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Preface 

A more accurate title for this book would be "Problems dealing with 
the non-intersection of paths of random walks." These include: harmonic 
measure, which can be considered as a problem of nonintersection of a 
random walk with a fixed set; the probability that the paths of independent 
random walks do not intersect; and self-avoiding walks, i.e., random walks 
which have no self-intersections. The prerequisite is a standard measure 
theoretic course in probability including martingales and Brownian motion. 

The first chapter develops the facts about simple random walk that will 
be needed. The discussion is self-contained although some previous expo­
sure to random walks would be helpful. Many of the results are standard, 
and I have borrowed from a number of sources, especially the excellent book 
of Spitzer [65]. For the sake of simplicity I have restricted the discussion to 
simple random walk. Of course, many of the results hold equally well for 
more general walks. For example, the local central limit theorem can be 
proved for any random walk whose increments have mean zero and finite 
variance. Some of the later results, especially in Section 1. 7, have not been 
proved for very general classes of walks. The proofs here rely heavily on the 
fact that the increments of simple random walk are bounded and symmet­
ric. While the proofs could be easily adapted for other random walks with 
bounded and symmetric increments, it is not clear how to extend them to 
more general walks. Some progress in this direction has been made in [59]. 

The proof of the local central limit theorem in Section 1. 2 follows closely 
the proof in [65]. The next sections develop the usual probabilistic tools for 
analyzing walks: stopping times, the strong Markov property, martingales 
derived from random walks, and boundary value problems for discrete har­
monic functions. Again, all of this material is standard. The asymptotics 
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of the Green's function for d 2:: 3 and of the potential kernel for d = 2 are 
then derived. There is care in these sections in being explicit about the 
size of the error in asymptotic results. While this makes it a little harder 
to read initially, it is hoped that this will allow the chapter to be a refer­
ence for "well known" facts about simple random walks. The results in the 
last section of this chapter are analogous to results which are standard in 
partial differential equations: difference estimates for harmonic functions 
and Harnack inequality. Unfortunately the discrete versions of these use­
ful results do not seem to be familiar to many people working in random 
walks. A version of Theorem 1.7.1(a) was first proved in [8]. A number of 
"exercises" are included in Chapter 1 and the beginning of Chapter 2. It 
is suggested that the reader do the exercises, and I have felt free to quote 
results from the exercises later in the book. 

Harmonic measure is the subject of the second chapter. By harmonic 
measure here we mean harmonic measure from infinity, i.e., the hitting 
distribution of a set from a random walker starting at infinity. There are 
many ways to show the existence of harmonic measure, see e.g. (65]. Here 
the existence is derived as a consequence of the results in Section 1.7. This 
method has the advantage that it gives a bound on the rate of convergence. 
In Sections 2.2 and 2.3, the idea of discrete capacity is developed. The 
results of these sections are well known although some of the proofs are 
new. I take the viewpoint here that capacity is a measure of the probability 
that a random walk will hit a set. In the procel'ls, I completely ignore 
the interpretation in terms of electrical capacity or equilibrium potentials. 
Computing harmonic measure or escape probabilities can be very difficult. 
Section 2.4 studies the example of a line or a line segment and in the process 
develops some useful techniques for estimating harmonic measure. First, 
there is a discussion of Tauberian theorems which are used to relate random 
walks with geometric killing times with random walks with a fixed number 
of steps (analytically, this is a comparison of a sequence and its generating 
function). Then the harmonic measure of a line and a line segment are 
derived. The earlier estimates are standard. The estimate for the endpoint 
of a line segment in two dimensions (2.41) was first derived by Kesten 
[35] using a different argument. The argument here which works for two 
and three dimensions first appeared in [45]. The next section gives upper 
bounds for harmonic measure. The bound in terms of the cardinality of the 
set has been known for a long time. The bound for connected sets in terms 
of the radius is a discrete analogue of the Beurling projection theorem (see 
[1]) and was first proved ford= 2 by Kesten [35]. The three dimensional 
result is new here; however, the proofs closely follow those in [35]. The 
final section gives an introduction to diffusion limited aggregation (DLA), 
a growth model first introduced by Witten and Sander [73]. The bounds 
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from the previous section are used to give bounds on the growth rate of 
DLA clusters; again, the result for d = 2 was first proved by Kesten [36) 
and the three dimensional result uses a similar proof. 

The next three chapters study the problem of intersections of random 
walks or, more precisely, the probability that the paths of independent ran­
dom walks intersect. We will not discuss in detail what the typical intersec­
tion set looks like. This has been studied by a number of authors under the 
name "intersection local time", see e.g. [47) . The discussion on the proba­
bility of intersection follows the results in [11, 12, 39, 40, 41, 45). Chapter 
3 sets the basic framework and proves some of the easier results. In Section 
3.2, the expected number of intersections is calculated (a straightforward 
computation) and one lower bound on the hitting probability is given, using 
a proof adapted from [22). The expected number of intersections gives a 
natural conjecture about the order of the probability of "long-range" inter­
sections. This conjecture is proved in the next two sections. For d =/:- 4, the 
proof requires little more than the estimate of two moments of the number 
of intersections. More work is needed in the critical dimension d = 4; the 
proof we give in Section 3.4 uses the properties of a certain random variable 
which has a small variance in four dimensions. This random variable is used 
in the next chapter when more precise estimates are given ford= 4. The 
problem of estimating the probability of intersections of two random walks 
starting at the same point is then considered. It turns out that the easier 
problem to discuss is the probability that a "two-sided" walk does not in­
tersect a "one-sided" walk. The probability of no intersection in this case 
is shown to be equal to the inverse of the expected number of intersections, 
at least up to a multiplicative constant. This fact is proved in Sections 3.5, 
3.6, and 4.2. This then gives some upper and lower bounds for the proba­
bility that two one-sided walks starting at the same point do not intersect. 
The material in this chapter essentially follows the arguments in [39, 45). 
Some of these results have been obtained by other means [2, 23, 58], and 
some simplifications from those papers are reflected in the treatment here . 

The techniques of Chapter 3 are not powerful enough to analyze the 
probability that two one-sided walks starting at the origin do not intersect. 
There are a number of reasons to be interested in this problem. It is a 
random walk analogue of a quantity that arises in a number of problems 
in mathematical physics (e.g., a similar quantity arises in the discussion 
of critical exponents for self-avoiding walks in Section 6.3). Also, some of 
the techniques used in nonrigorous calculations in mathematical physics 
can be applied to this problem, see e.g. [16, 17], so rigorous analysis of 
this problem can be used as a test of the effectiveness of these nonrigor­
ous methods. Unfortunately, there is not yet a complete solution to this 
problem; Chapters 4 and 5 discuss what can be proved. 
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In four dimensions, the probability of nonintersection goes to zero like 
an inverse power of the logarithm of the number of steps. The techniques 
of Chapter 3 give bounds on this power; in Chapter 4, the exact power is 
derived. The first part of the derivation is to give asymptotic expressions 
for the probability of "long-range" intersections (the results of the previous 
chapter only give expressions up to a multiplicative constant). Sections 
4.3 and 4.4 derive the expressions, using a natural relationship between 
long-range intersections and intersections of a two-sided walk with a one­
sided walk. The next section derives the exact power of the logarithm. It 
essentially combines the result on long-range intersection with an estimate 
on asymptotic independence of short-range and long-range intersec~ions to 
estimate the "derivative" of the probability of no intersection. The final 
section discusses a similar problem, the mutual intersections of three walks 
in three dimensions. The results are analogous to those of two walks in 
four dimensions. Some of these results appeared in [41). One new result 
is Theorem 4.5.4, which gives the exact power of the logarithm for the 
probability of no intersection. 

The next chapter considers the intersection probability in dimensions 
two and three. Here the probability of no intersection goes to zero like 
a power of the number of steps. Again, the results of Chapter 3 can be 
used to give upper and lower bounds for the exponent. The first thing 
that is proved is that the exponent exists. This is done in Sections 5.2 
and 5.3 by relating it to an exponent for intersections of paths of Brownian 
motions. Some estimates are derived for the exponent in the remainder 
of the chapter. First a variational formulation of the exponent is given. 
The formulation is in terms of a function of Brownian motion. Bounds on 
this function then give bounds on the exponent. Section 5.5 gives a lower 
bound for the intersection exponent in two dimensions by comparing it to a 
different exponent which measures the probability that a Brownian motion 
makes a closed loop around the origin. The last section gives an upper 
bound in two and three dimensions. 

The last two chapters are devoted to self-avoiding walks, i.e., random 
walks conditioned to have no (or few) self-intersections. Sections 6.2 and 
6.3 discuss the usual (strictly) self-avoiding walk, i.e., simple random walk 
of a given length with no self-intersections. The connective constant is de­
fined, and then there is a discussion of the critical exponents for the model. 
The critical exponents are discussed from a probabilistic viewpoint; how­
ever, the discussion is almost entirely heuristic. The few nontrivial results 
about the self-avoiding walk have been obtained from either combinatorial 
or (mathematical physics) field-theoretic arguments. We mention a few of 
these results here. There is a forthcoming book by N. Madras and G. Slade 
in this series which will cover these topics in more detail. The next two 
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sections discuss other models for self-avoiding or self-repelling walks. They 
fall neatly into two categories: configurational models (Section 6.4) and 
kinetically growing walks (Section 6.5). The final section gives a brief in­
troduction to the problem of producing self-avoiding walks on the computer, 
a topic which has raised a number of interesting mathematical questions. 

The last chapter discusses a particular model for self-avoiding walks, 
the loop-erased or Laplacian random walk. This model can be defined in 
two equivalent ways, one by erasing loops from the paths of simple ran­
dom walk and the other as a kinetically growing walks with steps taken 
weighted according to harmonic measure. This model is similar to the 
usual self-avoiding walk in a number of ways: the critical dimension is four; 
there is convergence to Brownian motion for dimensions greater than or 
equal to four, with a logarithmic correction in four dimensions; nontrivial 
exponents describe the mean-square displacement below four dimensions. 
Unfortunately, this walk is not in the same universality class as the usual 
self-avoiding walk; in particular, the mean-square displacement exponent 
is different. The basic construction of the process is done in the first four 
sections. There are some technical difficulties in defining the walk in two 
dimensions because of the recurrence of simple random walk. These are dis­
cussed in Section 7.4. In the next section, estimates on the average amount 
erased are made. These are then used in Section 7.6 to show that the mean­
square displacement exponents are at least as large as the Flory exponents 
for usual self-avoiding walk. The convergence to Brownian motion in high 
dimensions is done in the last section. Essentially the result follows from a 
weak law that says that the amount erased is uniform on each path. The 
proof follows (38, 42]; however, unlike those papers the treatment in this 
book does not use any nonstandard analysis. 

A number of people have made useful comments during the preparation 
of this book. I would especially like to thank Tom Polaski and Harry 
Kesten. Partial support for this work was provided by the National Science 
Foundation, the Alfred P. Sloan Research Foundation, and the U.S. Army 
Research Office through the Mathematical Sciences Institute at Cornell 
University. 

In the second printing of this book, a number of misprints have been 
corrected. I would like to thank Ted Sweet and Sungchul Lee for sending 
me misprints that they found. I have also added a short addendum that 
updates the status of some of the problems mentioned in the last four 
chapters of the book. 



 



Notation 

We use c, c1, c2 to denote arbitrary positive constants, depending only 
on dimension, which may change from line to line. If a constant is to 
depend on some other quantity, this will be made explicit. For example, if 
c depends on a, we write c(a) or c0 • If g(x),h(x) are functions we write 
g "' h if they are asymptotic, i.e, 

lim h(x) = 1. 
x-+oo g(x) 

We write g x h if there exist constants c1 , c2 such that 

Finally we write g ~ h if In g "' In h. 
We write h(x) = O(g(x)) if h(x) ::; cg(x) for some constant c. Again, 

the implicit assumption is that the constant c depends only on dimension. 
If we wish to imply that the constant may depend on another quantity, 
say a, we write 0 0 (g(x)). For example, ax = 0 0 (x), but it is not true 
that ax= O(x) . Similarly, we write h(x) = o(g(x)) if h(x)jg(x)--+ 0. By 
implication, the rate of convergence depends on no other parameters, except 
dimension. We will write 0 0 to indicate a dependence on the parameter a. 

Similar conventions hold for limits as x --+ 0 or x --+ 1-. 
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Chapter 1 

Simple Random Walk 

1.1 Introduction 

Let X1, X2, ... be independent, identically distributed random variables 
defined on a probability space (f!, :F, P) taking values in the integer lattice 
zd with 

1 
P{X3 = e} = 2d, lei= 1. 

A simple random walk starting at X E zd is a stochastic process Sn, indexed 
by the nonnegative integers, with So = x and 

Sn =X+ xl + ... + Xn. 

The probability distribution of Sn is denoted by 

Pn(x, y) = px{Sn = y}. 

Here we have written px to indicate that the simple random walk starts at 
the point x. We will similarly write Ex to denote expectations assuming 
So = x. If the x is missing, it will be assumed that S 0 = 0. We let 
Pn(x) = Pn(O, x). We will sometimes write p(n, x) for Pn(x). It follows 
immediately that the following hold: 

Pn(x,y) = Pn(y,x), {1.1) 

Pn(x,y) = Pn(Y- x), (1.2) 

Pn(x) = Pn( -x), (1.3) 

Po(x, y) = o(y- x), (1.4) 

11 

 
DOI 10.1007/978-1-4614-5972-9_1, © Springer Science+Business Media New York 2013 
G.F. Lawler, Intersections of Random Walks, Modern Birkh ser Classics,äu



12 CHAPTER 1. SIMPLE RANDOM WALK 

where 8 is the standard delta function, 8(0) = 1, 8(x) = 0 if x =f. 0. If m is 
any positive integer, then the process 

Bn = Sn+m- Sm 

= Xm+1 + · · · + Xm+n 

is a simple random walk starting at 0, independent of {Xt, · · ·, Xm}· From 
this we can derive 

Pm+n(x, y) = L Pm(x, z)pn(z, y). 
zEZd 

1.2 Local Central Limit Theorem 

(1.5) 

What is the behavior of Pn(x) for large n? Assume S0 = 0. Then Sn is 
a sum of independent random variables with mean 0 and covariance ~I. 
The central limit theorem states that n- 112 Sn converges in distribution to 
a normal random variable in Rd with mean 0 and covariance ~I, i.e., if 
A C Rd is an open ball, 

Sn ~ d d/2 dlt lim P{- E A}= (-) e- dx 1dx2 · · · dxd. 
n-->oo y'n A 27!' 

Of course, the random variable Sn only takes on values in zd. Moreover, if 
n is even, then Sn has even parity, i.e., the sum of its components is even, 
while Sn has odd parity for n odd. A typical open ball A C Rd contains 
about nd12m(A) points in the lattice n-112 zd, where m denotes Lebesgue 
measure. About half of these points will have even parity. Therefore if n is 
even, and the random walk spreads itself as evenly as possible among the 
possible lattice points we might expect 

The local central limit theorem makes this statement precise. 
The proof of the local central limit theorem, like the standard proof of 

the usual central limit theorem, consists of analysis of the characteristic 
function for simple random walk. If Y is any random variable taking values 
in zd, the characteristic function ¢(0) = ¢y(O), 0 = (01 , ... ,Od), given by 

<P(O) = E(e•Y·O) = L P{Y = y}eiY·9, (1.6) 
yEZd 
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has period 21r in each component. We can therefore think of </J as a function 
on [-1r, 1r]d with periodic boundary conditions. The inversion formula for 
the characteristic function is 

P{Y = y} = (21)d 1. e-iy·8¢(0)d0. 
1r [-1r ,1r)d 

{1.7) 

This can be derived from {1.6) by multiplying both sides by e-•y·B, inte­
grating, and noting that 

The characteristic function q;n for Sn can be computed easily, q;n(O) = 
[</J(O)]n , where 

1 d 
¢(0) = d L:cosO;. 

j=l 

We will now prove a very strong version of the local central limit theorem 
which will be useful throughout this book. Let p0 (x) = 6(x) and for n > 0, 

d d~z! 2 
Pn(x) = p(n,x) = 2(-2 -)dl2e- n • 

?rn 

We write n +-+ x if n and x have the same parity, i.e., if n + x1 + · · · + Xd 

is even. Similarly we will write x +-+ y and n +-+ m. We define the error 
E(n,x) by 

E( ) _ { p(n,x)- p(n,x) 
n,x - 0 

if n +-+ x, 
if n 1-+ x. 

Iff: zd-+ R is any function andy E zd, we let Vyf and '\l~f be the 
first and second differences in the direction y defined by 

Vyf(x) = f(x + y)- f(x), 

v;f(x) = f(x + y) + f(x- y) - 2f(x). 

Iff: Rd-+ R is a C3 function, x,y E zd, y = iyiu, then Taylor's theorem 
with remainder gives 

l'\lyf(x) -lyiD,J(x)l 
1 

< -2 1YI2 sup IDuuf(x + ay)i 
O$a9 

1 3 < -3 1YI sup IDuuuf(x + ay)i. 
O$a$1 

(1.8) 

(1.9) 
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Theorem 1.2.1 (Local Central Limit Theorem) If E(n, x) is defined 
as above, then 

IE(n,x)l ~ O(n-(d+2)12), 

IE(n,x)l ~ lxl-20(n-df2). 

Moreover, if y +-+ 0, there exists a cy < oo such that 

IV'yE(n,x)l < cyO(n-(d+3)/2), 

IV'yE(n,x)l < cylxl-20(n-(d+l)/2), 

IV'~E(n, x)l < eyO(n-(d+4)/2), 

IV'~E(n, x)l < Cy lxl-20(n-(d+2)/2). 

Proof. We may assume n +-+ x. By (1.7), 

(1.10) 

(1.11) 

(1.12) 

(1.13) 

(1.14) 

(1.15) 

Since n +-+ x, the integrand is not changed if we replace 0 with 0+(11', ... , 11'). 
Therefore 

Pn(x) = 2(211')-d i e-tx·9</Jn(9)d9, 

where A= [-11'/2,11'/2] x [-11',11'jd-l. From the series expansion about 0 
of </J, <P(9) = 1 - ld 191 2 + 0(1014), we can find an r E (0, 11' /2) such that 
</J(9) ~ 1 - 4~ 1012 for 191 ~ r. There exists a p < 1, depending on r, such 
that I</J(9)1 ~ p for 0 E A, 101 ~ r. Hence p(n,x) = I(n,x) + J(n,x) where 

I(n,x) = 2(211')-d { e-ix·B<Pn(O)dO, 
}19i~r 

and IJ(n, x)l ~ pn. If we let a:= .jri9, 

-d 1. ix · a: a: I( n, x) = 2(27ry'n) exp{- ~ }</Jn( ~)do:. 
lol~r..;n vn vn 

We decompose I(n, x) as follows: 

1 
2(27ry'n)d I(n, x) = Io(n, x) + h(n, x) + I2(n,x) + I3(n,x), 

where 
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1 n a Jal2 ix · a 
= [4> (-) -exp{--}]exp{--}da, 

lal:_:;nl/4 Vn 2d Vn 

1 lal2 ix ·a 
= - exp{--}exp{---}da, 

lol~nl/4 2d Vn 

1 na ix·a 
= 4> (-)exp{--}da. 

nl/4:_:;lal:=;rnl/2 Vn Vn 
The first integral can be computed exactly by completing the square in the 
exponential, 

Therefore, 
3 

E(n, x) = J(n, x) + 2{27rvfn)-d L Ij(n, x). 
j=1 

We will now bound each of the above terms uniformly in x. We have already 
noted that IJ(n,x)l :S pn. 

Therefore, 

ilt(n,x)i 

= 1- ~~~ + ial 40(n-2), 

= {1- lal2 + iai40(n-2))n 
2dn 

= {1- ial2t{l + lal 40(n- 1)) 
2dn 

= exp{ -~;~2 }{1 + ial80(n-1 )). 

:S O(n-1) f I ala exp{ _lal2 }da 
Jlal:=;nl/4 2d 

O(n- 1 ). 

:S f exp{ _lal2 }da 
Jlol~nl/4 2d 

= cloo rd-1 exp{- 2rd2 }dr 
nl/4 



16 CHAPTER 1. SIMPLE RANDOM WALK 

n1/2 
O(n(d-1)/4 exp{ -U} ). 

< r <t>n(~)do: 
Jnl/4~1ol~rnl/2 .jTi 

< r (1-lo:l2 )n 
Jnl/4~1ol~rnl/2 4dn 

< r exp{ _lo:l2 }do: 
Jnl/4~1ol 4d 

n1/2 
O(n(d-1)/4 exp{ -4d} ). 

This proves (1.10). 
We now consider (1.12) and (1.14). 

3 

I'VyE(n,x)l :5I'Vyl(n,x)l+ LI'Vyl3 (n,x)l. 
j=l 

Each ofthese terms except for 'V yl1 can be estimated easily by adding the 
appropriate terms, e.g., 

I'Vyh(n,x)l :5 l/2(n,x)l+l/2(n,x+y)j 
nl/2 

:5 O(n<d-1)/4 exp{ -U}) 

= o(n-3/2). 

The h term, which is the largest of the error terms, requires a little more 
care: 

This gives (1.12). To get (1.14), again we write 

3 

I'V~E(n, x)l :5 I'V~J(n, x)l + L l\7~/j(n, x)j. 
;=1 
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Again each term other than the I 1 term can be estimated easily. For that 
term we get, 

To get (1.11),(1.13), and (1.15) we use Green's formula on (1.7), 

lxi2Pn(x) = 1. ixi2e-'x·B4Jn(9)d9 
[-11",11"]d 

= 1. ( -~e-ix·8)4Jn(9)d9 
[-11",11"]d 

= 1. e-ix·8(-~4Jn(9))d9. 
[-11",11"]d 

(The boundary terms disappear by periodicity.) A direct calculation gives 

d 

~4Jn(9) = n(n- 1)4Jn-2 (9)( ~ L sin2 91 )- n4Jn(9). 
j=l 

The proof then proceeds as above for (1.10), (1.12), (1.14), splitting the 
integral into similar pieces. 0 

Exercise 1.2.2 Complete the details of Theorem 1.2.1 for (1.11}, (1.13}, 
and {1.15). 

It follows from Theorem 1.2.1 that simple random walk eventually "for­
gets its starting point." 

Corollary 1.2.3 Suppose x +-+ y. Then 

lim ~ IPn(x, z)- Pn(Y, z)l = 0. 
n--+oo ~ 

zEZd 

(1.16) 



18 CHAPTER 1. SIMPLE RANDOM WALK 

Proof. We may assume x = 0. By the central limit theorem, for every 
1 

'Y > 2• 

lim "" (Pn(O, z) + Pn(Y, z)) = 0. 
n-+oo L.., 

lzl~n-r 

Therefore it suffices to prove for some 'Y > ~, 

lim "" IPn(O, z)- Pn(Y, z)i = 0. 
n-+oo L.., 

lzl~n-r 

By the definition of p and (1.12), 

IPn(z)- Pn(z- Y)l ::=; I'Pn(z)- Pn(z- Y)l + IE(n, z)- E(n, z- Y)l 
:::; cyO(n-(d+2)12 ) + cyO(n-(d+3)f2 ). 

Therefore, 

L IPn(z)- Pn(z- Y)l < L cyO(n-(d+2 )12 ) 

which goes to zero if 'Y < ~ + ~. D 

Exercise 1.2.4 Prove for every m f-+ 0, 

lim "" IPn(z)- Pn+m(z)i = 0. 
n-+CXl ~ 

zEZd 

(Hint: Use (1.5} and Corollary 1.2.3.} 

(1.17) 

There is another approach to the local central limit theorem for simple 
random walk. Suppose d = 1, and x is a positive integer. Then by the 
binomial distribution, 

{s } (2n)! ( 1 )2n 
P 2n = 2x = ( )'( _ )' -2 . n+x.n x. 

We can estimate this expression using Stirling's formula [24, (9.15)], 

n! = V2nnn+! e-n(1 + 0( ~ )). 
n 

If o: < 2/3, we can plug in, do some calculation, and get for lxl :::; na:, 

P{S2n = 2x} 
(2x)2 

= (rrn)- 112 exp{ ---}(1 + O(n3a:- 2 )) 
4n 

= p(2n, 2x)(1 + O(n3a-2)). (1.18) 
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This statement is not as strong as Theorem 1.2.1 when lxl is of order .jTi but 
gives more information when lxl is significantly larger than ..;n. A similar 
argument can be done for d > 1 (although it is messier to write down} 
which we will omit. However, we state the result for future reference. 

Proposition 1.2.5 If a < 2/3, then if lxl $; n", 0 ~ x ~ n, 

p(n,x} = p(n,x}(1 + O(n3"-2)). 

1.3 Strong Markov Property 

A random time is any random variable T : 0 --. {0, 1, 2, ... } U { oo} . A 
stopping time for a random walk is any random time which depends only 
on the "past and present." To formalize this idea let :Fn and 'H.n be the 
a-algebras of the "past and present" and the "future" respectively, i.e., 

:Fn = a{ XI. ... , Xn}, 

'Hn = a{Xn+11Xn+2• ... }. 

Then :Fn and 'H.n are independent a-algebras (written :Fnl.'Hn)· We will 
call an increasing sequence of a-algebras 9o C 91 C 92 C · · · a filtration 
for the simple random walk if for each n, :Fn C 9n and 9nl.1tn. A random 
timeT is called a stopping time (with respect to 9n) if for each n < oo, 

{r = n} E 9n· 

Examples 
1. If A is any subset of zd and k is any integer, then 

T = inf { n 2:: k : Sn E A} 

is a stopping time with respect to :Fn· Most of the stopping times we will 
consider in this book will be of this form. 

2. If T1 and r2 are stopping times, then r 1 V T2 and r 1 1\ T2 are stopping 
times. 

3. Let Yo, Y1, ... be independent random variables which are indepen-
dent of {X11 X2, ... } with P{Yi = 1} = 1- P{~ = 0} =A, and let 

T = inf{j 2:: 0: lj = 1}. 

We think of T as a "killing time" for the random walk with rate A. T has 
a geometric distribution 

P{T =j} = (1- A)' A. 
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Let gn = u{Xt, ... , Xn, Yo, ... , Yn}· Then gn is a filtration for simple 
random walk and Tis a stopping time with respect to gn· This will be the 
only example of a filtration other than Fn that we will need in this book. 

If T is a stopping time with respect to gn, the u-algebra g.,. is the 
collection of events A E F such that for each n, 

Exercise 1.3.1 Show that g.,. is au-algebra. 

Theorem 1.3.2 (Strong Markov Property) Suppose T is a stopping 
time with respect to a filtration gn . Then on { T < oo} the process 

is a simple random walk independent of g.,.. 

Proof. Let xo, ... 'Xn E zd and A E g.,.. Then 

P[{So = xo, ... ,Sn = Xn} nAn {r < oo}] 
00 

j=O 
00 

= LP[{S;- S; = xo, . .. ,Sj+n- s3 = Xn} nAn {r =j}] 
j=O 
00 

= LP{So = xo, ... ,Sn = xn}P(An {r = j}) 
j=O 

= P{So=xo, ... ,Sn=Xn}P(An{r<oo}) 0 

As an application of the local central limit theorem and the strong 
Markov property, we consider the question of recurrence and transience of 
simple random walk. Let Rn be the number of visits to 0 up through time 
n, i.e., 

n 

Rn = Lf{S; = 0}, 
j=O 

where I denotes the indicator function, and let R = Roo. By Theorem 
1.2.1, 

n 

E(Rn) = LP;(O) 
j=O 
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L [2( 2~. )d/2 + ou-(d+2)f2)J 
i'5.n,j even J 

{ 
y'2frr n112 + 0(1) d = 1 
~Inn+ 0(1) d = 2 
c + O(n(2-d)/2) d ~ 3. 

In particular, E(R) = oo ford~ 2. Let 

T = inf{j ~ 1 : Sj = 0}. 

Then R = 1 + L~7 I{Sj = 0}. By Theorem 1.3.2, 

E(R) = 1 + P{r < oo}E(R), 

or 
1 { = 0 if d < 2 

P{r=oo}= E(R) >0 ifd~3. 
Another application of Theorem 1.3.2 shows that if d ~ 3, 

P{R = j} = p(1- p)i-l, 

where p = P{r = oo}. Summarizing we get, 

Theorem 1.3.3 If d ~ 2, simple random walk is recurrent, i.e. 

P{Sn = 0 infinitely often}= 1. 

If d ~ 3, simple random walk is transient, i.e., 

P{Sn = 0 infinitely often}= 0. 

Exercise 1.3.4 (Reflection Principle) If a> 0, 

(Hint: Consider 
r = inf{j: lSi I~ a}.) 

21 

(1.19) 

1.4 Harmonic Functions, Dirichlet Problem 

Let ei be the unit vector in zd with jth component 1. If f : zd --+ R, then 
the (discrete) Laplacian off is defined by 

1 
tl.f(x) = [2d L f(x +e)]- f(x) 

lel=l 
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The third line resembles the usual definition of the Laplacian of a function 
on Rd, but the first line is a more natural way to think of the Laplacian -
the difference between the mean value of f over the neighbors of x and the 
value off at x. The Laplacian is related to simple random walk by 

tlf(x) = Ex[f(SI)- /(So)]. 

We call a function harmonic (subharmonic, superharmonic) on A if for 
each x E A, tlf(x) = 0 (tlf(x) ~ 0, tlf(x) :::;; 0). There is a close relation­
ship between harmonic functions and martingales. 

Proposition 1.4.1 Suppose f is a bounded function, harmonic on A, and 

T = inf {j ~ 0 : sj fl. A}. 

Then Mn = f(Sni\T) is a martingale with respect to Fn· 

Proof. Assume So= x. By the Markov property, 

Let Bn = {r > n}. Then Mn+l = Mn on B~ and 

' 

E(Mn+l I Fn) E(Mn+l/Bn I Fn) + E(Mn+l/B~ I Fn) 

= E(J(Sn+l)/Bn I Fn) + E(MnfB~ I Fn) 

= fBnE(J(Sn+l) I Fn) + MnfB~ 
IBn (J(Sn) + tlf(Sn)) + MnlB~. 

But tlf(Sn) = 0 on Bn. Therefore, 

Exercise 1.4.2 Suppose f is a bounded function, superharmonic on A, and 
T = inf{j ~ 0: sj fl. A}. Show that Mn = f(Sni\T) is a supermartingale 
with respect to Fn. 

Exercise 1.4.3 Show that Mn = IBn 12 - n is a martingale with respect to 
Fn· 
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A number of results about random walks and harmonic functions can 
be proved using Proposition 1.4.1 and the optional sampling theorem (9, 
Theorem 5.10]. For example, let d = 1, f(x) = x, and 

r = inf{j 2: 0: S; = 0 or S3 = n}. 

Then if 0 :S So :S n, Mn = SnAT is a bounded martingale and the optional 
sampling theorem states that for 0 :S x :S n, 

Therefore, 
Px{S,. = n} = =. 

n 
(1.20) 

Before giving another example we will prove an easy lemma that will be 
useful later in the book. 

Lemma 1.4.4 If A c zd is a finite set and 

r = inf{j 2: 1 : S; ¢A}, 

then there exist C < oo and p < 1 (depending on A) such that for each 
xE A, 

Px{r 2: n} :S Cpn. 

Proof. Let R = sup{lxl: x E A}. Then for each x E A, there is a path 
of length R + 1 starting at x and ending outside of A, hence 

By the Markov property, 

px{r>k(R+1)} = Px{r>(k-1)(R+1)} 

and hence 

px{T > k(R+ 1) IT> (k -1)(R+ 1)} 
< px{T > (k- 1)(R + 1)} (1- (2d)-(R+ll), 

px{T > k(R+ 1)} :S pk(R+ll, 

where p = (1- (2d)-(R+l))l/(R+l). For integer n write n = k(R + 1) + j 
where j E {1, ... , R + 1}. Then 

Px{T 2: n} :S P"'{r > k(R + 1)} 
< pk(R+l) 

< p-(R+l)pn. 0 
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We now consider the martingale Mn = ISnl2 - n (Exercise 1.4.3). Let 

r = inf{j ~ 1: IS; I~ N}. 

By Lemma 1.4.4, if lxl < N, 

Ex(IMnii{r ~ n}) < ((N + 1)2 + n)Px{r ~ n} 
--+ 0. 

We can therefore use the optional sampling theorem to conclude 

But N 2 - r ~ M-r < (N + 1)2 - r, and hence 

N 2 -lxl2 ~ Ex(r) < (N + 1)2 -lxl2• 

If A c zd, we let 

8A = {x¢A:Ix-yl=1forsomeyEA}, 

A = AU8A. 

We are now ready to solve the discrete Dirichlet problem. 

(1.21) 

Theorem 1.4.5 Let A c zd be a finite set and let F : 8A -+ R. Then the 
unique function f : A -+ R satisfying 

is 

(a) A.f(x) = 0, x E A, 

(b) f(x) = F(x), x E 8A, 

f(x) = Ex[F(S-r)], 

where r = inf{j ~ 0: S; ¢A}. 

(1.22) 

Proof. It is easy to check that f defined by {1.22) satisfies (a) and 
(b). To show uniqueness assume f satisfies (a) and (b) and let x E A. 
Then Mn = f(SnAT) is a bounded martingale and by the optional sampling 
theorem 

f(x) = Ex(Mo) = Ex(M-r) = Ex[F(S-r)]. D 

It is not surprising that there is a unique solution to (a) and (b), since 
(a) and (b) give IAilinear equations in IAI unknowns, where I· I denotes 
cardinality. The interesting part of the theorem is the nice probabilistic 
form for the solution. We also get a nice form for the inhomogeneous 
Dirichlet problem. 
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Theorem 1.4.6 Let A c zd be a finite set, F : 8A -+ R, g : A -+ R. 
Then the unique function f : A -+ R satisfying 

is 

(a) tl.f(x) = -g(x), x E A, 

(b) f(x) = F(x), x E 8A, 

T-1 

f(x) = E"'[F(ST} + Lg(S;)]. 
J=O 

Note that by Lemma 1.4.4 or (1.21), 

T-1 

E"'[L lg(S;)IJ :5 ll9llooE"'(r) < oo, 
j=O 

and so f is well defined. 

(1.23) 

Proof. Again it is easy to check that f defined by (1.23) satisfies (a) 
and (b). To check uniqueness, assume f satisfies (a) and (b), and let Mn 
be the martingale 

(n-1)A(T-1) 

Mn = f(SnAT)- L tl.f(S;) 
J=O 

(n-1}A(T-1} 

= f(SnAT) + L g(S;). 
J=O 

Note that, by Lemma 1.4.4, E"'(IMnii{r 2: n}) :5 (llflloo +nllglloo)Px{r 2: 
n} -+ 0. Therefore by the optional sampling theorem, 

T-1 

f(x) = E"'(Mo) = E"'(MT) = E"'[F(ST) + Lg(S;)]. D 
j=O 

Exercise 1.4.7 (Maximum principle) If A c zd is a finite set and f: 
A-+ R, is subharmonic in A then 

sup f(x) = sup f(x). 
xEA xE8A 

We now consider the homogeneous Dirichlet problem in the case where 
A is infinite, e.g., the complement of a finite set. If A is infinite there may 
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be many solutions to the Dirichlet problem. However, we will be able to 
classify all bounded solutions. Suppose F : oA --+ R is a bounded function, 
and as before let 

r = inf{j 2:: o: si E oA}. 

If d :5 2, then px { r < oo} = 1, and the proof of Theorem 1.4.5 works 
verbatim to prove the following theorem. 

Theorem 1.4.8 Let A c zd,d :5 2, and F : oA -+ R be a bounded 
function. Then the unique bounded function f : A -+ R satisfying 

is 

(a) t).f(x) = 0, x E A, 

{b) f(x) = F(x), x E oA, 

We emphasize that we have proven the existence of a unique bounded 
solution. It is easy to see that one can have unbounded solutions as well. 
For example if d = 1, A= Z\ {0}, and F(O) = 0 then f(x) =ax is a solution 
to (a) and (b) for any real number a. Ford 2:: 3, Theorem 1.4.8 will hold 
with the same proof if A is a set with the property that px { r < oo} = 1 for 
each x EA. This will not be true in general (e.g., if A is the complement 
of a finite set) because of the transience of the random walk. In fact, tf we 
let 

(1.24) 

it is easy to check that f is a bounded function satisfying (a) and (b) with 
F = 0. Since f = 0 also satisfies (a) and (b) with F = 0, we do not 
have uniqueness. However, the function (1.24) is essentially the only new 
function that can appear. 

Theorem 1.4.9 Let A c zd and F: oA-+ Rd be bounded. Then the only 
bounded functions f : A -+ R satisfying 

are of the form 

where a E R. 

{a} t).f(x) = 0, x E A, 

(b) f(x) = F(x), x E oA, 

(1.25) 
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Proof. It is straightforward to check that any f of the form (1.25) 
satisfies (a) and (b). Suppose that fi is a bounded solution to (a) and (b) 
for a given F and let 

f(x) = ft(x)- Ex[F(S.,.)I{r < oo}]. 

Then f is a bounded solution to (a) and (b) with F = 0. It suffices to prove 
that f(x) = aPx{r = oo}. 

Let M +-+ 0 and let q~ (x, y) = px{Sn = y IT> M}. Since {r > M} E 
:F M, the Markov property implies for n ~ M, 

q~(x,y) = L qti(x,z)Pn-M(z,y) 
zEZci 

It follows from (1.16) and (1.17) that for each M +-+ 0, z..,.. x, 

lim ~ IPn(x, y) - Pn-M(z, Y)l = 0, 
n--+oo L.,., 

yEZci 

and hence for each M +-+ 0, 

lim ~ IPn(x,y)- q~(x,y)l = 0. 
n-+oo L.,., 

yEZci 

Since Mn = J(SnAT) is a martingale, we get for each n ~ M, 

f(x) = Ex[Mn] 

Ex[f(Sn)I{r > n}] 
= Ex[f(Sn)I{r > M}]- Ex[f(Sn)I{M < r :5 n}] 

= px{T > M}Ex[J(Sn) IT> M] 

(1.26) 

(1.27) 

- Ex[J(Sn)l{M < T :5 n}] (1.28) 

The second term is bounded easily, 

If x,z E A,x +-+ z, 

IEx[f(Sn) IT> M]- E"'[J(Sn) IT> M]l 

< L lf(y)llq~(x,y)-q~(z,y)l 

+ L lq~ (z, y)- Pn(z, Y)l + L IPn(x, y)- Pn(z, y)IJ. 
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Hence by (1.16) and (1.27), 

lim IEx[f(Sn) IT> M]- Ez[f(Sn) IT> M]l = 0. 
n-+oo 

Therefore by (1.28) and (1.29), if x ~ z ~ M, 

f(x) f(z) 
lpx{r>M}- pz{r>M}I:S 

llfll [px{M < T < oo} + pz{M < T < oo}J. 
00 px{M < r} pz{M < r} 

Letting M ~ oo, we see if px { T = oo} > 0, pz { T = oo} > 0, 

i.e., there exists a constant a such that for all z ~ x, 

f ( Z) = aPz { T = 00}. 

If y E A with y f+ x, then 

f(y) = 
1 

2d L f(y +e) 
lel=l 

1 
- '""'aPY+e{T = oo} 
2d ~ 

lel=l 

aPY{r = oo}. D 

Exercise 1.4.10 Show that any bounded function f which is harmonic on 
zd is constant. (Hint: consider f on A = zd \ { 0}). 

1.5 Green's Function, 'fransient Case 

If n is a nonnegative integer, we define the Green's function Gn(x, y) to be 
the expected number of visits to y in n steps starting at x, i.e., 

n 

Gn(x, y) = Ex(~= I{SJ = y}] 
J=O 

j=O 
n 

= LP1 (y- x). 
]=0 
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If d ~ 3, we can define G(x, y) = G00 (x, y), 

00 

G(x,y) = LP1 (x,y) 
j=O 

(if d S 2, the sum is infinite). We write Gn(x) = Gn(O,x},G(x) = G(O,x). 
Note that 

00 00 

~G(x) = E[Ll{Si=x}]-E[Ll{Sj=x}] 
j=l i=O 

= E(-J{So = x}) = -6(x). 

The local central limit theorem gives estimates for Pi(x). Here we will use 
these estimates to study the behavior of the Green's function for large x. As 
in Theorem 1.2.1, we write E(n, x) = p(n, x)- p(n, x) if n ..... x. If n f+ x, 
we let E( n, x) = 0. As a preliminary, we prove a simple large deviation 
estimate for simple random walk. 

Lemma 1.5.1 For any a> 0, there exists Ca < oo, such that for all n, t > 
0, 

(a) P{ISnl ~ atn112 } S Cae-t, 

(b) P{ sup ISil ~ atn112 } S 2cae-t. 
O~•~n 

Proof. Let Sn = (S~, ... , S~). Then, 

d 

P{ISnl ~ atn112 } < L P{IS~I ~ d- 112atn112 } 

j=l 

2dP{S~ ~ d-112atn112 }. 

By Chebyshev's inequality, 

P{S~ ~ d- 112atn112 } S e-tE(exp{d1 12a- 1 n- 1 12S~}) 
1 1 

= e-t((1- d)+ d cosh(v'da-1n-112 )]n 

:5 Cae-t 

This gives (a), and (b) then follows from the reflection principle (Exercise 
1.3.4). 0 
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Lemma 1.5.2 For every a < d, y +--+ 0, 

0, 

00 

lim lxlo+l L IY'yE(j,x)l = 0, 
lxl-+oo J=O 

00 

lim lxl 0 +2 "' IV'2 E(j, x)l = 0. lxl-+oo ~ y 
J=O 

(1.30) 

(1.31) 

(1.32) 

Proof. Let 'Y < 2. Then there exists an a > 0 such that for j :5 lxi'Y, 
p(j,x) :5 O(exp{-lxla}) (see Lemma 1.5.1) and p(j,x) :5 O(exp{-lxla}), 
so 

!E(j,x)l :5 O(exp{ -lxla} ), j :5 lxi'Y. 

We split the sum into three parts, 

By (1.33), 

By (1.11), 

By (1.10), 

00 

LIE(j,x)l= L + L + L 
j=O j~lxi"Y lxi"Y<j<lxl2 lxl 2 ~j<oo 

L IE(j,x)l = O(lxi'Yexp{-lxla}). 
j~lxi"Y 

L IE(j,x)i < 
lxi"Y<J<Ixl2 

{ 
O(lxl- 1 ), d = 1, 
O(lxl-2 ln lxl), d = 2, 
O(lxi"Y-¥-2 ), d 2: 3. 

L IE(j, x)i < L ou-(d+2)/2) 

lxl 2 ~j lxl 2 ~j 

= O(lxl-d). 

(1.33) 

For every a < d, by choosing 'Y sufficiently close to 2 we can then get (1.30). 
The proofs for (1.31) and (1.32) are similar using (1.12)- (1.15). 0 

Exercise 1.5.3 Prove (1.31} and (1.32}. 
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It will now be easy to give the asymptotics of G for large x. Let f(x) = 
lxl2-d. Note that f is a harmonic function on Rd \ {0}, i.e., 

d 

""£Djjf(x) = 0. 
j=l 

Iff is considered as a function on zd, by (1.9), as lxl--> oo, 

D.f(x) = O(lxrd-t), 

where D.. denotes the discrete Laplacian. 

Theorem 1.5.4 If d ;:::: 3, as lxl --> oo, 

G(x) "'adixl2-d 

where 
- ~ ~- -d/2- 2 

ad - 2 r( 2 1 )7r - ( d - 2)wd' 

where Wd is the volume of the unit ball in Rd. Moreover, if a< d, 

lim lxi<>(G(x)- adlxl2-d) = 0. 
lxl--+oo 

Proof: Assume x +-+ 0. By Lemma 1.5.2, for every a < d, 

00 

G(x) = [L"P(2n,x)J + o(ixl-<>). 
n=O 

But, 

00 

L"P(2n,x) 
n=O 

If x f+ 0, then by (1.34) 

1 
G(x) = 2dLG(x+e) 

lel=l 
1 

= 2d ""£ (adlx + ei2-d + o(ixl-<>) 
lel=l 

adlxl2-d + o(lxl-<>). D 

(1.34) 

(1.35) 
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We remark that the above result is not quite as strong as can be proved. 
Note that the dominant term can be estimated 

00 

n=O 

Hence one might guess that 

G(x) = adixl2-d + O(lxi-d). 

This is the case, but we will not need this stronger result in this book. 

Theorem 1.5.5 If d ~ 3, y E zd, y = iyiu, 

'VyG(x)- adiYIDu(lxl2-d) = O(lxi-d) (1.36) 

v;c(x)- adiYI2 Duu(ixi2-d) = O(lxl-d-l). (1.37) 

Proof. First assume y +-+ O,x +-+ 0. Then 

00 00 

I'VyG(x)l < L i'VyP2n(x)i + L i'VyE(n,x)l, 
n=O 

00 00 

I'V;G(x)l < L I'V;P2n(x)i + L i'V;E(n,x)i. 
n=O n=O 

By Lemma 1.5.2, 

00 

L i'VyE(n,x)i = o(ixi-d), 
n=O 

00 

n=O 

so we only need to estimate the dominant term. By (1.8) and (1.9), if 
lxl ~ 2lyl, 

d!:r!2 d!:r!2 

IV';e- 4 n - IYI2 Duue- 4 n I 

and therefore, 
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Finally, 

= f: 2( _i_ )d/21YI(dx. u)e_d~':!2 
n=O 4~n 2n 

= ro 2( _!!_ )df21yiDue- d!;l dt 
lo 4~t 

+O(Ixl-d-1) 

= IYIDu(adlxl2-d) + O(lxl-d-1), 

and similarly, 

If y f+ 0, y "# -x, 

VyG(x) = 
1 

2d L Vy+eG(x) 

V~G(x) 

lel=1 
1 

= 2d L IY + eiDu(adlxl2-d) + cyO(Ixl-d) 
lel=l 

= IYIDu(adlxl2-d) + eyO(Ixl-d), 

1 ~ 2 
= 2d ~ Vy+eG(x) 

lel=l 

= IYI2 Duu(adlxl2-d) + cyO(Ixl-d). 

Similarly if x f+ 0, we may use (1.8) and {1.9) to show 

v;c(x) 

1 = 2d L VyG(x+e) 
lel=1 

= IYIDu(adlxl2-d) + eyO(Ixl-d-1) 
1 

= 2d 2: v;c<x+e) 
lel=l 

= IYIDuu(adlxl2-d) + eyO(Ixl-d-1). 0 
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There are two other Green's functions that will be important. Let >. E 
[0, 1) , letT be a geometric random variable independent of S with killing 
rate 1- >.(see Section 1.3), and let G>.(x,y) = G>.(Y- x) be the expected 
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number of visits to y starting at x up to the "killing time," i.e., 

T 

G>.(X, y) Ex(LJ{Sj = y}) 

00 

= LPx{Si=y,T?:_j} 
]=0 

00 

L ,\lpi(Y- x). 
j=O 

G>.(x,y) is the generating function of {p1 (y- x)}j=O,I, ... · Note that G>. is 
finite in all dimensions, and if d?:. 3, lim>.->1- G>.(x, y) = G(x, y). 

Exercise 1.5.6 Show that if>. > 0, 
00 

G>.(x,y) = 2::(1- >.)>-.lGi(x,y). 
]=0 

If A c zd, we let G A (X, y) be the expected number of visits to y starting 
at X before leaving A. To be precise, let T = inf {j ?:. 0 : sj E 8A}. Then 

T-} 

GA(x,y) = Ex[LI{Sj = y}] 
]=0 

00 

L px{Si = y,r > j}. 
]=0 

(Our notation for Green's functions is somewhat ambiguous. In order to 
distinguish Gn, G>., and GA, one must know whether the subscript is an 
integer, a real number less than one, or a subset of zd. This should not 
present any problem.) If A =1- zd, GA(x,y) will be finite in all dimensions. 
There is a one-to-one correspondence between random walk paths starting 
at x and ending at y staying in A and random walk paths starting at y and 
ending at x staying in A (just traverse the path backwards). Therefore, 
px{si = y,r > j} = PY{Si = x,T > j} and 

GA(x, y) = GA(Y, x). 

It is not in general true that GA(x,y) = GA(O,y- x); however, if we let 
Ax = { z - x : z E A}, then 

GA(x, y) = GAJO, y- x). 

Also, if A c B, 
GA(x, y):::; Ga(x, y). 
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Exercise 1.5. 7 Let A c zd be finite, X E A, 

Show that 

r = inf{j 2:: 0: S; E 8A} 

Ux = inf{j 2:: 1: S; = x}. 

We define the hitting distribution of the boundary of A by 

Proposition 1.5.8 Let A c zd(d 2:: 3) be finite and x, z E A, Then 

Proof. 

GA(x,z) = G(z- x)- L HaA(x,y)G(z- y). 
yE8A 

'T-1 

E"'[LI{S; = z}] 
j=O 
00 00 

= E"'[LI{S; = z}- LI{S1 = z}] 

= G(z- x)- L HaA(x,y)G(z- y). 0 
yE8A 

We let Cn be the "ball" of radius n about 0, i.e., 

Cn = {z E zd: lzl < n}. 
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{1.38) 

Proposition 1.5.9 Let TJ = inf{j 2:: 0: S; E {0} U 8Cn}· Then if x E Cn, 

px { STJ = 0} = G~~) [lxl2-d - n2-d] + O{lxll-d), 

and 

Proof. Recall that G(x) is harmonic for x =F 0. Therefore, if S0 = x, 
M; = G(S1"TJ) is a bounded martingale. By the optional sampling theorem, 

G(x) = E"'(MTJ) 

= G(O)P"'{STJ = 0} 

+E"'(G(STJ) I STJ E 8Cn)P"'{STJ E 8Cn}· (1.39) 
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By Theorem 1.5.4, 

If y E 8Cn, then n ~ IYI < n + 1, and therefore again by Theorem 1.5.4, 

Ex(G(S71 ) I S71 E 8Cn) = adn2-d + O(n1-d). 

If we plug this into (1.39) we get the first result. To get the second, note 
that 

and 
Gc .. (0, 0) = G(O) + O(n2-d). o 

Proposition 1.5.10 Suppose n < m and A = {z : n < lzl < m},r = 
inf{j ~ 0: sj E oA}. Then for X E A, 

I 12-d 2-d + 0( 1-d) 
px{IS.,.I :5 n} = x - m n . n2-d _ m2-d 

Proof. Consider the bounded martingale Mi = G(S3AT)· By the op­
tional sampling theorem, 

G(x) = Ex(M.,.) 

= px{IS.,.I ~ n}Ex(G(S.,.) liS.,.!~ n) 

+(1- px{IS.,.I ~ n} )Ex(G(S.,.) liS.,. I~ m). 

But by Theorem 1.5.4, 

G(x) = adlxl2-d + o(lxl1-d), 
Ex(G(S.,.) liS.,. I~ n) = adn2-d + O(n1-d), 

Ex(G(S.,.) liS.,.!~ m} = adm2-d + O(m1-d). 

If we solve we get the result. 0 

Exercise 1.5.11 Let A c zd be finite, F : oA - R, g : A - R. Then the 
unique function f : A - R satisfying 

is 

(a) D.f(x) = -g(x), x E A, 

(b) f(x) = F(x), x E oA, 

f(x) = L HaA(x,y)F(y) + Lg(z)GA(x,z). 
yE8A zEA 
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1.6 Recurrent Case 

The Green's function G(x, y) is infinite if d ~ 2. However, there is another 
useful quantity called the potential kernel defined by 

a(x) = 

n 

= lim ~(p3 (0)- Pi(x)). 
n ..... oo~ 

j=O 

(1.40) 

Theorem 1.6.1 If d ~ 2, the limit in (1..40} is finite, i.e., a(x) is well­
defined. 

Proof. For each n, if x =f. O,x +--+ 0, 

n n n 
L(p3 (0)-pj(x)) = 1+ L (p2i(O)-p2i(x))+ LE(j,O)- LE(j,x). 
j=O 15,j5;n/2 j=l j=l 

00 

L IP2j(O)- P2j(x)l < oo. 
j=l 

By (1.10), 
00 00 

L IE(j,O)I < oo, L IE(j,x)l < oo. 
j=l J=l 

Therefore the limit exists and 
00 00 00 

a(x) = L(P2j(O)- p2i(x)) + L E(j, 0)- L E(j, x). (1.41) 
J=O j=l j=l 

If x f+ 0, then 
1 

Gn(x) = 2d L Gn-l(x +e), 
lel=l 

and therefore, 

J~n;.,(Gn(O)- Gn(x)) = J~n;., 2~ L [Gn-1(0)- Gn-t(X +e)]+ Pn(O) 
lel=l 

1 = 2d L a(x+e). 0 

lel=l 
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It is easy to see that a(x) satisfies 

a(x) = a(-x), 

~a(x) = 8(x). 

The next theorem gives the asymptotic behavior of a(x) as lxl --+ oo for 
d = 2. (In Theorem 1.6.4 we will compute a(x) exactly for d = 1.) Note 
that the function f(x) =In lxl is a harmonic function on R2 \ {0}. Therefore 
by (1.9), iff is considered as a function on Z2 , 

(1.42) 

Theorem 1.6.2 If d = 2, there exists a constant k such that if a:< 2 

lim lxl 0 [a(x)- ~In lxl- k] = 0. 
lxl--+oo 7r 

Proof. By (1.41), if x +-+ 0, x =F 0, 

00 00 00 

a(x) = L)p23 (0) -p23 (x)) + 1 + LE(j,O)- LE(j,x). 
j=l j=l j=l 

We split the first term into two parts and estimate separately. 

1 [x[2 "'"' 1 11xl2 1 [x[2 
"'"' ---:(1- e-23) = [ ~ ---:)- -e-2T'dt + o(lxl-2). 
~ TrJ 7rJ 0 rrt 

l~j~lxl2 l~j~lxl2 

The first term on the right hand side equals ~In lxl2 + "Y + O(lxl-2 ), where 
"Y is Euler's constant. The substitution u = (2t)-1 lxl2 in the integral then 
gives 

1 [x[ 2 2 100 1 "'"' ---:(1- e-23) = -In lxl + "Y- -e-u.du + O(lxl-2). 
~ TrJ rr 1 rru 

l<"<lxl2 2 _,_ 
For the second part, 
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By (1.30), if a < 2, 

00 

lim lxlo(L IE(j, x)IJ = 0. 
!x!->oo J=O 

We have therefore proved the theorem for x +-+ 0 with 

100 1 1! 1 00 
k = 1- -e-udu + -(1- e-u)du + 1 + LE(j,O). 

2 11"U 0 11"U j=l 

If x f> 0, we may use ~a(x) = 0 and (1.42) to obtain 

1 
a(x) = 2d:La(x+e) 

lel=l 

2 2 
= -In lxl + -~(In lxl) + k + o(lxl-o) 

7r 11" 

2 
-In lxl + k + o(lxl-0 ). 0 
7r 

The above theorem can be improved to show 

2 -a(x) =-In lxl + k + O(lxl 2 ), 
11" 
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(see [67]), but we will not need this stronger result. Also the value of k can 
be calculated [65, p. 124], 

21' 3 
k =- + -ln2, 

7r 11" 

although we will not need to know this value. The potential kernel can 
often be used in place of the Green's function, e.g., this next proposition is 
the analogue to Proposition 1.5.8. 

Proposition 1.6.3 If A c zd (d :$ 2) is finite, then if x, z E A, 

GA(x, z) = [ L HaA(x, y)a(y- z)]- a(z- x). 
yE8A 

Proof. We could give a proof similar to that of Proposition 1.5.8. For 
variety, however, we note that h(x) = a(x- z} satisfies ~h(x) = o(z- x) 
and hence by (1.23), 

-r-1 

h(x) = Ex[h(S.,.)]- Ex[LI{S3 = z}]. o 
i=O 
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Theorem 1.6.4 If d = 1, a(x) = lxl. 

Proof. Let A= {z E Z: lzl < lxi},8A = {-x,x}. Sincea(x) = a(-x), 
Proposition 1.6.3 implies that GA(O,O) = a(x). But by {1.38) and {1.20), 

[GA(O,O)t 1 = P 0 {r < ao} = ixr 1 • 0 

Theorem 1.6.5 If y E Z2, y = lylu, then 

2 
(a) IV ya(x)- IYIDu( -In lxl)l = O(lxl-2), 

7r 

2 
(b) IV;a(x) -lyl2 Duu( -In lxl)l O(lxl-3). 

7r 

Proof. Identical to the proof of Theorem 1.5.5. 0 

Theorem 1.6.6 Let Cn = {z E Z2 : lzl < n}. Then 

2 
Gc (0,0) = -lnn+k+O(n-1 ). 

n 7r 

Proof. By Proposition 1.6.3, 

Gcn (0, 0) = L Hac" (0, y)a(y). 
yE8Cn 

Since n:::; IYI < n + 1 for y E 8Cn, Theorem 1.6.2 gives the result. 0 

Proposition 1.6.7 Let x E Cn and 11 = inf{j ~ 1 : S3 E {0} U 8Cn}· 
Then for every o < 2, 

Px{S11 = 0} ={In n)- 1[ln n -In lxl + o(lxl-o) + O((ln n)- 1)]. 

2 
Gc" (x,O) = ;[Inn -In lxiJ + o(lxl-o) + O(n- 1). 

Proof. Assume So = x. Then M1 = a(S31\11 ) is a bounded martingale 
and by the optional sampling theorem, 

a(x) = Ex(M11 ) 

= (1- Px{S11 = O})E"'(a(S11 ) IIS11 I ~ n). 

But by Theorem 1.6.2 

2 -a(x) =-In lxl + k + o(lxl 1), 
7r 
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and hence, 

If we solve for px{S71 = 0}, we get 

{ } 1(In n- In lxl) + o(lxl-ar) px S = 0 = ..::.11"....:....,.. __ _:__;.;_,....,......:-'-:'-:___o. 
71 ~lnn+k+O(n-1) 

This gives the first equation. The second equation then follows from 

Gcn(x,O) = Px{S71 = O}Gcn(O,O) 

and Theorem 1.6.6. 0 

Exercise 1.6.8 Suppose n < m, A= {x E Z2 : n < lxl < m}, T = inf{j ~ 
1: S1 E 8A}. Thenforx E A, 

px{ISTI:::; n} = lnm -ln lxl + O{n-1). 
lnm -Inn 

1. 7 Difference Estimates and Harnack Inequal-
ity 

Let B = {x E Rd: lxl < 1},B = {x E Rd: lxl:::; 1}, and I: B ___.. R a 
function which is harmonic , i.e., Et=1 Did(x) = 0 for x E B. Then the 
Poisson integral formula (28] states that 

f(x) = r f(s)p(s, x)ds, 
laB 

where p(s, x) is the Poisson kernel 

1-lxl2 
p(s,x)=cdl ld" s-x 

(1.43) 

(1.44) 

From this formula we can derive some immediate estimates. For example, 
if we differentiate f at the origin in the direction y: 

IDyf(O)I :::; llflloc r IDyp(s, O}lds:::; cllflloc sup IDyp(s, 0}1. 
laB sE8B 

In particular, the derivative is bounded by the supremum of f times a 
constant independent of f. Another corollary of (1.43) is the Harnack 
inequality. Suppose f ~ 0 on D. If lxl, IYI :::; r < 1, then for each s E 8D, 

2 11+rd 
p(s,x):::; cd(1- r }- [ 1 _ r] p(s,y), 
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and hence 

f(x) ~ cd(1- r 2)-1 [ ~ ~ ~]d f(y). 

Note that the constant does not depend on f. For discrete harmonic func­
tions we do not have as explicit a formula as (1.43) and (1.44); however, it 
will be useful to have bounds on differences and to have a Harnack inequal­
ity. We derive such results in this section. We start by stating the results 
we will prove. As before, let 

Cn = {z E zd: izi < n}. 

Theorem 1. 7.1 For each u E zd, there exists a Cu < oo such that if 
f : Cn --+ R is harmonic on Cn, 

(a) IVuf(O)I ~ eull/llooO(n-1), 

(b) IV~/(0)1 < eull!llooO(n-2 ). 

Theorem 1. 7.2 (Harnack inequality) For each r < 1, there exists a 
c;. < oo such that iff: Cn--+ [0, oo) is harmonic on Cn, 

If X E A, v c A, we say v separates X from aA if every path from X 

to aA must enter some point of V, i.e., if px{TV < r} = 1 where TV = 

inf{j 2: 0: Si E V}, r = inf{j 2: 0: Si E 8A}. Suppose B c A, aBc A. 
Then it is easy to check that aB separates any point of B from aA. 

Lemma 1.7.3 Suppose A c zd is finite and v c A separates X from aA. 
LetT= inf{j 2: 0: sj ft A} and 

H(x,y) = HaA(x,y) = Px{Sr = y}. 

Let r = inf{j 2: 1: Si E aA u V}. Then 

H(x,y) = L PY{S,. = z}GA(z,x) (1.45) 
zEV 

Proof. Let 
7J = inf{j 2: 1: Si E {x} u 8A}. 

By considering paths in reverse direction we can see that if y E aA, 

Also by the strong Markov property, 

px{Sr = y I 8'1 = x} = px{Sr = y}. 
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Hence px{s, = y IS,¥: x} = px{Sr = y} and 

px{s, = y} = px{s, ¥: x}H(x,y). 

Therefore, using (1.38), 

H(x,y) = (Px{s, ¥: x}t1 px{s, = y} 

GA(x,x)PY{S, = x} 

= GA(x,x) L PY{S;:- = z}Pz{s, = x}. 
zEV 

By the strong Markov property, if z E A, GA(z,x) = pz{s, = x}GA(x,x). 
Therefore, 

H(x,y) = LPY{S;:-=z}GA(z,x). D 

zEV 

Lemma 1. 7.4 If y E 8Cn, 

Proof. It suffices to prove the lemma for d ~ 2 and n sufficiently large. 
Let 17 = inf{j ~ 1 : S1 E {0} u 8Cn}· Then as in the previous proof, 

Let p = inf{j ~ 1: IS1I < n- 2 or IS1 I ~ n}. Then by the strong Markov 
property, 

where!! (a) is the infimum (supremum) of pz{s, = 0} over all z E 8Cn-J· 
By Proposition 1.5.9 or Proposition 1.6.7, 

Therefore, 

d= 2. 

PY{S, = 0} x n 1-dPY{ISPI < n- 2}, d 2 3, 

PY{S, = 0} x (nln n)- 1 PY{ISPI < n- 2}, d = 2. 

Since Gcn (0, 0) x 1 if d ~ 3 and Gcn (0, 0) x ln n if d = 2 (Theorem 
1.6.6), it suffices to prove that PY{ISPI < n- 2} ~ c > 0. For y E 8Cn, 
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choose lei = 1 which minimizes IY- el, i.e., which maximizes y ·e. We know 
IY- el <nand by simple geometry y · e ~ IYid-1• Then for any k, 

IY- kel 2 = IYI 2 + k2 - 2k(y ·e) ~ IYI2 + k2 - 2klyld-1. 

Let k = 4d. Then for IYI sufficiently large, 

and hence y- ke E Cn-2· Since y - e, y - 2e, ... , y- ke E Cn, 

Proof of Theorem 1.7.1. Let Vn = Cn/2· Then if n ~ 3, 8Vn C Cn 
and hence 8Vn separates 0 from 8Cn. For z E 8Vn, 

If d = 2, Proposition 1.6.3 gives 

GA(z,x)= L H(z,y)(a(y-x)-a(z-x)), 
yE8A 

while if d ~ 3, Proposition 1.5.8 gives 

GA(z,x)= L H(z,y)(G(z-x)-G(y-x)), 
yE8A 

where A= Cn· By Theorem 1.5.5 or Theorem 1.6.5, if g(x) = GA(z,x), 
then 

IY'ug(O)I 

IY'~g(O)I < -d Cun . 

For z E 8Vn, G A(z, 0) ~ cn2-d (Proposition 1.5.9, Proposition 1.6.7}, there­
fore 

IY'ug{O)I < Cu0{n-1 )g{O) 

IY'~g(O)I < Cu0(n-2 )g{O). 

By {1.45) and Lemma 1.7.4, 

IY'uH(O,y}l ~ Cu0(n-1)H(O,y) ~en-d, 

IY'~H{O, Y)l ~ Cu0(n-2 )H(O, y) ~ cn-d-1, 
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where on the left hand side the differences are taken with respect to the 
first component of H(x, y). By (1.22), 

f(x) = L f(y)H(x, y), 
yE8Cn 

and hence 

IVuf(O)I < llflloo L IVuH(O,y)i 
yE8Cn 

< cullfllooO(n- 1), 

IV~f(O)I < llflloo L IV~H(O, Y)i 
yE8Cn 

< eullfllooO(n-2). o 

Exercise 1. 7.5 Show that iff : Cn -+ R is harmonic, then for every u, 

(Hint: It suffices to consider lui :::; ~. Use the estimate from Theorem 
1. 7.1{a) with lui= 1 and itemte.) 

Proof of Theorem 1. 7 .2. We will first prove the result for r = 116 • 

Assume z E 8Cn/4• x E Cn/16· Then 

Also, ~~ - 1 :::; lz - xi :::; ~~ + 1. Therefore, by Proposition 1.5.10 or 
Proposition 1.6. 7, there exists a constant c such that for every z 1, z2 E 
8Cnf4 1 XI, X2 E Cn/16 1 

If y E 8Cn, Lemma 1. 7.3 gives 

Px{ST = y} = L PY{S,. = z}Gcn(z,x). 
zE8Cn/4 

Therefore, if x11x2 E Cn/16, H(xby):::; cH(x2,y) and by (1.22), f(x!):::; 
cf(x2)· 

Now let r < 1 and lx1!, lx2l :::; rn. If lx1- x2l :::; 116 (1- r)n, then we 
can apply the above result to c(l-r)n(xl) = {z: z- X E c(1-r)n} to get 
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f(xl) ~ cf(x2)· By induction, if lxd, ... , lxk+ll ~ rn and lxi+l- xil ~ 
1~ (1- r)n,j = 1, 2, ... , k, then 

If kr is any integer greater than 32(1- r)- 1 , then for n sufficiently large, 
if lx1 1, lx2l ~ rn, there exist ZJ = x 1 ,z2, ... ,zkr+l = x 2 with lzil ~ rn and 
lzJ+l- zil ~ l6 (1- r)n. Therefore, 

The second part of the proof of Theorem 1. 7.2 can be applied to more 
general sets than C(l-r)n· If U is a compact subset of Rd contained in an 
open set V, then U can be covered by a finite number of open balls with 
centers in U and radius at most ~dist(U, 8V). Using this idea, we can prove 
the following result, which we will refer to as the Harnack principle. We 
leave the proof as an exercise. 

Theorem 1.7.6 (Harnack principle) Let U be a compact subset of Rd 
contained in a connected open set V. Then there exists a c = c(U, V) < oo 
such that if An= nUnzd, Bn = nVnzd, and f: Bn-+ [O,oo) is harmonic 
in Bn, then 

f(x) ~ cf(y), x, YEAn. 



Chapter 2 

Harmonic Measure 

2.1 Definition 

The hitting probability of a set A E zd is the function HA : zd X A---+ [0, 1) 
defined by 

where 
T = T A = inf {j 2: 1 : S1 E A}. 

This differs from the definition of T A in Chapter 1 where we took the in­
fimum over j 2: 0, but it will be more useful in this chapter to have T A 

defined as above. Note that TAuB = TA 1\ TB, and by "reversing paths" we 
can see that if x, y E A, 

(2.1) 

For fixed y E A, H A (.' y) is a harmonic function in if'. For fixed X E zd' 
HA(x, ·)is a positive measure on A with total mass px{T < oo}. We may 
define a probability measure on A by conditioning that the random walk 
hits A, 

HA(x,y) = Px{s,. = y IT< oo}. 

Ford:=:; 2, HA(x,y) = HA(x,y) by recurrence. 
If A is a finite set, we define the harmonic measure of A, HA(·), to be 

the hitting probability from infinity, i.e., 

(2.2) 

In this section we will show that H A is well defined by showing the limit 
exists, and in the process we will relate HA to probabilities of "escaping" 
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the set A. We start by developing some properties of HA(x,y). Let Cn = 
{z E zd: lzl < n} and assume A c Cn. If m;::: nand X~ Cm, then oCm 
separates x from A, i.e., every path from x to A must go through some 
point of oCm. 

Lemma 2.1.1 If A c Band X E nc, then 

HA(x,y) = L GAc(x,z)HAu8B(z,y), 
zE8B 

Proof. Consider the random time 

q = sup{j < TA : S; E oB}. 

Note that q is not a stopping time. However, since q < TA, 

00 

px{S.,.A = y} = Lpx{TA = k,Sk = y} 
k=l 

00 k-1 

= LL L px{TA=k,Sk=y,q=j,S;=z} 
k=li=Oze8B 

00 00 

= L L L px { S; = z; sk = y; si ~A, 
zE8B j=O k=j+l 

0:5 i :5 j;S, ~ AuoB,j + 1 :5 i < k} 
00 

= L LPx{S; = z;Si ~ A,O :5 i :5 j} 
zE8B j=O 

00 

LPz{Sk = y;Si ~ AuoB,l :5 i < k} 
k=l 

= L GAc(x,z)HAu8B(z,y). 
ze8B 

Similarly, by summing over y E A, 

px{TA < oo} = L GAc(x,z)Pz{TA <TaB}· 
zE8B 

which gives (2.3). D 
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An immediate consequence of (2.3) is that for x E Be, 

or by (2.1), 

. f HAuaB(Y, z) 
m 

zeaB LyEA PY{S(TA 1\ TaB)= z} 
(2.4) 

HAuaB(y,z) 

We will use this inequality with B = Cm, m > n. 

Lemma 2.1.2 Assume A C Cn, B = Cm, and m > 4n . Then for y E A, 
z E aB, 

y { HaB(O,z)(l+O(.!!:.)), d~3, 
P {S(TA/\TaB) = z ITA> TaB}= HaB(O, z)(l + 0(~ ln ~)), d = 2. 

Proof. Since m > 4n, 8C2n C B. If d ~ 3, by Proposition 1.5.10, if 
wE 8C2n 1 

(2.5) 

If d = 2, Exercise 1.6.8 gives 

(2.6) 

If we consider j(x) = px{S.,.88 = z} as a harmonic function on C3m;4 , then 
by Exercise 1.7.5, for wE C2n, 

n 
lf(w)- f(O)I :S 0(-) sup f(x). 

m -
xECa,..j4 

But by the Harnack inequality (Theorem 1.7.2) applied to f on Cm, 

sup f(x):::; c f(O). 
xECa,../4 

Therefore, if wE C2n, 

pw{S(TaB) = z} = HaB(O, z)(l + 0( ~ )). 
m 

(2.7) 



50 CHAPTER 2. HARMONIC MEASURE 

Suppose TA <TaB and let TJ = inf{j ~ TA: sj E 8C2n}· Then by (2.7), 

Pw{S(TaB) = z ITA< TaB} 

= L pw{S71 =xI TA <TaB} P"'{S(TaB) = z} 

n 
HaB(O, z){1 + 0{-)). 

m 
(2.8) 

Therefore by (2.5) - {2.8), if w E C2n, 

w { HaB(O, z){1 + 0(~)) d ~ 3, 
p {S(raB) = z ITA> TaB}= HaB(O, z){1 + 0(~ ln ~)) d = 2, 

and therefore pw{S(TA 1\ TaB)= z} equals 

HaB(O, z )Pw { T A > TaB }(1 + 0(.?:.:)) d ~ 3, (2.9) 
m 

HaB(O,z)Pw{TA>TaB}(1+0(!::1n~)) d=2. (2.10) 
m n 

Since 8C2n separates y from oB, if d ~ 3, 

PY{S(TA 1\ TaB)= z} 

= L PY{S(TA 1\ Tac2n) = w}Pw{S(TA 1\ TaB)= z} 

n 
= HaB(O, z){1 + 0(-)) 

m 

L PY{S(TA 1\ Tac2n) = w}Pw{TA ~TaB} 

n 
= HaB(O,z)PY{TA > TaB}(1+0(-)). 

m 

Similarly, if d = 2, 

n m 
PY{S(TA 1\ TaB)= z} = HaB(O, z)PY{TA > TaB}(1 + 0( -In-)), 

m n 

which gives the lemma. 0 
If d 2: 3, and we sum over y E A, 

L PY{S(TA 1\ TaB)= z} = IL PY{TA > TaB}]HaB(O,z)(1 + 0(:)). 
yEA yEA 

Also by Lemma 2.1.2, 

n 
HAuaB(y,z) = PY{TA > TaB}HaB(O, z)(1 + 0(-)). 

m 
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Therefore by (2.4), if X E c::n, 

- PY{rA >roB} n 
HA(x,y) = L P"{ } (1 + 0(-)). 

yEA y 1" A > 1"8B m 

Similarly ford= 2, 

- PY{rA > raB} n m 
HA(x,y)=L P"{ }(1+0(-ln-)). 

yEA y 1" A > 1"0B m n 

We have proved the following theorem. 

Theorem 2.1.3 Assume A C Cn. For each m > n define the probability 
measure 

Hm( ) _ PY{rA >roc,.} 
A Y - LyEA PY{rA >roc,.}· 

Then for all x E C:'n, yEA, m ~ 4n, 

- ( ) { HA(y)(l + O(!!i)), d ~ 3' 
HAx,y = HA(y)(l+O(!!iln':)), d=2. 

In particular, the limit in {2.2} exists and 

lim HA(x,y) = lim HA(Y) = HA(y). 
lzl-+oo m-+oo 

Exercise 2.1.4 There exist constants c1. c2 such that if A C Cn, y E 
A,m~2n, 

c1HA(y) ~ HA(Y) ~ c2HA(y). 

(Hint: use the Harnack principle.) 

Exercise 2.1.5 If A C B are finite subsets of zd and x E A, 

2.2 Capacity, Transient Case 

(2.11) 

For this section we assume d ~ 3. If A c zd, we define the escape proba­
bility EsA: A- [0, 1] by 

EsA(x) = Px{rA = oo} = lim px{rA > ~m}, 
m-+oo 

where 
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The capacity of a finite set A is given by 

cap(A) = ""EsA(x) = lim ""px{TA > ~m}· (2.12) L., m-+oo L., 
xEA xEA 

It is easy to see that if A is finite, then there exists some x E A with 
EsA(x) > 0, and hence cap(A) > 0. By Theorem 2.1.3, 

H ( ) = EsA(x) 
Ax cap(A). (2.13) 

Proposition 2.2.1 Suppose A and B are finite subsets of zd (d;::: 3). 
(a) If A C B, then cap(A) ~ cap(B) . 
(b) For any A, B, 

cap(A) +cap( B);::: cap( AU B)+ cap( An B). 

Proof: By (2.1) and (2.12), 

cap(A) = lim ""PY{rA > ~m} 
m___.oo L., 

Therefore, if A C B, 

yEA 

= lim "" "" PY{S(rA 1\ ~m) = x} m--+oo ~ L....t 
yEAxE8Cm 

= 2~00 L L P""{S(rA 1\ ~m) = y} 
xE8Cm yEA 

= lim "" P"'{rA < ~m}· m--+oo L., 
xE8Cm 

cap(A) = ~~00 L px{TA < ~m} 
xE8Cm 

< lim "" px{TB < ~m} 
m-+oo ~ 

xE8Cm 

= cap(B). 

For any finite A, B, 

cap(A U B) = 2~00 L px { TAuB < ~m} 
xE8Cm 

~~00 L [Px{TA < ~m} + px{TB < ~m} 
xE8Cm 

(2.14) 
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_px { 'T A < {m, 'TB < {m}) 

$ cap(A) + cap(B)- .J~oo L px{'TAnB < {m} 
xe8Cm 

= cap( A) +cap( B) - cap(A n B). D 

We now compute the capacity of the ball Cn. If A= {0}, then 

cap( A) = P{ ro = oo} = [G(O)t1• 

Note that by Proposition 1.5.9, 

P{ro = oo} = P{ro > {m}(1 + O(m2-d)). 

Therefore by (2.1), 

If Cn C Cm, then for x E Cm \ Cn, again using Proposition 1.5.9, 

px{ro <em} px{en < ~m}PX{ro <em I en< {m} 
= Fx{en < em}[adG(o)- 1n2-d + O(n1-d) + O(m2-d)]. 

Therefore, 

L: px{en <em}= 
xeac"' 

L Px{ro < {m}[adG{0)-1n2-d + O(n1-d) + O(m2-d))-1 , (2.15) 
xE8Cm 

and if we let m-+ oo, 

(2.16) 

The capacity of a set is related to how likely a random walker that is 
close to A will hit A. 

Proposition 2.2.2 If A C Cn and x E 8C2n 1 
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Proof. If m > 3n, y E fJCm, 

PY{rA < ~m} = PY{~2n < ~m}PY{rA < ~m l6n < ~m} 
= PY{6n < ~m}[PY{rA < 00 l6n < ~m} + O(m2-d)]. 

By the Harnack principle (Theorem 1.7.6), if x E fJC2n, 

Therefore, 

cap( A) = J~oo L PY { r A < ~m} 
yE8Cm 

::::: J~oo( L PY{6n < ~m}]Px{rA < oo} 
yE8Cm 

= cap(C2n)Px{rA < oo}. 

The result then follows from (2.16). 0 

Proposition 2.2.3 If A C C2n \ Cn, then 

P{rA < oo}::::: n2-dcap(A). 

Proof. Let A= A+UA_ where A+= {(zt, ... , Zd) E A: Zt;:::: 0}, A_ = 

A\ A+· By the Harnack principle (Theorem 1.7.6), if x E fJC4n, 

P{rA+ < oo}::::: Px{rA+ < oo}, 

and hence by Proposition 2.2.2, 

Similarly, 
P{rA- < oo}::::: n2-dcap(A_). 

Then, using Proposition 2.2.1, 

P{rA < oo} < P{rA+ < oo} + P{rA_ < oo} 

::::: n2-d(cap(A+) + cap(A-)) 

::::: n2-dcap(A). 

P{rA < oo} > sup{P{rA+ < oo},P{rA_ < oo}} 

::::: n 2-d sup{cap(A+), cap( A-)} 

::::: n2-dcap(A). 0 
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Now suppose A C zd is infinite. We call A a recurrent set if 

P{S; E A infinitely often}= 1, 

and a transient set if 

P{S; E A infinitely often}= 0. 

Proposition 2.2.4 Every set A c zd is either recurrent or transient. 

Proof. Let f(x) = px{S; E A i. o.}. Then f is a bounded harmonic 
function, and hence (see Exercise 1.4.10), f is constant, say f = k . Let V 
be the event {S; E A i. o.}. Since f = k, P0 (V I Fn) = k for each n, i.e. V 
is independent of Fn. Therefore Vis a tail event, and by the Kolmogorov 
0-1 Law, p0(V) = 0 or 1. D 

Theorem 2.2.5 {Wiener's Test) Suppose A c zd (d ~ 3) and let 

An= {z E A: 2n ~ jzj < 2n+1}. 

Then A is a recurrent set if and only if 

~ cap(An) = oo. 
L..J 2n(d-2} 
n=O 

Proof. Let In be the indicator function of the event Vn = {TAn < oo}. 
Then since each An is finite, 

P{S; E A i. o.} = P{In = 1 i. o.}. 

By Proposition 2.2.3, 

P(Vn) X cap(An)2(2-d}n. 

Therefore, 
~ ~ cap(An) 
L..J P(Vn) = 00 <===> L..J 2n(d-2) = 00. 
n=O n=O 

Suppose l:P(Vn) < oo. Then by the Borel-Cantelli Lemma, P{In = 
1 i. o.} = 0 and hence A is transient. Suppose then that E P(Vn) = oo. 
Then either E:'=o P(V2n) = oo or E:'=o P(V2n+d = oo. Assume the for­
mer (a similar argument works in the latter case). Let m ~ n+2, Tn =TAn, 
and consider 
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By the Harnack principle and the strong Markov property, 

P{rn < Tm < oo} :5 P{Tn < oo;S; E Am for somej > Tn} 
:::: P(Vn)P(Vm)· 

Similarly, using Propositions 2.2.2 and 2.2.3, 

P{Tm < Tn < oo} :5 P{Tm < oo;S; E An for some j > Tm} 
:5 cP(Vn)P(Vm). 

Therefore, for some c < oo, if 0 :5 n :5 m - 2, 

(2.17) 

Let Jn = E~=O l2; and for E > 0, let FE be the indicator function of 
{Jn ~ eE(Jnh· Then, 

But by (2.17), 

and 

Therefore, 

If we let E =! and let n-+ oo, then E(Jn)-+ oo and hence 

1 
P{Joo = oo} ~ 2c > 0, 

which implies by Proposition 2.2.4 that A is recurrent. D 
Let VA be the number of visits to A, i.e., 

00 

VA=LLI{S1 =x}. 
j=OxEA 

Then it is easy to see that 

00 

E(VA) = L LP{S; = x} = L G(x). 
:r:EAj=O :r:EA 
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If E(VA) < oo, then VA < oo almost surely and A is transient. The 
converse, however, is not true. For example, suppose a E (d"d 2, 1), An is a 
"ball" of radius 2on contained in {z: 2n :5 lzl < 2n+1}, and A= U;;"=1An. 
Then by (2.16), cap(An) ::::: 2o(d-2)n and hence by Wiener's Test (Theorem 
2.2.5), A is transient. However, by Theorem 1.5.4, 

00 

E(VA) = L L G(y) 
n=l yEAn 

00 

> C L 2ond2(2-d)n = OO. 

n=l 

Exercise 2.2.6 Let Ak c zd be the set 

Ak = {(zb 0 0 0 , Zd) E zd: Zl = Z2 = 0 0 0 = Zk = 0}. 

Show that Ak is a recurrent set if and only if d - k :::; 2 . 

Iff: A-+ R, we define the "(outward) normal derivative" 'filNf(x) for 
X E A by 

1 
'fi1Nf(x)=2d L (J(x+e)-f(x)). 

lel=l,x+eE8A 
(2.18) 

Let r = inf {j ;::: 0 : Si E A} and let 

g(x) = 9A(x) = Px{r = oo}. 

Then g is harmonic for x E Ac and g = 0 on A. If A is finite, then 
limlxl-+oo g(x) = 1. 

Exercise 2.2. 7 If A is a finite set, then 

2.3 Capacity, Two Dimensions 

In this section we give the two dimensional analogue of the capacity. Let 
A c Z2 be a finite set, z E A, and as in the previous section ~n = Tacn 0 

Let a(x) be the potential kernel as defined in Section 1.6. 

Lemma 2.3.1 For every z E A, x (j. A, 

lim (~In m)Px{~m < TA} = a(x- z)- L HA(x,y)a(y- z). 
m-oo 7r 

yEA 
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Proof. Assume A c Cn, m > lxl, n. Let 1J =em 1\ TAo If So= x, then 
Mi = a(Sp ... ,- z) is a bounded martingale, and by the optional sampling 
theorem, 

a(x- z) = Ex(M.,) 

L Px{s., = y}a(y- z) 
yEA 

+Px{em < TA}EX(a(S.,- z) I em< TA)· 

Since lzl < n, Theorem 1.6.2 gives 

If we take the limit as m - oo, we get the lemma. D 
One consequence of Lemma 2.3.1 is that the function on Ac, 

YA(x) = Yz,A(x) = a(x- z)- L HA(x,y)a(y- z) 
yEA 

is independent of z E A. For ease we will assume 0 E A, and let 

fi (x ) = { HA(x,y), x E Ac, 
A 'y 6(x- y), x E A, 

YA(x) = a(x)- L fiA(x,y)a(y). 
yEA 

Proposition 2.3.2 Suppose 0 E A C Cn. Then if g(x) = YA(x), 
(a) g(y) = 0, yEA; 
(b) 6.g(x) = 0, x E Ac; 
(c) As lxl- oo, 

2 "' lnlxl g(x) =;In lxl + k- L., HA(y)a(y) + enO( Txf ); 
yEA 

(d) lfy E A, 

Proof. (a) is immediate and (b) follows from the fact that a(x) and 
iiA(x, y) are harmonic for x E Ac. To prove (c), note that Theorem 1.6.2 
gives 

2 -a(x) = -ln lxl + k + o(lxl 1), 
1r 
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while Theorem 2.1.3 gives 

Part (d) follows from Theorem 2.1.3 and Lemma 2.3.1. D 

Proposition 2.3.3 Suppose A c Cn and h : Z2 - R is a function satis­
fying 

(a) h(x) = 0, x E A; 
{b) Llh(x) = 0, x EN; 

(c) limsup lh(x)l < oo. 
lxl-oo In lxl 

Then h(x) = CgA(x) for some C E R. 

Proof. Assume for ease that 0 E A. As in Lemma 2.3.1, let TJ = 
~m 1\ TA, Mi = h(S3 11 71 ). Then by optional sampling, for x E Cm \A, 

h(x) = Ex(M71 ) = L Px{s, = y}h(y). 
yE8C,. 

By an argument identical to the proof of Lemma 2.1.2, if y E 8Cm, 

px{S71 = y} = px{~m < TA}Hac,.(O, y)[1 + 0( 1: In;,)]. 

Therefore, since h(y) = O(ln lyl), 

and therefore by Lemma 2.3.1, if we let m-oo, 

h(x) = [a(x)- L HA(x,y)a(y)]C, 
yEA 

where 

C = lim (-~ lnm)- 1 "" Px{S11 = y}Hac,.(O,y)h(y). 0 
m-+oo 7r L..., 

yE8C,. 

If 0 E A, we define the capacity or Robin's constant of the set A to the 
the number 

cap(A) = L HA(y)a(y)- k, 
yEA 
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so that 
2 lnlxl 

9A(x) =; ln lxl- cap(A) + enO( VI). 
The capacity is translation invariant, and we define cap(A) for sets not 
containing 0 by first translating to a set containing 0. As one can guess 
from the choice of terminology, the capacity of a two dimensional set has 
many of the properties that the capacity in the last section has. 

Proposition 2.3.4 If A and B are finite subsets of Z2 , 

{a) If A C B, then cap(A) :S cap(B); 
{b) cap( A)+ cap( B) ~cap( Au B)+ cap(A n B). 

Proof. Assume for ease that 0 EA. Let x ¢AU B. By Lemma 2.3.1, 

lim ~(lnm)Px{{m < 'TA} = a(x) + k- cap(A). 
m-oo 7r 

If A c B, 
px{{m < 'TA} > px{{m > 'TB}, 

and hence cap(A) :S cap(B). In general, 

px{{m > 'TAuB} = px{{m > 'TA} + px{{m > 'TB} 

-Px{{m > 'TA,{m > 'TB} 

:S px{{m > 'TA} + px{{m > TB}- px{{m > 'TAnB}, 

which gives (b). D 
The capacity of a singleton set {x} is -k. Suppose A= Cn. Then by 

Exercise 1.6.8, if x ¢ Cn, m > lxl, 

Px{ t: }-lnlxl-lnn+O(n-1) 
'TA > '>m - 1 1 . nm- nn 

Therefore, by Lemma 2.3.1, if x ¢ Cn, 

9A(x) = ~{ln lxl-ln n} + O(n-1). 
7r 

By Proposition 2.3.2(c), 

2 lnlxl 
9A(x) = ;lnlxl-cap(Cn) +enO("Txl). 

Since this holds for all x ¢ Cn, we can let lxl-+ oo and get 

2 -cap(Cn)=-lnn+O(n 1). 
7r 

(2.19) 
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We call a set A c zd connected if every two points in A can be joined 
by a random walk path in A, i.e., if for every x, y E A, 3xo, ... , Xm E A 
with x = xo,Y = Xm, lx;- x;-1! = 1 for 1:::; j:::; m. We define the radius 
of A, rad(A), to be the smallest integer n such that A C Cn. 

Lemma 2.3.5 If A is a connected subset of Z2 containing 0 of radius n, 
then 

2 2 --lnn-0(1):$cap(A):::; -lnn+O(n 1). 
71" 71" 

Proof. The right hand inequality follows from (2.19) and Proposition 
2.3.4(a). To prove the other inequality, find a subset B of A such that for 
each j = 1, 2, ... , n, there exists exactly one point x E B with j - 1 :::; 
Jxl < j. Since A is connected with radius n, one can always find such a 
subset (although the subset might not be connected). Again by Proposition 
2.3.4(a), it suffices to prove the left hand inequality for B. Let m > 2n. By 
Proposition 1.6.7, as lml-+ oo, if x,y E Cn, 

2 
Gc,.(x,y) = :;{lnm -In lx- Yl + 0(1)}. (2.20) 

(Here we use the inequality 

Let Vm be the number of visits to B before leaving Cm, i.e., 

~m 

Vm = :EI{S; E B}. 
j=O 

By (2.20), for each x E Cn, 

"" 2n Ex(Vm) = ~ Gcm(x,y) ~ -{lnm -Inn+ 0(1)}. 
yEB 7r 

(2.21) 

Moreover, if x E Cn, there exist at most 2j points in B at a distance less 
than or equal to j- 1 from x. Therefore, 

2 n/2 

Ex(Vm) = I: Gem (x, y) :$ :;{nln m- 2 I: lnj + n0(1)} 
yEB J=2 

2n 
= -{lnm -Inn+ 0(1)}. (2.22) 

7r 
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EX(Vm) = px{TB < em}Ex(vm I TB <em)· 

Therefore by (2.21) and (2.22), if x E 8Cn, 

px{TB >em}= O((ln~)- 1 ). 
n 

Hence if z E Cm \ Cn, by Exercise 1.6.8, 

and 

Therefore by Lemma 2.3.1, 

2 
9B(z) = -{In lzl-ln n} + 0(1). 

7r 

Again we use Proposition 2.3.2(c) to give 

2 lnlzl 
9B(z) =;In lzl- cap(B) + cnO( Tzf ), 

and letting lzl -+ oo, 

2 
cap( B) = -Inn+ 0(1). 0 

7r 

2.4 Example: Line Segment 

(2.23) 

In this section we will study in detail the examples of a line and a line 
segment in zd. In the process we will illustrate techniques which are used 
to relate various escape probabilities and harmonic measure. Let (n} = 
(n,O, ... ,O) and 

u = {(n}: n E Z}, 
u+ = {(n}: n ~ 0}, 
u- = {(n}: n < 0}, 
Un = { (j} : -n < j < n}, 
u+ = u+ nUn. n 
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We have already seen (see exercise 2.2.6) that U is a transient set if and 
only if d 2: 4. We will be most interested here in d = 2, 3 . We start with a 
very useful proposition which relates escape probabilities and the Green's 
function. 

Proposition 2.4.1 Suppose A c zd, and 

T = inf{j 2: 1 : sj E A}, 

"T = inf {j 2: 0 : S3 E A}. 

(a) Ifn < oo, then 

P"{"'f:::; n} 2: L Gn(x,y)PY{T > n}. 
yEA 

{b) If ..X< 1, and T is a killing time with rate 1- ..X, then 

Px{T:::; T} = L G,x(x,y)PY{T > T}. 
yEA 

(c) If A C B and 71 = inf{j 2: 0: Si rt B}, then 

P"{"'f:::; TJ} = L GB(x,y)PY{T > TJ}. 
yEA 

(d) If d 2: 3 and A is a transient set, then 

px{T < oo} = L G(x,y)EsA(y). 
yEA 

Proof. We will prove (c); the other proofs are similar. The proof uses 
a technique sometimes called a "last-exit decomposition." Let 

u = sup{j: Si E A,j:::; 77}. 

Then, 

00 

px{"T:::;TJ} = LPx{u=j} 

00 

= LLPx{u=j,S; =y}. 
yEAJ=O 

By the Markov property, 

Px{u = j, Si = y} = Px{Si = y;j:::; 77; Sk rt A,j < k:::; 77} 

px{Sj = y;j:::; TJ}PY{T > TJ}. 
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Therefore, 

00 

px{r ~ 77} = L PY{'r > 77} L:Px{Si = y,j ~ 77} 
yEA j=O 

= L GB(x,y)PY{r > 77}. D 
yEA 

If one wants to analyze walks which take only a finite number of steps, it 
can be easier to first consider walks with a killing rate 1-A rather than with 
with a fixed number of steps, since there is equality rather than inequality 
in the above proposition. If An = 1 - ~, then the random walk on the 
average takes n steps, so one would hope that results about walks with rate 
1 - An could be used to get results about walks of length n, and vice versa. 
This is in fact true, and the mathematical tool used is Tauberian theory. 
If Pn is any sequence of nonnegative numbers, then the generating function 
of Pn, R(A), is defined by 

00 

R(A) = L AnPn· 
n=O 

As an example, let Pn = px{r > n}. Then 

00 

Px{r > T} = L P{T = n}Px{r > n} 
n=O 

= (1 - A)R(A). (2.24) 

We state a Tauberian theorem which relates Pn to its generating func­
tion. The proof can be found in [25, Chapter XIII]. We say a func­
tion L : [0, oo) - [0, oo) is slowly varying (at infinity) if for every t E 
(0, oo), L(tx) "'L(x) as lxl- oo. 

Theorem 2.4.2 Suppose Pn is a sequence of nonnegative real numbers; L 
a slowly varying function; and 

00 

R(A) = L AnPn· 
n=O 

Then if a E [0, oo), the following are equivalent: 
(a) as A- 1-, 

R(A) "'{1- A)-" L( ~ ); 
1-A 



2.4. EXAMPLE: LINE SEGMENT 65 

(b) as n-+ oo, 

n-1 

L Pi,...., [r(a + t)r1na L(n). 
j=O 

Moreover, if the Pn are monotone and a> 0, the following is equivalent to 
(a) and (b): 

{c) as n-+ oo, 

In some of the examples we will consider, we will know the behavior of 
Pn orR(>.) only up to a multiplicative constant. It will be useful to have a 
form of the above theorem which handles this case. 

Theorem 2.4.3 Let Pn, L, R, a be as in Theorem 2.4.2. Then the following 
are equivalent: 

(a) there exists 0 < b1 < b2 < oo with 

(b) there exist 0 < (31 < !32 < oo with 

n-1 

(31no. L(n) ~ LP3 ~ f32no. L(n). 
j=O 

Moreover, if the Pn are monotone and a> 0, the following is equivalent to 
(a) and (b): 

(c) there exist 0 < 81 < 82 < oo with 

61no.- 1 L(n) ~ Pn ~ 82no.-1 L(n). 

Proof. The fact that (b) implies (a) follows from Theorem 2.4.2 by 
comparing R(>.) to the generating function for f3ina L(n). Assume (a) holds. 
It suffices to prove (b) for n sufficiently large. If ).. = 1 - ~, 

n-1 n-1 

LPi < )..-n L )..ipj 
j=O j=O 

< cR(>.) 

< cb2na L(n). (2.25) 
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To prove the other inequality let a> 0 and ..X= 1- ~· Then, using (2.25), 

n-1 oo 

= L:..x'Pi + L:..xipi 
i=O i=n 
n-1 oo n(A:+1) 

< LA3Pi + L,xkn L Pi 
i=O k=1 J=nk 
n-1 oo 

< L ,Xi pi+ L e-ak[cb2(k +!)ana L((k + l)n)]. 
i=O 11:=1 

If L is slowly varying, then L(kn) ~ cLkL(n) [25, (9.9)]. Also for n large, 
L(n/a) ~ ~L(n), hence 

n-1 oo 

L A3Pi ~ na L(n){ ~b1a-a - CL~ L e-ak(k + l)a+l }. 
i=O k=1 

If we choose a sufficiently large (depending on b1. ~.a:, L) we can make the 
coefficient on the right positive and obtain (b). 

By summing, it is easy to see that if a: > 0, (c) implies (b). Suppose 
(b) holds, a: > 0, and Pn is monotone. Assume Pn is a decreasing sequence 
(a similar argument holds if Pn is increasing). Then 

n-1 

Pn ~ n-1 LPi ~ fhna- 1 L(n). 
J=O 

To prove the other direction, let a > 0 and note that 

and hence, 

an-1 

L Pi ~ !h(an)aL(an), 
i=O 
n-1 

LPi ~ f32naL(n), 
i=O 

an-1 
(a- l)npn ~ L Pi ~ f31(an)a L(an)- fJ2na L(n). 

i=n 
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Choose a sufficiently large so that f3t aa ~ 4/32 and then N sufficiently large 
so that L(an) ~ !L(n) for n ~ N. Then for n ~ N, 

Pn ~(a- 1)-1/32L(n)na-1. 0 

To illustrate the usefulness of the above theorems we will return to 
studying the straight line. 

Lemma 2.4.4 

Proof. 

P{S; E U},... (2d .)<d-1)/2. 
7rJ 

00 

P{S; E U} = L p(j, (n}) 
n=-oo 

= L [p(j, (n}) + E(j, (n} )]. 

By (1.10) and (1.11), 

00 

I L E(j, {n})l < L IE(j, (n})l + L IE(j, (n})l 
n=-oo lnl~v'J n>..fi 

L: ou-<d+2)/2) + L: n-2ou-d/2) 

lnl~..fi n>..fi 

= ou-(d+1)/2), 

so we only need to estimate the dominant term. But, 

L p(j, (n}) 
n+-+; 

"" d d/2 dn2 L.., 2(-.) exp{--.} 
. 27rJ 2J 

n+-+J 

(-_)d/2exp{--. }dx = (-.)<d-1)/2. 0 100 d dx2 d 

-oo 27rJ 2] 27rJ 

Since 
00 

L G~(x) = LA;P{S; E U}, 
xEU ;=0 

it follows immediately from Theorem 2.4.2 and Lemma 2.4.4 that as A --+ 

1-, 

L G~(x)"" { (~- A);1/2, d = 2, 
xEU 211" ln 1-~' d = 3. 

(2.26) 
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Since px { T > T} = P 0 { T > T} for each x E U, it follows from Proposition 
2.4.l(b) that 

{ (1 - ,\)112 d = 2 
P{r > T}"' 2.,..(l _1_)'-1 d _ 3' 

3 n 1-A ' - · 
(2.27) 

Another application of Theorem 2.4.2, using (2.24), gives 

We now consider the line segment Un. If d ~ 4 and x E Un, then 
Esun (x) ~ Esu(x) > 0, and hence cap(Un) ::::: n. If d = 2, it follows from 
Theorem 2.3.5 that 

2 
cap(Un) = -ln n + 0(1). 

7r 

Proposition 2.4.5 If lml < n, 1] =run, and~= 6n, 

c1n-1 :::; p(m){~ < TJ}:::; c2(n -lml)-1, d = 2; 

cl(lnn)-1 :::; p(m){~ < TJ}:::; c2(ln(n -lml))-1, d = 3. 

Proof. Let g(n) = P{~ < TJ}. Then it is easy to see that for lml < n, 

g(n + lml):::; p(m){~ < TJ}:::; g(n -lml), 

and hence it suffices to prove the proposition for m = 0. By Proposition 
2.4.l(c), 

lml<n 

~ g(2n) L Gc2 n (0, (m) ). 
lml<n 

Therefore by Proposition 1.6. 7 and Proposition 1.5.9, 

To get the lower bound, we first note that if W = Un \ Un;2 , then an 
application of the Harnack principle gives 

P{~ < rw} ~c. 
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But, by examining the proof of Proposition 2.4.1(c), we see 

lml<n/2 

Therefore 
c ~ g(i) L Gc2n(O, (m)), 

lml<n/2 

and the result follows again from Propositions 1.6. 7 and 1.5.9. 0 
It follows from the proposition and Exercise 2.1.4 that 

c1 H (( )) c2ln n d = 3. 
-;:;: ~ Un m ~ nln(n -lml)' (2.28) 

For d = 2, note by (2.1) and (2.23), 

L px{~2n <Tun} = 
xEUn 

L PY{~2n > ~n}· 
yE8C2n 

But by Proposition 1.6.7, 

PY{6n > ~n};::::: PY{6n > To}(lun), 

and hence 

= (lnn)P{6n<To}xl. (2.29) 

Therefore, 
C1 C2 
- ~ Hun((m)) ~ I I' d= 2. n n- m 

(2.30) 

These estimates on the harmonic measure are good except for lml near n. 
We now consider the half-line u+. Assume we have a random walk with 

killing rate 1- .X and let v+, v- be the events { S; ¢ u+, 0 < j ~ T}, { S; ¢ 
u-, 0 < j ~ T}, respectively. Then by (2.27), 

+ - { (1-.X)112, d=2, 
P(V n V ) "' 2;(ln( 1~-')J-1, d = 3. 

This fact alone does not allow us to estimate P(V+) and P(V-). However, 
we have the following (very nonintuitive) fact. 
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Proposition 2.4.6 If So = 0, v+ and v- are independent events. 

Proof. Let W = (V- )c. It suffices to prove 

Let 

Then, 

a= sup{n: 3j, 1:::; j:::; T, with Si = (n}}, 

1J = sup{j:::; T: Si =(a}}. 

00 

n=l 
00 00 

= LLP{a=-n,1J=j}. (2.31) 
n=l j=l 

For any n,j, 

P{a = -n,1J = j} P{Si = (-n};S, =I (m}, 1:::; i < j,-n < m < oo; 

T? j; S; =I (m},j < i:::; T, -n:::; m < oo} 

= P(V+)P{Si = ( -n}; S; =I (m), 1 :::; i < j, 
-n < m < oo; T? j}. (2.32) 

If we reverse paths and translate we see that 

P{Sj = (-n};S; =I (m),1:::; i < j,-n < m < oo;T? j} 

p(-n) {Sj = 0; S; =I (m}, 1:::; i < j, -n < m < oo; T? j} 

= P{Sj = (n); S; =I (m}, 1 :::; i < j, 0 < m < oo; T? j}. (2.33) 

Now let 
p = inf{1 :::; j :::; T: Si E u+ \ {0}}. 

Then by symmetry, P{p < oo} = P(W). Therefore, 

P(W) = L P{p = j} 
j=l 
00 00 

LLP{p=j,Si = (n}}. (2.34) 
j=ln=l 
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But, 

P{p = j, S; = (n}} = 
P{S; = (n};Si =F (m}, 1 ~ i < j,O < m < oo;T ~ j}. 

Therefore by (2.31)- (2.34), 

P(W n v+) = P(W)P(V+). o 

Clearly P(V+) ~ P(V-). But 

P(V+) > ~P(v+ 1 s1 = (-1}) = ~P(v-) - 2d 2d . 

Therefore by (2.27) and Proposition 2.4.6, as).-+ 1-, 

{ 
(1 - ).)1/4 d = 2, 

P(V+) ::=::: (In( 1~.J)~1/2, d = 3. 

It then follows from Theorem 2.4.3 that 

P{Tu+ > n} X { 0:~;~1/2, d= 2, 
d=3. 

71 

(2.35) 

Consider P{ Tu+ > ~n}· Since a random walk takes about n2 steps to reach 
8Cn, we would like to conclude that 

{ 
n- 112 d = 2 

P{Tu+>~n}::=::: (lnn)~1/2, d=3: (2.36) 

However, this does not follow from (2.35) alone. For example if we let 
A= An= u+ u 8Cn-1 one can check that 

2 { n-1/2' d = 2 
P{rA > n } ::=::: (lnn)-1/2, d = 3, 

But clearly P{TA > ~n} = 0. However, this example is an exception, and 
as long as the set is not too bad, we can use the intuitive reasoning. 

Proposition 2.4. 7 Suppose 0 E A c zd and 

P{rA > n2 } ~ c2n-aL(n), 

where a~ 0, and Lis a slowly varying function. Suppose for every m ~ n, 

P{TA > m2} ~ c1m-a L(m). 

Then there exists a K = K(ct, c2, a, L) > 0 such that 

P{TA > ~n} ~ Kn- 0 L(n). 
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Proof. By the central limit theorem, 

sup P{6m > m 2 } < 
3:=;m<oo 

sup P{IS(m2 )1:::; 2m} 
3:=;m<oo 

p < 1. 

Therefore for any x E Cm (m;::: 3), 

px{~m > m 2 } :S P{6m > m 2 } :S p. 

By the Markov property, if J is any positive integer, n;::: 3, 

P{TA > Jn2 ,~n > Jn2} :::; P{TA > n 2}pJ-1 

:S c2n-o L(n)pJ- 1• 

Therefore, 

P{TA > ~n} > P{~n :S Jn2 , TA > Jn2} 

= P{rA > Jn2}- P{rA > Jn2 ,~n > Jn2} 

> c1( .../Jn)-o L(.../Jn)- c2pJ-1n-o L(n). 

Choose J so that c1 ( ..;J)-o - c2pJ- 1 > 0 and find b < 1 such that 
bc1(..;J)-o- c2pJ- 1 > 0. For n sufficiently large, L(.J.ln) ;::: bL(n) and 
hence 

P{TA > ~n};::: {bcl(..fJ)-o- c2p1- 1 }n-0 L(n). 

This proves the result for n sufficiently large. For n small, one has only a 
finite number of cases and can handle them easily, changing the constant if 
necessary. 0 

From Proposition 2.4.7 and (2.35) we have 

{ 
cn-1/2, d = 2 

P{~n<Tu+};::: c(lnn)-1/2, d=3. 

What we wish to conclude is that 

{ 
cn-1/2, d = 2, 

P{6n < Tu;t} ~ c(lnn)-1/2, d = 3. 

Let 8Cn = B+ U B- U B 0 , where 

B+ = {(z1, ... ,zd) E 8Cn: Z1 > 0}, 

and similarly for B-, B 0 • By symmetry, 

(2.37) 
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Suppose x E U;t', and suppose a random walk starting at x hits B- before 
hitting B+ U B0 • Then it is easy to see that the random walk path starting 
at x which takes the negative of every step the first path takes hits B+ 
before hitting B- u B 0 • Therefore for every X E u;' 

Since this is true for every X E u;' 

and hence 

P{S(en) E B- u B 0 I 'Tu;t >en}~~· 
By the Harnack principle (Theorem 1.7.6), for x E B- U B 0 , 

px{e2n < ru:} ~ c; 

Therefore, by the strong Markov property, 

{ 
cn-1/2 d = 2, 

P{e2n<ru:}~ c(lnn).:_l/2, d=3. 

(2.38) 

(2.39) 

To get the inequality in the other direction we need an easy lemma. 

Lemma 2.4.8 Let Sn = (S~, ... , s:) be a simple random walk in zd. 
Then for every a > 0, there exists a Ca > 0 such that for n ~ 2, 

P{IS}I < n;i = 1, ... ,d;j = 0, ... ,an2 } ~Ca. 

Proof. We will prove the result ford= 1; ford> 1 one can consider 
each component separately. We may also assume without loss of generality 
that 4 divides n. Let 'T = inf{j ~ 1 : 1811 ~ n}. By (1.21), if lxl < I• 
Ex(r) ~ ~2 • Let TJ = inf{j ~ 1 : ISjl ~ I}· Then E(TJ) = ~2 • Also by 
(1.21), 

n2 n2 
E(TJ I TJ > 8)P{TJ > 8} 

n2 n2 
+E(TJ I TJ ::5 8 )P{TJ ::5 8} 

n2 n2 n2 n2 n2 
::5 (8+4)P{TJ> 8}+8P{TJ::5 8}, 

and hence for n sufficiently large, 
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For any lxl < ¥,the above implies 

If this event occurs, then the path stays in Cn. Also if we consider any 
such path, either it ends in Cn;2 or the negative of the path ends in Cn;2 • 

2 

Therefore, since ~ is an integer, if lxl < ¥, 

and therefore by the Markov property if i ::; a ::; ~, 

1 
P{r > an2} 2 (8)k+1. 0 

Corollary 2.4.9 If A C Cn, then 

P{TA > 6n} :S cP{rA > n 2 }. 

Proof. By Lemma 2.4.8, for x E 8C2n, 

px{TA > n 2 } 2 c, 

and hence 
P{rA > n 2 ITA> 6n} >c. 0 

If we return to the line segment, another application of Lemma 2.4.8 
gives 

P{ru;t > n2 I en < Tu;t• s(en) E B- u B0 } 2 c, 

and therefore, by (2.38), 

P{ru;t > n2 } 2 cP{en < ru;t }. 

If we combine this with (2.39), we get 

{ 
n-1/2, d = 2, 

P{6n<Tu;t}X (lnn)-1/2, d=3. 

Finally by Exercise 2.1.4, this gives 

(2.40) 

(2.41) 

In the next section we will need an estimate of the harmonic measure of 
u;; at points near 0 for d = 2 . 
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Proposition 2.4.10 For 0 < m < n, d = 2, 

Proof. By (2.30), it suffices to prove the result form~ ~- Therefore 
assume m ~ f6 and let f(x) = px{Tu;t > 6n}· We will prove that for 
X E 8C2m, 

From (2.42) we can conclude that 

/( (m)) < p(m) {6m < Tu+} sup f(x) 
" xE8C2~ 

< (cm-1)(cm1/2n-1/2) 

< cm-1/2n-1/2. 

(2.42) 

As above, write 8C2m = E+ U E- U E 0 • For x,y E E = E- U E 0 , the 
Harnack principle gives 

f(x) ~ cf(y). (2.43) 

Also (2.38) and (2.37) give 

P{6m < Tu;t; S(6m) E E} 2: cm-112. (2.44) 

Since 

(2.43) and (2.44) imply 

Similarly if W = {(zt. z2) : -8m ~ z1 ~ -m, lz2l ~ 4m}, the Harnack 
principle gives 

f(x) ~ cm112n-112, x E W. 

If we consider the set K = { (j) : 4m ~ j < 4m + ~} and the ball C = 
{x + (4m): x E Cn}, we get by above, if x E 8C2m, 

f(x) < px{TK > rc} 
< cm1/2n -1/2. 

Therefore, (2.42) holds and the proposition is proved. D 
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2.5 Upper Bounds for Harmonic Measure 

Given a finite set A, x E A, how large can HA(x) be? If A consists of two 
points, then by symmetry HA(x) = ~,and hence by (2.11) if A has at least 
two points 

For d = 2, we cannot improve on the above estimate if we only know the 
cardinality of A. To see this, we first note that if A C Cm and 

a= am= sup{j ~em: 83 E A}, 

then (see the proof of Proposition 2.4.1) 

Hence by Proposition 1.6.7 and Theorem 2.1.3, 

(2.45) 

Now let A = Cn U {x} where x = Xn = (2n,O). By Lemma 2.3.1 and 
Theorem 1.6.2, if y E Cn, 

lim (lnm)PY{rx >em} = nln2 + o(lnn), 
ffl-+00 

lim (lnm)Px{~n >~m} = nln2+0(lnn). 
ffl-+00 

By considering the successive times that the random walk is in Cn, then x, 
then Cn, then x, etc., one can see that this implies 

. 1 Inn 
hm P{Sa = x} = -2 - 0(-), 

m-+00 n 

or by (2.45), 
1 Inn 

HA(x) = 2- 0(---;;-- ). 

If d ;::: 3, we can get a nontrivial estimate of the harmonic measure of a 
point in terms of IAI, where 1·1 denotes cardinality. 

Proposition 2.5.1 If A c zd,x E A, then 
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Proof. Let 
v(n) = sup 2.: G(x). 

IAI=nxEA 

Then by Theorem 1.5.4, for n sufficiently large if m = 2n1/d, 

v(n) < 2.: G(x) 
xECm 

~ c L (lxl2-d /1. 1) 
xECm 

~ cn2fd. 

Now assume IAI =nand let v = v(n). By Proposition 2.4.1(d), for x E A, 

L G(x, y)(EsA(Y)- v- 1 ) = 1- v- 1 L G(y- x) 2: 0. 
yEA yEA 

Therefore, again using Proposition 2.4.1(d), 

xEA yEA 

yEA xEA 

yEA xEA 

L(EsA(Y)- v- 1) 

yEA 

= cap(A) - nv-1 • 

Therefore 
cap(A) 2: n[v(n)t 1 2: cn<d-2)/d, 

and by (2.13), 
HA(x) ~ cn<2-d)/d. 0 

If Ax = Cn U {x}, then IAxl x nd. By (2.16) and Proposition 2.2.1, 
cap( Ax) x nd-2 . But by transience, 

lim EsA.,(x) = Esx(x) > 0, 
lxl-+oo 

Therefore, for lxl sufficiently large, 
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so the bound in Proposition 2.5.1 cannot be improved if one only knows 
the cardinality of A. 

We now consider how large the harmonic measure can be for points in 
a connected set of a certain radius. Let An be the set of all connected 
subsets of zd of radius n which contain 0. Let Bn be the set of subsets of 
zd of radius n which for each j = 1, 2, ... , n, contain exactly one point x 
with j- 1 :::; lxl < j. As we have noted previously, if A E An, there exists 
a (perhaps disconnected) B C A with BE Bn. In the previous section we 
considered the line segment A = U;t and showed 

One might guess that the line segment is as sparse a connected set as one 
could have, and that the endpoint of the segment has the largest possible 
harmonic measure for a connected set. The remainder of this section will 
be devoted to proving that this is the case, at least up to a multiplicative 
constant. This theorem is a discrete analogue of the Beurling projection 
theorem [1]. 

Theorem 2.5.2 If 0 E A c zd is a connected set of radius n then, 

The following lemma was proved in the proof of Lemma 2.3.5. 

Lemma 2.5.3 lf d = 2, B E Bn and x E 8Cn, 

The next lemma gives a similar result for d ;::: 3. 

Lemma 2.5.4 If d ;::: 3, B E Bn, then 

cap( B);::: { cncn,{ln n)- 1, d = 3, 
d;::: 4. 

Proof. Let Y be the number of visits to B, i.e., 

00 

Y = L L 1 { sj = x }. 
xeB j=O 
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By Theorem 1.5.4, if y E 8C2n• 

EY(Y) ~ c L n2-d = cn3-d 

xEB 
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(2.46) 

If y E Cn, there exist at most 2j points of B within distance j- 1 of y and 
hence by Theorem 1.5.4, 

EY(Y) < c ~ ·2-d < { c(ln n), d = 3, 
- L...., J - c d > 4. 

]=1 ' -

(2.47) 

EY(Y) = PY{rB < oo}EY(Y I TB < oo). 

Therefore, by (2.46) and (2.47), 

Y{ } { c(lnn)-1, d=3, 
p TB < 00 ~ en 3-d' d ~ 4. 

But by Proposition 2.2.2, 

cap(B):::::: nd-2PY{TB < oo}, 

which gives the lemma. 0 
Proof of Theorem 2.5.2. By (2.11), it suffices to prove the result for 

BE Bn. If d ~ 4, the theorem follows immediately from (2.13) and Lemma 
2.5.4. Consider d = 2. Let m = n3 • Then by Theorem 1.6.6, Proposition 
1.6. 7, and Exercise 1.6.8, 

6 
( -ln n)-1 

7r 
P{ro > ~m} 

= L P{S(rol\~m)=y} 
yE8C,.. 

yE8C,.. 

yeac ... 

~ L PY{~n < ~m}· 
yE8C.,. 

Therefore by Lemma 2.5.3, 

L px{TB > ~m} = L PY{TB < ~m} 
xEB yE8Cm 
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::=:: (In n)-1• 

To prove the theorem it then suffices by Exercise 2.1.4 to prove 

P{TB >em} :5: c(lnn)-1n-112. 

(2.48) 

Let B = {y1, ... , Yn}, where j- 1 :5: IY;I < j. Let U = U;t = {z1, ... , Zn} 
where z; = (j - 1, 0). By Proposition 2.4.10, 

Hu(z;) :5: cn-1/2r1/2, 

and hence by (2.48) and Theorem 2.1.3, 

pz,{em < ru} :5: c(lnn)-1n-1/2r1/2. (2.49) 

For notational ease let 
g(x,y) = Gc.,.(x,y), 

e(x,A) = px{TA >em}, 

h(x,A) = Px{S; E A for some j = 0, 1,2, ... ,em}· 

We may assume without loss of generality that u = (-1,0) ¢B. We will 
show 

which will clearly imply 

e(O,B) :5: c(lnn)-1n-112. 

By (2.49), e(u, U) :5: c(ln n)-1n-112. Therefore, 

e(u, B) :5: c(ln n)-1n-112 + e(u, B)- e(u, U). 

By Proposition 2.4.1(c), 

e(u, B)- e(u, U) = h(u, U)- h(u, B) 
n n 

Lg(u,z;)e(z;,U)- Lg(u,y;)e(y;,B) 
j=1 j=l 

n 

= L[g(u, z;)- g(u, Y;)]e(z;, U) 
j=1 

n 

+ Lg(u,y;)[e(z;,U) -e(y;,B)]. (2.50) 
j=1 
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By Proposition 1.6.7, if x, y E Cn. 

g(x, y) = ~[3ln n -ln lx- Yl + o(ix- Yl-3/ 2)]. (2.51) 
1T 

Since j- 2 ~ lu- Y;l ~ lu- z;l = j + 1, 

g(u, z;)- g(u, Y;) ~ cF312 , (2.52) 

and therefore, 

n n 

L[g(u, z;)- g(u, Y;)]e(z;, U) < c :L:r3f2(lnn)-ln-1/2rl/2 
j=l j=l 

< c(lnn)-ln-112. (2.53) 

For the second term consider the function 

n 

F(x) = Lg(x, y1 )[e(z;, U)- e(y;, B)]. 
j=l 

F is harmonic on Cm \ B, and F(x) = 0 for x E 8Cm. Therefore, by the 
maximum principle (Exercise 1.4. 7), 

F(u) ~ 0 V sup F(y). 
yEB 

We will show that 

for each y E B, which then implies that the estimate holds for each y E Cm. 
By Proposition 2.4.1(c), 

n n 

L9(Yi,y1 )e(y;,B) = 1 = Lg(zi,z;)e(z;,U). 
j=l J=l 

Therefore, 
n 

F(yi) = Z:,)g(yi,Y;)- g(zi,z;)]e(z;, U). 
j=l 

Note that IYi- Y;l ~ li- il- 1 = lzi- z;l- 1. Therefore by (2.51), 

g(yi,Y;)- g(zi,z;) :5 clj- i + 11-1 . 
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We now use (2.49) to give 

n 

F(yi) 'L:clj- i + Il-1(lnn)-1n-112r 1/2 

]=1 

:5 cn- 112 (ln n)- 1. 

The d = 3 case is proved similarly. In this case we let 

g(x, y) = G(x, y), 

e(x,A) = EsA(x), 

h(x, A)= Px{S; E A for some j = 0, 1, 2, ... }. 

By (2.13) and Lemma 2.5.4, it suffices to prove that 

e(u,B) :5 c{lnn)- 112 , 

where u = (1,0,0). By {2.40), 

e(z, U) :5 c(ln n)-112 , z E U. 

Then (2.50) holds again. In this case we have the estimate (Theorem 1.5.4) 

so that 

Then (2.53) gives 

n 

L[g(u,z;)- g(u,y;))e(z;,U) :5 c(lnn)-112 , 

j=1 

and similarly for the second term. 0 

2.6 Diffusion Limited Aggregation 

We will give a brief introduction to a model for dendritic growth, first intro­
duced by Witten and Sander, called diffusion limited aggregation (DLA). 
In this model, one builds a random cluster of points An in zd according to 
the following rule: 

• A1 = {0}. 
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• if An is given, then for x E 8An, 

In other words, a random walker is sent "from infinity" until it reaches a 
lattice point which is adjacent to the cluster, at which time the points adds 
onto the cluster. The above rule defines a Markov chain whose state space 
is the set of finite connected subsets of zd containing 0. Note that An 
always has cardinality n. 

Computer simulations of the model show that the clusters formed are 
relatively sparse and appear to have a noninteger "fractal dimension". The 
notion of fractal dimension is vague, see [55], but there is a natural intu­
itve feel for what the "dimension" of a subset of zd should be. Suppose 
rad(An) = m. Then An contains n points all of which lie in the ball of 
radius m. For integer k, a k-dimensional subset of Cm will have on the 
order mk points. So the "dimension" d of the cluster An can be defined by 

or 
rad(An) ~ n 11d. 

The last equation has the advantage that we can make a rigorous math­
ematical definition: we define the dimension of the DLA cluster d in d 
dimensions to be equal to ~ where 

I. In E(rad(An)) 
0! = lmsup I . 

n-+oo n n 

We expect in fact that the limit on the right hand side exists and that 
almost surely 

lnrad(An) 
~0!, 

Inn 

but proving statements about such quantities is very difficult. 
Numerical simulations suggest a value a little less than 1.7 ford in two 

dimensions. There is also a mean-field theory that gives a prediction 

d=cfl+l 
d+ 1' 

which agrees fairly well with simulation. See [70] for a discussion of DLA 
from a nonrigorous viewpoint. 

In this section we will use the results of the previous section to give a 
rigorous upper bound on a. As the reader can note, the bound is far from 
the conjectured values. 
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Theorem 2.6.1 There exists a c < oo such that almost surely for n suffi-
ciently large 

(2.54) 

The proof of Theorem 2.6.1 needs an exponential estimate for geometric 
random variables. Such results are standard; however, it will be just as easy 
to prove the result we need as to specialize a more general theorem from 
the literature. 

Lemma 2.6.2 Suppose T1 , ... , Tn are independent geometric random vari­
ables with parameterp, i.e., P{Ti = j} = p(1-p)i-l; Y = T1 +· · ·+Tn;P < 
~· Then for every a;::: 2p, 

Proof: The moment generating function of Y is 

By the Chebyshev inequality, for any t > 0, 

P{Y::; an} 
p 

Let t = In( a(l-p} ). Then a-p 

:5 [1 + __!!___ Jan/p 2nan 
a-p 

< [l + _P_]2(a-p}n/p(2a)n 
a-p 

< (2e2a)n. 0 

Proof of Theorem 2.6.1. Let 

h(x) ~ h,(x) ~ { 
x2/3, d= 2, 
x 112 (1nx) 114 , d = 3, 
x2/d, d;::: 4. 
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We will prove that for some c > 0, almost surely for all n sufficiently large 

(2.55) 

where 
An= inf{j: rad(Aj) ~ n}. 

Then (2.54) follows easily from (2.55). Note that if n ~ 2, h31(n) ~ 
2n2(ln n)-112. The argument for d = 2 and d = 3 will be similar using 
Theorem 2.5.2. Ford~ 4, the argument will instead use Proposition 2.5.1. 
We will write An = {a1, ... ,an} where ai is the jth point added to the 
cluster. 

Assume d = 2 or 3. If x E Am, then there exists a sequence of points 
0 = x1, ... , Xk = x and indices 1 = i1 < h < · · · < ik ~ m, such 
that lxi- Xi-11 = 1 and aj, =Xi (this can easily be proved by induction 
on m). If x E 8C2n, then by considering the end of this sequence one 
can find points Y1, ... , Yk = x and times i1 < h < · · · < ik :5 m with 
IYi- Yt-11 = 1,aj, = Yi, and Y1 E 8Cn. Clearly k ~ n. Fix f3 > 0 (to be 
determined later) and let Vn be the event 

Vn = { P.2n ~ {3n312 }, d = 2, 
P·2n ~ /3n2(lnn)-112}, d = 3. 

If [z] = [z1. ... , Zn] is any random walk path, let Wn{[z]) be the event 

Wn([z]) = {3 i1 < i2 < · · · <in ~ m such that aj; = z,}, 

where m = mn = f3n312 if d = 2 and m = {3n2(lnn)-112 if d = 3. Let Wn 
be the union of Wn([z]) over all random walk paths [z] with n points and 
z1 E 8Cn. Then by the discussion above, Vn C Wn. 

Fix [z] with z1 E 8Cn and let 

Ti = the j such that ai = Zi, 

Since Aj, is a connected set of radius at least n, we know by Theorem 2.5.2 
that, conditioned on Aj,, the distribution of ai is bounded above by that 
of a geometric random variable with parameter 

{ 
c1n-1/2, 

P = Pn,d = {l )1/2 -1 c1 nn n , 

By Lemma 2.6.2, for n sufficiently large, 

d=2, 
d=3. 

P{rn-1 ~ f3c1np- 1} ~ (4e2{3cl)n-l, 
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and therefore 
P(Wn([z])) ~ (4e2,Bc1)n-l. 

The number of random walk paths with n points starting at a point in oCn 
is bounded above by cnd-1(2d)n-l . Therefore, 

and if we choose .B so that 8de2 ,Bc1 < 1 , 

00 

LP(Wn) < 00. 

n=l 

Hence by the Borel-Cantelli Lemma, for this ,8, 

P{Vn i.o.} ~ P{Wn i.o} = 0, 

which gives (2.55) . 
Ford~ 4, if 

Vn = P.2n- An ~ ,BnA(d-2)/d}, 

then by a similar argument to the above, using Proposition 2.5.1 instead of 
Theorem 2.5.2, we can prove that for some .B > 0, 

P{Vn i.o.} = 0, 

i.e., almost surely for n sufficiently large, 

A _A > anA(d-2)/d 2n n_/J n • 

It is then routine to show that this implies that (2.55) holds. 0 
Kesten (37) has recently improved Theorem 2.6.1 ford~ 4 by showing 

that 
rad(An) ~ cn2/(d+l). 



Chapter 3 

Intersection Probabilities 

3.1 Introduction 

We start the study of intersection probabilities for random walks. It will be 
useful to make some notational assumptions which will be used throughout 
this book for dealing with multiple random walks. Suppose we wish to 
consider k independent simple random walks S 1, ... , Sk. Without loss of 
generality, we will assume that Si is defined on the probability space (Oi, Pi) 
and that (0, P) = (01 x · · · x Ok, P1 x · · · x Pk)· We will use Ei for 
expectations with respect to P,; E for expectations with repect to P; w, 
for elements of Oi; and w = (w1, ... ,wk) for elements of 0. We will write 
px1 , ••• ,x,. and Ex 1 ,. .. ,x,. to denote probabilities and expectations assuming 
8 1(0) = x 1, ... , Sk(O) = Xk. As before, if the x1. ... , Xk are missing then it 
is assumed that 8 1(0) = · · · = Sk(O) = 0. If u :5 Tare two times, perhaps 
random, we let 

S'[u,r] = {Si(j): u :5 j :5 r}, 

Si(u,r) = {Si(j): u < j < r}, 

and similarly for S'(u, r] and Si[u, r). 
Let S1 , S2 be independent simple random walks starting at 0 with killing 

rate 1 - .>. and killing times T 1, T2 • Let 

be the probability that the paths do not intersect. If we let A be the random 
set S2(0, T 2], then we can write 
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In general, it is easy to compute the expected number of intersections of two 
paths using the local central limit theorem; however, finding the probability 
of no intersection is difficult. 

For comparison, consider two examples where A is not random. First, 
assume A= {0}. Then by Proposition 2.4.1(b), 

(3.1) 

i.e., the probability of no intersection of A and 8 1 (0, T 1] is exactly the 
inverse of the expected number of intersections. However, it is not always 
the case that this will be true; in fact, as the second example shows, there 
are cases where the probability of intersection is of a different order of 
magnitude than the inverse of the expected number of intersections. Let 
d = 2 and A = u+ = {(n,O) : n ~ 0}. Then by (2.26), as .X --. 1, 
the expected number of intersections of A and 8 1 {0, T 1] is asymptotic to 
c(1- .X)- 112 , while it can be shown easily using {2.41) that the probability 
of no intersection decays like c(1 - .X) 114 • 

In this chapter we will consider two intersection problems for simple 
random walks which can be considered "easier" because the answer can be 
guessed by intuitions such as "probability of no intersection = (expected 
number)- 1". These problems can be stated as: 

1) Let 8 1 start at 0 and 8 2 start at x where lxl is approximately yn. 
Find 

P 0 •x{S1(0,nj n S2 (0,n] ::/: 0}. 

2) Let S 1 , 8 2 , 8 3 start at 0. Find 

Chapters 4 and 5 will analyze quantities such as /(.X) which are "harder" 
to estimate and whose answer cannot be guessed only by counting the 
expected number of intersections. 

3.2 Preliminaries 

Let 8 1 , 8 2 be independent simple random walks starting at 0 in zd with 
killing rate 1 - .X, .X E (0, 1], and let T 1, T 2 be the corresponding killing 
times. Let 

Here we write (i1,i2) :::$ (j1,h) if i1 $it and i2 $ h; (it,i2) -< UI.h) 
if (i~,i2) :::$ (j1,j2) but (i1.i2) # (j1,i2). We let R>. be the number of 
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intersection times (including (0, 0) ), i.e., 

00 00 

R>. = LLJ{S1 (i) = S2 (j),(i,j) ~ (T\T2 )}. 

i=O j=O 

As a rule it is much easier to estimate the expected value of random vari­
ables such as R>. than to estimate probabilities such as g. 

Proposition 3.2.1 As>.---+ 1, 

Proof. 

E(R,) = 1 
c(1- >.)-3/2 + 0((1- >.)-1/2), 
c(1- >.)-1 + O(ln 1 ~>.), 
c(1- >.)- 112 + 0(1), 
cln 1 ~>. + 0(1), 
c + 0((1- >.)(d-4)/2), 

00 00 

•=0 j=O 

00 00 

= L L >.•+i P{S1(i) = S2 (j)}. 
i=O j=O 

d= 1, 
d= 2, 

d= 3, 
d= 4, 
d ~ 5. 

But by reversing S2 we can see that 

Therefore, 

00 00 

i=O J=O 

00 

J=O 

00 

L >.i jpj(O) + G>.(O). 
j=O 

It is easy to show using Theorem 1.2.1 that as >. ---+ 1 , 

{ 
c + 0(~1 - >.)(d-2)12), d ~ 3, 

G>.(O) = O(ln 1_>.), d = 2, 
0((1- >.)-112), d = 1. 
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Therefore it suffices to consider 

00 00 00 

L:> . .ijpi(O) = L:>..iJpi(O) + L:>.ijEi(O). 
J=O j=O J=O 

By {1.6), 

00 00 L >..i jEj(o) < c L >..i r(d+2)/2 
j=O j=O 

= 0(1) + 0((1- >..)d/2). 

Therefore we only need to estimate 

f>..2i(2j)(/ .)d/2. 
J=l 7rJ 

This calculation is left as an exercise. 0 

Note that d = 4 is the "critical dimension" for the problem. If d ~ 4, 
E(R>.) goes to infinity as >.. -+ 1, but for d > 4, E(R>.) < oo even for >.. = 1. 
We would like to show such critical behavior for g(>..) as well; however, it 
is not so easy to estimate g(>..) in terms of E(R>.,). (The reader should 
compare this to (3.1) where the probability of no return to the origin is 
given in terms of the expected number of returns.) We can get an estimate 
in one direction. 

Proposition 3.2.2 If>..< 1, or if>..= 1 and d ~ 5, 

Proof. If i,j ~ 0, we call (i,j) a *-last intersection if 

With probability one, every pair of paths will have at least one *-last in­
tersection although a pair of paths may have more than one. (If d ~ 5 and 
>. = 1, the existence of a *-last intersection follows from the fact that with 
probability one the number of intersections in finite.) Therefore 

00 00 

1 ~ LLP{(i,j) is a *-last intersection}. 
i=O J=O 
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But, 

P{(i,j) is a *-last intersection} 

= P{S1(i) = S2(j);(i,j) ~ (T1,T2 ); 

S1(il) ::j: S2(jt), (i,j) -< (it,jt) ~ (T1, T2)} 

= .Ai+iPi+;(O)g(.A), 

and the proposition follows by summing. 0 

It follows immediately that ford;::: 5, g(1) > 0 , i.e., 
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P{S1(i) ::j: S 2 (j), (0,0)-< (i,j)-< (oo, oo)} > 0. (3.2) 

We also get a lower bound ford :54, 

( ) { c[ln nJ- 1, d = 4, 
g .A ;::: c(1 - -,\)(4-d)/2' d < 4. 

Proposition 3.2.2 is not good enough to conclude that for d :5 4, 

P{S1(i) ::J: S2 (j), (0,0)-< (i,j)-< (oo, oo)} = 0. 

(3.3) 

This is true and we could prove it now without too much work. However, 
since this will follow from the results of the next sections we will not bother 
to prove it here. A more difficult question is deciding how good the bounds 
in (3.3) are. If one examines the proof of Proposition 3.2.2, one sees that 
the inequality arises from the fact that a pair of paths can have many *­
last intersections. If it were true that most paths had only a few *-last 
intersections, then one might guess that the RHS of (3.3) would also give 
an upper bound (up to a multiplicative constant). It turns out, however, 
that the bound in (3.3) is not sharp in low dimensions. As an example, let 
us consider the case d = 1 which can be done exactly. 

Suppose 8 1 , 8 2 are independent one dimensional random walks and 

V = {S1(i) ::J: S2 (j),(O,O)-< (i,j) ~ (T1,T2 )}. 

Then it is easy to see that 

V = {S1(i) > 0,0 < i :5 T 1 ; S2(j) < 0,0 < j :5 T2 } 

u {S1(i) < 0,0 < i :5 T 1 ;S2(j) > 0,0 < j :5 T2 }. 

But by (3.1), 

P{S1(i) > 0,0 < i :5 T 1} = ~P{S1 (i) ::j: 0,0 < i :5 T 1 } 

= ~[G"(O)t1 
2 

"' c(l- .A)!. 
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Therefore as >. -+ 1, 

P{S1(i) :f:. S2(j): (0,0) < (i,j) ~ (T1,T2)} "'c(1- >.). 

Note that this is not the same power of (1- >.) as given in (3.3). 
At times we will want to consider walks with a fixed number of steps. 

Let Rn be the number of intersections up through time n, i.e., 
n n 

Rn = LLJ{S1(i) = S2 (j)}. 
i=O j=O 

The analogue to Proposition 3.2.1 can be proved easily. 

Proposition 3.2.3 As n-+ oo, 

! cn3/2 + O(nl/2), 
en+ O(lnn), 

E(Rn) = cn112 + 0(1), 
clnn+0(1), 
c + O(n<4-d)/2), 

d= 1, 
d=2, 
d=3 
d=4, 
d~ 5. 

In section 2.4, Tauberian theorems were used to relate quantities with 
geometric killing times and quantities for fixed step walks. We will use 
the theorems in that section, but will need one more easy result to handle 
multiple walks. If h(n1, ... , nk) is any nonnegative function on {0, 1, .. . }k, 
and T 1, ..• , Tk are independent geometric random variables with rate 1->., 
let 

Lemma 3.2.4 If h(n1, ... , nk) is nonincreasing in each variable, b > 0, 
and hn = h(n, ... , n), then 

00 

n=O 

Proof: Note that 

P{T1 v ... vTk:::; b} (P{T1 :::; b})k 

~ (1->.b)k, 

and 
k 

P{T1 f\ .. ·/\Tk=n} < LP{Ti=n;T1 , ... ,Tk~n} 
J=l 

= k).kn(1 - >.). 
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Since h is nonincreasing in each variable, 

and 

= P{T1 V···VTk$b}hb 
> (1- Ab)khb, 

00 

~(A) < L P{T1 1\ ···I\ Tk = n}h(n, ... ,n) 
n=O 

00 

$ k(l- A) L Aknhn. 0 
n=O 

3.3 Long Range Intersections 
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Let 8 1 , 8 2 be independent simple random walks starting at 0 and x respec­
tively, and as in the last section, let Rn be the number of intersections up 
through time n, 

n n 

Rn = LLf{Sf = SJ}. 
i=O J=O 

We let ln(x) be the expected number of intersections, 

By Proposition 3.2.3, 

n n 

L L po.x{s,I = SJ} 
i=O J=O 

n n 

i=O J=O yEZd 

L Gn(y)Gn(X- y). 
yEZd 

{ 
cn<4-d)/2, 

ln(O)I'V clnn, 
c, 

d < 4, 
d=4, 
d > 4. 

We consider the case where lxl is of order .Jii. 

(3.4) 
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Proposition 3.3.1 If 0 < a < b < oo, there exist c1 = c1 (a, b) and c2 = 
c2{a, b) such that if a..fii $ lxl $ by'n, 

c n<4-d)/2 < J (x) < c n<4-d)/2. 1 _ n _ 2 

Proof. 
n n 

i=O j=O 

n 2n 

L(k + l)pk(x) + L (2n- k + l)pk(x). 
k=O k=n+1 

The estimate is then a straightforward application of the local central limit 
theorem. D 

A more difficult quantity to estimate is the probability that the paths 
intersect, i.e., 

4>n(x) = P 0·x{S1[0,n] nS2 [0,n] -!0}. 

Since 4>n(x) = P0•x{Rn > 0}, and 

E(Rn) = P{Rn > O}E{Rn I Rn > 0}, 

we get 

4>n(x) = P0•X{Rn > 0} = Jn(x)[E0•x{Rn I Rn > o}r 1. 

If we could compute eo.x { Rn I Rn > 0} we would have the answer. Sup­
pose 8 1 [0, n] n 8 2 [0, n] ":f 0. Then the paths intersect at some point. Once 
they intersect at some point, one might guess that they should have ap­
proximately the same number of intersections as two walks starting at the 
same point (at least up to a multiplicative constant). Hence one might ex­
pect that pO.x{Rn > 0} is approximately equal to cJn(x)[Jn(0)]- 1• Making 
such intuitive arguments rigorous is not so easy because there is no natural 
stopping time along the paths. One cannot talk of the "first" intersection 
of the two paths because there are two time scales involved. However, in 
this case, the intuition gives the right answer. 

Theorem 3.3.2 If 0 < a < b < oo, there exist c1 = c1 (a,b) 
c2(a, b) such that if a..fii $ lxl $ b..fii, 

C1 
c1 (ln n)-1 

c1n(4-d)/2 
} { ~. $ P 0•x{S1[0, n] n 8 2[0, n] -!0} $ c2{ln n)- 1, 

c2n(4-d}/2, 

and c2 = 

d < 4, 
d= 4, 
d > 4. 
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The upper bound for d < 4 is trivial and for d > 4 it follows immediately 
from Proposition 3.3.1 and the inequality 

In this section we will prove the lower bound and in the following section 
we will prove the upper bound for d = 4. 

Proof of the lower bound: Let V = Vn = S1 [0,n) n S2 [0,n) and 
Y = Yn, the cardinality of V. If X is any nonnegative random variable, 

E(X) = P{X > O}E{X I X> 0}. 

By Jensen's inequality, 

i.e., 

E(X2 ) = P{X > O}E{X2 I X> 0} 

> P{X > O}[E{X I X> 0}]2 

= [E(X)]2 [P{X > o}r1, 

[E(X)J2 
P{X > 0}? E(X2) . 

We will show that 

E 0•x(Y) ? [Gn(o)r 2 Jn(x) 

E0•x(Y2) :::; c[Gn(O)r4 J2n(x)J2n(O). 

(3.5) 

The lower bound then follows from (3.4), Proposition 3.3.1, and (3.5). 
Let 7' y = inf {j ? 0 : SJ = y} and 

Hn(Y) = P{ry:::; n}. 

By the strong Markov property, 

(3.6) 

Therefore, 

EO,x (Y) = L pO,x {y E V} 

= L Hn(y)Hn(X- y) 

? [Gn(0)]-2 L Gn(y)Gn(x- y) = [Gn(o)r2 Jn(x). 
yEZd 
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By expanding the square, 

EO,x(Y2) = L L pO,x{y,z E V}. 
yEZd zEZd 

Note that 

P{y,zES1 (0,n]} < P{O:Sry:S"fz:Sn}+P{O:Srz:Sry:Sn} 
< Hn(y)Hn(z- y) + Hn(z)Hn(z- y). 

Similarly, 

Therefore, using (3.6), 

[G2n(x- y) + G2n(X- z)] 

= 2 L L G2n(Z- Y) 2G2n(y)G2n(X- y) 

+2 L L G2n(Z- y)2G2n(y)G2n(X- z). 
yEZ<! zEZd 

L G2n(w)2J2n(X- w) + L G2n(w)2J2n(x- w) 
lwl~!lxl lwl>!lxl 

< cJ2n(x)J2n(O) + J2n(O) L G2n(w)2. 
lwl>!lxl 
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The last step uses the estimate in Proposition 3.3.1. If e = inf{j : IS]! ;::: 
~lxl}, then 

e+2n 2n 
L G2n(w)2 < E( L Ll{Sf = SJ}) 

lwi>Hrl i=e j=O 

= 12n(Si) :5 c12n(X). 

Combining all of these estimates we get 

which completes the proof of the lower bound. 0 

3.4 Upper Bound in Four Dimensions 

We introduce a random variable which will be very useful for d = 4. Let 

n 

Dn = LG(Sf), 
i=O 

where G is the standard Green's function. Suppose Rn is the number of 
intersections of two independent random walks starting at the origin, one 
of length n and the other of infinite length, i.e., 

n oo 

Rn = LLf{Sf = SJ}. 
i=O i=O 

Then Dn is the conditional expectation of Rn given S 1. In particular, 

Note that 

n 00 

E(Rn) = LLPi+;(O) 
i=O j=O 

n 00 

= L(i + l)pi(O) + L (n + l)pi(O) 
•=0 i=n+l 

2 
= (-)2 lnn+0(1) 

7r 

= 2a4 ln n + 0(1), 
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where a4 is as defined in Theorem 1.5.4. The reason Dn is very useful in 
four dimensions is that the variance of Dn grows significantly more slowly 
than E(Dn) 2 • 

Proposition 3.4.1 If d = 4, as n-+ oo, 

and hence 

(a) E(Dn) = 2a4(ln n) + 0(1), 

(b) Var(Dn) = O(ln n), 

Var(Ef;n)) = O(l:n). 

Before sketching the proof of Proposition 3.4.1, let us motivate why 
the variance should be small. Assume for a moment that n = 2k (so that 
k = log2 n) and write 

k-1 

Dn = G(O) + LY,, 
j=O 

where 
2' 

Y; = L c(s;). 
i=2J- 1 +1 

Then, 

2' 

E(lj) = L 2a4i-1 "' 2a4ln 2. 

One can guess that because of the different length scales involved that the Y; 
are asymptotically independent. Hence Dn is the sum of k asymptotically 
independent random variables with approximately the same mean. If the 
variances of the Y; are uniformly bounded, then one could hope that 

k-1 k-1 

Var(Dn) = I:Var(Y,) + L(LCov(}i,lj)) 
J=O j=O i#j 

"' ck = c(ln n). 

The proof we sketch below will not use the above intuition, but instead will 
be a direct calculation. 

Proof. We have already proved (a). To prove (b) we will show by direct 
calculation that 
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We will only sketch the main points, allowing the reader to fill in the ap­
propriate details. Let S, = Sf.Since 

n n 

E(D~) = L L E(G(Si)G(SJ)), 
i=O j=O 

we need to estimate E(G(Si)G(S;)). Assume i < j. Then by Theorem 
1.5.4, E(G(Si)G(S;)) is approximately equal to 

a~E((ISil v 1)-2 (IS;I v 1)-2), 

which by the central limit theorem is approximately equal to 

16a~C2 E(IXI-2 IX + Yl-2 ), (3.7) 

where X and Y are independent normal random variables with covariance 
I and sf respectively, s = (j- i)fi. We can compute this expected value 
using spherical coordinates. We need one fact: since f(y) = lx- yj- 2 is 
harmonic in R4 for y =/; x, the average value off over the ball of radius r 
about x equals 

{ lxl-2, r :5 lxl, (3.8) 
T- 2 , T ~ lxl 

(see, e.g., [66, Theorem 1.9(b)]). Then E(IXI-2 IX + Yl-2 ) equals 

r _1_ [ r 1 {2rrs)-2e-IYI2 /2sdy]{2rr)-2e-lxl2 /2dx. 
Jn4 lxl2 Jn4 lx + Yl2 

The interior integral in spherical coordinates, using (3.8), equals 

Therefore, 

rlxl _1_r3e-r2/2slxr2dr + roo _1_r3e-r2/2sr-2dr 
Jo 2s2 Jlxl 2s2 

= 1:12 (1- e-lxl2 /2s). 

= roo _!_e-r2 /2(1- e-r2 /2s)dr 
} 0 2r 

= roo _!_e-sr2/2(1- e-r2/2)dr. 
} 0 2r 

To compute this integral for s > 0 note that if 
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F'(s) =- foo ~e-sr2/2(1- e-r2/2)dr. 
lo 4 

By integrating by parts we get 

F'( ) 1 
8 =- 4s(s + 1) 

Hence if we integrate and note that F(s) -+ 0 ass-+ oo, we get 

1 1 
F(s) = -ln(1 +-). 

4 s 

Returning to (3.7), we get that E(G(Si)G(S3 )) is approximately 

and hence that E(D~) is approximately 

n n · lnln t 
2 L L 4a~C2 ln(1 + . ~) "' Sa~ C 2 ln(1 + --)ds dt 

J • 1 t s-t 
i=O j=i+1 

ln 1n-t t 
Sa~ C 2 ln(l +- )ds dt. 

1 0 s 

Direct calculation of the integral gives the result. 0 
Proof of the upper bound of Theorem 3.3.2. As mentioned before 

we only need to consider d = 4. Let 

oo n 

We will show for some c = c(a, b), 

which will give the result. An estimate such as Proposition 3.3.1 gives for 
some c = c(a, b), 

Let T = T n be the stopping time 

T = inf{i ~ 0: s; E S2 [0,n]}, 
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and define (1 = (1 n by 

(1 = inf{j: S 1(T) = SJ}. 

We will say that j is good if 

n 

Dj,n = L G(SJ+k - s;) ~ 4a4(ln n), 
k=O 

and bad otherwise. By the strong Markov property applied to 8 1, 

E 0•x(R2n IT< oo,a good)~ 4a4(lnn). 

Therefore, 
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P0 •x{T < oo,a good} $ E 0 •x(R2n)[E0 •x(R2n IT< oo,a good )r1 

$ c(a, b)O((ln n)-1 ). 

By Chebyshev's inequality and Proposition 3.4.1, 

But, 

P{D1 ,n bad} < P{IDn- E(Dn)l ~ ~E(Dn)} 
< 4 Var(Dn) = O((lnn)-1). 

E(Dn)2 

oo n 

P{T < oo, a bad} = L L P 0•x{T = i,a = j,j bad} 

oo n 

< LLP{s: = s;,j bad}. 
•=0 j=O 

But the events {Sf = SJ} and {j bad} are independent. Therefore, 

oo n 

P{T < oo,a bad} < LLP0•x{Sf = SJ}P{j bad} 

Therefore, 

i=O J=O 

< O((ln n)- 1 )E(Rn) 

$ c(a,b)O((lnn)-1). 

P 0•x{R2n > 0} = pa,x{T < oo,a good}+ P 0•x{T < oo,a bad} 

$ c(a,b)O((lnn)- 1). 0 
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It is a consequence of the proof that for every x 

P0•x{Rn > 0} ~ c{lnn)-l~,z(Rn)· (3.9) 

The proof also suggests a method for estimating precisely the asymptotics 
of the intersection probability of two random walks in four dimensions, i.e., 

pO•x{Rn > 0}. 

Let ln(x) = E 0•x(Rn). LetT and a be defined as above. Note that 

St[O, r) n S2 [0, n] = 0, 

and hence sl [0, 00) n s2 [0, n] is equal to 

(St[r, oo) n S2[0,a)) u (St[r, oo) n S2[a, n]). 

How many intersections of the paths do we have, given that there is at least 
one intersection? The random walk after timer, S!+r -S¢, is independent 
of the choice ofT and a. Assuming a is a "good" point (which it is with 
high probability), the expected number of intersections of S1 with S2[a, n] 
should look like that of two walks starting at the origin, i.e. ln(O) (here we 
are using the fact that Inn"' lnan for any a). Similarly S1[r,oo) should 
be expected to intersect S2[0,a) about ln(O) times. Therefore we could 
conjecture that E{Rn I Rn f. 0} ~ 21n(O) and hence that P 0•z{Rn f. 0} is 
approximately ln(x)j(21n(O)). For lxl of order .fii this intuition is correct. 
We will prove such a result in Theorem 4.3.5. 

3.5 Two-Sided Walks 

The quantity we are most interested in understanding is 

f(n) = P{S1(0, n] n S2 (0, n] = 0}. 

It turns out to be easier to estimate a quantity which appears at first to be 
more complicated. Assume we have three simple random wal:ks S 1, S2, sa 
starting at the origin. We can combine S2 and sa into a single two-sided 
random walk 

W( .) = { S2(j), -oo < j :5 0, 
J sa(j), 0 ~ j < oo. 

Let 

F(n) = P{S1(0,n] n W[-n,n] = 0} 

= P{S1(0,n] n (S2[0,n] U Sa[O,n]) = 0}. 

What we will prove in the next few sections is the following. 
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Theorem 3.5.1 If F(n) is defined as above, then 

{ 
n<d-4}/2' d < 4, 

F(n) x (ln n)-1, d = 4, 
c, d > 4. 
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(3.10) 

Note that this theorem states that up to a multiplicative constant 
F(n)- 1 is equal to the expected number of intersections of the paths. The 
proof ford> 4 can be done easily using the ideas in section 3.2. Ford= 1, 
one can show as in section 3.2 that 

so that 

F(n) = P{S1(0,n] c [1,oo),S2[0,n] c (-oo,O],S3 [0,n] c (-oo,O]} 

+P{S1(0,n] c (-oo,-1],S2[0,n] c [O,oo),S3 [0,n] c [O,oo)} 
cn-3/2. 

We will prove Theorem 3.5.1 ford= 2, 3 in the next two sections; the d = 4 
case will be handled in the next chapter. 

The lower bound for d = 2, 3 will follow from the result of section 3.3. 
By Theorem 3.3.2, if .jii $ lxl $ 2..jii, 

px,O,O{S1[0,2n] n W[-3n,3n] =F 0} ~c. 

Suppose that with high probability the intersection of the path does not 
occur until after time n on the first path and the other path is hit only on 
the set W[-2n, 2n]. To be precise, let B be the event: 

S1 [0,2n]nW[-3n,3n] =F 0, 
S 1 [0, 2n] n W[ -3n, - 2n] = 0, 

S 1 [0, 2n] n W[2n, 3n] 0, 
S 1 [0, n] n W[ -3n, 3n] 0, 

and suppose for .jii $ lxl $ 2..jii, 

px.o,o(B) ~ c. 

Let 

T = inf{i: Sf E W[-3n,3n]}, 
u = inf{j ~ -3n: W(j) = 8 1 (-r)}. 

(3.11) 
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Then by {3.11), if vfn::; lxl ::; 2,fii, 

and hence, 

2n 2n 

L L px.o,o { T = i, u = j} ~ c, 
•=n+lj=-2n 

2n 2n 

L L L px.o,o{r=i,u=j}~cnd/2. 
vn::51xl9vn i=n+l j=-2n 

By reversing time on S 1 and translating so that s'ff is the origin, one can 
see that for n + 1 ::; i ::; 2n, - 2n ::; j ::; 2n, 

L px.o,o{r = i, u = j}::; F(n). 
xeZ" 

Therefore, by summing over i and j, 

(4n + 1)nF(n) ~ cndf2, 

or 
F(n) ~ cn<d-4)/2. 

It is therefore sufficient in order to prove the lower bound in Theorem 3.5.1 
for d = 2, 3 to prove the following lemma. 

Lemma 3.5.2 If B is the set defined above, then for ,fii::; lxl ::; 2,fii, 

px.o,o(B) ~ c. 

Proof: For any 0 < r < K < oo, B :::> Ar,K where Ar,K is the event 
that the following hold: 

(a) IS?" - xi ::; i vfn, 0 ::; i ::; n, 

(b) S1 [n, 2n] n W[ -n, n] =f: 0, 
(c) IW(i)- xi ~ r,fii, 0 ::; Iii ::; n, 

{d) IS!!::::; K,fii, 0 ::::; i ::::; 2n, 
(e) IW(i)- xl ~ ~,fii, n ::; li I ::::; 2n, 
(f) IS2(2n)l, IS3{2n)l ~ 3K ,fii, 
(g) IW{i)l ~ 2K .;n, 2n ::; li I ::; 3n. 

It therefore suffices to show that there exist r, K such that 

px.o,o(Ar,K) ~ C. 
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By Lemma 2.4.8, for any r > 0 there is a Cr > 0 such that 

Px{(a) holds}~ Cr· 

It is easy to check using the reflection principle (Exercise 1.3.4) that 

lim inf Px{(d) holds}= 1, 
K-+oo n 

Estimates from Chapter 1 can be used to show that 

lim inf P{(c) holds}= 1. 
r~o n 

For ~Vii :$ lxl :$ 3vn, by Theorem 3.3.2, 

P"'·0 •0 {S1[0,n] n W[-n,n] =f 0} ~c. 
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(3.12) 

(3.13) 

(3.14) 

Hence by (3.12), (3.13), and (3.14) and the Markov property, there exist 
r, K such that 

px,O,O{(a)- (d) hold}~ c. 

Since IS~- xl ~ rvn, IS!- xl ~ rvn, one can then easily show that 

P"'·0 •0 {(e)-(f) hold I (a)- (d) hold}~ c, 

and finally again by Lemma 2.4.8, 

P{(g) holds I (a) - (f) hold} ~ c. 0 

3.6 Upper Bound for Two-Sided Walks 

It will be easier to deal with random walks with killing rather than fixed 
step walks. If S1 , S2 , S3 are independent simple random walks with killing 
rate 1 - >. and killing times T 1, T 2 , T 3 , let 

In this section we will prove for d = 2, 3, 

F(>.) :$ c(l- >.){4-d)/2. 

To derive the upper bound for Theorem 3.5.1 from (3.15), let 

F(n1,n2,n3) = P{S1(0,n1] n (S2[0,n2] U S 2 [0,n3)) = 0}. 

(3.15) 

Then F is decreasing in each variable. By Lemma 3.2.4, for each>.> 0, 
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But in this case cfl(A) = F(A) so by letting A = 1 - ~. we get Theorem 
3.5.1. 

As a step towards deriving (3.15) we will prove a generalization of (1.19) 
where we replace a point with a (stochastically) translation invariant set. 
A one-sided (random walk) path of length n is a sequence of points r = 
[xo, ... , Xn] with xo = 0, lx. - Xi- II = 1. A two-sided path of lengths j 
and k is a sequence of points [y-3 , ••• , Yk] with Yo = 0, IYi- Yi-d = 1. We 
consider two two-sided paths to be different if they have different j and k 
even if they traverse the same points in the same order. If r is a two-sided 
path of lengths j and k and -j :$ i :$ k, we let cflir be the two-sided path of 
lengths j + i and k- i obtained by translation, i.e., cfl•r = [z_i_., ... , Zk-i] 
where Zm = Ym+i - y,. Let A be the set of all two-sided paths of finite 
lengths. A measure P on A is called tronslation invariant if for every one­
sided path r of length n and every 0 :$ j :$ k :$ n, 

One example of a translation invariant probability measure is the measure 
induced by two-sided random walk with killing rate 1 - >.. If 8 2 , S 3 are 
independent simple walks with killing rate 1 - A and killing times T 2 , T 3 , 

we let 

It is easy to verify that P is translation invariant. 
Let 8 1 be a simple random walk defined on another probability space 

(n1 , PI) with killing rate 1-A and killing time T 1 . If r = [Y-i• ... , Yk] E A, 
we let 

{ 1 if y. i= 0, 1 :$ i :$ k, 
0 otherwise, 

and if r = rr = inf{i ~ 1: S 1 (i) E {Y-i• ... ,yk}}, 

e~(r) = PI{r > T 1 }. 

(3.16) 

(3.17) 

Theorem 3.6.1 If P is a tronslation invariant measure on A and E de­
notes expectation with respect toP, then for every A E (0, 1), 



3.6. UPPER BOUND FOR TWO-SIDED WALKS 107 

Proof: Let r be a one-sided path of length If I and let 

It suffices to show that for each r' 

Let r = [xo, ... 'XnJ, f = {xo, ... 'Xn}, and T = Tf' ' 

T = inf{i > 0: S 1(i) E f}. 

By Proposition 2.4.1(b), for each j, 

L GA(Xj, x)Px{r > T 1 } = 1. 

xEf' 

Therefore, since P is translation invariant, 

n 

E(I+GAeA Inr) = L(n + 1)-1 P(Br )[(I+GAeA)(.Pir)] 
j=O 

n 

(n + 1)-1 P(Br) L J+(.P3 f)Px 1 {r > T 1 } 

j=O 
n 

L GA(Xj,Xk) 
k=O 

n 

(n+ 1)-1P(Br) LLPx{r > T 1 }GA(xk,x) 

P(Br). D 

The above proof gives a stronger result. Suppose B is a translation 
invariant subset of A, i.e., a set such that 

B={.Pir:rEB}. 

Then, 
E(J+GAeA In)= P(B). (3.18) 

If r is a two-sided walk of lengths - j and k, we let 
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Then for every a, Ba = { G~ = a} is translation invariant, and hence by 
(3.18), 

Therefore, 

P{G~ =a} = E(J+G~e~lBJ 

> aE(l+e~IBJ· 

E(l+e~IB .. ):::; .!_P{G~ =a}. 
a 

If we sum over all a (note that A is countable and hence G~ takes on at 
most a countable number of values), we get 

(3.19) 

We apply (3.19) to the case where P = P2,3 is the measure on two-sided 
walks given by S2 , S3 with killing rate 1 - A and killing times ~, T 3 • Then 
if we write 

J+ = I+(s3 [o, T3]), 

e = e~(W[-T2,T3]), 

Y = (G~)- 1 (W[-T2 , T 3]), 

(3.19) becomes 
(3.20) 

Note that 
F(A) = E2,3(e). (3.21) 

Proposition 3.6.2 For d = 2, 3, 

Proof: We may assume A> !· By (3.20), it suffices to prove 

E2,3(Y) :::; c(1 - A)<4-d)/2 . 

Clearly, 

00 

E2,3(Y) = L:P2,3{T2 + T 3 = j}E2,3{Y I T 2 + T 3 = j} 
j=O 
00 

= L:u + 1)A3 (1- A)2 a3 , (3.22) 
j=O 
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where 
a;= E2,a{Y I T2 + T3 = j}. 

Let n = n(.X) = [(1 - .X)-1]. Let S be another simple random walk in 
zd, and let S[a,b] = {S;- Sa: a :5 j :5 b}. Then ifv = (G~)- 1 , 

a; = E(v(S[O,j])). 

For positive integer k, 

akn = E(v(S[O, kn])) 

< E( sup v(S[(j- 1)n,jn])) 
1~j$k 

k 

< LE(v(S[(j -1)n,jn])) 
j=1 

Similarly if ( k - 1 )n < m $ kn, 

Hence, 

00 00 n 

L: a3 (j + 1)-Xi = L L akn+•(kn + i + l).Xkn+i 
J=n+1 k=1i=1 

00 n 
< L L(k + 1)an(k + 2)n.Xkn 

k=1i=1 
00 

$ n2an L(k + 2)2(-Xn)k 
k=1 

$ cn2an. 

Let 

Then, 
a;$ (j + 1)-1 E(Zj 1), 

and since Z; is decreasing, if 0 $ j :5 n, 

(3.23) 

(3.24) 
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Therefore, 

n n 

:La;(j + 1).Aj < :L.x;E(Z;1) 

j=O j=O 

< c(1- .A)-1E(Z;1). (3.25) 

If we substitute (3.23) - (3.25) into (3.22), we get 

Therefore it suffices to prove 

(3.26) 

where n = [(1- .A)-1]. 

For .A> 1/2, 

Also, by the local central limit theorem, if X E zd with lxl sufficiently large, 

Therefore, for all such x, if T is the killing time for S, 

G.\(x) ~ P{T ~ lxl2 /16}Gixl2/16(x) 

-lxl2(1- .A) > clxl2-d exp{ 8 }. (3.27) 

By changing the constant if necessary, we can see that (3.27) holds for all 
X E zd. Therefore if 

we have 
R2 

z;;l :5 ciRid-2 exp{ 8(n + 1) }. 

But by the reflection principle (Exercise 1.3.4), 

P{R ~ r} 
r 

< P{ sup ISil ~ -2 } 
O$i$n 

:5 2P{ISnl ~ ~}. 
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Therefore, 

E(Z;;1) < cn<d-2)/2 ~1Jnlexp{ 8(:: 1)}P{; 1 :58n} 

< cn<d-2)/2 

< c(1 _ ..\)(2-d)/2, 

which gives {3.26). 0 
By Proposition 3.6.2, 

Note that 
E3(I+) "" { c[ln 1~AJ-1' d = 2, 

c, d= 3, 
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so that one might expect that a logarithmic term should appear for d = 2 in 
F(.A) = E2,3{e). This is not the case, however, because those paths which 
have many returns to the origin are very unlikely to be avoided by another 
path. The next proposition will finish the proof of the upper bound (3.15). 

Proposition 3.6.3 For any d, 

Proof: Let uo = 0 and for i > 0, 

O"i = inf{k > O"i-1: 8k = 0}. 

Let R be the number of returns to the origin by 83 , 

Then if I r = I { R = r} , 

00 

E2,3(e) = L E2,3(elr)· 
r=O 

Note that Io = I+. Fix a k and consider the event { R = r, u R = k} 
with indicator function Ir,k· Then the sets 8 3 [0, k] and 8 2 [0, T 2] u 8 3 [k, T 3] 

are conditionally independent given {Ir,k = 1}. Let Lk be the indicator 
function of the complement of the event 

{u: lui= 1} C 8 3 [0, k]. 
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Note that if Lk = 0, and k :5 T 3 , then e = P{T1 = 0} = 1- >.. Therefore, 

But by the conditional independence, 

Since returns to the origin are independent, and between any two returns 
a random walk must visit at least one point of norm one, 

Therefore, 

and 

E2,3(e) < (1- >.) + ff2d( 2d2~ 1tE2,3(eJ+)P{o-r = k} 
r=Ok=O 

If 

00 2d- 1 
= (1- >.) + I:2d( -ur E2,3(eJ+) 

r=O 

(1- >.) + (2d)2 E2,3(el+). 0 

F(>.) = P{81 (0, T 1] n (82 (0, T 2] u 8 3 (0, T 3 ]) = 0} 

F(n) = P{81(0, nJ n (82 (0, nJ u S3 (0, n]) = 0}, 

an argument such as in the above proof can be given to prove the following 
corollary of (3.15) and Theorem 3.5.1. 

Corollary 3.6.4 lf F(n) is defined as above then as n-+ oo, 

{ 
n(d-4)/2, d<4, 

F(n) ::::: (ln n)-1 , d = 4, 
c, d > 4. 
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3. 7 One-sided Walks 

If S 1 , ... , sk+l are simple random walks, let 

f(n, k) = P{S1(0, n] n (S2 (0, n) U · · · U Sk+1(0, n]) = 0}. 

Note that f(n) as defined in Section 3.5 is f(n, 1), and F(n) as defined in 
the last section is f(n, 2). If we let Y = Yn be the random variable on fh 
defined by 

then it is easy to see by independence that 

(3.28) 

We can define f(n, k) for noninteger k by (3.28). Since 0:::; Y:::; 1, Holder's 
inequality implies that for j < k, 

By Corollary 3.6.4, 

{ 
n<d-4 )12 d = 2 3 

f(n, 2)x (lnn)-< d=4:' 

This gives an immediate estimate for f(n, k). 

Corollary 3.7.1 (a) If k < 2, 

(b) if k > 2, 

In particular, if d = 2, 3, 

c n(d-4)/2 < f(n) < c n(d-4)/4 
1 - - 2 ' (3.29) 

and if d = 4, 
(3.30) 



Chapter 4 

Four Dimensions 

4.1 Introduction 

The critical dimension for intersections of two random walks, d = 4, will 
be studied in this chapter. The critical dimension is characterized by log­
arithmic behavior of the interesting quantities. The results in this chapter 
will be stronger than what we can prove in two and three dimensions­
instead of just upper and lower bounds for probabilities we will be able to 
give asymptotic expressions. 

The starting point will be two results from last chapter, Proposition 
3.4.1 and Theorem 3.6.1. These will allow us to give the asymptotic prob­
ability of a certain event involving intersections of a one-sided walk and a 
two-sided walk starting at the origin. As a corollary we will prove Theorem 
3.5.1 ford= 4. In Section 3, we use this result to give the asymptotics for 
long-range intersections of two walks. 

In section 4 we return to the question of two walks starting at the 
origin. We are able to determine exactly the exponent of the logarithm in 
the function 

J(n) = P{S1 (0,n] n S2 (0,n] = 0}. 

The basic idea of the proof relies on two ideas: 1) "short-range" intersec­
tions and "long-range" intersections are almost independent in four dimen­
sions (we do not expect this to be true ford< 4) , and 2) the probabilty of 
"long-range" intersections can be calculated precisely. These two facts al­
low us essentially to analyze the "derivative" of f(n) and then to determine 
the large n behavior. 

Four dimensions is the critical dimension for two walks. Suppose instead 
that we consider k walks, S 1' ... ' sk in zd. If d :::; 2 then the paths of the 
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walks have an infinite number of mutual intersections by recurrence. For 
k = 3 we can show that for d ~ 4, 

while for d = 3 the intersection is infinite with probability one. The in­
tuition is the following: a random walk is a "two-dimensional" set (since 
its intersection with a ball of radius R has on the order of R 2 points) and 
hence has "codimension" d- 2 . To find the codimension of the intersection 
of a number of sets one generally adds the codimensions of the sets, i.e., 
the codimension of the intersection should be k(d- 2), assuming this is no 
greater than d. The critical dimension for k walks can be found by setting 

k(d- 2) = d, 

getting 

d=~. 
k-1 

Note that for k > 3, the "critical dimension" lies strictly between 2 and 3. 
One can make sense of this in a number of ways (see, e.g. [23, 61)), but we 
will not deal with this in this book. In the last section of this chapter we 
will consider the case k = 3, d = 3 and mention a number of results which 
are analogous to the case k = 2, d = 4. 

4.2 Two-sided Walks 

We will prove Theorem 3.5.1 ford= 4. Let S 1, S 2 , S3 be independent sim­
ple random walks in Z 4 with killing rate 1 - >.. and killing times T 1 , T 2 , T 3 • 

As in section 3.6, we define the following random variables on !h x !h: 

J+ =It = indicator function of {0 ~ 8 3 (0, T 3 ]}, 

T2 Ta 

c = c>- = L:: c>-(SJ) + L:: c>-(82). 
j=O k=l 

IfF(>..)= P{81 (0, T 1] n (82 [0, T 2 ] u 8 3 [0, T 3]) = 0}, then 

F(>..) = E2,3(e). 

By Theorem 3.6.1, 
( 4.1) 



4.2. TWO-SIDED WALKS 117 

In two and three dimensions, G is a nontrivial random variable in the sense 
that (EG)-1G does not approach a constant random variable as >.-+ 1-. 
For this reason, we cannot take the Gout of the expectation in (4.1) without 
giving up a multiplicative factor. For d = 4, however, (EG)- 1G does 
approach 1 in probability, so it will be relatively easy to pull it out of the 
expectation. Most of the work in showing that (EG)- 1G -+ 1 was done 
in Proposition 3.4.1. Here we state without proof the analogous result 
for killed random walks. It can proved either by following the proof of 
Proposition 3.4.1 or by using Theorems 2.4.2 and 2.4.3 on Proposition 3.4.1. 

Lemma 4.2.1 As>.-+ 1-, if E = E2,3, 

{a) E(G) = -4a4ln(1- >.) + 0(1), 

(b)Var(G) O(-ln(1->.)), 

and therefore 
G 

Var(EG) = O(-[ln(1- >.)r1). 

With this lemma we would now like to say 

and the next theorem shows that this is in fact the case. 

Theorem 4.2.2 As >.-+ 1-, 

Proof. For any f > 0, let 

and let Y = ~ • .\ be the indicator function of A. By Lemma 4.2.1 and 
Chebyshev's inequality, there exists a c < oo such that 

c 
P2,3(A) :'5 E2[-ln(1- >.)]" (4.2) 

We write 
E2,3(eJ+) = E2,3(eJ+Y) + E2,3(eJ+(1- Y)). (4.3) 

For an upper bound we use (4.1) to get 

E2,3(eJ+) < E2,3(eJ+Y) + [-(1- E)4a4ln(1- >.)]- 1 E2,3(eJ+G) 

= E2,3(el+Y) + [-(1- E)4a4ln(1- >.)]- 1. (4.4) 
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Since eJ+ :$ 1, 

and hence for some k = k., 

(4.5) 

We now show that as>.--+ 1-, 

(4.6) 

Suppose not, i.e., that for some t: > 0, some sequence >.n --+ 1 and some 
a= a.> 0, 

(4.7) 

For ease and without loss of generality we will assume that fl; is actually 
the set of finite random walk paths with the appropriate measure and that 
w;(n) = S'(n,w;). We write w; nw; = 0 if w;(O, Ti] nw;(O, T1] = 0. We also 
let l(w;) be the indicator function of the set {0 ¢ w,(O, Ti]}. For any b > 0, 
let 

Bb = {(w2,w3): e(w2,w3)::;:: b(-ln(1- >.n)r 118 ,l(w3) = 1}. 

Then by ( 4.2) and ( 4. 7), if b = b, = m 2 /2c, 

P2,3(Bb) ::;:: ~(-ln(1- >.n)]-918 . 

By an argument as in Corollary 3.6.4, there exists a {3 = {3. > 0 such that 
if 

then 

But, since w2 and w 3 are independent, 

and hence 

P3{w3: Pt{w1 nw3 = 0}:::: b(-ln(1- >.n)]-118,l(w3) = 1}:::: 

J/3(-ln(1- An)]-9116 . (4.8) 
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If we let D(w3) = {wl: WI nw3 = 0,J(w1) = 1}, then (4.8) implies 

P{(w3,w1,w~): w1,w~ E D(w3),I(w3) = 1} 2: 
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b2v13[-ln(1- An)tl3/16. (4.9) 

Here we are using the fact that (01, P1) = (02, P2) = (03, ?3). But it is 
easy to see that 

so (4.5) and (4.9) give a contradiction. Therefore (4.6) must hold. 
To finish the upper bound, (4.4) and (4.6) imply 

Since this hold for every € > 0, 

limsup[-ln(l- .\)t1 E2,3(eJ+) S 4a4 . 
.A-1-

For the lower bound, note that Holder's inequality and ( 4. 7) give 

E2,3(eJ+GY) < (E2,3(G9 )] 119 [E2,3(eJ+Y)]819 

< o£([-ln(l- .\)t1)[E2,3(G9 )P19 • 

A routine (but somewhat tedious) calculation gives 

Therefore E2,3(eJ+GY) = o£(1) and by (4.1) 

1- o£(1) = E2,3(e/+G(1- Y)) 

S -(1 + t:)4a4ln(1- .\)E2,3(eJ+). 

Since this holds for every € > 0, 

Using Proposition 3.6.3 and Lemma 3.2.4 we get two immediate corol­
laries. 

Corollary 4.2.3 As,\--+ 1-, 

F(.\) = E2,3(e) :::::: -[ln(l- .\)t1 . 
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Corollary 4.2.4 (Theorem 3.5.1) 

F(n) x (ln n)- 1 . 

In the next section we will derive asymptotic expressions for the proba­
bility of long-range intersections by using results about two-sided intersec­
tions. We will need to consider random walks with a fixed number of steps. 
Let An and Bn be the events 

An= {81(0, n] n (82 [0, n] u 8 3 [0, n]) = 0, 0 ¢ 8 3 (0, n], 

Bn = {81 (0,n] n (82 [0,oo] u 8 3 [0,n]) = 0,0¢ 8 3 (0,n]}. 

Corollary 4.2.5 

(4.10) 

(4.11) 

Proof. The result for P(An) follows immediately from Theorem 4.2.2 
and Lemma 3.2.4. Clearly P(Bn) ~ P(An)· To prove the other inequality 
let 

Vn = {81(0,n] n (82 [0,nlnn) u 8 3 [0,n)) = 0,0¢ 8 3 [0,n)}, 

Wn = {81 [0, n] n 8 2 [nln n, oo) :f: 0}. 

Then Bn = Vn \ Wn. By (3.9), 

Therefore, 

2n oo 

P(Wn) ~ c(lnn)-1 L L P{8f = 8J} 
i=Oj=nlnn 

2n oo 

< c(ln n)-1 L L (i + j)-2 

i=O j=nlnn 
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4.3 Long-range Intersections 

Let 5 1 ' 82 be independent simple random walks in Z4 starting at X and 0 
respectively and let Rn be the number of intersections if 8 1 takes n steps 
and S2 takes an infinite number of steps, i.e., 

n oo 

Rn = LLI{8] = 8n. 
J=O k=O 

Let Jn(x) = J(n,x) be the expected number of intersections, i.e., 

n oo 

j=O k=O 

n-1 oo 

LiPi(x) + L np3 (x). 
;=0 j=n 

It is routine to estimate Jn(x) using the local central limit theorem. We 
state here without proof the results we will need. 

Proposition 4.3.1 If a> 0, then as n---+ oo, 
(i) 

(iv) if lxnl2 ""'n(ln n) 0 , 

Jn(Xn)""' 2
2 (lnn)- 0 • 

7r 

The goal of this section is to give asymptotic expressions for the prob­
ability that 8 1 [0, n] n 5 2 [0, oo) -:f. 0. Let 

cPn(x) = px·0{81[0, nJ n 82 [0, oo) -:f. 0}. 
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We define stopping times 

r = inf{j:2:0:8}E82 [0,oo)} 

u = inf{k:;::: o: 8~ = 8~}. 
Then if A(j, k, x) = px,O{ r = j, u = k }, 

n oo 

¢n(x) = px•0{r :5 n} = LLA(j,k,x). 
J=Ok=O 

If we translate so that the origin is at 8; = 8~ and reverse direction on the 
two paths of finite length, one can easily check that 

A(j, k,x) = P{81(0,j] n (82 [0, oo) u 8 3 [0, k]) = 0, 

0¢ 83(0,k],8}- 82 = x}. 

Corollary 4.2.5 gives an estimate of the probability of 

What we would like to say is that the event { 8J - 82 = x} is almost 
independent of the above event. This will not be true if x is near the 
origin. However, we will be able to prove this for x sufficiently far from the 
origin. The next proposition gives an upper bound. 

Proposition 4.3.2 For every o > 0, if 

n(lnn)-o :5lxl2 ,j,k :5 n(lnn)"', 

then 

Proof. We will assume that x +-+ j +k, i.e., Pi+k(x) > 0. Let /3 = o+2 
and consider the event A= An(lnn)-13 as in Corollary 4.2.5. Then 

Let D = Dn,/3 be the event 

{181 ([n(ln n)-.8])1 2 , l83 ([n(ln n)-.8])12 :5 n(ln n)-20}. 

Then by Lemma 1.5.1, 

P(Dc) = O(exp{ -(In n)2 }) = o(n-3). 
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By the strong Markov property and Theorem 1.2.1, 

P{Sj- s~ =X IAn D} = PJ+k(x)(1 + Oo(1)). 

Therefore, 

A(j,k,x) < P(An{Sj-S~=x}) 

< P(AnDn{Sj-S~=x})+P(Dc) 

7r2 
-g(ln n)-1PJ+k(x)(1 + oo(1)) + o(n-3 ) 

7r2 
= g-On n)-1PJ+k(x)(1 + Oo(1)). 0 

From the above proposition we can get the upper bound for the proba­
bility of intersection. 

Theorem 4.3.3 For every o: > 0, if 

then 

Proof. By Proposition 4.3.1, 

By (3.9) and Proposition 4.3.1, 

pO,x { T < n(ln n) - 30} pO,x { 8 1 [0, n(ln n) - 30] n 8 2 [0, 00) =/= 0} 

Similarly, 

< C0(ln n)-1 J(n(ln n)-30 , x) 

< Co(lnn)-2o-1. 

P0 •x{a < n(ln n)-30} < c0(ln n)-2o-l 

pO,x{a > n(lnn)3o} < co(lnn)-2o-1. 
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Therefore by Proposition 4.3.2 

n n(lnn)30 

< Ca-(ln n)-2o-1 + 2:: L A(j,k,x) 
j=n(lnn)-3° k=n(lnn)-3o 

2 n oo 

< c0 (ln n)-20- 1 + (1 + o0 (1)) ~ (In n)- 1 L LPJ+k(x) 
j=Ok=O 

11"2 
= c0 (lnn)-20 - 1 + (1 + o0 (1))B(Inn)- 1Jn(x) 

11"2 
< (1 + 0 0 (1))8(lnn)- 1Jn(x). 0 

We will give a similar lower bound on the probability of intersection if 
lxl2 :::=:: n. 

Lemma 4.3.4 For every a> 0, there exists a c = c0 such that if 

then 

Proof. We will prove the lemma for y - x = e, lei = 1. The general 
case can be obtained by the triangle inequality. We first estimate 1~</>n(x)l. 
Note that 

-~</>n(x) </>n(x)- px·0 {S1(0,n] n S2 (0,oo) =/:- 0} 
= px·0 {S1 [0,n] n82 (0,oo) = 0,0 E S 1 [0,n]}. 

Let 7 = inf {j : SJ = 0}. Then by the local central limit theorem, 

P{7:::; n(lnn)- 1 or n- n(lnn)-1 :::; 7:::; n} 

n(lnn)- 1 n 

:::; L Pn(x) + 2::: Pn(x) 
j=O j=n-n(lnn)-1 

< c0 n- 1 (In n)- 1 . 

However, if n(ln n)- 1 :::; j :::; n- n(ln n)- 1 and B1 is the event 
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then an argument as in Lemma 4.3.2 gives 

00 

\Ll<f>n(x)\ ~ 2: px,O(B;) 
j=O 

n-n(lnn)- 1 

< c,.n-1{lnn)- 1 +c,.(lnn)-1 2: p;(x) 
j=n(lnn)-1 

Let 
2 a 

C = Cn = {z: \zl < 2n}, 

2 a 
Cx = Cn,x = {z: lz-xl < 2n}. 

By Theorem 1.4.6 and Exercise 1.5.11, if 

u = inf{j : SJ E 8Cx}, 

then 

zEC,. 

= Ex(</>(Su))- l:Ll<f>n(z+x)Gc(O,z). 
zEC 

Since 1/J(z) = Ez(</>(Su)) is harmonic in Cx, Theorem 1.7.1 gives 

IEx+e(</>(Su))- Ex(</>(Su))l < c,.n-112 sup l</>n(z)l 
zEC,. 

< c,.n-112 (lnn)-1 . 

By "summing by parts" one can verify that 

L(Ll</>n(x + z +e)- Ll</>n(x + z))Gc(O, z) = 
zEC 

2: Ll</>n(x + z)(Gc(O, z- e)- Gc(O, z)) 
zEC 
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+ L ~<Pn(x + y)Gc(O, z +e). 
zE8C,z+eEC 

(The other boundary term disappears since Gc(O, z) = 0 for z ¢ C.) If 
z E ac, then by Proposition 1.5.9, IGc(O, z +e) I~ Con-312 . Also, I8CI = 
0 0 (n312 ), and hence 

L ~<Pn(x + y)Gc(O, z + e)l 
zE8C,z+eEC 

< Con312 ( sup I~<Pn(x)l)(con-312 ) 
zE8C 

< C0 n- 1 (lnn)- 1 . 

It also follows from Proposition 1.5.9 that for z E C, 

IGc(O, z- e)- Gc(O, z)i ~ colzl-3 . 

Therefore, 

L I~<Pn(x + z)IIGc(O, z- e)- Gc(O, z)l 
zEC 

zEC 

which completes the lemma. 0 

Theorem 4.3.5 If o:n ~ lxl2 ~ o:- 1n, 

Proof. By Theorem 4.3.3, 

11'2 
px·0{S1[0,n]nS2 [0,oo) ;f0} ~ S(lnn)-1Jn(x)(l+o0 (1)). 

If n(ln n)- 1 ~ j, k ~ n(ln n), then by ( 4.11), 
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If D = Dn = {y : n(ln n)-3 :5 IYI2 :5 n(ln n)3}, then for such j, k, 

L A(j, k, y) :5 L Pj+k(Y) = o((ln n)- 1 ). 

y~D y~D 

Therefore, 
1!'2 L A(j, k, y) = s(ln n)- 1 (1 + o(1)). 

yED 

Let € > 0 and let 

C = C£,n,x = {y: lx- Yl 2 :5 E2n}. 

By Proposition 4.3.3, 

Hence, 

LA(j,k,y) ~ 
yEC 

1!'2 

s(ln n)- 1 (1 + o(1))(L Pj+k(Y)- Oa(1) L Pj+k(Y)). 
yEC yED\C 
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If we sum over n(ln n)- 1 :5 j, k :5 n(ln n) and use Proposition 4.3.3 we get 

By Lemma 4.3.4, 

I sup </Jn(Y) - inf </Jn(Y)I :5 C0 €(ln n)- 1• 
yEC yEC 

Therefore, 

</Jn(x) + Ca€(ln n)- 1 ~ sup <Pn(Y) 
yEC 

1 
~ fCT L </Jn(Y) 

yEC 

1 1!'2 
> jCf(1 + o£(1))S(ln n)- 1 L Jn(Y) 

yEC 

1!'2 
= (1 + o£(1))S(ln n)- 1 Jn(x)(1 + 6(€)), 
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where h(E) -4 0 as E -4 0. The last step uses Proposition 4.3.1(iii). Since 
this holds for every E > 0, the theorem follows. 0 

Similar results hold for long-range intersections of two random walks 
starting at the origin. Let 0 < a < b < oo and consider the intersections 
of S1[an, bn] with S2[0, oo), where S 1 and S2 both start at the origin. The 
expected number of intersections is given by 

bn oo 

2:: L:P{sJ=sn = 
j=an k=O J=an k=J 

bn 4 4 L 2"7 "' 2 In(b/a). 
J=an 71" J 71" 

Similarly if a > 0, the expected number of intersections of S1 [n(ln n)-a, n] 
and S2 [0,oo) is given by 

oo n 4 4 
LPi+k(O)"' L 2"7"' ~ lnlnn. 

n 

2:: 
j=n(lnn)-a k=O J=n(lnn)-a 71" J 71" 

The following theorem about the probability of intersection can be proved 
in the same way as Theorems 4.3.5 and 4.3.3. 

Theorem 4.3.6 (i) If 0 < a < b < oo, then 

1 4 
"' 2[rr2 ln(b/a)][Jn(O)t1 

1 -= 2In(bfa)(ln n) 1. 

(ii) If a > 0, then 

P{S1[n(lnn)-a,n] n S2 [0,oo) ;6 0} 
1 4a 1 < 2( 71"2 lnln n)[Jn(O)J- {1 + o0 (1)) 

= i ~~~: n {1 + 0 0 (1)). 

4.4 One-sided Walks 

We return to the problem of intersections of two walks starting at the origin 
in Z 4 , i.e., 

f(n) = P{S1(0,n] n S2 (0,n] = 0}. 
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Since we have now proved Theorem 3.5.1 ford= 4 we can conclude from 
(3.30) that 

The goal of this section is to show that the right hand inequality is almost 
sharp. More specifically we prove the following theorem. 

Theorem 4.4.1 If d = 4, 

f(n) ~ (lnn)-112. ( 4.12) 

Let us first motivate why (4.12) should be true. It will be easier to 
consider 

f(n) = P{81(0,n] n 82[0,oo) = 0}. 

Clearly, ](n) :::; f(n). We define events 

An= {81 (0, n] n 82 [0, oo) = 0}, 

Bn = {81(n, 2n] n 8 2 [0, oo) = 0}. 

Then A2n = An n Bn and 

By Theorem 4.3.6(i), 
- ln2 

1- P(Bn)"' 2lnn· 

Intuitively one would expect that paths which have not intersected up 
through time n would be farther apart than paths which have intersected 
and hence would be less likely to intersect in the next n steps. In other 
words, one would guess that An and Bn were positively correlated, i.e., 
P(Bn I An) ~ P(Bn)· If this were the case we would have 

- - ln2 
f(2n) ~ f(n)(1- 2 lnnPn), (4.13) 

where Pn --+ 1. What we will show in the next proposition is that (4.13) 
implies (4.12). Note that if .,P(n) = (lnn)-1/2, 

ln2 
.,P(2n) "'.,P(n)(1 - 2ln n ). 

Proposition 4.4.2 Iff is a decreasing positive function satisfying (4.13} 
for some Pn --+ 1, then for every f > 0, 

liminf (lnn)!+€](n) = oo. 
n-oo 
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Proof. Let f E (0, 1) and choose M so that 11- Pnl < f for n 2: M. Let 

Then (4.13) becomes 

g(k + 1) 2: g(k) + ln(1- 2(k +~~g2 M) ), 

and if k > 1, 

~ 1+f 
g(k) 2: g(1) + L...ln(1- - 2-. ). 

J=l J 

For j sufficiently large, ln( 1 - 1~') 2: - ( ~ + ~ )r 1 . Therefore, 

limsup (lnk)-1g(k) 2: -(-2
1 + 2

3€), 
k-+oo 

or, 

This implies 
liminf(ln2kM)!+•](2kM) = oo. 

k-+oo 

Since J is decreasing, one then easily derives the proposition. D 

The problem with using the above argument to conclude (4.12) is that 
one cannot prove (4.13), i.e., it is very difficult to show that the events An 
and Bn are positively correlated. One expects, in fact, that the events are 
asymptotically independent. It turns out that one can show a sufficient 
form of asymptotic independence if one works with increments which are 
logarithmic multiples rather than multiples of 2. Fix o > 0 and let 

An= An,o = {S1(0,n(lnn)-"] n S2 [0,oo) = 0}, 

Bn = Bn,o = {S1 (n(ln n)-", n] n S 2 [0, oo) = 0}. 

Then by Theorem 4.3.6(ii), 

o lnln n 
1- P(Bn)::; 2 ~(1 + 0 0 (1)). 

Again, ](n) = P(An)P(Bn I An)· If it were true that 

1- P(Bn I An)::; (1- P(Bn))(1 + Oa(1)), (4.14) 
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then we would have 

- - alnlnn 
f(n) ~ f(n(ln n)- 0 )(1- 2~Pn), (4.15) 

for some Pn --+ 1. That (4.15) suffices to prove (4.12) follows from the 
following proposition which is proved like Proposition 4.4.2. 

Proposition 4.4.3 If 7 is a decreasing positive function satisfying (4.15} 
for some a> 0 and some Pn--+ 1, then for every f.> 0, 

liminf(lnn)!+ej(n) = oo. 
n--+oo 

We have therefore reduced Theorem 4.4.1 to showing that for some 
0' > 0, 

P(B~ I An) :S P(B~)(1 + o(1)). 

The next proposition gives a further reduction. 

Proposition 4.4.4 Suppose for some a> 0, 

P(B~ I An(Inn)-") "'P(B~), (4.16) 

then 
P(B~ I An) $ P(B~)(1 + o(1)). (4.17) 

Proof. We first recall from (4.11) that 

f(n) = P(An) ~ c(ln n)- 1 • (4.18) 

For any n, i, let 

Ai =A~= An(lnn)- 0 •· 

Note that B~ = D~. Suppose ( 4.17) does not hold, i.e., for some e > 0, 

. lnn 1 
hmsup -1 -1 -P(B~ I An)~ -(a+ 3e). 

n--+oo n nn 2 
(4.19) 

Choose a large n with 

By assumption, if n is sufficiently large, i = 1, 2, 3, 4, 
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Note that 

or 

If we consider i = 1 we get 

or 

For i = 2 we get 

and hence if n is sufficiently large, 

We can iterate again giving 

P(Aa! A4) < P(D3 I A4) lnlnn( ) 
-P(D3 IA3 )::::; Inn a+£. 

But 

P(A2) < P(A2 I A4 ) 

= P(A2 I A3)P(A3 I A4) 

::::; (lnlnn)2 (a+£)2(a+2£). 
Inn 2£ 

But this cannot hold for arbitrarily large n by (4.18). Therefore (4.19) 
cannot hold, and the proposition follows. D 

We are now in a position to prove Theorem 4.4.1. From the above if 
suffices to prove (4.16) for a = 9. Let 

an = (n(ln n)-9](ln(n(In n)-9 )]-9 "'n(ln n)-18, 
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and define events 

Vn 

Vn 

Vn 

Wn 

Wn 

= {81(0, an] n 8 2 (0, oo) = 0}, 
{81 (0, an] n 82 [0, bn] = 0}, 
Vn n {l81 (bnW ~ n{ln n)-13, l83 (bn)l 2 ~ n(ln n)- 13}, 

{81 (dn, n] n 82 [0, oo) ~ 0}, 
{81[dn,n] n 8 2 [cn, oo) ~ 0}. 

In this notation, (4.16) becomes 

We know by {4.18) that 

By Proposition 4.3.1{iv), 

133 

{4.20) 

{4.21) 

P(V~ n V n) ~ P{81{0, an] n 8 2 [bn, oo) ~ 0} ~ O((ln n)-2 ). {4.22) 

Similarly, 
{4.23) 

By Lemma 1.5.1, 

P{l81{bn)l2 ~ n{ln n)-13 } = o({ln n)-2 ), 

and hence 
{4.24) 

Since P(W n) ~ O{(ln n)- 1) (Theorem 4.3.6{i)), it follows from {4.21)­
(4.24) that to prove {4.20) it suffices to prove 

P(Wn) = P(Wn I Vn){1 + o{1)). (4.25) 

Let 

Then by the strong Markov property, 

It suffices, therefore, to show that for lxl2 , IYI2 ~ n(ln n)-13 , 

<J>(x, y) = </>(0, 0){1 + o(1)). 

This can be done by an argument as in Lemma 4.3.4. 
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4.5 Three Walks in Three Dimensions 

In this section we will consider the mutual intersection of three random 
walks in three dimensions. As mentioned in the beginning of this chap­
ter, three is the critical dimension for intersections of three walks. The 
results are analogous to the results for two walks in four dimensions and 
the methods of proof are very similar [41], so we will only give some of the 
main results without proofs. Let S 1 , S 2 , S3 be independent simple random 
walks in Z3 starting at the origin and let Rn,m = R( n, m) be the number 
of mutual intersections of S1 [n, m], S2 [0, oo], S3 [0, oo ). i.e., 

m oo oo 

Rn,m = LLLI{Sl = sJ =Sf}. 
i=nJ=Ok=O 

If Jn,m = E(Rn,m), then 

m oo oo 

Jn,m = LLLP{Sl = sJ =sf} 
•=nj=Ok=O 

m 

z=n 

where G is the usual Green's function on Z3 . By Theorem 1.5.4, as i -t oo, 

By the central limit theorem, if X is a standard normal random variable in 
R3 , 

Therefore, 
Jo,n "' 3a~ Inn, 

Jan,bn "'3a~ ln(b/a). 

Suppose S1 [an, bn] n S2 [0, oo) n S3 [0, oo) f. 0 and let 

Then 

T = Tn,a = inf{i ~an: Sl E S2 [0, oo) n S3 [0, oo)}, 

a= Un,a = inf{j: s; = 8.~}, 

77 = 71n,a = inf{k: S2 = S~}. 

{4.26) 

(4.27) 
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bn oo oo 

L LLP{r = i,u = j,TJ = k}. 
t=anj=Ok=O 

As in the case of intersections of two walks, by moving the origin we can 
write the probability of these long-range intersections in terms of probabil­
ities of intersection of walks starting at the origin. Suppose 8 1, ... , S5 are 
independent walks starting at the origin. Let A(i,j,k) be the event 

Then 

{S1 (0,i] n (S2 (0,oo) u S3 [0,j]) n (S4 (0,oo) u S5 (0,k]) = 0, 

0 ¢ S3 (0,j] u 8 5 (0, k]}. 

P{r = i,u = j,TJ = k} = P(A(i,j,k) n {Sj = SJ = S~}). 
To estimate A(i,j, k) we first derive a result for killed random walks. 

Suppose 8 1 , 8 3, 85 are killed at rate 1-A with killing times T 1 , T3, T5 (it is 
not necessary to kill S 2 and 8 4 ) and define the following random variables 
on S"h X Oa X n4 X n5: 

e = e>. = Pt{S1 (0, T 1] n (S2 (0,oo) u S3 (0,T3])n 

(S4 [0,oo) u S5 (0,T5 )) = 0}, 

I = I>. = indicator function of {0 ¢ 83(0, T3] U S5(0, T5]}, 

oo T 3 

G = G>. = L G>.(S~2 ) + L G>.(SJ3 )+ 
h=O ia=l 

oo Ts 

L G>.(SJ4) + L G>.(Sj5). 

Then the following is proved like Theorem 3.6.1. 

Theorem 4.5.1 

E2,3,4,5(eiG) = 1. 

As A-+ 1-, one can show (see (4.26)) that 

E2,3,4,5( G) ....... -12a~ ln(1 - A). 

The extra factor of 4 comes from the fact that there are 4 walks, S2, ... , S5. 
As in Lemma 4.2.1(b) one can also show that 

Var2,3,4,5(G) = O(-ln(1- A)), 

and hence we get this analogue of Theorem 4.2.2. 
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Theorem 4.5.2 As>.--+ 1-, 

E2,3,4,s(el)"" [-12a~ln(1- >.)r 1. 

We can then use a standard Tauberian argument to see that if a > 0 
and n(lnn)-a :5 i,j,k :5 n(lnn) 0 , 

P(A(i,j,k))"" [12a~lnn]- 1 . 

Again we can show for such i, j, k that 

and deduce the following. 

Theorem 4.5.3 If 0 < a < b < oo, 

If we let 

H(n) = P{81(0, n] n (82 [0, oo) u 8 3 [0, oo)) n (84 [0, oo) u 8 5 [0, oo)) = 0}, 

h(n) = P{81(0, n] n 8 2 [0, oo) n 8 3 [0, oo) = 0}, 

then it can be derived from Theorem 4.5.1 that 

H(n) x (In n)-1. 

Clearly h(n) ~ H(n). Let 

r(n) = P{81(0, n] n (82 [0, oo) U 8 3 [0, oo)) n 8 4 [0, oo) = 0}. 

Then by Holder's inequalty (see Section 3.7) one can show 

Therefore, 

r(n) :5 h(n) :5 .;;:(n), 

H(n) :5 r(n) :5 .;m:;0. 

Ct(lnn)-1 :5 h(n) :5 c2(lnn)- 114. 

It can be shown in fact that the upper bound is almost sharp. Note that 
by Theorem 4.5.3, 
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Suppose that we could show 

1 -h(2n) ~ h(n)(1 - 4ln 2(ln n) 1 Pn), (4.28) 

where Pn --+ 1. Then by an argument similar to Proposition 4.4.2 we could 
deduce for any E > 0, 

liminf(lnn)h€h(n) = oo. 
n-oo 

It turns out again that (4.28) is difficult to prove directly. However, one 
can work with logarithmic multiples as was done in the last section and 
deduce the following. 

Theorem 4.5.4 If d = 3, 



Chapter 5 

Two and Three 
Dimensions 

5.1 Intersection Exponent 

In this chapter we study 

where 8 1, S 2 are independent simple random walks in Z 2 or Z3 • By (3.29), 

cln(d-4)/2 ~ f(n) ~ c2n(d-4)/4, (5.1) 

so we would expect that 
f(n):::::: n-<, 

for some ( = (d. We show that this is the case and that the exponent is 
the same as an exponent for intersections of Brownian motions. Let B 1, B2 

be independent Brownian motions in Rd starting at distinct points x, y. It 
was first proved in [19] that if d < 4, 

px.y{B1[0, oo) n B2 [0, oo) =/: 0} = 1. 

Let 

where 
r: = inf{t: IB'(t)l = r}. 

We prove that as r -+ oo, 

b(x,y,r):::::: r-e, {5.2) 
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where ' = 2(. Proving the existence of a ~ satisfying (5.2) is relatively 
straightforward using subadditivity, but it takes more work to show that 
' = 2(, and hence that ( exists. 

The next problem, of course, is to compute (or~- Unfortunately, this 
is still an open problem and only partial results can be given. Duplantier 
[16] gives a nonrigorous renormalization group expansion for ( in d = 4 - t: 

which suggests that both bounds in (5.1) are not sharp, i.e., 

d-4 d-4 
-4- < ( < -2-. 

A nonrigorous conformal invariance argument by Duplantier and K won [17] 
gives a conjecture that (2 = 5/8. In analogy with a number of exponents 
found in mathematical physics, one would expect that (2 would be a rational 
number (conformal invariance argues for this) while for d = 3 the exponent 
could well be an irrational number that cannot be calculated exactly. Monte 
Carlo simulations [13, 17, 49] are consistent with ( 2 = 5/8 and give a value 
for (3 between .28 and .29. 

In this section we prove 

1 1 3 -+- < (2 <-2 471"2 - 4. 

The lower bound can be improved slightly using a similar argument to give 
the best known bounds 

1 1 3 - +- < /"2 < -. 
2 871" -.. 4 

The lower bound is achieved by comparison to an exponent 7 defined by 
saying that the probability that a Brownian motion starting at e1 = (1, 0) 
does not form a closed loop about 0 before hitting the sphere of radius r 
decays like r-"'i. We prove that 

(5.3) 

and then give bounds on 7. It has been conjectured that 7 = 1/4. The 
upper bound makes use of a standard result on harmonic measures on the 
unit disk, the Beurling projection theorem [1]. Ford= 3 we can only prove 
that the upper bound is not sharp, 
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5.2 Intersections of Brownian Motions 

Let Bf, B'f be independent Brownian motions in Rd (d = 2, 3). Let Dr be 
the ball of radius r 

Dr= {x E Rd: lxl < r}, 
8Dr = {x E Rd: lxl = r}, 

and letT; be the hitting time of 8Dr, 

We write D for D1 and Ti for Tf. If lxl, IYI < r, x =F y, we define 

b(x, y,r) = px.y{B1[0, T:J n B2 (0, T;] = 0}. 

By (19], 0 < b(x, y, r) < 1 and 

lim b(x, y, r) = 0. 
r-+oc 

By scaling properties of Brownian motion, if c > 0, 

b(cx, cy, cr) = b(x, y, r). 

We let e1 be the unit vector in Rd whose first component is 1. If z E Rd, 
we let 

Dr(z) = {x + Z: X E Dr}· 

If lxl, IYI < r, 

Therefore, by translation and rotational invariance of Brownian motion and 
scaling, 

2r - lx + Yl 2r + lx + Yl 
b(et,-e1, I I )~b(x,y,r)~b(et,-el, I I ). (5.4) x-y x-y 

We now investigate the behavior of b(x, y, r) as r -+ oo. We will use 
properties of subadditive functions. A function ¢ : {0, 1, 2, ... } -+ R is 
called subadditive if 

¢(j + k) :::; ¢(j) + ¢(k). 

Lemma 5.2.1 If¢ is a subadditive function from {0, 1, 2, ... } toR, then 

lim ¢(n) = inf ¢(n). 
n-+oo n n>O n 
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Proof. Clearly 

1. . f ~( n) > . f ~( n) Imm -- m --. 
n-+oo n - n>O n 

To prove the other direction, let m be a positive integer, and a= a(m) = 
sup{~(k): 0 :S: k :S: m- 1}. If n is any integer, write n = jm + k where 
0 :S: k :S: m - 1. Then 

~(n) ~(jm + k) j~(m) +a ~(m) a 
--= < <--+-. 

n n- n -m n 

Therefore, 

lim sup ~{n) :::; ~(m). 0 
n-+oo n m 

Theorem 5.2.2 There exists a~= ~d :S: 2 such that for x =f. y, 

Proof. Let 

lim _ln b(x, y, r) = ~· 
r-+00 ln r 

b(r) = sup b(x, y, r). 
lxi,IYI=l 

For lxl, IYI = 1, 1 < s < r, by the strong Markov property and scaling, 

b(x,y,r) :::; px.y{B1[0,T1JnB2 [0,T;]=0, 
B 1 [T1 ,T;] n B2 [T,;,T;] = 0} 
r 

:S: b(x, y, s )b(- ). 
s 

then~ is a subadditive function. By Lemma 5.2.1, there exists an a (per­
haps equal to -oo) such that 

lim ~(kk) = a, 
k-+oo 

i.e., 
. Inb(2k) a . 

hm - I 2k = --I 2 = ~. 
k-+oo n n 

Since b( r) is decreasing in r, it is easy to see that this implies 
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By (5.4), 

Therefore, 
b(e1,-e1,r)~r-~. 

If we use (5.4) again, we get the result for general x, y. 

To see that ~ $ 2, let a~ be the first time that the first component of 
B;, [ B;h, is equal to 0, r, or -r. By the standard "gambler's ruin" estimate 
for one-dimensional Brownian motion, 

But, 

> -2 r , 

and hence~$ 2. 0 

We will now relate random walk intersections and Brownian motion 
intersections. If SJ is a random walk in zd and Tn = inf{j: ISJI 2: n}, then 
by the invariance principle 

converges in distribution to a Brownian motion Bt with covariance d- 1 I 
(i.e., Bt = d-! Bt where Bt is a standard Brownian motion) stopped upon 
hitting the ball of radius 1. Note that 

px,y{B1 [o,T;] n B2 [o,T;] = 0} 

pxJv'd,y/v'd{iJI[o TI ] n iJ2[o T2 ] = 0} 
' r/Vd ' r/Vd 

x y r 
b(y'd, y'd' y'd) = b(x,y,r), 

i.e., the probability of intersection before hitting the sphere of radius r is 
the same for Bt and Bt. It will be convenient for the next two sections to 
let Bt be a Brownian motion with covariance d- 1 I. The remainder of this 
chapter will be devoted to proving the following theorem. Recall that Cn is 
the "ball" of radius n contained in zd, and let T~ be the first hitting time 

of 8Cn by S', 
T~ = inf{j: ISjl 2: n}. 

Theorem 5.2.3 If d = 2,3, Xn,Yn E Cn,x,y E D with n-1xn --+ x, 
n- 1Yn --+ y, then 
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The theorem first appears to be a simple consequence of the invariance 
principle, and one direction can be proved easily this way. Let ti > 0 and 

A6 = {dist(B1[0,T1],B2 [0,T2]) < ti}, 

U6,n = {dist(S1 [0,r~],82 [0,r~]) < nti}. 

Then it follows from the invariance principle that for every ti > 0, 

limsupPxn.Yn(U6,n) :5 px.y(A26), 
n-+oo 

lim inf pxn,Yn (U26,n) ~ px,y(A6)· 
n-+oo 

Note that as ti- 0, px.Y(A6) - 1 - b(x, y, 1). Also, 

{ 8 1 [0, T~] n 8 2 [0, T~] =J 0} c U6,n· 

Therefore, 

liminf pxn,Yn {81 (0, r~) n 8 2 (0, r~) = 0} ~ b(x, y, 1). (5.5) 
n-+oo 

To prove the other direction is trickier. Essentially we have to show that if 
two random walks get "close" to each other, then with high probability they 
will actually intersect. We will do the proof for d = 3; the d = 2 case can 
be done similarly (one can also give some easier proofs in the d = 2 case). 
We start by stating without a proof a proposition which can be proved in 
a similar fashion to Theorem 3.3.2. 

Proposition 5.2.4 If d < 4, for every r > 1, there exists a c = c(r) > 0 
such that if x, y E Cn, 

px,y { 8 1 [0, r;nl n 82 [0, r;nl =J 0} ~ c. 

We will need a slightly stronger version of this proposition. 

Proposition 5.2.5 If d < 4, for every r > 1, there exists a c = c(r) > 0 
such that if x, y E 8Cn, ZI, z2 E 8Crn 1 

px.y{81 [0,r;nl nS2 [0,r;nl =J 01 8 1(r;n) = Zt,82(r;n) = Z2} ~c. 

Proof. Let ui = u~,r = r!(r+l)/2 . By Proposition 5.2.4 , the strong 
Markov property, and Harnack's inequality (Theorem 1.7.2), 

px.y{81[0, r;nl n 8 2 [0, r;nl =J 0, 8 1(r;n) = ZI, 82(r;n) = Z2} 

> px.y{81 [0,u1] n 8 2 [0,u2] =J 0,81(r;n) = Z1,82 (r;n) = z2} 

~ c(r) inf pw,,w2 {81(r;n) = ZI, 8 2 (r;n) = z2} 
WI ,w2E8Cn(r+l)/2 

~ c(r)Px,y{81(r;n) = Zt, 82(r;n) = z2}. D 
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Before proceeding with the proof of Theorem 5.2.3 we need one fact 
about Brownian motion. Let A be any set contained in D with x ¢ A. 
Then [60, Theorem 2.6.3] 

px { P 1 [0, T 1] n A is non-empty, finite} = 0. 

If we condition on B2 and use this fact we get 

px,y { B 1 [0, T 1] n B2 [0, T 2] is non-empty, finite} = 0. ( 5.6) 

For each f > 0, let A. be the set of all open balls of radius 3€ centered 
at points (j1 f, hf, Ja€), where j1, h, }a are integers. Note that if lz- wi < f, 

then there exists an A E A with z, w E A. Let X. be the cardinality of 

{A EA. : B 1 [0, T 1] n A =f. 0, B 2 [0, T2 ] n A =f. 0}. 

If B 1 [0, T 1] n B 2 [0, T2 ] = 0, then for all sufficiently small €, X. = 0. Con­
versely, if B 1[0,T1] nB2 [0,T2] =f. 0, then X. =f. 0. Therefore, 

b(x, y, 1) = lim P{X. = 0}. •-o 
If for some 1 ~ k < oo and some fn--+ 0, 

lim P{X.n = k} > 0, 
n-oo 

then it is easy to see that with positive probability B 1 [0, T 1] n B2 [0, T2 ] 

contains exactly k points. Since this is impossible by (5.6), for every k > 0, 

b(x,y, 1) =lim P{X. ~ k}. 
•-o 

For each n, f let 'H.n,• be the collection of C4n•(z) where 

with j1,h,j3 integers, and let Yn,• be the cardinality of 

{HE 'H.n,•: S1 [0,r~] n H =f. 0,S2 [0,r~] n H =f. 0}. 

By the invariance principle, for each K < oo, 

lim liminf P{Yn,• > K} ~lim P{X. > K} = 1- b(x, y, 1). (5.7) 
E-+0 n-+oo £-+0 

Assume Yn,• > K. Then one can find at least J = J(K) = [{17)-3 K] sets 
HE 'H.n,•• C4n•(zl), ... , C4n•(ZJ), with lz,- Zji ~ 8n€. Let 

Tfi(j) = inf{k: Si(k) E 8C4n•(zj)}, 

ai(j) sup{k ~ Tfi(j): S'(k) E 8Csn.(z3 )}, 

pi(j) = inf{k ~ Tfi(j): Si(k) E 8Csn.(zj)}. 
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Then the paths 8i[ai(j), pi(j)], i = 1, 2, j = 1, ... , J are conditionally inde­
pendent given 8i(a'(j)), 8i(pi(j)), i = 1, 2,j = 1, ... , J. From Proposition 
5.2.5 we conclude that 

pxn oYn { 8 1 [0, r~] n 82 [0, r~] =I 0 I Yn,E ~ K} ~ 1 - (1 - c)J(K). 

Since we can make J arbitrarily large, this implies by (5.7) that 

liminfpxn,Yn{81 [0,r~]n82 [0,r~] #-0} ~ 1-b(x,y,1). 
n->oo 

This combined with (5.5) gives Theorem 5.2.3. 
By the same proof we can derive the following. 

Corollary 5.2.6 If r < 1, then 

lim P{81 [r:n,r~] n 82 [r;n,r~] = 0} = P{B1[T;,TlJ n B 2[T,?,Tr] = 0}. 
n->oo 

5.3 Equivalence of Exponents 

In this section we will show that e = 2(. More precisely, we prove the 
following. 

Theorem 5.3.1 If d = 2, 3, as n --+ oo 

f(n) ~ n-~, 

where ( = {/2. 

By Lemma 1.5.1, for every e > 0, there is an a= a( e) > 0 such that 

P{r~ :5 n2-E} :5 O(exp{ -nQ} ). 

Also, 

P{ r~ ~ n2+E} < P{ inf l8((k + 1)n2 ) - 8(kn2 )1 :5 2n} 
0:5k<n• 

:5 (1- ct• 
:5 O(exp{-nQ}), 

for some a= a(e). Therefore if 

h(n) = P{81 (0, r~] n 82 (0, r~] = 0}, 

we have for every e > 0, 

f(n2+E) :5 h(n) + O(exp{ -nQ}) :5 f(n2-E). 

Theorem 5.3.1 is therefore an immediate corollary of the following theorem 
which we wil prove. 
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Theorem 5.3.2 If d = 2, 3, then as n --+ oo, 

We have done most of the work for the lower bound already. Let 1: > 0 
and find r > C 1 such that 

b(r) = sup b(x, y, r) ::=; r•-( 
lxi,IYI=1 

By the strong Markov property, 

P{81(0, r;n] n 8 2 (0, r;nl = 01 8 1 {0, r~] n 8 2 (0, r~] = 0} 

< sup P{81(0,r;nl n 8 2[0,r;nl = 0}. 
x,yElJCn 

(5.8} 

By Theorem 5.2.3 and (5.8}, the right hand side is bounded above for 
sufficiently large n by 2r•-(. By iterating, for some m sufficiently large, 
and all k > 0, 

and hence 
In h(rkm) ln2 +(~:-e) In r 

liminf >- . 
k-oo In rkm - In r 

Since h is a decreasing function this clearly implies that 

I. . f In h( n) In 2 + ( ~: - e) In r 
1mm ---- > 
n-oo Inn - In r 

Since for every 1: > 0 this holds for all r sufficiently large, 

I. . f lnh(n) t: tmm ---- > ... 
n-oo Inn -

The upper bound is proved by finding an appropriate Brownian mo­
tion event on which the invariance principle can be applied. Suppose two 
Brownian motion paths do not intersect. Then one would expect that they 
would stay a "reasonable distance apart"-at least as far apart as uncon­
ditioned Brownian motions do. It can be very difficult to prove such facts. 
The next proposition asserts a weak form of this intuitive fact. Even this 
relatively weak statement has a fairly technical proof using ideas of excur­
sions of Brownian motions. Rather than develop the necessary machinery 
to discuss the proof, which is not very illuminating, we will omit it. See 
[11] for details. 
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Lemma 5.3.3 Let At(r) be the event 

Let 

{i} B1 [O, Tf] n B2 [o, r;] = 0, 
{ii} dist(Bi(T:), B3-i[O, r:-i]) ;::: fr, 

(iii} Bi[O, r;] n D c Dtfs(B'(O)), 

i = 1, 2, 

i = 1, 2. 

v(€, r) = inf{Px·Y(At(r)) : x, y E 8D, ix- Yi ;::: ~ }. 

Then for some f > 0, 

I. . f lnv(f,r) c 1mm - 1 = .,. 
r--+oo n r 

To prove the upper bound from the lemma, let ~0 > ~ and f > 0 be as 
in Lemma 5.3.3. Let U(n, r) be the event 

(i) S1 [0, Trn] n S 2 [0, r;nl = 0 
(ii) dist(Si(T;n), S 3-i[O, r:;•]) ;::: m/2, i = 1, 2 

(iii) Si[O, r:nJ n Cn c Ctn/4(8'(0)), i = 1, 2. 

By Lemma 5.3.3, there exist arbitrarily large r with v( f, r) ;::: r-~o. For 
such an r, by the invariance principle, there exists an m = m(r,~o) such 
that for n;::: m, x,y E Cn. lx- Yl;::: m/2, 

By iterating and using the strong Markov property, one can easily check 
for some c = c(m), 

Therefore, 

I. In h(rkm) ~o In r +In 2 
1msup- < , 
k--+oo ln(rkm) - In r 

and hence by the monotonicity of h, 

I. In h ( n) ~o In r + In 2 
1msup---- < . 
n--+oo ln n - ln r 

Since for any ~0 > ~ this holds for a sequence ri -+ oo, 

. lnh(n) 
hmsup--1-- :=:;; ~· 0 

n--+00 n n 
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The same ideas apply to intersections of more than two walks. Let 
B 1 , B 2 , ... , Bk+l be independent Brownian motions starting at e1 , -e1, 

-e1, ... , -e1 respectively and let 

Similarly, if 8 1 , 8 2 , ... , Sk+ 1 are independent simple random walks starting 
at 0 we let (as in section 3. 7) 

f(n, k) = P{S1 (0, n) n (82 (0, n) U · · · U Sk+1(0, n]) = 0}. 

Then the following theorem can be proved in the same fashion as above. 

Theorem 5.3.4 If d = 2, 3, there exist ~(k) = ~d(k) such that as r-+ oo, 

q(r, k) ~ r-{(k). 

Moreover, as n -+ oo, 
f(n, k) ~ n-<(k), 

where ((k) = ~(k)/2. 

We can restate Theorem 3.5.1 by 

and hence 
~2(2) = 2, 6(2) = 1. (5.9) 

5.4 Variational Formulation 

Assume B1(0) = e1 and let Qr be the conditional probability of {B1 [0, T;)n 
B 2 [0, T;] = 0} given B 1 , i.e., 

Then, 
q(r, k) = Et(Q~). 

Also, by integration by parts, 
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In particular, for any x E [0, 1], 

q(r,k} ~ xkP{Qr ~ x}. (5.11) 

For any a > 0 we define 

~( ) ~ ( } 1. . f lnP{Qr ~ r-a} 
/J a = ~Jd a = 1m 1n - 1 . 

r-oo nr 

One can actually show that the limit exists; however, this requires a lot 
of technical work and will be unnecessary for what we will discuss below. 
Intuitively we think of {3(a) by 

P{Qr ~ r-a} ~ r-/3(a). 

The next proposition is a standard kind of result from the subject of large 
deviations [14, 21] where such variational formulations go under the name 
Legendre transforms. 

Proposition 5.4.1 
~(k) = inf (ak + {3(a)). 

a>O 

Proof. For any a > 0, 6 > 0 there is a sequence r n -t oo with 

P{ Qr,. ~ r;a} ~ r;(/3(a)+6). 

Therefore by {5.11), 
( k) > -ak-{:J(a)-6 qrn, _rn ' 

and hence 
liminf-ln~(r,k) ::;ak+{3(a)+6. 
r ..... oo nr 

By Theorem 5.3.4, this implies 

~(k) ::; ak + {3(a) + 6. 

Since this holds for every a, 6 > 0, 

~(k)::; inf(ak + {3(a)). 
a>O 

To prove the other direction, let 

q = q(k) = inf (ak + {3(a)). 
a>O 

For any 0 < 6 < !, let M = M(6) be an integer satisfying 

6- 1 ~(k) :::: M :::: 26-1e(k). 

(5.12) 
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For any "' > 0, for all r sufficiently large, 

P{ Qr ~ r-16 } :S r-{3(j.S)+-r, j = 1, ... , M. (5.13) 

By (5.10), 

q(r,k) = 11 kxk- 1 P{Qr~x}dx 
M r-(J-1)6 

< kr-M + k L 1-
36 

xk-1 P{ Qr ~ x }dx. 
J=1 

By (5.13), for r sufficiently large, 

l r-(J-1)6 xk-1 P{Qr ~ x}dx :S r-(j-1)(k-1)6r-{3(j6)+-y(r-(J-1)6- r-16). 
r-J6 

Therefore for r sufficiently large, 

M 
< r-rH(k-1) L r-k6j-f3(j6)(ro _ 1) 

j=1 

< r'Y+6kMr-q 

< 2b- 1 r-r+6k-q~(k), 

and, 
q(r, k) :S kr-f.(k)fo + 2b- 1 kr-r+6k-q~(k). 

For b sufficiently small the second term dominates the first term and we 
get 

. . lnq(r,k) 
~(k)=hmmf- 1 ~q-1-bk. 

r->oo n r 

Since this is true for all b,"' > 0, we have ~(k) ~ q. D 

Our estimates in the remainder of this chapter will be derived by getting 
bounds on ,B(a); using the value for ~(2) (see (5.9)); and using Proposition 
5.4.1. As an example of how this proposition can be used we will derive 
Holder's inequality. Suppose j < k. Then 

~(k) inf(ka + ,B(a)) 
a>O 

k k 
-:- inf(ja + ,B(a)) = -:-~(j), 
J a>O J 

< 

i.e., 

t~(k) :S ~(j) :S ~(k). 
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5.5 Lower Bound in Two Dimensions 

If B1 is a Brownian motion in R 2 and r > 0, let Vr be the event 

{B1[o,r;] disconnects 0 and 8Dr}· 

More precisely, Vr is the event that the connected component of R 2 \ 

B1 [0, r; J containing 0 is contained in the open ball Dr. It is easy to check 
that if 0 < lxl < r, 

If lei = 1, let 

For general 0 < lxl < r, we have by scaling 

Also, if 1 < r, s, < oo, lei = 1, 

(5.14) 

Therefore, ¢(k) = ln 7j;(2k) is a subadditive function, and the following 
proposition is an immediate corollary of Lemma 5.2.1 . 

Proposition 5.5.1 If d = 2, 

lim _In 'lj;(r) =sup _In 'lj;(r) ='= 'Y > O. 
r->oo In r r>l ln r 

We can now derive a lower bound for~ = ~(1) in terms of -;y. Suppose 
B 1 starts at e1 . Then on the event Vr, Qr = 0, where Qr is as defined in 
the last section. Hence for any a> 0, 

and hence by Proposition 5.5.1, for all a > 0, 

f)(a) ~ -;y. (5.15) 

Proposition 5.5.2 If d = 2, 
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Proof. By (5.9) and (5.12), for every a> 0, 

2 = ~(2) ::=; 2a + {3(a), 

and hence a :2::: 1- !f3(a). Therefore, by (5.12) and (5.15), 

~ ( 1) = inf (a + {3 (a)) :2::: inf ( 1 + -21 {3 (a)) :2::: 1 + -21 '?. 0 
a>O a>O 

Bounds on "j will thus produce bounds on ~- The remainder of this 
section will be devoted to proving the following bound on '? . 

Proposition 5.5.3 

This is not the optimal result. By similar, but technically more compli­
cated means, one can prove that "j;::::: (2rr)- 1 . Even this bound is probably 
not correct-it has been conjectured that '? = 1/4. To prove Proposition 
5.5.3, we will use conformal invariance properties of Brownian motion in 
R2 • We may consider a two-dimensional Brownian motion Bt as a complex­
valued Brownian motion 

where ?R(Bt) and SS(Bt) are independent one-dimensional Brownian mo­
tions. Suppose h : C --+ C is an analytic function and 

Then [18] 

Vt = 1t ih'(Bs)ids, 

It= inf{s: Vs :2::: t}. 

It = h(B(vt)) 

is also a complex-valued Brownian motion. Roughly speaking, an analytic 
function transforms a Brownian motion into a time change of a Brownian 
motion. 

Proof of Proposition 5.5.3. Let lei = 1 and 

Then by Proposition 5.5.1, 

ln ~(r) 
1= sup ---. 

O<r<l ln r 
(5.16) 



154 CHAPTER 5. TWO AND THREE DIMENSIONS 

Let Bt be a complex-valued Brownian motion starting at x, where x < 0, 
and let h(z) = exp(z). Let 

To= inf{t: lR(Bt) = 0}. 

Then Yi = exp(Bt), 0 ~ t ~ To is (a time change of) a Brownian motion 
starting at exp(x), stopped when it reaches aD. Therefore, the distribution 
of the random set 

{ exp( Bt) : 0 ~ t ~ To I Bo = x} 

is the same as the distribution of 

{Bt : 0 ~ t ~ T 1 I Bo = exp(x)}. 

Let r E (0, 1) , x =In r and assume Bo = x. If w < x, let 

Tw = inf{t: lR(Bt) = w}, 

a= sup{t < Tw: lR(Bt) = x}. 

TJ = inf{t > Tw: lR(Bt) = x}. 

Suppose that Tw <To and 

Then it follows that the path 

{exp(Bt) : 0 ~ t ~To} 

disconnects 0 and aD. Therefore, 

Note that by the "gambler's ruin" estimate for one-dimensional Brownian 
motion, 

px{Tw <To}=~-
w 

To compute the conditional probability, we will need the hitting distribution 
of the imaginary axis. If Bo = x, then the density of ~(B.-0 ) is given by 
[18, (1.92)] 

lxl 
-00 < y < 00. 
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Therefore, 

P"'{I~(B71 )- ~(Bo)i ~ 211" I Tw <To} 
= pB(Tw){i~(BT.,)- ~(Bo)i ~ 21r} 

12n+Z(B.,) W _ X 

> 1- dy 
-2n+Z(B.,) 1r((w- x)2 + Y2) 

121r W- X 
> 1- ~ 

-2n 7r((w- x)2 + y2) 
2 211" 

= 1 - -arctan(--). 
1r w -x 

Therefore, for every w < In r < 0, 

In r 2 21r 
'lj;(r) :51- -[1-- arctan( 1 )]. 

w 1r w-nr 

Since 
. 1 2 211" 

hm -[1- -arctan(-)]= 1r-2 , 
y-->0+ y 1r y 

for every f.> 0 we can find w < 0 andRE (ew, 1) such that for all r E (R, 1), 

'lj;(r) :5 1-?r-2 (1- f.)lnr, 

and hence by (5.16), 

l. ln 1}j(r) 
;:y ~ 1m sup --

r-->1- ln r 

l. ln[1 - 1r-2 (1 -f.} ln r] > 1m sup -...::.---:--'----'------:. 
r-->1- In r 

= 11"-2(1 -f.). 

Since this holds for all f. > 0, the proposition is proved. 0 

5.6 Upper Bound 

The main result in this section is the following. 

Proposition 5.6.1 (a) If d = 2, 

(b) If d = 3, 

lim (3(a) = oo. 
a->!+ 

lim /3(a) = oo. 
a-->0+ 
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Corollary 5.6.2 (a} If d = 2, 

{b)lfd=3, 

3 
~ = ~(1) < 2' 

Proof. Assume d = 2. By Proposition 5.6.1(a), there exists ao > ~ 
such that {3(a) > 2 for a :::; ao. By (5.9) and (5.12), for any f E (0, 1) we 
can find a = a, such that 

2 = ~(2) 2 2a + {3(a)- f. 

Clearly a 2 ao. Since {3(a):::; 2- 2a + f, by (5.12), 

~ = ~(1) :::; a+ {3(a) :::; 2- a+ f:::; 2- ao +f. 

Therefore,~:::; 2- a0 < ~· This gives (a); (b) is proved similarly. D 
The proof of Proposition 5.6.1 will need a simple large deviations esti­

mate for binomial random variables. The following lemma can be deduced 
easily from "Chernoff's theorem" [7, Theorem 9.3). 

Lemma 5.6.3 For every b < oo, there exist p = p(b) < 1, 8 = 8(b) > 
0, C = C(b) < oo, such that if Y is a binomial random variable with pa­
rameters n and p, 

Proof of Proposition 5.6.1. We first consider d = 3. Let Z be the 
conditional probability of 

B 1 [TJ;2 , Ti) n B2 [0, T:f) = 0, 

given B 1 (assuming B 1 (0) = e1,B2 (0) = -el). It is not difficult to show 
that P~ 1 {Z = 0} = 0 and hence 

limP~ 1 {Z 2 €} = 1. 
E-+0 

By the standard Harnack inequality for harmonic functions, this implies 

For j = 1, 2, ... , let J1,, be the indicator function of the event 

inf P2{B1 [TJ.2,-2, TJ,] n B 2 [0, T:f,J =f 0} 2 f, 
xED23 -l 
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and let 
k 

Yk,£ = LJi,£· 
j=l 

Then by the strong Markov property applied to B 2 , 

and hence 

Q2k ~ {1- E)Yk,•, 

P{Q2k ~ 2-ka} ~ P{(1- E)Yk,• ~ 2-ka} 
kaln2 

= P{Yk,£ ~ -ln(1 -E)}. 
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The random variable Yk,£ is bounded below by a random variable with a 
binomial distribution with parameters k and q(E) where q(E)-+ 1 as €-+ 0. 
For any b < oo, find p, 6, C as in Lemma 5.6.3. Choose f > 0 so that 
q(t:) ~ p and then choose a> 0 so that 

Then, 

Hence, 

and 

aln2 i: :----,---:- < u. 
ln(1 -E) -

P{Yi <- kaln2 } < ce-kb = C(2k)-bflu2. 
k,£ - ln(1- E) -

b 
{3(a) ~ ln2' 

lim {3(a) = oo, 
a-+0+ 

which gives Proposition 5.6.1(b) . 
The proof of Proposition 5.6.1(a) relies on some results from complex 

function theory. Let Bf, B~ be independent complex-valued Brownian mo­
tions starting at 0 and 1ri respectively stopped at 

C1~ = inf{t: !R(Bf) = lnr}. 

Then Bf = exp(Bf ), B~ = exp(B~) are independent (time changes of) 
Brownian motions starting at e1 , -e1 respectively stopped at 

rt = inf{t: IBfl = r}. 

Let r r be the random set 

rr = {Bi + 21rik: 0 ~ t ~ u;, k E Z}. 
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Then B1 (0, r;] n B2 (0, r;] = 0 if and only if 

B1 [0,a~] n fr = 0. 

For fixed r r, 

where Vr = {!R(z) =In r} and w denotes harmonic measure in R2 (here we 
are using the notation of (1, Chapter 41). '!'herefore, if we define Qr as in 
section 4 using the Brownian motions Bf, Bt, we get 

Note that r r is a continuous curve connecting 1ri to V.. along with all the 
27ri "translates" of the curve. It is a result of Beurling that the harmonic 
measure of Vr is maximized if we take r r to be a straight line parallel to 
the real axis. The next lemma estimates the harmonic measure in this case. 
Let Bt = Bf. 

Lemma 5.6.4 Let 

Ar = {zEC:O~!R(z)~lnr,~(z)=(2k+1)7ri,kEZ}, 

ar = inf{t: !R(Bt) = lnr}, 

Tr = inf{t: Bt EAr}· 

Then there exists a constant c < oo such that for all z with !R(z) ~ 0, 

pz{ar < Tr} = w(z, C \(AU Vr), V..) ~ cr-112. 

Proof. Consider 

Ar = {z E C: -oo < !R(z) ~ lnr,~(z) = (2k+ 1)7ri,k E Z}, 

T r = inf { t : Bt E Ar}. 

In this case the harmonic measure of Vr can be computed exactly for !R( z) ~ 
ln r by recalling that the harmonic measure of Vr is the harmonic function 
on C \ (i\ U Vr) with boundary values 1 on V.. and 0 on Ar. The solution 
using separation of variables (see, e.g., [4, 11.9.8]) is 

00 4 1 = L e-(n+!)(lnr-x) cos[(n +- )y] 
n=0 (2n+1)7r 2 

~ cr- 112 , if x ~ 0. (5.17) 
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Now assume In r ~ 1r (it clearly suffices to prove the lemma for sufficiently 
large r). By symmetry of Brownian motion, it is not difficult to show in 
this case that if lR(z) = 0, 

{5.18) 

Let 
g(r) = SUp pz{CTr < 'Tr} = SUp pz{O'r < Tr}· 

!R(z)$0 !R(z)=O 

If lR{z) = 0, 

P''{CTr < Tr} = pz{O'r < 'fr} + pz{O'r < Tr,Tr < O'r 1\ Tr}· 

By {5.18), pz{'fr < O'r 1\ Tr} :::; ~ and by the strong Markov property, 

pz{O'r < Tr I Tr < O'r 1\ Tr}:::; g(r). 

Therefore by (5.17), 

or 

7 
g(r):::; cr-1/2 + Bg(r), 

g(r) :::; cr-112 . 0 

Let 'Y: [0, T]-+ C be any continuous path with lR('Y(O)) = 0, lR('Y(T)) = 
lnr, and 

0 < lR('Y(t)) < lnr,O < t < T. 

Let r = r '"~ be the corresponding set of translates by 21ri, 

r = {'Y(t) + 27rik : 0 :::; t :::; T, k E Z}. 

Let r be the extension by straight lines on {lR(z) :::; 0}, i.e., 

f = r U { -y(O) + 27rik- 8 : k E Z, 8 ~ 0}. 

By an argument similar to that in Lemma 5.6.4, 

w(O, C \ (r U Vr ), Vr) :::; 8w(O, C \ (f U Vr ), Vr ). (5.19) 

If 0 E f, then w(O, C \ (f U Vr), Vr) = 0. Assume 0 ¢ f and let U be the 
(open) connected component of C \ (f u Vr) containing 0. If au n V,. = 0, 
then w(O, C \ (f U Vr), Vr) = 0, so assume au U Vr = 0. Then au n Vr is 
a closed interval of length 211". We can find a conformal map h taking U 
onto W = {z : lR(z) < 0, -1ri < ~(z) < 1ri} such that au u Vr is mapped 
onto V = {)R(z) = 0, -1ri :::; ~(z) :::; 1ri}. By the conformal invariance of 
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harmonic measure (or equivalently the conformal invariance of Brownian 
motion), 

w(O, C \ (f U Vr), Vr) = w(h(O), W, V). (5.20) 

Note that by Lemma 5.6.4, 

w(h(O), W, V) :$ celR(h(0))/2 . (5.21) 

For each 0 :$ x :$In r, let O(x) be the length of U n VR(z) = x }. By (4-23) 
of [1), the map h must satisfy 

rlnr dx 
lR(h(O)) :$ -27r Jo O(x) +2ln32, 

and hence by (5.19) - (5.21), 

tnr dx 
w(O, C \ (f U Vr), Vr) :$ cexp{ -7r Jo O(x) }. 

Note that O(x) :$ 2tr so this gives the result 

w(O,C(f U Vr), Vr) :$ cr- 112 . 

(5.22) 

We now apply the inequality (5.22) to the Brownian motion Bt = Bl 
stopped at O'r =a~. The Brownian motion path does not satisfy the con­
dition 0 < lR(Bt) < In r, t E (0, O'r ); however, we can consider instead the 
"excursion" B[77n ar] where 

'Tlr = sup{t < O'r: lR(Bt) = 0}. 

For any e > 0 let q(e) be the probability that a Brownian motion start­
ing at 0, stopped at p = inf{t: llR(Bt)l = H encloses the circle of radius e 
around 0, i.e., the probability that the boundary of the connected compo­
nent of C \ B[O, p] does not intersect the closed ball of radius e. Note (see 
section 5) that 

lim q(e) = 1. 
£-+0 

Also, by symmetry, the conditional probability of this event given {lR(Bp) = 
H (or given {lR(Bp) =-H) is still q(e). 

For any j, let 

1 
Tj = Tj,r = inf{t > 'Tlr: lR(Bt) = j + 2}, 

Pi= Pi,r = inf{t ~ Tj: lR(Bt) E {j,j + 1} }, 
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and let I (j, €) be the indicator function of the event that B[ri, Pi] encloses 
the circle of radius € around B(ri)· Note that E{l(j,E)) = q(E) and that 
{I(j, E) : j = 0, 1, ... [In r] - 1} are independent random variables. (This is 
not immediately obvious since "'r is not a stopping time and hence neither 
are Ti or Pi· However, Ti and p3 are stopping times for the Brownian 
"excursion" , and the last sentence of the previous paragraph shows that 
this conditioning does not affect the probability of this event.) If /(j, e) = 1, 
the path B[TJr, err] satisfies 

f. 
O(x) < 27T - -- 2' 

. 1 € . 1 € 
J +---<x<J+-+-2 2 - - 2 2' 

and hence 

Therefore, 
lnr d [lnr]-1 2 

27T f O(x) 2:: In r + [ L l(j, e)](..:__). 
} 0 X J=O 47T 

For every b < oo , find p, 8, C as in Lemma 5.6.3. Choose e > 0 so that 
q( E) 2:: p. Then 

[lnr]-1 

P{ L l(j,f.):::; o[lnr)}:::; cr-b, 
J=O 

and hence 
{lnr dx &2 

P{27T Jo O(x) :5 [Inr]{1 + 47T)}:::; cr-b, 

and hence by (5.22), 

P{w(O, C \ B[TJn CTr], Vr) 2:: er-a} :5 cr-b, 

where a = ~ ( 1 + ~~). Therefore, 

lim {3(a) = oo. 0 
a-.!+ 
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Self-A voiding Walks 

6.1 Introduction 

The study of self-avoiding walks arose in chemical physics as a model for 
long polymer chains. Roughly speaking, a polymer is composed of a large 
number of monomers which can form together randomly except that the 
monomers cannot overlap. This restriction is modelled by a self-repulsion 
term. 

The simplest mathematical model to state with such a self-repulsion 
term is the self-avoiding walk (SAW). A self-avoiding walk of length n is a 
simple random walk path which visits no site more than once. This simple 
model does seem to possess many of the qualitative features of polymers. 
However, it turns out that it it extremely difficult to obtain rigorous results 
about SAW's, especially in low dimensions which are the most interesting 
from a physical point of view. 

The next two sections discuss the SAW problem. The most interesting 
characteristics of the model are the dimension dependent critical exponents 
discussed in Section 6.3. The discussion there is entirely heuristic and math­
ematicians are still a long way from making the discussion rigorous. One 
major result [10, 62, 63] is a proof that in high dimensions the exponents 
take on "mean-field" values. The proof of this result has a field-theoretic 
flavor of mathematical physics and makes use of a technical tool called the 
"lace expansion", which has since been applied to some other models in 
mathematical physics. Because the proof is long and the methods of the 
proof are significantly different than those discussed in this book, we will 
not discuss the proof. 

There are a number of other ways to put self-repulsion terms on random 
walks. These split naturally into two categories: configurational measures 
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where random walks are weighted by the number of self-intersections (the 
original SAW problem is of this type) and kinetically growing measures 
where random walks are produced from some (non-Markovian) transition 
functions. It turns out that different self-repulsion terms can give qual­
itatively different behavior of random walks. We discuss some of these 
models in Sections 6.4 and 6.5. In the final section we discuss briefly some 
algorithms used in Monte Carlo simulations of SAW's. 

6.2 Connective Constant 

A self-avoiding walk (SAW) oflength n, w = [w(O), ... ,w(n)] is an ordered 
sequence of points in zd with lw(i)- w(i- 1)1 = 1, i = 1, ... , nand w(i) f. 
w(j), 0 :::=; i < j :::=; n. In other words, a SAW is a simple random walk 
path which visits no point more then once. We let r n be the set of SAW's 
starting at 0 (i.e., w(O) = 0) and An be the set of simple random walk paths 
starting at 0. Note that IAnl = (2d)n and r n cAn· 

The first question to ask is how many SAW's are there? Let Cn = 
1r nl· Since a SAW cannot return to the point it most recently visited, 
Cn :::=; (2d)(2d- 1)n-l. However, any simple random walk which takes only 
positive steps in each component is clearly self-avoiding. Since there are d 
choices at each step for such walks, 

(6.1) 

Proposition 6.2.1 There exists a 1-L = /-Ld E [d, 2d- 1] such that 

Proof. Any (n + m)-step SAW consists of ann-step SAW and an m 
step SAW (although not every choice of an n-step SAW and an m-step 
SAW can be put together to form an (n + m)-step SAW). Therefore, 

and c/J(n) = lnCn is a subadditive function. By Lemma 5.2.1, 

lim c/J(n) = inf </>(n) ='=a. 
n--+oo n n n 

Therefore Cn::::::: 1-Ln where fL =ea. From (6.1) we get that fL E [d, 2d-l]. 0 

The exact value of f-L, which is called the connective constant, is not 
known. For d = 2, 1-L is expected to be about 2.64 and /-L3 is expected to 
be about 4.68. It is rigorously known that /-L2 E (2.58, 2.73) [6, 71]. In 
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principle one can calculate Jl to any accuracy by finite calculations, but the 
convergence rate is very slow. As d gets large, the main effect of the self­
avoidance constraint is to forbid immediate reversals; Kesten [34] proved 
that as d -+ oo, 

1 1 
Jld = (2d -1)- 2d + O(d2). 

Kesten [33] also proved that Cn+2/Cn-+ Jl2 , but the conjecture Cn+dCn -+ 

Jl is still open. 
A self-avoiding polygon (SAP) of length n is an ordered sequence of 

points w E [w(O), ... ,w(n)] with lw(i)- w(i- 1)1 = 1,1 :::; i :::; n;w(i) =1-
w(j), 0 :::; i < j :::; n- 1, and w(O) = w(n). Loosely speaking, a SAP is a 
self-avoiding walk conditioned to return to its starting point. Let An be 
the number of SAP's of length n. It is easy to see that 

where 

An= L Cn-l(e) = 2dCn-l(el), 
lel=l 

Ci(x) = l{w E ri: w(j) = x}l. 

Hammersley [32] first proved that 

(6.2) 

i.e., that the connective constant for SAP's is the same as for SAW's. At 
first this may seen surprising; however, one can think of An/Cn as the 
probability that a self-avoiding walk is at the origin at time n. In analogy 
with the case of simple random walk one might then expect 

An -6 
Cn ~n ' (6.3) 

for some 8. Note that (6.3) and Proposition 6.2.1 imply (6.2). This is only 
heuristic, however, and the known proofs of (6.2) are not strong enough to 
conclude (6.3). This 8 is one of a number of "critical exponents" for SAW's 
about which much is known heuristically and numerically, but for which 
little is known rigorously. A number of these exponents are discussed in 
the next section. 

6.3 Critical Exponents 

Consider Cn, the number of SAW's of length n. By Proposition 6.2.1, 

Cn = Jlnr(n), 
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where 
lim [r(n)Pin = 1. 

n-+oc 

We would like to have more precise information about the function r(n). 
Consider first the case of simple random walk. There seems to be no non­
trivial analogue of r(n) for simple random walk since IAnl = (2d)n exactly. 
However, let 

_ r{2n) C2n 
r(n) = r(n)r(n) = CnCn · 

The right hand side can be interpreted as the probability that two indepen­
dent SAW's of length n can be put together to form a SAW of length 2n 
(where the probability is over the uniform probability measure on SAW's), 
i.e., the probability that two SAW's of length n have no points in common 
other than the origin. The analogue of this probability for simple random 
walk is the function f(n) studied in Chapters 3-5. Recall (Theorems 4.12 
and 5.20) 

f(n)"' { 

n-<, d < 4, 
(lnn)-1/2, d = 4, 
c, d > 4. 

In analogy we would expect 

f(n)"' { 

-( d < 4, n ' 
(lnn)-a, d=4, (6.4) 
c, d > 4. 

The exponent (is usually denoted "'- 1 = 'Yd - 1, and (6.4) suggests 

{ 
n-r-I, d < 4, 

r(n) ~ (lnn)a, d = 4, 
c, d > 4. 

(6.5) 

Recall from Section 5.1 that the conjectured values for ( are 

5 
(2 = B' (3 ~ .28 or .29. 

Intuitively, one would expect SAW's to be "thinner" than simple random 
walk paths and hence r(n) ;::: f(n). This intuition agrees with the conjec­
tured values for"' [56, 57, 30, 48], 

11 
"12-1=32' "13-1~.16. 

In the critical dimension d = 4 it has been conjectured [29] that a = 1/4. 
We should comment that while we have defined the exponent "' by (6.5), 
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there is no proof that such a 'Y exists. (In contrast, the exponent ( is known 
to exist by Theorem 5.3.1.) We will define the other critical exponents for 
SAW's similarly in this chapter with the understanding that there is no 
proof that any of the exponents exist. 

As mentioned in the previous section, the number of self-avoiding poly­
gons of length n, An, is expected to satisfy An/Cn = n-6 • We define the 
exponent o =ad (which is sometimes referred to as Osing) to be 1 + 'Y- 8, 
i.e., 

J..L-n An ::::: nar-2. 

A SAP is a SAW with the restriction that w(n) = 0. If for fixed x E zd we 
let Cn(x) be the number of SAW's of length n with w(n) = x, it is similarly 
expected that 

J..L-ncn(x)::::: nar-2, 

assuming, of course, that n +-+ x. We will give the conjectures for o in 
terms of the exponent v defined next. 

The exponent v concerns the distribution of the endpoint of the SAW. 
Let U = U n denote the uniform probability measure on r n and 0 u expec­
tations with respect to U. Then the mean square displacement exponent v 
is defined by 

(jw(n)l2}u::::: n2". 

Note that if P = Pn is the uniform measure on An (8imple random walk), 
then 

(jw(n)l2}p = n, 

and hence the exponent v is equal to 1/2 for simple walks. Flory [26, 27] 
gave an argument that predicted for the SAW 

v={ 3f(d+2), d:54, 
1/2, d > 4. 

This conjecture suggests that the self-avoidance constraint is not very sig­
nificant above the critical dimension 4. This is quite plausible since with 
positive probability the paths of simple random walks do not intersect for 
d > 4. We point out, however, that this plausibility argument is a long way 
from any kind of proof-even in high dimensions, the number of SAW's is 
an exponentially small fraction of the number of simple walks. The Flory 
conjecture gives the correct answer for d = 1 (where the SAW problem 
is particularly easy!), and the d = 2 conjecture is expected to be exactly 
correct. Numerical simulations [54] suggest, however, that the conjecture 
is not exactly correct in three dimensions, but rather that v3 = .59 ... In the 
critical dimension d = 4, a logarithmic correction is predicted, 
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Slade has proved that the conjecture is correct in high dimensions. (As this 
book was going to press, Slade and Hara announced that they have proved 
the following theorem for do = 5.) 

Theorem 6.3.1 {62, 63} There exists a do < oo, such that for all d ~do, 
v = 1/2 and 'Y = 1. Moreover, the distribution of n- 112w(n) under U 
converges to a Gaussian distribution. 

There is a conjectured relationship between v and a. Consider the 
number of SAP's of length 2n, A2n· Then 

A SAP of length 2n can be thought of as composed of two SAW's of length 
n, w1 and w2, with w1(n) = w2(n) and the restriction that 

w1(i) f. w2(j),O < i,j < n 

(here w2 is the second half of w "traversed backwards"). One would expect 
that the effect of the restriction would be greatest at points near 0 and 
points near w1 (n) = w2(n). Each of these effects should contribute a factor 
of about r( n). Hence we guess that the number of SAP's w of length 2n 
with w(n) =xis approximately 

and A2n is approximated by 

[ L Cn(x)2]r(n)2 • 

xEZ<I 

What does a typical term in this sum look like? A typical SAW of length 
n should be about distance n" from the origin. Since J.L-ncn ~ n"Y-1 , and 
there are on the order of nd" points at a diStance n" from the origin, one 
would guess for a typical x with lxl ~ n", 

Therefore, 

J.L-ncn(x) ~ n"Y-ln-d". 

J.L-2n A2n ~ L (n"Y-ln-d")2(nl--y)2 ~ n-dv. 

lxl""n~ 

This gives the conjecture 
a- 2 = -dv, 
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which is sometimes referred to as hyperscaling. If we combine this relation 
with the conjectures for v we get 

d 
<ld = 2-- d > 4 2' - ' 

with a logarithmic correction in d = 4. While the existence of a has not 
been proved, Madras [52] has proved that if the exponent exists it must 
satisfy 

We now consider the SAW analogue of the Green's function. Recall for 
simple random walk, 

00 00 

G(O, x) = L P{Sn = x} = L(2d)-nbn(x), 
n=O n=O 

where bn(x) = l{w E An: w(n) = x}l. For the self-avoiding walk we define 

00 

G(O,x) = L p-ncn(x). 
n=O 

We define the exponent 11 = 11d by 

G(O, x) ~ lxl-(d-2+11). 

Thus, 11 measures the amount the exponent for G differs from that of G 
(recall from Theorem 1.5.4 that G(O, x) "' adlxl2-d for d 2: 3). There is a 
heuristic scaling formula which relates 17 to "' and v which we now derive. If 
lxl is much larger than nv then Cn (x) should be negligible. If lxl is of order 
nv then p-ncn(x) ~ n"-ln-dv (since there are order ndv such points). 
Therefore, we expect 

G(O,x) ~ L p-ncn(x) 
n~lxl" 

00 

~ L n"-ln-dv ~ lxi(J'-dv)fv. 

n=lxl" 

Therefore -(d- 2 + 11) = ("t- dv)fv, or 

"'= v(2 -11). 

One final exponent is defined by considering Cn,n, the number of pairs 
of n-step SAW's (w1.w2) with w1(0) = 0, w2(0) arbitrary, and such that 
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w1 n w2 :f= 0, i.e., for some i,j, w1(i) = w2(j). The exponent Ll = Ll(d) 
(which is sometimes referred to as Ll4) is defined by 

~~.-2nc ....., n2A+-y-2 
r- n,n-., · 

We will relate this exponent to the other exponents. Note that there are 
Cn choices for w1; Cn choices for w2 up to translation; and (n+ 1)2 choices 
for the pair (i,j) such that w1(i) = w2(j) (once (i,j) is chosen, the starting 
point w2(0) is determined). Therefore, if we did not have to worry about 
overcounting, we would have Cn,n = (n + 1)2C~. However, a given pair 
(w1 , w2) may intersect in a number of points; in fact, we would expect the 
number of intersections to be on the order of bn, the expected number of 
intersections of two SAW's starting at the origin. We then get 

Cn,n[Cnt2 :=::: n2b;;-1 , 

or, 
,-2nc ....., n2'Yb-1 
,.- n,n ~ n · (6.6) 

We now try to estimate bn (this is the SAW analogue of (3.4) for simple 
random walk). Consider two independent SAW's, w1 and w2 starting at 
the origin. Since a walk of length n goes distance about nv, the number 
of points visited in the ball of radius m should look like m 11v. Therefore, 
the probability that a point x is hit by w1 should look like lxli--d and the 
expected number of x which are hit by both w1 and w2 should look like 

L lxl2( i- -d) ::::: n2-vd' d = 2, 3. 

lxl:::::n" 

Therefore bn ::::: n 2-vd for d = 2, 3 and from (6.6), 

1-L -2nCn,n ::::: ndv+2-y-2' d = 2, 3. 

Therefore, 2Ll + 1 - 2 = dv + 21 - 2 or 

dv=2Ll-'Y, d=2,3. 

6.4 Edwards Model 
There are a number of other measures on random walks which favor self­
avoiding or almost self-avoiding walks. In this section we discuss two such 
measures. These are measures on the set of simple walks An. For any 
wE An, define J(w) = Jn(w) to be the number of self-intersections, i.e., 

J(w) = L I{w(i) =w(j)} = ~ Lh(w(i} -w(j)). 
O~i<j~n if.j 



6.4. EDWARDS MODEL 171 

The expected value of J with respect to the simple random walk measure 
can be estimated easily using Theorem 1.2.1: 

(J)p = 2:: P{w(i) = w(j)} 
o::;•<j::=;n 
n-1 n 

= 2:: 2:: p(j - i) 
i=O j=i+1 

{ 
cn312 , d = 1, 
cnlnn, d = 2, 
en, d? 3. 

For any f3? 0, we let Uf3 = U~ be the probability measure on An given by 

Uf3(w) = exp{ -f3J(w)}. 
(exp{ -f3J})p 

Note that f3 = 0 corresponds to the simple random walk and the f3 _. oo 
limit gives the self-avoiding walk. This measure is called the weakly self­
avoiding walk or the Domb-Joyce model. It is conjectured that for every 
f3 > 0, this measure is in the same "universality class" as the usual self­
avoiding walk. What is meant by physicists by this term has never been 
stated precisely, but one thing that is definitely implied is that the critical 
exponents for the weakly self-avoiding walk should be the same as for the 
self-avoiding walk. For example, if v = v(/3, d) is defined by 

(lw(n)l2)ull ~ n2v, 

then for any f3 > 0, v(/3, d) is expected to the the same as vd for the self­
avoiding walk. 

There is a similar model which is a discrete analogue of a model first 
defined for continuous time processes. Let Bt be a standard Brownian 
motion defined on the probability space (fl, :F, P), 0 :S t :::; 1. Consider the 
(formal) self-intersection random variable 

V = 11 11 
b(B. - Bt)dsdt, 

and for each f3 ? 0 define a measure Q (3 by 

dQ(3 exp{ -f3V} 
dP =(exp{-f3V})p' 

Then the set of paths Bt under the measure Q(3 is called the Edwards 
model [20]. This is only formal, of course. However, one can approximate 
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the delta function by approximate delta functions 8., and then ~ and Q13 ,, 
are well defined. Then one would hope to be able to take a weak limit of 
the measures Q/3,<· This has been done for d = 2, 3 [69, 72]. 

What is the random walk analogue of this model? Consider a simple 
random walk of length n, w. Then Bt = n- 112w([nt]) is approximately a 
Brownian motion. Since the steps are of size n -l 12 , we approximate the 
delta function by 

'
xi/ < l.n-1/2 

- 2 ' 
otherwise. 

We then approximate V by 

n n 

1 2""'""' n - -(-) LL8 (Bi;n-B1 ;n) 
n 

i=O j=O 

n n 

= n(d-4)/2 L L 8(w(i)- w(j)) 
i=O j=O 

n(d- 4)12 (2J(w) + (n + 1)). 

Let 
] = 2n(t!-4)/2(J _ (J)p). 

Then the (discrete) Edwards model is the measure Q/3 = Q~ given by 

Qf3(w) = exp{ -(3]} 
(exp{-(JJ})p 

Note that adding a constant to the random variable ] does not change 
Q/3, so we may use ] for convenience. If d = 4, the Edwards model is the 
same as the weakly self-avoiding walk (more precisely, Q/3 = U2f3) while for 
d = 2, 3 the Edwards model interaction is significantly weaker than that in 
the weakly self-avoiding walk. 

We will consider the Edwards model in two dimensions. Ford= 2, 

- 2 
J = - ( J - ( J) p). 

n 

Since (J) p "'en ln n, one might expect that ] gets large with n. However, 
the major contribution to J is from intersections with /i- j/ small, and the 
number of such short-range intersections is relatively uniform from path to 
path. The contribution from long-range intersections turns out to be of 
order n, and it is this contribution which is important in Q/3. 
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Proposition 6.4.1 If d = 2, 

Var(J) = (J2)p- (J)~ = O(n2 ), 

and hence 
Var(J) ~c. 

Proof. If we expand the sums in the definition of the variance we get 

Var(J) ~ 2 

and 
A= {0 ~ i1.i2,it,h ~ n;it < i1;i2 < h;it ~ i2}. 

We partition A into three sets: 

At= An {it< it ~ i2 < h}, 

A2 =An {it ~ i2 < h ~it}, 
A3 =An {it ~ i2 ~it < i2}. 

If it <it ~ i2 < h, then q(ii.it, i2,i2) = 0, so the sum over At is zero. If 
it~i2<i2~it. 

Therefore, using Theorem 1.2.1, 

q(it,il,i2,i2) = p(h- i2)[p((jt- il)- (j2- i2))- p(il- it)] 
~ c(il- it)-1((jl- it)- (h- i2) + 1)-1. 

If we set k1 = i2- i1. k2 = i2 - i2, k3 = i1 - h, then the sum over A2 is 
bounded by a constant times 

n n n 

<n + 1) L: L: L: (k1 + k2 + k3)- 1(k1 + ka + 1)-1 
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P{w(il) = w(j1),w(i2) = w(j2)} 

and hence 

Similarly, 

= P{w(il) = w(jl)}P{w(i2) = w(h) I w(il) = w(jl)} 

S c(ji- i1 + 1)-1(j2- jl)-1 , 

Therefore, if k1 = i2- i1, k2 = i1 - i2, k3 = h - j1, the sum over A3 is 
bounded by a constant times 

n n n 

(n+1Hl:: 2:: 2:: (k1 + k2 + 1)-1[k31 - (k3 + k2)- 1J 

n n k1 

+ 2:: 2:: 2:: (k2 + k3)- 1[(kl + 1)-1 - (k1 + k2 + k3)-1]}. 
k1 =0 ki=O ka=l 

If we sum over k3 in the first triple sum, we see that this triple sum is 
bounded by a constant times 

n n 

L L (k1 + k2 + 1)-1(ln(kl + k2 + 1) -ln(k1 + 1)) 

n 2n+l 
< 2:: 2:: r 1(lnj -ln(kl + 1)) 

k1=0j=k1+l 

2n+l j-1 
= 2:: r 1 2:: (lnj -ln(k1 + 1)) 

O(n). 

Similarly, the second triple sum is O(n),and hence the sum over A3 is O(n2). 
This proves the proposition. 0 

The proposition shows that Var(J) is bounded for d = 2. With sharper 
estimates, see e.g. Stoll [68], one can show that for every f3 > 0, 

(exp{-f3]})p S c(f3) < oo. (6.7) 
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This implies that the measure Qf3 is "absolutely continuous" with respect 
to P (in fact, Varadhan [69] proved that the two dimensional continuous 
Edwards model is absolutely continuous with respect to Wiener measure). 
One consequence of (6.7) is that the discrete Edwards model is not in 
the same universality class as the self-avoiding walk or weakly self-avoiding 
walk in two dimensions. To see this, consider the mean-square displacement 
exponent v, 

(lw(nW)Q.B ~ n 2". 

By Holder's inequality and (6.7), 

(lw(n)l2 exp{ -,BJ}) p < (lw(n)l4 ) ;!2 (exp{ -2,8]}) ~f2 
< Cf3n. 

Therefore, using Proposition 6.4.1 and (6.7), 

and hence 1.1 = 1/2, which is not the conjectured value for the self-avoiding 
walk. 

If d = 3, a similar argument shows that Var(J) x n 112 and hence that] 
does get large as n grows. Therefore, the measure Qf3 becomes "singular" 
with respect to the measure P as n --+ oo. Westwater [72] has proved that 
the three dimensional (continuous) Edwards model is singular with respect 
to Wiener measure. In two dimensions it is known that the continuum limit 
of the discrete Edwards model is the (continuous) Edwards model [68]; it 
is certainly expected that this is true in three dimensions, but it has not 
been proved. 

6.5 Kinetically Growing Walks 

The self-avoiding walk, weakly self-avoiding walk, and the Edwards model 
are examples of "configurational" measures on random walks paths. Such 
measures are natural from the viewpoint of equilibrium statistical mechan­
ics. In these measures walks which minimize "energy" are favored, where 
the energy is some function of the number of self-intersections. 

These configurational measures are not natural if one wants to consider 
a random walk as a stochastic process. In particular, these measures on An 
or r n are not consistent. We say that a sequence of measures >.n on An is 
consistent if for every w E An, m 2:: 0, 

An(w) = L An+m(1J), 
w-<-'1 
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where w-< 'TJ means that 'TJ extends w, i.e., TJ(i) = w(i), 0 ~ i ~ n. Whenever 
a sequence of consistent measures An on An is given, there is a well-defined 
measure A on the space of infinite random walk paths defined on cylinder 
sets by An· It is easy to see that the self-avoiding measures Un are not 
consistent; in fact, one can find SAW's w that are ''trapped", i.e., such that 
w cannot be extended to any longer SAW. 

One way to describe a consistent set of measures is to give transition 
probabilities. Suppose An are consistent probability measures on An. Then 
if wE An,W E An+I,W-< w, let 

Then, 

(- I ) _ An+t(w) 
1C' w w - An(w) · 

n-1 

An(w) = IT 1r(w•+l I w'), 
•=0 

(6.8) 

where wi denotes the unique walk in A, with w' -< w. Conversely, if the 
transition probabilities 1r(w I w) are given, we can define consistent proba­
bility measures An by (6.8). The transitions 1r can be viewed as Markovian 
transition probabilities on the state space A = U~=oAn or as non-Markovian 
transitions on the state space zd. Such walks are often referred to as ki­
netically growing walks. 

The first attempt to define a "kinetically growing self-avoiding walk" 
might be to let a random walker choose randomly among all sites that it 
has not visited. Let Vn(x) be the number of visits to x, 

Vn(x) = Vn(x,w) = l{j: w(j) = x}l. 

Then such a walk would correspond to transitions 

{ - ) I} 1-Vn(x) 
1r w(n + 1 = x w = ~ (1 - V. ( )) , 

L..,iy-w(n)l=l n Y 
lx- w(n)l = 1 

(note that since 1r(wlw) is non-zero only for w -< w, it suffices in defining 
transitions to give the probability that w(n + 1) = x). Unfortunately, it is 
not difficult to show that a walker using these transitions will eventually 
get "trapped" so that Vn(x,w) = 1 for each lx- w(n)l = 1. We can do a 
"weak" version of this idea, however, by discouraging self-intersections but 
not forbidding them. Let .{3 > 0 and choose transitions 

{ _ ( + 1) _ I } _ exp{ -f3Vn(x)} rrwn -xw- , 
Liy-w(n)l=l exp{ -f3Vn(x)} 

lx- w(n)l = 1. 
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We call this the myopic self-avoiding walk. Here "myopic" emphasizes the 
fact that the walker only looks at its nearest neighbors when choosing the 
next step. This has also been labelled as the "true" self-avoiding walk [3]. 
Does this process look qualitatively like the usual self-avoiding walk? While 
no rigorous work has been done, heuristic arguments and numerical work 
suggest that it is significantly different then the usual self-avoiding walk. 
For example, the mean-square displacement of the myopic self-avoiding 
walk is expected to grow like n 413 in one dimension and n ford~ 2 (with 
possible logarithmic corrections in two dimensions). This shows that two 
is the critical dimension for this process rather than four. 

This example shows that it may be difficult to find a kinetically grow­
ing walk which is qualitatively like the usual self-avoiding walk. There is, 
however, a natural way to try to define such a walk. For any SAW wE r n, 

let 
Cn+m(w) = 1{17 E f n+rn : w-< 17}1, 

and 
U- ( ) _ 1. Cn+m(w) 

n W - liD , 
rn-+oo Cn+rn 

(6.9) 

assuming the limit exists. It is easy to verify that the Un are consistent, 
with transitions 

(- I ) _ Un+l(w) _ 1. Crn(w) 
7r w w - - - liD ---. 

Un(w) rn-+oo Crn(w) 
(6.10) 

This walk is called the infinite self-avoiding walk. The problem is that the 
limit in (6.9) has not been proven to exist, except in high dimensions [44], 
although it certainly should exist. It can be shown [51] that 

1. . f Cn+m(w) O 
liDlll > ' 
m-+oo Cn+rn 

for any w E f n that is not "trapped". 
We now replace (6.10) with a limit that is known to exist. Intuitively, 

n(w I w) is the probability that a long self-avoiding walk starting at w(n), 
conditioned to avoid w, has initial step w(n + 1). Let us replace "self­
avoiding walk" with "simple random walk" in the last sentence. For ease, 
assume d ~ 3. Then we can define the transitions 

{- I } Esw(x) 
1rw(n+l)=x w =I: E ( )' 

ly-w(x)l=l Sw Y 
lx- w(n)l = 1, x ~ w. 

Here we write w for the set {w(O), ... ,w(n)} and Esw(·) is as defined in 
Section 2.2. Since Esw(·) is the harmonic function on we with boundary 
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value 0 on w and 1 at infinity, this walk has been labelled the Laplacian 
random walk. It turns out that this walk is equivalent to the random walk 
obtained by "erasing loops" from simple random walk, hence the walk is 
also called the loop-erased walk. This walk can also be defined in two 
dimensions by taking appropriate limits. 

A number of rigorous results are known about the Laplacian random 
walk and these will be derived in the next chapter. Since we can get some 
rigorous results about this process, it would be nice to know if the Lapla­
cian walk is in the same universality class as the infinite self-avoiding walk 
defined by (6.10), which we believe is in the same universality class as 
the usual self-avoiding walk. Intuitively, a self-avoiding walk should be 
"thinner" than a simple random walk and hence more likely to avoid sets. 
Therefore, one might guess that the Laplacian walk weights more heavily 
than the infinite self-avoiding walk those directions which move "away from 
w". If anything, this should force the paths of the Laplacian walk to go to 
infinity faster. In fact, the results of the next section and numerical work 
show that this is the case. Consider the mean square displacement expo­
nent, v for the Laplacian random walk. Then it is conjectured [31, 42] that: 
v2 = 4/5; v 3 ~ .62; vd = 1/2 ford~ 4 with logarithmic correction (In n) 113 

in four dimensions. In the next chapter we will derive the rigorous results: 
v2 ~ 3/4; v 3 ~ 3/5; vd = 1/2 for d ~ 4 with the logarithmic correction 
in four dimensions being between (Inn) 113 and (Inn) 112 . The Laplacian 
random walk is therefore in a different universality class from the usual 
self-avoiding walk, at least if the conjectures about the usual self-avoiding 
walk are true. 

A one parameter family of Laplacian random walks, indexed by s > 0 , 
can be defined by the transitions [50] 

_ [Esw(xW 
7r{w(n+1)=xlw}= L [E ( W' lx-w(n)l=l. 

ly-w(x)l=l Sw Y 

As s --> oo, the paths become straight lines. The case s --> 0 has been 
labelled the indefinitely growing self-avoiding walk (in this case, the walker 
chooses randomly among all nearest neighbors that will not eventually 
"trap" the walker). It is expected that the mean square displacement ex­
ponent varies continuously with s. 

6.6 Monte Carlo Simulations 

Because the estimation of critical exponents for self-avoiding walks has 
proven to be too hard a problem to answer rigorously, computer simula­
tions are useful in predicting behavior. This leads to an interesting problem 
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in itself: how does one generate SAW's on a computer? Since the number 
of SAW's of length n grows exponentially in n, we cannot expect to write 
down all SAW's of a given length except for small values of n. We therefore 
would like to do Monte Carlo simulations, i.e., sampling from the uniform 
distribution on r n· Sampling from simple random walk is easy and it takes 
only order n operations to produce a walk of length n. It would not be 
practical, of course, to generate SAW's by generating simple walks and 
discarding those that are not self-avoiding since the average number of op­
erations needed to produce a SAW of length n would grow exponentially in 
n. Trying to modify such an algorithm by choosing steps so that a walk tries 
to stay self-avoiding can lead to probability distributions significantly dif­
ferent than that of the uniform measure on self-avoiding walks (see Section 
6.5). 

The most efficient algorithms for generating walks come from performing 
a Markov chain on the set of SAW's. Suppose TI is a transition matrix for 
a discrete time Markov chain X 3 on the countable state space 0. Suppose 
that TI is ergodic (for every x, y E n, TI3 (x, y) > 0 for some j) and aperiodic 
(which will be guaranteed for ergodic TI if TI(x, x) > 0 for some x E 0). Let 
A be a stationary probability measure for n, i.e., for each X En, 

L A(y)TI(y,x) = A(x). (6.11) 
y€!1 

Then it is well known that for any X En, the distribution of {X; I Xo = x} 
approaches A as j --+ oo. This suggests that if we choose a large N and 
start with Xo = x, then 

xN,x2N.x3N, . .. 
will be approximately independent samples from the distribution A. Of 
course, how large N must be depends on TI. We will consider two examples 
where TI is symmetric with respect to A, 

TI(x, y)A(x) = TI(y, x)A(y) (6.12) 

(this is sometimes called the detailed balance condition). lfll satisfies (6.12) 
for a given A, then A is an invariant measure for TI. The rate of convergence 
to equilibrium will be controlled by the second largest eigenvalue for the 
operator TI, at. which is given by the variational formula (see e.g. [46]) 

. Lx,y€!1 h(x)TI(x, y)A(x)h(y) 
1- al = mf Lxen h(x)2A(x) , 

where the infimum is over all h with L h(x)A(x) = 0 and L h(x) 2 A(x) < oo. 
If n is finite, al is always positive for ergodic n while al may or may not 
be positive for infinite n. 
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In the first example [5] the state space n will be the set of all finite 
SAW's, r = U;;_"=0r n· Let lwl denote the length of w. Let (3 > 0 and let II 
be given by 

{ 

(3(1 + 2d(3)-I, 

II( -)- (1+2d(3)- 1 , 
w,w - ( ) rw, 

0, 

where r(w) is chosen so that 

lwl = lwl + 1,w-< w, 
lwl = lwl + 1,w-< w, 
W=W 

otherwise, 

L II(w, w) = 1. 
wE!1 

Consider the measure X(w) = (Jiwl. Then II satisfies (6.12) for X. Note if 
(3 < J..t- 1 , then 

00 

Z((J) ~ L X(w) = L Cnf3n < oo, 
wE!1 n=O 

and hence we can define an invariant probability measure by 

A(w) = [Z((3)]- 1X(w). 

The measure A = AfJ is sometimes called the grand canonical ensemble for 
SAW's. Note that if f3 = f3n = J..t- 1 - (1/n), then 

(lwl)>./3 ~ n 

(at least if J.l-ncn ~ n-r-l as expected). It is therefore reasonable to assume 
that the qualitative behavior of the grand canonical ensemble at f3n should 
be the same as the SAW of length n (see Theorems 2.4.2 and 2.4.3). It is 
impossible to prove rigorously what the rate of convergence for this algo­
rithm is without detailed knowledge of SAW's (which is what the algorithm 
is trying to discover). However, it has been proved that if J..t- 1Cn ~ n7 - 1 , 

then N of order n 1+-y is large enough to get approximately independent 
samples [64]. 

Another choice for II which has proved to be extremely efficient is the 
pivot algorithm [54]. In this case the state space is n = r n for some n. Let 
0 be the set of d-dimensional orthogonal transformations which leave zd 
invariant. For d = 2, this consists of rotations by integral multiples of 1r /2, 
reflections about the coordinate axes, and reflections about the diagonals. 
In all dimensions, 0 is finite. If T E 0 and w E rk, then Tw E rk. The 
pivot algorithm goes as follows. Start with w E r n· Choose a random k 
uniformly on { 0, ... , n - 1} and a T E 0, again uniformly. Consider the 
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walk w obtained by fixing the first k steps of w and then performing the 
transformation T on the remaining n- k steps (considering w(k) as the 
origin). This new walk may or may not be self-avoiding. If it is we choose 
this w; otherwise we stay with the SAW w. This algorithm corresponds to 
the matrix n with ll(w, w) = (ni<:JI)-1 if w can be obtained from w by such 
a pivot transformation and ll(w,w) chosen so that n is a stochastic matrix. 
Since ll(w,w) = TI(w, w), TI satisfies (6.2) with A the uniform probability 
on r n. It can be shown that TI is ergodic and aperiodic. 

At first this algorithm would seem inefficient since only a small fraction 
of the pivot transformations are allowed. However, it is expected that the 
probability that a transformation produces a SAW is of order n-P where pis 
not very large. Also, when a pivot transformation is accepted, a significant 
change is made in the SAW (as opposed to the previous algorithm where 
it takes a large number of moves to make significant changes). Again, it is 
impossible to give rigorous bounds on the rate of convergence. However, for 
practical purposes in calculating certain exponents, e.g., the mean square 
exponent v, "effectively independent" samples from r n seem to be obtained 
from performing the algorithm order n or n ln n steps. 

Similar algorithms have been developed for generating self-avoiding poly­
gons [15, 53]. 



Chapter 7 

Loop-Erased Walk 

7.1 Introduction 

In this chapter we discuss the loop-erased or Laplacian self-avoiding random 
walk. We will primarily use the loop-erased characterization of the walk 
because it is the one that allows for rigorous analysis of the model. In 
Proposition 7.3.1 we show that this is the same as the Laplacian random 
walk defined in Section 6.5. 

The loop-erased walk, like the usual self-avoiding walk, has a critical di­
mension of four. If d > 4, then the number of points remaining after erasing 
loops is a positive fraction of the total number of points. We prove a strong 
law for this fraction and show that the loop-erased process approaches a 
Brownian motion. If d :$ 4, the proportion of points remaining after erasing 
loops goes to zero. In the critical dimension d = 4, however, we can still 
prove a weak law for the number of points remaining. From this we can 
show that the process approaches a Brownian motion for d = 4, although a 
logarithmic correction to scaling is needed. For d < 4, the number of points 
erased is not uniform from path to path, and we do not expect a Gaussian 
limit. 

Sections 7.2-7.4 give the basic properties of the loop-erased walk. The 
definition is a little more complicated in two dimensions because simple ran­
dom walk is recurrent. In Section 7.5 we give upper bounds on the number 
of points remaining for d :$ 4. This allows us to give lower bounds on 
the mean square displacement in two and three dimensions, Theorem 7.6.2. 
The final section discusses the walk for d ~ 4 and proves the convergence 
to Brownian motion. 
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7. 2 Erasing Loops 

In this section we describe a procedure which assigns to each finite simple 
random walk path >.a self-avoiding walk L>.. Let >. = [>.(0), ... , >.(m)J be 
a simple random walk path of length m. If >. is self-avoiding, let L>. = >.. 
Otherwise, let 

t = inf{j: >.(i) = >.(j) for some 0 :S i < j}, 

s = the i < t with >.(i) = >.(t), 

and let .X be them- (t- s) step path 

5.( ") = { >.(j), 0 ::; j ::; s, 
J >.(j+t-s), s:Sj:Sm-(t-s). 

If 5. is self-avoiding we let L>. = 5.. Otherwise, we perform this procedure on 
5. and continue until we eventually obtain a self-avoiding walk L>. of length 
n :S m. This walk clearly satisfies (L>.)(O) = >.(0) and (L>.)(n) = >.(m). 

There is another way to define L>. which can easily be seen to be equiv­
alent. Let 

so = sup{j : >.(j) = >.(0)}, 

and fori> 0, 
s, = sup{j: >.(j) = >.(si-1 + 1)}. 

Let 
n = inf { i : si = m}. 

Then 
L>. =[>.(so), >.(si), ... , >.(sn)]. 

The loop-erasing procedure depends on the order of the points. Suppose 
we wish to erase loops in the reverse direction. More precisely, let 

>.R(j) = >.(m- j), 0 :S j :S m, 

and define reverse loop-erasing LR by 

It is not difficult to construct >. such that L>. =f. £R >.. However, we prove 
here that if >. is chosen using the distribution of simple random walk, then 
L>. and LR >. give the same distribution. Recall that Am is the set of simple 
random walk paths of length m starting at the origin. 
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Lemma 7.2.1 For each m ~ 0, there exists a bijection Tm : Am -+ Am 
such that for each .\ E Am, 

Moreover, .\ and rm .\ visit the same points with the same multiplicities. 

Proof. We will prove by induction on m. The lemma is clearly true 
for m = 0, 1, so assume that such bijections Tk exist for all k < m. Let 
.\ E Am and assume 

L.\ = 'Y = ['Y(O), ... ,'Y(n)]. 

If n = 0, we set rm .\ = .\. Assume n > 0. Let 

Sn = sup{j : .\(j) = 0}, 

and define so :$ s1 :$ · · · :$ sn-1 :$ sn by stating that Si is the largest 
integer with .\(si) = 0 and {.\(0), ... ,.\(si)} n {'Y(i + 1), ... ,'Y(n)} = 0. 
We define "loops" K,, i = 1, ... , n, as follows: if si = si_1 then Ki = 0; 
otherwise, let j be the smallest integer greater than si_ 1 with .\(j) = 'Y(i) 
and let 

Ki = [.\(j), .\(j + 1), ... , .\(si- 1), .\(s,-1), .\(s,-1 + 1), ... , .\(j- 1)]. 

Note that K, starts at 'Y(i), ends at a nearest neighbor of 'Y(i), Kin {'Y(i + 
1), ... ,'Y(n)} = 0. 

By the second description of the loop-erasing procedure it is easy to see 
that 

L[.\(sn + 1), ... ,.\(m)] = ['Y(1), ... ,'Y(n)]. 

Let 11 = rm-(sn+ll[.\(sn + 1), ... , .\(m)] (here we have naturally extended 
Tk to walks which do not start at the origin). Then 11 = [11(0), ... , 11(m­
sn - 1)] traverses the same points as [.\(sn + 1), ... , .\(m)] with the same 
multiplicities, and LR11 = ['Y(1), ... , 'Y(m)]. Let 

ti = inf{j: 11(j) = 'Y{i)}. 

Then we set 

rm .\ = [.\(0), ... , .\(so), K1, 11(tl), ... , 11(t2- 1), K2, 11(t2), ... , 

11(ta - 1), ... , Kn, 11(tn), ... , 11(m- Sn - 1)]. 
Clearly rm .\ traverses the same points as .\ and it is easy to check that 
LR(Tm .\) = 'Y· 
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To prove that rm is a bijection we will describe the inverse map. Let 
w = [w(O), ... ,w{m)] E Am with LRw = "Y· Let 

u, = inf{j : w(j) = "Y{i)}, i = 1, ... , n. 

and ui+I = m + 1. Fori= 1, ... ,n, if w(j) :f:. 0 for ui :5 j :5 ui+I• then 
set vi = Ui. Otherwise, let j be the smallest integer less than ui+I with 
w{j) = 0 and k the smallest integer greater than j with w(k) = "Y(i) (note 
such a k must exist since w(u,+l- 1) = "Y(i)). We then write 

where 

w = [w(O), ... ,w(ui - 1), KI,w(vl), ... ,w(v2- 1), K2, ... , 

Kn,w(vn), ... ,w(un+I-1)], 

0, 
w(ui), ... ,w(vi- 1), 

if u, = v,, 
if Ui <Vi. 

With this decomposition it is easy to write the inverse explicitly and verify 
that it is the inverse. D 

7.3 Loop-erased Walk 

We will define the loop-erased walk for d 2: 3 by erasing loops from the 
path of an infinite simple random walk. This will be well defined since the 
random walk is transient. If S1 is a simple random walk in zd, d 2: 3, let 

Then set 

UI = inf{j : sj = sk for some 0 :5 k < j}, 

VI = the k < UI with sk = S(ul). 

s] = { 
Si, 
S(j + UI- vi), 

0 ::5 j ::5 VI , 

Vt ::5 j < 00 

We continue inductively by letting 

Ui = inf{j: s;-l =Sk-I for SOme 0 :5 k < j}, 

Vi the k < Ui with srl = si-l(ui), 

and 
{ S i-1 0 < . < si _ j , _ J _ v., 

1 - si-1<. + ) < . < J u, - Vi , V, _ J 00. 

Each Si has self-intersections; however, we can define 

S(j) = .lim s;, •-oo 
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and obtain a self-avoiding walk. We call S the loop-erased self-avoiding 
random walk or simply the loop-erased walk. 

As in the previous section we can use an alternative construction of S 
from S. Let 

CTQ = sup{j : Bj = 0}, 

and fori> 0, 

CTi = sup{j > CTi-1: si = S(ui-1 + 1)}. 

Then let 
S(i) = S(ui)· 

It is easy to check that this is an equivalent definition. 
We define the probability measures P =A on rk, the set of SAW's of 

length k, by 
F(-y) = P{[S(O), ... , S(k)] = f'}. 

The Pk give a consistent set of measures on rk. In the next proposition we 
show that these measures are the same as for the Laplacian random walk 
which was defined in section 6.5. Therefore, the loop-erased walk and the 
Laplacian random walk are the same. 

Proposition 7.3.1 If /'k = ['y(O), ... ,')'(k)] E rk, k ;::: 1, and /'k- 1 

[1'(0), ... , 7(k- 1)], then 

P(-yk) = P(-yk_t)P1'(k-1){S1 = f'(k) I 'TA = oo} 

= P( ) EsA(-y(k)) 
/'k-1 LyiA,Iy-..,(k-1)1=1 EsA(Y)' 

where A= {1'(0), ... , 1(k- 1)} and as before 

'TA = inf{j;::: 1: 83 E A}. 

Proof. Let V m be the event 

{uk-1 = m, [S(O), ... ,S(k -1)] = l'k-d· 

Then V m is the set of paths satisfying 

(i) L[So, ... , Sm] = /'k-1, 

(ii) Si ¢ A, j = m + 1, m + 2, ... 

Note that (i) and (ii) are conditionally independent given Sm = l'(k- 1). 
Also, if CTk-1 = m, then S(k) = Sm+1· Therefore, 

P{S(k) = ')'(k) I Vm} 

= P{Sm+1 = f'(k) I S(m) = l'(k- 1); si ¢ A,j > m} 

= p1'(k-1){S1 = ')'(k) I Sj ¢ A,j > 0}. 
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This gives the first equality and the second follows from the definition of 
EsA(·) (see Section 2.2). 0 

Another way of stating the above proposition is to say that the loop­
erased walk takes its kth step according to the rule for random walk con­
ditioned not to enter {'y(O), ... , -y(k- 1)}. We now formalize this idea. 
Suppose A C zd(d ~ 3) is a finite set. Then random walk with (past and 
future) taboo set A is the Markov chain with state space 

B = {x fl. A: EsA(x) > 0}, 

and transitions 

A x EsA(Y) 
p (x,y) = P {81 = Y ITA= oo} = 2dEsA{x)' ly-xl = 1. 

If we define q;!(x, y) by 

q~(x,y) = Px{Sn = y;Sj fl. A, j = 0, ... n}, 

then it is easy to check that the n-step transitions for random walk with 
taboo set A are given by 

In particular, 

p~(x,x) = q~(x,x) ~ Pn = P{Sn = 0}. (7.1) 

By a strong Markov argument identical to that used in deriving (1.19), 

00 

Px{Sni: x,j > 0 ITA= oo} = [Lq~(x,x)t 1 

00 

~ [LPnl-1 
j=O 

= px{Sni: x,j > 0} > 0. (7.2) 

7.4 Two Dimensions 

Since simple random walk is recurrent in two dimensions, we cannot con­
struct the two-dimensional loop-erased walk by erasing loops from an infi­
nite simple random walk. However, we can define the process as a limit of 
walks obtained from erasing loops on finite walks. As before, let 

~m = inf{j > 0: ISil ~ m}. 
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For any k ~ m, we can define a measure on rk by taking simple random 
walks stopped at the random time {m, erasing loops, and considering the 
first k steps. To be precise, we define pm = Pr:: on rk by 

pm(r) = P{L[So, ... 's(em)](j) = 'YU)I j = 01 ... I k}l 

where L is the loop-erasing operation defined in Section 7 .2. This definition 
is equivalent to that of a Laplacian random walk also cutoff at {m. The 
proof of the following proposition is identical to that of Proposition 7.3.1. 

Proposition 7.4.1 If 1 ~ k ~ m, 'Yk = ['Y(O)I ... I 'Y(k)] E rk, and 'Yk-1 = 
['Y(0) 1 ••• 1 "f(k- 1)], then 

pm(rk) = pm(rk_t)p'Y(k- 1){81 = 'Y(k) irA> {m} 

= pm( ) p-y(k){1"A > {m} 

'Yk-1 LyftA,Iy--y(k-1)1=1 PY{rA > {m} 1 

where A= {'y(0) 1 ••• 1 "f(k- 1)} and 

TA = inf{j 2:: 1: S; E A}. 

We can also give the alternative construction of this walk. Let 

i1o,m = sup{j ~ {m: 83 = 0} 1 

and for 1 ::5 i ::5 m, 

at,m = sup{j ~em : S; = S(ai-1,m + 1)}. 

Then set §m(i) = S(ai,m) and 

We would like to define P on rk by 

The next proposition allows us to do so and in the process gives as estimate 
of the rate of convergence. We call the measure on infinite paths induced 
by P the two-dimensionalloop-emsed walk. 

Proposition 7.4.2 lfn 2:: k2 and 'Y E rk , then for all m 2:: n, 

• • k2 n pm(r) = pn(r)(1 + 0( ~Ink)). 
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In particular, 

exists and 
A A k2 n 

P('y) = Pn('y)(1 + 0( -;;Ink)). 

Proof. Let 'Y = ['Y(O), ... ,"f(k)] and for j:::;; k, let 'Yi = ['Y(O), ... ,"f(j)] 
be an initial segment of 'Y· By Proposition 7.4.1, 

ftm( ·)- pm( . ) p'YU){TA > {m} (7.3) 
'YJ - 'YJ-1 " PY{ c } , 

L..,y!,tA,Iy-"f(J-1)1=1 TA > <,m 

where A= Aj = {"t(O), ... ,"f(j -1)}. 
If y rt A, IY- "f(j- 1)1 = 1, then 

PY{TA > {m} = PY{TA > {n}PY{TA > {m ITA> {n}· 

But, 

By Proposition 2.1.2, since A C Cn, 

k n 
PY{S({n) = z ITA> {n} = Hocn (0, z)(l + 0(;;: Ink)) 

(actually, Proposition 2.1.2 proves this for y E A, but the identical proof 
works for y E oA). Therefore, 

( .) k n 
PY{TA > {m ITA> {n} = P"~ 1 {TA > {m ITA> {n}(l + 0(;;: Ink)). 

If we plug this into (7.3) we obtain 

pm('yj) = ftm('yj_I) p'Y(J){TA>{n} (l+O(~ln~)) 
LyEA,Iy-')"(j-1)1=1 PY{TA > {n} n k 

= ftm(!J-dftn('yj) (1 + 0( ~In!!:)). 
pnbi-d n k 

If we iterate this for 1 :::;; j :::;; k, we get 

ftm('y) = pn('y)(1 + 0(~ In ~))k 
A k2 n 

= Pn('y)(1 + 0( -;;Ink)). 0 

An immediate consequence of this proposition is that for any 'Y E rk, 

(7.4) 
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7.5 Estimates on Amount Erased 

In order to analyze the behavior of S(n) for large n, we will need to inves­
tigate how many steps of the simple random walk remain after loops have 
been erased. We first consider the cased~ 3 where the loop-erased walk is 
constructed by erasing loops from an infinite simple random walk. Recall 
the definition of ai from Section 7.3. An equivalent way of describing ai is 

a(i) = ai = sup{j: S(j) = S(i)}. 

We define p(j) to be the "inverse" of a(i) in the sense 

Then, 

and 

p(j) = i if (]'i :5 j < (]'i+l· 

p(a(i)) = i, 

a(p(j)) :5 j, 

S{i) = S(a(i)). 

(7.5) 

{7.6) 

Let Yn be the indicator function of the event "the nth point of S is not 
erased", i.e., 

Then, 

{ 1 if a( i) = n for some i ~ 0, 
Yn = 0 otherwise. 

n 

p(n) = LYj 
j=l 

is the number of points remaining of the first n points after loops are erased. 
We let an= E(Yn) be the probability that the nth point is not erased. Let 
Wn be the path obtained by erasing loops on the first n steps of S, i.e., 

Wn = L[So, ... , Sn]· 

Then Yn = 1 if and only if 

Wn n S[n + 1, oo) = 0, 

i.e., if the loop-erased walk up to time nand the simple random walk after 
time n do not intersect. Therefore, 
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and 
(7.7) 

By translating the origin this can be restated: if 8 1 , 8 2 are independent 
simple random walks starting at the origin, then 

or equivalently by Proposition 7.2.1, 

an= P{L[SJ, ... , S!J n 8 2 (1, oo) = 0}. 

We can extend everything to the d = 2 case. Fix nand let m = n3 (we 
choose m = n3 so that we can use (7.4)). Then, using the notation of the 
last section, for i ~ m, 

u(i) = Ui,m = sup{j : S; = S"'(i)}, 

and we can define the inverse p by 

p(j) = Pm(i) = i if u(i) ~ j < u(i + 1). 

Then (7.5) and (7.6) hold for u and p. Define Y; = ~ ..... to be the indicator 

function of the event ''the jth point of Sis not erased before~ .... ,'' i.e., 

y. _ { 1 if u(i) = j for some i 2: 0, 
3 - 0 otherwise. 

Then 
n 

p(n) = I:Y; 
j=l 

is the number of points remaining after erasing loops through time~ ..... If 
w; = L[So, ... ,S;], then 

- s 
P{Y, = 11 So, ... ,S;} = P '{em< Tw,}· 

We will get bounds on the number of points erased by comparing to 
the number of points remaining afer a finite number of steps of the random 
walk. This will work for d = 2 as well as d 2: 3. Fix m and define f;m by 

sm = L[So, ... , Sm]· 

The length of f;m is a random variable. Define 

o-.... (i) = O"i,m = sup{j ~ m: S; = Sm(i)}, 
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and Pm ( i) the "inverse" of q m by 

Pm(j) = i if qm(i) :5 j < qm(i + 1). 

Note that Pm(j) < oo for each j :5 m and Pm(m) is exactly the length of 
the path f;m. As before, 

Pm(qm(i)) = i, i :5 Pm(m), (7.8) 

(7.9) 

For n < m, define Yn,m to be the indicator function of the event "the nth 
points is not erased by time m," i.e., 

Yn,m = { 

Then ifn < m, 

1 if qm(i) = n for some i ~ 0, 
0 otherwise. 

n 

Pm(n) = I::}},m· 
i=l 

If the nth point is erased by time m, then of course it will be erased even­
tually, i.e., if n :5 m and d ~ 3, 

Similarly, if d = 2 and j :5 m, 

Hence, 
Pm(n) ~ p(n), d ~ 3, 

Pm(n) ~ Pn3(n), d = 2. 

(7.10) 

(7.11) 

(7.12) 

(7.13) 

The goal of this section is to derive an upper bound which essentially 
states that p(n) grows no faster than n(ln n)- 113 for d = 4; no faster than 
n516 ford= 3; and Pn3(n) grows no faster than n213 ford= 2. Define bn 
by 

n 

bn = E(p(n)) =I:: E(Y,), d ~ 3, 
j=O 

n 

bn = E(pn3(n)) =I:: E(}},n3), d = 2. 
J=O 
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Theorem 7.5.1 (a) If d = 4, 

(b) Ifd = 2,3, 

1. ln bn - ln n 1 
1~s~p lnlnn ~ -3. 

. lnbn d+2 
hmsup -- < --. 

n--+00 ln n - 6 

In the proof of the theorem we will need a lower bound on the probability 
of returning to the origin while avoiding a given set. Recall that if A is a 
finite subset of zd' 

q~(x, y) = Px{Sn = y; 83 ¢ A,j = 0, ... ,n}. 

Lemma 7.5.2 (a) If d = 4, for every a > 0 there exists a Co: > 0 such that 
ifO ¢A andEsA(O) 2::: (lnn)-1/a:, 

qtn(O, 0} 2::: Ca:n-2 (EsA(0))2 (ln n)-a:. 

(b) If d = 3, for every a < oo, there exists a Co: > 0 such that if 0 ¢ A 
and EsA(O) 2::: n-o:, 

qtn(O,O) 2::: Ca:n-312 (EsA(0))2{lnn)-3• 

(c) If d = 2, for every a< oo, there exists a Co: > 0 such that if 0 ¢A 
and P{TA > ~n} 2::: n-o:, 

q2!,.(0,0) 2::: Ca:n- 1(P{TA > ~n})2 (lnn)-2 • 

Proof. We will prove (a) and (c); {b) can be proved similarly. It suffices 
in each case to prove the result for n sufficiently large. 

For (a), by Lemma 1.5.1, 

P{ISnl2:: n 112 (lnn)a:f4 } ~ Ca:exp{-(lnn)a:/4 }. 

Therefore for n sufficiently large (depending on a), if Es A ( 0) 2::: (ln n) - 1/ a:, 

P{ISnl ~ n 112 (ln n)0 14 ; Sj ¢ A,j = 0, 1, ... , n} 

In other words, 

2::: EsA{O)- P{ISnl 2::: n 112 (lnn)a:f4 } 

1 
2::: 2EsA{O). 
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But by reversibility of simple random walk, 

qtn(O, 0) > l: q:(o,x)2 

lxi:Snl/2(Jn n)"/4 

> cn-2(lnn)-0 [ l: q:(o,xW 
lxi:Snl/2(Jn n)"/4 

> cn-2(ln n)-0 [EsA(0)]2, 

for n sufficiently large. The second inequality uses the elementary inequality 

For (c), by Lemma 1.5.1, 

P{ISnl ~ 2an112(ln n)} :5 cn-2a. 

Therefore for n sufficiently large, if P{ TA >en} ~ n-a' 

or 

P{ISnl :5 2an112(ln n); Si ¢ A,j = o, 1, ... , n} 

> P{rA >en}- P{JSnl ~ 2an112(1nn)} 
1 

> 2P{TA > ~n}, 

"" A 1 L.- qn (O,x) ~ 2P{TA > ~n}, 
lxl$2anl/2(Jn n) 

and hence for n sufficiently large, 

lxi:S2anl/2(Jn n) 

> C0 n-1 (lnn)-2[P{TA > ~n}f 0 

Proof of Theorem 7.5.1. Fix nand for 0 :5 j :5 n let 

X X { 0 if lJ-1,2n = 0, 
j = j,2n = 0"2n(i + 1)- 0"2n(i) if 0"2n(i) = j- 1. 

Then 
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and hence 
n 

LE(X1 ):::; 2n. (7.14) 
j=l 

Recall that Wj = L[So, ... , Sj]· We set 

Z1 = P 81 {Tw1 > ~n3} if d = 2. 

For any 0 :::; j :::; n, let Tj be the nearest neighbor of S1 with Tj (/. wj 
which maximizes Esw1 (-) (or P"{~n3 < TwJ if d = 2). If there is more 
than one such point which obtains the maximum choose one arbitrarily. 
If each nearest neighbor of Sj is in Wj, choose T1 arbitrarily. If we set 
wj = EswJ(Tj) if d = 3,4 and w] = pT1 {~n3 < Tw]} if d = 2, then it is 
easy to check that 

Then for 0 :::; 2r < n, 

P {X 1 = 2r + 1 I S k, 0 :::; k :::; j} 

where 

> P{SJ+l = T]; Sj+2r+l = sj+li sk (/. Wj,j < k:::; 2n; 

sk =1- Sj+l>J + 2r + 1 < k:::; 2n I sk, 0:::; k:::; j} 

> (2d)- 1 q~; (T1 , T1 )Wi, 

wj = Esw]u{TJ}(Tj), d = 3,4, 

- T 
Wj = p 1 {~n3 < Tw1 u{T1 }}, d= 2. 

If d = 3, 4, it follows from (7.2) that 

For d = 2 one can prove in the same way as (7.2) that if x E Cn3, A C 

Cn3,X (/.A, 

px{Tx > en3 ITA> en3} > px{Tx > en3} 
> c(lnn)- 1 

The second inequality follows from Proposition 1.6. 7. Therefore, 
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Let d = 4, o E (0, j). By Lemma 7.5.2(a), if Z; :;::: (lnn)-3, n-1/ 2 $ 
2r < n, then 

Therefore, 

If we sum over n- 112 $ 2r < n,, 

and hence, 

E(X;):;::: c<>(lnn)1-<>E(Zfl{Z; 2: (lnn)-3}). 

Therefore, by (7.14), 

n 

"£E(Zfl{Z1 2: (lnn)-3}) $ c<>n(lnn)<>-1, 

]=0 

and hence 
n 

L E(Zf) $ c<>n(ln n)<>- 1. 

]=0 

If so, ... ,sn 2:0, 
n n 

"£s~:;::: (n+1)-2("£si)3 • 

i=O 

Therefore, 

n n 

"£E(Z;) $ (n + 1)2f3[L E(Z;)3j1/3 
j=O ]=0 

n 

< (n + 1)213["£ E(Z])PI3 

j=O 

< c<>n(ln n)<<>- 1)13. 

Since this holds for all o E (0, j), we have proved the theorem ford= 4. 
Similarly, if d = 2, 3, by Lemma 7.5.2(b)-(c), if Z; :;::: n-5 , n/2 $ 2r < n, 

then 
q~;,(T;,T;):;::: cr-df2ZJ(1nn)-d. 

If we sum over n/2 $ 2r < n, we get 

E(X;) 2: cn<4-d)/2(lnn)-3E(Zfl{Z; 2: n-5}), 
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and arguing as before, 
n n 

LE(Z;) ~ (n+ 1)213 [LE(Z])PI3 ~ cn<d+2li6(Inn). o 
j=O J=O 

It is natural to ask is how good the bound in Theorem 7.5.1 is. Let us 
consider the case d = 3, 4. Then 

Zn = Eswn (Sn), 

an = E(Zn) and Pn = Ej=0 a3 • The proof of the theorem gives a way to 
estimate E(Z~). While the proof only gives a bound for this quantity in 
one direction, we conjecture that this bound is sharp and that 

E(Z3 ) ~ { (In n)-1, d = 4, 
n n-1/2, d = 3. 

The proof then proceeds by estimating E(Zn) by E(Z~) 1 13 . It is quite 
likely that this bound is not sharp in low dimensions. A similar problem 
arose in the analysis of intersections of random walks. let 

j{n) = P{S(O,n) n S(n + l,oo) = 0}. 

Then ](n) = E(Vn) where 

Vn = Ess[O,nJ(Sn)· 

It is not easy to estimate E(Vn) (a large portion of Chapters 3-5 is devoted 
to this problem). However, the analysis of two-sided walks {Theorem 3.5.1) 
allows us to show that 

E(V2 ) ~ { (In n)- 1, d = 4, 
n n-1/2, d = 3. 

For this problem the second moment is relatively easy to estimate while for 
the loop-erased walk it is the third moment. How much do we lose when we 
estimate E(Vn) by E(V,?) 112? If d = 4, we lose very little since by Theorem 
4.4.1, ](n) ~ (lnn)-112 • By analogy we conjecture that we lose little in 
estimating E(Zn) by E(Z~)1 13 in four dimensions, i.e., we conjecture 

an~ (lnn)-113 , d = 4. 

For d = 3, we expect that the estimate E(Vn) ~ E(V,?) 112 is not sharp; 
in fact ](n) ~ n-< where it is conjectured that ( E (.28, .29). Again 
by analogy we expect that the estimate for E(Zn) is not sharp in three 
dimensions and that an ~ n-o for some a > ~. We also do not expect that 
the estimate in Theorem 7 .5.1 will be sharp in two dimensions. Therefore, 
the estimates for the mean square displacement given in the next section are 
not conjectured to be sharp. Monte Carlo simulations (31] are consistent 
with this belief. 
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7.6 Growth Rate in Low Dimensions 

As a corollary to Theorem 7.5.1 we will prove that the mean-square displace­
ment of the loop-erased walk, (!7(n)l2} p = E(IS(n)i2), grows at least as 
fast as the Flory predictions for the usual self-avoiding walk, i.e., E(IS(n)i2) 
grows no slower than n6/(2+d) in two and three dimensions. As mentioned 
in the previous section, it is probably true that the displacement is even 
greater. Monte Carlo simulations [31] predict 

A { n 8/ 5 d- 2 
E(IS(n)l2) ~ n1.2a ... , d: 3: 

Most of the work in proving the estimate was done in Theorem 7.5.1. We 
first state an easy lemma about the minimum displacement of simple ran­
dom walk. 

Lemma 7.6.1 (a) If d ~ 3, for every E > 0, 

lim P{ inf IS3 12 :5 n1- 2'} = 0. 
n-+oo J<::n 

(b) If d = 2 and 

then for every E > 0, 

Proof. By the central limit theorem 

(7.15) 

If d ~ 3, by Proposition 1.5.10, if lxl2 ~ n l-•, 

px{i~t IS;I2 :5 nl-2•} :5 O(n-E/2). 
J_ 

This gives (a). For (b), let 

a= inf{k ~ n: ISkl ~ n3 or ISkl2 :5 n1- 2'}. 

By the optional sampling theorem, if a is the potential kernel defined in 
Section 1.6, 

E(a(Sa)) = E(a(Sn)). 
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By Theorem 1.6.2 it is easy to show that 

1 
E(a(Sn)) = -ln n + 0(1). 

7r 

Similarly, using (7.15), 

E(a(Su) IIBul2 :5 n1- 2•) = .!_(1- 2e) ln n + 0(1), 
7r 

and hence 

Theorem 7.6.2 If S is the loop-erased walk, then ford= 2, 3, 

1. . f lnE(IB(n)l2 ) 6 
Imm > --. 
n-co ln n - 2 + d 

Proof. Let d = 3. By Theorem 7.5.1(b), for every e > 0, if n is 
sufficiently large, 

E(p(n)) :5 ni+i, 

and hence for every e > 0, 

P{p(n) ;:::: ni+•} -+ 0. 

Note that if a(j) :5 j~-·, 

p([j~-·n;:::: p(o(j)) = i-

Therefore, for every e > 0, 

P{a(j) :5 j~-·}-+ 0. 

But S(j) = S(a(j)) and using Lemma 7.6.1, if 

D3 = inf{IBkl2 : jl-• :5 k < oo}, 

then 
P{IB(j)l2 :5 jl-2•} :5 P{ID31 :5 jl-2•} + o.(1)-+ o. 

This gives the result for d = 3. 
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- 3 
Ford= 2 it suffices by {7.4) to prove the result for 8n . Then as above 

we can derive from Theorem 7.5.1 that for every f.> 0, 

Therefore, if 

then 

and hence 
liminf P{ISi3(j)l2 ?.: j~-2E} > o. o 

J-+00 

7. 7 High Dimensions 

We will show that the loop-erased walk appropriately scaled approaches a 
Brownian motion if d ?.: 4. If d ?.: 5, the scaling will just be a constant times 
the usual scaling for simple random walk, while for d = 4 a logarithmic 
correction term will appear. The key step to proving such convergence is 
to show that the loop-erasing process is uniform on paths, i.e., that 

r~ 1 p(n) -+ 1, 

for some rn-+ oo. 
We first consider the case d ?.: 5. Here it will be convenient to extend 

8 to a two-sided walk. Let 8 1 be a simple random walk independent of 8 
and let 8j, -oo < j < oo, be defined by 

8 . _ { 8j, o::; i < oo, 
3 - 8 1 . 0 J' -oo < J::; . 

We call a time j loop-free for 8 if 8( -oo, j] n 8(j, oo) = 0. By(3.2), for each 
j, 

P{j loop-free}= P{8( -oo, OJ n 8(0, oo) = 0} = b > 0. 

Lemma 7.7.1 If d ?.: 5, with probability one, 8(-oo,oo) has infinitely 
many positive loop-free points and infinitely many negative loop-free points. 

Proof. Let X be the number of positive loop-free points. We call a 
time j n-loop-free if 8[j- n,j] n 8(j,j + n] = 0. Then 

P{j n-loop-free} = P{8[-n,O] n 8(0,n] = 0} = bn, 
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and bn -+ b. Let Vi,n be the event {(2i- 1)n is loop-free} and Wi,n the 
event {(2i- 1)n is n-loop-free}. Note that for a given n, the events Wi,n, 
i = 1, 2, ... , are independent. For any k < oo, ( > 0, find m such that if 
Y is a binomial random variable with parameters m and E, P{Y < k} ~ E. 

Then 
m 

P{X 2:: k} 2:: P{L l(V.,n) 2:: k} 
t=l 
m m 

> P{L /(W,,n) 2:: k}- P{Ll(Wi,n \ Vi,n) ~ 1} 
t=l i=l 

2:: 1 - €- m(b- bn)· 

Now choose n so that m(b- bn) ~ E. Then P{X 2:: k} 2:: 1- 2€. Since 
this holds for all k < oo, E > 0, we must have P {X = oo} = 1. A similar 
proof shows that the number of negative loop-free points is infinite with 
probability one. D 

Theorem 7. 7.2 If d ~ 5, there exists an a > 0 such that with probability 
one 

lim p(n) =a. 
n-oo n 

Proof: Order the loop-free points of S( -oo, oo), 

· · · ~ J-2 ~ J-1 ~ io ~ J1 ~ J2 ~ · · ·, 

with 
)o = inf{j 2:: 0: j loop-free}. 

We can erase loops on the two-sided path S( -oo, oo) by erasing separately 
on each piece S(j, ji+ I]. Let Yn be the indicator function of the event 
"the nth point is not erased in this procedure," i.e., Yn = 1 if and only if 
ii ~ n < j,+l for some i and 

We note that the Yn form a stationary, ergodic sequence. Therefore by a 
standard ergodic theorem (see [9], Theorem 6.28), with probability one, 

1 Ln - -lim - Yj = E(Yo). 
n--+oo n 

j=O 

If instead we erase loops only on the path S(O,oo}, ignoring S(-oo,O}, the 
self-avoiding path we get may be slightly different. However, it is easy to 
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see that if n ~ ]o, then Yn = Yn, where Yn is as defined in section 5. 
Therefore, since j 0 < oo, with probability one, 

. p( n) . 1 Loo - . 
hm -- = hm - Yn = E(Yo) =a. 

n-+00 n n-+00 n 
j=1 

To see that a > 0 we need only note that 

a~ P{O loop-free} > 0. 0 

We cannot use such a proof ford= 4 since S( -oo, oo) contains no (two­
sided) loop-free points. However, we will be able to make use of one-sided 
loop-free points. Let In = I(n) be the indicator function of the event "n is 
a (one-sided) loop-free point," i.e., 

S[O, n] n S(n, oo) = 0. 

The first lemma shows that the property of being loop-free is in some sense 
a local property. 

Lemma 7. 7.3 Let d = 4 and 

Un = {S[O, n] n S(n, oo) = 0} 

Vn,k = {S[k- n(lnn)-9 , k] n S(k, k + n(lnn)-9 ] = 0}. 

Then for all k with n(ln n) - 9 ::; k ::; n, 

lnln n 
P(Vn k) = P(Un)(1 + 0(-1-)). ' nn 

Proof. It suffices to prove the lemma for k = n. We write U for Un 
and V for Vn,n· Let 

V = V n = {S[n- n(ln n)-9 , n] n S(n, oo) = 0}. 

Then by Proposition 4.4.4 and Theorem 4.3.6, 

Let 

P(V) = P(U)(1 + O(lnlln n)). 
nn 

W = Wn = {S[n- n(ln n)- 18 , n] n S(n, n + n(ln n)-9 ] = 0}, 

W = W n = {S[n- n(ln n)- 18 , n] n S(n, oo) = 0}. 

(7.16) 
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Then again by Proposition 4.4.4 and Theorem 4.3.6, 

P(W) = P(V)(1 + O(lnlnn)). 
Inn 

(7.17) 

But by {3.9) and Proposition 4.3.1(iv), 

P(W\W) $; P{S[n-n(lnn)- 18,n]nS[n+n(lnn)-9 ,oo)=0} 
= o((lnn)-2 ). 

Since P(W) ~ (In n)- 112 (Theorem 4.4.1), this implies 

P(W) = P(W)(l + O(lnlln n)). 
nn 

But V c V c W, so (7.16) - (7.18) imply 

P(V) = P(U)(l +O(lnlnn)). o 
Inn 

(7.18) 

The next lemma will show that there are a lot of loop-free points on a 
path. Suppose 0 $; j < k < oo, and let Z(j, k) be the indicator function of 
the event "there is no loop-free point between j and k,"i.e., 

{lm=O,j$m$k}. 

Then by Theorem 4.3.6{ii), if d = 4, 

E(Z(n- n{ln n)-6 , n)) 2: P{S[O, n- n(ln n)-6] n S(n + 1, oo) # 0} 
lnlnn 

> c lnn · 

The next lemma gives a similar bound in the opposite direction. 

Lemma 7. 7.4 If d = 4, for any n and k with n(In n)-6 $; k $; n, 

6 lnlnn 
E(Z(k- n{ln n)- , k)) $; c-1-. nn 

Proof. It suffices to prove the result for k = n. Fix n; let m = mn = 
[(Inn)2); and choose j 1 < i2 < ... < im (depending on n) satisfying 

n- n(ln n)-6 $; ii $; n, i = 1, ... , m, 

ii -ii-1 2: 2n(lnn)-9 , i = 2, ... ,m. 

Let J(k, n) be the indicator function of 

{S[k- n{ln n)-9 , k] n S(k, k + n(ln n)-9] = 0}, 
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and 

By Lemma 7.7.3, 

and hence 

Note that 

m 

X= Xn = LJ(ji), 
t=l 

m 

X= Xn = LJ(ji,n). 
i=l 

E(J(ji, n)) = E(/(ji))(1 + O(lnlln n)), 
nn 

E(X) = E(X)(1 + O(lnlnn)), 
Inn 

E(X- X)$. clnlnn E(X). 
Inn 

E(Z(n-n(lnn)-6 ,n)) < P{X=O} 

205 

(7.19) 

- 1 - 1 
< P{X- X 2:: 2E(X)} + P{X $. 2E(X)}. 

The first term is estimated easily using (7.19), 

P{X- X 2:: ~E(X)} < 2[E(X)]- 1 E(X- X) 

lnlnn 
< c-1-. 

nn 

To estimate the second term, note that J (j1 , n), ... , J (jm, n) are indepen­
dent and hence 

m m 

Var(X) = :L:Var(J(ji, n)) $. L E(J(j., n)) $. E(X), 
i=l i=l 

and hence by Chebyshev's inequality, for n sufficiently large, 

But by Theorem 4.4.1, 

E(X) 2:: c(ln n) 2 E(l(n)) 2:: c(ln n) 1118 . 

Hence, P{X $_ !E(X)} $_ c(lnn)- 1118 and the lemma is proved. D 
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Recall from Section 7.5 that Yn is the indicator function of the event 
"the nth point is not erased" and an = E(Yn)· Suppose that for some 
0 $ k $ n, loops are erased only on S[k, oo), so that Sk is considered 
to be the origin. Let Yn,k be the probability that Sn is erased in this 
procedure. Clearly E(Yn,k) = an-k· Now suppose 0 $ k $ n- n(ln n)-6 

and Z(n- n(ln n)-6 , n) = 0, i.e., that there exists a loop-free point between 
n- n(ln n)-6 and n. Then it is easy to check that Yn,k = Yn, and hence by 
the previous lemma, 

6 lnlnn 
P{Yn f Yn,k} $ E(Z(n- n(ln n)- , n)) $ c-1-. 

nn 

Therefore, for n(ln n)-6 $ k $ n, 

lak- ani :5 can(Inn)-318 , 

i.e., 
(7.20) 

The second inequality follows from the estimate an ~ f(n) ~ (ln n)-112 • 

We can combine this with Theorem 7.5.1(a) to conclude 

1 1. . f In an 1. ln an 1 -- < 1mm -- < 1msup-- < --. 
2 - n-+00 lnlnn - n-+oo lnlnn- 3 

We also conclude 
E(p(n)) "'nan. (7.21) 

The following theorem shows that the number of points remaining after 
erasing loops satisfies a weak law of large numbers. 

Theorem 7. 7.5 If d = 4, 

in probability. 

Proof. For each n, choose 

0 :5 io < i1 < · · · < j'Tn = n 

such that (ji - ii-d "' n(ln n) - 2 , uniformly in i. Then m "' (ln n )2 • Erase 
loops on each interval [ji,ji+l] separately (i.e., do finite loop-erasing on 
S[ji,j,+l].) Let Yk be the indicator function of the event "Sk is not erased 
in this finite loop-erasing." Let Ko = [0, OJ, and fori= 1, ... , m, let K, be 
the interval 
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Let ~. i = 1, ... , m, be the indicator function of the complement of the 
event, "there exist loop-free points in both Ki- 1 and Ki,'' i.e., the comple­
ment of the event 

{Z(j,_1- n(lnn)-6,j,_1) = Z(ji- n(lnn)-6 ,j,) = 0}. 

By Lemma 7.7.4, 

E(Ri):::; clnlln n. 
nn 

Note that if ji :::; k < j,+1 - n(ln n)-6 and Ri = 0, then 

Yk = Yk. 

Therefore, for n sufficiently large, 

n n m 

I LYk- l:Ykl < c[m(n{ln n)-6 ) + 2n{ln n)-2 L R,] 
k=O k=O i=1 

m 

< cn(ln n)-4 + cn(ln n)-2 L Ri. 
i=1 

But by (7.22), 

m m 

P{LRi 2: {lnn)514 } < (1nn)- 514 E(LR,) 
i=1 i=1 

< clnlnn{lnn)- 114 • 

Therefore, 
n n 

P{l LYk- LYkl2: cn(lnn)-314 }--. 0. 
k=O k=O 

Since nan 2: cn(ln n) -s;s, this implies 

n n 

(nan)- 1(LYk- LYk)--> 0 
k=O k=O 

in probability. We can write 

n m 

LYk=l+ LXi, 
k=O i=l 

where X1. ... , Xm are the independent random variables, 

j,-1 

X,= L yk· 
k=J•-1 

(7.22) 

(7.23) 
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Note that 

and hence 
n n 

Var(LYk) :S cn(ln n)- 2 E(LYk)· 
k=O k=O 

Therefore, by Chebyshev's inequality, 

n n n 
P{j Lyk- E(LYk)j ~ (ln n)- 112 E(LYk)} 

k=O k=O k=O 
n 

< cn(ln n)- 1 [E(LYk)t 1 

k=O 
< c(lnn)- 318 . 

This implies 
n n 

[E(LYk)t 1 l::Yk __. 1 
k=O k=O 

in probability. It is easy to check, using (7.20) that E(:E~=O Yk) ,......, nan and 
hence by (7.23), 

n 

(nan)- 1 p(n) = (nan)- 1 Lyk --> 1 

k=O 

in probability. D 

We finish this section by showing that the loop-erased walk converges 
to Brownian motion if d ~ 4. This is essentially a consequence of Theorems 
7.7.2 and 7.7.5. Recall from Section 7.5 that 

S(n) = S(a(n)), 

where a is the "inverse" of p. If d 2.: 5, by Theorem 7. 7.2, with probability 
one, 

lim p(a(n)) =a 
n-oo a(n) ' 

and hence by (7.5), 

lim a(n) = ~-
n-oo n a 

(7.24) 
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For d = 4, since an ~ c{ln n)-518 , it follows from (7.20) that a[n/an) "' an. 
Therefore, by Theorem 7.7.5, 

p([n/an]) -+ 1 
n 

in probability. It is not hard then using the monotonicity of p to show that 

a(n)an 
_..;.,._:_....:.. -+ 1 

n 
(7.25) 

in probability. 
We will use ~ to denote weak convergence in the metric space C[O, 1] 

with the sup norm. Then the standard invariance principle states that 
if Wn(t) = dn- 112S([nt]), then Wn(t) ~ B(t), where B is a standard 
Brownian motion in R_d. Suppose bn -+ oo and 

( ) . a([nt]) 
Tn t = b;:- ~ t. 

Then by the continuity of Brownian motion (or more precisely, the tightness 
in C[O, 1] of the sequence Wn), 

and hence 
dS(a([nt])) B( ) 

n:- ~ t. 
vun 

If d ~ 5, it follows immediately from (7.24) that n-1a([nt])a ~ t. For 
d = 4, we need to be a little careful. Fix f > 0 and choose k ~ 3c1. Let 
c > 0. Then by {7.25), for all n sufficiently large, 

P{l a([njfk])a(nJ/k) -II>~}<~ 
[njjk] - 4 - k' j = l, ... ,k. 

Since a(n/k) "'an (see (7.20)) this implies for n sufficiently large 

But since a is increasing and k ~ 3£-1, this implies for n sufficiently large, 

a([nt])an 
P{ sup I - tl ~ f} ~c. 

o~t9 n 
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Since this holds for any f, c > 0, 

a([nt])an ::::} t, d = 4. 
n 

We have therefore proved the following. 

Theorem 7.7.6 (a) If d?::. 5, and 

WA ( ) = dJaS([ntJ) 
nt ,jii , 

then Wn(t)::::} B(t), where B is a standard Brownian motion. 
{b) If d = 4, and 

WA ( ) = dFnB([nt]) 
nt ,jii , 

then Wn(t) => B(t), where B is a standard Brownian motion. 
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Appendix A 

Recent Results 

In this addendum I would like to summarize a few results that have been 
proved since the first printing of this book. I will only discuss some results 
directly relevant to the last four chapters of the book. 

The method of "slowly recurrent sets" was used in [A3] to improve the 
estimate on f(n) in four dimensions as discussed in Section 4.4. A subset 
A of zd is called slowly recurrent if it is recurrent, but P(Vn) ---+ 0, where 
Vn is defined as in the proof of Theorem 2.2.5. (By Theorem 2.2.5, A is 
recurrent if and only if L: P(Vn) = oo.) An example of a slowly recurrent 
set is the path of a simple random walk in four dimensions. In [A3] it is 
shown that there is a constant c such that 

f(n) "'c(ln n)-112 • 

Zhou independently gave an argument to show that 

f(n) x (lnn)-112 , 

and Albeverio and Zhou [Al] also have proved the corresponding result for 
Brownian motions in four dimensions. 

The equivalence of Brownian motion and random walk exponents in two 
and three dimensions (see Section 5.3) was extended to mean zero, finite 
variance random walks in [A2]. In the case of simple random walk, there 
has been some improvement on the rate of convergence to the intersection 
exponent. Let b{r) = b(r, x, -x) where b(r, x, -x) is defined as in Section 
5.2 and lxl = 1. It has been shown [A5] that 

b(r) x r-( = r-2<. 

Also, for simple random walk [A6], 

f(n) x n-<. 
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Some estimates for the disconnection exponent (Section 5.5) were derived in 
[A10] and in [A 7] it was shown that the simple random walk disconnection 
exponent, which is defined in a natural manner, is the same as the Brownian 
motion exponent. 

For a detailed treatment of results on self-avoiding walks discussed in 
Chapter 6, I recommend the recent book of Madras and Slade [A8]. One 
interesting result that has come out since their book is a result of Toth [A9] 
showing that the mean square displacement of a bond "true" or "myopic" 
random walk in one dimension does grow like n 413 , which is the conjectured 
for the (site) myopic random walk (see Section 6.5). While the bond walk is 
technically easier to handle than the site walk, there is no reason to believe 
that they should have different critical exponents. 

The method of slowly recurrent sets was used to prove the conjecture 
about four dimensional loop-erased self-avoiding walk discussed in Section 
7.7. It has been proved [A4] that 

an~ (lnn)- 113 , 

where an is the normalization constant in Theorem 7.7.6 (b). In other 
words, the mean square displacement of the the walk grows like n(lnn) 113 . 
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