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Preface

Polarization physics represents the section of physics devoted to investigate the sta-
tistical and dynamical characteristics of processes associated with spin, which is
one of the fundamental characteristics of elementary particles and nuclei. The spin
is a tool to investigate and test fundamental questions in all type of well known
interactions like the electroweak, strong and gravitation fields. This occurs for rea-
son that all elementary particles involved in those interactions have the integer or
half-integer spins.

During more than century development, polarization physics has created serious
theoretical and methodical foundations leading to many discoveries. Its develop-
ment became particularly fast in last two decades in connection with the “spin cri-
sis” phenomenon discovered in 1987 by European Muon Collaboration (EMC) at
CERN.

Large polarization effects have been revealed in the production of hyperons and
strong spin effects have been found in the exclusive and inclusive production of
hadrons. Investigations on polarization physics are conducted at the largest proton
and electron accelerators and colliders. The great successes are reached in engineer-
ing methods of polarization physics. These successes concern the development of
the methods for obtaining and accelerating polarized particles and the polarimetry
methods for such beams. Impressive results have been obtained in the development
of high-current and highly polarized ion sources for accelerators, as well as polar-
ized targets.

To summarize the results of polarization physics the polarization community or-
ganizes the biannual High Energy Spin Physics Symposia, started in 1974 at the
Argonne National Laboratory (Chicago); follow-up meetings were at Argonne 1976
and 1978, Lausanne 1980, Brookhaven 1982, Marseille 1984, Protvino 1986, Min-
neapolis 1988, Bonn 1990, Nagoya 1992, Bloomington 1994, Amsterdam 1996
and Protvino 1998. In 2000 in Osaka this Symposium was united with another
polarization meeting under the title “The Symposia on Polarization Phenomena
in Nuclear Physics”, started at Basel in 1960 and conducted every five years at
Karlsruhe 1965, Madison 1970, Zürich 1975, Santa Fe 1980, Osaka 1985, Paris

v



vi Preface

1990 and Bloomington 1994, the last one being in parallel to the High Energy
Spin Physics meeting. The new Conference was named as The 14th Interna-
tional Spin Physics Symposium, followed by meetings at Brookhaven 2002, Tri-
este 2004, Kyoto 2006, Charlottesville (Virginia) 2008, and in 2010 19th Inter-
national Spin Physics Symposium was held in Juelich (Germany). Between sym-
posia, workshops on various important sections of polarization physics were orga-
nized.

The time has come to gather the basic results of polarization physics, to system-
atize them so that they were accessible to a wide audience.

A number of monographs were devoted to this field, but they have an appreciable
theoretical bias. In addition into those monographs were not included many impor-
tant works on the theoretical and experimental polarization physics done by Soviet
and later by Russian physicists. We aim to fill this gap.

In this book, we aimed to compile and systematize theoretical, experimental, and
particularly methodical aspects of polarization physics and to present them in the
accessible form. We include in book the experimental data starting approximately
around the middle of 1970s when the polarization of �− hyperons was discovered
at Fermilab and a lot of polarization results became available from high energy
accelerators over the world.

This book is primarily designed for final-year and post-graduate students of
faculties of physics of technical universities and assumes the corresponding basic
knowledge. At the same time, to assist the study of the material, we tried to present
the basic terms and definitions with the corresponding explanations. The most re-
cent results are taken for the presentation of the corresponding fields. When writing
the book, we use our lectures for students and wider audience, as well as our original
papers, review articles and presentations at conferences.

The book consists of three parts. The parts are divided into chapters (numbered
sequentially as 1, 2, etc. throughout the book) and the chapters are divided into
sections (having common numbering throughout the book: Section 1.1, Section 1.2,
first number denoting to which section chapter belong). Some sections are divided
into subsections (numbered as Section 1.1.1, Section 1.1.2, etc.). The numbering
of the formulas, tables, and figures is the same as numbering of sections in each
chapter. The lists of references are given after each chapter. A reference mentioned
in the text is indicated by the surname of the first author and the surname of the
second author, if there are two authors only, or et al., if there are more then two
authors, and the publication year. If a list of references contains several works of
one author in one year, these works are marked by letters (a, b, c, etc.) after the
publication year.

In order to unify the notations of the spin observables we introduce Sect. 13.4,
under the title “The Ann Arbor Convention” adopted in 1977. It might be useful in
identifications of the different labeling of polarization observables used in various
scientific papers.

We are deeply grateful to PhDs A.A. Bogdanov and V.J. Khodyrev for continuous
assistance in the preparation and editing of the book and to Drs. L.S. Azhgirei (de-
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ceased) and M.G. Ryskin for advices and stimulating discussions of many sections
of the book.

S.B. Nurushev
M.F. Runtso

M.N. Strikhanov
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Introduction

By the end of the XIX century and the beginning of the XX century, physicists
have collected extensive experimental data on the spectral lines of hydrogen-like
atoms; a consistent theoretical interpretation of these data was absent at that time.
This particularly concerned the fine and hyperfine splittings of spectral lines, the
so-called Zeeman effects. In 1911, Rutherford proposed a model of the atom with a
central nucleus. In 1913, Bohr developed a model of the atom with electrons revolv-
ing around the nucleus and theoretically deduced a radiation formula for hydrogen
atoms (Balmer series). The Bohr model included the relativistic relation between
the energy and momentum of the electron. However, the Zeeman effects remained
unexplained. The Bohr model of the atom was noticeably improved by Sommer-
feld who expanded the Bohr postulates by allowing elliptic electron orbits (Bohr
allowed only circular orbits) and quantized the action integral for any pair of con-
jugate variables. As a result, he arrived at the magnetic quantum number m, which
was already the third quantum number (in addition to the principal quantum num-
ber n and orbital quantum number l). The quantum number m, which is defined as
the projection of the orbital angular momentum vector �l on any axis z, can have
the integer values from −l to +l. This number explained the fine splitting of lev-
els. However, the anomalous Zeeman effect (hyperfine splitting of levels) remained
unexplained. Pauli approached close to the understanding of this effect in 1924. He
wrote that this phenomenon “is explained by the characteristic two-valuedness of
the quantum properties of valence electrons, which cannot be described in classical
mechanics” (Pauli 1925a). There is an opinion that Pauli easily could make the next
step and discovered spin (Fidecaro 1998). However, he focused on another problem
and soon arrived at the well-known “Pauli forbidden principle” (Pauli 1925b). The
discovery of spin did not occur.

In 1925, Uhlenbeck and Goudsmit published an article where the spin concept
was introduced for the first time as a quantum operator having two eigenvalues
(Uhlenbeck and Goudsmit 1925). Following Pauli’s proposal, they supplemented
three quantum numbers (n, l,m), which describe the motion of electrons in the atom,
by the fourth degree of freedom characterized by the quantum number ms having
two possible values. Similar to Pauli, they attributed this quantum number directly

xv
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to the electron and treated it as the internal quantum number. However, in contrast
to Pauli, they interpreted it as the quantum parameter appearing as a result of the
rotation of the electron about its axis. For this reason, their next article appearing
approximately in three months after the first one had the title “Spinning electrons
and the structure of spectra” (Uhlenbeck and Goudsmit 1926) from which the term
spin appeared. This spin degree of freedom was attributed directly to the electron.
The authors could explain the Landé factor equal two (the Landé factor appears in
the proportionality factor between the magnetic field and the energy difference of
the split levels).

The final word in scientific investigations obviously belongs to theory. In 1927,
Pauli wrote a nonrelativistic equation (Pauli equation) with the introduction of the
sigma matrix and two-component spinors; this equation explained many spin effects
in nuclear physics, including the anomalous Zeeman effects. In 1928, Dirac wrote
a relativistic equation for the electron; unexpectedly for him, the existence of the
electron (and the positron) with a half-integer spin and the required magnetic mo-
ment follows from this equation. By the end of 1928, spin was commonly accepted
as the fundamental characteristic of elementary particles in addition to the charge
and mass. This was the formation of spin physics.

The majority of known elementary particles have spin and are classified into two
groups: bosons and fermions, having integer and half-integer spins, respectively.
These groups are described by the Bose–Einstein and Fermi–Dirac statistics, re-
spectively. Spin plays a very noticeable role in the dynamics of the strong, weak,
and electromagnetic interactions of particles. However, spin in electroweak interac-
tions is described completely, whereas its description for strong interactions remains
a serious problem. Spin is directly involved in many important discoveries in mod-
ern physics such as the hyperfine splitting of atomic lines, shell models of atoms
and nuclei, discovery of parity violation in weak and electromagnetic processes, the
spin crisis phenomenon, the existence of the magnetic moments of particles.

According to modern representations, spin appears as a consequence of the sym-
metry of Minkowski space with respect to the space-time translations and rotations
of four-dimensional space. The Poincaré group describing these transformations has
two Casimir operators, which are responsible for two universal observables for any
physical system. The first of these operators leads to the definition of the mass of a
system and the second, to the spin concept (Ji 2002).

This book consists of three parts presenting the foundations of polarization
physics. The first part contains theoretical introduction and covers a wide range
of problems. Some of them are as follows. The technique for creating polarized ion
sources, polarized solid and gas targets is based on the hyperfine splitting of hydro-
gen levels. These levels in the region of very low energies are calculated using the
nonrelativistic Schrödinger equation. For this reason, the nonrelativistic Schrödinger
equation and its solution with the inclusion of Pauli matrices and an external mag-
netic field are presented. For the region of intermediate energies, elastic scattering
processes are primarily discussed. In the absence of the quantitative theory of strong
interaction, the concept of complete experiment plays a special role in this energy
range. This concept is based on the construction of the scattering matrix of any pro-
cess using the general principles of the invariance of interactions. In this approach,
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spin and its transformation properties (under continuous and discrete transforma-
tions of space and time) are of particular importance. In the theoretical part, the
general principles of construction of the density matrix, reaction matrix, and invari-
ants are discussed and their applications to particular reactions of pion–nucleon and
nucleon–nucleon scattering are illustrated. Examples of complete experiments are
given.

Relativistic quantum mechanics is required to describe processes at high ener-
gies. In this case, particular difficulty is associated with the necessity of the rela-
tivistic description of spin for both a free particle and a particle in a magnetic field.
The correct description of spin dynamics is especially important for the calculation
of depolarizing effects in the acceleration of protons in accelerators. These problems
are also briefly presented in the first part of the book. Finally, the interpretation of
the experimental results presented in the third part of the book requires theoretical
models of the dynamics of the interactions of particles with spin. A number of such
models are also described in this part of the book.

Experimental investigations of spin phenomena in high energy physics require a
beam of particles with a known degree of the orientation of their spin in a certain
direction. Such prevailing orientation is called polarization; for this reason, experi-
mental spin physics is also called polarization physics.

Experiments on deep inelastic scattering are now leading among polarization
experiments. In the first part of the book, the status of these investigations is briefly
reviewed on the basis of the latest experimental results.

The polarization technique is described in the second part of the book. It consists
of four chapters. Any experiment in polarization physics involves the scattering of
polarized particle beams on a polarized target (experiments with a fixed target) or a
polarized beam (colliders). Chapter 5 describes the production and acceleration of
polarized protons and electrons. The unique polarized muon beam is also separately
considered. Chapter 6 is devoted to polarized targets. The polarized solid targets of
certain large experimental setups are described so that they can be compared in many
parameters. At accelerators, polarized jet and gas targets with and without storage
cells are most successfully used. In Chap. 7, two polarized ion sources with the best
parameters are described. Chapter 8 is devoted to polarimetry, i.e., the measurement
of the polarization of beams and targets.

The third part of the book is called “Polarization experiments and their results”.
The latest results obtained at the largest setups are compiled. It is emphasized that
polarization is the most sensitive tool for testing predictions of the Standard Model
(SM) and quantum chromodynamics (QCD). By present time, the distribution func-
tions of polarized valence quarks have been quite accurately determined, the dis-
tribution functions of sea quarks have been less precisely determined, and it is yet
almost impossible to determine accurately the spin distribution functions of gluons.
Single-spin asymmetries, i.e., non uniformities of the azimuthal distribution of the
secondary particles appearing in the interactions of polarized beams and targets, are
measured with good accuracy. Contrary to the theoretical expectations, spin effects
survive in the inclusive production of pions in the polarized particle fragmentation
region to a center-of-mass energy of 200 GeV. A similar large asymmetry is for
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the first time observed for the neutrons inclusively produced in the same kinematic
region. The effects of spin information transfer in interactions are also discussed.

We have concluded that numerous unsolved problems still remain in polarization
physics. For this reason, physicists working in this field develop new programs of
polarization investigations.
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Part I
The Theoretical Bases of Polarization

In this part of the manual, we briefly recall the basic elements of nonrelativistic
and relativistic quantum mechanics that are useful for understanding of the subse-
quent material. We also try to present the basic conservation laws following from
the Lorentz and generalized Lorentz transformations, as well as from discrete trans-
formations. The aim of any experimental study, particularly in hadron physics, is to
collect maximally complete information on a reaction under investigation. In this ap-
proach, we aim at quite completely presenting the determination of the complete set
of experiments in the pion–nucleon and nucleon–nucleon interactions. Taking into
account that the spin is a complicated subject (Tomonaga 1997) having no classical
analogue, we present various definitions of the spin and its transformation proper-
ties.

We consider the theoretical part as a necessary tool for understanding the foun-
dations of the technical methods of polarization physics and a basis for analyzing
the results of polarization experiments (Feynman et al. 1963; Fermi 1961). Another
aim of this compilation of the materials is to avoid diverting readers to the search
for additional sources of information.
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Chapter 1
Spin and Its Properties

Before describing the spin, we should obviously define the notion of spin. Uhlen-
beck and Goudsmit (1925, 1926) proposed a hypothesis that, in addition to the mass
and charge, the electron has an intrinsic angular momentum and magnetic moment.
This intrinsic angular momentum was called spin and denoted by the symbol s as
the first latter of this word. This angular momentum is not associated with the or-
bital motion of the particle. It is difficult to realize the notion of intrinsic angular
momentum in application to an elementary particle such as the electron. Let us
extend the hypothesis of spin to a nucleus and use the consideration from book
(Landau and Lifshitz 1963). Since the nucleus is a complex system consisting of
nucleons, its state should be specified not only by the internal energy, but also by
the intrinsic angular momenta of the nucleons �si and their orbital momenta �li . The
total angular momentum of the nucleus �S (that is, its spin) is determined as the sum
�S =∑

i �si + �li where the sum runs over the nucleons in the nucleus and �S can have
2S + 1 values. Thus, the angular momentum distribution of the nucleons in the nu-
cleus determines its spin. A similar consideration is also applicable to the nucleon,
since it is also complicated system. In the quark model, a nucleon consists of three
quarks mediated by gluons. The angular momentum distribution of quarks and glu-
ons in the nucleon determines the nucleon spin. According to the naïve quark model,
the nucleon spin should be completely determined by the spins of valence quarks.
However, in 1984, the European Muon Collaboration (EMC) revealed that the va-
lence quarks carry only 25 %, rather than 100 %, of the nucleon spin. This fact was
called “spin crisis”. Thus, the problem of the origin of the proton spin has not yet
been quantitatively explained in the parton model.

For the electron (point particle), we cannot find such a simple explanation for the
origin of spin, because the spin is a quantum-mechanical operator and has no analog
in classical physics.

The hypothesis of spin opened possibilities for the simple explanation of a huge
number of experimental facts.

The problem of the possibility of a direct experimental determination of the
magnetic moment (correspondingly, spin) of the electron was formulated by Mott
(1929). He showed that the uncertainty principle excludes the direct measurement of
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the electron spin in the experiments, e.g., in the Stern–Gerlach experiment (Dehmet
1990). At the same time, he proposed an experiment that makes it possible to de-
termine the average spin value, i.e., polarization, from the double scattering of elec-
trons (Mott 1932). The essence of the experiment is as follows. An unpolarized
low-energy electron beam is scattered from a highly charged target at large angles.
The scattered electrons should be polarized due to the spin–orbit interaction. These
polarized electrons are scattered in the same plane by the second identical target.
The left–right asymmetry at the second target is measured. This asymmetry is the
product of the polarization of the electrons after the first scattering act by the an-
alyzing power of the second scattering act. The presence of nonzero asymmetry
obviously confirms the presence of the polarization, i.e., spin of the electron. There
were several attempts to observe this effect in the experiments; however, they were
unsuccessful owing to various problems. Only in 1943, the first such experiment
was successfully performed and its results completely confirmed Mott’s predictions
(Schull et al. 1943). In those measurements, a Mott polarimeter was used; for more
details, see review of Gay (1992).

1.1 Elements of Nonrelativistic Quantum Mechanics

Spin is a purely quantum characteristic of objects of the microcosm, and its descrip-
tion requires the technique of quantum mechanics both nonrelativistic (Bethe and
Salpeter 1957) and relativistic (Dirac 1958). In this section, we briefly consider the
basic elements of nonrelativistic quantum mechanics that are required for the pre-
sentation of the materials on polarization physics (Shpol’skii 1984a, 1984b). Below,
in Sect. 1.7, we present the necessary elements of relativistic quantum mechanics.
We use the monographs given in the below list of references.

Recall the basic notions used in quantum mechanics.
Linear operators are very often used in quantum mechanics. We present the in-

formation on the operators following Fermi (1961). The operators act on functions
specified on a certain domain such as the numerical x axis (one-dimensional or
linear space), a set of points, points on the sphere, and three-dimensional space of
numbers x, y, and z. The functions can be considered as vectors in a space, finite-
or infinite-dimensional. An operator is generally a rule (mathematical operation)
according to which the function f is transferred to the function g:

g = Ôf. (1.1)

The operators are denoted by a letter with a “hat”. The functions and operators in
quantum mechanics are generally complex. Operators Ô should include the identity
operator Î reproducing the initial function:

g = Ôf = Îf = f. (1.2)

Almost any mathematical operation can be associated with the corresponding
operator.
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Linear operators are important in quantum mechanics. They satisfy the require-
ment

Ô(αf + βg)= αÔf + βÔg (1.3)

for any pair of functions f and g and any complex constants α and β . The multipli-
cation by numerical factors and functions, differentiation and integration operations,
etc. are linear operators.

The sum and difference of the linear operators Ĉ± = Â± B̂ are also linear oper-
ators:

Ĉ±f = Âf ± B̂f. (1.4)

The summation (subtraction) is commutative:

Ĉ±f =±B̂f + Âf. (1.5)

The linear operators have the associativity property:

Â+ (B̂ + Ĉ)= (Â+ B̂)+ Ĉ. (1.6)

The product of two linear operators also has the associativity property:

(ÂB̂)f = Â(B̂f ). (1.7)

The multiplication of an operator by a number is equivalent to the multiplication
of this number by the result of the action of the operator on a function.

The product of two linear operators is generally noncommutative, i.e.,

ÂB̂ �= B̂Â. (1.8)

In order to illustrate this statement, we consider the case where Â = x, B̂ =
d/dx:

(ÂB̂)f =
(

x
d

dx

)

f = x
df

dx
, (B̂Â)f = d

dx
(xf )= f + x

df

dx
. (1.9)

The commutator of two operators Â and B̂ is defined as

[Â, B̂] = −[B̂, Â] = ÂB̂ − B̂Â. (1.10)

If [Â, B̂] = 0, the operators commute.
Let us also define the anticommutator as

{Â, B̂} = {B̂, Â} = ÂB̂ + B̂Â. (1.11)

According to relation (1.9),
[
d

dx
, x

]

= 1. (1.12)
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The power of an operator specifies the multiplicity of the action of the opera-

tor, for example, for Â = d
dx

, Ân = dn

dxn
or Ân+m = ÂnÂm. The commutation re-

lation [Ân, Âm] = 0 is valid for any operator. The inverse operator (its action can-
cels the action of the initial operator) Â−1 also commutes with the initial operator
[Â−1, Â] = 0. An operator function F(Â) is useful in applications. By analogy with
an ordinary function, this function can be expanded in the Taylor series:

F(Â)=
∞∑

n=0

F (n)(0)

n! Ân. (1.13)

Let us consider an example of the functionF(Â)= eαÂ, where Â= d/dx. In this
case, the expansion has the form

eαÂ = 1+ αÂ+ α2

2! Â
2 + · · · + αn

n! Â
n + · · · =

∞∑

n=0

αn

n! Â
n. (1.14)

The substitution of the operator Â= d
dx

yields

eαÂ = 1+ α
d

dx
+ α2

2!
d2

dx2
+ · · · + αn

n!
dn

dxn
+ · · · =

∞∑

n=0

αn

n!
dn

dxn
. (1.15)

Then, the action of the operator F(Â) on the function f provides

F(Â)f (x)= eα
d
dx f (x)=

∞∑

n=0

αn

n!
dnf (x)

dxn
= f (x + α). (1.16)

The last relation corresponds to the power-series expansion of the function f (x+
α) in the variable α near the point α = 0. As seen, the action of this operator reduces
to the shift of the argument of the function by α.

Let us introduce the wave function ψ(x) in the form of the column with n ele-
ments

ψ(x)=

⎛

⎜
⎜
⎜
⎜
⎝

ψ1
. . .

ψm

. . .

ψn

⎞

⎟
⎟
⎟
⎟
⎠
, (1.17)

where x = x1, x2, . . . is the set of all continuous arguments, e.g., coordinates and m

is the discrete variable changing from 1 to n.
The action of the operator F̂ on the function ψm sometimes yields the same

function multiplied by a certain number λm : F̂ψm = λmψm. If the function ψm

satisfies the so-called “standard conditions” (the requirements of its finiteness, con-
tinuity, and single-valuedness in the entire region of its independent arguments) and
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the square integrability condition (the integral of the squared absolute value of the
function is finite), the function ψm is called an eigenfunction of the operator F̂ and
λm is its eigenvalue corresponding to the eigenfunction ψm.

The matrix element of an operator is defined as

Fkl =
∫

ψ∗k (x)F̂ψl(x)dx. (1.18)

Let us introduce the notion of the Hermitian (self-adjoint) operator. For each
linear operator F̂ , the adjoint linear operator F̂+ can be obtained from the ini-
tial operator F̂ by exchanging the columns and rows and taking complex conjuga-
tion. The matrix element of the Hermitian conjugate operator satisfies the condition
Fkl =

∫
ψ∗k F̂ψldX =

∫
(F̂+ψk)

∗ψldX, where dX = dx1 ·dx2 · · · · are independent
continuous variables, integration is performed over the entire region of independent
variables (phase space), and the asterisk, as usual, denotes the complex conjuga-
tion. If the adjoint operator coincides with the initial operator, the operator is called
self-adjoint or Hermitian. In this case,

∫
ψ∗F̂ ϕdX = ∫

(F̂ψ)∗ϕdX. There is an im-
portant theorem according to which the eigenvalues of a self-adjoint operator are
real. Let us prove it. We have

F̂ψm = λmψm. (1.19)

The Hermitian conjugation gives

ψ+m F̂+ = λ∗mψ+m . (1.20)

Let us multiply Eq. (1.19) by ψ+m from the left and Eq. (1.20), by ψm from the
right. Subtracting one resulting relation from the other and taking into account that
F̂ = F̂+ according to the definition of the Hermitian operator, we obtain

λm = λ∗m, (1.21)

quod erat demonstrandum.
According to this theorem, all observables (energy, momentum, angular momen-

tum, spin moment, etc.) are represented in quantum mechanics by Hermitian opera-
tors.

Nonrelativistic quantum mechanics is based on the following six principles
(Bjorken and Drell 1964, 1965):

1. A given physical system is described by the vector of state Φ , which con-
tains all information on the system. In application to the single-particle system, the
vector of state in the coordinate representation is called wave function. This wave
function is denoted as ψ and is a complex function of the entire set of the argu-
ments describing the given physical system. This set of arguments can include coor-
dinates, momenta, time, spin, isospin, etc. These parameters should describe all de-
grees of freedom of the particle. We denote this set of independent variables except
for time t as q . Then, the wave function is written as ψ(t, q). The wave function
ψ(t, q) has no direct physical interpretation. However, the square of its absolute
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value, |ψ(t, q)|2 ≥ 0, is treated as the probability of finding the particle at time t

at the multidimensional-space point q . According to the probability interpretation,
|ψ(t, q)|2 should be finite in the entire physical region of the variables q .

2. Any physical observable corresponds to a linear Hermitian operator. In partic-
ular, the momentum pi corresponds to the following operator in the qi coordinate
representation:

pi → �

i

∂

∂qi
. (1.22)

3. The state of the physical system is the eigenfunction Φ of an arbitrary operator
Ô if the following equality is valid:

ÔΦn(q, t)=On ·Φn(q, t), (1.23)

where Φn is the nth eigenstate (or eigenfunction of Ô) corresponding to the eigen-
value On. If Ô is a Hermitian operator, the eigenvalue On is real.

4. An arbitrary wave function or vector of state of the physical system can be
represented in terms of the complete orthonormalized set of wave functions ψn of
the complete set of the operators commuting with the Hamiltonian and with each
other. The completeness and orthonormalization of the system of the wave functions
ψn(q, s) (q means all continuous variables and s denotes all discrete variables) is
expressed by the relation (Schiff 1968):

∑

s

∫

dqψ∗n (q, s)ψm(q, s)= δnm. (1.24)

Therefore, an arbitrary wave function ψ of the physical system can be expanded in
terms of this complete set as follows:

ψ =
∑

n

anψn. (1.25)

The quantity |an|2 is the probability that the physical system is in the nth eigen-
state.

5. The experimental measurement of an observable provides one of its eigenval-
ues. For example, if the physical system is described by wave function ψ (1.25) and

the function ψn is the eigenfunction of the operator Ô corresponding to the eigen-
value On, i.e., Ôψn = On · ψn, then the measurement of the physical observable
O provides the eigenvalue On with the probability |an|2. The mean value of the
operator Ô (taking into account the orthogonality of the eigenfunctions) is defined
as

〈Ô〉 =
∑

n,s

∫

dqψ∗n (q, s)Ôψm(q, s)=
∑

n

|an|2On. (1.26)
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6. The following Schrödinger equation describes the time evolution of the phys-
ical system:

i�
∂

∂t
ψ = Ĥψ. (1.27)

Here, the Hamiltonian Ĥ (operator corresponding to the energy of the system) is a
linear Hermitian operator. The Hamiltonian of a closed (isolated) physical system
does not explicitly depend on time; hence,

∂H

∂t
= 0. (1.28)

The solutions of the equation of motion with such a Hamiltonian specify possible
stationary states of the physical system. The superposition principle (the fourth of
the above principles) follows from the linearity of the Hamiltonian operator. Since
the Hamiltonian is Hermitian, the probability of finding the particle at the point with
the coordinates q is conserved as seen from the following relation obtained using
formula (1.27):

∂

∂t

∑

s

∫

dqψ∗ψ = i

�

∑

s

∫

dq
[
(Ĥψ)∗ψ −ψ∗(Ĥψ)

]= 0. (1.29)

This relation expresses the conservation of the probability density.
Let us consider the simplest Hamiltonian of a free isolated particle moving with

the momentum �p. This Hamiltonian is equal to the kinetic energy of the particle

H = p2

2m
. (1.30)

For the passage from classical mechanics to quantum mechanics, each dynamical
variable of classical mechanics is associated with a linear Hermitian operator in
quantum mechanics and the following change is made:

H → i�
∂

∂t
, �p→−i�∇. (1.31)

As a result, we arrive at the nonrelativistic Schrödinger equation for a free parti-
cle:

i�
∂ψ(q, t)

∂t
=− �

2

2m
∇2ψ(q, t). (1.32)

In the presence of interaction, the Hamiltonian contains not only the kinetic en-
ergy K , but also the potential energy V of interaction and has form

H =K + V. (1.33)
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Therefore, the Schrödinger equation with allowance for the interaction between
particles is written in the general form

i�
∂ψ(q, t)

∂t
= Ĥψ(q, t)=

[

− �
2

2m
∇2 + V (q, t)

]

ψ(q, t). (1.34)

A general definite recipe for finding the Hamiltonian is absent. The Hamilto-
nian for a particular problem is constructed in terms of the basic independent kine-
matic parameters (momenta, orbital angular momenta, spins, external electromag-
netic fields, magnetic moments, etc.), and the requirements of invariance under co-
ordinate transformations (translations, rotations, space inversions, and time reversal)
are imposed in order to obtain the scalar (or pseudoscalar) Hamiltonian. The correct-
ness of the chosen Hamiltonian is determined by comparing the calculation results
with experimental data.

The examples of the Hamiltonians for particular cases are considered in the fol-
lowing sections.

1.2 Angular Momentum Operator

At the beginning of this section, we present the basic information on the Dirac no-
tation which is widely used below (Shpol’skii 1984a, 1984b).

Any vector ψ in the n-dimensional Euclidean space is unambiguously speci-
fied by the set of its components in a fixed basis; this representation can be written
in the form of a column consisting of the components of this vector ψ1, . . . ,ψn.
Let us formally introduce the space of adjoint vectors ψ+, which are obtained
from ψ by Hermitian conjugation (transposition into row and complex conjuga-
tion of the components). The dot product of the vectors ϕ and ψ (the corresponding
scalar product of two functions of x in the interval a < x < b is usually defined as
(ϕ,ψ) = ∫ b

a
ϕ(x)ψ(x)dx) can be written in the short matrix form (ϕ,ψ) = ϕ+ψ .

Following Dirac, we denote ψ ≡ |ψ〉, ψ+ ≡ 〈ψ |, where |ψ〉 and 〈ψ | are ket and
bra vectors, respectively (named after word “bracket”). These two types of vectors
are formally related by the Hermitian conjugation: 〈ψ | ≡ |ψ〉+, |ψ〉 ≡ 〈ψ |+. As
mentioned above, the symbol 〈ϕ|ψ〉 (the second vertical dash is omitted) means the
dot product of vectors ϕ and ψ , which is a number. Let us introduce complete or-
thonormalized bases in the space of ket and bra vectors; these bases are the sets of
the basis vectors that are obtained from each other by Hermitian conjugation. These
basis vectors are denoted as |1〉, |2〉, . . . , |n〉 and 〈1|, 〈2|, . . . , 〈n|, respectively. In
this notation, the condition of the orthonormalization of the basis is represented in
the form

〈j |k〉 = δjk, (1.35)

where δjk is the Kronecker delta function (δjk = 1 for j = k and δjk = 0 for j �= k).
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The vectors |ψ〉 and 〈ψ | can be expressed in terms of the respective basis vectors
of the complete set of operators (tilde stands for transposition):

|ψ〉 =
n∑

j=1

ψj |j 〉; 〈ψ | =
n∑

j=1

ψ̃j 〈j |. (1.36)

Multiplying the first relation by 〈j | from the left and the second relation by |k〉
from the right, we obtain

ψj = 〈j |ψ〉, (1.37)

ψ̃k = 〈ψ |k〉 = 〈k|ψ〉∗ =ψ∗k , i.e. ψ̃j =ψ∗j . (1.38)

The sets of the numbers ψj and ψ̃j are the sets of the components of the vectors
|ψ〉 and 〈ψ |, respectively, and unambiguously specify them.

Using the above expressions for the components of the vectors |ψ〉 and 〈ψ |, we
can represent them in the form

|ψ〉 =
n∑

j=1

|j 〉〈j |ψ〉; 〈ψ | =
n∑

j=1

〈ψ |j 〉〈j |. (1.39)

The action of the operator F̂ on the vector ψ in the n-dimensional Euclidean
space is written in the Dirac notation as |ϕ〉 = F̂ |ψ〉.

The expression 〈ϕ|F̂ |ψ〉 means that the operator F̂ acts on the vector ψ from the
left and, then, the dot product of the resulting vector and the left vector ϕ is taken.
In other words, the operator F̂ acts on the initial state ψ and transfers it to the final
state ϕ.

The vector |f 〉 satisfying the equation

F̂ |f 〉 = f |f 〉 (1.40)

is called an eigenvector of the operator F̂ , whereas the number f is the eigenvalue of
this operator and corresponds to this eigenvector. The vector (or spinor, this notion
will be introduced in the next sections) character of the wave function is represented
in the form of Dirac brackets.

Then, we determine the matrix of the operator F̂ in its own basis, i.e., in the basis
of its eigenvectors |f 〉. An element of the matrix of the operator is generally defined
as

(F )f ′f ′′ =
〈
f ′
∣
∣F̂

∣
∣f ′′

〉
. (1.41)

Taking into account Eq. (1.40) and the orthonormalization condition, we have

(F )f ′f ′′ =
〈
f ′
∣
∣F̂

∣
∣f ′′

〉= 〈
f ′
∣
∣f ′′

∣
∣f ′′

〉= f ′′
〈
f ′
∣
∣f ′′

〉= f ′′f ′f ′′ = δf ′f ′′f
′; (1.42)

i.e., the matrix of the Hermitian operator F̂ in its own basis is diagonal.



12 1 Spin and Its Properties

Its elements on the main diagonal are the eigenvalues of the operator F̂ (some
of them can be coinciding, so-called degenerate elements), whereas all off-diagonal
elements are zero.

Thus, the pure algebraic problem of the diagonalization of the matrix of a given
Hermitian operator (i.e., the determination of a basis in which this matrix is di-
agonal) is solved simultaneously with the determination of the eigenvalues of this
operator.

Let us now present the basic content of this section concerning the angular mo-
mentum operator.

In quantum mechanics, the Hamiltonian is an operator determining the time evo-
lution of the state of a quantum system. The basic conservation laws in physics are
due to the requirement that space for a closed system be uniform and isotropic. The
first requirement leads to the momentum conservation law (three conserved momen-
tum components). The second requirement leads to the angular momentum conser-
vation law (six invariant quantities: three angular-momentum components and three
rotations involving the time axis of the four-dimensional space).

In this section, following books of Landau and Lifshitz (1963) and Schiff (1968),
we present the properties of the angular momentum. They are also useful for the
consideration of the “own (or intrinsic) angular momentum” of a particle, i.e., spin.

Let us consider a closed physical system with the Hamiltonian H . In view of
the isotropy of the space, the Hamiltonian of the system should remain unchanged
under the rotation of this system by an arbitrary angle about an arbitrary axis. It is
sufficient to apply this condition to an infinitesimal rotation; in this case, it is also
valid for finite rotations.

Let the physical system consists of n particles and be described by the wave func-
tion ψ(�ri), where i = 1,2 . . . n. The increment of the vector �runder the infinitesimal
rotation describing by the vector δ �ϕ that has the length δφ and is aligned with the
rotation axis can be represented in the form

δ�ri = δ �ϕ × �ri . (1.43)

Here, the symbol × stands for the cross (vector) product. An arbitrary wave
function under this transformation is transformed as follows (we take the first two
terms of the expansion and, in the third transformation, use the commutativity of the
dot product of the vectors and the property of the scalar triple product of vectors):

ψ(�ri + δ�ri) = ψ(�ri)+
∑

i

δ�ri · �∇iψ(�ri)=ψ(�ri)+
∑

i

δ �ϕ × �ri · �∇iψ(�ri)

=
(

1+ δ �ϕ ·
∑

i

�ri × �∇i

)

ψ(�ri).

The gradient operator �∇ (it is also denoted as grad) acting on a scalar function
yields a vector function and, in the Cartesian coordinates, has the form �∇i = ∂

∂xi
�i +

∂
∂yi
�j + ∂

∂zi
�k, where the arrow denoting the vector is often omitted over ∇ . The dot

product of the vectors is denoted by the symbol ·.
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The operator 1+ δ �ϕ ·∑i �ri × �∇i is the infinitesimal rotation operator; since space
is homogeneous, it conserves the total energy of the system and should commute
with the Hamiltonian Ĥ (Landau and Lifshitz 1963). Excluding the first term (unity
commutes with any operator) and introducing the notation

L̂=
∑

i

�ri × �∇i , (1.44)

we write the condition of the commutativity of the operator L̂ with the Hamiltonian


L̂, Ĥ� = L̂Ĥ − Ĥ L̂= 0. (1.45)

As known, any operator commuting with the Hamiltonian is an operator of a
conserving quantity. Therefore, the operator L̂ appearing from the requirement of
the isotropy of space for a closed system corresponds to a conserving quantity. This
operator is called the space moment of momentum operator according to its defini-
tion as the cross product of the coordinate vector operator by the momentum vector
operator. It is also called the orbital angular momentum operator. Here, we deviate
from the main theme of this section and point to a number of the properties of the
operator L̂ that are useful for considering the spin operator.

According to the following classical definition of the orbital angular momentum
for one particle:

�l = �r × �p, (1.46)

where �r and �p are the radius vector and momentum of the particle, respectively, �l is
a pseudovector (or axial vector); i.e., under space inversion, �l does not change sign
in contrast to �r and �p that change signs (such vectors are called polar). Another im-
portant property of �l is associated with the time reversal operation. Since the radius
vector under this operation does not change sign and the momentum changes sign,
the orbital angular momentum changes sign. Since the spin is not a classical object
such as the orbital angular momentum, an analog of relation (1.46) is absent for
the spin. Therefore, there is no a similar simple illustrative way to derive the same
properties for the spin operator, as was done for �l. At the same time, we can extend
these properties of the orbital angular momentum to the spin moment; otherwise, it
would be impossible to make the summation operation providing the total angular
momentum �j = �l+ �s, where �s is the spin vector. Now, we return to the main theme.

Taking into account the relation p̂ =−i�∇ between the momentum operator and
gradient operator, the quantum-mechanical representation of the angular momentum
operator of the particle can be written by representing the cross product in the form
of the determinant

��l =
∣
∣
∣
∣
∣
∣

�i �j �k
x y z

p̂x p̂y p̂z

∣
∣
∣
∣
∣
∣
. (1.47)

In the shorter representation,

�lm = xip̂kεikm, (1.48)
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where p̂k = −i� ∂
∂xk

(until the end of this section, we set Planck’s constant � = 1,
as often make in theoretical works; in what follows, such cases will be mentioned),
εikm is the antisymmetric unit tensor of the third rank (i = x, y, z= 1,2,3), which
is also called the unit axial tensor, and is defined as a tensor antisymmetric in pair of
all three indices with the condition ε123 = 1. It is obvious that only 6 of its 27 com-
ponents are nonzero; these are the components whose indices i, j, k constitute any
permutation of 1,2,3. These components are +1 and−1 if the set i, j, k is obtained
from 1,2,3 by means of even and odd numbers of pair permutations (transposi-
tions), respectively. It is obvious that εijkεij l = 2δkl and εijkεijk = 6.

The commutation relations between �l and coordinates xi (operator x̂i in the coor-
dinate representation reduces to the multiplication by the coordinate; for this reason,
it is written without hat) can be obtained by straightforward calculations and repre-
sented in the form

[l̂i , xk] = iεikmxm. (1.49)

The commutation relations between the orbital angular momentum operator l̂

and the momentum operator p̂ of the particle have the same form

[l̂i , p̂k] = iεikmp̂m. (1.50)

Similar commutation relations can be also obtained for the components of the
orbital angular momentum operator l̂:

[l̂i , l̂k] = iεikml̂m. (1.51)

Let us define the square of the orbital angular momentum operator

l̂2 = l̂2x + l̂2y + l̂2z . (1.52)

This operator commutes with each of the components of the operator l̂i (i =
x, y, z). For example,

[
l̂2x, l̂z

]= l̂2x l̂z − l̂zl̂
2
x = l̂x (−il̂y + l̂zl̂x)− (il̂y + l̂x l̂z)l̂x =−i(l̂x l̂y + l̂y l̂x),

[
l̂2y, l̂z

]= i(l̂x l̂y + l̂y l̂x),
[
l̂2z , lz

]= 0.
(1.53)

Summing these relations, we obtain [l̂2, l̂z] = 0. As a result, we arrive at the
relation

[
l̂2, l̂i

]= 0, i = x, y, z. (1.54)

The physical meaning of relation (1.54) is that the square of the orbital angular
momentum can be accurately measured simultaneously with one of its components.

For applications, it is sometimes appropriate to change the operators l̂x and l̂y to
their linear combinations

l̂± = l̂x ± il̂y . (1.55)
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According to relations (1.51),

[l̂+, l̂−] = 2l̂z, [l̂z, l̂+] = l̂+, [l̂z, l̂−] =−l̂−. (1.56)

The following relation can also be derived:

l̂2 = l̂+ l̂− + l̂2z − l̂z = l̂− l̂+ + l̂2z + l̂z. (1.57)

Let us pass from the Cartesian coordinate system to the spherical coordinate
system by means of the standard change of variables (as usual, the polar angle θ is
measured from the positive z semiaxis in the clockwise direction and the angle ϕ,
from the positive x semiaxis in the counterclockwise direction):

x = r sin θ cosϕ, y = r sin θ sinϕ, z= r cos θ.

In view of expressions (1.48) for the components of the orbital angular momen-
tum operator, simple calculations provide the necessary expressions

l̂z =−i ∂

∂ϕ
, l̂± = e±iϕ

(

± ∂

∂θ
+ i cot θ

∂

∂ϕ

)

. (1.58)

The substitution of these expressions into Eq. (1.57) yields

l̂2 =−
[

1

sin2 θ

∂

∂ϕ2
+ 1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)]

. (1.59)

This expression up to a constant factor is the angular part of the Laplace operator.
Now, we can determine the eigenvalues of the angular momentum projection on

a certain direction. We use the above formulas for the spherical coordinate system.
First, we consider the operator l̂z defined by the first of formulas (1.58). In order
to determine an eigenvalue of this operator, we should write the equation for its
eigenfunction:

l̂zψ = lzψ. (1.60)

Here, lz without an operator symbol (hat) over it is eigenvalue of the operator l̂z.
The substitution expression (1.58) for the operator l̂z gives

−i ∂ψ
∂ϕ
= lzψ. (1.61)

The solution of this equation has the form

ψ = f (r, θ)eilzϕ. (1.62)

Here, f (r, θ) is an arbitrary function of its arguments. For the function ψ to be
single-valued, it should be a periodic function of ϕ with a period of 2π . The condi-
tion of this periodicity has the form eilzϕ = eilz(ϕ+2π); therefore, 1= eilz(2π). Hence,
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lz =m, where m= 0,±1,±2, . . .; i.e., m takes integer values. Let us introduce the
normalized eigenfunction of the operator l̂z:

Φm(ϕ)= 1√
2π

eimϕ, (1.63)

where the normalization is specified by the relation

∫ 2π

0
Φ∗ν (ϕ)Φν′(ϕ)dϕ = δνν′ . (1.64)

Therefore, the eigenfunction of the operator l̂z can be written in the general form

ψm = f (r, θ)eilzϕ. (1.65)

Let us determine the maximum and minimum values of lz. Relation (1.52) can
be represented in the form

l̂2 − l̂2z = l̂2x + l̂2y . (1.66)

Since the right-hand side contains the operators of positive quantities, the left-hand
side should also be positive. Therefore,

−
√
l2 ≤ lz ≤+

√
l2. (1.67)

Thus, the absolute values of the upper and lower bounds of lz values coincide
with each other. Let us determine this boundary value l.

In view of relations (1.56) and (1.60), the action of the operator l̂zl̂± on the wave
function ψm yields

l̂zl̂±ψm = (m± 1)l̂±ψm. (1.68)

Correspondingly, the function l̂±ψm is an eigenfunction of the operator l̂z with
the eigenvalue (m± 1) up to the normalization constant. Therefore,

ψm+1 =N1 l̂+ψm, ψm−1 =N2 l̂−ψm. (1.69)

As seen, the operator l̂+ increases the eigenvalue m by unity, whereas the oper-
ator l̂− reduces the eigenvalue m by unity. Taking the first of relations (1.69) with
m= l, we obtain ψl+1 = 0, because the maximum m value is l. Thus,

l̂+ψl = 0. (1.70)

Applying the operator l̂− to this equality and using relation (1.57), we obtain

l̂− l̂+ψl =
(
l̂2 − l̂2z − l̂z

)
ψl = 0. (1.71)

Since ψl is an eigenfunction of all three operators in the parentheses,

l̂2ψl = l(l + 1)ψl. (1.72)
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This formula specifies the eigenvalues of the square of the orbital angular mo-
mentum operator. The parameter l can be any nonnegative integer. For a given l val-
ues, the eigenvalues of the operator l̂z are m=−l,−(l−1),−(l−2) . . .0 . . . (l−2),
(l− 1), l, i.e., (2l+ 1) values. The parameter m is also called the magnetic quantum
number or the projection of the orbital angular momentum l̂ onto the z axis; it leads
to “space quantization”.

Let us calculate the matrix elements of the operators l̂x and l̂y in the representa-
tion where the matrices of energy, l̂z, and l̂2 are diagonal.

Since the operator is a rule according to which each vector ψ of the n-
dimensional Euclidean space is transformed to a vector ϕ of the same space,
the transformation of one vector to another can be represented in the form ϕj =∑n

k=1 ajkψk ; in the matrix notation, ϕ =Aψ . Thus, each n× n matrix specifies an
operator in the n-dimensional Euclidean space.

Since the operators l̂x and l̂y commute with the Hamiltonian and l̂2 operator,
their matrix elements are nonzero only for the transitions where the energy and l

value remain unchanged. This means that it is sufficient to calculate only the matrix
elements of the operators l̂x and l̂y between different m values.

According to formula (1.69), the operators l̂− and l̂+ transfer the states m + 1
and m − 1, respectively, to the state m. Taking into account this property, using
relations (1.49), and writing the matrix elements in the Dirac notation, we obtain

l(l + 1)= 〈m|l+|m− 1〉〈m− 1|l−|m〉 +m2 −m. (1.73)

According to definition (1.55), the operators l̂+ and l̂− are mutually Hermitian,
because the operators l̂x and l̂y are Hermitian. Therefore,

〈m− 1|l̂−|m〉 = 〈m|l̂+|m− 1〉∗. (1.74)

The substitution of this relation into relation (1.73) provides

∣
∣〈m|l̂+|m− 1〉∣∣2 = l(l + 1)−m(m− 1)= (l −m+ 1)(l +m). (1.75)

Finally,

〈m|l̂+|m− 1〉 = 〈m− 1|l̂−|m〉 =
√
(l +m)(l −m+ 1). (1.76)

From these relations, the nonzero matrix elements of the operators l̂x and l̂y are
obtained in the form

〈m|l̂x |m− 1〉 = 〈m− 1|l̂x |m〉 = 1

2

√
(l +m)(l −m+ 1) (1.77)

and

〈m|l̂y |m− 1〉 = 〈m− 1|l̂y |m〉 = − i

2

√
(l +m)(l −m+ 1). (1.78)

These relations will be used in the following chapters (taking half-integer l val-
ues, we obtain the Pauli matrices, which will be considered in the next section).
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1.3 Pauli Spin Operator

Spin is the intrinsic angular momentum of a particle and takes discrete values. Par-
ticles with integer spins are called bosons. Among them are photon, vector mesons,
gluon, and intermediate bosons. Spin can also take half-integer values. Particles
with half-integer spins are called fermions. Among them are nucleons, electrons,
neutrinos, muons, and quarks. All elementary particles without exception can be
classified in spin as bosons and fermions (Kane 1987), which are described by the
Bose–Einstein and Fermi–Dirac statistics, respectively.

The hypothesis of the intrinsic angular momentum of the electron was proposed
in different forms by many physicists (Fidecaro 1998). This hypothesis was most
clearly formulated by Dutch scientists Uhlenbeck and Goudsmit (1925, 1926) in
order to explain the presence of the hyperfine structures in the energy levels of
hydrogen-like atoms. Spin appeared as an operator in quantum mechanics in 1927
owing to Pauli.

Spin is particularly important in weak decays of particles (Okun 1982). As an
example, we point out that one of the largest discoveries in physics in the twentieth
century, namely, the discovery of parity violation in weak interactions was made
on polarized particles (beta decay of polarized nuclei), i.e., with spin (Lee and Wu
1965).

Let us consider a number of the properties of the spin operator ŝ with a value
of 1/2. This operator ŝ is related to the Pauli operator σ̂ as

ŝ = 1

2
σ̂. (1.79)

Both operators acting in the spin space are axial vectors in the usual coordinate
representation. The operator σ̂ in the rest system of the particle has the form

‖σx‖ = ‖σ1‖ =
∥
∥
∥
∥

0 1
1 0

∥
∥
∥
∥ , ‖σy‖ = ‖σ2‖ =

∥
∥
∥
∥

0 −i
i 0

∥
∥
∥
∥ ,

‖σz‖ = ‖σ3‖ =
∥
∥
∥
∥

1 0
0 −1

∥
∥
∥
∥ .

(1.80)

The commutation properties of the Pauli matrices σ can be expressed by the
relation

σασβ = δαβI + iεαβγ σγ , (1.81)

where δαβ is the unit symmetric tensor of the second rank and εαβγ is the unit anti-
symmetric tensor of the third rank (both tensors are defined in the three-dimensional
space).

Using relations (1.81), we can derive the following expressions for the commu-
tators and anticommutators

[σ̂α, σ̂β ] = σ̂ασ̂β − σ̂β σ̂α = 2iεαβγ σ̂γ , (1.81a)

{σ̂α, σ̂β} = σ̂ασ̂β + σ̂β σ̂α = 2δαβ. (1.81b)
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A number of useful properties follow from these relations. First, according to
Eq. (1.81a), the product of two different components of the spin operator is ex-
pressed in terms of the first power of the third component of this operator. This
means that any matrix in the two-dimensional spin space cannot contain the powers
of sigma-matrices higher than the first, i.e., can be represented as a linear expres-
sion of the Pauli matrices. Second, the spin operator components anticommute with
each other. Third, the square of each spin component is the identity matrix I . From
relations (1.81), (1.81a), and (1.81b), we can obtain the useful equality

( �̂σ · �A)( �̂σ · �B)= ( �A · �B)+ i �̂σ · ( �A× �B), (1.82)

where the vectors �A and �B are independent of the spin variables. As can be verified
by direct transformation of the Pauli matrices, the operator �̂σ is Hermitian; therefore,
its eigenvalue is a real number. The mean value of the operator �̂σ between the spin
states of the particle is called the polarization vector �P :

�P = 〈�̂σ 〉. (1.83)

Since

σ 2 = σ 2
1 + σ 2

2 + σ 2
3 = 3, (1.84)

the eigenvalue of the square of the spin operator is �s2 = 1
4 · �σ 2 = 3

4 .
At the same time, it can be shown that the length of the polarization vector P is

always smaller than unity, |P | ≤ 1 (Bilen’kii et al. 1964). This will be proved below.
The transformation properties (properties under the coordinate transformation)

of the spin operator (and, correspondingly, the Pauli operator) can be defined by
analogy with the orbital angular momentum operator of the particle, the sum of
which with the spin is the total angular momentum of the particle,

�j = �s + �l.
In the general case, the requirement of the isotropy of space provides the follow-

ing relations for the components of the total angular momentum �j of the particle
(Landau and Lifshitz 1963):

(jx + ijy)Ylm =
√
(j −m)(j +m+ 1)Yjm+1, (1.85)

(jx − ijy)Ylm =
√
(j +m)(j −m+ 1)Yjm−1, (1.86)

jzYlm =mYlm, j2Ylm = j (j + 1)Ylm. (1.87)

Changing the angular momentum j and spherical functions Ylm in these equa-
tions to the spin operator �̂s and spinors χsm (see the next section), respectively, we
arrive at the equations for the eigenfunctions and eigenvalues of the spin operators.
From these equations, we can also derive commutation relations (1.81), (1.81a),
and (1.81b) for the spin operators, as well as explicit expressions (1.80) for the
Pauli matrices. Moreover, relations (1.85)–(1.87) allow one to find explicit expres-
sions for the spin operators of any rank including the deuteron spin (s = 1).
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The spin operator �̂s is a pseudovector; i.e., it is transformed as a normal vector
under the rotation of the coordinate system and, as well as the orbital angular mo-
mentum, does not change under space inversion, i.e., is an axial vector. Under time
reversal, spin, as well as orbital angular momentum, changes sign. As mentioned
above, the use of analogy with the orbital angular momentum for the definition of
the transformation properties of the spin operator is simplest and quite convincing.

1.4 Spinors

Let ψ(x, y, z;σ) be the wave function of the particle with the spin σ (we follow
the notation from Landau and Lifshitz (1963); σ should not be confused with the
Pauli matrix), σ in this case is the z component of the spin and ranges from −s
to+s. The functions ψ(σ) with various σ values will be treated as the wave function
“components”.

In contrast to the usual variables (coordinates), the variable σ is discrete. The
most general linear operator acting on functions of the discrete variable σ has the
form

(f̂ ψ)(σ )=
∑

σ ′
fσσ ′

(
σ ′
)
, (1.88)

where fσσ ′ are constants. The expression (f̂ ψ) is written in the parentheses in
order to show that the argument (σ ) refers to the function appearing as a result of
the action of the operator f̂ on the function ψ , rather than to the function ψ itself.
It can be shown that the quantities fσσ ′ coincide with the matrix elements of the
operator f̂ that are defined in the ordinary way. Therefore, the operators acting on
the functions of σ can be represented in the form of 2s + 1-row matrices.

In the case of zero spin, the wave function has only one component ψ(0). Since
the spin operators are related to the rotation operators, this means that the wave func-
tion of a particle with spin 0 does not change under the rotations of the coordinate
system, i.e., is a scalar or a pseudoscalar.

The wave functions of the particles with spin 1/2 have two components ψ(1/2)
and ψ(−1/2). We denote them as ψ1 and ψ2. Under an arbitrary rotation of the
coordinate system, they undergo the linear transformation

ψ1′ = αψ1 + βψ2, ψ2′ = γψ1 + δψ2. (1.89)

The coefficients α,β, γ, δ are generally complex and are the functions of the
rotation angles. Linear transformations (1.89) under which the bilinear form

ψ1ψ2 −ψ2ψ1, (1.90)

is invariant are called binary. The two-component quantity (ψ1,ψ2) that is trans-
formed according to a binary transformation under the rotation of the coordinate
system is called the spinor.
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Let us consider the spinors χsm (s is the spin value and m is its projection),
which are the eigenfunctions of the square of the spin operator, ŝ2, and the spin
projection operator ŝz. Let us assume that they are defined in a given coordinate
system K with the axes (x, y, z). Let a new coordinate system K ′ with the axes
(x′, y′, z′) be obtained from K by means of the rotation about the z axis by the
angle φ. The rotation operator by the infinitesimal angle δϕ about the z axis is
expressed in terms of the angular momentum operator (spin in this case) in the form
1+ iδϕ · ŝz. Therefore, under the rotation, the wave function ψ(σ) is transformed
to ψ(σ)+ δψ(σ), where δψ(σ)= iδϕ · ŝzψ(σ ). Since ŝzψ(σ )= szψ(σ ), we have
δψ(σ) = iszψ(σ )δϕ. For the rotation by the finite angle ϕ, the finite spinor takes
the form of the function ψ(σ)′ = eiszϕψ(σ ).

In this case, the finite spinor is defined by the expression

ψz(ϕ) = Ûz(ϕ)χsm = eiszϕχsm = ei
1
2σzϕχsm

=
[

1+ i

(
ϕ

2

)

σz − 1

2!
(
ϕ

2

)2

− i
1

3!
(
ϕ

2

)3

σz − · · ·
]

χsm

=
(

cos
ϕ

2
+ i sin

ϕ

2
‖σz‖

)

χsm =
∥
∥
∥
∥
∥

e
1
2 iϕ 0

0 e− 1
2 iϕ

∥
∥
∥
∥
∥
χsm, (1.91)

where the operator

Ûz(ϕ)=
∥
∥
∥
∥
∥

e
1
2 iϕ 0

0 e− 1
2 iϕ

∥
∥
∥
∥
∥

(1.92)

ensures the rotation of the coordinate system K about the z axis by the angle ϕ.
The rotation operator by the angle θ about the x axis can be expressed by the

matrix (see Landau and Lifshitz 1963)

Ûx(θ)=
∥
∥
∥
∥
∥

cos θ
2 i sin θ

2

i sin θ
2 cos θ

2

∥
∥
∥
∥
∥
. (1.93)

Let the quantization axis be specified by the Euler angles ϕ, θ,ψ (see Fig. 1.1).
Performing the Euler transformations, we obtain the spinor with the new spin quan-
tization axis,

Ψ =
∥
∥
∥
∥
∥
∥

cos θ
2 e

1
2 i(ϕ+ψ) i sin θ

2 e
− i

2 (ϕ−ψ)

i sin θ
2 e

i
2 (ϕ−ψ) cos θ

2 e
− i

2 (ϕ+ψ)

∥
∥
∥
∥
∥
∥
χsm. (1.94)

Setting two arbitrary angles equal zero, we naturally obtain the rotation about the
third direction. To clarify this item, we introduce the unit vector �n(n1, n2, n3) about
which the rotation by the angle ε is performed. Then, the rotation operator is written
in the form (see Eq. (1.92))

Un(ε)= ei �σ ·�nε =
∥
∥
∥
∥

cos ε+ in3 sin ε (in1 + n2) sin ε
(in1 − n2) sin ε cos ε− in3 sin ε

∥
∥
∥
∥ . (1.95)
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Fig. 1.1 Euler
transformation

Under such rotations, the spin vector, as well as the orbital angular momentum,
is transformed as an ordinary vector, namely (counterclockwise rotation about the z

axis):

σ ′x = cosϕ · σx + sinϕ · σy, σ ′y =− sinϕ · σx + cosϕ · σy. (1.96)

According to formula (1.91), the spinor χ changes sign under the rotation of
the coordinate system by the angle 2π . This is characteristic of almost all spinors
describing the particles with half-integer spins. However, the spinor square |χ |2 is a
positively defined function, as should be expected, because this quantity corresponds
to the probability that the particle is in a certain spin state.

As an example, let us determine the explicit form of the Pauli operators in the
rest frame of the particle.

Formulas (1.94)–(1.96) from the preceding section are applicable to the spin op-
erators. In the case of the particle with the spin s = 1/2, we introduce the notation

α = Y 1
2

1
2
, β = Y 1

2− 1
2
; ŝ+ = ŝx + iŝy, ŝ− = ŝx − iŝy . (1.97)

In the rest system of the particle, we take the z axis as the quantization axis and
represent the spinor components α and β in the orthonormalized form

α =
∥
∥
∥
∥

1
0

∥
∥
∥
∥ , β =

∥
∥
∥
∥

0
1

∥
∥
∥
∥ . (1.98)

Then, Eqs. (1.94) and (1.95) from the preceding section provide four equations
in the matrix form

ŝ+α = 0, ŝ+β = α; ŝ−α = β, ŝ−β = 0. (1.99)

All spin operators can be represented in the form of the rank-2 matrix with
unknown elements ŝ = ‖aij‖, where i, j = 1,2. Substituting relations (1.98) into
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Eq. (1.99) and solving them, we obtain

ŝ+ = 1

2

∥
∥
∥
∥

0 1
0 0

∥
∥
∥
∥ , ŝ− = 1

2

∥
∥
∥
∥

0 0
1 0

∥
∥
∥
∥ ;

ŝx = 1

2

∥
∥
∥
∥

0 1
1 0

∥
∥
∥
∥ , ŝy =

∥
∥
∥
∥

0 −i
i 0

∥
∥
∥
∥ , ŝz = 1

2

∥
∥
∥
∥

1 0
0 −1

∥
∥
∥
∥ .

(1.100)

The expression for the operator ŝz is naturally obtained due to the condition that
the spinor components α and β are the eigenfunctions of ŝz with the eigenvalues± 1

2 .
Let us find the explicit matrix representation for spin-1 operators.
The difference from the preceding example is that the spinors are three-

component; i.e., the spinors

α =
∥
∥
∥
∥
∥
∥

1
0
0

∥
∥
∥
∥
∥
∥
, β =

∥
∥
∥
∥
∥
∥

0
1
0

∥
∥
∥
∥
∥
∥

should be supplemented by the spinor

γ =
∥
∥
∥
∥
∥
∥

0
0
1

∥
∥
∥
∥
∥
∥
,

and the spin matrices are 3× 3 matrices.
Each spin operator includes nine unknown coefficients ŝ = ‖aij‖, where i, j =

1,2,3.
With the same representation for the spin operators, we write the equations fol-

lowing from Eqs. (1.94)–(1.96) from the preceding section for spin 1:

ŝ+α = 0, ŝ+β =
√

2α, ŝ+γ =
√

2β;
ŝ−α =

√
2β, ŝ−β =

√
2γ, ŝ−γ = 0.

(1.101)

Solving these equations, we obtain

ŝ+ =
∥
∥
∥
∥
∥
∥

0
√

2 0
0 0

√
2

0 0 0

∥
∥
∥
∥
∥
∥
, ŝ− =

∥
∥
∥
∥
∥
∥

0 0 0√
2 0 0

0
√

2 0

∥
∥
∥
∥
∥
∥
;

ŝx = 1√
2

∥
∥
∥
∥
∥
∥

0 1 0
1 0 1
0 1 0

∥
∥
∥
∥
∥
∥
, ŝy = i√

2

∥
∥
∥
∥
∥
∥

0 −1 0
1 0 −1
0 1 0

∥
∥
∥
∥
∥
∥
, ŝz =

∥
∥
∥
∥
∥
∥

1 0 0
0 0 0
0 0 −1

∥
∥
∥
∥
∥
∥
.

(1.102)

These are the explicit expressions for the spin operators of the particle with spin 1.
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1.5 Schrödinger Equation

In many applications in this book, we will use the Schrödinger equation. As an
example of the problems with a discrete spectrum, we consider below the hydrogen
atom in the ground state. As an example of the scattering problem (the problem on
the continuous spectrum), we consider the scattering of the nucleon on the nucleus
in the Born approximation (Fermi model).

Another example of the application of the Schrödinger equation will be given
in the section devoted to nucleon–nucleon scattering when the unitarity relation is
derived. Specific applications of these and other formulas will be illustrated in the
corresponding sections of the book.

Equation (1.34) in Sect. 1.1 is the Schrödinger equation in the presence of the
interaction:

i�
∂ψ(q, t)

∂t
= Ĥψ(q, t)=

[

− �
2

2m
∇2 + V (q, t)

]

ψ(q, t). (1.103)

For stationary problems (when the Hamiltonian is time independent), this equa-
tion has the form

Eψ(q, t)=
[

− �
2

2m
∇2 + V (q, t)

]

ψ(q, t). (1.104)

Let us consider the application of this equation in the cases of the discrete and
continuous spectra.

A. Hydrogen atom in the ground state and its energy levels

For this problem, the following interaction Hamiltonians are known and de-
scribed in detail in the literature:

H =Hc +Hr +Hsl +Hss +HsB. (1.105)

A.1. Here, the Coulomb interaction Hamiltonian has the form

Hc = Ze2

r
. (1.106)

This Hamiltonian determines the Balmer terms (i.e., the energy levels in the spec-
troscopic terminology) of the hydrogen atom

En =−2π�cZ2R

n2
. (1.107)

Here, n= 1,2,3, . . . ,∞ is called the principal quantum number and determines

the energy levels of the hydrogen atom in the leading approximation; R = μe4

4π�3c

is the Rydberg constant (2π�cR = 13.6 eV), where μ is the reduced mass of the
electron–proton system ( 1

μ
= 1

me
+ 1

mp
); and Z is the charge number of the nucleus.
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Term (1.106) provides the leading contribution to the level energy; the other
terms (Hr,Hsl,Hss,HsB ) can be treated as small perturbations.

A.2. The Hamiltonian Hr presents the relativistic corrections to the electron en-
ergy at high velocities. The perturbative calculations give (Shpol’skii 1984b)

�Er = α2RZ4

n3

(
1

l + 1
2

− 3

4n

)

. (1.108)

Here, α = e2

�c
≈ 1/137 is the fine structure constant introduced by Sommer-

feld and l is the azimuthal quantum number. The comparison of Eq. (1.108) with
Eq. (1.107) shows that the relativistic corrections to the electron energy are about
α2 of the main Balmer term.

A3. Spin–orbit interaction Hamiltonian Hsl and the remaining terms in expres-
sion (1.105) are directly responsible for polarization phenomena, because present
the spin interaction. Let us consider them in more detail (Shpol’skii 1984b).

To clarify the physical picture, we use the classical model in which the hydrogen
atom is a system of a proton and an electron revolving around it in an elliptic orbit.
The electron has the spin s and, as was found experimentally, the magnetic mo-
ment �μe. The proton also has spin I and the corresponding magnetic moment �μp .
The magnetic moment of the proton creates the magnetic field �Hp at the electron
location point. In order to estimate its magnitude, we pass from the reference frame
with the origin at the proton to the frame with the origin at the electron. If the elec-
tron moves with the velocity �ve, the proton moves in the opposite direction with
the velocity −�ve. This means that the current �j = Ze�ve appears in the rest frame
of the electron. According to the Biot–Savart law, this current creates the following
magnetic field at the electron location point:

�Hp =−Ze�v × �r
cr3

= Ze�r × �v
cr3

, (1.109)

where �r is the vector from the current element to the point where the field is deter-
mined and c is the speed of light. The orbital angular momentum of the electron, �le ,
is related to its velocity as

�le = μ�r × �v, (1.110)

where μ is the reduced mass. The substitution of this relation into Eq. (1.109) yields

�Hp = Ze

μcr3
�le. (1.111)

The additional energy due to the interaction of the magnetic dipole with the mag-
netic moment of the electron, �μe, and magnetic field is given by the expression

Hls =− Ze

μcr3
�μe · �l. (1.112)



26 1 Spin and Its Properties

This expression was obtained in the rest frame of the electron (R frame). In order
to return to the laboratory frame (L frame), where the hydrogen atom is at rest, it
is necessary to perform a Lorentz transformation. As a result, as shown by Frenkel
(1926) before the appearance of the Dirac theory, the energy Hls is halved:

Hls =− Ze

2μcr3
�μe · �l. (1.113)

This factor 1/2 is of significant importance for the consideration of the motion of
the electron in the magnetic field, as well as for the explanation of the Landé factor
and Thomas precession of the spin under relativistic spin transformations.

Considering this Hamiltonian as perturbation for the basic Hamiltonian Hc in
relation (1.105), we can determine the corresponding addition to the energy in per-
turbation theory:

�Els = H̄ls =−
〈

Ze

2μcr3
�μe · �l

〉

. (1.114)

The angular brackets 〈 〉 stand for coordinate averaging. Coordinate averaging
concerns only the factor 1

r3 , because the other factors are independent of the coor-
dinates:

〈
1

r3

〉

=
∫

ψ∗nl
1

r3
ψnldτ.

Here, ψnl are the eigenfunctions of the basic Hamiltonian Hc with the quantum
numbers n and l. The calculations give the expression

〈
1

r3

〉

= Z3

a3
1n

3l(l + 1
2 )(l + 1)

. (1.115)

Here, a1 is the first Bohr radius given by the expression

a1 = �
2

μe2
≈ �

2

mee2
. (1.116)

Then, it is necessary to calculate the dot product �μe · �l of the magnetic moment
of the electron and its orbital angular momentum. The magnetic moment and spin
moment are related as �μe =−geμB�se (the minus sign appears because the electron
charge is negative), where ge is the Landé factor (for the electron, ge ∼= 2), μB =

e
2mec

is the Bohr magneton, e is the elementary charge, and me is the electron mass.

Thus, the problem reduces to the calculation of the dot product �s · �l, where the
subscripts are omitted for brevity.

We introduce the total angular momentum operator as

�j = �l + �s. (1.117)



1.5 Schrödinger Equation 27

Taking square of this equality, we find

ls cos(�l�s)= 1

2

(
j2 − l2 − s2)= 1

2

[
j (j + 1)− l(l + 1)− s(s + 1)

]
. (1.118)

The eigenvalues for l̂2 are given by Eq. (1.72) from Sect. 1.2. Similar formulas
are valid for the square of the spin operator ŝ2 and the square of the total angular
momentum operator ĵ2.

The substitution of relations (1.115) and (1.118) into formula (1.114) gives

�Els = πRα2
�cZ4

n3l(l + 1
2 )(l + 1)

[
j (j + 1)− l(l + 1)− s(s + 1)

]
. (1.119)

The sum of relativistic (1.108) and spin–orbit (1.119) terms is

�E(r, ls)=�Er +�Els = −2π�cRα2Z4

n3

(
1

j + 1
2

− 3

4n

)

. (1.120)

Formula (1.120) for the fine structure of the atomic spectral lines that is derived
from the Schrödinger equation coincides with the expression obtained from the so-
lution of the Dirac equation.

A4. Let us consider the Hamiltonian Hss in expression (1.105) (we follow Feyn-
man et al. 1963). This Hamiltonian corresponds to the interaction between the spins
of the electron and proton in the hydrogen atom and is responsible for the hyperfine
splitting of the atomic spectral terms. This splitting in the absence of an external
magnetic field occurs as follows. According to quantum mechanics, the vector sum
of two spins corresponds to new states with the total spins s = 0 (singlet state) and
|�s| = 1 (triplet state). The difference between the energies of these two states, sin-
glet and triplet, is �e = �Est = hν. For the hydrogen atom in the ground state,
this energy corresponds to the magnetic field Hc ∼ 509 Oe. This field is called the
critical field. When creating polarized targets, the external magnetic field is always
normalized to this critical field.

As known, the spins of both the electron and proton are 1/2. Therefore, we have
four configurations of their spins:

1. The spins of the electron and proton are parallel and directed upwards. We again
use the Dirac brackets for the notation of these spin configurations. For example,
|memp〉 denotes the state of the system of two spins with their projections me

and mp for the electron and proton, respectively. Let the upward direction be
the positive direction of the z axis. Then, for the case under consideration where
both spins are directed upwards, the state is denoted as | + +〉. For brevity, we
denote this state as the first state: |1〉.

2. The spins of the electron and proton are directed upwards and downwards, re-
spectively: |2〉 = | +−〉.

3. The spins of the electron and proton are directed downwards and upwards, re-
spectively: |3〉 = | −+〉.
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4. The spins of the electron and proton are directed downwards: |4〉 = | −−〉.
The basis functions chosen above have the properties of the completeness and

orthogonality. This means that these wave functions in the spin space completely
describe the system of the spins of the electron and proton. We emphasize two cir-
cumstances. First, the coordinate and spin variables are independent and, second,
the electron spin operators act only on the spin indices me , whereas the proton spin
operators act only on the spin indices mp .

The states of the system before and after interaction can be described in a certain
basis. This means that the choice of the basis is independent of the Hamiltonian of
the process under consideration.

Owing to the completeness and orthogonality of the basis vectors, any state of
the physical system of two spins can be expanded in terms of the basis vectors:

|ψ〉 =
∑

i=1−4

Ci |i〉, (1.121)

and the expansion coefficients are expressed as

Ci = 〈i|ψ〉. (1.122)

The quantity |Ci |2 determines the probability that the system of two spins is in
the state i. The coefficients Ci depend on the Hamiltonian of the system and are
determined from the solution of the Schrödinger or Dirac equation.

Let us find the Hamiltonian of the problem. For the description of the system
of two spins at rest, there are two vectors �σe and �σp corresponding to the electron
and proton spins. The Hamiltonian should be a scalar operator composed of these
vectors and identity matrices in these two spin spaces. Thus, the Hamiltonian has
the general form

Hss =E0 · I +A�σ e · �σp, (1.123)

where E0 determines the zero energy, which is insignificant in this problem on the
hyperfine splitting of the spectral terms of the hydrogen atom and, hence, E0 = 0
can be set, and I is the identity matrix.

Applying the operator Hss = A�σ e · �σp to the basis wave functions specified by
Eq. (1.121), we obtain the matrix elements of the Hamiltonian in the form (this
procedure was described in detail in Feynman et al. 1963)

(Hss)ij =

∥
∥
∥
∥
∥
∥
∥
∥

A 0 0 0
0 −A 2A 0
0 2A −A 0
0 0 0 A

∥
∥
∥
∥
∥
∥
∥
∥

. (1.124)

For the Hamiltonian Hss , the Schrödinger equation has the form

i�
∂ψ(q, t)

∂t
=Hssψ(q, t). (1.125)
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Since the problem is stationary, the expansion coefficients of the wave function
can be represented in the form

ψ(t)= C(t)= ae−iEt/�. (1.126)

Here, C is the four-component time-dependent amplitude from Eq. (1.121). The
new four-component amplitudes a are time independent. Substituting Eq. (1.126)
into Eq. (1.125) and using the Hamiltonian in matrix representation (1.124), we
arrive at the system of equations for the coefficients ai (where E is the eigenvalue
of the Hamiltonian)

Ea1 =Aa1,Ea2 =−Aa2 + 2Aa3,

Ea3 = 2Aa2 −Aa3,

Ea4 =Aa4.

(1.127)

This system has two simple solutions. First, E = A, a1 = 1, a2 = a3 = a4 = 0 and
the wave function has the form (we denote this solution as the state |I 〉)

|I 〉 = |1〉 = | ++〉. (1.128)

Second, E =A, a4 = 1, a2 = a3 = a1 = 0 and the state |II〉 has the form

|II〉 = |4〉 = | −−〉. (1.129)

Two remaining equations contain mixed amplitudes a2 and a3. The sum and
difference of the second and third of Eq. (1.127) have the form

E(a2 + a3)=A(a2 + a3) (1.130)

and

E(a2 − a3)=−3A(a2 − a3). (1.131)

These two equations have two solutions

a2 = a3, E =A and a2 =−a3, E =−3A. (1.132)

The respective normalized states and corresponding energies can be represented
in the form

|III〉 = 1√
2

(|2〉 + |3〉)= 1√
2

(| +−〉 + | −+〉), EIII =A, (1.133)

|IV〉 = 1√
2

(|2〉 − |3〉)= 1√
2

(| +−〉 − | −+〉), EIV =−3A. (1.134)

As a result, four states with definite energies are found; three of these states have
the same energy, i.e., are degenerate. The state |IV〉 has the energy −3A, and, as a
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result, the sum of the energies of four states is zero. This corresponds to our choice
E0 = 0 in the definition of the Hamiltonian Hss .

The energy A remains indefinite. It can be calculated theoretically. We present
the value measured in Crampton et al. (1963). According to those measurements,
A= hν, where

ν = (1 420 405751.800± 0.026) Hz.

The states presented above are also orthogonal and normalized and can be treated
as new basis vectors.

A5. The Hamiltonian HsB is responsible for the Zeeman splitting of the spectral
terms of the hydrogen atom in the external magnetic field.

For the hydrogen atom in the external magnetic field, the Hamiltonian Hss is
supplemented by the new Hamiltonian

HsB =−μe �σ e · �B −μp �σp · �B. (1.135)

Since both Hamiltonians Hss and HsB contribute to the Zeeman splitting of the
spectral terms of the hydrogen atom, we consider their sum

HZ =Hss +HsB =A�σ e · �σp −μe �σ e · �B −μp �σp · �B. (1.136)

If the external field �B is aligned with the z axis, Eq. (1.127) reduce to the form

Ea1 =
[
A− (μe +μp)B

]
a1,

Ea2 =−
[
A+ (μe −μp)B

]
a2 + 2Aa3,

Ea3 = 2Aa2 −
[
A− (μe −μp)B

]
a3,

Ea4 =
[
A+ (μe +μp)B

]
a4.

(1.137)

As above, the first and fourth equations have the solutions (a1 = 1, a2 = a3 =
a4 = 0):

|I 〉 = |1〉 = | ++〉, EI =A− (μe +μp)B,

|II〉 = |4〉 = | −−〉, EII =A+ (μe +μp)B.
(1.138)

For two remaining states, there are two homogeneous equations with zero deter-
minant. The matrix elements have the form

H11 =−A− (μe −μp)B, H12 = 2A,

H21 = 2A, H22 =−A+ (μe −μp)B.
(1.139)

The level energy is expressed in terms of these matrix elements as follows:

E = 1

2
(H11 +H22)±

√
1

4
(H11 −H22)2 +H12H21

=−A±
√
(μe −μp)2B2 + 4A2. (1.140)
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Thus, two level energies are given by the expressions

EIII =A
[
−1+ 2

√
1+ (μe −μp)2B2/4A2

]
,

EIV =A
[
−1− 2

√
1+ (μe −μp)2B2/4A2

]
.

(1.141)

The correctness of the resulting formulas can be verified taking zero magnetic
field. In this case, the results should coincide with the solutions for the spin–spin
Hamiltonian (see relations (1.128) and (1.129)).

In terms of the parameters μ =−(μe + μp) and μ′ = −(μe − μp), the energy
levels are expressed as

EI =A+μB, EII =A−μB, EIII =A
(
−1+ 2

√

1+μ′2B2/4A2
)
,

EIV =−A
(

1+ 2
√

1+μ′2B2/4A2
)
.

(1.142)
As known, the magnetic moment of the electron is negative and its absolute value

is approximately three orders of magnitude larger than the positive magnetic mo-
ment of the proton. Therefore, both introduced parameters μ and μ′ are nearly μe,
but are positive. As seen, in the absence of a magnetic field, the first three energies
are A and the fourth energy is−3A. The behaviors of these energies with an increase
in the magnetic field are different. Beginning with the value A, the energy EI in-
creases linearly and the energy EII decreases linearly with the same rate with an
increase in the field B . The energies EIII and EIV beginning with the values A and
−3A, respectively, increase first as a square function and then as a linear function
of B .

We return to the calculation of the proton polarization as a function of the mag-
netic field. According to quantum mechanics, the squares of the absolute values of
the coefficients a2 and a3 in the expansion of the wave function of state III,

ψIII = a2| +−〉 + a3| −+〉, (1.143)

are the probabilities that the hydrogen atom is in the states where the proton is
polarized against and along the field, respectively. If the basis wave functions are
normalized to unity, then

|a2|2 + |a3|2 = 1. (1.144)

Therefore, the polarization (with positive sign) of the protons in state III is given
by the expression

P = |a3|2 − |a2|2. (1.145)

We determine this polarization as follows. From the second of equations (1.137),
we obtain

a3/a2 = E +A−μ′B
2A

, (1.146)
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where E is given by the first of expressions (1.141),

EIII =A
(
−1+ 2

√

1+μ′2B2/4A2
)
=A

(
−1+ 2

√
1+ x2

)
, (1.147)

where

x = μ′B/2A. (1.148)

The substitution of (1.147) into (1.146) yields

a3/a2 = x +
√

1+ x2. (1.149)

In order to satisfy the normalization condition, we set a3 = cos θ , a2 = sin θ . The
substitution of these relations into Eq. (1.149) gives

cotθ = x +
√

1+ x2. (1.150)

The condition x = 1 corresponds to a critical field of 509 Oe.
Simple algebra provides the relation tan 2θ = 1/x. Therefore, cos 2θ = x/√

1+ x2. Substituting this expression into (1.145), we determine the proton po-
larization in energy state III:

PIII = cos2 θ − sin2 θ = cos 2θ = x/
√

1+ x2. (1.151)

The polarization for energy state IV is the same in absolute value as that for
state III, but is opposite in sign. The polarizations of the first two states (I and II)
are linear functions of the magnetic field.

1.6 Dirac Equation

The Dirac equation will be often used in this book. In particular, the analysis of the
properties of relativistic spin involves the Lorentz transformation of spin, and this
transformation can be understood only with the Dirac equation. It is known that the
spin operator naturally appears from this equation. In addition, the Dirac equation
provides the correct Landé g-factor of the electron.

The Schrödinger equation was considered in Sect. 1.5, where the nonrelativistic
expression for the Hamiltonian was used. To derive the Dirac equation, it is nec-
essary to satisfy three main requirements. The first requirement is the covariance
condition; i.e., this equation should have the same form in any Lorentz frame. Sec-
ond, the wave functions should be the eigenfunctions of the Hamiltonian, constitute
a complete and orthonormalized system, and allow probability interpretation. Third,
any physical observable should correspond to a linear Hermitian operator.

Let us write the relativistic Hamiltonian of a free particle in the form

H =
√

p2c2 +m2c4 =−i�c(�α · �∇)+ βmc2, (1.152)
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where �α(α1, α2, α3) and β are the parameters to be determined. Here, we use
the formal representation of the square root, because a Lorentz-invariant Hamil-
tonian should include a linear dependence on the momentum operator. The operator
�∇( ∂

∂x1 ,
∂

∂x2 ,
∂

∂x3 ) presents the three-dimensional momentum of the particle. Using

Eq. (1.152), we write the equation

i�
∂ψ

∂t
=Hψ =

[
�c

i
(�α · �∇)+ βmc2

]

·ψ. (1.153)

Let us take the square of expression (1.152), apply the result to ψ , and require
that the resulting equation coincides with the classic Klein–Gordon wave equation

[
∂

∂xμ

∂

∂xμ
+
(
mc

�

)2]

ψ = 0. (1.154)

This requirement leads to the following conditions on the parameters introduced
above:

{αi,αk} = 2δik, {αi,β} = 0, α2
i = β2 = 1, (1.155)

where i, k = 1,2,3. For the Hamiltonian to be Hermitian, the matrices αi and β

should be Hermitian. According to the conditions α2
i = 1 and β2 = 1, the eigenval-

ues of the operators αi and β are ±1. Using the anticommutation conditions, we
can show that the traces (the trace of a matrix is the sum of the elements of the main
diagonal and is denoted as Tr) of these matrices are zero. For example,

Trαi =−Trβαiβ =−Trβ2αi =−Trαi = 0. (1.156)

Similarly, it can be proved that the trace of the β matrix is also zero. This means
that the rank of the matrices αi and β should be even. The minimum rank in this
case is n= 4, because n= 2 corresponds to the spin space of the Pauli operators and
identity matrix, which describe a nonrelativistic two-dimensional system. In one of
particular choices of the matrices, αi and β can be expressed in terms of the Pauli
matrices σi :

αi =
∥
∥
∥
∥

0 σi
σi 0

∥
∥
∥
∥ , β =

∥
∥
∥
∥
I 0
0 −I

∥
∥
∥
∥ . (1.157)

Here, I is the identity matrix in this representation. As seen, the Dirac equation
directly leads to the appearance of the spin operator for a point particle (electron)
with spin s = 1/2. As shown below, the Dirac equation predicts the correct gyro-
magnetic ratio equal to 2, which could not be obtained without this equation.

From Dirac equation (1.153) and the Hermitian-conjugate equation, one can ob-
tain the current conservation law in the differential form

∂

∂t
ρ + div �j = 0. (1.158)
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The probability density ρ and three-dimensional vector of the probability current
density �j are specified by the respective formulas

ρ =ψ+ψ =
4∑

σ=1

ψ∗σψσ , (1.159)

jk = cψ+αkψ. (1.160)

Using the divergence theorem, we can show that

∂

∂t

∫

d3xψ∗ψ =−
∫

d3x · div �j =−
∮

Σ

�j · d�s = 0.

Let us consider the Dirac equation in the presence of the external electromagnetic
field Aμ(Φ, �A). This interaction can be introduced by means of the gauge-invariant
change (invariant when the derivative of an arbitrary function with respect to the
corresponding coordinates is added to the potential)

pμ→ πμ = pμ − e

c
Aμ. (1.161)

In this case, the Dirac equation is transformed to the form

i�
∂ψ

∂t
=Hψ =

[

c�α ·
(

�̂p− e

c
�A
)

+ βmc2 + eΦ

]

ψ. (1.162)

We seek the solution of this equations in the form

ψ =
∥
∥
∥
∥
ϕ̄

χ̄

∥
∥
∥
∥ , (1.163)

where ϕ̄ and χ̄ are the two-component spinors. Then, the substitution of Eqs. (1.163)
and (1.157) into Eq. (1.162) gives

i�
∂

∂t

∥
∥
∥
∥
ϕ̄

χ̄

∥
∥
∥
∥= c�σ ·

(

�̂p− e

c
�A
)∥
∥
∥
∥
χ̄

ϕ̄

∥
∥
∥
∥+mc2

∥
∥
∥
∥

ϕ̄

−χ̄
∥
∥
∥
∥+ eΦ

∥
∥
∥
∥
ϕ̄

χ̄

∥
∥
∥
∥ . (1.164)

Let us consider the case where Ekin �mc2 and seek the solution in the form
∥
∥
∥
∥
ϕ̄

χ̄

∥
∥
∥
∥= exp

(

−i mc2

�
t

)∥
∥
∥
∥
ϕ

χ

∥
∥
∥
∥ . (1.165)

The substitution of Eq. (1.165) into Eq. (1.164) yields

i�
∂

∂t

∥
∥
∥
∥
ϕ

χ

∥
∥
∥
∥= c�σ · �π

∥
∥
∥
∥
χ

ϕ

∥
∥
∥
∥− 2mc2

∥
∥
∥
∥
ϕ

χ

∥
∥
∥
∥+ eΦ

∥
∥
∥
∥
ϕ

χ

∥
∥
∥
∥ . (1.166)

This matrix relation presents two equations corresponding to the upper and lower
elements of the matrices. Under the assumptions that χ is time independent and the
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term eΦ is negligible compared to the term containing the mass, the lower equation
provides

χ = �σ · �π
2mc

ϕ. (1.167)

The component χ is much smaller than ϕ, and their ratio is much smaller than
1 in the nonrelativistic case. The substitution of expression (1.167) into the upper
equation in matrix relation (1.166) gives

i�
∂ϕ

∂t
=
((

(�σ · �π)(�σ · �π)
2mc

)

+ eΦ

)

ϕ. (1.168)

The Pauli operators satisfy the relation

(�σ · �a)(�σ · �b)= �a · �b+ i �σ · �a × �b.
Applying this relation to Eq. (1.168), we obtain

i�
∂ϕ

∂t
=
[
( �p− e

c
�A)2

2m
− e�

2mc
�σ · �B + eΦ

]

ϕ. (1.169)

This equation coincides with the nonrelativistic Pauli equation, which was writ-
ten one year before (1927) Dirac derived his equation in the relativistic form. This
equation describes the electron with the spin 1/2, and two components of the func-
tion ϕ correspond to two orientations of the electron spin. In this equation, the cor-
rect value of the magnetic moment corresponding to the gyromagnetic ratio g = 2 is
automatically obtained. This can be verified by retaining only terms linear in the ex-
ternal field in Eq. (1.169) with the following homogeneous magnetic field �B = rot �A,
�A= 1

2
�B × �r :

i�
∂ϕ

∂t
=
[ �p2

2m
− e

2mc
( �L+ 2�s) · �B

]

ϕ. (1.170)

Here, we introduce the orbital angular momentum �L= �r × �p and spin �s = 1
2 �σ . The

coefficient 2 of the term with spin is the gyromagnetic ratio of the electron. Thus,
the equality g = 2 following from the Dirac equation was one of the important
achievements in theoretical physics. More recently, the experimental verification of
the same relation for muons became one of the important directions of the search
for the effects beyond the Standard Model.

Another important consequence of Eq. (1.170) is the prediction of the spin–orbit
interaction of the particle. In particular, this interaction underlies the shell model of
atoms and nuclei. The term containing the interaction of the magnetic moment of
the Dirac particle with the external magnetic field is remarkable. This term explains
the Zeeman splitting of the levels of the hydrogen atom. The comparison of this term
with the first term in Eq. (1.170) shows that the spin interaction should weaken with
an increase in the particle energy. As seen from the discussion of the polarization
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data in the third part of the book, the energy scale above which this statement is
valid has not yet determined.

The use of the projection operators noticeably simplifies the calculations of the
spin observables in relativistic theory. The specificity of the Dirac equation is that it
has the solutions with positive and negative energies. In addition, the Dirac particle
for each energy has two spin states. Four projection operators are necessary in order
to separate one of these four states in the calculations. We present their explicit form
(for details, see Bjorken and Drell 1964).

The operator separating the solution with positive energy and positive spin pro-
jection has the form (Λ is the energy projection operator, Σ is the spin projection
operator, and uz is the spin variable):

P1(p)=Λ+(p)Σ(uz), P2(p)=Λ+(p)Σ(−uz),
P3(p)=Λ−(p)Σ(uz), P4(p)=Λ−(p)Σ(−uz).

(1.171)

The energy projection operator is written in the explicit form

Λr = εr p̂+mc

2mc
, (1.172)

where εr specifies the sign of the energy: the+ and− signs are taken for the energy
at r = 1 and 2, respectively. The projection operator has the properties

Λr(p)Λr ′(p)=
(

1+ εrεr ′

2

)

Λr(p), Λ2+(p)=Λ+(p), (1.173)

Λ+(p)+Λr−(p)= 1, Λ+(p)Λ−(p)= 0. (1.174)

For the spin projection operator, the following formula is derived (uz = ŝ):

Σ(s)= (1/2)(1+ γ5ŝ), (1.175)

where the four-spin operator satisfies the condition (sp)= sμpμ = 0 and quantities
γi will be specified in the next sections. In view of the covariance of the projection
operator Σ , its action on the Dirac wave functions u and v with positive and negative
energies, respectively, is specified as

Σ(s)u(p, s)= u(p, s), Σ(s)v(p, s)= v(p, s),

Σ(−s)u(p, s)=Σ(−s)v(p, s)= 0.
(1.176)

In the rest frame of the particle, the solution of the Dirac equation with positive
energy, u, is transformed to the Pauli wave function. In this case, there is the com-
plete correspondence in the transformation of the spin states; namely, the state with
spin + is transformed to plus and the state with spin − is transformed to minus.
However, under the same transformation from the state with negative energy to the
rest frame, the signs of the spins change to opposite. This specificity is explained in a
theory where the existence of a real antiparticle (positron in this case) is postulated.
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1.7 Elements of Relativistic Quantum Mechanics

Some elements of relativistic quantum mechanics are often used in applications.
For example, when constructing the reaction matrix, it is necessary to know the
constraints implied by certain conservation laws or by the interaction symmetry
properties (discrete and continuous) characteristic of the process under investiga-
tion. In view of this circumstance, as well as to avoid diverting readers to other
sources of information, we present in detail the properties of the Dirac spinors un-
der the transformations of the proper Lorentz group (the determinant of the trans-
formations is +1) and extended Lorentz group (rotation group, space inversion, and
time reversal). Here, we consider the transformation properties of the Dirac spinors
under rotations of the coordinate system, inversion of the coordinate axes, and time
reversal following Fermi (1961).

A. Transformations of Dirac spinors under rotations of the coordinate system

Let us represent the Dirac equation for the electron with charge e in the external
electromagnetic field �A in a certain basic Lorentz frame in the form

(
mc

�
+ �γ · �∇ − ie

�c
�γ · �A

)

ψ = 0. (1.177)

We introduce a new Lorentz frame where the coordinates are determined by the
linear orthogonal transformation (the vector operators ∇μ and Aμ are transformed
similarly):

x′μ = aμνxν, ∇′μ = aμν∇ν, A′μ = aμνAν. (1.178)

Hereinafter, the repeated indices imply summation.
Let us introduce the linear unitary operator T̂ specifying the transformation of

the Dirac spinors:

ψ ′ = T̂ −1ψ. (1.178a)

Assuming that the Dirac matrices remain unchanged in the new frame, we arrive
at the following covariant form of the Dirac equation in this frame:

(
mc

�
+ �γ · �∇′ − ie

�c
�γ · �A′

)

ψ ′ = 0. (1.179)

In order to determine the properties of the operator T̂ , we multiply this equation
by T̂ from the left and substitute expression (1.178a) for ψ ′. As a result, we obtain

(
mc

�
+ T̂ �γ T̂ −1 · �∇′ − ie

�c
T̂ �γ · �A′T̂ −1

)

ψ = 0.

Changing the primed vector operators ∇′ and A′ to unprimed by formu-
las (1.178), we arrive at the equation

(
mc

�
+ T̂ γλT̂

−1aλν∇ν − ie

�c
T̂ γλaλνAνT̂

−1
)

ψ = 0. (1.180)



38 1 Spin and Its Properties

The comparison of this equation with Eq. (1.177) shows that T̂ γλT̂ −1aλν = γν .
Using the orthogonality relation

aμνaλν = aνμaνλ = δμλ, (1.181)

we arrive at the final result

T̂ γμT̂
−1 = aμνγν. (1.182)

Let us consider the infinitesimal transformation of the matrix elements aμν :

aμν = δμν + εμν. (1.183)

Taking into account orthogonality condition (1.181), we can write

aλνaμν = (δλν + ελν)(δμν + εμν)= δλνδμν + δλνεμν + δμνελν

= δλμ + εμλ + ελμ = δλμ.

Therefore,

εμλ =−ελμ. (1.184)

Since the coordinate variables x, y, and z and time t are real, the components εik
(i, k = 1,2,3) of the antisymmetric second-rank tensor εμν are real and ε4n =−εn4
(n= 1,2,3) are imaginary.

Under such small rotations of the Lorentz frame, the operator T̂ assumingly also
undergoes the infinitesimal transformation

T̂ = 1+ ŝ, T −1 = 1− ŝ. (1.185)

It is assumed that the operator ŝ is of the same smallness order as ε. Here, the second
equation is obtained from the first equation under the assumption that the square of
the operator ŝ can be neglected. The substitution of relations (1.185) into Eq. (1.182)
yields

ŝγμ − γμŝ = εμνγν. (1.186)

The direct calculations show that the solution of this equation is given by the
expression

ŝ =−1

4
εμνγμγν. (1.187)

As a result, the spinor transformation matrix T̂ corresponding to Lorentz trans-
formations (1.178) and (1.183) has the form

T̂ = 1− 1

4
εμνγμγν. (1.188)

As known, the Lorentz group is of fundamental importance in relativistic theory,
in particular, in relativistic quantum mechanics. A Lorentz transformation consists
of coordinate translations and rotations.
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Let us consider several examples of the rotations of the reference frame. Six
planes exist for the four coordinates x, y, z, and t (the number of two-term combi-
nations from a set of four elements is six). Therefore, there are six Lorentz rotations.

Example 1.1 The infinitesimal rotation about the z axis is specified by the relations

x′1 = x1 − εx2, x′2 = x2 + εx1, x′3 = x3, x′4 = x4. (1.189)

In this case, all εμν elements are zero except for ε12 =−ε21 = ε.
The four-row matrix T̂ in this case has the form

T̂ε = 1+ 1

2
εγ1γ2 =

∥
∥
∥
∥
∥
∥
∥
∥

1+ i
2ε 0 0 0

0 1− i
2ε 0 0

0 0 1+ i
2ε 0

0 0 0 1− i
2ε

∥
∥
∥
∥
∥
∥
∥
∥

. (1.190)

For the finite rotations by the angle ϕ, taking the power ϕ/ε of the matrix T̂ and
passing to the limit ε→ 0, we obtain

T̂ϕ =

∥
∥
∥
∥
∥
∥
∥
∥

exp( i2ϕ) 0 0 0
0 exp(− i

2ϕ) 0 0
0 0 exp( i2ϕ) 0
0 0 0 exp(− i

2ϕ)

∥
∥
∥
∥
∥
∥
∥
∥

. (1.191)

Under such a rotation of the reference frame about the z axis by the angle ϕ, the
spinors in the new system, ψ ′, are expressed in terms of the spinors in the initial
system, ψ , as

ψ ′1 = e
i
2ϕψ1, ψ ′2 = e−

i
2ϕψ2, ψ ′3 = e

i
2ϕψ3, ψ ′4 = e−

i
2ϕψ4. (1.192)

Note that the wave functions change signs under the rotation of the reference
frame by the angle ϕ = 2π .

Example 1.2 Let us consider an infinitesimal Lorentz transformation involving the
coordinates x and t . It has the form

x′1 = x1 − εct = x1 + iεx4, x′4 = x4 − iεx1, x′2 = x2, x
′
3 = x3. (1.193)

The corresponding spinor transformation operator has the form

T̂ε = 1− i

2
εγ1γ4 = 1+ ε

2
α1 =

∥
∥
∥
∥
∥
∥
∥
∥

1 0 0 ε/2
0 1 ε/2 0
0 ε/2 1 0
ε/2 0 0 1

∥
∥
∥
∥
∥
∥
∥
∥

. (1.193a)

In order to obtain the finite transformation, it is necessary to apply transforma-
tion (1.193a) n times, where n = (1/ε)Arcthβ and to pass to the limit ε→ 0 and
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n→∞. Then, (γ = 1/
√

1− β2 is the Lorentz factor)

x′1 = γ (x1 − βx0), x′0 = γ (x0 − βx1), x4 = ix0 = ict. (1.194)

The finite transformation matrix T̂ can be modified as

T̂β = (T14)
n =

(

1+ 1

2
εα1

)n

→ e
1
2nεα1 = cosh

(
1

2
nε

)

+ α1 sinh

(
1

2
nε

)

= cosh

(
1

2
Arcthβ

)

+ α1sinh

(
1

2
Arcthβ

)

=√
(γ + 1)/2+ α1

√
(γ − 1)/2. (1.194a)

Here, we take into account that α2
1 = 1. Thus, the spinor transformation operator

takes the final form

T̂β =
√
(γ + 1)/2+ α1

√
(γ − 1)/2. (1.195)

B. Transformations of Dirac spinors under space inversion

Space inversion is described by the transformation

x′i =−xi, i = 1,2,3; x′4 = x4. (1.196)

Taking into account the relations

T̂ γμT̂
−1 = aμνγν, (1.196a)

and denoting the spinor transformation operator as T̂rev , we obtain

T̂revγi T̂
−1
rev =−γi, i = 1,2,3, T̂revγ4T̂

−1
rev = γ4. (1.197)

The solution of these equations has the form

T̂rev = γ4 = β. (1.198)

The properties of the matrix β ensure the following transformation characteristics
of the matrix T̂rev :

T̂rev = T̂ −1
rev = T̂ +. (1.199)

For the operator T̂rev in form (1.198), the wave functions in the inverse coordinate
system are expressed in terms of the wave functions in the initial coordinate system
as

ψ ′1 =ψ1, ψ ′2 =ψ2, ψ ′3 =−ψ3, ψ ′4 =−ψ4. (1.200)
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According to these relations, two pairs of the wave functions (ψ1,ψ2) and (ψ3,ψ4)

are transformed differently under space inversion: the first pair does not change
sign, i.e., is an even function, whereas the second pair is an odd function. Since the
first pair of the wave functions describes a particle (electron) and the second pair, an
antiparticle (positron), the particle and antiparticle have opposite parities. As known,
under space inversion, the wave functions acquire the factor (−1)l , where l is the
orbital angular momentum. As a result, the transformation for even l values under
inversion has the form

ψ1(x)=ψ1(−x), ψ2(x)=ψ2(−x),
ψ3(x)=−ψ3(−x), ψ4(x)=−ψ4(x).

(1.201)

The transformation for odd l values has the form

ψ1(x)=−ψ1(−x), ψ2(x)=−ψ2(−x),
ψ3(x)=ψ3(−x), ψ4(x)=ψ4(x).

(1.202)

Some useful properties of the space inversion operator are as follows:

T̂revγμT̂rev =
{
−γμ, μ= 1,2,3;
+γμ, μ= 4; T̂revβγμT̂rev =

{
−βγμ, μ= 1,2,3;
+βγμ, μ= 4.

(1.203)

C. Transformations of Dirac spinors under time reversal

The time reversal operation is specified by the transformations

�x→ �x, ∇ →∇, �A→− �A,

x4 →−x4, ∇4 →−∇4, A4 →A4.
(1.204)

The Dirac equation for the wave function ψ in the presence of the external four-
component electromagnetic field Aμ is written in the form

(
mc

�
+ �γ · �∇ − ie

�c
�γ · �A

)

ψ + γ4

(
∂

∂x4
− ie

�c
A4

)

ψ = 0. (1.205)

The Dirac equation in which time reversal (transformations (1.204)) is performed
has the form

(
mc

�
+ �γ · �∇ + ie

�c
�γ · �A

)

ψ ′ − γ4

(
∂

∂x4
+ ie

�c
A4

)

ψ ′ = 0. (1.206)

It is impossible to solve Eq. (1.206) for ψ ′ as above. The solution is sought
through the transformation

ψ ′ = Sψ∗. (1.207)
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Let us take the complex conjugation of Eq. (1.205):

(
mc

�
+ �γ ∗ · �∇ + ie

�c
�γ ∗ · �A

)

ψ∗ − γ ∗4
(

∂

∂x4
+ ie

�c
A4

)

ψ∗ = 0. (1.208)

Multiplying Eq. (1.208) by the operator S from the left and using relation (1.207),
we obtain

(
mc

�
+ S �γ ∗S−1 · �∇ + ie

�c
S �γ ∗S−1 · �A

)

ψ ′ − Sγ ∗4 S−1
(

∂

∂x4
+ ie

�c
A4

)

ψ ′ = 0.

(1.209)
The requirement that this equation coincides with Eq. (1.206) provides

S �γ ∗S−1 = �γ, Sγ ∗4 S−1 = γ4, ψ ′ = Sψ∗. (1.210)

These relations are satisfied by the S matrix given by the expression

S = iγ1γ3 =

∥
∥
∥
∥
∥
∥
∥
∥

0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0

∥
∥
∥
∥
∥
∥
∥
∥

. (1.211)

Thus, we obtain the solution of the Dirac equation describing the time-reversed
motion of the system.

D. Charge conjugation operation

The Dirac equation should describe both the electron and positron. These parti-
cles constitute a particle–antiparticle pair and differ from each other in the opposite
electric charges. For this reason, it is natural to expect that the Dirac equation has a
symmetric solution under change in the charge sign

e↔−e. (1.212)

The Dirac equation for the electron was written in form (1.205),

(
mc

�
+ �γ · �∇ − ie

�c
�γ · �A

)

ψ + γ4

(
∂

∂x4
− ie

�c
A4

)

ψ = 0.

Let us change the charge sign, introduce the wave function of the positron ψC ,
and rewrite this equation in the form

(
mc

�
+ �γ · �∇ + ie

�c
�γ · �A

)

ψC + γ4

(
∂

∂x4
+ ie

�c
A4

)

ψC = 0. (1.213)

We define the charge conjugation operation C as

ψC = Cψ∗. (1.214)
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As above, we take the complex conjugation of Dirac equation (1.205):

(
mc

�
+ �γ ∗ · �∇ + ie

�c
�γ ∗ · �A

)

ψ∗ − γ ∗4
(

∂

∂x4
+ ie

�c
A4

)

ψ∗ = 0. (1.215)

Multiplying this equation by the operator C from the left, we arrive at the equa-
tion
(
mc

�
+C �γ ∗C−1 · �∇ + ie

�c
C �γ ∗C−1 · �A

)

ψC −Cγ ∗4 C−1
(

∂

∂x4
+ ie

�c
A4

)

ψC = 0.

(1.216)
The requirement that Eqs. (1.213) and (1.216) coincide with each other leads to

the conditions

Ĉ �γ ∗Ĉ−1 = �γ ∗, Ĉγ ∗4 Ĉ−1 =−γ4. (1.217)

For the standard form of the Dirac matrices, relations (1.216) are satisfied for the
choice

Ĉ = γ2. (1.218)

Thus, the solution of the charge-conjugate equation is related to the solution of
the initial equation as

ψC = γ2ψ
∗. (1.219)

1.8 Tensors and Lorentz Transformations of Spinors

As known, under change in the reference frame, mathematical objects are trans-
formed differently and classified according to their transformation properties. Quan-
tities that remain unchanged under these transformations are called either scalars or
pseudoscalars. Pseudoscalars differ from scalars in their behavior under space in-
version. A quantity that does not change sign under this inversion is called scalar,
whereas a quantity that changes sign under inversion is called pseudoscalar. Other
classes of quantities called tensors of the first, second, etc. ranks. Among the first
rank tensors are the momentum vector (it is a polar vector; i.e., it changes sign un-
der space inversion) and angular momentum (it is an axial vector or a pseudovector;
i.e., it does not change sign under space inversion). There are also spinors with two,
four, etc. components. In relativistic quantum mechanics, the requirement of the in-
variance of the Dirac equation under the Lorentz transformations is of decisive im-
portance. For this reason, we consider the operators appearing in this equation such
as scalars and tensors, as well as their properties. Then, we formulate the conditions
of the invariance of the Dirac equation and define the Lorentz transformations of the
spinors and their bilinear combinations.
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A. Time and space coordinates (t, x, y, z) in the Minkowski space constitute
a four-vector with the following components, which are conditionally called con-
travariant and marked by superscripts:

xμ ≡ (
x0, x1, x2, x3)≡ (t, x, y, z). (1.220)

The metric tensor g is defined as

g = gμν = gμν =

∥
∥
∥
∥
∥
∥
∥
∥

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

∥
∥
∥
∥
∥
∥
∥
∥

. (1.221)

In another possible definition of the metric tensor, the first diagonal element in ma-
trix (1.221) is −1 and the other diagonal elements are 1. This variant is not consid-
ered below. This tensor allows one to raise and lower indices and, in particular, to
obtain a vector with covariant components (they are marked by subscripts):

xμ ≡ (x0, x1, x2, x3)≡ (t,−x,−y,−z)= gμνx
ν. (1.222)

The scalar product of any two four-vectors x and p is defined as

px = pμx
μ = pνgνμx

μ = xνp
ν = xp. (1.223)

The indices of any tensor a can be similarly raised or lowered:

aνμ = aμρg
ρν = gμρa

ρν; aμν = gμρaρλg
λν. (1.224)

Applying this relation to the metric tensor, we obtain

gνμ = gμλg
λν = δμν =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ . (1.225)

The scalar quantity defined by expression (1.223) is invariant under the Lorentz
transformations. Another example of a scalar is the square of the four-momentum
of a particle with mass m:

p2 = pμp
μ = ε2 − �p2 =m2. (1.226)

Similar invariants can be composed of combinations of tensors of various ranks.
For example, using four-vectors a and b and tensors B and C, we can compose the
invariant combinations

aBC = aμB
μνCν, BD = BμνDμν. (1.227)

These examples imply the following rule for composing invariants: a quantity
is invariant if and only if dummy indices appear pairwise so that one of them is a
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superscript and the other is a subscript. The absence of such correspondence can
mean error in the calculations of invariants.

Let us consider examples of invariants with differentiation operators. Let F be a
scalar, i.e., invariant function. Then, the differential of this operator should also be
scalar:

dF = ∂F

∂xμ
dxμ = ∂F

∂xν
dxν = invariant. (1.228)

For this quantity to be invariant, the derivatives should be transformed as follows:

∂F

∂xμ
= ∂μF—contravariant,

∂F

∂xμ
= ∂μF—covariant. (1.229)

Therefore, the gradient vector components are transformed oppositely to the co-
ordinates with respect to which the derivatives are taken. Thus, the covariant deriva-
tive is specified by the formula

∂

∂xμ
= ∂μ =

(
∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)

. (1.230)

The contravariant derivative is given by the formula

∂

∂xμ
= ∂μ =

(
∂

∂t
,− ∂

∂x
,− ∂

∂y
,− ∂

∂z

)

. (1.231)

The Klein–Gordon operator is invariant and specified by the expression

�= ∂μ∂
μ = ∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2
. (1.232)

Using this operator, we can write the invariant relativistic Klein–Gordon equation
for a free spinless particle with positive energy:

�ψ = ∂μ∂
μψ =−pμp

μψ =−m2ψ. (1.233)

This equation has a solution in the form of the plane wave

ψp(x)= (2π)−3/2e−ipx. (1.234)

The form of Eq. (1.233) implies the definition of the covariance of an equation:
the equation is covariant if its left- and right-hand sides are transformed identically.
For example, if the left-hand side of the equation is scalar, then its right-hand side
should also be scalar (see Eq. (1.233)); if the left-hand side is vector, then the right-
hand side should also be vector with the same property under space inversion: if
one side is covariant, the other side should also be covariant. If the left-hand side of
the equation has a free index in a certain position (upper or lower), then the right-
hand side of the equation should have the same index in the same position. Some
examples illustrating these statements are given below.
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The examples of correctly written equations are

aμb
μ = c, aμb

μcλ = dλ, aμb
μ =Dλρcλkρ. (1.235)

The examples of incorrectly written equations are

aμb
μ = cλ, aμb

μcλ = dλ, aμb
μ =Dλρcλk

ρ. (1.236)

This section is based on Hagedorn (1963).
B. The transformation rules for the Dirac matrices and their mean values under

the Lorentz transformations are important for, e.g., the construction of the scattering
matrix, density matrix, and experimental observables. Using the results from the
preceding section, we consider below some examples.

The operator of infinitesimal rotation of the reference frame is given by the ex-
pression (see Eq. (1.188) in Sect. 1.7)

T̂ = 1− 1

4
εμνγμγν. (1.237)

This expression can be represented by separating the terms associated with the
time component:

T̂ = 1− 1

4
εμνγμγν = 1− 1

4
εnmγnγm − 1

2
ε4mβγm. (1.238)

The inverse matrix with an accuracy of ε2 is given by the expression

T̂ −1 = 1+ 1

4
εμνγμγν = 1+ 1

4
εnmγnγm + 1

2
ε4mβγm. (1.239)

Here, εμν, εnm are the antisymmetric unit tensor of the second rank in the four-
and three-dimensional spaces, respectively, with μ,ν = 1,2,3,4 and m,n= 1,2,3.

The terms 1
4εnmγnγm and 1

2ε4mβγm in the matrix T̂ are real and imaginary, re-
spectively. The Dirac spin matrices satisfy the relations

{γμ, γν} = 2δμν, γμγν + γνγμ = 2δμν, β = γ4. (1.240)

The Hermitian conjugation of operator equation (1.238) gives

T̂ + = 1+ 1

4
ε∗μν(γμγν)+ = 1+ 1

4
εnmγnγm − 1

2
ε4mβγm. (1.241)

The comparison of Eqs. (1.239) and (1.241) indicates that the operator T̂ is not
unitary; i.e., T̂ �= T̂ + in the general case. It becomes unitary only for purely spatial
rotations, when ε4m = 0. In the general case, the following commutation relations
are valid:

βT̂ +β = T̂ −1, T̂ +β = βT̂ −1, βT + = T̂ −1β. (1.242)
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Let us now determine which scalars, vectors, and tensors of the second rank can
be constructed in terms of the Dirac matrices. We begin with the construction of the
scalar matrix. Under the Lorentz transformation

x′μ = aμνxν, (1.243)

the wave function is transformed by the rule

ψ ′ = T̂ ψ. (1.244)

The mean value of the scalar operator u should remain unchanged under the above
Lorentz transformations

ψ ′+uψ ′ =ψ+uψ. (1.245)

The substitution of Eq. (1.244) into Eq. (1.245) provides

(T̂ ψ)+u(T ψ)=ψ+
(
T̂ +uT

)
ψ. (1.246)

The comparison of this equation with Eq. (1.245) shows that

u= T̂ +uT̂ (1.247)

for any operator T̂ . Using relations (1.242), we obtain

u= T̂ +uT̂ = βT̂ −1βuT̂ . (1.248)

Multiplying the two extreme terms by β and, then, by T̂ and taking into account
that β2 = 1, we arrive at the equation

(βu)T̂ = T̂ (βu). (1.249)

This equation has two solutions

βu= 1 or βu= γ1γ2γ3γ4 = γ5. (1.250)

Therefore, two solutions, u1 = β and u2 = βγ5, exist for u. These two solutions
are different. Indeed, the first solution commutes with the space inversion operator
T̂rev = β; i.e.,

T̂ +u1T̂
−1 = T̂ +βT̂ −1 = β. (1.251)

The second solution anticommutes with this operator T̂rev :

T̂ +u2T̂
−1 = T̂ +βγ5T̂

−1 =−βγ5. (1.252)

Thus, the matrix β corresponds to the true scalar ψ+βψ and the quantity βγ5
is pseudoscalar ψ+βγ5ψ . The quantity ψ̄ψ , where ψ̄ = ψ+β , is transformed as a
scalar and the quantity ψ̄γ5ψ is transformed as a pseudoscalar.

The behavior of the entire set of the independent Dirac matrices is determined
similarly. They have the following properties:
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1. 1= S is a scalar,
2. γ5 = P is a pseudoscalar,
3. γμ = V is a vector (μ= 1,2,3,4),
4. γ5γμ =A is a pseudovector or axial four-vector,
5. 1

2 (γμγν − γνγμ)= σμν is an antisymmetric tensor of the second rank.

The 16 Dirac matrices presented above constitute the complete set; i.e., any 4×4
matrix acting on Dirac spinors can be expanded in terms of this set. This property is
used, e.g., to construct the relativistic density matrix or reaction matrix.

1.9 Spin of a Relativistic Particle with Nonzero Mass

Let us consider a particle with the spin s = 1/2 and mass m. We define the polar-
ization four-vector S(s0, �s) as follows:

• In the rest frame of the particle (R frame), it coincides with the nonrelativistically
defined spin S(0, �sR).

• It is an axial vector by analogy with the orbital angular momentum. As known
(Hagedorn 1963), the four-vector x(ct, �x) under the Lorentz transformation is
transformed as follows:

�x = �x′ + �βγ
(

γ

γ + 1
�β · �x′ + ct ′

)

; ct = γ
(
ct ′ + �β · �x′). (1.253)

Here, the primed variables are defined in the rest frame of the particle (R frame),
whereas the unprimed variables are defined in another Lorentz frame, e.g., in the
laboratory frame (L frame); and β and γ are the velocity and Lorentz factor of
the particle in the L frame, respectively. By analogy, the transformation of the spin
under the transition from the R frame to the L frame is S(s0L, �sL), where

�sL = �sR + �β γ 2

γ + 1
�β · �sR, s0L = γ �β · �sR. (1.254)

Here, it is taken into account that the fourth component of the spin s0R is zero in
the R frame.

Let us determine the length of the three-dimensional spin vector �sL. The square
of the polarization four-vector, S2, is invariant

S2 = s2
0L − �s2

L =−�s2
R = Inv. (1.255)

In view of Eq. (1.254), from this relation we obtain

�s2
L = s2

0L + �s2
R = �s2

R

[
1+ γ 2β2 cos2(θR)

]
. (1.256)

Here, θR is the angle between the polarization vector �sR and particle velocity �β .
This relation shows that the magnitude of the spin and its direction in the laboratory
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frame depend on the particle velocity and angle θR , whereas these quantities in the
R frame are constant. Moreover, the magnitude of the vector �sL can be as large as
desired and is infinite for a massless particle. Thus, we arrive at two conclusions:
first, the spin has no physical meaning in any frame other than the R frame, and,
second, the spin for massless particles should be defined in another way (see below).

Let us determine the angle between the polarization vector and velocity in the L

frame as a function of the angle θR . The dot product of S and four-velocity V (γ, γ �v)
in the L and R frames is written as

S · V = s0Lγ − γ �sL · �v = Inv= 0, (1.257)

taking into account Eqs. (1.254) and (1.256), from this relation we obtain

cos(θL)= �sL · �v/sLv = s0L/sLv = γ cos(θR)/
[
1+ γ 2β2 cos2(θR)

]1/2
. (1.258)

According to Eq. (1.258),

• if a beam is transversely polarized in the R frame, i.e., θR = 90◦, it is also trans-
versely polarized in the L frame, i.e., θL = 90◦;

• if a beam is longitudinally polarized in the R frame, i.e., θR = 00 (180°), it is also
longitudinally polarized in the L frame only in two extreme cases: the nonrela-
tivistic and relativistic ones.

For the case γ �= 1 or intermediate angles, it is necessary to plot the dependences
on the energy of the polarized beam for insight into the behavior of the polarization
in the L frame when it changes in the R frame.

The same relation determines an expression for “helicity” that is the projection
of the polarization vector onto the direction of the particle velocity:

h= �sL · �β
β

= γ
�sR · �β
β

= γ sR cos θR. (1.259)

This expression shows that the polarization in the L frame can exceed unity, which
is physically infeasible. This means that the polarization is meaningful only in the
R frame.

1.10 Spin of a Massless Particle

As seen from the relation for the polarization four-vector S(s0L, �sL), where

�sL = �sR + �β γ 2

γ + 1
�β · �sR, s0L = γ �β · �sR, (1.260)

when the particle velocity coincides with the speed of light c, the Lorentz factor
γ becomes infinite and the notion of spin in the L frame becomes meaningless,
because spin also becomes infinite. A similar situation arose previously with the
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four-velocity V (γ, γ �v). However, the four-momentum p = mV is not divergent,
because all particles moving with the speed of light are massless and the product
mγ coincides with the energy of a massless particle. By analogy, let us take the
product of the four-vector S by mass m,

W = Sm=
(

mγ �β · �sR,m�sR +m
γ 2

γ + 1
�β · �sR �β

)

. (1.261)

W is so-called Pauli–Lubanski operator. Let us denote the dot product �β · �sR/β =
|sR| cos θ as s (helicity) and rewrite

W = Sm=
(

mγβs,m�sR +mβs
γ 2

γ + 1
�β
)

. (1.262)

This four-vector in the limit m= 0 (and, correspondingly, β→ 1, γ →∞) with
ε =mγ , �p =mγ �β = ε �I (where �I = �β/β) is given by the simple formula

W = s(ε, �Iε)= sp. (1.263)

Here, p is the four-momentum of the massless particle with the helicity s. Since
W is also a four-vector, the following scalars are invariant:

WμWμ =Wμpμ = pμpμ = 0. (1.264)

The spin value s in the following expression for the spin vector is also invariant:

�s = s �I, (1.265)

where the spin direction coincides with the particle velocity direction. In this case,
the spin projection onto this direction (which is helicity by definition) can have
only two values, + or −. One of such particles is the neutrino whose spin is 1/2
and the spin projection is always negative (left-handed neutrino), whereas the spin
projection of the antineutrino is positive (right-handed antineutrino). The helicity of
the massless particles is conserved in any interactions.

The above definition of spin is also applicable to photons, although it differs from
the standard definition of the photon spin.

1.11 Motion of the Polarization Vector in an External
Electromagnetic Field

Many applied problems of the acceleration and transport of polarized particles are
solved using the relativistic equations of motion of the polarization vector in external
electromagnetic fields. The solution of this problem was first given in Frenkel (1926)
before the appearance of the Dirac equation and known article Thomas (1927) con-
cerning relativistic spin precession. Frenkel (1926) has not been cited for a long
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time, although the reference to it was given in often cited work of Bargmann et al.
(1959).

In this section, we derive such an equation from the general principles of rela-
tivistic mechanics (Hagedorn 1963).

The first principle is formulated as follows: “Expected values of observables in
quantum mechanics are described by the equations of classical mechanics” (Ehren-
fest). This means that the motion of the polarization vector, which is defined as the
mean value of the spin vector (e.g., Pauli operator), in the electromagnetic field is
described by a classical equation. This equation in the rest frame of the particle has
the form

d�s
dt
= �μ× �H, �μ= gμ0�s. (1.266)

Here, �μ is the magnetic moment of the particle, g is the gyromagnetic ratio, �s is the
nonrelativistic spin vector of the particle, and μ0 is the nuclear magneton. The aim
is to write this equation of motion in the four-dimensional covariant form. In this
case, we use the rule: “If an equation specified in a particular Lorentz frame can be
represented in the covariant form and this form can be reduced to the original form
in the particular Lorentz frame, this generalization is single”.

The notion of spin was generalized in the covariant form in Sect. 1.3. Therefore,
the covariant form of the equation should be

dS

dτ
= Z, (1.267)

where Z should be a covariant four-vector. Equation (1.266) suggests that the right-
hand side should include only certain combinations of vectors. Namely, the spin S

should appear linearly and homogeneously. The equation is linear in the electro-
magnetic tensor F = Fμν (in order to ensure the covariant representation of the
electromagnetic field). It should contain the parameters of the particle motion in the
field F , i.e., four-velocity V and four-acceleration V̇ . Various four-vectors should
be composed of four quantities S,F,V and V̇ . The combination V̇ F is forbidden,
because it leads to the quadratic function of F owing to the dependence of V̇ on F .

Let us compose the dot product of the spin four-vector and the four-velocity
V (γ, γ �v)

SV = s0v0 − �s · �v = 0. (1.268)

This relation is valid in any reference frame, because it is valid in the rest frame
of the particle. Taking the time derivative of this relation, we obtain

dS

dt
V =−S dV

dt
. (1.269)

Taking into account that the four-velocity in the rest frame of the particle is

V (γ, γ �v)= V (1,0), (1.270)
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we transform the left-hand side of relation (1.269) as

(
dS

dt
V

)

R

= ds0

dt
=−S dV

dt
. (1.271)

Thus, in the R frame, in view of the relation (�s × �H)= (�S · �F)R , we obtain

(
dS

dt

)

R

≡
(
ds0

dt
,
d�s
dt

)

R

=
(

−S dV
dt

, gμ0(SF )R

)

= ZR. (1.272)

To represent this relation in the covariant form, we perform the following trans-
formations. First, we introduce the proper time τ (in the R frame) and denote the
differentiation with respect to it by an overdot:

d

dτ
= γ

d

dt
. (1.273)

In the R frame, γ = 1. Second, the term �μ× �H should be rewritten in the co-
variant form. To this end, we represent the electromagnetic field tensor in the matrix
form

Fμν =

∥
∥
∥
∥
∥
∥
∥
∥

0 E1 E2 E3
−E1 0 H3 −H2
−E2 −H3 0 H1
−E3 H2 −H1 0

∥
∥
∥
∥
∥
∥
∥
∥

. (1.274)

Here, the Greek superscripts are μ,ν = 0,1,2,3 and E and H are the electric and
magnetic fields, respectively. It is easy to see that only the magnetic field remains in
this matrix if the first row and first column are excluded.

Analyzing combinations of four quantities and taking into account the above
discussion, we obtain the following useful terms:

SF, V (SV̇ ), and V (SFV ). (1.275)

Therefore, the vector Ṡ can be represented in the form of a linear combination of
these three terms:

Ṡ = aSF + bV (SV̇ )+ cV (SFV ). (1.276)

In order to determine the parameters a, b, and c, we pass to the R frame, where the
velocity has the components V (1,0). Then, ṠR can be represented in terms of the
components as

ṠR =
{
a(SF)R + b(SV̇ )R + c(SF )R, a(SF )R

}
. (1.277)

Comparing this expression with expression (1.272), we obtain

a = gμ0 =−c, b=−1. (1.278)
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Finally, the generalization of Eq. (1.272) written in the R frame to the arbitrary
Lorentz frame is derived in the form

Ṡ = gμ0
[
SF − V (SFV )

]− V (SV̇ ). (1.279)

Formula (1.279) is derived under two conditions: first, the magnetic moment of
the particle is constant and, second, the particle has no electric moments of any
orders and no magnetic moments higher than linear.

If these two conditions are not satisfied, the spin in the R frame is given by an-
other expression. In this case, another formula for the covariant spin can be derived
though with large complications. However, the covariant spin vector cannot be con-
structed for an electrically polarizable particle.

Formula (1.279) can be simplified for the case of the homogeneous field. For
this simplification, we write the equation of motion of a charged particle in the
homogeneous external field:

V̇ =− e

m
FV. (1.280)

The substitution of this expression into Eq. (1.279) yields

Ṡ = gμ0SF +
(
e

m
− gμ0

)

V (SFV ). (1.281)

This equation with e= 0 is also applicable to neutral particles. Using the relation
gμ0 = g(e/2m), we obtain

Ṡ = e

2m

[
gSF − (g − 2)V (SFV )

]
. (1.282)

This equation written in three-dimensional space is the known BMT (Bargmann,
Michel, Telegdi) equation (Bargmann et al. 1959), which should be recalled to the
FTBMT (Frenkel, Thomas, Bargmann, Michel, Telegdi) equation, because, as men-
tioned above, this equation was previously derived in Frenkel (1926) and Thomas
(1927).

Another approach to the solution of the problem discussed above can be found
in Leader (2001).

1.12 Thomas Spin Precession

The first measurements of the magnetic moment of the electron led to the contra-
diction with the expected theoretical result: the gyromagnetic ratio g (Landé factor)
appeared to be 2 rather than an expected value of 1. Soviet physicist Frenkel (1926)
and American physicist Thomas (1926, 1927) were among first scientists who ex-
plained this contradiction. They proposed and justified a hypothesis that a coefficient
of 2 in the g-factor is due to the kinematic effect associated with the relativistic
transformations of the polarization vector to various inertial reference frames. Let
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us consider the production of a particle with the polarization �P in interaction (or
in decay). The particle production plane is the plane containing the momenta of the
initial and desired (final) particles. If the interaction is strong (or electromagnetic),
the polarization vector is perpendicular to the particle production plane. Let the par-
ticle in the laboratory frame has the four-momentum p(ε, �p) and production angle
θ , where �p = εβ�l/c, ε = γmc2, γ = 1√

1−β2
, and �l is the unit vector along the di-

rection of the momentum �p. The same parameters in the center-of-mass frame are
marked by asterisks. Below, we take into account that the transverse vector com-
ponents remain unchanged under proper Lorentz transformations. For this reason,
we assume that the polarization vector lies in the reaction plane. The angle between
the polarization vector in the rest frame of the particle (R frame) and the particle
momentum in the laboratory frame (continued to the R frame) is denoted as α, the
angle between the polarization vector and the particle momentum in the center-of-
mass frame (continued to the R frame) is denoted as α∗, and the difference between
these two angles is denoted as ω. These angles satisfy the relation (Galbraith and
Williams 1963)

sinω= βcγc

βγ
sin θ∗. (1.283)

Here, βc, γc are the velocity and Lorentz factor of the center-of-mass frame (C
frame), respectively, and β,γ are the velocity and Lorentz factor of the particle in
the laboratory frame (L frame).

The physical meaning of the angle ω is as follows. An observer in the R frame
sees that the C and L frames move at the angle ω to each other rather than in parallel.
Therefore, if a polarization vector is transformed to the R frame, first, directly from
the L frame and, second, from the L frame to the C frame and, then, to the R frame,
the resulting vector is in two different angular positions. This is a consequence of
the noncommutativity of the rotation and translation in the Lorentz transformations.
For these two positions of the polarization vector to coincide, it is necessary to rotate
one of the vectors �P by the angle ω about the normal to the plane. This is the sense
of the Thomas precession.

The same result was obtained in another way in Stapp (1956). According to this
work, in terms of the spin transformation, the particle scattering process can be
divided into three stages.

1. It is necessary to transform the spin vector of the initial particle from its rest
frame to the center-of-mass frame of the colliding particles. In this frame, scat-
tering occurs and the process is theoretically analyzed.

2. The spin vector is transformed from the center-of-mass frame to the laboratory
frame, where the polarization is measured.

3. It is necessary to transform the spin vector to the rest frame of the final particle.
These transformations are schematically shown in Fig. 1.2. The calculations pro-
vide the following formula determining the kinematic rotation of the spin in the
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Fig. 1.2 Scheme of the rotation of the polarization vector under relativistic transformation: R,
C, and L correspond to three reference frames; the relative velocities of the scattered particle
in these reference frames are given on the sides of the triangle. The angles θL, θ

∗ correspond to
the scattering angles of the particle in the laboratory and center-of-mass frames, respectively. The
meanings of the other symbols are given in the main text

reaction plane:

sinΩ = | �Va ×
←
Vb| · 1+ γ a + γ b + γ c

(1+ γ a)(1+ γ b)(1+ γ c)
. (1.284)

Here, γ a, γ b, γ c are the Lorentz factors of the particle in the center-of-mass
frame of the colliding particles, in the laboratory frame, and in the new c.m. frame,
respectively; and �Va, �Vb , and �Vc are the spatial components of the four-vector of
the relative relativistic velocity of the particle in the center-of-mass frame, in the
laboratory frame, and in the new c.m. frame, respectively.

The derivation of the above complicated formulas will be considered elsewhere.
One of the important applications of the relativistic transformation of the polar-

ization vector is the creation of a polarized proton (antiproton) beam at the Tevatron
(FNAL) due to the parity-violating decays of Λ0(Λ̄) (Grosnick et al. 1990). Protons
from the decays of Λ0 particles are polarized along their momenta in the rest frame
of the Λ0 particles. Under the transformation from the rest frame of Λ0 (C frame)
to the laboratory frame, the angle of the proton polarization vector is transformed as
(Overseth 1969; Dalpiaz and Jansen 1972):

tan ε = sin θ∗

γ0(cos θ∗ + β0/βΛ)
, (1.285)

where ε is the angle between the proton polarization vector and its momentum in the
laboratory frame; β0, γ0, θ

∗ are the velocity, Lorentz factor, and the proton emission
angle in the rest frame of Λ0, respectively; and βΛ is the velocity of Λ0 in the
laboratory frame.

The expression (1.285) was not derived but only postulated. Recently this expres-
sion was checked by applying the direct Lorentz transformation in Chetvertkova and
Nurushev (2007) and looks like

tan ε = sin θ∗

γΛγ0(cos θ∗ + β0/βΛ)
. (1.286)
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So comparing expressions (1.285) and (1.286) we see their difference by the
relativistic factor γΛ, which is very essential in magnitude.

According to expressions (1.285) and (1.286), if the proton emission angle in
c.m.s. is zero, we obtain an almost longitudinally polarized proton beam. For in-
stance, in the case if the proton emission angle in c.m.s. is 90° the tan ε derived
from (1.285) and (1.286) differs by factor γΛ. So the correct formula is (1.286).
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Chapter 2
Spin in Strong Interactions

In this chapter, the basic theoretical relations underlying the design and analysis of
polarization experiments involving strong interactions are reported on classical ex-
amples of pion–nucleon and nucleon–nucleon scattering. After the introduction of
the density matrix and reaction matrix, we discuss such notions as the complete set
of experiments and the equality of the polarization �P in the direct reaction and the
asymmetry �A in the inverse reaction on the example of the simple pion–nucleon
system. On the example of the nucleon–nucleon system, we present the method for
explicitly constructing the reaction matrix, formulate the unitarity condition, and
point to the possibilities of seeking the effects of parity and time reversal violation.
The presentation is primarily based on the technique of nonrelativistic quantum me-
chanics. Relativistic pion–nucleon and nucleon–nucleon elastic scattering matrices
are discussed in the concluding sections. The inclusion of the relativistic effects
insignificantly changes the nonrelativistic results.

2.1 Density Matrix

As known, a particle with spin �s is described by the wave function Ψ having 2s + 1
components Ψα , where α = s, s − 1, . . . ,0, . . . ,−(s − 1),−s. If only one of these
components with a certain α value is nonzero, the particle is in a pure spin state. In
this case, the mean value of any operator Ô is given by the expression

〈Ô〉 = 〈
Ψ ∗α

∣
∣Ô

∣
∣Ψα

〉
.

However, components for several α values are most often nonzero in reality. In
this case, the state is mixed. A simple example is a polarized proton beam. If its
polarization is 100 %, this is a pure spin state: the spins of all protons are oriented
identically. When the beam is partially polarized, the protons are in a mixed spin
state. This means that the spins of some protons are directed upwards and the spins

S.B. Nurushev et al., Introduction to Polarization Physics,
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of other protons are directed downwards. In this case, the mean value of an arbitrary
spin operator Ô in the mixed spin state Ψ is given by the expression

〈Ô〉 =
∑

α

Wα

〈
Ψ ∗α

∣
∣Ô

∣
∣Ψα

〉
, (2.1)

where Wα is the weight of the pure state α. The Dirac brackets mean integration
(summation) with respect to continuous (discrete) variables.

Let us consider the set of other (2s+ 1) components {χm}, which are the orthog-
onal eigenfunctions of a certain spin operator as the basis functions. If this set is the
complete orthogonal set, it can be used for the expansion

Ψα =
s∑

m=−s
Cα
mχm. (2.2)

The substitution of this expansion into Eq. (2.1) yields

〈Ô〉 =
∑

αmn

WαC
α∗
m Cα

n

(
χ∗mÔχn

)=
∑

mn

(∑

α

WαC
α
nC

α∗
m

)

· (χ∗mÔχn
)

=
∑

mn

ρnmOmn, (2.3)

where Omn is the matrix element of the operator Ô and

ρnm =
∑

α

Wα

(
Cα∗
m Cα

n

)
(2.4)

is the matrix element of a certain operator ρ̂, which is called the density matrix. The
operator ρ̂ can be represented in the matrix form

ρ̂ =
∑

α

WαΨαΨ
+
α . (2.5)

Indeed, let us represent the matrix element of the operator ρ̂ in the form

ρmn =
(
χ+m ρ̂χn

)=
∑

α

Wα

(
χ+mΨαΨ

+
α χn

)
. (2.6)

Since the eigenfunctions χ are orthogonal, expansion (2.2) provides

χ+mΨα =
∑

n

Cα
n χ

+
mχn = Cα

m, Ψ+α χ+m =
∑

n

Cα∗
n χ+n χm = Cα∗

m . (2.7)

The substitution into Eq. (2.6) finally yields the expression

ρmn =
∑

α

WαC
α
mC

α∗
n , (2.8)

which coincides with Eq. (2.4).
Using Eqs. (2.4) or (2.5), one can show that the matrix ρ is Hermitian:

ρ̂+ = ρ; (2.9)
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i.e., the mean value of ρ is a real number. Let us define the sum of the diagonal
elements of an arbitrary matrix C (its trace) as

TrC =
∑

i

Cii . (2.10)

If the operator Ĉ is the product of two operators Â and B̂ , its matrix element is
given by the expression

Cij =
∑

m

AimBmj . (2.11)

In this case, the sum of the diagonal elements is

Tr Ĉ =
∑

mn

AnmBmn = Tr ÂB̂. (2.12)

Comparison with Eq. (2.3) provides

〈Ô〉 = Tr Ôρ̂ = Tr ρ̂Ô. (2.13)

The latter equality shows that two operators can be transposed in the trace even
if they do not commute. However, in the general case, only a clockwise or counter-
clockwise cyclic permutation without the transposition of the operators is possible
(if the operators do not commute).

Thus, to determine the mean value of the operator Ô , it is necessary to multiply
this operator by the density matrix and to calculate the sum of the diagonal elements
of the resulting matrix.

According to the theory of matrices, any matrix of rank m= n= (2s+ 1) can be
expanded in a complete set of (2s + 1)2 matrices {sν} of the same rank satisfying
the orthogonality condition

Tr sνsμ = δνμ(2s + 1). (2.14)

Therefore, we can write the expansion

ρ̂ =
(2s+1)2
∑

μ=1

Cμsμ. (2.15)

Multiplying this relation by sν from the right and calculating the trace, we obtain

Tr ρ̂sν =
∑

μ

CμTr sμsν = (2s + 1)
∑

μ

Cμδμν = (2s + 1)Cν. (2.16)

The substitution of the coefficients Cμ determined from Eq. (2.16) into Eq. (2.15)
finally gives

ρ̂ = 1

2s + 1

(2s+1)2
∑

μ=1

Tr (ρ̂ŝμ)ŝμ. (2.17)
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Substituting Ô = ŝμ (spin operator) into Eq. (2.13), we obtain the polarization
vector �P :

1

2
�P = 〈ŝμ〉 = Tr (ρ̂ŝμ). (2.18)

Hence, the final expression for the density matrix in terms of observable �P = 〈ŝ〉
has the form

ρ̂ = 1

2s + 1

(2s+1)2
∑

μ=1

〈ŝμ〉ŝμ. (2.19)

Thus, the density matrix is completely determined by the mean value of the op-
erators ŝμ. With the normalization of the mean value of the density matrix to unity,
we obtain

〈Ô〉 = Tr ρ̂Ô/Tr ρ̂ . (2.20)

With this normalization condition, the final expression for the density matrix has
the form

ρ̂ = 1

2s + 1

(2s+1)2
∑

μ=1

Tr ρ̂〈ŝμ〉ŝμ. (2.21)

The above presentation was based on works Martin and Spearman (1970) and
Nurushev (1983).

2.2 Reaction Matrix

When considering reactions involving particles with spin, we use the wave functions
Ψ and Φ of the initial and final states, respectively. The transition matrix from the
initial to final state, M , is defined as follows (Nurushev 1983):

Φ =MΨ. (2.22)

Then, we have two density matrices:

ρi =
∑

α

WαΨαΨ
+
α (2.23)

for the initial state and

ρf =
∑

α

WαΦαΦ
+
α (2.24)

for the final state. Here,
∑

α stands for averaging over the initial spin states and
summation over the final spin states. In view of relation (2.22), the relation between
these two matrices is obtained from Eq. (2.24) in the form

ρf =
∑

α

WαMΨαΨ
+
α M+ =M

(∑

α

WαΨαΨ
+
α

)

M+ (2.24a)
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or

ρf =MρiM
+. (2.25)

Hence, the solution of the problem of the interaction between particles is re-
duced to the determination of ρi in terms of the mean values of the complete set of
the spin matrices sν (the mean values 〈sν〉 are called the observables) and the oper-
ator M̂ . Then, the density matrix of the final state is unambiguously determined by
Eq. (2.25), and a necessary observable in the final state can be calculated.

Let us find the operator ρ̂f as a function of sν and M . To this end, we multiply
Eq. (2.25) by sμ from the right and calculate the trace of the product of the matrices:

Tr ρ̂f sμ = Tr
(
Mρ̂iM

+sμ
)

= Tr

[

M

(
1

2s + 1

(2s+1)2
∑

ν=1

Tr ρ̂i〈sν〉i sν
)

M+sμ

]

= 1

2s + 1
Tr ρ̂i

(2s+1)2
∑

ν=1

〈sν〉i · Tr
(
MsνM

+sμ
)
. (2.26)

In view of the relation

Tr (ρ̂f sμ)= 〈sμ〉f Tr ρ̂f , (2.27)

we obtain

〈sμ〉f · Tr ρ̂f = 1

2s + 1
Tr ρ̂i

(2s+1)2
∑

ν=1

〈sν〉i · Tr
(
MsνM

+sμ
)
. (2.28)

Denoting the differential cross section as

I = Tr ρ̂f
Tr ρ̂i

, (2.29)

we arrive at the following expression for the mean value 〈sμ〉f of the spin operator
sμ final state:

〈sμ〉f · I = 1

2s + 1
·
(2s+1)2
∑

ν=1

〈sν〉i · Tr
(
MsνM

+sμ
)
. (2.30)

This expression allows one to calculate the mean value of any spin operator sμ in
the final state using the known parameters of the initial state 〈sν〉i and the scattering
matrix M .

Let us consider reactions of the type

π +N = π +N, (2.31)

or, in the spin notation, 0 + 1/2→ 0 + 1/2 (spins of the pion and nucleon are 0
and 1/2, respectively). In the corresponding two-dimensional spin space, the Pauli
matrices �σ (σx, σy, σz) together with the identity matrix 1 can be used as a complete
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set of spin operators. In this case, the density matrix of the initial state can be written
in the form

ρ̂i = C0 · 1+ �C1 · �σ. (2.32)

Let us determine the coefficients C0 and �C1. From the normalization condition
of the trace of the density matrix ρ̂i to unity, we obtain

Tr ρ̂i = Co · Tr 1+ �C1 · Tr �σ = 2C0 = 1, (2.33)

because

Tr �σ = 0. (2.34)

Relation (2.34) is easily verified by writing the Pauli matrices in the explicit form

σx =
(

0 1
1 0

)

, σy =
(

0 −i
i 0

)

, σz =
(

1 0
0 −1

)

. (2.35)

Let the nucleon in the initial state be polarized and have polarization vector �Pt

(the subscript t means the target). For the initial state,

�Pt = 〈�σt 〉 = Tr ρ̂ �σt
Tr ρ̂

= Tr �σt ·
(

1

2
+ �C1 · �σ

)

= Tr �σt ( �C1 · �σ)
= C1k · �ek · Trσkσi = C1k · �ek · 2δik = 2 �C1t . (2.36)

Here, �ek are the unit coordinate vectors in the Cartesian coordinate system and
we use the relation

(�σ · �A)(�σ · �B)= �A · �B + i �σ · ( �A× �B), (2.37)

which is easily proved using relations (2.35). Thus, we obtain

C0 = 1

2
, �C1 = 1

2
�Pt . (2.38)

Then, the density matrix of the initial state ρ̂i , is represented in the form

ρ̂i = 1

2
(1+ �Pt · �σ). (2.39)

Hence, the density matrix ρ̂ is completely determined by the target polarization
vector �Pt (or the beam polarization vector �PB in the case of the 1/2+ 0→ 1/2+ 0
reaction).

Note that, in view of the properties of the Pauli matrices, expression (2.39) cannot
include operators above the first order, because all such operators are reduced to an
operator maximally of the first order.

2.3 R, P , and T Transformations

In the next section, we consider nucleon–nucleon elastic scattering and, following
Wolfenstein and Ashkin (1952), construct the elastic scattering matrix. Here, as a
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preparation to this consideration, we discuss the constraints on this matrix that fol-
low from the physical requirements of the isotropy of space (R operation), space
inversion (P operation), and time reversal (T operation). Below in this section, we
follow Bilenky et al. (1964). In the interaction (or Heisenberg) representation, the
S-matrix is defined in terms of the Dirac brackets as

∣
∣ψ(+∞)

〉= S
∣
∣ψ(−∞)

〉
. (2.40)

Here, |ψ(−∞)〉 is the wave function of the system in the initial state at t→−∞
and |ψ(+∞)〉 is the wave function of the system in the final state. According to this
definition, the S-matrix transforms the initial state of two free nucleons to the final
state with allowance for their interactions. Thus, the S-matrix contains all informa-
tion on the interaction between the nucleons. If the nucleons do not interact, it is
reasonable to set S = 1. Then, we formulate the necessary physical requirements.

1. R operation. Let |ψ(t)〉 be the wave function of the system at time t in an
arbitrary reference frame called base. We introduce the second reference frame R

rotated by a certain angle and denote the wave function of the system in this ref-
erence frame as |ψ(R, t)〉. The wave functions in two reference frames should be
related by a unitary transformation (according to the requirement that the numbers
of particles in both reference frames should be the same). The unitarity of the oper-
ator implies the equality U+(R)=U−1(R).

Hence,
∣
∣ψ(R, t)

〉=U(R)
∣
∣ψ(t)

〉
. (2.41)

The matrix U(R) is obviously a function of the rotation angles of the R frame with
respect to the base frame. The multiplication of Eq. (2.40) by U(R) from the left
gives

∣
∣ψ(R,+∞)

〉=U(R)SU−1(R)
∣
∣ψ(R,−∞)

〉
. (2.42)

The wave functions |ψ(R,−∞)〉 and |ψ(R,+∞)〉 describe the initial and final
states of the nucleons, respectively, in the rotated reference frame R. Hence, in this
reference frame, by the definition of the S-matrix, which is determined only by the
interaction dynamics but is independent of the choice of the reference frame, the
wave functions should be related by the same S-matrix as in Eq. (2.40):

∣
∣ψ(R,+∞)

〉= S
∣
∣ψ(R,−∞)

〉
. (2.43)

Comparison of Eqs. (2.42) and (2.43) shows that

U(R)SU−1(R)= S. (2.44)

Since the matrix U(R) is unitary, this equality can be represented in the other
form

U−1(R)SU(R)= S. (2.45)

Relation (2.44) (or (2.45)) expresses the invariance of strong interactions under
rotations of the reference frame in physical space. An application of this relation
will be considered elsewhere.
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2. P operation. It is postulated that strong interactions are invariant under space
inversion. This property is also called the parity conservation law. Let us consider
the constraints imposed by this postulate on the S-matrix. As in the above consid-
eration, we take the initial reference frame as base. As above, the wave function
in this frame is denoted as |ψ(t)〉. We introduce the reference frame I , in which
all coordinate axes are inverted, i.e., x→−x, y→−y, and z→−z. If the base
frame is left-handed, the frame I is right-handed. Let U(I) be a unitary operator
transforming the function |ψ(t)〉 in the base frame to the wave function in the I

frame:
∣
∣ψ(I, t)

〉=U(I)
∣
∣ψ(t)

〉
. (2.46)

In this case, both functions describe the same physical state, but in different coor-
dinates. Hence, the S-matrices in two frames should be the same. Let us determine
the matrix S(I). By the definition,

∣
∣ψ(I,+∞)

〉= S(I)
∣
∣ψ(I,−∞)

〉
. (2.47)

At the same time, from Eq. (2.46) we obtain
∣
∣ψ(I,+∞)

〉=U(I)
∣
∣ψ(+∞)

〉=U(I)S
∣
∣ψ(−∞)

〉=U(I)SU−1
∣
∣ψ(I,−∞)

〉
.

(2.48)

Comparison of Eqs. (2.47) and (2.48) shows that

S(I)=U(I)SU−1(I ). (2.49)

Thus, the postulate of the invariance of strong interactions under space inversion
leads to the relation

S =U−1(I )SU(I ). (2.50)

These two cases imply that the invariance under the R and P transformations
reduces to the commutativity of the S-matrix and the corresponding transformation
U matrices.

3. T operation. The principle of the invariance of the strong interaction under
time reversal is formulated as follows. Let us consider the Schrödinger equation in
the interaction representation

i
∂|ψ(t)〉

∂t
=H(t)

∣
∣ψ(t)

〉
. (2.51)

Changing t→−t and taking complex conjugation in this equation, we arrive at
the equation

i
∂|ψ(−t)〉∗

∂t
=H ∗(−t)∣∣ψ(−t)〉∗. (2.52)

Since H ∗(−t) �=H(t) in the general case, this new equation is not a Schrödinger
equation. However, let us assume that there is a unitary operator U(T ) providing
the transformation

∣
∣ψ(T , t)

〉=U(T )
∣
∣ψ(−t)〉∗. (2.53)
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The substitution of this relation into Eq. (2.52) yields

i
∂|ψ(T , t)〉

∂t
=U(T )H ∗(−t)U−1(T )

∣
∣ψ(T , t)

〉
. (2.54)

Setting

H(t)=U(T )H ∗(−t)U−1(T ), (2.55)

we arrive at the Schrödinger equation

i
∂|ψ(T , t)〉

∂t
=H(t)

∣
∣ψ(T , t)

〉
. (2.56)

Thus, relation (2.55) presents a mathematical formulation of the physical postu-
late of the invariance of the interaction under time reversal.

According to Eq. (2.55), for each wave function |ψ(t)〉 that is a solution
of Schrödinger equation (2.51), there is another function |ψ(T , t)〉 that satisfies
Eq. (2.56) and describes the motion of the system in the reverse time direction.
Let us obtain the requirement imposed on the S-matrix by the time reversibility
condition.

We have two Schrödinger equations with two wave functions, but with the same
S-matrix, because the S-matrix is independent of the initial state of the system, but
is completely determined by the dynamics of interaction.

According to the above consideration and by analogy with relation (2.40), we
write

∣
∣ψ(T ,+∞)

〉= S
∣
∣ψ(T ,−∞)

〉
.

Using relation (2.53), we represent this equality in the form

U(T )
∣
∣ψ(−∞)

〉∗ = SU(T )
∣
∣ψ(+∞)

〉∗
.

The multiplication of this relation by U−1(T ) from the left yields
∣
∣ψ(−∞)

〉∗ =U−1(T )SU(T )
∣
∣ψ(+∞)

〉∗
. (2.57)

Let us take into account that the S-matrix is unitary, i.e., S+S = 1 and that
S+ = S̃∗ by the definition, where the asterisk and tilde mean the complex conju-
gation and transposition of the matrix, respectively. Multiplying Eq. (2.40) by S+
from the left, taking complex conjugation, and taking into account the properties of
the S-matrix, we obtain

∣
∣ψ(−∞)

〉∗ = S̃
∣
∣ψ(+∞)

〉∗
. (2.58)

The comparison of Eqs. (2.57) and (2.58) shows that

U−1(T )SU(T )= S̃. (2.59)

This is the requirement imposed on the S-matrix by the time-reversal invariance
of the interaction.

The results are summarized as follows:

• the invariance of the interaction under rotation of the reference frame, the corre-
sponding R operation is given by relation (2.45): U−1(R)SU(R)= S;



68 2 Spin in Strong Interactions

• the invariance of the interaction under space inversion, the corresponding P op-
eration is given by relation (2.50): U−1(I )SU(I )= S;

• the invariance of the interaction under time reversal, the corresponding T opera-
tion is given by expression (2.59): U−1(T )SU(T )= S̃.

In applications, another matrix M determined only by the interaction between
the nucleons is used. The initial state of the particles at t→−∞ is denoted as |i〉,
and the final state at t→+∞ is denoted as |f 〉. The particles in the initial and final
states do not interact and have the relative momenta �p and �p′, total momenta �Q and
�Q′, and total energies E and E′, respectively. The matrix M is expressed in terms

of the S matrix as

S − 1=M, (2.60)

or in terms of the matrix elements, taking into account the conservation of the energy
and momentum:

〈f |S|i〉 = 〈f |i〉 − 2πiδ
( �Q′ − �Q)

δ
(
E′ −E

)〈f |M|i〉. (2.61)

Here, the δ functions ensure the conservation of the momentum and energy. The
matrix M transforms the initial state |i〉 to the final state |f 〉 and acts only in the
spin space. By the definition of the matrix elements,

〈f |M|i〉 = (
χ ′+M

( �p′, �p)χ). (2.62)

Here, χ and χ ′ are the spin wave functions of the initial and final states of the
nucleons, respectively. The matrix M , as well as the S matrix, is determined by the
dynamics of interaction and satisfies the requirements of the R, P , and T invari-
ances. Let us consider their in more detail.

From the postulate of the invariance of the interaction under rotation of the ref-
erence frame, the following constraint on the S-matrix was obtained (see (2.45)):

U−1(R)SU(R)= S.

Let us represent this relation in terms of the matrix elements in the base and
rotated R frames

〈
f
∣
∣U−1(R)SU(R)

∣
∣i
〉= 〈f,R|S|R, i〉 = 〈f |S|i〉. (2.63)

Here, |R, i〉 and |R,f 〉 are the wave functions in the rotated R frame. The total,
Q, and relative, p, momenta in the base reference frame are related to the respective
momenta QR and pR in the rotated reference frame as

(QR)i = ailQi, (pR)i = ailpi . (2.64)

Here, a is the rotation matrix from the base frame to the R frame and ali are its
matrix elements (in this case, the cosines and sines of the rotation angle from the
old to new reference frame).

Relation (2.63) indicates that the respective elements of the S matrix in different
frames are the same. According to M-matrix definition (2.61), this is valid for its
matrix elements:

(
χ ′+(R)M

( �p′R, �pR

)
χ(R)

)= (
χ ′+(p)M

( �p′, �p)χ(p)), (2.65)
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where χ(R) and χ ′(R) are the spin wave functions in the rotated frame and χ

and χ ′, in the base frame. Since these sets of functions describe the same spin state,
but in different frames, they should be related by a unitary transformation:

χ(R)=U(R)χ, χ ′(R)=U ′(R)χ ′. (2.66)

The nucleon–nucleon scattering under consideration involves two spin particles
in the initial and final states of the reaction. This means that the spin functions in the
initial and final states of the reaction are the products of the functions of individual
nucleons. As a result, the unitary operators U(R) and U ′(R) are the direct products
of the matrices acting on the spin functions of the individual particles.

The mean value of the spin operator in quantum mechanics is an observable,
namely, the polarization vector (more precisely, the polarization vector is �P = �σ =
2�s, where �σ is the Pauli operator and �s is the spin vector). The mean value of the
spin operator should be transformed as a vector:

χ+(R)slχ(R)= aliχ
+siχ.

Here, sl is the spin operator of one of the initial nucleons. Therefore, the matrix
U(R) should satisfy the condition

U−1(R)slU(R)= alisi . (2.67)

The same condition is obviously imposed on the matrix U ′(R). For a given rota-
tion angle of the frame R, the matrix U can be reconstructed from these conditions.

From Eqs. (2.65) and (2.66), it follows that

U ′−1(R)M
( �p′R, �pR

)
U ′(R)=M

( �p′, �p). (2.68)

This is the mathematical expression of the postulate of the invariance of the in-
teraction under space rotation.

Then, we consider the P operation, i.e., space inversion. Under this operation,
the momenta, being polar vectors, change signs, whereas the spin vector, being an
axial vector, does not change sign. Therefore,

sl =U−1(I )slU(I), s′l =U ′−1(I )s′lU ′(I ), (2.69)

where the unitary matrix U(I)(U ′(I )) ensures the transformation of the wave func-
tion of the initial (final) state from the base frame to the inverted frame I . This
transformation is written as follows:

χ(I)=U(I)χ, χ ′(I )=U ′(I )χ ′.

The condition on the S-matrix provides
(
χ ′+M

( �p′, �p)χ)= IiI
∗
f

(
χ ′+(I )M

(−←
p ′,− �p)χ(I)). (2.70)

Here, Ii and If are the internal parities of two initial and two final nucleons,
respectively. Using the relation between the wave functions χ and χ ′, we obtain

M
( �p′, �p)= IiI

∗
f U

−1(I )M
(− �p′,− �p)U(I). (2.71)
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2.4 Unitarity Condition

The Schrödinger equation for the wave function Ψk has the form

∇2Ψk + 2μ

�2
(E − û)Ψk = 0, (2.72)

where μ is the reduced mass of colliding particles and û is the potential energy of
their interaction in the operator form (can include the spin and isospin operators).
For the case of elastic scattering, Ψk can be represented in the form of the sum of
two terms:

Ψk = ei
�k·�rχ + 1

r
eikrM

(�k′′, �k)χ. (2.73)

The first term is an incident plane wave; the second term is the divergent scat-
tering waves; �k and �k′′ are the wave vectors of the initial (before the interaction)
and final states, respectively; χ is the spinor function of the initial state; and M is
the reaction matrix. Since the elastic scattering is considered in the center-of-mass
frame,

∣
∣�k′′∣∣= |�k|, û+ = û. (2.74)

The second condition is the Hermitian condition imposed on the interaction po-
tential, because its eigenvalues should be real.

Then, the interaction in the intermediate state of the colliding particles leads
to the transition of the wave vector �k′′ to the wave vector �k′, determining a given
direction (e.g., the direction to a recording detector).

At large distances from the collision center, the following expansion can be used
(to define the absolute phases, it is necessary to include a known, for example, elec-
tromagnetic or weak interaction in addition to strong interactions):

Ψ 0
k = ei

�k·�r = eikz cos θ =
∞∑

l=0

il(2l + 1)Pl(cos θ)
sin(kr − 1

2 lπ)

kr

= 1

ikr

∞∑

l=0

(2l + 1)

2
Pl(cos θ)eikr

− 1

ikr

∞∑

l=0

(−1)l
(2l + 1)

2
Pl(cos θ)e−ikr. (2.75)

It can be shown that
∞∑

l=0

(2l + 1)

2
Pl(cos θ)= δ(1− cos θ),

∞∑

l=0

(−1)l
(2l + 1)

2
Pl(cos θ)= δ(1+ cos θ).

(2.76)
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These formulas are verified by multiplying the both sides by Pl(cos θ) and inte-
grating with respect to cos θ . The validity of relations (2.76) is obvious in view of
the orthogonality condition of the Legendre polynomials,

∫ 1

−1
Pl′(cos θ)Pl(cos θ)d cos θ = 2

2l + 1
δll′ (2.77)

and the definition of the Dirac δ functions
∫

f (x)δ(x − a)dx = f (a). (2.78)

Taking into account Eq. (2.76), from Eq. (2.75) we obtain

ei
�k·�r = 1

ikr
eikrδ(1− cos θ)− 1

ikr
e−ikr δ(1− cos θ). (2.79)

Therefore,

Ψk(�r)= 1

r
eikr · χ

(
1

ik
δ(1− cos θ)+M

(�k′′, �k)
)

− 1

ikr
e−ikr δ(1+ cos θ) · χ.

(2.80)

Similarly,

Ψk′(�r)= 1

r
e−ikr · χ+

(

M
(�k′′, �k′)− 1

ik
δ(1− cos θ)

)

+ 1

ikr
eikrδ(1+ cos θ) · χ+.

(2.81)

From the Schrödinger equation

∇2Ψk + 2μ

�2
(E − û)Ψk = 0, ∇2Ψ+

k′ +
2μ

�2
·Ψ+

k′ · (E − û)= 0, (2.82)

we can obtain the relation

Ψ+
k′ ∇2Ψk −∇2Ψ+

k′ Ψk = 0, (2.83)

which can be modified to the form

∇(Ψ+
k′ ∇Ψk −∇Ψ+k′ Ψk

)= 0. (2.84)

The integration over the volume V provides
∫

∇(Ψ+
k′ ∇Ψk −∇Ψ+k′ Ψk

)
dv =

∫

∇(Ψ+
k′ ∇Ψk −∇Ψ+k′ Ψk

)
ds = 0. (2.85)

Using Eqs. (2.80) and (2.81), as well as the operator ∇ = ∂
∂r

, we obtain
∫ {

1

kr2
δ(1+ cos θ)δ

(
1+ cos θ ′

)− 1

r2

[

M+(�k′′, �k′)+ i

k
δ
(
1− cos θ ′

)
]

·
[

M
(�k′′, �k′)− 1

k
δ(1− cos θ)

]}

ds = 0, (2.86)

where ds = r2dωk′′ . After the integration, we arrive at the formula

1

2i

[
M
(�k′, �k)−M+(�k, �k′)]= k

4π

∫

M+(�k′′, �k′) ·M(�k′′, �k)dωk′′ . (2.87)
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This condition can be generalized to the case of inelastic reactions:

1

2i

[
1

ka
Mab

(�k′, �k)− 1

kb
M+

ba

(�k, �k′)
]

=
∑

C

1

4π

∫

M+
bc

(�k′′, �k) ·Mac

(�k′′, �k′)dωk′′,

(2.88)

where the summation over all possible reaction channels is implied.
Relation (2.87) provides a number of important consequences. At �k′ = �k (elastic

scattering at zero angle), this relation gives the so-called optical theorem

Ima(0)= k

4π
σTOT, (2.89)

which is the relation between the imaginary part of the forward elastic scattering
amplitude a(0) and the total cross section σTOT.

The application of relation (2.88) to the pion–nucleon scattering matrix gives two
relations

Ima
(�k′′, �k′)= k

4π

∫
[
a∗
(�k′′, �k′) · a(�k′′, �k′)

+ i �b∗(�k′′, �k′)× �b(�k′′, �k′) · (�n′′ × �n′)]dωk′′, (2.90)

Re �b(�k′, �k)= k

4π

∫
[
a∗
(�k′′, �k′) · �b(�k′′, �k′)+ �b∗(�k′′, �k′) · a(�k′′, �k′)

+Re
[�b∗(�k′′, �k′)× �b(�k′′, �k′) · (�n′′ × �n′) · �n]]dωk′′ . (2.91)

Similar relations are also valid for nucleon–nucleon scattering. These relations
are particularly suitable at low energies, when only the elastic channel is opened.
As a result, the number of necessary experiments is halved (by two and five exper-
iments for the πN and nucleon–nucleon scatterings, respectively). However, these
statements should be considered carefully, because they are valid only under ideal
conditions, which are almost inaccessible in actual experiments.

The presentation in this section follows Nurushev (1983).

2.5 Pion–Nucleon Scattering

Let us consider reactions of the type

π +N = π +N, (2.92)

or, in the spin notation, 0+ 1/2→ 0+ 1/2. In the corresponding two-dimensional
spin space, the Pauli matrices �σ(σx, σy, σz) together with the identity matrix 1 can
be used as a complete set of spin operators. In this case, the density matrix of the
initial state can be written in the form (see Eq. (2.32) in Sect. 2.2)

ρ̂i = C0 · 1+ �C1 · �σ. (2.93)

Hence, the density matrix ρ̂ is completely determined by the target, �Pt , or beam,
�PB , polarization vector.
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Then, it is necessary to determine the reaction matrix M . In the general case, it
should be, first, a function of two variables, for example, momenta �ki and �kf before
and after reactions, respectively, and, second, a two-row matrix in spin space. As
the matrix, it can be expanded in the complete set consisting of the Pauli matrices
and identity matrix:

M
(�ki, �kf

)= a
(�ki, �kf

) · I + �b(�ki, �kf
) · �σ. (2.94)

According to the experimental data, we require that strong interactions satisfy
the following conditions (Nurushev 1983):

1. Parity conservation law. Since the parities of the initial and final systems are
identical, the M-matrix should be a scalar function of the initial energy and scat-
tering angle of the particles. This means that the vector �b, as well as �σ , should
also be axial. The only axial vector that can be composed of two vectors �ki and
�kf has the form

�b′(�ki, �kf )= b�n, (2.95)

where �n= �ki×�kf /|�ki×�kf | is the unit vector perpendicular to the reaction plane.
The quantity a(�ki, �kf ) should obviously be a scalar function.

2. Time reversibility. Under the time reversal operation, �ki →−�kf and �kf →−�ki ,
so that �n changes sign. Under this operation, �σ also changes sign, so that the
quantity �σ · �n is a scalar. For the (0+ 1/2) system, this requirement is satisfied
simultaneously with requirement 1. However, for more complex systems (e.g.,
(1/2+ 1/2)), time reversibility gives rise to additional constraints.

Thus, the πN elastic scattering matrix M(�ki, �kf ) has the form

M(�ki, �kf )= a(�ki, �kf )+ b(�ki, �kf ) · �σ · �n. (2.96)

Here, b and a are called the amplitudes with and without spin flop, respectively,
are complex quantities; therefore, four real functions (for a given initial energy and
a given scattering angle) should be determined from experiments. A set of inde-
pendent experiments necessary for the unambiguous determination of all reaction
amplitudes is called the complete set of experiments. Hence, the complete set of ex-
periments for the πN system should include at least four independent experiments.

However, reality is much more complicated that the above description. First,
since the experimentally measured quantities are quadratic combinations of the am-
plitudes a and b, only the difference of the phases of the amplitudes a and b for
strong interactions, rather than their absolute values, can be determined from an ex-
periment. To determine the absolute values of the phases, it is necessary to include
a known (for example, electromagnetic or weak) interaction in addition to strong
interactions. Thus, the complete set of experiments should include more than four
experiments. Second, if elastic scattering is the single allowed reaction channel, the
unitarity condition gives rise to two additional relations between the amplitudes a

and b; for this reason, to determine these amplitudes, it is sufficient to perform two
independent experiments.
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However, at energies above the pion production threshold, the number of experi-
ments in the complete set is larger than four.

In reality, there are three reactions induced by charged pions:

π+ + p→ π+ + p(a), π− + p→ π− + p(b),

π− + p→ π0 + n(c).
(2.97)

These three reactions are related by the requirement of the isotopic invariance of
strong interactions. As a result, the matrices of these reactions are related as

M(a)=M1, M(b)= 1

2
(M1 +M0), M(c)= 1

2
(M1 −M0). (2.98)

Here, the matrices M1 and M0 correspond to the isotopic states of the pion–
nucleon system with T = 3/2 and 1/2, respectively. These matrices are recon-
structed similarly to the matrix M . Disregarding isotopic invariance, three reactions
(2.97) are described by the set of 12 experiments. Allowance for isotopic invariance
reduces this number to 8.

For the system of two particles with spin 1/2 (example is pion + nucleon), we
present the proof of the equality P = A, where P and A are the polarization of the
particle and its asymmetry in the binary reactions, respectively; this relation is very
important in applications (Bilenky et al. 1964).

Let us consider the wave function of the system with the inverted direction of the
wave vector that satisfies the Schrödinger equation with reversed time (t →−t).
We represent it in the form

Ψ−k′ = e−i�k′�r + 1

r
eikrM

(�k′′,−�k′)

= i

kr
e−ikr · δ(1− cos θ ′

)

+ 1

r
eikr

[

M
(�k′′,−�k′)− i

k
· δ(1− cos θ ′

)
]

. (2.99)

The substitution of this wave function into the following Eq. (2.85) from
Sect. 2.4:

∫

∇(Ψ+
k′ ∇Ψk −∇Ψ+k′ Ψk

)
dv =

∫

∇(Ψ+
k′ ∇Ψk −∇Ψ+k′ Ψk

)
ds = 0,

gives
∫
[
M
(�k′′, �k′) · δ(1− cos θ ′

)+ 1

ik
· δ(1− cos θ ′

) · δ(1− cos θ)

−M
(�k′′,−�k′) · δ(1+ cos θ)

]
dωk′′ = 0. (2.100)

After the integration, we obtain

M
(�k′, �k)=M

(−�k,−�k′). (2.101)

This relation is the condition of the time reversibility of the process.
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Scattering matrix (2.96) constructed above satisfies this condition. Using the ex-
plicit form of the scattering matrix, we prove the following statement widely used
in applications.

Let the polarization of the particle d be measured in the reaction

a(0)+ b(1/2)→ c(0)+ d(1/2) (2.102)

(the spins of the particles are given in the parentheses). This is usually achieved by
the rescattering of the particle d on a certain nucleus with a known analyzing power.
To explain new terms, we make a brief digression.

Let a beam with a given energy and unit polarization be scattered on a nuclear
target at a given angle. The number of the scattered particles per unit flux of the
incident beam whose polarization is directed upward from the scattering plane is
denoted as N1. Under the same conditions, this number for the beam polarization
downwards to the scattering plane is denoted as N2. In this notation, the analyzing
power of the target is defined by the formula

AN = N1 −N2

N1 +N2
.

If the beam is partially polarized, i.e., P �= 1, raw asymmetry (directly measured
in experiment), can be defined as

ε = P ·A.

The quantity ε is also called left–right asymmetry or, sometimes, “raw” asym-
metry. According to the definition, the asymmetry ε coincides with the analyzing
power AN at the 100 % polarization of the beam.

We denote the polarization of the particle d as P . Let us consider the reverse
reaction

c(0)+ d↑(1/2)→ a(0)+ b(1/2), (2.103)

where the particle d is polarized. Let the left–right asymmetry AN is measured in
the formation of the particle a (or b). Theorem: the polarization P of the particle d

in reaction (2.102) is equal to the asymmetry A of the particle b (or a) in reaction
(2.103). This statement is expressed by the equality

P =AN. (2.104)

Let us prove this statement. Indeed, by the definition of polarization (Bilenky et
al. 1964).

�P = Tr (MρiM
+�σ)

Tr (MρiM+)
(2.105)

since the particle b in initial system (2.102) is unpolarized, ρi = 1/2 and, calculat-
ing P , we obtain

P · I0 = 2Rea∗b= Tr
(
MM+�σ ), (2.106)

where

I0 = |a|2 + |b|2 (2.107)
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is the differential cross section for reaction (2.102). Since the particle d in reaction
(2.103) is polarized, ρi = 1

2 (1+ �P0· · �σ) and the scattering cross section is given by
the expression

If = Tr
(
Mρ̂iM

+)= 1

2
Tr
(
MM+)+ 1

2
�P0Tr

(
M �σM+). (2.108)

The direct calculation shows that MM+ =M+M and

Tr
(
M �σM+)= Tr

(
MM+σ

)= 2I0P, (2.109)

where P is determined by expression (2.106). Then,

If = I0(1+ �P0 · �P). (2.110)

By the definition of left–right asymmetry

AN = 1

P0

If (+)− If (−)
If (+)+ If (−) = P, (2.111)

quod erat demonstrandum.
When deriving relation (2.111), we explicitly take into account the detailed bal-

ance principle, i.e., the equality of the cross sections for the direct and inverse reac-
tions.

Note that the positive sign in relation (2.111) appears for a reaction in which the
initial and final states have the same parity. For the case of different parities, the sign
in relation (2.111) is negative.

Theorem (2.104) is also proved for the case of the binary reaction when both
initial (and final) particles have spin 1/2. This theorem is invalid for the inclusive
reactions.

A test of the relation P =A is simultaneously a test of the T invariance in strong
interactions. At present, this problem is of very great interest in view of the creation
of an absolute polarimeter for the RHIC collider (see Chap. 8 in the second part of
the book, which is devoted to the polarimetry of beams).

It is known that a reaction with the production of hyperons is a convenient reac-
tion for verifying the relation P =A. If a target is unpolarized, the polarization of a
hyperon is determined from its decay. If the target is polarized, left–right asymme-
try can be measured with the same instruments. The same is true for the beam. An
example of such interactions is the reaction

π− + p→K0 +Λ(↑)(a), π− + p(↑)→K0 +Λ(b). (2.112)

This reaction is very convenient because channels (a) and (b) can be measured
simultaneously if a polarized target is used. In this case, it is very important to
detect both K mesons and Λ hyperons. Averaging the experimental results over
the target polarizations (as if the target polarization vanishes), one can determine
the polarization of the Λ hyperons (channel (a)). Averaging over the polarization
of the Λ hyperons for the polarized target (channel (b)), we determine asymmetry.
Comparison of these two observables ensures the direct test of the equality P =AN .
Such an experiment has not yet been carried out.
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An important application of the relation P = AN is the measurement of asym-
metry in the reaction

π− + p(↑)→ π0 + n. (2.113)

For the direct measurement of the neutron polarization on an unpolarized target,
it is necessary to scatter the neutron by another target and to detect the scattered
neutron. This is a difficult experimental problem owing to loss in the yields for the
second scattering process and low neutron detection efficiency. Therefore, the use
of the polarized proton target made it possible to measure the neutron polarization
in reaction (2.113). These measurements provided first doubts in the Regge pole
model very popular in the 1960s.

2.6 Nucleon–Nucleon Scattering

In this section, we present the method for determining the reaction matrix in the
nonrelativistic case proposed in Wolfenstein and Ashkin (1952). We will see later
that the relativistic approach does not change the results, but leads to the kinematic
rotations of the observables lying in the reaction plane. The observables perpendic-
ular to the reaction plane remain unchanged in this case.

2.6.1 Construction of the Reaction Matrix

The system of two nucleons is described by two spin operators �σ1 and �σ2 and two
identity operators I1 and I2 acting in the spin spaces of the first and second par-
ticles, respectively. As a result, the scattering matrix is a four-dimensional matrix
depending on the physical vectors �σ1 and �σ2, �ki and �kf (relative momenta of two
nucleons in the initial and final states, respectively). When constructing the NN -
scattering matrix, we follow Wolfenstein and Ashkin (1952). Since the initial (two-
nucleon) and final (also two-nucleon) systems in our case have the same internal
parity, the scattering matrix M(�σ1, �σ2; �ki, �kf ) should be a scalar function composed
of the combination of spin operators and momenta. Using the spin operators, we can
generally compose 16 combinations (complete set):

1 (scalar)
(�σ1 · �σ2 − 1) (scalar)
(�σ1 + �σ2) (axial vector)
(�σ1 − �σ2) (axial vector)
(�σ1 × �σ2) (axial vector)
lαβ = (σ1ασ2β + σ1βσ2α) (symmetric tensor).

(A)

In view of the properties of the sigma operators, these combinations cannot in-
clude terms of the orders higher than the first order.
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The combinations that can be composed of the momenta �ki and �kf are as follows:

1 (scalar)
�kf − �ki = �K (polar vector)
�kf × �ki = �n (axial vector)
�n× �K = �P (polar vector)
KαKβ,nαnβ (symmetric tensors)
PαPβ,KαPβ +KβPα (symmetric tensors).

(B)

Multiplying the quantities from sets (A) and (B), we take into account the re-
quirement of the invariance of the matrix M(�σ1, �σ2; �ki, �kf ) under rotation and inver-
sion of space. Thus, the following combinations can be included in the amplitudes
of the scattering matrix:

1, (
⇀
σ 1 · ⇀σ 2 −1), (�σ1 + �σ2) · �n, (�σ1 − �σ2) · �n, (2.114)

(�σ1 × �σ2) · �n, (2.115)
∑

αβ

lαβKαKβ,
∑

αβ

lαβnαnβ,
∑

αβ

lαβPαPβ,
∑

αβ

lαβ(KαPα +KβPα).

(2.116)

Combinations (2.116) can be represented in the form

�σ1 · �K �σ2 · �K, �σ1 · �n�σ2 · �n, �σ1 · �P �σ2 · �P ; (2.117)

�σ1 · �K �σ2 · �P + �σ1 · �P �σ2 · �K. (2.118)

Three vectors �K , �n, and �P are mutually orthogonal. As a result, the sum of three
terms in (2.117) is equal to the dot product �σ1 · �σ2, as can be verified by direct
calculations. Hence, only two of three terms in (2.117) are independent.

Now, we require the time-reversal invariance of these terms. Under time reversal
t→−t , the spin operator and momentum are transformed as follows (prime marks
the quantities with reversed time):

�σ ′ = −�σ, �k′i =−�kf , �k′f =−�ki . (2.119)

Using Eq. (2.119) and the definition of vectors �K , �n, and �P (see (B)), we can
show that

�K ′ = �K, �n′ = −�n, and �P ′ = − �P. (2.120)

Under this transformation, terms (2.115) and (2.118) change sign and, corre-
spondingly, are rejected. Finally, the nucleon–nucleon elastic scattering matrix is
expressed in the form

M(�σ1, �σ2; �ki, �kf )=A+B(
⇀
σ 1 · ⇀σ 2 −1)+C(�σ1 + �σ2) · �n

+D(�σ1 − �σ2) · �n+E(�σ1 · �K)(�σ2 · �K)

+ F(�σ1 · �P)(�σ2 · �P). (2.121)
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Let us introduce the triple of orthogonal unit vectors in the center-of-mass frame:

�n= �k× �k′
|�k× �k′| , �m= �k′ − �k

|�k′ − �k| ,
�l = �k+ �k′

|�k + �k′| , (2.122)

where �k = �ki
|�ki | and �k′ = �kf

|�kf | are the unit vectors.

It is convenient to introduce these unit vectors, because the vectors �l and �m in the
nonrelativistic approximation coincide with the directions of the momenta of the
scattered and recoil particles in the laboratory frame, respectively. The scattering
matrix is rewritten in the new notation as

M(�σ1, �σ2; �ki, �kf )= a + b(
⇀
σ 1 ·�n)(⇀σ 2 ·�n)+ c(�σ1 + �σ2) · �n

+ d(�σ1 − �σ2) · �n+ e(�σ1 · �m)(�σ2 · �m)

+ f (�σ1 · �l)(�σ2 · �l). (2.123)

The amplitudes a, b, c, d , e, and f are complex functions of the energy and
scattering angle (�k�k′)= cos θ .

The term with the amplitude d should be absent for nucleon–nucleon scattering.
This is proved as follows (Bilenky et al. 1964). Two nucleons in the initial state have
the internal parity (−1)l , total spin S, and total isospin T . According to the Pauli
exclusion principle, the wave function of two nucleons should be antisymmetric
under permutation, i.e., should change sign:

Pi = (−1)l(−1)S+1(−1)T+1 =−1. (2.124)

A similar relation can also be obtained for the final nucleons with the orbital
angular momentum l′, spin S′, and isospin T ′:

Pf = (−1)l
′
(−1)S

′+1(−1)T
′+1 =−1. (2.125)

To satisfy the condition Pi = Pf , we take into account that the parities of the nu-
cleons in the interaction remain unchanged and the terms containing orbital angular
momenta can be canceled. We also accept the hypothesis of the isotopic invariance
of the strong interaction; for this reason, the terms with isotopic spin T can also be
canceled. As a result, we arrive at the condition

(−1)S = (−1)S
′
. (2.126)

Since the possible values of S and S′ are 0 (singlet state) and 1 (triplet state),
then S = S′. This means that transitions only within triplets and singlets separately
are allowed in nucleon–nucleon scattering, whereas mixed singlet–triplet and in-
verse transitions are forbidden. This leads to the exclusion of the term with d in the
scattering matrix. The nucleon–nucleon scattering matrix has the final form

M(�σ1, �σ2; �ki, �kf )= a + b(
⇀
σ 1 ·�n)(⇀σ 2 ·�n)+ c(�σ1 + �σ2) · �n

+ e(�σ1 · �m)(�σ2 · �m)+ f (�σ1 · �l)(�σ2 · �l). (2.127)
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The singlet and triplet projection operators are introduced as

Ŝ = 1

4

[
1− (�σ1 · �σ2)

]
, T̂ = 1

4

[
3+ (�σ1 · �σ2)

]
. (2.128)

Then, expression (2.127) can be represented in the form

M(�σ1, �σ2; �ki, �kf )= BŜ +
[

C(�σ1 + �σ2) · �n+ 1

2
G(�σ1 · �m)(�σ2 · �m)

+ (�σ1 · �l)(�σ2 · �l)+ 1

2
H(�σ1 · �m)(�σ2 · �m)− (�σ1 · �l)(�σ2 · �l)

+N(�σ1 · �n)(⇀σ 2 ·�n)
]

T̂ . (2.129)

The amplitude B corresponds to singlet scattering, whereas the remaining four
amplitudes describe triplet scattering.

The amplitudes in expressions (2.127) and (2.129) are related as:

B = a − b− e− f, C = c, G= 2a + e+ f,

H = e− f, N = a + b.
(2.130)

For joint description of all possible types of nucleon–nucleon scattering (pp, nn,
and np), the general matrix can be written taking into account isotopic invariance:

M(�σ1, �σ2; �ki, �kf )=M0T̂0 +M1T̂1. (2.131)

Here,

T̂0 = 1

4
(1− �τ1 · �τ2), T̂1 = 1

4
(3+ �τ1 · �τ2) (2.132)

are the isosinglet and isotriplet projection operators, respectively; and �τ1 and �τ2
are the isospin operators of the first and second nucleons, respectively. Each of the
matrices M0 and M1 is a scattering matrix of form (2.129).

The final wave function of the system of two nucleons can be written in the form

χf =M
(�σ1, �σ2; �k, �k′

)
χiSχiT , (2.133)

where χiS and χiT are the spin and isospin wave functions of the initial system of
two nucleons. In view of Eqs. (2.129) and (2.132), the requirement of the antisym-
metry of this function provides the following conditions on the amplitude under the
change θ→ π − θ :

(a) the isotriplet amplitudes B , C, and H do not change their signs, whereas G and
N change their signs;

(b) on the contrary, the isosinglet amplitudes B , C, and H change their signs,
whereas G and N do not change their signs.

These relations allow one to investigate pp and nn scatterings only in the an-
gular range 0 ≤ θ ≤ 90° . Moreover, the amplitude analysis for angles 0°, 90°, and
180° can be performed only with three rather than five amplitudes; this significantly
reduces the number of necessary experimental observables.

In the case of np scattering, where both isotopic matrices M0 and M1 are used,
the measurements should be performed in a wider angular range, namely, 0 ≤
θ ≤ 180°.
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2.6.2 Some Ways for Experimentally Seeking P - and
T -noninvariant Terms in the Matrices of the Strong
Interaction

The nucleon–nucleon scattering matrix given by Eq. (2.129) can be written in the
form

M(0) = (u+ v)+ (u− v)(�σ1 · �n)(�σ2 · �n)+C
[
(�σ1 · �n)+ (�σ2 · �n)

]

+ (g − h)(�σ1 · �m)(�σ2 · �m)+ (g + h)(�σ1 · �l)(�σ2 · �l), (2.134)

where �l, �m, and �n were defined in Eq. (2.122).
The aim of the complete set of experiments on nucleon–nucleon scattering is to

reconstruct the amplitudes u, v, c, g, and h from the experimental data. In the case of
parity violation or time reversal violation, the scattering matrix contains additional
terms, which are considered below.

2.6.2.1 Parity Violation

The forward NN -scattering matrix in the case of parity violation can be written in
the form

M =M0 + (i/4)(Mos −Mso)(�σ1 × �σ2) · �k
+ (i/4)(Mos +Mso)(�σ1 − �σ2) · �k. (2.135)

Here, M0 is given by expression (2.134) and the amplitudes Mos and Mso de-
termine P -violating triplet–singlet and singlet–triplet transitions, respectively. The
total cross section for the interaction between polarized particles corresponding to
the matrix M is written in the form (Bilenky and Ryndin 1963; Philips 1963):

σP1P2 = σ
(0)
P1P2

+ (1/4)(σos − σso)( �P1 × �P2) · �k
+ (1/4)(σos + σso)( �P1 − �P2) · �k, (2.136)

where �P1 and �P2 are the beam and target polarizations, respectively; and σos(σso)

is the total cross section for the P -odd interaction with the triplet–singlet (singlet–
triplet) transition. The cross section for the P -invariant interaction, σ (0)

P1P2
, can be

written in the form

σ
(0)
P1P2

= σ0 + σ1( �P1 · �P2)+ σ2( �P1 · �k)( �P2 · �k)
= σ0 +�σT �P1T · �P2T +�σL �P1L · �P2L, (2.137)

where the subscripts L and T mean the longitudinal and transverse polarization
components of the beam. Formula (2.136) shows that, to detect a P -odd effect, it is
necessary to measure the total cross section for the interaction of the longitudinally
polarized beam with the unpolarized target or the unpolarized beam with the trans-



82 2 Spin in Strong Interactions

versely polarized target (the third term). Such experiments have been performed,
and they will be discussed in the next sections of this book.

The second term in the formula (2.136) corresponds to simultaneous parity and
time-reversal violation. To measure it, the polarized beam and polarized target,
whose polarization vectors are perpendicular to each other and to the beam mo-
mentum, should be used. Such experiments have not yet been carried out.

2.6.2.2 T -odd Terms

If the interaction is invariant under space inversion, the term corresponding to the
T -odd effect has the form

M(1) =MT (�σ1 · �l)(�σ2 · �m)+ (�σ1 · �m)(�σ2 · �l). (2.138)

In the case of the matrix M(0), it can be shown that the polarization P of the final
nucleon for the case of the unpolarized initial states is equal to left–right asymmetry
AN in the scattering of the polarized nucleon on the unpolarized nucleon: P =AN .

Note that this equality holds for the more general case of the direct

a + b→ c+ d (2.139)

and inverse

c+ d→ a + b (2.140)

reactions. In this case, the polarization P refers to the particle c in the direct reac-
tion with the unpolarized particles a and b, whereas the asymmetry A refers to the
particle a in the inverse reaction with polarized particles (Baz 1957).

If the interaction contains the term M(1), the equality P =AN is violated and is
replaced by the relation (for NN elastic scattering)

σ0(P −A)=−8 Im
(
M∗

T · h
)
. (2.141)

This relation should be tested at the angles at which h is noticeably nonzero.
Such a test is simplified if the unambiguous phase or amplitude analysis has been
performed.

2.7 Complete Set of Experiments

The idea of the complete set of experiments for the set of observables that com-
pletely and unambiguously determine the reaction matrix elements was first pro-
posed in Puzikov et al. (1957) and Smorodinskii (1960). In application to nucleon–
nucleon elastic scattering, the possible ways for reconstructing the matrix elements
were first proposed in Schumacher and Bethe (1961). We use these works to recon-
struct the nucleon–nucleon scattering amplitudes.
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The nucleon–nucleon elastic scattering matrix was constructed in Sect. 2.6,
where it was also shown that the total number of the independent complex am-
plitudes necessary for describing the p+p→ p+p reaction at a fixed angle and a
fixed energy is five. This means that ten real quantities, namely, five absolute values
of the amplitudes and five their phases, should be measured at a fixed angle and a
fixed initial energy. Hence, these ten observables constitute a minimum set for the
complete experiment. Pion–nucleon scattering is described by two amplitudes, and
the complete set should consist of no less than four observables. The complete set
for pion–pion scattering consists of only two observables. The number of the com-
ponents of the complete experiments generally depends on the spin of the interacting
particles. The number of observables in the complete set increases with the spin. It
is seen that most observables in the complete experiment are associated with spin,
i.e., spin carries rich information on interaction.

Let us consider the examples of complete experiments at fixed angles and fixed
initial energies.

2.7.1 Complete Experiment on pp Elastic Scattering at 0° in the
Center-of-Mass Frame. The Total Cross Sections for
Nucleon–Nucleon Interactions

First, the total cross section σT for the interaction between two particles with spin
1/2 should be a scalar. Second, it should be a linear function of the polarizations
of the initial particles, �P1 and �P2. Third, it should be composed of the kinematic
quantities determining the reaction (Bilenky and Ryndin 1963; Philips 1963). Thus,

σ = σ0 + σ1( �P1 · �P2)+ σ2( �P1 · �k)( �P2 · �k). (2.142)

Here, �k is the unit vector in the incident beam direction and σ0, σ1, and σ2 are
the experimentally measured parameters depending only on the initial beam energy.
Their meaning is as follows. By the definition, the polarization is the mean value of
the Pauli operator; hence,

( �P1 · �P2)=
〈
(�σ1 · �σ2)

〉= (
2�S2 − 3

)
,

( �P1 · �k)( �P2 · �k)=
〈
(�σ1 · �k)(�σ2 · �k)

〉= (
2(�S · �k)2 − 1

)
.

(2.143)

Here, �S = 1
2 (�σ1+ �σ2) is the total spin of two initial interacting nucleons. Accord-

ing to Eqs. (2.142) and (2.143),

( �P1 · �P2)=
∑

m

wt
m − 3ws, ( �P1 · �k)( �P2 · �k)=

∑

m

(−1)1+mwt
m −ws, (2.144)
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where ws and wt are the probabilities of finding the system of two nucleons in
the singlet and triplet states, respectively. Taking into account the normalization
condition ws +∑

mwt
m = 1, it follows from Eq. (2.145) that

ws = 1

4

(
1− ( �P1 · �P2)

)
,

wt
0 =

1

4

(
1+ ( �P1 · �P2)− 2( �P1 · �k)( �P2 · �k)

)
,

wt+ +wt− =
1

2

(
1+ ( �P1 · �k)( �P2 · �k)

)
.

(2.145)

Using expression (2.142) and the definition of the triplet projection operator, we
can show that wt+ =wt−.

Representing the total cross section in the form of the sum of the weighted cross
sections for the singlet and triplet states

σ =wsσ s +
∑

wt
mσ

t
m (2.146)

and substituting the expressions for ws and wt
m, we obtain

σ = σ0 + 1

4

(
σ t

0 − σ s
)
( �P1 · �P2)+ 1

2

(
σ t+ − σ t

0

)
( �P1 · �k)( �P2 · �k). (2.147)

Comparison of Eqs. (2.142) and (2.147) provides the following relation between
the coefficients:

σ1 = 1

4

(
σ t

0 − σ s
)

and σ2 = 1

2

(
σ t+ − σ t

0

)
. (2.148)

Thus, in an experiment with polarized nucleons, three total cross sections can
be measured for the cases: (a) both nucleons are unpolarized, (b) both nucleons are
polarized transversely to the beam, and (c) both nucleons are polarized along the
beam. These three experiments constitute the complete set for determining the total
cross sections for nucleon–nucleon interactions. As a result, σs , σ t

0, and σ t+ can be
reconstructed and their individual contributions to the usual (unpolarized) total cross
section σ0 can be determined:

σ0 = 1

4
σ s + 1

4
σ t

0 +
1

2
σ t+. (2.149)

The applications of the above relations are discussed in the section “Polarization
experiments and results.”

2.7.2 Forward NN -Scattering Amplitudes

In view of the symmetry condition, the forward scattering amplitudes satisfy the
conditions c(0) = d(0) = 0, b(0) = e(0) and the forward scattering matrix has the
form

M(�σ1, �σ2; �ki, �kf )= a(0)+ e(0)(�σ1 · �σ2)+
[
f (0)− e(0)

]
(�σ1 · �k)(�σ2 · �k). (2.150)
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The above unitarity condition (see matrix relation (2.87) in Sect. 2.4) applied to
matrix (2.150) leads to the following relations between the imaginary parts of the
amplitudes and total cross sections (optical theorem):

Ima(0)= k

4π
σT , Im e(0)= k

4π
σ1, Im

[
f (0)− e(0)

]= k

4π
σ2. (2.151)

Here, k is the wave number in the center-of-mass frame. Thus, the measurements
of three observables σ0, σ1, and σ2 allow one to reconstruct the imaginary parts of
three amplitudes a, e, and f of the forward pp elastic scattering.

The determination of three real parts of these amplitudes is necessary to com-
plete the reconstruction of the scattering matrix. This requires the measurements of
additional three parameters at very small angles (in the so-called Coulomb–nuclear
interference region). One of them is the differential cross section. Such a measure-
ment makes it possible to reconstruct the real part of the spin-independent ampli-
tude a(0). The measurements of two other parameters, for example, σ1 and σ2,
allow one to reconstruct the real parts of the amplitudes e and f through the dis-
persion relations. Another way is to measure the spin–spin correlation parameters
Aik (i, k = N,S,L) in the Coulomb–nuclear interference region. Here, N , S, and
L denote the initial-proton polarizations that are (N ) perpendicular to the reaction
plane, (S) transverse, and longitudinal (L) with respect to the initial momentum in
the reaction plane. Thus, the complete experiment on forward pp elastic scattering
is finished. This approach is obviously universal and can be applied at any initial
energy.

Unfortunately, such a complete experiment has not yet been performed at any
energy (except for the low-energy region, where the phase analysis has been per-
formed).

Relations (2.151) are useful in a number of cases. They impose additional con-
ditions on the phases in the phase analysis, which can be substantial when choosing
between several sets of phase solutions. The use of the dispersion relation allows the
reconstruction of the real parts Re a(0), Re e(0), and Ref (0), if the imaginary parts
of these amplitudes are known from the experimental data (these imaginary parts
appear in the integrands in the dispersion relations). The differential cross section
for forward proton–proton scattering is of great interest for theoretical analysis. At
the same time, a method for its direct measurement is absent and it is necessary to
use an extrapolation method; i.e., the differential cross sections for elastic scatter-
ing are measured down to extremely small angles for which reliable data are yet
obtained and, then, they are extrapolated to zero angle using a certain function, for
example, an exponential. To test the resulting cross section, relations (2.151) are
used as follows. The differential cross section for forward scattering can be written
in the form

dσ

dΩ
=
(

k

4π

)2(|a|2 + 2|e|2 + |f |2). (2.152)
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This expression contains the squares of the real and imaginary parts of each of
three amplitudes. The substitution of only imaginary parts from relations (2.151)
gives the inequality

dσ

dΩ
≥
(

k

4π

)2[
(σT )

2 + 2(σ1)
2 + (σ1 + σ2)

2]. (2.153)

This is the test relation that provides a lower limit and is widely used to measure
the differential cross sections for forward scattering.

2.7.3 Complete Set of Experiments on pp Elastic Scattering at 90°
in the Center-of-Mass Frame

One of the first attempts to solve this problem was made as early as in 1959 in
Nurushev (1959). We briefly repeat the way proposed in that work.

The following five parameters of pp elastic scattering were measured at an en-
ergy of 660 MeV and an angle of 90° (Azhgirey et al. 1963): differential cross
section I = (2.07± 0.03) mb/sr, spin correlation parameter Cnn = (0.93± 0.21),
depolarization parameter D = (0.93 ± 0.17), transverse polarization rotation pa-
rameter R = (0.26 ± 0.07), and longitudinal polarization rotation parameter A =
(0.20± 0.06). Using these five observables, one can reconstruct three absolute val-
ues and two relative phases of the nonzero amplitudes B , C and H (see Sect. 2.6
“Nucleon–nucleon scattering”). The phase of the amplitude B is taken to be zero.
Thus, the amplitudes (dimensionless) normalized to the cross section are given by
the formulas

|b|2 = |B|
2

4I
= 1

2
(1−Cnn), |c|2 = 2|C|2

I
= 1

4
(1+Cnn + 2D),

|h|2 = |H |
2

2I
= 1

4
(1+Cnn − 2D), sin(δC − δB)=−R+A

2dc
,

cos(δH − δB)= A−R

2bh
.

(2.154)

The substitution of the numerical values of the observables gives (Kumekin et al.
1954)

|b|2 = 0.35± 0.11, |c|2 = 1.00± 0.10, |h|2 = 0.02± 0.10,

sin δc = 0.39± 0.21, cos δh =−0.36± 0.18.

Comparison with similar data for lower energies shows (Nurushev 1959) that
the contributions from the triplet amplitudes c and h prevail in the energy range
under consideration, whereas the contribution from the singlet term b is smaller. The
terms h (tensor interaction) and c (spin–orbit interaction) dominate in the upper and
lower energy ranges, respectively.
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2.7.4 Complete Set of Experiments on pp Elastic Scattering at an
Arbitrary Angle in the Center-of-Mass Frame

In this section, we try to answer the question: How many and what particular ob-
servables should be measured at a given initial energy in order to reconstruct the
amplitude of nucleon–nucleon elastic scattering at an arbitrary angle θ in the center-
of-mass frame? More briefly, how many measurements constitute the complete set
of experiments? Unfortunately, the complete set of experiments has not yet been
performed for any energy above 3 GeV. The direct reconstruction of the elements of
the nucleon–nucleon scattering matrix from experimental data is the single method
of analysis at energies above the meson production threshold. In such an approach,
one common phase in the scattering matrix remains undetermined. It can be deter-
mined at energies below the meson production threshold by means of the unitarity
relation. The possibility of directly reconstructing the scattering amplitudes was dis-
cussed in Puzikov et al. (1957), Smorodinskii (1960), and Schumacher and Bethe
(1961). In the last work, 11 experimental observables (the differential cross section,
polarization, and components of the depolarization, polarization transfer, and polar-
ization correlation tensors) were used and the absolute values of five amplitudes, as
well as four relative phases, were unambiguously reconstructed. In agreement with
the expectations, one common phase was undetermined. According to Schumacher
and Bethe (1961), the complete set includes tensors up to the second order. The pos-
sibilities of simplifying the procedure for reconstructing the amplitudes with the use
of the polarization tensors of the third and fourth orders were considered in Bilenky
et al. (1965) and Vinternitts et al. (1965).

It is not excluded that theoretical ideas can noticeably reduce the number of nec-
essary experiments of the complete set at asymptotic energies.

Below, we discuss the method for reconstructing the scalar amplitudes of
nucleon–nucleon scattering in the relativistic case and present the particular sets
of the complete set of experiments. In this presentation, we follow Bilenky et al.
(1966).

We write the nucleon–nucleon scattering matrix in the form (Wolfenstein and
Ashkin 1952; Dalitz 1952)

M
( �p′, �p)= (u+ v)+ (u− v)(�σ1 · �n)(�σ2 · �n)+ c(�σ1 + �σ2) · �n

+ (g − h)(�σ1 · �m)(�σ2 · �m)+ (g + h)(�σ1 · �l)(�σ2 · �l). (2.155)

Here, the complex scalar scattering amplitudes u,v, c, g, and h are functions of
the energy and scattering angle θ . Our main aim is to express these amplitudes in
terms of experimental quantities. The unit vectors �n, �l, �m are given by the expres-
sions

�l = �p′ + �p
| �p′ + �p| , �m=

�p′ − �p
| �p′ − �p| , �n= �l × �m= �p× �p′

| �p× �p′| . (2.156)

These unit vectors defined in the center-of-mass frame are mutually orthogo-
nal. In the nonrelativistic approximation, the vectors �l and �m are directed along the
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scattered and recoil particle momenta in the laboratory frame, respectively. In the
relativistic case, this relation is invalid and an additional rotation angle appears.

The proton–proton scattering matrix should satisfy the Pauli exclusion principle:

M
( �p′, �p)=−Π(1,2)M

(− �p′, �p)=−M( �p′,− �p)Π(1,2). (2.157)

Here,

Π(1,2)= 1

2
(1+ �σ1 · �σ2) (2.158)

is the operator of the permutation of the spin variables. The substitution of pp-
scattering matrix (2.155) into relation (2.157) indicates that the scalar scattering
amplitudes satisfy the following symmetry conditions:

u(π − θ)=−u(θ), h(π − θ)= h(θ),

c(π − θ)= c(θ), v(π − θ)=−g(θ). (2.159)

It follows from these relations that, for example, three amplitudes, c, h and, e.g.,
g, are nonzero for an angle of 90°. Their reconstruction was considered above.

Neutron–proton elastic scattering was not discussed above. Such a discussion is
most appropriate with the isotopic invariance hypothesis. In this case, two isotopic
scattering matrices M1( �p′, �p) and M0( �p′, �p) with isospins 1 and 0, respectively, can
be introduced. Both matrices are written in the form, where the scalar amplitudes
have subscripts 1 and 0, and the matrix M1( �p′, �p) coincides with the pp-scattering
matrix. In this case, the np-scattering matrix is determined by the expression

Mnp

( �p′, �p)= 1

2

[
M1

( �p′, �p)+M0
( �p′, �p)]. (2.160)

The generalized Pauli exclusion principle can be applied to the isotopic scattering
matrices. Introducing the subscript i = 0,1, we write the Pauli condition as follows:

Mi

( �p′, �p)= (−1)iΠ(1,2)Mi

(− �p′, �p)= (−1)iMi

( �p′,− �p)Π(1,2). (2.161)

This condition provides the following constraints on the scalar scattering ampli-
tude in different isotopic states:

ui(π − θ)= (−1)iui(θ), hi(π − θ)= (−1)i+1hi(θ),

ci(π − θ)= (−1)i+1ci(θ), vi(π − θ)= (−1)igi(θ).
(2.162)

In the nonrelativistic approximation, the problem of the joint analysis of the pp-
and np-scattering data for reconstructing the scattering matrix was considered in
Kazarinov (1956) and Golovin et al. (1959).

A theoretical analysis of collisions between particles is usually performed in the
center-of-mass frame. However, observables such as cross sections and polarizations
are measured in the laboratory frame. Therefore, it is necessary to determine the
rules for the transition from one frame to the other taking into account the relativistic
kinematics and the specificity of the spin transformations. Let us consider particular
examples.



2.7 Complete Set of Experiments 89

According to the general rules, the mean value of any spin operator 〈�σ1L〉 is
expressed as

〈�σ1L〉�a′L = Tr
[�σ1

(�a′L
)
R
ρf

]
/Trρf . (2.163)

Here, ρf is the density matrix of the final state and �a′L is an arbitrary unit vector
in the laboratory frame (L frame). It is intended to measure the projection of the po-
larization vector of the first particle on this direction. The vector (�a′L)R =Rn(Ω

′)�a′L
includes the relativistic transformation of the spin vector and is obtained from the
vector �a′L by means of its rotation by the angle Ω ′ = θ − 2θL about a vector perpen-
dicular to the scattering plane. In the nonrelativistic limit, the center-of-mass scat-
tering angle θ is equal to 2θL, where θL is the laboratory scattering angle. Hence,
Ω ′ = 0 in this case.

For the measurement of the projection of the polarization vector of the recoil
particle (particle 2) on the direction of the unit vector �b′′L in the L frame, we have

〈�σ2L〉�b′′L = Tr
[�σ2

(�b′′L
)
R
ρf

]
/Trρf . (2.164)

It is intended to measure the projection of the polarization vector of the second
particle on this direction. The vector (�b′′L)R = Rn(Ω

′′)�b′′L includes the relativistic
transformation of the spin vector and is obtained from the vector �b′′L by means of its
rotation by the angle Ω ′′ = 2ϕL − ϕ about a vector perpendicular to the scattering
plane, where ϕ = π − θ and ϕL are the emission angles of the second particle in the
center-of-mass frame and L frame, respectively.

The correlation of polarization projections on the same unit vectors (�a′L, �b′′L) can
be measured in the experiment:

〈(�σ1 · �a′L
)(�σ2 · �b′′L

)〉= Tr
[(�σ1 ·

(�a′L
)
R

)(�σ2 ·
(�b′′L

)
R

)
ρf

]
/Trρf . (2.165)

Let us introduce the following three sets of the orthonormalized unit vectors in
the laboratory frame:

�nL, �kL, �sL = �nL × �kL, (2.166)

�nL, �k′L, �s′L = �nL × �k′L, (2.167)

�nL, �k′′L, �s′′L = �nL × �k′′L. (2.168)

Here, �kL, �k′L, �k′′L are the unit vectors in the directions of the momenta of the inci-

dent, scattered, and recoil nucleons, respectively, and �nL = �kL× �k′L/|
←
kL× �k′L| is the

unit vector perpendicular to the scattering plane; �nL = �n, where �n is the unit vector
perpendicular to the scattering plane in the center-of-mass frame. In the subsequent
presentation, the initial, scattered, and recoil particles are described in coordinate
systems (2.166), (2.167), and (2.168), respectively. When calculating observables,
we use tensors up to the second rank.

1. The zero-rank tensor is the differential cross section. It is given by the expression

σ0 = Trρf = 1

4
Tr
(
MM+)= 2

(|u|2 + |v|2 + |c|2 + |g|2 + |h|2). (2.169)

2. The first-rank tensors:
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(a) The initial particles are unpolarized. The i-th component of the polarization
of the scattered particle is measured. It is given by the expression

P1iσ0 = 1

4
Tr
(
σ1iMM+). (2.170)

(b) The initial particles are unpolarized. The i-th component of the polarization
of the recoil particle is measured. It is given by the expression

P2iσ0 = 1

4
Tr
(
σ2iMM+)= P1iσ0. (2.171)

(c) The incident (first) particle is polarized in the i-th direction. The target (sec-
ond) particle is unpolarized. The i-th component of the asymmetry is mea-
sured. It is given by the expression

A1iσ0 = 1

4
Tr
(
Mσ1iM

+). (2.172)

(d) The incident (first) particle is unpolarized. The target (second) particle is
polarized in the i-th direction. The i-th component of the asymmetry of the
recoil particle is measured. It is given by the expression

A2iσ0 = 1

4
Tr
(
Mσ2iM

+)=A1iσ0. (2.173)

3. The second-rank tensors:
(a) The depolarization tensor Dik . The first particle is polarized (component i)

in the initial state, and its polarization (component k) after scattering is mea-
sured. The expression for the tensor Dik has the form

Dikσ0 = 1

4
Tr
(
σ1iMσ1kM

+). (2.174)

(b) The depolarization tensor of the second particle D
(2)
ik . The second particle is

polarized (component i, the first particle is unpolarized) in the initial state,
and its polarization (component k) after scattering is measured. The expres-
sion for the tensor D(2)

ik has the form

D
(2)
ik σ0 = 1

4
Tr
(
σ2iMσ2kM

+)=Dikσ0. (2.175)

(c) The polarization transfer tensor from the first particle to the second Kik . The
first particle is polarized (the second particle is unpolarized) in the initial
state, and the polarization of the second particle after scattering is measured.
The expression for the tensor Kik has the form

Kikσ0 = 1

4
Tr
(
σ1iMσ2kM

+). (2.176)

(d) The polarization transfer tensor from the second particle to the first one K(2)
ik .

The second particle is polarized (the first particle is unpolarized) in the initial
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state, and the polarization of the first particle after scattering is measured.
The expression for the tensor K(2)

ik has the form

K
(2)
ik σ0 = 1

4
Tr
(
σ2iMσ1kM

+)=Kikσ0. (2.177)

(e) The polarization correlation tensor Cik . Both particles in the initial state are
unpolarized, and the correlation of their polarizations after scattering is mea-
sured. The expression for the tensor Cik has the form

Cikσ0 = 1

4
Tr
(
σ1iσ2kMM+). (2.178)

(f) The polarization correlation tensor C
(2)
ik . Both particles in the initial state

are unpolarized, and the correlation of their polarizations after scattering is
measured. The difference from (e) is that the Pauli operators are enclosed by
M matrices. The expression for the tensor C(2)

ik has the form

C
(2)
ik σ0 = 1

4
Tr
(
σ1iσ2kMM+). (2.179)

(g) The two-spin asymmetry tensor or asymmetry correlation tensor Aik . Both
particles in the initial state are polarized: the first and second particles are
polarized in the directions i and k, respectively. Asymmetry after scattering
is measured. The expression for the tensor Aik has the form

Aikσ0 = 1

4
Tr
(
Mσ1iσ2kM

+). (2.180)

(h) The two-spin asymmetry tensor A
(2)
ik . Both particles in the initial state are

polarized: the first and second particles are polarized in the directions k and i,
respectively. Asymmetry after scattering is measured. The expression for the
tensor A(2)

ik has the form

A
(2)
ik σ0 = 1

4
Tr
(
Mσ1kσ2iM

+)=Aikσ0. (2.181)

The requirements of the invariance of strong interactions under a number of con-
tinuous (isotropy and uniformity of space) and discrete (space inversion and time
reversal) transformations lead to relations between measured quantities. For exam-
ple,

Pi =Ai = Pni Cik

( �p′, �p)=Aik

(− �p,− �p′). (2.182)

For the case of the beam with polarization �P1 and the polarized target with polariza-
tion �P2 (or two colliding polarized proton beams with the indicated polarizations),
the general requirements of the invariance of the scattering matrix under the trans-
formations listed above in the parentheses provide the following expression for the
differential cross section

σ( �P1, �P2)= σ0
{
1+ P( �P1 + �P2) · �nL +Ann( �P1 · �nL)( �P2 · �nL)

+Ass( �P1 · �sL)( �P2 · �sL)+Akk( �P1 · �kL)( �P2 · �kL)
+Ask

[
( �P1 · �sL)( �P2 · �kL)+ ( �P1 · �kL)( �P2 · �sL)

]}
. (2.183)
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Here, P is the polarization appearing after the scattering of the unpolarized par-
ticles and

Aab = (�aL)iAik(�bL)k. (2.184)

For the measurements of the depolarization parameters Dik or the polarization
transfer tensor Kik , additional scattering is necessary in order to determine the po-
larization of the scattered particles. Such experiments are very difficult because,
first, luminosity in the second scattering process is low and, second, it is difficult to
find analyzers with a high analyzing power at high energies. This is one of the main
reasons why, for example, such experiments are not planned at the RHIC collider.
In contrast to these parameters, the asymmetry correlation tensor Aik is directly
measured at RHIC. For the measurements of, for example, the parameter All , the
polarization of both initial particles should be oriented along their momentum; i.e.,
both beams should be longitudinally polarized. To measure, for example, Asl , one
beam of particles should be polarized along the vector �s, and the other, along the
vector �l. All these possibilities can be implemented at the RHIC polarized particle
collider.

As mentioned above, the measurements of observables are carried out in the
laboratory frame, whereas all theoretical jobs with these quantities are performed in
the center-of-mass frame. Let us determine the transformations between these two
frames. First, we recall the relation between the triples of unit orthogonal vectors in
the laboratory and center-of-mass frames:

�nL = �n, �kL �= �k, �sL �= �s. (2.185)

Here, �k = �p/| �p| is the unit vector in the direction of the incident particle momen-
tum in the center-of-mass frame, �n is the unit vector perpendicular to the scattering
plane in this frame, and �s = �n × �k is the vector that is perpendicular to the mo-
mentum of the initial particles and lies in the scattering plane. Thus, we obtain the
relations

Ass = C+ −Clm sin θ −C− cos θ,

Akk = C+ +Clm sin θ +C− cos θ,

Ask =−Clm cos θ +C− sin θ.

(2.186)

Here,

C+ = 1

2
(Cll +Cmm), C− = 1

2
(Cll −Cmm). (2.187)

The components Ann and Cnn perpendicular to the scattering plane are the same
in both frames. The other components of the tensors satisfy the relations

C+ = 1

2
(Ass +Akk), (2.188)

Clm =−Ask cos θ + 1

2
(Akk −Ass) sin θ, (2.189)

C− =Ask sin θ + 1

2
(Akk −Ass) cos θ. (2.190)
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Here, the polarization correlation tensors Cik are expressed in terms of the asym-
metry correlation tensors Ann. This representation is reasonable. Indeed, the tensors
Cik can also be measured with the use of unpolarized initial particles. However,
this measurement requires the analysis of the final polarization (double scattering)
and, therefore, analyzing scattering. As mentioned above, such experiments are very
difficult. At the same time, it is easier to measure the parameters Ann (in single scat-
tering) and to determine Cik in terms of these parameters by the above formulas.

In the first experiments at low energies (beam kinetic energy 100–600 MeV), the
spin correlation tensor Cnn was measured and other parameters were measured later.
We consider these tensors:

Cs′s′′ =
(�s′L

)
Ri
Cik

(�s′′L
)
Rk

, Cs′k′′ =
(�s′L

)
Ri
Cik

(�k′′L
)
Rk

,

Ck′s′′ =
(�k′L

)
Ri
Cik

(�s′′L
)
Rk

, Ck′k′′ =
(�k′L

)
Ri
Cik

(�k′′L
)
Rk

.
(2.191)

Let us apply the rotation operator about the vector �n to an arbitrary vector �a and
represent the result in terms of three vectors:

Rn(Ω)�a = (�a · �n)�n(1− cos θ)+ �a cosΩ + (�n× �a) sinΩ. (2.192)

Using this relation and formulas (2.183), we can find that
(�k′L

)
R
=Rn

(
Ω ′)�k′L = �l cosα + �m sinα, (2.193)

(�s′L
)
R
=Rn

(
Ω ′)�s′L =−�l sinα + �m cosα. (2.194)

Here, the relativistic spin rotation angle is α = θ/2− θL, where θ and θL are the
particle scattering angles in the center-of-mass and laboratory frames, respectively.

Similar transformation formulas can be obtained for the recoil particle:
(�k′′L

)
R
=Rn

(
Ω ′′)�k′′L =−�l sinα′ − �m cosα′, (2.195)

(�s′′L
)
R
=Rn

(
Ω ′′)�s′′L = �l cosα′ − �m sinα′. (2.196)

Here, the relativistic spin rotation angle is α′ = ϕ/2−ϕL, where ϕ and ϕL are the
scattering angles of the recoil particle in the center-of-mass and laboratory frames,
respectively.

We emphasize two features. First, relativistic spin precession (Thomas preces-
sion) concerns only the polarization components lying in the scattering plane and
does not involve its normal component. Second, in the nonrelativistic limit, angles
are α = α′ = 0 and Thomas precession at low energies does not affect observables.
In the nonrelativistic case, we have the equalities

(�k′L
)
R
= �l, (�s′L

)
R
= �m,

(�k′′L
)
R
=−←

m,
(�s′′L

)
R
= �l. (2.197)

Let us express experimentally measured quantities (2.189) in terms of the tensors
in the center-of-mass frame using relations (2.191)–(2.194). The desired formulas
have the form

Cs′s′′ = −C+ sin
(
α + α′

)+Clm cos
(
α − α′

)−C− sin
(
α − α′

)
. (2.198)

Cs′k′′ = −C+ cos
(
α + α′

)+Clm sin
(
α − α′

)+C− cos
(
α − α′

)
. (2.199)
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Ck′s′′ = C+ cos
(
α + α′

)+Clm sin
(
α− α′

)+C− cos
(
α− α′

)
. (2.200)

Ck′k′′ = −C+ sin
(
α + α′

)−Clm cos
(
α − α′

)+C− sin
(
α − α′

)
. (2.201)

It is easy to verify that the observables are related as

(Cs′s′′ +Ck′k′′)/(Cs′k′′ −Ck′s′′)= tan
(
α + α′

)
. (2.202)

Hence, the number of the independent observables is three rather than four.
Let us solve the inverse problem, i.e., express three parameters C+,, C−, Clm in

terms of the observables Cs′s′′ , Cs′k′′ , and Ck′s′′ . Using relations (2.196)–(2.199), we
obtain

C+ = (Ck′s′′ −Cs′k′′)/2 cos
(
α + α′

)
, (2.203)

C− = 1

2
(Cs′k′′ +Ck′s′′) cos

(
α− α′

)

−
[

Cs′s′′ + 1

2
tan

(
α + α′

)
(Ck′s′′ −Cs′k′′)

]

sin
(
α− α′

)
, (2.204)

Clm = 1

2
(Cs′k′′ +Ck′s′′) sin

(
α − α′

)

+
[

Cs′s′′ + 1

2
tan

(
α + α′

)
(Ck′s′′ −Cs′k′′)

]

cos
(
α − α′

)
. (2.205)

Now, we consider the case with the polarized beam and unpolarized target. The
polarization components of the scattered particles are measured after collisions. In
view of invariance, these components can be written in the form

σ( �P1)〈�σ1〉L · �nL = σ0
(
P +Dnn( �P1 · �nL)

)
, (2.206)

σ( �P1)〈�σ1〉L · �k′L = σ0
(
Dk′k( �P1 · �kL)+Dk′s( �P1 · �sL)

)
, (2.207)

σ( �P1)〈�σ1〉L · �s′L = σ0
(
Ds′k( �P1 · �kL)+Ds′s( �P1 · �sL)

)
. (2.208)

Here, σ( �P1) is the differential cross section for the scattering of particles with
polarization �P1 arbitrarily oriented in space on the unpolarized target; it is given by
the expression

σ( �P1)= σ0
(
1+ P( �P1 · �n)

)
. (2.209)

Taking certain components of the initial and final polarizations, we arrive at the
known Wolfenstein parameters:

Dnn =D = (�nL)iDik(�nL)k, Ds′s =R = (�s′L
)
Ri
Dik(�sL)k; (2.210)

Ds′k =A= (�s′L
)
Ri
Dik(�kL)k, Dk′s =R′ = (�k′L

)
Ri
Dik(�sL)k; (2.211)

Dk′k =A′ = (�k′L
)
Ri
Dik(�kL)k. (2.212)

The spin rotation parameters (A,R,A′,R′) contain the final unit vectors with
the subscript R, which means the necessity of the inclusion of the relativistic spin
rotation in the reaction plane.
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Referring readers interested in the details of the derivation of the following for-
mulas to Bilenky et al. (1965), we present the expressions of physical observables
in terms of the scattering amplitude in the relativistic case:

σ0 = 2
(|u|2 + |v|2 + |c|2 + |g|2 + |h|2), (2.213)

σ0Dnn = 2
(|u|2 + |v|2 + |c|2 − |g|2 − |h|2), (2.214)

σ0Knn = 2
(|u2| − |v|2 + |c|2 + |g|2 − |h|2), (2.215)

σ0Cnn = 2
(|u2| − |v|2 + |c|2 − |g|2 + |h|2), (2.216)

σ0P = 4 Re cu∗, (2.217)

σ0D+ = 4 Reuv∗, (2.218)

σ0D− = 4 Regh∗, (2.219)

σ0Dlm = 4 Im cv∗, (2.220)

σ0K+ = 4 Reug∗, (2.221)

σ0K− = 4 Revh∗, (2.222)

σ0Klm = 4 Im cg∗, (2.223)

σ0C+ = 4 Revg∗, (2.224)

σ0C− = 4 Reuh∗, (2.225)

σ0Clm =−4 Im ch∗. (2.226)

These 14 experimental observables are used to reconstruct five amplitudes and
their phases. In this case, one common phase remains undetermined. Fundamentally,
it also can be reconstructed. However, this problem is not discussed here.

One of the variants of reconstruction of the amplitudes is as follows (for details,
see Bilenky et al. 1966):

|g|2 = 1

8
σ0(1+Knn −Dnn −Cnn); (2.227)

|h|2 = 1

8
σ0(1−Knn −Dnn +Cnn); (2.228)

|v|2 = 1

8
σ0(1−Knn +Dnn −Cnn); (2.229)

|u|2 + |c|2 = 1

8
σ0(1+Knn +Dnn +Cnn). (2.230)

For further analysis, it is necessary to fix the phase of any of five amplitudes. For
example, let the amplitude c be real positive. This means that the scattering matrix
is determined up to the phase of the amplitude c. Under this condition, we obtain

Reu= 1

4c
σ0P, Imh= 1

4c
σ0Clm, (2.231)

Imv =− 1

4c
σ0Dlm, Img =− 1

4c
σ0Klm. (2.232)
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For further calculations, we write the following identity for any two complex
quantities:

|x|2|y|2 − (
Rexy∗

)2 = |x|2(Imy)2 + |y|2(Imx)2 − 2 Rexy∗ Imx Imy. (2.233)

Taking x = g and y = h and using Eqs. (2.231) and (2.232), we obtain

c2 = |g|
2M2 − |h|2N2 − 2 Regh∗MN

|g|2|h|2 − (Regh∗)2
. (2.234)

Here, the quantities |g|2, |h|2, and Regh∗ were determined above and

M = 1

4
σ0Clm, N =−1

4
σ0Klm. (2.235)

It remains to determine the signs of the quantities

Imu, Reh, Rev, Reg. (2.236)

One relation can be written immediately in the form

Regh∗ = RegReh+ Img Imh= 1

4
σ0D−. (2.237)

Using Eq. (2.218), we can determine the signs of Imu and Rev. Any unused
equation from the set of Eqs. (2.213)–(2.226) can be used to eliminate the remaining
ambiguity.

Thus, the problem of the relativistic reconstruction of the nucleon–nucleon scat-
tering matrix has been solved in the general form. Since the volume of the book is
limited, we omit such interesting problems as the reconstruction of the amplitudes
by means of the measurements of the polarization parameters of the recoil particles
and the joint analysis of pp and np scatterings using isotopic invariance.

2.8 Partial Wave Analysis

The results of polarization experiments on the elastic scattering of nucleons in the
low-energy range (0.1–10 GeV) were considered using the partial wave analysis
(Hoshizaki 1968; Matsuda 1993). In this method, the scattering amplitude is ex-
panded in terms of the eigenfunctions of the complete set of conserving operators
and the expansion coefficients are the elements of the scattering matrix S.

These elements are expressed in terms of the phase shifts, which contain com-
plete information on the interaction process. There are several reasons to apply this
method. First, the number of the phases directly depends on the maximum orbital
angular momentum Lmax in the interaction. According to nonrelativistic quantum
mechanics, Lmax is related to the impact parameter b as (Lmax + 1

2 )�≈ bpi , where
pi is the incident particle momentum in the center-of-mass frame. According to this
relation, Lmax increases with energy; thus, the phase analysis becomes impossible
when the number of free parameters is equal to or larger than the number of ex-
perimental points. The situation is further complicated at energies above the meson
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production threshold, when the phases become complex. This is the main reason
why the phase analysis is not applied for high energies.

Nevertheless, the phase analysis was widely used for low energies in 1950–1960
for several reasons. First, the number of the phases and, correspondingly, the num-
ber of free parameters are small for low energies. For example, taking b = 1.5 �

mπc

for the impact parameter, we can estimate Lmax = 1 and 3 at the kinetic energy
T = 50 and 300 MeV, respectively. Hence, it is easy to perform the phase analysis.
The second important reason to perform this analysis is that the phases, being de-
pendent on the impact parameter, make it possible to scan the internal structure of
the nucleon. If the particles pass at a large distance from each other, the interaction
between them is weak and the phases are small. On the contrary, for the central col-
lision (L= 0), the phases are expected to be large. Deviations from this picture are
obviously possible, for example, in the presence of repulsion forces or when reso-
nances are formed. The third reason to perform the phase analysis at low energies
is that the angular dependence of any observable can be calculated (predicting its
behavior) using a few phases and, then, the calculation can be compared with exper-
imental data. Fourth, any theoretical model should be tested on the phase analysis
data if the phase analysis is unambiguous.

Let us express the scattering matrix elements in terms of the phase.
In view of the unitarity of the S-matrix, it can be written in terms of the phase

operator δ as follows:

S = eiδ. (2.238)

The nucleon–nucleon interaction matrix should conserve the total angular mo-
mentum J , total spin S, and parity Π = (−1)l . The requirement of the antisymmetry
under the permutation of two nucleons leads to the relation

(−1)S+1+T+1Π = (−1)S+T+L =−1. (2.239)

Here, T is the isospin of the system of two nucleons. Relation (2.239) should be
applied separately for the system of two nucleons in the initial and final states. Tak-
ing into account this relation, the elements of the S-matrix can be characterized by
three quantum numbers: the total angular momentum J , the total spin of the system
of two nucleons S, and the orbital angular momentum L, because T is unambigu-
ously determined from the above relation; i.e., T can be omitted when specifying
the elements of the S-matrix.

Let us consider the matrix M defined by the expression

M( �pf , �pi)= 2π

ik
〈θf ϕf |S − 1|θiϕi〉. (2.240)

Here, |θiϕi〉 and 〈θf ϕf | are the wave functions of the initial and final system of
two nucleons, respectively; and θn, ϕn, where n = i, f , are the angles of the mo-
menta �pi , �pf . The elements of this matrix in spin space are given by the expression

〈
Sms

∣
∣M( �pf , �pi)

∣
∣S′m′s

〉= 2π

ik

〈
θf ϕf ,Sms

∣
∣e2iδ − 1

∣
∣S′m′s , θiϕi

〉
. (2.241)
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This expression can be rewritten in terms of the spherical functions of the angles
using the properties of the completeness and orthogonality of the wave functions

2π

ik

∑
〈θf ϕf |LmL〉〈LmLSmS |LSJmJ 〉〈LSJmJ |e2iδ − 1

∣
∣L′S′J ′m′J

〉

× 〈
L′S′J ′m′J

∣
∣L′m′LS′m′S

〉〈
L′m′L

∣
∣θiϕi

〉
. (2.242)

Here,

〈θϕ|LmL〉 = Y
mL

L (θ,ϕ). (2.243)

Below, we use the following notation for the Clebsch–Gordan coefficients ap-
pearing in expression (2.242):

CLS(JmJmLmS)= 〈LmLSmS |LSJmJ 〉. (2.244)

The quantization axis is usually taken in the direction of the incident particle
momentum; in this case, the angles θi and ϕi are zero and the angles θf and ϕf are
the scattering angles of the final particles. After these simplifications, since S, J ,
and mJ are conserving quantum numbers, expression (2.242) can be represented in
the form
〈
Sms

∣
∣M( �pf , �pi)

∣
∣S′m′s

〉

= δSS′
4π

ik

∑

L

L+S∑

J=|L−S|

L+S∑

L′=|J−S|

√
2L′ + 1

4π
Y
m′s−ms

L (θ,ϕ)

×CLS

(
J,m′s ,m′s −ms,ms

)
CLS

(
J,m′s ,0,ms

)〈
LSJm′s

∣
∣e2iδ − 1

∣
∣L′SJm′s

〉
.

(2.245)

The summation should be performed taking into account antisymmetry condition
(2.239) and that the scattering matrix elements are independent of the projection of
the total angular momentum, mJ , due to the isotropy of space. The nonzero elements
of the matrix S − 1 are denoted as

RL =
〈
L0LmJ

∣
∣e2iδ − 1

∣
∣L0LmJ

〉;
RLJ =

〈
L1JmJ

∣
∣e2iδ − 1

∣
∣L1JmJ

〉; (2.246)

−RJ± =RJ = 〈
J ± 1,1, J,mJ

∣
∣e2iδ − 1

∣
∣J ∓ 1,1, J,mJ

〉
.

Time reversal invariance leads to the equality RJ+ = RJ− = RJ . For further sim-
plification, we introduce the following notation for the triplet and singlet elements:

Mmsm′s =
〈
1ms

∣
∣M

∣
∣1m′s

〉
, Mss = 〈00|M|00〉. (2.247)

As a result, the nonzero matrix elements for the singlet and triplet states can be
written in the form

Mss = 2π

ik

∑
√

2L+ 1

4π
RLY

0
L(θ,ϕ) (2.248)

for the singlet transitions and
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Mmsm′s =
2π

ik

∑

L

[
L+1∑

J=L−1

√
2L+ 1

4π
CL1

(
J,m′s ,m′s −ms,ms

)
CL1

(
J,m′s ,0,ms

)
RLJ

−
1∑

J=L±1

√
2L′ + 1

4π
CL1

(
J,m′s ,m′s −ms,ms

)
CL1

(
J,m′s ,0,ms

)
RJ

]

× Y
m′s−ms

L (θ,ϕ) (2.249)

for the triplet transitions. Here, L′ = 2J − L in the second term. When applying
these formulas to pp elastic scattering, it is necessary to take into account two cir-
cumstances. First, two protons are identical; therefore, measuring instruments can-
not determine which proton, from the beam or from the target, is detected. As a
result, the number of counts is twice as large as that following from the above con-
sideration. Thus, to compare with the theoretical cross section, the measured cross
sections should be halved. The second circumstance is associated with the antisym-
metry condition (Pauli exclusion principle). Owing to this circumstance, the partial
amplitudes with spins S = 0 and 1 include only even and odd orbital angular mo-
menta, respectively. Since the orbital angular momentum is not conserved, for a
given total angular momentum J in the triplet state, there are two states differing
in the orbital angular momentum. As an example, we point to the states 3P2–3F2,
3F4–3H4, etc. of the pp system. For each pair of such states, the mixed transitions
3P2 ↔3 F2, 3F4 ↔ 3H4 are possible in addition to the direct transitions 3P2 → 3P2,
3F2 → 3F2. Correspondingly, the phases describing the direct transitions should
be supplemented by additional parameters for describing the mixed transitions.
Such parameters are called mixing parameters and are usually denoted as εJ . To
describe the mixed transitions in the absence of inelastic channels, the following
two-dimensional symmetric unitary submatrix is introduced:

SJ − 1=
∣
∣
∣
∣
∣

RJ−1,J −RJ

−RJ RJ+1,J

∣
∣
∣
∣
∣
. (2.250)

An unambiguous method for parameterizing this matrix in terms of the phase is
absent. One of the methods was proposed by Blatt and Weisskopf (1952) and Blatt
and Biedenharn (1952). This method is the diagonalization of the matrix by means
of a unitary transformation

SJ =GS′JG−1, (2.251)

where

S′J =
∣
∣
∣
∣
∣

e2iδJ−1,j 0

0 e2iδJ+1,j

∣
∣
∣
∣
∣
, G=

∣
∣
∣
∣
cos εJ − sin εJ
sin εJ cos εJ

∣
∣
∣
∣ . (2.252)

This set of phase shifts is called the proper phase shift and is convenient if the
Coulomb interaction can be neglected.

Another parameterization variant was proposed in Stapp et al. (1957) in the form

SJ = S̃′J G̃S̃′J , (2.253)



100 2 Spin in Strong Interactions

where

S̃′J =
∣
∣
∣
∣
∣

eiδ̄J−1,j 0

0 eiδ̄J+1,j

∣
∣
∣
∣
∣
, G̃=

∣
∣
∣
∣
∣

cos 2ε̄J i sin 2ε̄J
i sin 2ε̄J cos 2ε̄J

∣
∣
∣
∣
∣
. (2.254)

This parameterization is favorable over parameterization (2.252), because it pro-
vides the estimation of the mixing parameters for low orbital angular momenta
(where the nuclear interaction prevails over the Coulomb interaction) in the pure
form (without the Coulomb contribution). An additional advantage of this param-
eterization is that it allows one to more clearly separate the nuclear and Coulomb
contributions. For this reason, this parameterization is more often used in the phase
analysis.

The relation between representations (2.251) and (2.253) can be found by equat-
ing them to each other, because they are the elements of the same matrix. This
relation is expressed as follows:

δJ−1,J + δJ+1,J = δ̄J−1,J + δ̄J+1,J ,

sin(δJ−1,J − δJ+1,J )= sin 2ε̄J / sin 2εJ ,

sin(δ̄J−1,J − δ̄J+1,J )= tan 2ε̄J / tan 2εJ .

(2.255)

Table 2.1 presents the elements of the matrix M in terms of the partial waves h.
These matrix elements can also be used in the case of neutron–proton elastic scat-
tering with three changes: (a) the Coulomb amplitudes are neglected, (b) all sums
over the even or odd L values are extended over all L values (even and odd), and
(c) the resulting sums are multiplied by a factor of 1/2.

The partial nuclear amplitudes h are expressed in terms of the scattering phases
by the formulas

2ikhl =
(
e2iδ̄Nl − 1

)
e2iΦl (2.256)

for the singlet states and

2ikhlj =
(
e

2iδ̄Nlj − 1
)
e2iΦl (2.257)

for the triplet states.
For the mixed singlet–triplet states,

2ikhj±1,j =
(
cos 2εNj e

2iδ̄Nj±1,j − 1
)
e2iΦl (2.258)

2khj = sin 2εNj e
i(δ̄Nj−1,j+δ̄Nj+1,j ), (2.259)

where εNj is the mixing parameter for the total angular momentum j and the super-
script N means that this parameter refers to pure nuclear scattering.

The Coulomb amplitudes are defined as follows:

fc(θ)= −n
k(1− cos θ)

e−in log[(1−cos θ)/2], (2.260)

where n= e2

�v
and v is the relative velocity in the center-of-mass frame. The sym-

metrized and antisymmetrized Coulomb amplitudes used in the partial wave analy-
sis are presented in Table 2.1.
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Table 2.1 Singlet–triplet matrix elements for pp elastic scattering in terms of the partial ampli-
tudes h. The Coulomb interaction contributions are presented in the explicit form with allowance
for the identity of protons

1 Mss = fc,s + 2
∑

even l (2l + 1)hlPl

2 M11 = fc,a +∑
odd l[(l + 2)hl,l+1 + (2l + 1)hl,l + (l − 1)hl,l−1

−√(l + 1)(l + 2)hl+1 −√(l − 1)lhl−1]Pl

3 M00 = fc,a + 2
∑

odd l[(l + 1)hl,l+1 + lhl,l−1 + (l − 1)hl,l−1

+√(l + 1)(l + 2)hl+1 +√(l − 1)lhl−1]Pl

4 M01 =
√

2
∑

odd l[− l+2
l+1hl,l+1 + 2l+1

l(l+1) hl,l + l−1
l
hl,l−1

+
√

l+2
l+1h

l+1 −
√

l−1
l
hl−1]P 1

l

5 M10 =
√

2
∑

odd l[hl,l+1 − hl,l−1 +
√

l+2
l+1h

l+1 −
√

l−1
l
hl−1]P 1

l

6 M1−1 =∑
odd l[ 1

l+1hl,l+1 − 2l+1
l(l+1) hl,l + 1

l
hl,l−1

− 1√
(l+1)(l+2)

hl+1 − 1√
(l−1)l

hl−1]P 2
l

7 M11 −M00 −M1−1 −
√

2ctgθ(M10 +M01)= 0

8 fc,s = fc(θ)+ fc(π − θ), fc,a = fc(θ)− fc(π − θ), where fc is
the Coulomb amplitude

Pl , P 1
l , and P 2

l are the associated Legendre polynomials of the zeroth, first, and second orders,
respectively

Let us consider the separation of the Coulomb and nuclear contributions in the
phase analysis. Since Coulomb forces are long-range and nuclear forces are short-
range, i.e., they weakly overlap, it is usually accepted that the pure nuclear, δ̄N , and
Coulomb, φ, phases are added. In this case,

δ̄NL = δ̄L − φL, δ̄NJL = δ̄JL − φL, ε̄NJ = ε̄J . (2.261)

These phases denoted by the overlined symbols with the superscript N are called
pure nuclear phases. The Coulomb phases are calculated by the formula (Stapp et
al. 1957):

φL ≡ ηL − η0 =
L∑

x=1

atan

(
n

x

)

. (2.262)

Here, n= e2

�v
and v is the relative velocity. Let us introduce the Coulomb scatter-

ing matrix by the formula Rc = Sc − 1. Then, the general reaction matrix is written
in the form

R = S − 1= ε+Rc, α = S −Rc, (2.263)

where ε is the mixing parameter for a given j value.
The matrix α corresponding to pure nuclear scattering can be expanded in partial

waves, whereas Rc is calculated exactly and is given by the expression
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Table 2.2 Expressions for
experimentally measured
quantities in terms of the
amplitude of the pp elastic
scattering matrix in the
nonrelativistic case

1 σ0 = |a|2 + |b|2 + 2|c|2 + |e|2 + |f |2
2 σ0Dnn = |a|2 + |b|2 + 2|c|2 − |e|2 − |f |2
3 σ0Dll = |a|2 − |b|2 − |e|2 + |f |2
4 σ0Dmm = |a|2 − |b|2 + |e|2 − |f |2
5 σ0Dml = 2 Im c∗(a − b)

6 σ0P0 = 2 Re c∗(a + b)

7 σ0Cml = 2 Im c∗(e− f )

8 σ0Kml = 2 Im c∗(e+ f )

9 σ0Cnn\2= Reab∗ + |c|2 −Re ef ∗

10 σ0Knn\2= Reab∗ + |c|2 +Re ef ∗

11 σ0Cll\2= Reaf ∗ −Rebe∗

12 σ0Kll\2= Reaf ∗ +Rebe∗

13 σ0Cmm\2= Reae∗ −Rebf ∗

14 σ0Kmm\2= Reae∗ +Rebf ∗

〈f |Rc|i〉 = ik

2π
fc(θ), fc(θ)=− n

k(1− cos θ)
exp

[

−in log

(
1− cos θ

2

)]

.

(2.264)

The partial amplitudes h are calculated using formulas (2.246), (2.253), and
(2.261), as well as the relation α = 2ikh. These expressions have the form

hL = 1

2ik

[
exp

(
2iδNL

)− 1
]

exp(2iφL) (2.265)

for the singlet state and

hLJ = 1

2ik

[
exp

(
2iδ̄NLJ

)− 1
]

exp(2iφL),

hJ±1,J = 1

2ik

[
cos 2εNJ exp

(
2iδ̄NJ±1,J

)− 1
]

exp(2iφJ±1),

hJ = 1

2ik

[
sin 2εNJ exp

(
iδ̄NJ−1,J + iδ̄NJ+1,J

)]

(2.266)

for the triplet state.
These relations make it possible to express the elements of the matrix M in terms

of the phase shifts; hence, experimental observables are determined in terms of the
phases. Thus, the phase analysis is possible.

Table 2.2 presents the expressions for measured quantities in terms of the ampli-
tudes a, b, c, e, and f expressed through linear relations with the matrix elements
presented in Table 2.1. Hence, experimental data can be used either for the phase
analysis or for direct reconstruction of the amplitudes.
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2.9 Relativistic Pion–Nucleon Scattering Matrix

In the preceding sections, we consider pion–nucleon scattering in the nonrelativistic
case, where the kinetic energy of a particle is much lower than its rest energy. This
approach was appropriate in the early 1950s, when synchrocyclotrons accelerated
protons up to energies 200–300 MeV. However, the kinetic energy of accelerated
protons reached the rest energy in the mid-1950s and, then, became much higher
than the rest energy. Theoreticians foresaw this situation and developed the covari-
ant formulation for the density and scattering matrices, which made it possible to
analyze processes at relativistic energies. The main results of such an analysis con-
firmed the applicability of the nonrelativistic approach in the center-of-mass frame,
and the relativistic corrections were reduced to an additional rotation angle. Such
corrections refer to the observables that involve the polarization components in the
scattering plane (parameters A and R), whereas the parameters that involved only
polarization components perpendicular to the scattering plane (parameters P , DNN ,
and CNN ) remain unchanged.

Below, we apply the relativistic description to the reaction

a(0)+ b(1/2)= a(0)+ b(1/2) (2.267)

(the spins of the particles are given in the parentheses) proposed in Stapp (1956).
Since the particle b is a Dirac particle with spin 1/2, it is described by a four-
component wave function ψ . The wave function of a free incident (or initial) particle
(with positive energy) can be written in the form

ψ = exp(if · x)
2∑

i=1

AiUi, (2.268)

whereas the wave function of an antiparticle (with negative energy) has the form

ψ = exp(−if · x)
4∑

i=3

AiUi. (2.269)

Here, f ( �f,f0) is the four-momentum of the particle in the base frame, where it
is measured (for example, in the laboratory frame), such that f0 > 0; x are four-
dimensional space coordinates. Each spinor Ui has four components Usi given by
the expressions

Usi(f )= (∓if · γsi +m)/
[
2m(f0 +m)

]
. (2.270)

Hereinafter, the upper sign (−) refers to the subscripts i = 1,2 (positive energy),
whereas the lower sign (+), to the subscripts i = 3,4 (negative energy). The sub-
scripts in the four-vector γ (−iβ �α,β) denote its matrix elements and m is the mass
of the Dirac particle. The spinors are normalized in the covariant form as follows:

U+i (f )Uj (f )=U∗i (f )βUj (f )=±δij . (2.271)

The sign (+) in the spinor means complex conjugation and transposition (in-
terchange of the columns and rows of the matrix), i.e., Hermitian conjugation
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U+ = U∗β . Using formula (2.270), it is easy to verify that the spinors Ui satisfy
the Dirac equation

(±if · γ +m)Ui(f )= 0. (2.272)

To make the below expressions shorter, we introduce the notation

γ (ν)= (γ · ν)/√(v · v). (2.273)

The denominator on the right-hand side can be either a positive real number or a
positive imaginary number. With this symbol, the Dirac equation is represented in
the shorter form

γ (f )Ui =±Ui. (2.274)

The wave function of the initial state of the pion–nucleon system was introduced
above (see Eqs. (2.268) and (2.269)). Let Φ be the wave function of the final state
of the same system. The relation between these two functions is determined by the
reaction matrix S(f ′, t, f ):

Φ
(
f ′
)= S

(
f ′, t, f

)
Ψ (f ). (2.275)

The theory of “holes” requires that the Dirac particle described by a plane wave
with the momentum f at time T =−∞ and by a plane wave with the momentum
f ′ at time T = +∞ has the same sign of energy. This means that the transition
of the particle to the antiparticle and vise versa is forbidden. This does not mean
that the scattering matrix cannot describe the production of a particle. However, in
this particular case, we analyze elastic processes and imply this exclusion, which is
mathematically written in the form

S
(
f ′, t, f

)= γ
(
f ′
)
S
(
f ′, t, f

)
γ (f ). (2.276)

Introducing the new symbol

γ (u,w)= γ
(
u/
√|u · u| +w/

√|w ·w|)= [
γ (u)+ γ (w)

]
(2.277)

and taking into account the relations

γ (u)γ (u)= 1= γ (w)γ (w), (2.278)

we obtain

γ (u)γ (u,w)= γ (u,w)γ (w). (2.279)

The new scattering matrix Sq(k
′, t, k) is introduced through the relation

S
(
f ′, t, f

)= γ
(
f ′, t

)
Sq
(
k′, t, k

)
γ (t, f ). (2.280)

This matrix Sq(k
′, t, k) is the scattering matrix in the center-of-mass frame with

the relative momenta �k and �k′ before and after scattering, respectively, and the total
energy t in the center-of-mass frame.

Then, the substitution of Eq. (2.280) into Eq. (2.276) provides the condition of
the exclusion of the particle–antiparticle transition in the form

Sq
(
k′, t, k

)= γ (t)Sq
(
k′, t, k

)
γ (t). (2.281)



2.9 Relativistic Pion–Nucleon Scattering Matrix 105

For a deeper insight into the meaning of this matrix, we substitute relation (2.281)
into relation (2.280) and obtain

S
(
f ′, t, f

)= (
γ
(
f ′, t

)
γ (t)

)
Sq
(
k′, t, k

)(
γ (t)γ (t, f )

)
. (2.282)

The transformation (γ (t)γ (t, f )) relates the rest frame of the initial particle (Ri

frame) with the center-of-mass frame (C frame for brevity). The transformation
(γ (f ′, t)γ (t)) relates the Rf ′ frame to the C frame. To verify this, we write the
Lorentz transformation

L(f )= exp

[

−1

2
θ(�α · �f )/| �f |

]

. (2.283)

This expression is modified as

L(f )= β(−iγ · f +mβ)/
[
2m(f0 +m)

]
. (2.284)

In the C frame, t (0, t0) and γ (t) = β and it can be shown that the following
equality takes place:

γ (t1)γ (t1, f1)= L(f1), γ
(
f ′1, t1

)
γ (t1)= L−1(f ′1

)
. (2.285)

Subscript 1 means that the quantities are taken in the C frame. Thus, the scatter-
ing matrix can be written in the form

S
(
f ′1, t1, f1

)= L−1(f ′1
)
Sq
(
k′1, t1, k1

)
L(f1). (2.286)

Now, this expression can be interpreted as follows. The S-matrix in the C frame
is the product of two Lorentz transformations and the scattering matrix Sq . The
Lorentz transformation L(f1) transforms the spinor of the initial particle from the
C frame to the Rf1 frame, i.e., to the rest frame of the initial particle, where spin is
physically defined. Then, the unitary operator Sq describes the effect of scattering
on this spinor. Finally, the second Lorentz transformation transforms the spinor of
the final particles to the C frame.

Since the S-matrix specified by expression (2.275), as well as the γ matrix, has
the covariant form, the new matrix Sq(k

′, t, k) should also be covariant.
It is a 4 × 4 matrix and can be expanded in 16 Dirac matrices constituting a

complete set:

Sq
(
k′, t, k

)=A+Bμγμ + 1

2
Cμνσμν +Dμ(iγ5γμ)+Eγ5. (2.287)

As expected in the general case, we have 16 coefficients, which are functions of

the relative momenta �k and �k′ and the total energy in the center-of-mass frame, t .
These 16 coefficients are the scalar parameter A, pseudoscalar E, 4 components
of the vector B,4 components of the pseudovector D, and 6 components of the
antisymmetric tensor C. Condition (2.281) implying the conservation of the sign of
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the total energy before and after reaction (a particle cannot become the antiparticle
and vise versa) leads to the following constraints on the coefficients:

Bμ = −iNB(Btμ),

Cμν = NCC

{

kμk
′
ν − kνk

′
μ

(m2 −μ2)

|t · t | · [tμ
(
k′ν − kν

)− tν
(
k′μ − kμ

)]
}

,

Dμ = NDD(−i)kλk′ρtσ εμλρσ ≡Dnμ, E = 0.

(2.288)

Here, εμλρσ is the antisymmetric tensor and n is the four-dimensional unit pseu-
dovector, which is the generalization of the nonrelativistic three-dimensional pseu-
dovector �n perpendicular to the scattering plane. This relativistic pseudovector n has
the properties

(k · n)= (
k′ · n)= (t · n)= (1− n · n)= 0. (2.289)

The coefficients B,C, and D, as well as A, are scalar functions of the energy and
scattering angle and μ is the pion mass. The normalization coefficients NB , NC , and
ND are chosen so that the following equalities are satisfied:

BμB
μ = B2, CμC

μ = 2C2, DμD
μ =D2. (2.290)

In the center-of-mass frame, expressions (22) are strongly simplified:

Bμγμ = Bβ,
1

2
Cηνσμν = C(�σ · �N), Dμiγ5γμ =Dβ(�σ · �N), E = 0.

(2.291)

Here, (�σ · �N) is the dot product of the three-dimensional vectors �σ and �N , where
�N is the unit vector perpendicular to the scattering plane in the center-of-mass

frame. The 4× 4 Dirac matrix σi (i = 1,2,3) has the form

σi =
∥
∥
∥
∥
σi 0
0 σi

∥
∥
∥
∥ . (2.292)

Here, the two-dimensional Pauli matrices appear in the parentheses. Combining
the terms in expressions (2.291) with the term A (see Eq. (2.287)), we obtain the
following expression for the scattering matrix:

Sq
(
k′, t, k

)=
∥
∥
∥
∥
∥

(F+ +G+(�σ · �N)) 0

0 (F− +G−(�σ · �N))

∥
∥
∥
∥
∥
, (2.293)

where

F± =A±B, G± =D ±C. (2.294)

Thus, pion–nucleon scattering in the relativistic case is also described by two
complex amplitudes F and G; the upper (+) and lower (−) superscripts refer to the
scattering of particles and antiparticles, respectively. With the use of the projection
operator

Λ±(t)= 1

2

[
1± γ (t)

]
, (2.295)
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the expression for pion–nucleon scattering matrix can be easily transformed to the
covariant form

Sq(k
′, t, k)=

∑

±
Λ±(t)

[
F± +G±iγ5(γ · n)

]
. (2.296)

After the substitution of this relation into Eq. (2.287), the resulting S-matrix is
covariant, and the states with positive and negative energies are clearly separated.
This form of the scattering matrix is often used when discussing the problem of spin
interactions.

2.9.1 Covariant Density Matrix

As mentioned above when considering nonrelativistic scattering theory, the density
matrix is convenient when a partially polarized beam is used. The same is true for
relativistic theory. For the physical system state ψα , the density matrix is defined by
the expression

ρ =
∑

α

|ψα〉Wα〈ψα|, (2.297)

where Wα is the probability of finding the system in this state; therefore,∑
α Wα = 1.
The probability of finding the system in the region R is determined by the for-

mula

w(R)= Tr (ρΠ), (2.298)

where Π is the projection operator separating the region R. If the region is an ele-
ment of the three-dimensional momentum space (d �f = df1df2df3), then

w(d �f )= d �f Trρs(f ). (2.299)

Here, Tr stands for the trace of the matrix ρs(f ) in spin space and

ρs( �f )=
∑∣

∣aα( �f )
∣
∣2
[∣
∣Uα( �f )

〉
Wα

〈
U∗α ( �f )

∣
∣
]
. (2.300)

The amplitude aα( �f ) is related to the wave function in momentum space as

ψα( �f )= aα( �f )
∣
∣Uα( �f )

〉
. (2.301)

Here, the spinor Uα( �f ) of the particle moving with the momentum f can be
expressed in terms of the spinor of the particle in its R frame by means of the
Lorentz transformation:

Uα(f ) = L−1(f )Uα(0),

w(df ) = (d �f )∣∣a( �f )∣∣2(γ )f = (d �f )
[∑

Wα

∣
∣aα( �f )

∣
∣2
]
(γ )f .

(2.302)

In this expression, the ratio (d �f )/(γ )f is Lorentz invariant (this is the invariant
d �p/dE). Hence, the quantity |aα( �f )γ f |2 should be Lorentz invariant.
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Note that both the density matrix and volume element are not invariant sepa-
rately. However, if the particle is in a definite energy state, it is possible to make the
transformation (sum signs are omitted)

ρs( �f )=
∣
∣aα( �f )

∣
∣2
∣
∣Uα( �f )

〉
Wα

〈
U∗α ( �f )

∣
∣

= ∣
∣aα( �f )

∣
∣2
∣
∣Uα( �f )

〉
Wα

〈
U∗α ( �f )

∣
∣
∣
∣Uα( �f )

〉
(±)〈U+α ( �f )∣∣

= ∣
∣γ f aα( �f )

∣
∣2
∣
∣Uα( �f )

〉
(±Wα)

〈
U+α ( �f )∣∣/(γ )f ≡ ρf /(γ )

f . (2.303)

The product of the factor 1/(γ )f and the volume element in the momentum space
d �f is invariant. The matrix ρ defined by the above expression is covariant, and its
matrix elements are calculated by the formula

ρij (f )=
〈
U+i (f )

∣
∣ρ(f )

∣
∣Uj (f )

〉
. (2.304)

The square of the absolute value of the amplitude specifies the probability of
finding the system in the spin state α and with the momentum �f . The mean value of
the operator Ô in the initial state with the momentum f is given by the expression

〈Ô〉f Trρ(f )= Tr
[
ρ(f )Ô

]
. (2.305)

The mean value of the operator in the final state with the momentum f ′ is written
similarly

〈Ô〉f ′Trρ
(
f ′
)= Tr

[
ρ
(
f ′
)
Ô
]
. (2.306)

Two density matrices are related by the scattering matrix as

ρ′
(
f ′
)= S

(
f ′, t, f

)
ρ(f )S+

(
f ′, t, f

)
. (2.307)

The differential cross section is determined by the expression

I = Trρ′
(
f ′
)
/Trρ(f ). (2.308)

A Hermitian conjugate operator Â+ can be defined as: (AU)+ = U+A+, where
U is the spinor and U+ =U∗β . In application to the S-matrix, we obtain the relation
S+ = βS∗β , where the asterisk in S means complex conjugation.

The application of relativistic formulas (2.307) and (2.308) leads to the differ-
ential cross section in the center-of-mass frame, as in the nonrelativistic case. The
same conclusion is also valid for polarization. In the case of the spin rotation pa-
rameters in the horizontal plane, only an additional kinematic factor appears.

2.10 Relativistic Nucleon–Nucleon Scattering

In the preceding section, we consider the case where both the initial and final states
include only one Dirac particle. Now, we discuss the case where both the initial
and final states of the reaction include two particles with spin 1/2. Specifically, we
analyze nucleon–nucleon elastic scattering.
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Each nucleon has its complete set of the spin operators acting in two independent
spin spaces. We present these operators (Bjorken and Drell 1964).

In the spin space of the first particle, these are

I (1), γ (1)
μ ,

1

2
σ (1)
μν , iγ

(1)
5 γ (1)

μ , γ (1)
μ , γ

(1)
5 , (2.309)

in the spin space of the second particle,

I (2), γ (2)
μ ,

1

2
σ (2)
μν , iγ

(2)
5 γ (2)

μ , γ (2)
μ , γ

(2)
5 . (2.310)

Each of sets (2.309) and (2.310) contains 16 terms. The scattering matrix is com-
posed of the direct product of these terms, i.e., contains 16× 16= 256 terms, as in
the nonrelativistic case. Correspondingly, the number of amplitudes is the same. It
is necessary to impose allowable physical conditions in order to reduce this number
to the minimum possible number.

By analogy with the case of pion–nucleon scattering (see the preceding sec-
tion), but taking into account the presence of four nucleons, we introduce the matrix
Sq(k

′, t, k) through the expression (Stapp 1956)

S
(
f ′, k′, t, f, k

)= [
γ (1)(f ′, t

)
γ (1)(t)

][
γ (2)(k′, t

)
γ (2)(t)

]
Sq
(
k′, t, k

)

× [
γ (2)(t)γ (2)(k, t)

][
γ (1)(t)γ (1)(f, t)

]
. (2.311)

Here, k and k′ are the initial and final relative momenta, respectively. We can
introduce the condition of the theory of holes and obtain

γ (1)(t)Sq
(
k′, t, k

)
γ (1)(t) = Sq

(
k′, t, k

)
,

γ (2)(t)Sq
(
k′, t, k

)
γ (2)(t) = Sq

(
k′, t, k

)
.

(2.312)

The matrix Sq(k
′, t, k) can be expanded in the products of 16 spin matrices for

particle 1 by 16 spin matrices for particle 2 (see Eq. (2.310)). The main aim is to
significantly reduce the number of the resulting 256 terms. To this end, we consider
a term appearing from the product of tensor operators:

Cμνσρ

(
1

2
σ (1)
μν

)(
1

2
σ (2)
σρ

)

. (2.313)

From the first of expressions (2.312) applied to this term, we obtain

tμCμνσρ =−tμCνμσρ = 0. (2.314)

Therefore,

Cμνσρ

(
1

2
σ (1)
μν

)

= γ (1)(t)iγ
(1)
5 γ

(1)
λ Cλ;σρ, (2.315)

where we take into account that tλCλνσρ = 0. The dependence on σ
(2)
σρ can be mod-

ified to the form

Cμνσρ

(
1

2
σ (1)
μν

)(
1

2
σ (2)
σρ

)

= Cλσ γ
(1)(t)

(
iγ

(1)
5 γ

(1)
λ

)
γ (2)(t)

(
iγ

(2)
5 γ (2)

σ

)
. (2.316)
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Here, the equality Cληtη =−tλCλη is taken into account. Excluding similarly all
terms containing σμν , we obtain

Sq
(
k′, t, k

)=
∑

±±

(
Λ(1)±(t)Λ(2)±(t)

)

· [F±± +G(1)±±iγ (1)
5 γ (1) · n+G(2)±±iγ (2)

5

+ (
C±±nλnρ +D±±sλsρ +E±±dλdρ

)

· (iγ (1)
5 γ

(1)
λ

)(
iγ

(2)
5 γ (2)

ρ

)]
. (2.317)

Here four vectors n, s, and d are defined as follows

nλ ∝ k′ρkσ tμερσμλ,
sλ =Ns

[
kλ + k′λ − tλ

{
tρ
(
kρ + k′ρ

)}
(t · t)−1

]
,

dλ =Nd

[
kλ − k′λ

]
.

(2.317a)

Here Ni (i = s, d) are normalization coefficients. The vectors n, s, d, t form an
orthogonal set. The vector d retains its sign under time inversion, whereas s changes
sign. Therefore all terms containing the products of these two vectors should reduce
to zero.

The scattering matrix is written as follows:

Sq
(
k′, t, k

)= F + F (1)γ (1)(t)+ F (2)γ (2)(t)+G
(1)
λ

(
iγ (1)

5
γ
(1)
λ

)

+G
(2)
λ

(
iγ

(2)
5 γ

(2)
λ

)+C
(1)
λ γ (1)(t)

(
iγ (1)

5
γ
(1)
λ

)

+C
(2)
λ γ (2)(t)

(
iγ (2)

5
γ (2)
λ

)+Gλρ

(
iγ

(1)
5 γ

(1)
λ

) · (iγ (2)
5 γ (2)

ρ

)

+Cλργ
(1)(t)

(
iγ (1)

5
γ
(1)
λ

)
γ (2)(t)

(
iγ

(2)
5 γ (2)

ρ

)

+ F (3)γ (1)(t) · γ (2)(t)+E
(1)
λ γ (2)(t)

(
iγ

(1)
5 γ

(1)
λ

)

+E
(2)
λ γ (1)(t)

(
iγ

(2)
5 γ

(2)
λ

)

+D
(1)
λ γ (2)(t)γ (1)(t)

(
iγ

(1)
5 γ

(1)
λ

)+D
(2)
λ γ (1)(t)γ (2)(t)

(
iγ

(2)
5 γ

(2)
λ

)

+H
(1)
λρ

(
iγ

(1)
5 γ

(1)
λ

)
γ (2)(t)

(
iγ

(2)
5 γ (2)

ρ

)

+H
(2)
λρ (iγ

(2)
5 γ

(2)
λ )γ (1)(t)

(
iγ

(1)
5 γ (1)

ρ

)
. (2.318)

All parameters appearing in the scattering matrix are functions of the momenta
k, k′, and t . These parameters are orthogonal to t with respect to all subscripts. For
example tλHλρ = tρHλρ = 0 and similar is for the other terms.

It is easy to group the terms in expression (2.318). For example, the first two
terms can be rewritten in the form

F + F (1)γ (1)(t)=
∑

±

1

2

[
1± γ (1)(t)

]
F±, (2.318a)

where F+ = F + F (1), F− = F − F (1). The other terms can be pairwise grouped
similarly. As a result, we arrive at the expression
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Sq
(
k′, t, k

)=
∑

±

1

2

[
1± γ (1)(t)

] · [F± +G
(1)±
λ

(
iγ

(1)
5 γ

(1)
λ

)+ F (2)±γ (2)(t)

+G
(2)±
λ

(
iγ

(2)
5 γ

(2)
λ

)+C
(2)±
λ γ (2)(t)

(
iγ

(2)
5 γ

(2)
λ

)]

+ [
G±λρ

(
iγ

(1)
5 γ

(1)
λ

)(
iγ

(2)
5 γ (2)

ρ

)

+H
(1)±
λρ

(
iγ

(1)
5 γ

(1)
λ

)
γ (2)(t)

(
iγ

(2)
5 γ (2)

ρ

)

+E
(1)±
λ γ (2)(t)

(
iγ

(1)
5 γ

(1)
λ

)]
. (2.319)

Grouping similarly the terms with respect to γ (2)(t), we obtain

Sq
(
k′, t, k

)=
∑

±±

{
1

2

[
1± γ (1)(t)

]1

2

[
1± γ (2)(t)

]
}

· [F±± +G
(1)±±
λ

(
iγ

(1)
5 γ

(1)
λ

)+G
(2)±±
λ

(
iγ

(2)
5 γ

(2)
λ

)

+G±±λρ
(
iγ

(1)
5 γ

(1)
λ

)(
iγ

(2)
5 γ (2)

ρ

)]
. (2.320)

Here, the following orthogonality relations for Gλρ were used:

tλG
(1)±±
λ = tλG

(2)±±
λ = tλG

±±
λρ =G±±λρ tρ = 0. (2.320a)

Since the scattering matrix should be a scalar function, the parameters G
(1)±±
λ

and G
(2)±±
λ should be pseudovectors. The existing three momenta can provide the

single pseudovector

nλ ∝ k′ρkσ tμερσμλ. (2.321)

Hence, we can write

G
(1)±±
λ =G(1)nλ and G

(2)±±
λ =G(2)nλ. (2.322)

To transform the tensor terms G±±λρ , two normalized vectors s and d are intro-
duced in addition to t and n as follows:

sλ =Ns

{
kλ + k′λ − tλ

[
tρ
(
kρ + k′ρ

)]
(t · t)−1}, dλ =Nd

(
kλ − k′λ

)
. (2.323)

The four vectors t, n, s, and d constitute a set of orthonormalized vectors in
which the second-rank tensor G±±λρ can be expanded. Relation (2.320a) imposes
the constraints on the number of the terms of this tensor. Additional conditions are
imposed by the requirement of the invariance of the scattering matrix under space
inversion. As a result, we obtain

G±±λρ = C±±nλnρ +D±±sλsρ +E±±dλρ
+G′±±(sλdρ + dλsρ)+G±±(sλdρ − dλsρ). (2.324)

Since the matrix should be invariant under time reversal, two last terms should
be zero, because the vector d does not change sign under this operation, whereas
the vector s changes sign.

Finally, the relativistic nucleon–nucleon elastic scattering matrix is written in the
form
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Sq
(
k′, t, k

)=
∑

±±

[
Λ(1)±(t)

][
Λ(2)±(t)

]

· [F±± +G(1)±±(iγ (1)
5 γ (1) · n)+G(2)±±(iγ (2)

5 γ (2) · n)]

+ [(
C±±nλnρ +D±±sλsρ +E±±dλdρ

)(
iγ

(1)
5 γ

(1)
λ

)(
iγ

(2)
5 γ (2)

ρ

)]
.

(2.325)

This is the relativistic formula for nucleon–nucleon scattering in the center-of-
mass frame. Several conclusions follow from it. First, the number of free param-
eters is six, as in the nonrelativistic case. Second, the scattering of antiprotons is
described by the same formulas as the scattering of protons. Third, passing to the
nonrelativistic case and taking the states only with positive energy, we exactly arrive
at Wolfenstein nonrelativistic formulas. As will be shown below, the relativistic case
gives only kinematic corrections, which are easily taken into account.

In the center-of-mass frame, the relativistic matrix given by formula (2.325) re-
duces to the Wolfenstein–Ashkin nonrelativistic matrix (where I (1) and I (2) are the
identity matrices in the spaces of particles 1 and 2, respectively):

M = aI (1)I (2) + c
(
σ (1)
n + σ (2)

n

)+mσ(1)
n σ (2)

n

+ g
(
σ
(1)
p̂

σ
(2)
p̂
+ σ

(1)
k̂

σ
(2)
k̂

)+ h
(
σ
(1)
p̂

σ
(2)
p̂
− σ

(1)
k̂

σ
(2)
k̂

)
. (2.326)

This matrix differs from the matrix used above in the notation: a = a, c = c,
b=m, l = g− h, and f = g+ h.

The ordinary method provides the following expressions for the measured quan-
tities in terms of the elements of scattering matrix (2.326):

I0R = 1

2
Re

{
(
M00 +

√
2 cot θM10

)
(M11 +M1−1 −Mss)

∗

× cos(θ − θL)−
√

2

sin θ

[
(M11 +M1−1)M

∗
10 −MssM

∗
01

]
cos θl

}

,

I0A=−1

2
Re

{
(
M00 +

√
2 cot θM10

)
(M11 +M1−1 +Mss)

∗

× sin(θ − θL)−
√

2

sin θ

[
(M11 +M1−1)M

∗
01 −MssM

∗
10

]
sin θl

}

,

I0R
′ = 1

2
Re

{
(
M00 +

√
2 cot θM10

)
(M11 +M1−1 +Mss)

∗

× sin(θ − θL)+
√

2

sin θ

[
(M11 +M1−1)M

∗
10 −MssM

∗
01

]
sin θl

}

,

I0A
′ = 1

2
Re

{
(
M00 +

√
2 cot θM10

)
(M11 +M1−1 +Mss)

∗

× cos(θ − θL)+
√

2

sin θ

[
(M11 +M1−1)M

∗
01 −MssM

∗
10

]
cos θl

}

,
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I0Rt = 1

2
Re

{
(
M00 +

√
2 cot θM10

)
(M11 +M1−1 −Mss)

∗

× cos
(
θ ′ − θ ′L

)+
√

2

sin θ

[
(M11 +M1−1)M

∗
10 +MssM

∗
01

]
cos θl

}

,

I0At =−1

2
Re

{
(
M00 +

√
2 cot θM10

)
(M11 +M1−1 −Mss)

∗

× sin
(
θ ′ − θ ′L

)−
√

2

sin θ

[
(M11 +M1−1)M

∗
01 −MssM

∗
10

]
sin θl

}

,

I0R
′
t =

1

2
Re

{
(
M00 +

√
2 cot θM10

)
(M11 +M1−1 −Mss)

∗

× sin
(
θ ′ − θ ′L

)−
√

2

sin θ

[
(M11 +M1−1)M

∗
10 +MssM

∗
01

]
sin θl

}

,

I0A
′
t =

1

2
Re

{
(
M00 −

√
2 cot θM10

)
(M11 +M1−1 −Mss)

∗

× cos
(
θ ′ − θ ′L

)−
√

2

sin θ

[
(M11 +M1−1)M

∗
01 +MssM

∗
10

]
cos θl

}

,

I0Ckp = 1

2 sin θ

[|M01|2 − |M10|2
]

cos
(
α − α′

)− 1

4

[|M11 +M1−1|2 − |Mss |2
]

× cos
(
α + α′

)− 1

4 cos θ

[|M11 −M1−1|2 − |M00|2
]

sin
(
α − α′

)
,

I0Ckk =− 1

2 sin θ

[|M01|2 − |M10|2
]

sin
(
α − α′

)+ 1

4

[|M11 +M1−1|2 − |Mss |2
]

× cos
(
α + α′

)− 1

4 cos θ

[|M11 −M1−1|2 − |M00|2
]

cos
(
α − α′

)
,

I0Cpp =− 1

2 sin θ

[|M01|2 − |M10|2
]

sin
(
α − α′

)+ 1

4

[|M11 +M1−1|2 − |Mss |2
]

× cos
(
α + α′

)− 1

4 cos θ

[|M11 −M1−1|2 − |M00|2
]

cos
(
α − α′

)
.

Here, θ and θl are the scattering angles in the center-of-mass and laboratory
frames, respectively, and θ ′ and θ ′L are the respective angles for the recoil particle.

Under relativistic transformations, the parameters that either are scalars or have
only components perpendicular to the reaction plane remain unchanged. These are
the following quantities: cross section I ; polarization P ; depolarization tensors of
the scattered and recoil particles, D and Dt , respectively; and correlation parameters
Cnn and Ann.

In the above formalism of the relativistic reaction matrix, the wave functions are
represented in the space of angular momenta, where the quantization z axis is fixed.

Jacob and Wick (1959) proposed a relativistic description of reactions using the
wave functions quantized along the momentum of the incident and scattered parti-
cles in the center-of-mass frame. In this case, the spin projection on the momentum
direction has two values, +1/2 and −1/2, and this projection is called helicity.
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Denoting the helicities of the initial and final nucleons as λ1, λ2 and λ′1, λ′2, respec-
tively, we can write the scattering matrix in the form

〈
λ′1λ′2

∣
∣M

∣
∣λ1λ2

〉
. (2.327)

These matrix elements are called helicity amplitudes. Let the scattered particle
move along the z′ axis inclined to the z axis at the angle θ (scattering angle). By
analogy with the spinning-top model, matrix element (2.327) can be expanded in
terms of the reduced wave functions of the symmetric top, dJ

μμ′ :

〈
λ′1λ′2

∣
∣M

∣
∣λ1λ2

〉= 1

2ik

∑

J

(2J + 1)
(〈
λ′1λ′2

∣
∣S(J,E)− 1

∣
∣λ1λ2

〉)
dJμμ′(θ), (2.328)

where

μ= λ1 − λ2, μ′ = λ′1 − λ′2. (2.329)

As shown above, owing to the invariance of the scattering matrix under space
rotation and inversion and time reversal, as well as to the isotopic invariance, five
matrix elements are nonzero in the general case. The same requirements applied to
the scattering matrix in the helicity representation impose the following conditions:

parity conservation
〈
λ′1λ′2

∣
∣M

∣
∣λ1λ2

〉= 〈−λ′1 − λ′2
∣
∣M

∣
∣−λ1 − λ2

〉
, (2.330)

time reversal
〈
λ′1λ′2

∣
∣M

∣
∣λ1λ2

〉= (−1)λ1−λ2−λ′1+λ′2 〈λ1λ2
∣
∣M

∣
∣λ′1λ′2

〉
, (2.331)

conservation of the total spin
〈
λ′1λ′2

∣
∣M

∣
∣λ1λ2

〉= 〈
λ′2λ′1

∣
∣M

∣
∣λ2λ1

〉
. (2.332)

Under these conditions, five matrix elements are also nonzero in the helicity rep-
resentation, and these elements are denoted as follows:

ϕ1 =
〈

1

2
,

1

2

∣
∣
∣
∣M

∣
∣
∣
∣
1

2
,

1

2

〉

, ϕ2 =
〈

1

2
,

1

2

∣
∣
∣
∣M

∣
∣
∣
∣−

1

2
,−1

2

〉

,

ϕ3 =
〈

1

2
,−1

2

∣
∣
∣
∣M

∣
∣
∣
∣
1

2
,−1

2

〉

,

ϕ4 =
〈

1

2
,−1

2

∣
∣
∣
∣M

∣
∣
∣
∣−

1

2
,

1

2

〉

, ϕ5 =
〈

1

2
,

1

2

∣
∣
∣
∣M

∣
∣
∣
∣
1

2
,−1

2

〉

.

(2.333)

The amplitudes ϕi , where i = 1,2,3,4,5, are classified according to the physics
of the process as the amplitudes without spin flip (ϕ1, ϕ3), with single spin flip (ϕ5),
and with double spin flip (ϕ2, ϕ4).

The relation between the matrix elements in the helicity representation and
angular-momentum representation can be obtained as follows (Jacob and Wick
1959). Let the direction of the incident-particle motion be the quantization axis for
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the spin wave function. Then, the wave functions of the first and second nucleons in
the helicity representation can be written in the form

χ
(1)
1/2 =

∥
∥
∥
∥

1
0

∥
∥
∥
∥ , χ

(1)
−1/2 =

∥
∥
∥
∥

0
1

∥
∥
∥
∥ (2.334)

in the initial state and

χ
(1)
1/2 = χ

(2)
−1/2 =

∥
∥
∥
∥

cos(θ/2)

sin(θ/2)

∥
∥
∥
∥ , χ

(1)
−1/2 = χ

(2)
1/2 =

∥
∥
∥
∥
− sin(θ/2)
cos(θ/2)

∥
∥
∥
∥ (2.335)

in the final state, where θ is the particle scattering angle in the center-of-mass frame.
Let us rewrite matrix (2.326) as follows:

M = a + c
(�σ (1) + �σ 2) · �n+m

(�σ (1) · �n)(�σ (2) · �n)

+ g
[(�σ (1) · �P )(�σ (2) · �P )+ (�σ (1) · �K)(�σ (2) · �K)]

+ h
[(�σ (1) · �P )(�σ (2) · �P )− (�σ (1) · �K)(�σ (2) · �K)]

. (2.336)

The unit vectors �n, �P , �K have the following components:

�n(0,1,0), �K(
cos θ/2,0,− sin θ/2

)
, �P (sin θ/2,0, cos(θ/2)

)
. (2.337)

Therefore, the vector �n is perpendicular to the scattering plane, whereas the vec-
tors �K and �P lie in the scattering plane. Applying matrix (2.336) to wave functions
(2.334) and (2.335) and taking into account relations (2.337), we obtain the relation
between the amplitudes in the helicity and angular representations. They are given
below along with the relations with the amplitudes in the singlet–triplet representa-
tion.

2.10.1 Relation Between the Amplitudes in Different
Representations

A. In the helicity and angular representations:

ϕ1 − ϕ2 = a −m− 2g,

ϕ1 + ϕ2 = (a +m) cos θ + 2ic sin θ + 2h,

ϕ3 + ϕ4 = a −m+ 2g,

ϕ3 − ϕ4 = (a +m) cos θ + 2ic sin θ − 2h,

ϕ5 =−1

2
(a +m) sin θ + ic cos θ.
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B. In the angular and helicity representations (inverse to case A):

a = 1

4

[
(ϕ1 − ϕ2 + ϕ3 + ϕ4)+ (ϕ1 + ϕ2 + ϕ3 − ϕ4) cos θ − 4 sin θϕ5

]
,

ic= 1

4

[
(ϕ1 + ϕ2 + ϕ3 − ϕ4) sin θ + 4 cos θϕ5

]
,

m= 1

4

[
(−ϕ1 + ϕ2 − ϕ3 − ϕ4)+ (ϕ1 + ϕ2 + ϕ3 − ϕ4) cos θ − 4 sin θϕ5

]
,

g = 1

4
(−ϕ1 + ϕ2 + ϕ3 + ϕ4),

h= 1

4
(−ϕ1 − ϕ2 + ϕ3 − ϕ4).

C. In the helicity and singlet–triplet representations:

ϕ1 − ϕ2 =Mss,

ϕ1 + ϕ2 = cos θM00 −
√

2 sin θM10,

ϕ3 + ϕ4 =M11 +M1−1,

ϕ1 − ϕ2 = cos θM11 + sin θM01 − cos θM1−1,

ϕ5 =−1

2
sin θM11 + 1√

2
cos θM01 − 1

2
sin θM1−1

=−1

2
sin θM00 − 1√

2
cos θM10.

The helicity amplitudes can be expressed in terms of the phase shifts. To
this end, the matrix elements in helicity space should be transformed to the ma-
trix elements in singlet–triplet space that are already expressed in terms of the
phases.

D. The matrix elements in the helicity representation can be expressed in terms of
the elements in the singlet–triplet representation as follows:

〈
λ′1λ′2

∣
∣M|λ1λ2〉 =

∑〈
λ′1λ′2

∣
∣|Sms〉〈Sms |M

∣
∣Sm′s

〉〈
Sm′s

∣
∣|λ1λ2〉. (2.338)

Since the elements of the matrix M , as well as the Clebsch–Gordan coeffi-
cients, are known, the helicity amplitudes can be found from this relation (see
“Relation between the amplitudes in different representations”).

2.11 Isospin T , C and G Parities

2.11.1 Isotopic Invariance

There are many experimental evidences that the properties of the proton and neutron
in nuclear interaction are very similar. It can be assumed that they are the compo-
nents of the same object called the nucleon. First, their masses are very close: the
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proton and neutron masses are 938.27 and 939.57 MeV, respectively; hence, the
mass difference is as small as 1.3 MeV. This small difference (≈0.15 %) is assum-
ingly attributed to the electromagnetic interaction. Second, they strongly interact
with each other and are constituents of nuclei. Third, it is known that, excluding
the relatively weak electromagnetic interaction in the pp system, this system is al-
most equivalent to the system of two neutrons nn. This equality of the interactions
between two protons and two neutrons is called charge symmetry. In particular, ad-
ditional experimental evidence of charge symmetry follows from nucleon–nucleon
scattering experiments. It is shown that the pp and nn elastic scattering processes
are identical, excluding the Coulomb interaction. The same data are also obtained in
pion–nucleon and kaon–nucleon elastic scattering processes. In addition, the bind-
ing energies (B), energy levels, and other properties of the mirror nuclei in which the
protons and neutrons are interchanged are very close to each other. The closeness of
the binding energies of two mirror nuclei is exemplified as follows:

H3 = (nnp)→ B = 8.192 MeV, He3 = (ppn)→ B = 7.728 MeV. (2.339)

Here, the nucleon compositions of the tritium and helium-3 nuclei are given in the
parentheses. The difference between the binding energies of these nuclei is as small
as �B ≈ 0.5 MeV and can be attributed to the energy of the Coulomb repulsion
between two protons in the helium-3 nucleus:

VC(R)= 1

2
Z(Z − 1)

6e2

5R
, R ≈ 1.45 · 10−13 cm. (2.340)

The closeness of the energy levels of the mirror nuclei can be illustrated by the
example

B11 = (6n5p)→E = (1.98;2.14;4.46;5.03;6.76) MeV,

C11 = (6p5n)→E = (−;1.85;4.23;4.77;6.40) MeV.
(2.341)

Here, the numbers of protons and neutrons in a given nucleus are presented in the
first parentheses and the level energies of this nucleus are indicated in the second
parentheses. The observed similarity of the energy levels of these mirror nuclei is
most simply explained by the hypothesis of the charge symmetry between the pro-
ton and neutron. The detailed discussion of these problems can be found in Schiff
(1968).

It is substantial that both the proton and neutron have a half-integer spin and are
governed by the same statistics (Dirac–Fermi statistics). This means that the system
of two protons or two neutrons is described by the wave function ψ(�r1, �s1; �r2, �s2)

(where �r and �s are the radius-vector and spin of the particles, respectively) anti-
symmetric under the simultaneous permutation of the coordinates and spins of the
particles. However, the experimentally observed charge symmetry is only one of the
manifestations of a deeper similarity of the proton and neutron. This new type of
symmetry was introduced by Heisenberg (1932) and was called isotopic invariance.
Its main meaning is that the forces between the pp, np, and nn pairs are identical
and the proton and neutron are two components of the nucleon. Let us illustrate
this hypothesis by an example from low-energy scattering. The interaction of the
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proton with the proton or the neutron at low energies is characterized by two param-
eters: the scattering length a and effective scattering radius r0. They determine the
scattering phase δ in the S-state through the relation

k cot δ =−1

a
+ 1

2
r0k

2, (2.342)

where k is the wavenumber. The following parameters are experimentally deter-
mined (Nishijima 1964):

np : 3S1, r0t = (1.704± 0.028) · 10−13 cm,

at = (5.39± 0.03) · 10−13 cm;
1S1, r0S = (2.670± 0.023) · 10−13 cm,

aS = (−23.74± 0.09) · 10−13 cm;
pp : 1S1, r0S = (2.77) · 10−13 cm, aS = (−17.77) · 10−13 cm.

(2.343)

The parameters a and r0 of the np- and pp-scattering processes in the same 1S1

states are in qualitatively agreement. The quantitative difference can be ignored, be-
cause this difference can be eliminated by changing the potential-well depth by 3 %.

These experimental facts led to the notion of the nucleon isospin τ and to the
discovery of isotopic invariance in strong interactions. The isospin is a vector in
isotopic space and has the same properties as the Pauli matrices. Isospin space is
not a real space, but only a mathematical notion. Correspondingly, the nature of
isospin is unknown.

The isotopic invariance of strong interactions can be formulated as invariance
under “rotations in isospin space.” The isospin operator T (T1, T2, T3) and isospinor
ψ are written in the explicit form

T1 = 1

2

∥
∥
∥
∥

0 1
1 0

∥
∥
∥
∥ , T2 = 1

2

∥
∥
∥
∥

0 −i
i 0

∥
∥
∥
∥ , T3 = 1

2

∥
∥
∥
∥

1 0
0 −1

∥
∥
∥
∥ , ψ =

∥
∥
∥
∥
ψ1
ψ2

∥
∥
∥
∥ .

(2.344)

Let us consider the rotation by angle π about the x2 axis in this space. The
isospinor is transformed as:

ψ→ eiπT2ψ = ei
π
2 τ2ψ =

(

cos
π

2
+ iτ2 sin

π

2

)

ψ = iτ2ψ. (2.345)

Here, Ti = 1/2τi , where i = 1,2,3; T is the nucleon isospin equal 1/2 with
the eigenvalues ±1/2; and τ is the analog of the Pauli operator in isotopic space.
It is usually accepted that the eigenvalue +1/2 corresponds to the proton and is
described by the function ψ1, whereas −1/2 corresponds to the neutron and is de-
scribed by the function ψ2 in Eq. (2.344). In particular, for the isospinors corre-
sponding to two components of the isodoublet (to the proton and neutron), we have

|p〉 =
∥
∥
∥
∥

1
0

∥
∥
∥
∥→

∥
∥
∥
∥

0
−1

∥
∥
∥
∥= |n〉, |n〉 =

∥
∥
∥
∥

0
1

∥
∥
∥
∥→

∥
∥
∥
∥

1
0

∥
∥
∥
∥= |p〉, (2.346)
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which correspond to the transformations

τ+ψ = 1

2
(τ1 + iτ2)ψ =

∥
∥
∥
∥

0 0
−1 0

∥
∥
∥
∥ψ, n→ p,

τ−ψ = 1

2
(τ1 − iτ2)ψ =

∥
∥
∥
∥

0 0
−1 0

∥
∥
∥
∥ψ, p→−n,

(2.347)

where p and n mean the charge states |p〉 and |n〉 of the nucleon. Similar transfor-
mations for the antinucleon have the form

p̄→−n̄, n̄→ p̄. (2.348)

As seen, strong interactions are charge independent or, more widely, isotopically
invariant.

2.11.2 Charge Conjugation

The charge conjugation operation is defined only in relativistic theory. Let us repre-
sent the ψ operator in the form of the expansion

ψ =
∑ 1√

2ε

(
ape

−i(ωt− �p·�r) + bpe
i(ωt− �p·�r)), (2.349)

where ap and bp are the annihilation and creation operators for a particle with the
momentum p, respectively. The charge conjugation operation reduces to the change
of the particles to the antiparticles and vise versa; i.e.,

C : ap→ bp, bp→ ap. (2.350)

The action of operation (2.350) on operator (2.349) provides the charge conjugate
operator ψC ; it is easy to see that

ψC(t, �r)=ψ+(t, �r). (2.351)

This equality expresses the property of the charge symmetry of the particles and
antiparticles. According to relation (2.349), the operator C changes the particle to
the antiparticle that is not identical to the particle. As a result, this operator has no
eigenfunctions and eigenvalues. For this reason, the charge conjugation operation
does not generally lead to new physical consequences. However, there is exclusion.
In the application to a system where the number of particles coincides with the
number of antiparticles, the operator C has eigenfunctions and eigenvalues. The
following transformations are illustrative:

C|Λ〉 = |Λ̄〉, C|n〉 = |n̄〉, C|p〉 = −|p̄〉. (2.352)

The first relation is obvious, because the Λ hyperon is the isotopic singlet. To
prove the last two relations, we write the wave function of a pair of nucleons and
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antinucleons and the charge conjugation matrix in the explicit form (Lifshitz and
Pitaevskii 1973)

ψ =
∥
∥
∥
∥
ψ1
ψ2

∥
∥
∥
∥=

∥
∥
∥
∥
∥
∥
∥
∥

p

n

n̄

p̄

∥
∥
∥
∥
∥
∥
∥
∥

(2.353)

and

C =
∥
∥
∥
∥

0 −iτ2
iτ2 0

∥
∥
∥
∥=

∥
∥
∥
∥
∥
∥
∥
∥

0 0 0 −1
0 0 +1 0
0 +1 0 0
−1 0 0 0

∥
∥
∥
∥
∥
∥
∥
∥

. (2.354)

The action of operator (2.354) on wave function (2.353) gives

ψC =
∥
∥
∥
∥
∥

ψC
1

ψC
2

∥
∥
∥
∥
∥
= Cψ =

∥
∥
∥
∥

0 −iτ2
iτ2 0

∥
∥
∥
∥

∥
∥
∥
∥
ψ1
ψ2

∥
∥
∥
∥=

∥
∥
∥
∥
−iτ2ψ2
iτ2ψ1

∥
∥
∥
∥ . (2.355)

We obtain two matrix equations of the second rank, which are solved separately:

ψC
1 =

∥
∥
∥
∥
C(p)

C(n)

∥
∥
∥
∥=

∥
∥
∥
∥

0 −1
1 0

∥
∥
∥
∥ ·

∥
∥
∥
∥
n̄

p̄

∥
∥
∥
∥=

∥
∥
∥
∥
−p̄
n̄

∥
∥
∥
∥ . (2.356)

Therefore,

C(p)=−p̄, C(n)= n̄. (2.357)

We write and solve the second matrix equation:

ψC
2 =

∥
∥
∥
∥
C(n̄)

C(p̄)

∥
∥
∥
∥=

∥
∥
∥
∥

0 +1

−1 0

∥
∥
∥
∥ ·

∥
∥
∥
∥
p

n

∥
∥
∥
∥=

∥
∥
∥
∥

n

−p
∥
∥
∥
∥ . (2.358)

Hence (Pilkuhn 1979),

C(n̄)= n, C(p̄)=−p. (2.359)

Since C2 = 1, it is easy to verify that results (2.358) and (2.359) coincide.

2.11.3 G Transformation

The simultaneous application of two conservation laws leads to new selection rules,
which do not follow from any individual law (Lee and Yang 1956).

The joint application of the isotopic transformation T and charge conjugation C

is described by the product of both operators and is denoted as G:

G= CeiπT3 . (2.360)

Since p↔−p̄ and n↔ n̄ under charge conjugation, operator (2.360) provides
(Lifshitz and Pitaevskii 1973)

G : p→−n̄, n→ p̄, p̄→−n, n̄→ p. (2.361)
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The operator G commutes with the operators of all three isospin components
T1, T2, and T3. This is directly verified by writing the explicit expressions for the
operators in the form of four-row matrices transforming the nucleon and antinucleon
states. Let us represent these states in the form of the column

∥
∥
∥
∥
∥
∥
∥
∥

p

n

n̄

p̄

∥
∥
∥
∥
∥
∥
∥
∥

and generalize isospin to this case:

T1 = 1

2

∥
∥
∥
∥
τ1 0
0 τ1

∥
∥
∥
∥ , T2 = 1

2

∥
∥
∥
∥
τ2 0
0 τ2

∥
∥
∥
∥ , T3 = 1

2

∥
∥
∥
∥
τ3 0
0 τ3

∥
∥
∥
∥ ,

C =
∥
∥
∥
∥

0 −iτ2
iτ2 0

∥
∥
∥
∥ , G=

∥
∥
∥
∥

0 I

−I 0

∥
∥
∥
∥ .

(2.362)

Here, 0 and I are two-row matrices.
If the operation G transforms a particle (or a system of particles) to itself, the

notion of the G parity appears: the state can remain unchanged or change sign. For
this, the baryon number and hypercharge Y (Y = B + S, where B is the baryon
number and S is strangeness) of the particles should be zero. Indeed, charge con-
jugation (transition from the particles to the antiparticles) changes the signs of the
electric charge Z and hypercharge. Rotation in isospace changes Z, but does not
change Y and B . Therefore, the joint application of both transformations changes
the numbers Y and B if they are nonzero.

An important property of the G parity is that it is the same for all components of
the same isomultiplet. This follows from the commutativity of the operator G with
all components of T and, therefore, with all rotations in isospace.

At Y = 0, we have Z = T3; therefore, T3 and thereby T are integers. The iso-
multiplet with an integer T value is described by a symmetric isospinor of the even
rank 2T , which is equivalent to the irreducible isotensor of the rank T . One of the
components of such isomultiplet is a neutral particle (T3 = 0). It corresponds to the
isotensor ′ψih with the nonzero component ′ψ33. The rotation by the angle π about
the x2 axis leads to the multiplication of this isotensor by (−1)T . The G parity of a
neutral particle with the charge parity C is given by the expression

G= C(−1)T . (2.363)

According to the above consideration, the G parity of all components of the
isomultiplet is thus defined.

For example, let us consider the pion isotriplet (T = 1). The charge parity of
the π0 meson is C = +1. This follows from the fact that the π0 meson decays
into an even number of particles, namely, into two charge-odd particles (photons).
Therefore, the G parity of the pions is G = −1. In particular, it follows from this
that strong interactions can transfer the system of pions to another system of pions
only without change of the parity of the number of particles.
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Table 2.3 G and C parities of mesons and baryons

π+ π0 π− η K+ K0 K̄0 K−

G −π+ −π0 −π− η K̄0 K− −K+ −K0

C −π− π0 −π+ η −K− K̄0 K0 −K+

Σ+ Σ0 Σ− Λ p n n̄ p̄

G −Σ̄+ −Σ̄0 −Σ̄− Λ̄ n̄ p̄ −p −n
C −Σ̄− Σ̄0 −Σ̄+ Λ̄ −p̄ n̄ n −p

The η meson is an isosinglet (T = 0), and its charge parity is C =+1, because
the η meson, as well as the π0 meson, decays into two photons. Therefore, the η

meson has the positive G parity (G=+1). Hence, strong interactions cannot lead
to the η→ 3π decay.

It is desirable to extend the notion of the G parity to other single-particle states.
The state of the particle m of the charge multiplet with the momentum p, helic-
ity λ, and third isospin component T3 is described by the function |m,T3,p,λ〉, and
the state of the corresponding antiparticle, by the function |m̄, T3,p,λ〉. Since the
operation G changes the particle to the antiparticle and does not change the other
variables, we can write (Pilkuhn 1979):

G|m,T3,p,λ〉 = ηG|m̄, T3,p,λ〉. (2.364)

Here, ηG is independent of T3; the function of the state of the antiparticle is
transformed in isotopic space similarly to the function of the state of the particle. As
a result, for the multiplet of the particles, we have the relation

ηC = ηG(−1)T+T3 (2.365)

or in the other form

ηG = ηC(−1)T+T3 . (2.366)

For the π0 meson, C =+1, T = 1, and T3 = 0; therefore, G=−1. At the same
time, although the parity of the η meson is C =+1, but G= 1 because T = 0 and
T3 = 0. This agrees with the above results.

Formula (2.366) can be considered as the expansion of formula (2.363) to the
charged components of the multiplet, which should have the same G parity as the
truly neutral component of the multiplet. For the pion isotriplet, C|π±〉 =G|π±〉 =
−|π∓〉. Let us consider the G and C parities for the hyperons and K mesons. It is
substantial that a baryon can emit (virtually) one pion and hyperon can emit one K

meson with the satisfaction of the selection rules in the isospin, hypercharge, and
baryon number. From the Σ→ πΛ decay, it follows that ηG(Σ)= ηG(π)ηG(Λ)=
ηG(π), because the G parity of the Λ hyperon is positive. From the N → KΛ

decay, it follows that ηG(K)= ηG(N)ηG(Λ)= ηG(N). From the Ξ→KΛ decay,
it follows that ηG(Ξ) = ηG(K) = ηG(N). The results thus obtained are presented
in Table 2.3.
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Chapter 3
Theoretical Models

Since the theory of strong interactions is absent, an attempt to describe a certain
characteristic of a reaction, for example, polarization requires the development of
various models. Many famous theoreticians were involved in this problem at the ini-
tial stage of polarization investigations at accelerators. Their ideas were understand-
able, because they originated from well established facts. They derived simple ana-
lytical formulas for calculating observables, for example, the cross sections or po-
larizations in a particular reaction. These formulas were used as guiding stars when
analyzing experimental data and designing new experiments. As an example, we
point to the Fermi model proposed in 1954. As energy increases, theoretical models
are painfully complicated. Most of them do not provide analytical dependences of
observables on arguments, but express these observables in terms of multiple inte-
grals with numerous fitting parameters. For this reason, any physical picture of a
process is lost, and these calculations can likely be performed only by their authors
themselves. For example, we point to modern calculations of single-spin asymmetry
in the perturbative QCD model. Such complicated numerical calculations of observ-
ables, which can be represented by very simple functions in experiments, seem very
strange: why all are simple in experiments and are very complicated in theory? In
view of such a situation, asymptotic predictions are very attractable. These are the
hypothesis of γ5 invariance or asymptotic relations between amplitudes in cross
channels, which are derived on the basis of the Phragmén–Lindelöf theorem. They
are also presented in this section.

3.1 Fermi Model

Oxley et al. (1953) reported that a polarized proton beam with a polarization of
about 20 % was obtained at the Rochester cyclotron with an energy of ∼200 MeV
by means of the diffractive scattering of a circulating proton beam by an internal
proton target; the polarization was almost doubled when a nuclear target was used.
A year later, similar beams were obtained in Berkeley at 310 MeV (Chamberlain
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et al. 1954) and almost simultaneously in Dubna at the synchrocyclotron of the
Institute for Nuclear Problems, Academy of Sciences of the USSR, at an energy
of ∼600 MeV (Stoletov and Nurushev 1954). The era of polarization physics at
accelerators began.

Fermi (1954) was among those who immediately estimated the importance of
these events in spin physics. He proposed a model for explaining the appearance
of the polarization of protons in nuclear scattering. Fermi considered the simplest
reaction

a(1/2)+ b(0)→ a(1/2)+ b(0) (3.1)

(particle spins are indicated in the parentheses). The elastic scattering of unpolarized
protons on carbon nuclei is an example of such a reaction. This process is described
by two complex potentials: spin-independent central potential Vc and spin–orbit
potential Vs

V (r, s)= Vc(r)+ Vs(r, s). (3.2)

The reaction matrix for reaction (3.1) can be written at a given initial energy in
the general form

M(θ)= g(θ)+ h(θ)�σ · �n, (3.3)

where θ is the nucleon scattering angle in the center-of-mass frame and �n is the unit
vector perpendicular to the scattering plane. It can be shown that observables for
experiment (3.1) are as follows:

the differential cross section

dσ(θ)

dω
= (∣

∣g(θ)
∣
∣2 + ∣

∣h(θ)
∣
∣2
)
, (3.4)

the polarization

dσ(θ)

dω
P (θ)= 2 Re

[
g∗(θ)h(θ)

]
, (3.5)

the spin rotation parameter

dσ(θ)

dω
R(θ)= [∣

∣g(θ)
∣
∣2 − ∣

∣h(θ)
∣
∣2
]

cos θ − 2 Im
[
g∗(θ)h(θ)

]
sin θ, (3.6)

and the longitudinal polarization parameter

dσ(θ)

dω
A(θ)= [∣

∣g(θ)
∣
∣2 − ∣

∣h(θ)
∣
∣2
]

sin θ − 2 Im
[
g∗(θ)h(θ)

]
cos θ. (3.7)

These four observables constitute the complete set for this experiment; i.e., any
new measurement reduces to these four observables.

Since formulas (3.2) and (3.3) describe the same process, they should be related
to each other. This relation will be obtained below.

The central potential Vc is well studied in the theory of the scattering of particles
by nuclei. The spin–orbit potential was studied in the theory of the shell structure
of nuclei and was used only for the bound states of a physical system. To describe
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reaction (3.1) (the system with continuous spectrum), reasonable physical assump-
tions on the interaction potentials are necessary. Starting with the Meyer–Jensen
shell-model equation and taking into account the Thomas spin precession correc-
tion (Thomas 1926), Fermi assumed that the spin–orbit potential is proportional to
the gradient of the real part of the central potential, as allowed in the model of the
shell structure of nuclei. Certainly, it was very risky to extend the idea of the shell
structure of nuclei to energies of several hundreds of MeVs. Fermi also took into ac-
count that the Thomas correction is approximately 15 times weaker than the effect
necessary in the shell model. Then, relation (3.2) can be rewritten in the form

V (r, s)= Vc(r)+ Vs(r, s)= Vcρ(r)+
(

�

μc

)2

Vs

dρ(r)

rdr
�σ · �L. (3.8)

Here, ρ(r) is the nuclear matter distribution density, Vc and Vs are the numerical
parameters determined by fitting the experimental data, and ( �

μc
) is the Compton

wavelength of the π meson, which is introduced in order to express the parameter
Vs in the same units as Vc. In practice, the function ρ(r) can have different forms
for different potentials (Nurushev 1962; Azhgirei et al. 1963).

In the Born approximation, the amplitudes g and h are related to the interaction
potentials by the following transformation (Schiff 1968):

g(θ)=−2μ

�2

∫

Vc

(�r ′) exp
(
i �K · �r ′)d�r ′, (3.9)

h(θ)= 2μ

�2

∫

Vs

(�r ′) exp
(
i �K · �r ′)d�r ′. (3.10)

Fermi took the central potential in the form of a square well and, performing
integration, obtained

g(θ)= k

2π�v
VCF(q), h(θ)= k

2π�v

(
�k

μc

)

VSF(q) sin θ. (3.11)

Here, F(q) is the form factor of a spinless particle. According to Eq. (3.11), two
amplitudes are related as

h(θ)= c0 sin θ · g(θ), (3.12)

where the coefficient c0 is an angle-independent complex parameter. To prove this
relation in the general case of an arbitrary well, we write the scattering amplitudes
in the Born approximation:

g(θ)= 2μ

�2

∫

e−i�k′·�r · u0e
i�k·�rd�r, h(θ)= 2μ

�2

∫

e−i�k′·�r · usei�k·�rd�r, (3.13)

where μ is the reduced mass and �k and �k′ are the center-of-mass momenta before
and after scattering, respectively. Let the central, u0, and spin–orbit, us , potentials
be given by the expressions

u0 = vρ(r), us = vs
1

r

dρ(r)

dr
�σ · �L (3.14)
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In the nonrelativistic approximation, this form of the potential follows from the
Dirac equation. Substituting Eq. (3.14) into Eq. (3.13) and integrating with respect
to the angles, we arrive at the expressions

g(θ)= 2μ

�2
v

∫

ρ(r) · j0(qr)r
2dr, (3.15)

h(θ)= i
2μk sin θ

�2q
vs

∫

j1(qr)

(
1

r

dρ(r)

dr

)

r3dr. (3.16)

Using the relation

x2j0(x)= d

dx

[
x2j1(x)

]
,

we obtain

g(θ)=− 2μ

�2q
v

∫

j1(qr)

[
1

r

d

dr
ρ(r)

]

r3dr. (3.17)

Comparison with the expression for the amplitude h(θ) shows that

h(θ)=−i vs
v

sin θk2g(θ). (3.18)

Here, k is the momentum in the center-of-mass frame of the reaction and
�q = �k − �k′. More recently, the validity of relation (3.18) was proved in a weaker
approximation than that used by Fermi, more precisely, under the assumption that
the spin–orbit potential is much weaker than the central potential, which can be ar-
bitrary. It is substantial that the spin–orbit potential is proportional to the gradient of
the central potential. An additional condition is that the scattering angles are small.
The semiclassical approximation was used in the proof given in Koeler (1955), Lev-
intov (1956).

From the definition of polarization, using Fermi relation (3.18), we obtain

P(θ)=−
2(�k

μc
)2 Re( iv

∗·vs
|v|2 ) · sin θ

1+ (
|vs |
|v| )2 sin θ2(�k

μc
)4

. (3.19)

This formula provides several conclusions. If the spin–orbit potential is a real
function, polarization can appear only when the central potential contains the imag-
inary part. The energy dependence of polarization at a given scattering angle is
determined only by the ratio of the potential to the square of the particle momentum
in the center-of-mass frame. Polarization vanishes if the imaginary part of the cen-
tral potential increases unboundedly with energy. Polarization reaches the maximum
value Pmax, which is given by the expression

Pmax = Re(iv · vs)
|v||vs | . (3.20)

The position of the polarization maximum is determined by the relation

sin θmax =
(
μc

�k

)2

· |v||vs | . (3.21)
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These predictions are in quite good agreement with experimental data in the energy
range 100–1000 MeV.

Simple transformations of formula (3.18) with the Gaussian form of the ampli-
tude g give the relation

P(θ)∝ d lnσ(θ)

dθ
. (3.22)

Physicists multiply “rediscovered” this formula, in particular, recently for quark–
quark scattering.

For particular calculations, Fermi took the potentials in the following form:

the central potential

V = V1 + iV2 (3.23)

and the spin-orbit potential

Hs =−15
�

M2c2

V ′1(r)
r
�σ · �x × �p. (3.24)

The imaginary part of the potential determines the absorption of a proton in nu-
clear matter (carbon in this particular case). For simplicity, both potentials were
taken in the form of a square well:

V1 + iV2 =
{−B − iBa for r < r0,

0 for r > r0.
(3.25)

Fermi performed calculations in the Born approximation with potentials (3.24)
and (3.25). The matrix elements of the corresponding potentials were calculated in
the coordinate system with the x axis along the incident proton momentum. Scat-
tering with a positive angle θ occurs to the left from the beam in the horizontal xy
plane, whereas the polarization vector is directed upwards. Plane waves with the
same magnitude of the momenta are taken as the initial and final states. The final
momentum is directed along the scattering angle. The gradient of the real part of the
central potential is written in the form

V ′1 = Bδ(r − r0). (3.26)

This relation means that the spin–orbit interaction in the Fermi model is a surface
effect. Direct calculations give the following expressions for the matrix elements:

〈2|V |1〉 = −4πr3
0 (B + iBs)

{
sinq

q3
− cosq

q2

}

(3.27)

and

〈2|Hs |1〉 = −i30π

(
p

Mc

)2

Br3
0 sin θ

{
sinq

q3
− cosq

q2

}

, (3.28)

where

q = 2pr0

�
sin

θ

2
. (3.29)
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Matrix element (3.27) does not flip the proton spin, whereas matrix element
(3.28) flips it. The differential cross section for the scattering of a proton by a nu-
cleus is proportional to the sum of the squares of the absolute values of the ampli-
tudes, and the proportionality coefficient is ( M

2π�2 )
2:

dσ

dω
= 4M2

�4
r6

0B
2
(

sinq

q3
− cosq

q2

)2{

1+
[
Bs

B
+ 15

2

(
p

Mc

)2

sin θ

]}

. (3.30)

Formula (3.30) shows that the differential cross section depends on the sign of
the scattering angle θ . Therefore, asymmetry can be determined from formula (3.30)
as

ε =
dσ
dω

(+)− dσ
dω

(−)
dσ
dω

(+)+ dσ
dω

(−) =
15( p

Mc
)2 Ba

B
sin θ

1+ (Ba

B
)2 + 225

4 (
p
Mc

)4 sin2 θ
. (3.31)

According to this formula, polarization appears due to interference between the
real spin–orbit potential and the imaginary part of the central potential. As men-
tioned above, when the absorption part of the central potential increases unbound-
edly, polarization vanishes (the model of an absolutely black nuclear sphere).

For numerical calculations, the cross sections for the pp and pn interactions at a
proton energy of 340 MeV were taken to be 24 and 32 mb, respectively. Accepting
r = 1.4 · 10−13A1/3 cm for the nuclear radius, we can estimate the mean free path
in the nucleus as λ= 1.1 · 10−13 cm. Correspondingly,

Ba = �v

2λ
= 16 MeV. (3.32)

Here, v = 0.68c is the proton velocity at an energy of 340 MeV. The real part of
the potential was taken to be 27 MeV. Table 3.1 presents the angular dependences
of the differential cross section and polarization of 340-MeV protons scattered from
the carbon target. These predictions of the Fermi model are in quite good agreement
with experimental data. Fermi pointed out that caution is necessary when comparing
with data for large scattering angles. Inelastic interactions prevail at these angles, but
the Fermi model is applicable only for elastic scattering.

Fermi emphasized the importance of the determination of the polarization sign.
If his hypothesis based on the nuclear shell model is correct, the polarization sign
should be positive. Special experiments confirmed his expectation.

3.2 Chirality Conservation Hypothesis

In 1961 and 1962, Logunov et al. (1962) and Nambu and Jona-Lasinio (1961a) con-
sidered some consequences of the hypothesis of the approximate γ5 invariance of
strong interactions. According to this hypothesis (so called the chirality conserva-
tion hypothesis), the matrix elements of all physical processes at high energies and
momentum transfers s, |t | �m2 (m is the highest mass of the particles involved in
reactions) can be invariant under the γ5 transformations of the spinor functions:

Ψi → γ5Ψi, Ψ̄i → Ψ̄iγ5, γ 2
5 =−1. (3.33)
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Table 3.1 Angular
dependence of the differential
cross section and polarization
of 340-MeV protons scattered
from the carbon target

Scattering
angle (deg)

Asymmetry
A(θ)

dσ
dω
· 1024

(for carbon)

0 0 2.7

5 0.40 2.2

10 0.51 1.2

15 0.49 0.3

20 0.42 0.02

30 0.33 0.01

40 0.27 0.03

50 0.23 0.01

As an example, the electromagnetic form factor of the nucleon is considered.
The most general expression for the electromagnetic vertex of the nucleon that is
invariant under Lorentz and gradient transformations has the form

Fμ

(
q2)= F1

(
q2)γμ + iσμνqνF2

(
q2). (3.34)

In view of the anticommutation of γ5 with γ matrices and the equality γ 2
5 =−1,

the application of the γ5-invariance condition to this relation gives

lim
q→∞|q|F2

(
q2)= 0. (3.35)

This relation means that the magnetic form factor of the nucleon decreases at
sufficiently high momentum transfers.

Let us discuss the consequences of this hypothesis for the reaction

0+ 1

2
→ 0+ 1

2
, (3.36)

where the numbers are the spins of the particles involved in the reaction. In the
relativistic case, if the internal parities of the initial and final states are the same, the
reaction matrix for reaction (3.36) has the form (analog of the nonrelativistic case)

M = ū2(p2)

[

A(s, t)+ q̂1 + q̂2

2
B(s, t)

]

u1(p1). (3.37)

Here, q1 and q2 are the boson momenta, p1 and p2 are the fermion momenta,
and q̂ = γ q .

The relativistic amplitudes A(s, t) and B(s, t) are related to the amplitudes a and
b for the nonrelativistic case as:

4πa = (
√
s +mN)

2 −m2
π

4s

[
A+ (√

s −mN

)
B
]
,

4πb= (
√
s −mN)

2 −m2
π

4s

[−A+ (√
s +mN

)
B
]
.

(3.38)

Here, the arguments of the amplitudes A(s, t) and B(s, t) are omitted in order to
simplify the expressions.
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As follows from the requirement of γ5 invariance,

lim
s,t→∞A(s, t)= 0. (3.39)

Since only one amplitude B(s, t) remains nonzero, polarization in this case is zero
in all binary reactions satisfying the γ5-invariance condition. In particular, the po-
larization of the hyperons should asymptotically vanish in the reactions

π− + p→Λ+K0, π− + p→Σ− +K+. (3.40)

Relation (3.39) makes it possible to formulate the hypothesis of chirality con-
servation: if the initial fermion is longitudinally polarized, the final fermion is also
longitudinally polarized.

A similar consideration was also performed for nucleon–nucleon scattering. For
this case, the relativistic matrix is generally written in the form

M(s, t)= ū(p2)ū(k2)
[
G1 −G2

(
γ (1)P + γ (2)K

)+G3
(
γ (1)P

)(
γ (2)K

)

−G4
(
γ
(1)
5 γ (1)P

)(
γ
(2)
5 γ (2)K

)−G5γ
(1)
5 γ

(2)
5

]
ū(p1)ū(k1). (3.41)

Here,

K = k1 + k2

2
, P = p1 + p2

2
, Q= k1 − k2. (3.42)

The requirement of the invariance of nucleon–nucleon elastic scattering matrix
(3.41) under the γ5 transformation noticeably simplifies this matrix to the form

M(s, t)= ū(p2)ū(k2)
[
G3

(
γ (1)P

)(
γ (2)K

)

−G4
(
γ
(1)
5 γ (1)P

)(
γ
(2)
5 γ (2)K

)]
ū(p1)ū(k1). (3.43)

It is easy to see that, if the nucleons in the initial state are unpolarized, they re-
main unpolarized in the final state. The appearance of polarization in pp elastic
scattering up to an energy of 300 GeV/c (Kline et al. 1980; Fidecaro et al. 1980,
1981) indicates that γ5 invariance incompletely appears below this energy and mo-
mentum transfers t = 2–4 (GeV/c)2.

The main consequence of γ5 invariance is chirality conservation in all reactions
where this hypothesis is applicable.

The first indications of approximate γ5 invariance were obtained in weak interac-
tion processes; a lepton is coupled with the almost conserving axial vector current,
as well as with the vector current. In view of this circumstance, we point to the
Goldberger–Treiman relation (Goldberger and Treiman 1958) between the pion de-
cay constant and the nuclear β-decay constant, which supports the hypothesis that
the axial vector current is asymptotically conserved when the momentum transfer
is much higher than the pion mass. However, γ5 invariance or, in other words, the
chirality conservation law strongly differs in nature from the convenient conserva-
tion laws. Indeed, chirality, being the fourth component of the axial vector, is not
a diagonal matrix on real states such as the nucleon and pion. Thus, chirality can
be treated as the mean value of the γ5 operator, which conserves in time. Such a
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symmetry can be called “hidden symmetry” (Nambu 1962). In addition to the prob-
lem of physical interpretation of chirality, it is very important to experimentally test
the helicity conservation hypothesis. As mentioned above, polarization is an impor-
tant test of the chirality conservation law: the presence of polarization in a certain
reaction means the absence of the γ5 symmetry in this reaction. Let us addition-
ally consider a number of processes that are also sensitive to chirality conservation
(Nambu 1962).

Nambu and Lurie (1961b) derived a number of interesting relations, which can be
most appropriately verified at high energies and, as mentioned in Nambu (1962), in
polarization experiments. Namely, if the pion–nucleon system conserves chirality
and the pion mass can be neglected as compared to the momentum transfer, the
amplitudes of the reactions a→ b and a→ b + π , where the pion is produced at
rest, are generally related to each other as

iMα
rad = f

[
χ
α,in
N ,M

]
. (3.44)

Here, f is the pion–nucleon coupling constant and χ
α,in
N = τα �σ · �p/Ep is the

isotopic operator of nucleon chirality. The above result was obtained under the as-
sumption that χα,in

N = χ in
N , where

χα,in = χ
α,in
N + χα,in

π = χ
α,in
N + 1

f

∫

φα,ind3x. (3.45)

Here, the time component of the conserving axial vector current is written. The
expression for χα depends on the accepted model of pion–nucleon interaction, but
it can be expected that its asymptotic expressions χ in and χout are independent of
the accepted model.

The application of formula (3.44) to the reactions

N + π→N + π, N + π→N + π + π, (3.46)

at an energy of about 300 MeV provided reasonable results in agreement with ex-
perimental data. However, this agreement is not a convincing reason, because this
model is applicable at energies much higher than the pion mass.

The authors modified their model in order to describe similar pion emission pro-
cesses in electromagnetic and weak interactions. We refer readers interested in these
problems to original works cited in Nambu (1962).

3.3 Asymptotic Relations Between Polarizations in the Cross
Channels of a Reaction

In the early 1960s, theoreticians derived a number of important asymptotic relations
between scattering amplitudes in local field theory (Logunov et al. 1964a, 1964b).
These results have been obtained with the use of the following basic principles of
local relativistic field theory:
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1. Invariance with respect to the inhomogeneous Lorentz group.
2. Microcausality.
3. Spectrality condition (the existence of a complete physical system with positive

energy).
4. Unitarity of the S-matrix.
5. Scattering matrix elements are generalized, boundedly increasing functions.

If the general principles of the theory are supplemented by the assumptions that
oscillations in scattering amplitudes are absent and the amplitudes increases with
energy by a certain law (power or logarithmic), certain experimentally testable re-
lations, for example, the Pomeranchuk relation for total cross sections for particles
and antiparticles can be obtained.

Theoreticians also widely used the Phragmén–Lindelöf theorem known in the
theory of complex functions. According to this theorem, if a function f (z) is an-
alytic in the upper complex energy half-plane and increases at infinity no faster
than zn, it cannot tend to different limits along the positive and negative semiaxes.

This Phragmén–Lindelöf theorem was used in Logunov et al. (1963, 1964b),
Bilenky et al. (1964), and Nguyen-Van-Hieu (1964) to study asymptotic relations
between polarizations in cross channels of a reaction. Using the crossing symmetry
condition, the authors of those works arrived at the following results.

1. Proton polarizations in the π+p and π−p scattering processes at a given energy
and a given angle are equal in magnitude and opposite in sign.

2. Neutron polarization in the π−+p→ π0+n charge-exchange process vanishes.
3. Hyperon polarizations in the π +p→K+Y and K̄+p→ π̄ +Y processes are

opposite to each other irrespectively of the relative internal parity of the particles;
the same is true for the K−+p→K0+Ξ0 and K̄0+p→K++Ξ0 processes.

4. The polarizations of the final particles in the Σ +He→HeΛ+p and p̄+He→
HeΛ + Σ̄ processes are opposite to each other if the relative parity of the Σ and
Λ particles is +1 and are the same if the relative parity is −1.

5. The polarizations of the final particles in the N +N → N +N and N̄ +N →
N̄ +N elastic scattering processes, as well as in the elastic scattering of strange
particles, Y + N → Y + N and Ȳ + N → Ȳ + N , are opposite to each other;
moreover, the polarizations of the recoil neutrons, for example, in the Σ−+p→
Λ+ n and Λ̄+ p→ Σ̄− + n processes are also opposite to each other.

6. The polarization of the Ξ− hyperon in the K− + p→K+ +Ξ− process van-
ishes.

7. The polarization of recoil protons in the elastic scattering of γ -ray photons by
protons also vanishes.

All above statements refer to the polarizations appearing in the collisions be-
tween unpolarized particles. The proofs of these statements as they were presented
by the authors will be given later. Here, we make a brief comment.

First, we emphasize that the discussion concerns only binary reactions. As
known, the cross sections for binary reactions without pomeron exchange decrease
rapidly with an increase in energy. This concerns most above reactions. At the same
time, the proposed model is valid for asymptotic energies. Thus, the question arises:
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What is the asymptotic energy in this model? In order to emphasize the importance
of this question, we give an example. According to above item 2, the neutron po-
larization in the π− + p→ π0 + n reaction should vanish. The polarization in this
reaction was measured in the mid-1980s by the PROZA collaboration and appeared
to be nonzero. What does this mean? This means that the asymptotic energy for this
reaction was not reached. However, measurements at higher energies are impossi-
ble, because the cross sections are small. Thus, the problem of the experimental test
of this item at asymptotic energies arises.

One of the predictions of the model concerns item 1, i.e., the π+p and π−p elas-
tic scattering processes. The predicted relation between the polarizations in these
processes was confirmed by HERA collaboration measurements in the mid-1970s
at a momentum of 40 GeV/c. Therefore, this implies that the asymptotic energy
for these reactions is reached. However, both proofs and tests of these predictions
refer to low momentum transfers for which many models including nonasymptotic
models provide almost the same predictions. Further advance in the development of
theoretical models is obviously required.

Note that interest in these theoretical results after more than forty years is still
great because many predictions have not yet been tested.

The below proofs of items 1–7 follow Bilenky et al. (1964).
I. To obtain asymptotic relations between the cross sections for various pro-

cesses, the Phragmén–Lindelöf theorem was used (Nevanlinna 1953). In particular,
using this theorem, Meiman (1962) derived the relations between the total cross
sections for interaction of particles and antiparticles at high energies, which were
previously proved by Pomeranchuk using the dispersion relation technique (Pomer-
anchuk 1958). Using the general principles of local relativistic field theory and the
Phragmén–Lindelöf theorem, Logunov et al. (1963, 1964a, 1964b) generalized the
Pomeranchuk relations to the case of differential cross sections for nonzero mo-
mentum transfers. Using the same technique, the asymptotic relations between po-
larizations in cross reactions were derived. Note that the creation of polarized hydro-
gen targets (Abragam et al. 1962; Chamberlain et al. 1963) and polarized colliding
beams (RHIC) significantly facilitates the measurement of polarizations at high en-
ergies and can ensure a test of these relations already in near future. We consider
the simplest reactions with particles of spins 0 and 1/2. This consideration is purely
phenomenological, and we do not discuss the mechanism of the appearance of po-
larizations at high energies. The basic results of the work are listed above. Below,
we give their proofs.

II. We begin with detailed consideration of the simplest case of the scattering of
π± mesons by nucleons. The amplitudes of the processes

π+ + p = π+ + p, (3.47a)

π− + p = π− + p (3.47b)

are given by the expression

M±
(
p′q ′;pq)= a± + ib±

(
q̂ + q̂ ′

2

)

· γ, (3.48)



136 3 Theoretical Models

where q and q ′ are the initial and final four-momenta of a meson, respectively;
q̂ = q · γ is the product of q by the four-dimensional Dirac matrix γ ; p and p′ are
the respective momenta of the proton; a± and b± are the functions of s =−(p+q)2

and t =−(p − p′)2; and subscripts + and − refer to the scattering of the positive
and negative mesons, respectively.

The polarization of the recoil proton in the scattering of mesons by unpolarized
protons is easily found using the formula (Michel and Wightman 1955; Bilenky and
Ryndin 1959)

ξμ = Tr[iγ5γμMΛ(p)M̄Λ(p′)]
Tr[MΛ(p)M̄Λ(p′)] , (3.49)

where ξμ is the four-dimensional polarization vector s orthogonal to the momentum
p′ and Λ(p) and Λ(p′) are the projection operators separating the states with pos-
itive energy. The polarization operator ξ for the particle with the momentum p in
any reference frame satisfies the relations ξ ·p = 0 and ξ2 =−P 2

R , where PR is the
polarization in the R frame of the particle.

From Eqs. (3.48) and (3.49), we obtain the following expression for the polariza-
tions:

ξ±μ =
2 Ima±b∗±[t (su− (M2 −μ2)2)]1/2

|a±|2(4M2 − t)+ 2 Rea±b∗±M(u− s)+ 1/4|b±|2[(u− s)2 − t (t − 4μ2)]
× nμ, (3.50)

where M and μ are the nucleon and meson masses, respectively; u=−(p− q ′)2 =
2(M2 − μ2) − s − t ; and nμ is the spacelike unit four-vector proportional to

iεμνρσpνqρp
′
σ . In the center-of-mass frame, n4 = 0 and �n= �p× �p′

| �p× �p′| .
When s� t and M2, from Eq. (3.50) we obtain

ξ±μ =
2 Ima±b∗±

√−t
|2Ma± − sb±|2 − t |a±|2 nμ. (3.51)

According to this expression, polarization is nonzero in the limit s→∞ and for
a given t value only when the behaviors of a and sb

M
are the same in the indicated

region of the variables s and t .
Let us assume that the asymptotic behavior of a+ and sb+

M
is given by the expres-

sion

sα(t)φ(s, t), (3.52)

where a(t) and φ(s, t) are the functions determined in Logunov et al. (1964a,
1964b). Then, as shown in Logunov et al. (1964a), it follows from the Phragmén–
Lindelöf theorem that

a+(−s, t)= eiπα(t)a+(s, t),
b+(−s, t)=−eiπα(t)b+(s, t).

(3.53)

Let us use the cross symmetry condition that relates the amplitudes M+ and M−:

M−
(
p′q ′;pq)= γ4M+

(
p− q ′;p′ − q

)
γ4. (3.54)
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According to Eq. (3.54), the functions a and b satisfy the relations

a−(s, t)= a∗+(u, t),
b−(s, t)=−b∗+(u, t).

(3.55)

Combining Eq. (3.55) with Eq. (3.53), in the limit s→∞ and for a given t value,
we arrive at the relations

a−(s, t)= e−iπα(t)a∗+(s, t),
b−(s, t)= e−iπα(t)b∗+(s, t).

(3.56)

From Eqs. (3.56) and (3.51), we obtain the following asymptotic relation between
the polarizations:

ξ+μ (s, t)=−ξ−μ (s, t). (3.57)

Thus, if the polarization of the recoil proton in the scattering of π+ mesons by
protons at high energies is nonzero, the polarization of the recoil proton in π− − p

scattering is also nonzero and differs from the polarization in π+−p scattering only
in sign.

Let us now consider the charge-exchange process

π− + p→ π0 + n. (3.58)

Applying cross symmetry, we relate the amplitude of reaction (3.58) in the non-
physical region to the amplitude of the process

π+ + n→ π0 + p. (3.59)

However, in view of charge symmetry, the amplitudes of processes (3.58) and
(3.59) coincide with each other. Using cross symmetry and the Phragmén–Lindelöf
theorem, we obtain the following relations for the charge-exchange process:

a0(s, t)= e−iπα(t)a∗0(s, t),
b0(s, t)= e−iπα(t)b∗0(s, t).

(3.60)

These relations mean that Ima0b
∗
0 is zero and that, as a result, the polarization

of the recoil neutron in process (3.58) vanishes at high energies if the asymptotic
behaviors of the functions a0 and sb0

M
are the same. The different asymptotic behav-

iors of these two terms constitute a possible cause of nonzero neutron polarization
measured by the PROZA collaboration. However, there is another possible cause
presented at the beginning of this section; this cause is that 40 GeV is not yet the
asymptotic energy.

III. Let us consider the reactions

π + p→ Y +K, (3.61a)

K̄ + p→ Y + π̄ . (3.61b)

If the internal parities Ii and If of the initial and final particles coincide with
each other, the amplitude of process (3.61a) is represented in the form (scattering
matrix should be a scalar function):

M
(
p′q ′;pq)= a + ib

q̂ + q̂ ′

2
, (3.62)
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where q and q ′ are the momenta of π and K mesons, respectively; p and p′ are the
momenta of the nucleon and hyperon, respectively; and q̂ = γ q and q̂ ′ = γ q ′.

If the internal parities are opposite (Ii = −If ), the amplitude of this process is
written in the form (pseudoscalar matrix)

M
(
p′q ′;pq)= cγ5 + idγ5

q̂ + q̂ ′

2
. (3.63)

In the limit s→∞ and at a given t value, the polarization in the case Ii = If is
given by the expression

ξμ = 2 Imab∗s
√−t

|a(m+m′)− sb|2 − t |a|2 nμ, (3.64)

where m and m′ are the nucleon and hyperon masses, respectively, and nμ is defined
above. Similarly, the asymptotic expression for the polarization in the case Ii =−If
has the form

ξμ =− 2 Im cd∗s
√−t

|c(m−m′)− sd|2 − t |c|2 nμ. (3.65)

The cross symmetry condition of type (3.54) relates the amplitude of reaction
(3.61a) in the nonphysical region to the amplitude of the reaction π̄ + Y → K +
p reverse with respect to reaction (3.61b). The amplitude of this process is easily
related to the amplitude of reaction (3.61b) if PT invariance is used. In view of cross
symmetry of form (3.54) and PT invariance, we obtain

M
(
p′q ′;pq)= ηγ4UM∗(p′ − q;p− q ′

)
U−1γ4. (3.66)

Here, Mc is the amplitude of process (3.61b), U is the matrix satisfying the con-
dition

Uγ T
μ U−1 = γμ,

η is the phase factor appearing in the PT transformation. In the case Ii = If , relation
(3.66) yields

ac(s, t)= ηa∗(u, t),
bc(s, t)=−ηb∗(u, t). (3.67)

For the case Ii =−If , we obtain

cc(s, t)=−ηc∗(u, t),
dc(s, t)= ηd∗(u, t).

(3.68)

As in item II, assuming that the asymptotic behaviors of the amplitudes a and c

coincide with the behaviors of the amplitudes sb
m

and sd
m

, respectively, and applying
the Phragmén–Lindelöf theorem in the limit s →∞ and at a given t value, we
obtain

If = Ii, ac(s, t)= ηe−iπα1(t)a∗(s, t),
bc(s, t)= ηe−iπα1(t)b∗(s, t); (3.69)
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If =−Ii, bc(s, t)=−ηe−iπα2(t)c∗(s, t),
dc(s, t)=−ηe−iπα2(t)d∗(s, t).

(3.70)

The expressions for the polarization ξcμ appearing in reaction (3.61b) can be ob-
tained from Eqs. (3.64) and (3.65) by changing a → ac etc. In view of this cir-
cumstance and according to Eqs. (3.64), (3.65), (3.69) and (3.70), polarizations in
reactions (3.61a) and (3.61b) for any relative parity are equal to each other in mag-
nitude and are opposite to each other in sign:

ξcμ =−ξμ. (3.71)

This also naturally refers to the K− + p→K0 +Ξ0 and K0 + p→K+ +Ξ0

reactions if the spin of the Ξ hyperon is 1/2.
Note also that the application of cross symmetry condition (3.66) and the

Phragmén–Lindelöf theorem to the K− + p→ K+ + Ξ− reaction indicates that
the polarization of the Ξ− hyperon in the limit s→∞ and at a given t value van-
ishes for any asymptotic behaviors of individual terms of the amplitude.

Let us show that in the reactions

Y1 +A→ Y2 +B, (3.72a)

Ȳ2 +A→ Ȳ1 +B, (3.72b)

where A and B are the particles with spin 0 and Y1 and Y2 are the particles with
spin 1/2, the polarizations ξμ and ξcμ of the particles Y2 and Ȳ1 are opposite to each
other:

ξcμ =−ξμ, (3.73)

if Ii = If , and are the same:

ξcμ = ξμ (3.74)

if Ii = −If . To this end, we write the matrix elements of processes (3.72a) and
(3.72b) in the form

ū
(
p′
)
N
(
p′q ′;pq)u(p),

ū
(
p′
)
Nc

(
p′q ′;pq)u(p),

where u(p′) and u(p) are the spinors with positive energy. The amplitudes N and
Nc have the form of Eqs. (3.62) and (3.63) in dependence on the relative parity of
the particles. In this case, the cross symmetry condition has the form

Nc

(
p′q ′;pq)= η′γ4N

+(p− q ′;p′ − q
)
γ4, (3.75)

where η′ is the phase factor appearing in charge conjugation. If the parity remains
unchanged, relation (3.75) leads to relations of form (3.67). If the internal parity
changes, the resulting relations differ from relations (3.68) only in the sign in the
second relation. Since the expressions for polarizations have form (3.64) and (3.65),
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we arrive at relations (3.73) and (3.74). Examples of reactions (3.72a), (3.72b) are
as follows:

Σ+ +He→HeΛ + p and p̄+He→HeΛ + Σ̄+,
Ξ− +He→HeΛ +Σ− and Σ̄− +He→HeΛ + Ξ̄−.

(3.76)

IV. Let us consider a more complex case of reactions with particles of spin 1/2.
First, we discuss the reactions

Σ− + p→Λ+ n and Λ̄+ p→ Σ̄− + n. (3.77)

The amplitude of processes (3.77) can be written in the form

M
(
p′1p′2;p1p2

)= a + bγ
(2)
5 + cγ (2)K1 + dγ

(2)
5 γ (2)K1, (3.78)

where p1 and p′1 are the proton and neutron momenta, respectively; p2 and p′2
are the momenta of the Σ and Λ hyperons, respectively; K1 = 1/2(p1 + p′1); and
a, b, c, and d are the matrices acting on the spin variables of the nucleons.

Let us assume that the internal parities of the Σ and Λ hyperons are the same; in
this case,

a = a1 + ia2γ
(1) ·K2, c= c1 + ic2γ

(1) ·K2,

b= b1γ
(1)
5 + ib2γ

(1)
5 γ (1) ·K2, d = d1γ

(1)
5 + id2γ

(1)
5 γ (1) ·K2,

(3.79)

where

K2 = 1/2
(
p2 + p′2

)
.

The expression for the polarization of the final neutron can be found using a
formula similar to formula (3.49). The final result for s→∞ and a given t value
has the form

ξμ = 2s
√−t
σ

nμ
{[(

m+m′
)2 − t

]
Ima1a

∗
2

− [(
m′ −m

)2 − t
]

Imb1b
∗
2 + s2 Im c1c

∗
2 − s2 Imd1d

∗
2

+ (
m+m′

)
s Re

(
a2c

∗
1 − a1c

∗
2

)+ (
m−m′

)
s Re

(
b1d

∗
2 − b2d

∗
1

)}
, (3.80)

where

σ = [(
m+m′

)2 − t
][|a1|2

(
4M2 − t

)− 4Ms Rea1a
∗
2 + s2|a2|2

]

+ [(
m−m′

)2 − t
][−t |b1|2 + 2

(
m′2 −m2)M Reb1b

∗
2 + s2|b2|2

]

+ s2[|c1|2
(
4M2 − t

)− 4Ms Re c1c
∗
2 + s2|c2|2

]

+ s2[−t |d1|2 + 2
(
m′2 −m2)M Red1d

∗
2 + s2|d2|2

]

+ (
m+m′

)
s
[(

4M2 − t
)

Ima1c
∗
1 − 2Ms Im

(
a1c

∗
2 + a2c

∗
1

)+ s2 Ima2c
∗
2

]

+ (
m−m′

)
s
[−t Imb1d

∗
1 +

(
m′2 −m2) Im

(
b2d

∗
1 + b1d

∗
2

)

+ s2 Imb2d
∗
2

]
, (3.81)

m and m′ are the masses of the Σ and Λ hyperons, respectively, and M is the
nucleon mass.
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The cross symmetry condition has the form

Mc

(
p′1p′2;p1p2

)= γ
(2)
4 γ

(1)
4 C(1)M∗T (2)(−p′1p2;−p1p

′
2

)
C(1)−1

γ
(1)
4 γ

(2)
4 . (3.82)

Here, Mc(p
′
1p
′
2;p1p2) is the amplitude of reaction (3.77), T (2) means the transpo-

sition of the spin indices of the hyperons, and C is the charge conjugation matrix
satisfying the conditions Cγ T

μ C−1 = −γμ and CT = −C. Note that in expression
(3.82) we omit a phase factor appearing in charge conjugation that is insignificant
for the further presentation. The amplitude Mc(p

′
1p
′
2;p1p2) obviously has the same

form as amplitude (3.78). The corresponding coefficients are denoted as ac1, a
c
2, etc.

From Eq. (3.82), we obtain

ac1(s, t)= a∗1(u, t), ac2(s, t)=−a∗2(u, t),
bc1(s, t)= b∗1(u, t), bc2(s, t)=−b∗2(u, t),
cc1(s, t)= c∗1(u, t), cc2(s, t)=−c∗2(u, t),
dc1(s, t)=−d∗1 (u, t), dc2(s, t)= d∗2 (u, t),

(3.83)

where u= 2M2 +m2 +m′2 − s − t .
The neutron polarization in reaction (3.77) is obtained from Eqs. (3.80) and

(3.81) by changing a1 → ac1 etc. and changing m→←m′.
First, we assume that the functions

a1, sa2, b1, sb2, c1, sc2, d1, sd2 (3.84)

have the same behavior in the limit s →∞ and for a fixed t value. In this case,
according to expressions (3.80) and (3.81), polarization is nonzero. From relations
(3.83) and the Phragmén–Lindelöf theorem, we obtain in the limit s→∞:

ac1 = e−iπα(t)a∗1 , ac2 = e−iπα(t)a∗2 ,
bc1 = e−iπα(t)b∗1, bc2 = e−iπα(t)b∗2,
cc1 = e−iπα(t)c∗1, cc2 = e−iπα(t)c∗2,
dc1 = e−iπα(t)d∗1 , dc2 = e−iπα(t)d∗2 .

(3.85)

According to relations (3.85) and the expressions for the polarizations of the
neutrons in reactions (3.76) and (3.77), the polarizations in this case are obviously
opposite to each other:

ξcμ =−ξμ. (3.86)

Let us assume now that the behaviors of functions (3.84) in the limit s →∞
are not necessarily the same. In this case, for the appearance of polarization, the
behaviors of at least two most rapidly increasing functions should be the same (this
pair of functions should naturally enter in the form of the product into the numerator
of the expression for polarization). Relation (3.86) is obviously satisfied in this case.

We consider the case of the same internal parities of the Σ and Λ hyperons. It
can be shown that neutron polarizations in processes (3.76) and (3.77) in the case of
opposite internal parities are related through Eq. (3.86).
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Let us now consider the elastic scattering of hyperons and antihyperons by nu-
cleons:

Y + p→ Y + p, (3.87)

Ȳ + p→ Ȳ + p. (3.88)

The amplitudes of these processes are given by Eqs. (3.78) and (3.79) with
b2 = d1 = 0. The last conditions follow from time reversal invariance. Therefore,
all above relations are also valid for elastic scattering processes (3.87) and (3.88),
and the polarizations of the recoil protons in these processes are also related through
Eq. (3.86).

It can be shown similarly that the polarizations of the final hyperons and antihy-
perons in (3.87) and (3.88) satisfy relation (3.86). Note that in the case of eight-term
amplitudes describing processes (3.76) and (3.77), conclusions on the relation be-
tween the polarizations of the hyperons and antihyperons are impossible without the
assumptions on the asymptotic behavior of individual terms of the amplitudes in the
limit s→∞ and at a fixed t value.

From the consideration of the elastic scattering of hyperons, it is clear that the
polarizations of nucleons and antinucleons in the nucleon–nucleon and antinucleon–
nucleon scattering processes are related to the recoil nucleon polarization through
Eq. (3.86).

V. To conclude, we briefly discuss the Compton effect on the proton. The ampli-
tude of the process can be written in the form

M
(
p′k′;pk)= ε′ · P ′ · ε · P ′

P ′2
[A1 + iA2K̂]ε

′ ·N · ε ·N
N2

[A3 + iA4K̂]

· ε
′ · P ′ · ε ·N − ε′ ·N · ε · P ′√

2P ′2N2
iγ5A5

+ ε′ · P · ε ·N − ε′ ·N · ε · P ′√
2P ′2N2

γ5K̂A6, (3.89)

where p and p′ are the momenta of the initial and final protons, respectively;
k and ε (k′ and ε′) are the momentum and polarization of the initial (final) pho-
ton, respectively; K = 1/2(k + k′); P ′ = P − PK

K2 K ; P = 1/2(p + p′); and
Nα = iεαβγ δP

′
βKγ (k − k′)δ .

In the limit s→∞ and at a fixed t value, the recoil proton polarization is given
by the expression

ξμ = s
√−t2 Im

(
A1A

∗
2 +A3A

∗
4

)
nμ

((|A1|2 + |A3|2
)(

4M2 − t
)+ (|A2|2 + |A4|2

)
s2

− 4 Re
(
A1A

∗
2 +A3A

∗
4

)
Ms − t |A5|2 + s2|A6|2

)−1
. (3.90)

Applying the cross symmetry condition

A1,3,5,6(s, t)=A∗1,3,5,6(u, t),
A2,4(s, t)=−A∗2,4(u, t)

(3.91)
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and the Phragmén–Lindelöf theorem, we can verify that the proton polarization van-
ishes in the limit s→∞ and at a fixed t value irrespectively of the assumptions on
the asymptotic behaviors of the amplitudes.

3.4 Regge Model

In the early 1960s, physicists discussed with great enthusiasm the idea of Italian
theoretician Regge about the analytic continuation of the scattering amplitude in the
complex plane of the orbital angular momentum l (de Alfaro and Regge 1965).

As known from works by Mandelstam, the physical amplitudes in the s, t , and
u channels constitute a united analytic function satisfying the cross symmetry con-
dition. This means that, knowing the amplitude in one of these channels, one can
determine the amplitudes in other channels. Regge’s idea was very productive be-
cause it provided the explicit prediction of the energy dependence in the s channel
in terms of the poles of the amplitude in the t channel. Below, we give brief presen-
tation of the mathematical implementation of Regge’s idea.

As we know from Sect. 2.8, any of five physical amplitudes can be expanded in
partial waves. For simplicity, we consider the case of the spinless scattering ampli-
tude in the t channel and expand it in the Legendre polynomials:

a(s, t)=
∑

l

(2l + 1)al(t)Pl(cos θt ). (3.92)

Here, s is the square of the total energy in the s channel, t is the square of the total
energy in the t channel, and θt is the scattering angle in the t channel. Extending
the region of determining the parameter l to the entire complex plane and using the
Sommerfeld–Watson transformation, we can arrive at the formula

a(s, t)=
∑

i

βi(t)ηi(t)s
αi (t)−1; (3.93)

where αi(t) are called Regge pole trajectories. It is assumed that only poles exist in
the complex l plane and they lie on one linear trajectory

α(t)= α(0)+ α′(0)t. (3.94)

Experimental evidences allow the assumption that poles exist only at integer l

values and t = m2
l at these points (nonphysical region). Under these assumptions,

the partial amplitude al(t) is expressed as

al(t)≈ β(t)

1− α(t)
≈ β(t)

α′(0)(m2
l − t)

. (3.95)

Here, the function β(t) is the residue of the amplitude at the pole. Substituting
this expression into expansion (3.92) and passing to the limit s→∞ at a fixed t

value, we arrive at the following form of the amplitude in the s channel:

a(s, t)= a(t)sα(t). (3.96)
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This expression has several interesting consequences. The first of them refers to
the differential cross section for elastic scattering. Let us write this cross section:

dσ

dt
≈ 1

s2

∣
∣a(s, t)

∣
∣2 ≈ f (t)s2α(t)−2. (3.97)

Using relation (3.94), this expression can be represented in the form

dσ

dt
≈ f (t)s2α(t)−2 ≈ f (t)

(
s

s0

)2α(0)−2

e
{[2α′(0) ln( s

s0
)]t} ≈ f (t)

(
s

s0

)2α(0)−2

eBt ,

(3.98)

where B = 2α′(0) ln s
s0

and s0 is the normalization parameter.
Therefore, the slope parameter of the cross section for elastic scattering should

increase logarithmically with energy if the trajectory slope is α′(0) �= 0, and the
diffraction scattering cone should be similarly narrowed. This prediction was first
confirmed in the experiments on pp elastic scattering at the U-70 accelerator in
the energy range 10–70 GeV and in the range of the squares of momentum trans-
fers t = 0.02–0.2 (GeV/c)2. Similar measurements of the slope parameter in π−p
elastic scattering were also carried out on the secondary beams of the accelerator
U-70 at the Institute for High Energy Physics in the energy range 25–55 GeV and
in the range of the squares of momentum transfers 0.05–0.5 (GeV/c)2. These exper-
iments show that the diffraction cone is not narrowed in pion–nucleon scattering.
This means that poles of different types are leading in these two processes, although
the largest contribution is expected from the vacuum (pomeron) pole. A contradic-
tion between experimental results and predictions of the Regge model is outlined.

The second consequence was obtained by comparing the cross section for the
charge-exchange reaction

π− + p = π0 + n (3.99)

with the prediction of the Regge model. This reaction should proceed through the
exchange by one ρ pole with isospin I = 1 and parity P = G = +. If this is the
case, polarization in this reaction should be zero. This is due to the fact that both
amplitudes of reaction (3.99) with and without spin flip in the process of exchange
by one pole acquire the same phase and the product of these amplitudes is real.
Since the polarization is proportional to the imaginary part of the product of these
amplitudes, it is zero. We will return to this problem later.

Let us discuss some consequences of the application of the Regge pole model to
the polarization parameters in the πp and pp elastic scattering processes.

The pion–nucleon scattering matrix in the center-of-mass frame is written in the
form

M =G± iH(�σ · �n), (3.100)

where G and H are the spin-independent and spin-dependent amplitudes in the s

channel, respectively, which are functions of s and t ; �n= �ki × �k/|�ki × �k| is the unit
vector perpendicular to the scattering plane; and signs + and − refer to the π+p-
and π−p-scattering processes, respectively.
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As mentioned above, when only one pole exists, polarization in the Regge model
is zero. Let us consider the case with two poles: vacuum and nonvacuum. The am-
plitude in the s channel is represented in the form of the sum of the amplitudes from
two poles in the t channel:

G=Gt
1 ±Gt

2, H =Ht
1 ±Ht

2. (3.101)

By the definition of the polarization P ,

I0P = Im
(
GH ∗)= Im

[(
Gt

1 +Gt
2

)(
Ht

1 +Ht
2

)∗]= Im
(
Gt

1H
t∗
2 +Gt

2H
t∗
1

)
(3.102)

for π+p scattering. Here, we take into account that the product of two functions of
the same pole is real and, therefore,

Im
(
GkH

∗
k

)= 0, (3.103)

where k = 1,2,3, . . . , n, and I0 is the differential cross section for the scattering
of unpolarized protons. Polarization in the case of π−p scattering is given by the
formula

I0P = Im
(
GH ∗)= Im

[(
Gt

1 −Gt
2

)(
Ht

1 −Ht
2

)∗]=− Im
(
Gt

1H
t∗
2 +Gt

2H
t∗
1

)
.

(3.104)

Comparing expressions (3.102) and (3.104) under the assumption of the equality
of the cross sections I0 for π+p- and π−p-scattering processes, we arrive at the
relation

P+(s, t)=−P−(s, t). (3.105)

This relation means that the polarizations in the processes of the elastic scattering
of π+ and π− mesons should be mirror symmetric. Experimental data confirm this
prediction to a certain extent (at low t values).

Relation (3.105) can be applied to the polarization in the elastic scattering of
protons and antiprotons. The highest energy at which data on the polarizations of
particles and antiparticles is 40 GeV for the p̄p→ p̄p reaction (Bruneton et al.
1976b) and 45 GeV for the pp→ pp reaction (Bruneton et al. 1975, 1976a). These
data are in sharp disagreement with relation (3.105); the signs of the polarizations
for these reactions in the experiment are the same, whereas they should be different
according to the Regge pole model.

The next problem is the energy dependence of the polarization at a fixed t value
and in the asymptotic s limit. We again consider the case of two poles, vacuum and
nonvacuum (e.g., the ρ pole in the case of pion–nucleon scattering or the ω pole in
the case of nucleon–nucleon scattering).
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We write the pion–nucleon scattering matrix in terms of the contributions from
Regge poles in the t channel in the parameterization accepted in Rarita et al. (1968):

M(πN)=
∑

j

(±) s
1/2

8π
ξj

(
s

s0

)αj−1

ηπj (ηNj + iφNj �σ · �N),

G=
∑

j

(±) s
1/2

8π
ξj

(
s

s0

)αj−1

ηπj (ηNj ),

H =
∑

j

(±) s
1/2

8π
ξj

(
s

s0

)αj−1

ηπj (iφNj �σ · �N),

(3.106)

where the signs (±) are determined by the signature of poles ξj ,

ξj (t)= 1+ τe−iπα(t)

sin[πα(t)] ,

and by a particular process; j marks poles and the summation is performed over all
poles; αj is the trajectory of the j -th pole; under the assumption that the residue
function is factorized, the parameter ηπj is the residue at the upper vertex of the
t-channel diagram (pion vertex) and ηNj and φNj parameterize the residue at the
lower vertex of the diagrams (nucleon vertex).

Let us determine the differential cross section I0, polarization P , and tensor po-
larization parameters D and R for pion–nucleon elastic scattering. To this end, we
recall some general formulas.

The density matrices of the initial, ρ̂i , and final, ρ̂f , states of interacting particles
are related by the scattering matrix M as

ρ̂f =Mρ̂iM
+. (3.107)

Then, the mean value of any spin operator Σ̂ in the final state is determined by
the expression

Σ̄ = Tr(ρ̂f Σ̂)/Tr(ρ̂f ). (3.108)

The differential cross section is given by the formula

I0 = Tr(ρ̂f )/Tr(ρ̂i)= |G|2 + |H |2. (3.109)

Polarization is determined from formula (3.108) where the operator Σ̂ is replaced
by the spin operator ŝ = 1

2 σ̂ :

I0P = Im
(
GH ∗). (3.110)

The substitution of formula (3.106) into relation (3.110) shows again that polar-
ization is zero in the presence of only one pole.

We return now to the energy dependence of polarization in the presence of two
Regge poles. For cross section, we take into account only the vacuum pole. In this
case, the energy dependence of cross section has the form

I ∝ s

(
s

s0

)2αP (t)−2

. (3.111)
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The term Im(GH∗) appearing in polarization has the energy dependence

Im
(
GH∗

)∝ s

(
s

s0

)αP+αR−2

. (3.112)

Here, αR(t) and αP (t) are the reggeon and pomeron trajectories, respectively.
The ratio of expressions (3.112) and (3.111) gives the energy behavior of polar-

ization

P ∝
(
s

s0

)αR(t)−αP (t)
. (3.113)

This theoretical prediction of the Regge pole model agrees as a whole with
the experimental data in the energy range below 40 GeV for −t values below
0.5 (GeV/c)2. For higher values of the invariant momentum transfer, the experimen-
tal accuracy is insufficient for a quantitative test of relation (3.113). This statement
is illustrated below.

We consider now nucleon–nucleon elastic scattering. In this case, the scattering
matrix in the Wolfenstein representation with the inclusion of spins of both interact-
ing particles is written in the general form

M(NN)= a + ic
(�σ (1) + �σ (2)) · �N +m

(�σ (1) · �N)(�σ (2) · �N)

+ (g + h)
(�σ (1) · �P )(�σ (2) · �P )+ (g − h)

(�σ (1) · �K)(�σ (2) · �K)
.

In the Regge pole model, this matrix has the form (Rarita et al. 1968)

M(NN)=
∑

j

(±) s
1/2

8π
ξj

(
s

s0

)αj−1(
ηNj + iφNj �σ (1) · �N)

× (
ηNj + iφNj �σ (2) · �N)

,

a =
∑

j

(±) s
1/2

8π
ξj

(
s

s0

)αj−1

η2
Nj ,

c=
∑

j

(±) s
1/2

8π
ξj

(
s

s0

)αj−1

iηNjφNj

(�σ (1) · �N + �σ (2) · �N)
,

m=
∑

j

(±) s
1/2

8π
ξj

(
s

s0

)αj−1(−φ2
Nj

)(�σ (1) · �N)(�σ (2) · �N)
.

(3.114)

In this model, poles with integer spins are considered taking into account the
following factors:

• the factorization of the residue function; this allows the use of the same parame-
ters for the pion–nucleon and nucleon–nucleon scattering processes;

• in the asymptotic region, |g − h| � |g + h| and |g + h| decreases as s−1 as
compared to the amplitudes a, c, and m (Sharp and Wagner 1963; Wagner 1963);
hence, we can take g = h= 0;
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• according to relation (3.114), c2
j = ajmj . Thus, the nucleon–nucleon scattering

matrix in the Regge pole model includes only two independent amplitudes; for
this reason, the calculation of observables is significantly simplified.

The antinucleon–nucleon scattering matrix is given by a similar formula, but the
contribution from the pole with the odd signature should appear with the opposite
sign as compared to nucleon–nucleon scattering.

The results of Bruneton et al. (1976c) on the comparison of experimental data
with Regge-model predictions are presented in Fig. 3.1. The experimental results
on measuring polarization were processed by the Regge model formula

P(t)=A(t)sαeff (t), where αeff = αR + αP − 2.

All data from 6 to 45 GeV/c were involved in procession for determining αeff (t).
For each fixed −t value, the data on polarization as a function of s are fit. In this
way, five αeff (t) values for the K+p→ K+p reaction (closed points with error
bars in Fig. 3.1) and seven points for the pp→ pp reaction (open points with error
bars in Fig. 3.1) were obtained in the range 0.1 (GeV/c)2 ≤ |t | ≤ 0.5 (GeV/c)2.
Good agreement with the Regge model is observed for the first reaction with the
following dependences for trajectories: αR = 0.52+ 0.93t for the ρ pole and αP =
1+0.27t for the pomeron. These trajectories are shown by the solid lines in Fig. 3.1.
The dependence αeff = αR + αP − 2, which is compared to the points extracted
from the experiments, is also shown by the solid line. As seen, the Regge model
predictions are in good agreement with the results on polarization in K+p elastic
scattering in the energy range 6–45 GeV. The same agreement was observed for
the elastic scattering of positive and negative pions by protons in the same energy
range in Bruneton et al. (1976c), where another prediction of the Regge pole model,
namely, mirror symmetry between polarizations in the π+p→ π+p and π−p→
π−p reactions, is also confirmed experimentally. Thus, there are some facts in favor
of the simple Regge pole model.

However, Fig. 3.1 indicates that the data on polarization in proton–proton elas-
tic scattering are in sharp contradiction with the predictions of the simple Regge
pole model. The open points in this figure lie systematically below the theoretical
line. As stated in Bruneton et al. (1976c): “A fast decrease in polarization in the
range |t | = 0.5–1.0 (GeV/c)2 with an increase in energy can be explained under the
assumption that, in contrast to the ordinary picture, interference between the ampli-
tudes with and without change in the helicity of the pomeron exchange makes con-
tribution to polarization in pp elastic scattering at 45 GeV/c.” Previously in 1975,
the same team (HERA collaboration) arrived at the same conclusion studying the
energy dependence of the ratio of the spin-flip to spin-nonflip amplitudes. In addi-
tion, taking into account the presence of polarization in the pion charge-exchange
reaction, which should be absent according to the Regge pole model, this model
should be significantly modified. Some problems in this way will be discussed later.

Pion–pion scattering in the pole model is interesting from the theoretical point of
view. Since pions are spinless particles, the formulas are shorter, but the behavior of
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Fig. 3.1 Experimental test of
the Regge pole model
predictions or the energy
dependence of polarization

the scattering amplitude is characteristic for more complex cases. In particular, the
amplitude for spinless particles has the asymptotic form

M = ξ(2s0)(s/s0)
αηπη

′
π . (3.115)

Here, η and η′ are the residue functions in the upper and lower vertices of the
Feynman diagram in the t channel of the reaction, respectively. These functions
are sometimes called the t-dependent couplings between pairs of the initial and
final pions. From the optical theorem, the total cross section for ππ interaction is
expressed in the form

σππ(s)= ImM(s, t = 0)
/[

s
(
s − 4m2

π

)]1/2 →
∑

i

τi(s/s0i )
αi−1(ηπi)

2. (3.116)

When deriving this formula, it is assumed that the function ηπ is real for energies
t below the particle production threshold.

The differential cross section for ππ scattering is written in the form

dσππ

dt
= 1

4π

∑
Re

(
ξ∗i ξj

)
(

s

s0i

)αl−1(
s

s0j

)αj−1

(ηπi)
2(ηπj )

2. (3.117)

Below, by analogy with the formulas for ππ scattering, in the framework of the
Regge pole model (Rarita et al. 1968), (Wagner 1963), we present the determina-
tions of some polarization tensors, relativistic formulas expressing these quantities
in terms of the amplitudes, and a scheme for their experimental measurement.

1. For the total cross section:
πN scattering

σπN(s)= ImM(s, t = 0)
/[

s
(
s − (mN +mπ)

2)]1/2

→
∑

i

τi(s/s0i )
αi−1ηπiηNi; (3.118)

NN scattering

σNN(s)= ImM(s, t = 0)/
[
s
(
s − 4m2

N

)]1/2 →
∑

i

τi(s/s0i )
αi−1η2

Ni. (3.118a)
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Here, only spin-nonflip amplitudes make contributions and, correspondingly,
only the functions η appear.

Formulas (3.118) and (3.119) were widely used (see, e.g., Rarita et al. 1968
discussed here) to process data on total cross sections in the early 1970s. The
Regge model including the pomeron with αP (0) = 1 gives constant total cross
sections in agreement with the measurements available at that time at energies
below 30 GeV. However, an increase in total cross sections at energies above
40 GeV (Serpukhov effect) observed at the U-70 accelerator (IHEP) was the
strongest stroke on the Regge pole model: this effect could not be explained in
this model.

The differential cross section for the scattering of an unpolarized particle on
an unpolarized target:

for pion–nucleon elastic scattering

I0(πN)= |G|2 + |H |2

= 1

4π

∑
Re

(
ξ∗i ξj

)
(

s

s0i

)αi−1(
s

s0j

)αj−1

× ηπiηπj (ηNiηNj + φNiφNj ), (3.119)

for nucleon–nucleon elastic scattering

I0 = |a|2 + 2|c|2 + |m|2

= 1

4π

∑
Re

(
ξ∗i ξj

)
(

s

s0i

)αi−1(
s

s0j

)αj−1

× (ηNiηNj + φNiφNj )
2. (3.120)

2. Polarization for elastic scattering:
pions by nucleons

(I0P)πN = Tr
[
MM+σ (1)

N

]= 2 Im
(
GH ∗)

= 1

2π

∑

ij

Im
(
ξ∗i ξj

)
(

s

s0i

)αi−1(
s

s0j

)αj−1

× (ηNiηNjφNiφNj ), (3.121)

nucleons by nucleons

(I0P)NN = Tr
[
MM+σ (1)

N

]= 2 Im
[
(a +m)c∗

]

= 1

2π

∑

ij

Im
(
ξ∗i ξj

)
(

s

s0i

)αi−1(
s

s0j

)αj−1

× (ηNiηNj + φNiφNj )φNiφNj . (3.122)

When one dominant pole makes contribution, the phases of all scattering am-
plitudes are the same and polarization vanishes. If contribution from only one
dominant pole, for example, pomeron remains at asymptotic energies, polariza-
tion should vanish.
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3.5 Elements of Quantum Chromodynamics

According to modern representations, strongly interacting particles (hadrons) con-
sist of quarks interacting between each other through gluon exchange. Presently
known light and heavy quarks are classified into three generations. Each generation
contains two quarks. As known, leptons are also classified among three generations
each with two leptons. The central point in this scheme is the introduction of a new
degree of freedom: it is assumed that each quark, in addition to the other quantum
numbers, is characterized by one of three colors, conventionally red, yellow, and
blue (Eidelman et al. 2004). In turn, gluons have eight colors. The concept of col-
ors was based on a number of experimental results, some of which are listed below
(Close 1979).

1. The large experimental cross section for the annihilation of electron–positron
pairs into hadrons. The theory predicts the ratio

R = σ(e+e− → hadrons)

σ (e+e− → μ+μ−)
=
∑

i

e2
i =

{
2/3 without color,

2 for three colors.
(3.123)

The experiments agree with the hypothesis of three colors. The contribution from
charmed particles was disregarded in these calculations. Under the assumption
that these particles are also three-color, the inclusion of this contribution im-
proves the agreement with the experimental data as compared to the case of one
color.

2. The decay

π0 → γ + γ, (3.124)

is also in agreement with the hypothesis of three colors of the quarks.
3. The cross section for the production of lepton pairs by hadrons (Drell–Yan pro-

cess) under the hypothesis of three colors of the quarks should be one third of
the value for the single-color quarks. Experiments confirm such a suppression of
the cross sections.

4. Classical evidence in favor of colored quarks is the existence of the �++ nu-
cleon resonance that consists of three u quarks and has spin 3/2. As a fermion,
it should be governed by Fermi–Dirac statistics; however, owing to the identity
of all constituent quarks, it is an explicitly symmetric system. Only by intro-
ducing a new degree of freedom, color, the wave function of this isobar can be
antisymmetrized in the form

ψ
(
�++

)∝ (
u
↑
Ru
↑
Bu
↑
Y

)
εRBY , (3.125)

where u↑k , k =R,B,Y are the quark wave functions and εRBY is the antisymmet-
ric tensor of the third rank.

Table 3.2 presents the symbols of the quarks, their flavors (additive quantum
numbers Iz, S, C, B , and T ) and electric charges Q. We accept the convention that
any flavor quantum number of a quark has the same sign as the charge of this quark.
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Table 3.2 Quark parameters

Parameter d u S c b T

Electric charge Q −1/3 +2/3 −1/3 +2/3 −1/3 +2/3

Isospin z-component Iz −1/3 +1/2 0 0 0 0

Strangeness S 0 0 −1 0 0 0

Charm C 0 0 0 +1 0 0

Beauty B 0 0 0 0 −1 0

Top T 0 0 0 0 0 +1

Quark mass M 4–8
MeV

1.5–4
MeV

80–130
MeV

1.15–1.35
MeV

4.1–4.4
MeV

174.3± 5.1
GeV

This convention is convenient. Thus, in particular, the strangeness of the K+ meson
is +1, whereas both the charm and strangeness of D−s are −1. All quarks have spin
1/2 and baryon number 1/3. It is accepted that a quark has positive parity. Each
quark has three colors, and quarks interact between each other through color-gluon
exchange. A gluon has eight colors, its spin is 1, and gluon mass is zero. Since
the gluon has no electric charge, it is not subjected to electromagnetic interaction
directly, but only indirectly. Thus, the gluon is an analog of the photon as an in-
teraction carrier. In contrast to the photon carrying the electromagnetic interaction,
the gluon carries the strong color interaction. The gluon does not interact with usual
electric charge, but has eight colors, which are sources of the strong interaction.

The theory of strong interactions, as well as the theory of electroweak interaction,
is non-Abelian. It is based on the assumption that a quark with an arbitrary flavor is
a three-colored object. A gauge boson (gluon) ensures interaction between quarks
and carries color. Three colors constitute the SU(3)C color symmetry group.

At present, the commonly accepted theory of strong interactions is quantum chro-
modynamics (QCD). This theory is one of the components of the Standard Model
based on the SU(3) × SU(2) × U(1) group. In this representation, the quark q is
described by a four-component Dirac spinor ψi

a(x), where i denotes the quark color
and passes three values and x is the spacetime coordinates of the quark. Gluons
are represented by the four-dimensional vector-potential Aa

μ(x) (Yang–Mills field),
where a means the gluon color and passes eight values: a = 1,2,3, . . . ,8.

The Lagrangian of the interaction between quarks and gluons has the form (up
to a gauge factor)

LQCD =−1

4
Fa
μνF

a
μν + i

∑

q

ψ̄ i
qγ

μ(Dμ)ijψ
j
q −

∑

q

mqψ̄
i
qψqi,

F a
μν = ∂μA

a
ν − ∂νA

a
μ − gsfabcA

b
μA

c
ν,

(Dμ)ij = δij ∂μ + igs
∑

a

1

2
λaijA

a
μ.

(3.126)

Here, Fa
μν is the generalized gluon field tensor (i.e., the non-Abelian generaliza-

tion of the electrodynamic field tensor in quantum electrodynamics, mq is the quark



3.5 Elements of Quantum Chromodynamics 153

mass, gs is the coupling constant, λa is the Gell-Mann matrix, and fabc are the struc-
ture constants of the SU(3)C color group. The generators of this group satisfy the
relations

[Ta,Tb] = ifabcTc. (3.127)

Quantum chromodynamics has a number of features. First, the coupling constant

αs = g2

2π is a function of the impact parameter of interacting quarks. This constant
decreases as two quarks approach each other; i.e., the constant αs tends to zero
with an increase in the momentum transfer. This means that the so-called asymp-
totic freedom occurs at very high energies when very high momentum transfers can
be reached. In this case, QCD is the theory of free, almost noninteracting particles.
Since the coupling constant in this case is much smaller than unity, perturbation the-
ory can be applied. Many interesting effects, including polarization, are theoretically
predicted for this region.

Table 3.2 presents the quark masses as they were known in 2004 (Eidelman et al.
2004). The mass directly measured in events is given for the top quark.

Let us define exclusive and inclusive reactions. Exclusive reactions are reactions
in which all particles are identified and all their momenta are known. Inclusive re-
actions, a + b→ c + X, are reactions in which the particle c is identified and its
momentum is determined (it is assumed that the initial particles a and b are de-
termined). Such an approach becomes inevitable at high energies, when the prob-
ability of the processes with the production of two or more unobservable particles
increases.

Measurements of single-spin transverse asymmetry in inclusive processes at high
energies often gave very surprising results. This particularly concerns asymmetry in
the fragmentation region of polarized particles or, in other words, in the region of
soft collisions (low momentum transfers). We discuss the possibility of applying
QCD with the inclusion of the generalized factorization scheme to the consistent
phenomenological description of single-spin phenomena at high energies.

Polarization experiments ensure a deeper test of the theory than experiments with
unpolarized observables, because spin, which is a new degree of freedom and a pure
quantum-mechanical object, is involved in interactions. Polarization observables, in
contrast to the total and differential cross sections, cannot be described using classi-
cal methods. Among polarization parameters, single-spin asymmetry is of particular
importance: its measured value is much larger than that expected in parton interac-
tions with the inclusion of their distribution functions and hadronization.

Perturbative quantum chromodynamics (PQCD) and the factorization hypothe-
sis make it possible to represent the differential cross section for a process at high
energies as the convolution of two types of interactions, hard at small distances and
soft at large distances. The first process is calculated in PQCD with the use of per-
turbation theory or phenomenologically. At the current status of the theory, the soft
process cannot be calculated quantitatively without additional information from ex-
perimental data in the form of the parton distribution functions and/or in the form
of the fragmentation function. A success of QCD is that the knowledge of the uni-
versal distribution functions and fragmentation function at a given Q2 value from
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experiments allows one to predict these functions at any other Q2 values using the
evolution equations. This means that measurement of the parton distribution func-
tions and their fragmentation function in one process at a fixed Q2 value is sufficient
for prediction of these functions for other processes and other Q2 values.

3.6 Single-Spin Asymmetry in the Inclusive Production
of Hadrons

At the parton level, helicity is a good natural quantum number for the description
of interaction processes. Can this approach be extended at the level of complex
systems such as hadrons and ensure the same simple description of experimental
observables? For reached energies and existing experimental data, the answer is
negative. Let us analyze the current status of experimental data.

• The polarization of hyperons, primarily Λ hyperons, produced in the p +N →
Λ ↑ +X process with unpolarized initial nucleons (Heller 1997; Panagiotou
1990). The polarization of Λ hyperons reaches 20 %, whereas almost zero po-
larization is expected at the parton level (Felix 1999). It is convenient to deal
with hyperons, particularly with Λ hyperons, because the leading decay mode
Λ→ p+ π− proceeds with parity violation, and the angular distribution of pro-
tons in the rest frame of Λ hyperons has the form

W(θ,ϕ)= 1

4π

(
1+ αPΛ(θ) · cosϕ

)
. (3.128)

Here, α = 0.64, θ is the Λ-hyperon production angle, and ϕ is the proton
emission angle with respect to the polarization of the Λ hyperon. Analyzing this
angular distribution, one can determine the Λ-hyperon polarization PΛ.

• Other important information was acquired in the E704 experiment at Fermilab
(Adams et al. 1991d; Bravar et al. 1996). Asymmetry in the inclusive production
of pions when bombarding a liquid-hydrogen target by polarized protons and
antiprotons was studied. Asymmetry observed in a certain kinematic region, so-
called the fragmentation region of the polarized initial particle, was 20–30 %.

• Another interesting fact is the observation of azimuthal asymmetry in the emis-
sion of pions in the l + p ↑→ l + π + p reaction. This reaction is called “semi-
inclusive deep inelastic scattering (SIDIS).” The process is almost exclusive and
proceeds with unpolarized leptons and a transversely polarized proton target.
Asymmetry observed in the system (γ ∗p) appeared to be about 10 % (Avakian
1999; Airapetian et al. 2000; Bravar 1999).

The modern generalized version of the factorization scheme in QCD (factoriza-
tion is the separation of the parton distribution function into parts corresponding
to small and large distances between the interacting particles) can possibly ensure
a common interpretation of all experimental facts listed above. In this scheme, the
transverse momentum distribution of quarks in a hadron, as well as hadrons in the
final fragmenting parton, is allowed. Thus, noncollinear kinematics is used in the
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new scheme and, as a result, spin phenomena, which are absent in the collinear
configuration, can be observed.

To introduce the modified formalism for describing single-spin inclusive asym-
metry in the general case, it is convenient to begin with the consideration of the
inclusive process p ↑ +p→ π + X. The reaction is considered in the center-of-
mass frame, where the z axis is oriented along the beam direction and the (xz) plane
is the reaction plane. The beam polarization vector has signs + and − if it is ori-
ented upwards and downwards along the y axis, respectively. The pion momentum
is denoted as �pπ and its longitudinal and transverse components, as �pL and �pT ,
respectively. The measured asymmetry is given by the formula

AN(xF ,pT )≡ dσ ↑ (xF ,pT )− dσ ↓ (xF ,pT )

dσ ↑ (xF ,pT )+ dσ ↓ (xF ,pT )
. (3.129)

Here, dσ = Eπd
3σ/d3pπ is the invariant differential cross section and xF =

pL

pLmax
≈ E+pL

(E+pL)max
(pT � pL) is the Feynman variable in the center-of-mass frame

of the colliding particles. The invariance of the interaction under rotations leads to
the equality dσ↓(xF ,pT )= dσ↑(xF ,−pT ), which provides another determination
of AN as left–right asymmetry.

Let us introduce the notion “twist.” In Leader (2001), twist is defined as the
difference between the mass dimension of the operator and spin. This definition can
be illustrated as follows. In experiments, it is accepted that all structure functions in
the leading approximation are independent of the square of the invariant momentum
transfer. However, from the theoretical point of view, the dependence of the structure
functions on Q2 can be represented as the expansion in the inverse powers of Q.
Twist is the ordinal number of the term of the expansion beginning with n = 2
(twist-2).

In the framework of the leading twist (twist-2) and collinear configuration, for-
mula (3.129) for unpolarized differential cross sections for the pp→ πX process
at high energies and high momentum transfers can be written in the compact form
(sign ⊗ means convolution)

dσ =
∑

a,b,c,

fa/p ⊗ fb/p ⊗ dσ̂ ab→c... ⊗Dπ/c. (3.130)

This formula should obviously be modified in order to apply it to the descrip-
tion of polarization phenomena. For interpretation of the results of the E704 experi-
ment, theoreticians developed various approaches to the problem. They extended the
factorization scheme by including the correlation functions of higher order twists
(Efremov et al. 1995; Qiu and Sterman 1999; Kanazawa and Koike 2000) or by
introducing the internal transverse momentum and spin dependence to the distribu-
tion functions (Sivers 1990, 1991; Anselmino et al. 1995; Anselmino and Murgia
1998; Boglione and Mulders 1999; Boer 1999) and to the fragmentation functions
(Boglione and Mulders 1999; Collins 1993; Anselmino et al. 1999; Boglione and
Leader 2000; Suzuki 2000).

There is also semiclassical model of quarks rotating inside the hadron (Boros
et al. 1993; Boros and Zuo-Tang 2000), which is similar to the model of rotating
hadron matter.
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Following Anselmino (2002), we considered only the approaches based on the
generalization of the QCD factorization scheme. The inclusion of the internal mo-
tion of quarks is also important in the calculation of unpolarized cross sections
(Wang 2000; Apanasevich et al. 1998).

Qiu and Sterman (1999) demonstrated that Eq. (3.130) can be generalized by in-
cluding higher twists in the distribution and fragmentation functions. The difference
between the cross sections for two polarization orientations of the initial proton is
represented in the form

dσ ↑ −dσ ↓ =
∑

a,b,c

{
Φ

(3)
a/p ⊗ fb/p ⊗ Ĥ ⊗Dπ/c

}

+ h
a
p

1 ⊗Φ
(3)
b/p ⊗ Ĥ ′ ⊗Dπ/c

+ h
a
p

1 ⊗ fb/p ⊗ Ĥ ′′ ⊗D
(3)
π/c, (3.131)

where Φ(3) and D(3) are the higher-twist parton correlation functions; Ĥ is the inter-
action between partons; and h1 is the transverse-spin distribution (below, transver-
sity for simplicity). By analogue with distributions (3.131), transversity can be writ-
ten in the form

h
a/N

1

(
x,Q2)≡ fa↑/N↑

(
x,Q2)− fa↑/N↓

(
x,Q2). (3.132)

Contributions from higher twists are unknown, but they can be estimated under
certain simplifications, e.g., as in Kanazawa and Koike (2000):

Φ
(3)
a/p ∼

∫
dy−

4π
eixp

+y−
〈

p, sT

∣
∣
∣
∣ψ̄a(0)γ

+

·
[∫

dy−2 ερσαβs
ρ
T p

αp′βFσ+(y2)

]

ψa

(
y−

)
∣
∣
∣
∣p, sT

〉

= kaCfa/p. (3.133)

The contribution from higher twists (given in the square brackets) depends on
many parameters (final and initial momenta p and p′, transverse proton spin sT ,
and gluon field Fμν ), but it can be simplified under certain assumptions as shown in
the last term with the constant parameter C. In this expression, coefficient is ka =
+1 and −1 for the u and d quarks, respectively. This model provides satisfactory
agreement with the results of the E704 experiment (Adams et al. 1991d) and gives
an estimate for single-spin asymmetry at RHIC.

Another approach to factorization was analyzed in Sivers (1990), Anselmino et
al. (1995, 1999), Boer (1999), and Boglione and Leader (2000) on the basis of Eq.
(3.130) corresponding to the leading twist and collinear configuration. Then, the
equation was generalized by introducing the internal transverse momentum of the
parton in the distribution function and the same was made for the hadron in the
fragmentation functions. As a result, modified equation (3.130) is represented in the
form (“hats” denote the parameters referring to a subprocess, for example, parton–
parton scattering)
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dσ =
∑

a,b,c,

fa/p(x1, k⊥1)⊗ fb/p(x2, k⊥2)

⊗ dσ̂ ab→c...(x1, x2, k⊥1, k⊥2)⊗Dh/c(z, k⊥h). (3.134)

The introduction of k⊥ and spin dependence leads to the appearance of new mea-
surable spin distribution functions, namely,

�Nfq/p↑ ≡ f̂q/p↑(x, k⊥)− f̂q/p↓(x, k⊥)
= f̂q/p↑(x, k⊥)− f̂q/p↑(x,−k⊥), (3.135)

�Nfq↑/p ≡ f̂q↑/p(x, k⊥)− f̂q↓/p(x, k⊥)
= f̂q↑/p(x, k⊥)− f̂q↑/p(x,−k⊥), (3.136)

and new fragmentation functions

�NDh/q↑ ≡ D̂h/q↑(z, k⊥)− D̂h/q↓(z, k⊥)
= D̂h/q↑(z, k⊥)− D̂h/q↑(z,−k⊥), (3.137)

�NDh↑/q ≡ D̂h↑/q(z, k⊥)− D̂h↓/q(z, k⊥)
= D̂h↑/q(z, k⊥)− D̂h↑/q(z,−k⊥). (3.138)

In order to understand the meaning of these functions, it is necessary to note the
arrows indicating which particle is polarized (for details, see Anselmino et al. 2000).
All these functions vanish at k⊥ = 0. They are T -odd. If these functions are repre-
sented in the helicity basis, functions in formulas (3.136) and (3.137) mix quarks
with different helicities, i.e., are chirally odd, whereas functions (3.135) and (3.138)
are chirally even. The chirality operator separates spin states oriented along and
against the momentum in the particle wave function. Similar functions in another
notation were introduced previously. In particular, there is a direct relation (Boglione
and Mulders 1999) between f⊥1T in Boer and Mulders (1998), h⊥1 in Boer (1999),
and H⊥

1 and D⊥1T in Boer and Mulders (1998) and Jacob and Mulders (1996). More
detailed information can be found in Mulders (2001).

Distribution function (3.135) was introduced by Sivers (1990) and fragmentation
function (3.137), by Collins (1993). These functions are named after their authors.

Substituting new functions into relation (3.130) and retaining only leading terms
in the expansion in k⊥, we obtain

dσ↑ − dσ↓ =
∑

a,b,c,

{
�Nfa/p↑(k⊥)⊗ fb/p ⊗ dσ̂ (k⊥)⊗Dπ/c + h

a/p

1 ⊗ fb/p

⊗�σ̂(k⊥)⊗�NDπ/c(k⊥)+ h
a/p

1 ⊗�Nfb↑/p(k⊥)
⊗�′σ̂ (k⊥)⊗Dπ/c(z)

}
. (3.139)

Here, convolution with respect to k⊥ is implied. The cross sections for elemen-
tary processes �σ̂ are determined as

�σ̂ = dσ̂ a↑b→c↑d − dσ̂ a↑b→c↓d , (3.140)

�′σ̂ = dσ̂ a↑b↑→cd − dσ̂ a↑b↓→cd . (3.141)
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These cross sections are calculated in PQCD.
Only an even product of chirally-odd functions appears in physically measured

quantity (3.130).
The above relations were successfully applied to the description of the data of

the E704 experiment with the use of only Sivers effect (3.130):

dσ↑ − dσ↓ =
∑

a,b,c

�Nfa/p↑(k⊥)⊗ fb/p ⊗ dσ̂ (k⊥)⊗Dπ/c, (3.142)

or Collins effect (Anselmino et al. 1999; Boglione and Leader 2000),

dσ↑ − dσ↓ =
∑

a,b,c

�Nfa/p(k⊥)⊗ fb/p ⊗ dσ̂ (k⊥)⊗Dπ/c↑. (3.143)

A certain explanation is required for the Sivers function �Nfq/p↑. In the helic-
ity basis, this function is proportional to the off-diagonal elements of the expected
values of quark operators acting on proton states:

�Nfa/p↑ ∼
〈
p+

∣
∣ψ̄γ+ψ

∣
∣p−

〉
. (3.144)

Using, as usual, parity and time reversal conservation laws for free states, one
can show that the Sivers function is zero (Collins 1993).

A similar remark can be given for function (3.136). However, the Sivers effect
can be held either by the inclusion of the interaction between partons in the initial
state or by small redefinition of the time reversal rule, as shown in Anselmino et
al. (2001). As mentioned in Wang (2000) and Apanasevich et al. (1998), the Sivers
effect should be taken into account in the calculation of unpolarized cross sections
for their correct normalization.

We consider semi-inclusive deep-inelastic asymmetry in the lp↑ → lπX reac-
tion measured at the HERMES and SMC setups (Avakian 1999; Bravar 1999).
Such measurements are directly associated with the Collins function. In particular,
Eq. (3.137) can be rewritten in the form

D̂h/q↑(z, k⊥;Pq)= D̂h/q(z, k⊥)+ 1

2
�ND̂h/q↑(z, k⊥)

Pq · (pq × k⊥)
|pq × k⊥| (3.145)

for the final quark with the momentum pq and transverse polarization Pq (four-
dimensional dot product pq · Pq = 0). This quark is fragmented into a hadron with
the momentum ph = zpq + k⊥ (pq · k⊥ = 0). The function D̂h/q(z, k) is an unpo-
larized fragmentation function depending on k⊥. The spin-dependent part of the D̂

function appears only from polarization perpendicular to the plane determined by
the parent quark and daughter hadron. In the general case, we have

Pq · pq × k⊥
|pq × k⊥| = Pq sinΦC, (3.146)

where Pq = | �Pq | and ΦC is the Collins angle. When Pq = 1 and �Pq is perpendicular
to the (q,h) plane (Pq =↑, −Pq =↓), we have Pq sinΦC = 1.
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Then, according to Eq. (3.145), the quark has the analyzing power given by the
expression

Ah
q(z, k⊥)≡

D̂h/q↑(z, k⊥)− D̂h/q↓(z, k⊥)
D̂h/q↑(z, k⊥)+ D̂h/q↓(z, k⊥)

= �ND̂h/q↑(z, k⊥)
2D̂h/q(z, k⊥)

. (3.147)

Retaining only leading k⊥ terms in Eq. (3.134), we obtain

dσ↑ − dσ↓ =
∑

q

fq/p ⊗ dσ̂ ⊗�ND̂π/c(k⊥). (3.148)

The single-spin asymmetry of the production of the hadron h in the (γ ∗ − p)

system is represented in the form (Anselmino et al. 2000):

Ah
N(x, y, z,ΦC,pT )

= dσ l+p,P→l+h+X − dσ l+p,−P→l+h+X

dσ l+p,P→l+h+X + dσ l+p,−P→l+h+X

= Σqe
2
qh

q/p

1 (x)�ND̂h/q↑(z,pT )

2Σqe2
qfq/p(x)D̂h/q(z,pT )

2(1− y)

1+ (1− y)2
P sinΦC. (3.149)

Here, P is the proton polarization perpendicular to the orientation of a virtual
γ -ray photon. In the (γ ∗ −p) system, the measured pion transverse momentum pT

is equal to the internal pion momentum in the fragmenting parent quark. Expression
(3.149) explicitly includes the standard parameters of the deep-inelastic scattering
process:

x = Q2

2p · q , y = Q2

s · x , z= p · ph

p · q , (3.150)

where p, q , and ph are the four-momenta of the proton, virtual photon, and final
hadron h, respectively.

Anselmino et al. (2000) carefully considered the analyzing power of the quark
Ah
q(z,pT ); they discussed the data on asymmetry reported in Avakian (1999) and

Bravar (1999). Below, we briefly present the contents of Anselmino et al. (2000).
Under certain realistic assumptions, isotopic invariance, and charge-conjunction

invariance, expression (3.149) provides the relation (i =+,−,0)

Aπi

N (x, y, z,ΦC,pT )= hi(x)

fi(x)
Aπ
q (z,pT )

2(1− y)

1+ (1− y)2
P sinΦC, (3.151)

where

i =+ : h+ = 4hu/p1 f+ = 4fu/p + fd̄/p; (3.152)

i =− : h− = h
d/p

1 f− = fd/p + 4fū/p; (3.153)

i = 0 : h0 = 4hu/p1 + h
d/p

1 f0 = 4fu/p + fd/p + 4fū/p + fd̄/p. (3.154)

Here, f are unpolarized distribution functions and h1 is the transversity distri-
bution. In the above equations, it is assumed that A+N ≈ A0

N at large x values, as
observed in the HERMES experiment (Airapetian et al. 2001).
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Measured asymmetry (3.151) depends on two unknown functions: the transver-
sity distribution and analyzing power of quarks or, equivalently, the Collins func-
tion. These functions depend on different variables ignoring their smooth evolution
with Q2. In order to determine both functions separately, the HERMES collabora-
tion proposes the program of measurements of semi-inclusive asymmetries in vari-
ous kinematic regions in z, x, and pT (Korotkov et al. 2001).

To obtain an estimate of the analyzing power of the quark Aπ
q in the absence of

experimental data, one can use the Soffer inequality in application to the transversity
distribution (Soffer 1995)

|h1q | ≤ 1

2
(fq/p +�q). (3.155)

Substituting this inequality into relation (3.151) and comparing with the result of
the SMC experiment (Bravar 1999)

Aπ+
N
∼=−(0.10± 0.06) sinΦC, (3.156)

we obtain a quite low bound for the analyzing power of the valence quark in the
positive pion

∣
∣Aπ

q

(〈z〉, 〈pT 〉
)∣
∣≥ (0.24± 0.15) 〈z〉 ∼= 0.45, 〈pT 〉 ∼= 0.65 GeV/c. (3.157)

Similar results were also obtained in the HERMES experiment (Avakian 1999).
However, we should make two remarks concerning these data. The first concerns
the very small transverse polarization of the protons as compared to the SMC ex-
periment. Second, owing to a low energy of the longitudinally-polarized electron
beam, the HERMES collaboration performed measurements at low Q2 values; this
requires the inclusion of the contributions from higher twists and such contributions
were disregarded in Eq. (3.149). Nevertheless, it is interesting that the estimate of
the lower bound of the analyzing power of the quark shows that it can be sufficiently
large. However, more accurate experimental data are required to test this statement.

The possibility of the fragmentation of the unpolarized quark on the polarized
hadron was considered in Mulders and Tangerman (1996, 1997) and Anselmino et
al. (2001) with the use of one of four distribution functions appearing when the
internal transverse momentum of the quark is introduced.

As a result, the polarization of the Λ hyperon can be described (Heller 1997; Fe-
lix 1999) in the framework of the same approach as was applied above for describing
asymmetry. By analogy with Eq. (3.145), we can write

D̂h↑/q(z, k⊥;Ph)= 1

2
D̂h/q(z, k⊥)+ 1

2
�ND̂h↑/q(z, k⊥)

P̂h · (pq × k⊥)
|pq × k⊥| . (3.158)

This function describes the fragmentation of the unpolarized quark with the mo-
mentum pq on the hadron h with spin 1/2, momentum ph = zpq + k⊥, and po-
larization vector Ph↑ = Ph/q↑ ·�ND̂h↑/q(z, k⊥) (denoted as D̂⊥1T in Mulders and
Tangerman 1996) and is new polarization fragmentation function.

This approach can explain the polarization of the Λ hyperon

PΛ = dσpN→Λ↑X − dσpN→Λ↓X

dσpN→Λ↑X + dσpN→Λ↓X , (3.159)
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inclusively appearing in the collision of unpolarized nucleons. In this case, in the
region of kinematic variables xF >∼ 0.2 and pT >∼ 1 GeV/c, PΛ is noticeable in
magnitude, negative, and perpendicular to the reaction plane. Taking into account
the presence of k⊥ in the hadronization process and assuming factorization, we ob-
tain

dσpN→ΛXPΛ = dσpN→Λ↑X − dσpN→Λ↓X

=
∑

a,b,c,d

fa/p(x1)⊗ fb/N(x2)⊗ dσ̂ ab→cd(xa, xb, k⊥)

⊗�ND̂Λ↑/c(z, k⊥). (3.160)

Using a simple parameterization for the unknown polarization fragmentation
function �ND̂h↑/q (3.138), Anselmino et al. (2001) obtained good description of
the polarization of the Λ hyperon, including its negative sign in the entire measured
kinematic region. An increase in polarization with xF , an increase with pT until
1 GeV/c, and saturation are described. A weak energy dependence is also predicted.
The model also gives the result in agreement with the experiment for Λ̄, in particu-
lar, its small magnitude.

However, it was noted that PQCD is inapplicable for energies considered in this
section, and relation (3.160) cannot be used to describe the differential cross section,
polarization, and asymmetry of inclusively produced pions. Only the RHIC energy
region (

√
s ≥ 200 GeV) is appropriate for such an analysis.

The situation is similar for unpolarized cross sections for other reactions (Wang
2000; Wong and Wang 1998; Zhang et al. 2001); in this case, the internal transverse
momentum is introduced to approach the model predictions with experimental data.
This agreement with cross section leads to the strong decrease in the polarization
effects in contradiction with the experimental data. Thus, the problem of describing
polarization data cannot be treated as to be solved.

The approach described in this section is sufficiently general and promising
(Henneman et al. 2001). According to this approach, we have the convolution of
two processes, the hard process theoretically calculated and the soft process. Infor-
mation on the latter process should be taken from experiment in the form of the
distribution and fragmentation functions. In view of the difficulties in mathematical
solution of the problem, certain simplifications should be introduced; the applica-
bility of these simplifications is tested experimentally. In this field, RHIC provides
unique possibility for polarization investigations.

The presentation in this section is based on Anselmino (2002).

3.7 U -Matrix Method (Fixed t Values)

Experimental data on the polarization parameters obtained in the early 1970s by the
HERA collaboration at IHEP and later, but at high energies, at CERN, as well as the
measurements of pp and pp elastic differential cross sections at high momentum
transfers, put a number of important physical problems. Below, we list some of
them.
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1. Do spin effects exist at asymptotically high energies?
This question naturally arose when the HERA collaboration analyzed the en-

ergy dependence of the ratio of the spin-flip to spin-nonflip amplitudes and con-
cluded that this ratio is saturated at momenta above 20 GeV/c. Such a conclu-
sion contradicted predictions of many theoretical models. The Regge model is
outstanding among them. According to this model, only one pole, pomeron, re-
mains at asymptotically high energies. However, this model itself forbids the ap-
pearance of polarization in the presence of only one pole, because the phases of
the spin-flip and spin-nonflip amplitudes are the same in this case. Hence, these
amplitudes do not interfere and polarization is zero. Even in the presence of two
exchange poles, polarization should decrease rapidly with energy, for example,
as 1/

√
s. In both cases, predictions of the Regge model contradict experiments.

2. The relations between the polarizations of the particles and antiparticles in binary
reactions, in particular, elastic scattering processes. The HERA collaboration re-
sults on the measurement of the polarizations of the particles and antiparticles
are unique to date. No model explains all these results.

3. The behavior of the differential cross sections for pp and pp elastic collisions at
high momentum transfers.

These problems and a more general problem of the behavior of the polarization
parameters at high energies, when exchange proceeds almost through one pomeron
pole and at fixed t values, were analyzed in Troshin and Tyurin (1976, 1984, 1988).
These works are briefly presented below.

The basic equation relating the amplitude to the generalized reaction matrix is
replaced in the spin case by the system of equations for helicity amplitudes. For
1+ 2→ 3+ 4 elastic scattering, this system has the form

Fλ1λ2λ3λ4

( �p1, �p′1
)=Uλ1λ2λ3λ4

( �p1, �p′1
)

+ i

8π2

∑

ν1ν2

∫
d �q1

2q0
1 2q0

2

Uλ1λ2ν1ν2( �p1, �q1)Fν1ν2λ3λ4

(�q1, �p′1
)
.

(3.161)

In the impact-parameter representation, system (3.161) reduces to the algebraic
system

fλ1λ2λ3λ4(s, b)= uλ1λ2λ3λ4(s, b)+ iρ(s)
∑

ν1ν2

uλ1λ2ν1ν2(s, b)fν1ν2λ3λ4(s, b),

(3.162)

where ρ(s)→ 1 at s→∞.
The implementation of analytic continuation and relation between the s and t

channels with the generalized reaction matrix makes it possible to obtain the Regge
form for the functions U{λi }(s, t) in the helicity basis:

U{λi }(s, t)=
∑

R

gR{λi }(t)ξR(t)(s/s0)
βR(t), (3.163)
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Fig. 3.2 Description of the
polarization parameter in πN

scattering in the U -matrix
method (Edneral et al. 1979):
the unit in the ordinate axis
corresponds to a polarization
of 10 %

where ξR(t) is the signature factor and the summation is performed over all contri-
butions from all Regge trajectories involved in the exchange in this process.

The generalized reaction matrix method provides good agreement with experi-
mental data. As an example, Fig. 3.2 shows the description of the polarization pa-
rameter in πN scattering. In addition to the quantitative description, the method
leads to important qualitative conclusions. Unitarity leads to nonzero polarization as
a result of vacuum exchange disregarding interference with the contributions from
other trajectories. We recall that the HERA experimental data indicate the existence
of such a contribution to polarization.

Under the assumption that only the vacuum trajectory with even signature makes
contribution, the generalized reaction matrix for πN scattering in the impact-
parameter representation can be written in the form

u++(s, b)= g++
a(s)

(
s

s0

)β(0)−1

exp
(−b2/a(s)

)
,

u+−(s, b)= 2bg+−
a2(s)

(
s

s0

)β(0)−1

exp
(−b2/a(s)

)
,

(3.164)

where

a(s)= 4β ′(0)
[

ln
s

s0
− i

π

2

]

, β(t)= β(0)+ tβ ′(0).

The solution of system (3.162) for the case under consideration has the form

f++(s, b)= u++(s, b)[1− u++(s, b)] − i[u+−(s, b)]2
[1− u++(s, b)]2[u+−(s, b)]2 ,

f+−(s, b)= u+−(s, b)
[1− u++(s, b)]2[u+−(s, b)]2 .

(3.165)
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Here, ρ(s) = 1 is taken. The calculation of the polarization parameter in the
region of low t values with the inclusion of only the pomeron contribution gives the
following formula for polarization:

pπ+−p(s, t)∼=−
√−t
ln s

· ϕ1(s)− tϕ2(s)

ϕ3(s)− tϕ4(s)
, (3.166)

where ϕi(s) are the functions positive at s→∞ and

ϕ1,3 ∝ ln2 s, ϕ2,4 ∝ ln6 s.

Thus, the pomeron contribution to polarization at high energies is negative and
decreases smoothly as 1/ ln s with an increase in energy. In this case, the functions
F++ and F+− have different phases although the phases of the functions U++ and
U+− are the same. The difference between phases is a consequence of unitarity.

The conclusion on the unitary mechanism of the generation of nonzero polar-
ization from the vacuum exchange is applicable to any process, in particular, to pp-
and pp̄-scattering processes. This conclusion remains unchanged if the contribution
from odderon whose trajectory is degenerate with vacuum exchange is also included
in the expression for the U matrix.

If the pomeron and odderon trajectories are nondegenerate, the inclusion of the
odderon at low t values provides corrections, which are power function of s, to the
above logarithmic behavior of the polarization parameter. Note that analysis of the
odderon contribution should be performed taking into account the relation

βP (0)≥ βO(0), (3.167)

where βP (0) and βO(0) are the intersections of the pomeron and odderon trajecto-
ries, respectively. Constraint (3.167) follows from the unitarity condition, which, in
the framework of the method under consideration, reduces to the requirement that
the imaginary part of the function u(s, b) is nonnegative:

Imu(s, b)≥ 0. (3.168)

Let us now consider pp elastic scattering. The solution of the system of equations
(3.162) for five helicity amplitudes describing pp elastic scattering, has the form

f1(s, b)= ũ1(s, b)[1− iu1(s, b)] − iũ2(s, b)u2(s, b)

[1− iu1(s, b)]2 − [u2(s, b)]2 ,

f2(s, b)= ũ2(s, b)[1− iu1(s, b)] − iũ1(s, b)u2(s, b)

[1− iu1(s, b)]2 − [u2(s, b)]2 ,

f3(s, b)= ũ3(s, b)[1− iu3(s, b)] − iũ4(s, b)u3(s, b)

[1− iu3(s, b)]2 − [u4(s, b)]2 ,

f4(s, b)= ũ4(s, b)[1− iu3(s, b)] − iũ4(s, b)u3(s, b)

[1− iu3(s, b)]2 − [u4(s, b)]2 ,

f5(s, b)= u5(s, b)
{[

1− iu1(s, b)− iu2(s, b)
][

1− iu2(s, b)− iu4(s, b)
]

− 4u2
5(s, b)

}−1
,

(3.169)
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Fig. 3.3 Description of the total and differential cross sections and the polarization parameter for
pp scattering in the single-pole approximation of the U -matrix method

where

ũi (s, b)= ui(s, b)+ 2u5(s, b)f5(s, b).

The use of formulas (3.169) and single-pole Regge parameterization for the
functions U{λi } in the helicity basis provides the description of experimental data
on the differential cross sections, total cross sections, and polarization parame-
ter in pp elastic scattering at high energies (Edneral et al. 1979) (see Fig. 3.3).
The experimental data on dσ/dt are described up to momentum transfer squared
−t ∼ 10 (GeV/c)2 at ISR energies (CERN).

The experimental data for dσ/dt at high t values have a smooth dependence
on the momentum transfer; this dependence is inconsistent with many models that
predict the existence of alternating diffraction minima and maxima in this region.

According to the analysis of the behavior of helicity amplitudes in the approach
under consideration, the smooth behavior of dσ/dt at high t values is due to the
increasing role of spin effects in this kinematic region. Such a smooth behavior is
caused by the contribution from the amplitudes with double helicity change. Dis-
regarding these amplitudes, the behavior of dσ/dt would exhibit the characteristic
sequence of alternating maxima and minima, because helicity amplitudes F1, F3,
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and F5 have maxima and minima in this t region and are close in magnitude in the
range 1 (GeV/c)2 ≤ |t | ≤ 10 (GeV/c)2. At the same time, the helicity amplitudes
with double helicity change, F2 and F4, are small as compared to the amplitudes
F1, F3, and F5 in the range 0 (GeV/c)2 ≤ |t | ≤ 3 (GeV/c)2 and are relatively large
in the range 3 (GeV/c)2 ≤ |t | ≤ 10 (GeV/c)2, where they have a smooth behavior.

Thus, the angular distribution of pp elastic scattering is smooth. The inclusion
of the spin degrees of freedom resulting in the filling of minima at high t values
also leads to a significant polarization parameter at energies

√
s ∼ 50 GeV and

−t ∼ 2 (GeV/c)2. Polarization in this region is expected to be 10–20 %. There-
fore, the role of spin interaction increases with momentum transfer (Bilenky and
Ryndin 1959).

Let us consider some geometrical properties of helicity amplitudes at high fixed
t values. The behavior of helicity amplitudes in this region can be represented by
the expression

Fi(s, t)∼= ϕi(s, t) cos
[
Ri(s)

√−t + ϕ̃i (s)
]
, (3.170)

where the functions ϕi(s, t) have no zeros. Oscillation in the amplitudes F2 and F4
in the range 3 (GeV/c)2 ≤ |t | ≤ 10 (GeV/c)2 is absent because the corresponding
radii are

R2,4 ∼= 1

3
R1,3,5 ∼= 0.3 fm. (3.171)

This relation between the radii can be interpreted as an indication of the existence
of the internal region in the proton with sizes of about 0.3 fm, where valence quarks
are likely localized. Such representations will be developed below when considering
the quark model for the U matrix.

Thus, although the angular distributions are smooth in the region of high mo-
mentum transfers, the model predicts the oscillating behavior of polarizations as a
function of momentum transfer.

Note that a feature of the method under consideration is the direct inclusion of
the unitarity condition in the calculation scheme.

3.8 Other Phenomenological Models

3.8.1 Model of Rotating Hadronic Matter

In the early 1970s, in order to explain the origin of the proton spin, the idea of the
rotation of hadronic matter about a separate axis, which could naturally be the pro-
ton polarization direction, was proposed in Chou (1973), Yang (1973), and Chou
and Yang (1976). This idea attracted particular attention of the HERA collabora-
tion at IHEP, because this model of rotating hadronic matter predicts that the single
nonzero polarization parameter at high energies is the spin rotation parameter R; this
parameter is the same for all elastic scattering processes for both particles and an-
tiparticles. The HERA collaboration carried out such measurements and published
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results that agreed with the predictions of the model of rotating hadronic matter.
This idea in application to rotating partons in a polarized proton was also used by
German physicists in the early 1990s in order to explain the results of the E704
collaboration on single-spin asymmetry in inclusive reactions. The rotating parton
model appeared to be efficient in the interpretation of both the single-spin asym-
metry of pions and Λ hyperons and polarization transfer from the polarized initial
proton to the final Λ hyperon. In some cases, it provided certain predictions, for
example, change in the asymmetry sign when the negative pion is changed to the
positive pion (or vise versa). The model is richer in predictions. According to its
foundations, first, no spin effects should exist in the central region, because the
contribution from polarized valence quarks is almost absent in this region. Second,
asymmetry cannot exist in the fragmentation region of unpolarized valence quarks.
According to this model, symmetry is also absent in the region of small values of
the Feynman variable xF . Polarization symmetry can exist only in the fragmenta-
tion region of polarized valence quarks. To date, almost all these predictions of the
model have been confirmed. The strongest statement is the model prediction of the
absence of polarization effects in the central region. Measurements of single- and
double-spin effects in the inclusive production of neutral pions seemingly confirm
this conclusion of the model up to the RHIC energies.

Below, we briefly present the basic features of the rotating-quark model in polar-
ized protons (Meng 1991a, 1991b).

The E704 collaboration at Fermilab performed measurements of single-spin
asymmetry in the inclusive production of pions by polarized proton and antiproton
beams. All measurements revealed noticeable effects (15–39 %) in the fragmenta-
tion region of the polarized beam. The results were indeed surprising: theoreticians
could not predict such results. All they expected zero effects, as followed from he-
licity conservation.

The theoreticians of the group led by Prof. Meng (Institute of Theoretical
Physics, Free University, Berlin, Germany) compared the predictions of their model
(Liang 1991) with experimental data (Adams et al. 1991a, 1991b, 1991c). The
model was based on their idea of quarks rotating inside the polarized proton (Liang
and Meng 1990). They arrived at the following conclusion.

Left–right asymmetries observed in the E704 experiment with polarized proton
and antiproton beams at high energies and high xF values should be considered as
a serious indication of the presence of rotating valence quarks in polarized protons.
Omitting details, which can be found in Meng (1991a) by the authors of this model,
we point out only its basic features.

1. Valence quarks determine the basic properties of a hadron including its spin. The
quarks are considered as relativistic particles in confining field. They lead to the
appearance of matter current depending on the color and flavor of partons. This
is also valid when quarks are in the ground state, i.e., quarks also rotate in the
ground state.

2. The probability of finding such rotating quarks near the hadron surface is much
larger than that at its center. The polarization of a valence quark under considera-
tion completely determines the orientation of the mean value of its orbital angular
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momentum in the ground state, as well as the direction of its current density at
large distances from the hadron center.

3. In the model of rotating hadronic matter, hadron–hadron interactions at high en-
ergies are considered as surface interactions of their constituents. This means
that constituents on the front surface of the projectile hadron interact with larger
probability with constituents of the target hadron on the surface nearest to the
projectile.

4. The polarization of valence quarks in the polarized proton is determined by the
polarization and wave function of the proton.

The baryon wave function is constructed under the assumption that there is the
complete antisymmetry in the color degree of freedom. This means that the wave
function of two identical quarks should be symmetric in coordinate–spin space. It is
also accepted that the total system of an indefinite number of sea quark–antiquark
pairs does not rotate about a certain direction in the polarized proton. It is also
assumed that sea quark–antiquark pairs, as well as gluons, fill the entire phase
space.

We now consider pp interaction in the center-of-mass frame. The projectile and
target protons are denoted as P and T , respectively. Let us introduce the Cartesian
coordinate system whose z axis is oriented along the beam direction, the x axis is
perpendicular to the reaction plane, and the y axis is perpendicular to both the x and
z axes and forms with them a right-handed system. The E704 experiment was de-
voted to studying symmetry in the p(↑)+p→ π±,0+X and p̄(↑)+p→ π±,0+X

reactions, where arrows mean that the initial beam is polarized and the polarization
vector is oriented along the positive direction of the x axis. The target is unpolar-
ized. The transverse-momentum distributions of partons in the polarized proton P

in different coordinate systems are the same if these systems are obtained from each
other by a Lorentz boost (translation) along the z axis. Therefore, postulates 2 and
4 are applicable. This means that an observer in the rest system of the T particle
observes that surface valence quarks of the P particle undergo sequential motions
along the y axis and the direction of this motion depends on quark polarization.
To form a meson, this valence quark should find its partner among sea quarks. In
this case, the formed pion acquires an additional transverse momentum of a quark
appearing due to orbital motion. Assumption 4 also determines the sign of such
transverse momentum along the y axis. These results are presented in Tables 3.3
and 3.4 for the proton and antiproton beams, respectively. Both beams are polar-
ized. The valence quark and a pair of sea quarks are denoted as val and sea in the
parentheses. The arrows ← and → mean the −y and +y orientations of the trans-
verse momentum pY of the rotating quark, respectively. These signs in the model
correspond to the more probable emission of pions to the left and right in the ex-
periment, respectively. The results in the tables were obtained with the use of the
proton wave functions in coordinate, spin, and flavor spaces. A number of conclu-
sions follow from these tables. In the fragmentation region of the polarized proton
(see the right part of the tables), asymmetries for the π+(ud̄), π0[ 1√

2
(uū − dd̄)],

and η[ 1√
2
(uū+ dd̄ − 2ss̄)] mesons are positive, whereas asymmetry for π−(dū) is
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Table 3.3 p(↑)+ p(0)→ π±,0(η)+X

P (sea)–T (val) P (val)–T (sea)

P (sea) u ū d d̄ P (val) u u d d

py 0 0 0 0 py ← → ← →
weight 1 1 1 1 weight 5/3 1/3 1/3 2/3

T (val) d u T (sea) d̄ d ū u

py 0 0 py 0 0 0 0

weight 1 2 weight 1 1 1 1

product dū ud̄ product ud̄ ud̄ dū dū

py 0 0 py ← → ← →
weight 1 2 weight 5/3 1/3 1/3 2/3

T (val) u d T (sea) ū u d̄ d

py 0 0 py 0 0 0 0

weight 2 1 weight 1 1 1 1

product uū dd̄ product uū uū dd̄ dd̄

py 0 0 py ← → ← →
weight 1 2 weight 5/3 1/3 1/3 2/3

negative. In addition to the quark composition of the mesons, weight factors should
be taken into account. According to the model of rotating hadronic matter, polar-
ization effects are determined only by valence quarks whose fraction in the proton
increases with the Feynman parameter xF . Therefore, asymmetry should increase
with this parameter; this behavior is observed in the experiments. In the fragmen-
tation region of the unpolarized target (see the left part of the tables), asymmetry
should be zero, because valence quarks in unpolarized protons have zero transverse
momentum pY . This prediction is well confirmed at RHIC.

Similar tables can also be obtained for other mesons. Another prediction of this
model following from Assumption 4 is that asymmetry at small xF (< 0.3) and pT

values (<0.2 GeV/c) is not expected. The cause is that these mesons are formed
from sea quarks, and they do not provide asymmetry in this model.

Using the parton structure functions from Barger et al. (1974), the authors of
this model calculated the analyzing power of pions from the E704 experiment. The
results are shown in Fig. 3.4 for reactions with polarized proton beams. As seen in
the figure, the predictions of the model of rotating hadronic matter are in qualitative
agreement with the experimental data.

More recently, the model of rotating hadronic matter was successfully applied
for describing the results of the E704 experiment on the measurement of asymmetry
in the production of Λ hyperons in the p(↑)+ p→Λ+X reaction (Boros 1995;
Boros and Zuo-Tang 1996), as well as the depolarization parameter DNN in this
reaction (Boros et al. 1996).

The presentation in this section is based on Boros (1995), Boros et al. (1996).
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Table 3.4 p̄(↑)+ p(0)→ π±,0(η)+X

P (sea)–T (val) P (val)–T (sea)

P (sea) u ū d d̄ P (val) ū d̄

py 0 0 0 0 py ← → ← →
weight 1 1 1 1 weight 5/3 1/3 1/3 2/3

T (val) d u T (sea) d d̄ u ū

py 0 0 py 0 0 0 0

weight 1 2 weight 1 1 1 1

product dū ud̄ product dū ud̄

py 0 0 py ← → ← →
weight 1 2 weight 5/3 1/3 1/3 2/3

T (val) u d T (sea) u ū d d̄

py 0 0 py 0 0 0 0

weight 2 1 weight 1 1 1 1

product uū dd̄ product uū dd̄

py 0 0 py ← → ← →
weight 1 2 weight 5/3 1/3 1/3 2/3

Fig. 3.4 Analyzing power
AN versus xF in the
p(↑)+ p→ π±,0 +X

reaction at the initial
momentum 200 GeV/c (the
E704 experiment). The lines
are the predictions of the
model of rotating hadronic
matter

3.8.2 DeGrand–Miettinen Model for Polarization Asymmetry
in the Inclusive Production of Hadrons

High polarizations surprisingly observed in the inclusive production of hyperons at
Fermilab in the mid-1970s (Bunce et al. 1976) had to be theoretically explained.
One of the successful models was proposed in DeGrand and Miettinen (1981) on
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the basis of the parton recombination model and SU(6) symmetry that make it pos-
sible to attribute the polarization of inclusive baryons to subprocesses at the level
of constituents. Taking into account the Thomas precession of the quark spin in the
recombination process, the authors qualitatively interpreted the features of data on
the polarizations of baryons and antibaryons in inclusive reactions at high energies
and moderate momentum transfers.

The following features of experimental data were considered in these models
(Heller 1997; Heller et al. 1978; Erhan et al. 1979; Bunce et al. 1979; Lomanno et
al. 1979; Rayachauduri et al. 1980).

1. The polarization of Λ hyperons in pp and p-nucleus collisions at low momentum
transfers has negative sign, i.e., is directed along the �pΛ × �p vector.

2. The polarization is independent of the initial energy and depends only slightly
on xF .

3. The polarization increases almost linearly with pT .
4. Λ̄ produced in pp and pA interactions are unpolarized.
5. Measurements of the polarizations of Ξ0, Ξ−, and Σ+ hyperons on a proton

beam show that the polarizations of Ξ0 and Ξ− are the same as the polarization
of Λ, whereas the polarization of Σ+ is opposite in sign to the polarization of Λ,
although its magnitude is the same as that for Λ.

Item 2 indicates that polarization data can be appropriately analyzed in the quark
recombination model, which was successfully applied to the description of frag-
mentation processes with low momentum transfers. In this model, the proton in
the infinite momentum frame is represented as consisting of three valence quarks
and a large number of sea partons. When slow partons interact with the target, the
coherence of the wave function is violated and the wave function is decomposed
into numerous final hadron states. The pseudorapidity-semilocal transition of a par-
ton into a hadron occurs. This process proceeds as the recombination of quarks;
namely, pairs qq̄ form mesons and triplets qqq form baryons. Fast hadrons are pro-
duced through the recombination of the valence quarks of the beam with the valence
quarks of the target or with sea partons. For example, for the production of fast Λ
(Σ+) hyperons, a ud- (uu-) valence pair from the proton beam should be coupled
with an s quark from the sea of the proton target. Such a recombination process is
denoted as VVS. Note that exchange by one new quark, which does not exist at the
beginning, namely, the s quark, occurs. In processes with the exchange by two new
quarks such as p→ Ξ0 and p→ Ξ−, the VVS mechanism is impossible. In this
case, the production of hadrons occurs through the VSS recombination mechanism.
Finally, if the initial proton and final hadron have no common quarks, SSS is the
only possible mechanism. In these cases, the cross sections for the processes are
small and their slopes are large. As a whole, this prediction is in agreement with
experiments.

In the recombination model, it is convenient to analyze the polarization of Λ

hyperons in the rest frame of the fragmenting proton of the beam. In this case,
the wave function of the proton in this frame has a simple form, as containing three
quarks, uud. Then, the p→Λ process proceeds so that a fast particle of the target is
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scattered by a proton and the slow s-quark of the target recombines with a ud pair in
the proton of the beam and forms a Λ hyperon. Since the ud pair in the Λ hyperon is
in the singlet state, the spin and, correspondingly, the polarization of the Λ hyperon
is completely determined by the s quark. According to the (approximate) hypothesis
(Feynman 1972) on short-range forces between partons, the distribution of slow
quarks in the particle of the target and the low-energy subprocess s + p→ u+Λ

with the appearance of the polarization of the Λ hyperon should depend slightly on
the energy of the particle of the target. Therefore, the polarization of the Λ hyperon
should be independent of the total energy of the colliding particles in agreement
with experimental data.

Let us consider the relation between polarizations in different baryon–baryon
transitions (Heller et al. 1977) under the following four simplifying assumptions.

1. The transverse momentum of each quark is parallel to the transverse momentum
of the final baryon.

2. The polarization of the quark correlates with its transverse momentum and is
independent of the quark flavor.

3. The wave function of the quarks common for the fragmenting and secondary
baryons, for example, for the ud pair in the p→Λ transition is identical.

4. Valence quarks are not depolarized in the recombination process.

Let us first consider the VVS recombination process. The polarization of the
final baryon with the transverse momentum pT can be expressed in terms of two
amplitudes A+ and A−. The former amplitude corresponds to the recombination of,
e.g., ud quarks with a sea quark whose spin is upward with respect to the reaction
plane, whereas the latter amplitude, to the recombination of a sea quark whose spin
is downward. The calculations with SU(6) symmetry give the expression

P
(
B→ B ′

)= C
|A↑|2 − |A↓|2
|A↑|2 + |A↓|2 , (3.172)

where C is presented in Table 3.5. Interference between the amplitudes is forbidden
due to the conservation of parity and total angular momentum. Taking into account
that expected spin effects are small, we can use the expansions |A↓|2 = A(1 + ε)

and |A↑|2 ∼A(1− ε), where ε is on the order of the expected polarization.
However, this model in such a form gives an incorrect result for Σ+: it pre-

dicts C = −1/3, whereas C = −1 follows from the experiment. Such discrep-
ancy possibly appears because Σ+ includes the uu diquark, which has spin j = 1,
in contrast to the ud diquark that enters into Λ and has zero spin. Since corre-
lation between spin and pT for s quarks in the Λ hyperon is postulated from
the very beginning, it is reasonable to assume the same correlation for the lead-
ing uu diquark in the Σ+ hyperon. This means that the probability of recombi-
nation into the diquark in the (j,m) state depends on m (see Fig. 3.5). Taking
|A1,1|2 = B(1+ δ), |A1,−1|2 = B(1− δ), and |A1,0|2 = |A00|2 = B , we obtain

P
(
p→Σ+)= 1

3
ε+ 2

3
δ. (3.173)
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Table 3.5 Predictions of
polarizations for various
transitions in the model of the
leading and nonleading
quarks; the constant C in
Eq. (3.172) for VVS
recombination is the
coefficient of the term −ε

B→ B transition Polarization

p↔ n,Σ− ↔Ξ−,Σ+ ↔Ξ0 −(20/21) · ε+ (1/42) · δ
p↔Σ+, n↔Σ−,Ξ− ↔Ξ0 (1/3) · ε+ (2/3) · δ
p,n↔Λ0 −ε
Σ+,Σ−,Ξ−,Ξ0 ↔Λ0 −(2/3) · ε+ (1/6) · δ
p,n↔Σ0 (1/3) · ε+ (2/3) · δ
Σ+,Σ−,Ξ−,Ξ0 ↔Σ0 −(20/21) · ε+ (1/42) · δ
p↔Ξ0,Ξ−,Σ− −(1/3) · ε− (2/3) · δ
n↔Ξ0,Ξ−,Σ+ −(1/3) · ε− (2/3) · δ
π,K+ →Λ −(1/2) · δ
K− →Λ ε

Fig. 3.5 Diagrams of the
p→Σ+ transitions for the
amplitude (a) A↑A10 and
(b) A↓A11. Parton→
hadrons transitions occur in
ovals

It follows from the experimental data that ε = δ. Recombination occurs predom-
inantly when the spin of the s quark is downward, and the leading diquark is in the
state with the projection mj =+1 in the scattering plane.

This idea can be applied to processes proceeding through VSS recombination. In
this case, the V quark is leading and the SS diquark is nonleading. Under the same
assumptions for the recombination probability as those used above, but taking into
account change in the signs of ε and δ (the leading parton prefers upward spin), we
obtain

P
(
p→Ξ0,Ξ−,Σ−)=−

(
1

3
ε+ 2

3
δ

)

. (3.174)

The experimental results reported in Heller et al. (1978) satisfy the relations

P
(
p→Ξ0)= P

(
p→Ξ−

)= P(p→Λ),

which follow from formula (3.174) under the assumption that ε = δ.
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Fig. 3.6 Transverse and longitudinal momenta of the s quark in the proton (s/p) and in the Λ

hyperon (s/Λ): the s quark has the longitudinal momentum xiP in the proton and xFP in the Λ

hyperon; the vectors �ωT and �F × �β coincide in orientation, both vectors are perpendicular to the
figure plane and are directed toward a reader

According to the above presentation, all discussed experimental data on the po-
larizations of hyperons are satisfactorily described under the following assumptions:

• the leading constituents of the beam recombine primarily with a positive spin
projection mj in the scattering plane,

• nonleading constituents recombine primarily with a negative spin projection mj

in the scattering plane.

Predictions of the discussed model for other reactions are presented in Table 3.5.
The recombination of diquarks with a quark, rather than the recombination of

three quarks, is considered in this model, because the interaction between two
quarks with the identical wave functions, for example, VV, differs from their in-
teraction with quarks with different wave functions. The interaction between simi-
lar quarks is taken into account by joining them into one object, diquark. All wave
functions in this case are determined through the exact SU(6) symmetry.

The above predictions followed from the representation on the recombination
of quarks and SU(6) symmetry. In this case, a dynamic mechanism leading to the
polarization of sea quarks is disregarded. One of such mechanisms is considered
below (Anderson et al. 1979).

Let us consider the p→Λ transition in the infinite-momentum frame. The lon-
gitudinal and transverse momenta of the strange quark before recombination are
denoted as xlp and k⊥s , respectively. Since the distribution of sea quarks is very
steep such as |1− x|n, where n= 7–9, the Λ hyperon acquires its momentum from
the valence ud diquark. As an illustration, we note that the relative momentum of Λ,
xΛ = 0.6, consists of xl ≤ 0.1 and xud ≥ 0.5. After recombination and formation of
the Λ hyperon, all three quarks have almost equal momenta, including the s quark,
xl ≈ 0.2 (Fig. 3.6). This means that the sea quark is subjected to a force driving it in
parallel to the beam axis.

Since this force is not parallel to the velocity �β of the s quark, the spin of
the s quark undergoes Thomas precession. The Thomas interaction potential is
U = �s · �ωT , where �ωT ∝ [γ /(γ + 1)] · ( �F × �β) (Thomas 1927). The amplitude
of the formation of the Λ hyperon with spin s is proportional to the energy dif-
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ference between the initial and final states (�E0 + U)−l , where �E0(> 0) is the
difference between the quark energies in the intermediate and final states in the ab-
sence of spin-dependent interaction. Thus, the cross section for the formation of the
Λ hyperon is larger when the quantity �s · �ωT is negative. In the infinite-momentum
frame, the vector �ωT is directed along the �pp × �pΛ vector, i.e., is perpendicular to
the reaction plane. As a result, the cross section is larger when the spin of the s quark
and, hence, Λ hyperon, is opposite to this direction; this conclusion is in agreement
with experimental results. Particular calculations of asymmetry show that polariza-
tion depends slightly on xF and is proportional to the transverse momentum of the
Λ hyperon. This fact is a consequence of the large difference between the p‖ and
pT values in the desired problem. Thus, Thomas precession predicts the basic qual-
itative characteristics of polarization in the p→Λ transition.

It is now easier to understand why the polarization of the Λ̄ hyperon is zero, i.e.,
P(p→ Λ̄)= 0. The production of Λ̄ by the proton beam entirely occurs through the
recombination of sea quarks, i.e., through the integration of the fast s̄ sea antiquark
with the ūd̄ sea antidiquark. The number of such combinations is large and they
provide zero polarization in average in agreement with experiment.

Thus, the DeGrand–Miettinen model is a model for explaining the polarization
of quarks. The basic mechanism of the polarization of quarks is Thomas spin pre-
cession appearing in the quark recombination process with the formation of final
hadrons. The model provides relations between polarizations in various inclusive
baryon–baryon transitions. These relations allow one to check the quark recombi-
nation picture irrespectively of the quark polarization mechanism. This model can
also be applied to other inclusive processes, for example, the transitions of octet
baryons to a baryon from a decuplet, baryon to vector mesons, mesons to baryons,
and mesons (scalar and pseudoscalar) to vector mesons. Finally, in complete anal-
ogy with the above argumentation, this model can be applied to other processes,
for example, to electron–positron annihilation or deep-inelastic scattering. It can be
shown that the leading baryon or vector meson from a quark jet, which has a trans-
verse momentum (perpendicular to the jet axis), is polarized. Thus, according to
this model, polarization is a very widespread phenomenon, although its magnitude
is small.

3.8.3 Lund Model

This model is based on the notion of string taken from QCD and on some commonly
accepted assumptions. At the instant of interaction between hadrons, a color string
is stretched between their partons. Then, the string breaks with the emission of a
quark–antiquark pair, which is separated by the chromomagnetic field. In the case
of zero quark mass, this pair can be produced at a point. However, if quarks have
mass or transverse momentum k⊥, quarks can classically be produced only at a
certain distance l from each other. The energy of the field between these quarks
transforms to the transverse quark mass (Fig. 3.7):

kl = 2μ⊥, (3.175)
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Fig. 3.7 Diagram of the
Lund model for the
polarization of the sea quark

where k ∼ 1 GeV/fm ∼0.2 GeV2 is the string tension energy per unit length, μ

is the quark mass, and μ⊥ =
√
μ2 + k2⊥ is the transverse quark mass (equal to the

antiquark mass). Such a formation of qq̄ pair is described in quantum mechanics as
the tunnel effect.

For the conservation of the transverse momentum, the quark and antiquark should
be produced with transverse momenta equal in magnitude but opposite in sign. Ac-
cording to Fig. 3.7, the appearing pair has orbital angular momentum �L given by
the expression

�L= �k⊥ × �l = 2
k⊥
k
μ⊥�n. (3.176)

Here, �n is the unit vector perpendicular to the plane containing the string and trans-
verse momentum �k⊥. The conservation law for total momentum �J should also be
taken into account. In the initial state, before the appearance of the pair, �J = 0. After
the appearance of the qq̄ pair (or diquark) with orbital angular momentum �L, the
spins of both quarks should be parallel and opposite to �L in order to compensate
orbital angular momentum,

←
J= �L+ �S, (3.177)

where �S is the total spin of the qq̄ pair. Therefore, both the quark and antiquark
should be polarized identically in the direction opposite to the orbital angular mo-
mentum (see Fig. 3.7). The directions of the orbital angular momentum and spin are
indicated in the circles near their symbols. Since the total spin is unity, the orbital
angular momentum should also be unity. The theory of tunneling processes provides
the condition L∼ 2/π ≈ 1.

The above picture (Lund model) (Anderson et al. 1981, 1983) gives a simple
description of the polarizations of Λ hyperons produced in the proton fragmentation
process (Anderson et al. 1979). For the production of Λ hyperons with large xF
values, a string should appear; the ud quark pair is usually presented at one of
the ends of the string. The string breaks with the formation of the ss̄ quark pair
(Fig. 3.8). For the uds quark triplet to form the Λ hyperon, the ud pair should be
in the singlet isospin (I = 0) and spin (s = 0) states. In this case, the spin of the Λ

hyperon is equal to the spin of the s quark. Then, if the transverse momentum of
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Fig. 3.8 Diagram of the
formation of the polarized Λ

hyperon in the Lund model

the Λ hyperon is nonzero and directed upwards, its polarization coincides with the
polarization of the s quark and is directed along the �pΛ × �p vector (Fig. 3.8).

In this picture, confinement of quarks is very important. When the quark–
antiquark pair is formed in the string-like field, the string moves as shown in Fig. 3.9,
the external forces F and −F (string tension forces) do not generate torque and,
therefore, the total angular momentum is conserved.

For comparison, Fig. 3.10 shows the case of the formation of an e+e− pair in an
external uniform electric field. Since confinement is absent, the particles in the pair
are not connected by a string and the external force adds angular momentum. Thus,
the conservation law for the total momentum is violated. As a result, the positron and
electron are polarized in the directions opposite to each other and are independent
of each other.

Let us consider several additional physical processes. First, we analyze the po-
larization of the Λ̄ hyperon in the reaction

K+ + p→ Λ̄+X. (3.178)

The polarization of the Λ̄ hyperon in this reaction was observed in the exper-
iments reported in Faccini-Turluer et al. (1979) and Barth et al. (1981). If the Λ̄

hyperon is measured with a large Feynman parameter in the fragmentation region
of the initial K+ meson, it is reasonable to assume that the s̄ quark and (ūd̄)0 di-
quark for the formation of the Λ̄ hyperon are taken from the K+ meson and broken
string, respectively. In the collision of the proton (its constituents) with the u quark

Fig. 3.9 Action of confining force F on (closed circles) sea quarks: the large arrows indicate the
direction of the color force and the small arrows indicate the direction of quark motion

Fig. 3.10 Production of an e+e− pair in vacuum: the closed circles denote the electron and
positron, the long thick arrows show the vacuum breaking force, the short thick arrows indicate
the lepton motion direction, and the thin arrows denote the external electric field
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from the K+ meson, a color string appears and rotation motion is induced and leads
to two consequences. First, the s̄ quark and string connected with it acquire angular
momentum and the s̄ quark is polarized. Second, the s̄ quark acquires transverse
momentum in the string motion direction. When the Λ̄ hyperon is produced due to
string breaking and joining the appearing singlet antidiquark (ūd̄)0 to the s̄ quark,
the Λ̄ hyperon acquires both these parameters. As a result, it is polarized in the nec-
essary direction (in the �pK × �pΛ direction). The situation is similar for the reaction

K− + p→Λ+X. (3.179)

Here, the background from proton fragmentation provides some difficulty.
The second process of interest involves Σ+:

p+N→Σ+ +X. (3.180)

A fast Σ+ hyperon is composed by a uu pair from the proton in the triplet spin
state (S = 1) and an s quark from the chromomagnetic field. Since the spin of the
Σ+ hyperon is parallel to the spin of the uu diquark, the polarization in this case
is larger than the polarization of the Λ̄ hyperon in the preceding reaction. This is in
agreement with the experimental relation P(Σ+)≈−P(Λ) (Lundberg et al. 1982;
Cooper et al. 1982). If only the s quark were polarized, the polarization of the Σ+
hyperon would be much smaller, namely, P(Σ+)≈− 1

3P(Λ) disregarding depolar-
izing processes such as the Σ0, Y ∗ →Λ decays.

To conclude, we note that the Lund model predicts significant polarization effects
in the production of hadrons.

The presentation in this section was based on report of Gustafson (1984).

3.8.4 Chromomagnetic String Model

The observation of high single-spin effects in inclusive hadron production at high
energies

√
s ∼ 10 GeV was one of the strong driven factors for polarization physics

in the late 1970s–early 1980s. Recent measurements showed that these spin effects
hold up to the energy

√
s = 200 GeV (Adams et al. 2003). Since these effects were

primarily observed in the soft collision region, the PQCD technique could not be
directly applied. For this reason, phenomenological approaches began to be rapidly
developed; one of these approaches is the model described below, which was named
by the authors the “chromomagnetic string model” (CMSM) (Nurushev and Ryskin
2006). This model was proposed by Ryskin (1988) for explaining inclusive pion
asymmetries observed primarily at the U-70 accelerator (IHEP). This model pro-
vides very simple analytical dependences for asymmetry in almost the entire kine-
matic region of inclusive processes. In this model, single-spin asymmetry is pre-
dicted without free parameters; this occurs rarely. The essence of the model is briefly
as follows. A color tube (string) is stretched between hadrons after their collision. In
the simplest case, such a tube contains a color electric field. However, this system is
unstable. For the system to be stable, a color magnetic field should circulate around
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the tube. The interaction of this magnetic field with the color magnetic moment of
the quark shifts the quark in the direction perpendicular to the string axis. This shift
depends on the quark spin orientation with respect to the magnetic field direction.
The estimate of this shift gives the value δpT

∼= 0.1 GeV/c for the increment of
the transverse momentum (“kick”) (Ryskin 1988). In terms of the invariant cross
section ρ =E dσ

d3p
, the asymmetry of the polarized quark can be expressed as

Aq = ρ(+)− ρ(−)
ρ(+)+ ρ(−) , (3.181)

where (+) and (−) in the argument of the function ρ mean the directions of the
quark polarization vector. Since δpT < pT , where pT is the transverse momentum
of the final pion into which the polarized quark fragments, expanding in powers of
δpT , we arrive at the following expression for the analyzing power:

Aq(x)= dσ(pT + δpT )− dσ(pT − δpT )

dσ (pT + δpT )+ dσ(pT − δpT )
= δpT · δ

δpT

(
dσ

d3p

)/ dσ

d3p
= δpT ·B.

(3.182)

Here, the slope parameter B of the function ρ is determined by the standard expres-
sion

B = δ

δpT

(
dσ

d3p

)/ dσ

d3p
= δ

δpT

(lnρ). (3.183)

The formula for the analyzing power of the final hadron can now be represented
in the general form (Nurushev and Ryskin 2006):

AN(x)= Pq(x) ·Aq(x) ·w(x). (3.184)

Here, Pq(x) is the polarization of the initial quark carrying the fraction x of
the momentum of the initial polarized proton, Aq(x) is the analyzing power of the
quark defined by Eq. (3.182), and w(x) is the fraction of the contribution from a
given reaction channel to the parton–parton interaction. Transverse quark polariza-
tion (transversity) Pq(x) has been already discussed above. However, it has not yet
been determined from experiments. It is expected that transversity can be associated
with the structure function g2(x), which is close to zero according to the experimen-
tal data (Mcnully 2002) and has features at small x values.

In this situation, to determine Pq(x), it is necessary to use models. The nonrela-
tivistic quark model proposes the dependences

Pq(x)= 2

3
· x for π+,

Pq(x)= 1

3
· x for π0, and Pq(x)=−1

3
· x for π−.

(3.185)

The nonrelativistic quark model predicts that the behaviors of the polarization
of the quark are substantially different for different charges of the final pion. First,
the sign of the polarization is positive for π+ and π0 and negative for π−. Second,
asymmetry is expected to be maximal for π+ as compared to π− and π0.
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These predictions are generally in agreement with experiment, although there
are some disagreements. Another source of information on quark polarization is
Anselm and Ryskin (1995, 1996), where an attempt to explain “spin crisis” was
made. According to this work,

Pq(x)= 0.7x for π+,

Pq(x)= 0.28x for π0, and Pq(x)=−0.55x for π−.
(3.186)

The comparison of Eqs. (3.186) and (3.185) shows that a significant difference
between these formulas is observed only in the expression for the polarization
of π−. This fact will be taken into account when comparing the analyzing power
AN(x) with experimental data.

The general expression for the weight factor depends on the parton distribution
function Va(x) and parton fragmentation function Da(x) (a is the parton flavor).
Assuming that polarization is primarily transferred by quarks and, in a much lower
degree, by gluons, we arrive at the following expression for the weight factor (or the
dilution factor):

w(q)= σ(q)

σ (q)+ σ(g)
, (3.187)

under the assumption that the leading contribution comes from the interaction qg′
(to σ(q)) and gg′ (to σ(g)) in the t channel with gluon exchange. In this case, it is
accepted that an unpolarized nucleon emits the gluon g, whereas a polarized nucleon
emits the quark q and gluon g. Then, the contributions from the quark and gluon
can be represented in the form

σ(q)∝ CF

∫ 1

x

V q

(
x

z

)

Dq(z)
dz

z
,

σ (g)∝ CA

∫ 1

x

V g

(
x

z

)

Dg(z)
dz

z
,

(3.188)

where CF = 4/3 and CA = 3 are the color factors and z is the fraction of the mo-
mentum of the polarized quark that is carried by the final hadron.

The quark and gluon distribution functions were taken in the form

V q(x)= x · v(x)= 2.8 · √x · (1− x)2,

V g(x)= x · g(x)= 3.0 · √x · (1− x)5.
(3.189)

The fragmentation functions were taken in the form

Du
π+(z)=

4

3
(1− z), Du

π0(z)= 2

3
(1− z), Du

π−(z)≈ 0;
D

g

π+(z)=D
g

π0(z)=D
g

π−(z)= (1− z)2.

(3.190)

Isotopic invariance and charge conjugation lead to the relations

Du
π+(z)=Dū

π−(z)=Dd
π−(z)=Dd

π+(z),

Du
π−(z)=Dū

π+(z)=Dd
π+(z)=Dd

π−(z).
(3.191)
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Weight factor (3.187) was calculated with the use of relations (3.188)–(3.190).
The final expression for the weight factor for pions with different charges can be
represented in the form

w(x)=
√
x√

x + c(1− x)4.5
. (3.192)

Here, the constant c is: c+ = 0.48 for π+, c0 = 0.64 for π0, and c− = 0.96 for π−.
The analyzing power of inclusive pions is calculated from Eqs. (3.184) and

(3.192) and has no free parameters. The explicit and simple analytical form of the
formulas for asymmetry and the absence of fitting parameters are advantages of the
chromomagnetic string model. The model is applicable at high energies, xF > 0.2,
and pT > 0.3 GeV/c. At low energies and small xF values, processes with the for-
mation of resonances play a noticeable role (Musulmanbekov and Tokarev 1995). To
temporarily avoid this problem, we analyze only the experimental data at energies√
s > 10 GeV.
Inclusive reactions can be conventionally separated into three kinematic regions:

the central region with the Feynman parameter in the range −0.15 ≤ xF ≤ 0.15,
beam fragmentation region 0.3≤ xF < 1, and intermediate region. Polarization re-
sults are primarily concentrated in the first two regions. We consider them in the
CMSM.

A. Central region

To date, we know three experimental works on the measurement of single-spin
asymmetry in the inclusive production of π0 mesons (we do not know data on
charged particles). They are as follows.

1. Inclusive asymmetry in the reaction

p(↑)+ p→ π0 +X. (3.193)

In the E704 experiment, this reaction was measured at a momentum of
200 GeV/c in the kinematic region−0.15≤ xF ≤ 0.15 and 1.48≤ pT (GeV/c)≤
4.31 (Adams et al. 1996).

2. Inclusive asymmetry in the reaction

p̄(↑)+ p→ π0 +X. (3.194)

In the E704 experiment, this reaction was measured at a momentum of
200 GeV/c in the kinematic region−0.15≤ xF ≤ 0.15 and 1.48≤ pT (GeV/c)≤
3.35 (Adams et al. 1996).

3. Inclusive asymmetry in the reaction

p+ p(↑)→ π0 +X. (3.195)

In the PROZA-M experiment, this reaction was measured at a momentum of
70 GeV/c in the kinematic region −0.15≤ xF ≤ 0.15 and 1.05≤ pT (GeV/c)≤
2.74 (Vasiliev et al. 2003).
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Below, we discuss these data and compare them with the model predictions.
1. As seen in the above discussions, the CMSM can predict asymmetry if the

slope parameter B is known. In the E704 experiment, this parameter in the central
region was determined as B = (4.19 ± 0.08) (GeV/c)−1 (Adams et al. 1996) and
appeared to be independent of −t in the measured range. Then, the calculation of
the analyzing power of the quarks gives Aq = 0.1, B = 0.419.

According to relations (3.185) and (3.186), taking transversity Pq(x)= x/3, and
constant c0 = 0.64 (3.192), and substituting all presented relations into Eq. (3.184),
we obtain the final expression for the asymmetry of the π0 meson in the central
region for the E704 experiment conditions:

AN(x)= 0.14 · x1.5

√
x + 0.64(1− x)4.5

. (3.196)

Several features follow from this formula. First, asymmetry in the central region
depends only on X = xT = 2pT√

s
if the slope parameter B is independent of the mo-

mentum transfer. Second, asymmetry vanishes at x = 0 due to the polarization of the
quark and, to a certain degree, to the contribution from the gluon (the second term
in the denominator). When x increases and approaches unity, asymmetry increases
linearly with x. All listed properties of asymmetry are observed in experiments. The
calculation results by formula (3.196) are shown by the solid line in Fig. 3.11. As
seen, they are in agreement with the data of the E704 experiment at 200 GeV/c.

2. The second group of data refers to asymmetry in the inclusive production of
π0 mesons on the 200-GeV/c antiproton beam in reaction (3.194) (Adams et al.
1996). This reaction differs from reaction (3.193) by changing all quarks in the pro-
ton to antiquarks; thus, the proton is replaced by the antiproton. Therefore, charge
conjugation invariance leads to the relation

AN

(
p̄(↑)+ p→ π0 +X

)=AN

(
p(↑)+ p→ π0 +X

)
. (3.197)

As seen in Fig. 3.11, this condition corresponds to the experimental data within
the measurement errors.

3. New data obtained at the PROZA-M setup (Vasiliev et al. 2003) at 70 GeV
refer to reaction (3.195). The data were obtained on the unpolarized proton beam
with the polarized proton target. They are presented in Fig. 3.11 with the inverse
sign for comparison with the results of the E704 experiment. The expression for
asymmetry obtained in the CMSM at 70 GeV has the form

AN(xT )= 0.2 · x1.5
T√

xT + 0.64(1− xT )4.5
. (3.198)

Here, two corrections are taken into account as compared to formula (3.196): to
the energy difference and to the difference in the slope parameter.

At 70 GeV/c, the slope parameter is B = (5.89 ± 0.08) GeV/c according to
(Vasiliev et al. 2003). The calculation results are given in Fig. 3.11 by the dashed
line and are in agreement with the experimental data.

However, the qualitative test of the model requires more accurate data on asym-
metry in the central region.
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Fig. 3.11 Asymmetry versus
PT for the p+ p→ π0 +X

reaction in the central region;
the target is polarized at
70 GeV/c and the beam is
polarized at 200 GeV/c;
asymmetry for the
p̄+ p→ π0 +X reaction at
200 GeV/c is also shown; and
the CMSM predictions are
shown by the solid and
dashed lines for momenta 200
and 70 GeV/c, respectively

Asymmetry in the p(↑)+ p→ π0 +X reaction in the central region at energy√
s = 200 GeV was measured in the PHENIX experiment at RHIC. The PHENIX

collaboration has not yet published its results on asymmetry in this reaction. How-
ever, it published the data of the precision measurement of the invariant differential
cross section for this reaction in the range 1 ≤ pT ≤ 13 GeV/c at pseudorapidities
|η| ≤ 0.39 (Adler et al. 2003). This cross section was parameterized in the form

ρ =E
d3σ

dp3
=A ·

(

1+ pT

p0

)−n
. (3.199)

Here, A= 386 mb GeV−2, p0 = 1.219 GeV/c, and n= 9.99. Then, we can calculate
the slope parameter

B(pT )= d lnρ

dpT

= n

p0 + pT

. (3.200)

According to formula (3.200), the slope parameter decreases as p−1
T with an

increase in the momentum transfer; as a result, asymmetry also decreases with an
increase in the momentum transfer. This behavior is similar to that observed at lower
momenta (≈200 GeV/c) (Donaldson et al. 1976). The invariant cross section at 100
and 200 GeV/c was parameterized as follows:

ρ =E
d3σ

d3p
∝ (

p2
T +M2)N · (1− xT )

F . (3.201)

Fitting the experimental results gives

N =−5.4± 0.2, M2 = (2.3± 0.3) GeV2, and

F = 7.1± 0.4; where xT = 2pT

√
s.
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Then, we can determine the slope parameter

B(pT )= 2NpT

p2
T +M2

− 2F√
s(1− xT )

. (3.202)

The slope parameter from PHENIX data (3.200) has the same pT dependence
as in the E704 experiment at lower energies

√
s ≈ 20 GeV (3.192). Thus, the slope

parameter in the energy range
√
s = 20–200 GeV is almost independent of energy.

Since two other parameters appearing in the CMSM formula are also slightly de-
pendent on energy, asymmetry at the PHENIX energy is expected to be small. The
calculations show that asymmetry is no more than 1 %. Such an asymmetry can be
observed if the measurement accuracy is no worse than 0.1 %.

Thus, it can be preliminarily concluded that asymmetry in the inclusive produc-
tion of π0 mesons in the central region is almost absent (or very small), beginning
with the center-of-mass energy

√
s ≈ 10 GeV.

B. Beam fragmentation region

For this region and energies
√
s ≥ 10 GeV, the following results on single-spin

asymmetry have been reported.

1. The results of the STAR experiment on the p(↑) + p→ π0 + X reaction at√
s = 200 GeV for the kinematic measurement region 0.18 ≤ xF ≤ 0.59, 1.5 ≤

pT (GeV/c)≤ 2.3, |η| ≈ 3.8 (Adams et al. 2003).
2. The results of the E704 experiment on the p(↑) + p → π0 + X reaction at√

s ≈ 20 GeV for the kinematic measurement region 0.03 ≤ xF ≤ 0.9, 0.5 ≤
pT (GeV/c)≤ 2.0 (Adams et al. 1992).

3. The results of the E704 experiment on the p̄(↑) + p → π0 + X reaction at√
s ≈ 20 GeV for the kinematic measurement region 0.03 ≤ xF ≤ 0.67, 0.5 ≤

pT (GeV/c)≤ 2.0 (Adams et al. 1991b).
4. The results of the E704 experiment on the p(↑) + p→ π± + X reaction at√

s ≈ 20 GeV for the kinematic measurement region 0.2 ≤ xF ≤ 0.9, 0.2 ≤
pT (GeV/c)≤ 1.5 (Adams et al. 1991d).

5. The results of the E704 experiment on the p̄(↑) + p→ π± + X reaction at√
s ≈ 20 GeV for the kinematic measurement region 0.2 ≤ xF ≤ 0.9, 0.2 ≤

pT (GeV/c)≤ 1.5 (Bravar et al. 1996).

All these experimental data are shown in Fig. 3.12. Formulas (3.182) and (3.187)
for asymmetry and weight factor w(x), respectively, are also applicable for the beam
fragmentation region. The main change is that the argument x is replaced by xF ,
which now means the momentum fraction carried by the final hadron after quark
decay. Then, the formula for asymmetry is written in the form (see Eq. (3.184))

AN(xF ,pT , g)= Pq(xF ) ·Aq(xF ,pT , g) ·w(xF , c). (3.203)

The parameter c in the dilution factor was defined above (see Eq. (3.192)).
To calculate asymmetry, it is necessary to calculate the slope parameter given by

expression (3.202) for each reaction taking into account the kinematic measurement
region.
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Fig. 3.12 Asymmetry versus
xF in the polarized-beam
fragmentation region for the
p(↑)+ p→ π0 +X reaction
at
√
s = 19.4 and 200 GeV

and for the
p̄(↑)+ p→ π0 +X reaction
at
√
s = 19.4 GeV. The solid

and dotted lines are the
calculation results for√
s = 19.4 and 200 GeV,

respectively

The derivation of the formula for asymmetry was discussed above. For this rea-
son, we immediately write the following final expression for asymmetry expected
in the STAR experiment:

AN(xF )= 0.2 · x1.5
F√

xF + 0.64(1− xF )4.5
. (3.204)

The results of the calculation by this formula are given by the dotted line in
Fig. 3.12. As seen, the agreement with the first results of the STAR experiment is
satisfactory.

Since the cross sections were not measured in the E704 experiments, we take
them from work (Carey et al. 1976) near the kinematic region appropriate for our
aim. The value B = (4.75± 0.07) (GeV/c)−1 was obtained by fitting.

Taking Pq(xF ) = (1/3)xF for quark polarization, we obtain the following final
expression for asymmetry at a momentum of 200 GeV/c (the E704 experiment) for
π0 mesons:

AN(xF )= 0.16 · x1.5
F√

xF + 0.64(1− xF )4.5
. (3.205)

The results of the calculation by this formula are shown in Fig. 3.12 by the solid
line. As seen, qualitative agreement with the E704 data is achieved.

Figure 3.12 also shows the results on AN for the p̄(↑)+ p→ π0 +X reaction
at a momentum of 200 GeV/c. The model prediction is simplified due to relation
(3.206), which is a consequence of the change of the quark to the antiquark. As seen
in Fig. 3.12, agreement between the model prediction (solid line) and experimental
data is good.
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Fig. 3.13 Test of charge conjugation rules (3.197) and (3.209) for single-spin asymmetry AN in
the inclusive production of pions in the (closed circles) p(↑)+ p→ π±,0 +X and (open circles)
p̄(↑) + p→ π±,0 + X reactions at 200 GeV/c. Asymmetry AN in (a)–(c) and (d)–(f) is given
versus xF and pT , respectively. The solid and dashed lines are the CMSM predictions for the
quark distribution by formulas (3.185) and (3.186), respectively

Figure 3.13 shows the data of the E704 experiment on single-spin asymmetry
in the inclusive production of pions at an initial momentum of 200 GeV/c in the
reactions

p(↑)+ p→ π±,0 +X, p̄(↑)+ p→ π±,0 +X. (3.206)

Since the cross sections were not measured in the E704 experiments, the slope
parameter was estimated from the data reported in Breakstone et al. (1995). As a
result, the slope parameters B+ = 5.55 GeV−1 and B− = 5.33 GeV−1 were ob-
tained. Thus, taking the expression Pq(x)= 2

3x for quark polarization, we arrive at
the formula

Aπ+
N (xF )= 0.37 · x1.5

F√
xF + 0.48(1− xF )4.5

. (3.207)

The model prediction for positive pions is shown by the solid line in Fig. 3.13a
and is in satisfactory agreement with the experimental data (presented by the closed
circles) except for small values xF < 0.4.
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The prediction for π− mesons was obtained with the quark polarization Pq(x)=
− 1

3x in the nonrelativistic quark model by the formula

Aπ−
N (xF )=−0.18 · x1.5

F√
xF + 0.96(1− xF )4.5

. (3.208)

The results are shown in Fig. 3.13b by the solid line. It is seen that agreement is
not rather good. In view of this circumstance, the dashed line in the same figure is
obtained when the expression for quark polarization was taken in the form Pq(x)=
−0.55x from Carey et al. (1976). This variant provides better description at high x

values. However, good description at small xF values is not achieved in both cases.
Figure 3.13c shows the asymmetry of the π0 mesons produced by the (closed

circles) proton and (open circles) antiproton polarized beams. As seen, charge con-
jugation rule (3.197) is satisfactorily fulfilled.

Asymmetry in the inclusive production of charged pions should satisfy the fol-
lowing charge conjugation rule:

AN

(
p̄(↑)+ p→ π± +X

)≈AN

(
p(↑)+ p→ π∓ +X

)
. (3.209)

The validity of this relation can be concluded from Figs. 3.13a and 3.13c, where
the proton and antiproton data are given by the closed and open circles, respectively.
As a whole, agreement is achieved, although deviations from this rule are observed,
particularly at small xF values.

Figures 3.13d–3.13f show the pT dependence of asymmetry. This dependence
was reconstructed from the tables in Adams et al. (1991b, 1991d, 1992), where the
tables of the correlation of the arguments pT and xF were given. The solid and
dashed lines in these figures show the CMSM predictions for quark distributions
(3.185) and (3.186), respectively. As a whole, qualitative agreement is seen, par-
ticularly at high arguments. Discrepancy between the predictions and experimental
data at small arguments was attributed by the authors to either resonances or thresh-
old phenomena.

3.9 Polarization as a Tool for Studying Hadron Matter Under
the Extremum Conditions

In modern nuclear physics, particularly in the field of the interaction of heavy rela-
tivistic ions, the search for the so-called quark–gluon plasma (QGP) is a very pop-
ular item. A number of methods have been proposed in the literature for applying
polarization phenomena to separate the QGP signal from the background processes.
These are the following processes.

The appearance of the quark–gluon plasma should be accompanied by the intense
production of cascade Ξ (Ξ̄) hyperons. The cascade hyperons (anticascade hyper-
ons) decay into Λ (Λ̄) hyperons, which appear to be longitudinally polarized. No
other sources of longitudinally-polarized Λ (Λ̄) hyperons are expected. Therefore,
in addition to the measurement of the yields of cascade hyperons, the measurement
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of the polarization of their decay products was proposed with the focus on the lon-
gitudinal polarization of Λ hyperons.

The next proposal is similar to a review experiment. Let the polarization of Λ

hyperons produced in pp collisions at the ISR accelerator be measured. In this case,
the presence of the polarization of Λ hyperons has been experimentally established.
What should we expect for the polarization of Λ hyperons from heavy-ion collisions
at the same accelerator? We should expect zero polarization, because the presence
of the quark–gluon plasma leads to the complete mixing of spin states.

Almost half a century ago, it was pointed out that polarization effects can be used
as signatures of quark–gluon plasma formation.

A review of the use of the spin effects as probes for the investigation of quark–
gluon plasma formation was given several years ago (Nurushev 1993). Now, when
polarized proton beams are available at RHIC, we can make some proposals oriented
to new possibilities of the RHIC.

The quark–gluon plasma is a hot substance appearing in heavy-ion collisions
(RHIC 1989). As emphasized in STAR (1992), evidence of quark–gluon plasma
formation should be based on the combination of several signatures. Several mea-
surements of polarizations as possible signatures of the appearance of the quark–
gluon plasma in heavy-ion collisions were proposed (Hoyer 1987; Jacob and Rafel-
ski 1987; Jacob 1988).

Heavy-ion collisions can be classified into the following groups according to the
spins of the involved particles: unpolarized initial states, one of the initial nuclei is
polarized, and both initial nuclei are polarized.

1. Angular distribution (Hoyer 1987).

The main feature of quark–gluon plasma formation in heavy-ion collisions is
the thermalization of the kinetic energy or its part. Thus, in the plasma rest frame
(local), there is no separate direction; in particular, the direction of the spin of the
initial nuclei “is forgotten.”

These reasons are based exclusively on symmetry and, thus, are model indepen-
dent. The application of these ideas to data on heavy-ion collisions includes un-
certainties owing to the determination of the plasma rest frame and possibilities of
generating particles by nonthermalized quarks and gluons. In this case, the existence
of the perfect plasma at rest is implied.

Hoyer (1987) pointed to three cases in which the polarization of the produced
particles can be measured.

(a) Virtual photons, i.e., the generation of lepton pairs. The qq̄→ γ ∗ → ll̄ process
is of most interest in experiments with heavy ions, because it is direct evidence
of the motion of quarks. The use of the angular distribution of the decay of a vir-
tual photon was proposed in Hoyer (1987) as an additional test that the increased
rate of the generation of lepton pairs is caused by plasma formation rather than
by, i.e., generation in the pre-equilibrium state. A virtual photon is always trans-
versely polarized with respect to the momenta of annihilating quarks. In the ac-
tual plasma, quarks move in random directions; hence, the photon should be
unpolarized. Therefore, the angular distribution of leptons in the rest frame of
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the pair is isotropic. This is strictly valid only for lepton pairs whose rest frame
coincides with the plasma rest frame. Otherwise, the distribution of leptons with
respect to the momentum of the pair is expected to have the form (1+α cos 2θ),
where the coefficient α depends on the plasma temperature and on the mass and
momentum of the pair, because annihilating quarks tend to be oriented along
the direction of the motion of the virtual photon.

(b) Hyperons. Hyperons (Λ,Σ,Ξ) can be produced with polarization that is per-
pendicular to the scattering plane and is measurable due to their decay with
parity violation. This polarization was observed experimentally in collisions of
hadrons with protons and nuclear targets (Pondrom 1985).

Significant production of hyperons is expected in the quark–gluon plasma
due to the abundance of baryons and the presence of strange quarks. Similar
to the case of virtual photons, the only appropriate direction is the hyperon
momentum direction with respect to the plasma. However, parity conservation
in the production process forbids polarization along the hyperon momentum.
Therefore, hyperons produced from the plasma should be unpolarized.

(c) Resonances. The polarization of hadron resonances such as ρ, ω, K∗, φ, . . . ,
�, Y ∗, . . . can be reconstructed from the angular distributions of their decays.
When they are produced at rest in the (local) plasma reference frame, they
should be completely unpolarized. Otherwise, the angular distributions in decay
can depend on the polar angle with respect to the resonance motion direction.
The dependence on the azimuth angle should always disappear.

The reliability of the described measurements of polarization can be im-
proved by comparing the decay distribution for events in which the plasma is
hardly formed (e.g., peripheral collisions) with the decay distributions for events
that can produce the plasma (central collisions) in the same experiment.

2. The abundance of Ξ (Ξ̄) hyperons (Jacob and Rafelski 1987; Jacob 1988).

It is known that the relative abundance of antibaryons with multiple strangeness
would ensure key information on quark–gluon plasma formation. Detailed calcula-
tions show that the abundance of anticascade Ξ̄ (s̄s̄q̄) is enriched to half the abun-
dance of various antihyperons Ȳ (s̄q̄q̄). This prediction can be compared to the ratio
Ξ̄/Ȳ observed in the standard hadron reactions, which is as small as 0.06± 0.02 in
the central rapidity region at

√
s = 63 GeV (Akesson et al. 1984). Thus, the state of

the quark–gluon plasma would provide the ratio larger by a factor of several tens.
Jacob and Rafelski (1987) showed how the measurement of the longitudinal polar-
ization of Λ̄ should allow one to easily determine the Ξ̄/Ȳ abundance ratio.

The central item of this work is a deep difference in the polarization of Λ̄ hyper-
ons produced in weak decays of Ξ̄ hyperons. Weak decay longitudinally polarizes
the spin of Λ̄. In the subsequent weak decay of Λ̄, this polarization is analyzed
giving observable effects.

The longitudinal polarization of Λ̄ is the unique and indestructible signature of
Ξ̄ abundance.

We have showed that the measurement of the longitudinal polarization of Λ̄,
which is usually absent in hadron reactions, will make it possible to determine the



190 3 Theoretical Models

Ξ̄/Ȳ abundance ratio, which is expected to be a characteristic signature of the for-
mation of a new state of hadronic matter, quark–gluon plasma.

A large asymmetry value would indicate a relatively large abundance of Ξ̄ as
compared to Λ̄. This would be unambiguous test on quark–gluon plasma formation.

As known, in the reactions

p+ p→Λ+X, (3.210)

p+A→Λ+X, (3.211)

A+A→Λ+X, (3.212)

where p is the proton, Λ is the Λ hyperon, A is a nucleus, and X are other parti-
cles, the final Λ hyperons are polarized. The polarization of the Λ hyperon can be
determined from the angular distribution of its weak decay

Λ→ p+ π−. (3.213)

The angular distribution of this decay can be written in the form

WΛ = 1/2(1+ αΛPΛ cos θ), (3.214)

where αΛ = 0.64 is the decay parameter, PΛ is the polarization of the Λ hyperon,
and θ is the proton emission angle with respect to the proton motion direction in the
rest frame of the Λ hyperon.

The QGP state does not “remember” any features of the parent particles; for
this reason, any spin transfer processes do not remain. Utility of such reactions as
the signatures of plasma formation depends on the spin transfer degree observed
in standard hadron collisions without plasma formation. Scarce data on the spin
transfer mechanism predict small effects in the reactions with the (nucleon–strange
particle) transition, but possibly huge effect in the s-quark transfer reactions.

Comparative investigations of specific reactions with unpolarized and polarized
heavy ions can be useful for distinguishing the QGP formation signal.

Further advances in spin physics will undoubtedly lead to a new approach to the
QGP problem.
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Chapter 4
Deep Inelastic Scattering of Leptons

Deep inelastic scattering (DIS) of leptons by nucleons became of particular interest
after the discovery of the internal structure of the nucleon, which was represented
by point particles called partons, in the late 1960s.

In the International Symposium on High Energy Physics in Vienna in 1968, Prof.
Panofsky (USA) reported the results of the measurements of the cross sections for
the inelastic scattering of electrons by nucleons (Panofsky 1968). He pointed out that
the probability of electron scattering at large angles is noticeable. Such events were
interpreted as scattering by point charges locating inside a nucleon. This experiment
in results was similar to the famous Rutherford experiment discovering the existence
of nuclei in atoms. The angular and energy distributions of scattered electrons indi-
cate that electrons are scattered by structureless objects with spin 1/2. These results
along with data on neutrino scattering led to the observation of quarks. The real
sizes and masses of quarks are open questions. It is not excluded that quarks, as
well as nucleons, are composite objects. Moreover, there are many quarks and they
are classified in new conserving numbers such as flavor, color, fractional charge, and
magnetic moment.

Subsequent experimental and theoretical investigations led to the development of
the nonrelativistic quark model. In this model, baryons (nucleons and hyperons) are
considered as consisting of three constituent quarks u, d and s. The masses of these
quarks are approximately one third of the nucleon mass. When baryons are in the
ground state, quarks have zero orbital angular momentum (s state), spin 1/2, and
the corresponding magnetic moments. The magnetic moment of the baryon is the
sum of the magnetic moments of constituent quarks. The nonrelativistic Schrödinger
equation can provide the description of almost all statistical parameters of baryons
at low energies. In this scheme, the gluon degree of freedom does not play almost
any role.

According to this model, the baryon spin, more precisely, its projection on a
certain direction is the sum of the projections of the spins of constituent quarks on
the same direction. For example, let a proton with spin �s moves along the z axis
and its spin projection on this axis be sz. Then, the following equality should be
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satisfied:

〈sz〉 =
〈

3∑

i=1

siqz

〉

= 〈sqz〉. (4.1)

Almost all parameters of the hadrons, as well as resonance states, are satisfacto-
rily described in such a nonrelativistic model of quarks.

If the baryon structure is analyzed at higher energies and higher momentum trans-
fers, the nucleon should be considered as consisting of point objects, partons (quarks
and gluons). Quarks in this parton model are called current quarks, have the same
quantum numbers as constituent quarks, and have very small masses in contrast to
the latter quarks. The relation between constituent and current quarks remains unde-
termined. This problem becomes of particular importance in view of the observation
of the strong violation of the above relation (4.1) between the spin components of
the baryon and its partons. This was found by the EMC collaboration in 1988 (Ash-
man et al. 1988, 1989). The subsequent series of the experimental measurements of
this effect confirmed it with a higher accuracy and provided the following important
conclusions.

1. Valence quarks and antiquarks carry only a quarter of the proton spin rather than
the entire this spin, as expected;

2. The strange quark (sea) is surprisingly also polarized, though slightly;
3. Gluon spins and orbital angular momenta of quarks and gluons possibly also

contribute to the nucleon spin (this has not yet been confirmed experimentally).
In this case, relation (4.1) has the form

〈
1

2

〉

= 〈�sq〉 + 〈�sG〉 + 〈 �Lq〉 + 〈 �LG〉. (4.2)

Although numerous theoretical works have been performed, the problem of the
nucleon spin has not yet been solved. This problem is called “spin crisis.”

In this chapter, we discuss the deep inelastic scattering (DIS) of leptons by nucle-
ons in theoretical models. The kinematics of the process is considered in Sect. 4.1,
Sect. 4.2 is devoted to the cross sections for the DIS of leptons by nucleons, the
structure functions of nucleons are analyzed in Sect. 4.3, the structure functions and
quark–parton model are discussed in Sect. 4.4, the structure function and QCD are
considered in Sect. 4.5, Sect. 4.6 concerns the determination of parton distributions,
and transversity is analyzed in Sect. 4.7.

4.1 Kinematics of the DIS Process

The diagram of the deep inelastic scattering (DIS) of leptons by nucleons for the
process

l(k)+N(p)→ l′
(
k′
)+X (4.3)

is shown in the general form in Fig. 4.1.
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Fig. 4.1 Diagram of the DIS
of a lepton in the parton
model

Here, k and k′ are the initial and final four-momenta of the lepton l, respectively;
p is the momentum of the initial nucleon N ; q = k − k′ is the four-momentum
transferred from the lepton to the nucleon; and W is the square of the masses of the
system of recoil particles X. The momentum q in this diagram is transferred by the
virtual photon γ ∗(q). However, it can be transferred by the Z boson in the case of
neutral current or by W± bosons in the case of interaction with charged current.

The subsequent description of deep inelastic scattering requires a number of kine-
matic parameters. They are denoted and defined below.

• Energy transfer in lepton scattering,

ν = q · p
M

=E −E′, (4.4)

is the energy lost by the lepton in its collision with the nucleon at rest. Here, E
and E′ are the initial and final energies of the lepton, respectively, and M is the
nucleon mass.

• The square of the four-momentum of the virtual photon

Q2 =−q2 =−(k− k′
)2 = (

E−E′
)2− (�k− �k′)2 = 2

(
EE′ − �k · �k′)−m2

l −m2
l′ .

Here, ml and ml′ are the masses of the initial and final leptons, respectively. Ne-
glecting the masses of the leptons compared to their energies, we can represent
the formula in the form

Q2 ≈ 4EE′ sin2(θ/2), (4.5)

where θ is the lepton scattering angle in the rest frame of the initial nucleon.
This angle is measured from the directions of the incident and scattered lepton
momenta.

The parameter Q2 is a criterion for determining DIS processes: the parameter
Q2 for DIS should be much larger than the nucleon mass M2. At the same time,
this parameter specifies the photon virtuality degree: Q2 =m2

γ , where mγ is the
mass of the virtual photon. The higher the photon virtuality, the farther the photon
is from the mass (physical) shell.

• The Bjorken parameter is defined as

x = Q2

2Mν
. (4.6)
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In the parton model, this parameter specifies the nucleon-momentum fraction car-
ried by the quark interacting with the virtual photon.

• The energy fraction lost by the lepton colliding with the nucleon is

y = q · p
k · p =

ν

E
. (4.7)

• The square of the masses of the system of recoil particles X

W 2 = (p+ q)2 =M2 + 2Mν −Q2. (4.8)

• The square of the total energy of the initial lepton–nucleon system is

s = (k + p)2 = Q2

xy
+m2

l +M2. (4.9)

The DIS process is a part of an inclusive process with the imposed conditions

Q2 �M2, W 2 �M2. (4.10)

To describe DIS as an inclusive process, it is sufficient to use three parameters at
option. The set s, Q2, and x is used most often although other sets can be used (s is
usually fixed in experiment and is rarely changed).

4.2 Cross Sections for the DIS of Leptons by Nucleons

At present, differential cross sections for DIS processes with unpolarized nuclei
are sufficiently well studied. The corresponding experiments can be classified into
two classes. The first class unites the experiments with fixed targets. They were the
first experiments on DIS and led to the discovery of partons. The measurements in
these experiments have been carried out in the kinematical regions 6 · 10−3 < x < 1
and 3 · 10−1 < Q2 (GeV2) < 3 · 102. The second class unites all measurements
at colliders. In this case, the measurement range is much wider than that in the
preceding case. In particular, the measurement ranges for the HERA setup (the e+p

collider with an electron energy of 30 GeV and a proton energy of 820 GeV) are
0.7 · 10−6 < x < 1 and 7 · 10−2 <Q2 (GeV2) < 2 · 104. The measurements in the
collider energy range are of most theoretical interest for studying the spin structure
functions.

Let us write the differential cross section for the DIS process in the invariant form

d2σ

dxdy
= x

(
s −M2) d2σ

dxdQ2
= 2πMν

E′
d2σ

dΩN

. (4.11)

In the lowest order of perturbation theory, this cross section is expressed in terms
of the product of the lepton and hadron tensors corresponding to the upper and lower
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vertices of the diagram (see Fig. 4.1):

d2σ

dxdy
= 2πyα2

Q4

∑

k

ηkL
μν
k Wk

μν. (4.12)

For the interaction of the neutral current, the lepton tensor Lμν
k consists of three

terms (with γ and Z exchanges and interference term γZ) over which the summa-
tion is performed. This tensor is composed of the available parameters of DIS. In
the case of photon exchange, these parameters are the momenta k and k′ of the lep-
tons before and after scattering, respectively; the lepton charge e =±1;0; and the
helicity of the initial electron kλ=±1. In the case of interaction through the Z bo-
son (weak current), there are additional two weak-interaction constants: the vector
coupling constant geV and pseudovector coupling constant geA:

geV =−
1

2
− 2e sin2 θW and geA =−

1

2
.

The interaction of the charged current occurs through W± boson exchange; in
this case, the lepton current is expressed in terms of the same parameters as earlier.
Finally, the lepton tensor for neutral currents are given by the expressions

Lγ
μν = 2

(
kμk

′
ν + k′μkν − k · k′gμν − iλεμναβk

αk′β
)
, (4.13)

LγZ
μν =

(
geV + eλgeA

)
Lγ
μν, (4.14)

LZ
μν =

(
geV + eλgeA

)2
Lγ
μν. (4.15)

The charged current tensor (the eN→ νeX reaction) has the form

LW
μν = (1+ eλ)2Lγ

μν. (4.16)

This expression is very remarkable. The expression in the parentheses follows
from the hypothesis of the left-handed orientation of the lepton spin (λ=−1). Since
the charge of a lepton (electron or muon) is negative, the coefficient in the parenthe-
ses is nonzero. For an antilepton (positron or positive muon) or an antiparticle, both
the helicity and charge sign change, so that this coefficient does not change. Ex-
periments do not refute the hypothesis of the absence of leptons with right-handed
helicity in nature.

Owing to the point structure of the lepton, the lepton tensor Lμν has the simple
explicit analytical form as follows from formulas (4.13)–(4.15). However, since the
nucleon structure is not point, the hadron tensor Wμν is a complex function, which
can be written in the form

Wμν = 1

4π

∫

d4zeiqz
〈
p, s

∣
∣
[
J+μ (z), Jν(0)

]∣
∣p, s

〉
. (4.17)

Here, s is the four-dimensional spin of the proton, which satisfies the relations
(ps)= 0 and s2 =−1.
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The coefficients ηk in Eq. (4.12) are the ratios of the propagators and constants
of the corresponding intermediate bosons to the propagator and coupling constant
of the photon, respectively. They are given by the expressions

ηγ = 1, ηγZ =
(
GFM

2
Z

2
√

2πα

)(
Q2

Q2 +M2
Z

)

,

ηZ = η2
γZ, ηW = 1

2

(
GFM

2
W

4πα

Q2

Q2 +M2
W

)2

.

(4.18)

4.3 Nucleon Structure Functions

In Blümlein and Kochelev (1997), Forte et al. (2001), and Anselmino et al. (1994),
the hadron tensor Wμν was represented in terms of the structure functions of the
polarized and unpolarized nucleons in the form

Wμν =
(

−gμν + qμqν

q2

)

F1
(
x,Q2)+ p̂μp̂ν

p · q F2
(
x,Q2)

− iεμναβ
qαpβ

2q · pF3
(
x,Q2)

+ iεμναβ
qα

q · p
[

sβg1
(
x,Q2)+

(

sβ − s · q
p · q p

β

)

g2
(
x,Q2)

]

+ 1

q · p
[

1

2
(p̂μŝν + ŝμp̂ν)− s · q

p · q p̂μp̂ν

]

g3
(
x,Q2)

+ s · q
q · p

[
p̂μ · p̂ν

p · q g4
(
x,Q2)+

(

−gμν + qμqν

q2

)

g5
(
x,Q2)

]

. (4.19)

Here,

p̂μ = pμ − p · q
q2

qμ, ŝμ = sμ − s · q
q2

qμ. (4.20)

As seen, the hadron tensor consists of two parts. The first part, so-called sym-
metric part (with respect to the subscripts μ and ν) of the tensor is independent of
the nucleon spin. The convolution of this part with the lepton tensor Lμν gives the

unpolarized differential cross section d2σ
dxdy

. The measurement of this cross section
makes it possible to experimentally reconstruct the spinless structure functions F1,
F2, and F3. The second part of the tensor Wμν depends on the nucleon spin and
is antisymmetric. Its convolution with the lepton tensor provides the polarized dif-
ferential cross sections whose difference �σ is proportional to asymmetry and this
asymmetry is measured in experiments. Such measurements should generally allow
the determination of five spin structure functions g1, g2, g3, g4, and g5.
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Thus, the unpolarized cross section for DIS is given by the formula

d2σ i

dxdy
= 4πα2

xyQ2
ηi
[(

1− y − x2y2M2

Q2

)

F i
2 + x/y2F i

1 ∓
(

1− y

2

)

xyF i
3

]

. (4.21)

Here, the minus sign of the last term refers to the positron e+ or antineutrino
ν̄ , and the plus sign corresponds to the case of the electron e or neutrino ν. The
superscript i = NC means the DIS process through the neutral current such as the
eN→ eX reaction, and i = CC means the DIS process through the charged current
such as the eN → νX reaction or the reverse reaction νN → eX. The coefficient
ηNC is 1 for an unpolarized process, and

ηCC = (1± λ)2ηW . (4.22)

Here, the sign ± refers to the lepton charge and λ is the helicity of the incident
lepton. The structure functions of the charged current, which are determined only
through the exchange by W bosons, are written in the form FCC

i = FW
i , i = 1,2,3.

The structure functions for the neutral current are defined in Klein and Reimann
(1984) by the expression

FNC
2 = F

γ

2 −
(
geV ± λgeA

)
ηγZF

γZ

2 + (
geV

2 + geA
2 ± 2λgeV g

e
A

)
ηZF

Z
2 . (4.23)

A similar expression is valid for FNC
1 . The expression for FNC

3 has the form

xFNC
3 =−(geA ± λgeV

)
ηγZxF

γZ

3 + [
2geV g

e
A ± λ

(
geV

2 + geA
2)]

ηZxF
Z
3 . (4.24)

Experiments with neutrino beams are very difficult because of low fluxes and
small cross sections. Only measurements of the unpolarized structure functions have
been performed. Measurements of the spin structure functions on neutrino beams
have not yet been carried out primarily because it is unreal to create a polarized
target with the necessary mass. However, in view of the importance of studying
the spin effects on neutrino beams, physicists are actively working on this problem.
We now discuss the scattering of polarized leptons by polarized nucleons. In this
case, the difference between the cross sections for protons polarized in the opposite
directions is usually measured:

�σ = σ(λn =−1, λl)− σ(λn = 1, λl), (4.25)

where λl and λn(= ±1) are the helicities of the initial lepton and nucleon, respec-
tively. Measurements involve the collection of statistics for different directions of
the nucleon helicity. Note that it is difficult to change the lepton helicity due to
physical reasons although the experiment is symmetric with respect to the helicities
of the nucleon and lepton. This difference between differential cross sections can be
expressed in terms of five spin-dependent structure functions gi(x,Q2) (i = 1 . . .5)
by the formula

d2�σi

dxdy
= 8πα2

xyQ2
ηi
[

−λly
(

2− y − 2x2y2M2

Q2

)

xgi1 + 4λlx
3y2M

2

Q2
gi2
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+ 2x2y
M2

Q2

(

1− y − x2y2M2

Q2

)

gi3

−
(

1+ 2x2yM2

Q2

)[(

1− y − x2y2M2

Q2

)

gi4 + xy2gi5

]]

. (4.26)

The superscript i = NC and CC has the same meaning as above. Above ex-
pression (4.26) determines the difference between the cross sections for parallel and
antiparallel spins of the initial particles in the scattering of the positron and an-
tineutrino. For the scattering of the electron and neutrino, the difference should be
taken between the antiparallel and parallel spins. As seen in expression (4.26), the
contributions from the structure functions g2 and g3 in the case of the longitudinal
polarization of the nucleon are suppressed by the coefficient M2/Q2. In the case of
the transverse polarization of the nucleon, this suppression factor is absent Blüm-
lein and Kochelev (1997), but the difference between the differential cross sections
decreases as M/Q; for this reason, it is difficult to measure these structure functions.

The limit of the expressions at M2/Q2 → 0 is of great interest for theory. In this
limit, scaling should occur according to the Bjorken hypothesis; i.e., the structure
functions should depend only on one variable, which is the parameter x ≡ xB , and
should be independent of Q2. This hypothesis is well satisfied in experiments in the
region xB ≥ 0.1 (Eidelman et al. 2004). From this point of view, it is interesting
to determine the form of the unpolarized and polarized differential cross sections
given by Eqs. (4.21) and (4.26), respectively. Both cross sections include the same
structure functions (spin-dependent and spin-independent) determining the hadron
tensor Wμν given by Eq. (4.19). These formulas have the form

d2σ i

dxdy
= 2πα2

xyQ2
ηi
[
Y+F i

2 ∓ Y−xF i
3 − y2F i

L

]
. (4.27)

Here, i =NC,CC,Y± = 1± (1− y)2 and

F i
L = F i

2 − 2xF i
1 . (4.28)

According to Callan and Gross (1969), in the naive quark model, the function is
F i
L = 0. Hence, the unpolarized differential cross section includes only two structure

functions F2 and F3 and is strongly simplified.
A similar formula can be obtained for polarized cross section by making the

changes

F1 →−g5, F2 →−g4, F3 → 2g1,

in expression (4.27) and multiplying the resulting expression by a factor of 2 for
averaging over the initial polarizations of the nucleon. Thus, we obtain

d2�σi

dxdy
= 4πα2

xyQ2
ηi
[−Y+gi4 ∓ Y−xgi1 + y2giL

]
. (4.29)
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Fig. 4.2 Diagram of the DIS
of the lepton in the parton
model

Here, giL = gi4 − 2xgi5 and Y± were defined above and it was shown by Dicus
(1972) that giL = 0 in the same naive quark model. In this case, the cross section of
interest is simplified and has the final form

d2�σi

dxdy
= 4πα2

xyQ2
ηi
[−Y+gi4 ∓ Y−xgi1

]
. (4.30)

4.4 Structure Functions and Quark–Parton Model

The quark–parton model introduces the quark distribution function q(x,Q2), which
determines the probability of finding the quark with the flavor q (q = u,d, s, ū, d̄, s̄,
etc.) and with the momentum fraction x of the proton momentum in the infinite-
momentum frame. In this model, the DIS of the lepton by the nucleon can be repre-
sented by the diagram (see Fig. 4.2)

In this diagram, the point lepton is scattered by one of three quarks of the nucleon.
The quarks are also assumed to be point (so-called current quarks). The scattering of
the lepton by one quark is independent of other quarks. In the quark–parton model,
the following relations between the parton distributions and structure functions were
derived (Bjorken and Paschos 1969; Feynman 1972).

For the processes with neutral currents such as e+ p→ e+X:

[
F

γ

2 ,F
γZ

2 ,FZ
2

]= x
∑

q

[
e2
q,2eqg

q
V , g

q2
V + g

q2
A

]
(q + q̄), (4.31)

[
F

γ

3 ,F
γZ

3 ,FZ
3

]=
∑

q

[
0,2eqg

q
A,2gqV g

q
A

]
(q − q̄), (4.32)

[
g
γ

1 , g
γZ

1 , gZ1
]= 1

2

∑

q

[
e2
q,2eqg

q
V , g

q2
V + g

q2
A

]
(�q +�q̄), (4.33)

[
g
γ

5 , g
γZ

5 , gZ5
]=

∑

q

[
0, eqg

q
A,g

q
V g

q
A

]
(�q −�q̄). (4.34)

Here, gqV =± 1
2 − 2eq sin2 θW and g

q
A =± 1

2 , where the plus and minus signs corre-
spond to the u and d quarks, respectively; and �q = q ↑ −q ↓, where q ↑ and q ↓
mean the distribution functions of quarks with the spins parallel and antiparallel to
the nucleon spin, respectively.
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For processes with charged currents such as e−+p→ ν+X or ν̄+p→ e++X,
the formulas have the form

FW−
2 = 2x(u+ d̄ + s̄ + c+ · · · ), (4.35)

FW−
3 = 2(u− d̄ − s̄ + c+ · · · ), (4.36)

gW−1 = (�u+�d̄ +�s̄ +�c+ · · · ), (4.37)

gW−5 = (−�u+�d̄ +�s̄ −�c+ · · · ). (4.38)

Only active quarks should be taken into account in these formulas. The Cabibbo–
Kobayashi–Maskawa mixing is disregarded. The formulas for the structure func-
tions FW+ and gW+ (the e− + p→ ν̄ + X and ν + p→ e+ + X reactions) are
obtained by changing the quark flavors: d↔ u and s↔ c. The structure functions
for scattering by neutrons are also obtained from the above formulas by chang-
ing u↔ d . For processes with both neutral and charged currents, the quark-parton
model predicts the relations

2xF i
1 = F i

2 and gi4 = 2xgi5. (4.39)

When the mass terms are neglected, the structure functions g2 and g3 make
contributions only to the processes involving transversely polarized nucleons.
In the quark–parton model, the usual probability interpretation is inapplicable
to these functions. They appear from the off-diagonal elements of the matrix
〈P,λ′||J+μ (z)Jν(0)||P,λ〉; in this case, the helicities of the protons in the initial and
final states of the process are different: λ′ �= λ. These functions contain the contri-
butions from the twist-2 and twist-3 terms of the same order in Q2. The Wandzura–
Wilczek relation (Wandzura and Wilczek 1977) makes it possible to relate the part
of the structure function g2 appearing from twist-2 to the other structure function g1
as

gi2(x)=−gi1(x)
∫ 1

x

dy

y
gi1(y). (4.40)

An additional difficulty in analysis of g2 is that the contribution from twist-3
terms to this amplitude is yet unknown. The situation with the structure function
g3 is similar. Its part determined by the contribution from twist-3 can be expressed
in terms of g4. Detailed analysis of these problems can be found in Blumlein and
Tkabladze (1999).

4.5 Structure Function and QCD

In 1969 in the quark–parton model, Bjorken (1960) proposed a strong statement that
the structure functions in the limits Q2 →∞ and v→∞ at a fixed x value tend
to the limits F i(x,Q2)→ F i(x) and gi(x,Q2)→ gi(x) (so-called Bjorken scal-
ing). This hypothesis is based on the assumption that the transverse momenta of the
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Fig. 4.3 Proton structure
function F2(x,Q

2) versus x
for Q2 = 3.5 and 90 GeV2

quarks in the infinite-momentum frame for the proton are low and can be neglected.
However, according to QCD, quarks can emit hard gluons and, thus, violate scal-
ing. An experimental test of Bjorken scaling is presented in Fig. 4.3. As seen in this
figure, the violation of scaling is particularly strong at small x values and large Q2

values.
Owing to this process, scaling is violated and the structure functions and distri-

bution functions of quarks depend on Q2. As Q2 increases, the emission of gluons
increases and they produce quark–antiquark pairs. As a result, the initial momentum
distributions of quarks are softened and gluon and sea-quark distribution densities
increase with a decrease in x.

The evolution of the structure functions F2(x,Q
2) with Q2 is shown in Fig. 4.3

for Q2 = 3.5 and 90 GeV2.
Three important conclusions follow from this figure. First, Bjorken scaling oc-

curs only for x ≥ 0.14 and is violated for lower values. Second, QCD predictions
with allowance for the Q2 evolution of the structure functions are in rather good
agreement with experimental data (calculations were performed in Martin et al.
2002). Third, it is very interesting to measure the structure functions for very small x
values.

The evolution of the structure functions in QCD, which is shown in the figure, is
described by the parton distribution functions f (x,μ2) (f = q or f = g), where μ

is the scaling factor of about the four-momentum of the virtual photon. These func-
tions for a fixed x value are obtained by integrating with respect to the transverse
momentum of the parton from zero to μ. The evolution of these functions with μ

is described in QCD by the DGLAP equations (Gribov and Lipatov 1972; Lipatov
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1975; Altarelli and Parisi 1977; Dokshitzer 1975) of the form

∂f

∂ lnμ2
≈ αs(μ

2)

2π
(P ⊗ f )= αs(μ

2)

2π

∫ 1

x

dy

y
P (y)f

(
x

y

)

. (4.41)

In the general form, all observables associated with hard hadron interaction such
as the structure functions can be represented in the form of convolution, as in
Eq. (4.41).

In perturbative QCD, this equation can be solved if the universal parton distri-
bution functions f and coefficient functions P , which are specific for a particular
process, are known. However, theory cannot a priori predict a particular value of an
observable at the initial point μ0. If the value of the observable is specified at this
point, the value of this observable at another point μ can be theoretically calculated.

For convenience, the evolution equations are usually written separately for two
functions

qNS = qi − q̄i , qS =
∑

(qi + q̄i ). (4.42)

Here, qNS and qS are the nonsinglet gluon and singlet quark distributions, re-
spectively. The distribution qNS corresponds to nonzero values of such quantum
numbers as flavor, isospin, and baryon number. In this case, the DGLAP equations
are written in the form

∂qNS

∂ lnμ2
= αs(μ

2)

2π

(
Pqq ⊗ qNS

)
, (4.43)

∂

∂ lnμ2

(
qS

g

)

= αs(μ
2)

2π

(
Pqq 2nf Pqg

Pgq Pgg

)

⊗
(
qS

g

)

. (4.44)

Here, P is the splitting function and describes the probability of the decay of
a given parton into two others and nf determines the number of active quark fla-
vors. In the leading approximation, these functions were given in Altarelli and Parisi
(1977) and have the form

Pqq = 4

3

[
1+ x2

(1− x)

]

+
= 4

3

[
1+ x2

(1− x)+

]

+ 2δ(1− x), (4.45)

Pqg = 1

2

[
x2 + (1− x)2], (4.46)

Pgq = 4

3

[
1+ (1− x)2

x

]

, (4.47)

Pgg = 6

[
1− x

x
+ x(1− x)+ x

(1− x)+

]

+
(

11

2
− nf

3

)

δ(1− x). (4.48)
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Here, the notation [F(x)]+ means that any sufficiently regular test distribution
function f (x) satisfies the relation

∫ 1

0
dxf (x)

[
F(x)

]
+ =

∫ 1

0
dx

[
f (x)− f (1)

]
F(x). (4.49)

The DGLAP approximation is sufficiently well applicable for Q2 larger than
several GeV2 and it is not yet necessary to use more complex variants of the theory.

Perturbative QCD well predicts the contribution from leading twist-2 to the struc-
ture functions. The contribution from higher-order twists should decrease to zero
with an increase in Q. For example, the contribution from the n-th order twist should
decrease as 1/Qn−2. The problems of experimental and theoretical investigations of
two important cases: (a) small x values and (b) the inclusion of quark masses (e.g.,
b and c quarks) remain. One of the urgent unsolved problems is the so-called spin
crisis. We will return to this problem.

4.6 Determination of Parton Distributions

The processes of the DIS of polarized leptons by nucleons are studied in experi-
ments whose main aim is to reconstruct the parton distributions. To this end, the
processes of hard collisions of hadrons can be used. A number of processes that have
been already studied experimentally or planned for future experiments are listed in
Table 4.1.

All experiments on the determination of the parton distributions are classified
into two groups: (a) experiments with fixed targets and (b) experiments at colliders.
The kinematic regions of these two groups supplement each other and cover a very
wide region of the parameters x and Q2, as seen in Fig. 4.4.

Table 4.1 Reactions of the DIS of leptons by nucleons and hard hadron processes, as well as the
parton distribution functions tested in these processes

No. Reaction Subprocess Tested parameters

1 l±N→ l±X γ ∗ q→ q g(x ≤ 0.01), q, q̄

2 l+(l−)N→ ν̄(ν)X W ∗q→ q ′

3 ν(�ν)N→ l−(l+)X W ∗q→ q ′

4 νT → μ+μ−X W ∗s→ c→ μ+ S

5 pp→ γ qq→ γ q g(x ≈ 0.4)

6 pN→ μ+μ−X qq̄→ γ ∗ q̄

7 pp,pn→ μ+μ−X uū, dd̄→ γ ∗ ū− d̄

8 pp,pn→ μ+μ−X dū,ud̄→ γ ∗

9 ep, en→ eπX γ ∗ q→ q

10 pp̄→W → l±X u
⇀

d→W gg,gq, qq→ u,d,u/d

11 pp̄→ jet +X gg,gq, qq→ 2jet q, g (0.01≤ x ≤ 0.5)
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Fig. 4.4 Kinematic (x,Q2)
region studied in two groups
of experiments: with fixed
targets and at colliders; parton
distributions that can be
determined in these
experiments are also
indicated

Fig. 4.5 Distributions of
unpolarized quarks
determined from
experimental data with the
use of the MRST2001
parameterization scheme
(Martin et al. 2002)

To date, the distributions of unpolarized partons are determined from experiments
much better than those for polarized partons. This is due to three circumstances.
First, experiments with unpolarized beams and targets are easier. Second, investi-
gation of DIS with unpolarized particles began much earlier. Third, experiments on
DIS with unpolarized particles are also carried out at colliders, whereas any exper-
iment on DIS with polarized particles at colliders has not yet been performed. We
can hope that first such experiments will be conducted at RHIC.

Some such distributions for light quarks and antiquarks, gluon, and c quark are
shown in Fig. 4.5.

As seen in this figure, parton distributions are soft. For example, the distribution
of the valence u quark has a maximum for x values near 0.2, and the spectra of other
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Fig. 4.6 Distributions of
polarized partons

partons are even softer. A fast increase in the gluon density with a decrease in x is
particularly remarkable. This effect is one of the factors stimulating investigation of
parton distributions for very small x values. Such investigations can be performed
only with colliding beams. This was one of the reasons for building of the eRHIC
collider in Brookhaven.

Experimental results on the distributions of polarized partons are given in
Fig. 4.6.

4.7 Transversity

In the leading PQCD approximation, the nucleon structure in the DIS processes
is described by three independent parton distribution functions. Two parton distri-
bution functions were considered above: the distribution function of unpolarized
partons, f1(x), and the helicity distribution g1(x). These two functions are leading
(twist-2 functions). The distribution function of the transverse polarization of the
partons, h1(x), is also a twist-2 function (Jaffe 1992a). This function was first in-
troduced in Ralston and Sopper (1979), but it was forgotten for a long time likely
because this function, in contrast to the first two functions, cannot be measured in
inclusive DIS processes. The cause of the appearance of this function, its parton
interpretation, and possible experimental methods for measuring it are considered
below.
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The determination of the number of the independent structure functions of the
nucleon is a sufficiently complicated problem. The so-called scaling approximation
of the twist-2 function, which has the order n= 2 in the expansion in Q2−n (Leader
2001). Since the expansion is in powers of 1/Qn−2, the twist-2 functions are inde-
pendent of Q (are scaling). For twist-3, twist-4, etc., n= 3,4, etc., respectively. In
what follows, we will discuss only scaling effects, i.e., only twist-2 functions and
distributions. The well known distribution functions of quarks and gluons are par-
ticular cases of generalized correlation functions on the light cone. Two such typical
distributions are as follows (Jaffe 1992a):

f (x)= 1

2π

∫

dλe−iλx
〈
P
∣
∣φ(0)φ(λn)

∣
∣P

〉
(4.50)

and

E
(
x, x′

)= 1

4π2

∫

dλdλ′e−i(λx+λ′x′)
〈
P
∣
∣φ(0)φ(λn)φ

(
λ′n

)∣
∣P

〉
. (4.51)

Here, φ is the generalized field (e.g., quark or gluon) and Pμ = pμ + 1
2Mnμ,

where pμ = (p,0,0,p), nμ = ( 1
2p ,0,0,− 1

2p ), and p is the free parameter (momen-

tum) determining the reference frame. In the target rest frame, p =M/2, whereas
p →∞ determines the infinite-momentum frame (Close 1979). Both functions
f (x) and E(x,x′) are the correlation functions of the ground state for the case of
two and three interacting partons, respectively, and correlations are calculated along
a tangent to the light cone (Leader 2001). The function f (x) allows the probability
interpretation after summation over the total system of the intermediate states:

f (x)=
∑∣

∣
〈
P
∣
∣φ(0)

∣
∣X

〉∣
∣2δ

(
P+X − (1− x)P+

)
. (4.52)

The function f (x) can be treated as the probability of finding a quantum of the
field φ with the momentum k+ = xP+ in the target. The three-particle correlation
function E(x,x′) does not allow such a probability interpretation.

To determine the number of the independent twist-2 amplitudes, two operations
should be performed. The first operation is the determination of the independent
components of quark and gluon fields using the projection operator on the light
cone. This decomposition operation for the quark field has the form

ψ± = P±ψ, (4.53)

where the projection operator of the light cone is determined by the expression

P± = 1

2
γ±γ∓, γ± = 1√

2

(
γ 0 ± γ 3). (4.54)

The action of the projection operator on the field separates the independent quark
field ψ+ having two helicity components ±1/2. A similar decomposition of the
gluon field in the directions of the light coordinates leads to an independent gluon
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field with two helicity components �A⊥ (with two helicity components±1 according
to Jaffe 1992a). In view of the above conditions on the light cone, the scattering of
the parton q with the momentum k and the helicity h by the target T with the mo-
mentum P and the helicity H occurs with zero momentum transfer (i.e., scattering
occurs at zero angle):

q(k,h)+ T (P,H)= q
(
k,h′

)+ T
(
P,H ′). (4.55)

Such a forward scattering along the direction of motion of the initial quark, �e3,
is called collinear scattering. Therefore, helicity, which is the angular momentum
along the �e3 axis, is conserved:

h+H = h′ +H ′. (4.56)

Let us denote the amplitudes of reaction (4.55) as A(h,H → h′,H ′). Then, in
view of the parity conservation in strong interactions and time reversibility of the
processes, the amplitudes satisfy the relations

A
(
h,H → h′,H ′)=A

(−h,−H →−h′,−H ′) (4.57)

and

A
(
h,H → h′,H ′)=A

(
h′,H ′ → h,H

)
. (4.58)

As a result, there are the following three amplitudes of the scattering of quarks
by nucleons:

A

(
1

2
,

1

2
→ 1

2
,

1

2

)

, (4.59a)

A

(
1

2
,−1

2
→ 1

2
,−1

2

)

, (4.59b)

A

(

−1

2
,

1

2
→ 1

2
,−1

2

)

. (4.59c)

These three scattering amplitudes correspond to three quark distribution func-
tions (for the case of the spin-1/2 target):

f1
(
x,Q2)∝A

(
1

2
,

1

2
→ 1

2
,

1

2

)

+A

(
1

2
,−1

2
→ 1

2
,−1

2

)

. (4.60)

This function corresponds to the scattering of unpolarized partons by unpolarized
nucleons. The distribution function of unpolarized quarks, f1(x, lnQ2), is rather
well studied in DIS processes. The other structure function

g1
(
x,Q2)∝A

(
1

2
,

1

2
→ 1

2
,

1

2

)

−A

(
1

2
,−1

2
→ 1

2
,−1

2

)

(4.61)
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corresponds to the scattering of a longitudinally polarized parton by longitudinally
polarized nucleon. Its investigation began in the mid-1970s at the SLAC accelerator
(Alguard et al. 1976) and continues at present in many laboratories.

The third structure function from the complete set is called function transversity
and is specified by the formula

h1
(
x,Q2)∝A

(

−1

2
,

1

2
→ 1

2
,−1

2

)

. (4.62)

It is the only function from the twist-2 group that has not yet been measured. To
measure it, a transversely polarized parton should be scattered by a transversely po-
larized hadron. We will discuss this function in more detail later. Now, we consider
the gluon structure function.

In the case of the scattering of a gluon (a massless particle conserving helicity),
the following two independent amplitudes remain:

A

(

1,
1

2
→ 1,

1

2

)

, A

(

1,−1

2
→ 1,−1

2

)

. (4.63)

These two gluon-scattering amplitudes correspond to the following two distribu-
tion functions of gluons in the nucleon:

G
(
x,Q2)∝A

(

1,
1

2
→ 1,

1

2

)

, +A
(

1,−1

2
→ 1,−1

2

)

(4.64)

and

�G
(
x,Q2)∝A

(

1,
1

2
→ 1,

1

2

)

, −A
(

1,−1

2
→ 1,−1

2

)

. (4.65)

As follows from the form of the gluon amplitudes when the leading terms (twist-
2) are retained in the expansion, gluon scattering occurs without spin flip; i.e., he-
licity is conserved.

The function G(x,Q2) is measured in the scattering of unpolarized partons by
unpolarized hadrons. It is well studied in DIS processes. The measurement of the
spin-dependent gluon distribution function �G(x,Q2) is of particular interest. In
the case of scaling, this function cannot be measured in DIS processes because a
gluon does not directly interact with a photon. This interaction occurs through a
quark (antiquark) that is produced in the decay of the gluon into a quark–antiquark
pair. Such processes are nonscaling. For a long time, attempts have been made to
acquire information on �G(x,Q2) from data on DIS with the inclusion of nonscal-
ing terms, but the errors are very large. At present, the COMPASS and HERMES
collaborations are developing a program for determining this function from the ex-
periments with the production of mesons with open and hidden charms.

The structure distribution function of quarks in the transverse polarization,
h1(x, q

2) (for brevity, it will be called transversity in what follows) was discov-
ered in Ralston and Sopper (1979), but it was rediscovered and began to study in
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detail theoretically only in the early 1990s (Artru and Mekhfi 1990; Artru 1993;
Jaffe and Ji 1991, 1992b).

Transversity h1(x) appears in the expansion of the quark correlation function,
which contains the Dirac matrix σμνγ5, on the light cone:

1

4π

∫

dλeiλx
〈
Ps

∣
∣ψ̄(0)σμνiγ5ψ(λn)

∣
∣Ps

〉

= h1(x)(s⊥μpν − s⊥νpμ)/M

+ hL(x)M(pμnν − pνnμ)s · n+ h3(x)M(s⊥μnν − s⊥νnμ). (4.66)

Here, P and S are the four-vectors of the momentum and spin of the hadron, re-
spectively; p and s are the four-vectors of the momentum and spin of the parton, re-
spectively; pμ = (p,0,0,p) is the parton four-momentum; nμ = ( 1

2p )(1,0,0,−1);

and sμ ≡ (sn)pμ + (sp)nμ + s
μ
⊥.

The function h1(x) is transversity, i.e., the distribution function of quarks over the
transverse spin in the nucleon with transverse polarization. Transversity is a twist-2
function. The distribution functions hL(x) and h3(x) appearing in Eq. (4.66) are
twist-3 and twist-4 functions, respectively.

Now, we are interested only in the function h1(x). To give the parton interpre-
tation of this function, we should make several operations. First, it is necessary to
decompose the quark field ψ entering into relation (4.66) using the light-cone pro-
jection operator P±. This operation was discussed above and led to the expression of
h1(x) in terms of one independent amplitude (4.62). The next step is the application
of the chirality operator

PL,R = 1

2
(1∓ γ5) (4.67)

to the same quark field ψ . As a result, two quark states appear, namely: the left state
L when the quark spin is oriented, e.g., against the quark momentum (negative chi-
rality), and the right state R when the spin is directed along the momentum (positive
chirality). The chirality operator commutes with the projection operator on the light
cone, i.e.,

[PL,R,P±] = 0; (4.68)

hence, the eigenvalues of these operators can be determined simultaneously. The
chirality operator coincides with the helicity operator in the limit of zero quark
mass, which is implicitly assumed in this consideration.

There is an additional spin projection operator Q± that is called the transversity
projection operator and is given by the formula (Goldstein and Moravcsik 1976,
1982, 1989)

Q± = 1

2

(
1∓ γ5γ

⊥), (4.69)
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where γ⊥ is the γ 1 or γ 2 Dirac matrix. The operator Q± also commutes with the
projection operator on the light cone P±:

[Q±,P±] = 0. (4.70)

Such theoretical analysis shows that “transverse spin effects and longitudinal spin
effects are on a completely equivalent footing in perturbative QCD” (Jaffe 1992a).
Let us list some well-established properties of the transversity function h1(x) and
compare them with the properties of the function g1(x) (called the chirality function
for brevity). These properties are as follows:

• Inequalities

∣
∣g1

(
x,Q2)∣∣< f1

(
x,Q2),

∣
∣h1

(
x,Q2)∣∣< f1

(
x,Q2). (4.71)

These inequalities are valid for each flavor of the quark and antiquark.
• Physical interpretation: h1(x,Q

2) determines the probability of finding the
transversely-polarized quark with the kinematic parameters x and Q2 in the
transversely-polarized nucleon. The function h1(x,Q

2) is chirality-odd; i.e., the
parton leaves the nucleon with one chirality and enters into it with the opposite
chirality (or vice versa). This is the cause of the suppression of this function in
DIS processes, where helicity is conserved.

• The transversity function h1(x,Q
2) appears from the bilocal generalization of

the tensor operator q̄σμνiγ5q .
• The chirality function g1(x,Q

2) is chirality-even (partons enter and leave the
nucleon with the same chirality). This function is not suppressed in DIS processes
and is well measurable in these processes. The function g1(x,Q

2) appears from
the bilocal generalization of the axial charge operator q̄γμγ5q .

• Sum rule:

(a) the tensor charge introduced through the relation

2siδqa
(
Q2)=

〈

Ps

∣
∣
∣
∣q̄σ

0i iγ5
λa

2
q
(
Q2)

∣
∣
∣
∣Ps

〉

, (4.72)

where λa is the quark flavor matrix, can be represented as the integral of the
transversity function:

δqa
(
Q2)=

∫ 1

0
dx

[
ha1
(
x,Q2)− hā1

(
x,Q2)]. (4.73)

Here, the superscripts a and ā refer to the quarks and antiquarks, respec-
tively;

(b) a similar sum rule for the axial charge

2si�qa
(
Q2)=

〈

Ps

∣
∣
∣
∣q̄γ

iγ5
λa

2
q
(
Q2)

∣
∣
∣
∣Ps

〉

(4.74)
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has the form

�qa
(
Q2)=

∫ 1

0
dx

[
ga1
(
x,Q2)+ gā1

(
x,Q2)]. (4.75)

The comparison of the sum rules for these two cases indicates not only the sim-
ilarity of the formulas, but their differences. First, the antiquark contributions enter
into formulas (4.73) and (4.75) with different signs, because the tensor charge is
a charge-odd term, whereas the axial charge is a charge-even term. Second, the
transversity function h1(x,Q

2) is not normalized to the tensor angular momentum
and has not a simple physical interpretation in spin fractions carried by partons in
contrast to g1(x,Q

2). Third, all components of the tensor charge have a nonzero
anomalous dimension, but no one of these components mixes with the gluon opera-
tors under renormalization. On the contrary, the flavor-nonsinglet axial charge �qa

(where �q0 ∝Σ ) has anomalous dimension due to triangular anomaly.
•Model prediction. In the nonrelativistic quark model, h1(x) and g1(x) coincide

with each other. In the relativistic bag model (Jaffe and Ji 1992b), they are slightly
different.
• In the quark-parton model, the following sum rule for the angular momentum

was recently proven (Backer et al. 2004):

1

2
= 1

2

∑

a=q,q̄

∫

dxha1(x)+
∑

a=q,q̄,g
〈LT 〉a, (4.76)

where the left-hand side is the nucleon spin, the first term on the right-hand side is
the transversity contribution to the nucleon spin, and the second term corresponds
to the contribution of the transverse component of the orbital angular momentum of
partons to the spin. This formula is of interest because the transversity contribution
to the nucleon spin decreases with an increase in Q2, whereas the contribution from
the orbital angular momentum increases. This provides a hope to separate these
contributions in experiment. Transversity has been calculated for the region Q2 ≤
0.5 GeV2 in various models. The tensor charges were also calculated on a lattice,
as well as with the QCD sum rules (Barone 2004). These calculations gave the
following results: δu∼ 0.1–0.7 and δd ∼−0.1–0.4 at Q2 = 10 GeV2.
• Drell–Yan processes with the production of lepton pairs (ll̄) are purest for

determining the structure functions g1(x) and h1(x), although the cross sections
for these processes are much smaller than the cross sections for DIS. One of such
processes is

p̄(↑)+ p(↑)→ ll̄ +X. (4.77)

Using a longitudinally polarized antinucleon beam and a longitudinally polarized
nucleon target, we can measure the following asymmetry associated with helicity:

ALL =
∑

a e
2
ag

a
1 (x)g

ā
1 (y)∑

a e
2
af

a
1 (x)f

ā
1 (y)

. (4.78)
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If both the beam and target are polarized transversely to the beam direction, we
can measure the following two-spin transverse asymmetry associated with transver-
sity:

ATT = sin2 θ cos 2φ

1+ cos2 θ

∑
a e

2
ah

a
1(x)h

ā
1(y)∑

a e
2
af

a
1 (x)f

ā
1 (y)

. (4.79)

Here, θ and φ are the polar and azimuth angles of the scattering of partons in their
center-of-mass frame, respectively. The function h1(x) appears here as the leading
(scaling) term due to the presence of the antiquark.

In the case of reactions with two polarized protons planned at RHIC (Saito 2004),
the expected effect is (1–2) %. The smallness of the expected effect in this case is
determined by two factors: (a) the number of antiquarks in the proton is small and
their transverse polarization is also small, and (b) in the RHIC kinematics, when√
s = 200 GeV, M < 10 GeV, and x1x2 =M2/s ≤ 3 · 10−3, the experiment probes

the region of very small x values, where small transversity is expected. Correspond-
ingly, small asymmetry is expected. In this case, it is more appropriate to deal with
a polarized antiproton beam as in reaction (4.77), but at moderate energies. In par-
ticular, the designed PAX experiment (Efremov 2004; PAX Collaboration 2005),
when 30 ≤ s (GeV2) ≤ 45, M ≥ 2 GeV, and x1x2 =M2/s ≥ 0.1, will probe the
region of large x values, where noticeable transversity is expected. Calculations for
M = 4 GeV and s = 30 GeV2 show that transversity is 0.3 and is almost constant
in the range xF = x1 − x2 = 0–0.3. At M = 4 GeV and s = 45 GeV2, transversity
is also 0.3, but in a wider range xF = 0–0.5 (Rathmann 2004). In the PAX exper-
iment, the measurement of transversity through the production of J/ψ particles in
same process (4.77) can be very useful, because the cross section for this process is
two orders of magnitude larger than the Drell–Yan cross sections, and asymmetry
is also about 0.3. This illustrates the practicality of the use of polarized antiproton
beams for measuring transversity.

Transversity in DIS appeared to be suppressed by a factor of mq/Q, where mq

is the mass of the current quark. The masses of current quarks are very small. It
would be appropriate to produce heavy quarks, but the cross sections for such DIS
processes are very small. Thus, transversity makes a negligibly small contribution
to DIS processes.

For completeness, we present the following expression for asymmetry, when one
of the colliding particles is longitudinally polarized and the other particle is trans-
versely polarized:

ALT = 2 sin 2θ cosφ

1+ cos2 θ

M
√
Q2

∑
a e

2
a[ga1 (x)ygāT (y)− xhaL(x)h

ā
1(y)]∑

a e
2
af

a
1 (x)f

ā
1 (y)

. (4.80)

Here, twist-3 functions, namely, gaT (x) and haL(x), appear for the first time; they,
as expected, have an order of M/|Q|. A deeper insight in this problem can be found
in Barone (2002).
• Other possibilities for measuring transversity. One of the possible channels of

studying transversity is presented by semi-inclusive processes in the current frag-
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mentation region (Jaffe and Ji 1992b):

e+ p→ e′ +H +X. (4.81)

The spin and twist properties of such processes are determined by parton distri-
bution and fragmentation functions. If the target is transversely polarized, the fol-
lowing asymmetry is measured:

AH
T

(
x, z,Q2)∝ Λ

√
Q2

∑
a e

2
a[ha1(x,Q2)êa/H (z,Q2)+ gaT (x,Q

2)f̂
a/H

1 (z,Q2)]
∑

a e
2
af

a
1 (x,Q

2)f̂
a/H

1 (z,Q2)
.

(4.82)
This expression includes not only the transversity function, but also the func-

tion of the fragmentation of the quark a to the hadron H , f̂ a/H

1 , which is a twist-2
function and has even chirality, and the twist-3 functions gaT and êa/H with even
and odd chiralities, respectively. The factor in front of the fraction indicates the
presence of twist-3 terms. In principle, this formula makes it possible to extract the
transversity function if the other three functions have been determined in prelimi-
nary experiments with polarized and unpolarized targets. Even if such experiments
are possible, they are very difficult.

Another semi-inclusive, but attractable process is the process of the production
of polarized hyperons. They are interesting because their weak two-particle decays
make it possible to determine their polarization with high efficiency.
• Transversity distribution functions depending on the quark transverse momen-

tum kT . With allowance for the transverse quark momentum in the nucleon, five
additional distribution functions appear in addition to three functions (f1, g1, and
h1) described above. Some of them are directly associated with transversity, and the
first experimental data on them appear. Let us discuss these functions.

We have four physical quantities: the momentum P and spin ST (the subscript
T means that it is perpendicular to the momentum P ) of the nucleon, as well as
the transverse momentum kT of the quark and its spin SqT . Using them, we can
determine the following spin-dependent transverse asymmetries of quarks.

Case 1 Let the nucleon be transversely polarized. The difference between the
numbers of quarks with spins parallel and antiparallel of the nucleon spin is given
by the expression

�N = Nq↑/p↑(x, kT )−Nq↓/p↑(x, kT )

= (ST · SqT )h1
(
x, k2

T

)

− 1

M2
·
[

(kT · ST )(kT · SqT )+ 1

2
k2
T (ST · SqT )

]

h⊥1T
(
x, k2

T

)
. (4.83)

The function h1(x, k
2
T ) after integration with respect to the quark transverse

momentum is transformed to the known scaling transversity function, whereas the
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new function h⊥1T (x, k2
T ) after such integration vanishes. In the absence of integra-

tion, the fragmentation of quarks with different directions of transverse polarization
in hadrons leads to asymmetry that is called the Collins effect (Collins 1993). In
this case, the functions h1(x, k

2
T ) and h⊥1T (x, k2

T ) lead to asymmetries of the form
sin(φh + φS) and sin(3φh − φS), respectively. Here, the azimuth angles refer to the
final hadron (the subscript h) and to the proton polarization (the subscript s). Asym-
metries are measured in the reactions

e+ p ↑→ e′ + h+X. (4.84)

Such reactions are called semi-inclusive DIS (SIDIS).

Case 2 Let us consider the polarized proton with unpolarized quarks inside it. In
this case, the following asymmetry can be expected in the number of unpolarized
quarks:

�N2 =Nq/p↑(x, kT )−Nq/p↓(x,−kT )= (�kT × �P) · �ST
M

f⊥1T (x, kT ). (4.85)

Such an appearance of asymmetry is called the Sivers effect, and the function
f⊥1T (x, kT ) is called the Sivers distribution function (Sivers 1990).

Case 3 Transverse-polarized quarks inside the unpolarized proton can give asym-
metry of the form

�N3 =Nq↑/p(x, kT )−Nq↓/p(x, kT )= (�kT × �P) · �SqT
M

h⊥1 (x, kT ). (4.86)

The function h⊥1 (x, kT ) is called the Boer–Mulders distribution function (Boer
and Mulders 1998). The Sivers and Boer–Mulders distribution functions are odd
under time reversal, because it contains the product of an odd number of vectors
changing sign under time reversal. However, such a “time parity violation” at the
parton level “is allowed” due to the presence of the final-state quark interaction,
which corrects the situation.

Experimental determination of the transversity function is a key element of many
current polarization programs. Investigations are conducted in the following fields.

1. The measurements of single-spin asymmetry in the SIDIS reaction

e+ p ↑→ e′ + π +X. (4.87)

In this reaction, nonzero asymmetry can appear only in the case of the inclusion
of the transverse quark momentum. However, the transverse momentum leads to
the noncollinear kinematics of the scattering of a quark by another quark, and the
application of the parton model requires the proof of the factorization theorem for
this case. This proof of factorization in noncollinear kinematics was recently given
in Ji et al. (2004). As a result, asymmetry can appear due to two causes. The first
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is the Collins effect, when the transversely-polarized final quark fragments to an
unpolarized hadron:

�NC =Nh/q↑(z, �PhT )−Nh/q↓(z, �PhT )= (�kT × �PhT ) · �SqT
zMh

H⊥
1

(
z, �P 2

hT

)
. (4.88)

Transversely-polarized quarks appear in the Collins effect only due to interaction
with other quarks in the same nucleon. If the initial nucleon is polarized, its quarks
can give asymmetry when forming hadrons (Sivers effect). In the general case, this
asymmetry has the form

�NS = Nh/p↑(z, �PhT )−Nh/p↓(z, �PhT )

∝ A(y)#
[
(�kT · �PhT )

Mh

h1H
⊥
1

]

sin(φh + φS)

+B(y)#
[
(�κT · �PhT )

Mh

f⊥1T D1

]

sin(φh − φS)

+C(y)#[λ(�kT , �κT , �PhT )h
⊥
1T H

⊥
1

]
sin(3φh − φS). (4.89)

Here, #[. . .] is the convolution integral with respect to the variables �κT and �kT .
Taking azimuthal moments, we can determine different asymmetries separately. For
example, to determine the Collins asymmetry in experiment, it is necessary to cal-
culate the moment

〈
sin(φh + φS)

〉=
∫
dφhdφS sin(φh + φS)[�NS(φh,φS)−�NS(φh,φS + π)]

∫
dφhdφS[�NS(φh,φS)−�NS(φh,φS + π)] .

(4.90)
The Sivers asymmetry 〈sin(φh − φS)〉 is determined similarly.
The HERMES collaboration recently reported their preliminary data on these

asymmetries measured in the kinematic region 0.02 < x < 0.4 and 0.2 < z < 0.7
for 〈Q2〉 = 2.4 GeV2 (Airapetian et al. 2004). In particular, the Collins asymme-
try is Aπ+

T > 0 and Aπ−
T < 0 in agreement with expectations, because transversity

functions have the corresponding signs: hu1 > 0 and hd1 < 0. However, it was found

that |Aπ+
T |< |Aπ−

T |, which contradicts the model expectation |hd1 | � |hu1 |. The real
situation is more complex. The asymmetries measured for π± are the combinations
of the following transversity functions:

Aπ+
T ∝ 4hu1H

⊥f
1 + hd1H

⊥uf
1 , Aπ−

T ∝ 4hu1H
⊥uf
1 + hd1H

⊥f
1 . (4.91)

Here, the superscripts f and uf denote favorable and unfavorable (small as ex-
pected in the model) functions for the corresponding asymmetries, respectively. The
data on asymmetry in the production of π− implies the relation H

⊥uf
1 ≈ −H⊥f

1 .
Additional independent experiments are obviously necessary for measuring the
Collins transversity functions H

⊥uf
1 and H

⊥f
1 . Another surprising result of the
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HERMES experiment is that the asymmetry Aπ0

T is approximately equal to Aπ−
T

and is also negative in contrast to the expectation according to isotopic invariance.
However, similar measurements, but for small values x ≤ 0.1, in the COMPASS ex-
periment show that the asymmetries for both π+ and π0 are consistent with zero, as
expected for small x, z, and pT values (Pagano 2004). The HERMES collaboration
has obtained the first indication that the Sivers function is positive and nonzero, but
more precise measurements are necessary for final conclusions.

2. Transversity can also be determined in the two-spin SIDIS process

e+ p ↑→ e′ +Λ ↑+X, (4.92)

where the initial nucleon is transversely polarized and the transverse polarization of
the Λ hyperon is measured. This reaction can test the fragmentation function

H1(z)=Nh↑/q↑(z)−Nh↑/q↓(z), (4.93)

which is an analog of the transversity function h1. However, it is difficult to predict
the polarization of the Λ hyperon, because experimental data on the transversity
fragmentation function H1(z) are absent.

3. An additional possibility of determining transversity in reactions of lepton-
induced production of a hadron pair on a transversely-polarized target was pointed
out in Collins (1994). This is the measurement of the azimuthal asymmetry of the
plane of two hadrons with respect to the angle φRS = φR + φS − π , where φR is
the azimuth angle of the plane of two hadrons with respect to the lepton scattering
plane and φS is the azimuth angle of the quark polarization (Bacchetta and Radici
2004). In 2002, the COMPASS collaboration made the first attempt to perform such
measurements on the 160-GeV muon beam with the polarized 6LiD target. Authors
stated that asymmetry in the effective-mass region up to 1.5 GeV can be measured
with an accuracy of several percent (Joosten 2004).

4. Asymmetry in the production of pions on polarized proton/antiproton beams
or/and targets can appear due either to the presence of transverse momenta of quarks
or to the contributions from high twists. This asymmetry also provides information
on the transversity functions. Under the assumption of the applicability of factoriza-
tion and in noncollinear geometry, asymmetry can be written in the form

dσ ↑−dσ ↓ ∝
∑[

h1
(
xa, k

2
T

)+ (
k2
T /M

2)h⊥1T
(
xa, k

2
T

)]⊗ f1
(
xb+, k′2T

)

⊗�TT σ̂ (a ↑ b→ c ↑ d)⊗H⊥
1

(
z, k2

T

)
(4.94)

for the case of the Collins effect and in the form

dσ ↑−dσ ↓∝ f⊥1T
(
xa, k

2
T

)⊗ f1
(
xb, k

′2
T

)⊗ dσ̂ (ab→ cd)⊗D1
(
z, k2

T

)
(4.95)

for the case of the Sivers effect. The data of the E704 experiment are in better agree-
ment with the Sivers model, whereas the Collins effects are noticeably suppressed.
However, such data are yet scarce and more data, particularly for RHIC energies,
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should be collected. Single-spin asymmetries in processes with the production of di-
rect photons and jets simultaneously in the final state can be very interesting. Such
experiments are developed for the STAR setup.
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Part II
Polarization Technology

Polarization technology is the field of polarization physics devoted to the develop-
ment of methods and techniques for obtaining polarized beams and targets, as well
as for measuring their parameters (polarimetry). As energies in experiments were
increased, new ideas and methods have been developed. At the very beginning of
its development (the early 1950s), polarization technology involved simple methods
such as the use of nuclear reactions (elastic and inelastic), polarizing filters (passage
of particles through ferromagnetic foils), and decays (e.g., the decay of a pion into
a muon; the final muon is polarized). The necessity of obtaining polarized particles
with intermediate and high energies required development of high-current sources
of polarized particles for injection into an accelerator. The research program for
spin correlations also stimulated developments of efficient polarized targets for ex-
periments with fixed targets. In 2000, the unique RHIC collider was built, in which
two polarized proton beams with a center-of-mass energy of 200 GeV collide; this
energy will be soon increased to 500 GeV. With an increase in the energy of po-
larized beams, polarimetry, i.e., technique for measuring the polarizations of these
beams and targets was actively developed. Correspondingly, the second part of this
course of polarization physics consists of four chapters. The first chapter presents
methods for obtaining high-energy polarized beams. Various methods for produc-
ing polarized proton, electron, and muon beams are discussed. The second chapter
describes various polarized targets; the third chapter is devoted to polarized sources
of atomic beams and optically pumped polarized ion source and the fourth chapter,
to polarimetry. These are the foundations of modern polarization technology.



Chapter 5
Methods for Obtaining Polarized Beams

Methods for obtaining high-energy polarized beams are strongly different for dif-
ferent particles. The problem of obtaining polarized proton beams is most com-
plicated. In this case, it is necessary to create high-current sources of hydrogen
ions with a high polarization degree and to guide such a beam through a long
chain of accelerating units for reaching the final energy. It is particularly difficult
to guide beams through strong-focusing accelerators, where a high-accuracy de-
vice, so-called “Siberian snake,” should be used to preserve polarization during the
acceleration of the protons. This device will be described later. The polarimetry
of high-energy proton beams is also difficult. The problem of obtaining polarized
electron beams in circular accelerator is somewhat easier. This problem is simpli-
fied with the use of ring accelerators/colliders due to the effect of the synchrotron-
radiation-induced self-polarization of electrons (so-called Sokolov–Ternov (ST) ef-
fect), which will be discussed in the section devoted to polarized electron/positron
beams. The problem of obtaining polarized electron beams in linear accelerators
is somewhat more complicated. In this case, it is necessary to create high-current
sources of polarized electrons. It is particularly easy to obtain polarized muon
beams. Muons appear being already polarized in the weak decay of pions. For this
reason, many difficulties inherent in the production of polarized proton and even
electron (linac) beams are absent in this case. These aspects will be discussed in
more details later.

For completeness, we mention here three methods for producing polarized proton
beams, which played an important role in the development of polarization physics.
The first method, which is applicable for proton kinetic energies ≤ 1 GeV, was ex-
perimentally discovered in the early 1950s (Oxley et al. 1954; Chamberlain et al.
1954; Stoletov and Nurushev 1954; Meshcheriakov et al. 1956). In this method, a
secondary proton beam was produced by scattering of the primary proton beam on
the internal target of light nuclei (Be, C), and extracted from an accelerator. The
polarization of such beams reaches 60 % and the intensity reaches ∼ 106 polar-
ized protons/s. However, the polarization of such beams decreases rapidly with an
increase in the initial energy. As a result, this method is inapplicable for energies
≥ 1 GeV. Moreover, a low intensity of polarized beams forced physicists to build
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the powerful polarized proton sources and use the method of the acceleration of ini-
tially polarized protons. At this intermediate energy region the specific technique of
producing the longitudinally polarized proton beam was proposed in Kumekin et al.
(1959) and was invented in Meshcheriakov et al. (1963). In this method the first
scattering occurs in vertical plane (usually in horizontal). Therefore the polariza-
tion vector becomes in horizontal plane and you may use efficiently the transverse
(vertical) magnetic field in order to rotate the polarization vector to the longitudi-
nal direction. In such a way you are avoiding the application of the non efficient
solenoidal fields.

The second method of producing the polarized beam of higher energy was pro-
posed in Overseth (1969) for proton accelerators with energies ≥ 100 GeV. It is
based on the fact that the decay of the Λ(Λ̄) hyperon (Λ→ p + π−) is caused by
weak interaction; for this reason, protons (antiprotons) in these decays are polarized
up to 65 %. This method was first implemented at the Fermilab Tevatron in Grosnick
et al. (1990). A similar method in application to the SPS accelerator was proposed
as early as in Dalpiaz et al. (1972), but it has not been implemented. In applica-
tion to the U-70 accelerator at IHEP, this method was proposed in the late 1970s
(Apokin et al. 1977; Nurushev et al. 1980), but was implemented only in Galyaev
et al. (1992). At the Fermilab, the effective beam polarization is 45 % (of both beam
signs) at a polarized beam energy of 200 GeV. In this case, the total intensity of
the polarized beam at the experimental target is ∼ 9 × 106 polarized protons per
spill when the 800-GeV/c primary beam with an incident flux of 1012 protons per
20 s spill is incident on the target. This polarized beam was efficiently used in the
E704 polarization experiment. Similar efficient use of the polarized beam was done
at U70 accelerator. But in both cases for obtaining the polarized beams the external
production target was used. But in some cases such an approach is not suitable (for
example at colliders).

For that reason the possibility of producing the polarized proton (antiproton)
beam through hyperon (antihyperon) decay using the internal production target in
the accelerators/colliders was studied in Chetvertkova and Nurushev (2007, 2008).
The first estimates of the polarized beam parameters are made for U70 accelerator.
The conclusion can be made that there is a possibility to obtain the polarized beam
on the internal production target of the same quality as on the external target but
avoiding several problems peculiar to the external production target scheme.

The acceleration of the polarized proton beam is very complicated and expensive
technique. Though theoretically it is possible to accelerate the polarized protons in
U-70 and at LHC, it’s doubtful, that it will be done in the nearest future. In such
situation the more simple method of producing the polarized proton beam at LHC
on the internal carbon target 0.7 µm thick was also estimated. Such rough estimates
show that the polarized proton beam energy of 3.6 TeV, intensity I ∼ 6 · 109 pp/s at
primary proton beam energy 7 TeV, luminosity L∼ 3 · 1037 cm−2 s−1. Polarization
is expected to be about 30 %. The polarized antiproton beam intensity might be 1 %
of the polarized proton beam keeping all other proton beam parameters.

At Paul Sherrer’s Institute (Switzerland) for the first time the polarized neutron
beam was obtained by the use of the third method, polarization transfer mechanism
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from the longitudinally polarized proton beam of 560 MeV and polarization 60 %
to neutrons at zero neutron production angle. This beam was polarized up to 50 %
and efficiently used by physicists in completion of the full set of polarization ex-
periments in neutron-proton elastic scattering (Arnold et al. 1997). There are no
the theoretical or experimental proof of the existence of such mechanism of spin
transfer from polarized protons to antiprotons. For that reason Chetvertkov and Nu-
rushev (2009) proposed to make the search experiment at BNL. The combination of
the AGS as a source of the polarized protons and, for example, RHIC as the storage
ring may become very optimal scheme for such search of the spin transfer mecha-
nism from protons to antiprotons. Evidently antiproton beam channel, spin rotator
and polarimeter should be built and implemented.

5.1 Acceleration of Polarized Protons

A quantitative test of QCD predictions is of current importance for polarization
physics. This test requires experiments at high momentum transfers and measure-
ments of small spin effects. For such experiments, polarized proton beams with
very high intensities and high polarization degrees are necessary. Until recently,
this seems to be impossible because only strong-focusing accelerators operate at
high energies. For beam focusing, extremely inhomogeneous magnetic fields are
used in these accelerators. This is seen in the name of such an accelerator: alter-
nating gradient synchrotron (AGS). Such accelerators provide difficulties for ac-
celerating polarized particles. The first attempt to accelerate polarized protons in
the AGS showed that the known method of “jumping” of depolarizing resonances
and local corrections of imperfection resonances have the limiting possibility up to
22–25 GeV. They do not solve the problem of polarization preservation at higher
energies (Khiari et al. 1989). An idea for the fundamental solution of the problem
of polarization preservation in high-energy accelerators was proposed by Derbenev
and Kondratenko (1975). In the simple presentation, the idea is as follows. The
depolarization of a proton beam occurs when the relative spin rotation frequency
νS = γG (γ is the Lorentz factor and G is the anomalous gyromagnetic ratio of the
proton) is an integer or a multiple of the frequency of betatron oscillations of the
beam. In this case, resonance appears and the beam is depolarized; i.e., the spins of
protons are chaotically oriented in space. Methods for avoiding this depolarization
were proposed. The following idea was revolutionary. Two complexes of magnets
are mounted on the beam orbit in the ring at an angular distance of 180° from each
other. Each complex rotates the spin about the axis lying in the orbit plane, and these
two axes are perpendicular to each other. In this case, according to the spin motion
equation, spin oscillation frequency is now 1/2. This frequency is energy indepen-
dent. As a result, the problem of depolarization suppression has been solved. This
idea, which was called the Siberian snake technique, was first implemented at the
AGS–RHIC accelerating storage complex (BNL, USA) (Mackay 2004).
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Fig. 5.1 Layout of the AGS–RHIC complex

5.1.1 BNL Accelerating Storage Complex

The BNL accelerating storage complex, whose layout is shown in Fig. 5.1, begins
with the source of polarized negative hydrogen ions, which are obtained by optical
pumping, OPPIS; this source will be described in Sect. 6.2. It provides a current
of 0.5 mA and a polarization of 80 %. The polarized ions are accelerated by RF
and linear accelerators to 200 MeV (γ = 1.21) and are stripped before injection
to the booster. The beam is accelerated in the booster to an energy of 2.46 GeV
(γ = 2.62). Polarized protons are injected into the AGS, where they are accelerated
to an energy of 24.3 GeV (γ = 25.94). Accelerated polarized protons are transported
from the AGS and are injected into the first and, then, to the second ring of the RHIC.
Polarimeters are placed on this path: one polarimeter on the source (OPPIS), one at
the exit of the linear accelerator, one p+C polarimeter in the AGS, and two p+C

polarimeters in the collider (one in each ring). The polarimeter of quasi-elastic pp

scattering, which was constructed for the preceding experiment (Khiari et al. 1989),
is also used at the AGS. The alternating gradient synchrotron is equipped with two
warm partial helical snakes for 5 and 20 % (percentages of the rotation angle of
the complete snake, which is 180°). The RHIC collider is equipped with two pairs
of full snakes and eight spin rotators; it is planned to use existing RF dipoles (one
in each ring) for the fast flip of the beam polarization in the future. The polarized
jet hydrogen target with a polarized-proton density of 1 · 1012 protons/cm2 and a
polarization of (92± 1.8) % has been mounted and tested at RHIC.

Proton spin precession in the rest frame is described by the Thomas–Frenkel
equation, which was previously called the BMT equation (Thomas 1927; Frenkel
1926; Bargman et al. 1953):

d �S
dt
= e

γm
�S × [

(1+Gγ ) �B⊥ + (1+G) �Bl

]
. (5.1)

Here, G= (g − 2)/2= 1.792817 is the anomalous magnetic moment of the proton
in the units of the nuclear magneton; m and γ are the mass and Lorentz factor of
the proton, respectively; B⊥ and B l are the transverse and longitudinal components
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of the magnetic field, respectively; t is time; and these parameters are defined in
the laboratory frame. The equation of momentum rotation under the action of the
Lorentz force has the form

d �p
dt
= e

γm
�p× �B. (5.2)

Let us compare formulas (5.1) and (5.2) under the assumption that the magnetic
field is static and uniform. Let us additionally assume that the longitudinal field
component is zero. In this case, it is seen that the rate of spin rotation around the
magnetic field is higher than the rate of velocity-vector rotation around the same
field by a factor of f = (1 + γG). If G = 0 spin and velocity rotate with equal
frequency. Both vectors for a positively charged particle rotate in the same direction.
As it will be seen below, owing to the presence of the Lorentz factor, the number of
depolarizing resonances increases with energy. On the contrary, a particle does not
change the direction in the purely longitudinal magnetic field, whereas spin rotates
with the frequency that is higher than the cyclotron frequency by a factor of G.
However, the longitudinal field (solenoid) is inefficient as energy increases and is
not used to control the polarization.

Thus, in planar geometry, when horizontal fields are absent and only the vertical
field exists, the spin precession frequency in the particle rest frame is νS = γG. For
simplicity, this frequency is called the spin tune or matching.

The radial magnetic field not only excites vertical betatron oscillations of the
beam, but also shifts the spin direction from the vertical direction. If the parti-
cle radial field deviates by an angle ϕ by radial field, spin deviates by the angle
ϕs = (1 + γG)ϕ. The value νs = dϕs/dt is called the spin tune. As known, the
spin rotation operations around different coordinate axes do not commute with each
other; for this reason, not only spin tune can change, but also the spin rotation axis
can deviate from the vertical direction.

When moving in an actual ring accelerator, spin is primarily subjected to two
types of depolarizing resonances. One of them is called intrinsic and occurs when
spin tune is a multiple of the frequency of vertical betatron oscillations Qv . Another
type of depolarizing resonance is called imperfection or error resonance. It appears
due to errors in the adjustment of the magnetic elements (under the assumption of
their perfect identity). This resonance appears when spin tune is an integer. The min-
imum interval between imperfection resonances is 523 MeV and is determined from
the equality γG= 1. For most resonances of both types, the resonance appearance
condition can be written in the form

νS = n+ nVQV + nhQh. (5.3)

Here, n, nV , and nh are integers. The last term appears in the presence of solenoids
or turned quadrupole lenses in the ring; as a result, couplings appear between verti-
cal and horizontal oscillations of the particle. The notion of the resonance strength
ε is introduced. It determines the deviation of the mean polarization from the ver-
tical direction and is measured as the ratio of this angle to 2π . According to the
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Froissart–Store formula (Froissart and Store 1960), polarization before input to res-
onance, Pin, and polarization after output from resonance, Pout , are related as

Pout =
(
2e−

π |ε|2
2α − 1

)
Pin. (5.4)

Here, the parameter α = d(γG)/dθ specifies the rate of changing spin matching
per unit angle of particle rotation in radians. According to this formula, the larger the
coefficient α, the better the polarization preservation. If it is very small, polarization
flop probability is large, and polarization can be preserved. This method was tested
successfully at VEPP and not very successfully at Saturn and ZGS.

5.1.2 Calculation of Resonance Strength

The equation of spin motion in the external magnetic field was given above, see
Eq. (5.1). A particle moving in cyclic accelerators under ideal conditions rotates

about the vertical magnetic field �B = �B⊥ = B0 �y with a constant frequency ν along a
closed planar orbit. Spin also rotates about the same axis with frequency ν′s = γGν.
In applications, the ratio νs = ν′s/ν = γG called spin matching is used more often.
In existing accelerators with variable gradient, first, focusing and defocussing mag-
netic elements exist and, second, perturbation fields always exist owing to errors in
the production of the magnetic elements or to errors in their adjustment. As a result,
the total magnetic field acting on a particle is represented in the form

�B = B0 �y + (By �y +Bx �x). (5.5)

The horizontal field component Bx shifts the spin direction from the vertical
direction. As a result, the vertical spin component decreases. Since the horizontal
field is weak, the decrease in the vertical polarization is small. However, owing
to the increase in such perturbations, spin matching can be in resonance with the
frequencies of betatron oscillations of the particle. In this case, strong depolarization
of the beam is possible.

The motion of the particle along the y axis has two components corresponding
to the motion along the closed orbit Yα and betatron oscillations Yβ . In the presence
of an error in the adjustment of magnetic elements, Yα is nonzero even for the ideal
case of the monoenergetic beam (�p/p = 0). As a result, spin imperfection reso-
nance appears. The Fourier component of this resonance has the form e±iKθ , where
K is an integer. Moreover, particles undergo betatron oscillations about the equilib-
rium orbit. The perturbating field initiating such a motion of the particle also has the
Fourier component with the frequencies of betatron oscillations: ei(kP±vy), where k,
P , and νy are an integer number, the accelerator superperiod P , and the frequency
νy of vertical betatron oscillations, respectively. As mentioned above, such a reso-
nance is called intrinsic resonance. Note that, when spin matching νs = γG is an
integer k or kP ± νy , the coherent action of the field on spin occurs, and this leads
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to the depolarization of the beam. The resonance strength due to all listed factors is
given by the formula

εK0 ∝
∮

Bxe
iK0θ dθ. (5.6)

Using formula (5.1), we can show that spin motion in the magnetic field of the
ring accelerator can be represented in the form

d �S
dθ
= �S × �Ωa. (5.7)

Here, the operator �Ωa can be decomposed in three unit coordinate vectors:

�Ωa =−t �x + r�s − κ �y. (5.8)

The unit vectors �s, �x, and �y are defined as follows. The first two vectors lie in
the orbit plane, and �s is directed along the tangent to the orbit in the particle motion
direction, �x is perpendicular to �s and directed outward, and �y is directed along the
upward normal to the orbit plane. The parameters in formula (5.8) are given by the
expressions

κ ≈ γG, r = (1+ γG)y′ − ρ(1+G)

(
y

ρ

)′
, t = (1+ γG)ρy′′. (5.9)

Prime in these formulae means the differentiation with respect to θ and ρ is the
current curvature radius of the orbit. Then, in terms of the variables S± = S1 ± S2
in view of formulae (5.9), Eq. (5.7) can be represented in the form

dS+
dθ

= iκS+ + iς∗S3,
dS−
dθ

=−iκS− − iςS3,
dS3

dθ
= i

(
ςS+ − ς∗S−

)
.

(5.10)

Here, the coupling constant of transverse motions is given by the expression

ς =−t − ir =−(1+ γG)
(
ρy′′ + iy′

)+ iρ(1+G)

(
y

ρ

)′
=
∑

m

εme
±iKmθ .

(5.11)

Then, the formula for the resonance strength can be written in the form

εK0 =
1

2π

∮
ς(θ)

ρ(s)
eiK0θ(s)ds =−γG

2π

∮

y′′eiK0θ(s)ds =−γG

2π

∮

G(s)eiK0θ(s)ds.

(5.12)

Here, the function G(s) is the focusing–defocussing accelerator strength. For an
accelerator with the (focusing–flight–defocussing–flight) structure, the strength of
the main intrinsic resonance is determined in the explicit form

εK =−
√
γG

2π

{
GF

√
εNβy(F )+GD

√
εNβy(D)ei(

K0
M
−μ)π}

· sin[M(
K0
M
−μ)π]

sin[(K0
M
−μ)π] ei(M−

1
2 )(

K0
M
−μ)π . (5.13)
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Here, εN is the normalized emittance; GF and GD are the focusing and de-
focussing quadrupole strengths, respectively; μ is the phase increment on a cell;
βy(F ) and βy(D) are the vertical amplitude functions in focusing and defocussing
quadrupoles, respectively; and M is the total number of cells in the accelerator.

Equation (5.13) provides a number of interesting conclusions. First, strongest
resonances are spaced by a value of M , which is the total number of cells in the
accelerator. Second, the resonance strength is proportional to M . Third, the strength
of intrinsic resonances increases with energy as

√
γ , whereas the strength of the

imperfection resonance increases linearly with γ .
The presentation in this subsection is based on Courant et al. (1986).

5.1.3 Calculations for the AGS

The application of this calculation technique to the AGS for the case Qv = 8.7 and
normalized emittance πε = 10π mm ·mrad shows the presence of three strong de-
polarizing intrinsic resonances for spin matching values of 0+Qv , 36−Qv , and
36+Qv . Recall that the periodicity of magnetic structure of the AGS is P = 12;
therefore, resonances for which n are multiples of P are strong (see Eq. (5.3)).
The proton Lorentz factors for these points are 4.85, 15.23, and 24.93, respectively
(nV =±1 in Eq. (5.3)). The relative strengths of these resonances are approximately
0.015 for the first two resonances and 0.027 for the third resonance. This third reso-
nance is strongest, and injection energy for RHIC was chosen below this value. The
remaining intrinsic resonances are much weaker.

The number of resonances and their strengths at RHIC increase rapidly accord-
ing to the general laws. Similar calculations for this case at Qv = 29.212 indicate
the presence of four strong intrinsic resonances at energies above 100 GeV. Their
strengths are from 0.35 to 0.45. Even below 100 GeV, the number of resonances with
strengths an order of magnitude larger than at the AGS is so large that no methods
except for the Siberian snake technique can overcome them.

To the end of 2004, the situation with the acceleration of polarized proton beams
at RHIC was the following. The linear accelerator gave protons with a polarization
of 80 % and an energy of 200 MeV, and the booster accelerated them up to 1.5 GeV.
To suppress imperfection resonances at integers 3 and 4, the orbit was corrected
by means of the corresponding harmonics of the magnetic field. The beam was
extracted from the booster slightly earlier (at γG = 4.5) since the first intrinsic
resonance occurs at νs = γG= 4.9.

The beam in the AGS was accelerated from γG= 4 to γG= 46.5. Here, to sup-
press depolarization, a partial snake based on a warm solenoid with a spin strength
of 5 % was first used. In 2003, polarization obtained at the exit of the AGS with this
solenoid was only 28 %. In this case, the solenoid operated in combination with the
alternating magnetic field of a dipole, which assisted to rotate spin in four strong
intrinsic resonances mentioned above.
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Fig. 5.2 Illustration of the improvement of the beam polarization at the exit of the AGS in 2004
as compared to 2003. The table to the right from the figure shows both losses of polarization and
gains at certain resonances

A strong coupling was revealed between the vertical and horizontal motions of
particles, which was caused by this solenoid. This solenoid changed to a warm heli-
cal magnet, which also served as a partial snake, but with a higher strength (8 % at
the injection energy and 6 % at the energy of beam extraction from the AGS). As a
result, a polarization of 50 % was obtained at the exit of the AGS in Huang (2004).
The energy dependence of raw asymmetry measured in 2003 with the solenoid and
in 2004 with the helical magnet is shown in the upper panel in Fig. 5.2 (the lower
panel presents the collected statistics). The decrease in asymmetry with an increase
in energy is clearly seen, but it is difficult to explain this behavior, because the en-
ergy dependence of the analyzing power of the polarimeter (elastic pC scattering
in the region of Coulomb–nuclear interference) is unknown. This decrease in po-
larization can be due both to the analyzing power and to beam depolarization in
the acceleration process. The certainly established fact, which is seen in Fig. 5.2,
is that the partial dipole snake (upper circles) works better than the solenoid (lower
squares). The analyzing power of the pC polarimeter at the energy of the beam ex-
traction from the AGS was calibrated using another polarimeter based on a polarized
jet target placed at RHIC. As a result, it was found that the beam extracted from the
AGS in 2004 had a polarization of 50 %. Under the assumption that polarization is
not lost in the booster, the beam at the entrance to the AGS would have a polariza-
tion of 50 % rather than 80 %, as found at the exit of the linear injector, i.e., almost
at the entrance to the AGS. Therefore, the beam in the AGS is possibly depolarized
from 80 % to 50 %, and this property should be further studied.
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However, the problem of polarization preservation in the AGS remains unsolved.
Polarized protons should be accelerated at RHIC from the energy corresponding

to γG = 46.5 to the energy corresponding to γG = 478 (250 GeV). For polariza-
tion preservation, two Siberian snakes spaced by 180° on the orbit are used. Spin
rotation axes lie in the horizontal plane and are perpendicular to each other. Each
snake consists of four superconducting helical dipoles. The winding of each dipole
is a clockwise spiral. This winding generates a helical magnetic field, which is al-
ways perpendicular to the beam axis. As a result, spin matching is independent of
the beam energy in contrast to the case of the solenoid. Beam swinging is also min-
imal. The main requirements on the snake are the following: first, it should rotate
spin by 180° about the beam axis and, second, it should be transparent for the beam.
This means that the beam parameters outside the snake must be unchanged. In ad-
dition, two spin rotators are mounted in pairs in each ring of RHIC around the beam
intersection points for the STAR and PHENIX setups. They are used to convert the
vertical polarization of the beam to the horizontal plane (orbit plane). Then, two
dipoles of the accelerator transform the beam polarization to the longitudinal polar-
ization. After the interaction of the beams, a similar pair of dipoles and magnets of
the rotator return the beam polarization to the vertical position. This is necessary
for the most important goals of the polarization program at RHIC associated with
investigation of the spin structure of the nucleon.

The operation of the spin rotators was tested by measuring asymmetry in the
absence and presence of supply of the rotators. Left–right asymmetry is observed
in the first case and disappears when the rotators operate. Note only that the ex-
perimental measurement accuracies are insufficiently high for separating systematic
errors. A polarization of 50 % was obtained at the exit of the AGS for 1 · 1011 par-
ticles in a bunch. According to the same data, polarization at the exit of the linear
injector was 80 %. Since information on polarization at the entrance of the AGS is
absent, it is impossible to attribute all polarization losses to the AGS. Polarization is
possibly lost in the booster. This is also a very important problem for the 1.5-GeV
booster of the U-70 accelerator complex at IHEP (Protvino), because its parameters
are close to the parameters of the booster for the AGS. The transportation channels
for polarized beams obviously also require attention.

A luminosity of 4 · 1030 cm−2 s−1 and a polarization of 40 ± 5 % at
√
s =

200 GeV were achieved at RHIC in 2004. To the next beam run, physicists are
going to update the solenoid in the laser source of polarized protons in order to
increase the polarization from 80 % to 85 %. It is also planned to implement a su-
perconducting partial snake with 25 % spin strength (spin rotation by 45°) at the
AGS. Large attention is focused on the possibility of improving the planarity of the
orbits, including geodesy, beam position monitors, electronics, etc.

The nearest aim of physicists is to reach an energy of
√
s = 500 GeV, a lumi-

nosity of 1.5 · 1032 cm−2 s−1, and a polarization of at least 70 %. This will be the
achievement of the main goal for beginning of the main polarization program on
investigation of the spin structure of the nucleon.
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5.2 Polarized Electron Beams

In this section, methods for producing polarized high-energy electron beams are
discussed in application to the beams used at present at the largest operating accel-
erators. These are the ring accelerator HERA in Germany and the linear electron
accelerator SLC at SLAC, USA. In these two accelerators, polarized electron beams
are obtained using fundamentally different methods and we describe them sepa-
rately.

5.2.1 Polarized Electron Beam of the HERA Ring Collider

The HERA collider with a length of 6.336 km has two rings. In one ring, protons are
accelerated from 40 GeV to an energy of 820 GeV, and electrons in the other ring are
accelerated from 14 GeV to 27.5 GeV. It is known that electrons in ring accelerators
are self-polarized due to synchrotron radiation through the Sokolov–Ternov effect
(Sokolov and Ternov 1963). Polarization in an ideally uniform static magnetic field
is given by the expression

P =−Pmax

(
1− e

− t
τST

)
. (5.14)

According to this formula, the spins of electrons in time τST are aligned oppo-
sitely to the direction of the magnetic field, and polarization reaches a maximum,
which asymptotically (t→∞) is

Pmax = 8

5
√

3
= 92.4 %. (5.15)

The physical cause of the spontaneous polarization of electrons is as follows.
Electrons moving in a ring accelerator emit photons. In this case, the probability of
emitting a photon depends on the mutual orientation of the electron spin and the
external driving magnetic field. When emitting a photon, electron spin flop occurs.
In this case, the state where spins are aligned against the external field is stable.
Positron spins are favorably oriented along the field due to the positive charge. Let
us assume that, when polarization P is reached, the number of electrons in the ring
accelerator is n = n+ + n−, where n+ and n− are the numbers of electrons with
spins directed along and against the magnetic field, respectively. By definition, po-
larization is P = (n+ − n−)/(n+ + n−). According to these two relations,

n+ = n(1+ P)/2, n− = n(1− P)/2. (5.16)

For example, if the polarization of the positron (electron) beam with intensity n

in the ring is 0.8, the spins of 90 % and 10 % of all positrons are directed along and
against the field, respectively. Owing to the opposite charges, electrons are polarized
oppositely to positrons.

However, it is difficult to preserve such a large polarization in existing accelera-
tors. The presence of focusing and defocussing magnetic fields, as well as possible
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errors in the adjustment of the magnetic elements, can lead to depolarizing effects.
Moreover, the Sokolov–Ternov process is slower than other competing processes in
storage rings. This time of polarization “pumping” is given by the expression

τST = 8ρ3m2c2

5
√

3�e2γ 5
. (5.17)

Here, m and e are the electron mass and charge, respectively; � is Planck’s con-
stant; c is the speed of light; and ρ is the current curvature radius of the particle
trajectory in the magnets. The parameter τST (the subscript ST means the Sokolov–
Ternov process) is the polarization increase rate according to formula (5.14).

The parameters Pmax and τST depend on the accelerator parameters and vary
in wide ranges. In particular, τST is 40 min for energy of 27 GeV at HERA, is
300 min for energy of 46 GeV at LEP, and is as small as 2 min for energy of 29 GeV
at TRISTAN. Polarizations really achievable in the accelerators will be presented
below.

As in the case of the proton, the electron spin motion in the magnetic field is
described by the FT–BMT equation (Frenkel 1926; Thomas 1927; Bargmann et al.
1959)

d �S
dt
= e

γm
�S × [

(1+Gγ ) �B⊥ + (1+G) �B‖
]
. (5.18)

Here, G= (g − 2)/2= 0.001159652 is the anomalous magnetic moment of the
electron in the units of the Bohr magneton; m and γ are the mass and Lorentz factor
of the electron, respectively; B⊥ and B‖ are the transverse and longitudinal compo-
nents of the magnetic field, respectively; and t is time. These parameters are defined
in the laboratory frame, whereas spin is defined in the electron R frame. Electron
momentum rotation induced by the Lorentz force is described by the equation

d �p
dt
= e

γm
�p× �B. (5.19)

In the uniform static magnetic field, spin precesses with the frequency

νs = γGνL, (5.20)

where γ is the electron Lorentz factor and νL is the Larmor frequency of the rota-
tion of a charged particle (electron in this case) about the same magnetic field. For
simplicity, we introduce the quantity fs = γG and call it spin matching (as above in
the case of protons). Thus, the spin rotation frequency νs (or spin tune) differs from
the Larmor frequency νL by spin factor fs (or spin matching) and, at high energies,
can be much higher than the latter. For example, spin matching for electron energy
of 27.5 GeV is about 60. With noninteger νs values for electrons moving on a peri-
odic (closed) orbit, Eq. (5.18) has a stable periodic solution usually denoted as �n0.
In ideal accelerators with an ideally planar orbit, the solution �n0 is perpendicular
to the orbit plane. The equilibrium polarization �PS has the same direction. If hori-
zontal fields exist on the beam trajectory or the adjustment of magnetic elements is
violated, the vector �n0 is not vertical. This means that the original Sokolov–Ternov
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approach with the assumption of the ideal conditions of the electron motion (homo-
geneous magnetic field and the absence of horizontal fields) is inapplicable directly
to existing accelerators. A possible modification of this method is the semiclassical
method applied in Baier et al. (1970), and Derbenev and Kondratenko (1973). Ac-
cording to these works, the equilibrium value of the polarization vector �Peq is given
by the expression

Peq = 8

5
√

3

〈|ρ|−3 �b · �n0〉
〈|ρ|−3[1− 2

9 (�n0 · �v)2]〉 . (5.21)

Here, the unit vector �b specifies the direction of the magnetic field and the angular
brackets stand for the averaging of quantities in the brackets both over the ring and
the ensemble of particles.

As mentioned above, the polarization of electrons appears due to synchrotron
emission of photons by electrons. In turn, this process leads to the electron recoil.
Change in the electron motion direction according to relation (5.19) leads to change
in the spin direction. That is, spin diffusion occurs. As a result, formula (5.21) is
transformed as

Peq = 8

5
√

3

〈|ρ|−3�b · (�n0 − �d)〉
〈|ρ|−3[1− 2

9 (�n0 · �v)2 + 11
10 | �d|2]〉

, �d = γ
∂ �n
∂γ

. (5.22)

The vector �n is a generalization of the vector �n0 to the case of the presence of
various perturbating factors. For example, the difference of the particle energy from
the nominal value is presented in the form of the vector �d , which appears in the
expression for polarization linearly (numerator) and quadratically (denominator).
The presence of vertical betatron oscillations together with errors in the adjustment
of the magnetic elements leads to the appearance of resonances under the condition

νs = k+mxQx +mzQz +msQs, (5.23)

where k,mx,mz, and ms are integers and Qx , Qz, and Qs are the betatron frequen-
cies. Relation (5.23) can be used to find depolarizing resonances. A more careful
analysis of spin diffusion shows that the depolarization rate is proportional to po-
larization “pumping” rate (5.17) multiplied by a polynomial of spin matching νs .
All strong resonances with pole expressions for them in the denominator should be
taken into account. The number of resonances and their strengths increase with en-
ergy. So-called synchrotron side band resonances are considered as most dangerous.
They appear as secondary resonances of strong parent resonances of the first order
with the numbers mx =±1 or mz =±1; in this case, ms is a small integer.

Although the polarization mechanism is weak and quite long-term, physicists
demonstrated that it can be observable, enhanced, and used in electron storage rings.
The radiative polarization effect was first observed almost simultaneously at the
VEPP (USSR) and ALCO (Italy) machines. These effects have been measured with
a high accuracy at the VEPP, VEPP-2, VEPP-3, and VEPP-4 machines in Novosi-
birsk. Somewhat later, the polarization of electron beams due to synchrotron ra-
diation was observed at CESR, SPEAR, and DORIS setups (Potaux et al. 1971;
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Fig. 5.3 Optimization of
polarization at HERA by
harmonic fields for an energy
of 26.7 GeV

Shatunov 1990; Mackay et al. 1984; Barber et al. 1984). However, all these ma-
chines operated at relatively low energies of several GeVs. As known, depolarizing
resonances become strong with an increase in energy. In view of this circumstance,
the production of the 16.5-GeV polarized electron beam at PETRA in Bremer et al.
(1982) is noticeable achievement. For this, a special device was designed and ap-
plied to suppress the field harmonics close to spin matching.

Beginning with 1990, electron polarization was observed at the TRISTAN, LEPP,
and HERA accelerators. A 26.7-GeV electron beam with a polarization of 56 %
was obtained at the HERA collider in 1992. The vertical polarization of the electron
beam with an energy of about 46 GeV obtained at LEPP in 1993 by correcting the
closed orbit was 57 %.

Special investigations with the artificial excitation of depolarizing resonances
show that the fourth harmonics, −1,0, and +1 and the second harmonic are dan-
gerous at HERA. Since each resonance has a complex amplitude with the real and
imaginary parts, there are eight parameters to be minimized. Eight short magnetic
coils with horizontal magnetic fields (their slangy name is “bumps”) were used to
individually suppress all eight amplitudes. Figure 5.3 presents preliminary results of
optimizing the orbit at HERA for an energy of 26.7 GeV (νs = 60.5). In this case,
the imaginary part of the amplitude for the+1 harmonic was fitted. When the imag-
inary part of the amplitude for this harmonic reaches 1.8 mm, polarization above
30 % was obtained (the solid line with points). An additional correction of the orbit
provided a polarization close to 40 % (dashed line with experimental points).

A similar scheme for optimizing the closed orbit was also applied for TRISTAN
at an energy of 28.86 GeV (νs = 66.5). First, the standard deviation of the vertical
closed orbit was corrected to a level of 0.3 mm; in this case, polarization did not
change. Then, with the use of eight bumps, the slope of the vertical closed orbit at a
harmonic close to spin matching was corrected. Figure 5.4 shows how the correction
of the+66-th harmonic makes it possible to increase polarization from 7 % to (75±
15) %.

For the adjustment of an accelerator with a polarized beam, it is very impor-
tant not only to rapidly polarize the beam, but also to rapidly depolarize it. The
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Fig. 5.4 Correction of
depolarization at TRISTAN
by harmonic fields for an
energy of 28.86 GeV

experience of works on the above machines shows that this can be made using the
same correctors used to polarize the beam. After the depolarization of the beam, the
correctors can be switched on, the polarization increase rate in an exponential can
be measured, and the polarization increase time τ can be determined by the fitting
method with expression (5.14). The time τ consists of two components:

τ−1 = τ−1
ST + τ−1

dep. (5.24)

Here, τST is the theoretical polarization increase rate given by formula (5.17) and
τdep is the beam depolarization rate. From relation (5.24), τdep can be expressed in
terms of τ . Then, using the formula

Peq = PST · τdep

τST + τdep
= PST · τ

τST
, (5.25)

we can determine polarization Peq with a small systematic error. The results of the
application of the described method to LEP for an energy of 46.5 GeV (νs = 105.5)
are shown in Fig. 5.5. With τ = (35 ± 15) min, a polarization of Peq = (19.7 ±
3.1) % was obtained. The measurements at TRISTAN were performed at an en-
ergy of 14.76 GeV (νs = 33.5). Figure 5.6 shows that Peq = (69 ± 24) % was
obtained (after the recalculation of asymmetry to polarization) with τ = 68 min.
Finally, Fig. 5.7 shows the result of the measurements at HERA for an energy of
26.7 GeV (νs = 60.5). A polarization of (46.5± 5) % was obtained. All listed po-
larization values are in good agreement with the values measured with polarimeters
(Barber 1992).

From the very beginning, the HERA complex design implied the production of
longitudinally-polarized electron beams for analyzing spin effects in electroweak
interactions.



240 5 Methods for Obtaining Polarized Beams

Fig. 5.5 Polarization
pumping time at LEP for an
energy of 46.5 GeV

Fig. 5.6 Polarization
pumping time at TRISTAN
for an energy of 14.76 GeV

Fig. 5.7 Polarization
pumping time at HERA for
an energy of 26.7 GeV

This problem formulated by physicists is that the electron polarization at the
point of the collision of protons and electrons should be longitudinal, i.e., is directed
along the momentum (or against the momentum) of the electron. There is an addi-
tional problem: the possibility of the fast reversal of the electron-beam polarization
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Table 5.1
Longitudinally-polarized
electron beams

Machine Energy (GeV) Polarization (%) Year

VEPP 0.65 80 1970

ACO 0.53 90 1970

VEPP-2M 0.65 90 1974

SPEAR 3.7 90 1975

VEPP-3 2 80 1976

VEPP-4 5 80 1982

PETRA 16.5 70 1982

CESR 5 30 1983

DORIS 5 80 1983

LEP 47 57 1993

HERA 26.7 60 1993

HERA (longitudinal
polarization)

27.5 70 1994

direction should be ensured. This problem is simpler than the above two problems,
but it should be solved in view of the conditions of the physical experiment. These
requirements appear from the HERMES program proposed in HERMES (1990). To
demonstrate the real possibility of obtaining, first, the transverse and, then, longi-
tudinal polarizations of the electron beam, specialists performed a large amount of
work, and the experiment began in 1994.

The necessity of obtaining the longitudinal polarization of the electron beam
requires a special device called the spin rotator. The spin rotator is a set of radial
magnetic fields that makes it possible to change the stable polarization direction
from the vertical direction to the longitudinal direction. In this case, the spin rotator
should not change the dynamics of electron motion. Owing to the introduction of
radial fields, the closed orbit is not planar, the stable spin direction changes, and this
leads to the emission of photons by electrons in view of the finite sizes of the beam.
As a result, the spin rotator is a source of spin diffusion.

To obtain the longitudinal polarization of electrons, the term γ �d = γ ∂ �n
∂γ

in for-

mula (5.21) should be made zero at points where the term |ρ|−3 is large. This was
ensured by the so-called spin matching method, which includes two procedures: the
optimization of the closed orbit and the correction of beam optics. There were many
doubts that spin rotators operate as planned and that the spin matching method is
efficient. Nevertheless, a longitudinal polarization of 65 % was obtained in May
1994 with the use of a pair of spin rotators and application of the two procedures
listed above. This was the first case where the Sokolov–Ternov effect was used in a
storage ring to obtain longitudinally-polarized electrons (Barber et al. 1995). Since
that time, the very successful implementation of the HERMES polarization program
begins. Brief chronology of obtaining polarized electron beams in electron storage
rings is presented in Table 5.1.
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All electron polarizations presented in Table 5.1 are transverse, except for the
last row. Here, it is indicated that a longitudinal electron polarization of 70 % was
obtained for the first time at the HERA accelerator. The lifetime of this polarization
was about 10 h. The polarized positron beam with a polarization of 50 % was also
obtained at the HERA accelerator.

5.2.2 Polarized Electron Beam of the SLC Linear Collider

The SLAC Linear Collider (SLC) at the Stanford Linear Accelerator Center (SLAC)
is a linear collider with a length of 3 km intended for studying the production and
decay of intermediate bosons. It consists of two parts: a linear accelerator (linac)
and two arcs. The linac is intended for accelerating electrons and positrons to an en-
ergy of 46.6 GeV, and arcs, for organizing their collisions. From the very beginning,
the collider design involved the possibility of the acceleration of longitudinally-
polarized electrons. Since the polarization mechanism due to synchrotron radiation
is absent in linear accelerators, a specially developed source of polarized electrons is
used in them. The polarization currently achieved at the SLC in the normal regime
is 80 %. The SLC is unique because it is the collider with highest energy and a
longitudinally-polarized electron beam and allows in parallel experiments in the
collider mode (SLD detector) and with fixed targets in a special region for the ex-
tracted electron beam (End Station A (ESA) region). These experiments with fixed
targets were pioneering in the investigation of the spin structure of the nucleon, such
as the E-80 (Alguard et al. 1976) and E130 (Baum et al. 1983) experiments. After
the discovery of the “spin crisis” effect in 1987 at CERN in the ESA region the
experiments listed in Table 5.2 were carried out. The parameters of polarized elec-
tron beams for these experiments were significantly improved as compared to the
parameters of the beams for the first experiments. The aim of these experiments is
to measure the structure functions of the proton and neutron and to test the Bjorken
and Ellis–Jaffe sum rules. The results of these experiments with a high accuracy
confirmed the conclusion of the EMC experiment (CERN) that quarks carry a very
small fraction of the spin of the parent nucleon. They also confirm the validity of
the Bjorken sum rule and the violation of the Ellis–Jaffe sum rule.

Below, we describe the method for obtaining longitudinally-polarized electron
beams at the single largest electron–positron collider SLC. In this presentation, we
follow primarily Woods (1994).

5.2.2.1 Source of Polarized Electrons

Polarized electrons are obtained by irradiating a GaAs photocathode by polarized
laser beams (see Fig. 5.8).

In this scheme, two different laser generators are used, because experiments with
fixed targets in the ESA region and at the SLC require beams of various time struc-
tures (see Tables 5.2 and 5.3). For experiments with fixed targets, the Ti-sapphire
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Table 5.2 Beam parameters in the ESA region

Parameter E142 E143 E154 E155

N , stat. 2 · 1011 4 · 109 2 · 1011 4 · 109 N is the collected statistics, f is the
frequency of electron beam cycles,
T is the beam run duration, and
Year is the experiment date

f , Hz 120 120 120 120

τ , ns 1 2 100 100

E, GeV 22.7 29.2 48.6 48.6

P , % 40 84 80 85

T , month 2 3 2 3

Year 1992 1993 1995 1995

Fig. 5.8 Source of polarized
electrons at SLC

Table 5.3 SLC beam
parameters Parameter 1993 1994

N+ 3.0 · 1010 3.5 · 1010

N− 3.0 · 1010 3.5 · 1010

f , Hz 120 120

σx , µm 0.8 0.5

σy , µm 2.6 2.4

Luminosity, cm−2 s−1 5 · 1029 1 · 1030

Z/h (peak) 50 100√
s, GeV 91.26 91.26

P , % 63 80

Active time, % 70 70

T , month 6 7

Collected Z 60K 100K
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Fig. 5.9 Energy levels of (a) unstrained and (b) strained GaAs and allowed transitions from va-
lence levels to the conduction band: the solid and dashed lines mark transitions stimulated by
photons with positive and negative helicities, respectively; and the numbers in the circles indicate
the probabilities of the corresponding transitions

(TiS) laser generator with lamp pumping is used to obtain pulses with a duration
of two microseconds. For the SLD experiment at the SLC, two TiS laser gener-
ators with pumping on Nd:YAG (neodymium-activated yttrium–aluminum garnet)
are used to obtain two pulses with a duration of 60 ns. One pulse is used to form an
electron beam and the other pulse, to form a positron beam for the SLD experiment
at the collider.

Linearly-polarized laser beams are guided through the system of mirrors to a
quarter-wave Pockers cell, where they are transformed to circularly-polarized light.
By changing the sign of voltages on Pockers cells, the direction of the circular po-
larization of photons and, correspondingly, the electron polarization direction can
be changed. This change occurs randomly with a frequency of 120 Hz (the SLC
frequency) and is ensured by a special generator. This operation is very important
for minimizing systematic errors in the experiment.

Figure 5.9 shows the scheme of the transfer of electrons from valence levels to
the conduction band in the GaAs photocathode. Figure 5.9a corresponds to the case
of the unstrained GaAs photocathode. Photons with positive helicity and energy in
the range 1.43 eV <E < 1.77 eV can transfer valence electrons from two j = 3/2
levels to two j = 1/2 levels in the conduction band (the solid lines). According
to the Clebsch–Gordan coefficients, the probabilities of these two transitions are
related as 3:1. Therefore, the expected electron polarization is 50 %. In this case, the
polarization direction for electrons emitted from the photocathode coincides with
the photon polarization direction because they move in the opposite directions. As
seen in Fig. 5.9a, the j = 3/2 levels are degenerate. If this degeneracy is lifted, the
situation changes sharply as shown in Fig. 5.9b. In this case, only the transition from
one level holds, and energy is insufficient for the transition from the other level. As
a result, 100 % electron polarization can be achieved. The degeneracy of j = 3/2
levels can be really lifted by preparing the so-called stressed GaAs material. This is
made as follows. Thin layers of this material are grown on a GaAsP substrate. The
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Fig. 5.10 Schemes of
electron beam transport to the
(left) ESA region and (right)
SLD detector region

mixture of these two materials leads to the shift of the levels shown in Fig. 5.9b.
Such materials are produced commercially. Their quantum efficiency defined as the
number of photoelectrons per incident photon is about 0.2 %.

The further improvement of the operational parameters of the source was de-
scribed in Clendenin et al. (2002).

5.2.2.2 Polarized Electrons in the ESA Region for Experiments with Fixed
Targets

The remaining problems are the acceleration of the polarized electron beam from
60 keV to 46.6 GeV and its transport to a user. These problems are simplest for the
ESA experimental region (Fig. 5.10).

Since the beam is longitudinally polarized, spin remains unchanged in the longi-
tudinal accelerating electric field. However, at a finite energy, the beam deviates in
the horizontal plane by the angle θ = 428 mrad. In this case, spin advances the elec-
tron rotation angle by �θs = θs − θ = γGθ . When �θs = nπ , the electron beam is
longitudinally polarized. This occurs at energies E = n · 3.24 GeV.

The beam polarization is measured by a Moller polarimeter described in the sec-
tion “Polarimetry.” Then, the beam interacts with a polarized target for the measure-
ment of the spin structure functions. The parameters of polarized electron beams
and the experiments performed in the ESA region with a fixed polarized target are
listed in Table 5.2.

5.2.2.3 Polarized Electrons in the SLD Region for Collider Experiments

The next polarization experiment at SLAC was performed on the SLD instrument.
The main goal of this detector is to check the predictions of the Standard Model,
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in particular, the Standard-Model predictions for spin effects. The longitudinally-
polarized electron beam for this detector is obtained using a complicated proce-
dure. The right scheme in Fig. 5.10 illustrates the formation of this beam. First, two
bunches of polarized electrons are produced by an electron gun operating under a
high voltage of 120 kV. Such a high voltage is necessary for the removal of the
charge saturation effect in the photocathode at pulsed currents above 6 A. Two elec-
tron bunches are formed and accelerated up to 1.19 GeV. Then, they are injected
into the storage ring, where the beam is cooled for 8 ms; i.e., its sizes are reduced
in order to decrease the beam emittance. After that, they are transported to the linac
and are driven into it by a kicker magnet. The first bunch is accelerated to the final
energy and moves to the interaction point after the preceding positron bunch. The
second electron bunch is accelerated only to 39 GeV and is used to obtain positrons.
Positrons with energies 2–20 MeV are collected in the source and are accelerated
to an energy of 200 MeV. Then, they are transported almost to the beginning of the
linear accelerator. The beam emittance is decreased in the storage ring for 16 ms.
Then, positrons are injected back into the SLC and are accelerated to a final en-
ergy of 46.6 GeV. After that, a separating magnet directs the electron and positron
bunches to the north and south arcs, respectively. In these arcs, each electron loses
an energy of 1 GeV on synchrotron radiation. As a result, the beam collision energy
is 91.2 GeV, which corresponds to the Z boson mass.

When the electron beam is transported from the linear accelerator to the storage
ring, spin is rotated by 450° immediately before entering the solenoid. The solenoid
rotates spin from the horizontal position to the vertical plane. This spin transfor-
mation is necessary in order to avoid depolarization in the storage ring. With this
vertical polarization, electrons return to the linear accelerator and their acceleration
continues.

More detailed analysis shows that the polarization of electrons in this cycle is
preserved at a level of 99 %; i.e., polarization loses 1 % because the electron beam
directed to the storage ring has an energy of 1.19 GeV rather than 1.21 GeV as cal-
culated. In front of the solenoid, the beam polarization appears to be rotated by 442°
rather than by 450°. For this reason, the solenoid rotates the polarization vector from
the horizontal position to the direction deviated from the vertical direction by 8°.
This explains the 1 % loss of polarization.

The electron and positron beams leaving the linac are trapped by magnets for
transporting to the north and south arcs. Each arc contains 23 achromatic lenses,
and each achromatic lens consists of 20 magnets with combined functions. The
spin of 46.6-GeV electrons is rotated by 1085° in each achromatic lens, whereas
the betatron phase advance is 1080°. Thus, the SLC has the operating point very
close to spin matching. This means that small vertical oscillations of the beam in
an achromatic lens, as well as errors in the adjustment of the magnetic elements,
can lead to the deviation of the polarization from the vertical direction. Since this
effect is cumulative, it can strongly change the longitudinal polarization component.
As a result, having a certain polarization of the beam at the exit of the linac, it is
impossible to predict the polarization direction at the interaction point. There are
only two empirical methods. In the first case, solenoids existing at the SLC are
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used to ensure a certain orientation of the beam polarization at the exit of the linac.
Then, the actual beam polarization at the interaction point can be measured using
a Compton polarimeter. Three such measurements make it possible to determine
three Euler angles specifying the beam polarization direction. These parameters are
sufficient for reconstructing the spin transport matrix. Now, the relation between
polarizations at the linac exit and interaction point can be determined using this
matrix.

In the second method, two local spin perturbations (“bumps”) are created by
means of seven last achromatic lenses in the arc. The amplitudes of these bumps
are selected empirically so as to obtain the maximum longitudinal polarization at
the interaction point. These two methods provide the same polarization within 1 %.
However, the method of two spin bumps is used as the convenient variant because it
gives a high emittance for a plane beam (Table 5.3). Such a beam is obtained even
in the storage ring. The use of solenoids for spin rotation leads to the relation of the
dynamics of the beam in the horizontal and vertical planes, destroying the appro-
priate shape of the beam. Finally, necessary luminosity is not achieved. Therefore,
this method is inappropriate for creating longitudinal polarization, and the method
of spin bumps holds as the convenient variant. The beam parameters are given in
Table 5.3.

5.3 Polarized Muon Beams

A polarized muon beam is naturally obtained through the weak decay of pions in
flight

π→ μ+ ν. (5.26)

Since this decay proceeds with parity violation, muons are longitudinally polar-
ized. The second feature of this pion decay channel is that its probability is larger
than 99 %. The third feature of this channel is that it is two-particle, and the decay
kinematics facilitates the selection of muons with appropriate energies and, corre-
spondingly, appropriate polarization. In particular, if muons (μ−) moving forward
in the pion direction in the pion (π−) rest frame are selected, these muons have left
helicity and their polarization is close to 100 %. If we want to measure the helic-
ity of muons, it is necessary to select muons moving backward in the rest frame.
However, in view of the Lorentz transformation, these muons have other (lower)
energies. However, this is inappropriate for experiments; moreover, they have a low
intensity. Thus, there is no answer to the question how the polarization of a polar-
ized muon beam can be reversed without changing the other parameters. We can
recall the possibility of changing the polarized μ+L beam from the decay of positive
pions to the polarized μ−R beam from the decay of negative pions. However, changes
in both the charge and helicity of the muon beam can lead to uncontrollable false
asymmetries.
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Fig. 5.11 (a) Polarization
and (b) flux of the 200-GeV/c
μ+ beam versus the
momentum of the parent pion

This method for obtaining polarized μ+L beams was successfully applied in the
famous EMC (European Muon Collaboration) experiment (Gabathuler 1984). Fig-
ure 5.11 taken from that work shows how the authors optimized the beam in po-
larization and intensity. Figure 5.11a presents the results of the measurements for
optimizing the polarization. The magnetic fields in the muon channel were fixed
so that only 200-GeV muons pass through the channel. The regime in the preced-
ing, pion channel was changed so as to vary the pion energy. The polarization of
the muon beam was measured by a polarimeter for six pion energies. Although the
polarization measurement accuracy is low (about 10 %), it is seen that a large po-
larization is obtained for pion energies close to the muon energy. This conclusion
is consistent with theoretical expectation. The polarization measurement accuracy
was later increased to several percent (see section “Polarimetry”).

Figure 5.11b shows the flux of 200-GeV/c muons as a function of the pion mo-
mentum. The measurements were carried out simultaneously with the measurements
of muon polarization. In agreement with the expectations, the yield of the muons in-
creases with the momentum. As known from the fundamental relations of polarime-
try, the optimum of the working point should be at the point of the maximum of the
quality factor M = N · P 2

μ, and this factor within the measurement accuracy has a
plateau in the scanned pion momentum range.

In the SMC and COMPASS experiments that followed the EMC experiment (on
the same channel), the parameters of the beam, polarimeters, and other facilities
were somewhat improved, but the energy range of the muon beam remained almost
the same.
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At the end of 2004, the COMPASS setup operated with the muon beam whose
parameters are: an energy of 160 GeV, an intensity of 2 · 108 muons/cycle, a cycle
duration of 4.5 s, and a polarization of 76 % (Bressan 2004).
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Chapter 6
Polarized Targets

The development of polarized proton targets for accelerator experiments became
one of the important directions in polarization physics in the early 1950s. The ne-
cessity of such targets became obvious after theoretical works where it was shown
that reconstruction of the (pion–nucleon or nucleon–nucleon) scattering matrix re-
quires primarily the measurements of polarization parameters (see Sect. 2.2 “Re-
action matrix”). Experiments with unpolarized particles allow the determination of
only one observable, namely, differential cross section, whereas the other observ-
ables (more than three and eleven for the pion–nucleon and nucleon–nucleon scat-
tering, respectively) should be measured in experiments with polarized initial and/or
final particles. Such experiments obviously require both polarized beams and polar-
ized targets.

The principle of developing polarized targets (solid and gas) is the same as that
for sources of polarized ions: it is necessary to choose one of, e.g., four hyper-
fine states of the hydrogen atom. Let this state corresponds to positively polarized
protons (line 1 in Fig. 6.1). For the production of proton beams with negative po-
larization, it is necessary to choose, for example, line 3 in the same figure. Another
possible variant is the combination of two other lines.

In the external static magnetic field H , the levels of hydrogen atoms in the sta-
tionary state are occupied by both electrons and protons according to the Boltzmann
distribution

n± = e±
gβH
kT , (6.1)

where g is the Landé factor, β is the Bohr or nuclear magneton, k is the Boltzmann
constant, and T is the target temperature. This formula shows that the population
densities of lower energy levels (e.g., the ground level | − 1

2 ,+ 1
2 〉) is much larger

than those of upper levels (e.g., the level | + 1
2 ,+ 1

2 〉). By definition, the target po-
larization is

PT = n+ − n−
n+ + n−

= tanh
gβH

kT
. (6.2)
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Fig. 6.1 Energy level scheme and Zeeman splittings of the hyperfine components of the hydrogen
atom: (j,mj ), (I,mI ), and (F,mF ) are the spins and spin projections for the electron, proton, and
total spin �F = �j + �I , respectively; n is the principal quantum number; and the abscissa axis is the
ratio of the external magnetic field B to the so-called critical field BC , which corresponds to the
interaction between the magnetic moments of the electron and proton, leads to the singlet–triplet
doublet with FS = 0 and FT = 1, and is BC = 507 Oe for the ground state 1S1/2

Since n± are nonnegative integers, this formula indicates that the target polariza-
tion can vary in the range

−1≤ PT ≤ 1. (6.3)

The substitution of the experimental values B = 2 T and T = 2 K and the table
values of the other parameters g = gn = 5.56, β = βn = 3.152 · 10−14 MeV T−1,
and k = 8.617 · 10−11 MeV K−1 into formula (6.2) provides the following estimate
for the expected polarization of protons in a target:

PT ≈ 0.002. (6.4)

This polarization of the proton target is too small for applications. At the same
time, this method called the “brute force” method based only on the use of the
strongest possible magnetic field and the lowest possible temperature is of applied
interest for the production of polarized electrons. This is because the magnetic mo-
ment of the electron is larger than the magnetic moment of the proton by a factor of
gemp

gpme
≈ 660, and the electron polarization is almost complete under the same condi-

tions as for protons. Polarized electron targets have recently attracted great interest
in view of the proposals of physicists to use them to create antiproton polarizers
(Rathmann et al. 2006; Meyer 1994).
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The development of a polarized solid proton target became possible in 1953,
when American physicist Overhauser proposed the idea of dynamic nuclear polar-
ization (DNP) (Overhauser 1953a, 1953b, 1953c).

This idea was immediately tested and completely confirmed experimentally
(Carver and Slichter 1953a, 1953b). On the basis of this idea, numerous polarized
targets both with continuous polarization generation and with “frozen spins” have
been developed. We will return later to polarized proton targets and discuss these
mechanisms in more detail.

Now, we briefly present the essence of the DNP (Dynamic Nuclear Polariza-
tion) idea following Bilenky et al. (1964), Atsarkin (1980), Jeffries (1963), and Paul
(1960).

Let us consider the ground state 1S1/2 of the hydrogen atom. The hydrogen atom
consists of two particles with spin 1/2, a proton and an electron. Since they have
magnetic moments, they interact with each other and this interaction leads to the
formation of four energy levels. Three levels correspond to three projections of the
total spin F = 1 of the (proton + electron) system (triplet states). The fourth state
corresponds to F = 0 (singlet state). These states exist in the absence of a magnetic
field, but only as a doublet with F = 1 and 0, because the triplet states are degener-
ate (see Sect. 1.5). Two additional interactions appear in the hydrogen atom in the
external magnetic field H . The interaction of the electron magnetic moment with
the field H lifts the degeneracy of the triplet state. It is split into three levels and,
thus, four lines, the so-called fine structure lines appear. As a result of the interac-
tion of the proton magnetic moment with the field H , each of the fine structure lines
is split into two lines, which are called the hyperfine lines. These four spectral lines
are designated by the Dirac brackets in Fig. 6.1 and also by numerals 1–4 from top
to bottom. In Dirac brackets | − 1

2 ,
1
2 〉 and | − 1

2 ,− 1
2 〉, the first and second spin pro-

jections refer to the electron and proton, respectively. The upper spectral lines are
correspondingly denoted as | 12 , 1

2 〉 and | 12 ,− 1
2 〉 or as lines 1 and 2, respectively.

The difference between the fine structure energy levels is

�Ee = �νe = geμBH. (6.5a)

At the same time, the difference between two neighboring hyperfine lines is

�Ep = �νp = gpμnH, (6.5b)

where the subscript p refers to the proton and μn is the nuclear magneton. Sub-
stituting the known values of the parameters (see above), we obtain

νp ≈ νe/660. (6.6)

This relation allows us to estimate the difference between the frequencies of ra-
diated waves from the transitions between different electronic levels and within a
given electronic level.

Transitions with simultaneous flips of electron and proton spin projections are
called forbidden, and transitions with only electron spin flip (|M,m〉↔ |M±1,m〉)
are called allowed. By means of an RF magnetic field perpendicular to the main
field H , transitions between the energy levels of the hydrogen atom can be per-
formed in paramagnetic impurity ions with spin 1/2. In this case, the relaxation time
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of the forbidden levels is much longer than the relaxation time of the allowed levels.
As a result, saturation is achieved in a certain time when populations of two levels
become the same. Let us consider the transfer between the | 12 , 1

2 〉 and | − 1
2 ,− 1

2 〉
levels (lines 1 and 3). For brevity, we specify the first and second levels by the signs
− and +, respectively. When the populations of the forbidden levels become the
same, we have

N+
N−

= n−
n+

, (6.7)

where N± and n± are the numbers of electrons and protons with the spin projec-
tions ± 1

2 , respectively. Since the relaxation time of the allowed transitions is much
shorter than the relaxation time of the forbidden transitions in an alternating mag-
netic field, the distribution of electrons under these conditions is a nearly Boltzmann
distribution. Then, it follows from relations (6.5a), (6.5b) and (6.7) that

n+
n−
= e

geμBH

kT . (6.8)

Now, after the dynamical excitation, the polarization of protons is determined by
the expression

PT = n+ − n−
n+ + n−

= tanh
geμBH

kT
. (6.9)

The comparison of this expression with expression (6.2) shows that polarization
increases after the dynamical excitation of the target. As mentioned above, this in-
crease is a factor of about 660; i.e.,

PT ≈ ge

gn
Pstat ≈ 6.6 · 102Pstat. (6.10)

This increase in polarization underlies dynamic nuclear polarization (DNP).
In this chapter, various types of polarized targets are successively discussed. Ow-

ing to various features, solid targets with continuous polarization generation and
with frozen spins, jet gas targets and storage cell gas targets are considered sepa-
rately. The parameters of polarized targets used in the experiments depend on the
type of reactions. For example, polarized targets for electron beams should be suffi-
ciently thin for a beam, and the target material should have a small radiation thick-
ness. On the contrary, a target for muon beams should be very thick for a beam
in order to compensate low yields of a reaction. The sizes of polarized targets for
hadron beams should be intermediate between the sizes of polarized targets for elec-
trons and muons.

In the absence of an external magnetic field (H = 0), the electron spin j and pro-
ton spin I is summed to the total spin F . It is conserved because the corresponding
operator commutes with the Hamiltonian. It has two eigenvalues FT = 1 (triplet)
and FS = 0 (singlet). As a result of the interaction between the magnetic moments
of the electron and proton, these two levels are split even in the absence of an ex-
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ternal magnetic field (see Fig. 6.1). In this case, the triplet level is above the singlet
one by the energy �W = � · 1420.4 MHz≈ 5.8 · 10−6 eV. The principal quantum
numbers n are given in Fig. 6.1 to the right of the solid vertical line and the absolute
energies of the levels of the hydrogen atom measured from the ground level n= 1
are presented to the left of this vertical line. In particular, the levels with n= 2 and
3 are spaced from the level with n = 1 by energies 10.2 and 12.1 eV, respectively.
The ionization energy of the hydrogen atom is 13.6 eV. Lamb shift polarimetry is
based on the 2S1/2 excited level.

Let us consider now changes in the levels in an external magnetic field B taking
the ground state as an example. The dashed vertical line corresponds to the point
B = 0. In the external magnetic field, the triplet state with the total spin projections
mF = 1,0, and −1 is split into three hyperfine lines, and the energies of the first
two lines with m= 1 and 0 (specified as 1 and 2 in Fig. 6.1, respectively) increase
with magnetic field, whereas the energy of the line with m=−1 (line 3) decreases.
The energy of the singlet line (line 4) also decreases. The right column shows the
spin states of the electron and proton that enter into certain lines. For example,
states 1 and 3 contain spins with positive and negative projections on the direction
of the field H , respectively. In both cases, the electron and proton spins are parallel
to each other. They are antiparallel in remaining states 2 and 4. Since the target
polarization is determined only by proton spin orientations, the DNP process at low
temperatures (∼1 K) is used to align proton spins in a magnetic field range of 2–5 T.
In this case, pump frequencies are in a range of 50–150 GHz. Polarization can be
obtained without the use of the DNP method, but with the use of low temperatures
and strong magnetic fields. This method was already mentioned above as the brute
force method and began to be applied to ND (deuterated ammonia) since Kageya
(2004).

In this chapter, we consider two types of polarized targets. Representatives of the
first group are the so-called polarized solid targets. They have a high nucleon den-
sity comparable to the Avogadro number (∼1023 nucleons/cm3). These targets are
usually used with the extracted primary and secondary particle beams. Polarized jet
targets and polarized storage-cell gas targets belong to the second group of targets,
are used in accelerators and colliders as internal targets, and have a nucleon den-
sity of 1012 and 1014 nucleons/cm3, respectively. The possibility of using polarized
jet targets and polarized storage-cell gas targets as internal targets is based on the
fact that the effective density of such targets increases proportionally to the high
frequency of beam circulation in accelerators/colliders (100 kHz–1 MHz). At col-
liders, an additional factor increasing the effective target thickness is associated with
the beam lifetime ranging from 5 to 10 h. Hence, this factor is ∼104 (in seconds).
As a result, the effective densities of polarized jet targets and polarized storage-cell
gas targets at colliders are about 1022 and 1024 nucleons/cm3, respectively. Appar-
ently, the effective densities of gas targets approach closely the density of polarized
solid targets. Polarized gas targets have two important advantages over solid targets:
first, they completely consist of polarized protons and, second, their polarization
is frequently reversed. We emphasize that two types of targets, solid and gas, do
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not replace, but supplement each other. In particular, gas targets cannot be used on
extracted or secondary beams, whereas polarized solid targets cannot be used as
internal targets in accelerators.

The important parameter of any polarized target is the so-called target quality
factor defined as

M = κ · n · (d · P)2. (6.11)

Here, κ is the factor of the filling of a working cell by a useful substance (con-
cerns polarized solid targets), n is the target density, d is the dilution factor defined
as the ratio of polarized nuclei to the total number of nuclei (polarized + unpo-
larized), and P is the target polarization. The parameter M minimizes the time of
achieving a given asymmetry measurement accuracy in an experiment with a given
beam. Particular examples are given below.

We discuss only individual examples of polarized solid targets used in exper-
iments with hadron, electron, and muon beams. These examples give the general
representations about their properties such as used materials, magnets for the pump-
ing and preservation of polarization, generators for pumping polarization, radiation
resistance, factor of merit (FOM) of typical targets and their operational characteris-
tics. These examples illustrate both large successes in the development of polarized
targets and unsolved problems.

For the case of polarized gas targets, we consider only one polarized jet target and
one polarized storage-cell gas target that are most advanced and used at the largest
accelerators. We point to a proposal to use polarized gas targets with high densities
to polarize antiprotons (Meyer 1994). There is also a proposal to experimentally test
this idea (Rathmann et al. 2006).

Current promising developments aimed at improving the parameters of polarized
targets are not discussed. We concern them in the context of the description of the
chosen targets.

6.1 Polarized Solid Targets

In this section, polarized targets used on hadron, electron, and muon beams are
described. We consider targets of widely known experimental facilities HERA,
PROZA, E704, E143, EMC, SMC, and COMPASS. The last two targets are modern-
izations of the EMC target. Choosing the targets for description, we wish to present
a variety of both targets and physical problems solved with them. Polarized solid tar-
gets can be conditionally divided into two groups. The first group includes targets
with continuous polarization generation. Such targets are used with high-intensity
beams (1010–1012 particles/s). The second group includes frozen-spin targets. These
targets are used at beam intensities <108 particles/s, but provide a large useful solid
angle and a relatively weak magnetic field in the target region. Both types of targets
are presented in the experiments discussed below.
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6.1.1 Polarized Target of the HERA Facility

In 1971–1975, in the HERA (High Energy Reaction Analysis) experiment at the 70-
GeV IHEP proton accelerator, which was largest at that time, the polarization P and
spin rotation parameter R were measured in the following reactions of the elastic
scattering of particles and antiparticles by the polarized proton target developed in
Saclay, France:

π± + p ↑→ π± + p, K± + p ↑→K± + p, p± + p ↑→ p± + p.

(6.12)

Here, the proton and antiproton are denoted as p± for symmetry. These reactions
are appropriate for using polarized solid targets, because completely definite kine-
matics of a process allows an almost complete suppression of the background from
unpolarized nuclei in a target, where their number is almost an order of magnitude
larger than the number of polarized nuclei (the dilution factor d ∼ 0.1). In other
words, in above reactions, the dilution factor in polarized solid targets is not already
of special importance as a background source. The measurements were carried out
at a momentum of 40 GeV/c with a negative beam and at a momentum of 45 GeV/c
with a positive beam. The beams were obtained on internal targets and were trans-
ported on the polarized target of the experiment (Raoul et al. 1975; Bruneton et al.
1976). The experiment was unique both in the number of particles and antiparticles
and in energy. The results still remain unique.

When designing a polarized target, it is necessary to take into account a number
of circumstances, in particular, the physical observables that are measured. The de-
scribed experiment was designed to jointly measure two parameters: polarization P

and spin rotation parameter R. Taking into account reaction kinematics, this con-
dition imposed strong requirements on the design of the magnet of the polarized
target. Next requirements on the target design are determined by the beam parame-
ters. They are presented in Table 6.1.

According to Table 6.1, the maximum intensity of a beam, in this case the π−-
meson beam, did not exceed 6 · 106 π−/cycle or 106 π−/s. This means that frozen
spin polarized targets made of organic hydrogenous materials can be used in the ex-
periment. The use of such targets has a number of advantages. In particular, in this
case it is easier to prepare the material of a target with the additive of paramagnetic
pentavalent chromium atoms. Moreover, polarization can be held by a weak mag-
netic field of 0.5 T. The effect of such a field on the trajectory of the recoil proton is
weaker than the effect of a polarization generating field of 2.5 T. Such a target can
provide a larger useful solid angle for the experiment.

The following important parameter of a beam that should be taken into account
when designing a target is its transverse size. According to Table 6.1, the sizes of
the beam at the target are less than 2 cm. Therefore, the input diameter of an cell
with a working substance should be ≥2 cm. The next parameter following from
the experimental conditions is the useful solid angle necessary for detection of sec-
ondary particles. In the HERA experiment, it was determined by two requirements:
first, to measure elastic polarization, the open polar angle should be in the range
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Table 6.1 Parameters of the beams for the HERA experiment

Parameter Negative beam Positive beam

Momentum, GeV/c 40 45

Particle emission angles, mrad 0 27

Momentum band �p/p, % ±2 ±2.7

Beam composition, % π− (97.9); K− (1.8); p̄ (0.3) ρ (94); π+ (5); K+ (1)

Beam intensity at the
experimental target (ET) (for
proton beam intensity of 5 · 1012

protons/cycle on the U-70
internal target), particles/cycles

3 · 106 1 · 106

Beam sizes at ET (rms) x × y,
mm

10× 15 15× 18

Angular beam divergence at the
experimental target x′ × y′, mrad

(±2.5)× (±1.5) (±1.5)× (±1.3)

Momentum dispersion in, D, at
the momentum collimator,
D =�x/(�p/p), mm/ %

6 4.5

30 mrad < θ < 60 mrad and the azimuth angle should be about this value and,
second, the necessity of the simultaneous measurement of the spin rotation param-
eter R. Such a measurement is performed with the recoil particle; consequently, the
useful polar angle should be close to 90° in the laboratory frame. For this reason, su-
perconducting Helmholtz coils are calculated taking into account these conditions.
They have a polar opening angle of ±45° around a recoil angle of 90° in the labo-
ratory frame and ±7° in the azimuth angle. The opening angle for detecting recoil
protons scattered in the vertical plane is the same (Fig. 6.2).

Propanediol (C3H8O2) cooled by a flow of liquid 3He was used as a target mate-
rial. Liquid 3He flowed in a tube. The same tube contained a precooler, a condenser,
and devices for the expansion of 3He. The tube was placed inside the cryostat of
liquid 4He coaxially with it (see Fig. 6.2). A microwave cavity for target excitation
by a microwave field was placed at the end of this cylindrical tube inside it. This
part of the target is coldest in a 3He exhaust line. The total volume of used 3He was
25 l, and it was always in the closed cycle. The consumption of liquid 4He in the tar-
get was 2 l/h, and its general consumption taking into account the superconducting
magnet was approximately 10 l/h. The superconducting coils of the magnet were
later supplemented by additional windings in order to reduce the working current
from 260 A to 237 A; in this case, the working field remained at a level of 2.5 T.

The thin-walled copper cavity 24 cm3 in volume was filled with frozen propane-
diol balls with a diameter of about 2 mm. Polarization was reversed by small fre-
quency adjustment near 70 GHz without change in the strength and sign of the
magnetic field. Polarization in the excitation mode reached a maximum value of
85 % at an excitation power of 50 mW. Excitation was carried out at a temperature
of 0.48 K.
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Fig. 6.2 Polarized target of
the HERA facility (side
view): the magnetic field is
parallel to the horizontal
plane (perpendicularly to the
figure plane); the cryostat is
oriented upwards from the
beam axis

Table 6.2 presents the parameters of the polarized propanediol target. The diam-
eter and length of the target cell were 2 and 8.3 cm, respectively. At the excitation
time instant, the field was 2.5 T and the excitation frequency was 70 GHz. The
uniformity of the magnetic field in the target volume under excitation was better
than 10−4. After excitation, the target polarization was measured using the nuclear
magnetic resonance (NMR) technique. The coils were winded around of the cell
with the target. These coils absorbed or emitted powers proportional to the target
polarization. Measurements consisted of two stages.

At the first stage, the so-called NMR signal of natural (equilibrium) polarization
was measured. Measurements of this equilibrium signal were performed under the
same conditions as at excitation (a field of 2.5 T and a temperature of 0.48 K) only
with the disconnected microwave generator. These measurements gave a calibration
factor for determining the absolute target polarization after excitation. The level of
this signal is about 0.19 %, and it is usually difficult to measure such a weak signal.
At the second stage, the signal enhanced approximately by two orders of magnitude
after excitation is measured. Usually, a time of 20 min is sufficient to increase po-
larization from zero to 0.8 of its maximum value, which is about 80 %. However,
at least 2 h is required for increasing it to 80 %. In both cases, polarization is pro-
portional to the area of the curves scanned in time. Processing of a large number
of such curves taking into account such factors as the nonlinearity of a Q meter
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Table 6.2 Parameters of the polarized propanediol target (Bruneton et al. 1976; Raoul et al. 1975)

Target parameters Propanediol (C3H8O2)

Frozen-propanediol density, g/cm3 1.1

Free hydrogen density, g/cm3 0.12

Bound-to-free proton number ratio 4.2

Radiation length, cm 45

Target polarization (average for a running period), % 80

Time of P increasing to 0.8 · Pmax, min 20

Target diameter, cm 2

Target length, cm 8.3

Effective H2 density, g/cm3 0.085

Temperature, K 0.48

Microwave excitation power, mW 50

Frequency, GHz 70

and the scattering of signals in waveguides is a laborious problem. This information
from an analog-to-digit converter was transferred to a computer and was processed.
Polarization was determined by comparing the integral from the NMR signal with
the natural polarization signal. Target polarization on the average over the entire
running period was 77 % (see Table 6.2).

The accuracy of the measurement of NMR polarization by the instrument was
±5 %, where 3 % were due to the error in the determination of the equilibrium signal
and 4 % were due to the uncertainty of the signal enhancement factor (Autones et al.
1972). The target operated successfully for several years.

6.1.2 Polarized Target of the PROZA Setup (IHEP)

The PROZA experimental setup (for polarization in charge exchange reactions) was
created five years after the end of the HERA experiment and was mounted in the
same beam line 14 of the U-70 accelerator. Therefore, the hadron beam parameters
remained the same as those for the HERA experiment (see Table 6.1). The only
innovation is the extraction of a proton beam from the U-70 accelerator by a bent
single crystal (Aseev 1989). The beam energy was 70 GeV and the intensity was
107 protons per cycle. The uniqueness of this method is that it was applied for the
first time to the strong-focusing accelerator. Another feature was that the crystal
deflected the beam at a very large angle of 80 mrad, and there was no confidence in
obtaining the necessary intensity under these conditions. This beam has almost no
impurity of other particles, is monochromatic, and has small transverse sizes. It is
now used in the PROZA experiment.

The main objective of the development of a new type of a polarized “frozen spin”
target is to study polarization in charge exchange reactions. An example of two-



6.1 Polarized Solid Targets 261

Fig. 6.3 Target of the PROZA setup (designations are explained in the text)

Table 6.3 Polarized target of the PROZA setup

Proton target parameter Parameter value

Target size, mm Diameter = 19.6, length = 200

Target material Propanediol, C3H8O2

Paramagnetic impurity (concentration), 1020 spin/cm3 Complex Cr5 (1.8+0.1
−0.2)

Generation/holding field, T 2.08/0.4

Maximum polarization P+/P−, % +(90± 3)/(94± 3)

DNP, T (mK)/M (mV)/HF (GHz)/n (mol/s) 0.2/90/56/3 · 10−2

Time of increase to 0.8 Pmax, min 50

Freezing regime, T (K)/(mol/s) 0.02/2 · 10−3

Decay time P+/P−, h 1200/800

particle charge exchange reactions is the π−p(↑)→ π0n reaction. In addition to
elastic scattering, this reaction is the second successful example of using polarized
solid targets because the reaction kinematics is completely determined.

The target has been developed by physicists at the Laboratory of Nuclear Prob-
lems (JINR, Dubna) with the assistance of physicists from IHEP. The target scheme
is shown in Fig. 6.3, and its key parameters are given in Table 6.3. Its basic units
will be briefly described below.

The PROZA experiment at the U-70 accelerator (IHEP) was conducted with a
transversely polarized frozen target (Borisov et al. 1980). The idea of the develop-
ment of such a target was proposed for the first time in Neganov (1966) and Hall
et al. (1966). The target consists of a unique magnet with the combined function of
the generation and preservation of polarization (Fig. 6.4), an economical horizontal
dissolution refrigerator on the 3He–4He mixture (Fig. 6.3), a group of pumps for
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Fig. 6.4 Design of the Dzhin magnet of the PROZA setup: the arrow specifies the beam incoming
direction; the target cryostat is inserted in the same direction; the AA-section cut of the magnet is
shown on the right

vacuum production and the evacuation of flash 3He and 4He gases, and the systems
of the generation and measurement of polarization.

The polarized-target cell had a diameter of 1.96 cm, a length of 20 cm, and a
working volume of V = 60 cm3 (Borisov 1986). The magnet should provide the
necessary field (2.5 T) with uniformity �B/B ∼ 10−4. The preliminary calcula-
tions of the magnetic field configuration were performed using the technique devel-
oped at IHEP (Daikovskii and Portugalov 1978). Such a magnet that was designed
according to this model, was made at IHEP, and is in operation since 1980 is shown
in Fig. 6.4 (Burkhin 1981).

Let us begin with the magnet design. Load-bearing units consist of two steel
plates /1, 5/ fastened by four supports /3/. The magnet itself consists of the top /9/
and bottom /11/ X-shaped magnetic cores attached to the bearing plates by four
screws /4/. Both magnetic cores can be budged or extended by means of a shift
power system containing engine /6/, a worm gear reducer, and chain drive /7/. To
increase the saturation induction, the working gap of the electromagnet is formed
by two plates /12/ made of the 49-KF material. The magnetic core is made of SR-3
steel. The basic parameters of the magnetic core were chosen on the basis of the
preliminary calculations. For a more precise correction of the field (to 0.1 %), the
adjustable bend of polar plates /12/ was provided in the magnet design. The final cor-
rection of the field was carried out by shimming (placing permalloy foils in certain
places along the magnet poles). Two coils /8, 10/ are incorporated in the magnetic
core; each of them consists of 12 sections made of a ∅7× 1.5-mm copper tube. The
average number of turns in sections is 7. All sections are electrically connected in
series, and water is supplied to them in parallel by means of collector /2/. A thermo-
contact for switching-off of the magnet current at temperature >70 °C is mounted
at the water-output end of each section. The cooling system is designed for desalted
water (resistivity ≥10 k#/cm) at a pressure difference of 5.5 atm and an input water
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temperature of 15 °C. The general water flow rate under the specified conditions is
4 m3/h.

Let us shortly describe the magnet power supply. The field of the magnet was
generated by a thyristor source of stabilized current based on a KTU serial thyristor
rectifier (Inom = 800 A and Vnom = 240 V). Updating was necessary for increasing
the long-term stability of the source to ±0.01 % and for reducing the amplitude of
voltage pulsations on the magnet to 0.05 V. It has been experimentally determined
that heat release in the dissolution chamber of the refrigerator due to eddy currents
at this pulsation amplitude is ≤102 erg/s at a temperature of 19 mK, which is ad-
missible.

The problems of magnet protection against switching-off of water or increase in
its temperature above 70 °C have been solved. The reached accuracy of the magnet
current setting is ≤0.01 %.

The magnetic field distribution in the target region has been measured by a Hall
sensor and an NMR device. For the closed magnetic core, the vertical and horizontal
distances between the poles were 64 and 62 mm, respectively (see the right part in
Fig. 6.4). The distance between the poles of the extended magnetic core was 26 cm.
The aim was that the field and its uniformity in the first state can be enough to
generate a sufficiently high polarization. In the second state, high uniformity, as well
as a high field, was not required. The idea of the creation of such a simple, cheap, and
reliable magnet was implemented by the simple mechanical moving of the magnet
poles without changing other parameters. The magnetic field in the first case was
2.18 T, and its uniformity was �B/B ∼ 10−4 (Fig. 6.5). Curve 1 corresponds to the
optimum form of the poles selecting by means of bending screws. Curve 2 appeared
after the careful shimming of the fields using permalloy foils. This field is sufficient
for creating acceptable polarization in 2–3 h. In the case of the extended poles, the
field was 0.45 T and field uniformity in the target region was �B/B ∼ 10−2. These
field parameters ensured the target characteristics presented in Table 6.3. Another
advantage of this magnet is that it provides a large solid angle. Only owing to these
characteristics, the extensive research program for charge exchange processes with
small cross-sections has been successfully completed.

The total weight of the magnet is ∼1 t and its dimensions are 1.05 × 0.86 ×
0.95 m.

The improved version of this magnet designed for a target length of 400 mm was
created and tested in Grachev (1993).

The magnetic field of the Dzhin magnet has been measured in the target region.
Figure 6.5 shows the relative uniformity of the magnetic field along the target axis
beginning from its center.

The 60.3-cm3 target cell (position /2/ in Fig. 6.3) was filled with frozen
propanediol-1,2 (C3H8O2) balls about 2 mm in diameter; the filling factor of the
cell was 0.6. Propanediol contained additives of the EBA-Cr (V) paramagnetic ma-
terial. Propanediol contains ten unpolarizable bound protons per approximately one
polarizable free proton. The effective dilution factor of target polarization given by
the expression F = Nbound

Nbound+Nfree
was 0.9 taking into account liquid helium and foils

on target windows. The measured target density was 0.62 g/cm3.
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Fig. 6.5 Relative uniformity
of the magnetic field of the
Dzhin magnet along the
longitudinal target axis: curve
1 is obtained after the
optimization of the positions
of pole tips and curve 2, after
shimming by permalloy foils;
the origin of the abscissa axis
is at the target center

The thermal isolation of low-temperature units of the cryostat is ensured by vac-
uum jacket /19/, tight screen /9/ at a temperature of 77 K, and tight screen /13/ at
1 K. Gaseous 3He is cooled by a cooling coil placed in a vessel with liquid nitrogen
/10/ and then enters the channel of gas heat exchanger /17/. Coal trap /18/ placed
in this ring channel adsorbs various impurities, including hydrogen. Bath /4/ with
liquid helium 4He at a temperature of 1 K under vacuum provides the condensation
of 3He in condenser /14/. Bath /4/ was supplied by liquid 4He from reservoir /16/
through cooled coil /15/. After condensation, liquid 3He enters the heat exchanger
located in 3He evaporation bath /3/, and, then, counter flow heat exchanger /12/.
After dissolution, 3He passes through the cell with the target substance along the
channels of the counter flow heat exchanger and enters an evaporation bath. The
evacuation of 3He from the evaporation bath is performed through ring channel /7/,
the evacuation of 4He from bath /4/ is carried out through ring channel /6/. Evapo-
rating 4He from helium reservoir /16/ can be removed either through tube /11/, or
through coil /8/ located in channel /6/. Thus, 3He in channel /17/ is cooled simulta-
neously with 3He evacuated from the evaporation bath, 4He evacuated from bath /4/,
and 4He evaporating from tank /16/. This design ensured economical consumption
of cryogenic liquids in the target.

Thin-walled stainless steel tube /20/ 43 mm in diameter provides the channel
for the input of the cell with the substance. The beam passes through the same
channel. After the insertion of the cell with the substance and its hermetic sealing
in the channel, hollow heat-insulating plug /5/ is inserted in the channel. The plug
contains thin-walled thermal screens made of a copper foil 20-µm-thick on the beam
path and the coal trap creating high vacuum in the channel. Such a device allows the
fast and simple insertion and removal of the cell with the substance.

A GDI-7 tunable microwave generator with a long-term frequency instability
of ∼10−4 is used to generate polarization. In view of the high stability of the mi-
crowave generator, automatic frequency tuning is not required; consequently, the
microwave system is considerably simplified. The high voltage of a power supply
unit is only controlled in microwave generator operation.

The equilibrium polarization signal was measured at a temperature of 0.8 K in
a magnetic field of 2.1 T. The measurement accuracy was 3 % and the absolute
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accuracy of target polarization measurement was 5 %. The reached polarizations are
presented in Table 6.3. Polarization is lower than that in similar facilities, because
the reached field is somewhat weaker (2.1 T) than that in those facilities (2.65–
2.7 T).

Polarization sign change takes 2–4 h and is performed once in two days.

6.1.3 Polarized Target of the E704 Experiment (FNAL)

The E704 experiment at Fermilab was carried out with a longitudinally polarized
frozen target developed jointly by physicists from Saclay (France) and Argonne
National Laboratory (USA) (Grosnick et al. 1997). The target consisted of the fol-
lowing basic units (Fig. 6.6): (a) a dissolution refrigerator on the 3He–4He mixture,
(b) a superconducting solenoid, (c) a polarization generation system, and (d) a po-
larization measurement system (Chaumette et al. 1989, 1990, 1991). For the con-
venient service of the target, its basic elements were placed on mobile supports,
which make it possible to release a place on the beam for the liquid-hydrogen target
and for the elements of a Primakoff polarimeter and a Coulomb-nuclear interference
polarimeter.

The cell of the polarized target had a diameter of 3 cm and a length of 20 cm.
It was filled with frozen 1-pentanol (C5H12O) balls 2 mm in diameter. 1-Pentanol
contained 6 wt % of water with additives of the EBA-Cr(V) paramagnetic mate-
rial. 1-Pentanol contains one polarizable proton per approximately six unpolarizable
bound nucleons. The effective dilution factor of target polarization was 8.4 taking
into account liquid helium and foils on target windows. According to estimates,
balls filled about 98 % of the total target volume and the packing factor was 0.65.
The measured target density was 0.62 g/cm3. The parameter A= (NAρl)

−1, where
NA is the Avogadro number, ρ is the target density, and l is the target length, which
is used when determining total cross sections, had a value of 1040 ± 38 mb for
protons.

The superconducting solenoid (see Fig. 6.6) had a total length of 86 cm and an
inner diameter of 9.4 cm. It consumed liquid helium with a rate of 1.5 l/h taking
into account consumptions on siphons, gates, and other transitive elements. The
solenoid could give a maximum field of 6.5 T at a supply current of 185 A. For
polarization generation in this experiment, it operated with a field of 5 T. In this op-
erating mode, the nonuniformity of the magnetic field over the entire target volume
did not exceed �B/B ≤±5 · 10−5. After polarization build-up and transition to the
frozen-spin regime, the solenoid was moved by 16 cm upwards along the beam in
order to increase the useful polar angle in the laboratory frame up to 130 mrad. This
was necessary for measuring asymmetry in the production of π0 mesons in the cen-
tral region, i.e., close to 90° in the center-of-mass frame. At an initial proton beam
momentum of 200 GeV/c, this angle corresponds to an angle of about 100 mrad
in the laboratory frame. After this motion of the solenoid, the magnetic field in the
target volume remains ≥1.9 T. This field is quite enough for long-term preservation
of polarization in the frozen spin mode.
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Fig. 6.6 Polarized target of the E704 experiment at Fermilab: the dissolution cryostat, target, and
superconducting solenoid in the position for polarization generation are shown; the beam enters
from the left

The 3He–4He dissolution refrigerator was a self-contained unit, had a horizontal
design, and was coaxial with a beam. A free channel with a minimum extraneous
substance was kept at the refrigerator center for beam passage through the target.
A special gadget for the fast installation of the cell with the target at the workplace
was inserted through the same channel. This installation was performed when the
refrigerator was entirely cold and was in helium atmosphere. The pumping speed
of the evacuation pumps was 5500 m3/h. The temperature in the frozen mode was
60 mK and the 3He flow was 4 mmol/s. This flow in the polarization build-up mode
was 24 mmol/s.

Temperatures were measured by means of carbon resistors calibrated on germa-
nium resistors.

All equipment was mounted on a support, which moved perpendicularly to the
beam axis. During the collection of statistics, a leak appeared in the 3He evacuation
pump and the frequent reversal of the target polarization became impossible. The
relaxation time of target polarization was 50 d at a target temperature of ≤80 mK.
A microwave back-wave tube was used as a microwave generator for frequencies
near 70 GHz. It ensures the possibility of fine frequency tuning to increase the popu-
lation of different levels of the hydrogen atom if necessary. Thus, target polarization
was reversed at a fixed magnetic field.

Target polarization was measured by the standard NMR method at a frequency
of about 100 MHz. Signals were detected from three coils placed on the cell of the
polarized target equidistantly at the beginning, middle, and end of the target. Owing
to noise, the middle coil did not work during the collection of statistics. The signals
from the coils were read out through the CAMAC system and were processed by a
computer. In the frozen mode, the measurements were performed with a period of
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several hours. The absolute polarization was determined by comparing the excited
(amplified) signal with the equilibrium signal. The equilibrium signal was measured
at a temperature of 1 K and a field of 2.5 T. In 3–4 h of generation, the polarization
of free protons usually reached PT = 77 % and PT = −80 %. These values were
obtained separately from two extreme NMR coils in measurements in the generation
and frozen modes. All these values coincided within the measurement accuracy. The
polarization decay rate in the frozen mode was (1.51± 0.16) % per day.

The analysis of all polarization measurement data showed that the error in polar-
ization at the 2σ level was ±6.5 % (Hill 1992). This error included discrepancies in
temperature and the statistical error in the measurements of the equilibrium NMR
signal, NMR signal background, and linear and nonlinear instabilities, spatial uni-
formity in the polarization distribution, as well as extrapolation and interpolation
errors. The contributions of the majority of these errors were symmetric and uncor-
related.

The positive direction of polarization in this experiment meant the high popu-
lation of the low laying Zeeman level. In other words, positive target polarization
means that it is directed along the solenoid field. Since the solenoid field in the
polarization generation regime was directed against the beam momentum, positive
polarization is also directed against the beam momentum. Polarization was reversed
once a day in order to reduce the level of the systematic errors associated with the
reversal of the beam polarization.

This polarized target was specially developed to measure the difference between
the total cross sections in pure spin states in the interaction of longitudinally polar-
ized 200-GeV proton and antiproton beams with the longitudinally polarized pro-
tons of the target. This experiment has been successfully carried out. In parallel with
this experiment, two-spin asymmetry ALL (π0) has been measured in the inclusive
production of π0 mesons in the central area at collisions of the longitudinally polar-
ized protons and antiprotons with the longitudinally polarized protons of the target
(Grosnick et al. 1997).

6.1.4 Polarized Target of the E143 and E153 Experiments (SLAC)

This target is taken in order to illustrate polarized solid targets used with electron
beams, intensities that can be withstood by these polarized targets, and arising prob-
lems (Crabb 1995).

The SLAC linear accelerator was taken as an example in the section devoted to
polarized electron beams. In that section, the beam parameters in the E143 experi-
ment are given in the table. The electron beam with an intensity of 5 · 1011 s−1 was
incident on the polarized solid cryogenic target with continuous polarization gen-
eration. Ammonia compounds 15NH3 and 15ND3 were used as target materials. To
avoid the strong radiation damage of the target, the beam was extended at the input
to the target to the sizes of the working cell. The simplified layout of the target is
presented in Fig. 6.7.
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Fig. 6.7 Polarized ammonia target of the E143 experiment at SLAC

The cryostat of the target was oriented vertically and passed in the coils of the
superconducting magnet. The refrigerator with continuous 4He evacuation operated
at a temperature of 1 K. This target has an original design: two working ammonia
targets 15NH3 and 15ND, as well as an empty target and a cell with a carbon target
settled one over the other, are placed in the refrigerator. Such a design had an appre-
ciable gain in statistics collection time. Any of the targets listed above could be in-
serted quickly into the beam by means of a mechanical drive and a remote-controlled
engine. Waveguides for the microwave generator, signal cables from NMR coils, and
the waveguide for the transfer of microwave power from the generator to the target
also passed inside the probe.

The superconducting magnet created a required uniform magnetic field of 5 T in
the target volume. The detailed description of the system can be found in Crabb and
Day (1995).

Ammonia used in the target was irradiated by different electron beams in a vessel
with liquid argon. The typical irradiation dose was 1017 electrons/cm2. After irradi-
ation, polarization is generated. Generation for protons gave a polarization of 95 %
in agreement with the previous measurements (Crabb 1991). However, the maxi-
mum polarization reached in the E143 experiment with the beam was only 80 %.
This occurred because of the specificity of the arrangement of the materials of the
targets. Deuterated ammonium was placed above the cell with ammonia (15NH3),
closer to the microwave generator. As a result, a portion of a wave from the genera-
tor, which was intended for ammonia, was absorbed in 15ND3 immediately behind
the waveguide.
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Fig. 6.8 Increase in deuteron
polarization (in deuterated
ammonia) in time; the effect
of addition frequency
modulation on this process is
clearly seen

Deuteron polarization generated immediately after irradiation was as low
as 13 %. However, it was found that generated polarization is at least doubled when
the same material is irradiated at temperature ≤1 K (Boden et al. 1991). Under the
conditions of the E143 experiment, the increase factor was 3, as seen in Fig. 6.8.

Deuteron polarization is additionally enhanced when using a frequency mod-
ulation signal. The time of the application of frequency modulation is marked in
Fig. 6.8 by an arrow with the “FM switching” legend near a time (abscissa axis) of
1800. Around a time of 1805, frequency modulation was erroneously switched on
and the polarization generation rate decreased.

During the experiment, target polarization decreased due to radiation damage.
To restore polarization, the method of annealing at a temperature 85 K was used.
A careful analysis of annealing and irradiation cycles has shown that this process
is complex. For example, two cycles of a decrease in the polarization of protons
were observed. The first cycle corresponds to a very fast polarization decrease at the
beginning of irradiation by a high radiation dose. After a time, this cycle changes
to a slower decrease. In the case of deuterons, there is only one slow cycle. The
Teflon cell containing ammonia is also polarized under irradiation. The measured
polarization of the cell reached 8 %, and a necessary correction was introduced in
proton polarization.

Another important applied result of such investigations is the detection of the po-
larization of 15N nitrogen atoms. Both polarizations increase during generation, but
the behaviors of the curves are different in the presence and absence of microwave
radiation. A thorough analysis is necessary to adequately correct the experimental
data on nitrogen polarization.

According to these investigations, irradiated ammonia exposed to continuous mi-
crowave radiation is a radiation-resistant material for beam intensities up to 1011

particles/s. Hydrogenous organic materials do not withstand such irradiations.

6.1.5 Polarized Target of the EMC Experiment (CERN)

The EMC (European Muon Collaboration) experiment on deep inelastic scattering
was performed on a muon beam with energy of about 200 GeV. The measurement
of the nucleon structure function g1 (x,Q

2) requires longitudinally polarized beams
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and targets. A muon beam naturally has longitudinal polarization. Its large trans-
verse sizes (about 5 cm), low intensity (∼3 · 107 muons/cycle), and small cross
section for its interaction with nucleons required the development of the largest
longitudinally polarized target used in experiments (Gabathuler 1984). Moreover,
experimentally measuring so-called raw asymmetry, asymmetry in deep inelastic
scattering is expected to be low according to the formula

Am = PμPpFDA. (6.13)

Here, Pμ and Pp are the beam and target polarizations, respectively; D is the factor
of polarization transfer from the muon to a virtual photon; and F is the target dilu-
tion factor; i.e. the ratio of the number of free protons in the target to the number
of all nucleons. For comparison, F = 0.13 and 0.17 for 1-pentanol and ammonia,
respectively. Experimenters have chosen ammonia. The parameter A is physical
asymmetry from which the function g1 (x,Q2) is determined. The quantity Am is
estimated as about 1 %. The measurement of such a small asymmetry is very sensi-
tive to changes in beam parameters in time and to equipment efficiency. Such sys-
tematic errors in experiments with polarized hadron and electron beams are strongly
suppressed by frequent reversal of the beam polarization. This is impossible in the
case of the muon beam. Owing to the large sizes of the target, target polarization
cannot also be quickly reversed. In order to reduce false asymmetry in this case, the
target was divided into two identical parts with opposite polarizations. In this case,
the measurement is performed simultaneously with two opposite signs of polariza-
tion. Nevertheless, it is impossible to completely eliminate the difference between
geometrical acceptances of instruments to these two parts of the target. As a result,
the necessity of the reversal of the target polarization remained, and this reversal
was performed, but not frequently.

The superconducting solenoid of the EMC target had a basic coil 1600 mm in
length and a free gap at the center with a diameter of 190 mm. At a current of
180 A, it produces a field of 2.5 T (see Fig. 6.9).

Twelve correcting coils each 132 mm in length are winded over the basic coil.
The correcting coils are distributed uniformly along the basic coil. The number of
turns and current for each correcting coil are selected separately. The aim was to
increase the edge fields of the basic coil and, thus, to expand the region of the uni-
form field. The magnet was cooled by liquid helium at a temperature of 4.2 K. The
flash cold gas cooled radiating screens. Average heat incoming to the solenoid at its
complete loading was about 6 W. The supply of liquid helium to the magnet was
provided automatically from a 2000-l Dewar vessel placed near the target refrigera-
tor. All gas was gathered and used again by the transfer system. The cryostat of the
target was entirely welded with the use of aluminum and titanium alloys.

The basic coil and each of the correcting coils had individual supply and provided
the uniformity of the magnetic field better than ±5 · 10−5 during 24 h. Time of
activating the magnet to the working field was about 10 min.

The target material was cooled by the 3He–4He dissolution cryostat, which was
united with the solenoid, but had an independent vacuum jacket. With the existing
materials for the target, the dynamic polarization process requires a power of at
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Fig. 6.9 Polarized target of the EMC experiment

least 1 mW per 1 g of the substance. For the entire volume of the EMC target, this
corresponds to a necessary power of 1.1 W. The expected power of the designed
cryostat at 0.5 K was 2.5 W. The test of the produced cryostat power gave a power
of 2.0 W at a temperature of 0.5 K. A difference of 0.5 W between the design and
actual cold productivities is entirely explained by the fact that the power of pumps is
insufficient to ensure the necessary speed of 3He circulation in the circuit. However,
the reached power is sufficient to cool the target to the necessary temperature.

The usual technique of target loading was inapplicable because of the high weight
of the target, and the original approach was implemented. In this method, direct
access is ensured to the mixing bath for loading of a material in the horizontal plane.
The target material stored in a special container at liquid nitrogen temperature (77 K)
is overloaded to the mixing bath. Special indium vacuum seals are quickly closed,
isolating the cell with the substance. The container remains near the cell, providing
a vacuum volume for evacuation, and serves as a beam guide. The container has
foils on two sides and minimum heat-insulating foils on the beam path.

Two parts of the target are placed in separate cavities. Each cavity has a diameter
of 159 mm and a length of 400 mm. Microwave power is introduced separately
into each cavity through WG22 square-section waveguides (8 mm). A VKE2401-
N3 extended interaction oscillator (Varian) was used as a microwave generator. Two
such generators provided the independent polarization of two parts of the target.
Despite the careful screening of halves of the target, small mutual induction was
revealed. However, induced polarization was measured and necessary corrections
were introduced in order to determine the correct polarizations of the halves of the
target.

For the measurement of target polarization, four coils for detecting NMR signals
were mounted on each of two halves of the target. Signal processing, calibration, and
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Fig. 6.10 Polarization
generation on the EMC
ammonia target

inclusion of corrections were performed by the standard method. The measurement
results are presented in Fig. 6.10.

It is seen that a polarization of 70 % was generated in approximately 12 h. Polar-
izations +76 % and −79 % were reached by 24-h generation.

With the use of this target, the well-known, currently unexplained spin-crisis phe-
nomenon was observed. In order to find a key to the explanation of this phenomenon,
the EMC program has been consistently continued on the same muon beam by two
groups, SMC and COMPASS. These groups have confirmed with a better accuracy
the existence of this phenomenon, though cardinal solutions of the problem have not
been given. However, they have improved the polarized target, which will be briefly
described below.

6.1.6 Polarized Target of the SMC Experiment (CERN)

In this section, we will follow Kynäräinen (1994), and Adams et al. (1999). The
target is also consisted of two halves. As the target material, 1-butanol containing
5 wt % of water and 4 wt % of EHBA-Cr (V) as a paramagnetic additive was used.
This material has been chosen because it is free of the background from polarized
nuclei, which is characteristic of ammonia where nitrogen nuclei are polarized. Bu-
tanol has a higher hydrogen content than propanediol. The method for preparing
butanol balls is the same as in the case of propanediol (see Sect. 6.1.2 “Polarized
target of the PROZA setup”).
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Each half of the target was placed in a cylindrical cell 50 mm in diameter and
650 mm in length (the initial length was 600 mm). The 100-GeV muon beam had the
transverse sizes 16×15 mm. Therefore, the beam entirely kept within the target. For
the separation of events from two halves of the target, the gap between them should
be 200 mm (originally 300 mm). The total sizes of the target were 2× 12× 80 cm
and the packing factor was 0.65.

The loading of the target material was made using the same method as in the
case of the EMC experiment. In the coldest part of the dissolution chamber, the
refrigerator gave a temperature of 30 mK. The cooling power of the refrigerator was
1 mW at 50 mK, 15 mW at 100 mK, 400 mW at 300 mK, and 1.3 W at 0.5 K.

The magnetic system of the target consists of three independent magnets. The
solenoid produces a basic field of 2.5 T with uniformity better than 6 · 10−5 over
the entire target volume. This field is obviously used to build-up polarization in the
target. The following dipole magnet produces a field of 0.5 T with a uniformity
of 10 %. The third magnet consisting of 16 coils is a solenoid for correcting the
longitudinal field of the basic solenoid. The inner diameter of the basic solenoid
over which the other magnets are winded is 265 mm and the free opening angle
is 7.5°.

A new feature of the magnetic system is the possibility of reversing polarization
in 0.5 h by using the combination of the magnetic fields of the solenoid and dipole.
For this purpose, the solenoid field is decreased to 0.5 T and, then, the dipole is
switched on. Now, it is necessary to hold the total field at a level of 0.5 T, syn-
chronously increasing the field of the dipole and reducing the solenoid field. When
the solenoid field passes through zero, the dipole field should be 0.5 T and/or above.
Then, the solenoid field is increased having the opposite sign, and the dipole field
can be decreased. When the solenoid field reaches 0.5 T, the dipole field can al-
ready be switched off. The basic requirement is that the total field should always be
above or equal to 0.5 T. The most dangerous situation is if this field becomes zero.
In this case, polarization also vanishes. This procedure is controlled by a computer.
This method for reversing polarization is very profitable. Polarization was usually
reversed once a week, and this process took a day. Now, this procedure can be made
once in 5 h, it takes only 0.5 h, and polarization is preserved.

Figure 6.11 illustrates polarization reached in the SMC target. The comparison
shows that this result close to the results obtained with the EMC target (Fig. 6.10).

6.1.7 Polarized Target of the COMPASS Setup (CERN)

The main aim of the COMPASS experiment is to determine the gluon contribution
to the nucleon spin. For this purpose, the physical program proposes investigation
of two processes. The first process includes the production of open-charm mesons,
and the second process includes the production of hadron pairs with a high trans-
verse momentum. Both processes are studied on a longitudinally polarized muon
beam with a momentum of 160 GeV/c. Deuterated lithium with longitudinal polar-
ization is used as a target. The COMPASS setup is based on the SMC equipment
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Fig. 6.11 Polarization
generation in the SMC
butanol target

with two differences. First, the new superconducting solenoid with a larger aperture
is under development to increase the useful solid angle of the instruments from 70 to
180 mrad. Second, the COMPASS collaboration has great achievements in the de-
velopment of 6LiD materials for the polarized target (Gauthtron et al. 2004). These
achievements are presented below.

Two-spin asymmetry in the production of particles in the deep inelastic scattering
of polarized leptons by the polarized target is defined by the expression

Am = N(+)−N(−)
N(+)+N(−) = PBPT FAt . (6.14)

Here, N(+) and N(−) are the normalized count rates of detectors for the parallel
and antiparallel orientations of the polarizations of initial colliding particles, respec-
tively; PB and PT are the beam and target polarizations, respectively; Am and At are
the measured (raw) and true asymmetries, respectively; and F is the dilution factor
defined as the ratio of free (polarizable) nucleons to the total number of nucleons
in the target. One of the important criteria in selecting materials for the target is the
so-called factor of merit M defined by the expression

M = ρκ(FPT )
2. (6.15)

Here, ρ is the target density and κ is the packing factor of the target with the
working substance. For a given asymmetry measurement accuracy, measurement
time is minimal at the maximum value of the M factor. The SMC and COMPASS
targets are compared in Table 6.4, which illustrates the achievements of the COM-
PASS collaboration. These achievements are the highest dilution and the quality
factors currently received in 6LiD. Polarization reversal by means of the combina-
tion of the solenoid and dipole is used in the COMPASS experiment, as well as in
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Table 6.4 Comparison of some parameters of the SMC and COMPASS targets

Parameter SMC SMC COMPASS

Target material NH3 D-butanol 6LiD

Density, g/cm3, ρ 0.85 1.10 0.84

Polarization, % H: 90 D: 50 D: 50

Packing factor, κ 0.60 0.60 0.55

Dilution factor, F 0.176 0.238 0.50

Quality factor, M 10.3 6.7 16.0

the SMC experiment. In the COMPASS experiment, the computer-controlled rever-
sal of polarization is performed once in eight hours and takes only 33 min. As a
result, appreciable economy of the beam usage time is achieved.

The above review of solid targets shows that frozen targets are profitable for
using with low-intensity beams and when the large solid angle is required. Tar-
gets with continuous generation and with radiation-resistant materials are used with
high-intensity beams. Organic materials (butanol, propanediol, 1-pentanol, ethanol,
etc.) have an order of magnitude lower resistance to radiation damage than ammonia
NH3 or 7LiH in which the paramagnetic centers are created through irradiation by
high doses of intense beams of electrons, protons, or other charged particles. There
are the following unsolved problems:

• Production of pure polarized proton targets,
• Fast reversal of the target polarization,
• Fast turn of polarization in the necessary direction (longitudinal or transverse to

the beam).

6.2 Polarized Gas Targets

The solid targets considered in the preceding section have a number of significant
disadvantages. Some of them are as follows. The first is a large inverse dilution fac-
tor; i.e., a target material includes many unpolarizable nucleons. The contribution
of these nucleons is sometimes an order of magnitude larger than the contribution
from polarizable nucleons. For this reason, the effective target polarization appears
to be an order of magnitude lower than the generated polarization of free protons.
As a result, it is difficult to study polarization effects in inclusive reactions in the ab-
sence of strong kinematic constraints, which exist for exclusive processes. Second,
the generation of polarization and, correspondingly, its reversal takes a lot of time,
several hours. For this reason, it is impossible to frequently reverse polarization to
substantially suppress the effects of false asymmetry. These two main difficulties
are absent in polarized gas targets. However, the density of the polarized nucleons
in gas targets is much lower than that in polarized solid targets. In particular, this
density in polarized solid targets is about 5 · 1022 protons/cm3, whereas the highest
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density of polarized protons in the RHIC jet target is only 1.3 · 1012 protons/cm3

(Wise 2004). The next qualitative jump in developing pure polarized proton tar-
gets was the development of polarized storage-cell gas targets. The highest density
reached in the HERMES experiment is 1 ·1014 protons/cm3 (Ackerstaff et al. 1998).
Nevertheless, the difference between the densities in polarized solid targets and po-
larized gas targets still remains large. Therefore, the most reasonable solution is
to use polarized gas targets in colliders. In this case, the effective thickness of the
target increases due to two factors. The first factor is the rotation frequency of the
internal accelerator beam, which is 7.8 · 104 and 2 · 105 Hz in the RHIC and U-70
accelerators, respectively. The second positive factor for a collider is the beam life-
time. The beam lifetime in RHIC is about 10 h, which gives an additional factor
of 3.6 · 104. As a result, the gain factor for RHIC is 2.5 · 109. This is a factor by
which the effective thickness of the gas target increases. In particular, the effective
thickness of a jet target is ∼1017 polarized protons/cm3, and the effective density
of polarized storage-cell gas targets is 1019 polarized protons/cm3. This density is
already comparable with the density of polarized solid targets. Thus, such targets
are very attractive owing to, first, almost the same density as that of polarized solid
targets, second, unit dilution factor (pure proton target), and, third, fast polarization
reversal and the almost point size of the target (in the case of a gas jet target).

The basic characteristics of polarized gas targets for two largest facilities, RHIC
and HERMES, are described below.

6.2.1 RHIC Polarized Jet Target (BNL)

The choice of a polarimeter for measuring the RHIC beam polarization was dis-
cussed in detail for a long time. The special working group was organized; after
the detailed analysis of the problem, it recommended to choose the polarimeter on
the basis of elastic proton–proton scattering in the Coulomb–nuclear interference
region. In addition to other advantages, this polarimeter is a self-calibrated device;
i.e., its analyzing power is equal to the polarization arising in the same process at
collision of unpolarized protons (details see in Sect. 8.1 “Polarimetry”). This po-
larimeter was implemented for the first time in the E704 experiment at Fermilab
in 1990 (Akchurin et al. 1993). In January 2000, the workshop on polarimetry at
Brookhaven National Laboratory (BNL) approved the recommendation of the work-
ing group. The variant of the creation of the jet polarized hydrogen target was also
recognized as optimal. In June 2000, design works began. On October 8, 2003, the
polarized atomic hydrogen source was mounted at the testbench at BNL. The polar-
ized atomic hydrogen source was placed at the standard position in the RHIC ring
in spring 2004. The first physical results on the measurement of the polarization
of a 100-GeV proton beam were presented on the 16th International Spin Physics
Symposium in Trieste in October 2004 (Bravar 2004).

The general view of the RHIC polarized jet target is given in Fig. 6.12 (Wise
2004). All sources of the polarized nuclear beams are based on the same principle
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Fig. 6.12 RHIC polarized jet target

and have the same configuration. Variations appear in applications to individual ac-
celerators. The given polarized atomic hydrogen source is situated in the vertical
position. Its sizes above and below the beam level are 230 and 120 cm, respec-
tively. The diameter of the largest chamber in the projection on the orbit plane is
80 cm. This chamber (at the beam level) contains the detectors for recoil protons.
The atomic beam source (designated as ABS) is in the top part of Fig. 6.12. It begins
with a tank for molecular hydrogen, which enters a dissociator, where molecules are
dissociated into hydrogen atoms by a 250-W RF discharge. The dissociator tube is
cooled by water. The tube ends with an aluminum nozzle cooled to 30–100 K. In the
latest version, an adapter 12 cm in length cooled to 70–140 K has been inserted be-
tween the tube and nozzle. All these tools reduce the recombination of atoms on the
walls, reduce the velocity of atomic hydrogen, and improve the temperature stability
of hydrogen.

Hydrogen atoms are separated by the Stern–Gerlach method using sextupole
magnets in electron spin states; i.e., states with spin +1/2 (hyperfine states |1〉 and
|2〉) and−1/2 (|3〉 and |4〉) are spatially separated. These sextupole magnets also fo-
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Table 6.5 Parameters of the RHIC polarized atomic hydrogen beam

Parameter Value Comment

Polarization, % 92.4± 2

Density p/cm2, 1012 1.3± 0.2

Beam size, mm 5.8 FWHM

Vacuum in the interaction region (with the
switched-off source), Torr

4 · 10−9

Vacuum in the interaction region (with the
switched-on source), Torr

1.4 · 10−8

Flow of atoms, atoms/cm2 1.24 · 1017

Magnetic field B, T 0.12 Vertical field

Uniformity ΔB/B 5 · 10−3

Density of atoms in the interaction region,
atoms/cm3

1.0 · 1012

Density of background molecular hydrogen,
molecules/cm3

1.5 · 1010 These are molecules
from the dissociator

cus atomic beams around the interaction point (the point of the interaction of atomic
hydrogen with the circulating beam of the accelerator). Then, nuclear polarization
is induced by changing the population of the hyperfine levels by means of the RF
generator.

The polarized beam passes through the interaction region, and one third of the
beam is focused on the detector of the Breit–Rabi polarimeter (designated as BRP
in Fig. 6.12).

The polarized atomic hydrogen source is divided into sections for evacuation: six
sections are provided for the atomic beam source, three sections, for the Breit–Rabi
polarimeter, and one section, for the target (the place of the intersection of the accel-
erator beam and jet). Each section is equipped with two pumps, except for the first
section where three pumps are used. As a result, vacuum in the interaction region
reaches 4 · 10−9 and 1.4 · 10−8 Torr in the absence and presence of the jet, respec-
tively. These values and some parameters of the polarized jet target are presented in
Table 6.5.

The importance of high vacuum in the interaction region is seen on the follow-
ing example. Vacuum in RHIC is 1.4 · 10−8 Torr ∼2 · 10−11 atm. Taking into ac-
count the Loschmidt number 2.7 · 1019 molecules/cm3, we find that the RHIC ring
contains 5.4 · 108 molecules/cm3. These are primarily N2 nitrogen molecules con-
taining 28 nucleons. Hence, the density of background nucleons from the resid-
ual gas is 1.5 · 1010 nucleons/cm3. The density of polarized protons in the jet is
1.0 · 1012 protons/cm3. Therefore, the expected background is about 1 %. If vac-
uum in the ring appears to be 10−6 Torr, i.e., two orders of magnitude lower than
in RHIC, the expected background-to-signal ratio is 1:1. Under such conditions, the
direct use of the RHIC source is difficult and maybe even impossible.
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The next important element of the polarized atomic hydrogen source is the mag-
netic field. To preserve nuclear polarization, atomic hydrogen should meet an adi-
abatically varying magnetic field on its path; otherwise, it can be depolarized. The
adiabaticity condition quantitatively means that the direction of the applied mag-
netic field in the rest frame of atomic hydrogen should vary with a frequency of less
than 10−3ω0, where ω0 is the Larmor frequency (γ0B). This adiabaticity condition
was violated by the magnetic field of two coaxial coils placed near the interaction
point. Their functions are, first, to preserve the polarization of atomic hydrogen and,
second, to eliminate the field on the path of recoil protons with low (<10 MeV)
energy. However, these coils eliminated the magnetic field at two places on the path
of atomic hydrogen. To correct fields at these places, iron magnetic screening was
used. Finally, the residual depolarization was reduced to <0.4 %. It is necessary
to notice that the source in RHIC is on a rectilinear section far enough from ring
magnets, and these fields were disregarded.

The polarization of atomic hydrogen was measured by the Breit–Rabi polarime-
ter in one minute. For this purpose, strong- and weak-field high frequency transitions
were tuned separately. These systems were placed both upstream and downstream
of the interaction point. The equipment for detecting atomic hydrogen had the large
amplification of signals at low noise and good grounding. It operated with one third
of the atomic beam passed through the interaction region. Let us denote the ratio of
the numbers of transitions to states |2〉 and |1〉 as κ = N2/N1 and the efficiencies
of weak- and strong-field transitions in the sextupole magnets of the Breit–Rabi po-
larimeter upstream of the interaction point as (1−ε1−3) and (1−ε2−4), respectively.
Then, the polarizations of atomic hydrogen beams are given by the expressions

P+ = 1+ κ cos θ − 2κε2−4 cos θ

1+ κ
,

P− = −1− κ cos θ + 2κε2−4 cos θ

1+ κ
.

(6.16)

Here, tan θ = Bc/B , where Bc is the critical field (Bc = 507 G for the hydro-
gen atom) and B is the polarization-holding magnetic field (Helmholtz coils in
Fig. 6.12). The values measured in 2004 are P+ = (95.7 ± 0.1) % and P− =
−(95.7± 0.1) %.

The usual determination of the efficiencies of high frequency transitions involves
measurements with all possible high frequency transitions. Then, the populations of
the corresponding levels are obtained by solving the resulting equations. Another
approach was used for this polarimeter. One of two spin states is usually transmitted
to the interaction region. The sextupole magnets of the polarimeter can bend both
nuclear spin states from the detector. If both states are transmitted to the interaction
region and the magnets are switched on, only atoms that are not deviated enter the
detector. Their occurrence frequency was 52 Hz. If the high frequency transitions
are switched off, unpolarized atoms enter the detector with a frequency of 20900 Hz.
Hence, the efficiency of high frequency transitions is 99.7 %. The measured aver-
age target polarization was (92± 2) % (Nass et al. 2004). The basic correction to
polarization came from molecular hydrogen that was passed through the interaction
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region and amounted 1.5 wt % of atomic hydrogen. Table 6.5 presents polarization
including this correction (Zelenski et al. 2004).

6.2.2 Polarized Storage-Cell Gas Target of the HERMES
Experiment (DESY)

In the preceding section, polarized jet targets used as internal targets in accelerators
and colliders have been considered. We pointed to a number of advantages of polar-
ized jet targets over polarized solid targets. However, some important physical prob-
lems require denser polarized gas targets. Two examples of such problems are as
follows. The measurements of the proton and neutron spin structure functions at the
HERMES experiment at the HERA collider (Coulter et al. 1990) required polarized
hydrogen, deuterium, and helium-3 gas targets with densities ≥1014 particles/cm2,
whereas jet targets have densities below 1012 particles/cm2. The second problem
is the development of an antiproton polarizer or polarizing filters (Dobeling et al.
1985), where targets with high densities are required to reach the necessary lumi-
nosity in an acceptable time.

The design principle of a polarized storage-cell gas target differs only slightly
from the design principle of the jet polarized target described above in application
to RHIC. The basic constructive difference is that a storage cell, which is a tube
about 40 cm in length where atomic hydrogen is stored in time, is placed in the
region of the intersection of the polarized atomic beam with the circulating beam
(interaction region, IR). The main engineering problem is to avoid the loss of the
target polarization because of an increase in the number of collisions of hydrogen
atoms with the walls of the storage tube. Another problem arises because the den-
sity of atoms is two orders of magnitude higher than that of the jet target. For this
reason, it is necessary to carry out good evacuation of the IR in order to avoid the
deterioration of vacuum in the accelerator (Nass et al. 2003). The scheme of the
polarized target (with the storage cell) currently used in the HERMES experiment
is presented in Fig. 6.13.

Unpolarized atomic hydrogen leaves the dissociator nozzle and, moving from
left to right, enters the sextupole magnets (Baumgarten et al. 2002a). The first mag-
net separated atoms in electron spin, and the second magnet focuses the chosen
nuclear-polarized beam to the interaction region. The transfer of electron polariza-
tion in nuclear polarization is ensured by RF generators in combination with the
magnets. Nuclear-spin-polarized atomic hydrogen passes through a tube and enters
the storage cell. It is a thin-walled aluminum tube with the 21 × 8.9-mm elliptic
section (see insert in Fig. 6.13) and a length of 40 cm. The inner surface of the
tube is covered with a special composite (Drifilm) to reduce the effect of collisions
of atoms with the wall and, correspondingly, the depolarization effect (�PWD, the
subscript WD means wall depolarization). The other sources of depolarization are
spin-exchange interactions between atoms (�PSE) and the interaction of the mag-
netic moment of an atom (electron) with the induced field of the beam (�PBI). The
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Fig. 6.13 Polarized storage-cell gas target of the HERMES experiment. The following units are
arranged from left to right in the direction of the motion of hydrogen atoms: the atomic beam
source (denoted as ABS) consisting of the nozzle, sextupoles with conic poles, and RF generators;
the T-shaped storage cell; the polarized electron beam with an energy of about 27 GeV enters from
above; the coils of the magnet producing the polarization holding magnetic field are shown; the
magnetic screen around the coils is given; the mass spectrometer (TGA), Breit–Rabi polarimeter
(BRP), and beam chopper are presented

cell is in a longitudinal or transverse magnetic field. In 1997–2000, a longitudinal
magnetic field of 3.3 kG produced by the superconducting solenoid was applied.
Since 2001, the transverse holding field produced by a standard warm dipole was
used. An electron beam with an energy of about 27 GeV and a polarization of about
60 %, which was described in detail in Sect. 5.2 “Polarized electron beams,” enters
the storage cell from above (see Fig. 6.13). The products of the interaction of two
beams, electron and hydrogen, are detected by the detectors located along the beam.
The primary goal of the HERMES experiment is the study of the nucleon spin struc-
ture functions. For this purpose, in addition to deep inelastically scattered electrons,
other charged particles, for example, a pair of charged hadrons is simultaneously de-
tected. Such reactions are called semi-inclusive. All detected particles are identified
in kind, energy, and emission angle.

A small-diameter tube is attached to the storage cell from the right (see insert
in Fig. 6.13). This tube allows one to take a portion of the polarized atomic beam
for the analysis of its mass composition by means of the target gas analyzer (TAG
in Fig. 6.13) (Baumgarten et al. 2003). The same portion of the beam is another
time taken to measure its polarization using the Breit–Rabi polarimeter (BRP in
Fig. 6.13) (Baumgarten et al. 2002b).

There are some parameters relating the average target polarization PT to the
atomic hydrogen polarization Pa (Lenisa 2004). These parameters are the fraction
of atomic hydrogen injected into the cell, αa ; the fraction of atoms surviving colli-
sions with the storage-cell walls, αr ; and the ratio of the polarization of hydrogen
molecules to the polarization of the atomic beam, β , which was recently determined
as β = 0.64±0.19 (Airapetian et al. 2004) from the data of the 1997 running period
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Table 6.6 Parameters of the polarized storage-cell gas targets of the HERMES experiment used
in the 1997, 2000, and 2002 running periods

Parameters H‖ (1997) H⊥ (2002) D‖ (2000)

αa 0.960± 0.010 0.918± 0.032 0.919± 0.026

αr 0.945± 0.035 0.979± 0.023 0.997± 0.017

Pz+ 0.908± 0.016 0.859± 0.032 0.927± 0.017

−Pz− 0.908± 0.016 0.859± 0.032 0.915± 0.010

−�PSE 0.035 0.055 ≤0.001

−�PWD 0.02 0.055 No

−�PBI No 0.015 No

P+ 0.851± 0.031 0.783± 0.041 0.851± 0.029

−P− 0.851± 0.031 0.783± 0.041 0.840± 0.026

T (1014 nucleons/cm2) 0.7 1.1 2.1

FOM (P 2t), 1014 nucl./cm2 0.5 0.67 1.5

with the longitudinally polarized target has been determined. The corresponding
relation has the form

PT = αa
[
αr + (1− αrβ)

]
Pa. (6.17)

Table 6.6 presents the parameters of targets in various running periods of the
HERMES experiment (FOM is the factor of merit).

The comparison of longitudinally polarized hydrogen and deuterium targets leads
to the following conclusions. In the same holding magnetic fields, spin-exchange
processes and processes of collisions with the storage-cell walls for deuterium are
suppressed as compared to hydrogen by the ratio (BH

c /BD
c )≈ 20. The second con-

clusion is that the positive and negative polarizations Pz almost coincide for hydro-
gen and are significantly different for deuterium. This difference is due to the fact
that deuterium has a larger number of spin degrees of freedom and, correspondingly,
the number of parameters is larger in this case.

Table 6.6 also shows that the optimum working condition of a target was ob-
served with the deuterium target in 2000, when conditions �PWD (wall-collision de-
polarization) =�PSE (spin-exchange depolarization) =�PBI (beam-field-induced
depolarization)= 0 were satisfied. This was explained by two reasons. The first rea-
son is the low critical magnetic field BD

c = 117 G, in contrast to the proton case,
where BH

c = 507 G. The second reason is the better covering of the storage-cell
surface. This procedure also improved the work of the target with H⊥ in the 2002
running period in comparison with the 1997 running period with H‖, as seen from
the comparison of the depolarization effects in these two running periods presented
in Table 6.6.

At the same time, a problem was outlined. According to Table 6.6, the target
used in 2002 is inferior to the target used in 1997 in both the quality factor and
polarization. The cause of this problem is that the target density in 2002 was higher
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and, correspondingly, depolarization effects increase due to a larger number of colli-
sions with walls and to spin-exchange processes. The solution of the problem seems
to increase the holding magnetic field proportionally to the increase in the target
density.

6.3 Conclusions

The above presentation shows that enormous jump in the development of polarized
gas targets has been made in the past decade. In combination with gas targets, any
modern collider can provide two types of experiments in parallel: collider experi-
ments and fixed-target experiments. This feature expands the energy range accessi-
ble to experiments at colliders. Another important result of these developments is
that almost all one- and two-spin fixed-target inclusive experiments become possi-
ble due to purity (in the content of polarized protons). These two main achievements
in the development of polarized gas targets (not speaking about other achievements)
are remarkable achievements in polarization physics.
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Chapter 7
Polarized Hydrogen Ion Sources
for Accelerators/Colliders

In this chapter, we consider two types of commonly accepted polarized hydrogen
ion sources. The first source is called polarized atomic beam source (PABS). In this
source, atoms polarized in electron spin using the Stern–Gerlach method with the
subsequent microwave pumping of nuclear polarization are first obtained. The other
source is called optically pumped polarized ion source (OPPIS). This method in-
volves the capture of polarized electrons from optically polarized nuclei by protons
and the subsequent application of spin- and charge-exchange processes to obtain
polarized protons or polarized negative hydrogen ions.

A substantial stage in the development of these sources was initiated by two
proposals by Zavoiskii (1957a, 1957b). The first proposal based on the transfer of
the polarization of an electron at its capture by a proton in a charge-exchange target
has led to the development of modern OPPISs. The second proposal concerning the
use of the Lamb shift has led to the development of the first PABSs of the polarized
H− and D− ions for most tandem accelerators. First, they were also used as sources
at meson factories, but were later replaced by OPPISs (Zelenskii 2003).

Both PABS and OPPIS have three identical devices for obtaining a polarized
beam. The first device provides electron-spin-polarized atoms. The second device
is necessary for the transfer of the electron polarization to a nucleus, a proton in
this case. Finally, the third device provides either the ionization of nuclear-spin-
polarized atoms for the production of a polarized proton beam or charge exchange
for the production of a polarized negative hydrogen ion beam. Then, polarized pro-
tons or ions are injected into an accelerator. The final result on the production of
the polarized beam obviously depends on the effective operation of each of three
devices.

A significant difference between two sources is that a PABS deals with thermal
atoms (velocities of ∼105 cm/s), while an OPPIS provides quite fast beams (ener-
gies 3–8 keV and velocities ∼108 cm/s). Therefore, the final ion beams can differ
both in intensity and in polarization.

Below, we describe the PABS and OPPIS one after another. These two sources
provide the best parameters of polarized beams and are competing.
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7.1 Polarized Atomic Beam Sources

At present, either polarized protons or polarized negative hydrogen ions H− are
used for injection into accelerators. Correspondingly, sources are equipped with ad-
ditional units, such as charge exchange units. Below, we will briefly discuss the
parameters of the following latest sources:

(i) the polarized ion source at the Institute for Nuclear Research, Russian Academy
of Sciences (INR RAS) (Belov et al. 1995).

(ii) the IUCF–CIPIOS source (Derenchuk 2002).

7.1.1 Polarized Ion Source at the Institute for Nuclear Research,
Russian Academy of Sciences

In the mid-1990s, a polarized negative hydrogen ion source with a pulse current up
to 1 mA, a current duration of 180 µs, a polarization of 87± 2 %, and a normalized
emittance of 1.8π mm ·mrad, which contains 90 % of the beam, was developed at
the Moscow INR RAS. This achievement was based on a number of the important
engineering developments, which were widely applied later. This source seems to be
very promising and we will briefly describe its features primarily following Belov
et al. (1995).

The production of highly polarized proton beams with intensities of about the
intensities of unpolarized beams obtained at the same accelerators was a dream of
researchers in polarization physics for a long time. Estimates show that this achieve-
ment requires a pulsed source of polarized negative hydrogen ions with a current of
about 10 mA and a pulse duration of ∼200 µs. The necessity of polarized H− ions
is explained by the possibility of using multiturn injection to increase the intensity
of the circulating beam and to improve its emittance. In combination with a booster,
this method allows the storage of the desired intensity. The optimum stripping of
negative ions is certainly necessary before injection into the booster.

The polarized atomic beam source (PABS) at the INR RAS provides pulsed po-
larized positive and negative hydrogen ion beams. The charge exchange reaction
between polarized thermal hydrogen atoms and deuterium ions in the deuterium
plasma was used for the first time to obtain polarized hydrogen ions in this source.
The source provides a polarized H+ ion beam with a pulse current of 6 mA and a
polarization of 85 % (Belov et al. 1987, 1990). To obtain a polarized H− beam in
the same source, the deuterium plasma was enriched in D− ions using a specially
designed device with a cesium-vapor surface-plasma converter.

The layout of the polarized hydrogen ion source is shown in Fig. 7.1. The beam
of hydrogen molecules enters a dissociator from the left. Under the action of a mi-
crowave discharge in the dissociator, molecules dissociate into neutral hydrogen
atoms H0. Then, H0 atoms pass through a nitrogen-cooled nozzle to a collimator
and enter a sextupole magnet separating atoms in electron spin. A mass spectrom-
eter detecting the composition of the beam is located downstream of the magnet.
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Fig. 7.1 Layout of the
polarized atomic beam source
at the INR RAS

The focusing of atoms occurs in the next sextupole magnet. After that, electron-
spin-polarized atoms arrive at the region of a weak magnetic field with the mi-
crowave transfer of electron polarization to nuclear polarization. This section of the
source was described in detail in Belov et al. (1987). Then, atoms enter an ionizer.
The charge-exchange region is in a solenoid producing a magnetic field of 1.3 kG.
Nuclear-spin-polarized atomic hydrogen and negative deuterium ions D− enter the
solenoid from the left and right, respectively, and are involved in the charge ex-
change reaction

D− + �H0 →D0 + �H−. (7.1)

The use of this reaction to produce polarized negative ions H− was proposed
in Haeberli (1968). The cross section for this reaction at D− energy ∼10 eV is
10−14 cm2 (Hummer et al. 1960). The radial motion of polarized H− ions is bounded
by the solenoid field. They are drawn back by the electric field of the extraction
system (extracting electrodes are indicated in Fig. 7.1) and are accelerated to 20 keV.
Together with these ions, D− ions and electrons are also drawn. In a deflection
magnetic field, they are separated owing to the difference between their momenta.
The magnetic field deflects H− ions at an angle of 100° and extracts them from the
source region. The intensity of the H− beam was measured by the Faraday cylinder.
The beam emittance was measured by the two-slit method described in Belov et
al. (1994). The polarization of H− ions was measured by a low energy polarimeter
based on the Lamb shift effect. In this method, polarized protons are neutralized and
Lα and Lβ metastable states appear. The Lβ state has a very short lifetime, and the
Lα state is long-lived and its population is measured. In this case, H− ions should be
converted to protons. This is performed using a helium cell placed upstream of the
polarimeter (Fig. 7.1). The helium density in the cell is as low as 1014 cm−2. The
probability of double charge exchange H− →H+ at such density is about 0.5 %, but
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it is enough for the measurements. After the production of polarized protons using
the helium cell, protons are deflected by an electrostatic deflector to the polarimeter.
The measured polarization appeared to be 87± 2 %. It is assumed that polarization
is not lost in the charge exchange process.

A feature of the pulsed polarized hydrogen ion source at the INR RAS is the
production of the polarized ions by the charge exchange of polarized atoms in the
plasma:

H0 ↑+D+ →H+ ↑ +D0; (7.2)

H0 ↑+D− →H− ↑ +D0. (7.3)

The energy of colliding particles in the plasma is ∼10 eV; for such energies, the
cross sections for reactions (7.2) and (7.3) are 5 · 10−15 and 10−14 cm2, respec-
tively. Owing to such large cross sections for the charge exchange reactions, a high
efficiency of the charge exchange of neutral hydrogen atoms and a high intensity of
polarized hydrogen ions can be reached.

At INR RAS in 1986 the polarized proton source with the following parameters
was developed (see Figs. 7.2 and 7.3):

• the pulse current of the polarized proton beam is 6 mA with a free atomic beam
and 11 mA with a storage cell in the ionizer;

• the normalized emittance is 1.7π mm mrad with a free atomic beam and
1π mm mrad with the storage cell in the ionizer;

• the pulse duration is 100 µs;
• pulse repetition rate is 1–10 Hz;
• polarization is 80–90 %.

The following parameters of the polarized hydrogen atom beam have been
reached:

• the pulsed beam intensity is 2 · 1017 atoms/(cm2 s);
• the most probable velocity of atoms is 2 · 105 cm/s (cooling by liquid nitrogen).

Polarized negative hydrogen ions are very useful at injection into accelerators
because they can increase the intensity of a circulating beam by several times.

To obtain polarized negative ions, plasma enriched in unpolarized negative ions
D− should be generated in the plasma charge-exchange ionizer (Belov et al. 1987).

An unpolarized D− ion source with a current of 2 µA based on the plasma source
without the converter was developed in 1990 at the INR RAS. In 1993, the current
of unpolarized D− ions was increased to 1.2 mA and the plasma converter with the
use of Cs vapors was developed for the application of the surface-plasma method
for producing negative ions. Then, the current of unpolarized D− ions reached
11 mA in 1996 due to placing of the plasma converter at the input of the ionizer
solenoid. The development of a two-stage arc converter made it possible to reach
a current of more than 60 (up to 90) mA in 2001. On the basis of these achieve-
ments, the parameters of the negative polarized hydrogen ion source have been im-
proved:
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Fig. 7.2 Oscillogram of the
H− ↑ ion current pulse from
the polarized ion source at the
INR RAS: the vertical and
horizontal scale units are
1 mA and 50 µs, respectively

Fig. 7.3 Oscillogram of the
H− ↑ ion current pulse and
(lower pulse) unpolarized D−
ion current pulse from the
polarized ion source at the
INR RAS: the horizontal
scale unit is 50 µs

• the pulse current of the H− ↑ ion beam is 3.8 mA;
• the pulse current of the unpolarized D− ion beam is 60 mA (up to 90 mA);
• the polarization is 85–90 %;
• the normalized emittance is 1.7π mm mrad;
• the pulse duration is 170 µs;
• the pulse repetition rate is 1–10 Hz.

7.1.2 IUCF–CIPIOS Polarized Ion Source

The cooler injector polarized ion source (CIPIOS) is intended for producing po-
larized and unpolarized H− and D− ions. It was developed in 1999 in cooperation
between the Indiana University Cooling Facility (IUCF) and the INR RAS.

Unpolarized H− and D− ions are produced in the plasma ionizer when hydrogen
and deuterium are supplied to the plasma source, respectively. For the production
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Table 7.1 Measurement results for the polarization of D− in IUCF

State Expected Pz Measured Pz Expected Pzz Measured Pzz

+ vector +1 0.909 +1 0.891

− vector −1 −0.684 +1 0.695

+ tensor 0 0.003 +1 0.875

− tensor 0 −0.020 −2 −1.591

of polarized D− ions, deuterium and hydrogen are supplied to the dissociator of the
source and to the plasma source of the ionizer, respectively, and are involved in the
reaction

D0 ↑ +H− →D− ↑ +H0. (7.4)

In contrast to the source at the INR RAS the CIPIOS involves sextupole mag-
nets (sextupoles) made of permanent magnets with a magnetic field of 1.4 T. This
made it possible to achieve the better focusing of an atomic beam and to reduce the
emittance of the polarized beam; the latter circumstance is particularly important
for the injection of polarized ions into the radio frequency quadrupole (RFQ). The
cryogenerator is used to cool atoms in the dissociator. In the CIPIOS, the deuteron
polarization scheme with two sextupole magnets and three high frequency transi-
tions is used; it can provide vector polarizations ±1 and tensor polarizations +1
and −2. The polarization direction in the beam extracted from the source is vertical
for both H− ↑ and D− ↑ ions.

The following characteristics of the IUCF (CIPIOS) negative polarized hydrogen
ion source have been obtained:

• the pulse current of the polarized H− ↑ (D− ↑) ion beam is 1.8 (2) mA.
• the pulse current of the unpolarized H− (D−) ion beam is 40 (30) mA.
• the polarization of H− ↑ is 80–85 %;
• the polarization of D− see in Table 7.1;
• the normalized emittance of H− ↑ (D− ↑) is 1.2π mm mrad;
• the pulse duration is up to 500 µs;
• the pulse repetition frequency is 1–4 Hz;
• the CIPIOS provides the long-term stability of intensity and polarization, po-

larization was constant during the accelerator operation runs with a duration of
∼1000 h;

• the CIPIOS operates with high reliability: it operates without staff with an auto-
mated control system during ∼1000 h.

7.2 Optically Pumped Polarized Ion Source (OPPIS)

The worldwide largest, yet single polarized proton collider RHIC (Relativistic
Heavy Ion Collider) with the design center-of-mass energy

√
s = 500 GeV was
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commissioned in 2000 at Brookhaven National Laboratory, BNL (USA). The col-
lider at this energy should provide a luminosity of L = 2 · 1032 cm−2 s−1 and a
polarization of 70 %. The collider with the design parameters should deliver 120
bunches. The polarization of every bunch is set by a certain program. The optically
pumped polarized ion source (OPPIS) developed by the Collaboration consisting of
physicists from BNL; INR RAS; LAMPF; TRIUMF; and KEK. OPPIS is used as an
injector of polarized particles (Zelenski et al. 2002). In order to reach the desired lu-
minosity, every bunch should contain 2 ·1011 polarized protons. Taking into account
losses of the beam on its transportation, the source should produce at least 1012 po-
larized H− ions, which corresponds to a current pulse integral of ∼150 mA µs. The
source with a current of 0.5 mA and a duration of 300 µs satisfies this condition.

To increase the phase density of the beam, the multiturn injection of the beam
into the booster is now used. In this case, it is possible to compress 5 · 1011 protons
in one bunch, to accelerate in the booster to 1.5 GeV, and then to inject into the
alternating gradient synchrotron (AGS). The AGS cycle lasts 3–5 s, whereas the
source operates at a frequency of 1 Hz; additional cycles are used for the diagnostic
purposes, for example, for the measurement of the beam polarization.

The layout of the RHIC OPPIS is shown in Fig. 7.4.
The superconducting solenoid consists of three windings having independent

power supplies. The aim of this design is to create the desired configuration of the
longitudinal magnetic field along the beam line. The electron cyclotron resonance
(ECR) ionizer operates at a frequency of 29.2 GHz and requires a magnetic field of
∼10 kG. The hydrogen plasma formed in an ECR discharge contains a large frac-
tion of protons (∼90 %). The extraction of protons from the ECR region and their
formation are performed using three-grid multiaperture ion-optical system. The ion-
optical system is located at the beginning of a table with a maximum magnetic field
of 27 kG. The length of this magnetic table is about 30 cm. A cell with optically
polarized rubidium vapors completely occupies this table. The distance between the
grids of the ion-optical system and the beginning of the rubidium cell is about 3 cm.
The superconducting solenoid can be moved relative to the ECR and Rb cell in or-
der to optimize the parameters of the source, as well as for repair and preventive
works. Deflecting plates consisting of four stainless steel pipes 5 mm in diameter
are mounted at the Rb-cell output. This improved vacuum pumping and allowed
one to refuse water cooling because protons through the deflecting system arrived
directly at the water-cooled screen.

After the deflecting plates, neutral electron-spin-polarized atomic hydrogen en-
ters the so-called Sona-transition region (named after the inventor of the method).
In this region, polarization is transferred from an electron to a proton. The careful
adjustment of the transition point position and the magnetic field gradient in this re-
gion can ensure 100 % efficiency of polarization transfer. Change in the sign of the
field should be performed at small gradients of the field. For this reason, the Sona-
transition region is placed inside the screen in the form of a soft iron tube 50 mm
in diameter and 155 mm in length. A coil 600 mm in diameter is placed outside
the screen. The coil field is directed oppositely to the field of the superconducting
solenoid. This is made for two reasons. First, it is possible to displace the point of
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Fig. 7.4 Layout of the RHIC optically pumped polarized H− ion source. The plasma proton source
is denoted as ECR (Electron Cyclotron Resonance), the laser probe is used to measure the thickness
and polarization of Rb vapors from the Faraday rotation of the polarization plane (the beam enters
from the left through a window in the ECR); the superconducting solenoid contains the ECR, Rb
cell, and Sona-transition region; the sodium jet ionizer is in the field; and LP is the laser for the
optical pumping of the vapor in a separate solenoid

the transition of the magnetic field through zero. Second, the magnetic field gradient
in the Sona-transition region can be reduced by means of the coil field. For exam-
ple, at a coil current of 100 A, the transition point is shifted by 8 cm against the
atomic beam and the magnetic field gradient (taking into account the effect of the
magnetic screen) is reduced to dB/dz < 0.2 G/cm. These conditions theoretically
ensure 100 % polarization transfer from the electron to the proton. The correction
coil simultaneously suppressed the residual field of the superconducting solenoid
on the ionizer; for this reason, a discharge current in the high-voltage field of an
extractor could be significantly reduced.

After the Sona region, hydrogen atoms already basically polarized in nuclear spin
enter the ionizer where they are scattered on sodium vapors and are transformed
to H− ions. The ionizer is placed in a magnetic field of 0.15 T in order to avoid
the depolarization of the atoms owing to hyperfine interaction. At the chosen field,
such a depolarization should be less than 2.5 %. However, such a field increases the
emittance of the polarized H− beam at the ionizer output. The increase in emittance
can be estimated by the formula

�εn ≈ 1.6πBR2, (7.5)

where B is the magnetic field in Teslas and R is the radius of the ionizer cell in
centimeters. Unnormalized emittance is calculated for atomic-beam energy of 3 keV.
The substitution of the numerical values of the parameters into formula (7.5) yields

�εn ≈ 0.2π cm mrad. (7.6)



7.2 Optically Pumped Polarized Ion Source (OPPIS) 293

Fig. 7.5 Layout of the injection of the polarized H− ions into the 200-MeV LINAC: OPPIS is
the optically pumped polarized ion source, SCS is the superconducting solenoid, M1 and M2 are
the deflecting magnets, LSP is the Lamb-shift polarimeter, optics box is a room for a laser unit
providing the pumping of Rb vapors; a laser beam from this unit is adjusted on the beam axis; SP
is the solenoid for turning the polarization direction from horizontal in vertical; H-source is the
high-current unpolarized H− ion source, RFQ is the RF quadrupole, and Na-Jet is the sodium jet
ionizer

Fig. 7.6 Sodium ionizer with
vertical geometry. A voltage
of ∼35 kV is applied to the
ionizer for the acceleration of
H− ions to 35 keV and their
subsequent injection into the
microwave quadrupole

The emittance of the polarized atomic hydrogen beam entering the ionizer cell
with a diameter of 2 cm is as small as 0.02π cm mrad and almost does not affect
the final emittance given by formula (7.6). After the ionizer, the H− beam enters a
microwave quadrupole having an acceptance of 0.2π cm mrad (see Fig. 7.5).

Hence, these parameters are nearly matched.
Note that a significant part of the neutral beam (about 70 %) at the ionizer input

is lost because of its large size.
In order to increase reliability at long-term operation, the geometry of the jet

target–ionizer has been changed from horizontal to vertical (see Fig. 7.6).
The nozzle in this geometry was mounted on the collector cover. New Inconel

(special alloy) heaters 2.5 mm in diameter were used. Such a heater in the bottom
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Fig. 7.7 Arrangement of the
elements of the Lamb-shift
polarimeter intended to
measure the polarization of
the H− ion beam at energies
2–35 keV

part is connected to a sleeve through a thick nickel wire 25-cm long. As a result, the
working temperature of the Inconel heaters decreased to 120 °C; correspondingly,
they could be simply wrapped by a copper foil instead of soldering used previously.
Thus, the reliability of their operation was increased. At a working temperature of
∼500 °C, the temperature of the hottest points of the heaters did not exceed 120 °C.
The temperature of the collector was maintained within 140± 10 °C by usual wa-
ter from the circulating water cooling system of the source. Special measures for
sealing the joints of the return transport tube with the collector on the one side and
with the tank for Na on the other side strongly reduced the heating of this tube. The
yield of H− ions from the cell was measured as a function of the temperature of the
ionizer for Na and Rb. These measurements showed that the H− yield was saturated
at a temperature of ∼350 and 500 °C for Rb and Na, respectively. The H− yield for
Rb increases with a decrease in the energy of the atomic beam and is ∼16 % at an
energy of 1 keV.

The beam polarization at the source output is measured by the Lamb-shift po-
larimeter (see Fig. 7.7).

This polarimeter is optimized for the work with pulsed polarized ion sources. Its
advantages are a high analyzing power and a high count rate. As a result, polar-
ization can be measured with an accuracy of 5–10 % in 2 min. The measurement
accuracy is primarily limited by systematic errors. Nevertheless, as a fast, abso-
lute, and online polarimeter, it is convenient for source adjustment and polarization
monitoring. The Lamb-shift polarimeter in the RHIC OPPIS is used in two possible
configurations. The polarization of H− ions from the source is measured in the first
case. To this end, the longitudinally polarized H− ion beam from the source with an
energy of ∼3 keV is focused by an electrostatic lens and is deflected by a magnet
at an angle of 47.5° (see Fig. 7.7). In this case, the polarization of ions is turned
by 180° and remains longitudinal, as necessary for the Lamb-shift polarimeter. To
obtain metastable hydrogen atoms, H− should be recharged first to H0 (hydrogen
atom) and then to H+ (metastable hydrogen atom). For this purpose, H− ions are
passed through a pulsed helium ionizer placed in a magnetic field of∼1 kG to avoid
the depolarization in these charge exchange processes. The proton beam is deflected
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Fig. 7.8 (Left scale,
triangles) Polarization and
(right scale) output current of
H− ions versus the thickness
of optically polarized
rubidium vapors

by a magnetic dipole by an angle of ∼5° and enters the polarimeter (see Fig. 7.7).
The polarimeter includes an electrostatic lens, a Na cell, a spin filter (a combination
of a solenoid with a magnetic field of 575 G and a capacitor), a photon detector, and
a Faraday cylinder.

In the second configuration of the polarimeter, protons are selected from a
sodium target–ionizer. Though their fraction is only 0.3 % of the H− yield, it is quite
enough for the measurements. These polarized protons are deflected by a magnet by
∼100°, and polarization remains longitudinal. Then, they enter the same Lamb-shift
polarimeter where their polarization is measured.

The measured proton polarization is shown in Fig. 7.8 as a function of the thick-
ness of the optically polarized Rb target.

As seen in the figure, polarization is almost constant in the Rb vapor density
range (2–12) · 1013 atoms/cm2. At low Rb densities, polarization decreases owing
to the neutralization of protons. In the working range ((5–10) · 1013 atoms/cm2),
this process leads a depolarization of 2–3 % and average polarization is ∼65 %. At
high densities, polarization decreases due to optical pumping attenuation.

Any ion plasma source contains an impurity of H+2 charged molecules. The OP-
PIS produces also molecules H−2 whose energy is half of the energy of the main
H− ions. They constitute a polarized background; consequently, it is necessary to
numerically determine both the background and its contribution to the polarization
of the main beam. Figure 7.9 shows the measured current of the negative ion yield
as a function of the voltage applied to the ECR device.

It is seen that the basic peak is observed at a voltage of 2 kV, and the bump
corresponding to the background molecules is observed at ∼4 kV. This bump with
pulsed feed (small squares) is lower than that with continuous feed. Their contribu-
tion ranges within 5–10 % and polarization is diluted by ∼2–3 %.

This effect is also observed in the RHIC polarized jet target (Zelenski et al. 2004).
To conclude the chapter, we present the comparative characteristics of pulsed

polarized ion sources (see Table 7.2).
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Table 7.2 Comparative characteristics of the polarized ion sources

Laboratory Source type Bunch current
(mA)

Polarization Pulse
duration,
µs

Pulse
repetition
rate, Hz

INR Atomic beam with a
quasiresonance
charge exchange
plasma resonator

11 for H+
3 for H−

0.8
0.9

200 10

BNL Optical pumping 1 for H− 0.7–0.8 500 1

JINR Atomic beam ionizer
with a Penning gauge

0.4 for D+ 0.6 400 0.2

Juelich Atomic beam with a
Cs-beam ionizer

0.01 for H− 0.9 20 1

Fig. 7.9 Yield of negative
ions from the ECR versus the
voltage applied to it

7.3 Conclusions

Two polarized ion sources successfully representing two competing directions,
namely, the polarized atomic beam source and the optically pumped polarized ion
source have been considered in detail. Both methods provide polarized sources
meeting modern requirements. Moreover, both directions have good reserves for
the further improvement of the beam parameters and the satisfaction of continu-
ously increasing requirements of researchers in polarization physics.
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Chapter 8
Beam Polarimetry

Polarization investigations with polarized proton, photon, electron (positron), and
muon beams are now conducted in many laboratories throughout the world. Inves-
tigations with polarized antiproton beams obtained from antilambda decay (Carey
et al. 1990) were also recently performed. Accordingly, physicists have developed
various devices to measure the polarizations of these beams. Such devices are called
polarimeters.

In this chapter, we define some terms particularly those that have not yet been
settled and formulate the general requirements on polarimeters and on necessary
accuracy in beam polarization measurements. Then, the classification of polarime-
ters is given and the physical foundations of polarimetry are briefly presented.

Examples of polarimeters are given beginning with the origin of polarization
physics at accelerators covering a wide energy range. We also present the latest
results on polarimetry obtained at the AGS accelerator and Relativistic Heavy Ion
Collider (RHIC), Brookhaven National Laboratory (BNL, USA). Schemes for cal-
culating polarimeters are illustrated on an example of the expected acceleration of
the polarized proton beam at the U-70 accelerator.

Examples of polarimeters currently used on polarized lepton beams are also
briefly reviewed.

Polarimetry is an actively developing field of polarization technology and is de-
voted to the research and development (R&D) of the methods for measuring the
polarization of beams and targets. Let us describe the procedure for measuring po-
larization. The scattering of the initial beam by the polarimeter substance can be
characterized by three parameters: the initial beam polarization, the polarimeter re-
sponse function usually called the analyzing power, and the asymmetry of particles
scattered in the polarimeter. Measuring the asymmetry of scattered particles and
knowing one of the remaining parameters from other measurements, one can de-
termine the last desired parameter. Some terms in polarimetry have not yet been
settled. For this reason, it is useful to take some definitions and terms from op-
tics and, specially, from the section of optics devoted to the polarization of light
(Prokhorov 1984). In particular, we use the term polarimetry for the set of the reg-
ular investigations for the development of polarimeters, i.e., devices for measuring
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the polarization of beams and targets. Both methods and devices applied in po-
larimetry obviously depend on many factors, for example, on interaction (strong,
electromagnetic, or weak) underlying polarimeter operation. All polarimeters based
on strong interactions are relative because neither the magnitude nor the sign of their
analyzing power can be predicted a priori. Polarimeters based on nuclear reactions
of elastic scattering, inclusive formations of pions, etc. are relative polarimeters.
On the contrary, all polarimeters based on electroweak interactions are absolute po-
larimeters, because both the magnitude and the sign of their analyzing power can be
predicted a priori. Møller, Mott, and Compton polarimeters are absolute polarime-
ters. Polarimeters based on weak interactions (decays of muons, hyperons, etc.) are
also absolute. There are polarimeters based on the interference between strong and
electroweak interactions. We call such polarimeters mixed or interference (by anal-
ogy with optics). Depending on the relative contributions of these interactions, they
can be closer to absolute or relative polarimeters, but cannot approach any of these
classes, because mixed polarimeters are based on the interference effect. Mixed po-
larimeters cannot be implemented without its calibration. The pp polarimeter based
on the interference between Coulomb and nuclear interactions is a typical exam-
ple of mixed polarimeters. According to the above classification, it cannot be called
absolute (though it is often called absolute), because the calculation of the analyz-
ing power of this polarimeter involves many hadron amplitudes a priori unknown.
Therefore, this instrument should be calibrated in advance, as any relative polarime-
ter. At the same time, an absolute polarimeter does not require such calibration. The
characteristics of polarimeters also depend on the kinematic variables of a reaction
such as the initial energy, scattering angles, and energy of secondary particles. Since
polarization is a vector, all three its components should be measured to determine
its direction in space. Such a measurement requires an absolute polarimeter rather
than a relative polarimeter that determines only the value of polarization without its
sign. The detailed classification of the polarimeters will be given below.

8.1 Basic Relations in Polarimetry

Left–right, “raw,” or experimental asymmetry is the directly measured difference
�n= n+ − n− between the particle yields n+ and n− for the different orientations
of the polarization vector of the beam (target) �PB ( �PT ) divided by their sum n =
n+ + n−:

ε(xF ,pT , s)= (n+ − n−)/(n+ + n−)=�n/n, (8.1)

or

ε(xF ,pT , s)=AN(xF ,pT , s)PB · �n · �nP . (8.2)

Here, �n is the unit vector perpendicular to the reaction plane and �nP is the unit
vector along the polarization vector. The angle between them is designated as φ.

Analyzing power or physical asymmetry AN(xF ,pT , s) in this formula is the
raw asymmetry ε of a particular process reduced to the 100 % polarization of the
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beam PB (or target PT ) and xF , pT , and s are the Feynman parameter, momentum
transfer, and the square of the total energy of the colliding particles in their center-
of-mass frame, respectively. For brevity, these variables will often be omitted, as we
did already for n+ and n−.

Polarimetry involves an important parameter called the dilution factor D =
signal/(signal+ noise) or the inverse parameter

R =D−1. (8.3)

Unfortunately, there is a confusion on notation for the dilution factor in the lit-
erature. In particular, the dilution factor is denoted as D = d in Sect. 6.1, in the
subsection devoted to the COMPASS target. This circumstance should be taken into
account when reading original articles. From general point of view the factor D

should relate the polarization of the target �PT to the polarization �Pn of the free or
polarizable nucleon in the target by relation �Pn =D �PT . For example, the polarized
propanediol target has a polarization | �PT | ∼ 70 % and D ∼ 0.1, so | �Pn| ∼ 7 %.

The factor R quantitatively determines the contribution of background processes
and characterizes the imperfection of a polarized target (or beam). For a perfect
target R = 1, but such a target does not yet exist. Taking into account this factor,
relation (8.1) is represented in the form

ε(xF ,pT , s)=D(n+ − n−)/(n+ + n−)=D ·AN. (8.4)

Here, n± are yields of the polarized nucleon in the target and AN is the analyzing
power taken as the foundation of polarimetry.

Therefore, the variance of raw asymmetry is given by the expression

σ 2(ε)=R/n. (8.5)

Equation (8.2) provides the other useful relation

σ 2(ε)

ε2
= σ 2(PB)

P 2
B

+ σ 2(AN)

A2
N

. (8.6)

Relations (8.5) and (8.6) are fundamental ones and widely used in polarimetry.
Let us consider a particular example of what statistics is required to determine beam
polarization with a given relative accuracy δPB . It is assumed that the analyzing
power is measured in a separate experiment with high accuracy. Neglecting the term
containing the analyzing power in relations (8.5) and (8.6), we find

N = R

(εδPB)2
. (8.7)

We emphasize two important circumstances. First, experimentally measured
asymmetry ε is D times smaller than physical asymmetry (see Eq. (8.4)). Second,
time required to achieve the necessary statistical accuracy δPB in the measurement
of the beam polarization is D times smaller in the case of the absence of the dilution
effect. Both these factors are present, in particular, in the experiments with solid
polarized targets made of organic materials, where R ≈ 8–10. Ammonium NH3 has
the lowest dilution factor, R = 4.2, among the currently available inorganic materi-
als.
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Equation (8.7) can be represented as an expression for the beam polarization
variance D(PB):

D(PB)= R

N ·A2
N

. (8.8)

The count rate N depends on luminosity L, differential cross section I for the
reaction used in polarimetry, and detector acceptance �Ω :

N = L · I ·�Ω. (8.9)

From (8.8) and (8.9), it follows that

D(PB)= R

L · I ·A2
N ·�Ω

. (8.10)

One of the important parameters of the polarimeter is the factor of merit (FOM)

M =A2
N · I. (8.11)

According to Eq. (8.10), a polarimeter with a higher FOM, M (at fixed luminos-
ity, dilution, and acceptance parameters) provides a higher accuracy in the determi-
nation of the beam polarization. The FOM, M allows the comparison of different
polarimeters: the higher the M value, the better the polarimeter.

8.2 Classification of Polarimeters

The first classification of polarimeters mentioned above is based on the type of in-
teraction used in polarimeters. A polarimeter based on an electroweak process is
absolute; i.e., the magnitude and sign of the analyzing power of this polarimeter
can be predicted a priori. Such a polarimeter can be used to determine an unknown
polarization of the beam (target) without additional calibration. Polarimeters based
on strong interaction are relative. Since there is no quantitative theory of strong in-
teraction, the parameters of such polarimeters cannot be calculated a priori. These
polarimeters should be selected empirically (“empirical polarimeters”), i.e., experi-
mentally. They should be calibrated using absolute polarimeters.

The general classification of polarimeters is shown in Fig. 8.1 (SPIN Collabo-
ration 1992). This scheme obviously misses the type of polarimeters based on the
interference effect between the strong and electroweak interactions. An example of
mixed polarimeters is the Coulomb–nuclear interference (CNI) polarimeter. This
polarimeter requires calibration and, correspondingly, is classified as a relative po-
larimeter. After calibration, it can possibly be transferred to the class of absolute
polarimeters. As seen in Fig. 8.1, polarimeters can be on-line, i.e., providing in-
formation on the beam (target) polarization immediately during an experiment and
off-line, i.e., providing information after the collection of statistics because of the
slow collection of statistics or the complexity of a polarimeter, for example, a large
amount of information or because of the necessity of the careful processing and
introduction of various corrections, etc.
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Fig. 8.1 Classification of polarimeters

Fig. 8.2 Elastic scattering
with (a) photon and
(b) reggeon exchanges

On lepton beams, absolute polarimeters are usually used and provide the high-
est accuracy (≈1 %). Polarimeters that can operate without interrupting the basic
experiment are called constructive. Polarimeters, interrupting the basic experiment
in order to measure the beam polarization are called destructive. Polarimeters that
measure polarization in the region of the interaction between the beam and target
(experiment target) in the case of experiments with the fixed target or in the region
of the collision of beams (in colliders) are called local.

General-purpose polarimeters used, for example, for the adjustment of an accel-
erator or its separate units and beam lines are called survey polarimeters.

Examples of all types of these polarimeters will be considered below in the cor-
responding sections.

Diagrams of elastic and inelastic processes are presented in Figs. 8.2 and 8.3,
respectively.

They represent the Feynman diagrams for all high-energy polarimeters cur-
rently used in experiments, except maybe a Compton scattering polarimeter. For the
Compton scattering polarimeter, it is sufficient to replace one of the proton lines by
a photon line, the exchange lines in one diagram by a photon line, and the exchange
lines in the other diagram by a boson line. Almost all absolute polarimeters are cal-
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Fig. 8.3 Inelastic scattering
with (a) photon and
(b) reggeon exchanges

culated in the one-photon exchange approximation sometimes with the inclusion of
higher order diagrams in unusual cases. Interference effects in such mixed polarime-
ters as the Primakoff polarimeter and Coulomb–nuclear interference polarimeter can
also be represented in the form of diagrams with one-photon and one-reggeon ex-
changes.

Let us discuss now the polarimetry of particular beams.

8.3 Polarimetry of Proton Beams

To cover a wide energy range, we will consider possible proton polarimeters in
application to the 70-GeV U-70 accelerator at the Institute for High Energy Physics
(IHEP, Protvino, Russia) and to RHIC (BNL, USA). By the example of the first
accelerator whose parameters are known, we present the scheme for calculating
the characteristics of polarimeters. By the example of the second accelerator, the
correctness of these calculations will be illustrated taking into account that the basic
polarimeters are almost identical in both cases.

It is supposed that a polarized proton beam is accelerated at the U-70 acceler-
ator complex from 25 keV to 70 GeV (see Chap. 5). The source provides 25-keV
polarized negative hydrogen ions that are accelerated to 100 keV and injected into
the Ural-30 linear accelerator. Then, the charge exchange injection of the 30-MeV
proton beam into the 1.5-GeV booster occurs and protons from the output of the
1.5-GeV booster are transported and injected into the U-70 accelerator. After the
acceleration of the polarized proton beam to 70 GeV, it is extracted from the accel-
erator by fast or/and slow beam extraction systems and is distributed over several
experimental setups with fixed targets. The main objective of this section is to ana-
lyze the possible methods for measuring the beam polarization in the corresponding
regions of the acceleration or transportation chain.

In 1981, it was proposed to accelerate the polarized proton beam at the U-70
accelerator using the Siberian snake method (Ado et al. 1983). At that time, this
proposal was not accepted. At present, it seems appropriate to return to this program
especially after the successful commissioning of the 200-GeV polarized beam at
RHIC and the promising advance to the final RHIC energy

√
s = 500 GeV. This

subject was discussed in detail at the 11th Workshop on High Energy Spin Physics
(Dubna, Russia, 2005). The reasons concerning the possibility of accelerating the
polarized proton beam in the U-70 synchrotron were presented by Shatunov (2005),
Vasiliev (2005) presented the possible polarization program with the use of this



8.4 U-70 Accelerator Complex at IHEP 305

Fig. 8.4 U-70 accelerator complex: (1) unpolarized ion source, (2) polarized ion source,
(3) Ural-30 RF linear accelerator, (4) 1.5-GeV booster, (5) beam transportation channel from U1.5
to U70, (6) U70 accelerator, (7) beam extraction and transportation system, (8) general and local
polarimeters

beam, and the report by Nurushev (2005) concerned polarimetry. The general tone
of reports and discussions was positive.

Polarimeters necessary for the measurement of the polarizations of protons in the
energy range 30 MeV–70 GeV are discussed below on the basis of work (Nurushev
2005).

8.4 U-70 Accelerator Complex at IHEP

The layout of an accelerator complex for the 70-GeV polarized proton beam is pre-
sented in Fig. 8.4.

Figure 8.4 presents all elements of the accelerating complex; the measurements
of the beam polarization are planned at the outputs of these elements and they will
be successively discussed below.

8.4.1 Polarimeter on 25 keV for an Atomic Beam Source

Polarized atomic beam source (PABS) and optically pumped polarized ion source
(OPPIS) have been described in detail in Chap. 7. In both cases, polarimeters based
on the Lamb shift of the hydrogen atom levels were applied to measure the polar-
ization of atomic beams with energies 10–30 keV. Such a polarimeter operates as
follows (see Fig. 8.5) (Belov et al. 1987).

The polarized proton beam is focused by electrostatic lens /1/ on a cell filled with
sodium vapors /4/. The beam position in the vertical plane is varied by electrostatic
corrector /2/. Vacuum valves /3/ control the proton flux. Some polarized protons
in the cell with sodium are transformed to metastable hydrogen atoms �H0 in the
states α and β (2S1/2). Then, the crossed static magnetic fields of solenoid /5/ and
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Fig. 8.5 Lamb-shift polarimeter for measuring the polarization of positive and negative hydrogen
ions

the electric field of capacitor /6/ eliminate the β state of the atom. The beam of
metastable atoms mainly in the α state is detected by special photon detector /7/
with a multiplier of secondary electrons. The beam passed through the polarimeter
is detected by Faraday cylinder /8/. Measuring the count rates for various initial
polarizations of the proton beam, it is possible to determine the beam polarization. It
has appeared to be 76±2 %. This accuracy was achieved in about 1 min. Therefore,
such an instrument can be used as an absolute polarimeter in the on-line mode. In
the present configuration, this polarimeter is destructive, because the polarized ion
beam should be taken away from the injection line for the period of its operation
(1 min); i.e., it interrupts the experiment.

8.4.2 Relative Polarimeter for an Energy of 30 MeV

A rich experience of physicists throughout the world can be used when developing a
relative polarimeter for measuring the beam polarization at the output of the Ural-30
linear accelerator. The analyzing power for the elastic proton–carbon (pC) scatter-
ing at this energy has been measured with an accuracy of about 1 %. According to
these results, the relative pC polarimeter can be designed for energy of 30 MeV us-
ing the scattering of protons at an angle of 65° in the laboratory frame. In this case,
the analyzing power is expected to be AN = (57.4± 0.9) %. Let us assume that this
instrument is directly used in the 1:1 scale. Since the Ural-30 accelerator provides a
current of I = 3 mA and a bunch duration of 40 µs, the number of protons in each
bunch is 7.5 · 1011. Let the thickness and width of a target be 106.9 mg/cm2 and
3 mm, respectively (the beam size is approximately 30 mm). For the useful solid
angle of the scintillator telescope Ω = 10−5 srad, 60 events per bunch are expected.
Taking into account 16 bunches and 6 cycles per minute, we obtain 6 · 104 events
in 10 min. This statistics is sufficient for measuring the beam polarization with an
accuracy of 5 %.

A possible variant of the polarimeter for energy of 30 MeV shown in Fig. 8.6 was
successfully used at Argonne National Laboratory to measure the polarization of 50-
MeV protons in the injector (Ratner 1974). The polarimeter is based on the elastic
scattering of protons on a carbon target at an angle of 55°, where the analyzing
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Fig. 8.6 Possible variant of a
polarimeter at the output of
the Ural-30 accelerator

power is about 85 % and the accepted by recoil detector differential cross section is
10 mb. The width and height of the target were 0.05 and 7.5 cm, respectively, and its
thickness was 0.08 g/cm2. Each of two symmetrically located telescopes consisted
of three scintillation counters. The thicknesses of the first two scintillators were
chosen so that scattered protons left the most part of energy in them. Then, counts
from inelastic processes are suppressed by means of thin polyethylene plates in front
of the third scintillator. The width, height, and thickness of the third scintillator were
4.04, 8.08, and 0.16 cm, respectively. This counter was determining, was placed at
a distance of 66 cm from the target, and covered a solid angle of 6.7 msrad. The
measurements of the mean free path, ionization losses, and time of flight ensured a
sufficiently reliable separation of the elastic process.

The same method can be used for an energy of 30 MeV, but it is necessary to
select the thickness of the filters in front of the last counter and to move to an angle
of 65°.

8.4.3 Polarimeter for the 1.5-GeV Booster

The analyzing power of pp scattering has been measured in a wide energy range.
The experiment for energy closest to the higher energy of the booster has been
executed at the PS accelerator at CERN (Albrow et al. 1970). The analyzing power
for protons with a kinetic energy of T = 1.34 GeV at a laboratory angle of ΘL = 12°
is AN = (37±2) % (see Fig. 8.7). The points in Fig. 8.7 are taken from McNaughton
and Chamberlin (1981), McNaughton et al. (1981a, 1981b), Bevington et al. (1978),
Besset et al. (1980), Bugg et al. (1978), Greeniaus et al. (1979), and Cheng et al.
(1967).

It has been found that the differential cross section is 66 mb/srad with an accuracy
of about 5 %. Let us assume that two scintillator telescopes each with a solid angle
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Fig. 8.7 Analyzing power of
pp elastic scattering at a
laboratory angle of 17° versus
the initial kinetic energy of
the proton (the most accurate
measurements performed in
Los Alamos); it covers the
lower energy range of the
booster of the U-70
accelerator; the curve is
calculated with the Arndt’s
phase shifts

of 0.7 msrad will be jointly used. The booster can provide approximately 30 bunches
each containing 2 · 1011 protons. The bunch duration is very short, approximately
80–100 ns. This condition imposes significant constraints on the data collection rate.
For safety, it is supposed that only one event can be detected in the passage of each
bunch through a target. This can be implemented using a polyethylene target with a
thickness of about 50–100 µm. For a beam polarization of 70 %, it is expected that
an accuracy of 5 % will be achieved in 2 h.

A possible variant of the polarimeter for the 1.5-GeV booster presented in
Fig. 8.8 is successfully used at the Dubna synchrophasotron to measure the po-
larization of proton and deuteron beams in the booster energy range Azhgirei et al.
(2002). Asymmetry in proton–proton elastic scattering is measured with the use of a
polyethylene target. To subtract the background coming from pp quasielastic scat-
tering, the carbon target is used. The data for a laboratory scattering angle of 14°
are more statistically valid. For a better selection of desired events, it is necessary
to add one scintillation counter to each forward arm. It is suggested to calculate and
install a protection around the equipment.

The analyzing power of a polyethylene target measured on the setup presented
in Fig. 8.8 is shown in Fig. 8.9 along with the results of the previous measurements.
According to this figure, the analyzing power of the polyethylene target at the high-
est booster energy is close to 35 %.

Fig. 8.8 Possible variant of a polarimeter for the booster: T is the target (CH2 or C), S1–8 are the
scintillation counters, IC is the ionization chamber; the polarimeter is based on pp elastic scattering
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Fig. 8.9 Effective analyzing
power AN (CH2) for
scattering at a laboratory
angle of 14° versus the
kinetic energy of protons

8.4.4 Polarimeters for an Energy of 70 GeV

The absolute and relative polarimeters developed for the main accelerator should
operate from the injection energy 1.3 GeV to the highest energy 70 GeV and mea-
sure the polarization of the internal beam at all stages of its circulation.

Before to discuss particular polarimeters, it is necessary to specify the key pa-
rameters of the U-70 accelerator that are substantial for the choice of a polarimeter.
Most these parameters are presented in Table 8.1 (Tarasov 1964).

Using these data and involving additional information, we can estimate the nec-
essary characteristics of a beam. First, we will estimate the transverse sizes of the
beam. Taking the beam emittance from Table 8.1 and the amplitude function from
additional sources, the transverse sizes of the 70-GeV beam can be determined from
the expressions

σi =
√
εiβi

6π
, σ̇i =

√
εi

6πβi
. (8.12)

Here, σi (i = x, y) is the transverse size of the beam in the corresponding di-
rection, σ̇i is the angular divergence of the beam, and εi and βi , i = x, y are the
emittance (contains 95 % of the beam) and amplitude function, respectively. The
jet target is placed on a rectilinear section of the ring between truncated blocks D∗
and F ∗. Here, the amplitude functions are βx , βy = 25 m. Thus, the transverse sizes
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Table 8.1 Comparative characteristics of polarimeters for the proton beams at RHIC and the U-70
accelerator (PPJT is the polarized proton jet target)

Reaction AN , % �σ , µb M , µb Setup Comment

1. p↑ + p→ p+ p, 100 GeV/c

10−3 ≤ |t | (GeV/c)2 ≤ 2 · 10−2,
�φ/φ = 8.6 · 10−2

2± 0.3 100 4 · 10−2 PPJT, nT =
1012p/cm2;
Si detectors

Based on the
polarimeter at
RHIC. Recoil
protons are
detected

2. p↑ +C→ p+C, 100 GeV/c
7 · 10−3 ≤ |t | (GeV/c)2 ≤
3 · 10−2, �φ/φ = 0.13

1 9530 0.953 Carbon foil,
Si detectors

There are no
data on the
differential
cross
sections.
Details of
estimates see
the text

3. p↑ +A→ π− +X, 70 GeV/c
xF ≈ 0.5, pT ≈ 0.7 GeV/c;
�p/p ≈±1 %, �Ω ≈ 8 µsrad

20 0.06 2 · 10−3 Internal
target,
extraction
of π− to
beam line
no. 2

It is necessary
to calibrate
the
polarimeter

4. p↑ + p→ p+ p,
p+ p↑ → p+ p, 70 GeV
0.2≤−t (GeV/c)2 ≤ 0.3

2.23± 0.15 120 3 · 10−2 PPJT of the
PROZA
setup and
scintillator
hodoscopes

Absolute
polarimeter
for internal
and external
beams

5. p↑ + p→ p+ p,
1.34 GeV, θlab = 12°,
�Ω ≈ 0.7 msrad

37± 2 46 6 CH2 target
and two
telescopes

Relative
polarimeter in
line

6. p↑ +C→ p+C,
30 MeV, θa lab = 65°,
�Ω ≈ 10 µsrad

57.4± 0.9 0.15 0.05 C target,
scintillation
counters

Relative
polarimeter in
line

7. H+ +Na− →H0 +Na0,
10 keV

100 – – Microwave
generator, γ
detector

Absolute
polarimeter in
line

of the 70-GeV beam are σx = 2.4 mm and σy = 2.1 mm and the angular divergences
are σ̇x ≈ 0.1 mrad and σ̇y ≈ 0.1 mrad. The parameters at the injection energy are
σx = 17.6 mm, σy = 15.4 mm, σ̇x ≈ 0.7 mrad, and σ̇y ≈ 0.7 mrad. Running ahead,
we note that the jet (with FWHM= 6 mm) completely covers the 70-GeV beam and
only 1/6 of the beam at the injection energy. As a result, polarization average over
the entire 70-GeV beam can be measured. The polarization of only 1/6 of the 1.3-
GeV beam is measured for once. This is insufficient and it is necessary to seek the
possibility of scanning the beam or the target in order to measure the polarization of
the entire beam.

Among known polarimeters, only the Coulomb–nuclear interference (CNI) po-
larimeter has weak energy dependence. This polarimeter also satisfies another im-
portant criterion: it has the highest quality factor (FOM). The third important fact is
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Fig. 8.10 Layout of the CNI polarimeter at RHIC based on pp elastic scattering; the resolution
in the recoil proton energy is <50 keV, the resolution in the time-of-flight is <2 ns, the angular
resolution is ∼5 mrad; indices b and t designate the beam and target, respectively

that the CNI polarimeter has been successfully implemented at RHIC for energy up
to 100 GeV. These discussions lead us to the choice of pp and pC polarimeters in
the CNI region, those that have been implemented at AGS and RHIC (Bravar et al.
2004; Jinnouchi et al. 2004).

For this reason, we will briefly describe two internal absolute CNI polarimeters
and two possible external polarimeters: the relative inclusive polarimeter on charged
pions and the absolute polarimeter based on pp elastic scattering.

8.4.4.1 pp CNI Polarimeter on the Polarized Jet Target with the Detection
of the Recoil Proton

The pp CNI polarimeter for 70 GeV has a large differential cross section in the CNI
peak region:

dσ

dt

(−t ≈ 3 · 10−3(GeV/c)2)≈ 100 mb/(GeV/c)2. (8.13)

Its average analyzing power is about 2 %. Therefore, the quality factor is FOM≈
4 · 10−2 (mb/(GeV/c)2). The layout of this polarimeter is presented in Fig. 8.10.

The same polarimeter will probably be used at the U-70 synchrotron. The
polarized jet target has a jet surface density of 1012p cm−2, a polarization of
PT = (92 ± 1.8) %, and a jet size of 5 mm (FWHM) and operates in the direct
current mode. Two blocks of silicon strip detectors each with overall dimensions
72 × 64 mm2 are placed on the left and right of the beam at a distance of about
80 cm from the polarized jet target. First, to measure the analyzing power of pp

elastic scattering, it is necessary to scatter the 70-GeV unpolarized proton beam on
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the polarized jet target. Let us estimate the expected intensity per second for the
unpolarized beam of the U-70 accelerator accepting the following parameters. The
internal beam flux per second is I = 5 · 1012 · f , where f = 200 kHz, i.e., I = 1018

protons/s. Since the duty cycle for the U-70 accelerator is 0.2, the effective inten-
sity of the beam is 2 · 1017 protons/s. For comparison, we can estimate the same
parameter for RHIC. At present, RHIC provides 55 bunches with 5 · 1010 protons in
a bunch. The beam circulation frequency is 78 kHz. Thus, the RHIC beam intensity
is also 2 · 1017 protons/s. As seen, the beam intensities in the U-70 accelerator and
RHIC (

√
s = 200 GeV) are now the same. As known, the energy and intensity in

each ring of RHIC will be increased in two or three years to 250 GeV and at least
by an order of magnitude, respectively.

For further estimations, the parameters of the polarized jet target at RHIC are
taken as the basic parameters also for the U-70 accelerator. Thus, the same luminos-
ity and approximately the same count rate as for RHIC are expected. To estimate the
count rate, one (or both) of the following methods can be used. If reliable data exist
for the differential cross sections dσ

dΩ
or dσ

dΩdE
for elastic scattering (Smiths et al.

1981) or inclusive process (Bozhko et al. 1980), respectively, the expected count
rate of the polarimeter can be estimated by the formula

Ne = L ·�σ. (8.14)

Here, L is the luminosity and the effective cross section �σ corresponding to the
useful acceptance of the polarimeter is given by the expressions

�σ = dσ

dΩ
�Ω · κ (8.15)

for elastic scattering and

�σ =�Ω ·�E · κ dσ

dΩdE
(8.16)

for the inclusive reaction. Here, �Ω , �E, and κ are the solid angle, energy covering
band, and efficiency of the polarimeter, respectively. To determine luminosity, it is
also necessary to know the target surface density NT . Then, luminosity is given by
the expression

L=NB (protons/s) ·NT (protons/cm2). (8.17)

We made the following assumptions. An exponential dependence on t is taken
for pp elastic differential cross section at 70 GeV/c. The slope parameter is known
from the experimental data: B = 11.3 (GeV/c)−2. The differential cross section at
t = 0 is calculated from the optical theorem, neglecting the real part of the ampli-
tude. The measurement range has been accepted the same as for RHIC, namely,
0.002≤ |t | ≤ 0.02 (GeV/c)2. The azimuthal covering was accepted as δφ

φ
= 0.086.

It corresponds to the overall dimensions of the blocks of the detectors specified
above. Thus, the effective cross section is 100 µb. Multiplying this value by lumi-
nosity, we obtain N = 20 events/s. To achieve an accuracy of 5 % in the calibration
of the analyzing power, approximately 1.2 · 106 events are required. This number of
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Fig. 8.11 Distribution of the polarization holding magnetic field along the recoil proton path

events can be collected in approximately 17 h of the operation of the U-70 accel-
erator. Thus, knowing the polarization of the polarized jet target PT , we determine
the analyzing power AN of pp elastic scattering from the relation εT = ANPT ,
where εT is the raw asymmetry measured on the polarized jet target with the unpo-
larized proton beam. At the second stage, beam polarization is measured using an
unpolarized jet. Raw asymmetry in this case is determined by relation εB =ANPB .
From these two measurements, the beam polarization is determined by the expres-
sion PB = εB

εT
PT . This completes the calibration of the beam polarization. The beam

polarization can be measured with an accuracy of 5 % approximately in 28 h.
There is the second possibility of determining the beam polarization simultane-

ously with the measurement of the spin correlation parameter. In this case, both the
target and beam should be polarized.

The absolute calibration of polarization apparently takes a long time and is in-
appropriate for such on-line goals as the accelerator adjustment for work with the
polarized beam. This problem requires though a relative, but much faster polarime-
ter. Such a polarimeter will be described below.

One feature of this polarimeter is presented in Fig. 8.11. Recoil protons have a
very low kinetic energy of about 1–10 MeV. Their trajectories are considerably bent
by a polarization holding magnetic field (internal Helmholtz coil, the field is shown
by upward arrows) at the output of the target. To compensate this field, the external
Helmholtz coil generates a magnetic field of the opposite polarity. The total field
distribution along the path of protons is shown in the upper panel. The idea is that the
integral of the field becomes zero. This aim is generally achieved but incompletely.
The lower panel shows the deviations from the path in the absence of a magnetic
field (the abscissa axis). Two cases are considered. In the first case, protons have a
low momentum of 30 MeV/c (the upper line).

In the second case, protons have a momentum of 100 MeV/c (the lower line). As
seen, the distortion of trajectories is strongest for protons with very low energies.
However, these protons are most necessary in polarimetry, because the maximum
analyzing power is achieved at a recoil proton momentum of about 30 MeV/c. This
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Fig. 8.12 Polarimeter based
on the elastic
Coulomb–nuclear scattering
of protons on carbon nuclei;
this device is now used at
AGS

indicates the necessity of the careful screening of the recoil proton path from mag-
netic fields.

8.4.4.2 pC Recoil Polarimeter for the CNI Region

The pC polarimeter is useful due to very high luminosity and large cross section.
Let us assume that the same equipment as at AGS is used (see Fig. 8.12; the diameter
of the “detector” at RHIC (the circle on which the detector is located) is 80 cm).

In this case, the carbon strip target with a surface density of 3.5 µg/cm2 (Jin-
nouchi et al. 2004) contains 1.75 · 1017 carbon atoms/cm2, which makes it possible
to reach a luminosity of L= 3.5 · 1034 cm−2 s−1 at the U-70 accelerator. Taking a
value of 9.5 mb for the cross section for the setup, the count rate is expected to be
3.3 ·108 events/s. This count rate should be naturally reduced by a factor of 104–105.
This can be achieved in several ways. For example, one way is to use a target whose
width is much smaller than the beam size. In this method, it is necessary to scan
the beam to obtain the average, rather than local, beam polarization. At RHIC, the
strip target has a width of 5 µm, whereas the beam size is about 1 mm. Therefore,
it is expected that the count rate will decrease by a factor of 200. The count rate re-
duction factor for the same target in the U-70 accelerator with a beam size of about
20 mm is 4 · 103. Thus, the count rate becomes 8 · 104 events/s, which is acceptable.
When the average analyzing power in the pC reaction is 1 %, the measurement of
the beam polarization with an accuracy of 5 % requires a statistics of about 8 · 106

events. Therefore, the measurement at one point will take 100 s. For the highest en-
ergy of the U-70 accelerator with a plateau duration of 2 s, the result can be obtained
approximately in 50 s. At higher energy, measurements at 10 points can be desired.
Then, such measurements will take approximately 1000 s. Thus, the polarimeter
on the pC reaction is the fastest polarimeter. Such a fast polarimeter could be very
useful in accelerator adjustment, in measures against depolarizing resonances, etc.
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Fig. 8.13 Layout of beam line no. 2 of the U-70 accelerator, which can be used with the specified
experimental setup as a relative polarimeter for the internal polarized beam of the U-70 accelerator:
(P) is the circulating proton beam; (T) is the internal target; (K1, K2, K3) are the collimators; (M1,
M2, M3) are the rotation magnets; (A1–A3, S1–S6) are the scintillation counters; (C1–C3) are the
threshold Cherenkov detectors; (D1, D2) are the differential Cherenkov detectors; and (P123) and
(F1234) are the scintillator telescopes for the control of the intensity of the internal proton beam
incident on the target

There is another way to reduce the count rate directly by reducing the beam in-
tensity. In this case, the control of the low-intensity circulating beam is a significant
problem. The optimum can be found by combining these two methods.

8.4.4.3 External Inclusive Pion Polarimeter

After the commissioning of the U-70 accelerator, the yields of particles in inclusive
reactions were measured with the use of internal targets. The particle emission angle
varied from 0 to 15 mrad and the range of the momenta of secondary particles was
10–60 GeV/c. The particles were guided to beam line no. 2 (see Fig. 8.13). The
effective solid angle and the range of momenta in the beam line were specified by
collimators and magnetic dipoles and quadrupoles. The selection and identification
of the particles were carried out using scintillation counters, as well as threshold
and differential Cherenkov detectors. The particle momentum was measured also by
Cherenkov detectors. The initial beam intensity was controlled by two scintillator
telescopes (Gorin et al. 1971).

Now, it is proposed to use beam line no. 2 (or no. 14) and advanced equipment
for measuring the polarization of the circulating beam using the analyzing power
in the inclusive production of pions. The polarized proton beam with upward or
downward polarization collides with the internal carbon target in the form of a foil
with the sizes 50 µm (width) × 5 cm (height) × 20 µm (thickness). In this case,
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luminosity is 1035 cm−2 s−1. Since a significant analyzing power is expected in
the regions pT ≥ 1.0 GeV/c and xF ≥ 0.5, the corresponding production angle and
momentum of secondary particles should be selected according to this requirement.

The differential cross section for the p + Be reaction at 67 GeV/c was measured
in Bozhko et al. (1980). The largest reached production angle was 20 mrad and the
momentum of negative pions was 34 GeV/c. The differential cross section in the lab-
oratory frame was dσ

dω·dp = 11 mb
sr·GeV . A count rate of 3 · 104 events/s is expected at

a beam momentum spread of 2 % and an effective solid angle of 8 µsrad. Assuming
that negative pions with higher momentum (e.g., 50 or 60 GeV/c) can be observed
at the same angle and that the yield of such particles decreases by two orders of
magnitude, the beam polarization can still be measured with a desired accuracy of
5 % in approximately 20 min. It will be a fast relative polarimeter operating on-line
with a computer. It can be very useful for the adjustment of the accelerator with the
polarized beam.

Note that the analyzing power of positive and negative pions at 70 GeV/c has not
been directly measured. The authors took the interpolated values of the analyzing
power between 22 and 200 GeV/c. However, the accuracy of such an interpolation
is doubtful. Moreover, experimental data do not allow the measurement of the beam
polarization with a necessary accuracy of 5 %. Therefore, measurements with the
required accuracy should be performed at the U-70 accelerator. For this reason, an
absolute polarimeter based on pp elastic scattering will be discussed below.

At present the magnetic bump system is used at U70 for directing the circulat-
ing proton beam to the internal target placed at distances ±40 mm. The produced
on this target the secondary charged particles are extracted by using the basic mag-
netic elements of U70. This technique could be also used in the case of the primary
polarized proton beam.

8.4.4.4 External Absolute Polarimeter Based on pp Elastic Scattering

Polarization in pp elastic scattering at 70 GeV/c has been measured only at one
point at Fermilab. The data show that P = (2 ± 1.3) % at t = −0.3 (GeV/c)2.
A more accurate measurement of polarization in pp elastic scattering at 45 GeV/c
has been performed by the HERA collaboration (Gaidot et al. 1976). The aver-
age polarization in the range 0.2 ≤ −t (GeV/c)2 ≤ 0.3 was found to be P =
(2.23 ± 0.15) %. The cross section for this reaction has also been measured with
a high accuracy. Therefore, the unpolarized beam can first be extracted by a bent
crystal at this energy (the U-70 accelerator should be adjusted to energy of 45 GeV)
and our equipment can be calibrated with the polarized target. Then, detailed mea-
surements of the analyzing power should be carried out at energy of 70 GeV. If
the analyzing power is close to 2 % as shown by the Fermilab experiment, and we
know the target polarization can be measured with accuracy better than 5 %. Thus,
we will have an absolute polarimeter for 70 and 45 GeV with accuracy better than
10 %. Then, it is possible to use the same target without polarization for scatter-
ing of the 70-GeV polarized beam, and the beam polarization at this energy can be
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Fig. 8.14 Possible variant of
an external absolute proton
polarimeter for general
purposes; the elastic
scattering of protons on the
polarized proton target is
used; the polarimeter is based
on the 14th beam line at the
PROZA setup with the
improvement of the
equipment for the detection
of elastic scattering

measured with desired accuracy. Moreover, if the extraction system and beam line
allow, this technique can be used in the entire energy range of the U-70 accelerator.
This technique becomes particularly favorable with a decrease in the beam energy,
because the analyzing power of pp elastic scattering increases in this case.

The count rate can be estimated under the assumption that we use the equipment
of the HERA collaboration (Gaidot et al. 1976) and the differential cross section
measured by them at −t = 0.3 (GeV/c)2. An accuracy of 5 % can be achieved
approximately in 10 h if the beam intensity is 2 · 107 polarized protons per cycle.

Figure 8.14 shows the layout of a possible variant of the external absolute po-
larimeter for general purposes including the adjustment of the U-70 accelerator. It
has been successfully applied to measure the polarization of particles and antiparti-
cles in the HERA experiment at IHEP (Gaidot et al. 1975).

The basic results of the discussion of proton polarimeters are summarized in
Table 8.1.

The vacuum in the U-70 accelerator is 10−6 Torr on average, whereas it is 2 ·
10−7 Torr in AGS and better than 10−8 Torr in RHIC. Therefore, it is necessary
to estimate the expected background on recoil detectors from the interaction of the
circulating beam with the residual gas in the ring.

For such a background, the beam chamber region “visible” for the detector is
dangerous. Since the recoil detector of the polarimeter identifies the interaction ver-
tex only from the time of flight, its time resolution �τ gives the length of this region
as l = c ·�τ (for the background of relativistic particles). With a usual reserve, we
take this region as 3l. Taking into account �τ = ±2 ns, this region is found to be
±180 cm with respect to the center of the polarized jet target. Thus, the total length
of the “background” region is 360 cm. It is necessary to determine the number and
type of the nuclei in this region and to compare with the density of nuclei (protons)
in the working target.

The number of such atoms is N(A) = (10−6/760)nL, where nL = 2.68 ·
1019A/cm3 is the Loschmidt number. Thus, N(A)= 3.53 · 1010A/cm3. Hence, the
surface density will be nS = 1.27 · 1013A/cm2. This number should be compared
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with the surface density of the working substance of the polarized target, 1012p/cm2.
Apparently, the number of nuclei of the background material is an order of magni-
tude larger than the number of the polarized protons. Taking into account that the
average atomic number of nuclei in the background is A = 28, the excess of the
background has an additional order of magnitude. Therefore, vacuum in the region
of the jet target should be improved by three orders of magnitude, i.e., to 10−9 Torr.

In summary, we note that the program of the acceleration of the polarized proton
beam at the U-70 synchrotron requires the development of a set of absolute and
relative polarimeters. In this section, we analyze the achievements of other research
laboratories and try to find effective tools for polarimetry. Two internal absolute pp

and pC CNI polarimeters have been selected, following experience at RHIC. Two
new external polarimeters have been proposed. It has been shown that appropriate
polarimeters for the Ural-30 and 1.5-GeV booster are based on pC and pp elastic
scattering. This is the first step for seeking effective polarimetry for the polarized
beam at the U-70 accelerator. Investigations will be continued.

8.5 Polarimetry of Electron Beams

Three types of polarimeters (Mott, Møller, and Compton polarimeters) for electron
beams, which are well studied and widely applied in polarimetry, are considered in
this section.

8.5.1 Mott Polarimeter

The Mott polarimeter (Wood 1994) is based on the electron-polarization dependence
of the differential cross section for the scattering of transversely polarized electrons
on the electrons of heavy nuclei. This subject was reviewed in Gay and Dunning
(1992). Three such polarimeters were constructed at SLAC, and all of them are
used either in the development of polarized electron sources (Hopster and Abraham
1988) or in experiments on the test of the space or time parity (Haeberly 1992).
This is because the analyzing power of the Mott polarimeter is large at low energies
and decreases rapidly with increasing energy. In particular, the analyzing power
near a scattering angle of 90° is 29 % at 3 MeV and decreases to 5 % at 15 MeV
(Haeberly 1992). When adjusting the polarized electron sources at SLAC, the Mott
polarimeter made it possible to achieve an accuracy of 2 % in the measurement of
the polarization of an electron beam with energy of about 200 keV.
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8.5.2 Møller Polarimeter

This polarimeter (Møller 1932) is absolute, because it is based on the elastic scat-
tering of two longitudinally polarized electrons:

e(→)+ e(→)= e+ e, (8.18)

where the horizontal arrows in parentheses indicate that the electrons are longitudi-
nally polarized.

These polarimeters were widely used in experiments with polarized electron
beams at SLAC. This is explained by two reasons. First, the reaction kinematics
is very simple and simplifies the equipment design. Second, the differential cross
section for this reaction is precisely calculated; in the center-of-mass frame, it is
given by the expression (Band 1994)

dσ

dΩ
= α2

s

(3+ cos2 θ)2

sin4 θ

[
1− PB

z · PT
z ·Az(θ)

]
. (8.19)

Here, s is the square of the total energy of the initial two-electron system; θ is the
center-of-mass electron scattering angle; α is the fine structure constant; PB

z and
PT
z are the longitudinal beam and target polarizations, respectively; and the Møller

asymmetry Az(θ) is also theoretically calculated by the formula

Az(θ)= (7+ cos2 θ) sin2 θ

(3+ cos2 θ)2
. (8.20)

According to formula (8.20), the analyzing power is maximal near θ = 90°. Thus,
both electrons in the laboratory frame are scattered at identical angles with identi-
cal energies. In the general case of the elastic scattering of particles with identical
masses, their scattering angles in the laboratory frame ϑ1 and ϑ2 are related as

cotϑ1 · cotϑ2 = E +m

2m
, (8.21)

where E and m are the total energy of an initial electron in the laboratory frame and
its mass, respectively. It is easy to estimate that ϑ1 = ϑ2 = ϑ for a center-of-mass
scattering angle of 90° and the laboratory scattering angle ϑ is determined from the
relation

tanϑ =
√

2m

E +m
. (8.22)

For an energy of 50 GeV, this angle is 4.4 mrad. The energy of each final electron
is 25 GeV.

A thin foil of an iron–cobalt alloy with a small vanadium addition is usually used
as the polarized electron target. From the beginning of 1992 to 1996, five such po-
larimeters were constructed. Two of them were used for the problems of the SLC
collider itself, whereas the other three polarimeters have been intended for experi-
ments E142, E143, and E154 on studying the spin structure functions of the nucleon.
The polarimeter of experiment E154 will be described below. This polarimeter was
also more recently used in experiment E155 (Band 1996).
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The 48.3-GeV longitudinally polarized electron beam is scattered on a target con-
sisting of six foils with thicknesses 20–154 µm. The target plane is inclined to the
beam axis at an angle of 20.7°. Scattered electrons are detected within the labora-
tory polar angles 3.59–8.96 mrad (94°–105° in the center-of-mass frame). A special
system of collimators (called mask by the authors) separates a constant azimuth an-
gle range of 0.20–0.22 rad. Separated recoil electrons are bent by a septum magnet
with a magnetic field of 1.1 T in the horizontal plane and are detected by strip sil-
icon detectors. Thus, both electrons enter the same detectors owing to relativistic
two-particle kinematics.

The electron target is magnetized by two Helmholtz coils. The same coils re-
verse the target polarization direction before each new statistics collection run. The
polarization of the electrons of the target is given by the expression

PT = M

neμB

·
(
g′ − 1

g′

)

·
(
ge − 1

ge

)

. (8.23)

Here, M is the magnetization of the electron target, ne is the electron density,
μB is the Bohr magneton, ge is the gyromagnetic ratio of the free electron, and g′
is the so-called magnetomechanical ratio of the target nucleus. All quantities except
g′ and M are known from the standard tables. The parameter g′ was measured in
Scott and Sturner (1969) for an alloy containing 50 % of iron and 50 % of cobalt
(without vanadium). It appeared to be g′ = 1.916± 0.002.

To determine the polarization of the electrons of the target, it is necessary to find
the magnetization M , which is related to the magnetic induction B and magnetic
field H as

4πM = B −H. (8.24)

The magnetization M has been measured specially by introducing a ferromag-
netic foil between the so-called pickup coils. Voltages are induced in pickup coils
when the foil is scanned by the magnetic field from −100 G to +100 G. According
to the Faraday law, the magnetic field appearing in the foil is equal to the difference
between the integrals of the induced voltages in the presence and absence of the foil
in the coil. Taking into account all factors, the total relative error in the measurement
of the polarization of the electron target was found to be 1.7 % (Band and Prepost
1996).

Polarization was measured with six permendur foils 3 cm in width and 39 cm
in length with different thicknesses. Polarization measured with the 20-µm foil was
8.03 % and polarization measured with 30-, 40-, and 154-µm foils was 8.14 %. The
systematic measurement error was 1.7 %.

For the first experiments on the measurement of the spin structure functions, a
single-arm spectrometer was used; i.e., one recoil particle was detected. Two-arm
spectrometers are used beginning with experiment E143. In this case, both scattered
electrons were selected in the vertical plane using collimators. Then, they were an-
alyzed by the magnetic field (septum magnet) in the horizontal plane. Silicon cell
detectors were applied to detect particles, and 10.2× 10.2-cm lead glass counters
were placed behind the detectors to determine the total energy of each electron. The
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detection of both electrons in coincidence (a resolution time of 1 ns) made it pos-
sible to suppress corrections on the Levchuk effect (Levchuk 1994) to a level of
≤1 %. This effect is caused by the contribution to asymmetry from the electrons
from low-lying atomic levels (primarily from the K shell). These electrons are un-
polarized, and corrections on their contribution should be introduced. In the double
coincidence method, it was necessary to introduce small corrections for the dead
time and acceptance of the equipment to raw asymmetry.

The Møller polarimeter is not a continuously working polarimeter. It is used once
a day and measurements with it take about 40 min. The polarization of the elec-
tron beam measured with this polarimeter depended both on the applied foil and
on the quantum efficiency of the polarized electron source (SLAC polarized gun).
The measured polarization of the electron beam was in the range 83–86 % during
experiment E143. The total systematic error of measurements is estimated to be no
more than 2 %. These results were in agreement with the measurements with other
SLAC polarimeters.

8.5.3 Compton Polarimeter

The Compton polarimeter is an absolute, local, on-line, constructive, and fast po-
larimeter. This polarimeter is based on the elastic scattering of longitudinally po-
larized electrons on circularly polarized photons (Gunst and Page 1953). The cir-
cularly polarized photons with a wavelength of 532 nm are produced in a Nd:YAG
(neodymium-activated yttrium aluminum garnet) laser generator. The system of re-
flecting mirrors directs photons with the conservation of their circular polarization to
the so-called Compton interaction point. Electrons backscattered on photons (in the
center-of-mass frame) pass a deflecting magnet and enter drift tubes and Cherenkov
counters from nine beam lines. Each of these lines can serve as a polarimeter. How-
ever, the seventh beam line had the largest analyzing power and its indications were
used for determination of the longitudinal polarization of the electron beam. This
polarimeter allowed the measurement of electron beam polarization with a relative
accuracy of 1 % in 3 min. The total systematic error did not exceed 1.3 %, and the
greatest contribution to this error came from discrepancy in the measurement of the
polarization of laser photons.

8.6 Polarimetry of Muon Beams

A polarized muon beam was obtained at the CERN SPS due to the weak decay of
pions. Since this process is weak, it is sufficiently well calculated. Nevertheless, two
experimental methods for measuring muon beam polarization have been developed.
Polarimeters for both cases are described in detail in Adeva et al. (1994). In the
first case, the elastic scattering of longitudinally polarized muons by longitudinally
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polarized electrons is used for an absolute polarimeter. A magnetized ferromagnetic
material (49 % Fe + 49 % Co + 2 % V) is used for a polarized electron target
with a thickness of about 2 mm. This target is described in detail in de Botton et al.
(1992). The special measurements have shown that the polarization of electrons in
the target is P e

z = (8.34± 0.1) cos θ %, where θ is the angle between electron target
polarization and the muon beam direction (z direction). This angle is usually as
small as ≈20°. The systematic error is determined primarily by discrepancy in the
determination of the magnetomechanical ratio in the used alloy. The polarization
of electrons was reversed in each SPS cycle. Moreover, the target orientation was
reversed every 2 h to suppress false asymmetry.

Both final particles, muon and electron, are detected by a two-arm spectrom-
eter. In addition to the track detectors, an absorber and a lead glass wall are
placed in the muon and electron shoulders, respectively. This polarimeter was slow
and required several months for collecting statistics. The result was found to be
P

μ−e
μ = −(79.4± 1.7) % in good agreement with the Monte Carlo calculation of

muon beam polarization Pμ =−(78±5) % for a μ+ beam energy of Eμ = 190 GeV
(Medved 1998).

Another method for determining μ+ beam polarization is the measurement of the
energy spectrum of positrons from the decay of μ+ muons in flight (Marie 1995).
Owing to the weak decay of the muon, where parity is not conserved, positrons from
the decay are distributed anisotropically in the muon rest frame. As a result, the
energy spectrum of positrons in the laboratory frame obviously depends on muon
polarization (Lifshitz and Pitaevskii 1971). The spectral distribution of positrons in
the laboratory frame is given by the expression

dN

dy
=N0

[
5

3
− 3y2 + 4

3
y3 − Pμ

(
1

3
− 3y2 + 8

3
y3
)]

. (8.25)

Here, y = Ee/Eμ is the Michel parameter, where Ee and Eμ are the energies
of positrons and muons in the laboratory frame, respectively; N0 is the number of
decayed muons, and Pμ is the muon beam polarization.

The equipment for measuring the spectrum of positrons was almost the same as
in the preceding polarimeter. Only measures were taken to reduce the background
from the positrons produced outside the 30-m decay region. The field in the mag-
net was reversed. The positron momentum resolution was improved due to an ad-
ditional proportional chamber in front of the lead glass counters. In addition, its
energy was measured by an electromagnetic calorimeter. Knowing the muon and
positron energies Eμ and Ee, we can construct the Michel distribution in the pa-
rameter y = Ee/Eμ. The parent muon polarization determined by comparing the

measured and calculated Michel spectra appeared to be Pμ→eνν̄
μ =−(80.6±2.9) %

in a good agreement with the expected theoretical value.
The second method provides shorter measurement time (an accuracy of 3 % is

achieved in 24 h (Marie 1995)) than the first polarimeter. However, it requires more
difficult calculations and the inclusion of many factors to correct systematic errors.
As a result, according to the presented data, the accuracy of the second polarimeter
is lower than that of the first polarimeter.
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Part III
Polarization Experiments and Their

Results

In the last decade, impressing engineering advance has been achieved in many di-
rections of polarization technology; this subject was considered in the second part
of this book. The quality of the polarized electron beam has been considerably im-
proved at SLC. Beginning with a polarization of 22 % in 1992, physicists achieved
a polarization of 63 % in 1993 and routinely work with a polarization of 80 %
and a luminosity of 2 · 1030 cm−2 s−1 since 2000. Continuous improvement of the
parameters of the polarized electron beam provided favorable conditions for the per-
formance of four experiments with a fixed target (E142, E143, E154, and E155) in
which the nucleon spin structure functions were measured with a high accuracy.
At the same time, the SMC Collaboration at CERN has successfully completed the
scientific program on a muon beam and gave a place for the COMPASS Collabora-
tion. The main aim of the COMPASS Collaboration is to measure the distribution
of polarized gluons in a nucleon. The HERMES program on the polarized electron
beam with energy of about 27 GeV has been successfully implemented since 1998
and now it’s completed. The first polarized proton beam with energy of 100 GeV
and a polarization of about 30 % was obtained in 2000 at the RHIC collider. A po-
larization of 50 % was achieved in 2004 and 65 % in 2009. Works on an increase in
polarization to 70 % and energy to designed 250 GeV are continuing.

Investigation of spin phenomena in the production of hyperons remains an active
research field. The E704 Collaboration has published data on the left–right asymme-
try in the inclusive production of Λ hyperons and on the depolarization parameter
DNN in the p ↑ +p→Λ+X reaction at 200 GeV/c. The first quantitative proof
that the analyzing power of Λ is nonzero and is not equal to the polarization of Λ
at such a high energy is of noticeable interest. The measurement of DNN in the
production of Λ hyperons opened a direct way to separate the quantitative contri-
bution of the spin transfer mechanism, though the existence of this mechanism has
qualitatively been shown by the Fermilab measurements of the polarization of the
Ω hyperon. Hyperon polarization was so far studied mainly on unpolarized hadron
beams with zero strangeness. The WA89 Collaboration at CERN has published data
on hyperon polarization measured on the 320-GeV Σ− hyperon beam opening new
possibilities for studying hyperon polarization.



326

Single-spin asymmetry represents a strict test for nonperturbative approaches
in quantum chromodynamics (QCD). The E704 Collaboration data on single-spin
asymmetry in the inclusive production of pions in the region of the fragmen-
tation of the polarized beam attracted great interest in spin scientific commu-
nity owing to the observation of significant polarization effects in such reactions
(Adams et al. 1996; Nurushev 1997, 2002). Similar measurements have been re-
cently performed at STAR for inclusive π0 mesons at

√
s = 200 GeV. Apprecia-

ble spin effects (Adams et al. 2004) close to those observed in the E704 experiment
were found in the region of the fragmentation of the polarized proton beam. In the
region of the fragmentation of the unpolarized beam, asymmetry appeared to be
zero within the measurement accuracy. Zero asymmetry in the central region was
found in the E704 experiment (Adams et al. 1996). Recent PHENIX measurements
of the asymmetry of π0 mesons in the central region provided the same conclusions
(Astier et al. 2001).

Double-spin asymmetry ALL is another very attractive quantity for perturbative
quantum chromodynamics, because it is sensitive to gluon polarization. The ALL

values have long been predicted for pions, the direct production of photons, J/ψ ,
and heavier objects. These predictions have not yet been tested experimentally. The
experimental data on double-spin asymmetry ALL(π

0) were obtained for the first
time by the E704 Collaboration in 1991 (Adams et al. 1991). Asymmetry appeared
to be consistent with zero. This result has been discussed in a number of theoretical
works. The basic conclusion of these discussions was that gluon polarization is in-
significant. The PHENIX data obtained ten years later at energy of

√
s = 200 GeV

(an order of magnitude larger than the energy in the E704 experiment) provide the
same conclusion (Adler et al. 2004).

Scientific community always emphasized the importance of polarization inves-
tigations on neutrino beams. More recently, the NOMAD Collaboration published
data on the polarization of Λ and Λ̄ hyperons obtained on a muon neutrino beam
(Astier et al. 2000, 2001). These experiments are of certain interest and, probably,
are the beginning of neutrino polarization physics.

Elastic and diffraction processes are of special interest for polarization physics.
Such fundamental problems as the role of the pomeron in spin-flip interactions,
relations between the polarizations of particles and antiparticles, search for odderon,
asymptotic behavior of helicity amplitudes, scattering and asymptotic relations can
be studied in detail in these processes.

The current theoretical efforts are primarily concentrated on the interpretation of
the experimental data on the spin structure functions and single- and double-spin
asymmetries. The nature of the nucleon spin is the central point for theoretical un-
derstanding of the internal structure of nucleons, and the deep understanding of this
problem has not yet been achieved. Theoretical interest in single-spin measurements
follows from the possibility of developing nonperturbative models as perturbative
quantum chromodynamics cannot explain these data. Double-spin asymmetries pro-
vide a good way for determining parton distributions in nucleons from experimental
data.
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The future of polarization physics is rather enticing. A wide variety of spin mea-
surements (the E154 and E158 experiments on fixed targets, precise measurements
of the parameters of the electroweak theory using the modernized SLD detector on
colliding electron–positron beams) are carried out at the Stanford linear accelerator
(SLAC). The development of the polarization program for RHIC begins. Investi-
gations of the spin phenomena by COMPASS collaboration are planned for many
years. The largest polarization accelerators such as eRHIC, J-PARK, U-70, and PAX
at FAIR are at different development stages. Thus, the prospect of polarization in-
vestigations is promising.

We will discuss below the basic experimental results from various fields of high
energy spin physics. These results will be compared with the predictions of various
theoretical models. Finally, the current representation of the nucleon spin structure
will be briefly presented.

A considerable advance has been achieved in high energy spin physics. During a
very short time, a number of new phenomena concerning the nucleon spin structure,
hyperon polarization, and single- and double-spin asymmetries in the production of
hadrons have been revealed owing to considerable successes in the development of
polarization technology. For example, the polarized proton and antiproton beams
at the Tevatron have been obtained, the Siberian snake technique and spin rotators
have been developed and applied in the acceleration of polarized electron and proton
beams to very high energies (at SLC, HERA, AGS and RHIC). Significant method-
ical innovations have also been implemented in the construction of polarized solid
and gas targets. All these advances made it possible to begin to study fine effects
such as the dependence of spin phenomena on the quark flavor, the spin transfer
mechanism, to comparatively study the polarization of hyperons and antihyperons,
the analyzing power in the inclusive production of hadrons by proton, antiproton,
and lepton beams, etc. These and other news in high energy spin physics will be
discussed in the third part of the book following primarily review (Nurushev 1997)
with additions of more recent results.
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Chapter 9
Investigation of the Nucleon Structure Functions

9.1 Polarization as a Precision Tool for Measuring
the Parameters of the Standard Model

Many experimental tests of the Standard Model at LEP and SLC are based on the
measurement of asymmetries following from parity violation in the vertex

Z→ f f̄ . (9.1)

Here, f, f̄ is a fermion–antifermion pair (e.g., quark–antiquark, electron–
positron).

The so-called forward–backward asymmetry A
f
FB in the yield of fermion f is

defined as the difference between the yields of quarks in the reaction

e− + e+ → f + f̄ (9.2)

in the forward and backward hemispheres in the center-of-mass frame. Such a test
at LEP was performed with unpolarized electron and positron beams. The following
asymmetry was measured:

A
f
FB =

σ
f
F − σ

f
B

σ
f
F + σ

f
B

= 3

4
AeAf . (9.3)

Here, σf
F and σ

f
B are the cross sections for the production of fermions f (quarks)

in the forward and backward hemispheres with respect to the electron motion direc-
tion, respectively. Asymmetries Ae and Af are caused by parity violation at the
Z→ f f̄ vertex and are given by the expression

Af = 2vf af
v2
f + a2

f

= g2
L − g2

R

g2
L + g2

R

. (9.4)
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Here, vf and af are the vector and axial vector coupling constants, respectively;
and gL and gR are the coupling constants with the left and right helicities, respec-
tively.

Two kinds of asymmetry can be additionally measured with a polarized electron
beam. The first asymmetry is also forward–backward asymmetry defined by the
expression

Ã
f
FB =

[σf
F (L)− σ

f
B (L)] − [−σf

F (R)− σ
f
B (R)]

[σf
F (L)+ σ

f
B (L)] + [σf

F (R)+ σ
f
B (R)]

= 3

4
PeAf . (9.5)

A comparison of formula (9.5) with formula (9.3) shows that the collection of
statistics in the measurement of forward–backward asymmetry is more efficient by
a factor of 25 (as the ratio (Pe/Ae)

2) if an electron beam with polarization Pe

(≈ 80 %) is used. Another advantage of formula (9.5) is that it does not contain
Ae and includes only the electron beam polarization. This allows the determination
of asymmetry in the production of heavy quarks irrespectively of the asymmetry
parameter Ae .

The following asymmetry appearing with the polarized electron beam is called
the left–right asymmetry and is defined as

ALR =Ae = σL − σR

σL + σR
= 2(1− 4 sin2 θ

eff
W )

1+ (1− 4 sin2 θ
eff
W )2

. (9.6)

Here, σL and σR are the total pole cross sections for the production of the Z boson
for the case of the left and right polarizations of the electron beam, respectively. The
electroweak mixing angle θ

eff
W is defined by the relation

sin2 θ
eff
W = 1

4

(

1− νe

ae

)

. (9.7)

The best accuracy in the mixing angle is achieved in single measurements with
asymmetry ALR .

The SLD experiment showed that a setup equipped with the polarized electron
beam for the exact determination of the parameters of the Standard Model is a pow-
erful setup. In the further discussion, this statement is illustrated on some examples
from Hertzbach (1995a, 1995b).

The measurement of left–right asymmetry on the SLD detector from 1992 to
1995 gave the value

ALR =Ae = 0.1551± 0.0040, (9.8)

which provided the following accuracy in the determination of the effective mixing
angle (Weinberg–Salam angle):

sin2 θW = 0.23049± 0.00050. (9.9)
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For comparison, all four experiments at LEP (ALEPH, DELPHI, L3, and OPAL)
during the entire operation time jointly achieved the following accuracy in the mea-
surement of this angle:

sin2 θW = 0.23186± 0.00034. (9.10)

Combining the weak mixing angles measured in the SLD and LEP experiments,
we obtain the world average value

sin2 θW = 0.23143± 0.00028. (9.11)

The latest value of this angle at the mass MZ (Z boson) is (Yao et al. 2006)

sin2 θW = 0.23122± 0.00015. (9.11a)

It is necessary to note that statistics in the SLD experiment is much less than that
in experiments at LEP. As mentioned above, this gain is due to the use of the highly
polarized electron beam in the measurement of asymmetry.

The estimate of the top quark mass from Eq. (9.11) coincides with the value
measured at Fermilab. The Higgs boson mass was also estimated, but this estimate
does not provide strong constraints because of a large measurement error.

The next example of the utility of the polarized electron beam was the direct de-
termination of left–right asymmetry for heavy quarks in the SLD experiment with
the use of Z bosons produced in the annihilation of longitudinally polarized elec-
trons and unpolarized positrons. Asymmetry Ab in the production of the “beauty”
quark b is sensitive to the contributions from the top quark, intermediate charged
bosons, probably, Higgs particles, and new physics. In the SLD experiment, the
quantity Ab is determined using several measurement methods supplementing each
other.

These methods simultaneously applied to c and b quarks are as follows.

1. The determination of momentum-weighed charges.
The result is Ab = 0.843± 0.046 (stat.)± 0.051(syst.).

2. Identification by charged K mesons.
The result is Ab = 0.91± 0.09 (stat.)± 0.09 (syst.).

3. Identification by leptons with high pT values.
The result is Ab = 0.87±0.07 (stat.)±0.08 (syst.); Ac = 0.44±0.11 (stat.)±

0.13 (syst.).
4. The reconstruction of charmed mesons D+ and D∗+.

The result is Ac = 0.64± 0.11 (stat.)± 0.06 (syst.).

The result averaged over all four measurements is

Ab = 0.858± 0.054. (9.12)

This value is in agreement with the LEP average value

Ab = 0.883± 0.031. (9.13)
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Both these results are consistent with the theoretical value

Ab(theory)= 0.935, (9.14)

demonstrating a good agreement with the Standard Model. Such an approach gives
the following average result for the asymmetry of the charmed quark

Ac(muons)= 0.577± 0.097, (9.15)

which is in agreement with the average LEP value

Ac = 0.65± 0.05 (9.16)

and with the Standard Model prediction

Ac(theory)= 0.667. (9.17)

The fitting of the parameters of the Standard Model to the SLD and LEP data im-
poses constraints on the t quark mass: it should be in the range 168 GeV < mt <

192 GeV. In the agreement with this expectation, the top quark with the mass
mt = 174 GeV has been discovered at Fermilab on the CDF and D0 detectors. The
top quark mass was determined under the assumption that the Higgs boson mass is
in the range 60 GeV <mH < 1000 GeV. In 1992 and 1993, the same SLD Collab-
oration measured the Bhabha scattering cross sections with polarized electrons:

e− + e+ → e− + e+. (9.18)

The set of the data provides the following value of the effective vector coupling
constant of the electron:

νe =−0.0414± 0.0020 (9.19)

with the best accuracy. Thus, polarization investigations exhibit obvious advantages
in the test of the Standard Model.

The test of QCD by measuring the polarization of quarks is the important di-
rection of polarization investigations. According to QCD, a left (right) polarized
electron forms mainly a left (right) “twisted” jet. The SLD collaboration studied the
production of the jet in order to determine the polarization of the quark producing
this jet. In this case, the following parameter was used:

Ω = �t · (�k1 × �k2), (9.20)

where �t is along the jet axis and �k1 and �k2 are the momenta of two leading particles
in the jet. Then, all jet events can be classified into two groups with Ω > 0 and with
Ω < 0, and asymmetry can be composed of their difference and sum. Such asym-
metry allows the determination of the “handedness” of the jet. This jet handedness
H is asymmetry in the numbers of jets with positive and negative �Ω values.
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The analyzing power α and polarization P of the quark are combined in the
quantity H

H = α · P. (9.21)

The SLD Collaboration did not find a noticeably nonzero handedness of the jet
and provided the upper bound α < 0.053 at a 95 % C.L. for jets of light quarks.

Another subject studied by the SLD Collaboration is the correlation β between
the polarization �S of Z0 and the orientation of the plane of three jets. The triple
product �S · (�k1 × �k2), where (�k1) and (�k2) are the momenta of two jets with the
highest energies, can be sensitive to physics outside of the Standard Model. The
correlation appeared to be in the range −0.022 < β < 0.039; i.e., it is consistent
with zero and, at a 95 % C.L. excludes any indications of new physics beyond the
Standard Model at the existing accuracy level.

The SLD Collaboration observed differences between the spectra of baryons and
antibaryons for p/p̄ and Λ/Λ̄ (in events identified as light quarks). The polarization
of the electron beam was used to identify jets induced by quarks q or antiquarks q̄ ,
and the presences of baryons and antibaryons in quark jets are compared. Any dif-
ference between these identified events was not observed for momenta ≤ 12 GeV/c.
However, increasing correlation between quark jets q(q̄) and the presence of baryon
(antibaryon) in jets was observed at momenta above 12 GeV/c. This indicates that
faster particles capture an initial quark (antiquark) with a larger probability.

The JINR group has analyzed the longitudinal correlation between the directions
of the jets in the decay Z0 → two jets (Efremov et al. 1995). The correlation sign
is opposite to the Standard Model prediction obtained under the assumption of the
factorization of the q and q̄ distribution functions. This fact and small directivity
value Hq = (1.22± 0.67) % can be treated as the prevalence of the vacuum chro-
momagnetic fields over the own field of the quark. A further experimental test of
this hypothesis is necessary to finally ascertain the presence or absence of the new
phenomenon.

9.2 Spin Structure Functions

The measurement of the spin structure functions remains the most important prob-
lem in spin physics. Despite the enormous efforts of physicists, many important
problems such as the origin of the nucleon spin, the behavior of the spin structure
functions at small and large factorization values, collision noncollinearity, depen-
dence on Q2, and exact criteria of various sum rules have not yet been solved (El-
lis and Karliner 1995, 1996). The latest results on the spin structure functions of
the proton, neutron, and deuteron published by Collaborations SMC (Adams et al.
1997a, 1997b), SLAC E142 (Anthony et al. 1993, 1996), and SLAC E143 (Abe
et al. 1995a, 1995b; Crabb 1995) are shown in Figs. 9.1 and 9.2.

The SMC (Spin Muon Collaboration) experiment has significantly advanced in
achieving the minimum Bjorken parameter values x (Fig. 9.1), where there are indi-
cations of an increase in g

p

1 (x) with decreasing x (Fig. 9.1a). The region of small x
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Fig. 9.1 Spin structure
functions (a) gp1 (x),
(b) gd1 (x), (c) gn1 (x), and
(d) gp2 (x) measured in the
SMC experiment

Fig. 9.2 Spin structure
functions (a) gp1 (x),
(b) gd1 (x), (c) gn1 (x), and
(d) gp2 (x) measured in the
E143 experiment
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values attracts a lot of attention, because it is the only region where significant spin
transfer is theoretically expected (Kaur 1977). The previous data on gd1 (x) (Adams
et al. 1995) seemingly indicate appreciable negative values of this observable in the
region x < 0.02 (see Fig. 9.1b). Accordingly, the neutron spin structure function
gn1 (x) is also negative in almost the same x region. A more detailed presentation of
the final results of the SMC experiment was given in Savin (1998).

Only from the SMC proton data, the following contributions of separate quarks
to the nucleon spin have been obtained at Q2 = 10 GeV2:

�Σ = 0.28± 0.16, �u= 0.82± 0.05,

�d =−0.44± 0.05, �s =−0.10± 0.05.
(9.22)

Here, �q , where q = u,d, s, are the contributions of the indicated quarks to
the nucleon spin, the numbers refer to the proton spin, and �Σ is the sum of all
contributions �q .

Thus, only a small fraction of the nucleon spin, �Σ = 0.28±0.16, is determined
by the helicity of quarks, whereas the nonrelativistic quark model provides �Σ = 1.
This problem opened for the first time by the EMC Collaboration in 1987 was called
“spin crisis” and has not yet been solved. Another surprising conclusion is that the
strange quark sea is negatively polarized. It was generally expected that sea quarks
should not be polarized. Many models have been developed under this assumption,
but experiments appeared to be much richer than the expectations.

The next spin structure function measured by the SMC Collaboration was the so-
called transverse spin function g2(x), which tests the combination of the transverse
and longitudinal distributions of parton polarization in a nucleon. This distribution
was measured in the scattering of a longitudinally polarized lepton on a transversely
polarized nucleon. The function g2(x) consists of three components. The first com-
ponent is determined by the leading twist-2 term gWW

2 (x,Q2) appearing from the
same set of operators contributing to g1(x). The second component originates from
twist-2 and is due to the transverse polarization distribution of quarks. The third
contribution of the twist-3 dimension appears from the quark–gluon interactions.
The result of the SMC experiment on the measurement of the spin structure func-
tion g

p

2 (x) is presented in Fig. 9.1d. The data on g
p

2 (x) are consistent with zero in
the entire measured x region. A comparison of this result with theoretical calcu-
lations shows that the twist-2 term gWW

2 (x,Q2) well describes the data on g
p

2 (x)

within the experimental accuracy and that the twist-3 term can be neglected. The
accuracy of the measurement of gp2 (x) and the absence of a theoretical procedure
for extrapolating this function to limiting x values do not allow the accurate test of
the Burkhard–Cottingham sum rule

Γ
p

2 =
∫ 1

0
g
p

2 (x)dx = 0. (9.23)

The E143 results (SLAC) (see Fig. 9.2) on the spin structure functions have a
better accuracy in the measured x region and are in agreement with the SMC data
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in the overlapping x range (> 4 · 10−2). The E143 data were extrapolated to x = 0
using the (i) Regge model function g

p

1 (x) = C · x−α and (ii) function C · ln(1/x).
The contribution from small unmeasured x values to the first moment is 0.006 ±
0.006 and 0.013±0.003 in the first and second cases, respectively. These two values
demonstrate the model dependence of the extrapolation to small x values. It has been
found that the total contribution from quarks to the proton helicity is (27± 10) %,
whereas the contribution from sea quarks to the proton helicity is −(10 ± 4) %,
which is in agreement with the SMC results discussed above.

The results of the measurements of the spin structure function g1(x) for the
deuteron and neutron are in agreement with the SMC data (see Figs. 9.2b and 9.2c),
and they also show the tendency of change in the sign near x ≈ 0.05. Some models
predict such a change in the sign (Kaur 1977). The results of the measurements of
the transverse spin structure function g

p

2 (x) in the E143 experiment are presented
in Fig. 9.2d (Rondon 1995).

The data from two spectrometers placed at laboratory angles 4.5° and 7° are
much below the bound following from the requirement of the positive sign of the
distribution function.

They are consistent with the assumption that the transverse spin structure func-
tion g

p

2 (x) is small, but can be positive at x < 0.1 and becomes negative at x > 0.1.
Such a behavior corresponds to the twist-2 contribution gWW

2 for the kinematics of
this experiment. Large errors of the experimental data on gWW

2 do not exclude the
possible twist-3 contribution of the same order. The authors made an estimate for
the Burkhard–Cottingham sum rule. This integral is

∫ 1

0.03
g
p

2 (x)dx =−0.013± 0.028 (9.24a)

for the proton and
∫ 1

0.03
gd2 (x)dx =−0.033± 0.082, (9.24b)

for the deuteron. These results are consistent with zero values.
The experimental data make it possible to test two known sum rules. These sum

rules provide relations between the first moments of the spin structure functions
both symmetric and antisymmetric and the weak SU(3)f coupling constants F and
D (vector and axial vector coupling constants, respectively). The Ellis–Jaffe sum
rule has the form

Γ
p(n)

1 =
∫

g
p(n)

1 (x)dx =± 1

12
(F +D)+ 5

36
(3F −D), (9.25)

and the Bjorken sum rule is given by the relation

Γ1
(
Q2)= Γ

p

1

(
Q2)− Γ n

1

(
Q2)= 1

6

∣
∣
∣
∣
gA

gV

∣
∣
∣
∣

[

1− αs(Q
2)

π
− · · ·

]

. (9.26)
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Fig. 9.3 Test of the sum
rules: (a) the Ellis–Jaffe sum
rule, (b) the Staude plot,
(c) �Σ vs. �s, and (d) the
decomposition of the proton
spin into components

Tests of the Ellis–Jaffe sum rule are shown in Fig. 9.3a. The shaded bands are the
theoretical predictions for the first moments of the spin structure functions for the
proton, deuteron, and neutron. The data for the proton and deuteron are inconsistent
with the Ellis–Jaffe sum rule (the discrepancy is≈ (4–6)σ ). The discrepancy for the
neutron is≤ 3σ for the SMC and E143 data and is only 1σ for the E142 experiment.
In this case, a question concerning a correct extrapolation of the data to the point
x = 0 can arise.

The Ellis–Jaffe sum rule was tested by parameterizing lepton–proton asymmetry
A
p

1 with the boundary conditions A
p

1 (x = 0) = 0 and A
p

1 (x = 1) = 1 (Nagaitsev
et al. 1996). The separate and joint analyses of the SMC and E143 data show the
mutual consistency of the data and indicate that the first moment Γ p

1 is more than
7σ below the predictions of the Ellis–Jaffe sum rule.

For the Bjorken sum rule, the E143 Collaboration provides

Γ
p

1 − Γ n
1 = 0.163± 0.010 (stat.)± 0.016 (syst.) (9.27)

at Q2 = 3 GeV2. This result should be compared to the predicted value

Γ
p

1 − Γ n
1 = 0.171± 0.008. (9.28)

The recent SMC results give

Γ
p

1 − Γ n
1 = 0.183± 0.034 (9.29)
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at Q2 = 10 GeV2. This result should be compared to the predicted value

Γ
p

1 − Γ n
1 = 0.186± 0.002. (9.30)

Both results are in agreement with the Bjorken sum rule at corresponding Q2

values. The integrated experimental data (E80, E130, EMC, SMC, E142 and E143)
on the first moment of the spin structure functions Γ1 at Q2 = 5 GeV2 are presented
below in comparison with the Ellis–Jaffe sum rule and Bjorken sum rule.

The measurements:

Γ
p

1 = 0.142± 0.011, Γ d
1 = 0.038± 0.006, (9.31)

Γ n
1 =−0.061± 0.016, Γ

p

1 − Γ n
1 = 0.203± 0.022. (9.32)

The sum rules:

Γ
p

1 = 0.164± 0.005, Γ d
1 = 0.07± 0.004, (9.33)

Γ n
1 =−0.015± 0.005, Γ

p

1 − Γ n
1 = 0.181± 0.003. (9.34)

These results are also presented in Fig. 9.3b (Crabb 1995). The Bjorken sum rule
is confirmed with a high accuracy, whereas the Ellis–Jaffe sum rule is inconsistent
with the data (closed squares). The experimental results on the nucleon spin carried
by valence quarks, �Σ , and sea quarks, �s, are presented in Fig. 9.3c for Q2 =
5 GeV2. The �Σ value is close to 1/3 for all data, but the E142 data provide �Σ ≈
0.45 for the neutron. On the average, 1/3 and 1/10 of the nucleon spin are carried by
quarks and sea quarks, respectively, and the rest spin should be attributed to gluons
and orbital angular momentum. The united experimental data provide the following
decomposition of the nucleon spin at Q2 = 5 GeV2:

�u= 0.82± 0.02, �d =−0.43± 0.02, �s =−0.10± 0.02. (9.35)

Figure 9.3d helps to answer a question as how the nucleon spin could be shared
between various parton components if the gluon contribution were known from in-
dependent measurements. It is seen that �u provides the significant fraction of the
spin, though it is considerably compensated by the negative contributions �d and
�s to the total nucleon spin. An important objective is the real determination of
the distribution of polarized gluons, which has not yet been measured precisely ex-
perimentally. This is the main problem both for the conducted experiments (COM-
PASS, HERMES) and for the future programs (RHIC, U-70, J-PARK). The SMC,
E142, and E143 data were also analyzed (Ramsey and Goshtasbpour 1995). This
analysis differs from the approach of the experimental groups. In this analysis, the
authors use the sum rules together with single experimental data in order to extract
spin information, whereas the experimental groups use the data from many exper-
iments to test the sum rules. Moreover, experimenters assume that the sea is sym-
metric in quark flavor and ignore the axially anomalous contribution. The authors
discuss two models differing in gluon polarization. In the first case, they assume that
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�G(x)= xG(x). In the second case, they choose �G(x)= 0. They conclude that
the naive quark model is insufficient for an explanation of the spin characteristics
of the proton. They also notice that the total contribution from quarks to the proton
spin �q varies from 10 to 50 % in various experiments and the average value of this
contribution is near 1/3. Gluon polarization is very stable in various experiments
ranging only from 0.44 to 0.46. In this case, the average contribution of the orbital
angular momentum varies from −0.04 to −0.20. It is in agreement with Fig. 9.3d
taken from Voss (1995). The model with �G= 0 shows actually the same change
in �q as above with the positive contribution of the orbital angular momentum near
0.35. The sea contribution is negative in both variants of this model and is near
−0.1. Such an appreciable polarization of the sea is the main cause of the violation
of the Ellis–Jaffe sum rule. The authors conclude that further experimental investi-
gations are necessary for the determination of the relative contributions from gluons
and various flavors of sea quarks to the nucleon spin.

Aforementioned experiments determined the contributions �u and �d to the
proton spin with a high accuracy, but they provided scarce information on the dis-
tributions of the polarizations of sea quarks and gluons. Since the region of small
x values is very sensitive to the distributions of sea quarks and gluons (Ladinsky
1995), it is necessary to accurately measure the spin structure functions at small x
values. This can be performed only at colliders of the HERA or RHIC type with
the longitudinally polarized colliding electron and proton beams. Physicists already
made the corresponding proposals, but they have not yet been accepted at HERA,
since HERA is closed and are under development at RHIC (the eRHIC program).

It was proposed to use the Bjorken sum rule to determine the running strong cou-
pling constant αs(Q2) (Ellis and Karliner 1995, 1996) instead of the experimental
test of the Bjorken sum rule. According to the set of the experimental data,

Γ
p

1 − Γ n
1 = 0.164± 0.011. (9.36)

Using this result and the Bjorken formula, one obtains

αs
(
M2

z

)= 0.116+0.003
−0.005. (9.37)

This value should be compared to the world average

αs
(
M2

z

)= 0.117± 0.005. (9.38)

A much higher accuracy is expected in forthcoming experimental data on the
spin structure functions; this will open a new way for determining the running strong
coupling constant by means of the Bjorken sum rule. The spin crisis becomes not so
sharp as before, but it exists. Only 1/3 of the nucleon spin is carried by quarks, and
its other part has not yet been explained experimentally. It is possible to assume that
the spin crisis concerns more likely theory rather than experiment. To justify this
statement, we mention two theoretical works. Ma (1990) presented two statements
clarifying the spin crisis problem: (i) the deep inelastic scattering of leptons serves as
a probe for light (current) quarks rather than instanton (constituent) quarks, (ii) the
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proton spin in light cone dynamics is not simply the sum of the spins of individual
quarks, but is the sum of the Melosh-rotating spins of light cone quarks. Using the
credibility model, the author obtained the estimate �Σ = 0.227, which is close to
the experimental value �Σ = 0.29± 0.06. According Anselm and Ryskin (1995),
a valence quark in the first stage of the evolution of the structure function can emit
pseudoscalar mesons similar to π , η, and K and inverts the spin. As a result, the
total chirality of quarks (�Σ ) decreases and a part of the spin is transformed to the
orbital angular momentum of partons. Using a simple Hamiltonian with symmetric
properties, the authors wrote the equation of the evolution for the structure func-
tion of the polarized quarks and could explain the spin crisis. According to their
calculation, a part of the nucleon spin carried by quarks is 0.39 in agreement with
the experimental data. If independent sources confirm the first or second theoretical
work, this will mean that the spin crisis invented by theorists is closed by them.

The urgent problem in the research program for the nucleon spin structure is the
necessity of a more accurate measurement of the gluon spin distributions. Physicists
at the largest operating polarization setups such as COMPASS as well as at RHIC
beginning a serious polarization program, work on this problem. In distant prospect,
similar investigations are planned at the U-70 accelerator (Protvino, Russia) and
J-PARC accelerator (Japan).
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Chapter 10
Hyperon Polarization

10.1 Dependence of Hyperon Polarization on Reaction
Parameters

There are several detailed reviews on hyperon polarization (Pondrom 1985; Heller
1985; Lach 1994; Panagiotou 1990). These works discussed the dependences of
hyperon polarizations on the initial energy, momentum transfer, Feynman parame-
ter, and flavors of initial and final quarks. The above reviews contain the following
conclusions:

– the energy dependence of polarization: it was certainly stated that Λ hyperon
polarization is practically independent of the beam energy;

– the dependence of polarization on pT : Λ hyperon polarization at a fixed Feynman
parameter xF increases linearly with pT to pT ≈ 1 GeV/c and then becomes
constant, i.e., exhibits a plateau whose height depends on xF ;

– the dependence of polarization on xF : polarization increases almost linearly with
xF at a fixed momentum transfer pT . The last two statements have been repre-
sented by the useful analytical expression (Pondrom 1985):

P(x,pT )=−
(
a · xF + b · x3

F

) · [1− exp
(−c · p2

T

)]
. (10.1)

This function is an empirical function, because it has no strict theoretical proof.
However, this function meets some general requirements. For example, it vanishes
at pT = 0 in agreement with the conservation of the angular momentum. It is an odd
function of xF as should be owing to the identity of two interacting protons. The pa-
rameters a, b, and c in the resulting formula have been determined by fitting it to the
experimental data on Λ hyperon polarization at 400 GeV/c. These fitting parameters
are as follows (Lundberg et al. 1989): a = −0.268± 0.003, b = −0.338± 0.015,
and c = (4.5 ± 0.6) (GeV/c)−2 with χ2/DOF = 109.4/69 (DOF is the number of
degrees of freedom). These parameters depend on the initial energy and flavor of
produced hyperons (Λ, Σ , Ξ , etc.). The above formula corresponds to the factor-
ization of the dependence of the polarization on xF and pT . The dependence on xF
reflects the identity of the initial particles (pp collisions), but is also used to describe
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the interaction of protons with nuclei. In view of the first item in the above list, PΛ is
factorized as

PΛ = f1(s) · f2(pT ) · f3(xF ). (10.2)

The known DeGrand–Miettinen (DGM) model (DeGrand and Miettinen 1981a;
DeGrand et al. 1985) does not indicate the factorization in the variables xF and pT

(see below) and polarization decreases at large momentum transfers pT . Formula
(10.1) is very useful for comparison of various experimental data on hyperon po-
larization. Though all experimentally measured hyperon polarizations have simple
dependences on all kinematic parameters (s, pT , and xF ), theoretical models do not
provide simple analytical expressions similar to the above empirical expression. The
only known exception is the DGM model discussed below.

The program of the complete experiment for the inclusive production of hyper-
ons is formulated in Swallow (1974). This program is similar to “a complete set
of experiments” for nucleon–nucleon elastic scattering, which was formulated in
the mid-1950s by Wolfenstein (1954) and Puzikov et al. (1957). According to this
program, most experiments in the complete set are the measurements with a po-
larized proton beam and a polarized target. Such a program on the measurements
of polarization observables in the inclusive production of hyperons began with the
experiments at ZGS (Swallow 1974), AGS (Nessi 1988; Bonner et al. 1989), and
Tevatron (Bravar 1996; Penzo 1995).

10.1.1 Energy Dependence of Λ Hyperon Polarization

In this section, we primarily discuss the energy dependence of Λ hyperon polariza-
tion (function f1(s) presented above), because it was extensively investigated in a
wide energy range. The importance of these investigations follows from the fact that
any polarization is proportional to the product

P ∝ |Fsf |
|Fnf | sinα, (10.3)

where Fsf is the spin-flip amplitude, Fnf is the spin-nonflip amplitude, and α is
the phase difference between these two amplitudes. The amplitudes and phase are
functions of the initial energy, Feynman parameter xF , and transverse momentum
transfer pT . For polarization to be nonzero at any energy, Fsf and phase should be
nonzero. The most popular theoretical models such as the Regge model or QCD
predict a fast decrease in polarization with increasing energy. We do not know a
model indicating an increase in polarization with energy. Polarization can seem-
ingly be energy independent if, for example, interaction is carried only through a
pomeron and the pomeron ensures spin flip. Such a possibility is indicated by the
experimental data on polarization in the elastic scattering of hadrons at high energies
(Nurushev 1990). The conclusion on the presence of the constant spin contribution
to the differential section for the unpolarized pp elastic scattering in the energy
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range 9–500 GeV was previously made in Soffer and Wray (1973). The asymp-
totic behavior of the spin-flip amplitude can be determined, in particular, from the
experimental data on hyperon polarization owing to a wide covering energy range.
A brief review of the data on the energy dependence of Λ hyperon polarization will
be given below.

There are some approaches to this subject. The first approach is associated
with the results of the measurements of Λ hyperon polarization at the collider
(Smith et al. 1987). The measurements are carried out at four ISR energies√
s = 31,44,53, and 62 GeV. These data were approximated by the linear func-

tion

−PΛ = a1 + a2 ·
(√

s − 62.4
)
. (10.4)

The fit of this function jointly to three data sets: (i) x̄F = 0.39, pT = 0.56 GeV/c;
(ii) xF = 0.58, pT = 0.81 GeV/c; and (iii) xF = 0.77, pT = 0.92 GeV/c gives
the slope parameter a2 = (0.027 ± 0.055) %/GeV. Therefore, pure change in po-
larization in an energy range from 31 to 62 GeV is (0.8 ± 1.7) %. This result
shows that polarization is constant over the entire ISR energy range. The second
approach is based on the results of the experiments with a fixed target at mo-
menta from 12 to 400 GeV/c (Panagiotou 1990). The xF and pT values were
taken in the polarization data in the regions 0.43 < xF < 0.58 and 1.15 GeV/c <
pT < 1.58 GeV/c, respectively. The data at four energies were fitted by the func-
tion

−PΛ = a1 + a2 · lnpL, (10.5)

where pL is the laboratory momentum of the incident beam. The χ2 fit gives the
parameters a1 = −26.3 ± 2.0 and a2 = 0.7 ± 0.1. Note that the slope parameter
is positive (while the sign of the constant term is opposite), which reduces asymp-
totic polarization. Pure polarization change in the momentum range from 12 to
400 GeV/c is (2.45± 0.35) %. The slope parameter is nonzero, but demonstrates a
very weak dependence on the initial energy.

It is difficult to compare these two results as they have no common kinematic
regions. The unification of the results for the fixed target and collider is complicated
because most works contain primarily only plots rather than tables of experimental
data on polarization. Plots are obviously inappropriate sources of polarization values
for a quantitative analysis. However, these sources have no alternative in some cases.
The data thus collected are presented in Tables 10.1 and 10.2 (note that the negative
sign of Λ polarization is included in the column heading, −PΛ and this quantity
is given in percent). The last column is intended for comments and the previous
column gives references to original works. Three functions were used for fitting over
the entire energy range: two of them coincide with the functions given in Eqs. (10.4)
and (10.5), and the third function appears in the Regge pole model:

−PΛ = a1 · pa2
L . (10.6)

Here, the parameter a2 is the effective Regge trajectory. In the case of elastic scat-
tering, it varies between −0.5 and −1 for small values of −t (−t ≈ 0.1 (GeV/c)2)
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Table 10.1 Data on the energy dependence of Λ hyperon polarization divided into xF and pT

bins and fitting results

No. pL,
GeV/c

√
s,

GeV
−PΛ, % Reference Comment

x̄F = 0.39, p̄T = 0.56 GeV/c

1 12.0 4.74 4.85± 2.05 (Abe et al. 1986) 2 points, x̄F = 0.37

2 300.0 23.7 0.0± 2.0 (Scubic et al. 1978) pT = 0.58 GeV/c

3 512.3 31.0 6.4± 2.9 (Smith et al. 1987) From plots

4 1032.0 44.0 8.1± 2.6 (Smith et al. 1987) From plots

5 1497.0 53.0 5.3± 2.4 (Smith et al. 1987) From plots

6 2049.0 62.0 7.5± 0.8 (Smith et al. 1987) From plots

1 −PΛ = a1 + a2 · lnpL, fitting parameters al = 0.87± 2.88, a2 = 0.8± 0.41;
χ2/DOF= 2.4, NP= 6

2 −PΛ = al + a2 · √pL, fitting parameters al = 2.23± 1.74, a2 = 0.11± 0.04;
χ2/DOF= 1.8, NP= 6

3 −PΛ = a1 · pa2
L , fitting parameters al = 0.81± 1.24, a2 = 0.29± 0.21;

χ2/DOF= 2.04, NP= 6

x̄F = 0.58, p̄T = 0.81 GeV/c

1 12.0 4.74 14.9± 1.3 (Abe et al. 1986) Aver. over 2 points

2 176.0 18.2 7.9± 5.5 (Gourlay et al. 1986) New data

3 300.0 23.7 12.2± 1.2 (Scubic et al. 1978) Aver. over 2 points

4 512.3 31.0 15.1± 2.6 (Smith et al. 1987) From plots

5 1032.0 44.0 17.4± 3.5 (Smith et al. 1987) From plots

6 1497.0 53.0 18.0± 3.2 (Smith et al. 1987) From plots

7 2049.0 62.0 17.4± 1.2 (Smith et al. 1987) From plots

1 −PΛ = a1 + a2 · lnpL, fitting parameters al = 12.38± 1.99, a2 = 0.46± 0.33;
χ2/DOF= 2.1, NP= 7

2 −PΛ = al + a2 · √pL, fitting parameters al = 12.77± 1.17, a2 = 0.09± 0.04;
χ2/DOF= 1.4, NP= 7

3 −PΛ = a1 · pa2
L , fitting parameters al = 12.27± 2.22, a2 = 0.04± 0.03;

χ2/DOF= 2.0, NP= 7

(Nurushev 1990). The fitting results for inclusive polarization are shown in Fig. 10.1
and presented in Tables 10.1 and 10.2. The inclusion of new experimental data with
high accuracies actually worsens some earlier fits (see χ2/DOF values in the ta-
bles, where NP is the number of experimental points and DOF means degrees of
freedom).

The basic conclusions of the above analysis are as follows.

(i) All functions provide similar descriptions of the experimental data (the dashed
line is the function

√
s, the dotted line is lnpL, and the solid line is the Regge
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Table 10.2 Data on the energy dependence of Λ hyperon polarization divided into xF and pT

bins and fitting results

No. pL,
GeV/c

√
s,

GeV
−PΛ, % Reference Comment

x̄F = 0.77, p̄T = 0.92 GeV/c

1 12.0 4.7 21.0± 2.7 (Abe et al. 1986) New data

2 300.0 23.7 16.0± 9. (Scubic et al. 1978) New data

3 512.3 31.0 32.0± 4.1 (Smith et al. 1987) From plots

4 1032.0 44.0 27.9± 6.4 (Smith et al. 1987) From plots

5 1497.0 53.0 33.1± 5.8 (Smith et al. 1987) From plots

6 2049.0 62.0 29.7± 4.3 (Smith et al. 1987) From plots

1 −PΛ = a1 + a2 · lnpL, fitting parameters al = 16.0± 4.3, a2 = 2.0± 0.8;
χ2/DOF= 0.7, NP= 6

2 −PΛ = al + a2 · √pL, fitting parameters al = 20.8± 2.8, a2 = 0.26± 0.11;
χ2/DOF= 0.9, NP= 6

3 −PΛ = a1 · pa2
L , fitting parameters al = 17.4± 3.8, a2 = 0.08± 0.04;

χ2/DOF= 0.7, NP= 6

0.43≤ xF ≤ 0.58, 1.15 GeV/c ≤ pT ≤ 1.58 GeV/c

1 12.0 4.7 18.2± 1.85 (Abe et al. 1986) Aver. over 4 points

2 24.0 6.7 25.7± 8.1 (Panagiotou 1990) From plots

3 300.0 23.7 16.0± 1.8 (Scubic et al. 1978) Aver. over 3 points

4 400.0 27.4 21.1± 0.8 (Lundberg et al. 1989) Aver. over 2 point

5 2049.0 62.0 25.4± 2.2 (Smith et al. 1987) From plots

1 −PΛ = a1 + a2 · lnpL, fitting parameters al = 14.6± 2.9, a2 = 1.0± 0.5;
χ2/DOF= 3.12, NP= 5

2 −PΛ = al + a2 · √pL, fitting parameters al = 16.9± 1.5, a2 = 0.18± 0.07;
χ2/DOF= 2.2, NP= 5

3 −PΛ = a1 · pa2
L , fitting parameters al = 14.7± 3.5, a2 = 0.06± 0.04;

χ2/DOF= 3.0, NP= 5

pole dependence). The dash–dotted line in Fig. 10.1d corresponds to the fit
from Panagiotou (1990). In this case, the slope is positive, whereas the slope of
the new fit (with the Regge pole) is negative (see the solid line in Fig. 10.1d).
This difference is insignificant now, but can lead to an essential discrepancy at
asymptotic energy.

(ii) The energy dependence of Λ hyperon polarization is very weak, though there
is some indication that polarization can vary with energy.

(iii) The existing data are scarce; therefore, additional measurements of polarization
in a wide region of kinematic variables are necessary.
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Fig. 10.1 Energy dependence of Λ hyperon polarization in various kinematic regions

Most theoretical models assume that hyperon polarization is energy independent.
However, an interesting variety of hyperon polarizations was recently revealed. Fig-
ure 10.2a shows that polarization at ISR (marked by asterisks) at

√
s = 62 GeV

(corresponding to pL = 2049 GeV/c in experiments with the fixed target) is seem-
ingly slightly larger than that at 800 GeV/c in experiments with the fixed target
(closed circles) (Smith et al. 1987). The experiment reported in Smith et al. (1987)
was performed on a beryllium target and a nuclear effect was undoubtedly presented
in this experiment.

This nuclear effect can reduce Λ hyperon polarization only by ≈10 %, and this
reduction is insufficient to explain the difference between polarizations. Hence, we
can believe that there is a weak indication of an increase in the spin effect with en-
ergy. If this is confirmed, this phenomenon can become the important and surprising
discovery.

The polarization of Σ+ decreases with increasing energy (Cooper et al. 1983;
Morelos et al. 1993) (see Fig. 10.2b), whereas the polarization of Ξ− increases
with energy (see Fig.10.2c) (Rameika et al. 1986; Duryea et al. 1991). This variety
in the energy dependences of hyperon polarizations can give an important key to the
detection of the source of hyperon polarization.
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Fig. 10.2 Polarizations of the (a) Λ, (b) Σ+, (c) Ξ−, and (d) Ξ0 hyperons produced by the proton
beam versus pT

10.1.2 Dependence of Hyperon Polarization on pT

Another important subject is the dependence of hyperon polarizations on the mo-
mentum transfer pT . The spin-flip amplitude Fsf in Eq. (10.3) should decrease
as pT at pT → 0 according to the conservation of the total angular momentum,
whereas such a constraint does not exist for the nonspin-flip amplitude Fnf . There-
fore, Λ hyperon polarization should begin to increase from zero linearly with pT

and, as data indicate, this dependence becomes flat near pT ≈ 1 GeV/c. Such a
feature has been described by the parametrization (Lundberg et al. 1989):

−PΛ = f2(pT )= a1 ·
[
1− exp

(−a2 · p2
T

)]
. (10.7)

The function f2(pT ) provides a good analytical description of the experimental
data, which is very useful for comparison of various measurements (see examples
below). However, this function has not two important features: its behavior at low
transverse momenta is p2

T rather than pT , and it is constant at high transverse mo-
menta in contrast to the p−1

T behavior with increasing pT predicted by perturbative
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QCD (pQCD) (Efremov 1978). We recall that both these features are present in the
DGM recombination model mentioned above. These two features could be taken
into account by multiplying function (10.7) by the term 1/pT without introducing
any new free parameter. Thus, new function f2(pT ) originating from pQCD has the
form

f2(pT )= a1 ·
[
1− exp

(−a2 · p2
T

)] · 1/pT . (10.8)

Two above functions and the function linear in pT were fitted to the experimental
data on PΛ in the bin 0.3 < xF ≤ 0.4 at an initial momentum of 400 GeV/c reported
in Heller et al. (1978). The fitting results are presented in Fig. 10.2b and Table 10.3.
The thin solid line is the function f2(pT ) from Lundberg et al. (1989) given by
Eq. (10.7) (the first line of the fitting parameters in Table 10.3), the dashed line is
the linear approximation (the second line of the fitting parameters in Table 10.3),
and the thick solid line is the pQCD stimulated function given by Eq. (10.8) (the
third row in Table 10.3). It is seen in this figure that a good quantitative descrip-
tion of the data at a momentum of 400 GeV/c (

√
s = 27.4 GeV) is absent. Since

the experimental points are strongly scattered, all three functions provide equally
good descriptions in the measured pT region. It is only possible to state that pQCD
predictions for high pT values do not contradict the existing experimental data. To
confirm or reject this statement, it is necessary to expand the measurement region
to higher pT values. The data at the ISR energy

√
s = 62 GeV (see Fig. 10.2a) are

better described by dependence (10.7) than by the other functions (see χ2 values
in Table 10.3). The DGM model predictions are presented in Fig. 10.2 by the dot-
ted lines. The prediction is in good agreement with the experimental data for the
polarization of Λ up to pT ≤ 1.5 GeV/c, and some discrepancy is then observed.
Since the calculations have been performed for the fixed value xF = 0.35 and the
experimental data have been averaged over the range 0.3 < xF < 0.4, it is difficult
to explain such discrepancy only by the dependence of polarization on xF . As the
model has no free parameters, such an agreement is surprising. Very good agreement
is observed for the polarization of Ξ0 (see Fig. 10.2d). An appreciable discrepancy
appears in the polarization of Σ+ (see Fig. 10.2b). First, according to the DGM
model, hyperon polarization should be independent of the initial beam energy. This
is not the case: PΣ+(800 GeV/c) is smaller than PΣ+(400 GeV/c). Second, pt de-
pendence has a peak at pT

∼= 1 GeV/c, which is not predicted by the model. Finally,
the model does not provide the quantitative description of the pT dependence of
Σ+ polarization.

The data in Fig. 10.2b are better described by the pQCD function (the thick
solid line) at both energies (see Table 10.3), though the pT values are insufficiently
high for the applicability of pQCD. The data for Ξ− (see Fig. 10.2c) are well de-
scribed by all three functions at 400 GeV/c (data from Rameika et al. 1986) and at
800 GeV/c (data from Duryea et al. 1991). There are some attributes of the begin-
ning of a plateau in the data near pT

∼= 1 GeV/c, but new data at high transverse mo-
menta are necessary to confirm such a conclusion. The polarization of Ξ0 (Heller
et al. 1978) (see Fig. 10.2d) exhibits the same features as the polarization of Ξ−
though the experimental points have wide dispersion.
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Table 10.3 Dependence of the polarization of hyperons produced by a proton beam on pT (com-
ment to Fig. 10.2)

Reaction a1 (%) a2 (%) χ2/DOF NP

p→Λ, 400 GeV/c 10.9± 0.2 3.3± 0.4 5.9 23

0.3 < xF < 0.4 9.6± 0.5 0.7± 0.4 6.7 23

0.2 <pT < 3.1 GeV/c 22.4± 1.7 0.63± 0.07 6.1 23

p→Λ, 2049 GeV/c 17.9± 2.0 1.6± 0.3 1.4 6

xF = 0.38 −2.6± 1.4 16.6± 1.8 3.2 6

0.4 <pT < 1.3 GeV/c 37.0± 21.0 0.04± 0.02 4.1 6

p→Σ+, 400 GeV/c 19.6± 1.2 40.2± 302.0 7.6 4

xF = 0.53 32.9± 4.1 −12.4± 3.7 1.8 4

0.5 <pT < 1.5 GeV/c 21.5± 1.9 3.5± 0.9 1.2 4

p+→Σ , 800 GeV/c 13.0± 0.2 14.5± 9.3 10.0 15

0.44 < xF < 0.52 21.7± 1.1 −6.8± 0.9 5.2 15

0.3 <pT < 2 GeV/c 17.0± 0.3 2.9± 0.4 4.4 15

p→Ξ−, 400 GeV/c 14.5± 5.6 1.2± 0.8 1.0 6

0.29 < xF < 0.61 −2.0± 4.3 11.9± 4.5 1.2 6

0.6 <pT < 1.2 GeV/c 276.0± 265.0 0.04± 0.04 1.2 6

p→Ξ−, 800 GeV/c 14.4± 0.5 2.8± 0.4 1.0 9

0.32 < xF < 0.7 7.7± 1.5 5.6± 1.5 0.2 9

0.6 <pT < 1.4 GeV/c 26.0± 6.5 0.7± 0.3 1.1 9

p→Ξ0, 400 GeV/c 11.0± 0.8 11.0± 9.0 2.0 16

0.26 < xF < 0.58 2.7± 2.8 8.2± 2.77 1.4 16

0.3 <pT < 1.7 GeV/c 634.0± 417.0 0.02± 0.01 1.5 16

Summarizing this subsection, we emphasize that the pT dependences of polariza-
tion are different for different quark flavors. Such a difference cannot be explained
in the popular DGM recombination model or the Lund model (Gustafson 1984).
This fact implies the difference between the mechanisms of the interaction of par-
tons with different flavors. The existing experimental data also do not contradict the
pQCD predictions for high momentum transfers pT .

10.1.3 Dependence of Hyperon Polarization on xF

The DGM recombination model based on the SU(6) symmetry and the Thomas spin
precession mechanism predicts an almost linear dependence of Λ hyperon polariza-
tion on xF with small corrections to higher xF powers and to pT . The polarization
of the Λ hyperon is described in this model (in a certain approximation) by the
analytical function

PΛ =−A(xF ,pT ) · pT , A(xF ,pT )= f (xF ) · g(xF ,pT ). (10.9)
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Fig. 10.3 Polarization of the (a) Λ, (b) Σ+, (c) Ξ−, and (d) Ξ0 hyperons versus xF

After the substitution of the numerical values for the intermediate parameters,
the above functions can be presented as (DeGrand and Miettinen 1981a; DeGrand
et al. 1985)

f (xF )= 0.12 · xF · (1− 0.31 · xF − 0.18 · x2
F )

(1− 0.35 · x2
F )

, (10.10)

g(xF ,pT )= 1

0.38+ (0.03+ 0.068 · xF + 0.04 · x2
F ) · p2

T

. (10.11)

Some experimental data for hyperon polarization as a function of xF are presented
in Fig. 10.3. The linear approximation is given by thick solid lines in Figs. 10.3b–
10.3d. The behavior of the experimental data for hyperon polarization as a function
of xF depends on the quark flavor. The predictions of the DGM model are shown
in these figures by dashed lines (the thin solid line in Fig. 10.3d). This compar-
ison shows that the DeGrand–Miettinen model without any free parameters well
describes the data for the polarization of Λ hyperons (see Fig. 10.3a); the calcu-
lations were performed with pT = 1 GeV/c. The basic prediction of this model
that the xF dependences of the polarizations of some hyperons are the same is
valid maybe only for the Ξ0 hyperon (see Fig. 10.3d) and is incorrect for the Σ+
(Fig. 10.3b) and Ξ− (Fig. 10.3c) hyperons. Thus, the DeGrand–Miettinen model
cannot explain the xF dependence of the polarization of all hyperons. It is another
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Fig. 10.4 Polarization of the Λ̄, Σ̄−, and Ξ̄− hyperons produced by the proton beam versus (a,
c, and e) pT and (b, d, and f) xF , respectively

defect of this model. There are several critical remarks on this model in Fujita and
Matsuyama (1988) and Magnin and Simao (1995), where the authors stated that the
DGM model cannot describe polarization when hyperons are produced at small xF
values. This is due to the strong dependence of model predictions on the masses of
sea quarks.

There is a more obvious disadvantage of this model: the model requires zero
polarizations of the hyperons that do not have common quarks with the initial parti-
cles. According to this postulate, all antihyperons should be unpolarized, but this is
not the case. For example, Fig. 10.4 shows some data on antihyperon polarizations.
The Λ̄ hyperon is unpolarized (see Figs. 10.4a and 10.4b), whereas the antisigma
hyperon is polarized (see Figs. 10.4c and 10.4d); moreover, the sign and magnitude
of polarization are the same as for the sigma hyperon. Another example is the polar-
ization of the negative anticascade hyperon (see Figs. 10.4e and 10.4f), which has a
magnitude of about 10 % and the negative sign as for the cascade hyperon. The solid
lines in all figures are linear fits to the data. Thus, the DGM model has some prob-
lems, which will be solved with the appearance of new experimental data. However,
this model for a long time gave correct guiding lines in many directions such as
hyperon polarizations and relations between them, it predicts hyperon polarizations
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produced on various beams including polarized beams. For this reason, we expect
that this model can be improved to describe new experimental data. Since there is
no other model giving the same simple analytical expression for the description of
the experimental data, we should continue to use it for guiding lines until a more
perfect model will be developed.

A relativistic quark model with rotating valence quarks has been recently pro-
posed to explain spin effects in hadron processes. This model has been applied, in
particular, to interpret polarization in the inclusive production of hyperons at high
energies (Meng 1991; Boros et al. 1993, 1996). Substantial foundations of the pro-
posed model are as follows: (i) the valence quarks are Dirac particles located in a
bag (confinement) and rotating on an orbit around the center of a polarized hadron;
(ii) the valence quarks in the polarized hadron are also polarized and their polar-
ization are determined by the SU(6) hadron wave function; (iii) the inclusive pro-
duction of final hadrons occurs primarily through direct production processes when
the valence quarks of one of the colliding hadrons annihilate or join with the sea
antiquarks of the other hadron; and (iv) the surface effect plays a significant role in
one-spin inclusive reactions. Backgrounds reducing asymmetry obviously exist, but
the analysis of the yields of Λ hyperons shows that they are significant only at small
xF values, whereas their contribution at large xF values is insignificant. Predictions
of this model (Boros and Liang 1996) and their comparison with experimental data
on Λ polarization are presented in Fig. 10.3a by the solid line. The model predic-
tions are in good agreement with the experimental data.

10.1.4 Polarization of Hyperons Produced by a Σ− Beam

The results of the WA-89 experiment at CERN were published (Adamovich et al.
1995) (see Fig. 10.5). They were obtained on a 320-GeV/c Σ− hyperon beam.
All experimental data were described by the linear dependence on both vari-
ables xF and pT (thin solid lines in Fig. 10.5). Figure 10.5a shows the polar-
ization PΛ of Λ hyperons at x̄F = 0.3 as a function of pT . The thick solid
line is the calculation of the polarization PΛ of Λ hyperons produced by a 300-
GeV/c proton beam at the same xF value by formula (10.1). The polarization
of Λ hyperons produced by the Σ− beam is obviously much smaller than the
polarization produced by the proton beam. According to the DGM model (De-
Grand and Miettinen 1981a; DeGrand et al. 1985), polarization PΛ generated by
the Σ− beam should be about half the polarization PΛ generated by the pro-
ton beam. This prediction seems approximately correct (cf. the thin and thick
solid lines in Fig. 10.5a). Similar comparison was made for other measurements.
For example, as seen in Fig. 10.5b, Λ̄ hyperons are unpolarized in both cases
(cf. the thin and thick solid lines representing the results of fitting the experi-
mental data for Σ− hyperon and proton beams, respectively). A very interesting
feature is seen in Fig. 10.5c: the polarization of Σ+ hyperons produced by the
Σ− hyperon beam (the thin solid line) is much smaller in magnitude and has
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Fig. 10.5 Polarization of hyperons produced by the 320-GeV/c Σ− beam: (a) PΛ versus pT ,
(b) PΛ̄ versus pT , (c) P+Σ versus pT , (d) P−Ξ at xF = 0.3 versus pT , (e) P−Ξ at xF = 0.5 versus pT ,
and (f) P−Ξ versus xF

the opposite sign as compared to that produced by the proton beam (the solid
line, which was estimated by formula (10.1) as the corresponding data are ab-
sent).

According to the DGM model, the polarization of Σ+ hyperons produced by
the Σ− beam should be the same in magnitude, but opposite in sign as the polar-
ization of Λ hyperons produced by the proton beam. This prediction is seemingly
confirmed. The polarizations of Ξ− hyperons produced by both beams are close to
each other (see Figs. 10.5e and 10.5f) in agreement with the model prediction. The
authors of experimental work Adamovich et al. (1995) have made some conclusions.
First, the polarization of Λ hyperons inclusively produced by the Σ− hyperon beam
is much smaller than that of Λ hyperons produced by the proton beam with the same
initial energies. Second, Λ̄ hyperons are also unpolarized as in the case of the pro-
ton beam. Third, Ξ− hyperons have the same polarizations on both beams. Thus,
hyperon polarization strongly depends on the flavors of the initial and final quarks.
The same flavor dependence was previously observed for the polarizations of Σ+
and Ξ− hyperons. The dependences of their polarization on energy and pT are con-
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trary to those of the polarization of Λ (Nurushev 1993). More accurate data on the
polarizations of hyperons (and other hadrons) produced by the Σ− hyperon beam
are obviously important.

10.2 Inclusive Reactions with the Production of Hyperons
by the Polarized Proton Beam

10.2.1 Analyzing Power of Inclusive Reactions with the Production
of Hyperons

The use of the polarized proton beam for studying spin effects in the production
of hyperons can significantly enrich our knowledge. It is known that the transition
matrix of the reaction

p ↑+p→Λ+X (10.12)

is a function of eight real parameters (Doncel and Mendez 1972). Therefore, eight
observables can be measured. In this section, we discuss the analyzing power in
reaction (10.12) of the inclusive production of the Λ hyperon, AN , and the so-called
depolarization tensor DNN (one of the Wolfenstein parameters (Wolfenstein 1954)).
In 1995, the E704 Collaboration published the data on the left–right asymmetry in
reaction (10.12) (Bravar et al. 1997). The measurement of the asymmetry of the
Λ hyperon is interesting for many reasons. First, we deal with a heavier quark,
the s quark. Second, this reaction is sensitive to the quark flavor. The third reason
is the possibility of the comparison of the analyzing power with the polarization
of the Λ hyperon that appears in the same reaction when the initial proton beam
is unpolarized. It is known that the analyzing power AN and polarization P for
a binary reaction are equivalent owing to time invariance. It is also well known
that such a relation is not proved for inclusive reactions. The experimental data
on asymmetry AN for the inclusive production of Λ hyperons at 200 GeV/c are
presented by closed circles in Figs. 10.6a and 10.6b as functions of pT and xF ,
respectively.

Some conclusions can be deduced from these figures. First, the BNL data at
18.5 GeV/c and the ZGS data are consistent with zero (Lesnik et al. 1975; Bon-
ner et al. 1987) (data for 18.5 GeV/c are shown by stars and linear fits are pre-
sented by solid and dashed lines for 200 and 18.5 GeV/c, respectively). Second,
the analyzing power AN at 200 GeV/c is negative and its absolute value increases
with both arguments from zero near pT

∼= 0.5 GeV/c and xF ∼= 0.4 to 10 % near
pT
∼= 1 GeV/c and xF ∼= 0.7. The linear approximation provides a good descrip-

tion (see solid lines). In both cases, at 18.5 and 200 GeV/c, the analyzing power is
not equal to the polarization: the polarization is much larger in magnitude than the
analyzing power though their signs are the same. This result is a strong challenge
for the DGM model according to which AN(Λ)= PN(Λ) in inclusive production.
At the same time, the relativistic quark model of rotating valence quarks (Boros
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Fig. 10.6 Analyzing power AN for Λ versus (a) pT and (b) xF , polarization PΩ− for (c) proton
beam and (d) neutral beams, and the spin transfer tensor DNN for Λ versus (e) pT and (f) xF

et al. 1996) provides a quantitative description of the dependence of the analyzing
power of Λ on xF (Fig. 10.6b, the dash-dotted line). According to this model, an
appreciable negative asymmetry at large xF values is caused by the recombination
of (uvdv) valence diquarks from the polarized projectile with the sea quarks of the
unpolarized target. At the same time, zero asymmetry at small xF values is due to
indirect production processes (for example, the disintegration of heavy hyperons).
According to the similarity mechanism, AN(Λ) in the intermediate region is similar
to π0 asymmetry. More precise data are necessary for testing such statements.

10.2.2 Spin Transfer Process in the Inclusive Production
of Hyperons

The important methodical invention has been made in studying the polarization of
the Ω hyperon. At the first stage, physicists tried to obtain polarized Ω hyperons
traditionally by bombarding nuclear targets by the proton beam extracted with ex-
tension pulse and the separation of Ω hyperons at some small production angles
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(Luk et al. 1993). However, in complete agreement with the DGM model (DeGrand
et al. 1985), they have obtained zero polarization (see Fig. 10.6c).

Following the recommendation given in DeGrand et al. (1985), physicists have
then passed to the second phase: they have organized two types of neutral beams,
polarized (at nonzero production angle) and unpolarized (at zero angle) (Wood et al.
1996). Such succession of events can be understood. According to the DGM model,
the final hyperon should be polarized if it has one or more common quarks with
the initial proton. This condition is not satisfied for a proton–Ω pair. Hence, it is
necessary to create a secondary hyperon beam and to use it to produce the polar-
ized Ω hyperons. A neutral unpolarized beam (at zero angle) has been created with
the optimization of the content of Λ hyperons. However, Ω hyperons turned out
to be unpolarized (see the data shown by asterisks in Fig. 10.6d). It is difficult to
understand the cause of this fact: strange hyperons in this beam are probably not in
a favorable combination with the Ω particle. According to DeGrand et al. (1985),
a pair of Λ and Ω hyperons is the best pair for spin transfer to the Ω hyperon and
a pair of Σ− and Ω hyperons is the worst pair. The neutral beam probably con-
tains many unnecessary impurities without strangeness such as neutrons. However,
the following step undertaken by experimenters was successful: they have created
the polarized neutral beam and used it to generate Ω hyperons. These Ω hyperons
appeared to be polarized (see Fig. 10.6d, closed circles) and the magnetic moment
of the Ω hyperon could also be measured (Diehl et al. 1991). This experiment gave
the first direct proof of the existence of the spin transfer mechanism in the produc-
tion of the Ω hyperon. However, as the polarized neutral hyperon beam contained
many types of hyperons and their polarization was unknown, it was impossible to
quantitatively determine the fraction of initial polarization transferred to the final
hyperons. To obtain such quantitative data, it is necessary to measure the so-called
Wolfenstein parameters (Wolfenstein 1954) or spin tensors introduced in the begin-
ning of the 1950s for the description of elastic scattering.

These parameters are also applicable for the inclusive production of hyperons
(strictly speaking, for hyperons with spin 1/2 such as Λ and Σ hyperons, but are
inapplicable directly to Ω− hyperons having spin 3/2). If the primary beam, for
example, protons has polarization PB , the polarization of the final hyperon is given
by the expression

PY = P 0
Y +DNN · PB

1+ P 0
Y · PB

, (10.13)

where P 0
Y is the polarization of hyperons produced by the unpolarized proton beam.

This is the hyperon polarization discussed above.
It is assumed that all polarization vectors are directed perpendicularly to the hy-

peron production plane. This circumstance is represented by the subscripts of the
depolarization parameter. If this assumption is invalid, there are simpler formu-
las for the determination of polarization (spin) transfer. The Wolfenstein param-
eter DNN characterizes the fraction of the polarization of the initial beam trans-
ferred to the final hyperons. It provides the quantitative description of the spin
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transfer process and the tensor DNN is well known for the nucleon–nucleon in-
teractions at low energies. Moreover, this parameter has been measured for the
Σ0 hyperon at 18.5 GeV/c (Bonner et al. 1989). This result is interesting, be-
cause the experiment gave DNN = 0.26± 0.16, whereas the DGM model predicted
DNN = 0.67, which significantly contradicts the experimental data. A similar con-
tradiction has been found and for the analyzing power: AN (exper.)= 0.02± 0.03
versus AN (theory) = 0.20. To eliminate such discrepancies, experimenters pro-
posed to introduce two additional parameters into the DGM model that describe
spin flip and could give the good description of the data. More data are undoubtedly
required to improve the theoretical model.

In 1996, the interesting results on spin transfer tensor DNN measured by the E704
Collaboration were published (Bravar 1996). The results of the measurements of
DNN are presented in Figs. 10.6e and 10.6f as functions of pT and xF , respectively.
It is clearly seen that this parameter becomes nonzero at large xF and pT values
showing that approximately 20–30 % of the polarization of the initial proton are
transferred to the final Λ hyperon. This value obtained for the polarization of the
Λ hyperon cannot be compared to polarization transfer in the inclusive production
of the Ω hyperon for several reasons. First, Λ and Ω hyperons have different spins
(1/2 and 3/2, respectively). Second, any formula similar to expression (10.13) has
not yet been proposed for the Ω hyperon. Third, the kinematic regions are different:
the transverse momentum was zero in the case of the polarization of the Ω hyperon,
whereas the tensor DNN measured for the case of PΛ is nonzero at pT

∼= 1 GeV/c
and xF ∼= 0.8. The part of the polarization transferred by the tensor DNN should
be added to the direct polarization of the Λ hyperon, P 0

Λ, taking into account the
sign of DNN as seen in Eq. (10.13) for the final polarization of the Λ hyperon. The
results for DNN at 18.5 GeV/c are also presented in these figures. They show that
DNN is consistent with zero (Bonner et al. 1988). Thus, the E704 Collaboration has
presented the first direct quantitative data on the spin transfer effect in the inclusive
production of the Λ hyperon at high energies. This result differs from the predic-
tion of the DGM model. According to this model, DNN should be zero (DeGrand
and Miettinen 1981b, 1985). However, the rotating quark model also can describe
these data (Boros et al. 1996) without the introduction of any free parameters (see
Fig. 10.6f, the dotted line). The sign and shape of the depolarization tensor DNN

are predicted correctly though the good quantitative description has not yet been
achieved.

The dynamical mechanism providing a good description of the features of the
observed spectrum of Λ hyperons including their polarization was proposed in Sof-
fer and Tornquist (1991). This model is based on the one-pion exchange diagram
in the Regge model. All features of the inclusive production of Λ hyperons are at-
tributed to the π +p→K +Λ binary reaction with kinematics appropriately taken
into account. The model is promising for the explanation of many other spin effects
in various reactions.

A more complete investigation of the spin transfer mechanism with various po-
larized beams is obviously required. Data on the spin tensors at high energies are
very scarce yet.
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It is particularly important to supplement the RHIC polarization program
with studying the spin transfer tensors (Wolfenstein parameters). This requires a
polarimeter-type instrument for analyzing the polarization of scattered protons (or
any stable baryons or antibaryons). Unfortunately, such a program for RHIC is ab-
sent today. But spin transfer tensors may be studied through hyperon decays.
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Chapter 11
Inclusive Hadron Production

11.1 Single-Spin Asymmetry in Inclusive Hadron Production

The initial stage of the investigation of single-spin asymmetry in inclusive hadron
production was performed in the 1960s with the appearance of polarized proton
beams with a kinetic energy of 400 MeV (March 1960; Mcllwan et al. 1962) and
650 MeV (Borisov et al. 1967). The first and second experiments were carried
out with emulsions and bubble chambers, respectively; the third experiment was a
purely electronic experiment (scintillation counters) with high statistics. In all these
experiments, nonzero asymmetry of pions was observed. To interpret asymmetry in
inclusive pion production at 650 MeV, the known Mandelstam isobar model (Man-
delstam 1958) was successfully used, whereas the one-pion exchange (OPE) model
(Ferrari and Selleri 1963) appeared to be unsatisfactory (Nurushev and Solovyanov
1965). These data were also useful for the phase shift analysis. Physicists made
huge efforts to advance polarization investigations from energies about 100 MeV to
energies∼ 105 GeV (in the laboratory frame) for 50 years. At the same time, the pre-
vailing opinion is still that the spin phenomena insignificant and can disappear with
increasing energy. However, already the first results from the RHIC collider showed
that polarization effects survive even at energies of 105 GeV. Now, it is possible to
hope that polarization physics will bring many further surprising results. Single-spin
asymmetries at high energies (> 10 GeV) have been recently considered in several
works where one can find particular results and details of discussions (Soffer 1995;
Nurushev 1995a, 1995b).

We will focus on the discussion of new and significant experimental data on the
single-spin asymmetry at high energies (Nurushev and Ryskin 2006).

The E581/E704 Collaboration (Fermilab) created the polarized 200-GeV beam
of protons (antiprotons) from the decay of Λ(Λ̄) hyperons using the extracted 800-
GeV proton beam from the Tevatron. With such a beam having the highest energy
at that time (1990), the Collaboration carried out a series of the measurements of
single-spin asymmetries (results on hyperons were discussed above). The data can
be systematized as follows.

S.B. Nurushev et al., Introduction to Polarization Physics,
Lecture Notes in Physics 859, DOI 10.1007/978-3-642-32163-4_11,
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(a) Asymmetry in the polarized-beam fragmentation region (intermediate trans-
verse momenta) in the inclusive production of π0 and π± mesons in pp and
p̄p collisions.

(b) Asymmetry in the Coulomb-nuclear interference region in elastic pp scattering.
(c) Asymmetry in the central region (high transverse momenta) in the production of

direct photons and in the inclusive production of π0 mesons with accompanying
charged particles and without them.

11.1.1 Asymmetry in the Inclusive Production of π0 Mesons by
Polarized Proton and Antiproton Beams at Intermediate
Transverse Momentum (Beam Fragmentation Region)

Asymmetry at large xF values (the beam fragmentation region) has been measured
for the inclusive production of π0 in the reactions

p ↑+ p→ π0 +X, p̄ ↑+ p→ π0 +X. (11.1)

The region of the kinematic variables was 0.5 GeV/c < pT < 2.0 GeV/c, 0 <

xF < 0.8 (Adams et al. 1992; Nurushev 1991). As seen in Figs. 11.1a and 11.1c
(data for π0 are shown by stars in both figures), asymmetry is close to zero in the
range 0 < xF < 0.3 and then starts to increase almost linearly with xF , approaching
AN = 0.15± 0.03 in the pp reaction and AN = 0.072± 0.037 in the p̄p reaction in
the range 0.6 < xF < 0.8.

Note that the asymmetry sign is the same for both reactions, but AN(p ↑+p→
π0+X) >AN(p̄ ↑+p→ π0+X) throughout the measured xF range. The dashed
lines on Figs. 11.1a and 11.1c are linear fits to the experimental data. Fitting results
for π0 are the following: AN =−(0.02± 0.008)+ (0.22± 0.03) · xF for the proton
beam with χ2 = 2/DOF, NP (the number of experimental points) = 7 and AN =
−(0.001± 0.009)+ (0.11± 0.03) · xF for the antiproton beam with χ2 = 0.5/DOF
for seven points. Hence, it is shown that information on the transverse polarization of
a primary quark passes to the final hadron (π0 in this case), and the effect increases
with xF . The comparison of these two fits shows that the slope parameter in the
asymmetry of π0 for the antiproton beam is half the value for the proton beam; this
fact has not yet been explained by any theoretical model.

11.1.2 Asymmetry in the Inclusive Production of π± Mesons by
the Polarized Proton and Antiproton Beams in the Beam
Fragmentation Region

Single-spin asymmetries in the inclusive production of π± mesons have been mea-
sured by the E704 Collaboration in the reactions

p ↑+ p→ π+ +X, p̄ ↑+ p→ π− +X (11.2)
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Fig. 11.1 Inclusive asymmetries of pions produced by the (a) and (b) proton and (c)–(f) antiproton
beams with a momentum of 200 GeV/c; asymmetries for π0 are shown by stars

at an initial momentum of 200 GeV/c and in the region of the kinematic variables
0.2 GeV/c < pT < 2.0 GeV/c, 0 < xF < 0.85 (Adams et al. 1991a). According to
Figs. 11.1a and 11.1b, asymmetry A±N is quite large for both π+ and π− mesons.
However, the sign of asymmetry A+N is opposite to the sign of asymmetry A−N .
These opposite signs can be interpreted at the quark level under the assumption
that u quarks are polarized in the same direction as the initial proton, but the d

quark has the opposite polarization orientation. The asymmetries increase with xF ,
indicating that the leading partons remember the spin states of the initial parti-
cles. The linear fits to the experimental data in Figs. 11.1a and 11.1b provided the
following results: A+N(xF ) = −(0.14± 0.02)+ (0.60± 0.04) · xF and A−N(xF ) =
(0.13± 0.02)− (0.43± 0.03) · xF with χ2 = 1.1/DOF and χ2 = 7.1/DOF for π+
and π−, respectively. These fits are not presented in Figs. 11.1a and 11.1b in order
to avoid the complication of comparison with the model predictions. Comparison
with these two fits provides the conclusions: (a) the slope parameter for A+N(xF ) is
larger than that for A−N(xF ), (b) both asymmetries become zero near xF ∼= 0.2–0.3,
and (c) both asymmetries are larger in magnitude than asymmetry for π0.

Since it is known that perturbative QCD is inapplicable at small pT values, phe-
nomenological models should be applied to explain such spin effects.
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11.1.3 Asymmetry in the Inclusive Production of π± Mesons by
the Polarized Proton and Antiproton Beams at Intermediate
Momentum Transfers (the Beam Fragmentation Region)

The inclusive asymmetries of π± mesons have been measured in the reactions

p ↑+p→ π+ +X, p ↑+p→ π− +X, (11.3)

at an initial momentum of 200 GeV/c and in the region of the kinematic variables:
0.2 GeV/c < pT < 2.0 GeV/c, 0 < xF < 0.85 (Adams et al. 1996a). A significant
spin effect depending on xF is seen in Figs. 11.1c and 11.1d. The dashed line in
Fig. 11.1c and the solid line in Fig. 11.1d are the following linear fits to the exper-
imental data: A+N(xF , p̄)= (0.18± 0.04)− (0.55± 0.11) · xF (χ2 = 1.0/DOF for
five points) and A−N(xF , p̄)=−(0.11± 0.04)+ (0.38± 0.09) · xF (χ2 = 0.5/DOF
for five points). The linear fits are in good agreement with the experimental data,
indicating the simplicity and similarity of all these data. Comparison of the data in
Figs. 11.1a and 11.1b with the data in Figs. 11.1c and 11.1d, respectively, shows
that the asymmetries of π+ and π− are almost mirror symmetric for the polarized
proton and antiproton beams. There is another common feature: Figs. 11.1a–11.1d
indicate that nonzero asymmetry appears in the interval xF ∼= 0.2–0.3 and then in-
creases. A similar tendency is also seen in the polarization of the Λ hyperon. It is
a very interesting fact and should be explained in any model for the quantitative
description of single-spin asymmetry.

The asymmetries of in π± in the p̄p interaction are presented in Figs. 11.1e
and 11.1f as functions of xT . The asymmetry AN increases almost linearly with
pT and a “threshold” behavior is observed at pT

∼= 0.3–0.4 GeV/c. The solid lines
are the following linear fits to the experimental data: A+N(pT , p̄)= (0.10± 0.03)−
(0.28±0.05) ·pT (χ2 = 2/DOF for five points) and A−N(pT , p̄)=−(0.06±0.03)+
(0.23± 0.04) · pT (χ2/DOF = 2.6 for five points). The slope parameters are very
close to each other and zero crossing points are also close to each other; hence,
the same mechanism could be responsible for single-spin asymmetries in the inclu-
sive production of π+ and π− mesons by a polarized antiproton beam. Data on the
inclusive asymmetries of pions in the beam fragmentation region became very im-
portant not only due to theoretical interest (phenomenology of soft interactions), but
also for the practical reason: these reactions can be effectively used for polarime-
try of high-energy polarized proton and antiproton beams owing to their large cross
sections and large analyzing power.

11.1.4 Theoretical Models

Any inclusive reaction can be represented at the parton level as the convolution of
parton distributions in the initial hadron with the parton interaction cross section and
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the final parton fragmentation function. Transverse spin asymmetry can appear at
any of these three stages. Correspondingly, theoretical models involve asymmetric
parton distributions over kT (parton intrinsic transverse momentum) in the polar-
ized initial protons (Sivers effect), or in the parton–parton interaction (the so-called
Szwed effect), or in the dependence of the fragmentation function of a final parton
on its polarization (Collins effect). All three types of models have been implemented
in practical calculations. We will discuss some of these models.

In Artru (1993) and Artru et al. (1994), the Collins-type string model was pro-
posed to calculate asymmetry. The actual calculations were performed under the as-
sumption that the polarization of a primary quark can be completely transferred to a
final quark in the parton scattering subprocess (DNN = 1). The quark–diquark com-
position of the polarized proton was postulated. Two strings (q)–(qq) decay accord-
ing to the simple Lund rule. After kinematic calculations and some assumptions,
AN is numerically estimated for various variants of quark polarization. If quark po-
larization follows the SU(6) wave function, we have Pu = +2/3 and Pd = −1/3
and the resulting asymmetry is significantly inconsistent with the data for negative
pions. The maximum possible transverse polarizations of the quarks in a proton,
Pu = 1 and Pd = −1, were chosen. The results are shown in Fig. 11.1a by the
solid line (similar calculations for π− and π0 are not shown in Fig. 11.1). Constant
quark polarization independent of the Bjorken parameter x leads to asymmetry that
is larger than the measured value, whereas the x2 dependence of quark polarization
leads to the better description of the experimental data.

Transverse momentum distribution function of partons in a polarized hadron can
be asymmetric (Sivers effect). A model providing a sufficiently good description of
asymmetry in inclusive pion production was developed in Anselmino et al. (1994)
on the basis of the relativistic quark–parton approach. Six free parameters of the
model were determined by the best fit to the data on the asymmetry of pions. The
asymmetry of π− at fixed pT = 1.5 GeV/c is shown by the dotted line in Fig. 11.1b
as a function of xF . Similar calculations were also performed for π+ and π0 (they
are not shown in Fig. 11.1). The model determines the sign of the asymmetry of π0

as positive.

Szwed model Its predictions will be discussed in the corresponding section, be-
cause it was applied only to data for large momentum transfers pT , whereas rela-
tively small momentum transfers are considered here.

11.1.5 Single-Spin Asymmetry at Very Small Transverse
Momentum

The results of the E704 experiment on the measurement of the analyzing power of
elastic pp scattering in the Coulomb–nuclear interference region are presented in
Fig. 11.2a (Akchurin et al. 1993a).

We can ask a question: Are such data valuable? Answers are the following.
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Fig. 11.2 Analyzing power AN for (a) pp–pp, (b) direct photons, and (c)–(f) inclusive produc-
tion of π0 mesons by 200-GeV/c proton and antiproton beams; data for lower energies are also
presented in panel (c)

• The analyzing power AN is really nonzero. The value and shape of AN corre-
spond to previous theoretical calculations (Kopeliovich and Lapidus 1974; Bour-
rely and Soffer 1977; Buttimore et al. 1978). The formula used for fitting is

AN = a · z1.5

1+ z2
, z= t

t0
, t0 =

√
3 ·

(
8πα

σT

)
∼= 3.12 · 10−3 (GeV/c)2. (11.4)

Here, σT is the total pp cross section, α is the fine structure constant, and the
parameter a is defined below. Fitting gives a = (4.73± 0.92) % with χ2/DOF=
0.31 for six experimental points (see the solid line in Fig. 11.2a). Theoretical

expectation for a =
√

3(μ−1)
√
tp

4·m is 4.6 % in good agreement with the experimen-
tal value. This is the first experimental confirmation of the so-called Coulomb–
nuclear interference phenomenon in polarization investigations at high energies.

• These data at such small |t | values are also interesting for the direct determina-
tion of the spin-flip hadron amplitude from experiments. It is known that there
is an indication of the pomeron contribution to the spin-flip amplitude. Though
the statistics of these data is insufficient for a definite answer to the question on
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the presence of spin flip (experiment was not devoted to such physics), some esti-
mates can be made. According to Akchurin et al. (1993b), these data provide the
limits β = 0.16±0.06 and ρ = 0.02±0.01 for the imaginary and real parts of the
ratio of the spin-flip amplitude to the spin-nonflip amplitude, respectively. Fitting
was performed by including the data beyond the Coulomb–nuclear interference
region. It is the best existing estimate of the spin-flip amplitude for elastic pp

scattering. Theoretical estimate with the inclusion of the dynamically enhanced
compact diquark and the experimental data at 6 and 10 GeV/c is 0.05–0.1 (Kope-
liovich and Zakharov 1989).

11.1.6 Single-Spin Asymmetry in the Inclusive Production of
Direct Photons in the Central Region

Single transverse-spin asymmetry in the production of direct photons was measured
for the first time by the E704 Collaboration (Adams et al. 1995). A direct photon was
separated on the basis of the careful measurements of yields of π0 and η mesons,
which are the basic sources of the background. Since the cross section for the di-
rect production of photons is small and is determined by the difference of two large
numbers, it is necessary to apply various methods for suppressing the background.
In particular, the solid angle of a γ detector was doubled in the center-of-mass frame
in order to reduce the background of single photons from the decays of π0 and η

mesons. In front of the γ detector, proportional chambers were placed to cut the
background from the charged particles, primarily electrons. Large amount of works
was performed for the simulation of the experimental setup, the appropriate choice
of modes of its operation, and the determination of the efficiencies of the equipment.
The measurement of polarization asymmetry is much more difficult than the mea-
surement of cross sections, because polarization asymmetry is the difference of two
almost equal numbers of scattering events to the left and right.

The single-spin asymmetry of the direct photons produced in the inclusive reac-
tion p ↑ + p→ γ +X in the central region at a momentum of 200 GeV/c is pre-
sented in Fig. 11.2b as a function of xF . The data were averaged over the measured
pT range. Asymmetry in the inclusive production of direct photons is consistent
with zero within the experimental accuracy. The results of this first experiment on
the measurement of the asymmetry of direct photons indicate a rather small gluon
polarization �G. The dotted and solid lines in Fig. 11.2b illustrate the scales of ex-
pected twist-3 contributions for two parameterizations of the x dependence in the
so-called “gluon pole” approximation (Qiu and Sterman 1991). The “fermion pole”
approximation provides the opposite sign of the effect (Korotkiyan and Teryaev
1995). Experimental data with the existing measurement accuracy cannot distin-
guish between two models based on higher twist effects.
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11.1.7 Single-Spin Asymmetry for π0 Mesons at High Transverse
Momenta pT

Single-spin asymmetry at high transverse momenta in the central region was mea-
sured in the E704 experiment only for π0 mesons (Adams et al. 1996b). The results
for single-spin π0 inclusive asymmetry AN for the 200-GeV/c polarized proton
beam are shown in Fig. 11.2c by closed circles. In the measured kinematic region,
AN is consistent with zero within the measurement accuracy. Figure 11.2d shows
asymmetry for the case where the π0 meson is accompanied by at least one charged
particle emitted in the direction opposite to the π0 meson emission direction in the
center-of-mass frame. Such selection can enrich jet events, i.e., the parton hard col-
lision process. The measured single-spin asymmetry is also consistent with zero.
Similar measurements were also performed with a polarized antiproton beam (see
Figs. 11.2e and 11.2f). The results are also consistent with zero.

Small single-spin asymmetries at high pT values in the inclusive production of
π0 mesons by 200-GeV/c proton and antiproton beams (see Figs. 11.2c and 11.2d)
put the problem of large asymmetries observed at 24 GeV/c (CERN) (Antille et al.
1980) and at 40 GeV/c by the PROZA Collaboration (IHEP) (Apokin et al. 1990).
These data are also presented in Fig. 11.2c (results for 24 and 40 GeV/c are shown
by stars and squares, respectively); hence, these data can be compared. The linear
fit AN(pT )= a(1)(pT − p0

T ) provides the following parameters:

• p + p ↑= π0 +X, 24 GeV/c, AN(pT )= (0.28± 0.11) · [pT − (1.25± 0.06)],
χ2/DOF= 1.2 for 6 points;

• π− + p ↑= π0 +X, 40 GeV/c, AN(pT )= (0.33± 0.08) · [pT − (1.5± 0.10)],
χ2/DOF= 1.2 for 8 points;

• p+p ↑= π0+X, 200 GeV/c, AN(pT )= (0.007±0.005) · [pT − (1.72±0.35)],
χ2/DOF= 1.4 for 15 points.

Analysis of these results and Fig. 11.2c indicates that asymmetry for the pp

reaction apparently decreases with increasing energy. This is confirmed by the
slope parameter a(1) varying from 0.28 ± 0.11 at 24 GeV/c to ∼= 0.007 ± 0.005
at 200 GeV/c. Small slope parameters were also obtained at 200 GeV/c for the in-
clusive asymmetry of π0 mesons produced by the polarized antiproton beam (see
Fig. 11.2e) and in charge conjugation reactions (see Figs. 11.2d–11.2f). The second
conclusion concerns a point where nonzero asymmetry appears. The correspond-
ing parameter is p0

T = 1.25± 0.06 GeV/c at 24 GeV/c, p0
T = 1.5± 0.1 GeV/c at

40 GeV/c, and p0
T = 1.72±0.35 GeV/c at 200 GeV/c. Thus, the parameter p0

T tends
to increase with energy. To compare these conclusions to model predictions, we take
the Szwed model (Szwed 1990), which is based on two approximations: (a) on the
quark level, the partons of the incident particles are scattered in the external gluon
field and (b) hadronization proceeds through the recombination model. Polarization
in this model appears in the second order of perturbation theory. The result of calcu-
lations in this model for 24 GeV/c is shown by the solid line in Fig. 11.2c. With an
increase in energy, asymmetry decreases in agreement with the first our conclusion.
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The Szwed model does not predict any changes in the sign of the asymmetry, and
this fact contradicts the second above conclusion.

In addition, we will briefly mention several other theoretical models concerning
discussed data.

• A simple model similar to the known Fermi relation (Fermi 1954) was proposed
in Ryskin (1989) for asymmetry in inclusive processes. Under the assumption
that the quark spin interacts with the chromomagnetic field of the color string, it
was shown that the single-spin asymmetry is related to the inclusive cross section
as

AN ∼ δpT [d/dpT ]
[
dσ/d3p

]
/
[
dσ/d3p

]
, (11.5)

where δpT is the additional transverse momentum acquired by the quark when a
string is broken. It is assumed that this additional “kick” is then transferred to the
final hadron with different signs depending on the spin orientation of the polarized
quark. This relation was also used for the kaon and for the direct production of
photons. This model has been successfully applied to the PROZA experiment data
on single-spin asymmetry in the inclusive production of π0 mesons at high pT

values. This model has been recently modified and successfully used to describe
most experimental data presented above (Nurushev and Ryskin 2006). The model
provides a simple analytical dependence for single-spin inclusive asymmetry and
is applicable over almost the entire kinematic region. This model is presented in
detail in Section “Theoretical Models” in the first part of the book.

• Zero single-spin asymmetry for π0 mesons with high pT values is expected ac-
cording to perturbative QCD. The E704 experiment data (see the closed circles in
Figs. 11.2c–11.2f) confirm this expectation.

• According to the rotating quark model, single-spin asymmetry should be zero in
the central collisions (Meng 1991; Boros et al. 1993). These statements are valid
for the data at 200 GeV/c.

• The model for describing single-spin asymmetry in inclusive hadron production
at high transverse momenta was proposed (Troshin and Tyurin 1995). The main
idea of this model is to explain the spin structure of a hadron by the spin struc-
ture of the constituent quarks: the constituent quarks are treated as quasiparticles
consisting of current quarks and a surrounding cloud of quark–antiquark pairs of
various flavors. Single-spin asymmetry in hadron production is proportional to the
orbital angular momentum of current quarks inside a constituent quark. After the
introduction of a certain phenomenological parameterization of quark distribution
functions, the authors could calculate the analyzing power of the inclusive pro-
duction of π0 mesons. When they used the SU(6) wave function for the polarized
proton, the predicted asymmetry became regularly above the experimental values
obtained in the E704 experiment. A more consistent description of the experimen-
tal results was achieved under the assumption that the polarizations of constituent
quarks are maximal. In this sense, such a result supports the above conclusion,
which is based on the Collins-type model, that the wave function of the polarized
proton does not precisely follow the SU(6) predictions. The other conclusions are
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as follows: asymmetry becomes nonzero at pT > 1 GeV/c, asymmetry depends
slightly on the initial energy, and asymmetries for the charged pions are larger
than that for the neutral pion. These predictions deserve to be tested.

The BNL Collaboration measured single-spin asymmetries in the inclusive pro-
duction of π± (Saroff et al. 1990) for 13.3 and 18.5 GeV/c and proposed a hypothe-
sis about the possible scaling law in the dependence of asymmetry on xT or xF . This
hypothesis was based only on the data for π+ (see Fig. 11.3a) because the asymme-
try of π− was insignificant for high xT values. Since the energy range was narrow,
it was difficult to justify any scaling law of the energy independence of asymmetry.
The FODS-2 Collaboration has recently published the results of the measurements
of inclusive asymmetries in the production of charged particles (pions, kaons, p, and
p̄) (Abramov et al. 1996). The 40-GeV/c polarized proton beam from the decay of
Λ hyperons was used. The result for the asymmetry of π+ is shown by open circles
in Fig. 11.3a.

The new FODS-2 data confirm to some extent the scaling law for xF . The data
in Fig. 11.3a are fitted by the following linear functions:

13.3 GeV/c

A+N(xT )= (0.32± 0.09) · [xT − (0.32± 0.04)
]
, χ2/DOF= 1.9 for 10 points;

18.5 GeV/c

A+N(xT )= (0.58± 0.14) · [xT − (0.39± 0.02)
]
, χ2/DOF= 0.51 for 9 points;

40 GeV/c

A+N(xT )= (0.33± 0.08) · [xT − (0.38± 0.02)
]
, χ2/DOF= 0.8 for 12 points.

The data on A+N immediately provide two conclusions: (a) the slope parameter
is approximately constant and (b) the same is true for the zero crossing point x0

T .
It means that the asymmetry of π+ exhibits energy scaling. For completeness, the
experimental data on the inclusive asymmetry of π0 shown in Fig. 11.2c are fitted
by similar linear dependences:

24 GeV/c

A0
N(xT )= (0.94± 0.37) · [xT − (0.38± 0.02)

]
, χ2/DOF= 1.2 for 6 points;

40 GeV/c

A0
N(xT )= (1.43± 0.35) · [xT − (0.35± 0.02)

]
, χ2/DOF= 1.2 for 6 points;

200 GeV/c

A0
N(xT )= (0.06± 0.05) · [xT − (0.18± 0.04)

]
, χ2/DOF= 1.4for 15 points.
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Fig. 11.3 (a) Analyzing power AN for π+ mesons, (b) zero crossing points x0, (c) slope parameter
A0, and (d) scaling function gs(xT )

The energy dependences of two free parameters, which are the slope parameter
A0 and zero asymmetry crossing point x0

T , can be extracted from the data of six
experiments. Their energy dependences were parameterized as linear functions of√
s with the parameters determined by fitting to the above-listed data. The results

are as follows:

x0
T = (0.013± 0.005) · [(36± 12)−√s

]
, χ2/DOF= 1.2 for six points,

A0 = (0.03± 0.006) · [(22± 3)−√s
]
, χ2/DOF= 3.5 for six points.

The energy dependence of x0
T is presented in Fig. 11.3b. There are indications

that the zero asymmetry crossing point x0
T decreases with increasing energy. This

conclusion is based only on one point for 200 GeV/c, which can be unstable to zero
asymmetry; for this reason, new data are necessary. The energy dependence of the
slope parameter (see Fig. 11.3c) changes abruptly near 40 GeV/c (caution: there
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are two points at 40 GeV/c; the upper and lower points correspond to the results
on the π− and polarized proton beams, respectively). Three of six experimental
points refer to the asymmetry of π+ and the other three, to the asymmetry of π0.
The abrupt change in the slope parameter with energy concerns only π0 data (the
value at the highest energy follows from the data for π0). Since the χ2 criterion for
the description of the distribution is not too good, a larger number of experimental
data for π0 are required to clarify the situation with two parameters. Both these
parameters are important for testing theoretical models.

The form of the scaling law expected for hard parton scattering was derived by
Sivers (1991) from general kinematic restrictions. Allowing the possibility of an
asymmetric distribution of partons over kT in the polarized proton, it is possible
to obtain appreciable asymmetry in the production of hadrons. Sivers proposed the
following scaling function:

g(xT ,μ)=AN(xT ) · p
2
T +μ2

μ · pt

, (11.6)

where μ is a certain scale of hadron masses such that mq � μ� pT . The function
g(xT ,μ) contains information on soft coherent dynamics and it cannot be calculated
in rigid scattering models. In such a situation, it is possible to try to reconstruct the
behavior of g(xT ,μ) from experimental data. The desired function g(xT ,μ) with
μ2 = 0.5 is presented in Fig. 11.3d. It seems that the data do not clarify the situation
with scaling taking into account large errors in the data on π0 for 24 and 40 GeV/c.
Obviously, more precise measurements are necessary to make the conclusion con-
cerning the scaling law proposed by Sivers.

11.2 Double-Spin Asymmetry in Inclusive Hadron Production

Double-spin asymmetry is a good quantity for theoretical models, because it is sen-
sitive to the distributions of polarized partons. Double-spin asymmetry has long
been predicted for the inclusive production of hadrons and jets in the collision of
the longitudinally polarized proton beams with the longitudinally polarized proton
targets (Babcock et al. 1979). It was emphasized that spin–spin asymmetry at high
transverse momenta is more sensitive to the basic parton subprocesses than unpolar-
ized observables. In this model, it was also accepted that single asymmetry at high
pT values is immaterial and this is apparently in agreement with the experimental
results (see the preceding section). The first results on double-spin asymmetry in
the inclusive production of neutral pions and jet-like photons were obtained by the
E704 Collaboration with the polarized proton beam from the Tevatron at Fermilab
(Adams et al. 1991a, 1994). These measurements were conducted in parallel with
the basic experiment on the measurement of the difference between the total cross
sections in pure spin states in the proton–proton and antiproton–proton interactions
at 200 GeV/c (Grosnick et al. 1997). These results will be briefly discussed below.
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11.2.1 Double-Spin Asymmetry in the Inclusive Production of π0

Mesons in the Central Region in the Collision of
Longitudinally Polarized Proton and Antiproton Beams
with the Longitudinally Polarized Target

Double-spin asymmetry ALL for the inclusive production of π0 mesons by polar-
ized proton and antiproton beams is consistent with zero (see Figs. 11.4a and 11.4b)
(Adams et al. 1991a). Predictions of the aforementioned model for the Cralitz–Kaur
version of the distributions of constituent quarks are presented by the dashed lines
in Figs. 11.4a and 11.4b for ALL(pp→ π0 + X) and ALL(p̄p→ π0 + X), re-
spectively (the solid lines are linear fits). It is worth noting that valence quarks in
the Cralitz–Kaur model “forget” the spin orientation of the initial proton through
interaction with the sea and that only the 11.6 % fraction of proton polarization is
determined by gluons. These predictions agree with the experimental data in a nar-
row experimentally measured kinematic region. High xT values more interesting for
the model were not reached in the E704 experiment.

11.2.2 Double-Spin Asymmetry in the Inclusive Multiphoton
Production of Jet Pairs

For theory, it is certainly important to separate parton subprocesses in the purest
form. For this aim, the use of the kinematics of a subprocess in interest is most ac-
cessible for experimenters. As is known, subprocesses end with the production of
primarily two jets scattering in the opposite directions in the center-of-mass frame.
The location of the detectors at 90° in the center-of-mass frame symmetrically with
respect to the beam provides a chance to detect particles from two jets in coin-
cidence. Then, the selection of the subprocess can be improved by imposing the
usual coplanarity requirements and choosing the threshold energy for the selection
of events with high transverse momenta. Such a procedure was used to select pho-
tons in the E704 experiment. In this case, it was required that more than one pho-
ton were detected in each calorimeter and they were detected in coincidence. Such
events are called multiphoton pairs. The data obtained for double-spin asymmetry
ALL were published in Adams et al. (1994). The pseudo-mass M ′ and transverse
momentum p

γ

T of a pair in each event are determined as

M ′ = ∣
∣p

γ 1
T

∣
∣+ ∣

∣p
γ 2
T

∣
∣ and p′T γ =

∣
∣p

γ 1
T

∣
∣− ∣

∣p
γ 2
T

∣
∣, (11.7)

where p
γ 1
T and p

γ 2
T are the transverse momenta of each multiphoton event. Most

multiphoton pairs originate from two-jet events. In the measurements of the inclu-
sive production of jets, parton distributions are smeared owing to the integration
over the undetected jet. At the same time, no serious smearing problem appears
when both jets are detected. Thus, two-jet production directly provides information
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Fig. 11.4 Double-spin asymmetry ALL at 200 GeV/c for (a) π0 produced by the proton beam,
(b) π0 produced by the antiproton beam, and (c) multiphoton pairs; and the difference �σLbetween
the total cross sections for (d) the longitudinally polarized antiproton beam and proton target,
(e) the longitudinally polarized proton beam and proton target, and (f) the transversely polarized
proton beam and transversely polarized proton target

about parton processes, particularly about the gluon contribution. Therefore, ALL

for the production of multiphoton pairs is also sensitive to gluon polarization. The
data on ALL are presented in Fig. 11.4c. According to this figure, ALL do not sig-
nificantly differ from zero within statistical uncertainty. The solid line in this figure
is a linear fit to the experimental points; it shows, first, that double-spin asymme-
try is consistent with zero, and, second, that asymmetry is independent of the pa-
rameter M ′. The Monte Carlo simulation indicates that 93 % and 6 % of detected
γ -ray photons were the products of the decays of π0 and η mesons, respectively.
The contributions from gluon–gluon, quark–gluon, and quark–quark scatterings to
multiphoton-pair events in the range 2.0 GeV/c < |M ′| < 4.0 GeV/c are 45.5 %,
45.5 %, and 9.0 %, respectively. The Monte Carlo simulation taking into account
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the experimental conditions shows that experimental data preferably indicate gluon
distribution functions with small gluon polarization.

11.2.3 Spin-Dependent Total Cross Sections

Interest in the measurements of total cross sections in pure spin states is caused by
several reasons. First, as we discussed in the first part of this book, such measure-
ments allow the complete reconstruction of the imaginary parts of three nonzero
forward nucleon–nucleon scattering amplitudes. Second, having a set of such cross
sections and using dispersion relations, one can reconstruct the real parts of these
amplitudes, thereby completing the reconstruction of the forward nucleon scattering
matrix. Third, such measurements can completely clarify the asymptotic behavior
of forward spin-flip amplitudes.

The difference �σL between the total pp and p̄p cross sections in purely lon-
gitudinal spin states at 200 GeV/c have been measured by the E704 Collaboration
(Grosnick et al. 1997). The previous measurements of this observable were limited
by momenta ≤ 12 GeV/c for pp scattering and �σL(p̄p) was not measured. The
imaginary parts of forward elastic pp scattering amplitudes have been reconstructed
from the measured total cross sections σT , �σL, and �σT using the procedure pro-
posed in Bilen’kij and Ryndin (1963). The real parts of these amplitudes can be
determined by the measurement of the corresponding observables in the Coulomb–
nuclear interference region or, as mentioned above, with the use of dispersion rela-
tions. However, such a program has been never implemented at high energies though
data at 200 GeV/c are more advanced in this direction. The second aim is to test the-
oretical models. The third aim is to obtain an estimate of the possible contribution
from spin-dependent interactions to the increase in the total cross section at high en-
ergies. The result for �σL(p̄p) is presented in Fig. 11.4d and we cannot discuss the
energy behavior of this cross section in the absence of other measurements. There
are theoretical estimates for �σT and �σL at 200 GeV/c (Miettinen 1990). Apply-
ing simple reasonings based on the additive quark model, SU(6) symmetry, helicity
conservation, and the assumption that �σL(pp) is small, the author has predicted
considerable value �σL(p̄p)∼= 2 mb at plab = 200 GeV/c. The experimental value
�σL(p̄p)= [−254± 124 (stat.)± 107 (syst.)] µb presented in Fig. 11.4d is an or-
der of magnitude smaller than the above estimate. This means that some important
preconditions in the model are missed. At the same time, the jet production model
(Ramsey and Sivers 1991) predicts �σL(pp) ∼ 1 µb, which is consistent with the
experimental value �σL(pp)= [−40± 48 (stat.)± 52 (syst.)] µb.

Figures 11.4e and 11.4f show the energy dependences of �σL(pp) and
�σT (pp). The �σT (pp) value at 200 GeV/c (which has not been measured) has
been obtained by extrapolating the data at low energies and its error has been esti-
mated as 100 %. According to Dunne (1967), and Lapidus (1976), the Regge model
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with cuts provides the following expression for �σL(pp) and �σT (pp):

�σL(pp)=�σT (pp)= a1 · s3δ

(ln s)5
. (11.8)

Here, δ is the excess of the intercept of the pomeron pole at −t = 0 over unity;
this parameter is responsible for the increase in the total cross section with energy
(Hagiwara et al. 2002). The analysis in Andreeva et al. (1998) shows that this func-
tion adequately describes the energy dependence of the experimental data for �σL
and �σT . The fitting results are shown in Fig. 11.4e by the solid line (extrapola-
tion to 800 GeV/c is presented by the dashed line) and in Fig. 11.4f by the dashed
line (extrapolation to 800 GeV/c is given by the solid line). In the measured en-
ergy range, the spin dependent cross sections continue to decrease from several mil-
libarns near 5 GeV/c to 0.1 mb near 200 GeV/c. Such tendency could be changed if
the cut in the Regge model with super-pomeron is dominant at high energies. In this
case, the spin contribution to the total cross section can increase owing also to the
parameter δ. Precise experiments at RHIC and LHC (the expected spin dependent
cross section is ∼ 1 µb) can clarify the role of the spin in the increase in the total
cross section with energy.
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Chapter 12
Latest Results from the Largest Polarization
Setups

The above presentation was based on review of Nurushev (1997) appearing ten
years ago. Since that, large polarization setups COMPASS (CERN) and HERMES
(DESY), as well as the STAR, PHENIX, BRAHMS, and pp2pp setups at RHIC
(BNL), have been commissioned. The first results from them have appeared par-
tially in the final form, partially in the form of preliminary reports inaccessible to a
wide audience. We present some interesting results to readers.

12.1 COMPASS Polarization Setup and the Results Obtained
on It

The COMPASS setup (CERN) is one of the largest polarization setups in the world.
The first engineering run on the setup whose project was proposed in 1996 was
conducted in 2002 with a 160-GeV/c longitudinally polarized muon beam with a
polarization of 76 %, an intensity of 2 · 108 µ/cycle, and a cycle duration of 4.5 s.
The largest worldwide polarized target of the SMC setup (described in Sect. 6.1
“Solid polarized targets”) was used, but with a different target material, namely,
6LiD, which provides a larger number of polarized deuterons (the dilution factor
> 0.4) than deuterated ammonium. The target polarization was 50 %.

Two runs were performed in such a configuration of the setup in 2003 and 2004
and a large statistical material has been collected. Although the COMPASS results
are preliminary, it is necessary to briefly discuss them for the representation of the
prospects of polarization investigations on this setup (Bressan 2004).

Figures 12.1a and 12.1b show the preliminary results of the measurement of
inclusive asymmetry Ad

1 in the scattering of the 160-GeV/c polarized muon beam
with a polarization of 76 % on the polarized deuteron target. The asymmetry is
represented as a function of the Bjorken variable xB and is calculated from the data
of two runs in 2002 and 2003. The COMPASS results are consistent with zero and
are in agreement with the SMC and HERMES data also presented in Fig. 12.1a.
Figure 12.1b shows that the COMPASS statistics considerably exceeds the SMC
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Fig. 12.1 (a) Preliminary COMPASS results for asymmetry Ad
1 in comparison with the results of

other experiments; (b) the same results at small xB values in comparison with the SMC data; and
asymmetry Ah

1 versus xB for semi-inclusive (c) positive and (d) negative hadrons

statistics at small xB values. This statistics was achieved due to a higher luminosity
and a better target quality factor.

Figure 12.1c shows semi-inclusive asymmetry in the production of positive
hadrons. It is seen that asymmetry is close to zero at xB < 0.2 and at large xB
values. Asymmetry tends to increase, on the average reaching a value of ≈0.3 at
xB ≈ 1. The results of all SMC, HERMES, and COMPASS experiments presented
in Fig. 12.1c coincide within the measurement accuracy. At very small xB values,
the COMPASS experiment provides the best accuracy. Semi-inclusive asymmetry
for negative hadrons is presented in Fig. 12.1d. The tendency is the same as for pos-
itive hadrons, but asymmetry for negative hadrons as a whole is lower at large xB
values. Since hadrons were not identified at this stage, hadrons cannot be separated,
though it is known from other sources that 80 % hadrons are pions. However, even
with the identification of hadrons, it would be impossible to decompose asymme-
try into the quark flavors because there are no measurements with a longitudinally
polarized proton target.

Another important aim of the COMPASS experiment is the determination of the
gluon polarization. This problem is solved by separating the γg fusion process. The
separation of this process is carried out by detecting either open charm or hadron
pairs with large transverse momenta.

Mesons with open charm are detected by reconstructing D0 or D∗ mesons
through the D0 → Kπ0 or D∗ → D0π → Kπ0π decays, respectively. In or-
der to suppress the background in the case of the decay of D0, two conditions
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Fig. 12.2 Results of the
measurement of the gluon
polarization in the
COMPASS experiment
through events with large pT

values and Q2 > 1 (GeV/c)2

| cos(θ∗K)| < 0.5 and zD = ED/Eγ ∗ > 0.25 are imposed on the K meson emis-
sion angle θ∗K in the D0 rest frame and the fraction of energy carried away by the
D0 meson. The second decay case is much purer from the background owing to
the specificity of kinematics. The total statistics on open charm for 2002–2004 runs
provides an expected estimate of δ(�G)/G= 0.24 for the error in the gluon polar-
ization.

Asymmetry Aγ ∗d in the production of hadron pairs with large pT values in the
interaction of a virtual photon with a longitudinally polarized deuteron is related to
the gluon polarization as

Aγ ∗d = Aμd→hhX

D
≈
〈
âPGF
LL

D

〉〈
�G

G

〉〈
σPGF

σT

〉

. (12.1)

Here, âPGF
LL is the analyzing power of the photon–gluon fusion (PGF) subpro-

cess, D is the depolarization factor for the virtual photon, and the ratio σPGF /σT is
the fraction of the PGF events in the total number of events in a sample. The Monte
Carlo simulation for the COMPASS experiment gives âPGF

LL /D = −0.74 ± 0.05
and σPGF /σT = 0.34± 0.07. Then, for the average gluon momentum xg = 0.13, it
has been found that �G/G= 0.06± 0.31 (stat.)± 0.06 (syst.). The results of the
measurement of the gluon polarization in the COMPASS experiment with the use
of both methods discussed above are presented in Fig. 12.2.

The result of the HERMES experiment is also shown in this figure. Several fea-
tures of the presented data can be indicated. The COMPASS data are consistent with
zero within gluon polarization errors ≈ 0.27, whereas the HERMES result is about
0.4 and differs from zero by almost two standard deviations. Much larger statistics
is obviously necessary for preferring one of the versions.

The following important direction of the investigation at COMPASS is aimed at
determining the chirality-odd parton distribution function transverse in the nucleon
spin, the so-called transversity function �T q(x). To this end, it is necessary to mea-
sure semi-inclusive asymmetry in the production of hadrons in the interaction of
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Fig. 12.3 Preliminary COMPASS results for the (upper panels) Collins and (lower panels) Sivers
effects for (open circles) positive and (closed circles) negative hadrons

longitudinally polarized leptons with transversely polarized nucleons. There are two
possibilities for measuring asymmetry. Asymmetry associated with the chirality-odd
quark fragmentation function �Dh

q (z,pT ) is measured in the first case. This asym-
metry is called the Collins effect after Collins who proposed such measurements
(Collins 1993). In the first approximation, Collins asymmetry can be written as

AColl =
∑

a e
2
a�T qa(x, k

2
T )�Dh

q (z,pT )
∑

a e
2
aqa(x, k

2
T )D

h
q (z)

. (12.2)

There is another mechanism leading to azimuthal asymmetry in the scattering
of leptons on transversely polarized nucleons. If the distribution �T

0 qa(x, k
2
T ) of

partons over the internal transverse momentum kT in the initial polarized nucleon
depends on the nucleon polarization direction, there is the asymmetry

ASiv =
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2
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2
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h
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. (12.3)

This asymmetry is called the Sivers effect (Sivers 1990). The measurement of
these effects with the transversely polarized 6LiD target at the COMPASS setup
took 20 % of the general time. The preliminary measurement results for positive
and negative hadrons in the colliding quark fragmentation region are presented in
Fig. 12.3.

The three upper panels show the Collins effect versus the parameters xB , z,
and pT . The measurements of the Collins effect on the polarized deuteron have
been carried out for the first time at COMPASS. The three lower panels concern the
Sivers effect. It is seen that both effects are consistent with zero in the measured re-
gion with statistics accumulated in 2002. The use of the total statistics accumulated
in 2002 may improve the measurement accuracy by factor 2. This zero result can be
interpreted either as the smallness of the Sivers and Collins effects or as a specificity
of the deuteron target. The asymmetry effects from the proton and neutron probably
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cancel each other. To solve this problem, separate measurements of the same effects
on the proton and neutron are necessary.

12.2 HERMES Polarization Setup and the Results Obtained
on It

The HERMES setup was created in 1995 at the unique electron/positron–proton
HERA collider at DESY (Germany). It was intended to study the nucleon spin struc-
ture with the use of a 27.5-GeV/c longitudinally or transversely polarized electron
(positron) beam and an internal gas polarized target with a storage cell. The density
of the polarized hydrogen atoms in the target is 1014 atoms/cm2 and polarization is
> 90 %. Owing to high luminosity, the experimental results have a high accuracy.
Working in open geometry and having a good particle identification system, HER-
MES has high detection efficiency for deep inelastic scattering and semi-inclusive
processes.

Figure 12.4 shows the longitudinal structure functions g1(x) for the proton,
deuteron, and neutron measured at HERMES in deep inelastic scattering (inclusive
process).

The data have been obtained for Q2 > 0.1 (GeV)2 and W > 1.8 GeV and are
shown in Fig. 12.4 along with the other existing data. It is seen that the accuracy
reached in the measured region 3·10−3 < x < 1 is at the world level. This function
is maximal and minimal for the proton and neutron, respectively. These data provide
the basis for the theoretical analysis of the nucleon spin structure.

The next series of HERMES measurements concerned semi-inclusive hadron
production processes. These processes constitute an efficient tool for separating the
nucleon spin in different flavors of quarks and antiquarks �qf (x). The results are
presented in Fig. 12.5 for the distributions of valence quarks and antiquarks sepa-
rately.

It is seen that the u and d valence quarks make positive and negative contributions

to the proton spin, respectively, and the ū and d̄ antiquarks make no contribution
to it. There is an indication of the possible small positive contribution from sea
quarks �s. The presented curves are the theoretical calculations in the leading QCD
approximation.

In addition to the structure functions of the unpolarized nucleon, F1(x), and lon-
gitudinally polarized nucleon, g1(x), the third function h1(x) called transversity is
necessary for the complete description of the quark nucleon structure in the leading
approximation. This function is chirality-odd and cannot be measured in the deep
inelastic scattering of polarized leptons from longitudinally polarized nucleons. The
measurement of transversity requires another chirality-odd function. It appears as
the Collins fragmentation function in the scattering of leptons from transversely
polarized nucleon targets. Another possibility of appearing azimuthal asymmetry
arises with the inclusion of T -odd Sivers function f⊥1T (x, kT ). This function de-
scribes correlation between the transverse polarization of the nucleon and the inter-
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Fig. 12.4 Existing data on
the weighted structure
functions g1(x) for the
proton, deuteron, and
neutron; the total error is the
square root of the sum of the
squares of the statistical and
systematic errors

Fig. 12.5 Quark helicity
distribution functions
x�q(x,Q2

0) calculated at
Q2

0 = 2.5 GeV2; the lines are
the leading-QCD calculations
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Fig. 12.6 Moments of the Compton effect of a virtual photon according to (left panels) Collins and
(right panels) Sivers versus x and z; only statistical errors are presented. There is also a general
normalization error of 8 %; the lower panels show the relative contributions from the exclusive
production of vector mesons (VM calculations)

nal transverse momentum of a quark. A feature of the Collins effect is the azimuth-
angle dependence of single-spin asymmetry in the production of hadrons in the form
sin(φ+φs), whereas asymmetry in the Sivers effect has the form sin(φ−φs). Here,
φ is the azimuth angle between the perpendiculars to the pion production plane and
scattered lepton plane and φs is the angle between the pion production plane and
transverse target polarization component.

The average moments of azimuthal asymmetries are presented in Fig. 12.6 as
functions of x and z for the Collins and Sivers effects in the left and right panels,
respectively.

It is seen that the effects are nonzero. In particular, the Collins effect for positive
and negative pions is (2.1± 0.7 (stat.)) % and (−3.8± 0.8 (stat.)) %, respectively.
These signs correspond to the signs in the spin distributions of valence quarks and
are in agreement with the model predictions. However, the problem arises in their
values. The measured moments indicate that the transverse spin distribution of d

quarks, δd , is no less in the absolute value than δu; this relation is surprising, be-
cause the inequality |δd|< |δu| was expected by analogy with the case of longitu-
dinal polarization. This discrepancy has not yet been explained.

The moment for the Sivers effect is also nonzero (see the right panels in
Fig. 12.6). Its average value for π+ appeared to be (1.7 ± 0.4 (stat.)) %, which
indicates a nonzero orbital angular momentum of quarks in a nucleon. However, it
is not excluded that the large asymmetry could be caused by π+ mesons from the
decays of ρ mesons. The yields of ρ mesons calculated for the HERMES kinematic
region are shown in the lower panels.

The next important research direction in the HERMES experiment is the so-
called deeply virtual Compton scattering (DVCS) processes. One of such processes
is the production of real photons in hard collisions of electrons with protons and
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Fig. 12.7 Left panel: beam-charge asymmetry in the electroproduction of photons in hard colli-
sions versus the azimuth angle φ; the solid line is the fit with the parameters given in the figure.
The right panel: cosφ amplitude of beam-charge asymmetry for the proton and deuteron versus
−t ; the lines are the calculations corresponding to various parameterizations of the generalized
distribution function

deuterons. These reactions provide the most adequate method for determining the
generalized parton distribution functions. The DVCS amplitudes are determined
from interference between these amplitudes and the Bethe–Heitler amplitudes. This
is physically due to the presence of two sources of photon radiation: quarks and
charged leptons. The measurements of the azimuthal distribution of differential
cross sections for various charges (spins) of the lepton beam allow the determina-
tion of the real (imaginary) parts of the DVCS amplitudes. These real and imag-
inary parts of the amplitudes are manifested as cosφ and sinφ modulations of
the cross sections. The HERMES Collaboration has already published the results
of the measurement of asymmetry in DVCS as a function of the beam chirality
(Airapetian et al. 2001). The first results of the measurements of asymmetry AC

depending on the beam charge with hydrogen and deuterium targets are presented
in Fig. 12.7.

The left panel in Fig. 12.7 shows AC versus the azimuth angle for both beams.
Since the average polarizations of the beams are different, both terms are present
in the form P1 cosφ + P2 sinφ. Asymmetry is approximated by this expression,
and the fit is shown in the figure. The right panel in Fig. 12.7 shows c cosφ
amplitudes determined through a two-parameter fit with corrections to the back-
ground depending on the invariant momentum transfer from a beam to the proton
or deuteron. The results indicate the high sensitivity of the measured beam-charge
dependent asymmetry to the parameterization of the generalized parton distribu-
tion.
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Fig. 12.8 Polarized RHIC complex

12.3 Polarized RHIC Complex and the Results Obtained on It

According to the volume of the physical program, investments, and concentration
of equipment and human resources, the polarized RHIC complex has no competi-
tors for the next decade in research of spin phenomena in hadron physics. With the
implemented eRHIC program, BNL will also occupy the leading position in lepton–
hadron polarization physics. For this reason, a lot of useful experience can be learnt
from this group.

The scheme of the polarized RHIC complex is presented in Fig. 12.8.
The RHIC complex begins with a source of polarized negative hydrogen ions

with optically pumped polarization. Its detailed description can be found in Sect. 7.1
“Polarized atomic beam sources” in the second part of the book. The polarized nega-
tive ions at the source output are accelerated by a microwave quadrupole to 750 keV
and arrive at a linear accelerator that accelerates them to 200 MeV. Then, ions from
the linear accelerator are transported to a booster, are stripped, and enter the booster.
In the booster, protons are bunched and accelerated to 1.5 GeV. After booster po-
larized beam enters AGS (the Alternating Gradient Synchrotron), accelerated up to
22 GeV/c, and introduced to RHIC. Each of the proton beams is accelerated now
at RHIC to 100 GeV, and each of the beams was accelerated to 250 GeV in 2006.
The final desired parameters at RHIC are the c.m. proton energy

√
s = 500 GeV,

polarization > 70 %, and a luminosity of 2 · 1032 cm−2 s−1 (RHIC 1998). The fol-
lowing polarimeters are placed in the beam line: a Lamb shift polarimeter at the OP-
PIS AGS source output, a carbon polarimeter at the linear-accelerator output, and a
nuclear-scattering carbon polarimeter and a Coulomb–nuclear interference carbon
polarimeter at AGS. Two basic Coulomb–nuclear interference polarimeters based
on proton scattering from a polarized jet target (absolute polarimeter) and from very
thin carbon films are used at RHIC. Their description was given in Sect. 8.3 “Po-
larimetry of proton beams” in the second part of the book. The main aim of these
two basic general-purpose polarimeters at RHIC is to achieve an accuracy of 5 % in
the measurement of the polarization of each of proton beams.

In addition to these polarimeters, which have now certain difficulties, new po-
larimeters can be created. For example, it is not excluded that asymmetry found at
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the STAR setup in the inclusive production of π0 mesons can be used to create a
quite operative relative polarimeter.

At present, the alternating gradient synchrotron (AGS) is apparently “the narrow
neck of the bottle” in the acceleration of polarized protons. A proton beam entering
it with polarization > 70 % leaves it with a polarization of only 50 % (recently
polarization was increased up to 60 %). Since the AGS has no rectilinear sections
long enough for the installation of a full-scale Siberian snake, one has to place partial
snakes. A solenoid as a 5 % partial snake has been first placed; then, a 20 % partial
snake has been installed; there is also a microwave dipole for the suppression of
imperfection resonances, but the problem has not yet been fundamentally solved.
It is hoped that the problem can be solved by combining several partial snakes of
various forces.

Figure 12.8 presents four experimental setups, PHENIX, STAR, BRAHMS, and
PHOBOS, constructed to investigate interaction of heavy ions. Since 1992 when
the RSC (RHIC Spin Collaboration) was organized for polarization research at
RHIC, two largest groups, PHENIX and STAR, immediately joined RSC and the
BRAHMS group also joined little later. The fifth experiment, pp2pp, was initially
focused on proton–proton collisions and polarization investigations in it were in-
cluded from the beginning. Two full-scale (spin rotation by 180°) groups of Siberian
snakes were installed in each of two collider rings. Rotation occurs about mutually
perpendicular axes lying in the beam orbit plane. In addition, each of large setups,
PHENIX and STAR, is equipped with two spin rotators each for ensuring the longi-
tudinal polarization of beams at the interaction point (IP) and for returning polariza-
tion to the initial (perpendicular to the beam orbit) position. All listed instruments
have been mounted, tested, and accepted to operation at RHIC.

The first run at the collider with polarized proton beams was performed in 2002.
Since then, six physical runs (one run was engineering) have been passed with the
gradually improving parameters of setups and beams. A number of physical results
were obtained and we present them below to the attention of readers.

12.3.1 STAR Polarization Setup

The detector (see Fig. 12.9) is a magnetic solenoid spectrometer with a magnetic
field of H = 0.5 T, a length of 4.2 m, and an inner diameter of 2 m. The spectrometer
contains track detectors based on the TPC (Time Projection Chamber) 4 m in length
with an inner diameter of 30 cm and an outer diameter of 2 m. It covers an azimuth
angle of 2π , detects three charged particles with high efficiency, and can identify
particles with momenta lower than 1.5 GeV/c from ionization losses. Two types of
electromagnetic calorimeters are placed behind the TPC. The first electromagnetic
calorimeter, so-called barrel, covers the central pseudorapidity region within ±1.
The other type of electromagnetic calorimeters called the endcap calorimeter closes
the setup end. A time-of-flight detector based on scintillation counters is installed in
front of the barrel.
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Fig. 12.9 STAR polarization setup

Fig. 12.10 Inclusive
asymmetry of π0 mesons
measured in the beam
fragmentation region in the
STAR experiment

Counters monitoring collisions of two beams (beam–beam counters, BBC), and
forward pion detectors (FPD) are also shown in Fig. 12.9. The detailed description
of the STAR setup was given in Ackermann et al. (2003).

The first results on asymmetry in the inclusive production of π0 mesons in the
beam fragmentation region have been obtained on the FPD and published in Adams
et al. (2004). These measurements were carried out at pseudorapidity η= 3.8. Sim-
ilar measurements have recently been performed at η = 4.1 and both results are
presented in Fig. 12.10. It is seen that asymmetry is almost zero at negative xF
values, deviates from zero at xF > 0.3, and reaches 10–15 % near xF ≈ 0.5. The
measurements at the STAR setup were conducted at the c.m. energy

√
s = 200 GeV

(Ogawa 2004).
Similar measurements have been previously performed at

√
s ≈ 20 GeV by the

E704 Collaboration (see Sect. 11.1). Comparison of these data shows that the inclu-
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sive asymmetry of π0 mesons in the fragmentation region of the polarized proton
beam is almost independent of the initial energy. It could be concluded that asymp-
totic energies begins already at

√
s ≈ 20 GeV. However, the analysis of the energy

behavior of differential cross section shows that this is not the case. The differential
cross section at

√
s ≈ 20 GeV is not described in perturbative QCD (pQCD) in the

measured range of kinematic variables. At the same time, it is described by pQCD
at the energy

√
s ≈ 200 GeV. If this is valid, a direct test of pQCD becomes possi-

ble for the first time in the entire history of research of single-spin asymmetry. We
arrive at the depressing conclusion: pQCD predicts zero asymmetry, whereas the
experiment shows a nonzero effect. We will return to this problem after the review
of other results on the single-spin asymmetry obtained at RHIC.

Note another fact following from Fig. 12.10. Left–right asymmetry in the
unpolarized-beam fragmentation region (xF < 0 in Fig. 12.10) is zero. This could
be expected because the unpolarized proton is similar to a spinless particle. The de-
cay (fragmentation) of such a particle cannot lead to azimuthal asymmetry, because
the angular distribution of its decay products in the rest frame of this particle is
isotropic.

12.3.2 PHENIX Polarization Setup

Figure 12.11 shows another large setup at RHIC, PHENIX (Bruner 2002). It is based
on a dipole magnet whose field is directed along the beam. The detailed description
of the setup was given in Adcox et al. (2003).

The PHENIX setup includes the following detectors.
Drift and proportional chambers, RICH (Ring Image CHerenkov, Cherenkov de-

tectors with image reconstruction) detectors for identifying charged particles, and
electromagnetic calorimeters based on lead glasses, sandwiches, and scintillators
are used in the central arm. These detectors provide the detection and identifica-
tion of charged and neutral (decaying into photons and electrons) particles in a
pseudorapidity range of |η| = 0.35 and an azimuth angle range of �φ = 180◦.
Two muon spectrometers with a total muon identification system are placed in the
northern and southern directions. A muon detector covers a pseudorapidity range
of 1.2 < |η| < 2.4 and �φ = 360◦. There are a vertex detector and a beam–beam
counter.

In the 2002–2003 run, RHIC operated with 55 bunches each containing 5 · 1010

protons. The bunch duration was ∼ 1 ns and the interval between bunches was
213 ns. The polarization of protons of every bunch was set by a source and
was marked by the RHIC timer. The sequence of bunches with alternating po-
larization (+−,+−, etc.) was set in one ring and the sequence of pair bunches
(++,−−++,−−, etc.) was taken in the other ring. It is seen that these sequences
of the polarizations of colliding protons ensures all four combinations of polariza-
tions, namely, ++,−+,+−, and −−. This is equivalent to the reverse of beam
polarization once in 213 ns, which is the record frequency! This procedure reduces
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Fig. 12.11 PHENIX
polarization setup at RHIC

many systematic errors to minimum. The chosen combination of bunch polariza-
tions makes it possible to determine not only double-spin, but also single-spin asym-
metries, as well as false asymmetries, from the same measurements. This is an ad-
ditional advantage of the polarized collider.

Transverse single-spin asymmetry measured for neutral and charged hadrons is
shown in Fig. 12.12 as a function of the momentum transfer.

Statistics for analyzing charged hadrons was 1.3 · 107 events collected with a
minimum bias trigger. Statistics for π0 mesons was 1.8 · 107 events.

The largest uncertainty of the measured asymmetry comes from inexact infor-
mation on the beam polarization at energy of 100 GeV. The beam polarization at
this energy was not directly measured. The beam polarization was measured at an
injection energy of 22 GeV using a Coulomb–nuclear interference pC polarimeter
(Jinnouchi et al. 2003a, 2003b). The analyzing power of this polarimeter was de-
termined in Tojo et al. (2002). The polarimeter yielded a polarization of 27 % with
a relative error of 30 %. This polarization was also assigned to a beam energy of
100 GeV under the assumption that the acceleration of the polarized protons from
22 GeV to 100 GeV in RHIC was not accompanied by depolarization. This uncer-
tainty is not taken into account in the points in Fig. 12.5.
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Fig. 12.12 PHENIX results
for transverse single-spin
asymmetry in the central
region for charged hadrons
and the neutral pion at√
s = 200 GeV; the

polarization determination
error (∼ 30 %) is not included

The main conclusion following from these measurements is that all inclusive
single-spin asymmetries measured in the central region are equal to zero. The au-
thors state that this conclusion is in agreement with pQCD predictions in the mea-
sured kinematic region. It is necessary to note that the same zero result was obtained
ten years before these measurements in the E704 experiment (Fermilab).

The following very interesting result obtained for the first time at RHIC is the
measurement of double-spin asymmetry ALL in the inclusive production of π0

mesons in collisions of two longitudinally polarized protons. The measurements
were also carried out in the central region.

The parameter ALL can be measured only with longitudinally polarized beams,
whereas the stable polarization direction at RHIC is the vertical direction parallel
to the main magnetic field of the ring. Hence, devices transforming the vertical
polarization to the longitudinal direction are necessary. Two such devices named
spin rotators are provided for each beam. Two devices are necessary because one
rotator turns polarization to the longitudinal position before collision and the other
rotator returns polarization after collision to the vertical position perpendicular to
the beam orbit plane.

The correct operation of the rotators should certainly be tested. A local polarime-
ter is necessary for this purpose. In this sense, a discovery made by physicists when
measuring the analyzing power of neutral particles in a narrow forward angular
cone (Bazilevsky et al. 2003) using the ZDC detector (Zero Degree Calorimeter, a
calorimeter at zero angle) (Adler et al. 2001) is good fortune. This detector is in-
tended to measure the energy and angle of the emission of neutrons. It is located
at a distance of 18 m from the interaction point of colliding beams and has a very
narrow angular acceptance 0.3 mrad < θn < 2.5 mrad. An appreciable analyzing
power of inclusively produced neutrons has been revealed in special measurements
with transversely polarized beams. Neutron asymmetry in the interval xF = 0.3–0.8
is 10–15 % and depends only slightly on xF . This detector has been used as a local
relative polarimeter for the adjustment of the spin rotators. This polarimeter should
show zero transverse asymmetries (in the plane perpendicular to the beam) if the
spin rotators are switched on and polarization becomes longitudinal. If a spin rota-
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Fig. 12.13 PHENIX results for double-spin asymmetry ALL(π
0) in the inclusive production of

π0 mesons in collisions of two longitudinally polarized protons at an energy of
√
s = 200 GeV;

the measurements are performed in the central region; an error of 65 % in the beam polarization
normalization is not included in the errors shown on the plot; the curve is the next-to-leading pQCD
calculation

tor is switched off, transverse asymmetry should appear. Quantitative measurements
confirmed these expectations.

The first trigger on proton collisions is provided by beam–beam counters placed
on both sides of the beam interaction point at a distance of ±1.44 m from this point.
These counters cover a pseudorapidity range of ±(3.0–3.9) and the full azimuthal
range. They detect approximately half of all interactions. A high time resolution of
these counters makes it possible to reconstruct an event vertex with an accuracy of
2 cm at an interaction region of about 30 cm. The luminosity of bunches was con-
trolled by the beam–beam counters and ZDC independently and the accuracy in the
ratio of the luminosities of different bunches reached 2.5 ·10−4. This corresponds to
the relative error in double-spin asymmetry δALL = 1.8 · 10−3. The ratio of the lu-
minosities for the selected events was unit in limits ±5 %. The algorithm developed
by the collaboration was applied to reconstruct π0 mesons.

The results of the measurements of ALL are presented in Fig. 12.13.
The main conclusion is that ALL(π

0) is consistent with zero in the entire mea-
sured pT interval. According to Fig. 12.13, the experiment is more consistent with
the hypothesis of small gluon polarization than with the hypothesis of high polar-
ization. This conclusion has been made long before these results by the E704 Col-
laboration.

12.3.3 The pp2pp Polarization Experiment at RHIC

Since the creation of antiproton–proton colliders has advantages over the creation
of proton–proton colliders, elastic p̄p scattering has been studied up to an en-
ergy of 1.8 TeV, whereas investigations of pp scattering stopped at an energy of
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Fig. 12.14 The pp2pp polarization experiment at RHIC

√
s = 63 GeV after the ISR program was completed. In connection with the build-

ing of RHIC, the research program of elastic pp scattering in the energy range√
s = 50–500 GeV was proposed (Guryn et al. 1995). The proposal was later sup-

plemented by investigations of polarization effects. The setup scheme is presented
in Fig. 12.14.

The idea of the experiment proposed and implemented for the first time at ISR
is the use of the magnetic structure of the accelerator. Microdetectors with high
spatial and time resolutions are mounted in a special device called “the Roman pot.”
Two such Roman pots are installed in each of two RHIC rings named blue and
yellow after the colors of the rings. They are denoted as RPY1 and RPY2 (in the
yellow ring) and RPB1 and RPB2 (in the blue ring) in Fig. 12.14. The places of
these detectors with respect to the interaction point (IP) along the beam are chosen
so that a scattered particle deviates from the beam axis by at least five sizes of the
beam (5σ). The amplitude function in the detector location places should be as
small as possible. In this case, the beam size is also minimal. The parameters of
the beam transport matrix are chosen so that the scattering angle is unambiguously
transformed to the detected particle coordinate. Therefore, determining the particle
coordinate, one can unambiguously determine the particle scattering angle.

Four coordinate planes of silicon strip detectors are placed in each Roman pot.
Such redefinition is necessary at least for two reasons: first, for an increase in the
detector efficiency and, second, for the measurement of the efficiency of each plane.
Redefinition is also necessary for the identification of elastic scattering from multi-
plicity.

Each plane has strips 70 µm in width and a 30-µm gap between strips. Methodical
investigations show that 70 % of elastic scattering events are detected by strips and
other events, by several neighboring strips (Alekseev 2004).

The selection of elastic events was accompanied by requirements of the collinear-
ity of elastic scattering events. The high spatial and time resolutions of the detectors
make it possible to significantly suppress the background of inelastic events.
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Fig. 12.15 Results of the
pp2pp experiment on the
measurement of asymmetry
in elastic pp scattering at the
c.m. energy

√
s = 200 GeV

versus t

The detailed description of the setup was given in Bültmann et al. (2004).
The first results of the measurement of polarization in elastic pp scattering at

RHIC are shown in Fig. 12.15. The measurements were conducted in an interval of
|t | = 0.01–0.03 (GeV/c)2.

Figure 12.15 shows that asymmetry decreases with increasing |t | in agreement
with the theoretical predictions. In addition, the theoretical curve shown in the figure
in which the spin-flip contribution to the nuclear amplitude is considered as negligi-
bly small is systematically below the experimental data. The measurement accuracy
should certainly be significantly improved before to insist on such a conclusion.

12.3.4 Polarization in Elastic pp and pC Scattering at RHIC in
the Fixed Target Mode

Two important polarization results have been obtained on polarimeters. In both
cases, polarization was measured in the Coulomb–nuclear interference region. In
the first case, the experiment was performed with a new polarized jet target with the
detection of recoil protons. In the second case, the measurements were conducted
on a carbon target. Both these setups were described in Sect. 8.3 “Polarimetry of
proton beams” in the second part of the book. Now, we briefly discuss physical re-
sults. Figure 12.16 shows the analyzing power of elastic pp scattering measured
with highest existing statistical accuracy at

√
s = 200 GeV in the Coulomb–nuclear

interference region (Okada et al. 2004).
The left panel of the figure shows that polarization measured for the first time

in the expected distribution peak. The measurement accuracy is already limited by
systematic errors. The solid curve represents a theoretical prediction disregarding
spin flip. The experimental data are in excellent agreement with the theoretical pre-



398 12 Latest Results from the Largest Polarization Setups

Fig. 12.16 Analyzing powers of elastic (left panel) pp and (right panel) pC scattering at initial
momentum p = 100 GeV/c in the Coulomb–nuclear interference region

diction. If the theory also correctly predicts the energy dependence of polarization,
a reliable absolute polarimeter for any proton energy would be created.

The right panel of the figure concerns the scattering of protons by carbon (Jin-
nouchi et al. 2004). In this case, the polarization peak region cannot be reached in
measurements owing to kinematics. Nevertheless, it is seen that polarization also
decreases with increasing −t . The shaded band presents the systematic errors.

It is surprising that, in contrast to pp scattering, the theoretical curve disregarding
spin flip is much higher the experimental data. This fact has not yet been adequately
explained and, consequently, deserves further study.
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Chapter 13
Results of the Experiments with Fixed Targets

13.1 Polarization in the Elastic Scattering of Hadrons

The comparative investigation of polarization phenomena in the interaction of par-
ticles and antiparticles is an important but insufficiently developed research direc-
tion. The known Pomeranchuk hypothesis states that total interaction cross sections
of particles and antiparticles should be equal in the asymptotic limit in the case of
unpolarized hadrons (Pomeranchuk 1958). This hypothesis is experimentally tested
up to a center-of-mass energy of 63 GeV at ISR. The asymptotic limit in the sense
of this hypothesis has not yet been reached. There is no any experimental test of
this hypothesis for the case of the interaction of polarized particles and antiparti-
cles. In Sect. 3.2, we mentioned the hypothesis proposed in Logunov et al. (1962)
and Nambu and Iona-Lasinio (1961) of the γ5 invariance of strong interaction in
the asymptotic limit. Certain asymptotic relations between the polarization param-
eters in cross reaction channels are predicted in a number of theoretical works (see
Sect. 3.3). Unfortunately, they have not yet been experimentally tested. There is only
one experimental work on studying the polarization of particles and antiparticles in
elastic scattering. It will be described below (Nurushev 1990).

In 1972–1976, physicists from IHEP, JINR, and ITEP together with physicists
from Saclay prepared and conducted experiments for measuring the angular depen-
dence of the polarization P and spin rotation parameter R in the elastic scattering
of π± and K± mesons, protons, and antiprotons on a polarized proton target at
a momentum of about 40 GeV/c at the U-70 IHEP accelerator. The layout of the
experimental facility called HERA (High Energy Reaction Analysis) is shown in
Fig. 13.1.

Some features of this facility are as follows:

• the beam instrumentation detects and identifies all three types of hadrons in a
beam;

• the polarization in the vertical plane (with hodoscopes H5–H8; H7 and H8 are
not seen in the figure, because they are under the target) and the spin rotation
parameter in the horizontal plane (with hodoscopes H9–H13) are measured si-
multaneously (with two separate triggers);

S.B. Nurushev et al., Introduction to Polarization Physics,
Lecture Notes in Physics 859, DOI 10.1007/978-3-642-32163-4_13,
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Fig. 13.1 Polarization facility HERA for the simultaneous measurement of the polarization P and
spin rotation parameter R in the scattering of hadrons (π+,K+,p) and antihadrons (π−,K−, p̄)
on a polarized proton target at momentum of about 40 GeV/c

• the polarized target with a higher hydrogen content (the propanediol target with
a length of 8.5 cm, a diameter of 2 cm, and a polarization of 80 %) than in the
preceding lanthanum magnesium nitrate targets was used;

• a special fast matrix circuit is used for the preliminary selection of elastic scatter-
ing events according to the coplanarity and conjugation angle criteria;

• the facility operates with an intense incident beam (∼ 3 · 106 particles/cycle).

The left–right asymmetry was determined by using the following three types of
monitor counts:

1. Incident beam flux counts with a correction to beam load and beam drift.
2. Counts of the particles elastically scattered on a proton in the horizontal plane

containing the polarization vector.
3. Counts of the particles quasielastically scattered on protons in target nuclei.

Polarization values determined from the experiment coincide within the mea-
surement accuracy for all three normalization cases. The third monitor is the most
stable monitor.

Table 13.1 presents the polarization parameters in the elastic scattering of
hadrons and antihadrons measured at the U-70 IHEP accelerator during 1972–1974
beam runs. This table presents the |t |measurement range in (GeV/c)2, a dash means
that the corresponding measurement has not been performed. According to the ta-
ble, the complete experiment involving eight quantities (including differential cross
sections) has been performed only for πp→ πp scattering. For Kp scattering, one
experiment, e.g., the measurement of the asymmetry in the K−p→ K0n reaction
on a polarized target is missed. A vast field remains for further experimental inves-
tigations of nucleon–nucleon scattering, in particular, with a polarized beam.
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Table 13.1 Reactions, Observables, measured −t range in (GeV/c)2

Reaction −t range for P −t range for R −t range dσ/dt

π−p→ π−p [0.1–1.9] [0.19–0.52] [0–1]

π+p→ π+p [0.08–1.00] [0.20–0.52] [0–1]

π−p→ π0n [0.1–1.2] – [0–2]

K−p→K−p [0.1–1.7] [0.19–0.52] [0–0.5]

K−p→K0n – – [0–0.5]

K+p→K+p [0.08–1.00] – [0–0.5]

pp→ pp [0.04–1.2] – [0.2–0.52] [0–1.5]

p̄p→ p̄p [0.1–1.1] – [0–0.5]

13.1.1 Results of Polarization Measurements

The HERA polarization data (Gaidot et al. 1973, 1975) are given in Fig. 13.2. The
momenta of negative and positive particles in these measurements were 40 and
45 GeV/c, respectively. The polarization behavior has the following features:

• polarizations in π+p and π−p scatterings are almost mirror symmetric in agree-
ment with the prediction of the asymptotic model; this symmetry can be explained
by the prevailing contribution to the helicity amplitude from the ρ-pole exchange;

• polarizations in K+p and K−p scatterings have the same signs; this is inconsis-
tent with the asymptotic model and is in agreement with the hypothesis of strong
exchange degeneracy;

• polarizations in elastic pp and p̄p scatterings also have the same signs and are
inconsistent with both the asymptotic model and Regge models.

The dependences of the “effective” Regge trajectories α on t determined from
experimental data are in good agreement with the predictions of pole models for
reactions with bosons (pions and kaons) and are inconsistent with the predictions
for reactions with protons and antiprotons (see Figs. 13.3, 13.4, and 13.5).

To explain the behavior of the polarization in elastic pp and p̄p scatterings, it
was assumed that spin effects appear directly from the pomeron exchange (Pierrard
et al. 1975; Aznauryan and Solov’ev 1975; Troshin and Tyurin 1976, 1981). In this
case, both the angular distribution of the polarization and its energy dependence at
large t values are well described; the energy dependence has the form of a weak
(as the logarithm of the energy) decrease in the polarization with increasing energy.
More recent measurements of the polarization in elastic pp scattering at energies up
to 300 GeV at CERN and FNAL (Fidecaro et al. 1980; Kline et al. 1980) showed
that this hypothesis is attractive, but has not yet been certainly confirmed. In this
respect, the measurements of the polarization in elastic pp and p̄p scatterings at the
same very high energies are very desirable.

In view of the data on the polarization in the elastic scattering of hadrons, we
mention two theoretical works Kolár et al. (1976) and Solov’ev and Shchelkachev
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Fig. 13.2 Polarization P

versus t in the elastic
scattering of (upper panels a,
b, and c) negative and (lower
panels d, e, and f) positive
hadrons on protons at a
momentum of 40
and 45 GeV/c respectively

(1979). Relations between the polarization parameters at small t values are obtained
in the former work using the quark interaction model (under certain assumptions).
Comparison with the HERA experimental data shows that these relations are satis-
fied with an accuracy of about 25 % for elastic pp scattering. In the latter work, it
is emphasized that, if the hadron interaction amplitudes saturate the Froissart limit,
a model (of a fast increase) can be developed that satisfactorily explains both the
increase in the total cross section and the slow decrease in the polarization with in-
creasing energy. To test this model, it is particularly important to obtain data at large
t values, which are yet absent.

Figure 13.6 shows the experimental dependence of the polarization for six
charged hadrons elastically scattered on protons in the range 0.1≤|t | (GeV/c)2≤0.3.
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Fig. 13.3 Regge trajectories
αp = 1+ 0.27t and
αR = 0.52+ 0.93t and the
interference term αR − αp for
π−p scattering; the points
with error bars are obtained
by fitting the dependence
P (t)=A(t) · SαR(t)−αp(t) to
the experimental data above
10 GeV/c

Fig. 13.4 Energy
dependence of the difference
between the polarization
parameters for π+p and
π−p; the points correspond
to α values obtained by fitting
P (π+p)−P (π−p)≈A(t)Sα ;
the line corresponds to
interference between the ρ

meson and pomeron
α = αρ − αp , where
αρ = 0.52+ 0.93t and
αp = 1+ 0.27t

It is interesting that the polarization decrease rates with increasing energy are dif-
ferent for different hadrons. Therefore, the expected asymptotic regions, where po-
larizations should vanish, can be different for different particles. Sure more precise
measurements of the energy dependence of polarization, especially for kaons and
pbars, are needed.

Figure 13.6 indicates a decrease in the polarization with increasing energy for all
hadrons. This is valid for small momentum transfers. There are certain indications
of a weaker decrease in the polarization with increasing energy for large momentum
transfers. However, this expectation has not yet been confirmed experimentally be-
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Fig. 13.5 Parameter αeff
versus |t |, as determined by
fitting P (dσ/dt)≈A(t)sαeff

to the experimental data for
K+p and pp scatterings

Fig. 13.6 Polarization P in
the elastic scattering of
hadrons on protons versus s
in the range
0.1≤ |t | (GeV/c)2 ≤ 0.3

cause the corresponding experiment is difficult owing to very small cross sections
for elastic processes.

Completing this brief review of the experimental data on the polarization, we
note that it is very important to obtain information on spin effects in different iso-
topic states, for example, in the I = 0 state in the nucleon–nucleon interaction. This
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Fig. 13.7 Spin rotation parameter R in elastic π−p scattering at a momentum of 40 GeV/c. The
solid line corresponds to the dependence R = − cos θp , where θp is the recoil proton emission
angle in the laboratory frame. The dashed and dash-dotted lines are taken from Kline et al. (1980)
and Barger and Phillips (1969)

Fig. 13.8 Spin rotation
parameter R in elastic pp

scattering at a momentum of
45 GeV/c. The dotted line is
the dependence R =− cos θp

requires investigations with polarized neutrons (beam or target), which have not yet
been performed at IHEP.

13.1.2 Results of the Measurement of the Spin Rotation
Parameter R

The spin rotation parameter R was measured in elastic π−p and pp scatterings (see
Figs. 13.7 and 13.8, respectively). Such measurements are important not only for
the complete experiment program. The parameter R makes it possible to determine
(together with the differential cross section) the degree of the conservation of the
helicities in the s and t channels for πN scattering. In particular, these measure-
ments show that helicity at a momentum of 40 GeV/c in the s channel is conserved
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with an accuracy of about 10 %, whereas helicity conservation is strongly violated
in the t channel.

Interest in the measurement of the parameter R particularly increased in view of
the idea of rotating hadronic matter proposed in Chou and Yang (1976) and Levintov
(1978). The assumption that the hadronic matter current density is proportional to
the electromagnetic current density (Chou and Yang 1976) provides a prediction for
the angular and energy dependences of the parameter R.

Figure 13.7 provides the following conclusions. First, of three lines drawn in
the figure, the solid line is closest to the experimental data. It corresponds to the
model of rotating hadronic matter and the Regge model with one pomeron pole.
Second, to distinguish the predictions of different models, it is necessary to per-
form measurements at large momentum transfers and with the accuracy an order of
magnitude better than that shown in the figure. Such an experiment is very difficult
because the cross sections are small and double scattering should be used. Such ex-
periment will likely become possible at RHIC when reaching luminosity larger than
1032 cm−2 s−1. It is particularly important to analyze the energy dependence of the
parameter R, because the parameter R is independent of energy in both models con-
sistent with these data. Finally, this experiment carried out more than three decades
ago has not been repeated at higher energies. This fact confirms the difficulty of
such an experiment.

The results of the measurement of the parameter R in pp scattering at IHEP are
also in good agreement with the dependence R = − cos θp (the line in Fig. 13.8)
taking into account large errors in the data. Since the model of rotating hadronic
matter predicts zero polarization, whereas nonzero polarization is observed in the
experiment, a certain quantitative discrepancy should be expected (in ideally ac-
curate measurements). This model should well work at high energies (higher than
100 GeV); unfortunately, such data are yet absent.

Using the data on π−p scattering, where the complete set of experiments is ful-

filled, one can determine the quantity τ0 =
√

s0
(−t)

|F 0+−|
|F 0++|

specifying the relative frac-

tion of the reduced spin-flip amplitude to the spin-nonflip amplitude in the isotopic
state I = 0 (in the t channel). The energy dependence of τ0 is shown in Fig. 13.9,
where it is seen that τ0 depends weakly on the energy and is about 10 %. This may
mean that the pomeron can interact with changing helicity; such an interaction was
not assumed before the HERA experimental results. It would be very interesting
to continue these measurements at IHEP with better precisions and at very high
energies.

It is interesting that the spin rotation parameter R is almost the same for π−p and
pp scatterings and approximately follows the dependence Rπp = Rpp =− cos θP .
Such dependence is obtained in the Regge model under the assumption of the pre-
vailing contribution of the pomeron pole and factorization. In this model, the pa-
rameter R is the same for all hadrons. In the model of rotating hadronic matter, this
parameter has different values for different types of particles (see Bourrely et al.
1980).
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Fig. 13.9 Quantity τ0 =
√

s0
(−t)

|F 0+−|
|F 0++|

for π−p scattering versus the initial momentum

13.2 Polarization in Charge Exchange Reactions

Since 1980, the IHEP–LNP JINR–IHEP (Tbilisi University) Collaboration per-
formed the experiments on investigating polarization effects in charge exchange
reactions. To the mid-1980s, the investigations of the asymmetry in the exclusive
reaction

π− + p ↑→ π0 + n (13.1)

at a momentum of 40 GeV/c were completed. The experiment was performed with
a “frozen polarized proton target” made of propanediol (C3H8O2). The target was
developed at LNP JINR and the magnetic system for the build-up and keeping of
the polarization was designed and manufactured at IHEP. The polarized target for
this experiment is described in Chap. 2 “Polarized targets” in the second part of this
book.

Reaction (13.1) is of interest because, according to the Regge pole model, this
reaction proceeds through single ρ-pole exchange, and polarization should be ab-
sent as an interference effect. The first experimental data indicating large polar-
ization effects at 5 and 12 GeV/c forced theorists to revise the foundations of the
Regge model, to introduce additional poles, to take into account rescattering effects,
etc. However, these experiments were conducted at low energies (below 12 GeV),
whereas data at higher energies are required for the strict test of the Regge model.
This circumstance motivated an experiment on the measurement of the neutron po-
larization in reaction (13.1) at the U-70 accelerator.

Figure 13.10 shows the layout of the PROZA (polarization in charge exchange
reactions) setup, which was described in detail in Avvakumov et al. (1981).

The PROZA equipment consists of the following main units.

• The beam instrumentation consists of the scintillator counters of the total flux
S1, S2, and S3; the threshold Čerenkov counters Č1, Č2, and Č3; the anticoinci-
dence counter A3,4 for the suppression of beam halo; and the beam hodoscopes
H1 and H2. The main aims are the measurement of the flux of particles, their
identification, and the measurement of beam emittance.
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Fig. 13.10 Layout of the PROZA setup

• The polarized target with a diameter of 2 cm and a length of 20 cm ensures a
proton polarization exceeding 70 % and the relaxation times > 2000 and 1000 h
of positive and negative polarizations, respectively.

• The counter block VC, the protection system consisting of veto counters is used
to suppress the yield of charged particles and photons constituting the background
for reaction (13.1).

• The gamma spectrometer GS consists of lead glasses and ensures the determina-
tion of the energy and emission angle of photons.

• The neutron detectors NDL and NDR are the left and right units of the neutron de-
tector and ensure the detection of neutrons for the enhancement of the kinematic
selection of reaction (13.1).

The experiments were performed with the π− meson beam with an intensity of
(0.5–3) · 106 particles/cycle and cycle duration of 0.5–2 s. The trigger suppressed
the start of the information reception system to a level of 1.5 · 10−5 of the beam
intensity; i.e., the event collection rate varied in a range of 7–45 per cycle. More
than million triggers were collected. The processing shows that the π0 meson mass
is reconstructed with an accuracy of �m/m= 11 % (FWHM). Analysis shows that
the background of inelastic events varies from 5 to 20 % in the measured range
0 < |t | (GeV/c)2 < 2 of the invariant momentum transfer t .

The preliminary results obtained with the use of a gas discharge gamma detector
for small |t | values were reported in Avvakumov et al. (1980). More accurate data
were more recently obtained for large momentum transfers with a gamma detector
based on Čherenkov total absorption counters (GS in Fig. 13.10). These results are
shown in Fig. 13.11 (Avvakumov et al. 1982) together with the data for other ex-
clusive charge exchange reactions obtained simultaneously with the data for main
reaction (13.1) (Nurushev 1989).

The experimental data at 40 GeV/c indicate that, whereas the prediction of the
quasipotential model is inconsistent with new data, a number of other complicated
Regge models provide a satisfactory description of the polarization at small t values.
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Fig. 13.11 Single-spin asymmetry in the exclusive production of neutral mesons by a 40-GeV/c
π− meson beam incident on a polarized proton target in the reactions π− + p(↑)→ π0 + n (a),
π− + p(↑)→ η + n (b), π− + p(↑)→ η′ + n (c), π− + p(↑)→ ω + n (d), π− + p(↑)→
K0 +Λ (e), π− + p(↑)→ f + n (f)

These data are also satisfactorily described in the U -matrix method (Troshin and
Tyurin 1980), where the unitarity condition is taken into account. Measurements at
large momentum transfers are necessary for distinguishing between different mod-
els.

The best accuracy was achieved in the measurement of the asymmetry in the
π− + p(↑)→ π0 + n reaction (see Fig. 13.11a). The behavior of this asymmetry
has the following features:

1. Neutron polarization P(t) in the range 0 < |t | (GeV/c)2 < 0.35 is positive and
is (5.0± 0.7) % in average. However, the first indication of a minimum has been
obtained in the t dependence of the polarization at t = −0.22 (GeV/c)2. The
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polarization near this point is consistent with zero within the experimental er-
ror. Note that this point is the point near which the so-called cross-over effect is
observed (Antipov et al. 1973, 1976). This effect is that the differential cross sec-
tions for the elastic scattering of positive and negative pions on protons intersect
each other near this point. These two effects are possibly connected.

2. The polarization near the dip in the differential cross section for reaction (13.1)
changes sign and becomes negative. Its average value in the range 0.4 <

|t | (GeV/c)2 < 0.6 is P̄ =−(10± 6) %.
3. The polarization in the range 0.6 < |t | (GeV/c)2 < 1.3 is again positive and is

P̄ = (22± 8) %.
4. The polarization in the range 1.3 < |t |< 2 (GeV/c)2 tends to change sign and is

P̄ =−(28± 28) %.

The polarization in reaction (13.1) is expressed in terms of two amplitudes, which
are the functions of the Mandelstam variables t and s,

σ(t, s)P (t, s)= 2 Im
(
g∗(t, s)f (t, s)

)
, σ (t, s)= ∣

∣f (t, s)
∣
∣2 + ∣

∣g(t, s)
∣
∣2. (13.2)

Here, f (t, s) and g(t, s) are the spin-nonflip and spin-flip scattering amplitudes,
respectively. This expression shows that the polarization is an interference effect:
two force sources and interference between these forces are necessary for the ap-
pearance of the polarization (asymmetry). An analog of this phenomenon is known
in optics. Expressing the complex functions f (t, s) and g(t, s) in terms of their
absolute values and phases in the form

f (t, s)= ∣
∣f (t, s)

∣
∣eiϕf (t,s), g(t, s)= ∣

∣g(t, s)
∣
∣eiϕg(t,s), (13.3)

the expression for the polarization in Eqs. (13.2) can be represented as

σ(t, s)P (t, s)= ∣
∣f (t, s)

∣
∣
∣
∣g(t, s)

∣
∣ sin

(
ϕf (t, s)− ϕg(t, s)

)
. (13.4)

Such an explicit representation of the polarization in terms of the absolute val-
ues and phases of the scattering amplitude allows one to understand the following
statements. For the polarization to be nonzero, first, scattering amplitudes should be
nonzero and, second, the difference between the phases of these amplitudes should
differ from zero and multiples of 180°. On the whole, both statements are obvi-
ous, but the second statement applied to the Regge pole model provides the fol-
lowing conclusion: single-pole Regge exchange leads to zero polarization because
both amplitudes f and g in single-pole exchange have the same phases. There-
fore, for polarization to appear in the Regge model, at least two poles or a pole and
a cut, etc. are necessary and this explains a frequently used statement that polar-
ization is an interference effect. This digression directly concerns reaction (13.1).
This charge exchange reaction in the t channel can involve exchange by only one
ρ pole. Therefore, the appearance of the polarization in this reaction should not be
expected. However, the measurements of the polarization in reaction (13.1) in an
energy range of 5–12 GeV indicate a noticeable polarization effect (Bonamy et al.
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1966, 1973; Hill et al. 1973). In particular, the average polarization value in a range
of 0 < |t | (GeV/c)2 < 0.35 is (16.0± 2.3) %, (11.4± 2.0) %, and (5.0± 0.7) % at
6, 11, and 40 GeV, respectively. Thus, these results contradict the predictions of the
simple Regge pole model on the polarization.

The data on the polarization in reaction (13.1) at 40 GeV are shown in Fig. 13.11a
and were widely discussed. Various Regge model modifications were used. For ex-
ample, the Regge model with the ρ pole and ρ cut was used in Aleem and Saleem
(1983). The experimental data were satisfactorily described. The double zero near
t =−0.5 (GeV/c)2 is explained by the fact that the ρ-pole trajectory has zero near
this point, and interference of two terms (pole and cut) gives a double zero. Polar-
ization in this model decreases as 1/

√
s with increasing energy. This prediction is

also consistent with the experimental data discussed here.
Figure 13.11a presents two lines. The solid line is the prediction of the U -matrix

model, which is successfully applied to describe elastic and inclusive reactions in
almost all kinematic regions. Another feature of this model is that the unitarity con-
dition leads to the appearance of spin flip in the pomeron. As a result, polarization
effects weakly decreasing with increasing energy appear in this model. As seen in
Fig. 13.11a, the calculated line is in agreement with the experimental result in the
range under consideration (Troshin and Tyurin 1984).

The dotted line in Fig. 13.11a is the Regge model calculation with the inclusion
of the odderon (Gauron et al. 1984). Interest of the authors is clear. The data on the
total cross sections for pp and p̄p interactions at ISR indicate that they increase
with energy with a theoretically maximum rate. This means that the imaginary part
of the crossing-even amplitude has the form

F+(s,0)∝ s ln2 s. (13.5)

The authors analyzed the data on the π+p, π−p elastic scattering, and π−p
charge exchange reactions and concluded that the crossing-odd amplitude can also
increase rapidly with energy as

F−(s,0)∝ s
(
ln2 s − iπ ln s

)
. (13.6)

At present, amplitude (13.6) is commonly attributed to the odderon exchange.
The odderon corresponds to a singularity with l = 1 (a double pole at t = 0). The
requirement that the odderon contribution to the amplitude F− is smaller than the
contributions of usual Regge poles (with l ≤ 1/2) leads to the necessity of the sup-
pression of the odderon contribution up to, for example, the Tevatron energy. As a
result, it is difficult to seek the manifestation of the odderon in total cross sections.
However, if the odderon can be manifested in other hadron processes, new possi-
bilities appear. One of them is the attractable measurement of the polarization in
charge exchange reaction (13.1). First, a few poles contribute to this reaction. Sec-
ond, the odderon amplitude phase differs from the phases of other poles. Therefore,
the odderon can interfere, for example, with the ρ pole and provide polarization.
With increasing energy, the odderon contribution should increase and lead to a sharp
change in the polarization as a function of t . Such an analysis was performed by the
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Table 13.2 Best-fit
parameters of the “maximum
odderon” variant

Parameter ρ ρ′ O

1 a, (µb)1/2 93.8 −130.3 –

2 c, GeV−2 2.53 – –

3 b, (µb)1/2 GeV−1 3404.6 714.3 –

4 α(0) 0.48 0 –

5 α′, GeV−2 0.82 0.11 –

6 λ, GeV−2 0.13 2.65 1.76

7 C, (µb)1/2 – – −0.008

8 s0, GeV2 – – 0.08

authors using the data on the polarization in reaction (13.1) including 40 GeV (the
highest measured energy) data.

The authors took into account three poles and wrote the amplitudes in the form

A′ =A′ρ +A′ρ′ +A′O, B = Bρ +Bρ′ . (13.7)

With the notation R = ρ or ρ′, these amplitudes can be parameterized as

A′R =
[

i + tan

(
π

2
αR(t)

)]

aR(t)
[
αR(t)+ 1

]
eλRt sαR(t),

BR =
[

i + tan

(
π

2
αR(t)

)]

bR(t)αR(t)
[
αR(t)+ 1

]
eλRt sαR(t)−1.

(13.8)

Here,

αρ(t)= αρ(1+ ct), αρ′(t)= αρ′ = const, bR(t)= bR = const. (13.9)

The following parameterization is accepted for the odderon:

A′O = Cs

(

ln2 s

s0
− iπ ln

s

s0

)

eλot . (13.10)

More than 300 experimental points were included in the analysis with 13 free pa-
rameters. The fit is satisfactory with χ2 = 1.6 per point. The resulting parameter val-
ues are presented in Table 13.2. This fit is shown by the dashed line in Fig. 13.11a.
This fit is also shown in Fig. 13.12 together with the data on the polarization at
5 GeV for the illustration of the conclusion by the authors that the difference be-
tween the t dependences of the polarization at 5 and 40 GeV can be explained
only by interference between the odderon and ρ meson. The results of this work
presented in Fig. 13.13 are impressive: polarization can increase very rapidly with
energy.

In particular, polarization at t = −0.5 (GeV/c)2 is ∼ 15 % at 40 GeV and is
expected to be 50 and 80 % at 100 and 200 GeV, respectively. Such an almost linear
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Fig. 13.12 Odderon model
applied to the description of
the polarization in the
π−p(↑)→ π0n reaction at
momenta 5 and 40 GeV/c

Fig. 13.13 Energy
dependence of the
polarization in the
π−p(↑)→ π0n reaction as
predicted in the Regge pole
model with the odderon

increase in polarization with energy at a given square momentum transfer t has not
been predicted in any other model. Such an experiment could be performed at one
of three laboratories: CERN, FNAL, and BNL.



416 13 Results of the Experiments with Fixed Targets

The authors of this work state: “it has been shown that the surprising results of

the polarization measurement in Protvino at 40 GeV/c in the π−p→ π0n reaction
confirm the hypothesis that the asymptotic increase in the crossing-odd amplitude
can be as fast as allowed by the general principles.”

Figure 13.11 shows the results of the measurement of the asymmetry in the six
reactions

π− + p(↑)→ π0 + n (a),

π− + p(↑)→ η+ n (b),

π− + p(↑)→ η′ + n (c),

π− + p(↑)→ ω+ n (d),

π− + p(↑)→K0 +Λ (e),

π− + p(↑)→ f + n (f).

(13.11)

Above, we discussed in detail reaction (13.11(a)) and now briefly discuss the fea-
tures of other reactions. Before such a discussion, two remarks should be made. The
first remark concerns the parameter t , the invariant momentum transfer squared..
When the masses of the initial (the target particle labeled as 2 has the rest mass m2)
and final recoil particle (labeled as 4 with mass m4) are the same, this parameter is
denoted as t and it is equal to t =−2m2T4, where T is the kinetic energy of recoil
particle. For the case where these masses are different, this parameter is denoted
as t ′ and it equals t ′ = (m2

2 − m2
4 − 2m2T4). In Fig. 13.11, the notation t ′ is used

according to the process kinematics: t = 0 at zero meson production angle, whereas
t ′ �= 0. This should be taken into account. The second remark concerns the spin of
the produced mesons. The known equality of the polarization and asymmetry refers
only to spin-0 mesons, scattered on nucleon, i.e., to pions, kaons, η and η′ mesons.
In the case of mesons with nonzero spins (in our case, these are the ω meson with
spin 1 and f meson with spin 2), asymmetry should not be identified with polariza-
tion. After this brief digression, we continue to discuss Fig. 13.11b.

In particular, the pseudoscalar η meson has zero analyzing power in the range
0 < |t ′| (GeV/c)2 < 0.4, then a negative asymmetry in average of −30 % appears
in the range 0.4 < |t ′| (GeV/c)2 < 1.4, and a tendency to the appearance of positive
asymmetry is seen at |t ′| > 1.4 (GeV/c)2 (however, within large statistical errors).
Such an asymmetry behavior was sufficiently well described in the Regge model
with two poles in Aleem and Saleem (1983). The result of this work is shown by
the dashed line. The solid line in this figure is the calculation in the U -matrix model
(Troshin and Tyurin 1985, 1986). The dotted line in Fig. 13.11b is the calculation
in the model of correlated reggeons (Arestov et al. 1984). All three models are in
satisfactory agreement with the experimental data. It’s obvious that the statistics
should be drastically increased.

Reaction (13.11(c)) is of certain interest for theorists. As shown in Krzywicki
and Tran Tranh Van (1969), polarizations in reactions involving mesons of the same
multiplet are related with each other. A particular relation between the polarizations
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in reactions (13.11(a))–(13.11(c)) was derived in Enkovsky and Struminsky (1983)
under certain assumptions on the quark–quark interaction. This relation has the form

P
(
π0)+ 2P(η)= P

(
η′
)
. (13.12)

Thus, the polarization P(η′) can be determined from the data on polarizations in
reactions (13.11(a)) and (13.11(b)). It is shown by the solid line in Fig. 13.11c. The
model and experimental data are in qualitative agreement within the statistical error,
although their signs are different in the range 0 < |t | (GeV/c)2 < 0.4. The dashed
line in Fig. 13.11c is the Regge model calculation from Arestov (1986). Agreement
with the experimental data is quite satisfactory.

We pass to Fig. 13.11d for the ω meson. Interest in the production of vector
mesons, particularly with the use of polarized targets, has long existed (Achasov and
Shestakov 1983). For this reason, it is not surprising that the asymmetry in reaction
(13.11(d)) of interest was predicted before obtaining experimental data at 40 GeV.
This prediction is given by the solid line in Fig. 13.11d. This model involves the
ρ,A2,P poles and A2A2 +A2A2P , ρρ + ρρP , ρA2 + ρA2P cuts.

The parameters of the model were determined from the experimental data on the
π−p(↑)→ ωn reaction at 6 GeV obtained at ZGS (Shaevitz et al. 1976) and on
the π−p(↑)→ ρn reaction at 17.2 GeV obtained at CERN (Becker et al. 1977).
As seen in Fig. 13.11d, there is no quantitative agreement between the prediction of
this model and experimental data at 40 GeV.

Reaction (13.11(e)) was studied in the background regime with respect to reac-
tion (13.11(a)) and was not optimized. Nevertheless, it is attractable because the
equality P = A is valid for it. This equality allows the determination of the Λ hy-
peron polarization in this reaction from the measurement of the left–right asym-
metry of the production of K0 on a polarized target. Figure 13.11e shows the Λ

hyperon polarization as a function of t ′ in comparison with the predictions of three
models. The solid line is the prediction of the model of weak exchange degener-
acy (Arestov et al. 1983), the dash-dotted line is the eikonal calculation (Arakeliyan
et al. 1983), and the shaded band corresponds to the color tube model (Anderson
et al. 1982). It is seen that the first two models are in quantitative agreement with
the experimental data, whereas the third model is inconsistent with the data at small
t ′ values.

Finally, last reaction (13.11(f)) involving the f meson with spin 2 waits its theo-
retical interpretation.

13.3 Conclusions of Part III

The experimental program on high energy spin physics has achieved a prominent
progress. The SLD experiment at the SLC accelerator demonstrates the efficiency
of the use of a polarized electron beam for the accurate measurement of the pa-
rameters of the Standard Model. High-accuracy results have been obtained in the
measurement of spin structure functions; they made it possible to carefully test the
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sum rules and to determine separate contributions to the nucleon spin from light va-
lence and sea quarks. The same data were used to accurately determine the running
coupling constant. Although many data have been collected, the problem seems to
be far from the final solution, particularly concerning the polarization of gluons and
sea quarks, as well as the role of the orbital angular momentum. For this reason, it
is necessary to carry out new experiments in this field with better accuracy and in
a wide kinematic region. Hyperon polarization, which is an important discovery in
high energy spin physics, deserves more serious efforts in order to understand its
dependence on energy, pT , xF , and flavor and the spin transfer mechanism. Single-
and double-spin measurements could make the key contribution to the understand-
ing the nucleon spin structure. A promising fact is that several spin programs have
been approved at SLAC, CERN, JLab and RHIC for such investigations. Thus, spin
physics has a good outlook.

13.4 Conventions for Spin Parameters in High Energy
Scattering Experiments

13.4.1 Sign Convention for Particle Polarization (Basle
Convention) (Nucl. Phys. 21, 696 (1960))

At the International Symposium on Polarization Phenomena of Nucleons held in
Basle, the following convention was unanimously agreed upon regarding the sign of
the polarization of particles taking part in any nuclear reaction:

If �ki represents the propagation vector of the incident particle and �ko the prop-
agation vector of the outgoing particle, particles with spin pointing in the direction
�ki × �ko are to be considered as having positive polarization.

13.4.2 Conventions for Spin Parameters (Ann Arbor Convention)
(Modified Version of October 24, 1977 Report of Notation
Committee (Ashkin, Leader-Chairman, Marshak, Roberts,
Soffer, Thomas) Approved by Workshop on October 25,
1977)

13.4.2.1 Elastic and Pseudo-Elastic Scattering

Consider the process

a + b→ c+ d (13.13)

where all four particles a, b, c, and d have spin 1/2 or less. We will denote the four
particles in the following ordered way:
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(a, b; c, d)
(beam, target; scattered, recoil)
(i, j ; k, l),

where each index, such as l, may take values such as ↑ (spin up) or ↓ (spin down),
[or→ (spin along momentum)].

We will conform to the Basel convention in that the forward-scattered particle, c,
goes to the left, and the normal to the scattering plane is defined by:

�N = �Pa × �Pc

| �Pa × �Pc|
(13.14)

(a) Fundamental Observables for Fixed Target Experiments in the Laboratory.

Each spin i, j, k, l can lie along the �N , �L, or �S directions which are defined in
Laboratory system (Lab) as follows:

Notice that �N is out of the paper for all particles, and that for each particle, �L
points along the particle’s momentum. Note that �S is defined by �S = �N × �L.

(b) Fundamental Observables in the c.m. or for Colliding Beam Experiments.

Each spin (i, j, k, l)c.m. can lie along the �n, �l, or �s directions which are defined
in the center of mass system (c.m.) as follows:

The direction of �l always points along each particle’s momentum. Notice that
while �N and �n are identical, �L �= �l and �S �= �s. Therefore while spin-parameters like
Ann are invariant in going from lab to c.m. (Ann = ANN ), parameters like Kll and
Dss are not invariant under this boost.
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(c) Polarization.

“Polarization” refers to the state of a single particle or an ensemble and is short
for “Degree of Polarization”:

PB = beam polarization
PT = target polarization
PS = scattered particle polarization
PR = recoil particle polarization.

(d) Asymmetries Associated with One Polarized Particle.

We will use the 4-index notation to define these Asymmetries:

(n,0;0,0) Aa—Analyzing power for a
(0, n;0,0) Ab—Analyzing power for b
(0,0;n,0) P c—Polarizing power for c
(0,0;0, n) Pd—Polarizing power for d .

NOTE: 0 denotes unpolarized in initial state or polarization unmeasured in final
state.

(e) Correlations Associated with Two Particles Polarized.1

(0,0; k, l) Ckl Final state correlation parameter
(i, j ;0,0) Aij Initial state correlation parameter
(i,0; k,0) Da

ik Depolarization parameter for a
(0, j ;0, l) Db

jl Depolarization parameter for b
(i,0;0, l) Ka

il Polarization transfer parameter for a
(0, j ; k,0) Kb

jk Polarization transfer parameter for b

NOTE Each index i, j, k, l refers to the spin orientation along either the �n, �l or �s
direction. Thus Ann, which was previously sometimes called Cnnis the initial state
correlation when the spins are oriented along the normal to the scattering plane.

NOTE Da
ij �=Db

ij for the �l or �s directions even for pp→ pp

(f) Recommend NO SPECIAL SYMBOLS for three or four polarized particle reac-
tions. Just use 4-index notation such as (i, j, k,0) or (i, j, k, l) or else use pure
spin cross sections defined below.

1The asymmetries and correlations are defined in terms of pure spin cross sections by relations
such as:

P c = (0,0;n,0)= σ00→↑0 − σ00→↓0

σ00→↑0 − σ00→↓0
,

ANN = σ↑↑→00 + σ↓↓→00 − σ↑↓→00 − σ↓↑→00

σ↑↑→00 + σ↓↓→00 + σ↑↓→00 + σ↓↑→00
.
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(g) If an experiment measures a mixture of observables care must be taken to state
exactly what has been measured.

(h) Differential Cross-sections Measurements in Pure Initial and/or Final Spin
States.

Label spin direction by arrows as indicated for the different pure initial spin cross
sections

n-polarization ( dσ
dt
)↑↑

l-polarization ( dσ
dt
)→←

s-polarization ( dσ
dt
)00

These pure 2-spin (initial) cross sections are related to pure 3-spin and 4-spin
cross sections by relations such as

(
dσ

dt

)

↑↑
=
(
dσ

dt

)

↑↑→00
=
(
dσ

dt

)

↑↑→0↑
+
(
dσ

dt

)

↑↑→0↓

=
(
dσ

dt

)

↑↑→↑↑
+
(
dσ

dt

)

↑↑→↑↓

+
(
dσ

dt

)

↑↑→↓↑
+
(
dσ

dt

)

↑↑→↓↓
. (13.15)

13.4.2.2 One Particle Inclusive Reaction

Consider the inclusive reaction

a + b→ c+X (13.16)

where all three particles a, b, and c have spin 1/2 or less. The final particle c has
c.m. momentum defined by

p⊥ and xc = p||/pmax
c . (13.17)

All spin-parameters are defined as for the above elastic reactions. However care
must be taken in defining the direction of the normal to the scattering plane

N̂ = �pa × �pc

| �pa × �pc| (13.18)

that a, b, and c are defined so that particle c goes to the left. Notice that the spin-
parameters may depend on the sign of xc.
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13.4.2.3 Total Cross-Section Measurements

Arrows should indicate the spin directions of particles a and b in the process

a + b→ anything

�σT = σ↑↓ − σ↑↑ = σ•• − σ•◦
�σL = σ→← + σ→→

NOTE First or top arrow refers to particle a.
The filled circle means the projection of polarization in the line of s from the

observer; the unfilled one means the projection of polarization in the line of s to the
observer.
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