ðEyÞ profile of a localized state in the
well. Red and blue represent positive and negative maximum amplitudes. (c) Dispersion relation of

the photonic crystal waveguide modes. The dark and light gray lines are for modes in the well and

barriers, respectively. Solid (dashed) lines represent modes with even (odd) modal symmetry.

Shadowed regions are the extended modes of the crystal region of the well
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whereBx¼0 andBx¼L are the amplitudes of the copropagating odd mode ato� O at

the two edges, qo and qo�O are the wavevectors of the two modes. For weak

modulation, the transition rate � ¼ ðDe=eÞLk<<1, where k is the overlap factor

between the two modes and the modulation profile.

Once the fields reach x ¼ L, the odd mode is completely reflected, and

propagates back to x ¼ 0. We note that no significant photon transition occurs in

the backward propagation, since the modulation profile does not phase-match

between ðo;�qoÞ and ðo� O;� qo�OÞ. Consequently,
Bx¼0 ¼ expðiLqo�O þ i2fÞBx¼L; (13.23)

wheref is the reflection phase at the well edge. Also, since there is a localized state

at oc, the round trip phase at oc is 2ðLqoc
þ fÞ ¼ 2pn where n is an integer.

Therefore, the round trip phase for the odd mode at o� O � oc can be

approximated as

2ðLqo�O þ fÞ � 2pnþ ðo� O� ocÞ 2L
vgc

; (13.24)

where vgc ¼ do
dk

���
o¼oc

. Combined (13.22)–(13.24), the transmission spectrum is:

T ¼ Ax¼L

eiLqoAx¼0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
� e

iðo�o0Þ 2Lvgc

1� e
iðo�o0Þ 2Lvgc

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p � o� o0 � i g
2

o� o0 þ i g
2

; (13.25)

where g ¼ ðDe=eÞ2ðk2Lvgc=2Þ.
The detailed microscopic theory thus predicts all-pass filter response for this

dynamic system consisting of a waveguide coupled to a standing-wave localized

state. In contrast, in the static system, coupling of a waveguide to a standing-wave

Fig. 13.13 The microscopic theory for photonic transition in the photonic crystal heterostructure.

Incident light from the barrier at a frequency o, as represented by the blue arrows, couples to a

mode of the well at the frequency o� O, as represented by the red arrows. The dashed lines
indicate the edges of the well
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localized state always produces either band-pass or band-reflection filters. Moreover,

the resonant frequency

o0 ¼ oc þ O (13.26)

and the quality factor

Qe � o0

g
¼ e

De

� �2 2o0

k2Lvgc
(13.27)

are completely controlled by the modulation, in agreement with the phenomeno-

logical model (13.21).

We numerically test the theory using finite-difference time-domain (FDTD)

simulations. We simulate a well with a length of 9.9a. Such a well supports the

localized state shown in Fig. 13.12b. The length of the modulated region L ¼ 9.7a
(Fig. 13.12a). We excite the even modes in the left barrier, with a Gaussian pulse

centered at 0:235ð2pc=aÞ, and a width of 0:001ð2pc=aÞ. Without the modulation,

the transmission coefficient (Fig. 13.14a) is near unity. With the modulation (with a

strength De=e ¼ 1:63� 10�2, a frequency O ¼ 9:8� 10�3ð2pc=aÞ, and a

wavevector q ¼ 0:196ð2p=aÞ), the transmission spectrum shows little change

(Fig. 13.14b). However, the group delay now exhibits a resonant peak with a quality

factor Qe ¼ 1:09� 104 (Fig. 13.14c, blue line). The structure indeed becomes a

high-Q all-pass filter.

The properties of this resonance are controlled by the modulation. The resonant

frequency changes linearly with respect to the modulation frequency, as predicted

(Fig. 13.14e). (When varying the modulation frequency, we also change the modu-

lation wavevector at the same time to satisfy the phase-matching condition.) The

resonance frequency is largely independent of the modulation strength

(Fig. 13.14e). The width of the resonance, and the peak delay, can be adjusted by

changing the modulation strength (Fig. 13.14d). As a comparison between theory

(13.27) and simulations, Fig. 13.14f plots the quality factor as a function of the

modulation strength at the fixed modulation frequency O ¼ 9:8� 10�3ð2pc=aÞ.
The simulation agrees excellently with the theory. The theory curve is generated

with only one fitting parameter: the modal overlap factor k ¼ 0:99a�1, which

agrees well to a direct and separate calculation of the well waveguide by itself

that yields k ¼ 1:16a�1. The difference can be attributed to the finite-size effect of

the well–barrier interfaces.

We now comment on some of the challenges in the practical implementations.

For the simulated structure above, according to (13.27), a modulation strength of

De=e ¼ 5� 10�3, which is achievable using carrier injection in semiconductors

[14], results in an external quality factor of Qe ¼ 1:1� 105. In comparison, the

radiation quality factors of photonic crystal heterostructure cavities exceeded 106 in

experiments [22].
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Regarding the required modulation frequencies, in the simulation, O ¼ 9:8�
10�3ð2pc=aÞ represents a modulation frequency of 8.1 THz, when the resonance

frequencyo0 ¼ 0:235ð2pc=aÞ corresponds to the wavelength of 1.55 mm. This is in

principle achievable, since many index modulation scheme has intrinsic response

time below 0.1 ps [23].

As final remarks, in our scheme, the tuning range for the resonant frequency is

ultimately limited by the intrinsic response time of the material. Thus, the resonant

frequency of the structure have a much wider tuning range, and can be reconfigured

with a much higher speed, compared with conventional mechanisms. Moreover, the

modulation frequency can typically be specified to a much higher accuracy [24],

resulting in far more accurate control of the resonant frequency. Lastly, the

localized state here is “dark” since it does not couple to the waveguide in the

absence of modulation. Our scheme, which provides a dynamic access to such a

dark state, is directly applicable for stopping and storage of light pulses, since the

existence of a single dark state is sufficient [25].

Fig. 13.14 Theory and simulation for the photonic transition process for the structure in Fig. 13.12.

(a) Transmission spectrum for the unmodulated structure. (b) Transmission spectrum in the

presence of modulation. The modulation has a frequency O ¼ 9:8� 10�3ð2pc=aÞ and a strength

ofDe=e ¼ 1:63� 10�2. (c) Group delay spectra, withDe=e fixed at 1:63� 10�2. The blue, red and
green lines correspond to O ¼ 9:8� 10�3; 11:3� 10�3 and 12:8� 10�3ð2pc=aÞ, respectively.
(d) Group delay spectra, with O fixed at 9:8� 10�3ð2pc=aÞ. The blue, red, and green lines
correspond to De=e ¼ 1:63� 10�2; 3:27� 10�2 and 6:53� 10�2. (e) Resonant frequency as a

function of the modulation frequency. The blue and red circles corresponds to modulation strength

of De=e ¼ 1:63� 10�2 and 3:27� 10�2 respectively. Circles are simulation results as determined

the peak location of group delay spectra, and the line is from analytical calcualtion. (f) Quality

factor as a function of modulation strength. Circles are simulation results as determined from the

peak width in (d), the line is from analytic calculation
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13.5 Conclusion

In this chapter, we review the application of photonic transition for optical isolation

and tunable resonance. These applications rely on photonic structures that can be

dynamically modulated. Experimental techniques to achieve these dynamic

structures have undergone fast development. One of the prominent techniques is

to use carrier injection to modulate refractive index. Moreover, novel technique

based on optical force has also emerged, such as the optomechanical modulation

[26]. These developments open exciting opportunities for dynamic photonic

structures.
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bifurcation points, 176–177

bistability

conditions, 172

domains, 177

loop, 185

excitonic instability, 187

HSs. See Homogeneous solutions (HSs)
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HWP. See Half-wave plate (HWP)

Hybrid nonlinearity

defined, 134

nonlinear beam dynamics, homogenous

media

bright and dark solitons, 141–142

elliptical optical solitons,

142–143

stabilization and breakup, optical

vortices, 144–148

nonlinear discrete light behaviors

(see Nonlinear discrete light
behaviors)

nonlinear wave dynamics, 133

one-dimensional case

experimental and numerical

result, 139

geometry, coordinate system,

136, 138

nonlinear beam propagation, 138

refractive index changes vs. beam
orientation, 138

photorefractive media, 134

reconfigurable photonic lattices

(see Reconfigurable lattices,
photonic)

self-focusing/self-defocusing, 134–135

theoretical formulations

defined, screening effect, 135

diffusion field and photovoltaic
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geometry, coordinate system, 135

nonlinear beam dynamics, 137

nonlinear refractive index

change, 137
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two-dimensional case

description, 139

enhanced anisotropy, 140

experimental results, 141

numerical simulations, 139, 140

Hybrid optoelectronic technologies, 48

Hydex®, 49, 52

Hydrodynamics, 275

I

“Idler” wavelength, 59–60

Imaging

applications, 207

diffraction, 207

optical beams, 229

wave nature of light, 208

Incoherent interaction, spectral components

self-trapping and spectralphase locking

CCD camera, 121

description, 119

experimental setup, 119, 120

interferometric measurements, 120

optical waveguides, 119

polychromatic discrete diffraction, 120

polychromatic gap soliton, 121

supercontinuum radiation, 119

theoretical predictions, 120–121

theoretical approach

beam evolution, powers, 117, 118

Fourier transform, 117

Gaussian function, 116

nonlinearity, LiNbO3, 116

output beam characteristics, 116, 117

phase profiles, 119

polychromatic beam interaction, 116

polychromatic gap soliton, 117

sharp self-trapping, 116

Indium gallium arsenide (InGaAs)

absorption bleaching signal, 315

InP substrate, 308

optoelectronics, 307

peak electric field, 307

z-scan normalized transmission,

307, 308

InGaAs. See Indium gallium

arsenide (InGaAs)

Instability

scale-free modulation, 225

soliton-supporting nonlinearity, 224–225

Integrated optical isolator

back-reflection, 346

carrier injection modulation, 348

finite-difference time-domain

simulation, 347

forward and backward

transmission, 348

intraband transitions, 349

magneto-optical effects, 346

silicon waveguide, 348

spatial inversion symmetry, 346

strong nonreciprocal behavior, 347

Integrated photonics, silica glass

broad band light generation, 68–71

Hydex®, 49

inevitable transition, electronics, 47–48

material platforms

nonlinear glasses, 52–53

semiconductor nonlinear

photonics, 49–52

nonlinearities, integrated photonic

cavities, 56–58

nonlinear light-matter interaction

effects, parameters, 56

GNLS propagation equation, 54

Maxwell’s equation, 54, 55

modal effective area, 55

parametric and the nonparametric

processes, 53

self-steepening and Raman effect, 55

nonlinear processes, 48

nonlinear wavelength conversion, 59–64

OHPO, 64–68

optical networks, 48

radius ring cavity and spiral waveguide, 87

ultra-fast optical processing

all-optical pulse compressor, 79–81

optical integrator, 81–86

TL measurement, 74–78

ultra-short pulses frequency

conversion, 71–74

Intense terahertz pulses generation

intervalley relaxation time, 309

lattice anharmonicity and self-phase

modulation, 306

nanosecond, 305

ZnTe crystal, 303, 304

Interference

intense femtosecond pulses, 261

photosensitive media, 260

ultraviolet femtosecond pulses, 290–291

Intervalley electron transfer model

absorption bleaching (see Absorption
bleaching)

average kinetic energy, electrons, 310

bandgap semiconductors, 311
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Intervalley electron transfer model (cont.)
doped semiconductors, 309

dynamic equations, 310
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insulating substrate index, 309

smooth function, 311

threshold value, high energy, 310

Ionic-type photonic lattice

BZ spectrum and Bragg reflection, 155
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Helmholtz equation, 155–156

non-Bravaiss, 154–155

numerical and experimental results, 150,
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scattered light field expression, 156
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forward and backward
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phase mismatch, 349, 350

waveguide bands, 351
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transition, 352–353

J
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wave tunneling (see Tunneling)
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Lattice solitons
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random phase, 134

Lederer, F., 171

Light bullets, 12

LiNbO3. See Lithium niobate (LiNbO3)

Linear and nonlinear wave behavior. See
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Lithium niobate (LiNbO3)

dielectric constant and ferroelectric

materials, 305

GaP/ZnTe crystal, 301

high-intensity THz sources, 298

laser pulse propagation, 301
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Liu, S., 133

Lorenz, E.N., 195

Lorenz, H., 51
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M

Madelung transformation, 233

Mapping, conduction band in semiconductors

CR (see Cyclotron resonance (CR))

electron heating, 312

InSb, 312

mass anisotropy (see Electron effective

mass anisotropy)

polarization dependence (see Polarization
dependence)

thermal heating, 312

Mathieu beams, 10, 42

Maxwell point (MP), 179, 180

Maxwell’s equation, 54, 55

Mayer, A., 305

Metamaterials, 211

Micro ring resonators

CW light source, 64

high-quality factor, 59

Hydex, 60

Miller’s rule, 50

Morandotti, R., 47, 297
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Moving soliton, 181, 182

MP. See Maxwell point (MP)

Multicolor beams, coupled optical waveguides

coherent parametric interactions

(see Coherent parametric

interactions, spectral components)
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incoherent interaction (see Incoherent
interaction, spectral components)

and interference process, 111

light propagation

in arrays, 112, 113

Bragg reflection gap, 115

coherent and incoherent

interactions, 115

1D arrays, 113

defined, Bloch waves, 114

discrete diffraction, 113

fundamental effects,nonlinearity, 115

numerical simulation, 113, 114

output intensity profile, 113, 114

photonic bandgap structure, 113, 114

vertical mode profile change, 114

monochromatic light propagations, 111

nonlinear interactions, 112

parametric driving, 112

phase locking, spectral components, 112

photonic structures, 111

synchronization and phase locking, 112

Multiple scattering, 100

N

NCB. See Nonconventionally biased (NCB)

Negative refraction

Bloch modes, 151

2D positive demonstration, 152

index change, 153

ionic-type photonic lattice, 154, 166

Neshev, D.N., 111

Newtonian equations, 17

Newton’s second law, 103

NLSE. See Nonlinear Schr€odinger
equation (NLSE)

Nonconventionally biased (NCB)

defined, 135

geometry, coordinate system, 136

Nondiffraction

Airy beams, wave packets, 10

beam, Babinet’s principle, 26–27

2D, 8

1D Airy beams, 43

field configurations, 11

and self-healing, 2

wave configurations, 2

Nondispersion

Airy, 43

wave packet, 5

Non-ergodic systems

compositional disorder, 217

dielectric characterization, 221, 222

dielectric phase, 216

optical response, 209

phase-transition temperature, 212

Nonlinear beam dynamics

bright and dark solitons, 141–142

elliptical optical solitons, 142–143

stabilization and breakup, optical

vortices, 144–148

Nonlinear coupling coefficient

frequency mixing process, 330

idler and final frequencies, 330

THz electric field profile, 334

Nonlinear discrete light behaviors

description, 158

discrete and gap soliton-trains, 158–161

elliptical discrete solitons, 161

saddle solitons (see Saddle solitons)
Nonlinear dynamical systems See also High

field electrons transport in

semiconductors

experimental studies, 195

localized structures, 200

optics, 195

Nonlinear frequency mixing. See Terahertz
(THz) generation

Nonlinear interaction, intense ultrashort

filaments

dynamics, plasma channels, 274–275

electron density distribution, 267

energy transfer, 281–283

formation, plasma grating, 277–281

intense few-cycle and femtosecond

filaments, 287–290

laser technology, 259

multiple pulses, 260

periodic wavelength-scale

self-channeling, 261

plasma density modulation, 261

plasma waveguide, 271–272

spatiotemporal coupling, 262–265

third harmonic generation, plasma

gratings, 283–286

two-dimensional plasma waveguides,

275–277

ultraviolet femtosecond pulses, 290–291

visualization, plasma density

modulation, 265–271

Nonlinearity See also Hybrid nonlinearity

discrete Schrodinger equation, Kerr, 105

existence curves, soliton solutions, 106, 107

propagation constant, 105

solitons bifurcating, 106
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Nonlinear optics

applications, integrated, 52

electromagnetic spectrum, 297

energy transport, 231

experimental realization

Mach–Zehnder interferometer, 235

shock wave setup, 235

square-root velocity scaling, 237

superfluid-like spatial shock waves, 236

finesse and quality factor cavities, 60

FIR spectroscopy (see Far-infrared (FIR)

region)

high-field transport, semiconductors

absorption bleaching, 306–309

dynamic intervalley electron transfer

model, 309–311

high-intensity THz, 298

Hydex resonators effectiveness, 64

intense light-matter interaction, 53

junctions and arrays

DSWs, 249–252

wave tunneling, 245–248

mapping, conduction band

anisotropic microwave, 312

CR ( see Cyclotron resonance)

InSb, low temperatures, 312

mass anisotropy, 315–319

polarization dependence, 313–315

thermal heating, 312

material characterization

anisotropic media, 242–245

diffraction measurement, 238

DSWs, 238–241

z-scan techniques, 238

materials and applications, 49

optical beams, 232

photoconductive antenna emitter, 298

photorefractive crystals, 232

research, glass material system, 56

semiconductor applicability, 52

spectroscopic sensing, 297

TDTS (see Time-domain THz

spectroscopy (TDTS))

theory and formalism

Burgers-type descriptions, 235

classical wave equation, 233–234

NLSE, 232

nonlinear spatial optics., 234

quantum pressure, 233

THz waves

detection, 299–300

OR generation, 301–305

z-scan technique (see Z-scan)

Nonlinear periodic structures

dependence, photonic bandgap

structure, 114, 115

linear dispersion parameters, 120

self-trapping and phase

locking, 119

Nonlinear regime

conversion efficiency, 335

Gaussian pulse excitations, 338

input pump power, 337

maximum conversion

efficiency, 336

NIR energy, 338

output powers emitted ratio,

335, 336

phase-matching setups, 339

ring resonator and PhC cavity, 335

solid red line, 337

standard numerical methods, 335

steady-state solutions, 338

TCMT (see Temporal coupled-mode

theory (TCMT))

THz and idler frequencies, 336

THz conversion efficiency, 338

transmitted idler pulse, 338

Nonlinear Schr€odinger
equation (NLSE)

nonlocal response, 239

optical propagation, 240

optical wave, 232

Nonlinear self-defocusing

Airy beam, 36, 38, 39

and self-focusing, 37

Nonlinear self-focusing

Airy beam, 37

field configurations, 43

and self-defocusing, 37, 41

Nonlocality

electron diffusion, 242

enhanced anisotropy, 142

hybrid nonlinearity, 135, 149

index change, 140

intensity, vortex beam, 145

nonlinearity, DSWs

atomic diffusion, 238

experimental evolution, diffractive

shock wave, 240

NLSE, 240

nonlocal shock length, 241

numerical simulations, 239

optical materials, 238

novel nonlinear beam dynamics, 167

photorefractive nonlinear materials, 144
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Non-paraxiality, 209, 227

Nonreciprocal nanophotonics.

See Photonic transition
Nonreciprocal ring resonator

anticlockwise rotating

resonances, 355

circulating amplitudes, 355, 356

coherence length, 355

counterclockwise, 355

dielectric constant, 355

dynamic isolator, 357

external waveguide, 356

frequency conversion, 357

optoelectronics, 358

photonic transition effect, 357

transmission spectra, 357

O

OHPO. See Optical hyper-parametric

oscillator (OHPO)

OPC. See Optical path clearing (OPC)

OPO. See Optical parametric oscillator (OPO)

Optical cavities

beam intensity calculation, 57–58

finesse, resonator, 58

four-port micro-ring resonator, 56, 57

integrated, 68

light confinement, 49

micro-cavities, 56

Optical flow

anisotropy, 232

self-defocusing nonlinearity, 233

stream function, 234

Optical hyper-parametric oscillator (OHPO)

broadband “white light” source, 68

CMOS, wavelength source, 64

parametric gain, 65, 66

pump power, 67

“soft thermal lock” condition, 66

Optical induction

Bragg reflection, 157

bright to dark solitons, 141, 142

discrete and gap solitons, 159

ionic-type photonic lattices, 154

NCB photorefractive crystals, 166

nonlinear refractive index change, 137

novel nonlinear beam dynamics, 158

photonic lattice, 134

photorefractive crystals, 141, 142

potential and hybrid nonlinearity, 161

Optical integrator

all-optical integration, 84

characterization, 82

and differentiators, 81

dispersed input optical waveform, 86

Fabry-Perot interferometer, 82

FSR, integration bandwidth, 82, 83

integrator temporal response,

analysis, 85

optical data storage, 85–86

realization, photonic, 83

spectral domain, 82

Optical isolation

linear, 347

nonreciprocal ring resonator, 353

on-chip, 346

photonic transition application, 364

Optically induced photonic lattices

Bragg reflection, 157

discrete phenomena, 134

hybrid nonlinearity, NCB, 166

reconfigurability and settings, 134

Optical nonlinearity, 190

Optical parametric oscillator (OPO)

measurements, 72

Spectra physics, 69

Optical particle manipulation, 42

Optical path clearing (OPC), 42

Optical pump-THz probe (OPTP),

314, 315

Optical rectification

amplifier lock and optical delay

line, 303

axis definition, 303

Brillouin zone, 305

crystal semiconductors, 301

free-space EO sampling, 303

LiNbO3 (see Lithium niobate (LiNbO3))

LiNbO3 and EO coefficient, 305

polarization change expression, 301

temporal dependence, 301

THz

electric field formula, 302

energy vs. laser pump energy, 304

optical group and phase velocity, 302

positive waves, 302

pulses and ZnTe crystal, 303, 304

radiated field, 301

radiation and frequency mixing, 302

waves vs. pump beam spectrum, 302

tilted-pulse-optical-pulse-front, 305

time-dependent polarization, 301

Ti:sapphire lasers, 303

ZnTe, 302

Optical time lens, 86
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Optical-to-Electrical-to-Optical (OEO)

signal decoding

communication networks, 48

frequency conversion, 48–49

Optical vortices, laser system

cavity mode, 196

experimental results

bifurcation diagram, 201

CS lasers, 200

defined, CS, 199

interference fringe, 203

interferometric intensity signal, 200

local intensity output, 198

mutual coherence, 202

near-field intensity, 201, 202

regions, parameter space, 198–199

ring structures, 203

semiconductor lasers, 201, 202

“true optical vortex”, 203

VCSELs, 199

experimental setup

defined, writing beam, 198

schematic, 197

state-of-the-art CCD cameras, 198

ULM photonics, 197

VCSELs, 197

nonlinear dynamics, 195

parameter values, 195

spatiotemporal instability, 196

stabilization and breakup

description, 144

experimental results, 146–147

nonlinear evolutions, 145–146

nonlinear propagation, OVs, 144

numerical and experimental

results, 147–148

numerical simulations, refractive

index change, 144, 145

transverse modes, 196

OPTP. See Optical pump-THz probe (OPTP)

Out-of-equilibrium ferroelectrics

ferroelectric domains, 216

optical scattering, 217

phase transition, 216

Ozaki, T., 297

P

Parametric gain

hyper-parametric gain, 64, 65

net, 72

pulsed FWM, 74, 87

resonator, 65

self-seeded, 65

waveguides, 72

Park, Y.-W., 47

Parseval’s theorem, 19

Pasquazi, A., 47

Peccianti, M., 47

Pedaci, F., 195

Periodic modulation

enhancement, fluorescence, 271

filament bisector, 270

Periodic structure

Bragg reflection, 115

diffraction pattern, 120

dynamic refractive index

modulation, 277

Phase-matching

DFG process, 334

generalization, canonical, 334

harmonic generation, 334

pump and idler modes, 331

THz generation, 339

waveguide, 331

Photonic bandgap, 134

Photonic crystal cavities

2D electric field cross sections, 334

THz frequency, 334

THz-scale square-lattice, 332

Photonic lattices

amorphous (see Amorphous)

geometry, 249

junctions, array, 249

reconfigurable (see Reconfigurable
lattices, photonic)

Photonic microresonator

intrinsic absorption rate, 329

optical nonlinear frequency, 329

Q system, 329

Photonic transition

high-Q optical resonance, 343

integrated optical isolator

analysis, 349–353

design flexibility, 353–338

refractive index modulation, 343

spatial-temporal refractive index and

wavevector shifts, 343

tunable resonance, 358–363

waveguide, 344–346

Photorefraction

diffusion-driven space-charge field

band-transport model, 212

Gauss law, 213

optical intensities, 214

thermal equilibrium, 212
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electro-optic response

Helmholtz equation, 214

high-frequency polarization, 214

nonlinear optical effects, 216

random birefringent crystals, 215

out-of-equilibrium ferroelectric,

216–217

PNR, 211

Photorefractive effect

hybrid nonlinearity, 167

models and effects, reconstruction,

242–243

Plane-wave expansion method, 95, 96

Plasma channel, 42

PNRs. See Polar nanoregions (PNRs)
Polariton solitons

Bose–Einstein condensation and

transition, 172

bright (see Bright soliton, polariton)
dark (see Dark soliton, polariton)

equations, 175–178

HSs, 172

mathematical model, 173–175

nonlinear systems, 171

positive/negative effective mass, 171

and self-localization effect, 172

upper-polariton branch, 187–190

VCSELs, 171

Polarization dependence

absorption bleaching signal, 315

amplitude oscillation, 314

metallic beam block, 314

OPTP, 314

pump-probe delay time and

transmission change, 314, 315

temporal scanning, pump and probe

beams, 313

TPTP, 313

ZnTe crystal, 313

Polar nanoregions (PNRs)

disordered network, 222–223

electro-optic response,

214–216

tunable nonlinear responses, 221

Power threshold

physical intuition, zero, 106

solitons bifurcate, 106

Poynting theorem, 329

Pulse shaping techniques, 12

Purcell, E., 326

Purcell enhancement See also Terahertz

(THz) generation

atomic transition, 326

classical dipole current, 327

CMT (see Coupled mode

theory (CMT))

dielectric structure, 327

dipole dephasing rate, 327

electric dipole moment, emitter, 326

electromagnetism, 327

inhomogeneous dielectric

cavity, 326

quantum light emitters, 327

Q

Quality factor

absorption coefficient, GaAs, 335

linear absorption, 328

resonant wavelength, 326

ring resonator and PhC, 335

Quantum pressure, 233–234

Quantum well (QW)

Bragg mirrors, 173

defined, 173

InGaAs/GaAs, 174

QW. See Quantum well (QW)

R

Rabi splitting, 174

Random medium

coupled waveguides, 93

2D dielectric composites, 94

Razzari, L., 47, 297

Rechtsman, M., 93

Reconfigurable lattices, photonic

advantages, 148

Bloch mode transition

demonstration, 149, 151

description, 149

description, 148

diffraction management (see Diffraction
management)

ionic-type (see Ionic-type photonic lattice)
lattice formation

numerical and experimental results,

149, 150

structure, BZs, 149

refraction management

Bloch modes, 153

demonstration, 2D positive and

negative, 151, 152

Reid, M., 297

Resonant cavity mode

nonlinear frequency mixing, 326
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Resonant cavity mode (cont.)
temporal evolution, 328

time-dependent electric field, 328

Ring resonators

dielectric, 332

dipole-like defect, 332

2D simulations, 333, 334

index-guided waveguide, 332

PhC cavity, 333

triply resonant photonic structure, 332

Room temperature (RT)

linear mode analysis (see Triply-resonant
nonlinear cavity)

numerical analysis, nonlinear regime (see
Nonlinear regime)

PhC configuration, 332

simultaneous spectral and spatial EM, 331

THz frequency gap, 332

RT. See Room temperature (RT)

S

Saddle solitons

quasi-1D and 2D, 163

self-focusing and-defocusing, 163–164

square photonic lattice, 161, 162

two-dimensional, 164–166

Scale-free optics

diffraction compensation, 208

diffusive effect, 209

experimental setup, 220–221

imaging and microscopy, 229

imaging system, 208

instability, 224–225

intensity-independent beam interaction

crossing and attraction, 225, 226

spiraling, 225, 227

Kovacs effect, 209

KTN:Li

comparison, transmission, 222, 223

dielectric characterization, non-ergodic

phase, 221, 222

lensing effect, 207

nonlinearity, nanodisordered ferroelectrics,

217–220

optical angular frequency, 210

photorefraction, supercooled

ferroelectric KTN

diffusion-driven space-charge field,

212–214

electro-optic response, 214–216

out-of-equilibrium ferroelectric,

216–217

PNR, 211

scale-free propagation and supercooling,

223–224

spatial scale, 208

subwavelength beam propagation

Helmholtz equation, 227–228

vectorial wave equation, 227

violation of scale-dependent

soliton laws, 224

wave mechanics, 210

SCG. See Supercontinuum generation (SCG)

Schr€odinger equation, 1, 2, 38, 96, 105
SE. See Spontaneous emission (SE)

Second harmonic generation (SHG), 122

Second order nonlinearity

analytical approximation, 331

conversion effciency, DFG

(see Difference-frequency
generation (DFG))

final frequency, 330

nonlinear difference-frequency mixing

magnitude, 330

nonlinear frequency conversion

processes, 331

nonlinear polarization vector, 329–330

pump and idler frequencies, 329

standard phase matching techniques, 330

transversal area, waveguide

system, 331

Segev, M., 93

Self-accelerating Airy beams

applications

curved plasma channels, 42

generation and control, plasmonic, 43

optically clearing particles, 42

optical manipulation, morphing

autofocusing, 43–44

ballistic motion (see Ballistic motion,

Airy beams)

Bessel beams, 2

“diffraction-free”, 2

ideal infinite-energy

Ehrenfest’s theorem, 4

paraxial equation, diffraction, 3

propagation dynamics, diffraction-free

wave, 3

initial nonlinearity

numerical simulation, propagation,

38–40

Schr€odinger equation, 38
SLM and SBN, 36, 37

nonlinear generation and control, 40–41

nonlinear self-trapping, 41
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quantum mechanics, 1

radially symmetric autofocusing

beams, 13–17

self-healing, 26–36

spatiotemporal Airy–Bessel bullets, 10–12

truncated 1D and 2D

Airy packet, 8, 10, 11

experimental setup, generation, 7

exponential aperture function, 4

Fourier spectrum, normalized

k-space, 4–5

Gaussian beam, 7

intensity profile, 2D beam, 5

normalized field and intensity profile, 4

observed intensity, planar, 7, 9

Parseval’s theorem, finite-energy

wave, 5

propagation dynamics, finite-energy, 5

propagation, monitoring, 7, 8

transverse acceleration, 8, 10

Self-defocusing, in-band solitons, 163–164

Self-focusing, in-band solitons, 163–164

Self-healing

Babinet’s principle, nondiffracting beam,

26–27

deformed, restoration and degeneration

numerical simulations, linear

propagation, 34, 35

observation, linear propagation,

35, 36

optical Airy beams, scattering

environments, 31–32

properties, 2D Airy beams

calculated transverse power flow, 29

observed intensity profiles, 29, 30

reconstruction, 31

transverse power flow, 30, 31

resilient Airy beam propagation, turbulent

medium

disordered medium, 33

optical 2D and Gaussian beam, 32

self-reconstructing optical Airy beams, 26

transverse power flow, optical Airy

beam, 27–28

Semiconductor microresonators, 174

Semiconductor photonics

dispersion at telecommunication

wavelengths, 51

effects, optical devices, 50–51

inverted nano-taper, 51

Kerr coefficient, 50

material polarization, electric field, 50

Miller’s rule, 50

multiphoton absorption and TPA, 52

optical waveguide, 49–50

Sharma, G., 297

SHG. See Second harmonic generation (SHG)

Shock waves

dissipative and nondissipative, 231

energy and entropy, 253

evolution, 253

nonlinear arrays, 250

on the nonlinear behavior of classical

fluids, 232

photorefractive screening solitons, 242

Signal processing theory, 82

Silica glass See also Integrated photonics,

silica glass

cavity finesse and Q factor, 60

CW, evolution equation, 59–60

FWM experimental results, 61, 62

group velocity dispersion, 63

idler frequency, 64

input-drop response, 61

phase matching, 62–63

semi-degenerate FWM, 60–61

wavelength conversion efficiency, 60

Silicon fabrication technology, 48

Silicon photonics See also Waveguide

CMOS compatible fashion, 346

dielectric distribution, 344

interband photonic transition, 347

microring resonators, 343

Siviloglou, G.A., 1

Skryabin, D.V., 171

SLM. See Spatial light modulator (SLM)

Soliton existence curve. See Solitons
Solitons

cavity (see Cavity solitons (CS))

existence curve

bifurcate, 106, 107

defined, 105

experimental observation, 121

families, 125, 126

fundamental effects, nonlinearity, 115

incoherent white-light solitons, 119

phase transitions, 125

polychromatic gap, 117, 120, 121

power threshold, 117

sharp transition, 116

supercontinuum spectrum, 119

Soljacic, M., 325

Spatial light modulator (SLM)

cubic phase, 7, 32

2D phase, 8

truncated Airy beam creation, 36–37
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Spatial solitons

diffraction, 228

optical, 41, 134, 208

screening/photovoltaic, 41

Spatiotemporal

dynamics, intense ultrashort pulses, 260

nonlinear coupling, interacting filaments

filament fusion, 264, 265

intensity modulation, 264

non-collinear filaments, 263

periodic plasma density

modulation, 262

plasma density modulation, 265

spatiotemporal modulation, 265

zero-threshold white-light lasing, 263

phase modulation, 266

Spatiotemporal Airy–Bessel bullets

Airy3 light bullets, 12

beam envelope, domain, 11

dispersion-free Airy pulses, 10

isosurface plot, Airy–Bessel–Gauss wave

packet, 12

Spatiotemporal light bullet, 12

Spectral components

coherent parametric interactions, 122–129

incoherent interaction, 115–121

Spiral waveguides

integrated, broad band light generation

nonlinear interactions, 69

OPO, 69

output and input spectrum, 70, 71

SCG, 68–69

on-chip occupancy, reduction, device, 56

pump and signal pulses, 72

Split-step beam propagation method, 38

Spontaneous emission (SE)

dielectric lossless cavity, 326

free space, 327

lossless and inhomogeneous dielectric

cavity, 326

nanofabrication techniques, 325

quantum light emitter, 325

quantum light emitters, 327

Strong coupling

coherent optical pump, 173, 174

exciton-photon quasiparticles, 172

planar semiconductor microcavity, 173

polariton dispersion, 176

Subwavelength beam propagation

Helmholtz equation, 227–228

vectorial wave equation, 227

Su, F.H., 297

Sukhorukov, A.A., 111

Supercontinuum generation (SCG)

frequencies, 71

Hydex glass waveguides, 68

single-beam propagation, nonlinear

effects, 69

Superfluid

nonlinear tunneling, 246

optical spatial shock waves, 236

Surface plasmon polaritons

localized, 43

nondiffracting beams, 2

strong confinement, 43

Szameit, A., 93

T

TDTS. See Time-domain THz spectroscopy

(TDTS)

Temporal coupled-mode theory

(TCMT), 335

Terahertz (THz) generation

coupled-mode theory, 326

PhCs, 325

purcell-enhanced nonlinear frequency

mixing theory, 326–331

RT, 331–339

SE and EM, 325

Terahertz nonlinear spectroscopy. See
Nonlinear optics

Terahertz (THz) sources. See Terahertz
generation

Terahertz spectroscopy

detection

direct and coherent types, 299

electro-optic crystals and

photoconductors, 299

EO sampling ( see Electro-optic (EO)
sampling)

photon energy, 299

Schottky barrier diode/hot electron

bolometer, 299

OR generation (see Optical rectification)
Third harmonic (TH) generation

plasma gratings, air

coherent nonlinear optical frequency

conversion, 283

harmonics, 283

laser-induced plasma, 286

polarization, 285

spatial distribution measurement, 284

plasma lattices, 262, 266

THz pump-THz probe (TPTP)

absorption bleaching, 319
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map, conduction band nonparabolicity, 313

sources, absorption, 306

Time-domain THz spectroscopy (TDTS)

light-matter interactions, 298

subpicosecond time resolution, 299

THz pump pulse, 313

Time lens (TL) measurement

calibration curve, 76, 77

defined, 75

Gaussian pulse, 77

idler spectrum, PUT, 76, 77

space-time duality, 74

time-to-frequency conversion, 75, 76

Time-resolved terahertz spectroscopy

ballistic transport, electrons, 306

probe polarization, 319

subpicosecond, 299

Tissoni, G., 204

TL measurement. See Time lens measurement

TPTP. See THz pump-THz probe (TPTP)

Tredicce, J.R, 195

Triply-resonant nonlinear cavity

azimuthal coordinate and nonlinear

susceptibility tensor, 334

canonical phase-matching condition, 335

2D and 3D simulations, 334

DFG process, 334

3D photonic crystal structures, 334

geometrical parameters, 333

PhC environment, 333

ring resonator and THz-scale square-lattice

photonic crystal, 332

second harmonic generation, 334

susceptibility tensor, 333–334

THz-wavelength scale PhC, 333

WGM, 332

Tunable resonance

coupling mechanisms, 358, 359

external linewidth, 358

Fano–Anderson model, 358

FDTD, 362

Hamiltonian input–output formalism, 359

input and output amplitudes, 360

microscopic theory, photonic

transition, 360, 361

modulation frequencies, 363

phase-match, 361

photonic crystal heterostructure, 359, 360

photonic transition, 358

resonant frequency and quality factor, 362

round trip phase, 361

standing-wave, 361–362

stopping and storage, light pulses, 363

theory and simulation, photonic

transition, 362, 363

wavevector, 360

Tunneling

nonlinear junctions, 245–248

nontrivial transmission and

hysteresis, 253

wave

energy transmission, 247

evolution dynamics, 246

linear transport, 247

numerical simulation, scattering,

246, 247

self-phase modulation, 245

transmission, numerical simulation,

247, 249

U

Ultra-fast optical processing

all-optical pulse compressor, 78–81

optical integrator, 81–86

TL measurement, 74–78

ultra-short pulses frequency conversion,

FWM, 71–74

Ultra-fast terahertz pump-probe techniques

delay time, 314

peak electric field, 314

polarization dependent, 314, 315

G valley electron density, 317, 318

Ultra-fast terahertz spectroscopy. See
Nonlinear optics

Ultra-intense, 292

Ultra-narrow linewidth optical sources

broad band light generation, spiral

waveguides, 68–71

nonlinearities, integrated photonic

cavities, 56–58

nonlinear wavelength conversion, silica

glass resonators, 59

OHPO, 64–68

V

VCSELs. See Vertical cavity surface-emitting

lasers (VCSELs)

Vertical cavity surface-emitting lasers

(VCSELs)

carrier dynamics, 171

coherent emission, 199

experimental setup, 197

nominal threshold current, 198

resonances frequency, 198
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Vertical cavity surface-emitting lasers

(VCSELs) (cont.)
ring structures, face-to-face, 203

ULM photonics, 197

W

Wannier-Mott excitons,

Wan, W., 231

Waveguide

arrays (see Waveguide arrays)

band structure, 344

coupled mode equation, 345

dielectric distribution, 344

dielectric perturbation, 344

filament interaction

measured fluorescence profiles, 273

non-collinear pulses, 272

spatiotemporal couplings, 271

nonlinear filament interaction, 261

orthogonal condition, 345

phase-matching condition, 345

photonic-crystal plasma, 261

plasma, 259

spatial evolution, photon, 345, 346

two-dimensional plasma

2D plasma lattices, 275, 276

holographic imaging technique, 275

refractive index modulation, 277

Waveguide arrays

discrete diffraction, 120

dynamical reshaping, 127

Floquet–Bloch modes, 249

hump-on-background profile, 251

spectral components, 116, 122

spectrally resolved measurements, 120

structure, 113

supercontinuum beam, 119

Wavelength remapping protocol, 48

Wavelength-scale

microstructures, 260

plasma density modulation, 265, 281

self-channeling, 261

WGM. See Whispering gallery modes (WGM)

Whispering gallery modes (WGM)

angular momenta, 332

dielectric ring resonator, 332

electric field profile, 333

PhC cavity, 333

pump and idler frequencies, 338

White light generation, 68, 260

Wu, Q., 300

X

Xu, J., 133

Y

Yu, Z., 343

Z

Zeng, H., 259

Zhang, P., 1, 133

Zhang, X.-C., 300

Zhao, J., 133

Z-scan

incoherent detection method, 307

intervalley electron transfer model, 318

G-L intervalley, 311

nonlinear transmission, 306

THz

EO sampling coherent detection, 306

frequencies, 299

normalized transmission, pulse

energy, 307, 308

pulse and technique, 306, 307

and TPTP measurements, 318

transmission change, 306
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