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Preface

A more accurate title for this book would be “Problems dealing with
the non-intersection of paths of random walks.” These include: harmonic
measure, which can be considered as a problem of nonintersection of a
random walk with a fixed set; the probability that the paths of independent
random walks do not intersect; and self-avoiding walks, i.e., random walks
which have no self-intersections. The prerequisite is a standard measure
theoretic course in probability including martingales and Brownian motion.

The first chapter develops the facts about simple random walk that will
be needed. The discussion is self-contained although some previous expo-
sure to random walks would be helpful. Many of the results are standard,
and I have borrowed from a number of sources, especially the excellent book
of Spitzer [65]. For the sake of simplicity I have restricted the discussion to
simple random walk. Of course, many of the results hold equally well for
more general walks. For example, the local central limit theorem can be
proved for any random walk whose increments have mean zero and finite
variance. Some of the later results, especially in Section 1.7, have not been
proved for very general classes of walks. The proofs here rely heavily on the
fact that the increments of simple random walk are bounded and symmet-
ric. While the proofs could be easily adapted for other random walks with
bounded and symmetric increments, it is not clear how to extend them to
more general walks. Some progress in this direction has been made in [59].

The proof of the local central limit theorem in Section 1.2 follows closely
the proof in [65]. The next sections develop the usual probabilistic tools for
analyzing walks: stopping times, the strong Markov property, martingales
derived from random walks, and boundary value problems for discrete har-
monic functions. Again, all of this material is standard. The asymptotics
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of the Green’s function for d > 3 and of the potential kernel for d = 2 are
then derived. There is care in these sections in being explicit about the
size of the error in asymptotic results. While this makes it a little harder
to read initially, it is hoped that this will allow the chapter to be a refer-
ence for “well known” facts about simple random walks. The results in the
last section of this chapter are analogous to results which are standard in
partial differential equations: difference estimates for harmonic functions
and Harnack inequality. Unfortunately the discrete versions of these use-
ful results do not seem to be familiar to many people working in random
walks. A version of Theorem 1.7.1(a) was first proved in [8]. A number of
“exercises” are included in Chapter 1 and the beginning of Chapter 2. It
is suggested that the reader do the exercises, and I have felt free to quote
results from the exercises later in the book.

Harmonic measure is the subject of the second chapter. By harmonic
measure here we mean harmonic measure from infinity, i.e., the hitting
distribution of a set from a random walker starting at infinity. There are
many ways to show the existence of harmonic measure, see e.g. [65]. Here
the existence is derived as a consequence of the results in Section 1.7. This
method has the advantage that it gives a bound on the rate of convergence.
In Sections 2.2 and 2.3, the idea of discrete capacity is developed. The
results of these sections are well known although some of the proofs are
new. [ take the viewpoint here that capacity is a measure of the probability
that a random walk will hit a set. In the process, I completely ignore
the interpretation in terms of electrical capacity or equilibrium potentials.
Computing harmonic measure or escape probabilities can be very difficult.
Section 2.4 studies the example of a line or a line segment and in the process
develops some useful techniques for estimating harmonic measure. First,
there is a discussion of Tauberian theorems which are used to relate random
walks with geometric killing times with random walks with a fixed number
of steps (analytically, this is a comparison of a sequence and its generating
function). Then the harmonic measure of a line and a line segment are
derived. The earlier estimates are standard. The estimate for the endpoint
of a line segment in two dimensions (2.41) was first derived by Kesten
[35] using a different argument. The argument here which works for two
and three dimensions first appeared in [45]. The next section gives upper
bounds for harmonic measure. The bound in terms of the cardinality of the
set has been known for a long time. The bound for connected sets in terms
of the radius is a discrete analogue of the Beurling projection theorem (see
[1]) and was first proved for d = 2 by Kesten [35]. The three dimensional
result is new here; however, the proofs closely follow those in [35]. The
final section gives an introduction to diffusion limited aggregation (DLA),
a growth model first introduced by Witten and Sander [73]. The bounds
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from the previous section are used to give bounds on the growth rate of
DLA clusters; again, the result for d = 2 was first proved by Kesten [36]
and the three dimensional result uses a similar proof.

The next three chapters study the problem of intersections of random
walks or, more precisely, the probability that the paths of independent ran-
dom walks intersect. We will not discuss in detail what the typical intersec-
tion set looks like. This has been studied by a number of authors under the
name “intersection local time”, see e.g. [47] . The discussion on the proba-
bility of intersection follows the results in [11, 12, 39, 40, 41, 45]. Chapter
3 sets the basic framework and proves some of the easier results. In Section
3.2, the expected number of intersections is calculated (a straightforward
computation) and one lower bound on the hitting probability is given, using
a proof adapted from [22]. The expected number of intersections gives a
natural conjecture about the order of the probability of “long-range” inter-
sections. This conjecture is proved in the next two sections. For d # 4, the
proof requires little more than the estimate of two moments of the number
of intersections. More work is needed in the critical dimension d = 4; the
proof we give in Section 3.4 uses the properties of a certain random variable
which has a small variance in four dimensions. This random variable is used
in the next chapter when more precise estimates are given for d = 4. The
problem of estimating the probability of intersections of two random walks
starting at the same point is then considered. It turns out that the easier
problem to discuss is the probability that a “two-sided” walk does not in-
tersect a “one-sided” walk. The probability of no intersection in this case
is shown to be equal to the inverse of the expected number of intersections,
at least up to a multiplicative constant. This fact is proved in Sections 3.5,
3.6, and 4.2. This then gives some upper and lower bounds for the proba-
bility that two one-sided walks starting at the same point do not intersect.
The material in this chapter essentially follows the arguments in [39, 45].
Some of these results have been obtained by other means [2, 23, 58], and
some simplifications from those papers are reflected in the treatment here .

The techniques of Chapter 3 are not powerful enough to analyze the
probability that two one-sided walks starting at the origin do not intersect.
There are a number of reasons to be interested in this problem. It is a
random walk analogue of a quantity that arises in a number of problems
in mathematical physics (e.g., a similar quantity arises in the discussion
of critical exponents for self-avoiding walks in Section 6.3). Also, some of
the techniques used in nonrigorous calculations in mathematical physics
can be applied to this problem, see e.g. [16, 17], so rigorous analysis of
this problem can be used as a test of the effectiveness of these nonrigor-
ous methods. Unfortunately, there is not yet a complete solution to this
problem; Chapters 4 and 5 discuss what can be proved.
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In four dimensions, the probability of nonintersection goes to zero like
an inverse power of the logarithm of the number of steps. The techniques
of Chapter 3 give bounds on this power; in Chapter 4, the exact power is
derived. The first part of the derivation is to give asymptotic expressions
for the probability of “long-range” intersections (the results of the previous
chapter only give expressions up to a multiplicative constant). Sections
4.3 and 4.4 derive the expressions, using a natural relationship between
long-range intersections and intersections of a two-sided walk with a one-
sided walk. The next section derives the exact power of the logarithm. It
essentially combines the result on long-range intersection with an estimate
on asymptotic independence of short-range and long-range intersections to
estimate the “derivative” of the probability of no intersection. The final
section discusses a similar problem, the mutual intersections of three walks
in three dimensions. The results are analogous to those of two walks in
four dimensions. Some of these results appeared in [41]. One new result
is Theorem 4.5.4, which gives the exact power of the logarithm for the
probability of no intersection.

The next chapter considers the intersection probability in dimensions
two and three. Here the probability of no intersection goes to zero like
a power of the number of steps. Again, the results of Chapter 3 can be
used to give upper and lower bounds for the exponent. The first thing
that is proved is that the exponent exists. This is done in Sections 5.2
and 5.3 by relating it to an exponent for intersections of paths of Brownian
motions. Some estimates are derived for the exponent in the remainder
of the chapter. First a variational formulation of the exponent is given.
The formulation is in terms of a function of Brownian motion. Bounds on
this function then give bounds on the exponent. Section 5.5 gives a lower
bound for the intersection exponent in two dimensions by comparing it to a
different exponent which measures the probability that a Brownian motion
makes a closed loop around the origin. The last section gives an upper
bound in two and three dimensions.

The last two chapters are devoted to self-avoiding walks, i.e., random
walks conditioned to have no (or few) self-intersections. Sections 6.2 and
6.3 discuss the usual (strictly) self-avoiding walk, i.e., simple random walk
of a given length with no self-intersections. The connective constant is de-
fined, and then there is a discussion of the critical exponents for the model.
The critical exponents are discussed from a probabilistic viewpoint; how-
ever, the discussion is almost entirely heuristic. The few nontrivial results
about the self-avoiding walk have been obtained from either combinatorial
or (mathematical physics) field-theoretic arguments. We mention a few of
these results here. There is a forthcoming book by N. Madras and G. Slade
in this series which will cover these topics in more detail. The next two
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sections discuss other models for self-avoiding or self-repelling walks. They
fall neatly into two categories: configurational models (Section 6.4) and
kinetically growing walks (Section 6.5). The final section gives a brief in-
troduction to the problem of producing self-avoiding walks on the computer,
a topic which has raised a number of interesting mathematical questions.

The last chapter discusses a particular model for self-avoiding walks,
the loop-erased or Laplacian random walk. This model can be defined in
two equivalent ways, one by erasing loops from the paths of simple ran-
dom walk and the other as a kinetically growing walks with steps taken
weighted according to harmonic measure. This model is similar to the
usual self-avoiding walk in a number of ways: the critical dimension is four;
there is convergence to Brownian motion for dimensions greater than or
equal to four, with a logarithmic correction in four dimensions; nontrivial
exponents describe the mean-square displacement below four dimensions.
Unfortunately, this walk is not in the same universality class as the usual
self-avoiding walk; in particular, the mean-square displacement exponent
is different. The basic construction of the process is done in the first four
sections. There are some technical difficulties in defining the walk in two
dimensions because of the recurrence of simple random walk. These are dis-
cussed in Section 7.4. In the next section, estimates on the average amount
erased are made. These are then used in Section 7.6 to show that the mean-
square displacement exponents are at least as large as the Flory exponents
for usual self-avoiding walk. The convergence to Brownian motion in high
dimensions is done in the last section. Essentially the result follows from a
weak law that says that the amount erased is uniform on each path. The
proof follows [38, 42]; however, unlike those papers the treatment in this
book does not use any nonstandard analysis.

A number of people have made useful comments during the preparation
of this book. I would especially like to thank Tom Polaski and Harry
Kesten. Partial support for this work was provided by the National Science
Foundation, the Alfred P. Sloan Research Foundation, and the U.S. Army
Research Office through the Mathematical Sciences Institute at Cornell
University.

In the second printing of this book, a number of misprints have been
corrected. I would like to thank Ted Sweet and Sungchul Lee for sending
me misprints that they found. I have also added a short addendum that
updates the status of some of the problems mentioned in the last four
chapters of the book.






Notation

We use ¢, c;,c2 to denote arbitrary positive constants, depending only
on dimension, which may change from line to line. If a constant is to
depend on some other quantity, this will be made explicit. For example, if
¢ depends on a, we write c(a) or co. If g(z),h(zx) are functions we write
g ~ h if they are asymptotic, i.e,

h(z)

lim —— =1.
z—o0 g(x)

We write g < h if there exist constants c;, co such that

c19(z) < h(z) < cog(z).

Finally we write g~ h ifIng ~ Inh.

We write h(z) = O(g(z)) if h(z) < cg(z) for some constant c. Again,
the implicit assumption is that the constant ¢ depends only on dimension.
If we wish to imply that the constant may depend on another quantity,
say a, we write O,(g(x)). For example, ax = O,(z), but it is not true
that az = O(z) . Similarly, we write h(z) = o(g(z)) if h(z)/g(z) — 0. By
implication, the rate of convergence depends on no other parameters, except
dimension. We will write o, to indicate a dependence on the parameter a.

Similar conventions hold for limits as z - 0 or z — 1—.
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Chapter 1

Simple Random Walk

1.1 Introduction

Let X;,Xs,,... be independent, identically distributed random variables
defined on a probability space (§2, F, P) taking values in the integer lattice
Z4 with
1
P{X,=¢e} = %3’ le] = 1.

A simple random walk starting at z € Z¢ is a stochastic process S,,, indexed
by the nonnegative integers, with Sp = z and

Sp=z+X;+---+ X,
The probability distribution of S, is denoted by
pa(z,y) = PI{Sn = y}-

Here we have written P* to indicate that the simple random walk starts at
the point z. We will similarly write E* to denote expectations assuming
So = z. If the z is missing, it will be assumed that Sy = 0. We let
pn(z) = pn(0,z). We will sometimes write p(n,z) for p,(z). It follows
immediately that the following hold:

pn(z,y) Pn(y, ), (1.1)

pPa(z,y) = pn(y-1), (1.2)

pn(z) = pa(-z), (1.3)

po(x,y) = 6(:'/_'7:)) (14)
11

G.F. Lawler, Intersections of Random Walks, Modern Birkhduser Classics,
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12 CHAPTER 1. SIMPLE RANDOM WALK

where § is the standard delta function, §(0) = 1,6(z) =0ifz # 0. If m is
any positive integer, then the process

Sn = Sn+m"Sm
= Xm+1+"'+Xm+n

is a simple random walk starting at 0, independent of {X,---, X,,}. From
this we can derive

Pmin(T,¥) = ) Pm(z,2)pn(2,9). (1.5)
2€Z4

1.2 Local Central Limit Theorem

What is the behavior of p,(z) for large n? Assume So = 0. Then S, is
a sum of independent random variables with mean 0 and covariance él .
The central limit theorem states that n~1/2S,, converges in distribution to
a normal random variable in R? with mean 0 and covariance él , i.e., if
A C R? is an open ball,

z12
lim P{% € A} = A(%)d/ze"ﬂ%dﬁdwzmdxd

Of course, the random variable S,, only takes on values in Z¢. Moreover, if
n is even, then S, has even parity, i.e., the sum of its components is even,
while S, has odd parity for n odd. A typical open ball A C R¢ contains
about n%/2m(A) points in the lattice n=1/2Z¢, where m denotes Lebesgue
measure. About half of these points will have even parity. Therefore if n is
even, and the random walk spreads itself as evenly as possible among the
possible lattice points we might expect

P = )~ () e 5

The local central limit theorem makes this statement precise.

The proof of the local central limit theorem, like the standard proof of
the usual central limit theorem, consists of analysis of the characteristic
function for simple random walk. If Y is any random variable taking values
in Z4, the characteristic function ¢(8) = ¢y (6),6 = (61,...,64), given by

$(0) = E(eY %) = Y P{Y =y}e?, (1.6)

y€Zd
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has period 27 in each component. We can therefore think of ¢ as a function
on [—m,n]% with periodic boundary conditions. The inversion formula for
the characteristic function is

1

P{Y =y} = @i /[_1r i e V0¢(0)ds. (1.7)

This can be derived from (1.6) by multiplying both sides by e~*¥', inte-
grating, and noting that

/ e*%do = (27)%6(x).
[=m,m)d

The characteristic function ¢™ for S, can be computed easily, ¢™(6) =

[¢(8)]™ , where
d
o(0) = %Zcos 0;.
j=1

We will now prove a very strong version of the local central limit theorem
which will be useful throughout this book. Let py(z) = é(z) and for n > 0,

Pu(z) = Bln, ) = 25 o) 2= 5

We write n « z if n and z have the same parity, i.e.,if n+z; +--- 4+ 24
is even. Similarly we will write £ — y and n — m. We define the error
E(n,z) by
_ p(nvx) - I_)(n»x) ifne z,
E("’x)“{ 0 if n oz

If f: Z¢ - R is any function and y € Z¢, we let V, f and ng be the
first and second differences in the direction y defined by
Vyf(z) = flz+y) - f(2),
Vif(z) = flz+y)+f(z—y)-2f(2)

If f: R - Ris a C® function, z,y € Z¢, y = |y|u, then Taylor’s theorem
with remainder gives

Vy/@) = D@ < 3P swp IDwflz+ay)  (18)
0<a<1

V2£(@) ~ yPDuuf @] < 3l sup |Duwuf(z+ar)l.  (L9)
0<a<1
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Theorem 1.2.1 (Local Central Limit Theorem) If E(n,z) is defined
as above, then
|E(n, )|
|E(n, )|

O(n~(4+2)/2) (1.10)

<
< |z|720(n%?). (1.11)

Moreover, if y < 0, there exists a ¢y < 0o such that

|V E(n,z)] < ¢,0(n~(4+3/2) (1.12)
V,E(m,a)] < cle|-20(n=@D/1), (1.13)
IVZE(n,z)] < ¢,0(n~@+9/2) (1.14)
|VZE(n,z)| < cylz|~20(n~4+2)/2), (1.15)

Proof. We may assume n < z. By (1.7),

pa(z) = (2m)¢ / e=i=04m (9)de.

[—m,m)d
Since n < z, the integrand is not changed if we replace 8 with 6+(, ..., 7).
Therefore
pala) =202m)7¢ [ =29 (6)ap,
A

where A = [-7/2,7/2] x [-m,7]4"!. From the series expansion about 0
of ¢, () = 1 — 54|6|°> + O(|6]*), we can find an r € (0,7/2) such that

$(6) < 1— 410/ for |0] < r. There exists a p < 1, depending on r, such

that |¢(8)| < < pfor @ € A, |0]| > r. Hence p(n,z) = I(n,z) + J(n,z) where

I(n,z) = 2(27) "¢ / e~ 0™ (0)do,

|61<r

and |J(n,z)| < p". If we let a = /nb,

I(n,z) = 2(2m/n)~ /| o wf/ﬁ a

We decompose I(n,z) as follows:

(%)da.

%(271'\/5)"[(11, z) = Ip(n, z) + L1 (n, ) + Iz(n, ) + Is(n, z),

where

Io(n,z) = /R dexp{—f‘f'f—n"‘ xp(- 120 }da
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Li(n,z)

") - expl e
2 T«
L(n,z) = —/M)nwexp{—l_(;7 NG }da,

a iT-«
I = n_— —_—— d .
3(na$) [zl/4§]a[5rnl/2¢ (\/ﬁ)exp{ ﬁ } “

The first integral can be computed exactly by completing the square in the
exponential,

z12
Io(n,z) = (2nd)¥/2e~ 5.
Therefore,
3
E(n,z) = J(n,z) + 2(27v/n)"¢ ) Ij(n,z).
j=1

We will now bound each of the above terms uniformly in x. We have already
noted that |J(n,z)| < p™.

a 2
[Iy(n,z)| < / <nire I(bn(%) ——exp{-—-%“d&.

For |a| < n1/4

2

(5 = 1-2L 4 jaom),
a 2
M) = (-2t lafom )y
= (-4 o)
2
- exp{—'—}<1 + lafOm)).
Therefore,
h(nz)| < O~ ol exp{~ 2y
lalgni/e
- o).
2
Iy(n,z)| < /!alznmexp{—lg—d}da

* d—1 1"2 d
c/n T exp{—ﬁ} r

1/4
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nl/2
= O(nld-1/4 exp{———}

Is(n, < —)d
l 3(n z)l - ~/1.11/“<|a|<r'n1/2 (\/ﬁ) “

2
< / (1= 12l
nl/4<|a|<rnl/2 4dn
< / exp{— }da
n1/4<[al
1/2
= O Viexp{-"—})

This proves (1.10).
We now consider (1.12) and (1.14).

3
IVyE(n,z)| < |VyJ(n,2)| + Y [V (n, ).

j=1

Each of these terms except for V,I; can be estimated easily by adding the
appropriate terms, e.g.,

|VyI2(n’x)| < ‘12(n7z)|+|12(n71+y)|
(d-1)/4 nl/?
O(n@/4 exp{-"—})

= o(n%?).

INA

The I, term, which is the largest of the error terms, requires a little more
care:

\VyLi(n,z)| < /||< 1M|1—exp{—y\/—'ﬁa-}ll‘ﬁ"(\/_ exp{— }|da

2
< [ e exp - 0o
- |af®
= WO [ laf exp(~ 5o

= ylo(n*2).

This gives (1.12). To get (1.14), again we write

3
IV2E(n,z)| < |V2J(n,2)| + > _ |VI;(n,z)|.

=1
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Again each term other than the I; term can be estimated easily. For that
term we get,

IViIi(n,z)| < /|ol|5nx/4 2 —exp{-L = \/— 2y —exp{L2 \/_ Y
2
|¢n(%)—exp{ lof® oy i
= [aKnlM[Cy|a|20(n’1)”|a|8exp{ l | }0 i ]da

¢,0(n"2) a0 exp{—'—}da

la]<n1/4

IA

= ¢,0(n™?).

To get (1.11),(1.13), and (1.15) we use Green’s formula on (1.7),
eloate) = [ e g
= /[ e T O
= [ eEasenas
(w4

(The boundary terms disappear by periodicity.) A direct calculation gives
A¢™(6) = n(n — 1)¢""2(0)(= Zsm 0,) — ng™ ().
The proof then proceeds as above for (1.10), (1.12), (1.14), splitting the

integral into similar pieces. O

Exercise 1.2.2 Complete the details of Theorem 1.2.1 for (1.11), (1.13),
and (1.15).

It follows from Theorem 1.2.1 that simple random walk eventually “for-
gets its starting point.”

Corollary 1.2.3 Suppose = — y. Then

Jim 3 Ipa(e,2) = pa(y, )l =0 (116
z€Z4
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Proof. We may assume = = 0. By the central limit theorem, for every
7> 3,
Jim D (Pa(0,2) +pa(y,2)) = 0.

|z|2n7

Therefore it suffices to prove for some v > %,

lim " |pn(0,2) — pa(v,2)| = 0.

n—oo
|z|<n7

By the definition of  and (1.12),
IPn(2) —=Pa(z =)l < [Pn(2) —Pna(z — y)| + |E(n, 2) — E(n,z - y)]|
< cyo(n—(d+2)/2) + cyO(n_(d+3)/2).

Therefore,

Z |pn(2) —pn(z—y)| < Z cyo(n—(d+2)/2)

|z|<nY z<nv

cyo(n(2d’y—d—2)/2),

which goes to zero if v < -é— + ;1,. m]

Exercise 1.2.4 Prove for every m « 0,

nllrlgo Z |Pn(2) = Pntm(2)] = 0. (1.17)
z€Z4

(Hint: Use (1.5) and Corollary 1.2.3.)

There is another approach to the local central limit theorem for simple
random walk. Suppose d = 1, and z is a positive integer. Then by the
binomial distribution,

(2n)’ (1)211.

P{Sm =2} =ty =y 3

We can estimate this expression using Stirling’s formula [24, (9.15)],
nl = VaZrnrte (1 + 0(%)).

If a < 2/3, we can plug in, do some calculation, and get for |z| < n?,

-1/2 (233)2 3a—2
P{Sn =22} = (mn) 2exp{—"-}(1+O0(n%"2))
= p(2n,2z)(1 + O(n3*"2)). (1.18)
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This statement is not as strong as Theorem 1.2.1 when |z| is of order \/n but
gives more information when |z| is significantly larger than \/n. A similar
argument can be done for d > 1 (although it is messier to write down)
which we will omit. However, we state the result for future reference.

Proposition 1.2.5 If a < 2/3, then if |z] < n*,0 & z — n,

p(n,z) = p(n, z)(1 + O(n**~?)).

1.3 Strong Markov Property

A random time is any random variable 7 : @ — {0,1,2,...} U {c0} . A
stopping time for a random walk is any random time which depends only
on the “past and present.” To formalize this idea let F,, and H, be the
o-algebras of the “past and present” and the “future” respectively, i.e.,

.7:" = U{Xl,...,Xn},

H, = U{Xn+1a Xnt2,-- }
Then ¥, and H, are independent o-algebras (written F,, LH,). We will
call an increasing sequence of o-algebras Go C G; C G2 C --- a filtration

for the simple random walk if for each n, F,, C G,, and G, 1LH,. A random
time 7 is called a stopping time (with respect to G,) if for each n < oo,

{r =n} € gn,.

Examples
1. If A is any subset of Z¢ and k is any integer, then

r=inf{n >k:S, € A}

is a stopping time with respect to F,,. Most of the stopping times we will
consider in this book will be of this form.

2. If i, and 7, are stopping times, then 7 V 75 and 7; A 75 are stopping
times.

3. Let Yp,Y),... be independent random variables which are indepen-
dent of {X;, X5,...} with P{Y; =1} =1— P{Y, =0} = ), and let

T=inf{j >0:Y; =1}.

We think of T as a “killing time” for the random walk with rate A\. T has
a geometric distribution

P{T =3j} = (1= A’A.
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Let G, = o{X1,...,Xn,Yo,...,Yn}. Then G, is a filtration for simple
random walk and T is a stopping time with respect to G,. This will be the
only example of a filtration other than F,, that we will need in this book.

If 7 is a stopping time with respect to G,, the o-algebra G, is the
collection of events A € F such that for each n,
ANn{r <n} € g,.
Exercise 1.3.1 Show that G, is a o-algebra.

Theorem 1.3.2 (Strong Markov Property) Suppose 7 is a stopping
time with respect to a filtration G,. Then on {T < oo} the process

gn = On4r — Sr
is a simple random walk independent of G.
Proof. Let zg,...,7, € Z¢ and A € G,. Then

P[{So = zo,...,8, =z, } NAN {7 < 00}]

— S PlUSy= 50, B = anbn AN {r = )] =

=0

= Y P{S;—-Sj=20,...,S4n =S, =z} N AN {r =j}]
j=0

_ ip{s():zo,...,sn = 2.} P(AN {r = j})

= P{So==zxo,...,Sn =z}P(AN{r <o0}) O

As an application of the local central limit theorem and the strong
Markov property, we consider the question of recurrence and transience of
simple random walk. Let R, be the number of visits to 0 up through time
n, i.e.,

n
R, =) _I{S; =0},
Jj=0
where I denotes the indicator function, and let R = R,. By Theorem
1.2.1,

E(R.) = Y p;(0)
=0
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= Y RGP0
j<njeven ™

V2/ant/24+0(1) d
~ 1lnn+0(1) d
c+ 0O(n-4/2) d

In particular, E(R) = oo for d < 2. Let
r=inf{j > 1:5; =0}
Then R =1+ 32 I{S; = 0}. By Theorem 1.3.2,
E(R) =1+ P{r < o} E(R),

or

E(R) >0 ifd>3.
Another application of Theorem 1.3.2 shows that if d > 3,
P{R=j}=p(l-p)"},

where p = P{7 = oc}. Summarizing we get,

(1.19)

Theorem 1.3.3 Ifd < 2, stimple random walk is recurrent, i.e.
P{S, = 0 infinitely often} = 1.
If d > 3, simple random walk is transient, i.e.,
P{S, =0 infinitely often} = 0.
Exercise 1.3.4 (Reflection Principle) Ifa >0,
P{ sup |S;| > a} < 2P{ISa| > a}.
1<j<n

(Hint: Consider
T =inf{j : |S;| > a}.)

1.4 Harmonic Functions, Dirichlet Problem

Let e; be the unit vector in Z% with jt'h component 1. If f : Z¢ — R, then
the (discrete) Laplacian of f is defined by

A@) = [og 3 f@+e) - f()

le|=1
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= 2_1d Z Vef(x)

le]=1

1 d
55 2 Ve, (@)
j=1

The third line resembles the usual definition of the Laplacian of a function
on R4, but the first line is a more natural way to think of the Laplacian —
the difference between the mean value of f over the neighbors of z and the
value of f at z. The Laplacian is related to simple random walk by

Af(z) = E*[f(S1) — f(S0)]-

We call a function harmonic (subharmonic, superharmonic) on A if for
eachz € A, Af(z) =0 (Af(z) > 0,Af(z) <0). There is a close relation-
ship between harmonic functions and martingales.

Proposition 1.4.1 Suppose f is a bounded function, harmonic on A, and
T=inf{j >0:85; ¢ A}.
Then M, = f(Snar) is a martingale with respect to F,.
Proof. Assume Sy = z. By the Markov property,
E(f(Sn+1) | Fu) = E5(£(S1)) = f(Sn) + Af(Sn).
Let B, = {T > n}. Then M,;+; = M, on B and

E(Mny1 | Fn) = E(Mnpylp, | Fn) + E(Mpialps | Fn)
E(f(Sn+1)IB, | Fn) + E(Mnlpg | Fn)
I, E(f(Sn+1) | Fn) + Mnlpe

= Ip,(f(Sn) +Af(Sn)) + Mnlp;.

But Aj"(S,,) = 0 on B,,. Therefore,

E(Mp41 I}-n) = Ian(Sn)+IB§Mn
= M, O

Exercise 1.4.2 Suppose f is a bounded function, superharmonic on A, and
r=inf{j > 0:S5; ¢ A}. Show that M,, = f(Snnr) is a supermartingale
with respect to F,.

Exercise 1.4.3 Show that M,, = |S,|? — n is a martingale with respect to

Fn.
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A number of results about random walks and harmonic functions can
be proved using Proposition 1.4.1 and the optional sampling theorem [9,
Theorem 5.10]. For example, let d =1, f(z) =z, and

T=inf{j >0:S; =0o0r S, =n}.

Then if 0 < Sy < n, M,, = Syar is a bounded martingale and the optional
sampling theorem states that for 0 < z < n,

z = E*(Mo) = E*(M,) = nP*{S, = n}.

Therefore,
P*{S, =n} = % (1.20)

Before giving another example we will prove an easy lemma that will be
useful later in the book.

Lemma 1.4.4 If A C Z% is a finite set and
T=inf{j > 1:85; & A},

then there exist C < oo and p < 1 (depending on A) such that for each
TEA,
P*{r >n} < Cp".

Proof. Let R = sup{|z|: z € A}. Then for each = € A, there is a path
of length R + 1 starting at = and ending outside of A, hence

PPr <R+1} 2 ()R,
2d
By the Markov property,

PE{r>k(R+1)} = P*{r>(k—-1)(R+1)}
P*{r>k(R+1)|7> (k—1)(R+1)}
P={r > (k- 1)(R+1)} (1 — (2d)~R+D),

IN

and hence
P*{r > k(R+1)} < p*(R+D),

where p = (1 — (2d)~(B+D)/(R+1)  For integer n write n = k(R + 1) + j
where j € {1,...,R+ 1}. Then

P*{r>n} < P*r>k(R+1)}
< pk(R+1)
S p—(R+1)pn. D
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We now consider the martingale M,, = |S,|? — n (Exercise 1.4.3). Let
r=inf{j>1:1S;| > N}.
By Lemma 1.4.4, if |z| < N,
E*(|Ma|I{r 2n}) < ((N+1)>+n)P*{r >n}

— 0.
We can therefore use the optional sampling theorem to conclude
E*(M,) = E*(Mo) = |z[2.
But N2 —7 < M, < (N +1)? — 7, and hence
N? —|z]? < E*(1) < (N 4+ 1) — |z]>. (1.21)
If Ac Z¢, we let
0A = {zgA:|z—y|=1 for some y € A},

A = AUJA
We are now ready to solve the discrete Dirichlet problem.

Theorem 1.4.5 Let A C Z be a finite set and let F : A — R. Then the
unique function f : A — R satisfying

(a) Af(z) =0, z € A,
(b) f(z) = F(z), = € 94,

s
f(z) = E*[F(S-)), (1.22)
where 7 = inf{j > 0: §; ¢ A}.

Proof. It is easy to check that f defined by (1.22) satisfies (a) and
(b). To show uniqueness assume f satisfies (a) and (b) and let z € A.
Then M,, = f(Snar) is a bounded martingale and by the optional sampling
theorem

f(z) = E*(Mo) = E*(M;) = E*[F(S;)]. O

It is not surprising that there is a unique solution to (a) and (b), since
(a) and (b) give |A| linear equations in |A| unknowns, where | - | denotes
cardinality. The interesting part of the theorem is the nice probabilistic
form for the solution. We also get a nice form for the inhomogeneous
Dirichlet problem.
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Theorem 1.4.6 Let A C Zd__be a finite set, F : A —- R, g : A — R.
Then the unique function f : A — R satisfying

(a) Af(z) = —g(z), T € A,
(b) f(z) = F(z), v € 9A,
18

T—-1
f(z) = E*[F(S,)+ Y a(S;)]- (1.23)
=0

Note that by Lemma 1.4.4 or (1.21),

T—1

E=[3 " 19(8)1] < llglloe E*(7) < o0,

=0

and so f is well defined.

Proof. Again it is easy to check that f defined by (1.23) satisfies (a)
and (b). To check uniqueness, assume f satisfies (a) and (b), and let M,
be the martingale

(n=1A(T-1)
M, = f(Sans)=— Y. Af(S)
1=0
(n—1)A(r-1)
= f(San)+ Y, a(S)).

=0

Note that, by Lemma 1.4.4, E*(|M,|I{T > n}) < (||flloc + nllglloc)P*{7T >
n} — 0. Therefore by the optional sampling theorem,

f(z) = E*(Mo) = E*(M,) = E*[F(S,) + 3" a(S;)]. O

=0

Exercise 1.4.7 (Maximum principle) If A C Z4% is a finite set and f :
A — R, is subharmonic in A then

sup f(z) = sup f(z).
€A z€dA

We now consider the homogeneous Dirichlet problem in the case where
A is infinite, e.g., the complement of a finite set. If A is infinite there may
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be many solutions to the Dirichlet problem. However, we will be able to
classify all bounded solutions. Suppose F' : A — R is a bounded function,
and as before let

T=inf{j > 0:5; € 0A}.

If d < 2, then P*{r < oo} = 1, and the proof of Theorem 1.4.5 works
verbatim to prove the following theorem.

Theorem 1.4.8 Let A C Z%,d < 2, and F :_6A — R be a bounded
function. Then the unique bounded function f : A — R satisfying

(a’) Af(l‘) =0, z € 4,

(b) f(z) = F(z), = € 94,

f(z) = E*[F(S)).

We emphasize that we have proven the existence of a unique bounded
solution. It is easy to see that one can have unbounded solutions as well.
For example ifd = 1, A = Z\ {0}, and F(0) = 0 then f(z) = az is a solution
to (a) and (b) for any real number a. For d > 3, Theorem 1.4.8 will hold
with the same proof if A is a set with the property that P*{7 < oo} = 1 for
each z € A. This will not be true in general (e.g., if A is the complement
of a finite set) because of the transience of the random walk. In fact, if we
let

f(z) = P*{r = oo}, (1.24)

it is easy to check that f is a bounded function satisfying (a) and (b) with
F = 0. Since f = 0 also satisfies (a) and (b) with F = 0, we do not
have uniqueness. However, the function (1.24) is essentially the only new
function that can appear.

Theorem 1.4.9 Let A C Z% and F : DA — R? be bounded. Then the only
bounded functions f : A — R satisfying

(a) Af(z) =0, z € A,
(b) f(z) = F(z),z € 0A,

are of the form
f(z) = E*[F(S;)I{T < 0o}] + aP*{7 = o0}, (1.25)

where a € R.
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Proof. It is straightforward to check that any f of the form (1.25)
satisfies (a) and (b). Suppose that f; is a bounded solution to (a) and (b)
for a given F and let

f(z) = fi(z) — E*[F(S;:)I{r < oo}].
Then f is a bounded solution to (a) and (b) with F' = 0. It suffices to prove
that f(z) = aP*{r = oo}

Let M < 0 and let ¢M(z,y) = P*{S, =y | T > M}. Since {r > M} €
Fn, the Markov property implies for n > M,

o' (z,y) = Y ap (@, 2)pn-m(2,Y) (1.26)
z€24

It follows from (1.16) and (1.17) that for each M « 0, z & =z,

lim Z ‘pn(r y pn—M(Zvy)l =0,

n—oo
y€eZd

and hence for each M « 0,
lim 3 |pa(z,y) - ¢ (z,9)] = 0. (1.27)
yezd
Since M,, = f(Snar) is a martingale, we get for each n > M,
flz) = E*[M,]
= E*[f(Sn)[{r > n}]
E*[f(Sp)I{r > M}] — E*[f(Sn)I{M < T < n}|
P*{r > M}E*(f(Sn) | T > M]
- E=[f( Sn)I{M <7< n} (1.28)

The second term is bounded easily,
|E*[f(Sn)I{M < 7 < n}]| < [|flleP*{M < T < oo}. (1.29)
Ifr,z€e Az & 2,
|E*[f(Sa) | 7> M] = E*[f(Sn) | > M]|
< Y0 If@lah! (z,9) - g (z,v)]

yezZ4

< Nfllool D 1" (2:9) = Pal=: )

yeZ4

+ > 1M (2,9) = pa(2,9)| + D, IPa(z,9) = Pa(2,9)]].

yez4 yeZ4
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Hence by (1.16) and (1.27),
Jim |E=[£(Sn) | 7> M] = E*[(S,) | 7 > M]| =o0.

Therefore by (1.28) and (1.29), if 1 & z & M,

@)
P={r>M} P{r>M}
P*{M<T<o0} P{M<7T<o00}
£l Pz{M < 1} P:{M < 1} I

Letting M — oo, we see if P*{7 = o0} > 0, P*{7 = 00} > 0,
f@)[P*{r = 00}]™" = f(2)[P*{T = 0}] 7},
i.e., there exists a constant a such that for all z & z,
f(2) = aP*{7 = o0}.
If y € A with y ¢ z, then

| <

1) = 53 3 fw+e)

lel=1

1 €
= 23 ZaPy+ {r = o0}
le|=1
= aP¥{r=00}. O
Exercise 1.4.10 Show that any bounded function f which is harmonic on
Z4 is constant. (Hint: consider f on A = Z%\ {0}).
1.5 Green’s Function, Transient Case

If n is a nonnegative integer, we define the Green’s function G,(z,y) to be
the expected number of visits to y in n steps starting at z, i.e.,

Gn(z,y) = E*[Y_I{S;=y}]
i
= ij(x)y)
j=0

= > py-2).
7=0
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If d > 3, we can define G(z,y) = G (z,y),
G(z,y) =Y _py(=,y)
Jj=0

(if d € 2, the sum is infinite). We write G,(z) = G»(0,z),G(z) = G(0, z).
Note that

AG(z)

E[Y_I{S;==}] - E[Y_ I{S; ==}]
j=1 j=0
= E(-I{S, = z}) = —6().

The local central limit theorem gives estimates for p;(z). Here we will use
these estimates to study the behavior of the Green’s function for large z. As
in Theorem 1.2.1, we write E(n,z) = p(n,z) — p(n,z) if n & z. If n ¢ =,
we let E(n,z) = 0. As a preliminary, we prove a simple large deviation
estimate for simple random walk.

Lemma 1.5.1 For any a > 0, there ezists ¢, < 00, such that for all n,t >
0,

(a) P{|Sn| > atnl/2} < cqpe”t,

(b) P{ sup |S;| > atn/?} < 2c,et.
0<<n

Proof. Let S, = (S},...,59%). Then,

d
> P{|S3| > d~'/2atn'/?}
Jj=1
= 2dP{S} > d~%atn'/?}.

P{|S,.| > atn'/?}

INA

By Chebyshev’s inequality,

P{S. >d Y2atn'/?} < e 'E(exp{d/%a"'n"1/2S!})
= e f(1- 5) + écosh(\/aa_ln_lﬂ)]"
< cqet.

This gives (a), and (b) then follows from the reflection principle (Exercise
1.34). O
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Lemma 1.5.2 For everya <d, y — 0,

oo

lim |z|® E(,z)] = 0O,
Jim |z J;)I G, 2)|
(e o]
. a+1 . _
Jim |z 2_:0|vyE(J,z)| = 0,
J_
= 0.

(o o]
lim |z|°*? " |V2E(j, z)]
=0

|z|—o0

(1.30)

(1.31)

(1.32)

Proof. Let v < 2. Then there exists an a > 0 such that for j < |z|",
p(j,z) < O(exp{—|z|*}) (see Lemma 1.5.1) and p(j,z) < O(exp{—|z|*}),

SO
|E(j,z)| < O(exp{-|z|*}), j < |z|".

We split the sum into three parts,

§|E(j,z)|=2+ oo+ D> .

iflzlr el <i<lz? |x]2<j<oo

By (1.33),
> IEG,2)| = O(al” exp{~[z|°}).
i<lzl
By (1.11),
Z |E(]5I)| < Z lxl—zo(j—d/2)
Izl <s<|z[* Jz|7 <7 <lz]?
O(|z|™1), d=1,
= { O(z|?In|z|), d=2,
O(|lz|—%-2), d>3.
By (1.10),
> IEGz)| < ) o@GT@+d2)
|¢|2$.‘i lx|25‘7

= O(lz|™).

(1.33)

For every a < d, by choosing v sufficiently close to 2 we can then get (1.30).

The proofs for (1.31) and (1.32) are similar using (1.12)- (1.15).

Exercise 1.5.3 Prove (1.31) and (1.32).
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It will now be easy to give the asymptotics of G for large z. Let f(z) =

|z|2~9. Note that f is a harmonic function on R?\ {0}, i.e.,
d
>_Diif(z) =0.
i=1

If f is considered as a function on Z¢, by (1.9), as |z| — oo,
Af(z) = O(lz|=*™h),
where A denotes the discrete Laplacian.
Theorem 1.5.4 Ifd > 3, as |z| — oo,
G(z) ~ aglz|*~*

where 4 d 9
=212 _ -d/2 _ 4
aa=3l(G - 1m (d—2)wa’

where wq is the volume of the unit ball in R®. Moreover, if a < d,

lim |z|*(G(z) — adlxlz_d) =0.
|z|—o00

Proof: Assume r — 0. By Lemma 1.5.2, for every a < d,

G(z) = [3_ p(2n, 2)] + o(|2| ).

n=0
But,
0o 0o d y ale?
(2 s = 2(—— a/2,— ::s
n=0p( n, ) go (o) %

)
_ d d/2 _dl=)? ~d
- /0 2(;)2e” 5 dt + O(|z|~?)

= gl"(g — 1) 42|22~ 4 O(|z|~9).
If z ¢ 0, then by (1.34)
1
Gz) = o '\élc(x +e)

1 - —-a
= 55 2 (aalz+ e’ +o(|z|7)
lel=1

= adlxlz'd+o(|z|"°). O

(1.34)

(1.35)
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We remark that the above result is not quite as strong as can be proved.
Note that the dominant term can be estimated

oo
> B(2n,z) = aglz*~ + O(|z|7%).
n=0
Hence one might guess that
G(z) = agle[*~? + O(|z|™%).
This is the case, but we will not need this stronger result in this book.

Theorem 1.5.5 Ifd >3,y € Z%, y = |y|u,

VyG(z) - aaly|Du(|2>~9) O(jz|~9) (1.36)
ViG(z) = adlyl’ Duu(lz*¢) = O(Jz|77). (1.37)

Proof. First assume y « 0,z < 0. Then

IVyG(2)l < D IVyPan(@)l+ D IVyE(n,2),
n=0 n=0

Y IViBan(@) + ) IV;E(n,2)|.

IV2G(z)| <
n=0 n=0
By Lemma 1.5.2,
o0
> IVyE(n,z)| = oflz|™%),
n=0

o(jz|=*1),

> IV2E(n,z)|
n=0

so we only need to estimate the dominant term. By (1.8) and (1.9), if
|zl = 2lyl,

_dj=|? _di=|? _di=? _ _
[Vye= % — |y|Due™ | < c e T [|220(n"2) + |£|O(n™Y)),
22 12 22
|V2e= %65 — [yPDyue™ 5| < cyem Br [|2P0(n3) + |2]O(n"2)),

and therefore,

IA

o, 4 a2 =2 4= —d

> 2Ao) Ve — yiDue” | < ¢0(1e] ™),
™m

n=0

= d 472,02, -4z 2 =2

> 2 ) VAV — yf Duve™ 5

n=0

< ¢0(el=4 ).
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Finally,
diz|? = d dr-u, _d=?
@ \d/2 L @ a2, 9T U, _del
n§=oj2< DL = 3 2 e

I

/ oL )2y D e % gt
o \amt

+O0(|z|7#1)
lv|Du(aalz>~%) + O(jz|~*71),

and similarly,

o0 d e . ) -
Z2(47m)d/2|y|2"3 e~ "% = |y|*Dyu(adlz|*~?) + O(|z|7¢72).
n=0

Ify# 0,y +# -z,

1
ViG@) = 55 Y VyseG(@)
lel=1

1 - -
= 55 2 lv+elDulaalz~*) + ¢, 0(lzl~)
le|]=1
= Ile (aalz*=%) + ¢,0(|z|~%),
ViG) = o Z V2, .G(z)

lel=1

= |yI*Duu(adlz|*~?) + ¢, O(|z| 7).

Similarly if z # 0, we may use (1.8) and (1.9) to show

V,G(z) = ;—d > V,Gl(z+e)

le|=1
= |y|Du(aalz*~%) + ¢,O0(l2|~4"1)
ViG(z) = 2d2v2 (z+e)
le|]=1

= |y|Duu(adglz*~%) + ¢,0(l2|7%7"). O

There are two other Green’s functions that will be important. Let A €
[0,1) , let T be a geometric random variable independent of S with killing
rate 1 — X (see Section 1.3), and let G(z,y) = Ga(y — z) be the expected
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number of visits to y starting at z up to the “killing time,” i.e.,

T
E*()_I{S;=y})

1=0

ZP’{S =y,T 2 j}

= ) Npiy-2).

7j=0

G,\(I,y)

8

I

Ga(z,y) is the generating function of {p,(y — z)};=0,1,... Note that G, is
finite in all dimensions, and if d > 3, limy—;- G(z,y) = G(z,v).

Exercise 1.5.6 Show that if A > 0,

oo

Galz,y) = > (1= WNGj(z,y).

]:0

If A C Z¢, we let G 4(z,y) be the expected number of visits to y starting
at z before leaving A. To be precise, let 7 =inf{j > 0:S; € dA}. Then

T—1
Ga(z,y) = E*[D_I{S;=uy}]

1=0

Z P*{S; =y, > j}.

=0

(Our notation for Green’s functions is somewhat ambiguous. In order to
distinguish G,, G, and G4, one must know whether the subscript is an
integer, a real number less than one, or a subset of Z¢. This should not
present any problem.) If A # Z¢, G 4(z,y) will be finite in all dimensions.
There is a one-to-one correspondence between random walk paths starting
at r and ending at y staying in A and random walk paths starting at y and
ending at z staying in A (just traverse the path backwards). Therefore,
PE{S; =y,7 > j} = P¥{S; =z,7 > j} and

GA(Ia y) = Galy, I)'

It is not in general true that G4(z,y) = G4(0,y — z); however, if we let
Az ={z—x:2 € A}, then

GA(l',y) = GA: (O7y - 1)'

Also, if A C B,
Ga(z,y) < Gp(z,y).
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Exercise 1.5.7 Let A C Z% be finite, € A,

T = inf{jZO:SjeaA}
o = inf{j>1:8;=z}.

Show that
Ga(z,z) = [P*{r < 0.}]7 . (1.38)

We define the hitting distribution of the boundary of A by
Hoa(z,y) = P*{S; = y}.

Proposition 1.5.8 Let A C Z4(d > 3) be finite and z,z € A, Then

Ga(z,2) =G(z—x) — Z Haa(z,y)G(z — y).
y€ESA

Proof.

T-1
Gal(z,2) E*[)_I{S; =z}]
=0

[ <]

= B IS =2} - Y IS, = 2}]
2=0 =T

J

= G(z—1x) - Z Hoa(z,y)G(z—y). O
yEBA

We let C,, be the “ball” of radius n about 0, i.e.,
Cn={z€2%:|2] <n}.

Proposition 1.5.9 Let n =inf{j >0:S; € {0} UdC,}. Then ifz € Cy,

ad

G(0)

P8y =0} = [lz1*~¢ = n®~9] + O(jz[~%),

and
Ge,(z,0) = aq(|z|*~¢ = n®~%) + O(|z|'~¢).

Proof. Recall that G(z) is harmonic for z # 0. Therefore, if So = =z,
M; = G(S,y) is a bounded martingale. By the optional sampling theorem,
G(z) = E*(M,)
G(0)P*{S, =0}
+E*(G(Sy) | Sy € 0C,)P*{S, € 0C,}. (1.39)
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By Theorem 1.5.4,
G(z) = agle|*~? + o(|z|'~¢).
If y € 0Cy, then n < |y| < n+ 1, and therefore again by Theorem 1.5.4,
E*(G(Sy) | Sy € 8Cy) = agn®~* + O(n' ™).

If we plug this into (1.39) we get the first result. To get the second, note
that
Ge, (z,0) = P*{S, = 0}Gc,(0,0)

and
Gc, (0,0) = G(0)+ O(n?~9). O

Proposition 1.5.10 Suppose n < m and A = {z : n < |2| < m},T =
inf{j >0:S; € 0A}. Then forz € A,

|x[2_d _ m‘z—d + O(nl—d)
n2-d — m2-d

P*{|S,| < n} =

Proof. Consider the bounded martingale M; = G(S,A,). By the op-
tional sampling theorem,

G(z) E*(M,)
P*{|S:| < n}E*(G(Sr) | |S-| < n)
+(1 = P*{|S;| < n})E*(G(S;) | |S7| = m).

But by Theorem 1.5.4,

G(z) aalz[>~? + o|z|'~9),
E*(G(S:) | |S-| <n) agn®~¢ + O(n' %),
E*(G(S:) | |S:| >m} = agm? ¢+ 0(m!™9).

If we solve we get the result. O

Exercise 1.5.11 Let A C Z¢ be finite, F : A — R, g: A — R. Then the
unique function f : A — R satisfying
(a) Af(z) = —g(z), z € A,
(b) f(z) = F(z), = € 84,
18
f@) = 3 Hoa()F®) + 3 6(:)Ga(z, 2).

y€EDBA z€EA
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1.6 Recurrent Case

The Green’s function G(z,y) is infinite if d < 2. However, there is another
useful quantity called the potential kernel defined by

a(z) = lim [Gn(0) — Gn(2)]
= lim 3 (p,(0) - pj(2)- (1.40)
j=0

Theorem 1.6.1 If d < 2, the limit in (1.40) is finite, i.e., a(z) is well-
defined.

Proof. For each n, if z # 0,z « 0,

D (B0 —pi(@) =14+ Y (B;(0)—Fr;(2)) + Y _ E(,0) - Y E(j,z).
j=0 =1 j=1

1<j<n/2

Since Bz;(0) — B;(z) = O~ #2)(1 — exp{— 4L }) = [z]20(j~(#+2)/2),

Z |ﬁ’--’j(o) - ﬁzj(1)| < 00.
j=1

By (1.10),
Y IE(G,0)| < 0, S |E(j,z)| < 0.
j=1 =1

Therefore the limit exists and

a(@) = 3 (By;(0) - Boj(2)) + S_EG,0 - S EG,x).  (1.41)

=0 Jj=1 Jj=1
If z & 0, then
1
Gn(z) = 24 z Gn_1(z +e),

le]=1

and therefore,

Jim (Ga(0) = ()

lim % |e|z=1[cn_l(0) — Gro1(z + €)] + pn(0)

= 2id Za(z+e). m]

le]=1
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It is easy to see that a(z) satisfies

a(z) = a(-x),
Aa(z) = §(z).

The next theorem gives the asymptotic behavior of a(z) as || — oo for
d = 2. (In Theorem 1.6.4 we will compute a(z) exactly for d = 1.) Note
that the function f(z) = In|z| is a harmonic function on R?\{0}. Therefore
by (1.9), if f is considered as a function on Z2,

Af(z) = O(|z|?). (1.42)
Theorem 1.6.2 If d = 2, there ezists a constant k such that if a < 2

' 1I1m |z|*[a(z) — ~2—ln |z| — k] = 0.

Proof. By (1.41),if z < 0,z # 0,

=Y (P, (0) = Ppy(z)) + 1+ > _ E(j,0) - Y _ E(j,x)
=1 j=1

Jj=1
We split the first term into two parts and estimate separately.

S Fy 0 -Fy@) = Y —(-eF)+ T La-e ).
j=1

1<5<lalz ™ i>leiz ™
2 "
Y ta-eH) - ¥ 2- / e dt 4 ofjal ).
1<5<tep " 1<j<lz2 ™ "

The first term on the right hand side equals 1 In |z|2 + v+ O(|z|~2), where
v is Euler’s constant. The substitution u = (2t) |z|2 in the integral then
gives

z|? > 1
E i-(l - e'LfJJ') =2 Injz|+7v - / —e *du + O(|z|~2).
4 Tj ™ 1 Tu
1<5< (2|2 3
For the second part,

> ﬂij(l—e'%i) - 0(|zr2)+/ —(1-e ).

lz)2 <35

3
= O(lx|'2)+/0 ;%(l—e'“)du.
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By (1.30), if a < 2,
lim |z|*[>_ |EGj,z)|) =0.
|z|—oc =0
We have therefore proved the theorem for z — 0 with

. } e
k=7_/ Le-udH/ S (1-edu+1+ Y B(,0).
% 0

U Tu ¢
Jj=1
If z ¢ 0, we may use Aa(z) = 0 and (1.42) to obtain
1
a(z) = o IYIL:I a(z +€)
el=

2 2

= = hd k ~a
- In|z| + WA(ln lz]) + k + o(|x|™%)
2

= - In|z|+k+o(|z]7%). O

The above theorem can be improved to show
2
a(z) = ~ In|z| + k + O(|z|72),

(see [67]), but we will not need this stronger result. Also the value of k can
be calculated [65, p. 124],

k=21+§ln2,
™ ™

although we will not need to know this value. The potential kernel can
often be used in place of the Green’s function, e.g., this next proposition is
the analogue to Proposition 1.5.8.

Proposition 1.6.3 If A C Z¢ (d < 2) is finite, then if z,2 € A,

Gal(z,2) =) Hoa(z,y)a(y — 2)] - a(z — 2).
yEBA

Proof. We could give a proof similar to that of Proposition 1.5.8. For
variety, however, we note that h(z) = a(z — z) satisfies Ah(z) = §(z — z)
and hence by (1.23),

T—1
h(z) = E*[h(S,)] - E*[>_I{S,=z}]. O
=0
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Theorem 1.6.4 Ifd =1, a(z) = |z|.

Proof. Let A = {z € Z : |2| < |z|},0A = {~z,z}. Since a(z) = a(-z),
Proposition 1.6.3 implies that G 4(0,0) = a(z). But by (1.38) and (1.20),

[GA(O,O)]“l = PO{T <op}= lz|7'. O

Theorem 1.6.5 Ify € Z2,y = |y|u, then

() IVya(z) ~ lyIDu(ZInla))] = O(lz|"?),

2 -
(b) |V3a(z) - IylzDuu(;ln Izl O(|z|~%).
Proof. Identical to the proof of Theorem 1.5.5. O

Theorem 1.6.6 Let C, = {2z € Z? : |z| < n}. Then
2 -1
GC"(O,O):;lnn+k+O(n ).

Proof. By Proposition 1.6.3,

Gc,(0,0) = ) Hac,(0,y)a(y).
y€OC,

Since n < |y| < n+ 1 for y € 8C,, Theorem 1.6.2 gives the result. O

Proposition 1.6.7 Let £ € C, and n = inf{j > 1: 5, € {0} UIC,}.
Then for every a < 2,

P*{S, =0} = (Inn)"}[Inn — In|z| + o(|z|~*) + O((Inn)~1)].
Ge, (z,0) = %[lnn —In|z|] + o(]z|~%) + O(n™1).

Proof. Assume Sy = x. Then M, = a(5),,) is a bounded martingale
and by the optional sampling theorem,

a(z) = E*(M,)
(1= P*{S, = 0})E*(a(S,) | 1,] 2 n).

But by Theorem 1.6.2

a(z) = 2 Infe] + k +oflz|™),



1.7. DIFFERENCE ESTIMATES AND HARNACK INEQUALITY 41

and hence,
E*(a(Sy) | 1541 2 n) = 2 Inn + k +O(n™).

If we solve for P*{S,, = 0}, we get

2(Inn - In|z|) + o(|z|~*)
2lnn+k+O(n-1)
This gives the first equation. The second equation then follows from
Ge, (z,0) = P*{S, = 0}Gc,(0,0)
and Theorem 1.6.6. O

P*{S, =0} =

Exercise 1.6.8 Supposen <m, A= {z € Z2 :n < |z| < m}, 7 = inf{j >
1:8S, € 0A}. Then forz € A,

Inm —In|z| + O(n~1)
Inm—Inn )

P*{|S,;| <n} =

1.7 Difference Estimates and Harnack Inequal-
ity
Let B={ze€R¢:|z|]<1},B={z€R*:|z|<1},and f: B> Ra

function which is harmonic , i.e., E?ﬂ D;;f(z) =0 for £ € B. Then the
Poisson integral formula 28] states that

1@ = [ fs)pts)ds, (1.43)
8B
where p(s,z) is the Poisson kernel
_1-|z?
p(s,z) = cq T (1.44)

From this formula we can derive some immediate estimates. For example,
if we differentiate f at the origin in the direction y:

D, £(0)] < 1 lloo / 1D, p(s,0)lds < ¢ flloo sup |Dyp(s,0)|.
B s€EOB

In particular, the derivative is bounded by the supremum of f times a
constant independent of f. Another corollary of (1.43) is the Harnack
inequality. Suppose f > 0 on D. If |z|,|y| < r < 1, then for each s € 4D,

1+r]d

p(s,) < ca(l = )7 i

p(s,y),
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and hence 1+
_ r
f(z) < ea(l —7?) 1[:]df(y)-
Note that the constant does not depend on f. For discrete harmonic func-
tions we do not have as explicit a formula as (1.43) and (1.44); however, it
will be useful to have bounds on differences and to have a Harnack inequal-
ity. We derive such results in this section. We start by stating the results

we will prove. As before, let
Cpn={z€2%:|z| <n}.

Theorem 1.7.1 For each u € Z%, there exists a ¢, < oo such that if
f:C, — R is harmonic on Cy,

(a) |Vuf(0)| < Cu"f”oco(n_l)v
) IVZf0) < cullfllaO(n™?).

Theorem 1.7.2 (Harnack inequality) For each r < 1, there ezists a
¢r < 00 such that if f: C,, — [0,00) is harmonic on Cp,

f(z1) L erf(z2), |21, |22| < TR0

Ifz € A,V C A, we say V separates = from 9A if every path from z
to A must enter some point of V, i.e., if P*{ry < 7} = 1 where 1 =
inf{j >0:8; € V},7=inf{j >0:8S; € 0A}. Suppose B C A, B C A.
Then it is easy to check that OB separates any point of B from 0A.

Lemma 1.7.3 Suppose A C Z¢ is finite and V C A separates = from OA.
Let 7 =inf{j >0:S; € A} and

H(z,y) = Haa(z,y) = P*{S; = y}.
Let7=inf{j >1:5; € BAUVY}. Then

H(z,y) =Y P¥{Sr = z}Ga(z,2) (1.45)

zeV

Proof. Let
n=inf{j >1:8; € {x} UOA}.

By considering paths in reverse direction we can see that if y € 9A,
PY{S, =z} = P*{S, = y}.
Also by the strong Markov property,
P*{S, =y | S, =z} = P*{S, = y}.
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Hence P*{S, =y | S, # =} = P*{S; =y} and
P*{S, =y} = P*{S, # z}H(z,y).
Therefore, using (1.38),
H(z,y) = [P*{S,#z}]7'P*{S, =y}
= Ga(z,z)P¥{S, =z}
= Gz, z) Z PY{S7 = 2} P*{S, = z}.

zeV

By the strong Markov property, if z € A, Ga(z,z) = P*{S, = 2}G 4(x, z).
Therefore,

H(z,y) = ) _ P¥{Sy=2}Ga(z,z). O

z2€V

Lemma 1.7.4 Ify € 8C,,
H(0,y) < n!~9,

Proof. It suffices to prove the lemma for d > 2 and n sufficiently large.
Let n=inf{j > 1:S; € {0} UAC,}. Then as in the previous proof,

H(0,y) = Gc,(0,0)P{S, = y} = Gc,(0,0)PY{S, = 0}.

Let p =inf{j > 1:|S;| <n —2or |S,| > n}. Then by the strong Markov
property,

aP¥{|S,| < n -2} < P¥{S, =0} <aP¥{|S,| <n -2},

where g (@) is the infimum (supremum) of P*{S,, = 0} over all z € 8C,,_3.
By Proposition 1.5.9 or Proposition 1.6.7,

Therefore,
P¥{S, =0} < n'"4PY{|S,| <n -2}, d>3,

P¥{S, =0} < (nlnn)"'P¥{|S,| <n -2}, d=2.

Since G¢,(0,0) < 1 if d > 3 and G¢,(0,0) < Inn if d = 2 (Theorem
1.6.6), it suffices to prove that P¥{|S,| < n—2} > ¢ > 0. For y € 8C,,
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choose |e| = 1 which minimizes |y — €|, i.e., which maximizes y-e. We know
|y — €] < n and by simple geometry y - e > |y|d=!. Then for any k,

ly — kel® = |y|* + k* — 2k(y - ) < |y|* + k* — 2k[yld~".
Let k = 4d. Then for |y| sufficiently large,

ly — kel® < (lyl - 3) < (n - 2%,
and hence y — ke € Cy,_2. Since y — e,y — 2e,...,y — ke € C,,
PY{|S,| < n—2} > (2d)~* = (2d)7%4.

Proof of Theorem 1.7.1. Let V;, = Cy /5. Then if n > 3, 0V,, C C,
and hence 8V, separates 0 from 9C,,. For z € 8V,

n
=< - .
<zl < 5 +1
If d = 2, Proposition 1.6.3 gives
Ga(z,z)= ) H(zy)(aly - =) - a(z ~ 2)),

y€dA
while if d > 3, Proposition 1.5.8 gives
Ga(z,z) = ) H(z,y)(G(z - z) - G(y - x)),

yEJA

where A = C,,. By Theorem 1.5.5 or Theorem 1.6.5, if g(z) = G4(z, ),
then
IVug(0)] < cun'™?,
IV29(0)] < ecun™

Ccyn

For z € 8V,, Ga(z,0) > cn?~¢ (Proposition 1.5.9, Proposition 1.6.7), there-
fore

IVug(0)] < cuO(n"")g(0)
IV29(0)] < c.O(n™?)g(0).

By (1.45) and Lemma 1.7.4,

c.O(n™1)H(0,y) < cn™?,
c.O(n"?)H(0,y) < ecn~ %1,

IV.H(0,y)]|

<
IVIH(O0,y)| <
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where on the left hand side the differences are taken with respect to the
first component of H(z,y). By (1.22),

f@) = Y fw)H @),

y€adC,

and hence

IVufO) < lIflle Y IVuH(O,y)l

y€edC,
< cu||f||°°0(n-l),
IVZF0) < lIflle D IVZH(O,y)l
yeoC,
< allflcO(n™?). O

Exercise 1.7.5 Show that if f : C, — R is harmonic, then for every u,

IVuf(0)] < [ulll fllecO(n™").

(Hint: It suffices to consider |u| < §. Use the estimate from Theorem
1.7.1(a) with |u| = 1 and iterate.)

Proof of Theorem 1.7.2. We will first prove the result for r = Tlg.
Assume z € 9C,, 4, € 671/16- Then

GCzn/s(O’z - I) < GCn (Z,.’E) < Gan/z(Oaz - I)~

Also, ?—g —1<|z—-1z| < ?—2 + 1. Therefore, by Proposition 1.5.10 or

Proposition 1.6.7, there exists a constant c such that for every 2;,2z0 €
0C /4, T1,72 € Cpr )16,

Gc,(z1,71) < c¢Gg, (22, T2).

If y € 0C,,, Lemma 1.7.3 gives

P*{S,=y}= > PY{S;=1z}Gc,(z,x).

2€0C, 4

Therefore, if 1,22 € Cpj 16, H(z1,y) < cH(z2,y) and by (1.22), f(z1) <
cf(z2).

Now let 7 < 1 and |z,|,|z2| < . If |21 — z2| < (1 — 7)n, then we
can apply the above result to C(;_,)a(z1) = {2:2—-z € Ca-rn} to get
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f(z1) < cf(z2). By induction, if |zi],...,|zk41] < rn and |24, — 25| <
l—le(l—r)n,j =1,2,...,k, then

f(z1) < F f(zr41)-

If k, is any integer greater than 32(1 — r)~!, then for n sufficiently large,
if |z1|, |x2| < 7n, there exist z; = 71, 22, ..., 2k, 41 = o With |z;] £ rn and
|zj+1 = zj| < % (1 — r)n. Therefore,

fz1) < Ff(ze). O

The second part of the proof of Theorem 1.7.2 can be applied to more
general sets than C(;_,),. If U is a compact subset of R? contained in an
open set V, then U can be covered by a finite number of open balls with
centers in U and radius at most 3dist(U,8V). Using this idea, we can prove
the following result, which we will refer to as the Harnack principle. We
leave the proof as an exercise.

Theorem 1.7.6 (Harnack principle) Let U be a compact subset of R4
contained in a connected open set V. Then there exists a c = ¢(U,V) < o0
such that if A, =nUNZ%, B, =nVNZ4 and f : B, — [0,00) is harmonic
in B, then

f(z) < cf(y), z,y € An.



Chapter 2

Harmonic Measure

2.1 Definition

The hitting probability of a set A € Z¢ is the function Hy : Z¢x A — [0, 1]
defined by
Ha(z,y) = P*{S: =y},

where

T=74=inf{j >1:85, € A}.
This differs from the definition of 74 in Chapter 1 where we took the in-
fimum over j > 0, but it will be more useful in this chapter to have 74
defined as above. Note that T4up = 74 A 7, and by “reversing paths” we
can see that if z,y € A,

Ha(z,y) = Ha(y, z). (2.1)

For fixed y € A, Ha(-,y) is a harmonic function in A°. For fixed z € Z¢,
Ha(z,-) is a positive measure on A with total mass P*{r < co}. We may
define a probability measure on A by conditioning that the random walk
hits A,

Ha(z,y) = P*{S, =y | T < o0}.

For d < 2, Ha(z,y) = H s(z,y) by recurrence.
If A is a finite set, we define the harmonic measure of A, H4(-), to be
the hitting probability from infinity, i.e.,

Ha(y) = |zlliflwﬁ,4($»y)- (2.2)

In this section we will show that H,4 is well defined by showing the limit
exists, and in the process we will relate H4 to probabilities of “escaping”
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the set A. We start by developing some properties of H4(z,y). Let C,, =
{2 € Z%:|z| < n} and assume A C C,. If m > n and z ¢ C,,, then 8C,,
separates = from A, i.e., every path from z to A must go through some
point of 8Cy,.

Lemma 2.1.1 If A C B and z € B, then

Hy(z,y) = Y Gac(z,2)Havon(2,Y),
z€dB

Y .eco8 Ga<(z,2)HausB(2,9)

Ha(z,y) = . 2.3
#l9) > ccoB Gac(z,2)P*{T4 < 798} (23)
Proof. Consider the random time
o =sup{j <7a:S; € OB}.
Note that o is not a stopping time. However, since o < 74,
P*{S,, =y} = ZP {ra =k, Sk =y}
P
= ZZ Z P {14 =k,Sx =y,0=38; =z}
=1 3j=02€8B
o o] (e o}

= Y. Y D) PHSj=zxS=uyS ¢4,

2€0B j=0 k=j+1
0<:<y5S AUBB,j+1<i<k}

= Y ) P{Sj=2S5¢A0<i<;}

z€0B j=0

8

8

> P{Sy=y;Si¢ AUOB,1<i <k}
k=1
= Y Gac(z,2)Havon(2,v).
z€6B

Similarly, by summing over y € A,

P*{14 < o0} = Z Gac(z,2)P*{14 < ToB}.
z€OB

which gives (2.3). O
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An immediate consequence of (2.3) is that for z € B¢,

HAU@B(z7y) I7 HAU@B (29 y)
—_— < H < —ALI5\ I
:€6B P*{r4 < ToB} Al < seap Pr{ra < ToB}’
or by (2.1),
) HaueB(y, 2) I
nf < Hj(=, 2.4
2608 3, o PY{S(ra NToB) = 2} Al@,y) (24)
HAUGB(y’ Z)

< su .
- ze&% > yea PY{S(ta A ToB) = 2}

We will use this inequality with B = C,,,,m > n.

Lemma 2.1.2 Assume A C C,, B=C,,, and m > 4n . Then fory € A,
2z € 0B,

d>3,

HBB(O’ Z)(l + O( )v
nm)), d=2.

PU{S(raN1oB) = 2| Ta > Top} = { Hpp(0,2)(1+ O(z)l

Proof. Since m > 4n, 0C3, C B. If d > 3, by Proposition 1.5.10, if
w € 8Ca,,
Pw{‘rA > Tep} > Pw{TA = oo} >ec. (2.5)

If d = 2, Exercise 1.6.8 gives
w m._
PY{r4 > 198} 2 cO((In ;) )- (2.6)

If we consider f(z) = P’{ST; s = 2} as a harmonic function on C3, /4, then
by Exercise 1.7.5, for w € Can,

f(w) - FOISO(Z) sup ().

IeCSm/d
But by the Harnack inequality (Theorem 1.7.2) applied to f on Cpy,,

sup  f(z) < ¢ £(0).
z€C3m /4

Therefore, if w € Ca,,

P*{S(rop) = z} = Hop(0,2)(1 + O()). (2.7)
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Suppose 74 < Top and let n = inf{j > 74 : S; € 0C2,}. Then by (2.7),

PY{S(1aB) = z | T4 < ToB}

= 3 PY{Sy=x|7a < o8} P*{S(ro8) = 2}
z€0C2n

= Hop(0,2)(1+0(-)). (2.8)

Therefore by (2.5) - (2.8), if w € Ca,,

w _ _J Hop(0,2)(1+0(%)) d>3,
P*{S(rop) = 2| 74 > 705} = { Hop(0,2)(1+0(2nm) d=2,
and therefore PY{S(74 A Tog) = z} equals
Hop(0,2)P*{ra > Top}(1+0(=)) d23, (2:9)
Hap(0,2)P*{r4 > Top}(1 + 0(% In -'3)) d=2. (2.10)

Since AC,,, separates y from 9B, if d > 3,

Py{S(TA AToB) = Z}

= Y PY{S(raNATec,,) = w}P*{S(Ta AToB) = 2}
‘weaCZn

= HaB(O,Z)(l"‘O(%))

Z PY{S(a NToc,,) = w}P {74 2 ToB}
wedCsy

= Hop(0,2)P¥{r4 > 1op}(1 + 0(%)).
Similarly, if d = 2,

PY{S(ra A7o5) = 2} = Hop(0,2)P¥{ra > 105} (1+ O(= 10 ),

which gives the lemma. O
If d > 3, and we sum over y € A,

S PY{S(a A7op) = 2} = [3_ P'{7a > 7o8}|Hon(0, 2)(1 + O(=-)).

yEA yEA

Also by Lemma 2.1.2,

Hauon(y,2) = P*{7a > o8} Hap(0,2)(1 + O()).
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Therefore by (2.4), if z € C§,,

Py{TA > TBB}

Ha(z,y) = > jea PH{Ta > 108}

1 +0(-1%)).

Similarly for d = 2,

— _ Py{TA > 7'33}
HA(l'vy) = deA Pg{TA > TBB}

We have proved the following theorem.

a1 +0(;—T:l—ln%)).

Theorem 2.1.3 Assume A C C,. For each m > n define the probability

measure
Py{TA > TaC, }

> gea P¥{Ta > 78c,.}
Then for allz € CS,,y € A, m > 4n,

— _ [ H@)(1+O0(2)), d23,
HA(x»y)'_{ Hgn(z)(l-{—O(ﬁln%‘)), d=2.

HZ(y) =

In particular, the limit in (2.2) erists and
lim Ha(z,y) = lim HZ(y) = Ha(y).
|z| =00 m—oo
Exercise 2.1.4 There erist constants cy,ca such that if A C C,, y €

A,m > 2n,
aHY (y) < Ha(y) < c2HY ().

(Hint: use the Harnack principle.)
Exercise 2.1.5 If A C B are finite subsets of Z*¢ and z € A,

Hy(x) 2 Hp(x). (2.11)

2.2 Capacity, Transient Case

For this section we assume d > 3. If A C Z¢, we define the escape proba-
bility Es4 : A — [0,1] by

Esg(z) = P*{14 = o0} = Jim_ P {14 > &n},

where
&m = ToC,,-
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The capacity of a finite set A is given by

cap(A) = Z Esa(z) = lim Z P14 > &n}- (2.12)
z€A T zeaA

It is easy to see that if A is finite, then there exists some z € A with
Esa(z) > 0, and hence cap(A) > 0. By Theorem 2.1.3,

Ha(z) = ff;;((j;. (2.13)

Proposition 2.2.1 Suppose A and B are finite subsets of Z¢ (d > 3).
(a) If A C B, then cap(A) < cap(B) .
(b) For any A, B,

cap(A) + cap(B) > cap(AU B) + cap(A N B).

Proof: By (2.1) and (2.12),

cap(4) = n}gnoo Z PY¥{14 > &n}

yeA

= Jilnmz > PY{S(raA&m) =1z}

yGA J’?Gacm

= lim Y 3 P{S(raném) =y}

z€AC, YyEA

= lim Y P*{ra<é&n}. (2.14)

m—00

z€8C,,

Therefore, if A C B,

cap(A) = lim Z P™{rs <&m}

™ 2€8Cm

< lim > P*{rp <&m}
mee z€8C,

= cap(B).

For any finite A, B,
cap(AUB) = lim 3 P*{raup < &m}
z€8C,

= Jim Y [P*{ra <&m}+P*{rp <&n)
z€OCH
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_PI{TA < &m;TB < gm}]
< cap(A) + cap(B) — lim Z P*{TanB < &m}
T 2€8Cm
= cap(A) + cap(B) —cap(ANB). O
We now compute the capacity of the ball C,. If A = {0}, then
cap(4) = P{ro = o} = [G(0)]~".
Note that by Proposition 1.5.9,
P{ry = 00} = P{10 > &m}(1 4+ O(m?™9)).

Therefore by (2.1),

> P*{r <m}

z€8C,,

P{To > fm}
= [G(O)]7'[1 - O(m*~ ).
If C,, C Cp,, then for z € C,,, \ C,, again using Proposition 1.5.9,

pI{TO < gm} = Pz{gn < Em}PI{TO < Em I En < §m}
= F*{én < &m}aaC(0) !0~ + O(n'~%) + O(m?~9)].

Therefore,

Z Pz{gn <£m} =

z€EOC

> P10 < £m}aaG(0)"'n*¢ + O(n' %) + O(m*~ )71, (2.15)
z€9Cm

and if we let m — oo,
cap(Cr) = a;'n?"2 + O(n4™). (2.16)

The capacity of a set is related to how likely a random walker that is
close to A will hit A.

Proposition 2.2.2 If AcC C, and x € 8C,,,

P {14 < 0o} < n?"%cap(A).
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Proof. If m > 3n,y € 8C,,,

Py{TA < ém} = Py{§2n < §m}Py{TA <&m | §on < §m}
PY{£2n < Em}PY{7Ta < 00 | &2n < €m} + O(m*~9)].
By the Harnack principle (Theorem 1.7.6), if € 9C2,,
P*{14 < 00} X P¥{14 < 00 | €2n < &m}-

Therefore,

cap(A) = lim Z P¥{1t4 < &mn}
m_'ooyeacm

Jim [ 57 PY{€an < m}IP*{7a < o0}
y€Cm
= - cap(Can)P*{T4 < 0}.

X

The result then follows from (2.16). O
Proposition 2.2.3 If A C Ca, \ Cp, then
P{ra < o0} < n?~%cap(A).

Proof. Let A= A, UA_ where A, = {(21,...,24) € A: 2, 20}, A_ =
A\ A,. By the Harnack principle (Theorem 1.7.6), if z € 0Cys,

P{ta, < oo} < P*{14, < o0},
and hence by Proposition 2.2.2,
P{1a, < oo} < n*"%cap(Ay).

Similarly,
P{ra_ < 0o} xn?"4cap(A_).

Then, using Proposition 2.2.1,

P{TA < oo}

IA

P{rta, < oo} + P{14_ < o0}
n®~%(cap(A4) + cap(A4-))
n?"4cap(A).

sup{P{7a, < oo}, P{Ta_ < o0}}
n?~¢ sup{cap(A,), cap(4-)}
n?~4cap(A). O

it

IV X

P{TA < oo}

X

X
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Now suppose A C Z¢ is infinite. We call A a recurrent set if
P{S; € A infinitely often} =1,
and a transient set if
P{S; € A infinitely often} = 0.
Proposition 2.2.4 Every set A C Z¢ is either recurrent or transient.

Proof. Let f(z) = P*{S; € Ai. o.}. Then f is a bounded harmonic
function, and hence (see Exercise 1.4.10), f is constant, say f =k . Let V
be the event {S; € A i. o.}. Since f =k, P(V | F,) =k for each n, i.e. V
is independent of F,,. Therefore V is a tail event, and by the Kolmogorov
0-1 Law, P°(V)=0or 1. O

Theorem 2.2.5 (Wiener’s Test) Suppose A C Z¢ (d > 3) and let
Ap={z€ A:2" < |z| < 2"t}

Then A is a recurrent set if and only if

i cap(4s) _
n(d-2)
— on(d-2)
Proof. Let I, be the indicator function of the event V,, = {74, < oo}.
Then since each A, is finite,

P{S;€e Ai. 0.} =P{I,=11. o.}.
By Proposition 2.2.3,
P(V,) < cap(A,)2?¢~-9n,
Therefore,

d-2
n=0 2"( )

i P(V,) = 00 <= i capldn) _
=0

Suppose Y P(V,) < oo. Then by the Borel-Cantelli Lemma, P{I, =
1i. 0.} = 0 and hence A is transient. Suppose then that 3 P(V,) = oc.
Then either Yo7  P(Van) = 00 or Y o2 P(Van41) = 0o. Assume the for-
mer (a similar argument works in the latter case). Let m > n+2,7, = 14,,

and consider

VaNVy = {1 < Tp < 00} U {1, < T < 00}.
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By the Harnack principle and the strong Markov property,

P{Th < Tm <00} < P{rmn < ;S € Ap, for some j > 7,}
< P(Vy)P(Vyn).

Similarly, using Propositions 2.2.2 and 2.2.3,

P{Tm < Th <00} < P{rm <o0;S; € A, for some j > 7, }
< eP(V,)P(Vp).

Therefore, for some ¢ < 00, if 0 <n <m -2,
P(VonVy,) <c P(VR)P(Vin). (2.17)

Let J, —012; and for € > 0, let F, be the indicator function of
(1. S eB(J )1} Then,

[E(Fedn))? < E(F2)E(J7).

But by (2.17),
E(J}) < c[E(Ja)P,

and
E(F.J,) = E(Jn) — E(Jp I{Jn, < €E(Jp)}) = (1 — €)E(Jy).

Therefore,

—

P{Jn > ¢E(Jn)} = E(F.) = E(F2) > =(1 - ¢)2.

(o)

If we let € = 1 and let n — oo, then E(J,) — oo and hence
P{Jo = 00} > 1 >0
oo T py 2c )

which implies by Proposition 2.2.4 that A is recurrent. O
Let V4 be the number of visits to A, i.e.,

oo
Va=>_ Y I{S, =z}
j=0z€A
Then it is easy to see that

E(Vy) = ZZP{S =z}=)Y G(z).

€A j=0 TEA
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If E(V4) < oo, then V4 < oo almost surely and A is transient. The
converse, however, is not true. For example, suppose « € (d%‘z, 1), A, isa
“ball” of radius 2°™ contained in {z : 2" < |z| < 2"*1} and A = UX A,
Then by (2.16), cap(A,) < 22(4=2" and hence by Wiener’s Test (Theorem
2.2.5), A is transient. However, by Theorem 1.5.4,

EVy = 3 ¥ )

n=1y€A,
oo
> CZ 2and2(2—d)n = oo0.
n=1
Exercise 2.2.6 Let Ay C Z9 be the set
Ar={(21,...,24) € 2% : 21 =29 = --- = z;, = 0}
Show that Ay is a recurrent set if and only if d—k <2 .

If f: A — R, we define the “(outward) normal derivative” V f(x) for
z € A by

Vni@) =5 Y (e+e)-f@). (218)

le]=1,z+e€8A
Let 7 =inf{j > 0:S; € A} and let
9(2) = ga(z) = P*{T = oo}.

Then g is harmonic for € A€ and ¢ = 0 on A. If A is finite, then
lim|z| o g(z) = 1.

Exercise 2.2.7 If A is a finite set, then

Vinga(z)

Hale) = = N nvaatw)

2.3 Capacity, Two Dimensions

In this section we give the two dimensional analogue of the capacity. Let
A C Z? be a finite set, z € A, and as in the previous section £, = TaC, -
Let a(x) be the potential kernel as defined in Section 1.6.

Lemma 2.3.1 Foreveryz€ A,z € A,

lim (3 Inm)P*{m < Ta} =a(z —z) = Y _ Ha(z,y)a(y - 2).

m—oo T €A
Yy



58 CHAPTER 2. HARMONIC MEASURE

Proof. Assume A C Cp, m > |z|,n. Let n = £, AT4. If Sp = z, then
M; = a(Sjanq — 2) is a bounded martingale, and by the optional sampling
theorem,

alz—z) = E*(M,)

= ) P*{S,=yla(y - 2)
YyEA
+P*{&m < TA}E®(a(Sy — 2) | €m < Ta).

Since |z| < n, Theorem 1.6.2 gives
E®(a(Sp — 2) | &m < Ta) = %Inm + k + no(m™1).

If we take the limit as m — oo, we get the lemma. O
One consequence of Lemma 2.3.1 is that the function on A€,

94(z) = gz.a(z) = a(z — 2) = Y _ Ha(z,y)a(y — 2)
yEA

is independent of z € A. For ease we will assume 0 € A, and let

= _ | Ha(z,y), ze€ A,
Ha(z,y) = { §(x—vy), z€A,

94(@) = a(z) - ¥ Halz, y)ay).
yEA

Proposition 2.3.2 Suppose 0 € A C C,,. Then if g(z) = ga(z),

(a) g(y) =0, y € A;
(b) Ag(z) =0, z € A%;
(c) As |z| — oo,

g(z) = 2in |z + k - Z Ha(y)a(y) + cnO(M);
: y€EA |z|
(d) Ifye A, (
- Vngy)
Halo)= > ea VNg(2)

_ Proof. (a) is immediate and (b) follows from the fact that a(z) and
H,(z,y) are harmonic for z € A°. To prove (c), note that Theorem 1.6.2
gives

2
a(z) = =In|z| + k+o(|z|"),
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while Theorem 2.1.3 gives

Izl

Part (d) follows from Theorem 2.1.3 and Lemma 2.3.1. O

Proposition 2.3.3 Suppose A C C,, and h: Z?> — R is a function satis-
fying

(a) h(z) =0, z € A;

(b) Ah(z) =0, z € AS;

(c) lim sup 'lh(lz)ll
|z|—00

Then h(z) = Cga(z) for some C € R.

< o0

Proof. Assume for ease that 0 € A. As in Lemma 2.3.1, let n =
&€m A Ta, M = h(S;rn). Then by optional sampling, for z € C,, \ A,

h(z) = E*(My) = 3 P*{S, = y}h(y).
y€ICm

By an argument identical to the proof of Lemma 2.1.2, if y € 6C,,,
PH(S, = 4} = P*{6n < Ta}Hac, 0,01 +O(El 1 )

Therefore, since h(y) = O(In |y|),
b(e) = P{6n <l Hoc, Oh)] +O(E i T,
yEA

and therefore by Lemma 2.3.1, if we let m — oo,

h(l‘) = [a(z) - Z HA(.'E, y)a(y)]Ca

yEA

where

C = hm( Inm)~! Z P*{S, = y}Hsc,,.(0,y)h(y). O

m—0o0
y€EICm

If 0 € A, we define the capacity or Robin’s constant of the set A to the

the number
cap(A) = > _ Ha(y)a(y) -
yEA
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so that
In|z|

Tl

The capacity is translation invariant, and we define cap(A) for sets not
containing 0 by first translating to a set containing 0. As one can guess
from the choice of terminology, the capacity of a two dimensional set has
many of the properties that the capacity in the last section has.

ga(z) = ln |z| — cap(A) + cn O(

Proposition 2.3.4 If A and B are finite subsets of Z2,
(a) If A C B, then cap(A) < cap(B);
(b) cap(A) + cap(B) > cap(A U B) + cap(A N B).

Proof. Assume for ease that 0 € A. Let z ¢ AU B. By Lemma 2.3.1,
lim ;2r-(ln m)P*{&,, < 7o} = a(z) + k — cap(A).

If AcC B,
P*{&m < Ta} > P*{&m > 78},

and hence cap(A) < cap(B). In general,

Px{fm > TAUB} = Pz{ﬁm > TA} + Pz{fm > TB}
_Pz{gm > 74,&m > 7'B}
< P*{&m > Ta}+ P*{&{m > 7B} — P™{ém > TanB},
which gives (b). O

The capacity of a singleton set {z} is —k. Suppose A = C,,. Then by
Exercise 1.6.8, if z & C,,, m > |z,

In|z| —Inn + O(n~?)
Inm—Inn ’

Pz{TA > fm} =

Therefore, by Lemma 2.3.1, if z ¢ C,,,
2
ga(z) = ;{ln |z| — Inn} + O(n7?).

By Proposition 2.3.2(c),

In |z
|=|

Since this holds for all z & C,, we can let |z| — oo and get

94(2) = ZInja| - cap(Ca) + en ().

cap(Cp) = glnn +0(n™Y). (2.19)
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We call a set A C Z¢ connected if every two points in A can be joined
by a random walk path in A, i.e., if for every z,y € A, 3x¢,...,2,, € A
with z = 29,y = Tm,|zj — zj—1| = 1 for 1 < j < m. We define the radius
of A, rad(A), to be the smallest integer n such that A C Cj,.

Lemma 2.3.5 If A is a connected subset of Z? containing 0 of radius n,
then

%lnn — O(1) < cap(A) < -72;lnn +0nY).

Proof. The right hand inequality follows from (2.19) and Proposition
2.3.4(a). To prove the other inequality, find a subset B of A such that for
each j = 1,2,...,n, there exists exactly one point z € B with j — 1 <
|z| < j. Since A is connected with radius n, one can always find such a
subset (although the subset might not be connected). Again by Proposition
2.3.4(a), it suffices to prove the left hand inequality for B. Let m > 2n. By
Proposition 1.6.7, as |m| — oo, if z,y € C,,

Ge, (z,y) = %{lnm —Injz —y|+O(1)}. (2.20)

(Here we use the inequality

Gcm—2n (07 y - :z:) S Gcm (I’ y) S Gcm+2n (07 y - x)')

Let V,,, be the number of visits to B before leaving C,,, i.e.,
§m
Vm =) I{S; € B}.
=

By (2.20), for each z € Cp,,

E*(Vm) =Y _ Gc,(z,y) > 2?n{lnm—lnn+0(l)}. (2.21)
yEB

Moreover, if z € C,, there exist at most 2j points in B at a distance less
than or equal to 5 — 1 from z. Therefore,

n/2
E*(Va) = Y Conley) < Zfnlnm—23 Inj+nO()
y€EB 1=2

- %rﬁ{lnm— Inn+0Q)}.  (2.22)



62 CHAPTER 2. HARMONIC MEASURE

If z € 0C,,
E*(Vi) = P*{1B < &m}E*(Vim | TB < &m)-
Therefore by (2.21) and (2.22), if z € 8C,,

m

P*{rg > &,} = O((In ;)“1). (2.23)
Hence if z € C,,, \ Ch,, by Exercise 1.6.8,

Pi{rg <ém} = P{n <&m}[l=O((ln 2))]

_ Inm—In|z]+ O(n7?) m,_;
- Inm-Inn _O(UBF) )

and
In|z| —lInn+O(n71)

Inm—Inn

P*{rg > &n} =
Therefore by Lemma 2.3.1,

+0((ln 2)7Y).

g98(z) = %{ln|z| —Inn} +0(1).

Again we use Proposition 2.3.2(c) to give

2 In|z
95() = 2 In 2] = cap(B) + x0T ),

and letting |z| — oo,

cap(B) = %lnn-{- 0o(1). O

2.4 Example: Line Segment

In this section we will study in detail the examples of a line and a line
segment in Z¢. In the process we will illustrate techniques which are used
to relate various escape probabilities and harmonic measure. Let (n) =
(n,0,...,0) and

U = {{n):neZ}
Ut = {(n):n>0},
U~ = {(n):n<0},
Uo = {(§):—n<j<n},

ur = Utnu,.

n
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We have already seen (see exercise 2.2.6) that U is a transient set if and
only if d > 4. We will be most interested here in d = 2,3 . We start with a
very useful proposition which relates escape probabilities and the Green’s
function.

Proposition 2.4.1 Suppose A C Z¢, and

= lﬂf{]ZlSJ EA},
= inf{7>0:5, € A}.

Rl

(a) If n < oo, then
P{F<n}> Y Gnlz,y)PY{r > n}.
yEA
(b) If A\ <1, and T is a killing time with rate 1 — A, then
P {F<T}=) Gi(z,y)P*{r > T}.
yeEA
(¢) If AC B and n=inf{j > 0:S; ¢ B}, then
Pr7<n} =Y Gala,y)P'{r > n}.
yEA
(d) If d > 3 and A is a transient set, then
P*{F < oo} = > G(z,y)Esa(y).
yEA

Proof. We will prove (c); the other proofs are similar. The proof uses
a technique sometimes called a “last-exit decomposition.” Let

o=sup{j:S; € A,j<n}
Then,

P{r<n} = Y P*{o=j}
=0

= > Y Po=j5 =y}

y€A 3=0
By the Markov property,
PHo=58=y} = P{Sj=y;i<mSx¢€Aj<k<n}
P*{S; = y;j < n}PY{r > n}.
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Therefore,

PHT<n} = ) PY{r>n}y P*{S;=yj<n}

y€EA j=0
= Y Gp(z,y)PY{r>n}. O
yEA

If one wants to analyze walks which take only a finite number of steps, it
can be easier to first consider walks with a killing rate 1 — ) rather than with
with a fixed number of steps, since there is equality rather than inequality
in the above proposition. If A, = 1 — 1, then the random walk on the
average takes n steps, so one would hope that results about walks with rate
1 — ), could be used to get results about walks of length n, and vice versa.
This is in fact true, and the mathematical tool used is Tauberian theory.

If p,, is any sequence of nonnegative numbers, then the generating function
of pn, R()\), is defined by

R(\) = M\p,.

n=0

As an example, let p, = P*{r > n}. Then

P*{r > T}

> P{T =n}P*{r > n}
n=0
= (1=MNR(}). (2:24)

We state a Tauberian theorem which relates p, to its generating func-
tion. The proof can be found in [25, Chapter XIII]. We say a func-
tion L : [0,00) — [0,00) is slowly varying (at infinity) if for every t €
(0,00), L(tx) ~ L(z) as |z| — oo.

Theorem 2.4.2 Suppose p, is a sequence of nonnegative real numbers; L
a slowly varying function; and

R(\) =) A\p.

n=0

Then if a € [0,00), the following are equivalent:
(a) as A — 1—,
o 1
RO) ~ (1= )™ L(z=);
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(b) as n — oo,
n—1
Z p; ~ [[(a+1)]"'n®L(n).
=0

Moreover, if the p,, are monotone and a > 0, the following is equivalent to
(a) and (b):

(c) as n — oo,

pn ~ [[(a)]"'n*"1L(n).

In some of the examples we will consider, we will know the behavior of
pn or R()) only up to a multiplicative constant. It will be useful to have a
form of the above theorem which handles this case.

Theorem 2.4.3 Letp,, L, R, a be as in Theorem 2.4.2. Then the following
are equivalent:
(a) there exists 0 < by < by < oo with

bi(1=A)72L((1 = A)7!) S R(A) < bp(1 = X)"*L((1 - 1)1

(b) there ezist 0 < 31 < B2 < 00 with

n—1

Bin*L(n) < > p, < Bon®L(n).

3=0

Moreover, if the p, are monotone and a > 0, the following is equivalent to
(a) and (b):

(c) there ezist 0 < 6; < 62 < 00 with
6:n*"1L(n) < pp < 62071 L(n).
Proof. The fact that (b) implies (a) follows from Theorem 2.4.2 by

comparing R()) to the generating function for ;n®L(n). Assume (a) holds.
It suffices to prove (b) for n sufficiently large. If A =1 — %,

n-—1 n—1
dopi < AT Np;
7=0 j=0
< RO\
< cbyn®L(n). (2.25)
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To prove the other inequality let @ > 0 and A =1 — £. Then, using (2.25),

bia™*n%L(n/a) < R(A)

n—1 00
= Z Np; + Z Np;

n(k+1)
< ZA’MZV" > P
1=nk
n—1
< Z/\Jp]+2e_“k[cb2(k+l)°‘ n®L((k + 1)n)).
7=0 k=1

If L is slowly varying, then L(kn) < cpkL(n) [25, (9.9)]. Also for n large,
L(n/a) > 3L(n), hence

[o o]
Z ¥p; 2 n°L(n){3 bla *—crby Y e *(k+ 1)1}
k=1

If we choose a sufficiently large (depending on by, b2, a, L) we can make the
coefficient on the right positive and obtain (b).

By summing, it is easy to see that if & > 0, (c) implies (b). Suppose
(b) holds, a > 0, and p, is monotone. Assume p, is a decreasing sequence
(a similar argument holds if p, is increasing). Then

n-1

<n7'Y p; < Bn*'L(n).
=0
To prove the other direction, let a > 0 and note that

an-—1

ij > Bi(an)®L(an),

n—1
> _pi
=0

IA

ﬁhnaL(n%

and hence,

an—1

(a = 1)np, > z pj = Bi(an)®L(an) — Ban*L(n).

i=n
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Choose a sufficiently large so that 31a* > 4835 and then N sufficiently large
so that L(an) > 3L(n) for n > N. Then for n > N,
pn > (a—1)"1BL(n)n*"1. O

To illustrate the usefulness of the above theorems we will return to
studying the straight line.

Lemma 2.4.4

P{S; €U} ~ (5~ )<d n/2,

Proof.
P{S;eU} = Z p(4, (n))
= Y [5G, (n) + EG, (n))).

By (1.10) and (1.11),

| >° EGM) < D IEG )+ Y IEG, (n))]
n=—oco Inl<V3 n>Vj
— Z 0]_(d+2)/2)+ Z n=20 ]_d/2)
InI<V7 n>V7

_ O(j—(d+l)/2),

so we only need to estimate the dominant term. But,

> PG, (n)) ) (———)‘me P{-—}

nej nej

d 42 dz?
~ )2 exp (=B 14z = ()02 g
/_ () exp(- ) 27”)

Since -

d_Gialz) =) NP{s;eU},

zeU j=0
it follows immediately from Theorem 2.4.2 and Lemma 2.4.4 that as A —
1_$

1-»1ﬂ d=2,
> Ga(z) ~ { Al d-3 (2.26)
zelU
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Since P*{r > T} = P°{r > T} for each z € U, it follows from Proposition
2.4.1(b) that

1-NY2, d=2,

Another application of Theorem 2.4.2, using (2.24), gives

We now consider the line segment U,. If d > 4 and z € U,, then
Esy, (z) > Esy(z) > 0, and hence cap(U,) < n. If d = 2, it follows from
Theorem 2.3.5 that

cap(U,) = %lnn +0(1).
Proposition 2.4.5 If |m| <n, n=1y,, and £ = £2op,
an™t < PMIE<n} <cp(n—|m|)7L, d=2
er(lnm)™t < P < n} < ep(in(n — [ml))™", d=3.
Proof. Let g(n) = P{{ < n}. Then it is easy to see that for |m| < =,
g(n+|m|) < P™{¢ < n} < g(n — |m]),

and hence it suffices to prove the proposition for m = 0. By Proposition
2.4.1(c),

1 = Y Go,(0,(m)P™{¢ <}

|m|<n

g(2n) Z GCQn(O’ <m>)

|m|<n

v

Therefore by Proposition 1.6.7 and Proposition 1.5.9,
-1
—1 en”h, d=2,
g(n) < [l |§< 2 GCn (0’ <m))] < { C(ln"l)_l, d=3.

To get the lower bound, we first note that if W = U, \ U,/2, then an
application of the Harnack principle gives

P{{<tw}>ec
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But, by examining the proof of Proposition 2.4.1(c), we see

> G, (0,(m))P™ e <n} = P{lo| <n/2}

|m|<n/2
> P{{<mw} > c

Therefore

c<9(z) Y Ceu(0,(m),

|m|<n/2

and the result follows again from Propositions 1.6.7 and 1.5.9. O
It follows from the proposition and Exercise 2.1.4 that

colnn

C1
7 S Hu,((m) < e,

d=3. (2.28)
For d = 2, note by (2.1) and (2.23),

> P{&n < 10,} > P¥{&a>10,}

xEUn yeac2n

Z Py{&?n > gn}

y€OCa2n

I

X

But by Proposition 1.6.7,
Py{£2n > §n} = Py{é?n > ‘ro}(lnn),

and hence
Z Py{€2n > sn} = (lnn) Z Py{§2n > TO}
y€0Can y€8C2y
= (Inn)P{n, <70} < 1. (2.29)

Therefore,

(] C2

— < < — = 2. .

— < Hy,((m)) < — il d=2 (2.30)

These estimates on the harmonic measure are good except for |m| near n.

We now consider the half-line U*. Assume we have a random walk with
killing rate 1— X and let V*, V'~ be the events {S; ¢ U+,0< j < T},{S; ¢
U~,0 < j < T}, respectively. Then by (2.27),

(1_’\)1/2a d=2a

P(V+”V_)~{ 20 (In(c)]!, d=3.

This fact alone does not allow us to estimate P(V*) and P(V~). However,
we have the following (very nonintuitive) fact.
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Proposition 2.4.6 If So =0, V* and V~ are independent events.
Proof. Let W = (V7)°. It suffices to prove

P(WNV+) = P(W)P(V*).

Let
o=sup{n:35,1<j<T, with §; = (n)},
n=sup{j <T:S; =(0)}.
Then,
PWnV*Y) = > P{o=-n}
n=1
oo o0
= z ZP{O’ =-n,n=j}. (2.31)
n=1 j=1

For any n, j,

I

P{S; = (-n); S, # (m),1 <i< j,—n <m < oo;
T >35S #(m),j<i<T,—n<m< oo}

P(VY)P{S; = (-n);S; # (m),1 <i < j,
-—n<m<oo;T > j}. (2.32)

P{0=—"y77=j}

If we reverse paths and translate we see that
P{S; = (-n);Si # (m),1 <i < j,—n <m < 00;T 2 j}

PSS =0;S; # (m),1<i<j,—-n<m<o;T > j}
P{S; = (n); Si # (m),1<i<j,0<m<oo;T >j}. (233)

Now let
p=inf{1<j<T:S; e U\ {0}}.

Then by symmetry, P{p < oo} = P(W). Therefore,

I
M

P(W) P{p =3}

<
Il
—

> Plp=345;=(n)} (2.34)

1n=1

I
.Mg

7
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But,

#(m),1<i<j,0<m<oo;T > j}.

WHYP(V*). O

f\
VDVV
+
N’
|
/-\

Clearly P(V*) < P(V

A

1
P(V¥) 2 5 P(VF | §1 = (1)) = 5o P(V7).
Therefore by (2.27) and Proposmon 2.4.6,as A — 1—,

- (1 - )1/47 d= 27
P(V+) -~ { (ln(1 ,\))_1/2’ d=3.

It then follows from Theorem 2.4.3 that

n~1/4, d=2,
Consider P{ry+ > &,}. Since a random walk takes about n? steps to reach
dC,,, we would like to conclude that

n='/2 d=2,
P{ry+ > &} =< { (nn)-V2, d=3 (2.36)

However, this does not follow from (2.35) alone. For example if we let
A=A, =UtUdC,_, one can check that

—1/2 d=2
21 o n 9
P{ra >n"} < { (lnn)—1/2’ d=3,
But clearly P{r4 > £,} = 0. However, this example is an exception, and

as long as the set is not too bad, we can use the intuitive reasoning.
Proposition 2.4.7 Suppose 0 € A C Z¢ and
P{r4 > n?} < con™%L(n),
where a > 0, and L is a slowly varying function. Suppose for every m > n,
P{T4 > m?} > cym™*L(m).
Then there exists a K = K(c1,c9,a,L) > 0 such that
P{ra > &} > Kn™*L(n).
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Proof. By the central limit theorem,

sup P{é&m >m?} < sup P{|S(m?)| < 2m}
3<m<oo 3<m<oo
= p<Ll
Therefore for any = € C,,, (m > 3),
Px{gm > m2} < P{£2m > m2} <p
By the Markov property, if J is any positive integer, n > 3,
P{1a > Jn?% €, >Jn?} < P{rg>n?}p’"!
< egn ®L(n)p’ L.
Therefore,
P{ra> &} > P{& < Jn?,74 > an}
= P{ra > Jn®} — P{ra > Jn?,&, > Jn?}
> a(VIn)"*L(VIn) = c3p’ " 'n"°L(n).
Choose J so that cl(\/j)“"‘ —c2p’71 > 0 and find b < 1 such that
bei (V)™ — c2p?~1 > 0. For n sufficiently large, L(v/Jn) > bL(n) and

hence

P{1a > £} > {beiy (V)™ — c2p’ "1 }n~L(n).

This proves the result for n sufficiently large. For n small, one has only a
finite number of cases and can handle them easily, changing the constant if
necessary. O

From Proposition 2.4.7 and (2.35) we have

en~1/2, d=2
P{{n < TU+} Z { c(lnn)‘l/z, d=3. (237)

What we wish to conclude is that

en~1/2, d=2,
Pléon <mys} < { c(lnn)~1/2 d=3.

Let C,, = Bt U B~ U BY, where

B* = {(21,...,24) € 8Cy : 21 > 0},
and similarly for B—, B®. By symmetry,

P{S(é,) € B*} = P{S(¢.) € B™}.



24. EXAMPLE: LINE SEGMENT 73

Suppose z € U;}, and suppose a random walk starting at = hits B~ before
hitting Bt U B°. Then it is easy to see that the random walk path starting
at =z which takes the negative of every step the first path takes hits B+
before hitting B~ U B°. Therefore for every = € U},

P*{S(é.) € B*} > P*{S(¢.) € B™}.

Since this is true for every z € U},
P{S(¢n) € B | 7y+ <&} 2 P{S(§:) € B™ | 1+ <&}y

and hence

P{S(€) € B-UB | 72 > £} > % (2.38)
By the Harnack principle (Theorem 1.7.6), for z € B~ U BY,

PH{éon <my+} 2 ¢

Therefore, by the strong Markov property,

en~1/2 d=2,
P{éon <Tys} 2 { (nn)-12, d=3 (2.39)

To get the inequality in the other direction we need an easy lemma.

Lemma 2.4.8 Let S, = (S},...,S%) be a simple random walk in Z°.
Then for every a > 0, there ezists a ¢, > 0 such that for n > 2,

P{[S;-|<n;i=1,...,d;j=0,...,an2} > ca.

Proof. We will prove the result for d = 1; for d > 1 one can consider
each component separately. We may also assume without loss of generality
that 4 divides n. Let 7 = inf{j > 1:|S,| > n}. By (1.21), if |z| < %,
E*(7) > 223 Let n = inf{j > 1:|S;| > 2}. Then E(n) = ';—2 . Also by
(1.21),

n2

P B n2 ,n2
- SEm = Emln>—)P{n> 5}
2 2
+E(n|n< T)P{n< T}

n? n? n? n? n?
r,.r n n <
E+ P> D)+ TP ),

and hence for n sufficiently large,

2
P{n>}2

>
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For any |z| < %, the above implies

n 1
P*{lS,; — - J= > .
{IS; $|<2,j 0,1, ,8} 1

If this event occurs, then the path stays in C,,. Also if we consider any

such path, either it ends in C, /2 or the negative of the path ends in Cy, /5.
Therefore, since ﬂ;— is an integer, if |z| < %,
2 2
n n
P {r > —,S(—

1
€ Cn/?} Z §1

and therefore by the Markov property if k <a< %,
P{r > an®} > (%)’”’1. o
Corollary 2.4.9 If A C C,, then
P{ra > éan} < cP{ra > n2}.
Proof. By Lemma 2.4.8, for z € 9Ca,,
P {14 >n’} 2> ¢,

and hence
P{TA > n? | TA > Ezn} >c O

If we return to the line segment, another application of Lemma 2.4.8
gives

P{TU,*; > n? | én < TU:,S(ﬁn) € B~ UBO} >c,
and therefore, by (2.38),

P{ry+ > n?} > cP{¢, < Ty+}-

If we combine this with (2.39), we get

—1/2 d=2,
Finally by Exercise 2.1.4, this gives
n~1/2, d=2,
HU,T (0) -~ { (ln n)1/2n—1, d = 3. (2'41)

In the next section we will need an estimate of the harmonic measure of
Ut at points near 0 ford =2 .
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Proposition 2.4.10 For0<m < n, d =2,
Hy+((m)) < em™1/2p71/2,

Proof. By (2.30), it suffices to prove the result for m < f%. Therefore

o

assume m < {¢ and let f(z) = P*{r;+ > &n}. We will prove that for
T € 602,,,,

f(z) < em!/?n~1/2 (2.42)

From (2.42) we can conclude that

f((m))

IA

P {€3m < 753} sup f(3)
€

2m
(cm-l)(cml/2n—l/2)

-1/2,-1/2

<
< cm

As above, write Cs,, = Bt UB~ U B°. For z,y € B = B~ U B9, the
Harnack principle gives

f(z) < cf(y). (2.43)
Also (2.38) and (2.37) give
P{&am < 7y+;S(€2m) € B} 2 em™1/2, (2.44)

Since
P{&, < TU:} <en”V?

(2.43) and (2.44) imply
f(z) <em'?n~Y2 z e B.

Similarly if W = {(z1,22) : =8m < 23 < —m,|2z2| < 4m}, the Harnack
principle gives
f(z) <em?n~V2 zeW.

If we consider the set K = {(j) : 4m < j < 4m + %} and the ball C =
{z + (4m) : z € C,}, we get by above, if € 8Cs,,,

PI{TK > Té}
em/2n-1/2.

Therefore, (2.42) holds and the proposition is proved. O
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2.5 Upper Bounds for Harmonic Measure

Given a finite set A, £ € A, how large can H4(z) be? If A consists of two
points, then by symmetry H4(z) = %, and hence by (2.11) if A has at least
two points

Ha(z) <

MI»—A

For d = 2, we cannot improve on the above estimate if we only know the
cardinality of A. To see this, we first note that if A C C,,, and

0 = 0m = sup{j <ém: S, € A},
then (see the proof of Proposition 2.4.1)
P{S, =z} =Gc, (0,z)P*{14 > &Em}.
Hence by Proposition 1.6.7 and Theorem 2.1.3 |

lim P{S, =z} = Ha(z). (2.45)

m—00

Now let A = C, U {z} where z = z, = (2",0). By Lemma 2.3.1 and
Theorem 1.6.2, if y € C,,,

nln2 + o(lnn),
nln2+ O(Inn).

"y_{nm(lnm)Py{Tx > &m}
Jlim ()P {6, > €n)

I

By considering the successive times that the random walk is in C,,, then z,
then C,, then z, etc., one can see that this implies

Inn

hm P{S, =z} =-— O(—)

or by (2.45),
Inn

Ha(z) = 3~ O(20).

If d > 3, we can get a nontrivial estimate of the harmonic measure of a
point in terms of |A|, where | - | denotes cardinality.

Proposition 2.5.1 If AC Z%,z € A, then

Ha(z) < clA|=9/4,
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Proof. Let
v(n) = sup ZG(:L‘).
[Al=n T€EA

Then by Theorem 1.5.4, for n sufficiently large if m = 2n1/4,

w(n) < Y Gla)

$€Crn

< ey (e

z€C,n

< cn?/d,

Now assume |A| = n and let v = v(n). By Proposition 2.4.1(d), for = € A,

> G(z,y)(Esa(y) —v ) =1-v"1> G(y-z)>0.

yEA yEA

Therefore, again using Proposition 2.4.1(d),

0 < ) Esal®)) G(z,y)(Esaly) —v™")

T€EA y€A

= Z(ESA(y) - 'U~1) Z ESA(IL')G(x,y)
yEA T€EA

= S (Esaw) v Y Gy, 2)Bsa(a)
y€EA TEA

= 3 (Esaw) v
y€A

= cap(A) —nv~l.

Therefore
cap(A) > n[v(n)]™' > cnld-2/4,

and by (2.13),
Ha(z) <en®-9/4. o

If A, = C, U {z}, then |A;| < n?. By (2.16) and Proposition 2.2.1,
cap(A4;) < n?2. But by transience,

lim Esyi_(z) = Es.(z) >0,
|z|—o0

Therefore, for |z| sufficiently large,

Ha(z) < n?~4 x |A|@-4/4,
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so the bound in Proposition 2.5.1 cannot be improved if one only knows
the cardinality of A.

We now consider how large the harmonic measure can be for points in
a connected set of a certain radius. Let A, be the set of all connected
subsets of Z¢ of radius n which contain 0. Let B, be the set of subsets of
Z4 of radius n which for each j = 1,2,...,n, contain exactly one point z
with j — 1 < |z| < j. As we have noted previously, if A € A, there exists
a (perhaps disconnected) B C A with B € B,. In the previous section we
considered the line segment A = U;}' and showed

en~1/2, d=2,
HA(0) << c(Inn)/2n~1, d=3,
en”t, d> 4.

One might guess that the line segment is as sparse a connected set as one
could have, and that the endpoint of the segment has the largest possible
harmonic measure for a connected set. The remainder of this section will
be devoted to proving that this is the case, at least up to a multiplicative
constant. This theorem is a discrete analogue of the Beurling projection
theorem [1].

Theorem 2.5.2 If0 € A C Z¢ is a connected set of radius n then,

en~1/2, d=2,
Ha(0) << c(lnn)/2p~1, d=3,
cn~l, d> 4.

The following lemma was proved in the proof of Lemma 2.3.5.
Lemma 2.5.3 Ifd =2, B € B, and z € 0C,,
P*{tp < &} >c.
The next lemma gives a similar result for d > 3.

Lemma 2.5.4 Ifd > 3,B € B,, then

en(lnn)~1,

cap(B) > { e

1)

d=3
d>4.

)

Proof. Let Y be the number of visits to B, i.e.,

Y=3 > I{S;=x}

z€B =0



2.5. UPPER BOUNDS FOR HARMONIC MEASURE 79

By Theorem 1.5.4, if y € 8Ca,,
E¥Y)>c) n*¢=cn® (2.46)
z€B

If y € C,,, there exist at most 25 points of B within distance j — 1 of y and
hence by Theorem 1.5.4,

E¥(Y) < cij"’"’ < { e(lnn), j

=1

3,
4‘ (2.47)

If y € 0Cyp,
EY¥(Y) = PY{rp < }EY(Y | 7B < o0).

Therefore, by (2.46) and (2.47),

c(lnn)~!, d
d

Primg <o} 2 { 8 >

vVl

m K
But by Proposition 2.2.2,
cap(B) < n?"2P¥{rp < o0},

which gives the lemma. 0O

Proof of Theorem 2.5.2. By (2.11), it suffices to prove the result for
B € B,,. If d > 4, the theorem follows immediately from (2.13) and Lemma
2.5.4. Consider d = 2. Let m = n3. Then by Theorem 1.6.6, Proposition
1.6.7, and Exercise 1.6.8,

(glnn)_1 ~ P{ro>&n}
= > P{S(oAém) =1y}

y€EOCm

= Z Py{To < fm}

Yy€EOCm

= Z PY{&n < En}PY{T0 < &m | &n < &m}

y€OCnm

2
~ 3 D Pa<én)

y€ICpm

Therefore by Lemma 2.5.3,

Y PH{rg>&n} = > P¥{1p <&m}

zeB y€CH,
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X

> P& <&}

yEaCm
< (Inn)~L (2.48)

To prove the theorem it then suffices by Exercise 2.1.4 to prove
P{tg > &m} < c(Inn)~1n~1/2,

Let B = {y1,...,yn}, where j — 1 < |y;| < j. Let U = U} = {21,...,2,}
where 2; = (j — 1,0). By Proposition 2.4.10,

Hy(z) < en™'/2571/2,
and hence by (2.48) and Theorem 2.1.3,
P*{¢, < 1y} < c(lnn)~ 1125712, (2.49)

For notational ease let
9(z,y) = Ge,,.(z,9),
e(z,A) = P*{1a > &n},
h(z, A) = P*{S; € A for some j =0,1,2,...,&n}.

We may assume without loss of generality that v = (—1,0) ¢ B. We will

show
e(u, B) < c(Inn)"'n~1/2

which will clearly imply
e(0,B) < ¢(lnn)"n"1/2,
By (2.49), e(u,U) < ¢(Inn)~n=1/2, Therefore,
e(u, B) < ¢(Inn)"'n"2 4 e(u, B) — e(u, U).
By Proposition 2.4.1(c),
e(u,B) —e(u,U) = h(u,U) - h(u,B)

= 29w z)e(z,U) = 3 _ 9w, v;)e(w;, B)
J=1 j=1

= ) lo(u, z) — g(u,y;)]e(z;,U)
j=1

+> g(u,y5)[e(2;,U) — e(y;, B)]. (2.50)

=1
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By Proposition 1.6.7, if z,y € Cy,

o(,9) = 2BInn—Injz —yl +o(lz —y/).  (251)
Since j —2 < Ju—y;| < |Ju—2i| =7 +1,

g(ua zj) - g(u,yj) < Cj—3/29 (2'52)

and therefore,

n n
> lo(u, ;) — g(u, v))le(2;,U) < Y 57¥*(Inn)~1n=1/2j=1/2

< c(lnn)" 1712, (2.53)

For the second term consider the function
F(z) = g(=,y,)le(2,U) — e(y5, B)]-
=1

F' is harmonic on Cyp, \ B, and F(z) = 0 for z € 8C,,. Therefore, by the
maximum principle (Exercise 1.4.7),

F(u) <0V sup F(y).
yEB
We will show that
F(y) < ¢(Inn)~Y2p~1/2,

for each y € B, which then implies that the estimate holds for each y € C,,.
By Proposition 2.4.1(c),

D 9 yy)e(y;, B) =1=")_ g(zi,2)e(z;, V).
1=1

j=1
Therefore,
n
F(y:) = _[9(wi,y;) — 9(2i, 2)]e(z;, U).
i=1
Note that |y; — y;| > |7 — 4| — 1 = |2z; — z;| — 1. Therefore by (2.51),

9(yi,y;) — 9(zi,2;) < clj —i+ 17N
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We now use (2.49) to give

n

Fy) = S cj—i+1" (nn)"'n"1/2j-1/2
=1
< enY2%(lnn)"t.

The d = 3 case is proved similarly. In this case we let
9(z,y) = G(z,y),
e(z, A) = Esa(z),
h(z, A) = P*{S; € A for some j =0,1,2,...}.
By (2.13) and Lemma 2.5.4, it suffices to prove that
e(u, B) < c(Inn)~1/2,
where u = (1,0,0). By (2.40),
e(z,U) < c(Inn)"Y2 z € U.
Then (2.50) holds again. In this case we have the estimate (Theorem 1.5.4)
9(z,y) = aslz —y| ™" +o(|z — y|7?),

so that

9(u, 2;) — g(u,y;) < cj™2

Then (2.53) gives
Z[g(u»zj) - g(uv yj)]e(zja U) < c(lnn)—l/2’
=1

and similarly for the second term. O

2.6 Diffusion Limited Aggregation

We will give a brief introduction to a model for dendritic growth, first intro-
duced by Witten and Sander, called diffusion limited aggregation (DLA).
In this model, one builds a random cluster of points A, in Z¢ according to
the following rule:

L A1 = {0}
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e if A, is given, then for z € 0A,,
P{Ant1 = AnU{z} | An} = Haa, ().

In other words, a random walker is sent “from infinity” until it reaches a
lattice point which is adjacent to the cluster, at which time the points adds
onto the cluster. The above rule defines a Markov chain whose state space
is the set of finite connected subsets of Z¢ containing 0. Note that A,
always has cardinality n.

Computer simulations of the model show that the clusters formed are
relatively sparse and appear to have a noninteger “fractal dimension”. The
notion of fractal dimension is vague, see [55], but there is a natural intu-
itve feel for what the “dimension” of a subset of Z¢ should be. Suppose
rad(A,) = m. Then A, contains n points all of which lie in the ball of
radius m. For integer k, a k-dimensional subset of C,, will have on the
order mF points. So the “dimension” d of the cluster A, can be defined by

n x~m,

or -
rad(A4,) =~ n!/%.

The last equation has the advantage that we can make a rigorous _math-
ematical definition: we define the dimension of the DLA cluster d in d
dimensions to be equal to é where

a = limsup In B(rad(4,)) )

n—o0 Inn

We expect in fact that the limit on the right hand side exists and that
almost surely
Inrad(A,)
Inn
but proving statements about such quantities is very difficult.
Numerical simulations suggest a value a little less than 1.7 for d in two
dimensions. There is also a mean-field theory that gives a prediction

d2+1
d+1°

which agrees fairly well with simulation. See [70] for a discussion of DLA
from a nonrigorous viewpoint.

In this section we will use the results of the previous section to give a
rigorous upper bound on a. As the reader can note, the bound is far from
the conjectured values.

> Q,

d=
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Theorem 2.6.1 There ezists a ¢ < 0o such that almost surely for n suffi-
ciently large

cn?/3, d=2,
rad(A,) < { cn'/2(Inn)V/4, d =3, (2.54)
cn?/d d>4.

The proof of Theorem 2.6.1 needs an exponential estimate for geometric
random variables. Such results are standard; however, it will be just as easy
to prove the result we need as to specialize a more general theorem from
the literature.

Lemma 2.6.2 SupposeT,...,T, are independent geometric random vari-
ables with parameter p, i.e., P{T; = j} = p(1—-p)i 1;Y =T1+---+Tp;p <
3. Then for every a > 2p,
P{Y < %} < (2¢%a)".
Proof: The moment generating function of Y is
E(e) = [pe']"[1 - e*(1 = p)) ™
By the Chebyshev inequality, for any ¢t > 0,
PY< T} < ep(Z2)EE)

= eXP{aT?t}p“[e’ -1-p™

Let t = In(fl—g—_%’&). Then

an a(l =p)ian/ —nt P _
P{y < == < an/ppn(q _ n n
w2y < (U Dpnra -t
< [1+ p ]an/pznan
a—-p
<

1+ L]'A’(a—z’)n/p(za)n
a—p
< (2e%a)". O
Proof of Theorem 2.6.1. Let

z2/3, d=2,
h(z) = ha(x) = { =/%(lnz)'/4, d=3,
z2/d d> 4.
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We will prove that for some ¢ > 0, almost surely for all n sufficiently large
An > éh71(n), (2.55)

where
An = inf{j : rad(A4;) > n}.

Then (2.54) follows easily from (2.55). Note that if n > 2, h3'(n) <
2n%(Inn)~1/2, The argument for d = 2 and d = 3 will be similar using
Theorem 2.5.2. For d > 4, the argument will instead use Proposition 2.5.1.
We will write A, = {ai1,...,a,} where a; is the jth point added to the
cluster.

Assume d = 2 or 3. If z € A,,, then there exists a sequence of points
0 =z,...,2k, = z and indices 1 = j; < j2 < .- < jr < m, such
that |z; — z;_;| = 1 and a;, = z; (this can easily be proved by induction
on m). If z € 0Cs,, then by considering the end of this sequence one
can find points y1,...,yx = = and times j; < jo < -+ < jr < m with
lyi = Yo—1] = 1,@j, = ¥;, and y; € OC,. Clearly k > n. Fix 8 > 0 (to be
determined later) and let V,, be the event

V. = {A2n < Bn3/2}, d=2,
"7 {A2n < Bn%(Inn)"Y/?%}, d=3.

If (2] = [21,...,2n] is any random walk path, let W,([z]) be the event

Wa([z]) = {351 < Jj2 < -+ < jn £ m such that aj, = 2,},

where m = m,, = fn®? if d = 2 and m = Bn?(Inn)~/2if d = 3 . Let W,
be the union of Wy, ([z]) over all random walk paths [z] with n points and
z; € 0C,,. Then by the discussion above, V,, ¢ W,,.

Fix (2] with z; € C;, and let

7; = the j such that a; = 2;,

O; = Tiy+1 — Ti.

Since Aj, is a connected set of radius at least n, we know by Theorem 2.5.2
that, conditioned on A;,, the distribution of o; is bounded above by that
of a geometric random variable with parameter

_ _ [ an™/2, d=2,
P=Pnd=1 ¢/(lnn)/2n"1, d=3

By Lemma 2.6.2, for n sufficiently large,

P{Tn_1 < Bernp™'} < (4€*Bc)™ 7Y,
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and therefore
P(W,([2])) < (4€*Bey)™ L.

The number of random walk paths with n points starting at a point in 8C,,
is bounded above by cn4=1(2d)"~! . Therefore,

P(W,) < en?! (8de2ﬂcl)"_l,

and if we choose 3 so that 8de?fc; < 1,

Hence by the Borel-Cantelli Lemma, for this 3,
P{V, i.0.} < P{W, i0} =0,

which gives (2.55) .
For d > 4, if
Vo = {don — An < BrA-2/4}

then by a similar argument to the above, using Proposition 2.5.1 instead of
Theorem 2.5.2, we can prove that for some 3 > 0,

P{V, i0.} =0,
i.e., almost surely for n sufficiently large,
Aon — Ap > BrAld=2/d,

It is then routine to show that this implies that (2.55) holds. O
Kesten [37] has recently improved Theorem 2.6.1 for d > 4 by showing
that
rad(A,) < en?/(@+1),



Chapter 3

Intersection Probabilities

3.1 Introduction

We start the study of intersection probabilities for random walks. It will be
useful to make some notational assumptions which will be used throughout
this book for dealing with multiple random walks. Suppose we wish to
consider k independent simple random walks S1,...,S*. Without loss of
generality, we will assume that S is defined on the probability space (Q2;, P;)
and that (Q,P) = (Q; x --- X Q, Py X --- x P). We will use E; for
expectations with respect to P,; F for expectations with repect to P; w,
for elements of Q;; and w = (w1, ...,wk) for elements of . We will write
Pr1Tk gnd E*1-+Tk to denote probabilities and expectations assuming
S1(0) = z1,...,58%(0) = zx. As before, if the z,, ..., ) are missing then it
is assumed that S'(0) = --- = S¥(0) = 0. If ¢ < T are two times, perhaps
random, we let

o, 7] ={S'():0 <G <7},
Si(o,m) ={S'(G) 1o <j<}
and similarly for S*(o, 7] and Si[o, 7).
Let S?, S? be independent simple random walks starting at 0 with killing
rate 1 — ) and killing times T, T2. Let
f(\) = P{S*(0,T*] n S%(0,T?] = 0},

be the probability that the paths do not intersect. If we let A be the random
set S?(0,T?], then we can write

F\) = Ex(Pi{T? < 14)}).
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In general, it is easy to compute the expected number of intersections of two
paths using the local central limit theorem; however, finding the probability
of no intersection is difficult.

For comparison, consider two examples where A is not random. First,
assume A = {0}. Then by Proposition 2.4.1(b),

Pl{Tl < TA} = [G)\(O)]_l, (31)

i.e., the probability of no intersection of A and S!(0,7T"!] is exactly the
inverse of the expected number of intersections. However, it is not always
the case that this will be true; in fact, as the second example shows, there
are cases where the probability of intersection is of a different order of
magnitude than the inverse of the expected number of intersections. Let
d=2and A = Ut = {(n,0) : n > 0}. Then by (2.26), as A — 1,
the expected number of intersections of A and S?(0,T?] is asymptotic to
¢(1 = X)~1/2 while it can be shown easily using (2.41) that the probability
of no intersection decays like c(1 — A)!/4.

In this chapter we will consider two intersection problems for simple
random walks which can be considered “easier” because the answer can be
guessed by intuitions such as “probability of no intersection = (expected
number)~1”. These problems can be stated as:

1) Let S! start at 0 and S? start at = where |z| is approximately /7.
Find

P%={S[0,n] N S%[0,n] # 0}.

2) Let S1,52, 83 start at 0. Find
P{S'(0,n] N (S?[0,n] U S3[0,n]) = 0}.

Chapters 4 and 5 will analyze quantities such as f(A) which are “harder”
to estimate and whose answer cannot be guessed only by counting the
expected number of intersections.

3.2 Preliminaries

Let S, S? be independent simple random walks starting at 0 in Z¢ with
killing rate 1 — A\, A € (0,1], and let T?,T? be the corresponding killing
times. Let

9(X) = P{S'() # $%(4),(0,0) < (3,5) < (T, T?)}.

Here we write (i1,%2) =< (J1,72) if 11 < j1 and iy < jo; (i1,%2) < (J1,J2)
if (i1,12) =X (J1,J2) but (i1,i2) # (j1,72)- We let Ry be the number of



3.2. PRELIMINARIES

intersection times (including (0,0)), i.e.,

Ry =33 I{8'() = 5%(3), (i, 4) < (T',T?)}.

1=0 j=0

89

As a rule it is much easier to estimate the expected value of random vari-
ables such as Ry than to estimate probabilities such as g.

Proposition 3.2.1 As A — 1,

E(R)) =

Proof.

E(Ry) =

c(1 =232 4+ 0((1 - N)"1/?),

c(1 =21+ O0(In %),
c(1=2)"Y24+0(1),
cln 25 +O(1),
c+O((1 - N)d=9/2),

M

s 51
M 1

1
=
<.
Il
o

(2

But by reversing 52 we can see that

P{S'(i) = $%(j)} = P{S"(i + j) = 0}.

Therefore,

E(R)) =

s

0

Il

2

1M 1M

I
.Mg

Il
=]

J

M (5 +1)p;(0)

P{S'(i) = §%(j), (i,5) = (T*,T?)}

X+ P{S(i) = $2(3)}.

Atip.i(0)

X 3p;(0) + GA(0).

It is easy to show using Theorem 1.2.1 that as A — 1,

c+O((1 = N)@-2/72), d >3,
G (0) = { O(ln 25),

o((1 =N~

d=2,
d=1.
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Therefore it suffices to consider

oo (o o) o0
Y Xipi(0) = > Mjp;(0) + Y ME;(0)
=0 j=0 =0
y (1.6),
Z,\ijj(o) < CZ M j=(d+2)/2
j=0 3=0

= O(1)+0((1 - N¥?).

Therefore we only need to estimate

/\23 d/2

This calculation is left as an exercise. O

Note that d = 4 is the “critical dimension” for the problem. If d < 4,
E(R,) goes to infinity as A — 1, but for d > 4, E(R)) < oo even for A = 1.
We would like to show such critical behavior for g()) as well; however, it
is not so easy to estimate g(A) in terms of E(R)). (The reader should
compare this to (3.1) where the probability of no return to the origin is
given in terms of the expected number of returns.) We can get an estimate
in one direction.

Proposition 3.2.2 If A< 1, orif A=1andd > 5,
g(N) 2 [E(RN)]™
Proof. If i,5 > 0, we call (i,7) a *-last intersection if
§'(i) = §%(5); §*(i1) # S2(3r), (4,5) < (61, 51) = (T, T?).

With probability one, every pair of paths will have at least one *-last in-
tersection although a pair of paths may have more than one. (If d > 5 and
A = 1, the existence of a *-last intersection follows from the fact that with
probability one the number of intersections in finite.) Therefore

[o <IN o}

2 Z P{(i,7) is a *-last intersection}.

:0:
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But,
P{(i,7) is a *-last intersection}
= P{8'() = $°(4); (5,5) = (T", T*);
§' (1) # $*(1), (3,9) < (i1, 51) 2 (T, T?)}
= A"piy;(0)9(N),

and the proposition follows by summing. 0O
It follows immediately that for d > 5, g(1) > 0, i.e.,

P{S" () # 5°(4),(0,0) < (3,5) < (00,00)} > 0. (3:2)
We also get a lower bound for d < 4,

c[ln £5]71, d=4,
ORI A (33)

Proposition 3.2.2 is not good enough to conclude that for d < 4,
P{S' (i) # 5%(4),(0,0) < (3,5) < (c0,00)} = 0.

This is true and we could prove it now without too much work. However,
since this will follow from the results of the next sections we will not bother
to prove it here. A more difficult question is deciding how good the bounds
in (3.3) are. If one examines the proof of Proposition 3.2.2, one sees that
the inequality arises from the fact that a pair of paths can have many *-
last intersections. If it were true that most paths had only a few *-last
intersections, then one might guess that the RHS of (3.3) would also give
an upper bound (up to a multiplicative constant). It turns out, however,
that the bound in (3.3) is not sharp in low dimensions. As an example, let
us consider the case d = 1 which can be done exactly.
Suppose S1, 52 are independent one dimensional random walks and

V = {S'(i) # $%(4),(0,0) < (3,5) = (T", T*)}.
Then it is easy to see that
V = {8'()>0,0<i<T!S%j) <0,0<j<T?
U {S'() <0,0<i<TS%(35)>0,0<j<T?.
But by (3.1),
P{S'(i)>0,0<i<T'} = %P{Sl(i) #0,0<i< T}
_ 1 -1
= 2[G,\(O)]
~ c(1-2A)%.
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Therefore as A — 1,
P{S'(i) # §%(5) : (0,0) < (3,5) < (T",T*)} ~ e(1 = A).

Note that this is not the same power of (1 — A) as given in (3.3).
At times we will want to consider walks with a fixed number of steps.
Let R, be the number of intersections up through time n, i.e.,

R, =Y. 3 I{8'() = $(5)}.

1=0 j=0
The analogue to Proposition 3.2.1 can be proved easily.
Proposition 3.2.3 Asn — oo,

en®/?2 £ 0(nl/?), d
en + O(lnn), d
E(R,) ={ cn'/24+0(1), d
clnn+ O(1), d
c+O(n4-9/2) 4

In section 2.4, Tauberian theorems were used to relate quantities with
geometric killing times and quantities for fixed step walks. We will use
the theorems in that section, but will need one more easy result to handle

multiple walks. If h(ny,...,n;) is any nonnegative function on {0,1,...}*,
and T, ..., T* are independent geometric random variables with rate 1 —\,
let

d(N) =du(N)= Y. P{T'=ny,...,T* =m}h(ny,...,m).

1

Lemma 3.2.4 If h(ny,...,nk) is nonincreasing in each variable, b > 0,
and h, = h(n,...,n), then

oo
(1= AYkh, < B(N) < k(1= X)) Mk,
n=0
Proof: Note that
P{T'Vv...vTk <b} (P{T! < b})*
(1 - Ab)ka

AV

and

k
P{T'A---AT*¥=n} < Y P{TV=nT,...,T* > n}
1=1
= kX1 -)).
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Since h is nonincreasing in each variable,

®(\) > > P{T'=ny,...,TF =mi}h(d,...,b)
n,<b

P{T'v.--vT* <b}h

2> (1 - Ab)khb?

and

o)) < f:P{TlA---/\Tk=n}h(n,...,n)

n=0

IA

oo
k(1=X) ) Xth,. O

n=0

3.3 Long Range Intersections

Let S, S? be independent simple random walks starting at 0 and x respec-
tively, and as in the last section, let R, be the number of intersections up

through time n,
n

R, = Z: > 1{s} =52}

=0

We let J,(z) be the expected number of intersections,

Ju(z) = E%*(R,)

= LY Pist =8

i=0 3=0
= DD ) P{Si=y}P{s] =y}
1=0 =0 yeZz4
= ) Gu(®)GCnl(z—y).
yez4
By Proposition 3.2.3,
=072 4 <4,
Ja(0) ~ ¢ clnn, d=4, (3.4)
c, d> 4.

We consider the case where |z| is of order /n.
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Proposition 3.3.1 If0 < a < b < oo, there erist ¢; = ¢;(a,b) and c; =
ca2(a,b) such that if a\/n < |z| < by/n,

en=9/2 < Ju(z) < cond=9/2,

Proof.
Jn(z) = Y > P*{S! =52
1=0 3=0

= Z Z Pu+5(T)

1=0 j=0

n 2n
= S k+Dp(a)+ S @n—k+p(a).
k=0

=n+1
The estimate is then a straightforward application of the local central limit
theorem. O
A more difficult quantity to estimate is the probability that the paths

intersect, i.e.,

bn(z) = PO={S*(0,n] N S2[0,n] # 0}.
Since ¢,(z) = P>*{R, > 0}, and

E(R,) = P{R, > 0}FE{R, | R, > 0},
we get

én(z) = P**{R, > 0} = J.(z)[E>*{R. | R. > 0}]7L.

If we could compute E®*{R,, | R,, > 0} we would have the answer. Sup-
pose S1[0,n] N S2[0,n] # @. Then the paths intersect at some point. Once
they intersect at some point, one might guess that they should have ap-
proximately the same number of intersections as two walks starting at the
same point (at least up to a multiplicative constant). Hence one might ex-
pect that P®*{R, > 0} is approximately equal to cJ,(z)[J(0)]~!. Making
such intuitive arguments rigorous is not so easy because there is no natural
stopping time along the paths. One cannot talk of the “first” intersection
of the two paths because there are two time scales involved. However, in
this case, the intuition gives the right answer.

Theorem 3.3.2 If0 < a < b < oo, there erist c; = c1(a,b) and ¢c; =
ca(a,b) such that if ay/n < |z| < by/n,

C1 Cc2, d< 4,
c1(lnn)~? < P%={S'0,n) N S?[0,n] # 0} < { co(lnn)!, d=4,
cynld=4)/2 con=49/2 d > 4.
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The upper bound for d < 4 is trivial and for d > 4 it follows immediately
from Proposition 3.3.1 and the inequality
P%*{R, > 0} < E**(R,).
In this section we will prove the lower bound and in the following section

we will prove the upper bound for d = 4.

Proof of the lower bound: Let V =V, = S[0,n] N S%[0,n] and
Y =Y, the cardinality of V. If X is any nonnegative random variable,

E(X)=P{X >0}E{X | X > 0}.
By Jensen’s inequality,

E(X?)

P{X > 0}E{X?| X > 0}
P{X > 0}[E{X | X > 0}]2
[E(X)PP{X >0}]7},

v

i.e.,

2
P{X >0} > %%— (3.5)

We will show that

E®*(Y) 2 [Ga(0)]7%Jn(x)
E®*(Y?) < ¢[Gn(0)]"*Jon(z)J2n(0).

The lower bound then follows from (3.4), Proposition 3.3.1, and (3.5).
Let 7y = inf{j > 0: S} =y} and

H,(y) = P{7y, <n}.

By the strong Markov property,

Gn(y) < Ha(y)Gr(0) < Gan(y). (3.6)
Therefore,
E*(Y) = ) P*{yeV}
yeZ4
= Y Hu(y)Ha(z-y)
yezZ4d

v

[Ga(0)]72 Y Ga(¥)Calz — y) = [Ga(0)] 2 Jn(z).

yeZ4d
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By expanding the square,
E™*(Y?%) =" Y P**{y,zeV}.
yeZd ze24
Note that
P{y,z2€S'0,n]} < P{0<Ty<7,<n}+P{0<T, <7, <n}
< Hnu(y)Hn(z — y) + Ha(2)Hn(2 — 9).

Similarly,
P*{y,z € S%[0,n]} < Hn(z — y)[Hn(z — y) + Ha(z - 2)].
Therefore, using (3.6),

a0 E*(YY) < 3 3 Ganle —1)?(Gany) + Gan()]
y€Zd 2€24

[G2n($ - y) + G2n(x - Z)]
= 2 Z Z Gan(z — ¥)*G2n(y)Gan(z — y)

y€Zd z€24

+2 37 Y Canlz = 1)*Gan(y)Can(e — 2).

y€Z< 224

Z Z ng(z - y)202n(y)G2n(x - y)

y€Z? z€24

= Z Z G2"(w)2Gzn(y)Gzn($ - y)

y€Zd weZd
= Jon(0)Jon(x).

Z Z ng(Z - y)2G2n(y)G2n($ - Z)

y€Zd 224

= ) > Gan(w)?Gan(z — w)Gan(z - 2)

weZd z€Z4

= ) Gan(w)Jon(z —w)
wezZd

= Z G2n(w)2']2n(x - w) + Z G2n(w)2J2n(x - w)
lw|< 31z Jw|>3|=z|

< clon(2)J2n(0) + J2n(0) S Gon(w)?.
[w]>41z|
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The last step uses the estimate in Proposition 3.3.1. If £ = inf{j : |S}| >
3|z|}, then

£42n 2n

> Ga(w)? < E(Y Y I{S! =53}

lw|> 42| i=¢ j=0
= Jon(S}) € cJan(2).

INA

Combining all of these estimates we get
E%*(Y?) < ¢[Gn(0)]"*J2n(z)J2r (0),

which completes the proof of the lower bound. O

3.4 Upper Bound in Four Dimensions
We introduce a random variable which will be very useful for d = 4. Let
= Z G(S‘i1 )7
i=0

where G is the standard Green’s function. Suppose R, is the number of
intersections of two independent random walks starting at the origin, one
of length n and the other of infinite length, i.e.,

=YY I{s} =52}
1=0 j=0
Then D,, is the conditional expectation of R, given S!. In particular,
E(D,) = E(R,).

Note that

E(R) = 3.3 pii(0)

i=0 j=0

= ) G+ Dp:(0)+ Y (n+1)pi(0)
1=0 i=n+1

- (%)2lnn+0(1)

= 2a4Inn+ O(1),
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where a4 is as defined in Theorem 1.5.4. The reason D,, is very useful in
four dimensions is that the variance of D,, grows significantly more slowly

than E(D,)2.
Proposition 3.4.1 Ifd =4, as n — oo,

(a) E(D,) = 2a4(Inn)+ 0O(1),
(b) Var(D,) = O(lnn),

and hence D )
Var(———) = O(—).
aLlr(E(Dn)) O(Inn)
Before sketching the proof of Proposition 3.4.1, let us motivate why
the variance should be small. Assume for a moment that n = 2* (so that
k = log, n) and write

D, =G(0) + ZY,,
j=0
where
2.7
= Y ash.
i=20-141
Then,

27

EY;) = z Zp,+k(0 Z 2a4i7 ! ~ 2a41n2.

i=27-141k=0 1=20-141

One can guess that because of the different length scales involved that the Y;
are asymptotically independent. Hence D,, is the sum of k asymptotically
independent random variables with approximately the same mean. If the
variances of the Y; are uniformly bounded, then one could hope that

Var(D,) = ZVa.r(Y +Z(ZCOV Y;,Y;))
j=0 i#j
~ ck = c(lnn).

The proof we sketch below will not use the above intuition, but instead will
be a direct calculation.

Proof. We have already proved (a). To prove (b) we will show by direct
calculation that

E(D?) = 4a2(Inn)? + O(Inn).
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We will only sketch the main points, allowing the reader to fill in the ap-
propriate details. Let S, = S}.Since

E(D2) =" " E(G(S)G(S))),
i=0 j=0

we need to estimate E(G(S;)G(S;)). Assume ¢ < j. Then by Theorem
1.5.4, E(G(S;)G(S;)) is approximately equal to

a3 E((1S:] v 1)~2(|S;1 v 1)72),
which by the central limit theorem is approximately equal to
1602 2E(|X|72|X + Y|7?), (3.7)

where X and Y are independent normal random variables with covariance
I and sI respectively, s = (j — i)/i. We can compute this expected value
using spherical coordinates. We need one fact: since f(y) = |z — y|~? is
harmonic in R?* for y # z, the average value of f over the ball of radius r

about z equals
|lz|=2, r<|z|,
{ I (3.8)

(see, e.g., [66, Theorem 1.9(b)]). Then E(|X|~2|X + Y|~?) equals

/ #[/ I?_:—ylz(27rs)"2e'ly|2/2sdy](21r)'2e_"|2/2d:1:.
R4 R4

The interior integral in spherical coordinates, using (3.8), equals
=] 1 3 —-r2/2s -2 <1 3 —1'2/23 -2
A 2 e |z|~*dr + o 32" e r4dr

1 12
= W(l—-e |z /23).

Therefore,

E(IXI_2|X + Y|_2) = /0 5;6_7'2/2(1 — e—r2/2s)dr

o 2 2
= / Ee_" 121 —e" /Q)dr.
0

To compute this integral for s > 0 note that if

l 2 2
= e~ /2(] — =T /2
F(s) /0 o€ (1-e )dr,
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then
*® r 2 2
F'(s) = —/ Ze‘" 12(1 — =" /?)dr.
0

By integrating by parts we get

1

Fi(s) = T 4s(s+1)

Hence if we integrate and note that F(s) — 0 as s — oo, we get
1 1
F(s) = 1 In(1 + ;).
Returning to (3.7), we get that E(G(S;)G(S,)) is approximately
2.2 ¢
4azi™*In(1 + e i)’

and hence that E(D?) is approximately
o n n _ t
22 Z 4a2i 2ln(1-+-—) ~ 8a§/ / t 2ln(1+s_

1=0 j=i+1
8a4/ t'2/ n(l+ - )dsdt

Direct calculation of the integral gives the result. O
Proof of the upper bound of Theorem 3.3.2. As mentioned before
we only need to consider d = 4. Let

=i§"‘41{sl—s2

1=0 j=0

)ds dt
t

We will show for some ¢ = ¢(a,b),
P%*{R, >0} < ¢(Inn)7!,

which will give the result. An estimate such as Proposition 3.3.1 gives for
some ¢ = ¢(a,b),
EO'I(R2n) <ec

Let 7 = 7,, be the stopping time

T =inf{i > 0: S! € $?[0,n]},
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and define ¢ = o, by
o =inf{j: S'(r) = S?}.

We will say that j is good if
Djn =Y G(S2 — 5?) > 4ay(Inn),
k=0

and bad otherwise. By the strong Markov property applied to S,
E%* (R, | T < 00,0 good ) > 4a4(Inn).
Therefore,

EO'I(R%)[EO’I(R% | T < 00,0 good )]"1
c(a,b)0((Inn)™1).

P%*{r < 00,0 good } <
<

By Chebyshev’s inequality and Proposition 3.4.1,

P{Dnbad} < P{IDy~ E(D,)| > 3E(D,)}

4Var(Dn)
= E(Dn)?

= O((lnn)~h).
But,

P{r<oo,cbad} = Y Y P®*{r=i,0=j,jbad}
=0 3=0

< Zip{s} = 52,5 bad }.

1=0 j=0

But the events {S} = S?} and {j bad} are independent. Therefore,

i zn: P%={S}! = S?}P{;j bad }

=0 3=0
O((Inn)™*) E(Rx)
c(a,b)O((Inn)~1h).

P{r < 00,0 bad }

IA

IN A

Therefore,

P%*{R,, > 0} P%%{r < 00,0 good } + P**{r < 00,0 bad }

c(a,b)O((Inn)~Y). O

IA
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It is a consequence of the proof that for every r
P%*{R, > 0} < ¢(Inn)"'E%*(R,). (3.9)

The proof also suggests a method for estimating precisely the asymptotics
of the intersection probability of two random walks in four dimensions, i.e.,

P%*{R, > 0}.
Let J,(x) = E%*(R,). Let 7 and o be defined as above. Note that
$1[0,7) N S2[0,n] = 0,
and hence S [0, 00) N S3[0,n] is equal to
(S1[r,00) N S2[0,0)) U (ST, 00) N S2[o, n]).

How many intersections of the paths do we have, given that there is at least
one intersection? The random walk after time 7, S5, . — S}, is independent
of the choice of 7 and 0. Assuming o is a “good” point (which it is with
high probability), the expected number of intersections of S; with Sa[a, n]
should look like that of two walks starting at the origin, i.e. J,(0) (here we
are using the fact that Inn ~ Inan for any a). Similarly S, [r,00) should
be expected to intersect S;[0,0) about J,(0) times. Therefore we could
conjecture that E{R | R, # 0} ~ 2J,,(0) and hence that PO {R,, # 0} is
approximately J,(x)/(2J,(0)). For || of order /7 this intuition is correct.
We will prove such a result in Theorem 4.3.5.

3.5 Two-Sided Walks

The quantity we are most interested in understanding is
f(n) = P{S*(0,n] N S%(0,n] = 0}.

It turns out to be easier to estimate a quantity which appears at first to be
more complicated. Assume we have three simple random walks S!, §2, 3
starting at the origin. We can combine S$? and S? into a single two-sided

random walk
52(]) —-00< j<0,

W)= {53( ), 0<j< oo
Let

I

F(n) P{S*(0,n] N W[-n,n] = 0}
P{8(0,n] N (S?[0,n] U S®[0, n]) = 0}.

What we will prove in the next few sections is the following.



3.5. TWO-SIDED WALKS 103

Theorem 3.5.1 If F(n) is defined as above, then

n(d=9/2  d <4,
F(n) << (Inn)7}, d=4, (3.10)

c, d> 4.

Note that this theorem states that up to a multiplicative constant
F(n)~! is equal to the expected number of intersections of the paths. The
proof for d > 4 can be done easily using the ideas in section 3.2. For d =1,
one can show as in section 3.2 that

P{S'(i) #0,0 <i<n} ~en" V2

so that
F(n) = P{S'0,n] C [1,00),5%[0,n] C (—o0,0],S%[0,n] C (—o0,0]}
+P{S'(0,n] C (=00, -1}, 5%[0,n] C [0,00), S%[0,n] C [0,00)}
~ en732,

We will prove Theorem 3.5.1 for d = 2, 3 in the next two sections; the d = 4
case will be handled in the next chapter.
The lower bound for d = 2,3 will follow from the result of section 3.3.

By Theorem 3.3.2, if \/n < |z| < 24/n,
P=00{81[0,2n] N W[-3n,3n] # 0} > c.

Suppose that with high probability the intersection of the path does not
occur until after time n on the first path and the other path is hit only on
the set W[—2n, 2n]. To be precise, let B be the event:

S'0,2nr) N W[=3n,3n] # 0,
SH0,2n) N W[-3n,—2n] = 0,
S'0,2n)NW[2n,3n] = 0,
S'0,n)NW[-3n,3n] = 0

)

and suppose for /n < |z| < 2/n,
P*09%(B) > c. (3.11)
Let

7 = inf{i: S} € W[-3n,3n]},
inf{j > —3n: W(j) = S'(7)}.
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Then by (3.11), if /n < |z| < 2V/n,

2n 2n

Z Z P00 r =40 =} > ¢,

1=n+1j=-2n

and hence,

2n 2n

Y X Y Pr=io=j}z e

VAg|z|<2v/m i=n+1 j=—2n

By reversing time on S' and translating so that S? is the origin, one can
see that for n+1 <7< 2n, —2n < j < 2n,

Z P20 — 4 0 = j} < F(n).
z€zZ4
Therefore, by summing over i and j,

(4n+ 1)nF(n) > cn‘”"’,

or
F(n) > en(d-9/2,

It is therefore sufficient in order to prove the lower bound in Theorem 3.5.1
for d = 2,3 to prove the following lemma.

Lemma 3.5.2 If B is the set defined above, then for \/n < |z| < 24/n,
P=%9(B) > c.

Proof: For any 0 < r < K < 00, B D A, k where A, g is the event
that the following hold:

(a) IS} — x| < 5/, 0<i<nm,
(b)  Sn,2n]NW[-n,n] #0,

(c) WG@) ~z|>rv/m,  0<li<n,
(d) IS} < K/n, 0<i<2n,
@ W@ -z2Lva,  n<li<om,
(f) 15%(2n)],13(2n)| > 3K /7,

(8) [W(i)| > 2K y/n, 2n < Ji] < 3n.

It therefore suffices to show that there exist r, K such that

P=O4, 1) > .
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By Lemma 2.4.8, for any r > 0 there is a ¢, > 0 such that
P*{(a) holds} > ¢ (3.12)
It is easy to check using the reflection principle (Exercise 1.3.4) that
Kli_gloo igf P*{(d) holds} =1, (3.13)
Estimates from Chapter 1 can be used to show that

lir% inf P{(c) holds} = 1. (3.14)

For 1/n < |z| < 3y/n, by Theorem 3.3.2,
P=00U8Y0, n) N W[-n,n] # 0} > c.

Hence by (3.12), (3.13), and (3.14) and the Markov property, there exist
r, K such that
P=%%{(a) - (d) hold} > c.

Since |S2 — z| > ry/n, |S3 — x| > /7, one can then easily show that
P=%0{(e)-(f) hold | (a) - (d) hold} > ¢,
and finally again by Lemma 2.4.8, ,
P{(g) holds | (a) - (f) hold} >¢. O

3.6 Upper Bound for Two-Sided Walks

It will be easier to deal with random walks with killing rather than fixed
step walks. If 1,52, 5% are independent simple random walks with killing
rate 1 — A and killing times T, T2, T3, let

F()\) = P{S*(0,T*] n (S%[0,T?] u S3[0,T3]) = 0}.
In this section we will prove for d = 2, 3,
F(\) < (1 —2\)@-9/2, (3.15)
To derive the upper bound for Theorem 3.5.1 from (3.15), let
F(ny,n9,n3) = P{S*(0,n1] N (52[0, n2] U S?[0, n3]) = 0}.
Then F is decreasing in each variable. By Lemma 3.2.4, for each A > 0,

F(n) < (1= 2A")"3&(\).
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But in this case ®(A) = F(}) so by letting A = 1 — 1, we get Theorem
3.5.1.

As a step towards deriving (3.15) we will prove a generalization of (1.19)
where we replace a point with a (stochastically) translation invariant set.
A one-sided (random walk) path of length n is a sequence of points I' =
[zo,...,zn] With zog = 0,|z, — zi—1] = 1. A two-sided path of lengths j
and k is a sequence of points [y_,,...,yx] with yo =0, |y; — yi—1| = 1. We
consider two two-sided paths to be different if they have different j and &
even if they traverse the same points in the same order. If I is a two-sided
path of lengths j and k and —j < i < k, we let ®'T" be the two-sided path of
lengths j + 7 and k — 7 obtained by translation, i.e., ®'I' = [2_;_,,..., zk—]
where z,, = Ym+i — ¥.- Let A be the set of all two-sided paths of finite
lengths. A measure P on A is called translation invariant if for every one-
sided path I of length n and every 0 < j < k < n,

P(®'T) = P(®*T).

One example of a translation invariant probability measure is the measure
induced by two-sided random walk with killing rate 1 — A. If S2, 5% are
independent simple walks with killing rate 1 — A and killing times T2, T3,
we let

P(ly—j,--»9) = P{T?* = 5; T} = kW (i) = y;,—j < i < k}.

It is easy to verify that P is translation invariant.

Let S! be a simple random walk defined on another probability space
(1, Py) with killing rate 1 — ) and killing time T!. If T" = [y—j,...,yx] € A,
we let

+ _ 1 ify, #0,1<i<k,

T = {0 otherwise, (3.16)
k

GMI) = ) Ga(w), (3.17)

1=—j
and if 7 = 70 = inf{i > 1: S*(3) € {y—j,...,yx}},
eMI) = P {r >T'}.

Theorem 3.6.1 If P is a translation invariant measure on A and E de-
notes expectation with respect to P, then for every A € (0,1),

E(I*G*e*) = 1.
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Proof: Let I' be a one-sided path of length |I'| and let
Br={®T:0<;j <}
It suffices to show that for each T,
E(I*G*e*Ig.) = P(Br).
Let I = [zo,...,Zn), [ = {z0,...,Zn}, and 7 = 75,
T =inf{i > 0: S'(:) e T'}.
By Proposition 2.4.1(b), for each j,

> Gi(z;,x)P*{r>T'} =1

zel

Therefore, since P is translation invariant,

E(I*G*e’lp,) = i(n+1)"1_’(Br)[(1+0*6*)(‘1>jf)]

3=0

= (n+1)"'P(Br) i]+(¢]F)Pz’{T > T

7=0

ZG,\(%‘,%)

k=0

= (n+1)7'P(Br) Y > P*{r > T'}Gx(a,2)

k=0 zel

= P(Br). O

The above proof gives a stronger result. Suppose B is a translation
invariant subset of A, i.e., a set such that

B={®TI:T e B}.

Then,
E(I*G*e*Ig) = P(B). (3.18)

If I' is a two-sided walk of lengths —; and k, we let

GM\I) = _jnf GM(®'T).
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Then for every a, B, = {G* = a} is translation invariant, and hence by
(3.18),

P{G*=a} E(I*G e Ip,)

> aE(I*etlp,).

Therefore,

E(I*e'ls,) < -P(G* = a}.

If we sum over all a (note that A is countable and hence G* takes on at
most a countable number of values), we get

E(I*e*) <E((CM)™). (3.19)

We apply (3.19) to the case where P = P, 3 is the measure on two-sided
walks given by S2, S3 with killing rate 1 — X and killing times T2, T3. Then
if we write

It = I*(S%0,7?),
e = CA(W[—T2,T3]),
Y = (GNTIWI[-T%TY),
(3.19) becomes
Es3(el*) < Epa(Y). (3.20)
Note that
F()\) = E2 3(e). (3.21)
Proposition 3.6.2 Ford = 2,3,
Eya(el*) < c(1—N)“=972,
Proof: We may assume A > 3. By (3.20), it suffices to prove
Ezys(Y) <c(l- /\)(4_d)/2.

Clearly,

E2»3(Y) = ZP2,3{T2 + T‘3 = j}EQ,s{Y ! T2 + T3 = J}
j=0
oo
= S G+1)NA- N1, (3.22)

=0
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where

aj = Ey3{Y | T? + T = j5}.

Let n = n(X) = [(1 = A)7!]. Let S be another simple random walk in
Z4, and let S[a,b] = {S; — Sa : @ < j < b}. Then if v = (G*)~!,

a; = E(v(S[0,4])).

For positive integer k,

Qkn

E(v(S[0, kn)))

< E(sup v(S[(j - 1)n,jn]))
1<j<k
k
< Y E@(S[(G - n, jn])
Jj=1
= ka,.

Similarly if (k — 1)n < m < kn,

am < ka,.
Hence,
s ) co n )
Do aG+DN = YD akaplkn+i+ DA
J=n+1 k=1 i=1
o0 n
< YNk Dan(k+2)nakn
k=1i=1
oo
< nfan Y (k+2)2(AM)*
k=1
< cnfan. (3.23)
Let
Zj =, Jof Gx(Si~S).
Then,

a; < (F+1)7E(Z;Y),
and since Z; is decreasing, if 0 < j < n,

a; < (G+1)7E(ZY). (3.24)
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Therefore,
YaG+DN < SNEZY)
3=0 j=0
< c(1-N"1E(Z7Y. (3.25)

If we substitute (3.23) - (3.25) into (3.22), we get
Ey3(Y) <c(1-NE(Z;Y).
Therefore it suffices to prove
E(Z7Y) < (1 - 2)39/2, (3.26)

where n = [(1 - A)71).
For A > 1/2,
AT > e 2.

Also, by the local central limit theorem, if z € Z¢ with |z| sufficiently large,
Glzp2/16(2) > cla|*.
Therefore, for all such z, if T is the killing time for S,

Gi(z)

A%

P{T > |z/|*/16}G 2 )2/16()

> clz|* exp{jfi(sl—_—)ﬁ}. (3.27)

By changing the constant if necessary, we can see that (3.27) holds for all
z € Z%. Therefore if

R=R,= sup |S;-Sjl,
0<i<3<n

we have )

_R
8(n+1)
But by the reflection principle (Exercise 1.3.4),

Z,','1 < c|R|"l‘2 exp{ }-

P{R>r} < P{sup |Si|>z}
0<i<n 2

T
2P{|Sa] 2 5}-

IA
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Therefore,

E(Z;%)

IN

(d-2)/2
en Z|¢_| gy} P < 50)
enld=2)/2

<
< C(l - A)(2-_d)/27

which gives (3.26). O
By Proposition 3.6.2,

Eas(el*) < ¢(1—N\)4-9/2,
Note that

c, d=23,

so that one might expect that a logarithmic term should appear for d = 2 in
F(\) = E3(e). This is not the case, however, because those paths which
have many returns to the origin are very unlikely to be avoided by another
path. The next proposition will finish the proof of the upper bound (3.15).

11 4=

Proposition 3.6.3 For any d,
Es3(e) < (2d)?Epa(elt) + (1 = ).
Proof: Let 0g =0 and for ¢ > 0,

= inf{k > 0;_1 : Sy = 0}.
Let R be the number of returns to the origin by S3,

R=sup{j:0o, <T?}.
Then if I, = I{R=r},

Eysle) =Y _ Ezslel,).

r=0

Note that Iy = I*. Fix a k and consider the event {R = r,op = k}
with indicator function I, . Then the sets S3[0, k] and S2[0, %) U S3[k, T3]
are conditionally independent given {I,x = 1}. Let Ly be the indicator
function of the complement of the event

{u:|u| =1} c S30,k].
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Note that if Ly =0, and k < T3, then e = P{T? =0} = 1 — A. Therefore,
Ess(elr k) < (1 = A)P(I k) + Eg 3(eLi Iy k).

But by the conditional independence,
Ey3(eLily ) = Es(LiI{o, = k})E2 3(elp).

Since returns to the origin are independent, and between any two returns
a random walk must visit at least one point of norm one,

2d -1
Es(Lu{o, = k}) < (2d)(=5=)"P{o, = k}.
Therefore,

2d -1
Ess(elr k) < (1 —A)P(Irk) + 2d(—2—d——)’E2,3(eI+)P{ar =k},

and
Eys(e) < (1-N)+ f: i 2d( 2d2; ") Baa(el*)P{or = k)
=0 k=0
= (1-N+ ZQd(:de; ) Esael*)
r=0
= (1-A)+(2d)*Ey3(el*). O
If

(A) = P{SY(0,T']n(S%(0,T? U S%0,T%)) = 0}
(n) = P{SI(O, n)N (SQ(O, nju 33(0, n]) = 0},

an argument such as in the above proof can be given to prove the following
corollary of (3.15) and Theorem 3.5.1.

Corollary 3.6.4 If F(n) is defined as above then as n — oo,

nld=9/2 g <4,
F(n)<{ (Inn)"!, d=4,

c, d>4.
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3.7 One-sided Walks
If S1,...,Sk+1 are simple random walks, let
f(n, k) = P{S*(0,n] N (§%(0,n) U --- U S**1(0,n]) = 0}.

Note that f(n) as defined in Section 3.5 is f(n,1), and F(n) as defined in
the last section is f(n,2). If we let Y =Y,, be the random variable on
defined by

Y = P,{S'(0,n] N S%(0,n] = 0},

then it is easy to see by independence that
f(n,k) = Ex(YF). (3.28)

We can define f(n, k) for noninteger k by (3.28). Since0 <Y < 1, Holder’s
inequality implies that for j < k,

E\(Y*) < E1(Y?) < [BEa(YF)P/E.
By Corollary 3.6.4,

nld=/2 4=23,
f(n’2)A{ (Inn)~!, d=4.

This gives an immediate estimate for f(n,k).

Corollary 3.7.1 (a) If k < 2,

(d—4)/2 k(d—4)/4 _
can }Sf(n,k)i{ con , d=2,3,

ci(lnn)~! co(lnn)=%/2 d=4.

(b) if k > 2,
k(d—4)/4 (d—4)/2 =
can con , d=2,3,
<

c1(Inn)~k/2 } < fln k) < { co(lnn)™!, d=4.

In particular, if d = 2, 3,
ein(@=9/2 < f(n) < epn(d=N/4 (3.29)

and if d = 4,
c1(lnn)~! < f(n) < co(Inn)~/2, (3.30)



Chapter 4

Four Dimensions

4.1 Introduction

The critical dimension for intersections of two random walks, d = 4, will
be studied in this chapter. The critical dimension is characterized by log-
arithmic behavior of the interesting quantities. The results in this chapter
will be stronger than what we can prove in two and three dimensions—
instead of just upper and lower bounds for probabilities we will be able to
give asymptotic expressions.

The starting point will be two results from last chapter, Proposition
3.4.1 and Theorem 3.6.1. These will allow us to give the asymptotic prob-
ability of a certain event involving intersections of a one-sided walk and a
two-sided walk starting at the origin. As a corollary we will prove Theorem
3.5.1 for d = 4. In Section 3, we use this result to give the asymptotics for
long-range intersections of two walks.

In section 4 we return to the question of two walks starting at the
origin. We are able to determine exactly the exponent of the logarithm in
the function

f(n) = P{S'(0,n] N S?(0,n] = 0}.

The basic idea of the proof relies on two ideas: 1) “short-range” intersec-
tions and “long-range” intersections are almost independent in four dimen-
sions (we do not expect this to be true for d < 4) , and 2) the probabilty of
“long-range” intersections can be calculated precisely. These two facts al-
low us essentially to analyze the “derivative” of f(n) and then to determine
the large n behavior.

Four dimensions is the critical dimension for two walks. Suppose instead
that we consider k walks, S!,...,S* in Z9. If d < 2 then the paths of the
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walks have an infinite number of mutual intersections by recurrence. For
k = 3 we can show that for d > 4,

P{S*(0,00) N $%(0,00) N $3(0,0) = B} > 0,

while for d = 3 the intersection is infinite with probability one. The in-
tuition is the following: a random walk is a “two-dimensional” set (since
its intersection with a ball of radius R has on the order of R? points) and
hence has “codimension” d—2 . To find the codimension of the intersection
of a number of sets one generally adds the codimensions of the sets, i.e.,
the codimension of the intersection should be k(d — 2), assuming this is no
greater than d. The critical dimension for k walks can be found by setting

k(d —2) = d,

getting

2k
k-1
Note that for £ > 3, the “critical dimension” lies strictly between 2 and 3.
One can make sense of this in a number of ways (see, e.g. [23, 61]), but we
will not deal with this in this book. In the last section of this chapter we
will consider the case k = 3,d = 3 and mention a number of results which
are analogous to the case k = 2,d = 4.

d=

4.2 Two-sided Walks

We will prove Theorem 3.5.1 for d = 4. Let S!, 52, S2 be independent sim-
ple random walks in Z*4 with killing rate 1 — X and killing times T, T2, T3.
As in section 3.6, we define the following random variables on Q5 x Q3:

e = ey = P {S'(0, T n (S%[0,T% U S3[0,T3)) = 0},

I* = I} = indicator function of {0 ¢ S3(0, T3]},
T? T3
G=G*=) Gx(SH)+D_Gi(S}).
=0 k=1
It F(A) = P{S'(0,T"] N (S2[0, T U S3[0, T%]) = 0}, then

F(/\) = E2'3(e).

By Theorem 3.6.1,
E2,3(€I+G) =1. (4.1)
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In two and three dimensions, G is a nontrivial random variable in the sense
that (EG)~!G does not approach a constant random variable as A — 1—.
For this reason, we cannot take the G out of the expectation in (4.1) without
giving up a multiplicative factor. For d = 4, however, (EG)~!G does
approach 1 in probability, so it will be relatively easy to pull it out of the
expectation. Most of the work in showing that (EG)~!G — 1 was done
in Proposition 3.4.1. Here we state without proof the analogous result
for killed random walks. It can proved either by following the proof of
Proposition 3.4.1 or by using Theorems 2.4.2 and 2.4.3 on Proposition 3.4.1.

Lemma 4.2.1 As A — 1—, if E = Ey 3,

(a) E(G) = —4a4In(1 - )+ 0(1),
(b) Var(G) O(—In(1 = A)),

and therefore

Var(%) = O(=[In(1 — A\)]™).

With this lemma we would now like to say
Ep3(el*) ~ [E23(G)] 7,
and the next theorem shows that this is in fact the case.
Theorem 4.2.2 As A\ — 1—,
Ey3(el*) ~ [—4a4In(1 — X)L
Proof. For any € > 0, let
A=Ay ={|G+4as1n(1 — ))| > —4azeln(l — \)},

and let Y = Y, 5 be the indicator function of A. By Lemma 4.2.1 and
Chebyshev’s inequality, there exists a ¢ < oo such that

[

Py3(A) < e[-In(1- )]’

(4.2)
We write

E2,3(61+) = E2,3(€I+Y) + E2,3(€I+(1 — Y)) (43)
For an upper bound we use (4.1) to get

E2,3(CI+) S E2,3(eI+Y) + [——(1 - 6)404 ln(l - /\)]-1E2,3(CI+G)
= FEy3(eItY) + [—(1 — €)4agIn(1 — N)] L. (4.4)
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Since eIt < 1,

Ey3(el*Y) < Epa(Y) < —m,
and hence for some k = k.,
E3(el™) < —k[In(1 — X))~ (4.5)
We now show that as A — 1—,
Ep3(eI*Y) = o,([~ In(1 = N)]=*/%). (4.6)

Suppose not, i.e., that for some ¢ > 0, some sequence A, — 1 and some
a=a>0,
E»3(el*Y) > a[—In(1 — \,)]~%8. (4.7)

For ease and without loss of generality we will assume that €Q; is actually
the set of finite random walk paths with the appropriate measure and that
wi(n) = S*(n,w;). We write w; Nw; = 0 if w;(0, T*] Nw;(0,T?] = 0. We also
let I(w;) be the indicator function of the set {0 & w,(0,T"%]}. For any b > 0,
let

By = {(w2,w3) : e(wz,ws) > b[—In(1 = A,)] "8, I(w3) = 1}.

Then by (4.2) and (4.7), if b = b, = ae?/2c,
Paa(By) 2 5[~ In(1 = An)] =%,

By an argument as in Corollary 3.6.4, there exists a 8 = 8. > 0 such that
if

B = {(w2,ws) : e(wa,w3) > b[—In(1 — A\n)] 78, I(wa) = I(ws) =1},

then
Pa3(B) > B[-In(1 — \,)] %3,

But, since wo and w3 are independent,
P23(B) < [Ps{ws : Pi{w1 Nws = 0} > b[—In(1 — X,)]7V/8, I(w3) = 1},
and hence

P3{ws : Pi{w) Nws =0} > b[=1In(1 = \,)] "8, I(w3) = 1} >
VB[-In(1 = X,)] 7%/, (4.8)



4.2. TWO-SIDED WALKS 119

If we let D(w3) = {w; : w1 Nw3 =0,I(w;) = 1}, then (4.8) implies
P{(w3,wy,w;) : wy,w; € D(ws), [(wa) =1} >

b2/B[-In(1 — A,)]71%/16. (4.9)

Here we are using the fact that (Q;, P,) = (Q2, P2) = (23, P3). But it is
easy to see that

E2’3(€I+) Z P{(w37wlvw’l) : wlywll € D(W3),I(W3) = 1}7

so (4.5) and (4.9) give a contradiction. Therefore (4.6) must hold.
To finish the upper bound, (4.4) and (4.6) imply

E23(I+ <[ 1—64(141111— ] 1-|—O€([ ln(l—)\)]“
Since this hold for every € > 0,

limsup[—In(1 — A\)]"!E;3(el™) < 4ay.

A—1—
For the lower bound, note that Holder’s inequality and (4.7) give

E»3(el*GY) [E2,3(G*))Y/°[Ey3(el*Y))®/°

<
< oe([=1In(1 = )] [E2,a(GNY°.
A routine (but somewhat tedious) calculation gives

E» 3(G®) = O([In(1 — N)]°).
Therefore E5 3(eI*GY) = 0.(1) and by (4.1)

1-0(1) = Eys(el*G(1-Y))
< —(1+4+e€)daygln(l - A)E2‘3(e.[+).

Since this holds for every € > 0,

lim }nf—[ln(l -] 'Ey3(elt) > 4ay. O

Using Proposition 3.6.3 and Lemma 3.2.4 we get two immediate corol-
laries.

Corollary 4.2.3 As A\ — 1—,

F(A) = Ez3(e) < —[In(1 - A)) 7"



120 CHAPTER 4. FOUR DIMENSIONS

Corollary 4.2.4 (Theorem 3.5.1)
F(n) < (Inn)~ 1.

In the next section we will derive asymptotic expressions for the proba-
bility of long-range intersections by using results about two-sided intersec-
tions. We will need to consider random walks with a fixed number of steps.
Let A, and B, be the events

An = {5'(0,n] N (5*(0,n] U S%[0,n]) = 0,0 & $°(0,m],
By = {S*(0, ] N (5[0, 0] U %[0, n]) = 0,0 ¢ S%(0,m]}.
Corollary 4.2.5
-1_T -1
P(A,) ~ (4aglnn)™" = ?(ln n)~", (4.10)

P(B,) ~ (4a4lnn)~! = 7‘;(lnn)_l. (4.11)

Proof. The result for P(A,) follows immediately from Theorem 4.2.2
and Lemma 3.2.4. Clearly P(B,) < P(A,). To prove the other inequality
let

V, = {8%(0,n] N (S2[0,nInn) U S3[0,n)) = 0,0 & S3[0,n)},
W, = {S[0,n] N $%[nlnn, co) # 0}.
Then B, =V, \ W,,. By (3.9),

P(Wy)

IA

2n 00
cnn)'y" N P{s! =53

1=0 j=nlnn

2n o)
c(lnn)‘lz Z (i+35)72

=0 j=nlnn

c(lnn)~2.

INA

IA

Therefore,

P(Bn) > P(Vn) - P(Wn) > P(Anlnn) - P(Wn) ~ 11;‘(lnn)_l' O
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4.3 Long-range Intersections

121

Let S!,S? be independent simple random walks in Z4 starting at = and 0
respectively and let R, be the number of intersections if S! takes n steps

and S? takes an infinite number of steps, i.e.,

=YY I{s} =5s}}.

2=0 k=0

Let J,(z) = J(n,z) be the expected number of intersections, i.e.,

Jn(z)=EI,O(Rn) = Zzpj+k
k=0

:N
p-O

= E jpi(z) + Z np, (z).
=0 Jj=

It is routine to estimate J,(z) using the local central limit theorem.

state here without proof the results we will need.

Proposition 4.3.1 Ifa > 0, then as n — oo,
(i)
J.(0 4 Inn;
n(0) ~ ) nn;

(i) if |za|* ~ n(lnn)~,
4o
Jn(zn) ~ = Inlnn;
(ii3) if |zp|? ~ an,

oo e—-u

2 _ 4
Jn(:z:n)~-a7r—2(1—-e 2a)+FL d’U.,

a u

(iv) if |zp|? ~ n(lnn)e,

Jn(zn) ~ ——(ln n)~.

We

The goal of this section is to give asymptotic expressions for the prob-

ability that S*[0,n] N S2[0,00) # 0. Let

dn(z) = PI'O{SIIO, n] n SQ[O’ 00) # Q}
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We define stopping times
T = inf{j >0:5] € S*0,00)}
o = inf{k>0:82=8.}.
Then if A(j, k,z) = P=%{r = j,0 = k},
n oo
dn(z) = P27 <n} =Y Ak, 2).
7=0 k=0

If we translate so that the origin is at S! = S2 and reverse direction on the
two paths of finite length, one can easily check that

A(j, k,z) = P{S'(0, 5] N (5%[0,00) U S*(0, k]) = 9,
0¢ 5%0,k], S} — Si ==z}
Corollary 4.2.5 gives an estimate of the probability of
{S%(0,4] N (S?[0,00) U S%[0,k]) = 0,0 ¢ S*(0, k]}.

What we would like to say is that the event {S} — S} = z} is almost
independent of the above event. This will not be true if z is near the
origin. However, we will be able to prove this for z sufficiently far from the
origin. The next proposition gives an upper bound.

Proposition 4.3.2 For every a > 0, if
n(lnn)~* < |z|?, 7,k < n(lnn)®,
then
. w2 -1
A(G k,z) < = (Inn) ™ pjtr(2)(1 + 0a(1)).

Proof. We will assume that = < j+k, i.e., pjix(z) > 0. Let f=a+2
and consider the event A = A1y n)-s as in Corollary 4.2.5. Then

7r2
P(A) = g(lnn)‘l(l + 04(1)).

Let D = D, 4 be the event
{15 ([n(tnn)~P))%,1S%([n(in n) ~#])|* < n(lnn)~2}.
Then by Lemma 1.5.1,
P(D°) = O(exp{—(Inn)?}) = o(n™3).
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By the strong Markov property and Theorem 1.2.1,
P{S} - §} = 2| AN D} = pjsx(2)(1 + 0a(1)).
Therefore,

A(j, k, ) P(AN{S] - Sf =z})

P(AnDN{S} - S} = z}) + P(D°)

2
8

IAN A

(Inn) " pjsk(z)(1 + 0a(1)) + o(n™?)

71'2
5 ()7 'pisk(z)(1+ 0a(1)). O

From the above proposition we can get the upper bound for the proba-
bility of intersection.

Theorem 4.3.3 For every a > 0, if
n(Inn)= < |zf? < n(inn)?,
then

Jn(z)
2J(0)
71.2

= 8(1nn)—1Jn(:c)(1+oa(1))-

P=%{8[0,n] N S2[0, 00) # 0}

IA

1+ oa(l))

Proof. By Proposition 4.3.1,
Jn(z) > c(Inn)~°.
By (3.9) and Proposition 4.3.1,

P%*{r < n(lnn)~**} = P%{S!0,n(In n)'3°] N S2(0, 00) # 0}

ca(Inn)~1J(n(lnn)~3* 1)
)—-20——1.

IN A

co(lnn
Similarly,

P%% {5 < n(lnn)~3}
P%*{g > n(lnn)3*}

Ca(lnn)~2071

Ca(Inn)~2271,

IN A
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Therefore by Proposition 4.3.2
P=%{S1[0,7n] N S?[0,00) # 0}

n n(lnn

< cllnn) 2 iy M > AG.k)

j=n(lnn)—3a k—n(]n n)—3a

Ca(lnn)2e-1 +(1+oa(1) (lnn ZZp,+k

3=0 k=0

)30

INA

2

= ca(lnn)—%-‘+(1+oa(1))§(1nn)-1Jn(x)
< (1+oa(l))7—;;(lnn)"l.]n(x). ]

We will give a similar lower bound on the probability of intersection if
|z|? < n.

Lemma 4.3.4 For every o > 0, there exists a ¢ = ¢, such that if
an < Jz?, y? < a7l

then
|6n(y) — én(z)] < cly — z[n"/*(Inn) 1.

Proof. We will prove the lemma for y — z = e,|e] = 1. The general
case can be obtained by the triangle inequality. We first estimate |A¢, (z)|.
Note that

~A¢n(z) = ¢n(z) — P*°{S'[0,n] N S%(0,00) # 0}
P=9{S'0,n] N S?(0,0) = 0,0 € S*(0,n]}.

Let 7 = inf{j : §] = 0}. Then by the local central limit theorem,

P{r <n(lnn)~! or n —n(lnn)~! <7 <n}

n(lnn)~?! n
< Z pa(z) + Z Pn(T)
j=0 j=n—-n(lnn)-1

< con Y(nn)7t.
However, if n(Inn)~! < j <n —n(lnn)~! and B; is the event

{S'(j) = 0,5%(0,00) N (S'[5,n] U [0, 5)) = 0,0 & 5[0, )},
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then an argument as in Lemma 4.3.2 gives
P*°(B;) < capj(z)(Inn)~L.

Therefore, if an < |z|? < a7 !n,

|Aga(z)] < Y P™(B;)
=0

n—n(lnn)~?!

can!(Inn)"! + co(Inn)~? Z pi(z)

j=n(Inn)-1

IA

IA

cen”(lnn)~L.

Let o
C=Ch={z:|2) < in},

Co=Cnz={2:]z—12°< %n}.
By Theorem 1.4.6 and Exercise 1.5.11, if

o =inf{j: S} € 8C.,},

then
$n(z) = E*(8(S5)) — Y A¢n(2)GCe.(z,2)
z2€Cy
= E54(5,) = 3 Adn(z +2)Go(0,2).
zeC

Since ¥(2) = E*(¢(S,)) is harmonic in C,, Theorem 1.7.1 gives

|E***(6(S5)) = E*(¢(S5))| < can™/? sup |¢a(2)]
z2€C,

< canV?(Inn)7L.
By “summing by parts” one can verify that

Z(Aqﬁn(z +z+4+e) — Apn(z + 2))Gc(0,2) =
zeC

D" Agn(z +2)(Gc(0,2 — €) — Gc(0, 2))
z€C
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+ Z Adp(z +y)Gc(0, 2z + €).
2€0C,z+e€C

(The other boundary term disappears since G¢(0,2) = 0 for 2 ¢ C.) If
z € 8C, then by Proposition 1.5.9, |G¢(0, z + €)| < can™3/2. Also, |0C| =
04 (n3/?), and hence

IS Aga(z+v)Gc(0,2+e)|
2€8C,z+e€C

IA

can®?( sup |Adn(z)|)(can™%/?)
z€0C
< cqn(lnn)"L
It also follows from Proposition 1.5.9 that for z € C,
|Gc(0,z — ) — Ge(0,2)| < calz|3.

Therefore,

3" |A¢n(z + 2)IGc(0, 2 — €) = Go(0, 2)|
zeC

IA

can™}(Inn)"H2 ) (|27 A1)

zeC
can~?(Inn)"1/2,

IA

which completes the lemma. 0O

Theorem 4.3.5 Ifan < |z|? < o7!

S

P2%{S%0,n] N S%[0,00) # 0} = %(1 + 0a(1))
= 7;—2(lnn)'1.]n(a:)(l + 04(1)).
Proof. By Theorem 4.3.3,
P=0{S"[0,n] N 5[0, 00) # 0} < fgann)-%(z)(l + 0a(1)).

If n(Inn)~! < j,k < n(lnn), then by (4.11),

2
> AG,k,y) = T (an) (1 +o(1)).
yeZ*4
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If D= D, = {y:n(lnn)~3 < |y|?> < n(Ilnn)3}, then for such j,k,

> AGk,y) <) pisk(y) = o((Inn)7Y).

ygD ygD
Therefore,

Y AGi k) %(lnnrl(l +o(1)).
ye€D

Let € > 0 and let
C=Cenz={y:|lz— yl2 < e2n}.

By Proposition 4.3.3,

2
Y AGkY) S D FWn) T pik(z)(1+o(1).

yeD\C yeD\C
Hence,
> AGky) 2
yeC
71,2
5 (lnn)” Y1+ 01)( Y pisr®) —0a(1) D pisk(v)).

yel yeD\C

If we sum over n(lnn)~! < j,k < n(lnn) and use Proposition 4.3.3 we get

> 6n(y) = (1+0(1)) Y Juy) % (lnn)~.

yeC yeC

By Lemma 4.3.4,

| sup én(y) — inf ¢n(y)| < cae(lnn)™!
yeC yeC

Therefore,

$n(z) + cae(lnn)™! > supdn(y)

yeC
> IC!yGZ;dM
> |C|(1+oe(1)) lnn)‘ PIRAO)

yeC

= (1+oe(1)>’—’§(lnn)~lJn(x)(1+6<e)),
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where 6(¢) — 0 as € — 0. The last step uses Proposition 4.3.1(iii). Since
this holds for every € > 0, the theorem follows. O

Similar results hold for long-range intersections of two random walks
starting at the origin. Let 0 < a < b < 0o and consider the intersections
of S'[an, bn] with S2[0, 00), where S! and S? both start at the origin. The
expected number of intersections is given by

bn oo
> > P{s} =s}} Z Zm«»

j=an k=0 J=an k=3

bn
4 4
J=an
Similarly if & > 0, the expected number of intersections of S![n(lnn)~%,n]
and S2[0,00) is given by

n oo n 4 da
j=n(lnn)—< k=0 J=n(lnn)—«

The following theorem about the probability of intersection can be proved
in the same way as Theorems 4.3.5 and 4.3.3.

Theorem 4.3.6 (i) If0 < a < b < oo, then
2 In(b/a)][Ja(0)]"
= 3 ln(b/a)(ln n)~L.

P{S'[an,bn] N S%(0,00) # 00} ~ %[

(ii) If a > 0, then

P{S'[n(Inn)~*,n] N S%[0, c0) # 0}

< l(“‘; Inlnn)[Ja(0)]~2(1 + 0a(1))
alnlnn
= 3 (L+0a(1)):

4.4 One-sided Walks

We return to the problem of intersections of two walks starting at the origin
in Z4, i.e.,

f(n) = P{S'(0,n] N S%(0,n] = 0}.
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Since we have now proved Theorem 3.5.1 for d = 4 we can conclude from
(3.30) that
a(lnn)™! < f(n) < ca(lnn) ™2,

The goal of this section is to show that the right hand inequality is almost
sharp. More specifically we prove the following theorem.
Theorem 4.4.1 Ifd =4,

f(n) = (Inn)~/2, (4.12)

Let us first motivate why (4.12) should be true. It will be easier to
consider

f(n) = P{S'(0,n] N S%[0,00) = 0}.
Clearly, f(n) < f(n). We define events
A4, = {S8*(0,n] N 52[0,00) = 0},

B, = {S'(n,2n] N %[0, 00) = 0}.
Then As, = A4, N B, and

_f(2n) = P(Zn)P(En | Xn)

By Theorem 4.3.6(i),
In2

2lnn’

Intuitively one would expect that paths which have not intersected up
through time n would be farther apart than paths which have intersected
and hence would be less likely to intersect in the next n steps. In other
words, one would guess that A, and B, were positively correlated, i.e.,
P(B, | A,) > P(B,). If this were the case we would have

In2 )
2Inn’"”

where p, — 1. What we will show in the next proposition is that (4.13)
implies (4.12). Note that if ¥(n) = (Inn)~1/2

In2
2lnn

1- P(B,) ~

f(2n) > f(n)(1 - (4.13)

Y(2n) ~ ¥(n)(1 -

).

Proposition 4.4.2 If f is a decreasing positive function satisfying (4.13)
for some p,, — 1, then for every e > 0,

liminf (Inn)2*<f(n) = cc.
n—oo
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Proof. Let € € (0,1) and choose M so that |1 —p,| < e forn > M. Let
g(k) = Inf(2*M).
Then (4.13) becomes

glk+1) 2 g(k) +In(1 - 7o—F—r),

(k + log, M)
and if k > 1,
k=1 14e
g(k) 2 9(1) + 3 In(1 - —==).
1=1

For j sufficiently large, In(1 — 1—2'%) > —(3 + %)j!. Therefore,

lim sup (lnk)_lg(k) > —(l + 25),
k—o0 2 3
or,
) In f(2kM) 1 2
T T LS (=4 ).
limsup yo oty = 3+ 3)

This implies 3
liminf(In 2k M)3+F (25 M) = 0.
—00

Since f is decreasing, one then easily derives the proposition. O

The problem with using the above argument to conclude (4.12) is that
one cannot prove (4.13), i.e., it is very difficult to show that the events An
and B, are positively correlated. One expects, in fact, that the events are
asymptotically independent. It turns out that one can show a sufficient
form of asymptotic independence if one works with increments which are
logarithmic multiples rather than multiples of 2. Fix a > 0 and let

Ap = An o = {S*(0,n(Inn)~%] N S%(0, 00) = 0},
Bn = Bn o = {S'(n(Inn)~%,n] N S?(0, 00) = 0}.
Then by Theorem 4.3.6(ii),

alnlnn
— < =
1= P(Bn) < 2 Inn

(1 4 04(1)).

Again, f(n) = P(A,)P(Bn | An). If it were true that

1= P(Bn | An) < (1 - P(Br))(1 + 0a(1)), (4.14)
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then we would have

alnlnn

F(m) 2 Fn(nn)=2)(1 - S222p), (4.15)

for some p, — 1. That (4.15) suffices to prove (4.12) follows from the
following proposition which is proved like Proposition 4.4.2.

Proposition 4.4.3 If f is a decreasing positive function satisfying (4.15 )
for some o > 0 and some p, — 1, then for every ¢ > 0,

linrx_l"igf(ln n)3*tF(n) = 0.

We have therefore reduced Theorem 4.4.1 to showing that for some
a>0,
P(B; | An) < P(B;)(1+0(1)).

The next proposition gives a further reduction.
Proposition 4.4.4 Suppose for some a > 0,

P(sz ! An(lnn)“‘) ~ P(sz)7 (4'16)

then
P(B; | Ap) < P(B:)(1+4 o(1)). (4.17)

Proof. We first recall from (4.11) that
f(n) = P(A,) > c(Inn)~L. (4.18)
For any n, 1, let
= D} = {S'(n(Inn)~**, n(lnn) (1] N $2[0, c0) # 0}.
A' =AY = Apnny-ar-
Note that BS = D.. Suppose (4.17) does not hold, i.e., for some € > 0,

In
lim sup

n—oco Inlnn

P(B | An) > =(a+ 3e). (4.19)

N =

Choose a large n with

Inlnn

P(D'|AY) 2 ( +26)

By assumption, if n is sufficiently large, i = 1,2, 3,4,

Inlnn

i 1
1 +1ly «
P(D*| A7) < 2(a+e) vt
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Note that

P(D* | A*1) > P(D' 0 A* | A1) = P(D' | A)P(A* | A'HY),

or
. . P(Di lAi-H)
1 i+1 <
P A™) S B
If we consider i = 1 we get
1 2y ¢ a+e
P(A'| 4%) < —,

or
€

21 A2y — 1 _ 142y >
P(D*| 4%) =1~ P(A" | A%) 2 ——.

For i = 2 we get

P(D?*| A3) < Inlnn (a +€)(a +2)
P(D?| A%?) = Inn 2¢ ’

P(A*| A% <
and hence if n is sufficiently large,

P(D?®| A%) =1 - P(A?%] 43)

\%

We can iterate again giving

P(A® | A%) <

But

P(4?) P(A% | AY)
P(A% | A®)P(A3 | A%

( (a+€)?(a+ 25)-

2
) 2¢
But this cannot hold for arbitrarily large n by (4.18). Therefore (4.19)
cannot hold, and the proposition follows. O
We are now in a position to prove Theorem 4.4.1. From the above if
suffices to prove (4.16) for a = 9. Let

A

Inlnn
Inn

an = [n(Inn)~°][In(n(Inn)~°)]~° ~ n(Inn) "8,

)-—16

bn =n(Inn)78 ¢, =n(lnn)"!,d, = n(lnn)~°,
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and define events

V. = {SY0,a,]n S?[0,00) = 0},

Vo = {5%0,a,) N S?0,b,] = 0},

Vo = Van{IS'(5.)]> < n(lnn)™'%,|5%(b,)|* < n(lnn)~13},
Wa. = {S'dn,n]NS?0,00) # 0},

W, = {8Ydn,n]N S?[cn,o0) # 0}.
In this notation, (4.16) becomes
PW,)=PW,|V,)Q1+o(1)). (4.20)
We know by (4.18) that
P(V,) > c(lnn)~ L. (4.21)
By Proposition 4.3.1(iv),
P(VENTV,) < P{S§'(0,a,] N S%[b,,0) # 0} < O((Inn)~2).  (4.22)

Similarly,
P(W, nW,) < O((Inn)~?). (4.23)

By Lemma 1.5.1,
P{|S"(b.)|* > n(Inn)"'%} = o((Inn)~?),

and hence N
P(VE | V,) = o((Inn)~2). (4.24)

Since P(W,) > O((Inn)~!) (Theorem 4.3.6(i)), it follows from (4.21)-
(4.24) that to prove (4.20) it suffices to prove

P(W,) = P(W, | Va)(1+ o(1)). (4.25)
Let
¢(z,y) = ¢n(z,y) = P*¥{S'[dy — bn,00) N §?[c, — bn, 00) = 0}.
Then by the strong Markov property,
P(W, | V,) = E(¢(S(bn), S*(bn)) | Vn).
It suffices, therefore, to show that for |z|?, |y|? < n(lnn)~13,
#(z,y) = ¢(0,0)(1 + o(1)).

This can be done by an argument as in Lemma 4.3.4.
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4.5 Three Walks in Three Dimensions

In this section we will consider the mutual intersection of three random
walks in three dimensions. As mentioned in the beginning of this chap-
ter, three is the critical dimension for intersections of three walks. The
results are analogous to the results for two walks in four dimensions and
the methods of proof are very similar [41], so we will only give some of the
main results without proofs. Let S, 52, S3 be independent simple random
walks in Z3 starting at the origin and let R, ,, = R(n,m) be the number
of mutual intersections of S![n,m], S2[0, oo}, S3[0, 0). i.e.,

m 00 O00

Rum=)»_ Y > I{S}=52=5}}

i=n 3=0 k=0

If Jo,m = E(Rnm), then

m oo oo

where G is the usual Green’s function on Z3. By Theorem 1.5.4, as i — o0,
E(G(S})?) ~ a3E(|S}|7 A 1).
By the central limit theorem, if X is a standard normal random variable in

R3,
E(ISH* A1) ~ 3 'E(X|72) =371,

Therefore,
Jon ~3a3lnn, (4.26)
Jan,bn ~ 3a§ In(b/a). (4.27)
Suppose S![an,bn] N S2[0,00) N S3[0,00) # @ and let
T="Tne = inf{i>an:S} e S%0,00)N S30,00)},
0=0n, = inf{j: Sf = S},

N="ha inf{k : S} = S}}.
Then

P{S'[an, bn]NS?(0,00)NS3[0, 00) # 0} =
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bn oo oo

Z ZZP{T=i,a=j,n=k}.

1=an j=0 k=0
As in the case of intersections of two walks, by moving the origin we can
write the probability of these long-range intersections in terms of probabil-
ities of intersection of walks starting at the origin. Suppose S!,...,85% are
independent walks starting at the origin. Let A(%, 7, k) be the event

{8*(0,4] N (S%[0,00) U S3(0, 5]) N (S*[0, 00) U S50, k]) = @,
0 ¢ 5%(0,5] U S%(0, £}
Then
P{r =i,0 = j,n =k} = P(A(,j,k) N {S} = S? = §}}).

To estimate A(Z,j, k) we first derive a result for killed random walks.
Suppose S, S3, S are killed at rate 1 — ) with killing times T, T3, TS (it is
not necessary to kill S? and S*) and define the following random variables
on g X N3 x Q4 x Ns:

e = ey = P,{S*(0,T*] N (S?[0,00) U S3[0, T3))N
(54[07 oo0) U SS[O’ TS)) =0},
I = I, = indicator function of {0 ¢ S3(0,73) U S°(0,T%]},
oo T3
G=G"= GA(SH)+ Y Ga(Sy)+

Jj2=0 ja=1

) Ts
Yo Gash) + 3 Gasy).
ja=0 Js=1

Then the following is proved like Theorem 3.6.1.
Theorem 4.5.1

E2,3,4'5(61G) = 1.
As A — 1—, one can show (see (4.26)) that
E2345(G) ~ —12a3In(1 - )).

The extra factor of 4 comes from the fact that there are 4 walks, S2,...,S5.
As in Lemma 4.2.1(b) one can also show that

Vary 3.45(G) = O(—In(1 — 1)),

and hence we get this analogue of Theorem 4.2.2.
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Theorem 4.5.2 As A — 1—,
Ea345(el) ~ [-12a21In(1 — \)]~L.

We can then use a standard Tauberian argument to see that if a > 0
and n(lnn)~* < 4,3,k < n(lnn)*,

P(A(i,j,k)) ~ [12a%Inn]~L.
Again we can show for such 1, j, k that
P(A(i,5,k) N {S} = 5 = S}}) ~ [12a3Inn| "' P{S] = S? = S}}
and deduce the following.

Theorem 4.5.3 If0 < a < b < oo,
P{S![an, bn] N S2[0, 00) N S3[0, 00) # 0} ~ % In(b/a)(Inn)~".
If we let
H(n) = P{S%(0,n] N (5?0, 00) U §%[0, 00)) N (54[0, 00) U §°[0, 00)) = 0},

h(n) = P{S(0,n] N S%[0,c0) N S3[0, c0) = 0},

then it can be derived from Theorem 4.5.1 that
H(n) < (Inn)~*.
Clearly h(n) > H(n). Let
r(n) = P{S'(0,n] N (520, 00) U S3[0, 00)) N $4[0, c0) = 0}.
Then by Hoélder’s inequalty (see Section 3.7) one can show
r(n) < h(n) < Vr(n),
H(n) <r(n) < VH(n).

Therefore,
c1(Inn)™! < h(n) < ca(lnn) =4,

It can be shown in fact that the upper bound is almost sharp. Note that
by Theorem 4.5.3,

P{S*(n,2n] N S2(0, 00) N S3[0, 00) # 0} ~ %(ln 2)(Inn)~ 1.
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Suppose that we could show
h(2n) > h(n)(1 — %1n2(ln n)~1p,), (4.28)

where p, — 1. Then by an argument similar to Proposition 4.4.2 we could
deduce for any € > 0,

lim ioréf(ln n)i+€h(n) = oco.

It turns out again that (4.28) is difficult to prove directly. However, one
can work with logarithmic multiples as was done in the last section and
deduce the following.

Theorem 4.5.4 Ifd =3,

P{S'(0,n] N §%[0,00) N %[0, 00) = B} ~ (Inn)~1/4,



Chapter 5

Two and Three
Dimensions

5.1 Intersection Exponent

In this chapter we study
f(n) = P{S*(0,n] N 5§%(0,n] = 0},
where S?, S? are independent simple random walks in Z2 or Z3. By (3.29),
cln(d"”/z < f(n) < conld=4)/4 (5.1)

so we would expect that
f(n) =n~¢,

for some ¢ = (4. We show that this is the case and that the exponent is
the same as an exponent for intersections of Brownian motions. Let B!, B2
be independent Brownian motions in R? starting at distinct points x,y. It
was first proved in [19] that if d < 4,

P=¥{B'[0,00) N B2[0,00) # 0} = 1.

Let
b(z,,7) = P*¥{B'[0, T} N B[0,T7] = 0},

where

T =inf{t: |B*(t)| = r}.
We prove that as r — oo,

b(z,y,r) =778, (5.2)
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where £ = 2(. Proving the existence of a £ satisfying (5.2) is relatively
straightforward using subadditivity, but it takes more work to show that
& = 2(¢, and hence that ( exists.

The next problem, of course, is to compute ¢ or £&. Unfortunately, this
is still an open problem and only partial results can be given. Duplantier
[16] gives a nonrigorous renormalization group expansion for { ind =4 —¢
which suggests that both bounds in (5.1) are not sharp, i.e.,

d—4 d—4
— << —

4

A nonrigorous conformal invariance argument by Duplantier and Kwon [17)
gives a conjecture that {» = 5/8. In analogy with a number of exponents
found in mathematical physics, one would expect that {; would be a rational
number (conformal invariance argues for this) while for d = 3 the exponent
could well be an irrational number that cannot be calculated exactly. Monte
Carlo simulations [13, 17, 49] are consistent with ¢ = 5/8 and give a value
for (3 between .28 and .29.

In this section we prove

+ L <C<3
anz =2 g

1

2
The lower bound can be improved slightly using a similar argument to give
the best known bounds

1 1 < 3

5 + B =62 < 1
The lower bound is achieved by comparison to an exponent ¥ defined by
saying that the probability that a Brownian motion starting at e; = (1,0)
does not form a closed loop about 0 before hitting the sphere of radius r
decays like 7=7. We prove that

1

G2 > 3 + (5.3)

|2

and then give bounds on ¥. It has been conjectured that ¥ = 1/4. The
upper bound makes use of a standard result on harmonic measures on the
unit disk, the Beurling projection theorem [1]. For d = 3 we can only prove
that the upper bound is not sharp,

<@<

e
N | =
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5.2 Intersections of Brownian Motions

Let B}, B? be independent Brownian motions in R? (d = 2,3). Let D, be
the ball of radius
D,={zxeR®:|z| <7},

D, ={z € R : |z| =1},

and let T? be the hitting time of 8D,

T! = inf{t : |B}| = r}.
We write D for Dy and T* for T}. If |z|, |y| < 7,z # y, we define

b(z,y,r) = P*¥{B'[0, T}] n B*[0,T?] = 0}.
By [19], 0 < b(z,y,7) < 1 and
rlixgo b(z,y,r) =0.

By scaling properties of Brownian motion, if ¢ > 0,

b(cz, ey, cr) = b(z,y,r).

We let e; be the unit vector in R¢ whose first component is 1. If z € R¢,
we let

D.(2)={z+2:z€ D,}.
If |z, |y| <,

T+y T+y

Dr—%lx%—y[(T) cD;cC Dr+%|1+y|(T)'

Therefore, by translation and rotational invariance of Brownian motion and
scaling,

2r — |z + 9|
lz -yl

2r + |z + y|

>b > b -
)— (-’L‘,y,'f')_ (61, €1, |I—y|

b(elv —€1, ) (54)

We now investigate the behavior of b(z,y,r) as r — oo. We will use
properties of subadditive functions. A function ¢ : {0,1,2,...} —» R is
called subadditive if

(7 + k) < ¢(5) + ¢(k).
Lemma 5.2.1 If ¢ is a subadditive function from {0,1,2,...} to R, then

lim ¢n) = inf g(_r_zl

n—oo N n>0 n
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Proof. Clearly
¢(n) $(n)

liminf —~ > inf —Z.

n—oo n n>0 n

To prove the other direction, let m be a positive integer, and a = a(m) =
sup{¢(k) : 0 < k < m —1}. If n is any integer, write n = jm + k where
0<k<m-—1. Then

¢(n) _ dlgm+k) _ jé(m)ta o(m)  a

n n - n - m n’

Therefore,
lim sup $(n) < M ]
n— oo n m

Theorem 5.2.2 There ezists a £ = {4 < 2 such that for z # vy,

lim — Inb(z,y,r) _

r—o0 Inr

£.

Proof. Let
b(r)y= sup b(z,y,7).
Jzl,lyl=1

For |z|,|y| =1, 1 < s < 7, by the strong Markov property and scaling,
b(z,y,r) < P*¥{B'[0,T,]N B*0,T7] =9,
B'([T,,T}]n B*[T,T7] = 0}
r
bz, v, ().

IA

Therefore b(rir2) < b(r1)b(r2) and if we let
¢(k) = Inb(2),

then ¢ is a subadditive function. By Lemma 5.2.1, there exists an a (per-
haps equal to —o0) such that

. ¢(k)
2T T
ie.,
In b(2%) a .
R Y T B Rk

Since b(r) is decreasing in r, it is easy to see that this implies

b(r) = r~¢.
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By (5.4),
b(ela *61,7') S b(T') S b(e1) —€1,T — 1)
Therefore,
b(ey, —e1, ) ~ ¢,

If we use (5.4) again, we get the result for general z, y.

To see that £ < 2, let 0! be the first time that the first component of
B:,[Bi];, is equal to 0,7, or —r. By the standard “gambler’s ruin” estimate
for one-dimensional Brownian motion,

. 1
P*ei{[B*(o})]; = xr} = =
But,

P {[B (o} = 7, (B0 = ~r}

>
> 72,

b(er, —e1,T)

and hence £ <2. O

We will now relate random walk intersections and Brownian motion
intersections. If S, is a random walk in Z¢ and 7, = inf{j : |S,| > n}, then
by the invariance principle

W,(t) = n~1S([tn?]), 0<t<n2r,

converges in distribution to a Brownian motion B, with covariance d-'I
(i.e., By = d~% B, where B, is a standard Brownian motion) stopped upon
hitting the ball of radius 1. Note that

P=¥{B'[0,T}) n B%[0,T?] = 0}

Pe/VAUVABY0, T}, SN B2[0,T?, ] = 0}

r y T

b Ty T ey T~ =b$) sT)s

( NN \/3) (z,y,7)

i.e., the probability of intersection before hitting the sphere of radius r is
the same for B; and B;. It will be convenient for the next two sections to
let B; be a Brownian motion with covariance d~!I. The remainder of this
chapter will be devoted to proving the following theorem. Recall that C,, is
the “ball” of radius n contained in Z¢, and let 7i be the first hitting time
of 8C,, by S, .

7, = inf{j : |Sj| > n}.

Theorem 5.2.3 If d = 2,3, Z,,yn € Cp,z,y € D with n 'z, — =,

n~ly, — y, then

lim P*~¥~{S'[0,7}] N S2[0,72] = 0} = b(z,y, 1).

n— oo
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The theorem first appears to be a simple consequence of the invariance
principle, and one direction can be proved easily this way. Let § > 0 and

As = {diSt(Bl[Ov Tl]v B2[0) T2]) < 6}a
Usn = {dist(S*[0, 7], %[0, 72]) < né}.
Then it follows from the invariance principle that for every 6§ > 0,

limsup P*¥"(Us ) < P™Y(Ags),

n—00

liminf P*¥"(Ugs ) = P™Y(As).

Note that as § — 0, P®Y(A4s) — 1 — b(z,y, 1). Also,
{80,721 N S?[0,72] # 0} C Usn-

Therefore,

liminf P*»¥{S10,7}] N S%(0, 73] = 0} > b(z, y, 1). (5.5)
To prove the other direction is trickier. Essentially we have to show that if
two random walks get “close” to each other, then with high probability they
will actually intersect. We will do the proof for d = 3; the d = 2 case can
be done similarly (one can also give some easier proofs in the d = 2 case).

We start by stating without a proof a proposition which can be proved in
a similar fashion to Theorem 3.3.2.

Proposition 5.2.4 If d < 4, for every r > 1, there exists a ¢ = ¢(r) > 0
such that if x,y € Cp,

P¥{S0, 73] N S?[0,72,] # 0} > c.
We will need a slightly stronger version of this proposition.

Proposition 5.2.5 If d < 4, for every r > 1, there ezists a ¢ = ¢(r) > 0
such that if T,y € OC,, 21,29 € OCry,

P*¥{S0,7,,) N S%[0,77,] #0| SM(7}) = 21, S (17) = z2} 2 c.

Proof. Let o = afl,r = T:;(r“)/z . By Proposition 5.2.4 , the strong
Markov property, and Harnack’s inequality (Theorem 1.7.2),

P=¥{S'[0,7;,] N S2[0,7%,] # 0, 51(71,) = 21, 52(77,) = 22}

> P=u{810,0']N 520,07 # 0,8} (rk,) = z1,5%(2,) = 22}
> inf pwiw2 Sl 1y ,52 2y

= C(T) w, yw2€la%n(r+l)/2 { (Trn) 21 (Trn) 32}

> c(r)P*¥{S)(1},) = 21,5%(1},) = 22}. O
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Before proceeding with the proof of Theorem 5.2.3 we need one fact
about Brownian motion. Let A be any set contained in D with =z ¢ A.
Then (60, Theorem 2.6.3]

P*{P'[0,T*] N A is non-empty, finite} = 0.
If we condition on B? and use this fact we get
P=¥{B'[0,T*) n B2[0,T?] is non-empty, finite} = 0. (5.6)

For each € > 0, let A, be the set of all open balls of radius 3¢ centered
at points (ji¢, j2€, j3€), where j1, jo, j3 are integers. Note that if |z —w| < e,
then there exists an A € A with z,w € A. Let X, be the cardinality of

{A€ A.: B'0,T'|N A #0,B%0,T?|n A # 0}.

If B[0,T) N B%[0,T?] = 0, then for all sufficiently small ¢, X, = 0. Con-
versely, if B'[0,T*] N B%[0,T?] # 0, then X, # 0. Therefore,

b(z,y,1) = lirr(l) P{X.=0}.
If for some 1 < k < 0o and some €, — 0,

lim P{X., =k} >0,

=00

then it is easy to see that with positive probability B'[0,T*] n B%[0,T?
contains exactly k points. Since this is impossible by (5.6), for every k > 0,

b(z,y,1) = 11_{1(1) P{X. < k}.
For each n, e let H, . be the collection of Cyne(2) where
z = ([njr€], [njae], [njae]),
with j1, j2, j3 integers, and let Y}, ¢ be the cardinality of
{H € Hpe: SYO, 7o )N H #0,5%[0,72] N H # 0}.
By the invariance principle, for each K < oo,

lirr(l)liminf P{Ype> K} > lin%)P{Xe > K} =1-bz,y,1). (5.7)
Assume Y, . > K. Then one can find at least J = J(K) = [(17) 3 K] sets
H € Hp e, Cane(21),. .., Cane(2s), with |z, — z;| > 8ne. Let

n'(j) = inf{k:S*(k) € 8Cunc(2;)},
o'(j) = sup{k <n'(j): $'(k) € OCsne(2,)},
p'(4) = inf{k >n'(j): S'(k) € OCsne(z;)}-
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Then the paths S"[ai( 7), p"'(j).],i =1,2,7=1,...,J are conditionally inde-
pendent given S*(o*(j)), S*(p*(4)),t = 1,2,5 =1,...,J. From Proposition
5.2.5 we conclude that

P (SN0, 7 ] N S%(0,72] #0 | Ve > K} > 1— (1 - )/,
Since we can make J arbitrarily large, this implies by (5.7) that
lim inf P=»¥»{S[0, 7] N S2[0,72] #-0} > 1 — b(z,y,1).

This combined with (5.5) gives Theorem 5.2.3 .
By the same proof we can derive the following.

Corollary 5.2.6 Ifr < 1, then
lim P{S*[r},, 721N S?[r2,,72] = 0} = P{BY T}, T}]| n B3[T2,T? = 0}.

™m)'n ™)'n

5.3 Equivalence of Exponents

In this section we will show that £ = 2¢. More precisely, we prove the
following.

Theorem 5.3.1 Ifd=2,3, asn — o0
f(n) =n~¢,
where { = £/2.
By Lemma 1.5.1, for every € > 0, there is an a = a(e¢) > 0 such that
P{1} < n?¢} < O(exp{—n®}).
Also,

P{ri > n?*}

IA

P{,nf IS((k+1)n?) = S(kn?)| < 20}
< Q-0
< O(exp{-n°}),
for some o = a(e). Therefore if
h(n) = P{S'[0,7,] N $*[0,7%] = 0},
we have for every € > 0,
f(n?*€) < h(n) + O(exp{—n°}) < f(n®7).

Theorem 5.3.1 is therefore an immediate corollary of the following theorem
which we wil prove.
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Theorem 5.3.2 Ifd = 2,3, then as n — oo,
h(n) =~ n~%.

We have done most of the work for the lower bound already. Let € > 0
and find 7 > ¢! such that

b(r) = sup b(z,y,r) <r7E (5.8)
lzl,ly|=1

By the strong Markov property,
P{5'(0,7},] N 8*(0, 77, = 0| §1(0,7,] N §*(0, 73] = 0}

< sup P{S(0,7%]NS%0,72] = 0}.
z,y€0Cn
By Theorem 5.2.3 and (5.8), the right hand side is bounded above for
sufficiently large n by 2r¢~¢. By iterating, for some m sufficiently large,
and all k£ > 0,
h(r¥m) < (2r<=¢)k,

and hence
In h(r*m) 5 _In2+(e- &lnr
Intkm =~ Inr )

liminf —
k—o0

Since h is a decreasing function this clearly implies that

liminf—lnh(n) > _In2+(e-¢)Inr
n—oo Inn Inr

Since for every € > 0 this holds for all r sufficiently large,

liminf — Inh(n)
n—oo n

2.

The upper bound is proved by finding an appropriate Brownian mo-
tion event on which the invariance principle can be applied. Suppose two
Brownian motion paths do not intersect. Then one would expect that they
would stay a “reasonable distance apart”—at least as far apart as uncon-
ditioned Brownian motions do. It can be very difficult to prove such facts.
The next proposition asserts a weak form of this intuitive fact. Even this
relatively weak statement has a fairly technical proof using ideas of excur-
sions of Brownian motions. Rather than develop the necessary machinery
to discuss the proof, which is not very illuminating, we will omit it. See
[11] for details.
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Lemma 5.3.3 Let A (r) be the event

(i)  B'0,Tn B2[0,T2 =9,
(i) dist(BY(T%), B30, T3 ) > er, i=1,2,
(i) B0, TN D C D.s(B*0), i=1,2.

Let
v(e,r) = inf{ P*¥(A.(r)) : 2,y € OD, |z — y| > 2}.

Then for some € > 0,
r—00 nr

=£.

To prove the upper bound from the lemma, let £, > £ and € > 0 be as
in Lemma 5.3.3. Let U(n, ) be the event

(i) SI[O’ Trﬂ] N 52[0’ T-r2n] =0
(i) dist(S*(ri,), S37H0,737]) > en/2, i=1,2
(iii) Sio,7i,]NnCn C Cenya(S*(0)), 1=1,2.
By Lemma 5.3.3, there exist arbitrarily large » with v(e,r) > r~%. For

such an r, by the invariance principle, there exists an m = m(r, &) such
that for n > m, z,y € C,. |z — y| > en/2,

1
P=¥(U(n,r)) > Er‘&’.
By iterating and using the strong Markov property, one can easily check
for some ¢ = ¢(m),
h(r¥m) > c2=kr=ko,

Therefore,

k
limsup_lnh(r m) < lnr +1n2

k—oo  In(rkm) — Inr ’

and hence by the monotonicity of h,

Inh 1 2

Since for any & > £ this holds for a sequence r; — oo,

limsup — In h(nn) <

n—oo n

£ O
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The same ideas apply to intersections of more than two walks. Let
B, B2,..., B**! be independent Brownian motions starting at e;,—e;,
—ey, ..., —e; respectively and let

q(r, k) = per—eir. —ey {BI[O,T}] N (B2[0, Tr2] U---u Bk+1[0, Trk+1]) - @}

Similarly, if S, 82, ..., S¥*1 are independent simple random walks starting
at 0 we let (as in section 3.7)

f(n, k) = P{S*(0,n) N (§%(0,n] U --- U S**1(0,n)) = 0}.
Then the following theorem can be proved in the same fashion as above.
Theorem 5.3.4 Ifd = 2,3, there exist £(k) = £4(k) such that as r — oo,
q(r, k) ~ =60

Moreover, as n — 0o,
f(n, k) =~ n0),

where ((k) = €(k)/2.

We can restate Theorem 3.5.1 by

Q@) =1, 6@ =3
and hence

£(2)=2, &(2)=1 (5.9)
5.4 Variational Formulation

Assume B!(0) = e; and let @, be the conditional probability of { B}[0, T}]N
B?[0,T?] = 0} given B, i.e.,

Q-(w1) = Py {B!0,T},w1] N B?[0,T2,w,] = 0}.

Then,
q(r, k) = E1(QF).

Also, by integration by parts,

1 1
q(r, k) = /0 *dP{Q, < z} = /0 kz*~1P{Q, > z}dx. (5.10)
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In particular, for any z € [0, 1],
q(r, k) > zFP{Q, > z}. (5.11)
For any a > 0 we define

B(a) = Ba(a) = liminf _Mﬂ%}%a_}_

One can actually show that the limit exists; however, this requires a lot
of technical work and will be unnecessary for what we will discuss below.
Intuitively we think of 3(a) by

P{Q, >r %} =A@,

The next proposition is a standard kind of result from the subject of large
deviations [14, 21] where such variational formulations go under the name
Legendre transforms.

Proposition 5.4.1
£(k) = inf (ak + B(a). (5.12)

Proof. For any a > 0,6 > 0 there is a sequence r,, — oo with
P{Q., > ro%} > T;(ﬁ(a)+6)_

Therefore by (5.11),
Qlra k) > ryek=B@S,
and hence

lim inf — < ak + fB(a) + 6.

T—00

By Theorem 5.3.4, this implies
&(k) < ak + B(a) + 6.

Ing(r, k)
Inr

Since this holds for every a,6 > 0,
£(K) < inf (ak + (o).
To prove the other direction, let
g = g(k) = inf(ak + 5(a))-
For any 0 < 6 < 1, let M = M(8) be an integer satisfying

671€(k) < M < 267¢(k).



5.4. VARIATIONAL FORMULATION 151

For any v > 0, for all r sufficiently large,
P{Q, > r 78} <7 BUO+Y 5 =1,... M. (5.13)
By (5.10),

1

ark) = [ ket 2 2}
0

-(-1)6

M r
kr—M 4k / z*"1P{Q, > rldz.
oy [ @ 23}

IA

By (5.13), for r sufficiently large,

r—=-1)6

/ *1P{Q, > o}z < r=U=DE=D8,—BGO+Y (;=0=18 _ =36,
r—26

Therefore for r sufficiently large,

M -G-1s M
Y MPE S R VPP T) Y
g=17r77¢ j=1

< r‘7+5kM,r—q

< 267 Okag(r),

and,
q(r, k) < kr—8(k)/8 4 25‘1kr7+6k”q{(k).

For & sufficiently small the second term dominates the first term and we
get

¢(k) = liminf —

T—00

Ing(r, k)
—2 7 > qg—~ - 6k.
Inr =7

Since this is true for all 6, > 0, we have £(k) > ¢. O

Our estimates in the remainder of this chapter will be derived by getting
bounds on 8(a); using the value for £(2) (see (5.9)); and using Proposition
5.4.1. As an example of how this proposition can be used we will derive
Holder’s inequality. Suppose j < k. Then

€)= inf(ka+B(a)
< ; inf (ja + (@) = ?5(1’),

ie.,

Ze(k) < £0) < €0
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5.5 Lower Bound in Two Dimensions
If B! is a Brownian motion in R? and r > 0, let V, be the event
{B'[0,T}] disconnects 0 and 8D, }.

More precisely, V, is the event that the connected component of R? \
B1[0,T?}] containing 0 is contained in the open ball D,. It is easy to check
that if 0 < |z| < 7,

0< P*(V;) < 1.

If le] =1, let
P(r) =1-P(V;) = P(VY).

For general 0 < |z| < r, we have by scaling

P(VE) = %(m).

||
Also, if 1 <7,8,< 00, |e] =1,
Y(rs) = PE(VS) < PE(VE)PE T(VE) = y(r)(s). (5.14)

Therefore, ¢(k) = In(2*) is a subadditive function, and the following
proposition is an immediate corollary of Lemma 5.2.1 .

Proposition 5.5.1 Ifd =2,

1 _In¥(r) sup _ln¥(r) =5 >0.
T—00 Inr r>1 Inr

We can now derive a lower bound for £ = £(1) in terms of 5. Suppose
B! starts at e;. Then on the event V,, Q. = 0, where Q, is as defined in
the last section. Hence for any a > 0,

P{Qr 277} < PE(VY) = 4(r),
and hence by Proposition 5.5.1, for all a > 0,
B(a) 2 7. (5.15)

Proposition 5.5.2 Ifd =2,



5.5. LOWER BOUND IN TWO DIMENSIONS 153

Proof. By (5.9) and (5.12), for every a > 0,
2 =£(2) < 2a + B(a),
and hence @ > 1 — 13(a). Therefore, by (5.12) and (5.15),

€)= inf(a+ A(a) > imf(1+ 20(a)) > 14 7. O

Bounds on 7 will thus produce bounds on £&. The remainder of this
section will be devoted to proving the following bound on 7 .

Proposition 5.5.3

2> 2,

This is not the optimal result. By similar, but technically more compli-
cated means, one can prove that 5 > (27)~!. Even this bound is probably
not correct—it has been conjectured that % = 1/4. To prove Proposition
5.5.3, we will use conformal invariance properties of Brownian motion in
R2. We may consider a two-dimensional Brownian motion B as a complex-
valued Brownian motion

B, = R(B:) +i3(By),

where R(B;) and J(B;) are independent one-dimensional Brownian mo-
tions. Suppose h : C — C is an analytic function and

t
vy = / \K(B.)|ds,
0

~¢ = inf{s : vs > t}.

Then [18] MB ()
"= Ut

is also a complex-valued Brownian motion. Roughly speaking, an analytic
function transforms a Brownian motion into a time change of a Brownian
motion.

Proof of Proposition 5.5.3. Let |e| = 1 and

— 1
B(r) = ¥(;) = P(VE).
Then by Proposition 5.5.1,
¥ = sup In w(r). (5.16)

o<r<1 Inr
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Let B; be a complex-valued Brownian motion starting at =, where z < 0,
and let h(z) = exp(z). Let

7o = inf{t : R(B,) = 0}.

Then Y; = exp(B;),0 <t < 7 is (a time change of) a Brownian motion
starting at exp(z), stopped when it reaches 8D. Therefore, the distribution
of the random set

{exp(B:) : 0 <t <79 | By =z}
is the same as the distribution of
{B;:0<t<T!'|By=exp(x)}.
Let r € (0,1) , z =Inr and assume By = z. If w < z, let
Tw = inf{t : R(B,) = w},
o =sup{t < Ty, : R(B) = z}.
n=inf{t > 7, : R(B;) = z}.
Suppose that 7, < 79 and
IS(By) — S(Bs)| = 2.
Then it follows that the path
{exp(B:) : 0 <t < 719}
disconnects 0 and dD. Therefore,
P(r) < 1= P*{r, < 710,|(By) — S(Bs)| > 27}.

Note that by the “gambler’s ruin” estimate for one-dimensional Brownian
motion,
P*{ry, < 0} = —
¥ w

To compute the conditional probability, we will need the hitting distribution
of the imaginary axis. If By = z, then the density of I(B,) is given by
[18, (1.92)]

|z|

—_———e -0 <y <oo.
n(z? + y2)’ v
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Therefore,
P*{|S(By) — S(B,)| 2 27 | 7w < 7o}
= PPU{|8(B,,) - $(B,)| 2 27}

2n+I(Bo) S
2 1 _/ s W
—2n+1(B,) T((w — z)% + 3?)

2n
w-—-—2x
> 1- d
= /_m((w—x)?+y2> y

2
= 1- p arctan(——).
Therefore, for every w < Inr < 0,
Inr 2
<1-—[1-= .
P(r) <1 ” [1 - arctan(w — lnr)]

Since 1 9 9
lim —-[1-—= arctan(—w)] =772
y—0+ y ™ Yy
for every e > 0 we can find w < 0 and R € (e¥, 1) such that for allr € (R, 1),
P(r)<1=n"2(1-é)nr,

and hence by (5.16),

y o> limsup——lm/)(r)
r—1— Inr
— 121 -
> limsupln[l 7= %(1 —€)ln7]
r—1— Inr
= 71721 —¢).

Since this holds for all € > 0, the proposition is proved. O

5.6 Upper Bound

The main result in this section is the following.
Proposition 5.6.1 (a) Ifd =2,

lim B(a) = oo.
a—»%-}-

(b) Ifd =3,

i, f(e) = .
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Corollary 5.6.2 (o) Ifd =2,

N W

£=¢(1) <
(b) Ifd=3,
£=¢(1) <L
1

Proof. Assume d = 2. By Proposition 5.6.1(a), there exists ag > 5

such that B(a) > 2 for a < ap. By (5.9) and (5.12), for any € € (0,1) we
can find a = a, such that

2=£(2) > 2a+ B(a) —e.
Clearly a > ag. Since f(a) < 2 — 2a + ¢, by (5.12),
E=¢1)<a+PB(a)<2-a+e<2—ag+e.

Therefore, £ < 2 —ap < 3. This gives (a); (b) is proved similarly. O

The proof of Proposition 5.6.1 will need a simple large deviations esti-
mate for binomial random variables. The following lemma can be deduced
easily from “Chernoff’s theorem” (7, Theorem 9.3].

Lemma 5.6.3 For every b < oo, there ezist p = p(b) < 1,6 = §(b) >
0,C = C(b) < oo, such that if Y is a binomial random variable with pa-
rameters n and p,

P{Y < én} < Ce™™.

Proof of Proposition 5.6.1. We first consider d = 3. Let Z be the
conditional probability of

B[T3,,, T3] N B*[0, T3] = 0,

given B! (assuming B!(0) = e;, B2(0) = —e;). It is not difficult to show
that P;*{Z = 0} = 0 and hence

lin(l)Pf‘{Z >e}=1.
By the standard Harnack inequality for harmonic functions, this implies
lim Py*{ inf P§{B'(T3,,, T3] N B*[0,T§] # 0} > ¢} = 1.
e—0 z€D
For j =1,2,..., let J;, be the indicator function of the event

inf  PE{B'(T}p-, TH] N B0, T3] £ 0} 2 ¢,

z€D,;-1
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and let
k

Yee=Y_ Jie

j=1

Then by the strong Markov property applied to B2,

Qax < (1 - €)'k,

and hence
P{Qy 2 27%} < P{(1-¢)* 227%%}
kaln?2
PVe s —p—}

The random variable Yy  is bounded below by a random variable with a
binomial distribution with parameters k and g(€¢) where g(¢) — 1 as € — 0.
For any b < oo, find p,6,C as in Lemma 5.6.3. Choose ¢ > 0 so that
g(€) > p and then choose a > 0 so that

B aln2
In(1—¢) =~
Then,
kaln2 —kb ky—=b/In2
<1< = ne
P{Yi € ~ it} < G = C(2")
Hence,
Bla) >
~ In2’
and

al—l»%1+ ﬁ(a) = %0

which gives Proposition 5.6.1(b) .

The proof of Proposition 5.6.1(a) relies on some results from complex
function theory. Let B}, B? be independent complex-valued Brownian mo-
tions starting at 0 and 7 respectively stopped at

o) = inf{t : R(B?) = Inr}.

Then B! = exp(B}), B? = exp(B?) are independent (time changes of)
Brownian motions starting at e;, —e; respectively stopped at

T = inf{t: |BJ| = r}.
Let I'; be the random set

[, ={B?+2mik:0<t<ol ke Z}.
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Then B[0,T}] N B2[0,T2] = @ if and only if
B!0,0}]NT, = 0.
For fixed I,
Pi{B'[0,0;]NT, =0} =w(0,C\ (T, UV,),V;),

where V; = {R(z) = Inr} and w denotes harmonic measure in R? (here we
are using the notation of [1, Chapter 4]). Therefore, if we define Q, as in
section 4 using the Brownian motions B}, BZ, we get

Q. =w(0,C\ (T, UV,),V,).

Note that I', is a continuous curve connecting 7i to V, along with all the
271 “translates” of the curve. It is a result of Beurling that the harmonic
measure of V, is maximized if we take I’ to be a straight line parallel to
the real axis. The next lemma estimates the harmonic measure in this case.
Let B, = B}.

Lemma 5.6.4 Let

Ar = {z€C:0<R(2) <Inr,(z) = (2k + 1)7i, k € Z},
or inf{t: R(B;) = Inr},
7 = inf{t: By € A.}.

Then there ezists a constant ¢ < oo such that for all z with R(z) <0,
Po, <7} =w(z,C\ (AUV,),V;,) < er™ /2,
Proof. Consider

r = {2€C:—-00<R(z) <Inr,S(z) = (2k+ 1)7i, k € Z},
r = mf{t . Bt € Kr}

S >

In this case the harmonic measure of V,. can be computed exactly for (z) <
Inr by recalling that the harmonic measure of V,. is the harmonic function
on C\ (f, U V;) with boundary values 1 on V;. and 0 on A,. The solution
using separation of variables (see, e.g., [4, 11.9.8]) is

oo
) 4 1
PRMir<m) = X Grymee P eosl(n+ 5]
n=0

< e V2 ifz<o. (5.17)
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Now assume Inr > 7 (it clearly suffices to prove the lemma for sufficiently
large r). By symmetry of Brownian motion, it is not difficult to show in
this case that if R(z) = 0,

Pir =7} > % (5.18)
Let
g(r)= sup P*{o, <7} = sup P*{o, <}
R(z)<0 R(z)=0
If R(z) = 0,

P*{o, < 1.} = P*{o, < Tr} + P*{o, < 7, Tr < 07 AT}
By (5.18), P*{F. < o, AT} < 87‘ and by the strong Markov property,
PHor <7 | Tr <or ATr} < g(7).
Therefore by (5.17),

_ 7
o(r) < v 2 4 2g(r),

or
gtr)<er™V2. O

Let v : [0,T] — C be any continuous path with R(v(0)) = 0, R(~(T)) =
Inr, and
0<R(y(t)) <Ilnr,0<t<T.

Let ' =T, be the corresponding set of translates by 273,
F={y(t)+2mik:0<t<T,keZ}.
Let T be the extension by straight lines on {®(z) < 0}, i.e.,
T=TuU{y(0)+2nik—s: k€ Z,s > 0}.
By an argument similar to that in Lemma 5.6.4,
w(0,C\(TUV,),V,) <8(0,C\ (TUV,),V,). (5.19)

If 0 € T, then w(0,C\ (TUV,),V,) =0. Assume 0 ¢ T and let U be the
(open) connected component of C \ (T U V;.) containing 0. If 8U NV, = 0,
then w(0,C \ (TUV;,),V;) = 0, so assume OU UV, = §. Then 8U NV, is
a closed interval of length 2r. We can find a conformal map h taking U
onto W = {z: R(z) < 0,—mi < J(z) < mi} such that 8U U V. is mapped
onto V = {R(z) = 0,—ni < ¥(z) < wi}. By the conformal invariance of
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harmonic measure (or equivalently the conformal invariance of Brownian
motion), _
w(0,C\ (TUV;), V) = w(h(0),W, V). (5.20)

Note that by Lemma 5.6.4,
w(h(0), W, V) < ce®(h(0)/2, (5.21)

For each 0 < z < Inr, let 8(z) be the length of U N {R(z) = z}. By (4-23)
of [1], the map h must satisfy

R(h(0)) < —27r/lm 4z o3
- o O(x) ’

and hence by (5.19) - (5.21),

Inr dr

Ol (5.22)

w(0,C\ (TuV,),V;) < cexp{—w/
0

Note that §(z) < 27 so this gives the result
w(0,C(TUV,),V,) < er™1/2,

We now apply the inequality (5.22) to the Brownian motion B, = B?
stopped at o, = 2. The Brownian motion path does not satisfy the con-
dition 0 < R(B;) < Inr, t € (0,0,); however, we can consider instead the
“excursion” B(n,,o0,] where

N, = sup{t < o, : R(B;) = 0}.

For any € > 0 let g(€) be the probability that a Brownian motion start-
ing at 0, stopped at p = inf{t : |[R(B:)| = %} encloses the circle of radius e
around 0, i.e., the probability that the boundary of the connected compo-
nent of C'\ B0, p] does not intersect the closed ball of radius €. Note (see
section 5) that

lim g(e) = 1.
Also, by symmetry, the conditional probability of this event given {R(B,) =

1} (or given {R(B,) = —3}) is still g(e).
For any j, let

1
7y = Tir =inf{t > 7 : R(By) =5 + 5},

pi = pjr =inf{t > 7;: R(Be) € {j,j + 1}},
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and let I(j, €) be the indicator function of the event that B(r;, p;] encloses
the circle of radius € around B(7;). Note that E(I(j,€)) = g(€) and that
{I(3,€):j =0,1,...[Inr] — 1} are independent random variables. (This is
not immediately obvious since 7, is not a stopping time and hence neither
are 7; or p;. However, 7; and p, are stopping times for the Brownian
“excursion”, and the last sentence of the previous paragraph shows that
this conditioning does not affect the probability of this event.) If I(j,€) = 1,
the path B(n,,o,] satisfies

€ 1 ¢ 1 ¢
< - = S ——-<zr<j++4+-
0(z) < 2m 3 _]+2 2_z_]+2+2,
and hence ]
J+1 dzx 2
211'/ —_— > 14 —
, 0(z) ™
Therefore,

[Inr]-1

Inr dr ) 62
27r/0 ) >lnr+| ]go I(J,e)](z;;).

For every b < oo, find p,8,C as in Lemma 5.6.3. Choose ¢ > 0 so that
q(e) > p. Then
(Inr]-1

P{ Z I(j,€) < 8[Inr]} < er®,

=0

and hence _— 52

Pe [ g5 <+ s,
and hence by (5.22),

P{w(0,C\ Blnr,0,), Vi) > ™%} < e,
where a = (1 + %). Therefore,

lim B(a) =00. O

a—v%+



Chapter 6

Self-Avoiding Walks

6.1 Introduction

The study of self-avoiding walks arose in chemical physics as a model for
long polymer chains. Roughly speaking, a polymer is composed of a large
number of monomers which can form together randomly except that the
monomers cannot overlap. This restriction is modelled by a self-repulsion
term.

The simplest mathematical model to state with such a self-repulsion
term is the self-avoiding walk (SAW). A self-avoiding walk of length n is a
simple random walk path which visits no site more than once. This simple
model does seem to possess many of the qualitative features of polymers.
However, it turns out that it it extremely difficult to obtain rigorous results
about SAW’s, especially in low dimensions which are the most interesting
from a physical point of view.

The next two sections discuss the SAW problem. The most interesting
characteristics of the model are the dimension dependent critical exponents
discussed in Section 6.3. The discussion there is entirely heuristic and math-
ematicians are still a long way from making the discussion rigorous. One
major result [10, 62, 63] is a proof that in high dimensions the exponents
take on “mean-field” values. The proof of this result has a field-theoretic
flavor of mathematical physics and makes use of a technical tool called the
“lace expansion”, which has since been applied to some other models in
mathematical physics. Because the proof is long and the methods of the
proof are significantly different than those discussed in this book, we will
not discuss the proof.

There are a number of other ways to put self-repulsion terms on random
walks. These split naturally into two categories: configurational measures
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where random walks are weighted by the number of self-intersections (the
original SAW problem is of this type) and kinetically growing measures
where random walks are produced from some (non-Markovian) transition
functions. It turns out that different self-repulsion terms can give qual-
itatively different behavior of random walks. We discuss some of these
models in Sections 6.4 and 6.5. In the final section we discuss briefly some
algorithms used in Monte Carlo simulations of SAW’s.

6.2 Connective Constant

A self-avoiding walk (SAW) of length n, w = [w(0),...,w(n)] is an ordered
sequence of points in Z¢ with |w(i) —w(i—1)| =1,i=1,...,n and w(i) #
w(j),0 € i < j £ n. In other words, a SAW is a simple random walk
path which visits no point more then once. We let T';, be the set of SAW’s
starting at O (i.e., w(0) = 0) and A, be the set of simple random walk paths
starting at 0. Note that |A,| = (2d)™ and I';, C A,.

The first question to ask is how many SAW’s are there? Let C, =
IT,|. Since a SAW cannot return to the point it most recently visited,
Cr < (2d)(2d — 1)"~1. However, any simple random walk which takes only
positive steps in each component is clearly self-avoiding. Since there are d
choices at each step for such walks,

d" < C, < (2d)(2d — 1)" 1. (6.1)
Proposition 6.2.1 There exists a p = pq € [d,2d — 1] such that
Cn,=u".

Proof. Any (n + m)-step SAW consists of an n-step SAW and an m
step SAW (although not every choice of an n-step SAW and an m-step
SAW can be put together to form an (n + m)-step SAW). Therefore,

Cn+m S CnCmy
and ¢(n) = InC, is a subadditive function. By Lemma 5.2.1,

i ) _ i 7)

n) .
= a.
n—oo N n n

Therefore C,, ~ u™ where p = €®. From (6.1) we get that p € [d,2d—1]. O
The exact value of u, which is called the connective constant, is not

known. For d = 2, u is expected to be about 2.64 and 3 is expected to
be about 4.68. It is rigorously known that u, € (2.58,2.73) [6, 71]. In
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principle one can calculate p to any accuracy by finite calculations, but the
convergence rate is very slow. As d gets large, the main effect of the self-
avoidance constraint is to forbid immediate reversals; Kesten [34] proved

that as d — oo,

1 1
pa = (2d = 1) = 55+ O(=5).

Kesten [33] also proved that Cy,42/C, — ©2, but the conjecture Cpy1/Cp —
u is still open.

A self-avoiding polygon (SAP) of length n is an ordered sequence of
points w € [w(0),...,w(n)] with |w(i) —w(i—-1)] = 1,1 < i < njw(i) #
w(7),0 <i< j<n-1, and w(0) = w(n). Loosely speaking, a SAP is a
self-avoiding walk conditioned to return to its starting point. Let A, be
the number of SAP’s of length n. It is easy to see that

A, = Z Crn-1(e) =2dC,_1(e1),
le]=1

where
Ci(z) = {w €Ty :w(j) =z}

Hammersley [32] first proved that
Ap = “n, (62)

i.e., that the connective constant for SAP’s is the same as for SAW’s. At
first this may seen surprising; however, one can think of A,/C, as the
probability that a self-avoiding walk is at the origin at time n. In analogy
with the case of simple random walk one might then expect

(6.3)

for some 6. Note that (6.3) and Proposition 6.2.1 imply (6.2). This is only
heuristic, however, and the known proofs of (6.2) are not strong enough to
conclude (6.3). This ¢ is one of a number of “critical exponents” for SAW’s
about which much is known heuristically and numerically, but for which
little is known rigorously. A number of these exponents are discussed in
the next section.

6.3 Critical Exponents
Consider C,,, the number of SAW’s of length n. By Proposition 6.2.1,

C, = u"r(n),
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where
nllrr;o[r(n)]l/" =1

We would like to have more precise information about the function r(n).
Consider first the case of simple random walk. There seems to be no non-
trivial analogue of r(n) for simple random walk since |A,| = (2d)™ exactly.
However, let

F(n) _ r(2n) _ CQn )

r(n)r(n) CpC,

The right hand side can be interpreted as the probability that two indepen-
dent SAW’s of length n can be put together to form a SAW of length 2n
(where the probability is over the uniform probability measure on SAW’s),
i.e., the probability that two SAW'’s of length n have no points in common
other than the origin. The analogue of this probability for simple random
walk is the function f(n) studied in Chapters 3-5. Recall (Theorems 4.12
and 5.20)

n=¢, d < 4,
fn)=< (Inn)~1/2, d=4,
c, d> 4.
In analogy we would expect
n‘z, d< 4,
7(n) = < (Inn)~%, d=4, (6.4)
c, d> 4.

The exponent ¢ is usually denoted v — 1 = v4 — 1, and (6.4) suggests

nY71, d<4,
r(n) =< (Inn)?, d=4, (6.5)
c, d>4.

Recall from Section 5.1 that the conjectured values for ¢ are

5
G2 = Y (3 ~ .28 or .29.
Intuitively, one would expect SAW’s to be “thinner” than simple random
walk paths and hence 7#(n) > f(n). This intuition agrees with the conjec-

tured values for v [56, 57, 30, 48],

1
32’
In the critical dimension d = 4 it has been conjectured [29] that a = 1/4.
We should comment that while we have defined the exponent v by (6.5),

’yg—l= ’)’3—1’.:’.16.
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there is no proof that such a « exists. (In contrast, the exponent ¢ is known
to exist by Theorem 5.3.1.) We will define the other critical exponents for
SAW’s similarly in this chapter with the understanding that there is no
proof that any of the exponents exist.

As mentioned in the previous section, the number of self-avoiding poly-
gons of length n, A,, is expected to satisfy A,/C, = n~%. We define the
exponent a = a4 (which is sometimes referred to as asing) to be 1+ — 4,
i.e.,

#—nAn ~ noz—-2.

A SAP is a SAW with the restriction that w(n) = 0. If for fixed z € Z¢ we
let C,,(z) be the number of SAW’s of length n with w(n) = z, it is similarly

expected that
p~"Cn(z) = n®7?,

assuming, of course, that n « z. We will give the conjectures for o in
terms of the exponent v defined next.

The exponent v concerns the distribution of the endpoint of the SAW.
Let U = U, denote the uniform probability measure on I', and (-)yy expec-
tations with respect to U. Then the mean square displacement exponent v
is defined by

(Jw(n)*)v =~ n™.
Note that if P = P, is the uniform measure on A, (simple random walk),
then

(lw()?)p = n,
and hence the exponent v is equal to 1/2 for simple walks. Flory [26, 27]
gave an argument that predicted for the SAW

_ [ 3/(d+2), d<4,
Y= 172, d> 4.

This conjecture suggests that the self-avoidance constraint is not very sig-
nificant above the critical dimension 4. This is quite plausible since with
positive probability the paths of simple random walks do not intersect for
d > 4. We point out, however, that this plausibility argument is a long way
from any kind of proof—even in high dimensions, the number of SAW’s is
an exponentially small fraction of the number of simple walks. The Flory
conjecture gives the correct answer for d = 1 (where the SAW problem
is particularly easy!), and the d = 2 conjecture is expected to be exactly
correct. Numerical simulations [54] suggest, however, that the conjecture
is not exactly correct in three dimensions, but rather that v3 = .59... In the
critical dimension d = 4, a logarithmic correction is predicted,

™Y (Jo(n) Py ~ (lnn)/4,
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Slade has proved that the conjecture is correct in high dimensions. (As this
book was going to press, Slade and Hara announced that they have proved
the following theorem for do = 5.)

Theorem 6.3.1 [62, 63] There ezists a dy < 00, such that for all d > dy,
v = 1/2 and v = 1. Moreover, the distribution of n='/%w(n) under U
converges to a Gaussian distribution.

There is a conjectured relationship between v and a. Consider the
number of SAP’s of length 2n, As,. Then

u—?nAzn ~ na—2‘

A SAP of length 2n can be thought of as composed of two SAW’s of length
n, wy and wy, with wy(n) = we(n) and the restriction that

wl(i) # (U2(j),0 <i,j<n

(here ws is the second half of w “traversed backwards”). One would expect
that the effect of the restriction would be greatest at points near 0 and
points near w; (n) = wa(n). Each of these effects should contribute a factor
of about 7(n). Hence we guess that the number of SAP’s w of length 2n
with w(n) = z is approximately

Cn(z)?7(n)?,
and As, is approximated by
[2° Ca(@)?i(m)”.
z€Z4

What does a typical term in this sum look like? A typical SAW of length
n should be about distance n” from the origin. Since 4~"C, ~nY~! | and
there are on the order of n points at a distance n¥ from the origin, one
would guess for a typical z with |z| = n”,

p"Chn(z) =0 In~w,
Therefore,

P'—2nA2n ~ Z (n'y——ln—du)Z(nl—‘y)2 ~ n—du'

|z|zn"

This gives the conjecture
a—2=-dy,
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which is sometimes referred to as hyperscaling. If we combine this relation
with the conjectures for v we get

d
(12——-%; as ~ .23; ad=2—§,d24,

with a logarithmic correction in d = 4. While the existence of a has not
been proved, Madras [52] has proved that if the exponent exists it must
satisfy

5
azsi;assz ag < 2,d > 4.

We now consider the SAW analogue of the Green’s function. Recall for
simple random walk,

G(0,z) = ZP{S _x}—Z(w b

n=0

where b, (z) = |[{w € A, : w(n) = z}|. For the self-avoiding walk we define

G(0,z) =)  u"Ca(x)

n=0
We define the exponent 7 = 74 by
G(0,z) ~ |z|~ 42+,

Thus, 1 measures the amount the exponent for G differs from that of G
(recall from Theorem 1.5.4 that G(0,z) ~ aq|z|?>~¢ for d > 3). There is a
heuristic scaling formula which relates 7 to v and v which we now derive. If
|z] is much larger than n¥ then C,(z) should be negligible. If |z| is of order
n? then p~"Cp(x) ~ n""1n~% (since there are order n% such points).
Therefore, we expect

G(0,z) =~ Z p"Cr(z)

nx|z|v

)
Z n‘y—ln—du ~ |:l:|(7_d"')/".

n=|z|¥

Q

Therefore —(d — 2+ 1) = (y — dv)/v, or
y=v(2-n).

One final exponent is defined by considering C,, », the number of pairs
of n-step SAW’s (w;,ws) with w;(0) = 0, we(0) arbitrary, and such that
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w1 Nwy # @, ie., for some i,j, wi(i) = wa(j). The exponent A = A(d)
(which is sometimes referred to as Ay) is defined by

—2n ~ 204y —2
154 Cn,n""n =2,

We will relate this exponent to the other exponents. Note that there are
C,, choices for w;; C,, choices for we up to translation; and (n+ 1)2 choices
for the pair (%, j) such that wy(7) = w2(j) (once (¢, j) is chosen, the starting
point wo(0) is determined). Therefore, if we did not have to worry about
overcounting, we would have C, , = (n + 1)2C2. However, a given pair
(w1,w2) may intersect in a number of points; in fact, we would expect the
number of intersections to be on the order of b,, the expected number of
intersections of two SAW’s starting at the origin. We then get

Cnn[Cn]™2 = n2b71,
or,

p~Cp o =~ 0?07 (6.6)
We now try to estimate b, (this is the SAW analogue of (3.4) for simple
random walk). Consider two independent SAW’s, w; and ws starting at
the origin. Since a walk of length n goes distance about n”, the number
of points visited in the ball of radius m should look like m!/¥. Therefore,
the probability that a point z is hit by w; should look like |x|%“i and the
expected number of x which are hit by both w; and ws should look like

z |z|?G =D ~ n27vd d=23.

|z|=n¥
Therefore b, ~ n2~"4 for d = 2,3 and from (6.6),
pCh o, xn® "2 4 =23
Therefore, 2A +y—-2=dv+2y—-2or
dv=2A—-v, d=2,3.

6.4 Edwards Model

There are a number of other measures on random walks which favor self-
avoiding or almost self-avoiding walks. In this section we discuss two such
measures. These are measures on the set of simple walks A,. For any
w € A, define J(w) = Jp(w) to be the number of self-intersections, i.e.,

Jw)= Y IHwl) = w()} = 5 38 - w().

0<i<j<n ij
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The expected value of J with respect to the simple random walk measure
can be estimated easily using Theorem 1.2.1:

(Np = D Plw@)=wi)}

0<i<j<n
n-1 n
- ¥ S
1=0 j=i+1
en®?, d=1,
~ enlnn, d=2,
cn, d>3.

For any 3 > 0, we let U? = UP be the probability measure on A,, given by

B(L) = exp{—8J(w)}
UA9) = e =BTD P

Note that 3 = 0 corresponds to the simple random walk and the 8 — oo
limit gives the self-avoiding walk. This measure is called the weakly self-
avoiding walk or the Domb-Joyce model. It is conjectured that for every
B > 0, this measure is in the same “universality class” as the usual self-
avoiding walk. What is meant by physicists by this term has never been
stated precisely, but one thing that is definitely implied is that the critical
exponents for the weakly self-avoiding walk should be the same as for the
self-avoiding walk. For example, if v = v(3, d) is defined by
(w(n))ye = n?,

then for any 8 > 0, v(0,d) is expected to the the same as v, for the self-
avoiding walk.

There is a similar model which is a discrete analogue of a model first
defined for continuous time processes. Let B; be a standard Brownian
motion defined on the probability space (2, F, P), 0 <t < 1. Consider the
(formal) self-intersection random variable

1 1
V= / / §(Bs — By)dsdt,
0 0

and for each B > 0 define a measure Qg by
dQgs _ exp{—-08V}
dP (exp{=BV}p’

Then the set of paths B, under the measure Qg is called the Edwards
model [20]. This is only formal, of course. However, one can approximate
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the delta function by approximate delta functions ., and then V, and Qg
are well defined. Then one would hope to be able to take a weak limit of
the measures Qg . This has been done for d = 2,3 [69, 72].

What is the random walk analogue of this model? Consider a simple
random walk of length n, w. Then B, = n=1/2u([nt]) is approximately a
Brownian motion. Since the steps are of size n~!/2, we approximate the
delta function by

nd/2, Il.il < %n—1/2’

& (z) = 6™(z!,...,z%) = { 0,

otherwise.

We then approximate V by

/l/lé(Bs—B,)dsdt ~ (l)2ii6"(éi,n—éj/n)
0o Jo n

i=0 j=0

= @23 $75(w() - w(§))

1=0 j=0
= @ D2(2J(w) + (n +1)).

Let
T =2n=D2(7 — (J)p).

Then the (discrete) Edwards model is the measure Q® = Q? given by

exp{—AJ}
(exp{-BJ})p

Note that adding a constant to the random variable J does not change
QP, so we may use J for convenience. If d = 4, the Edwards model is the
same as the weakly self-avoiding walk (more precisely, @Q° = U?#) while for
d = 2,3 the Edwards model interaction is significantly weaker than that in
the weakly self-avoiding walk.

We will consider the Edwards model in two dimensions. For d = 2,

Q(w) =

T=207-(0p).
n
Since (J)p ~ cnlnn, one might expect that J gets large with n. However,
the major contribution to J is from intersections with |i — j| small, and the
number of such short-range intersections is relatively uniform from path to
path. The contribution from long-range intersections turns out to be of
order n, and it is this contribution which is important in QP.
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Proposition 6.4.1 Ifd =2,
Var(J) = (J%)p ~ ()b = O(n?),

and hence

Var(J) < c.
Proof. If we expand the sums in the definition of the variance we get
Var(J) < 2 Z q(il)jl7i27j2))
(41,91,i2,32)EA
where q(ilvj]ai2’j2) equa]s
P{w(i1) = w(j1), w(i2) = w(i2)} — p(d1 — i1)p(j2 — 92),
and
A = {0 < iy,19, 51,52 < i1 < J1;i2 < jo;iy < dg}
We partition A into three sets:
Al = An{i; < 1 <12 < ja},
A% = An{i, <y < j2 < i1},
A3 = AN {i; <i2 <51 < ja2}-
If iy < j; < iy < jg, then q(i1, j1,%2,J2) = 0, so the sum over A! is zero. If
11 <2 < j2 <71,
Plw(ir) = w(j1),w(i2) = w(j2)} = p(j2 — i2)p((51 — 1) — (J2 — i2)).
Therefore, using Theorem 1.2.1,
q(i1, J1,92,52) = p(j2 —i2)[p((G1 — 41) — (J2 — i2)) — p(j1 — @1)]
< el —i) MG — i) - (Ga—i2) + 1)

If we set k; = 4o — i1, kg = jo — i9, k3 = j1 — jo, then the sum over A? is
bounded by a constant times

(n+1) i i zn:(kl +k2+k3)_1(k1+k3+1)_1

k1=0 kz———l k3=0

k k
< Y SomaEREn G

k1_0k3_0 k +k +1
+1+
< anJH)l (J ")('+1)-1
=0

= 0O(n?).
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Finally, if i; < i3 < j; < Jo,

P{w(i1) = w(),w(i2) = w(j2)}
= P{w(i1) = w(h1)}P{w(iz) = w(j2) | w(i1) = w(5)}
< el —a+1)7 G —n)7

and hence
q(i1, J1, 82, 52) < e(Gr — i1+ 1) MGz — 51) 7! — (2 — 32) ']
Similarly,
q(i1, 51,02, 42) < €(d2 — i) (I =1 + )7 = (1 —a + 1) 7).

Therefore, if k; = i — i1, ke = j1 — 42,k3 = jo — j1, the sum over A3 is
bounded by a constant times

n+1{Y. D> D (k+ka+1)7 k3" = (ks +k2)7"]

k1=0 k2=0 k3=k1+l

n n kl
+ 37057 S (ko +ks) T (ka + 1) = (ky + k2 + k)7
k1=0 k2=0 k3=1
If we sum over k3 in the first triple sum, we see that this triple sum is
bounded by a constant times

> (k1 + ke + 1) (In(ky + k2 + 1) — In(ky + 1))
k1=0k2=0
n 2n+1
> S i Y(nj—In(k +1))
k1=0j=k;+1
2n+1 j-1
= > Y (nj—In(k +1))
j=1 k1=0
= O(n).

IA

Similarly, the second triple sum is O(n),and hence the sum over A3 is O(n?).
This proves the proposition. O

The proposition shows that Var(J) is bounded for d = 2. With sharper
estimates, see e.g. Stoll [68], one can show that for every 8 > 0,

{exp{~BJ})p < ¢(B) < oo. (6.7)
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This implies that the measure Q? is “absolutely continuous” with respect
to P (in fact, Varadhan [69] proved that the two dimensional continuous
Edwards model is absolutely continuous with respect to Wiener measure).
One consequence of (6.7) is that the discrete Edwards model is not in
the same universality class as the self-avoiding walk or weakly self-avoiding
walk in two dimensions. To see this, consider the mean-square displacement
exponent v,

(lw(n)*) e = n.

By Holder’s inequality and (6.7),

(wm)Pexp{-BTNp < (w(n))E*(exp{-26T}) >
S cgn.

Therefore, using Proposition 6.4.1 and (6.7),

c1(B)n < (Jw(n)|*)ge < c2(B)n,

and hence v = 1/2, which is not the conjectured value for the self-avoiding
walk.

If d = 3, a similar argument shows that Var(J) < n!/2 and hence that J
does get large as n grows. Therefore, the measure QP becomes “singular”
with respect to the measure P as n — oco. Westwater [72] has proved that
the three dimensional (continuous) Edwards model is singular with respect
to Wiener measure. In two dimensions it is known that the continuum limit
of the discrete Edwards model is the (continuous) Edwards model [68]; it
is certainly expected that this is true in three dimensions, but it has not
been proved.

6.5 Kinetically Growing Walks

The self-avoiding walk, weakly self-avoiding walk, and the Edwards model
are examples of “configurational” measures on random walks paths. Such
measures are natural from the viewpoint of equilibrium statistical mechan-
ics. In these measures walks which minimize “energy” are favored, where
the energy is some function of the number of self-intersections.

These configurational measures are not natural if one wants to consider
a random walk as a stochastic process. In particular, these measures on A,
or I';, are not consistent. We say that a sequence of measures A\, on A,, is
consistent if for every w € A,, m > 0,

’\N(“") = Z Antm(N),

w=n
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where w < 7 means that 7 extends w, i.e., 7(7) = w(z),0 < i < n. Whenever
a sequence of consistent measures A\, on A, is given, there is a well-defined
measure A on the space of infinite random walk paths defined on cylinder
sets by A,. It is easy to see that the self-avoiding measures U,, are not
consistent; in fact, one can find SAW’s w that are “trapped”, i.e., such that
w cannot be extended to any longer SAW.

One way to describe a consistent set of measures is to give transition
probabilities. Suppose A, are consistent probability measures on A,. Then
fwe A, € App,w<w, let

ol w) = ﬁ’ii‘z_’_)_
@l =X
Then,
n—1
An(w) = H 7r(w1+1 | w*), (6.8)
=0

where w' denotes the unique walk in A, with w* < w. Conversely, if the
transition probabilities (@ | w) are given, we can define consistent proba-
bility measures A, by (6.8). The transitions 7 can be viewed as Markovian
transition probabilities on the state space A = U2 (A, or as non-Markovian
transitions on the state space Z%¢. Such walks are often referred to as ki-
netically growing walks.

The first attempt to define a “kinetically growing self-avoiding walk”
might be to let a random walker choose randomly among all sites that it
has not visited. Let V;,(z) be the number of visits to z,

Va(z) = Valz,w) = {7 : w(j) = z}|.
Then such a walk would correspond to transitions

1 - V,(z)
Zly—w(n”:l(l - Vn(y))’

(note that since m(@|w) is non-zero only for w < @, it suffices in defining
transitions to give the probability that @(n + 1) = z). Unfortunately, it is
not difficult to show that a walker using these transitions will eventually
get “trapped” so that V,,(z,w) = 1 for each |z — w(n)| = 1. We can do a
“weak” version of this idea, however, by discouraging self-intersections but
not forbidding them. Let .3 > 0 and choose transitions

exp{—BVn(z)}
Y ly—w(n)=1 XP{—BVn(2)}’

|z —w(n)| =1

r{@(n+1) = zlw} =

|z — w(n)| =1.

m{on+1l)=z|w}=
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We call this the myopic self-avoiding walk. Here “myopic” emphasizes the
fact that the walker only looks at its nearest neighbors when choosing the
next step. This has also been labelled as the “true” self-avoiding walk [3].
Does this process look qualitatively like the usual self-avoiding walk? While
no rigorous work has been done, heuristic arguments and numerical work
suggest that it is significantly different then the usual self-avoiding walk.
For example, the mean-square displacement of the myopic self-avoiding
walk is expected to grow like n%/3 in one dimension and n for d > 2 (with
possible logarithmic corrections in two dimensions). This shows that two
is the critical dimension for this process rather than four.

This example shows that it may be difficult to find a kinetically grow-
ing walk which is qualitatively like the usual self-avoiding walk. There is,
however, a natural way to try to define such a walk. For any SAW w € T',,,
let

Catm(w) = |{n € Tnym 1w < n},

and

Un(w) = lim M, (6.9)

m=—0oo n+m
assuming the limit exists. It is easy to verify that the U, are consistent,

with transitions

Ur:+l(‘:’) = lim Cm(‘b)
Un(w) m—ooCrm(w)’

(@ |w) = (6.10)

This walk is called the infinite self-avoiding walk. The problem is that the
limit in (6.9) has not been proven to exist, except in high dimensions [44],
although it certainly should exist. It can be shown [51] that

Cn+m(w)

n+m

lim inf
m—0o0

>0,

for any w € I';, that is not “trapped”.

We now replace (6.10) with a limit that is known to exist. Intuitively,
7(@ | w) is the probability that a long self-avoiding walk starting at w(n),
conditioned to avoid w, has initial step @(n + 1). Let us replace “self-
avoiding walk” with “simple random walk” in the last sentence. For ease,
assume d > 3. Then we can define the transitions

- Es.(z)
m{on+1)=z|w}= , Jr—whn)| =1z ¢w.
J Lly—w(z)i=1 8w (¥) |
Here we write w for the set {w(0),...,w(n)} and Es,(-) is as defined in

Section 2.2. Since Es,(-) is the harmonic function on w® with boundary
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value 0 on w and 1 at infinity, this walk has been labelled the Laplacian
random walk. It turns out that this walk is equivalent to the random walk
obtained by “erasing loops” from simple random walk, hence the walk is
also called the loop-erased walk. This walk can also be defined in two
dimensions by taking appropriate limits.

A number of rigorous results are known about the Laplacian random
walk and these will be derived in the next chapter. Since we can get some
rigorous results about this process, it would be nice to know if the Lapla-
cian walk is in the same universality class as the infinite self-avoiding walk
defined by (6.10), which we believe is in the same universality class as
the usual self-avoiding walk. Intuitively, a self-avoiding walk should be
“thinner” than a simple random walk and hence more likely to avoid sets.
Therefore, one might guess that the Laplacian walk weights more heavily
than the infinite self-avoiding walk those directions which move “away from
w”. If anything, this should force the paths of the Laplacian walk to go to
infinity faster. In fact, the results of the next section and numerical work
show that this is the case. Consider the mean square displacement expo-
nent, v for the Laplacian random walk. Then it is conjectured (31, 42] that:
vy = 4/5; v3 ~ .62; vg = 1/2 for d > 4 with logarithmic correction (Inn)!/3
in four dimensions. In the next chapter we will derive the rigorous results:
vo > 3/4; vz > 3/5; vg = 1/2 for d > 4 with the logarithmic correction
in four dimensions being between (Inn)!/3 and (Inn)'/2. The Laplacian
random walk is therefore in a different universality class from the usual
self-avoiding walk, at least if the conjectures about the usual self-avoiding
walk are true.

A one parameter family of Laplacian random walks, indexed by s > 0,
can be defined by the transitions [50]

[Eso(2)]°
Z|y—w(1)|=l [Esw (y)]s ’

As s — oo, the paths become straight lines. The case s — 0 has been
labelled the indefinitely growing self-avoiding walk (in this case, the walker
chooses randomly among all nearest neighbors that will not eventually
“trap” the walker). It is expected that the mean square displacement ex-
ponent varies continuously with s.

m{o(n+1) =z |w} = |z — w(n)| = 1.

6.6 Monte Carlo Simulations

Because the estimation of critical exponents for self-avoiding walks has
proven to be too hard a problem to answer rigorously, computer simula-
tions are useful in predicting behavior. This leads to an interesting problem
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in itself: how does one generate SAW’s on a computer? Since the number
of SAW’s of length n grows exponentially in n, we cannot expect to write
down all SAW’s of a given length except for small values of n. We therefore
would like to do Monte Carlo simulations, i.e., sampling from the uniform
distribution on I',. Sampling from simple random walk is easy and it takes
only order n operations to produce a walk of length n. It would not be
practical, of course, to generate SAW’s by generating simple walks and
discarding those that are not self-avoiding since the average number of op-
erations needed to produce a SAW of length n would grow exponentially in
n. Trying to modify such an algorithm by choosing steps so that a walk tries
to stay self-avoiding can lead to probability distributions significantly dif-
ferent than that of the uniform measure on self-avoiding walks (see Section
6.5).

The most efficient algorithms for generating walks come from performing
a Markov chain on the set of SAW’s. Suppose II is a transition matrix for
a discrete time Markov chain X, on the countable state space §2. Suppose
that II is ergodic (for every z,y € €, II7(z,y) > 0 for some j) and aperiodic
(which will be guaranteed for ergodic II if II(z, z) > O for some z € §2). Let
A be a stationary probability measure for II, i.e., for each = € Q,

> M)y, 7) = Az). (6.11)
yeN

Then it is well known that for any z € Q, the distribution of {X; | Xo = z}
approaches A as j — oo. This suggests that if we choose a large N and
start with X¢ = z, then

XN’X2N7X3N7"'

will be approximately independent samples from the distribution A. Of
course, how large N must be depends on II. We will consider two examples
where II is symmetric with respect to A,

(z,y)A(z) = I(y, ) A(y) (6.12)

(this is sometimes called the detailed balance condition). If IT satisfies (6.12)
for a given A, then ) is an invariant measure for II. The rate of convergence
to equilibrium will be controlled by the second largest eigenvalue for the
operator II, a;, which is given by the variational formula (see e.g. [46])

>z yea ME)(z, y)A(z)h(y)
>zeq M) A(z) ’
where the infimum is over all h with }_ h(z)A(z) = 0 and 3" h(z)%\(z) < co.

If Q is finite, a, is always positive for ergodic II while a; may or may not
be positive for infinite €.

1—a1=inf
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In the first example [5] the state space 2 will be the set of all finite
SAW’s, I' = U2 oI'5,. Let |w| denote the length of w. Let 8 > 0 and let IT
be given by

B(1+2d8)7, @] = |w|+ 1w =<aq,
(1+2dB)7 Y, |wl=|0]4+1,0<w,

r(w), w=a
0, otherwise,

Mw,w) =

where r(w) is chosen so that

> M(w,@) =1.

WEN

Consider the measure A(w) = 31“l. Then II satisfies (6.12) for A. Note if
3 < p~!, then

ZB) =) Aw) =Y _ Cuff" < o0,

weN n=0

and hence we can define an invariant probability measure by
Mw) = [Z(B)] " Mw).

The measure A = Ag is sometimes called the grand canonical ensemble for
SAW’s. Note that if 3 = 3, = u~! — (1/n), then

(lwhag = n

(at least if u"C,, =~ n?~! as expected). It is therefore reasonable to assume
that the qualitative behavior of the grand canonical ensemble at 3,, should
be the same as the SAW of length n (see Theorems 2.4.2 and 2.4.3). It is
impossible to prove rigorously what the rate of convergence for this algo-
rithm is without detailed knowledge of SAW'’s (which is what the algorithm
is trying to discover). However, it has been proved that if u=1C, ~ n?~!,
then N of order n'*” is large enough to get approximately independent
samples [64].

Another choice for IT which has proved to be extremely efficient is the
pivot algorithm [54]. In this case the state space is = I, for some n. Let
O be the set of d-dimensional orthogonal transformations which leave Z¢
invariant. For d = 2, this consists of rotations by integral multiples of 7/2,
reflections about the coordinate axes, and reflections about the diagonals.
In all dimensions, O is finite. If T € O and w € Ty, then Tw € T'x. The
pivot algorithm goes as follows. Start with w € I',,. Choose a random k&
uniformly on {0,...,n — 1} and a T € O, again uniformly. Consider the
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walk @ obtained by fixing the first k steps of w and then performing the
transformation T on the remaining n — k steps (considering w(k) as the
origin). This new walk may or may not be self-avoiding. If it is we choose
this @; otherwise we stay with the SAW w. This algorithm corresponds to
the matrix II with II(w, @) = (n|O|)~! if © can be obtained from w by such
a pivot transformation and Il(w,w) chosen so that II is a stochastic matrix.
Since II(w, &) = II(w,w), II satisfies (6.2) with A the uniform probability
on I'y,. It can be shown that II is ergodic and aperiodic.

At first this algorithm would seem inefficient since only a small fraction
of the pivot transformations are allowed. However, it is expected that the
probability that a transformation produces a SAW is of order n=? where p is
not very large. Also, when a pivot transformation is accepted, a significant
change is made in the SAW (as opposed to the previous algorithm where
it takes a large number of moves to make significant changes). Again, it is
impossible to give rigorous bounds on the rate of convergence. However, for
practical purposes in calculating certain exponents, e.g., the mean square
exponent v, “effectively independent” samples from I',, seem to be obtained
from performing the algorithm order n or nlnn steps.

Similar algorithms have been developed for generating self-avoiding poly-
gons [15, 53].



Chapter 7

Loop-Erased Walk

7.1 Introduction

In this chapter we discuss the loop-erased or Laplacian self-avoiding random
walk. We will primarily use the loop-erased characterization of the walk
because it is the one that allows for rigorous analysis of the model. In
Proposition 7.3.1 we show that this is the same as the Laplacian random
walk defined in Section 6.5.

The loop-erased walk, like the usual self-avoiding walk, has a critical di-
mension of four. If d > 4, then the number of points remaining after erasing
loops is a positive fraction of the total number of points. We prove a strong
law for this fraction and show that the loop-erased process approaches a
Brownian motion. If d < 4, the proportion of points remaining after erasing
loops goes to zero. In the critical dimension d = 4, however, we can still
prove a weak law for the number of points remaining. From this we can
show that the process approaches a Brownian motion for d = 4, although a
logarithmic correction to scaling is needed. For d < 4, the number of points
erased is not uniform from path to path, and we do not expect a Gaussian
limit.

Sections 7.2-7.4 give the basic properties of the loop-erased walk. The
definition is a little more complicated in two dimensions because simple ran-
dom walk is recurrent. In Section 7.5 we give upper bounds on the number
of points remaining for d < 4. This allows us to give lower bounds on
the mean square displacement in two and three dimensions, Theorem 7.6.2.
The final section discusses the walk for d > 4 and proves the convergence
to Brownian motion.
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7.2 Erasing Loops

In this section we describe a procedure which assigns to each finite simple
random walk path A a self-avoiding walk L. Let A = [A(0),...,A\(m)] be
a simple random walk path of length m. If X is self-avoiding, let LA = A.
Otherwise, let

t = inf{j:X( A(7) for some 0 < i < j},

s thei <t w1th /\(z) At),

and let A be the m — (t — s) step path

< AG), 0<j<s,
’\()_{)\(;—f—t—s), s<i<m—(t-s).

If )\ is self-avoiding we let LA = A. Otherwise, we perform this procedure on
A and continue until we eventually obtain a self-avoiding walk LA of length
n < m. This walk clearly satisfies (LA)(0) = A(0) and (LA)(n) = A(m).

There is another way to define LA which can easily be seen to be equiv-
alent. Let

so = sup{j : A(j) = A(0)},
and for i > 0,
s, =sup{j : A(j) = A(si-1 + D}
Let
n = inf{: : s; = m}.
Then

= [/\(S()), /\(sl)a s 7’\(371)]'

The loop-erasing procedure depends on the order of the points. Suppose
we wish to erase loops in the reverse direction. More precisely, let

AR(j) =A(m—j), 0<j<m,
and define reverse loop-erasing L¥ by
LB\ = (LAR)R.

It is not difficult to construct A such that LA # LE). However, we prove
here that if X is chosen using the distribution of simple random walk, then
L) and LR\ give the same distribution. Recall that A,, is the set of simple
random walk paths of length m starting at the origin.
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Lemma 7.2.1 For each m > 0, there exists a bijection T™ : A,, — An,
such that for each A € A,

L(\) = LE(T™)).
Moreover, A and T™\ visit the same points with the same multiplicities.

Proof. We will prove by induction on m. The lemma is clearly true
for m = 0,1, so assume that such bijections T* exist for all k < m. Let
A € A, and assume

L) =~y = [¥(0),...,7(n)].

If n =0, we set 7™\ = \. Assume n > 0. Let

sn = sup{j : A(§) = 0},

and define sg < s;7 < --- < 5,1 < s, by stating that s; is the largest
integer with A(s;) = 0 and {A(0),...,A(s;)} N {7(¢ + 1),...,7(n)} = 0.
We define “loops” K,, i = 1,...,n, as follows: if s; = s;_; then K; = 0;
otherwise, let j be the smallest integer greater than s;_; with A(j) = v(¢)
and let

K= [A(])7’\(.7 + l)a oo )’\(si - 1),/\(31_1),A(S,_1 + 1), .. ,/\(] - 1)]

Note that K, starts at y(7), ends at a nearest neighbor of v(z), K; N {~v(i +
1),...,7(n)} = 0.
By the second description of the loop-erasing procedure it is easy to see
that
LX(sn +1),...,A(m)] = [v(1),...,v(n)].

Let n = T™~(n+D[\(s, 4 1),...,A(m)] (here we have naturally extended
T* to walks which do not start at the origin). Then n = [5(0),...,n(m —
sp — 1)] traverses the same points as [A(s, + 1),...,A(m)] with the same
multiplicities, and LBy = [y(1),...,v(m)]. Let

t: = inf{j : n(4) = v()}.
Then we set
Tm/\ = [/\(0), .. .,/\(So),Kl,n(tl), e ,n(tg — 1), K2,77(t2), ey

n(ts —1),..., Kn,n(tn),...,n(m — s, — 1)].

Clearly T™ )\ traverses the same points as A and it is easy to check that
LE(T™)\) = .



186 CHAPTER 7. LOOP-ERASED WALK

To prove that T™ is a bijection we will describe the inverse map. Let
w = [w(0),...,w(m)] € Ay, with LRw = . Let

u, =inf{j :w(G) =v@)}, i=1,...,n.

and u;4; =m+1. Fori=1,...,n, if w(j) # 0 for u; < j < u;41, then
set v; = u;. Otherwise, let j be the smallest integer less than u;, with
w(j) = 0 and k the smallest integer greater than j with w(k) = v(2) (note
such a k must exist since w(u,+1 — 1) = v(z)). We then write

w = [w(O),...,w(u1 - 1),K1,w(v1),...,w(v2 - 1),K2,...,

Kp,w(vn),...,w(upns1 — 1)),

where
K. — 0, if u, = v,,
tT w(ui),...,w(vi—l), if u; < v;.

With this decomposition it is easy to write the inverse explicitly and verify
that it is the inverse. O

7.3 Loop-erased Walk

We will define the loop-erased walk for d > 3 by erasing loops from the
path of an infinite simple random walk. This will be well defined since the
random walk is transient. If S, is a simple random walk in Z%, d >3, let

u; = inf{j:S; = Sk for some 0 < k < j},
vy = the k < u; with Sy = S(u,).
Then set )
sty Si 0<j<u,
J SH+u—v), n1<ji<oo
We continue inductively by letting
u; = inf{j: S;-'l = S}~ for some 0 < k < j},
v; = thek <u; with S;7! = S 1(y;),
and - )
Si — S; ’ 0 S J S Uy
! S§7Hj +u —vi), v <j<oo

Each S? has self-intersections; however, we can define

5(j) = lim Sj,
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and obtain a self-avoiding walk. We call S the loop-erased self-avoiding
random walk or simply the loop-erased walk. X
As in the previous section we can use an alternative construction of S
from S. Let
oo =sup{j: S; =0},
and for i > 0,
g; = sup{j >0i-1: Sj = S(oi—1 + 1)}
Then let X
5(2) = S(3).
It is easy to check that this is an equivalent definition.
We define the probability measures P = Py on Ty, the set of SAW’s of
length k, by . R .
P(y) = P{[5(0),...,5(k)] = ~}.
The Py give a consistent set of measures on I'x. In the next proposition we
show that these measures are the same as for the Laplacian random walk

which was defined in section 6.5. Therefore, the loop-erased walk and the
Laplacian random walk are the same.

Proposition 7.3.1 If v = [(0),...,7(k)] € Tk,k > 1, and -1 =
[(0),...,v(k —1)], then

P(w) = Plye-1)P"*"D{S) = (k) | 7a = 00}
E k
P('Yk—l) sa(v(k)) = ,
Lyga,ly—(k-1)=1 ESa(¥)
where A = {¥(0),...,7(k — 1)} and as before
Ta=inf{j >1:85, € A}.
Proof. Let V,, be the event
{ok_1 =m,[5(0),...,8(k —1)] = vk_1}.
Then V,, is the set of paths satisfying
(l) L[S()7 ey Sm] = Yk-1,
(ii)) S; €A, j=m+1m+2,... .
Note that (i) and (ii) are conditionally independent given S, = v(k — 1).
Also, if 01 = m, then S(k) = Sy41. Therefore,
P{3(k) = (k) | Vm}
= P{Smy1=7(k)| S(m) =~(k—1);S; € A,j >m}
PYD{S) = (k) | S; ¢ 4,5 > 0}
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This gives the first equality and the second follows from the definition of
Esa(-) (see Section 2.2). O

Another way of stating the above proposition is to say that the loop-
erased walk takes its kth step according to the rule for random walk con-
ditioned not to enter {¥(0),...,y(k —1)}. We now formalize this idea.
Suppose A C Z%(d > 3) is a finite set. Then random walk with (past and
future) taboo set A is the Markov chain with state space

B ={z ¢ A:Esa(z) > 0},

and transitions

Esa(y)

m» ly—z|=1.

pA(z,y) = P*{S1 =y |Ta =00} =

If we define ¢2(z,y) by
g} (z,y) =P (S, =y;S; € A, j=0,...n},

then it is easy to check that the n-step transitions for random walk with
taboo set A are given by

Pa(z,y) = qf(z,y)g::g;-

In particular,
pi(z,7) = g (z,7) < pp = P{S, = 0}. (7.1)

By a strong Markov argument identical to that used in deriving (1.19),

P{S;#2,j>0|ra=00} = [ gi(z,2)]"

7=0

[Z pn]_l
j=0

P*{S; #z,j>0}>0. (7.2)

v

7.4 Two Dimensions

Since simple random walk is recurrent in two dimensions, we cannot con-
struct the two-dimensional loop-erased walk by erasing loops from an infi-
nite simple random walk. However, we can define the process as a limit of
walks obtained from erasing loops on finite walks. As before, let

Em =inf{j > 0:|S;| > m}.
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For any k < m, we can define a measure on I'y by taking simple random
walks stopped at the random time &, erasing loops, and considering the
first k steps. To be precise, we define P™ = P* on I'; by

P™(y) = P{L[So, .-, S(m))(4) =7(4), 5=0,...,k},

where L is the loop-erasing operation defined in Section 7.2. This definition
is equivalent to that of a Laplacian random walk also cutoff at £,,. The
proof of the following proposition is identical to that of Proposition 7.3.1.

Proposition 7.4.1 If1 <k <m, v = [y(0),...,7(k)] € Tk, and yx—1 =
[v(0),...,v(k = 1)], then

pm(7k) = Pm(%_l)P’Y(k—l){Sl = *7(](;) I TA > §m}
N P'Y(k){TA > Eﬂl}
= P™(yk-1) 7
1 2o ygaly—y(k-1)=1 P¥{Ta > &m}

where A = {¥(0),...,7(k—1)} and

T4 =inf{j > 1:S; € A}.
We can also give the alternative construction of this walk. Let
Go,m =sup{j < &m : S, =0},
and for 1 <i<m,
Gom =sup{j <&m : S; = S(Gi—1,m + 1)}.
Then set $™(i) = S(6:,m) and
P™(y) = PS™(0),..., 5™ (k)] = 7).
We would like to define P on I'x by
P(y) = lim P"(y)

The next proposition allows us to do so and in the process gives as estimate
of the rate of convergence. We call the measure on infinite paths induced
by P the two-dimensional loop-erased walk.

Proposition 7.4.2 Ifn > k? and v € Ty , then for allm > n,

n

. . k2
P(7) = P()(1+0(Z- 1 7).
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In particular, R
lim P™(y) = P(),

m— 00

exists and

A A 2 n
P() = P ()1 +0(= 1 D).

Proof. Let v = [y(0),...,v(k)] and for j < k, let v; = [v(0),...,7(j)]
be an initial segment of 4. By Proposition 7.4.1,

Pq(j){TA > fm}

P™(v) =P (,Yj-l)zyéA,ly—‘y(J—l)lﬂ PraS ] (7.3)
where A = A; = {7(0),...,7(7 - 1)}.
Ifyeg Aly—~(F —1)| =1, then
PY{ta >&m} = P*{74 > &} PY{7A > &m | T4 > &n}-
But,
PYTA> En | Ta> &} = D PY{S(&) = 2| 7a > &} P* {14 > &m}.

z€0C,,
By Proposition 2.1.2, since A C Cp,
k. n
PY{S(&n) = 2| 7a > &n} = Hoc, (0,2)(1 + O(~In 1))

(actually, Proposition 2.1.2 proves this for y € A, but the identical proof
works for y € dA). Therefore,

P¥{1a>E&m | Ta> &} =P O{ra>tn |74 > &I1+ O(% In %))-

If we plug this into (7.3) we obtain
A ~ P’Y(]){TA > én}
P™(v;) = P™(vj-1)
! ’ Lyealy—vii-ni=1 P74 > &}
PP0o-0)P"00) (4 ok ™y,
P (vj-1) nok
If we iterate this for 1 < j < k, we get

(1+0(§1n;:-))

Pry) = P+ 0t
a 2 n
- P"(’y)(1+0(%lnz)). o

An immediate consequence of this proposition is that for any v € I'i,

P(v) = P¥ (7)(1 + o(k™/2)). (7.4)
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7.5 Estimates on Amount Erased

In order to analyze the behavior of S(n) for large n, we will need to inves-
tigate how many steps of the simple random walk remain after loops have
been erased. We first consider the case d > 3 where the loop-erased walk is
constructed by erasing loops from an infinite simple random walk. Recall
the definition of o; from Section 7.3. An equivalent way of describing o; is

a(é) = o = sup{j : S(5) = 8(i)}.
We define p(j) to be the “inverse” of o(2) in the sense
p(]) =1 if o; < ] < Oi41.

Then,
p(o(i)) =1, (7.5)
o(p(4)) <7, (7.6)

and

S(i) = S(a(3)).

Let Y,, be the indicator function of the event “the nth point of S is not
erased”, i.e.,
Y. = 1 if o(i) = n for some i > 0,
™7 1 0 otherwise.
Then,

is the number of points remaining of the first n points after loops are erased.

We let a,, = F(Y,) be the probability that the nth point is not erased. Let
wn be the path obtained by erasing loops on the first n steps of S, i.e.,

Wn = L[So,. .. ,Sn].
Then Y,, = 1 if and only if
wnp NS[n+1,00) =0,

i.e., if the loop-erased walk up to time n and the simple random walk after
time n do not intersect. Therefore,

P{Y,=1]So,...,5.} = Es.,(Sn)
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and
an = E[Es,, (Sn)]- (7.7)

By translating the origin this can be restated: if S!,S2 are independent
simple random walks starting at the origin, then

an = P{LR[S},...,S}]n S?[1,00) = 0},
or equivalently by Proposition 7.2.1,
an = P{L[S},...,S}] N S?%[1,00) = 0}.

We can extend everything to the d = 2 case. Fix n and let m = n3 (we
choose m = n3 so that we can use (7.4)). Then, using the notation of the
last section, for i < m,

&(7’) = &i,m = Sup{j : Sj = Sm(z)}’
and we can define the inverse g by
p(J) = pm(J) =iif 6(i) < j <o(i+1).

Then (7.5) and (7.6) hold for & and g. Define f’_, = YLm to be the indicator

-th

function of the event “the j*" point of S is not erased before &,,,”

ie.,

Y = 1 if6(2) = j for some i > 0,
771 0 otherwise.

Then n
pn)=)Y;
=1
is the number of points remaining after erasing loops through time &,,,. If
wj = L[SQ, ey Sj], then
P{Y,=1|So,...,S;} = P51 {{m < 1, }-

We will get bounds on the number of points erased by comparing to
the number of points remaining afer a finite number of steps of the random
walk. This will work for d = 2 as well as d > 3. Fix m and define S™ by

8™ = L[So,...,Sm]
The length of S™ is a random variable. Define

Om(i) =0im =sup{j <m:S; = S’m(z)},
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and p,,(¢) the “inverse” of o,, by
pm(F) =iif om(d) < j <om(i+1).

Note that pm(j) < oo for each j < m and pm(m) is exactly the length of
the path S™. As before,

Pm(am(i)) =1, i< pm(m), (7.8)

om(pm(3)) <4, j<m. (7.9)
For n < m, define Y, ,, to be the indicator function of the event “the nth

points is not erased by time m,” i.e.,

Y ={ 1 if o;n(i) = n for some i > 0,

0 otherwise.

Then if n < m,
pm(n) =) Yim.
j=1

If the nth point is erased by time m, then of course it will be erased even-
tually, i.e., if n <m and d > 3,

Yom > Yim. (7.10)
Similarly, if d =2 and j < m,
Yjm > Yjm. (7.11)
Hence,
pm(n) 2 p(n), d =3, (7.12)
pm(n) 2 fus(n), d=2. (7.13)

The goal of this section is to derive an upper bound which essentially
states that p(n) grows no faster than n(Inn)~!/3 for d = 4; no faster than
n5/6 for d = 3; and p,3(n) grows no faster than n?/3 for d = 2. Define b,
by

bn = E(p(n)) = iE(}’])’ d 23,

7=0

bn = E(pns(n)) = Y _ E(Yjn3), d=2.

=0
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Theorem 7.5.1 (a) If d =4,

lim su Inb, —Inn 1
,l;r_l_.oop Inlnn — 3
(b) If d = 2,3,
) Inb, d+2
lim sup < —.
n—oo lnn 6

In the proof of the theorem we will need a lower bound on the probability
of returning to the origin while avoiding a given set. Recall that if A is a
finite subset of Z¢,

¢}z, y) = P*{S,=y;S, € A,j=0,...,n}.

Lemma 7.5.2 (a) Ifd = 4, for every o > 0 there exists a ¢ > 0 such that
if 0 g A and Es4(0) > (Inn)~Y/e,

5, (0,0) > can™?(Es4(0))*(Inn) =,

(b) If d = 3, for every a < oo, there ezists a cq > 0 such that if 0 ¢ A
and Es4(0) > n™°,

44,(0,0) > can™¥/2(Es4(0))*(lnn)~>.

(c) If d = 2, for every a < oo, there ezists a cq > 0 such that if 0 ¢ A
and P{TA > §n} >n~%,
454,(0,0) > con™ ' (P{7ra > £&.})*(Inn) 2.

Proof. We will prove (a) and (c); (b) can be proved similarly. It suffices
in each case to prove the result for n sufficiently large.
For (a), by Lemma 1.5.1,
P{|S,| > n/?(Inn)*/*} < cq exp{—(Inn)*/4}.

Therefore for n sufficiently large (depending on a), if Es4(0) > (Inn)~1/2,

P{|S,| < n'/?(Inn)*/%;S; ¢ A,5=0,1,...,n}
> Esx(0) — P{|S.| > nl/z(lnn)°/4}

> lESA(O)-
2
In other words,

> ak0,2) 2 3EsA0).

|z|<nl/2(Inn)o/4
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But by reversibility of simple random walk,

93,(0,0) > > g2 (0,z)?

|2 <n1/2(In n)a/4
en™?(Inn) 4| > g (0,z)]?
|z|<nl/2(Inn)a/4

> cn~?%(Inn)"*[Esa(0))%,

I\

for n sufficiently large. The second inequality uses the elementary inequality

n

. 1
282
J:

=1

For (c), by Lemma 1.5.1,
P{|Sn| > 2an'/?(Inn)} < ecn~%°.
Therefore for n sufficiently large, if P{r4 > £,} > n™%,

P{|S,| < 2an'/?(Inn); S; ¢ A,j =0,1,...,n}
> P{ra > &} — P{|Sa| > 2an/?(Inn)}

Z %P{TA > én}a

or

Y a0 2 P> &),

|z|<2an!/2(Inn)
and hence for n sufficiently large,

g5 (0,0) > > g0,2)?
|z|<2an?/2(Inn)

can” (Inn)"*[P{rs > £.}]%. O

v

Proof of Theorem 7.5.1. Fix n and for 0 < j < n let

0 if Yj_12n, =0

Xj = Xjon ={ Tan(i+1) = 09n (i) if o2n(d) = 5 - L.

Then .
Z X, < 2n,
=1
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and hence .

> E(X,) < 2n. (7.14)
j=1

Recall that w; = L[Sy,...,S;]. We set
Z, = Es, (S;) ifd=3,4,

Z,=P%{r, >¢&a}ifd=2.

For any 0 < j < m, let T; be the nearest neighbor of S, with T; ¢ w;
which maximizes Es,, (-) (or P'{{,s < 7,,} if d = 2). If there is more
than one such point which obtains the maximum choose one arbitrarily.
If each nearest neighbor of S; is in w;, choose T, arbitrarily. If we set
W; = Es,, (T;) if d = 3,4 and W, = PT{¢,s < 7} if d = 2, then it is
easy to check that
W; > Z;.
Then for 0 < 2r < n,

P{X,=2r+1|S,0< k< j}
> P{S;41 =T,;Sj32r4+1 = Sj41; Sk Ewj, 5 < k < 2m;
Sk #Sit1,j+2r+1<k<2n|S,0<k<j}
(2d)~1q52 (T, T,)W;,

\%

where _
W; = Es,, ur,}(T5), d=3,4,

Wj = PTJ {5113 < TwJU{TJ}}) d=2.
If d = 3, 4, it follows from (7.2) that
Wj _>_ CWJ' Z CZJ'.

For d = 2 one can prove in the same way as (7.2) that if x € C,3,A C
Cps,x & A,

PI{Tx > §n3 t TA > £n3} PI{TI: > 6113}

>
> ¢(lnn)7!
The second inequality follows from Proposition 1.6.7. Therefore,

W; > ¢(Inn)~'W; > ¢(Inn)~1Z;.
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Let d = 4, o € (0,1). By Lemma 7.5.2(a), if Z; > (Inn)~3,n"1/2 <
2r < n, then
@2 (T5,T5) > car"zZ]?(ln n)~%.

Therefore,
P{X;=2r+1|S5,0<k<j}> car_"’Z?(lnn)_"‘.
If we sum over n~1/2 < 2r < n,,
E(X; | Sk,0 < k < 3) 2 callnn)'=*Z31{Z; > (Inn)~3},

and hence,

E(X;) > ca(lnn) = E(Z}I{Z; > (Inn)~%}).
Therefore, by (7.14),

n
> E(Z31{Z, > (Inn)~*}) < can(lnn)>~t,
7=0

and hence

i E(Z3) < can(lnn)*1.

=0
If sg,...,8, >0,

Xn: 2> (n+ 1)‘2(Xn: si)3.
=0

=0
Therefore,
Y E(Z;) < (m+1)2P> E(Z)%3
j=0 1=0
< (m+ 1P E@Z)P
3=0
< can(lnn)@=b/3,

Since this holds for all a € (0, 1), we have proved the theorem for d = 4.
Similarly, if d = 2, 3, by Lemma 7.5.2(b)-(c), if Z; > n™%,n/2 < 2r <mn,
then
652(13,T5) 2 er=222(1nn) ™.

If we sum over n/2 < 2r < n, we get

E(X;) 2 en=92(Inn)3E(Z31{Z; > n~°}),
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and arguing as before,

ZE(Z (n+ 1)2/3[2 E(Z)H)? < enl®*D/8(Inn). O
=0
It is natural to ask is how good the bound in Theorem 7.5.1 is. Let us
consider the case d = 3,4. Then

Zn = Es,, (Sn),

an = E(Z,) and p, = 3_7_ya;. The proof of the theorem gives a way to
estimate E(Z3). While the proof only gives a bound for this quantity in
one direction, we conjecture that this bound is sharp and that

3\ (lnn)‘l, d=4,
E(Zn) ~ { ,n——l/2’ d=3.

The proof then proceeds by estimating E(Z,) by E(Z3)Y/3. It is quite
likely that this bound is not sharp in low dimensions. A similar problem
arose in the analysis of intersections of random walks. let

f(n) = P{S[0,n] N S[n + 1, 00) = 0}.
Then f(n) = E(V,) where
Vo= ESS[O,n](Sn)'

It is not easy to estimate E(V,,) (a large portion of Chapters 3-5 is devoted
to this problem). However, the analysis of two-sided walks (Theorem 3.5.1)
allows us to show that

oy [ (Inn)~1, d=4,
E(Vn)"’{ n-12 d=3.

For this problem the second moment is relatively easy to estimate while for
the loop-erased walk it is the third moment. How much do we lose when we
estimate E(V,,) by E (V2)1/27 1f d = 4, we lose very little since by Theorem
441, f (n) =~ (Inn)~'/2. By analogy we conjecture that we lose little in
estimating E(Z,) by E(Z2)'/3 in four dimensions, i.e., we conjecture

an =~ (Inn)~13 d=4.

For d = 3, we expect that the estimate E(V,) < E(V,2)!/2 is not sharp;
in fact f(n) ~ n~¢ where it is conjectured that ¢ € (.28,.29). Again
by analogy we expect that the estimate for E( Zy) is not sharp in three
dimensions and that a, ~ n™“ for some a > 6 We also do not expect that
the estimate in Theorem 7.5.1 will be sharp in two dimensions. Therefore,
the estimates for the mean square displacement given in the next section are
not conjectured to be sharp. Monte Carlo simulations [31] are consistent
with this belief.
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7.6 Growth Rate in Low Dimensions

As a corollary to Theorem 7.5.1 we will prove that the mean-square displace-
ment of the loop-erased walk, (|v(n)?)p = E(|S(n)|?), grows at least as

fast as the Flory predictions for the usual self-avoiding walk, i.e., E(|S(n)|?)
grows no slower than n%/(2+4) in two and three dimensions. As mentioned
in the previous section, it is probably true that the displacement is even
greater. Monte Carlo simulations [31] predict

: 5, 4=,
EGS0IP) ~ { M 44

Most of the work in proving the estimate was done in Theorem 7.5.1. We
first state an easy lemma about the minimum displacement of simple ran-
dom walk.

Lemma 7.6.1 (a) If d > 3, for every e > 0,
lim P{inf 1S, < n'~2%} =0.
n—oo izn
(b) Ifd=2 and
D, =inf{|S;|?> : n < j < &3},

then for every € > 0,

5
3 < 1-2¢ — A
Aim P{Dn <™ = 51
Proof. By the central limit theorem
P{|S.]? <n!'"¢} = 0. (7.15)

If d > 3, by Proposition 1.5.10, if |z|? > n!~¢,
Tf: 12 1-2¢ —€/2
P*{inf|5;" < n'7*} < O(n™%).
This gives (a). For (b), let
o =inf{k > n:|Sk| > n3 or |Sk|?> < nl72%}.

By the optional sampling theorem, if a is the potential kernel defined in
Section 1.6,
E(a(S,)) = E(a(Sn))-
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By Theorem 1.6.2 it is easy to show that

E(a(S,)) = % Inn + O(1).
Similarly, using (7.15),

! (1 -2¢)Inn+ 0O(1),

E(a(Sy) | IS,1° < n17%) =

E(a(S,)||S,| > n?) = glnn +0(1).
and hence

5
5+ 2¢

"anolo P{ISU|2 < n1—2e} —

Theorem 7.6.2 If S is the loop-erased walk, then for d = 2,3,

. .InE(5(n)]?) 6
> .
hnnlgf Inn —2+4d

Proof. Let d = 3. By Theorem 7.5.1(b), for every € > 0, if n is
sufficiently large,
E(p(n)) < nd+%,

and hence for every € > 0,
P{p(n) 2 n&*} — 0.

Note that if o(j) < j&¢,

p(li%)) 2 plo(5)) = J.
Therefore, for every € > 0,
P{o(j) < j¢~} = 0.
But S$(j) = S(o(j)) and using Lemma 7.6.1, if
D; = inf{|Sk|* : j37¢ < k < o0},

then X \
P{18(5)I < 582} < P{ID;| < 582} + 0c(1) — 0.

This gives the result for d = 3.
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For d = 2 it suffices by (7.4) to prove the result for 57°. Then as above
we can derive from Theorem 7.5.1 that for every € > 0,

P{5;(j) <3} —0.
Therefore, if s
D; = inf{|Sk|* : j272 < k < §j3},
then

P{5°(G)? < j¥ 2} < P{D; < i3 %} +o(1) m e < 1,

and hence o .
liminf P{|S7 ()]? > j2"%*} >0. O
j—oo

7.7 High Dimensions

We will show that the loop-erased walk appropriately scaled approaches a
Brownian motion if d > 4. If d > 5, the scaling will just be a constant times
the usual scaling for simple random walk, while for d = 4 a logarithmic
correction term will appear. The key step to proving such convergence is
to show that the loop-erasing process is uniform on paths, i.e., that

rnlp(n) — 1,

for some 7, — oo.

We first consider the case d > 5. Here it will be convenient to extend
S to a two-sided walk. Let S! be a simple random walk independent of S
and let S;, —0o < j < 00, be defined by

S = S]' 0<7<x,
I7 S}, —o<j<o.

We call a time j loop-free for S if S(—o0, 5]NS(j, 00) = 0. By(3.2), for each

Js
P{;j loop-free} = P{S(—00,0]N S(0,00) =0} =b> 0.

Lemma 7.7.1 If d > 5, with probability one, S(—o00,00) has infinitely
many positive loop-free points and infinitely many negative loop-free points.

Proof. Let X be the number of positive loop-free points. We call a
time j n-loop-free if S[j — n,j]N S(j, 7+ n] =0. Then

- P{j n-loop-free} = P{S[—-n,0]N S(0,n] = 0} = b,,
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and b, — b. Let V;, be the event {(2i — 1)n is loop-free} and W;, the
event {(2¢ — 1)n is n-loop-free}. Note that for a given n, the events W; ,,
it =1,2,..., are independent. For any k < oo, € > 0, find m such that if
Y is a binomial random variable with parameters m and ¢, P{Y < k} <.
Then

P{X >k}

\%

P> I(Vi) > k)
=1

\Y,

LS I(Win) 2 K = PAS I(Wen \ Vi) > 1)
1=1 i=1
> 1l—e—m(b-b,).

Now choose n so that m(b — b,) < e. Then P{X > k} > 1 — 2¢. Since
this holds for all k < oo,e > 0, we must have P{X = oo} = 1. A similar
proof shows that the number of negative loop-free points is infinite with
probability one. O

Theorem 7.7.2 If d > 5, there erists an a > 0 such that with probability
one

. P
lim —= =a.
n—oo n

Proof: Order the loop-free points of S(—o00, 00),
L j2<ja1<jo<n<p2<
with
jo = inf{j > 0: j loop-free}.
We can erase loops on the two-sided path S(—o0, 00) by erasing separately

on each piece S[j,,ji+1]- Let Y,, be the indicator function of the event

“the nth point is not erased in this procedure,” i.e., Y,, = 1 if and only if
ji <1 < jp41 for some i and

L(S[5i,n]) N S(n, jisa] = 0.

We note that the l?,. form a stationary, ergodic sequence. Therefore by a
standard ergodic theorem (see [9], Theorem 6.28), with probability one,

D R ~
lim ;Z;)n = E(Yp).
J=

n—oo

If instead we erase loops only on the path S[0, 00), ignoring S(—oc, 0), the
self-avoiding path we get may be slightly different. However, it is easy to
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see that if n > jo, then Y, = f’n, where Y,, is as defined in section 5.
Therefore, since jo < 0o, with probability one,

lim 27— fim lZYn=E(YO)£a.

n—oo n n—oo N

To see that a > 0 we need only note that
a > P{0 loop-free} > 0. O

We cannot use such a proof for d = 4 since S(—o00, 00) contains no (two-
sided) loop-free points. However, we will be able to make use of one-sided
loop-free points. Let I, = I(n) be the indicator function of the event “n is
a (one-sided) loop-free point,” i.e.,

5[0,n) N S(n, 00) = 0.

The first lemma shows that the property of being loop-free is in some sense
a local property.

Lemma 7.7.3 Letd =4 and
U, = {S[0,n] N S(n,c0) = 0}

Vok = {S[k — n(Inn)~%, k] N S(k,k + n(lnn)~%] = 0}.
Then for all k with n(lnn)™° < k < n,

Inlnn

P(Va i) = P(Un)(1 + O(

)

Inn

Proof. It suffices to prove the lemma for k = n. We write U for U,
and V for V;, . Let

V =V, ={S[r-n(nn)~° n]NS(n,oc0) = 0}.
Then by Proposition 4.4.4 and Theorem 4.3.6,

Inlnn

P(V) = P(U)(1 + O( ) (7.16)

Inn
Let
W =W, = {S[n - n(lnn)~®,n] N S(n,n + n(lnn)"°] = 0},

W =W, = {S[n—n(lnn)~® n] N S(n,c0) = 0}.
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Then again by Proposition 4.4.4 and Theorem 4.3.6,

Inlnn

P(W) = P(V)(1 + O( )). (7.17)

Inn

But by (3.9) and Proposition 4.3.1(iv),

P(W\W) < P{S[n—-n(nn)"'8 n]NnS[n+n(nn)"° c) =0}
= o((lnn)~2).

Since P(W) =~ (Inn)~1/2 (Theorem 4.4.1), this implies

P(W) = P(W)(1 + o( 2127y, (7.18)
Inn
But V.cV c W, so (7.16) - (7.18) imply
Inlnn

P(V) = PU)(1+0(20)). O

The next lemma will show that there are a lot of loop-free points on a
path. Suppose 0 < j < k < oo, and let Z(j,k) be the indicator function of
the event “there is no loop-free point between j and k,”i.e.,

{I, =0, <m < k}.
Then by Theorem 4.3.6(ii), if d = 4,

E(Z(n—n(lnn)~%n)) > P{S[0,n—-n(nn)"8NS(n+1,00)# 0}
Inlnn

> ¢ .
- Inn

The next lemma gives a similar bound in the opposite direction.
Lemma 7.7.4 Ifd = 4, for any n and k with n(Inn)~% < k < n,

E(Z(k - n(lnn)~5, k)) < ¢ 227

Inn °

Proof. It suffices to prove the result for k = n. Fix n; let m = m,, =
[(Inn)?); and choose j; < j2 < ... < jm (depending on n) satisfying

n—n(nn)"¢<jii<n, i=1,...,m,
j,‘ - ji—l 2 277.(11171)—9, 1= 2, ceeym.
Let J(k,n) be the indicator function of

{S[k — n(Inn)~°,k] N S(k, k + n(lnn)~°] = 0},
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and

By Lemma 7.7.3,

B(J(Go,m) = BUG))( +O(Bmmy),
and hence _ lnlnn
E(X) = E(X)(1+ O(222y),
EX-X)< c“]‘:;”E(X). (7.19)
Note that

E(Z(n-n(lnn)~%n)) < P{X =0}

< P(X-X 2 3E(X)) + P{X < SE(X)).
The first term is estimated easily using (7.19),
PIX-X23B(X)} < 2BX)|"EX - X)
Inlnn
< ¢ .
- Inn
To estimate the second term, note that J(j1,n),...,J(jm,n) are indepen-

dent and hence
Var(X) =Y _ Var(J(ji,n)) < > E(J (., n)) < E(X),
i=1 i=1

and hence by Chebyshev’s inequality, for n sufficiently large,

P{X < 3E(X)} < P{X < 2E(X)} < [E(X)) .

Wi

But by Theorem 4.4.1,
E(X) > ¢(Inn)2E(I(n)) > c(Inn)''/8,

Hence, P{X < 1E(X)} < ¢(Inn)~!'/8 and the lemma is proved. O
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Recall from Section 7.5 that Y,, is the indicator function of the event
“the nth point is not erased” and a, = E(Y,). Suppose that for some
0 < k < n, loops are erased only on S[k,00), so that Sk is considered
to be the origin. Let Y, i be the probability that S, is erased in this
procedure. Clearly E(Y, ) = an—_x. Now suppose 0 < k < n — n(lnn)~®
and Z(n—n(Inn)~8 n) = 0, i.e., that there exists a loop-free point between
n—n(Inn)~% and n. Then it is easy to check that Y, x = Y,, and hence by
the previous lemma,

P{Y, # Yo} < E(Z(n —n(Inn)~% n)) < cl’;rllr;".
Therefore, for n(Inn)~¢ < k < n,
lax — an| < can(lnn)"s/s,
ie.,
ar = an(1 + o((Inn)~1/4)). (7.20)
The second inequality follows from the estimate a, > f(n) ~ (Inn)~1/2,
We can combine this with Theorem 7.5.1(a) to conclude
1 Ina, . Ina, 1
—— < limi < -
2 — hyf{l»loréf nlnn — lxﬂsotip Inlnn — 3
We also conclude
E(p(n)) ~ nan,. (7.21)

The following theorem shows that the number of points remaining after
erasing loops satisfies a weak law of large numbers.

Theorem 7.7.5 Ifd =4,
pn)

na,

in probability.
Proof. For each n, choose
0<jo<in<-+<jm=n

such that (j; — ji—1) ~ n(lnn)~2, uniformly in i. Then m ~ (Inn)2. Erase
loops on each interval [j;,ji+1] separately (i.e., do finite loop-erasing on
S[Jiy dut1)-) Let Y be the indicator function of the event “Sk is not erased
in this finite loop-erasing.” Let Ko = [0,0], and for ¢ = 1,...,m, let K, be
the interval

K = [j, — n(inn)®, ji].
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Let R;,7 = 1,...,m, be the indicator function of the complement of the
event, “there exist loop-free points in both K;_; and K;,,” i.e., the comple-

ment of the event
{Z(ji-1 — n(Inn)~%,5,1) = Z(ji — n(Inn)~%,j,) = 0}.

By Lemma 7.7.4,
Inlnn

Inn
Note that if j; < k < j,+1 —n(lnn)~% and R; = 0, then

Y = Ys.

E(R;) <c

Therefore, for n sufficiently large,

c[m(n(Inn)~®) + 2n(lnn)~?2 Z R)]
k=0 k=0 i=1

™
oS
|
™
Ez
A

IA

en(lnn)™* + en(Inn) =2 i R;.

=1

But by (7.22),

IA

(nn)~E(3 " R,)

i=1
1/4

P{i R; > (Inn)%%}
=1

IA

clnlnn(lnn)~

Therefore,

P{|) Yi—> Yil > cn(lnn)=%4} - 0.

k=0 k=0

Since na, > cn(lnn)~%/8 this implies

in probability. We can write

Z}}k =1+ ZX’i)
k=0 i=1

where X1,...,X,, are the independent random variables,

Ji—1

X, = > Y

k=3.-1

(7.22)

(7.23)
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Note that
Var(X;) < E(X?) < | XilloE(X;) < en(Inn)2E(X;),

and hence
Var() " ¥i) < en(inn)2E()_ Ya).
k=0 k=0

Therefore, by Chebyshev’s inequality,

P{> Y —E()_Yi)| > (nn)"'2E()_Yi)}
k=0 k=0 k=0

< cn(lnn)"l[E(zn: Yi)] !
k=0
< ¢(lnn)~%/8,

This implies
[BEQ_Yl™' Y Yi—1
k=0 k=0

in probability. It is easy to check, using (7.20) that E(>_;_, Yx) ~ na, and
hence by (7.23),

(nan)'p(n) = (nan) ' Vi - 1

k=0

in probability. O

We finish this section by showing that the loop-erased walk converges
to Brownian motion if d > 4. This is essentially a consequence of Theorems
7.7.2 and 7.7.5. Recall from Section 7.5 that

S(n) = S(a(n)),

where o is the “inverse” of p. If d > 5, by Theorem 7.7.2, with probability
one,
el
ntioe o (n)

b

and hence by (7.5),

lim 27 _ 1 (7.24)

n—oo M a
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For d = 4, since a, > ¢(Inn)~5/8, it follows from (7.20) that Qn/an] ~ Cn-
Therefore, by Theorem 7.7.5,

p([n/axn)) =1

in probability. It is not hard then using the monotonicity of p to show that

g—(—r—% —1 (7.25)
n
in probability.

We will use = to denote weak convergence in the metric space C[0, 1]
with the sup norm. Then the standard invariance principle states that
if W,(t) = dn=1/2S([nt]), then W,(t) = B(t), where B is a standard
Brownian motion in R¢. Suppose b, — oo and

Ta(t) = il[)nm =t.

Then by the continuity of Brownian motion (or more precisely, the tightness
in C[0,1] of the sequence W,,),

S(o([nt])) _ S([bat])

\/bn \/B: =>0’
and hence dS(o([nt]))
ol|n
b PO

If d > 5, it follows immediately from (7.24) that n~!o([nt])a = t. For
d = 4, we need to be a little careful. Fix ¢ > 0 and choose k > 3¢~!. Let
6 > 0. Then by (7.25), for all n sufficiently large,

o([nj/k)amysn
[n3 /K]

Since aj, k) ~ an (see (7.20)) this implies for n sufficiently large

€ é
>-}< - 1 =1,...,k.

P{la([nj‘,ék])an _ l >

}s%, j=1,...,k

>
|
N

But since o is increasing and k > 3¢~1, this implies for n sufficiently large,

P{sup |2 s <6
0<t<1 n
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Since this holds for any €,6 > 0,

o([nt]))an

=t d=4.
We have therefore proved the following.

Theorem 7.7.6 (a) If d > 5, and

Wty = DD

then W, (t) = B(t), where B is a standard Brownian motion.
(b) Ifd =4, and

T

then W,(t) = B(t), where B is a standard Brownian motion.
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Appendix A

Recent Results

In this addendum I would like to summarize a few results that have been
proved since the first printing of this book. I will only discuss some results
directly relevant to the last four chapters of the book.

The method of “slowly recurrent sets” was used in [A3] to improve the
estimate on f(n) in four dimensions as discussed in Section 4.4. A subset
A of Z4 is called slowly recurrent if it is recurrent, but P(V,,) — 0, where
V, is defined as in the proof of Theorem 2.2.5. (By Theorem 2.2.5, A is
recurrent if and only if Y P(V,) = 00.) An example of a slowly recurrent
set is the path of a simple random walk in four dimensions. In [A3] it is
shown that there is a constant ¢ such that

f(n) ~ c(Inn)~%/2.
Zhou independently gave an argument to show that
f(n) < (Inn)~1/2,

and Albeverio and Zhou [A1] also have proved the corresponding result for
Brownian motions in four dimensions.

The equivalence of Brownian motion and random walk exponents in two
and three dimensions (see Section 5.3) was extended to mean zero, finite
variance random walks in [A2]. In the case of simple random walk, there
has been some improvement on the rate of convergence to the intersection
exponent. Let b(r) = b(r,z, —z) where b(r,z, —z) is defined as in Section
5.2 and |z| = 1. It has been shown [A5] that

b(r) < r~¢ =772,
Also, for simple random walk [A6)],

f(n) <n=¢S.
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222 RECENT RESULTS

Some estimates for the disconnection exponent (Section 5.5) were derived in
[A10] and in [A7] it was shown that the simple random walk disconnection
exponent, which is defined in a natural manner, is the same as the Brownian
motion exponent.

For a detailed treatment of results on self-avoiding walks discussed in
Chapter 6, I recommend the recent book of Madras and Slade [A8]. One
interesting result that has come out since their book is a result of Toth [A9]
showing that the mean square displacement of a bond “true” or “myopic”
random walk in one dimension does grow like n%/3, which is the conjectured
for the (site) myopic random walk (see Section 6.5). While the bond walk is
technically easier to handle than the site walk, there is no reason to believe
that they should have different critical exponents.

The method of slowly recurrent sets was used to prove the conjecture
about four dimensional loop-erased self-avoiding walk discussed in Section
7.7. Tt has been proved [A4] that

an < (Inn)~1/3,

where a, is the normalization constant in Theorem 7.7.6 (b). In other
words, the mean square displacement of the the walk grows like n(Inn)!/3.
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