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Supervisor’s Foreword

The interacting boson model, proposed by Prof. Akito Arima and Prof. Francesco
Iachello in 1975, is one of the major models of nuclear physics. It has been applied
very successfully to the description of low-energy nuclear quadrupole collective
states. These quantum states possess characteristic features of the nuclear col-
lective motion, such as surface vibration, rotation of rigid ellipsoids, and their
intermediate situations including triaxial deformation. Thus, the collective motion
is one of the primary subjects of nuclear physics with fundamental importance.
The model exploits its algebraic structure, and various aspects of the collective
states have been explored.

Despite such success, what has been missing is the microscopic justification or
foundation for all situations of the collective states. Here, by ‘‘all situations’’
I mean vibrational, rotational, and their intermediate situations mentioned above.
The microscopic foundation implies an explanation or derivation of the model
from an underlying microscopic system that is nothing but nucleon systems here.
This implies the correspondence between collective pairs of valence nucleons and
bosons in the interacting boson model. It was created for nearly spherical and
weakly deformed cases, including those in-between, by myself in collaboration
with Arima and Iachello in 1978. Although this work was one of the major steps in
the development of the interacting boson model, a unified foundation of the model
covering all cases was still to come.

The work presented in this thesis has filled such a gap and has paved the way
toward a unified description of the nuclear low-energy collective motion by pro-
viding us with a beautiful, strong bridge from nucleon systems to boson systems of
the interacting boson model. On the other hand, the validity of this work is based
on that of the microscopic energy density functional framework. Indeed, the self-
consistent mean-field theory with a given energy density functional currently
provides an accurate and global description of nuclear bulk properties and
collective excitation over almost the whole range of the nuclear chart, and is also
quite suitable to start with to construct the bridge. I would like to point out here
that the interacting boson model and the energy density functional framework can
and should develop collaboratively and complementarily.
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This thesis shows a unified framework of the microscopic basis of the model
and exhibits various features arising from this new framework—for instance, the
triaxial shape and its description by three-boson interaction. The actual outcome,
conceptual and numerical, is shown in detail in the text, and I will not mention it
here. I would like to restrict myself to mentioning that the work presented here has
solved problems and debates that remained open for more than 30 years, and that
Dr. Nomura has made the solutions possible in 5 years as a Ph.D. student. The
work presented in this thesis is a truly amazing achievement and deserves this
special publication.

Tokyo, August 2012 Takaharu Otsuka

viii Supervisor’s Foreword
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Chapter 1
Introduction

Atomic nucleus is a highly quantal-mechanical, finite many-body system comprised
of protons and neutrons, where the strong, the weak and the electromagnetic fun-
damental interactions play an important role at the most profound level. The study
of the atomic nucleus has been therefore crucial for elucidating the origin of matter
(or nucleosynthesis processes), the tests of fundamental symmetries, and even the
purpose of practical applications. Furthermore the way to understand the structure
of nucleus is interdisciplinary since it applies to other fields of mesoscopic quantum
systems such as condensed matter, atomic and polyatomic molecular physics. Thanks
to the rigorous experimental efforts worldwide that make use of a new generation of
rare-isotope beams e.g., at RIKEN in Japan, FRIB and TRIUMF in North America,
CERN, GANIL and GSI in Europe etc, it has nowadays become possible to pro-
duce and to accelerate extremely unstable, i.e., short-lived, nuclei with considerable
proton or neutron excess. The nuclei under such extreme conditions present many
unexpected facets, and are therefore called exotic nuclei.

Since the pioneering work by Mayer and Jensen [1, 2], formation of shell structure
has been one of the remarkable features of atomic nucleus in understanding the
nuclear structure. In what is called independent-particle (or shell) model, a nucleon
in the nucleus is taken as being moving with an average potential created by all other
nucleons. This is much alike the dynamics of electrons in an atom, and similarly
to these exhibits discrete single-particle energies. When protons and/or neutrons are
filled from the lowest- up to the higher-lying orbitals to reach specific values like 2,
8, 20, 28, 50, 82, 126, …, then a nucleus is notably stable and hence large amount
of energy is needed to excite the nucleus from the closed shell to the next. These
numbers are called magic numbers, which become evident as a sudden drop of the
observed nucleon separation energies. In exotic nuclei, conventional magic numbers
may become no longer valid, even giving rise to novel shell structures not heretofore
recognized.

Besides these intriguing features that reflect single-nucleon degrees of freedom,
the nucleus as a whole exhibits collective properties associated with a distinct shape,
where all the constituent nucleons are coherently involved. The collective motion,

K. Nomura, Interacting Boson Model from Energy Density Functionals, 1
Springer Theses, DOI: 10.1007/978-4-431-54234-6_1, © Springer Japan 2013



2 1 Introduction

Fig. 1.1 Pictorial description of the quadrupole collective states of atomic nucleus. When departing
from the closed shell (Near Magic) with the increase of the valence nucleon number N , the shape
changes from spherical vibrator (Sph. Vib.) to deformed rotor (Def. Rot.), passing through the
transitional nuclei in between. Each shape results in the characteristic level structure: phonon-like
level scheme for a vibrator, and a clear rotational band for a rotor, which are well indicated by the
ratio of 4+

1 to 2+
1 excitation energies, denoted by R4/2. As the collectivity evolves with the number

of valance nucleons, the electric quadrupole (E2) transition intensity from the 2+
1 excited state to

the 0+
1 ground state becomes stronger

observed normally in low-energy1 regime, stems from the deformation of nuclear
surface, that is induced by the multi-fermion dynamics [3–7]. The microscopic inter-
pretation on such a nuclear collective motion was already come up with by Rain-
water in 1950 [3], on top of which Bohr and Mottelson established an well-known
geometrical model in the middle of 1950s [4–7]. The collective model incorpo-
rates the single-particle (shell-model) feature into the purely classical description
of the intrinsic nuclear shape as a macroscopic droplet. Particularly the most basic,
yet significant nuclear collective motion can be of quadrupole type: the shape of
a nucleus can be a spherical vibrator, an ellipsoidal deformed rotor and an object
in between, depending on the number of active nucleons. Consequently, a class of
remarkable regularities emerge in the corresponding spectroscopic properties (cf.
Fig. 1.1). Deformation occurs as a consequence of the intrinsic spontaneous sym-
metry breaking of the nuclear mean field (in analogy with Jahn-Teller effect [8]),
and the rotational motion manifests itself as a realization of symmetry-restoration
mechanism [9, 10], which is highly relevant to understanding the microscopy of the
nuclear quadrupole deformation.

1 The energy scale for the collective mode of excitation is typically of the order of 1–10 MeV.
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The nucleus is a strongly correlating system governed by the complex nuclear
force acting among individual nucleons, while it is, as a whole, a self-bound object
characterized by a rather distinct shape seen through the regular patterns of the
collective excitations. Therefore, to understand the regularities of the collective mode
of excitation from a more microscopic degree of freedom has been a theme of major
interest in nuclear physics [3–7, 11–20]. The purpose of this thesis is to address this
issue from the viewpoint of the interacting boson model [16, 17] that is formulated
by microscopic nuclear energy density functionals. Note that microscopic in this
context refers to the single-nucleon degrees of freedom, and that we basically assume
nucleons (both protons and neutrons) as elementary degrees of freedom throughout
this thesis.

Microscopic studies based on nuclear energy density functionals (EDFs) have
been quite successful in reproducing with remarkable accuracy various intrinsic
(bulk) properties of almost all medium-mass and heavy nuclei on the periodic table
such as binding energies, density distributions, surface deformations, charge radii,
giant resonances, etc [14, 15]. The current and well-established generation of EDFs
includes non-relativistic Skyrme- [21–24], which is of zero-range nature, and Gogny-
[25, 26], which is of finite-range type, functionals as well as other density function-
als associated with the relativistic mean-field Lagrangian of the effective theory of
two-flavor quantum chromodynamics [27–29]. The framework of EDFs has also
been extended beyond the mean-field level to describe excitation spectra and elec-
tromagnetic transition rates. Models have been developed that perform restoration
of symmetries broken by the static nuclear mean field, and take into account quadru-
pole fluctuations: configuration mixing calculations in the spirit of the generator
coordinate method [14, 15, 30–38], and solutions of the Bohr-type collective model
Hamiltonian with quadrupole degrees of freedom [39–43].

A static self-consistent mean-field solution in the intrinsic frame, for instance a
map of the energy surface as a function of quadrupole deformation, is characterized by
symmetry breaking: translational, rotational, particle number, and can only provide
an approximate description of bulk ground-state properties. To calculate excitation
spectra and electromagnetic transition rates in individual nuclei, it is necessary to
include correlations that arise from symmetry restoration and fluctuations around the
mean-field minimum. Both types of correlations can be included simultaneously by
mixing angular-momentum projected states corresponding to different quadrupole
moments. The most effective approach for configuration mixing calculations is the
generator coordinate method (GCM), with multipole moments used as coordinates
that generate the intrinsic wave functions. It must be noted that, while GCM config-
uration mixing of axially symmetric states has been implemented by several groups
and routinely used in nuclear structure studies [44–47], the application of this method
to triaxial shapes presents a much more involved and technically difficult problem
[33, 38]. In addition, the use of general EDFs, that is, with an arbitrary dependence
on nucleon densities, in GCM type calculations, often leads to discontinuities or even
divergences of the energy kernels as a function of deformation [48, 49]. Only for cer-
tain types of density dependence a regularization method can be implemented, which
corrects energy kernels and removes the discontinuities and divergences [50–52].
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As a sound approximation to the full GCM approach to five-dimensional
quadrupole dynamics that restores rotational symmetry and that allows for fluc-
tuations around the triaxial mean-field minima, a collective Hamiltonian can be
formulated, with deformation-dependent parameters determined by constrained
microscopic self-consistent mean-field calculations. The dynamics of the five-
dimensional Hamiltonian for quadrupole vibrational and rotational degrees of free-
dom is governed by the seven functions of the intrinsic quadrupole deformations: the
collective potential, three vibrational mass parameters, and three moments of inertia
for rotations around the principal axes [39–43].

Another successful approach to the low-lying structure of medium-heavy and
heavy nuclei consists in mapping2 of the multi-nucleon dynamics onto the appropriate
system of interacting bosons [16, 17]. The interacting boson model (IBM) of atomic
nucleus, originally invented by Arima and Iachello [16, 17], has witnessed great
deal of success for the phenomenological description of the low-lying quadrupole
collective states of medium-heavy and heavy nuclei. The main ansatz of IBM is to
employ the Jπ = 0+ (s) and 2+ (d) bosons, which are supposed to simulate the
motion of the collective nucleon pairs coupled to angular momentum Jπ = 0+
and 2+, respectively, and to introduce the relevant interactions between the bosons
[53, 54]. The IBM embodies an entire class of symmetries and regularities of the
low-lying quadrupole collective states: three dynamical symmetries arising from
the spontaneous breaking of U(6) symmetry, U(5) [55], SU(3) [56] and O(6) [57]
limits, where the boson Hamiltonian can be written in some specific forms based on
simple algebraic relations, and the intermediate situations of these limits, to which
most realistic nuclei belong. The IBM, as well as its algebraic feature, is so general
that it has been applied not only in but outside of nuclear physics [16, 17, 58, 59],
and thus is itself of wide interest. The IBM in its earliest version (referred to as
IBM-1) is purely phenomenological so that the interaction strengths of the model
Hamiltonian have been determined from experiment or taken from earlier fitting
calculations. Therefore, the IBM itself should have a certain microscopic foundation
starting from the nucleonic degrees of freedom.

From a microscopic viewpoint [53, 54, 60], the IBM is essentially a vast trun-
cation of the nuclear shell model, where the so-called proton monopole sπ and
quadrupole dπ bosons and neutron monopole sν and quadrupole dν bosons reflect
collective pairs of valence protons, Sπ and Dπ , and neutrons, Sν and Dν , respec-
tively. As the numbers of valence protons and neutrons are constant for a given
nucleus, the numbers of proton and neutron bosons, denoted respectively by Nπ and
Nν , are set equal to half of the valence proton and neutron numbers. The interaction
strengths of the boson Hamiltonian have been determined by the mapping from the
SD subspace of the full shell-model space onto the sd boson space. The mapping
scheme for deriving the IBM Hamiltonian of this type is usually referred to as the
Otsuka-Arima-Iachello (OAI) mapping and can be extended as the proton-neutron
interacting boson model (IBM-2) as a natural consequence [53, 54]. The OAI map-
ping has been practiced for limited realistic cases of nearly spherical or γ -unstable

2 Further explanation of the terminology “mapping” will be given in Sect. 2.4.1.

http://dx.doi.org/10.1007/978-4-431-54234-6_2
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shapes [61–64] by using zero- and low-seniority states of the shell model [53, 54,
60], and has been also tested for deformed Sm isotopes by renormalizing the con-
tribution from the G-pairs as a perturbation [65]. A fermion-boson mapping for
deformed nuclei has been studied partly by the “independent-pair” property of con-
densed coherent fermion pairs [66] and by the rotation of the intrinsic state (a state
in the body-fixed frame) [67]. In addition, there are many systematic calculations
within the IBM-2 phenomenology for, e.g., Xe-Ba-Ce [68], Ru-Pd [69], Kr [70] and
W-Os [71, 72] regions. The microscopic basis of the IBM has been studied for many
years, but is still an open problem for the cases involving the strongly deformed
nuclei.

More recently a general way of deriving the Hamiltonian of IBM-2 was proposed
by Nomura et al. [73]. Under the assumption that the multi-fermion dynamics of the
surface deformation is simulated by effective bosonic degrees of freedom, the energy
expectation value with varying quadrupole deformation (so-called potential energy
surface; PES) within the self-consistent mean-field calculation with a fixed micro-
scopic EDF is mapped onto the corresponding classical limit of the appropriate boson
Hamiltonian. Energies and wave functions of excited states are yielded with good
angular momentum and particle number [73, 75]. As a given EDF allows universal
description of the nuclear intrinsic properties including deformation of ground-state
shape, this mapping process in principle provides the interaction strengths of the
IBM Hamiltonian for any situations of the quadrupole collective states. While any
popular EDF has a direct correspondence to the quadrupole deformation and is cer-
tainly suitable to start with, the IBM is a model for nuclear spectroscopy, that pro-
vides almost complete description of low-lying structure in medium-heavy and heavy
nuclei and that embodies relevant physics in a straightforward way. Therefore we
try to incorporate a successful EDF approach in the IBM framework. The validity of
the initial work of Ref. [73] was further examined in Ref. [75]: the uniqueness of the
derived parameters have been examined carefully using the method of the Wavelet
transform [76].

When it is formulated microscopically, however, the IBM is shown to have a
crucial problem of not capable of reproducing the moment of inertia of rotational
band of strongly deformed nuclei. The problem occurs also in the new scheme of
Ref. [73]: the moment of inertia calculated by the IBM turns out be by several tens
per cent smaller than the experimentally observed one. Originally, the issue arose as
a consequence of the critical comment made by Bohr and Mottelson in 1980, based
on a microscopic theory using Nilsson plus BCS model [77]. They concluded that
the SD truncation might not be sufficient to account for the intrinsic state of rota-
tional deformed nuclei. This question should lead to the problem concerning whether
or not the sd-IBM can be justified for deformed nuclei. In spite of considerable
amounts of theoretical works for the past decades concerning the critique by Bohr and
Mottelson, any conclusive work that justifies the validity of IBM for rotational motion
has been missing. An important piece of information as to the critique was provided
recently by Nomura et al. [78]. They suggested that the deformed nucleon system
is substantially different in its response to infinitesimal rotation (cranking) from the
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corresponding deformed boson system.3 It was shown [78] that, when the difference
in the rotational response becomes sizable, then it can be a possible microscopic
origin of the problem concerning the rotational moment of inertia. To correct the dif-
ference in the rotational response between fermion and boson systems, the rotational
kinetic-like term (so-called LL term) was introduced in the boson system. As a con-
sequence, the rotational bands of strongly-deformed rare-earth and actinoid nuclei
were reproduced almost perfectly without any phenomenological adjustment. This
study revisited the criticism made in the past by Bohr and Mottelson, and showed,
for the first time, how the IBM can be justified for rotational motion of strongly
deformed nuclei.

In most isotopic or isotonic sequences the transition between different shapes
is gradual, but in a number of cases, with the addition or subtraction of only few
nucleons, one finds signatures of abrupt changes in observables that characterize
equilibrium shapes. These structure phenomena have been investigated using con-
cepts of quantum shape/phase transitions in finite nuclear system [18, 19, 79–82],
and advanced self-consistent (beyond) mean-field approaches [15, 37, 42, 43, 83–
94]. In particular, the complex interplay between several deformation degrees of
freedom, taking place in different regions of the nuclear chart, offers the possibility
of testing microscopic descriptions of atomic nuclei under a wide variety of con-
ditions. In this context, mean-field approximations based on effective EDFs, which
as shown already are a cornerstone to almost all microscopic approximations to the
nuclear many-body problem, appear to be a first tool to rely on when looking for
fingerprints of nuclear shape/phase transitions. On the other hand, it has also become
possible to recast mean-field equations in terms of efficient minimization procedures
such as the so-called gradient method [95, 96]. One of the advantages of the gradient
method is the way it handles constraints, which is well adapted to the case where a
large number of constraints are required (like the case which requires, in addition
to the proton and neutron number constraints, constrains on both β and γ degrees
of freedom characterizing the nuclear shape). Another advantage is its robustness
in reaching a solution, a convenient property when large scale calculations requir-
ing the solution of many HFB equations are performed. Experimentally, low-lying
spectroscopy provides one with a very powerful source of information that allows
establishing signatures correlating nuclear shape transitions with excitation spectra
[97–107]. Along these works, the method of [73] has been already tested in a number
of spectroscopic calculations in order to clarify the collective structural evolution
in various mass regions: Neutron-rich Kr isotopes with mass A ≈ 90–100 [108],
Ru-Pd isotopes with A ≈ 100–120 [75], Ba-Xe isotopes with A ≈ 110–130 [75],
Sm-Gd isotopes with A ≈ 150 [73, 75, 78], Pt [109] and Os-W [110] isotopes with
A ≈ 180–200, as well as more systematic analysis on Yb-Hf isotopes in addition to
the last three in the same mass region [111].

What is also of interest concerns whether the IBM Hamiltonian, derived from
an EDF, can have equal predictive power as other EDF-based schemes, such as

3 The rotational response in this context means the change of the ground-state energy due to the
infinitesimal rotation.
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the collective Hamiltonian approach. In Ref. [112], the spectroscopic observables
resulting from the IBM-2 Hamiltonian were compared with the solutions of the
five-dimensional collective Hamiltonian, with both models starting from the density-
dependent point-coupling interaction (DD-PC1) [113] of the relativistic Hartree-
Bogoliubov model. The comparison of the two schemes has been done in heavy
Pt isotopes, and it was shown in Ref. [112] that both methods do work similarly
quite well in the ground-state band spectra but that a certain difference between the
two prescriptions comes out e.g., in the structure of the quasi-γ band and in the E2
transition pattern within the ground-state band.

Meanwhile, the structure of non-axial nuclei has been described by the two major
geometrical models: the rigid-triaxial rotor model of Davydov and Filippov [114]
and the γ -unstable rotor model of Wilets and Jean [115]. However, presumably all
observed non-axial medium-heavy and heavy nuclei fall exactly in between the rigid-
triaxial and the γ -unstable rotor pictures. This puzzle was addressed in Ref. [116],
which showed that, based on a microscopic energy density functional calculation,
neither of the rigid-triaxial nor γ -unstable rotor descriptions is realized in actual
nuclei. This empirically known fact can be explained naturally only with the inclusion
of the three-body boson term into the IBM-2 system, and is shown to be independent
of the choice and the details of the EDFs. The result also points to the most appropriate
IBM description of γ -soft systems.

This thesis is organized as follows: Chap. 2 explains the proof of principle, i.e.,
the way to determine the IBM Hamiltonian by the EDF approach, as well as its
physical interpretations. Crucial limitation inherent to the microscopic IBM, which
one encounters in reproducing the moment of inertia of rotational band, is pointed
out. This naturally casts a question as to the validity of IBM for deformed nuclei, and
a possible answer to this question is proposed in Chap. 3. In Chap. 4, spectroscopic
calculations are presented for sets of medium-heavy and heavy nuclei over the wide
range of the nuclear chart. We will mainly consider weakly deformed nuclei where
the triaxial dynamics plays an important role. The results will be compared with
the available experimental data and with the recent studies of quantum phase transi-
tions as well. In Chap. 5, the predictive power of the method presented in Chap. 2 is
examined by comparing the spectroscopic properties resulting from the IBM Hamil-
tonian derived from a relativistic EDF with those obtained from the five-dimensional
collective Hamiltonian based on the same EDF. Chapter 6 addresses the question of
whether a non-axial nucleus is γ -rigid or unstable, presents a robust regularity of the
γ -soft nuclei and how it is realized from a microscopic calculation. The result points
to the most suitable IBM description of the γ -soft systems. Chapter 7 discusses the
impact of the quantal-mechanical correlation energy on the measurable ground-state
properties as an implication of the structural evolution. Chapter 8 is devoted to sum-
mary and outlook for possible future research directions. Figure 1.2 indicates how
this thesis is organized, and the goal and the motivation of each chapter. For readers’
convenience, each chapter and/or section contains an introduction as well as a brief
summary. Special attention has been paid so as to clarify the interrelationship among
chapters and sections in order to describe a variety of topics in a unified way.

http://dx.doi.org/10.1007/978-4-431-54234-6_2
http://dx.doi.org/10.1007/978-4-431-54234-6_3
http://dx.doi.org/10.1007/978-4-431-54234-6_4
http://dx.doi.org/10.1007/978-4-431-54234-6_5
http://dx.doi.org/10.1007/978-4-431-54234-6_2
http://dx.doi.org/10.1007/978-4-431-54234-6_6
http://dx.doi.org/10.1007/978-4-431-54234-6_7
http://dx.doi.org/10.1007/978-4-431-54234-6_8
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Fig. 1.2 Organization of this thesis. Interrelationship among chapters and sections are indicated.
The motivation of each chapter and the outcome drawn from there are indicated on the right-hand
side

Chapters 2–6, Sect.7.1, and the Appendices A–B in this thesis are based on the
author’s original works published already [73, 75, 78, 108–112, 116, 117], coauthor-
ing with (in alphabetical order) M. Albers (Argonne National Laboratory), L. Guo
(Graduate University of Chinese Academy of Sciences), T. Nikšić (University of
Zagreb), T. Otsuka (University of Tokyo), Zs. Podolyák (University of Surrey),
P. H. Regan (University of Surrey), L. M. Robledo (Universidad Autónoma de
Madrid), R. Rodríguez-Guzmán (Rice University), P. Sarriguren (Consejo Supe-
rior de Investigaciones Científicas, Madrid), N. Shimizu (University of Tokyo),
P. D. Stevenson (University of Surrey), and D. Vretenar (University of Zagreb).
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Chapter 2
Basic Notions

2.1 General Remarks

Before the thorough discussions on each particular case, we first present our prin-
cipal idea. It is often quite reasonable to start with the microscopic calculation of
self-consistent mean-field (potential) energy surface with energy density functional
(EDF), from which collective spectra and transition rates are derived (cf. Fig. 2.1).
Since the energy surface reflects intrinsic deformation, the question arises here:
How can we incorporate the energy-surface calculation into the relevant measurable
spectroscopic properties with good symmetries? There have been many EDF-based
schemes which derive spectroscopic properties from the energy surface, including the
generator coordinate method (GCM), collective Hamiltonian approach, etc.1 These
studies are, however, still computationally quite complicated and demanding. Our
motivation to employ the interacting boson model (IBM) is twofold: First, IBM can
be utilized as an effective theory to generate excitation energies and transition rates
with good symmetries in a computationally much moderate way, in comparison to
other mean-field based, spectra-generating approaches mentioned above. The second
is rather profound. Formulating the IBM by EDF approach should be of certain inter-
est because it may help clarifying the major long-lasting problem of IBM concerning
its microscopic foundation.

Note that this chapter is not intended to the complete review of the mean-field
theory and the IBM. For pedagogical literature of these two models, the interested
reader is referred to the textbook by Ring and Schuck [1] or more recent review
article by Bender et al. [2] for the former, and the textbook by Iachello and Arima
[3, 4] for the latter.

1 For instance, the GCM wave function is constructed by the mixing of mean-field states at many
different configurations of collective coordinates.

K. Nomura, Interacting Boson Model from Energy Density Functionals, 15
Springer Theses, DOI: 10.1007/978-4-431-54234-6_2, © Springer Japan 2013
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Fig. 2.1 Illustration of the principal idea. Left-hand side shows the collective potential energy
surface for axially deformed nucleus. With the nucleon number N , the shape of the nucleus changes
and the form of the potential changes accordingly. The finding from the energy-surface analysis is
subsequently incorporated into the calculation of spectroscopic properties (right-hand side)

2.2 Self-Consistent Mean-Field Models

The discussion in this thesis focuses first on self-consistent mean-field models,
where one derives in principle a potential for nucleons iteratively, starting from
a set of single-nucleon wave functions. This process is apparently at the level of
Hartree-Fock approximation, In realistic calculation of nuclei in which the pairing
effect plays a crucial role in reproducing various intrinsic properties of finite nuclei,
the Hartree-Fock theory must be extended so as to include the pairing field in the
particle-particle channel of the Hartree-Fock-Bogoliubov (HFB) equation, which
treats both fields simultaneously. Attention has to be paid for the usage of the ter-
minology mean field because it refers to the models that involve both self-consistent
and pairing fields, and the particle-hole part of the Hamiltonian in the HFB equation.
In this thesis the mean-field model stands for both of these. Since the HFB calcu-
lation is in general rather computationally demanding, the pairing correlation can
be incorporated separately from the Hartree-Fock calculation in the BCS approx-
imation, which is known as the Hartree-Fock plus BCS (HF+BCS) model. The
HF+BCS model can be a simplification of the HFB theory and has been also widely
used. The basics of the HF+BCS calculation, which is in a sense already well-
established, is described in Appendix A.2. In this section, we shall rather explain
the density-dependent effective interactions for nuclear many-body system and the
constrained mean-field models, which yield the (potential) energy landscape in
terms of the geometrical deformation variables and which are the starting point
of this work.
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2.2.1 Density-Dependent Force

The analysis starts from the constrained mean-field calculations with a given density-
dependent effective interaction. The Hartree-Fock theory with the density-dependent
force of nuclei can be viewed as a specific kind of the density functional theory
(DFT). Originally the DFT was developed by Hohenberg and Kohn [5] to deal with
the ground-state of inhomogeneous system of interacting electrons. According to the
Hohenberg-Kohn theorem [5], there exists a universal functional of the density for
a given system, and the functional in principle gives the exact ground-state energy
of the system by the variation with respect to the density. More later the original
Hohenberg-Kohn theory was rendered by Kohn and Sham [6] a universal prescrip-
tion of a given quantum many-body system, leading to the self-consistent equations
analogous to the Hartree and the Hartree-Fock equations. In the field of quantum
chemistry, the DFT gives very good description of ground-state properties of many-
electron systems, and the Coulomb force acting among electrons and between an
electron and nucleus is so uniquely-determined compared to effective nuclear force
that the DFT has been adopted as a reliable ab initio method. In fact, there exist
a number of energy density functionals (EDFs) in nuclear physics, and hence the
question of what is the most appropriate and universal density functional for nuclear
many-body problem remains unanswered and has been one of the open problems in
nuclear theory. Nevertheless, thanks to the recent considerable theoretical investiga-
tions, one can deal with various nuclear intrinsic properties with remarkable accuracy
with a given energy density functional. The popular EDFs in nuclear physics, that
are commonly used for the past decades and employed in the calculations presented
in this thesis, have been the Skyrme [7–9] and Gogny [10, 11] interactions, and other
interactions in the relativistic mean-field framework [12]. The subsequent sections
describe these EDFs.

Skyrme Energy Density Functional

The Skyrme interaction or the zero-range effective interaction was originally pro-
posed by Skyrme [7], and more later revisited by Vautherin and Vénéroni [8] and
Vautherin and Brink [9] as to formulate it in density-dependent form capable of the
universal description as it is today.

Nuclear ground-state energy is obtained by minimizing the following energy func-
tional E , consisting of kinetic energy Ekin, Skyrme energy density functional ESkyrme,
the Coulomb energy Ecoul, the pairing functional Epair, and the correction for spurious
center-of-mass motion Ecorr:

E = Ekin + ESkyrme + Ecoul + Epair − Ecorr. (2.1)

All contributions relevant to the many-body effects are represented by the Skyrme
functional ESkyrme and, since the nucleus is a superconductor, the pairing functional
Epair should play a role.



18 2 Basic Notions

The Skyrme-type effective interaction is composed of two- and three-body parts.
When one writes the many-body Hamiltonian as

Ĥ =
∑

i

T̂i +
∑

i< j

V̂ (2)
i j +

∑

i< j<k

V̂ (3)
i jk , (2.2)

the two-body part of the Skyrme force V̂ (2)
12 is given by

V̂ (2)
12 = t0(1 + x0 P̂σ)δ(r1 − r2)+ 1

2
t1(1 + x1 P̂σ)[k̂′2δ(r1 − r2)+ δ(r1 − r2)k̂2]

+ t2(1 + x2 P̂σ)k̂′δ(r1 − r2)k̂ + iW0(σ̂1 + σ̂2) · k̂′ × δ(r1 − r2)k̂, (2.3)

while the three body part V̂ (3)
123 in Eq. (2.2) by

V̂ (3)
123 = t3δ(r1 − r2)δ(r2 − r3), (2.4)

which is reduced to a two-body density-dependent term as

V̂ (3)
123 = 1

6
(1 + x3 P̂σ)δ(r1 − r2)ρ

α
(r1 + r2

2

)
(2.5)

for spin-saturated even-even nuclei. Notations r1 − r2 and P̂σ = (1 + σ̂1 · σ̂2)/2
stand for the relative distance between two nucleons and the operator exchanging
spins σ1 with σ2, respectively. The last term on the right-hand side (RHS) of Eq. (2.3)
represents the spin-orbit interaction. The relative momenta k̂ = (∇1 − ∇2)/2i and
k̂′ = −(∇1 − ∇2)/2i act on a right and a left sides, respectively. Coefficients ti (i =
0, 1, 2, 3), x0 and W0 are free parameters which are adjusted phenomenologically to
reproduce the bulk properties of finite nuclei in the Skyrme mean-field calculations.

The Hartree-Fock equation can be obtained by evaluating the expectation value
of the Hamiltonian with respect to the Hartree-Fock basis, which is normally Slater
determinant |ΦHF〉 (see Appendix A), as E = 〈ΦHF|Ĥ |ΦHF〉. To obtain the energy
functional, it is more transparent to introduce the following densities,

• Particle-number densities for proton and neutron:

ρq(r) =
∑

k,σ

vq,k |φk(r,σ, q)|2, (2.6)

where φk(r,σ, q) is the single-particle wave function of the state k and the indices
of spin σ = ±1/2 and isospin q = ±1/2 (plus for proton and minus for neutron,
or vise versa). vq,k is the BCS occupation factor (for definition, see Appendix A).

• Kinetic energy densities for proton and neutron:

τq(r) =
∑

k,σ

vq,k |∇φk(r,σ, q)|2 (2.7)
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• Spin-orbit current:

Jq(r) = −i
∑

k,σ,σ′
vq,kφ

∗
k(r,σ, q)[∇φk(r,σ′, q)× 〈σ|σ̂|σ′〉], (2.8)

where 〈σ|σ̂|σ′〉 is the matrix elements of spin operator.

Using these notations, the Skyrme energy density functional ESkyrme can be rewritten

by using the Hamiltonian density Ĥ (r) as:

ESkyrme =
∫

d3rĤ (r), (2.9)

where Ĥ (r) is given by

Ĥ (r) = �
2

2m
τ + B1ρ

2 + B2(ρ
2
n + ρ2

p)

+ B3(ρτ − J2)+ B4(ρnτn − J2
n + ρpτp − J2

p)

+ B5ρΔρ+ B6(ρnΔρn + ρpΔρp)+ B7ρ
2+α + B8ρ

α(ρ2
n + ρ2

p)

+ B9(ρ∇J + ρn∇Jn + ρn∇Jn) (2.10)

with ρ = ρp +ρn and J = Jn +Jp representing the total (scalar) density and current,
respectively. The parameters Bs in Eq. (2.10) are the combination of the Skyrme
parameters in the original notations in Eq. (2.3).

It should be noted that the Skyrme energy density functional ESkyrme is written
also as

ESkyrme =
∑

T =0,1

(
E (even)

T + E (odd)
T

)
, (2.11)

where E (even)
T and E (odd)

T on the RHS represent the components constructed from
time-even and the time-odd densities, respectively. The sum is over the isospin chan-
nel T = 0, 1. The time-even component E (even) is the only part which contributes
to the static mean-field calculations of ground-state of even-even nuclei. The time-
odd component E (odd) is needed for rotating odd-mass and odd-odd systems with
relatively high spin so that the Skyrme functional becomes time-reversal invariant.

When the pairing correlation is taken into account, the energy functional is for-
mulated in the Hartree-Fock-Bogoliubov model, which introduces the quasi-particle
wave functions and gives rise to the pairing functional for the particle-particle channel
aside from the Skyrme functional for particle-hole channel.
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Gogny Energy Density Functional

Because of its zero-range nature, it appears that the Skyrme interaction does not fully
simulate the long-range part of the realistic effective nucleon-nucleon interaction.
The finite-range force was originally proposed by Brink and Boeker [13] but, in
order to reproduce the nuclear binding energies precisely, one needs to modify the
interaction so as to include density-dependent term and spin-orbit force. Gogny
introduced alternative effective interaction that has a similar structure to the Skyrme
interaction, so that t0, t1 and t2 components of the Skyrme interaction of Eq. (2.3) are
replaced by a sum of two Gaussian combined with spin and isospin exchange [14]:

V12 =
∑

i=1,2

e−(r1−r2)
2/μ2

i (Wi + Bi P̂σ − Hi P̂τ − Mi P̂σ P̂τ )

+ iW0(σ̂1 + σ̂2) · k̂′ × δ(r1 − r2)k̂ + t3(1 + x3 P̂σ)δ(r1 − r2)ρ
α

(
r1 + r2

2

)
.

(2.12)

The parameters in Eq. (2.12) are determined as usual by fitting to the experimental
data for the properties of finite nuclei.

Contrary to the Skyrme interaction, which has more than a hundred of different
types of parameterizations, the Gogny-type interaction has much less. One of the
most popular interactions is the parametrization D1S [15], whose predictive power
has been already shown to be valid when applied to the description of not only the
intrinsic properties of a nucleus but also the spectroscopic analyses in any mass region
of the nuclear chart. More recently new types of the Gogny interactions have been
proposed: the D1N force [16], which is more oriented to the astrophysical interest,
and the D1M force [17], which is derived based on the spectroscopic calculations in
terms of the five-dimensional collective Hamiltonian approach taking into account
necessary correlation energies for the quadrupole degrees of freedom and which
is also the first Gogny model associated with nuclear masses. Here we note some
studies to design a new Gogny interaction so as to include the tensor force explicitly
(e.g., Ref. [18]). These studies addressed the computational problems that generally
occur in the number-projected mean-field calculation, and were further aimed at the
structure analyses of exotic nuclei as well.

Observables for finite nuclei are obtained in a similar way to the case of Skyrme
energy density functional.

Relativistic Energy Density Functionals

Other energy density functional model completely different from the Skyrme and
Gogny type interactions consists in the relativistic mean-field (RMF) framework.
Contrary to the non-relativistic framework, the RMF is more connected with the
sub-nuclear degrees of freedom through the meson fields, and as such is formulated
in a more fundamental field theoretical way. The density functional approach based
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on the RMF has been successful to almost similar extent to Skyrme and Gogny
interactions [19, 20].

Another unique features of the nucleus among other quantal systems can be a
strong spin-orbit interaction. A benefit brought about by the use of RMF framework
is such that the spin-orbit force emerges naturally there and can be included auto-
matically in the effective Lagrangian. Thus the number of parameters is relatively
small in the RMF framework as compared to the non-relativistic EDFs. Note that,
however, the exchange (Fock) term in the Hartree-Fock equation is often neglected
in many RMF calculations. Its effect is included only implicitly in the parameters of
the RMF density functional, that are fixed by the phenomenological fit.

With similar treatment of the pairing correlation, Coulomb effect and the center-
of-mass correction to the non-relativistic density functionals (cf. Eq. (2.1)), the rel-
ativistic energy density functional ERMF can be generally given as (when � = 1 and
c = 1 are assumed as usual)

ERMF = Enucl + Emeson + Ecoupl + Enonl, (2.13)

The term Enucl is associated with the Dirac equation for a single nucleon and is
given as

Enucl =
occ∑

k=1

v2
k ψ̄k(−iγ · ∇ + m B)ψk, (2.14)

where v2
k denotes the BCS occupation probability for the state k, which runs through

all occupied states. The second term Emeson is deduced from the Klein-Gordon equa-
tions for the meson fields ΨM with M denoting the σ, ω and ρ mesons, and is
written as

Emeson =
∑

M=σ,ω,ρ

1

2
Ψ̄M (−Δ+ mM )ΨM . (2.15)

For the rest, the coupling between nucleon and meson fields, Ecoupl, and the non-linear
terms Enonl arising from the self-coupling among meson fields:

Ecoupl = gρΨρρs0 + gωΨ
μ
ω ρμ0 + gρΨ

μ
ρ ρμ,1

Enonl = 1

3
b2Ψ

3
σ + 1

4
b3Ψ

4
σ + 1

4
c3(Ψω,μΨ

μ
ω ), (2.16)

where gσ , gω , gρ, b2, b3 and c3 are parameters that are fixed by the phenomenological
fit, and μ for Ψ ’s represents an index for the relativistic four vector. ρsT and ρμT are
scalar and vector densities, respectively.
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2.2.2 Constrained Mean Field

To interpret the geometrical shape of the nuclei in the ground state, the energy land-
scape (energy surface) with multipole degrees of freedom, such as of quadrupole and
octupole types, are often considered. As a representative for the self-consistent mean-
field calculation to obtain the energy surface, specifically the one for the quadrupole
deformation, we here describe one of the most basic frameworks which are widely
used in the market: the constrained Skyrme Hartree-Fock plus BCS method for axial
and triaxial degrees of freedom in any form of the single-particle state [1] like the
coordinate-space [21, 22] and the harmonic oscillator [23] representations. Pairing
correlation is taken into account in the BCS approximation [24, 25] in addition to
the Hartree-Fock solution. Some more details can be found in Appendix A.

The code ev8 [21], developed by Bonche et al., is one of the well-organized, user-
friendly computer program for performing the self-consistent constrained mean-field
calculation in the HF+BCS approach using Skyrme density functional. In many of
the author’s works the ev8 code was used for calculating the constrained energy
surface, and the following discussion treats mainly this ev8 code. In the ev8 code
the single-particle wave functions are represented by a three-dimensional Cartesian
grid and are assumed to be symmetric with respect to xyz planes [21, 22]. We use a
mesh spacing of 0.8 fm throughout, which is good enough to give accurate mean-field
solution [21]. Mean-field equations are solved iteratively, where the single-particle
wave function at a given step of the iteration is provided by the imaginary time
method [21]. BCS equation is solved subsequently by using the eigenvectors at the
corresponding step of the iteration. Also the two-body center-of-mass motion is
subtracted from the mean-field solution at the final step of the iteration. We use the
Skyrme SLy4 [26] and SkM* [27] interactions, while the following results do not
depend too much on the choice of Skyrme parameterizations as long as the usual
ones are taken.

In performing the HF+BCS calculation, we employ the density-dependent zero-
range type of the pairing interaction, which is truncated both below and above the
Fermi surface by 5 MeV for both protons and neutrons. The pairing force in the
functional form, denoted by Epair, is written as

Epair = 1

4

∑

q=±1/2

Vq

∫
d3r

[
1 − ρ(r)

ρc

]
ρ̃q(r)ρ̃∗

q(r), (2.17)

where ρ̃q(r) is defined as ρ̃q(r) = ∑
k,σ uq,kvq,k |φk(r,σ, q)|2. The factor uk,q in

Eq. (2.17) represents non-occupation amplitude and is connected to the vk,q factor
for state k as u2

k,q + v2
k,q = 1 for each of the proton (q = +1/2) and neutron

(q = −1/2) (cf. Appendix A.1). ρc stands for the density at the nuclear surface
and is fixed as ρc = 0.16 fm−3, being consistent with the nuclear matter proper-
ties. The fixed value of the pairing strength Vq = −1250 MeV fm3 for both proton
(q = +1/2) and neutron (q = −1/2) is taken. While the use of this value is rec-
ommended in the literature, it is not obvious that one can use the common value
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of the pairing strength for different mass regions. Despite this potential ambiguity
of the BCS pairing strength, it is of little importance here to examine each individ-
ual case employing the pairing strength different from 1250 MeV fm3, as indeed it
can be shown that the final spectroscopic results do not depend on the every detail
of the pairing properties. This will be confirmed in later chapters in which more
self-consistent, Hartree-Fock-Bogoliubov calculation, which include both the self-
consistent field and the pairing field simultaneously, is employed. Concerning the
pairing channel, one could in principle consider both T = 0 and T = 1 components.
However, since in many of the medium-heavy and heavy nuclei the protons and neu-
trons occupy different major shells, pairing correlations between identical particles
dominate over the proton-neutron pairing. Indeed, many of the earlier works employ
only the pairing correlations between identical particles of T = 1 component. The
work presented in this thesis also adopt only the pairing correlation between identi-
cal particles of the T = 1 channel. For lighter nuclei with N ≈ Z , proton-neutron
pairing in both T = 0 and T = 1 channels may become stronger.

Instead of the exact variation-after-projection treatment of the particle number,
we employ the Lipkin-Nogami prescription [28–30], which imposes the additional
constraint proportional to 〈N̂ 2〉 with N̂ being the number operator.

It should be noted that, apart from the fact that many of the current density-
dependent interactions are constructed by the fit to the experimental data of ground-
state properties, the procedure to obtain the spectroscopic observables mentioned in
the following is fully microscopic without any adjustable parameters.

The quadratic constraint is imposed on the Skyrme mean-field calculation in such
a way as to add the potential term

∑
m=0,2 Cm(〈Q̂2m〉 − μm)

2 to the Hamiltonian.2

Here, 〈Q̂2m〉 stands for the expectation value of a component of the mass quadrupole
moment Q̂2m = r2Y2m . Here Cm and μm represent the strength of the constraint and
some desired value for the quadrupole deformation of interest, respectively. Energy
surface is then a function of 〈Q̂20〉 and 〈Q̂22〉. It is more convenient to draw the energy
surface in terms of the geometrical deformation variables β and γ [36] defined as

β =
√

5

16π

4π

3

1

AR0
2 q0 and γ = tan−1

(√
2
〈Q̂22〉
〈Q̂20〉

)
, (2.18)

which represent axially symmetric deformation and the triaxiality, respectively, Here

R0, with the parameter r0 = 1.2 fm, and q0 ≡
√

〈Q̂20〉2 + 2〈Q̂22〉2 stand for the
empirical nuclear radius and the (mass) quadrupole moment, respectively. Note that
it is sufficient to consider the problem in the range 0◦ ≤ γ ≤ 60◦ since, in the
quadrupole deformation, the nuclear shape remains unchanged under the interchange
of all three axes of the intrinsic frame.

2 Other technical aspects of the constrained Hartree-Fock calculations are described in
Appendix A.3.
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2.3 Interacting Boson Model

Let us now review the basic features of the interacting boson model [3, 4], which
is generally referred to as IBM in its short-hand notation. The building blocks of
the IBM is the monopole s and the quadrupole d bosons, reflecting the collective
Lπ = 0+ and 2+ collective pairs of valence nucleons. The number of bosons is half
the number of valence nucleons counted from the nearest closed shells [31, 32], and
does not distinguish between hole and particle configurations. With this picture and
the basic interactions between these bosons can one simulate the nuclear collective
spectra.

In this thesis we consider the proton-neutron interacting boson model (IBM-2)
[31, 32], which distinguishes between proton and neutron bosons. The IBM-2 is
more closely connected with a microscopic picture than the original version of the
IBM (so-called IBM-1), which does not make distinction between proton and neutron
degrees of freedom. The IBM-2 is comprised of the so-called proton (neutron) sπ
(sν) and the proton (neutron) dπ (dν) bosons, which reflect collective L = 0+ and
2+ proton (neutron) pairs, respectively [31, 32]. The number of proton (neutron)
bosons Nρ is equal to half the numbers of valence protons (neutrons) [31, 32]. Since
in medium-heavy and heavy nuclei protons and neutrons occupy in the different
major shells, one has only to consider proton-proton and neutron-neutron pairs in
the IBM-2 framework, neglecting the proton-neutron pair.

To make the discussion as simple as possible, we first consider the simplest (orig-
inal) version of the IBM (IBM-1).

2.3.1 Algebras

Exactly-solvable models often give profound insight into a system of interest. The
IBM takes on a feature belonging to them: algebraic aspect called dynamical sym-
metry.

Since the d boson has five components d±2, d±1 and d0, one has in total six
bosons. Let us write these bosons as

b0,0 = s, b2,2 = d+2, b2,1 = d+1, b2,0 = d0, b2,−1 = d−1, b2,−2 = d−2,

(2.19)

which satisfies boson commutation relations [blm, b†
l ′m′ ] = δll ′δmm′ , then there are

36 bilinear products of boson creation and annihilation operators written in a coupled
form as

G(k)
κ (l, l

′) = [b†
l × b̃l ′ ](k)κ , (2.20)

where l, l ′ = 0 or 2 and the notation b̃lm = (−1)l+mbl,−m is introduced to conserve
the rotational invariance and k and κ represent the rank of the tensor product and
its projection, respectively. Note that, however, the indices m and m′ are omitted
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in Eq. (2.20) as they are irrelevant to this expression. Since G(k)
κ (l, l ′) satisfies the

commutation relation in the closed form3:

[G(k)
κ (l, l

′),G(k′)
κ′ (l ′′, l ′′′)] =

∑

k′′,κ′′

√
(2k + 1)(2k′ + 1)(kκk′κ′|k′′κ′′)(−1)k−k′

×
[
(−1)k+k′+k′′

{
k k′ k′′

l ′′′ l l ′
}
δl ′l ′′ G

(k′′)
κ′′ (l, l ′′′)

−
{

k k′ k′′
l ′′ l ′ l

}
δl,l ′′′ G

(k′′)
κ′′ (l, l ′)

]
, (2.21)

the 36 operators G(k)
κ (l, l ′) are the generators for U(6) (or SU(6), precisely speak-

ing4) group. (kκk′κ′|k′′κ′′) and the curly bracket {} on the RHS of Eq. (2.21) mean
the Clebsch-Gordan coefficient (or 3 − j symbol) and the Wigner 6 − j symbol,
respectively. It is proved that the U(6) symmetry is broken into some chains of its sub-
groups, depending on the different combinations of the generators. Since the nucleus
has the rotational invariance (O(3) symmetry), there are only three possibilities for
the subgroups: U(5), SU(3) and O(6) symmetries. When an operator is commutable
with all the generators of a given group, then the operator is called Casimir operator
of the group. For instance, total angular momentum squared, L̂2, is a Casimir oper-
ator for the O(3) group, which commutes with all the generators of the O(3) group,
i.e., L̂1, L̂2 and L̂3. When the Hamiltonian is written as a linear combination of the
Casimir operators of subsets of a group G,

Ĥ = aĈG + bĈG ′ + cĈG ′′ + · · · (2.22)

with

G ⊃ G ′ ⊃ G ′′ · · · , (2.23)

where ĈG , ĈG ′ . . . are the Casimir operators of group G, G ′, . . ., respectively, then
the system of interest possesses the dynamical symmetry and the eigenvalue problem
is solved analytically. This gives rise to the analytical form of the eigenvalues and the
wave functions. The coefficients a, b, c, . . ., in Eq. (2.22) are determined normally
from the fit to the experimental data. Having a general boson Hamiltonian, dynamical
symmetry is realized when the coefficients of the Hamiltonian take specific (for that

3 The product of k1th and k2th tensor operators, T̂ (k1) and T̂ (k2), is given by [T̂ (k1) × T̂ (k2)](k)κ =∑
κ1,κ2

(k1k2κ1κ2|kκ)T̂ (k1)
κ1 T̂ (k2)

κ2 , where (k1k2κ1κ2|kκ) is the Clebsch-Gordan coefficient and

κ = κ1 + κ2 is satisfied. The scalar product (k=0) of lth tensor operators U (l) · V (l) is given
as Û (l) · V̂ (l) = (−1)l

√
2l + 1[Û (l) × V̂ (l)](0)0 , which leads to a simpler form Û (l) · V̂ (l) =

∑
κ(−1)κÛ (l)

κ V̂ (l)
−κ.

4 In the language of IBM, the labels U (N ) and O(N ) are used rather than the labels SU (N )
and SO(N ), respectively, and hence U(N) (O(N)) always means SU(N) (SO(N)) unless otherwise
specified.
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reason, the symmetry emerges dynamically) values. Therefore, one could identify,
depending on these coefficients, which symmetry is realized in a system as well as
the extent to which the symmetry is broken (or, mixed).

To list the three dynamical symmetries:

U(5) Limit

The first subgroup U(5) appears as

(chain I) U(6) ⊃ U(5) ⊃ O(5) ⊃ O(3) ⊃ O(2), (2.24)

where s and d bosons are completely decoupled in the U(5) subgroup. The quantum
numbers of the U(5) are nd (the number of d bosons), ν (d-boson seniority), nΔ
(number of triple bosons coupled to J+ = 0+), L (total angular momentum) and M
(z component of L in the laboratory frame). The wave function and the eigenvalue
are specified by these quantum numbers. Eigenvalues are given by

E(nd , ν, nΔ, L ,M) = εnd + α
1

2
nd(nd − 1)

+ β(nd − ν)(nd + v + 3)+ γ[L(L + 1)− 6nd ], (2.25)

where ε, α, β and γ are parameters that can be determined by fitting the calculated
spectra to the experimental data. The level structure of the U(5) limit looks like those
of phonon, in which the degeneracies are produced for the 4+

1 , 2+
2 and 0+

2 states, as
well as 6+

1 , 4+
2 , 3+

1 , 2+
3 and 0+

3 states, . . . etc. Electromagnetic transition rates can be
obtained analytically, too.

SU(3) Limit

The second group chain is as follows,

(chain II) U(6) ⊃ SU(3) ⊃ O(3) ⊃ O(2). (2.26)

The basis set of chain II is characterized by the quantum number λ, μ, K (one related
to the z component of angular momentum in the intrinsic frame), L and M . (λ, μ)
labels the representation of the SU(3) group. The eigenvalue is obtained analytically:

E(λ,μ, L ,M) = αL(L + 1)− β[λ2 + μ2 + λμ+ 3(λ+ μ)], (2.27)

where α and β are fixed by the fit. The SU(3) dynamical symmetry produces the
rotational bands of the axially symmetric deformed nuclei.
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O(6) Limit

The last group chain is

(chain III) U(6) ⊃ O(6) ⊃ O(5) ⊃ O(3) ⊃ O(2). (2.28)

The quantum numbers are σ (one characterizing the irreducible representation of the
O(6) group), τ (d-boson seniority similar to v in U(5) limit), νΔ (same as nΔ in U(5)
limit), L and M . The eigenvalues are given by

E(σ, τ , νΔ, L ,M) = A
1

4
(N −σ)(N +σ+4)+ B

1

6
τ (τ+1)+C L(L +1), (2.29)

where A, B and C are adjusted to the data. It has been shown that the O(6) dynamical
symmetry is associated with the γ unstable nuclei, in which the symmetry axis of
the nucleus do not coincide with the intrinsic axis.

Nuclear collective spectra can be reproduced in a mathematically transparent way
in terms of the dynamical symmetries of the IBM with remarkably small number
of adjusted parameters. Nevertheless, vast majority of realistic nuclei do not exactly
follow any of the three dynamical symmetries but are mix of these, and are there-
fore solved numerically in practice. The results presented in this thesis are obtained
through the numerical diagonalization of the IBM Hamiltonian, rather than assuming
any symmetry-dictated form of boson Hamiltonian. Note that, however, such alge-
braic feature of the IBM associated with a certain geometrical picture still holds and
can serve as a paradigm for the description of collective structural evolution even
when a realistic boson Hamiltonian is used.

2.3.2 Geometry

Since the IBM is the model for the quadrupole collective states, it is natural to think
the model is associated with a certain geometrical picture. The geometrical aspect of
IBM was discussed by Ginocchio and Kirson [33], by Dieperink et al. [34], and by
Bohr and Mottelson [35], who introduced the so-called boson coherent state, i.e., the
intrinsic wave function of the boson system. For the purpose of simplicity, we start
with the IBM-1 description of the coherent state. The coherent state for the system
composed of the monopole s and the quadrupole d bosons is defined as [33]

|Φ(N , {aμ})〉 = 1√
N !

(
λ†

)N |0〉 with λ† = 1√
1 + ∑2

μ=−2 a2
μ

(
s† +

2∑

μ=−2

aμd†
μ

)
,

(2.30)

where |0〉 stands for the boson vacuum, e.g., inert core, and N represents the num-
ber of bosons. Here the set of the parameters {aμ} in Eq. (2.30) is written more
explicitly as
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a0 = β cos γ, a±1 = 0, and a±2 = 1√
2
β sin γ, (2.31)

where β and γ represent the intrinsic variables similar to the deformation parameters
in the geometrical model [36]. The parameter β represents the relative d-boson
probability amplitude over the s boson. As the s boson can create only a spherical
state and the description of the quadrupole deformation requires the d boson, the
βs are parameters indicating the quadrupole deformation. The coherent state |Φ〉
represents an intrinsic state. If the quadrupole deformation has an axial symmetry,
one can choose the z axis to be the symmetry axis. In this case, the coherent state
must be invariant with respect to the rotation about the z axis. This leads us to
a2 = a−2 = 0, or γ = 0◦ in Eq. (2.30). A different value of γ indicates a triaxial
deformation. Thus, one can describe the (intrinsic) shape of the nucleus in terms
of β and γ. The former measures the total magnitude of the deformation, while the
latter the triaxiality. The energy surface for the system of interest is nothing but
the expectation value of the corresponding boson Hamiltonian. The coherent state
Eq. (2.30) can be then written in terms of the deformation variables β and γ

|Φ(N ,β, γ)〉 = {N !(1 +β2)}−N/2
{

s† +β cos γd†
0 + 1√

2
β sin γ(d†

+2 + d†
−2)

}N |0〉.
(2.32)

The coherent state for the IBM-2 system is given by [33]

|Φ(Nπ, Nν , aπ,μ, aν,μ)〉 =
∏

ρ=π,ν

1√
Nρ!

(
λ†
ρ

)Nρ |0〉 (2.33)

with

λ†
ρ = 1√

1 + β2
ρ

{
s†
ρ + βρ cos γρd†

ρ,0 + 1√
2
βρ sin γρ(d

†
ρ,+2 + d†

ρ,−2)
}
. (2.34)

In principle, both βρ and γρ in Eq. (2.34) can take different values for proton and
neutron bosons. Since protons and neutrons attract each other strongly, the proton
and the neutron systems should have the same shape in the first approximation. We
therefore assume that βπ (γπ) and βν (γν) take the same values, denoted by βB (γB),5

for proton and neutron bosons,

βπ = βν ≡ βB and γπ = γν ≡ γB . (2.35)

The range of γB is set 0◦ ≤ γB ≤ 60◦, as for the polar deformation parameter γ,
which is valid as the boson and geometrical γs have the same meaning. Under these
assumptions, the coherent state used in this thesis is written as

5 The subscript B in the β and γ variables represents boson.
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|Φ(βB, γB, Nπ, Nν)〉 = (1 + β2
B)

−(Nπ+Nν )/2
∏

ρ=π,ν

1√
Nρ!

×
{

sρ + βB cos γBd†
ρ0 + 1√

2
sin γB(d

†
ρ+2 + d†

ρ−2)
}Nρ |0〉,

(2.36)

where Nρ stands for the proton and the neutron boson numbers. In the coherent state,
the boson number is not well-defined, and can be arbitrary. However, this thesis
employs the usual counting rule in such a way that the boson number in the coherent
state always represents half the number of valence nucleons. The boson Hamiltonian
will be diagonalized in the same configuration space.

2.3.3 Hamiltonian

In many of the IBM studies the Hamiltonian contains up to two body not only for the
sake of simplicity but to preserve the dynamical symmetry.6 To keep the discussion
as general as possible, we start from a general two-body Hamiltonian.

ĤIBM = Ĥπ + Ĥν + Ĥπν (2.37)

where the first and the second terms

Ĥρ = E (ρ)0 +
∑

αβ

ε(ρ)b†
ρ,αbρ,β +

∑

αβγδ

u(ρ)αβγδb
†
ρ,αb†

ρ,βbρ,γbρ,δ (2.38)

stand for the interaction between like bosons, with ρ = π (proton) or ν (neutron). The
third term Ĥπν on the RHS of Eq. (2.37) represents the interaction between proton
and neutron systems and is written generally as

Ĥπν =
∑

αβγδ

wαβγδb
†
παbπβb†

νγbνδ + . . . . (2.39)

The forms of the Hamiltonians in Eqs. (2.38) and (2.39) conserve the boson number.
Here α,β, γ, δ run from 1 through 6. The boson operator b†

ρ is a shorthand notation
of both s and d bosons, and is written explicitly as

bρ1 = sρ, bρ2 = dρ+2, bρ3 = dρ+1, bρ4 = dρ0, bρ5 = dρ−1, bρ6 = dρ−2.

(2.40)
Here E (ρ)0 in Eq. (2.38) is constant for a given nucleus and will be taken into account

in Chap. 7. Note that the constant E (ρ)0 does not change the excitation energies.

6 Specific form of the three-body boson term can be included in describing some cases of non-axially
symmetric nuclei. This will be discussed in Chap. 6.

http://dx.doi.org/10.1007/978-4-431-54234-6_7
http://dx.doi.org/10.1007/978-4-431-54234-6_6
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It is apparent that the general boson Hamiltonian of Eq. (2.37) cannot be used as
it is in realistic calculations because of the large number of parameters. However,
since only a few terms of the general IBM-2 Hamiltonian are essential in most of the
realistic cases, one can adopt rather simplified Hamiltonian. The best known example
would be the Hamiltonian in the so-called consistent-Q formalism of Warner and
Casten in the IBM-1 case [37].

The most basic and widely-used IBM-2 Hamiltonian with up to two-body terms
is written similarly to the consistent-Q formalism Hamiltonian in the IBM-17:

ĤIBM = επ n̂dπ + εν n̂dν + κQ̂π · Q̂ν . (2.41)

The first term on the RHS of Eq. (2.41) stands for the d-boson number operator,

ερn̂dρ = εd†
ρ · d̃ρ (2.42)

with ερ denoting the single d-boson energy relative to the s boson one. The proton
επ and the neutron εν parameters are usually set equal with each other since it is only
their average that makes sense in actual nuclei. Thus the condition

επ = εν = ε (2.43)

is assumed throughout in this thesis. The d-boson number operator with ε >0 con-
tributes to keeping a nucleus spherical. d†

ρ · d̃ρ is a scalar product, and d̃ρ is defined

as d̃ρμ ≡ (−1)μdρ−μ (μ = 0,±1,±2). While ε can differ between proton and
neutron, they are set equal for simplicity. The third term on the RHS of Eq. (2.41)
is the quadrupole-quadrupole interaction between proton and neutron bosons with
the strength κ, inducing the quadrupole deformation. The parameters χπ and χν
appear as

Q̂ρ = [s†
ρ × d̃ρ + d†

ρ × s̃ρ](2) + χρ[d†
ρ × d̃ρ](2) (2.44)

with s̃ρ ≡ sρ, and determine the prolate or oblate shape of deformation, reflecting
the structure of collective nucleon pairs as well as the numbers of valence nucleons
[31, 32, 38].

Almost all situations of the low-lying quadrupole collective states can be described
basically by the Hamiltonian of Eq. (2.41). The Hamiltonian of Eq. (2.41) is appar-
ently not a general Hamiltonian, but embodies essential ingredients of the quadru-
pole collectivity. Moreover, it is such form of the Hamiltonian as in Eq. (2.41) that
determines the basic topology of the energy surface. Let us consider the case of the
quadrupole-quadrupole interaction as an example. Since the proton-neutron interac-

7 Because of its proton-neutron two-fluid character, the IBM-2 Hamiltonian often contains the inter-
action term relevant to the symmetry energy (so-called Majorana term). However, since thorough
assessment of the Majorana term, including its physical meaning, still remains to be done, we do
not try to touch on this point.
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tion is much dominant over the proton-proton and neutron-neutron interactions for
medium-heavy and heavy deformed nuclei, the quadrupole-quadrupole interaction
between like bosons, which drives the nucleus rather spherical, can be of less impor-
tance. As will be shown later, in some cases the Hamiltonian of Eq. (2.41) may not
be good enough. In such cases some interaction terms should be taken into account.

Turning now to the intrinsic boson state, the expectation value of an operator
Ô with respect to the coherent state |Φ(βB, γB, Nπ, Nν)〉 in Eq. (2.36) is hereafter
denoted by

〈Ô〉 = 〈Φ(βB, γB, Nπ, Nν)|Ô|Φ(βB, γB, Nπ, Nν)〉 (2.45)

unless otherwise specified. To calculate the bosonic energy surface (referred to as
IBM energy surface, hereafter), IBM-2 Hamiltonian of Eq. (2.41) is substituted to
Ô . The IBM energy surface can be calculated straightforwardly, using the technique
of Ref. [39], to have the analytical form as

〈ĤIBM〉 = ε(Nπ + Nν)β
2
B

1 + β2
B

+ NπNνκ
β2

B

(1 + β2
B)

2

×
[
4 − 2

√
2

7
(χπ + χν)βB cos 3γB + 2

7
χπχνβ

2
B

]
, (2.46)

which, depending on the values of the parameters ε, κ, χπ and χν , covers all geo-
metrical pictures associated with three dynamical symmetries of the IBM: spherical
vibrational, axially symmetric deformed (both prolate and oblate), and γ-unstable
shapes, and the transitional shapes among these. Note that, however, neither of the
coexisting and the triaxial minima can be described by the IBM energy surface in
the case of Eq. (2.46), which is composed of one- and two-body boson interactions.

2.3.4 Other Boson Models

Besides the IBM-1 and the IBM-2 models, several extended versions of IBM have
been developed. Although these extended IBM models are obviously out of the focus
of this thesis, it should be of certain interest to have a brief look at these models since
they have their own unique capabilities and open problems.

A straightforward extension of the model concerns, for instance, the possibility of
including other types of bosons with angular momenta Jπ other than 0+ and 2+, such
as g (Jπ = 4+) and p (Jπ = 1−) bosons. The former has been often implemented
into the sd space, either explicitly [40] or by renormalizing the fermion G pairs into
SD space of fermions [41]. While, similarly to the original IBM, the simple algebraic
relation holds even by the addition of g bosons, the actual numerical calculation
becomes complicated. The importance of the g boson (or collective G pair) for
the description of deformed nuclei will be discussed in Chap. 3. By introducing the

http://dx.doi.org/10.1007/978-4-431-54234-6_3
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spin 1− boson, application of IBM to higher-lying giant dipole resonance has been
considered by Rowe and Iachello [42].

Since in medium to heavy nuclei protons and neutrons occupy different major
shells, the effect of the proton-neutron pair can be neglected in the standard sd-
IBM, which assumes the proton-proton and the neutron-neutron pairs in the isospin
T = 1 states only. However, for lighter nuclei particularly those with N ≈ Z , in
which protons and neutrons may occupy the same orbits, proton-neutron pair may
become important and one should construct the boson Hamiltonian that holds isospin
invariance. To reflect such shell structure of light nuclei, Elliott and White introduced
the proton-neutron pair in T = 1 state (called IBM-3 [43]), and later proton-neutron
pair in isospin T = 0 state was added by Elliott and Evans [44].

Other extensions of IBM worthy of noting would be the inclusion of unpaired,
fermionic (single-particle) degrees of freedom in order to treat the odd-mass8 and
doubly-odd9 nuclear structure (for review, see Ref. [45]). The first version of this
model containing a single nucleon degree of freedom is called interacting boson-
fermion model (IBFM),10 which was introduced by Iachello and Scholten [46] and
was developed so as to be feasible in realistic calculations. An important consequence
of the boson-fermion algebras has been the peculiar pattern of level structures having
the so-called dynamical supersymmetry [48], whose candidates have been found
experimentally in a few limited cases of heavy nuclei (cf Ref. [45], and references
therein). The concepts of IBFM and its supersymmeric feature have been further
applied to the general theory of quantum phase transition in the system of bose-fermi
mixture [49]. The boson-fermion models have been exploited mainly for heavy-mass
nuclei, where even the underlying microscopic fermion structure are still not simple.
Hence, further investigations will be necessary to establish a firm microscopic basis
of these models. Also, even the simplest IBFM study considers only a single orbit,
and hence this model should be generalized as to involve multi orbits. Much evidence
for a set of supersymmetric nuclei should be investigated as well.

2.4 Nucleon-to-Boson Mapping

We are back now to the IBM-2 framework, and describe in what follows how the
mapping from EDF to IBM can be done as well as the resultant spectra and transition
strengths.

8 Proton and neutron numbers are odd and even, respectively, or vice versa.
9 Both proton and neutron numbers are odd.
10 Distinction is not made between protons and neutrons. When another nucleon degree of freedom
needs to be introduced in doubly odd nuclei, the IBFM is extended, which is called interacting
boson-fermion-fermion model (IBFFM) developed e.g., by Brant et al. [47]. This version is of
course quite convoluted.
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2.4.1 Optimal Boson Hamiltonian

While the deformation variables β and γ could be in general different between
fermion and boson systems, they can be related to each other, if the separability of
the mapping along the β and the γ directions is assumed. It was shown by Ginocchio
and Kirson [33] and by Dieperink et al. [34] that, in general, the bosonic and the
geometrical β variables are proportional to each other and that the proportionality
coefficient coincides with the ratio of the total nucleon number to the valence nucleon
number counted from the nearest closed shells. We exploit this relation and assume
that

βB = CββF and γB = γF , (2.47)

where βF and γF denote the geometrical deformation parameters of Eq. (2.18) and
Cβ the overall scaling factor characterizing the proportionality relation between
fermion and boson β variables. The typical range of the Cβ value turns out to be
approximately 5–10, which is about the same order of magnitude as the actual ratios
of the total nucleon number to the valence nucleon number. Note that Cβ may vary
from nucleus to nucleus gradually as a function of Nπ and Nν . Regarding the triaxial
parameter γ, the equality γB = γ seems valid as indeed both geometrical and IBM
γ variables have the same meaning, ranging from 0 to 60◦.

Alternatively, one can interpret the above-mentioned relationship between boson
and geometrical β’s like this: Under the assumption of axial symmetry, namely
γB = 0◦, the intrinsic quadrupole moment for boson system, denoted as QI , can be
defined by the expectation value QI = q〈Q̂π + Q̂ν〉 with q being an overall scaling
factor. QI is calculated as

QI =
q
[
2(Nπ + Nν)βB −

√
2
7 (Nπχπ + Nνχν)β

2
B

]

1 + β2
B

. (2.48)

In the present study, the typical range of βB is 0 ≤ βB ≤ 1. For βB ≥ √
2, the system

is too deformed, which is irrelevant to the present work. Also practically, |χπ | ≤ 1 and
|χν | ≤ 1 are fulfilled based on experience from the IBM phenomenology. Roughly
speaking, the terms proportional toβ2

B on the RHS of Eq. (2.48) then become minor as
compared to the rest, and are neglected in the first good approximation. This leads us
to βB ∝ βF , because QI is associated with the mass quadrupole moment for fermion
q0 in Eq. (2.18) when the axial symmetry is assumed. Such rough estimation of β
variables through Eq. (2.48) turns out to be consistent with the assumptions of Refs.
[33, 34].

Once the βγ deformation energy surface is obtained from the constrained self-
consistent mean-field calculation with a fixed EDF, each point on the mean-field
energy surface is mapped onto the corresponding point on the appropriate energy
surface of boson system, as illustrated in Fig. 2.2. The procedure is exactly a mapping
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Fig. 2.2 Pictorial illustration of the fermion-to-boson mapping process. Each point on the con-
strained energy surface, obtained from the microscopic self-consistent mean-field calculation (left-
hand side (LHS) of the figure), is mapped onto the appropriate point on the bosonic energy surface,
which is obtained as the energy expectation value (RHS of the figure). Both energy surfaces are
depicted in terms of the quadrupole collective coordinates up to 2 MeV excitation from the energy
minima. While βF and γF represent the geometrical (fermionic) deformation parameters βB and
γB their boson images in the IBM system. For details see the main text

of the mean-field state at the coordinate (βF , γF ) on the energy surface onto the
corresponding IBM state at (βB , γB). We actually determine the values of the five
parameters, ε, κ, χπ , χν and Cβ , for each individual nucleus by drawing the IBM
energy surface with the formulae of Eqs. (2.46) and (2.47) so as to be identical to the
self-consistent mean-field energy surface.

Since this formulation may sound somewhat too abrupt, we need to give a little
more detailed account here. The basic topology of the self-consistent mean-field
energy surface, which is, more specifically, the one around the absolute minimum,
reflects essential fermion many-body properties including how the nuclear force and
the Pauli principle work for determining the low-lying collective structure of the rel-
evant intrinsic deformation. By matching the IBM Hamiltonian to the self-consistent
mean-field energy surface with a fixed microscopic energy density functional, such
basic properties of nuclear many-body system could be incorporated in a mathemat-
ically simpler, boson model.

To such an end, first of all a global pattern of the self-consistent mean-field energy
surface should be reproduced, rather than its every detail. The overall global pattern
of the microscopic energy surface in this context means, for instance, the location
(βF , γF ) = (βmin, γmin) on the βγ surface at which the minimum occurs, and the
curvatures with respect to β and γ, but not the local ones at a particular point on the
energy surface. In determining the IBM parameters, special attention has to be paid
also to their systematic changes with valence nucleon numbers, in accordance with
the overall systematic change in the pattern of microscopic energy surface.

The scale factor Cβ is mainly determined by adjusting the parameter values (βmin,
γmin), which give minimum, and the curvature in β direction, of the IBM energy sur-
face to those of the original mean-field energy surface. The ε and κ parameters are
mainly determined as functions of the boson numbers Nπ and Nν so as to reproduce
the depth of the potential well in β direction (deformation energy), which is charac-
terized by the energy difference between the configurations βF = βmin and βF = 0



2.4 Nucleon-to-Boson Mapping 35

with γ = γmin. As the γ dependence of the IBM energy surface of Eq. (2.46) appears
as the term proportional to cos 3γB , the softness of the mean-field energy surface in
γ variable can be reproduced by adjusting the value of the quantity χπ + χν , which
also determines, depending on its sign, either a prolate or oblate minimum of the
IBM energy surface. The parameters χπ and χν significantly depend on Nπ and Nν ,
respectively, but much less for vice versa. To reflect the structure of collective nucleon
pairs, the sign of the χρ parameter should be negative when the last proton/neutron
occupy from the beginning to the middle of the major shell, i.e., the boson reflects
pair of valence particles, while χρ should be positive when the last proton/neutron
surpass the middle of the major shell, i.e., the boson reflects pair of valence holes [32].

From a practical point of view, theχ-square fit may be a straightforward way to fix
these parameters, but does not make much sense because of the local pattern of the
microscopic energy surface. These local pattern cannot be reproduced by the IBM
Hamiltonian of Eq. (2.41) because it is too simple for the complete fit. Nevertheless,
the technique to avoid the problem has been introduced [59], and will be discussed
in Sect. 2.4.2.

With the optimal set of the parameters thus obtained, we diagonalize the boson
Hamiltonian of Eq. (2.41), to yield the levels and the wave functions having good
quantum numbers in the laboratory system. The code NPBOS [50] has been a popular
computer program open to the public, which diagonalizes the IBM-2 Hamiltonian in
a set of bases coupled with total angular momentum (J -scheme). More recently the
author developed a code which diagonalizes the IBM-2 Hamiltonian containing up
to three-body interactions in a set of bases with Jz = M (M-scheme).11 In addition,
as we will show in Chap. 7, eigenenergies of the IBM Hamiltonian formulated by
the microscopic EDF may include to a good extent the quantum-mechanical effect
that is missing in the static mean-field approximation.

Here we point out once again that a more general boson Hamiltonian with up to
two-body terms may contain many other interaction terms. Some of these terms may
affect excitation energies to a certain extent but the parameters of these terms cannot
be determined by simply studying the self-consistent mean-field energy surfaces,
because these terms vanish in the classical limit with assumptions of Eq. (2.35) and
hence do not have any contribution to the energy surface. To fix strengths parameters
of these interaction terms, one should go beyond the energy-surface mapping proce-
dure and, in addition to this, should try to map some other quantities, e.g., energy shift
of the ground state against infinitesimal rotation of it. A mapping scheme of this kind
may become necessary for specific cases such as strongly deformed nuclei, which is
beyond the scope of this chapter but will be investigated in detail in Chap. 3. In any
case, while the form of the Hamiltonian ĤIBM in Eq. (2.41) is simple, it embodies
many aspects of quadrupole collective states.

What should be also noted is that, in some microscopic approaches of the col-
lective model, the self-consistent mean-field energy surface is treated as an effective
potential with subtraction of zero-point energies, and that the mass parameters of
both rotational and vibrational motions are introduced to construct collective Hamil-

11 The M-scheme diagonalization is described in Appendix B.2.

http://dx.doi.org/10.1007/978-4-431-54234-6_7
http://dx.doi.org/10.1007/978-4-431-54234-6_3
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tonian. We point out that in the present work the total energy of the HF+BCS is
compared with the corresponding energy of the IBM. In this case, the mass parame-
ter itself does not show up explicitly, while its effect is, mainly for the systems with
relatively weak quadrupole deformation, supposed to be included to a good extent in
the diagonalization of the boson Hamiltonian calibrated by the comparison of energy
surfaces.

Here the term “mapping”, which is frequently used in this thesis, needs to be
clarified further, since the term conveys slightly different meaning here from in the
conventional fermion-boson mapping technique. In the conventional boson-mapping
approach, the fermion angular momentum operator is represented by the boson cre-
ation and annihilation operators so that the basic algebra obeying the commutation
relation of the group SU(2) should hold in boson system. These studies have con-
fronted by their own problems of not having hermicity and/or not conserving the
boson number, although possible solutions have been considered. The concept of
boson mapping idea has been applied to the many-body problems like in the treat-
ments of Belyaev-Zelevinski type [51] and of Marumori type [52]. The former study
proposed to map the operators so that the commutation relations of all the physically
relevant operators are preserved. In the latter the fermion states are mapped onto
the corresponding boson states so that the matrix elements conserve. For the IBM,
the treatment proposed by Otsuka et al. (OAI method) [32] should be similar to the
boson mapping of Marumori et al., because in the OAI method the boson parameters
are determined so that the matrix element of a fermion operator in the SD space is
equated to that of the boson operator in the sd boson space. In the present work, the
energy expectation value for fermion system is compared with the classical limit of
the corresponding boson Hamiltonian in the boson coherent (intrinsic) state. Through
this procedure, the mean effect of the fermion properties, not the operator itself, can
be mapped onto the boson system. In this respect, while special attention should be
paid to the use of the term “mapping”, we will mean by the term the comparison of
the energy expectation values for boson and fermion systems.

Energy Surfaces

In what follows actual mapping procedure is demonstrated by taking samarium
(62Sm) isotopes as an example. Figure 2.3 displays the constrained self-consistent
HF+BCS and the IBM energy surfaces for 146−156Sm isotopes. Two different but
widely reputed parameterizations SLy4 and SkM* are drawn on the left-hand side
(LHS) and the RHS of Fig. 2.3, respectively, in order to show the generality of the
procedure. The energy surfaces are depicted in contour plots within the excitation of
2 MeV in energy measured from the potential minimum. The coordinate βB (γB) of
the IBM energy surface is expressed in terms of βF (γF ), for simplicity, using the
formula of Eq. (2.47). We show the energy surfaces up to 2 MeV excitation since the
low-lying collective states are supposed to be dominant in this range. We also note
that the deformation parameter β (γ) that appears in the following always means βF
(γF), unless otherwise specified.
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Fig. 2.3 The deformation energy surfaces inβγ plane, obtained from the self-consistent constrained
HF + BCS mean-field calculation with Skyrme SLy4 (left column) and SkM* (right column) func-
tionals, and those of the IBM. These energy landscapes are drawn up to 2 MeV in energy from
the absolute minima. The coordinate βB (γB ) of the IBM energy surface is expressed in terms of
βF (γF ) using the formula of Eq. (2.47). γF is limited to 0–60◦. Contour spacing is 100 keV and
minima can be identified by the solid circles. The figures have been taken from Ref. [59]

Figures 2.3 shows that both Skyrme SkM* and SLy4 functionals give similar
energy surface, while there exist certain differences particularly in the transitional
nuclei. One can find abrupt changes in HF+BCS energy surface from N = 86 to 88
for the SLy4 case and from N = 88 to 90 for the SkM*. For N = 84 and 86 nuclei,
one also finds a difference between the SLy4 and SkM* functionals. Namely, the
latter is a bit flatter in both β and γ directions than the former. With the increase of
the neutron number, N , the HF+BCS energy surface becomes steeper in both β and
γ directions and βmin shifts away from the origin, resulting in well isolated prolate
minimum for larger N . The nucleus 148Sm has been recognized as an example of the
spherical vibrator, being close to U(5) limit of IBM. However, the Skyrme HF+BCS
energy surface in the present calculation for 148Sm somewhat differs from this pic-
ture, placing the energy minimum at β ∼ 0.15. The IBM energy surface reproduces
βmin and the overall pattern of the HF+BCS energy surface. In the vicinity of SU(3)
limit, 154Sm, HF+BCS energy surface has a pronounced sharp minimum, and IBM
energy surface also exhibits a similar one. The minimum valley is, however, shal-
lower for the IBM energy surface. This is a general trend that cannot be changed any
more by simply playing with parameters, and is probably due to the finiteness and/or
limitation of boson configuration space.

Parameters of Boson Hamiltonian

In Fig. 2.4 shown are the derived parameters of the IBM Hamiltonian, ε,κ,χπ ,χν and
Cβ , as functions of the neutron number N . The parameters in Fig. 2.4a–f were fixed
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by the best fit to the microscopic self-consistent mean-field energy surface. There is
no strict rule for this, and one should more or less refer to the experience from the
IBM phenomenology and existing microscopic IBM studies12 in determining these
parameter values. The derived parameters in Fig. 2.4a–f are therefore not unique, and
may be ambiguous. To avoid the ambiguity, we have formulated an automated way
[59], using the wavelet transform [60], that finds the unique set of IBM parameters for
a given nucleus. In this section, however, we would rather sketch the basic outline
of the mapping procedure and how it works. Therefore we first discuss here the

12 For instance, the parameter χρ < 0 takes the value within the range |χρ| ≤ 1. The SU(3) limit
of the parameter χρ is

√
7/2. The value much larger than

√
7/2 does not make any physical sense.



2.4 Nucleon-to-Boson Mapping 39

parameters in Fig. 2.4a–f, and will introduce the unambiguous procedure in the next
section (Sect. 2.4.2). In addition, at a number of places the parameters derived by the
present work are compared with the earlier studies of IBM phenomenology and of
the Otsuka-Arima-Iachello (OAI) method using shell-model interaction [31, 32].

In general the parameters ε and χν in Fig. 2.4a, d, respectively, vary rather sig-
nificantly, while κ and Cβ change much less. In Fig. 2.4a the parameter ε becomes
smaller with the neutron number N similarly to the earlier phenomenological study
[53]. Why the gradual decrease of ε with N occurs remains to be clarified, but has
been discussed in a microscopic picture [54] as a consequence of stronger coupling
between “unperturbed d boson” and other types of bosons such as the one with spin 4
[or g boson] [31, 32, 40, 41]. In Fig. 2.4b, the magnitude of κ is in general set some-
what large in comparison to the phenomenological value [53] and to the OAI result
[55]. This indicates that the present HF+BCS energy surface for Sm isotopes exhibits
a too deep potential valley to be reproduced by the IBM energy surface with the phe-
nomenological value of κ. For N = 84 and 86 nuclei, the κ value for the SLy4
EDF deviates significantly from that of the SkM* one, reflecting the quantitative
difference of the microscopic energy surface between the SLy4 and the SkM* EDFs
in Fig. 2.3. As seen from Fig. 2.4c, a fixed value of χπ(= −0.500) is assumed for
simplicity in both SLy4 and SkM* results, similarly to the results of the OAI method
[31, 32, 38]. In Fig. 2.4d, the parameter χν has a rather strong dependence on the
neutron number N and changes at N = 88 or 90, and thereby reflects the structural
evolution from transitional to deformed shapes. The seniority prescription in the
OAI mapping [31, 32] gives the opposite dependence of χν on N , while the present
one appears to be consistent with a mapping method using deformed intrinsic states
[54]. The average (χπ +χν)/2 is also shown in Fig. 2.4e, which will be discussed in
Sect. 2.4.2. The scale factor Cβ in Fig. 2.4f becomes smaller in smooth systematics
with N , reflecting the gradual shift of the quadrupole deformation identified by βmin.
In Fig. 2.4f, for deformed nuclei with N ≥ 92, the value of Cβ satisfies that Cββmin

is smaller than
√

2, at which the minimum occurs in SU(3) limit with infinite boson
number Nρ → ∞ [33, 35, 39].

Excitation Energies

In Fig. 2.5 we show the low-lying spectra for Sm isotopes with N = 84–94 as
functions of the neutron number N . The experimental spectra are shown in Fig. 2.5a,
in which each data is connected by a line to guide eyes. Figure 2.5b, c show the
theoretical level energies resulting from SLy4 and SkM* functionals, respectively,
using the derived parameters in Fig. 2.4a–f. Figure 2.5d–f show the results using the
IBM parameters determined by the wavelet analysis, which will be discussed in
Sect. 2.4.2.

At both N = 84 and 86 nuclei in Fig. 2.5b, c, the calculated spectra exhibit
U(5)-like features: 4+

1 , 2+
2 and 0+

2 states form a triplet. However, this is not the case
with the experimental data for N = 84, in which 6+

1 state is lying close to 4+
1 ,
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2+
2 and 0+

2 states. This means that, for the 146Sm nucleus, the 4+
1 state may not be

constructed in the sd boson model. For N = 86, the calculated levels are fairly close
to the experimental data. With the increase of N , each calculated level comes down
consistently with the experimental trends particularly for the yrast levels.

As noted empirically, there should be a critical point at N = 90, beyond which
the 2+

2 and 0+
2 levels turn to go up with N . In Fig. 2.5b, c the sharp increases of

the calculated side-band levels occur at N = 88, rather than at N = 90. For the
N ≥ 92 nucleus, one sees rotational spectra. The OAI mapping for Sm isotopes [55],
where the collective G pair is renormalized perturbatively, gives similar results, but
the present calculation seems to better reproduce the trends of the side-band levels
including their transitional behaviors.
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The overall systematic trend of the level energies in Fig. 2.5a–c reveals properties
of X(5) critical-point symmetry [56–58] around N = 88 or 90, while the N = 88
nucleus is closer to the X(5) model in the present work. In fact, the calculated values of
the ratio R4/2 ≡ Ex(4

+
1 )/Ex(2

+
1 )

13 for N = 88 and 90 for SLy4 (SkM*) functional
are 3.09 (3.01) and 3.30 (3.30), respectively. The experimental R4/2 value for the
152Sm nucleus and the X(5) one are 3.01 and 2.91, respectively. This deviation may
be due to the properties of the HF+BCS energy surfaces on the RHS panels of
Fig. 2.3, which do not identify a particular nucleus as the critical point.

What is worth noting here is that the calculated excitation levels for N ≥ 90
are higher than the experimental [61] and the phenomenological [53] ones, although
the overall pattern characterized, e.g., by the ratios between levels, is reproduced
fairly well with a clear signature of the spherical-to-axially-deformed shape phase
transition. This problem seems to be seen in many GCM results [58, 62] for well
deformed nuclei, but never arises in moderately deformed cases. The problem with the
rotational band is closely linked to the microscopic justification of IBM for rotational
deformed nuclei. This kind of argument is beyond the scope of this chapter, and will
be presented more in detail in Chap. 3.

B(E2) Ratios

Having calculated the wave functions of the excited states, one is subsequently able
to obtain other spectroscopic observables using these wave functions, among which
the reduced E2 transition strength B(E2) between the states with angular momenta
L and L ′ is of particular importance. Using the Wigner-Eckart theorem, the B(E2)
is defined as [36]

B(E2; L → L ′) = 1

2L + 1
|〈L ′||T̂ (E2)||L〉|2, (2.49)

where 〈L ′||T̂ (E2)||L〉 denotes the reduced matrix element which does not depend
on the Lz = M quantum number. Here the E2 transition operator T̂ (E2) is given
by [3, 4]

T̂ (E2) = eπ Q̂π + eν Q̂ν, (2.50)

where eρ represents the boson effective charge. To reduce the number of free para-
meters, the operator Q̂ρ, which appears on the RHS of Eq. (2.50), can be identified as
the quadrupole operator in Eq. (2.44) [37]. The same values of χπ and χν parameters
as those derived from energy surface can be used for calculating the B(E2) values. In
principle, the boson charge eρ could be determined by taking into account the effect
e.g., of core polarization, which goes beyond the mean-field approximation. In the
mapping procedure presented in this thesis, the boson effective charge is thus the
only adjustable parameter.

13 Ex(4
+
1 ) and Ex(2

+
1 ) denote the 4+

1 and the 2+
1 excitation energies, respectively.

http://dx.doi.org/10.1007/978-4-431-54234-6_3
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In this chapter, we assume eπ = eν , for simplicity, and focus our discussion on
the B(E2) ratios defined as follows.

R1 = B(E2; 4+
1 → 2+

1 )

B(E2; 2+
1 → 0+

1 )

R2 = B(E2; 2+
2 → 2+

1 )

B(E2; 2+
1 → 0+

1 )

R3 = B(E2; 0+
2 → 2+

1 )

B(E2; 2+
1 → 0+

1 )

R4 = B(E2; 2+
2 → 0+

1 )

B(E2; 2+
2 → 2+

1 )
, (2.51)

which, as we shall show, exhibit the traces of the shape-phase transitions as functions
of the neutron number N .

Figure 2.6 shows the B(E2) ratios R1–R4 for Sm isotopes as functions of N ,
studied with SLy4 and SkM* functionals. Experimental data [63–66] are shown as
well. There is no significant difference between SLy4 and SkM* results.

The calculated R1 value decreases with N and becomes close to the SU(3) limit
of the IBM, R1 = 10

7 (indicated by dotted line), which is fairly consistent with
the experimental data. The calculated values of R2 and R3 appear to indicate the

Fig. 2.6 B(E2) ratios for
Sm isotopes as functions
of N . the ratios R1–R4 are
defined in Eq. (2.51). Solid
and dashed curves stand
for the calculated results
with SLy4 and SkM* forces,
respectively. Experimental
data are taken from Refs.
[63–66]. The figure is taken
from Ref. [59]
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transition from spherical to deformed shapes, changing smoothly from around the
U(5) limit (= 2) to the SU(3) limit (= 10

7 ), while for the transitional N = 88
nucleus, the calculated values are smaller than both the experimental data and the
phenomenological value [53].

The calculated R4 increases as a function of N consistently with the experiments.
In particular, it is quite close to U(5) limit, R4 = 0, and SU(3) limit, R4 = 10

7 at
N = 86 and 92, respectively. For N = 88 and 90 nuclei, similarly to the R2 and
the R3 ratios, the present R4 values suggest that these nuclei are already rotational,
compared with the experimental data.

2.4.2 Uniqueness of the Boson Parameters

In Sect. 2.4.1, we noted that the physically relevant IBM parameters can be derived so
that the IBM energy surface reproduces the microscopic mean-field energy surface
as much as possible. The χ-square fit seems to be a straightforward way one may
think of. However, it turns out that the χ-square fit does not work because of local
patterns in the self-consistent microscopic energy surface. The χ-square fit provides
many different combinations of the derived IBM parameters, which can give perfect
fit but usually do not make any physical sense. It may be then questioned whether or
not the physically relevant IBM parameters can be determined both unambiguously
and uniquely.

In this respect, we introduce the wavelet analysis and show that, with the help of
it, the global feature of the microscopic self-consistent mean-field energy surface,
that is relevant to the low-lying collective states, can be extracted naturally. Origi-
nally, the wavelet technique has been developed in the field of signal processing (for
reviews, see Refs. [60, 67], for instance) and also applied to a physical system like
giant resonance phenomena [68]. In a general theory of the wavelet method, a given
signal is transformed into a set of coefficients (wavelet transform) with respect to an
appropriate basis function (a wavelet function or a so-called wavelet). The wavelet
function is localized both in time and frequency domains. The wavelet function
(denoted by Ψ ) must have the properties that it has zero mean and that it is square
integrable (so-called admissibility condition) [60]:

∫ ∞

−∞
Ψ ∗(x)dx = 0 and KΨ ≡

∫ ∞

−∞
|Ψ (x)|2dx < ∞, (2.52)

which mean that Ψ must oscillate in a finite duration. These conditions allow one to
analyze efficiently the localized signal, some part of which is particularly important
like the relevant low-energy region around the absolute minimum of the microscopic
constrained energy surface. In addition, one is able to choose a wavelet which appears
to be suited well for extracting a characteristic feature of the signal in question. These
flexibilities make the wavelet analysis distinct from the Fourier transform, which
localizes only frequency with limitation in use of a basis function. When applied to
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the present case, the wavelet transform of the energy surface can be characterized
by the deformation variable β (γ) and its scale parameter δβ (δγ), which, in the
language of the signal processing, correspond respectively to time and frequency.

To perform the analysis as precisely as possible, the continuous wavelet transform
should be carried out, rather than the discrete transform [68]. The wavelet transform
of the energy surface in β direction (for fixed γ) is formulated as

Ẽ(δβ,β) = 1√
δβ

∫
E(β′, γ)Ψ ∗(β − β′

δβ

)
dβ′, (2.53)

where Ψ ∗ is a complex conjugate of a wavelet function Ψ . E(β′, γ) stands for the
energy surface of either the HF + BCS or the IBM, while Ẽ(δβ,β) is its wavelet
transform and is in general a complex value. Note that the wavelet transform is done
separately for β and γ directions because the integral in Eq. (2.53) is defined in one
dimension. Therefore, for γ direction, one has only to replace β (δβ) with γ (δγ) in
Eq. (2.53).

One should in general choose a wavelet function Ψ having a somewhat similar
shape as the original signal. Then, we employ the following wavelet functions, which
are frequently used [60, 67]

• Mexican Hat: Ψ (x) = (1 − x2) exp
(
− x2

2

)

• Morlet: Ψ (x) = π−1/4eikx · e−x2/2

• Paul: Ψ (x) = 2mimm!(1 − i x)−(m+1)/
√
π(2m)!,

where integers k (in Morlet) and m (in Paul) are control parameters and are set as
k = 6 and m = 4, respectively, for practical reasons. Mexican Hat is nothing but
the second derivative of the Gaussian function. These wavelets exhibit in common
an oscillation within a Gaussian-like envelope.

The integration in Eq. (2.53) is performed by means of the fast Fourier transform
[67]. Here special attention has to be paid for choosing appropriate integration range
of β′ (or γ′), i.e., the relevant range of low-energy excitation (typically up to several
MeV from the absolute minimum). For strongly deformed nuclei, in particular, the
integration range inβ direction should be as small as possible and should includeβmin.
It is only with such choice of the integration range that one is able to obtain physically
relevant parameter set. Note that any region in the microscopic energy surface with
β much larger than βmin does not have to be reproduced, because the topology of
the energy surface for large β value is determined mainly by non-collective (single-
nucleon) degrees of freedom.

In addition, one is able to reconstruct the original signal out of Ẽ(δβ,β) in
Eq. (2.53). By doing so, one may ensure the wavelet transform is done properly.
For fixed γ, the reconstructed energy surface is written as

E(β, γ) = 1

KΨ

∫ ∫
Ẽ(δβ,β′)
(δβ)5/2

Ψ
(β′ − β

δβ

)
d(δβ)dβ′. (2.54)
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Actually, we first calculate the squared wavelet transform of the IBM energy
surface and fit it to that of the constrained HF+BCS energy surface. Then, we opti-
mize the IBM parameters by the simplex method. Thereby the IBM parameters can
be derived without any arbitrariness. The γ degrees of freedom are also taken into
account by minimizing the sum of the χ-square functions for β and γ directions.
We use the mesh spacings Δβ = 0.01 and Δγ = 10◦. In the following, the 148Sm
and the 152Sm nuclei are taken as examples, studied with SkM* functional. The Paul
wavelet is used. The wavelet transforms are performed for γ = 0◦ in the ranges
−0.29 ≤ β ≤ 0.29 for 148Sm and −0.24 ≤ β ≤ 0.38 for 152Sm. Concerning the
triaxial degrees of freedom, the minima on the lines of γ = 10◦, 20◦, 30◦, 40◦ and
50◦, in addition to γ = 0◦ and 60◦, are also taken for the fits.

In each panel of Fig. 2.7, the squared amplitude |Ẽ |2 is drawn in the contour plot
for each scale value δβ on the vertical axis and for the β value on the horizontal
axis. The left panels of Fig. 2.7 show the wavelet transforms of the self-consistent
HF+BCS energy surfaces (denoted by MF-SkM*), while the right panels show the
corresponding transforms of the IBM energy surfaces. |Ẽ |2 is remarkably large for
both nuclei when δβ is of the order of 10−1, where the characteristic features of the
energy surface can be most clearly seen. For the position (β) domain, the location
where the amplitude |Ẽ |2 becomes largest does not necessarily correspond to the
βmin of the energy surface. In fact, for 148Sm (152Sm), βmin ∼ 0.15 (0.32) as one
sees from the RHS panels in Fig. 2.3, whereas |Ẽ |2 is relatively large within the range
−0.30 ≤ β ≤ −0.10 (0.10 ≤ β ≤ 0.30) in Fig. 2.7. Nevertheless, the pattern of
the amplitude |Ẽ |2 seems to have a certain relevance to that of the original energy
surface. The magnitude of the former at a point in the position domain appears to
reflect the slope of the latter at the corresponding point. The pattern of |Ẽ |2 is not
strongly affected by the local feature of the energy surface. Therefore, the energy
surface fit in the wavelet space can be, as expected, suitable for considering the
characteristic, global feature of the energy surface over the range of interest. By the
fit with the wavelet analysis outlined above, the patterns of |Ẽ |2s are to every detail
in good agreement between the HF+BCS and the IBM for both 148Sm and 152Sm
nuclei. Other types of the wavelets give the different pattern of |Ẽ |2s from the Paul
case, but the same argument applies.

In Fig. 2.8a, c, both the original (dashed curves) and the reconstructed (solid
curves) HF+BCS energy surfaces for 148Sm and 152Sm are depicted in real space. The
reconstructed energy surface is drawn using the formula in Eq. (2.54) with γ = 0◦ and
agrees with the original one. This means the wavelet transform is done properly. The
corresponding IBM energy surfaces are also shown in Fig. 2.8b, d and are compared
with the HF+BCS energy surfaces. Note that the IBM energy surface is depicted so
that its origin point agrees with the point of the HF+BCS mean-field energy surface
at the spherical configuration, (βF = 0, γF = 0◦). One can see that the HF+BCS
energy surface is reproduced nicely by the IBM.

We show on the RHS panels of Fig. 2.4 the evolution of the IBM parameters for
Sm isotopes, derived by the wavelet analysis. The Paul, Morlet and Mexican Hat
wavelets are used. The IBM parameters from SkM* functional, which appear on the
LHS panels of Fig. 2.4, have been chosen as initial guesses for the simplex method
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Fig. 2.7 Contour plots of the squared wavelet transforms, i.e., the amplitudes |Ẽ |2, for the self-
consistent constrained mean-field calculation with the HF+BCS model (denoted by MF-SkM*)
and for the IBM energy surfaces (denoted by IBM-SkM*) in the β–δβ planes for the 148,152Sm
nuclei. The Paul wavelet is used. Note that the vertical axis is in logarithmic scale. The figure is
taken from Ref. [59]

and are hereafter referred to as “w/o-wavelet” parameters, as indicated in the upper
panel of Fig. 2.4. The initial parameters are not chosen arbitrarily, but are more or
less those close to the w/o-wavelet parameters. This can be tested by using the same
w/o-wavelet parameters as initial guesses, one of which is, however, replaced by a
different value far from the w/o-wavelet one. In this case, the χ-square fit does not
give the global minimum. In addition there may be some other combinations of the
IBM parameters which give good fits, but in most cases such parameters do not make
much physical sense.

In the present wavelet analysis, we treat χπ as a free parameter. Note that the
parameters for the Mexican-Hat wavelet at the N = 94 nucleus are not shown since
the Mexican-Hat wavelet does not work there due to some technical problem. In
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Fig. 2.8 The energy surfaces in the real space. The constrained HF+BCS energy surfaces for
a 148Sm and c 152Sm are compared with the IBM energy surfaces for b 148Sm and d 152Sm,
respectively. The reconstructed energy surfaces (“Recon.”) are also plotted. The figure is taken
from Ref. [59]

Fig. 2.4g–l, all three wavelet functions give almost identical values of ε, κ and Cβ ,
while χπ and χν somewhat depend on the wavelets. For Paul and the Mexican-Hat
cases, both χπ and χν do not evolve smoothly like that for the w/o-wavelet fits,
whereas the Morlet wavelet seems to show fairly consistent trends of χπ and χν with
w/o-wavelet results. As one sees from Fig. 2.4k, however, the average of χπ and χν
for wavelet calculations has no notable dependence on the choice of the wavelets,
while it is less sensitive to N compared to that of the w/o-wavelet calculation. In the
future it may be necessary to make it clear why the difference of the local patterns of
χ’s occurs depending on the choice of the wavelets, and to conclude which wavelet
is the best for a given physical system. As one sees from the comparisons in Fig. 2.4,
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it can be revealed that the optimized parameters by the wavelet analysis are almost
the same as the w/o-wavelet ones, except for some local behaviors of the parameters.
Some uncertainties of the optimized parameters obviously exist, and probably come
from either the properties of the wavelet functions, or from other choice of the control
parameters for numerical use, but they do not affect the resulting levels qualitatively.

The lower panel of Fig. 2.5 shows the evolution of the calculated excitation spectra
with the parameters obtained from the wavelet analyses for (d) Paul, (e) Morlet and
(f) Mexican Hat wavelets. Here we emphasize that any of these wavelet functions
gives almost the same results to the w/o-wavelet calculation, which is consistent with
the experimental trends including the transitional behaviors.

2.5 Brief Summary

In this chapter the method of deriving the Hamiltonian of the IBM based on the
constrained self-consistent mean-field approach using microscopic nuclear EDF has
been introduced. The fermionic constrained energy surface with quadrupole degrees
of freedom was mapped onto an appropriate classical limit of the boson Hamiltonian
in the coherent-state formalism. The strength parameters of the IBM Hamiltonian
can be determined through this process. The IBM Hamiltonian parametrized by these
interaction strengths is diagonalized, providing excitation energy and the electromag-
netic transition rates. As a first stringent test, axially symmetric Sm isotopes has been
analyzed starting from the constrained Skyrme HF+BCS method with the SkM* and
SLy4 functionals, and the observed structural evolution from the vibrational to the
rotational states has been reproduced well.

The results of the present work exhibited almost equal quality of agreement with
experiment to the earlier OAI mapping that uses an empirical shell-model interaction.
However, a shell-model interaction may not be always an appropriate starting point
because it contains too many aspects. Some of these aspects are enhanced, but some
others may be suppressed in the low-lying collective states. A popular energy density
functional, any of Skyrme and Gogny as well as the RMF functionals, is universal
in such a way that it is already calibrated to the observed bulk properties of finite
nuclei, and is hence supposed to be more appropriate to start with for the analysis of
nuclear shape phenomena. Although the Skyrme EDF has been used throughout this
chapter, the procedure turns out be, as one will see later, general so that it is almost
independent of the details of EDF.

It was shown that the IBM parameters can be derived unambiguously by using
the technique of the Wavelet transform, whereas naive χ-square fit does not make
sense. Wavelet transform is done first for the self-consistent mean-field energy sur-
face within the appropriate range within the βγ plane that is relevant to the low-lying
quadrupole collective states, and the wavelet transform of the fermionic energy sur-
face is subsequently fitted to the relevant Wavelet transform of the IBM energy
surface. This procedure is quite robust because only essential feature of fermionic
energy surface, rather than every detail, can be extracted quite effectively.
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The present mapping idea opens up a new avenue for calculating the collective
quadrupole dynamics of medium-heavy and heavy nuclei from a microscopic picture,
and a particularly important outcome is such that, contrary to earlier empirical IBM
studies, we gain a capability to predict energies and wave functions of excited states
in unknown territories on the nuclear chart, not yet studied experimentally.
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Chapter 3
Rotating Deformed Systems with Axial
Symmetry

3.1 A Piece of History, and Basics

In Chap. 2 it has been shown that, in the method of Ref. [1], the deformation energy
surface of the self-consistent mean-field calculation is compared to the corresponding
energy surface of IBM to obtain the parameters of IBM Hamiltonian. This procedure
has turned out to be valid particularly for nuclei with weak to moderate quadru-
pole deformation, and has been practiced extensively in various mass region [2–5].
When a nucleus is well deformed, however, the rotational spectrum in actual nuclear
system appears to be systematically different from the corresponding bosonic one
(cf. Fig. 2.5). This is manifested by too small bosonic moment of inertia as compared
to the corresponding fermionic, i.e., experimental, moment of inertia [1, 2].

This kind of difference has been known, in many cases, as a result of limited
degrees of freedom in IBM, which in its standard version is comprised of s and d
bosons only [6, 7]. In order to remedy this problem, other type of collective nucleon
pairs, e.g., the L = 4+ (G) pair, and the corresponding boson image (g boson) have
been introduced, and their effects were renormalized into sd boson sector, yielding
IBM Hamiltonians consistent with phenomenological ones [6–17]. Meanwhile, the
validity of IBM for rotational nuclei was analyzed in terms of the Nilsson plus
BCS model [18], coming up with the criticism that the SD-pair truncation may
not be sufficient for describing intrinsic states of strongly deformed nuclei, and
this naturally casts a question concerning the applicability of the IBM to rotational
nuclei in particular. While it has been reported that the SD-pair dominance holds to
a good extent in intrinsic states of rotational nuclei [13, 19, 20], there has been no
conclusive mapping procedure from nucleonic systems to the corresponding IBM
systems covering rotational nuclei. It is thus of much interest to revisit this issue
with the newly proposed method of Ref. [1], looking for a prescription to cure the
afore-mentioned problem of too small IBM moment of inertia.

In the method presented in Ref. [1], we calculated the energies of nucleonic and
bosonic intrinsic states representing various quadrupole deformations, and obtained
energy surfaces. We then determined parameters of the IBM Hamiltonian so that

K. Nomura, Interacting Boson Model from Energy Density Functionals, 53
Springer Theses, DOI: 10.1007/978-4-431-54234-6_3, © Springer Japan 2013

http://dx.doi.org/10.1007/978-4-431-54234-6_2
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Fig. 3.1 Concept of the rotational cranking. The intrinsic state for axially deformed system (indi-
cated by the object with broken line) is rotated by the small angle. The ellipsoid whose boundary is
indicated by the solid line represents the rotated intrinsic shape of the deformed system. The arrows
going through both ellipsoids represent the symmetry axises of the intrinsic frame

the bosonic energy surface becomes identical to the nucleonic one [1], as shown in
Sect. 2.4.1. These intrinsic states are at rest with rotational frequency ω = 0. In this
chapter, we move on by one step further with non-zero rotational frequency ω �= 0.
Actually we analyze the responses of the nucleonic and bosonic intrinsic states by
rotational cranking with infinitesimal ω. From such responses, one can extract the
most important rotational correction to the IBM Hamiltonian.

Figure 3.1 illustrates the concept of the rotational cranking. The nucleon intrinsic
state |ΦF 〉 is obtained from the Hartree-Fock plus BCS (HF+BCS) calculation of
the same type as the one done in Refs. [1, 2]. The Skyrme functional SkM* [21]
is used throughout, while different types of the Skyrme functional do not alter the
conclusion.

We start with the simple IBM-2 Hamiltonian, which is the same as the one used in
the analyses in the Chap. 2, Eq. (2.41). Let us here recall the form of the Hamiltonian:

ĤB = εn̂d + κ Q̂π · Q̂ν, (3.1)

where the first and the second terms represent the d-boson number operator and the
quadrupole-quadrupole interactions, respectively. These terms have already been
defined in Eqs. (2.42) and (2.44), respectively. To make the difference between
fermion and boson systems clearer, all operators, states and observables for fermion
and boson systems in this chapter are characterized by the subscripts F (fermions)
and B (bosons), respectively. Here the parameters ε, κ , χπ and χν are determined
by comparing nucleonic and bosonic βγ energy surfaces, following the method of
Refs. [1, 2] described in Chap. 2, and are presented in Fig. 2.4g–l. The coherent state
is denoted by |ΦB〉, which is exactly the same as the one that appeared already in
Eq. (2.36).

3.2 Rotational Cranking

We now look into the problem of rotational response. We shall restrict ourselves to
nuclei with axially symmetric strong deformation, because this problem is crucial
to those nuclei but is not so relevant to the others. An axially symmetric intrinsic
state is invariant with respect to the rotation around the symmetry (z) axis. This

http://dx.doi.org/10.1007/978-4-431-54234-6_2
http://dx.doi.org/10.1007/978-4-431-54234-6_2
http://dx.doi.org/10.1007/978-4-431-54234-6_2
http://dx.doi.org/10.1007/978-4-431-54234-6_2
http://dx.doi.org/10.1007/978-4-431-54234-6_2
http://dx.doi.org/10.1007/978-4-431-54234-6_2
http://dx.doi.org/10.1007/978-4-431-54234-6_2
http://dx.doi.org/10.1007/978-4-431-54234-6_2
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Fig. 3.2 Overlap between the intrinsic state and the rotated one at angle β for 146−154Sm and
230−238U nuclei for a, c fermion (HF+BCS) and b, d boson (IBM) systems. Skyrme SkM* func-
tional is used. The figure has been taken from Ref. [22]

means aρμ = 0 for μ �= 0 in Eq. (2.36) in the case of bosons. Such intrinsic states
of nucleons and bosons are supposed to be obtained as the minima of the energy
surfaces. Let us now rotate the axially symmetric intrinsic states about the y-axis by
angle β. Figure 3.2 shows the overlap between the intrinsic state |ΦX 〉 and the rotated

one |Φ ′
X 〉 = e−i L̂ yβ |ΦX 〉, where X stands for either fermion (X = F) or boson

(X = B). Here L̂ y denote the y-component of the angular momentum operator for
boson or nucleon system. We take 146−154Sm and 230−238U nuclei as examples. Some
of these nuclei are good examples of SU(3) limit of IBM [23].

Figure 3.2a, c, as well as Fig. 3.2b, d, shows the overlaps for nucleons and bosons, 1

respectively. For Sm isotopes, the parameters of the boson Hamiltonian ĤB are taken
from [2], which have been presented also in Fig. 2.4g–l, while the parameters for U
isotopes are determined in the same way as ε ≈ 0.100 MeV, κ ≈ −0.18 MeV, and
χπ ≈ χν ≈ −1.0, which characterize the deformed nuclei close to the SU(3) limit
[24]. These parameters for Sm and U isotopes are used throughout this chapter.

1 Calculation of the overlap is described in Appendix B.1.

http://dx.doi.org/10.1007/978-4-431-54234-6_2
http://dx.doi.org/10.1007/978-4-431-54234-6_2
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In each case of Fig. 3.2, the overlap is peaked at the rotation angle of β = 0◦
with the value unity, and decreases with β. The nucleonic overlaps are peaked more
sharply, whereas boson ones are damped more slowly. It is clear that as a function ofβ,
boson rotated intrinsic state changes more slowly than the corresponding nucleon
one, due to limited degrees of freedom for IBM consisting of s and d bosons only.

We point out that the overlap becomes narrower in β with the neutron number N
for Sm isotopes (see Fig. 3.2a, b). This is related to the growth of deformation. On
the other hand, there is no notable change in the overlap for these U isotopes, because
pronounced prolate minimum appears always at β2 ∼ 0.25 in their energy surface,
with β2 denoting the axially-symmetric deformation in the geometrical model.

The nucleon-boson difference of the rotational response discussed so far suggests
that the rotational spectrum of a nucleonic system may not be fully reproduced by the
boson system determined by the mapping method of Ref. [1] using the energy surfaces
at rest. In fact, it will be shown later that the moment of inertia of a nucleon system
differs from the one calculated by the mapped boson Hamiltonian. We then propose
to introduce a term into the boson Hamiltonian, so as to keep the energy surface-
based mapping procedure but incorporate the different rotational responses. This
term takes the form of L̂ · L̂ where L̂ denotes the boson angular momentum operator:

L̂ = L̂π + L̂ν with L̂ρ = √
10[d†

ρ d̃ρ](1). (3.2)

This term is nothing but the squared magnitude of the angular momentum with the
eigenvalue L(L + 1), and changes the moment of inertia of rotational band keeping
their wave functions. A phenomenological term of this form was used in the fitting
calculation of IBM, particularly in its SU(3) limit [23], without knowing its origin
nor physical significance.

We adopt, hereafter, a Hamiltonian, Ĥ ′
B , which includes this term with coupling

constant α:
Ĥ ′

B = ĤB + α L̂ · L̂, (3.3)

where ĤB is given in Eq. (3.1). Theα L̂ ·L̂ term will be referred to as LL term hereafter.
The LL term contributes to the energy surface in the same way as a change of
d-boson energy Δε = 6α (see Eq. (3.1)), because the energy surface at rest (i.e.,
ω = 0) is formed by the boson intrinsic state |ΦB〉 containing no d±1 component.
Hence, by shifting ε slightly, we obtain the same energy surface as the one without the
LL term, and consequently the other parameters of mapped HB remain unchanged.

We now turn to the determination of α in Eq. (3.3). First, we perform the cranking
model calculation for the fermion system to obtain its moment of inertia, denoted
by JF , in the usual way [26]. By taking the Inglis-Belyaev (IB) formula, we obtain
[27, 28]

JF = 2 ·
∑

i, j>0

|〈i |L̂k | j〉|2
Ei + E j

(ui v j − u j vi )
2, (3.4)
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where energy Ei and v-factor vi of quasi-particle state i are calculated by the
HF+BCS method of Refs. [29, 30]. Here, Lk is the nucleon angular momentum
operator, and k means the axis of the cranking rotation, being either x or y, as z-axis.
Based on the earlier argument, the y-axis is chosen following a conventional notation.

Next, the bosonic moment of inertia, denoted as JB , is calculated by the cranking
formula of Ref. [31] with d±1 being mixed, to an infinitesimal order, into the coherent
state |ΦB〉 of Eq. (2.36):

JB = lim
ω→0

1

ω

〈ΦB |L̂k |ΦB〉
〈ΦB |ΦB〉 , (3.5)

with

|ΦB〉 ∝
∏

ρ=π,ν

{
sρ + βB cos γBd†

ρ0 + 1√
2

sin γB(d
†
ρ+2 + d†

ρ−2)

+ aρ1d†
ρ+1 + aρ−1d†

ρ−1

}Nρ |0〉 (3.6)

where ω is the cranking frequency, aρ+1 (=aρ−1) denotes the amplitude for dρ±1

bosons, and L̂k stands for the k-component of boson angular momentum operator.
Note that aρ±1 ∝ ω at the limit of ω → 0, leading JB to a finite value. The exact
form of the IBM cranking moment of inertia can be found in Appendix B.1.

The value of α is determined for individual nucleus so that the corresponding
bosonic moment of inertia, JB in Eq. (4.9) becomes equal to JF in Eq. (3.4). This
prescription makes sense, if the nucleus is strongly deformed and the fixed intrinsic
state is so stable as to produce individual levels of a rotational band through the
angular momentum projection in a good approximation. The resultant excitation
energies should follow the rotor formula Ex ∝ L(L + 1) for L being the angular
momentum of the level. The present prescription with the LL term should be applied
only to certain nuclei which belong to this type. We introduce a criterion to select
such nuclei in terms of the ratio R4/2 = Ex(4

+
1 )/Ex(2

+
1 ), and set a minimum value

for this. Empirical systematics [33] suggests that the evolution towards stronger
deformation continues as the number of valence nucleons increases, but this evolution
becomes saturated beyond R4/2 ∼ 3.2. Namely, for the nuclei with R4/2 > 3.2, the
deformation is considered to be evolved sufficiently well, and we take R4/2 > 3.2
as the criterion to apply the LL term. This discrete criterion is also for the sake of
simplicity, but the major discussions of this work do not depend on its details.

Figure 3.3a–c shows the moments of inertia for Sm and U isotopes. In these figures,
JB calculated with the LL term (w/ LL), JB calculated without it (w/o LL), and
JF are compared. Experimental ones determined from the 2+

1 levels [32] are shown
also.

We divide Sm isotopes into two categories according to the criterion defined
above. First, the ratio R4/2 is calculated without the LL term, leading to 152−158Sm
with R4/2 > 3.2 and 146−150Sm with R4/2 < 3.2. For the former category, the LL

http://dx.doi.org/10.1007/978-4-431-54234-6_2
http://dx.doi.org/10.1007/978-4-431-54234-6_4
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Skyrme functional SkM* is used. The figure has been taken from Ref. [22]

term should be included, and Fig. 3.3b demonstrates that the LL term has significant
effects so as to be consistent with the experimental moment of inertia. To be more
precise, the experimental value is relatively large for N ≥ 90, and looks nearly flat
for the nuclei with N ≥ 92, being 35 ∼ 40 MeV−1. Enlargement of the moment of
inertia means that the parameter α should be negative. The IB formula reproduces
this trend quite well, which is inherited to bosons by the present method.

Although the LL term should not be used for the category depicted in Fig. 3.3a,
one can observe some features that both JF and JB increase with N . Although
experimental moment of inertia exhibits a gap between Fig. 3.3a, b (from N = 88
to 90), neither JB nor JF follow this trend, showing only gradual changes. This
could be, for example, due to the absence of the particle number conservation in the
Skyrme EDF calculation. We do not touch on this point in this chapter.

Figure 3.3d, e shows, respectively, the derived α value for the 146−150Sm and the
152−158Sm nuclei. First we notice an overall trend that α does not change so much,
while the IB value of JF changes by an order of magnitude. Although the α values
for the 146−150Sm nuclei do not make much sense, this is of certain interest.

Figure 3.3c shows the moments of inertia for the 232−236U nuclei, which are rather
flat. We point out that the calculated moment of inertia, JF = JB with the LL
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term, turned out to be about twice large as that of 152−158Sm. This dramatic change
is consistent with experiment, although somewhat overshoots experimental changes.

We shall then discuss eigenvalues of Ĥ ′
B in Eq. (3.3) obtained by the diagonaliza-

tion using NPBOS code [34]. We first investigate to what extent Ex(2
+
1 ) is lowered

by the LL term. Figure 3.4 shows the fraction of this lowering, by normalizing it
with respect to the Ex(2

+
1 ) without the LL term, for (a) Sm and (b) U isotopes. This

lowering is, as indicated by the arrows in Fig. 3.4, >30 % for 154–160Sm and >60 %
for 232–236U. On the other side, it is almost vanished or quite small for N = 84–90.
Thus, it may not affect the IBM description much, even if one keeps the LL term in
all nuclei. We do not take it, because the present derivation does not give physical
basis for the LL term for nuclei without strong deformation.

3.3 Results and Discussions

3.3.1 Rotational Bands

Figure 3.5 shows the evolution of low-lying yrast spectra for (a) Sm and the neigh-
boring (b) Gd isotopes as functions of N . For both Sm and Gd isotopes, the LL
term is included for N ≥ 90, but is not included for N ≤ 88, based on the criterion
discussed above. The IBM parameters for Gd isotopes are derived similarly to those
used for Sm isotopes. Figure 3.5a, b indicates that calculated spectra become more
compressed with N and exhibit rotational feature for N ≥ 90, similarly to the exper-
imental trends [32]. One notices a certain deviation at N = 88, where the Skyrme
energy surface favors stronger deformation and the calculated excitation energies are
somewhat too low [2].
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Fig. 3.5 Experimental [32] (symbols) and calculated (curves) yrast spectra for a Sm and b Gd
isotopes as functions of neutron number N . Skyrme functional SkM* is used. The figure has been
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Figure 3.6 shows yrast levels of 154Sm, 156Gd, 230Th and 230U nuclei as repre-
sentatives of rotational nuclei. The LL term is included for these nuclei, as they
fulfill the criterion. For the 230Th nucleus, the parameters of the Hamiltonian ĤB

take almost the same values as those for the 232U nucleus. A nice overall agreement
arises between the theoretical and the experimental [32] spectra, and the contribution
of the LL term to it is remarkable. Particularly for the 154Sm and the 230Th nuclei,
the calculated spectra look nearly identical to the experimental ones.

We now comment on side-band levels. The deviations of β-bandhead (0+
2 ) and

γ -bandhead (2+
2 ) energies are improved by tens of keV by the LL term. However,

these band-head energies are still much higher than experimental ones. Thus, there
are still open questions on side-band levels. Nevertheless, the relative spacing inside
the bands is reduced by hundreds of keV, producing certain improvements.

We here remind the reader of those studies which attempt to derive a general collec-
tive Hamiltonian from a given EDF, where the self-consistent mean-field energy sur-
face supplemented with zero point rotational and vibrational corrections are treated
as a collective potential [35–39]. Generalized kinetic energy terms for both rotational
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Fig. 3.6 Level schemes of typical strongly deformed rotational nuclei close to the SU(3) limit
of IBM: a 154Sm, b 156Gd, c 230Th and d 232U nuclei. Calculated spectra with (denoted by w/)
and without (denoted by w/o) the LL term, are compared with experimental [32] spectra. Skyrme
functional SkM* is used. The figure has been taken from Ref. [22]

and vibrational motions come out in such approaches. In the present work, we com-
pare the results of Skyrme EDF with the corresponding results of the mapped boson
system, at the levels of the energy surface and the rotational response. The kinetic
energies of nucleons are included in both levels, while the rotational kinetic-like
boson term appears from the latter.

3.3.2 Validity of Cranking Formula

Before closing this chapter, what should be worth mentioning is the validity of the
cranking (Inglis-Belyaev) moment of inertia. This question naturally arises because
it is generally known that, when incorporated into a collective Hamiltonian approach
(e.g., [39]), the Inglis-Belyaev formula underestimates the mass parameters of the
kinetic energies, leading to the systematic deviations of the rotational band. In
the framework of the generator coordinate method (GCM), collective mass can be
deduced with the Gaussian overlap approximation (GOA). The mass parameter in
the GOA is often replaced with the cranking mass. The shortcoming of the Inglis-
Belyaev formula has been ascribed, in the framework of the pairing plus quadrupole
model [40, 41], to the fact that the time-odd component (that breaks the time reversal
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invariance) arising from the moving mean field is ignored in the cranking approxima-
tion. Effect of the time-odd component may become large in reproducing the yrast
states of deformed nuclei when it is incorporated into the cranking mass parameters
obtained from a modern energy density functional, and the collective Hamiltonian
is derived using this corrected cranking masses [42]. In the present work, as shown
in Fig. 3.6, almost perfect agreement is achieved even though the Inglis-Belyaev for-
mula is used in determining the parameter of the LL term. The role of the cranking
moment of inertia is rather different between the present and the collective Hamil-
tonian approaches: In the former, only the difference between the fermion and the
boson intrinsic (cranking) moments of inertia is of relevance in order to fix the LL
coefficient. As the boson intrinsic moment of inertia is in many cases sufficiently
smaller than the fermion one in deformed nuclei, the particular deficiency of the
cranking approximation itself may not severely matter the resultant rotational band.
In the latter approach, however, the cranking moment of inertia is used explicitly
as mass parameter, which could alter the final result to a large extent. In the IBM
system, necessary dynamical effects could be in principle included through the diag-
onalization of the Hamiltonian. Nevertheless, anything definite cannot be concluded
at the moment concerning the extent to which the time-odd field is included in the
boson system quantitatively, because one cannot obviously make any one-to-one
correspondence from the time-odd field in the nucleon system to an appropriate one
in the boson system.

3.4 Brief Summary

To summarize this chapter, we have proposed a novel formulation of the IBM for
rotational nuclei. The rotation of strongly deformed multi-nucleon system differs, in
its response to the rotational cranking, from its boson image obtained by the mapping
method of Ref. [1] where the energy surface at rest is considered. Significant dif-
ferences then appear in moment of inertia between nucleon and boson systems. We
have shown that this problem is remedied by introducing the LL term into the IBM
Hamiltonian. The effect of the LL term makes essential contribution to rotational
spectra, solving the longstanding problem of too small moment of inertia micro-
scopically. Experimental data are reproduced quite well, without any phenomeno-
logical adjustment. The mapping of Ref. [1] appears quite sufficient for vibrational
and γ -unstable nuclei, and the present study makes the IBM description of strongly
deformed nuclei sensible theoretically and empirically. Thus, we seem to have come
to the stage of having microscopic basis of the IBM in all situation at the lowest
order. Meanwhile, this achievement is partly due to the successful description of
Skyrme energy density functional. The feature discussed in this chapter is related
to the question as to whether the IBM can be applied to deformed nuclei or not
[18]. The present work indicates that the rotational response is substantially differ-
ent between fermions and bosons, but the difference can be incorporated into the
IBM in a microscopic and self-consistent way.
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Chapter 4
Weakly Deformed Systems with Triaxial
Dynamics

4.1 Quantum Phase Transitions

Before discussing each particular case, we review in this section the concepts of
quantum/shape phase transition and of the critical-point symmetries as they are useful
to better interpret the shape phenomena considered in this chapter.

Quantum phase transition (QPT) is one of the central issues in finite quantal
systems, including atomic nucleus and other mesoscopic systems, as well as in high-
energy and condensed matter physics. Particularly, equilibrium nuclear shape, e.g.,
of quadrupole-type, undergoes the distinct structural evolution between spherical
vibrational and deformed rotational states with Z and/or N . Here the nuclear QPT in
this context means the one that occurs at a specific number of N and/or Z , which is
discrete and as such should differ from the usual phase transition of thermodynamic
type. As the QPT in nuclei is rather unique, it has drawn much attention from various
perspectives (for review, see Refs. [1, 2], for instance).

Figure 4.1 depicts the phase diagram (or, the IBM-1 symmetry triangle), where
each of the vertices corresponds to a limit of three dynamical symmetries of IBM. The
diagram is drawn in terms of only two strength parameters of the IBM-1 Hamiltonian
in the consistent-Q formalism, which is similar to the one of Ising type:

ĤCQF = εn̂d − κ Q̂ · Q̂

= c
[
(1 − ζ )n̂d − ζ

4NB
Q̂ · Q̂

]
with ζ = 4NB

4NB + ε/κ
, (4.1)

where c and NB denote the overall scaling factor irrelevant to the QPT and the
number of bosons, respectively. The d-boson number operator n̂d = d† · d̃ and the
quadrupole operator Q̂ = d†s+s†d̃+χ [d†d̃](2) correspond to their IBM-2 analogues
in Eqs. (2.42) and (2.44), respectively. The equilibrium shape of a given nucleus can
be specified by the two parameters ζ and χ : ζ is related to the ratio ε/κ and controls
the competition between the spherical-driving (n̂d ) term and the deformation-driving
(Q̂ · Q̂) term. χ has the similar meaning to the ones in IBM-2 (cf. Eq. (2.44)) and

K. Nomura, Interacting Boson Model from Energy Density Functionals, 65
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Fig. 4.1 Symmetry triangle of IBM-1, or equivalently the phase diagram with respect to the para-
meters in the Hamiltonian of Eq. (4.1): ζ , which corresponds to the ratio ε/κ and controls the
transition between spherical and deformed phases, and χ , which determines the softness in γ .
The three vertices represent the dynamical symmetries of the IBM. For each limit, level scheme is
depicted together with the R4/2 value, which denotes the ratio of the 4+

1 to the 2+
1 excitation energies.

Note that oblate deformation and the transition between prolate and oblate deformed states as well
are not considered here. According to the ζ and the χ values for a given nucleus, which are usually
taken from the phenomenological fit, can one associate the nucleus with a specific point inside the
symmetry triangle. The E(5) and X(5) are critical points for the U(5)-O(6) and U(5)-SU(3) tran-
sitions, respectively. The line connecting E(5) with X(5) separates the deformed and the spherical
phases

determines the type of the deformation, i.e., the γ softness. According to the ζ and
the χ values for a given nucleus, which are usually taken from the phenomenological
fit, can one associate the nucleus with arbitrary point inside the symmetry triangle.1

Along the lines of U(5)-SU(3) and U(5)-O(6) transitions in the symmetry triangle,
one sees the X(5) [3] and E(5) [4] critical-point symmetries, respectively, which will
be discussed below.

Order parameters of the QPT usually correspond to level energies of some
low-lying states like the 2+

1 state, electromagnetic transition rates, binding energies,
two-nucleon separation energies …, etc., which change discontinuously at a specific
value of control parameter. The transition from U(5) to SU(3) symmetries and the one
from U(5) to O(6) represent the first- and the second-order phase transitions, respec-
tively, because it is empirically known that the order parameters and their derivative
with respect to a control parameter can change discontinuously at particular number
of nucleons.

1 For instance, ζ → 0 (κ ≈ 0) in U(5) limit; ζ → 1 (ε ≈ 0) and χ → −√
7/2(= −1.32) in SU(3);

ζ → 1 (ε ≈ 0) and χ → 0 in O(6). The ζ and χ values in each limit is depicted in Fig. 4.1.
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We here make a distinction between the critical-point and the dynamical symmetries.
Simply speaking, the former is for fermion and the latter boson systems: the X(5) and
the E(5) symmetries represent the analytical solution of the geometrical collective
Hamiltonian and have little to do with algebraic aspect [3, 4], while the dynamical
symmetries U(5), SU(3) and O(6) are realized in the boson algebra. In the IBM, one
can describe the critical-point and the dynamical symmetries in a unified manner by
taking the classical limit of the IBM Hamiltonian in the coherent state. For the tran-
sition from the spherical to the axially deformed shapes in the general geometrical
collective model, the collective potential energy surface should undergo the change
in its topology from harmonic oscillator to the curve having a minimum at β > 0 as a
function of valence nucleon number (see Fig. 2.1). The X(5) critical point possesses
the potential energy surface taking on the feature that is totally flat in β direction
and that behaves quadratically in γ . For the γ -unstable system, the collective poten-
tial is completely flat in γ . Then, in the transition from the spherical vibrational
to γ -unstable deformed systems, the collective potential of the E(5) symmetry cor-
responds to the infinite square well in β direction but does not depend on γ . The
classical limits of the IBM for the three-dynamical symmetries are provided in the
analytical expressions, which are quite alike the harmonic oscillator for U(5), the one
with sharp minimum at the finite value of β for SU(3), and the one that is totally flat
in γ direction for O(6). Potentials similar to those in E(5) and X(5) models can also
be realized in the boson model. Strictly speaking, however, the classical limit of the
IBM Hamiltonian represents total energy, which should contain the effects of kinetic
energies in addition to potential term.

The level schemes of both the X(5) and E(5) models can be obtained by solving
the collective Hamiltonian under the infinite square-well potential with and without
the γ dependence, respectively. With the assumptions of the potentials, one is led to
the five dimensional differential equation, whose solutions can be obtained as Bessel
functions. Quantum numbers of the X(5) and the E(5) symmetries correspond to zeros
of the Bessel functions. These level schemes obtained from X(5) and E(5) models
are completely parameter free but for the overall scale factors that are irrelevant to
the qualitative studies.

Possible empirical evidence for the critical points has been studied for each
transitional class and the critical-point symmetries. For example, in axially deformed
nuclei in rare-earth region, drastic shape change as a function of neutron number is
observed at the N = 90 isotones. This is recognized as the first order QPT from U(5)
to SU(3) limits, and N = 90 nuclei can be the good examples of X(5) symmetry [5].
On the other hand, A ∼ 130 region nuclei such as Xe-Ba nuclei are typical nuclei
with significant γ instability and the U(5)-O(6) transition, where in particular 132Ba
and 134Ba are nice examples of the O(6) and the E(5) symmetries [6]. It is much
more difficult to find out the QPT along O(6)-SU(3), since one cannot identify any
clear signature in an order parameter.

Other classes of phase transitions can be formulated when the symmetry triangle
of Fig. 4.1 is extended. If one extrapolates the leg that starts from SU(3) to O(6) to
go further beyond the O(6) vertex, another symmetry limit associated with the oblate

http://dx.doi.org/10.1007/978-4-431-54234-6_2
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axially-symmetric deformation (so-called SU(3) symmetry) can be defined. In this
case, the O(6) can be viewed as the critical point locating in between prolate and
oblate equilibrium shapes [7].

The concepts of QPT and critical-point symmetries are so oversimplified that it is
not obvious whether such schematic descriptions apply to realistic nuclear systems in
which considerable amount of quantum fluctuation enters. The following six sections
are mainly devoted to this issue in comparison to the available experimental data and
to other nuclear structure models.

In all the nuclei considered in this chapter, except for some Yb, Hf, W and Os
nuclei near midshell (Sect. 4.3.3), no such problem arises that concerns the overall
scale of the moment of inertia of rotational band, which was analyzed in Chap. 3. The
use of the essential IBM Hamiltonian of Eq. (2.41) then suffices, which is derived
only through the energy-surface analyses.

The thorough investigation of the first-order QPT in rare-earth region remains
to be done along the same line, where rotational correction discussed in Chap. 3 is
necessary. This issue has been addressed in [8].

4.2 Axially to γ -Unstable Deformed Nuclei

The nuclei with mass A ≈ 100–130 exhibit very rich shape phenomena, including
the γ -softness. A lot of phenomenological IBM calculations have been carried out in
the past and have turned out to be valid for the nuclei in these mass regions because
there are relatively enough experimental data to compare. More recently several
possible evidence for the transition from the vibrational to the γ -soft shapes together
with E(5) critical points have been pointed out in Ru and Ba isotopes.

The IBM Hamiltonian of the considered nuclei are derived using a unified
way based on the EDF-to-IBM mapping procedure with a single parametrization
of Skyrme functional SkM* in the next three subsections (Sects. 4.2.1–4.2.3),
where most of the considered nuclei have modest deformation. Note that the
qualitative features of the results and their overall agreement with the experi-
mental data do not depend too much on the choice of the EDFs and on the
pairing properties. Self-consistent constrained mean-field calculations presented
in Sects. 4.2.1–4.2.3 have been performed by the HF+BCS method using ev8
code [9] with the Skyrme functional SkM* [10] throughout, similarly to the case
in Sect. 2.4.1.

As the first example we consider the Ru and Pd isotopes with mass A ≈ 100–120,
where the typical spherical-to-γ -unstable shape transition has been observed.

http://dx.doi.org/10.1007/978-4-431-54234-6_3
http://dx.doi.org/10.1007/978-4-431-54234-6_2
http://dx.doi.org/10.1007/978-4-431-54234-6_3
http://dx.doi.org/10.1007/978-4-431-54234-6_2
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4.2.1 Z < 50, 50 ≤ N ≤ 82 Major Shells

Energy Surface

We show in Fig. 4.2 the energy surfaces for Ru isotopes for N = 54–80. The
pattern of the energy surface changes with N moderately. For N = 54–62, the self-
consistent HF+BCS (indicated by HF in Fig. 4.2) energy surface suggests a nearly
spherical structure, which is slightly prolate deformed. The flat area in the β–γ plane
becomes larger from N = 62 to 64 significantly, which suggests the transition from
nearly spherical to γ -unstable shapes. The HF+BCS energy surface of Ru isotopes
exhibits a weak triaxial deformation for N = 64–70, which is described by the flat
IBM energy surface with χπ + χν ∼ 0. As seen in Fig. 4.2, the HF+BCS energy
surface for N = 64–70 is quite complicated in topology so that it behaves like an

Fig. 4.2 Same as the RHS of Fig. 2.3, but for Ru isotopes

http://dx.doi.org/10.1007/978-4-431-54234-6_2
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Fig. 4.3 Same as Fig. 4.2 but for Pd isotopes

infinite wall. This cannot be reproduced by the IBM energy surface of Eq. (2.46) and
is far beyond the limit of the present energy surface fit.

The energy surfaces for Pd isotopes are depicted in Fig. 4.3. The self-consistent
HF+BCS energy surface exhibits spherical structures in the vicinity of the shell
closures N = 50 and 82, and shows a shallow prolate minimum for the open-
shell region, without any notable change of the degree of deformation. This flat
and weakly prolate deformed structure can be seen in a wide range of the neutron
number, N = 60–72. These trends of the Skyrme HF+BCS energy surfaces are
nicely reproduced by the IBM energy surfaces. Unlike some Ru isotopes in Fig. 4.2,
the HF+BCS energy surface for Pd isotopes is rather simple overall to be reproduced
well by the IBM energy surface.

http://dx.doi.org/10.1007/978-4-431-54234-6_2
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Fig. 4.4 Evolution of the IBM parameters for Ru and Pd isotopes studied with SkM* force. χπ is
kept constant as −0.500 and −0.600 for Ru and Pd, respectively. The figure has been taken from
Ref. [11]

Derived IBM Parameters

We show in Fig. 4.4 the evolution of the derived IBM parameters. The overall
tendencies of ε, κ and Cβ are common for both Ru and Pd isotopes, where almost par-
abolic systematics with N with respect to the midshell is seen in ε and Cβ , although
there are quantitative differences to a certain extent. The χπ value is kept constant as
−0.5 and −0.6 for Ru and Pd isotopes, respectively. For Ru isotopes, χν becomes
larger with the neutron number N , but slightly decreases for N ≥ 74, while, for Pd
isotopes, it increases from N = 54 to 66, around which it becomes constant, and
begins to decrease from N = 70. For N ≥ 66, the magnitude of χπ + χν is slightly
larger with a negative sign in the Pd isotopes than in the Ru isotopes, reflecting that
the energy surface of the former is somewhat steeper in the γ direction than that of the
latter, while both are similarly flat inβ direction. The variation of Cβ reflects the grad-
ual change of βmin at which minimum occurs. In the earlier phenomenological work
within IBM-2 [13], the parameter χν increases monotonically and χπ is opposite in
sign to the present parameter values for both Ru and Pd isotopes. Other parameters
used in [13] are generally consistent with the present ones.

Spectra

Figure 4.5 exhibits the evolution of low-lying spectra as functions of the neutron
number N for Ru and Pd isotopes.

For both Ru and Pd isotopes, the calculated spectra in the vicinity of the shell
closure N = 50 look like those of a spherical vibrator, where 4+

1 , 0+
2 and 2+

2 form
the triplet, which is characteristic of the U(5) limit. This level structure is commonly
found to continue from N = 54 to around N = 62. For N = 64–70, each calculated
level comes down with the increase of N to show as a whole the O(6)-like level
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and the experimental data [12], respectively, as indicated in the figure. The figure has been taken
from Ref. [11]

scheme. Of the triplet 4+
1 , 0+

2 and 2+
2 , only the 0+

2 state is not lowered and remains
close to the 6+

1 state. This is characteristic of the γ -unstable O(6) nuclei. Thus
N = 62 nuclei are supposed to be critical points of the U(5)-O(6) transition. For the
Ru isotopes, the behavior of the calculated 0+

2 level is in good agreement with exper-
imental one, while the experimental 4+

1 , 0+
2 and 2+

2 levels remain degenerated all the
way, being characteristic of the vibrational level pattern. However, the calculated 0+

2
energy of Pd isotopes is somewhat larger (or more rotational-like) than the experi-
ment.

The HF+BCS energy surfaces for N = 64–70 Ru nuclei are quite soft in γ , where
the depth of their minima are only a few hundred keV in energy, and can be thus
approximated by totally flat IBM energy surfaces. In spite of the simplification, one
obtains the good agreement of the excitation spectra. As far as the low-lying states
like those in Figs. 4.2 and 4.3 are concerned, exact location of the absolute minimum
does not seem to matter too much, as the triaxial dynamics can be incorporated into
the spectra through the configuration mixing by, or the diagonalization of, the IBM
Hamiltonian. The same applies to Ba and Xe isotopes in A ∼ 130 region to be
discussed in Sect. 4.2.2. For the precise description of the quasiγ -band energies,
however, some minor contribution which produces a triaxial minimum may need to
be added to the boson Hamiltonian, such as the three-body or cubic term [14–18].
In fact, the role of the cubic term has been discussed in the context of the odd-even
staggering in the quasi-γ band of Ru isotopes [17, 18]. While such role played by the
cubic term in the quasi-γ band of non-axially symmetric nuclei is out of the focus of
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Sect. 4.2, its importance will be noted in Sect. 4.3 and Chap. 5 and will be included
within the microscopic IBM-2 framework in Chap. 6.

At N = 72, the calculated 4+
1 , 0+

2 and 2+
2 levels form the triplet consistently with

the experimental data, where the overall level pattern resembles the vibrational level
structure. The present calculation predicts this level pattern continues for N ≥ 74. In
each isotopic chain there seems to be another critical point of the O(6)-U(5) transition
around N = 70.

B(E2) Ratios

In Fig. 4.6, we show the evolution of the B(E2) ratios R1–R4 for Ru and Pd isotopes as
functions of N . which are the same as those considered for Sm isotopes in Sect. 2.4.1
and were defined in Eq. (2.51). The calculated R1 ratio is close to the O(6) limit,
R1 = 10

7 , being consistent with the experiments. R2 seems to be more sensitive to N ,
reflecting the structural change. In Ru isotopes, R2 increases sharply from N = 54
to 60 and changes much less for N = 60–66, reflecting the sustained γ instability.
From there it goes up again and has a maximum value at N = 72. The experimental
data show the opposite dependence on N , whereas they have large error bars. A
sudden drop from around N = 72 can be seen in the calculated result for the Ru
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isotopes, approaching zero around N = 78. For the Pd isotopes, R2 has a similar, but
somewhat weaker dependence on N compared with the Ru isotopes, and suggests
smaller values in the open-shell region. The behavior of R3 is rather simple in the
present study. For both Ru and Pd isotopes, it decreases away from the closed shells
to the open-shell region consistently with the experimental data. The calculated R4
values both for Ru and Pd isotopes are close to zero (U(5) and O(6) limits) all the
way, similarly to the experimental data.

4.2.2 Z > 50, 50 ≤ N ≤ 82 Major Shells

Energy Surface

Figure 4.7 shows the comparisons of energy surfaces for Ba isotopes between
HF+BCS (indicated by HF in Fig. 4.7) calculation and the mapped IBM. The self-
consistent HF+BCS energy surface for N = 54 indicates a weakly-deformed shape
with the minimum at βmin ∼ 0.20.

Away from the closed shells to the open-shell region, the HF+BCS energy surface
becomes sharper particularly for the β direction. Accordingly, the minimum point
βmin shifts away from the origin. Somewhat sharp prolate minima can be found from
around N = 56 to 74, beyond which the HF+BCS energy surface becomes flat in both
β and γ directions. This reflects the transition from (prolate) deformed to γ -unstable
shapes. The HF+BCS energy surface suggests a nearly spherical shape with a small
βmin value near the magic number N = 82. These transitions of the microscopic
HF+BCS energy surface are reproduced well by the IBM energy surface.

Both the original and the mapped energy surfaces for N = 76 and 78 Ba nuclei
have large flat areas compared with other Ba nuclei. In the present case, the energy
surface of 134Ba (N = 78) is flatter than that of 132Ba (N = 76): 134Ba seems to be
close to E(5) critical-point symmetry [4], while 132Ba is closer to O(6) limit of IBM.
Indeed, while the R4/2 value of the E(5) model is 2.19, the experimental value for
134Ba is R4/2 = 2.31, which agrees better with the calculated result, 2.50.

We also show in Fig. 4.8 the energy surfaces for Xe isotopes, which exhibit
similar systematics to, but are softer and less deformed than, Ba isotopes. The
HF+BCS energy surface tends to show a sharp prolate minimum for the open-
shell nuclei, and becomes flat for N = 76 and 78. N = 80 nucleus is nearly
spherical, which is slightly deformed. The IBM energy surfaces reproduce all these
transitions well.

Derived IBM Parameters

We show in Fig. 4.9 the evolution of the derived IBM parameters with the neutron
number N for Ba and Xe isotopes, both of which show similar tendencies. While χν
increases with N , the quantityχπ+χν is negative all the way and becomes almost zero
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Fig. 4.7 Same as Fig. 4.2, but for Ba isotopes

for N ≥ 76, where the γ softness appears in the energy surface. χπ is kept constant
as χπ = −0.5 and −0.6 for Ba and Xe isotopes, respectively. The parameters ε,
κ and Cβ exhibit parabolic tendency in Fig. 4.9, being maximal around the middle
of the major shell at which the energy surface shows the largest deformation. The ε
and the κ values for Xe isotopes are generally larger than those for Ba isotopes. The
overall behaviors of the derived parameters in Fig. 4.9 are consistent with existing
phenomenological IBM-2 studies [27], while the magnitude of κ in the present case
is much larger than the one used there.
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Fig. 4.8 Same as Fig. 4.2, but for Xe isotopes

Spectra

We show in the left panel of Fig. 4.10 the low-lying spectra for Ba isotopes as
functions of N . The calculated yrast levels are particularly in good agreement with
the experimental ones. From N = 54 to 58, the present calculation suggests that the
side-band levels, 0+

2 and 2+
2 , deviate from 4+

1 level, exhibiting the transition from the
nearly spherical to deformed shapes. When approaching the middle of the major shell,
the calculated yrast levels decrease with N consistently with the experimental data,
while the present 0+

2 level shows an opposite dependence on N to the experiments.
In the open-shell region, the calculated levels resembles rotational spectra. Indeed
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the R4/2 values of N = 62, 64 and 66 in the present calculation are 3.23, 3.23 and
3.14, respectively, being close to the SU(3) limit (R4/2 = 3.33), while those of the
experiments are 2.86, 2.92 and 2.90, respectively. There are some deviations of the
side-band levels for lighter Ba isotopes. In the present study, however, one cannot
always obtain much information about the side-band structures only by referring to
the unprojected HF+BCS energy surface. The improvement of the side-band levels
should be an interesting future subject.

Approaching the shell closure N = 82, each level energy becomes larger with
N and one sees the level structure of γ -unstable nuclei at N = 76 and 78 similarly
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to the experimental data. In fact, the 4+
1 state is pushed up to be relatively close to

the 2+
2 and 0+

2 states. This is a characteristic feature of the γ -unstable nuclei. At
N = 80, 4+

1 , 0+
2 and 2+

2 states lie close to each other, which is characteristic of the
spherical vibrator. In addition, the calculated R4/2 values for N = 76, 78 and 80 Ba
nuclei are 2.58, 2.50 and 2.36, respectively, where the first two are close to the O(6)
(R4/2 = 2.50) limit and the last one U(5) limit (R4/2 = 2.00). Experimental R4/2
values for N = 76, 78, and 80 Ba nuclei are 2.58, 2.31 and 2.28, respectively, which
are fairly close to the present calculations.

The right panel of Fig. 4.10 shows the excitation spectra for Xe isotopes. The
experimental tendencies are reproduced by the present calculations fairly well. As
already indicated by the self-consistent HF+BCS energy surfaces in Fig. 4.7, the
calculated excitation spectra for lighter Xe nuclei are somewhat more rotational-like,
compared with the experiments. The properties of γ -unstable structures for N = 76
and 78 nuclei are well reproduced. Indeed, the calculated and the experimental R4/2
values for N = 76 (78) Xe nucleus are 2.48 (2.54) and 2.25 (2.94), respectively,
which are fairly consistent.

The HF+BCS energy surfaces for 132,134Ba and 128Xe have triaxial minima in
betweenγ = 0◦ and 60◦, while the IBM energy surfaces do not reproduce them. In the
present study, a triaxial minimum in the HF+BCS energy surface is approximated by
a flat IBM energy surface by putting χπ +χν 	 0 in Eq. (2.46). As far as the ground-
state band energies and the bandhead of the quasi-γ band 2+

2 excitation energies
are concerned, the mapped IBM gives good agreement with the data for the γ -soft
nuclei. Concerning the issue of triaxiality, we here note the equivalence ansatz that
the angular-momentum projection of the IBM wave function for γ -unstable system
can generate similar level pattern of the rigid triaxiality [28]. The issue of whether
γ -soft nucleus is γ -rigid or unstable will be addressed in Chap. 6.

B(E2) Ratios

We show in Fig. 4.11 the B(E2) ratios for Ba and Xe isotopes as functions of N .
The calculated R1 value does not show a strong dependence on N for both Ba and
Xe isotopes, while it increases toward the middle of the major shell, being in the
vicinity of the O(6) limit, R1 = 10

7 . R2 changes rather significantly. For N = 54–64
the calculated R2 value is in the vicinity of the SU(3) limit, R2 = 0, and becomes
larger toward the shell closure N = 82, taking the maximal value close to O(6) limit,
R2 = 10

7 at around N = 76 or 78. In the open-shell region, the present value of R2
for Ba isotopes is closer to zero than Xe isotopes, where the former indicates more
rotational feature of SU(3) limit than the latter. For Xe isotopes, the calculated R2
shows a similar trend to the available data. At N = 78, the present R2 value for Ba
isotopes is closer to the O(6) limit than the Xe isotopes. The R3 value does not change
too much and is close to zero for open-shell nuclei. Its sharp increase for N ≥ 78
may indicate the transition from deformed to γ -soft or to a nearly spherical shape.
R3 of Ba isotopes is smaller than that of Xe isotopes all the way, which suggests
stronger deformation. R4 increases monotonically from around the shell closures to

http://dx.doi.org/10.1007/978-4-431-54234-6_2
http://dx.doi.org/10.1007/978-4-431-54234-6_6
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Fig. 4.11 Same as Fig. 4.6, but for Ba and Xe isotopes. Data are taken from Refs. [29–40]

the middle of the major shell at which it becomes maximal. R4 of Ba isotopes is
generally larger than that of Xe isotopes. The calculated values for both isotopes are
fairly consistent with the experiment for N = 72–80.

Comparison with the E(5) Level Scheme

We discuss a particular nucleus, 134Ba, which has been recognized as a manifestation
of E(5) symmetry [6]. Figure 4.12 shows detailed level schemes of (a) the experimen-
tal data [12, 34–40], (b) the calculated result for 134Ba and (c) E(5) model. Note that
the 2+

1 energy of E(5) is adjusted to 605 keV, which is the experimental 2+
1 energy

for 134Ba.
In the E(5) model, a schematic potential is assumed in addition to the infinite-N

limit [4]. This is apparently not the case with actual nuclei, which results in the
deviations of the calculated and the experimental excitation levels from E(5) ones
as seen from Fig. 4.12. Indeed, the 6+

1 , 4+
2 , 3+

1 and 0+
3 levels are degenerate in the

E(5) model, while the overall patterns of the experimental and the calculated level
schemes for 134Ba seem to resemble O(6) rather than E(5).

The present values of the B(E2) ratios for 4+
1 → 2+

1 and 2+
2 → 2+

1 transitions
are smaller than the experimental data, while the 0+

2 level and the B(E2) ratios for
0+

2 → 2+
1 and 0+

2 → 2+
2 transitions agree with the experiments nicely. From the
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trends of 0+
2 → 2+

1 and 0+
2 → 2+

2 transitions, the 0+
2 state in the present calculation

may be related to the third 0+ state of the E(5) level scheme in Fig. 4.12c, which,
in terms of the ξ and the τ quantum numbers of E(5) model [4], corresponds to the
0ξ=1,τ=3 state.

4.2.3 E(5) Symmetry in Exotic Nuclei

Having done the reasonable comparisons with experiments for various medium-heavy
nuclei, we describe heavy exotic nuclei, W and Os isotopes with N > 126. They are
chosen because no systematic theoretical work has been done.

Mapped Energy Surfaces and Derived IBM Parameters

The self-consistent HF+BCS and the mapped IBM energy surfaces for W and Os
isotopes are compared in Fig. 4.13 for N = 130–140. The HF+BCS energy surfaces
for N = 130 nuclei, 204W and 206Os, have the minima at β ∼ 0, being similar to
the harmonic oscillator potential characteristic of the vibrational or U(5) limit. The
corresponding IBM energy surfaces generally look somewhat flatter, but the overall
patterns are almost the same as the HF+BCS ones. In both W and Os isotopes, the
location of the energy minimum shifts gradually to β 
= 0 with N and the energy
surface becomes steeper in the γ direction, while the flat area becomes larger. This
large flat area, characteristic of E(5) symmetry, continues from N = 132 to 136, while
the change of the energy surface for Os isotopes looks moderate in comparison to the
W isotopes. For the N = 134 nuclei, 208W and 210Os, for instance, which are located
on the way to the shape transition, the energy surfaces exhibit a typical O(6)-E(5)
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Fig. 4.13 Same as Fig. 4.2, but for W and Os isotopes
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χπ = 0.55 and 0.54 for W and Os isotopes, respectively. The figure has been taken from Ref. [11]

structure similarly to the 132,134Ba nuclei. Indeed, the predicted R4/2 values for 208W
and 210Os are 2.49 and 2.45, respectively, both of which are close to the E(5) value
(=2.19) and to the experimental R4/2 value of 134Ba (=2.31). For N ≥ 140, the
HF+BCS energy surface predicts stronger deformation.

We show in Fig. 4.14 the evolution of the derived IBM parameters for W and Os
isotopes. Of particular interest is that χπ and χν have opposite signs with sizable
magnitudes for N ≥ 130. In the IBM-2, this is the origin of the O(6)-E(5) pattern
[41–43]. Each parameter does not change too much with N since there is no drastic
change of the energy surface.
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Spectra and B(E2) Trends

In Fig. 4.15 the level evolution for W and Os isotopes is shown. It is of consid-
erable interest that the magnitude of deformation, represented by the decrease of
the 2+

1 excitation energy, becomes larger with N , while the γ -unstable E(5)-O(6)
level pattern is maintained all the way. Such sustained E(5)-O(6) level structure has
never been seen in stable nuclei, and may become one of the characteristic features
of exotic nuclei with considerable neutron excess. While we assume in the present
study that the proton and the neutron systems move in phase, these restrictions could
be relaxed. The mechanism which causes such an unexpectedly large region of the
E(5) pattern would be also studied in the future. For N ≥ 136 or 138, the calculated
4+

1 level continues to decrease with N , while the 2+
2 state gradually increases. This

indicates the structural evolution from γ -soft to axially symmetric deformed nuclei.
While these tendencies can be found commonly in W and Os isotopes, the transition
in Os isotopes occurs moderately compared with W isotopes.

We show in Fig. 4.16 the predicted B(E2) ratios. While R1 is almost constant,
being close to the O(6) limit (= 10

7 ), R2 becomes larger with N and becomes maximal
at around N = 132 for W isotopes and around N = 132 or 134 for Os isotopes.
The R2 value looks closer to that of the O(6) limit and that of E(5) model (=1.67)
for N = 132–136, while for Os isotopes, R2 changes with N less significantly than
for W isotopes. This moderate change of R2 may be also a characteristic feature
of the sustained γ softness which can be found in the energy surface and in the
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Fig. 4.16 Predicted B(E2)
ratios for W (solid curves) and
Os (dashed curves) isotopes
as functions of the neutron
number N . The ratios R1–R4
are defined in Eq. (2.51). The
Skyrme functional SkM* is
used. The figure has been
taken from Ref. [11]
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excitation spectra. R3 gradually decreases with N similarly to the Ru isotopes, which
suggests structural change. R4 remains almost zero, being much below the SU(3)
limit, R4 = 7

10 .

Comparison with the E(5) Level Scheme

For the sake of completeness, we show in Fig. 4.17 the detailed level schemes,
focusing on the N = 134 nuclei, 208W and 210Os, which may be candidates for E(5)
critical points. The calculated results of (b) 208W and (c) 210Os are compared with
(a) the experimental level scheme for 134Ba nucleus [12, 34–40]. The calculated
B(E2) is generally smaller than the E(5) one of Fig. 4.12c. For both 208W and 210Os,
the calculated B(E2) ratios for the transitions from the yrast to the side-band levels
show quite similar trends to the experiments for 134Ba, except for the selection rule
for the 0+

3 → 2+
1 and the 0+

3 → 2+
2 E2 transitions. The calculated B(E2) ratios for

0+
2 → 2+

2 transition are 1.55 and 1.09 for 208W and for 210Os, respectively, both of
which are closer to the E(5) value (=2.17) than the calculated value for 134Ba (=0.89)
in Fig. 4.12b and the experimental data for 134Ba (=0.82). Moreover, particularly
for 208W, levels of 6+

1 , 4+
2 , 3+

1 and 0+
2 states are to a greater extent degenerated

than those of 134Ba, which is rather O(6)-like. This may also be an evidence for
the richness of the N > 126 region mass region in that there are many examples
of E(5)-like nuclei.

http://dx.doi.org/10.1007/978-4-431-54234-6_2


84 4 Weakly Deformed Systems with Triaxial Dynamics

0

1

2

(a) 134Ba (Expt.)

E
ne

rg
y 

[M
eV

] 3+ 0+

0+

4+

2+

6+

4+

0+

2+

3+

0+

0+

4+

2+

6+

4+

0+

2+

(c) 210Os (IBM)(b) 208W (IBM)

0+

0+

3+
4+

6+

4+
2+

0+

2+

0.07

0.42(12)0

0.82

2.17(69)

1

1.55(21)
1.41

1

1.26

1.55

0.10

1.55

0.12

0.25

1.40

1

1.51

1.27
0.23

1.09

0.08

0.49

Fig. 4.17 Level schemes and B(E2) ratios. a Experimental data for 134Ba [12, 34–40], calculated
results for b 208W and c 210Os. Skyrme functional of SkM* is used. The figure has been taken from
Ref. [11]

4.3 Prolate-Oblate Shape Dynamics

4.3.1 IBM from Gogny D1S

In this section, we present spectroscopic calculations for the Pt isotopic chain (i.e.,
for the even-even isotopes 172−200Pt) in terms of an IBM Hamiltonian determined
microscopically by mapping the energy surface obtained in the framework of the
(constrained) Hartree-Fock-Bogoliubov (HFB) approximation [44–46] based on the
parametrization D1S [47] of the Gogny-EDF [48, 49]. Quite recently, the structural
evolution in Pt isotopes, including the role of triaxility (i.e., the γ degree of freedom),
has been studied by Rodríguez-Guzmán et al. [50]. In addition to the (standard)
Gogny-D1S EDF, the new incarnations D1N [51] and D1M [52] of the Gogny-EDF
have also been included in the mean-field analysis of Ref. [50]. The considered range
of neutron numbers included prolate, triaxial, oblate and spherical shapes and served
for a detailed comparison of the (mean-field) predictions of the new parameter sets
D1N and D1M against the standard parametrization D1S. It has been shown that,
regardless of the particular version of the Gogny-EDF employed, the prolate-to-
oblate shape/phase transition occurs quite smoothly with the γ -softness playing an
important role. It is therefore very interesting to study how the systematics of the
HFB energy surfaces discussed in Ref. [50] is reflected in the isotopic evolution of
the corresponding low-lying quadrupole collective states and how accurately such
states can be reproduced by a mapped IBM Hamiltonian [11, 53]. Let us stress that
our main goal of this section is to study the performance of a fermion-to-boson
mapping procedure [11, 53] based on the Gogny-EDF. For this reason, as a first
step, we will restrict ourselves to a mapping in terms of the parametrization Gogny-
D1S already considered as global and able to describe reasonably well low-energy
experimental data all over the nuclear chart (see, for example, Refs. [46, 54] and
references therein).
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From the theoretical perspective, the Pt and neighboring isotopic chains have been
extensively studied in terms of both IBM and mean-field-based approaches. There
is much experimental evidence [55, 56] revealing existences of γ -unstable O(6)
nuclei in Pt isotopes. The IBM-2 has been used in a phenomenological way for the
spectroscopy of Pt, Os and W isotopes [57, 58]. The prolate-to-oblate transition in Pt
as well as in Os and W nuclei, has been observed in the recent experiment [59], where a
relatively moderate oblate-to-prolate shape/phase transition occurs in Pt as compared
to Os and W nuclei. Spectroscopic calculations have been carried out for Pt isotopes
in the framework of the five-dimensional collective Hamiltonian, derived from the
pairing-plus-quadrupole model [60]. Evidence for γ vibrations and shape evolution
in 184−190Hg has been considered in Ref. [61], where a five-dimensional collective
Hamiltonian was built with the help of constrained Gogny-D1S HFB calculations.
On the other hand, systematic mean-field studies of the evolution of the ground
state shapes in Pt and the neighboring Yb, Hf, W and Os nuclei have been carried
out with non-relativistic Skyrme [44] and Gogny [46, 50] EDFs, as well as within
the framework of the relativistic mean-field (RMF) approximation [62]. One should
also keep in mind, that Pt, Pb and Hg nuclei belong to a region of the nuclear chart,
around the proton shell closure Z = 82, characterized by a pronounced competition
between low-lying configurations corresponding to different intrinsic deformations
[63] and therefore, a detailed description of the very rich structural evolution in
these nuclei requires the inclusion of correlations beyond the static mean-field picture
[64–66] accounting for both symmetry restoration and configuration mixing. The role
of configuration mixing in this region has also been considered in phenomenological
IBM studies [67–69].

Description of the Model

In order to compute the Gogny-HFB energy surfaces, which are our starting point,
we have used the (constrained) HFB method together with the parametrization D1S
of the Gogny-EDF. The solution of the HFB equations, leading to the set of vacua
|ΦHFB(β, γ )〉, is based on the equivalence of the HFB with a minimization problem
that is solved using the gradient method [46, 70]. In agreement with the fitting
protocol of the force, the kinetic energy of the center of mass motion has been
subtracted from the Routhian to be minimized in order to ensure that the center
of mass is kept at rest. The exchange Coulomb energy is considered in the Slater
approximation and we neglect the contribution of the Coulomb interaction to the
pairing field. The HFB quasiparticle operators are expanded in a Harmonic Oscillator
(HO) basis containing enough number of shells (i.e., Nshell = 13 major shells) to
grant convergence for all values of the mass quadrupole operators and for all the
nuclei studied. We constrain the average values of the mass quadrupole operators

Q̂20 = 1
2

(
2z2 − x2 − y2

)
and Q̂22 =

√
3

2

(
x2 − y2

)
to the desired deformation

values Q20 and Q22 defined as
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Q20 = 〈ΦHFB|Q̂20|ΦHFB〉 (4.2)

and

Q22 = 〈ΦHFB|Q̂22|ΦHFB〉. (4.3)

In Ref. [50], the Q − γ energy contour plots with

Q =
√

Q2
20 + Q2

22 (4.4)

and

tan γ = Q22

Q20
(4.5)

have been used to study the (mean-field) evolution of the ground state shapes in Pt
nuclei. Alternatively, one could also consider the β − γ representation in which the
quadrupole deformation parameter β is written [46] in terms of Q [Eq. (4.4)] as

β =
√

4π

5

Q

A〈r2〉 (4.6)

where 〈r2〉 represents the mean squared radius evaluated with the corresponding
HFB state |ΦHFB〉.

The set of constrained HFB calculations described above, provides one with
the Gogny-D1S β − γ energy surface (i.e., the total HFB energies EHFB(β, γ )

[71]) required for the subsequent mapping procedure, for which the basic IBM-2
Hamiltonian of Eq. (2.41). This type of the Hamiltonian used in this chapter embod-
ies only single configuration, i.e., the one that does not include the intruder configu-
ration, which arises from the particle-hole excitation across the proton shell closure.
This means that, in the present work, we do not touch on the shape-coexistence
phenomena. The validity of the use of the Hamiltonian of single configuration
will be examined in Sect. 4.3.1. Here, the 132Sn and the 208Pb doubly-magic
nuclei are assumed to be inert cores, while neutron boson number is changed
according to the usual boson counting rule. This also applies to the analyses
in Sects. 4.3.2 and 4.3.3.

Gogny-D1S and Mapped IBM Energy Surfaces

The IBM energy surfaces obtained for the nuclei 180−198Pt are shown in Fig. 4.18 as a
representative sample. The IBM parameters ε, κ , χπ , χν and Cβ , to be discussed later
on, have been obtained by mapping the corresponding Gogny-D1S energy surfaces
are also shown as references in Fig. 4.18, which are identical to those presented in
Fig. 2 of Ref. [50] along the lines described before.

http://dx.doi.org/10.1007/978-4-431-54234-6_2


4.3 Prolate-Oblate Shape Dynamics 87

Fig. 4.18 The HFB and the IBM total energy landscapes in βγ plane for the nuclei 180−198Pt.
Here, γ = γB and β = βB/Cβ . The energy surfaces are shown within 0.00 ≤ β ≤ 0.40 and
0◦ ≤ γ ≤ 60◦ up to 2 MeV excitation from the minimum. Contour spacing is 100 keV. For details,
see the main text. The figures are taken from Ref. [72]

The IBM energy surfaces from 180Pt to 186Pt display a prolate deformed minimum
and an oblate deformed saddle point. The prolate minimum becomes softer in γ but
steeper in β direction as the number of neutrons increases. This is, roughly speaking,
consistent with the topologies of the HFB energy surfaces, where the minima are
located a bit off but quite nearby the line γ = 0◦.

The IBM energy surfaces for both 188,190Pt are γ soft, having the minimum on the
oblate side. These nuclei are supposed to be close to the critical point of the prolate-
to-oblate shape transition. The corresponding HFB energy surfaces display shallow
triaxial minima with γ ∼ 30◦ and are also soft along the γ direction. The IBM
Hamiltonian considered in the present study does not provide a triaxial minimum,
but either prolate or oblate minimum, as can be seen from Eq. (2.46). The γ -softness
can be simulated by choosing the parameters χπ and χν so that their sum becomes
nearly equal to zero. This is reasonable when a triaxial minimum is not deep enough

http://dx.doi.org/10.1007/978-4-431-54234-6_2
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like the present case, where the triaxial minimum point in the HFB energy surface
differs by at most several hundred keV in energy from either prolate or oblate saddle
point. However, the topology of the mapped IBM energy surface is then somewhat
sensitive to the values of the parameters χπ and χν , which occasionally results in
a quantitative difference in the location of the minimum in the IBM energy surface
from that of the HFB energy surface. In fact, and contrary to what happens with the
HFB energy surfaces, the IBM energy surface of 190Pt is softer in γ than that of
188Pt. One should then expect a certain deviation of the resultant IBM spectra from
the experimental ones, which can be partly attributed to the small difference already
mentioned.

In Fig. 4.18, isotopes from 192Pt to 198Pt exhibit oblate deformation. The locations
of their energy minima and their curvatures in both β and γ directions agree well
with the ones of the Gogny-D1S energy surfaces. These isotopes become steeper
in the γ direction and shallower in the β direction as the number of neutrons
increases. Their energy minima approach the origin more rapidly than the lighter Pt
nuclei shown Fig. 4.18. This evolution reflects the transition from oblate deformed
ground states to a spherical vibrator as one approaches the neutron shell closure
N = 126.

Derived IBM Parameters

The IBM parameters ε, κ , χπ,ν and Cβ derived for the nuclei 172−200Pt from the
mapping procedure described are depicted in Fig. 4.19a–d as functions of the mass
number A.

Figure 4.19a shows the parameter ε gradually decreases toward mid shell in
accordance with the growth of the deformation. This trend reflects the structural
evolution from nearly spherical to more deformed shapes and is consistent with pre-
vious results for other isotopic chains [11]. In Fig. 4.19b, the derived κ parameter
is almost constant and somewhat larger in comparison with the phenomenological
value [58], which is the consequence of the sharp potential valleys observed in the
Gogny-D1S energy surfaces.

On the other hand, in Fig. 4.19c the proton parameter χπ is almost constant
while the neutron parameter χν changes significantly. The systematic behavior of
the present χν value is consistent with the phenomenological one [58], while there is
quantitative difference between the former and the latter. The magnitude of the sum
χπ + χν as well as its sign depend on how sharp the HFB energy surface is in the
γ direction and on whether the nucleus is prolate (negative sum) or oblate (positive
sum) deformed, respectively. Therefore, as χπ does not change much, the role of γ
instability can be seen clearly from the systematics of χν . For the isotopes 172−180Pt
the energy surface exhibits prolate deformation and the sum χπ + χν has negative
sign. The average of the derived χπ and χν values is nearly equal to zero for the
nuclei 182−194Pt. This is a consequence of the γ softness in the corresponding HFB
energy surfaces. On the other hand, the sum χπ + χν becomes larger with positive
sign as we approach the neutron shell closure N = 126 reflecting the appearance of
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weakly deformed oblate structures in the corresponding energy surfaces. In recent
calculations with IBM-1 [68, 69], the sign of χ parameter (equivalent to (χπ +χν)/2
in IBM-2) is always negative for A ≤ 194.

Figure 4.19d shows that Cβ decreases gradually toward the middle of the major
shell. Cβ can be interpreted as the “bridge” between the geometrical deformation β
[73, 74] and the IBM deformation βB and is thus proportional to the ratio between the
total and valence nucleon numbers, in a good approximation [75]. This is probably
the reason for the decreasing trend observed in Fig. 4.19d, as well as in earlier studies
for other isotopic chains [11, 53].

Spectroscopic Calculations

With all the parameters ε, κ , χπ,ν and Cβ required by the IBM Hamiltonian at
hand, we are now able to test the spectroscopic quality of our mapping procedure,
based on the Gogny-D1S EDF, for the nuclei 172−200Pt. Therefore, in the following
we will discuss our predictions concerning the properties of the low-lying spectra
as well as the reduced transition probabilities B(E2). We will also consider their
correspondence with the mapped energy surfaces and the derived IBM parameters.
We will compare our theoretical predictions with the available experimental data
taken from Brookhaven National Nuclear Data Center (NNDC) [12] and from the
latest Nuclear Data Sheets [76–91]. The diagonalization of the IBM Hamiltonian is
performed numerically for each nucleus using the code NPBOS [92].

http://dx.doi.org/10.1007/978-4-431-54234-6_2
http://dx.doi.org/10.1007/978-4-431-54234-6_2
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number A. Experimental data are taken from Ref. [12]. The figure is taken from Ref. [72]

Here we have to note that the experimental 2+
3 and 4+

3 levels for mass numbers
192 ≤ A ≤ 200 belong to bands different from that of the 0+

2 level, while they are
assigned to the quasi-β-band levels in Fig. 4.20b for convenience sake. Similarly,
as one will see in Fig. 4.20c the experimental data for the 3+

1 and the 4+
2 levels in

198,200Pt are assigned to the quasi-γ -band levels lying on top of the 2+
2 energy.

Evolution of Low-Lying Spectra

Figure 4.20 displays the calculated spectra for (a) ground-state, (b) quasi-β and (c)
quasi-γ bands. What is striking is the good agreement between the present calcula-
tions and the experimental data not only for ground-state but also for quasi-β and
quasi-γ band energies, where overall experimental trends are reproduced fairly well
in particular for the open-shell nuclei 180−192Pt.

We show in Fig. 4.20a the evolution of the 2+
1 , 4+

1 , 6+
1 and 8+

1 levels in the
considered Pt nuclei as functions of the mass number A. The calculated energies
decrease toward the middle of the major shell with the number of the valence neutrons
and remain almost constant for 176 ≤ A ≤ 186 nuclei. Although these tendencies are
well reproduced, the rotational features are somewhat enhanced in the calculated
levels for 180,182,184Pt which are slightly lower in energy than the experimental ones.
From both the theoretical results and the experimental data, one can also observe clear
fingerprints for structural evolution with a jump between 186Pt and 188Pt, which can
be correlated with the change of the mapped energy surfaces from prolate to oblate
deformations. For A ≥ 188 the yrast levels gradually go up as the neutron shell
closure N = 126 is approached.

One can also find signatures for a shape/phase transition in the systematics of the
quasi-β band levels shown in Fig. 4.20b. From A = 180 to 186, the 0+

2 band head and
the 2+

3 level look either constant or nearly constant in both theory and experiment.
The two levels are pushed up rather significantly from A = 186 to 188 consistently
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with the systematics in the ground-state band and with the change of the mapped
energy surfaces as functions of the neutron number N . The calculated 0+

2 and 2+
3

levels are higher than but still follow the experimental trends.
Coming now to the quasi-γ band levels shown in Fig. 4.20c, one can observe the

remarkable agreement between theoretical and experimental spectra for 180 ≤ A ≤
186, where the 3+

1 level lies close to the 4+
2 level. However, the present calculation

suggests this trend persists even for 188 ≤ A ≤ 196, whereas the relative spacing
between the experimental 3+

1 and 4+
2 levels for these nuclei is larger. Similar deviation

occurs for 5+
1 and 6+

2 levels, although the latter is not exhibited in Fig. 4.20b. This
means that our calculations suggest the feature characteristic of the O(6) symmetry,
where the staggering occurs as 2+

γ , (3+
γ 4+

γ ), (5+
γ 6+

γ ), .... etc. However, the exper-
imental levels are lying more regularly particularly for 188 ≤ A ≤ 196, and thus
appear to be in between the O(6) limit and a rigid triaxial rotor where the staggering
shows up as (2+

γ 3+
γ ), (4+

γ 5+
γ ), . . . etc. [28]. Such a deviation of the γ -band structure

seems to be nothing but a consequence of an algebraic nature of the IBM, and indeed
has also been found in existing phenomenological IBM calculations [58]. From a
phenomenological point of view, the so-called cubic (or the three-boson) interac-
tion [14–16] has been useful for reproducing the experimental γ -band structure. The
cubic term produces a shallow triaxial minimum that is seen in the Gogny-HFB
energy surface, and may be introduced also in the Hamiltonian defined in Eq. (2.41).
This is, however, out of focus in the current theoretical framework, because the cubic
term represents an effective force whose origin remains to be investigated further.

Here, the deviations observed in the side-band levels (even in some of the ground-
state band levels) for A ≥ 196 are probably related to the larger magnitude of the
parameter κ as compared with its phenomenological value [58]. Roughly speaking,
when the magnitude of κ becomes larger, the moment of inertia decreases, resulting
in the deviation of not only ground-state-band but also the side-band energies. The
problem arises in the present case partly because, in the vicinity of the shell closure
N = 126, the HFB energy surfaces exhibit weak oblate deformations close to the
origin β = 0, as we showed in Fig. 4.18. In addition, the curvatures along the β
direction around the minima are somewhat larger. These peculiar topologies of the
Gogny-D1S energy surfaces make it rather difficult to determine a value of κ which
gives reasonable agreement of side-band energies with the experimental ones. In
this case one may interpret that the deviation is mainly due to the properties of
the particular version of the Gogny-EDF considered in the present study. Another
possibility is that the boson Hamiltonian used may be still simple, requiring the
introduction of additional interaction terms in the boson system. Investigation along
these lines is in progress and will be reported elsewhere.

We note that some lighter Pt nuclei, as well as the neighbouring Hg and Pb
isotopes, are often revealed to exhibit coexistence of prolate and oblate shapes. Some
existing IBM studies consider a configuration mixing, i.e., particle-hole excitation
across the proton Z = 82 shell, leading to enlarged model space consisting of a
so-called regular/single configuration (with NB bosons) and an intruder, deformed
2p-2h excitation configuration (with NB + 2 bosons) [67]. Along this line, there
have been debates over which is adequate for the description of low-lying structure

http://dx.doi.org/10.1007/978-4-431-54234-6_2
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of lighter Pt isotopes, a single- or a configuration-mixing IBM framework [68, 69].
A simple IBM-1 Hamiltonian was applied for Pt nuclei in Ref. [68], leading to good
agreement with the experimental data without a need for an intruder configuration.
Moreover, in Ref. [69], both single (within IBM-1 framework) and configuration-
mixing models were shown to give almost equivalent results for Pt isotopes being
consistent with the experimental data, as long as the excitation energy is rather low
(up to Ex ∼ 1.5 MeV). In the present calculation, similarly to those in Refs. [68,
69], the agreement between theoretical and experimental spectra, shown in Fig. 4.20,
is reasonably good without introducing an intruder configuration. Once the intruder
configuration is taken into account in the present framework, the number of free
parameters to be fixed would largely increase. On the other hand, it is rather hard
to identify a clear shape coexistence for the considered Pt nuclei in a microscopic
level, as an HFB-energy surface in Fig. 4.18, indeed, does not exhibit any isolated
local minimum other than the global one. Nevertheless, to what extent our result
is changed by the configuration mixing, as well as a comparison between a single
and a configuration-mixing calculations, is an interesting future issue which will be
investigated further.

Systematics of B(E2) Ratios

Next we discuss overall systematic trends of the B(E2) ratios R1–R4, which were
studied already in Sect. 2.4.1 for Sm, Sect. 4.2.1 for Ru and Pd, and Sect. 4.2.2 for Ba
and Xe, and which were defined in Eq. (2.51). The results are shown in Fig. 4.21 as
functions of the mass number A. Note that the values of each dynamical symmetry
limit [93, 94], to be shown below, are those with infinite boson number.

The ratio R1 in Fig. 4.21a is nearly constant all the way, being much below the U(5)
limit of IBM (R1 = 2), and is rather close to R1 = 10/7, which is the O(6) and SU(3)
limit of IBM. Thus, R1 is not a sensitive observable to distinguish between axially
symmetric and γ -soft nuclei. This is reasonable because the structural evolution
between axially symmetric deformed and theγ -unstable shapes is shown to take place
quite smoothly from the systematics of the mapped energy surfaces (in Fig. 4.18)
and the derived IBM parameters (in Fig. 4.19). The flat behavior of R1 value for Pt
isotopes in Fig. 4.21a differs from the one found e.g., in Sm isotopes [95]. There,
a sharp decrease of R1 value can be seen in the line of U(5)-SU(3) shape/phase
transition.

One can see also in Fig. 4.21a that, in contrast to the flat systematics of the
R1 value with respect to the mass number A, the ratio R2 changes significantly
and is relatively large for 186−196Pt nuclei, being close to 10

7 (O(6) limit). This is
consistent with the softness of the energy surfaces for these nuclei. Therefore, the
quantity R2 is quite sensitive to the shape evolution encountered in the energy sur-
faces and can be thus considered as the best signature for γ -softness among R1–R4.
There are not much available data overall, but the experimental R2 value is also
relatively large around 192Pt. For the nuclei 176−184Pt, the theoretical R2 value is
close to zero (the SU(3) limit) and slightly goes up from A = 174 to 172, proba-

http://dx.doi.org/10.1007/978-4-431-54234-6_2
http://dx.doi.org/10.1007/978-4-431-54234-6_2
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Fig. 4.21 The B(E2) ratios R1, R2, R3 and R4 (defined in Eq. (2.5 )) for relevant low-lying states
of 172−200Pt nuclei as functions of the mass number A. Experimental data are taken from Ref. [58,
76–91]. For more details, see the main text. The figure is taken from Ref. [72]

bly approaching the U(5) vibrational limit (R2 = 2) in the vicinity of the neutron
shell closure N = 82.

Unlike the R2 case, the calculated ratio R3, shown in Fig. 4.21b, does not change
much with mass number A and is close to zero (O(6) and SU(3) limits of R3) for
188−196Pt. From A = 180, the R3 turns to increase as we move towards the neutron
shell closure N = 82 and is expected to approach the U(5) limit (R3 = 2). The
calculated R3 value is, however, still much smaller than the experimental value at
A = 198. In fact, both the HFB and the mapped energy surfaces for the nucleus
198Pt display a weakly deformed shape, which somewhat differs from the vibrational
feature expected from the corresponding experimental levels. The present R3 value
does not exhibit a drastic change observed in shape transitions in A ∼ 130 Ba-Xe
and A ∼ 100 Ru-Pd isotopes, where the E2 transition from the 0+

2 state to the 2+
1 is

much enhanced [11].
Finally, the branching ratio R4 in Fig. 4.21b also corresponds to a gradual shape

transition. The present calculations suggest that the R4 value is nearly zero (O(6)
limit) in the region where the nuclei are soft and where the R2 ratio takes large
values. The calculated R4 ratio follows the experimental trend exhibiting increase
from A = 190 to 186, and becomes relatively larger for A ≤ 184, where the energy
surfaces show stronger prolate deformation. Consistently with the evolution of the
IBM energy surfaces, the calculated R4 values turn to approach the U(5) limit, which

http://dx.doi.org/10.1007/978-4-431-54234-6_2
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is also zero, for A ≤ 178. Similarly to the R3 case, a deviation from the vibrational
character of the experimental data is found at A = 198.

It should be emphasized that all the results for B(E2) values shown so far are
quite consistent with the topologies of the energy surfaces and with the derived IBM
parameter values.

Level Schemes of Selected Nuclei

As already mentioned in the introductory part of this section, one of the main goals of
the present study is to test the spectroscopic quality of the mapping procedure and the
underlying (universal) Gogny-D1S EDF [46, 54]. Keeping this in mind, we will now
turn our attention to a more detailed comparison between our results and the available
experimental data for excitation spectra and B(E2) values. To this end, we select the
nuclei 184−194Pt as a representative sample corresponding to the mapped energy
surfaces shown in Fig. 4.18. The level schemes obtained for the nuclei 184−194Pt
are compared in Fig. 4.22 with available experimental data. The theoretical B(E2)
values are shown also in Fig. 4.22. Note that B(E2; 2+

1 → 0+
1 ) value is normalized

to the experimental one. The virtue of the present calculation is to give predicted
B(E2) values for those nuclei which have no enough E2 information available. This
is particularly useful in the cases of 184Pt, 186Pt and 188Pt where the calculated spectra
agree well with the experiment.

For clarity, we divide the explanation of the results shown in Fig. 4.22 into the fol-
lowing three categories, according to the tendencies of what we found in the energy
surfaces and the IBM parameters and the experimental data. The first is the prolate
deformed regime represented by the nuclei 184,186Pt, which exhibit a rotational char-
acter. Next, we will consider the isotopes 188,190Pt which are apparently close to
the critical point of the prolate-to-oblate transition observed in the mapped energy
surfaces (see Fig. 4.18). Lastly, calculated and experimental results are compared for
the nuclei 192,194Pt which belong to the weakly oblate deformed regime. Note that,
in Fig. 4.22, the energy scale is not common for all nuclei.

For 184,186Pt, the present calculation reproduces overall pattern of the experi-
mental spectra in all of the ground-state, quasi-β and quasi-γ bands fairly well.
Interesting enough, the bandhead energies, particularly the quasi-β bandhead 0+

2 ,
are much higher than the 4+

1 level, compared to the experimental data. This indicates
that, reflecting the topologies of the energy surfaces in Fig. 4.18, the 184,186Pt nuclei
deviate from the γ -soft O(6) character and exhibit rather rotational features. The 0+

3
energies are predicted to be above 4+

3 ones in both nuclei.
On the other hand, both 188Pt and 190Pt, whose energy surfaces are quite flat along

the γ direction in Fig. 4.18, appear to be closer to the γ -unstable O(6) limit of the
IBM than the two nuclei already mentioned above. The 2+

2 and 4+
1 levels lie close to

each other in the present study and, in the spirit of group theory, are supposed to have
the same τ = 2 quantum number of the O(6) dynamical symmetry [96]. Similarly, in
our calculations the 6+

1 , 4+
2 , 3+

1 and 0+
2 levels are almost degenerate and can be then

grouped into the τ = 3 multiple. Along these lines, we can observe characteristic E2
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decay patterns that are quite consistent with theΔτ = ±1 selection rule of the O(6)
limit [96]. For instance, the transition from the 0+

2 level (supposed to have τ = 3) to
2+

2 level (supposed to have τ = 2) is dominant over the one to 2+
1 (supposed to have

τ = 1) in both 188Pt and 190Pt. The trend characteristic of O(6) symmetry is clearly
seen particularly in 190Pt, where the sum of the parametersχπ andχν almost vanishes
as seen from Fig. 4.19c. This means that the nucleus is close to the pure O(6) limit,
and is consistent with the mapped energy surface in Fig. 4.18 that is nearly flat along
the γ direction. Nevertheless, the structure of the corresponding experimental γ band
appears to have a more triaxial nature, where the 3+

1 and the 4+
2 levels are apart from

each other. As we have anticipated from the pattern of the energy surface in Fig. 4.18,
this deviation arises partly due to the difference of the position of absolute minimum
between Gogny-D1S and the corresponding IBM energy surfaces in Fig. 4.18.

For 192,194Pt nuclei, the theoretical γ -band structure still looks like that of O(6)
symmetry: the calculated 3+

1 and 4+
2 energies are almost degenerated. Similar ten-

dency has been confirmed for 194Pt nucleus in some recent IBM-1 studies [68, 69].
What is of particular interest in Fig. 4.22 is that, for both 192,194Pt nuclei, the relative
location of the quasi-β-band head 0+

2 energy is reproduced fairly well lying close to
the 4+

2 level. In addition, for 194Pt, the present calculation suggests that the 0+
2 → 2+

2
E2 transition is dominant over the 0+

2 → 2+
1 E2 transition, which, although there

is quantitative deviation, agrees with the experimental trend. The reason why such
a quantitative difference occurs may be discussed in the future. Compared to the
experimental data, the theoretical quasi-γ band is rather stretched and the band head
2+

2 energy is somewhat large. The calculated 0+
2 energy is also higher than the exper-

imental one in particular for 192Pt. Accordingly, the theoretical B(E2; 2+
2 → 2+

1 )

value is much smaller than experimental value with respect to the B(E2; 2+
1 → 0+

1 )

value. The deviations occur due to the derived κ value, which is somewhat larger
than the phenomenological one [58]. For relatively high-lying side-band 2+

3 and 4+
3

energies, the calculated results may not seem to be much reliable, because even the
ordering of these levels are not reproduced for 192Pt.

Brief Summary

To summarize Sect. 4.3.1, spectroscopic calculations have been carried out, for the Pt
isotopic chain in terms of the Interacting Boson Model Hamiltonian derived micro-
scopically based on the (constrained) Hartree-Fock-Bogoliubov approach with the
Gogny-D1S Energy Density Functional.

The Gogny-HFB calculations provide the total energy surface, which reflects,
to a good extent, many-nucleon dynamics of surface deformation with quadrupole
degrees of freedom and structural evolution in a given isotopic chain. By following the
procedure proposed in Ref. [53], the energy surface of the Gogny-D1S EDF is mapped
onto the corresponding bosonic energy surface, and can be then utilized as a guideline
for determining the parameters of the IBM Hamiltonian. This enables one to calculate
the spectroscopic observables with good quantum numbers (i.e., the angular momen-
tum and the particle number) in the laboratory system without adjustment of levels.
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By this approach, global tendencies of the experimental low-lying spectra of
172−200Pt nuclei are reproduced quite well not only for ground-state but also for side
bands of mainly open-shell nuclei. It has been shown that shape/phase transition
occurs quite smoothly from prolate to oblate deformations as a function of N in the
considered nuclei 186−192Pt, where the γ instability plays an essential role. From
the analysis in Fig. 4.18, the change of the mapped IBM energy surfaces in γ direc-
tion has been more vividly seen than in β direction, similarly to the corresponding
Gogny-HFB energy surfaces. This is consistent with the conclusions in our earlier
work [50] and also with many others along the same line. We have shown that the
calculated spectra and the B(E2) ratios behave consistently with the evolution of the
topologies of the mapped energy surfaces and with the systematics of the derived
IBM parameters as functions of the neutron number N . These derived parameters are
qualitatively quite similar to the existing phenomenological IBM studies [56, 58]. By
studying the level schemes in detail in comparison with the available experimental
data, the present calculation agrees with the data fairly nicely and reflects the alge-
braic aspects of the IBM, e.g., theΔτ = ±1 selection rule of the E2 decay patterns.
We have also made predictions on some E2 transition patterns. These behaviors of
the B(E2) may need to be examined experimentally particularly for lighter, A ≤ 190
nuclei with which there is currently few available data.

The evolution of ground-state shape as a function of both N and Z has been
studied within neighboring isotopic chains such as Os, W, Hf and Yb [46]. It should
be then of interest to study how the corresponding spectra and transition probabilities
behave. More systematic spectroscopic analyses of these nuclei will be presented in
Sect. 4.3.3, where the present mapping procedure will be applied more extensively
using the new Gogny parametrization D1M.

On the other hand, the IBM Hamiltonian of Eq. (2.41) has rather simple form
consisting of single-d-boson operator and the quadrupole-quadrupole interaction
between proton and neutron bosons. The results provided by the present Hamiltonian
were shown to be already quite promising. However, more studies may be necessary
for further refinement, e.g., in describing detailed structure of the quasi-γ band, and
for the description of configuration mixing. To these ends inclusions of cubic terms
and intruder configuration will be also of great interest, whereas regarding the former
the issue of triaxiality in the IBM will be studied in Chap. 6.

4.3.2 Evidence for Critical Points

The neutron-rich W, Os and Pt nuclei with A ∼ 190–200 exhibit a very challenging
structural evolution, which has already been extensively studied [97–104]. As origi-
nally pointed out in [98] the ratio E4+

1
/E2+

1
in 190W is anomalously small compared

with the one in neighbouring isotopes. The most recent experimental data on the
neutron-rich tungsten chain from 188,190,192W [97, 100, 102] all suggest a change
from a well deformed, axially symmetric prolate shape for lighter tungsten isotopes,

http://dx.doi.org/10.1007/978-4-431-54234-6_2
http://dx.doi.org/10.1007/978-4-431-54234-6_6
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to a more gamma-soft system for 190W. This transition from a prolate to very gamma-
soft system for neutron number N = 116 (i.e., for 190W) is consistent with the recent
observation of the second 2+ state in 190W which appears to lie lower than the yrast
4+ in this nucleus [100]. The neutron-rich nature of the heavier W and Os nuclei
make them experimentally challenging to study. However, in recent years, there has
been some progress in their structural investigation following multi-nucleon transfer
[97, 102, 103] and isomer and/or beta-delayed gamma-ray spectroscopy following
projectile fragmentation reactions [98, 100, 101]. The current experimental infor-
mation is limited to the yrast sequence in 190W [100, 102] and the identification of
the 2+

1 state in 192W [100]. It is interesting to note that the yrast 2+ states in the
N = 116 isotones 190W and 192Os have almost identical energies (∼206 keV), as do
the N = 118 isotones 192W and 194Os (∼218 keV).

From the theoretical side, mean-field calculations have been performed which
predict the shapes of these systems both with (e.g., [105]) and without (see, e.g.,
Refs. [46, 50], and references therein) the assumption of axial symmetry in the
nuclear mean field. The IBM has also been applied to fit the spectral properties
of W isotopes in a phenomenological way [57]. More recently and as described in
Sect. 4.3.1 in this thesis, spectroscopic calculations have been carried out [72] to
describe the structural evolution in Pt isotopes with the Gogny-D1S EDF [47]. In
this section, we shall review the current spectroscopy relevant to the prolate-to-oblate
shape/phase transition in neutron-rich Os and W isotopes. We also report, for the first
time, the predicted excitation spectra and the transition probabilities on the neutron-
rich Os and W nuclei. The spectroscopic calculations have been carried out in terms
of the IBM Hamiltonian derived by mapping (constrained) Hartree-Fock-Bogoliubov
(HFB) calculations, based on the Gogny-D1S EDF, using a similar technique as in
[72] or in Sect. 4.3.1.

Mapped IBM Energy Surface and the Derived Parameters

Figure 4.23 shows the mapped IBM energy surfaces for 190−196Os and 188−194W
nuclei up to 2 MeV excitation from the energy minimum. The corresponding HFB
energy surfaces have been reported in Fig. 3 of Ref. [46]. The energy surfaces
for both Os and W nuclei show similar tendencies. There are quantitative differ-
ences between the Pt and Os-W isotopic chains, namely that the topology of the
energy surface changes more slowly in the former [72], compared to the latter in
Fig. 4.23. An (almost) axially symmetric, oblate minima is observed in Pt nuclei with
N = 114–120 and shallow triaxiality for N = 110 and 112 [46, 72]. On the other
hand, the Os and W isotopes are predicted to have the corresponding oblate minima
only for N = 118 and 120, with a more rapid change to axially symmetric pro-
late deformation for N ≤ 114. Indeed, shallow triaxiality (i.e., γ -softness) appears
only around N = 116 for both Os and W nuclei [46]. The corresponding mapped
IBM energy surfaces reproduce these trends of the HFB energy surfaces of [46]
well, whereas the location of the minimum in the IBM energy surface differs from
that of the HFB energy surface of Ref. [46] in some nuclei as the presently used
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Fig. 4.23 Mapped IBM energy surfaces for 190−196Os and 188−194W nuclei up to 2 MeV excitation
from the energy minimum within the ranges 0◦ ≤ γ ≤ 60◦. The energy surfaces are shown in
terms of the fermionic deformation parameters β (= βB/Cβ ) and γ (= γB ). βB and γB stand for
the deformation parameters in the boson system and the numerical coefficient Cβ was defined in
Eq. (2.47). The figure is taken from Ref. [106]

IBM Hamiltonian, the one in Eq. (2.46), does not produce a triaxial minimum on
the energy surface. The mapped energy surface for the N = 116 isotone, 192Os is
predicted to be very flat along the γ -direction. Similarly, the IBM energy surface for
190W is also very flat, with the global energy minimum corresponding to a quadru-
pole deformation of β ∼ 0.15 on the oblate side. This flatness is the consequence of
the χπ and χν parameter values, such that their sum is close to zero. Comparing Os
and W isotopes with the same neutron number, the W nuclei are generally steeper in
both β and γ directions than the corresponding Os isotone. A similar trend is also
observed in the corresponding HFB energy surfaces [46].

Figure 4.24 shows the evolution of the derived IBM parameters for the considered
Os and W nuclei as functions of the neutron number N . The parameter values for Pt
nuclei, taken from Ref. [72], are also shown for comparison. There are significant
differences in quantitative details of the derived IBM parameter values between Os-
W and Pt nuclei. In particular, the values of the parameter ε in Fig. 4.24a for Os and W

http://dx.doi.org/10.1007/978-4-431-54234-6_2
http://dx.doi.org/10.1007/978-4-431-54234-6_2
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Fig. 4.24 Derived IBM para-
meter values for the con-
sidered Os and W nuclei,
represented by solid and
dotted curves, respectively,
as functions of N . Results
for Pt isotopes taken from
Ref. [72] are also depicted
for comparison. The figure is
taken from Ref. [106]
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nuclei are rather small in the region away from the shell closure as compared to Pt
nuclei. In Fig. 4.24b, the magnitude of the parameter κ is larger than the analogous
results for the Pt isotopes. The behavior of the parameters ε and κ is reflective of the
HFB energy surfaces for Os and W nuclei being somewhat steeper in the β degree of
freedom compared to the Pt isotopes, as discussed in Ref. [46]. The χπ,ν parameters
in Fig. 4.24c, d (as well as their sum) behave similarly to those of Pt nuclei. For both
N = 110, 112 the sum is almost zero in Pt isotopes while it is small for Os and W
ones, but has a negative sign. This indicates a weak prolate deformation in the latter
as seen in Fig. 4.23. In other words, the γ -soft structure is rather sustained in these
Pt isotopes, but it is not for the corresponding Os and W isotopes. As in Fig. 4.24e,
the scale parameter Cβ in the present case behaves similarly as for the Pt nuclei with
about the same order of magnitude.
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Fig. 4.25 Low-lying g.s. band and quasi-γ -bandhead (2+
γ ) energies (curves) for 186−198Os and

184−196W nuclei. Experimental data (symbols) are taken from Refs. [12, 59, 100]. The Gogny-D1S
EDF is used. The figure is taken from Ref. [106]

Calculation of the Energy Spectra and B(E2) Values

Using the derived parameters, we calculate excitation spectra and reduced E2
transition probabilities B(E2). To do this, the Hamiltonian of the type defined in
Eq. (2.41) is diagonalized as it has been done.

Figure 4.25 shows ground-state (g.s.) band and the quasi-γ -bandhead 2+
2 (denoted

by 2+
γ ) energies for Os and W isotopes. In general, the calculated results follow the

experimental trends reasonably well, particularly for 2+
1 energy. What is of interest in

Fig. 4.25 is the behavior of the 2+
γ energy, exhibiting a kink for both 192Os and 190W.

The experimental 2+
γ energy in 192Os is lower than the 4+

1 one. This is an evidence
that the A = 192 nucleus is the most γ -unstable one among other Os isotopes. The
present calculation follows the trend for Os isotopes well, and predicts a similar
one for W isotopes exhibiting, however, more rapid change as a function of N . The
location of the 2+

γ state for 196Os (192W) has not yet been fixed experimentally but

the present calculations suggest that the 4+
1 state is lower than the 2+

γ one in both
196Os and 192W. The calculated 2+

γ energy is generally higher than the experimental
one, whereas the qualitative feature of experimental level is reproduced well.

Now we turn to the analysis of B(E2) systematics, relevant to the considered
low-lying states. The B(E2) strength has been defined in Eq. (2.49). For the E2
operator of Eq. (2.50), we assume eπ = eν , for simplicity, and discuss ratios of B(E2)s
rather than their absolute values and the quadrupole moments for the corresponding
excited states. Note that the B(E2) ratio at each dynamical symmetry limit, shown
below, means the one with infinite boson number [94].

http://dx.doi.org/10.1007/978-4-431-54234-6_2
http://dx.doi.org/10.1007/978-4-431-54234-6_2
http://dx.doi.org/10.1007/978-4-431-54234-6_2
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also depicted as dashed curves, for comparison. Gogny-D1S EDF is used. The figure is taken from
Ref. [106]

From Fig. 4.26a, we observe that the ratio R1 ≡ B(E2; 4+
1 → 2+

1 )/B(E2; 2+
1 →

0+
1 ) does not change much, being close to its O(6) limit of IBM 10/7 (which is also

the SU(3) limit of R1). This trend persists for N ≥ 118 where there is currently
no available data. The ratio R2 ≡ B(E2; 2+

2 → 2+
1 )/B(E2; 2+

1 → 0+
1 ), shown in

Fig. 4.26b, is of particular interest as one can observe a significant difference in its
value for the Pt and Os-W isotopes. The magnitude of the R2 ratio is arguably the most
appropriate and sensitive fingerprint for γ softness [72]. The R2 values for both Pt
and Os-W are relatively large and close to the O(6) limit (=10/7) for N = 114–118,
where the nuclei show notable γ instability. For Pt nuclei, this trend persists even for
N ≤ 112, while smaller values are suggested for Os and W nuclei. These differences
between the Pt and Os-W chains reflect the difference in the topology of the energy
surface. The results for Os nuclei follow the experimental trend, which increases for
N = 110–116. The present calculation for Os nuclei suggests the decrease of the
R2 value for N ≥ 118, which corresponds to a suppression of γ softness. The ratio
R3 ≡ B(E2; 0+

2 → 2+
1 )/B(E2; 2+

1 → 0+
1 ) in Fig. 4.26c generally has a predicted

value which is rather small, being close to zero (corresponding to the O(6) and SU(3)
limits), as compared to R1 and R2 values. Note that the scale of the vertical axis in
Fig. 4.26c is different from that of Fig. 4.26a, b. No rapid change with N is seen for
R3 as in R2. Nevertheless, we should note the quantitative differences between the Pt
and the Os-W nuclei. The branching ratio R4 ≡ B(E2; 2+

2 → 0+
1 )/B(E2; 2+

2 → 2+
1 )
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in Fig. 4.26d for Os follows the experimental trend for N = 110–116. The decrease
of R4 value from N = 110, close to 7/10 (SU(3) limit), toward N = 116, close to
zero (O(6) and U(5) limit), reflects the corresponding structural evolution. The R4
value for the Pt chain is close to zero, while for the Os-W chains, there is a significant
change at N = 116. For the W nuclei, the ratio R4 increases more rapidly than for
the Os chain from N = 116 to 112. Earlier phenomenological studies suggested a
similar increase [57].

Finally, we present in Fig. 4.27 the level schemes corresponding to the neutron-
rich nuclei 190,192,194,196Os and 190,192,194W taken as representative samples. For
190,192Os, for which there are significant experimental data, not only the g.s. band
but also both the quasi-γ -bandhead 2+

γ and the quasi-β-bandhead 0+
2 (denoted by

0+
β ) energies are reproduced quite well by the current calculations, although the

detailed ‘in-band’ energy staggering looks different between the calculated and the
experimental levels. The calculated B(E2) values for 190,192Os have been normalized
to the experimental [76–91] B(E2;2+

1 → 0+
1 ) value. Some algebraic feature is also

apparent in the calculated results. The Δτ = ±1 rule for the E2 decay pattern at
the O(6) limit [96], (i.e., the dominance of 2+

2 → 2+
1 (0+

2 → 2+
2 ) over 2+

2 → 0+
1

(0+
2 → 2+

1 )) in the present calculation also compares well with the experimental
decay pattern.

The experimental value of the 2+
1 energy for 192Os is very close to that of its

isotone 190W (i.e., E ≈ 207 keV). Also, the excitations energies of the 2+
1 levels in

these isotones are also quite similar to each other. The present calculations reproduce
this overall trend well. In fact, the calculated E(2+

1 ) = 0.280 (0.278) MeV and 0.286
(0.274) MeV for 192Os (194Os) and 190W (192W) nuclei, respectively. For 192Os and
190W nuclei, the calculated g.s.band energies are rather stretched, and the 2+

γ energies
are in good agreement with the respective experimental data. In the calculated quasi-
γ band of 190Os and 192Os nuclei, one observes a staggering as 2+

γ (3+
γ 4+

γ ) (5+
γ 6+

γ ),
... etc. By contrast, the experimental energy spacing shows a more regular pattern.
This deviation may be related to the topology of the mapped IBM energy surface in
Fig. 4.23, which is flat in γ direction, while the corresponding Gogny-D1S energy
surface exhibits shallow triaxial minimum [46]. Some additional interaction term,
such as the cubic term [15], may need to be introduced in the boson Hamiltonian
to correct the deviation for detailed structure of quasi-γ band. This issue will be
addressed in Chap. 6.

For 194,196Os nuclei, the predicted 2+
1 and 4+

1 energies reproduce the experimental
ones. The quasi-β-bandhead energy for 194Os in the present calculation is notably
larger than the experimental value, which is a consequence of the peculiar topology
of the Gogny-HFB energy surface, which exhibit a pronounced oblate minimum
with a relatively small deformation. This results in the larger value of the parameter
κ than the one in the IBM phenomenology [57] which would give good agreement
for the excited 0+ energies. The positions of the 2+

γ and the 0+
β energies for 196Os

are predicted to lie below and beyond the 6+
1 level, respectively. For the exotic 192W

and 194W nuclei, the present calculation suggests a quite similar level pattern to their
respective isotones, 194Os and 196Os.

http://dx.doi.org/10.1007/978-4-431-54234-6_6
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4.3.3 Systematics from Gogny-D1M Functional

Next we extend the analyses done in Sects. 4.3.1 and 4.3.2 over very neutron-rich Yb,
Hf, W, Os and Pt isotopes, for some of which the experimental data are quite scarce but
are expected to be available. An additional motivation is to explore some possibilities
to refine the predictive power of the method for the considered mass region.

Starting from the constraint HFB theory with Gogny-D1S [47] EDF, the method
of [53] was applied to the spectroscopy of Pt isotopes [72], and some of Os and W
isotopes [106]. In this paper we present more systematic analyses, extending over the
neighboring Hf and Yb nuclei. While the D1S parametrization has been considered as
global and able to describe many low-energy nuclear data with reasonable predictive
power (see, for example, Refs. [46, 50, 54] and references therein), we here take the
Gogny-D1M functional [52] throughout. The first systematic explorations [50, 52],
including odd nuclei within the equal-filling approximation [107–109], suggest that
the new incarnation D1M of the Gogny-EDF essentially keeps the same nuclear struc-
ture predictive power as the (standard) parametrization D1S, but still further work
should be in order. At a number of places in this section, the results are compared with
those with the standard D1S functional, already presented in Sects. 4.3.1 and 4.3.2.

Since well deformed axially symmetric nuclei should be treated in this section,
the IBM-2 Hamiltonian of Eq. (3.3), which contains the LL term, is employed:

ĤIBM = εn̂d + κ Q̂π · Q̂ν + α L̂ · L̂, (4.7)

where definition of each term in the above Hamiltonian was already shown in Chap. 3.
The parameters involved in the first two terms of the Hamiltonian ĤIBM in

Eq. (4.7), ε, κ , χπ,ν and Cβ , are fixed using the fitting method of Ref. [11]: the
Gogny-HFB energy surface EHFB(β, γ ) is mapped onto the corresponding point of
the IBM-2 energy surface EIBM(βB, γB) so that the latter becomes identical to the
former as much as possible.

However, the LL term contributes to the energy surface in the same way as the
d-boson number operator, but with a different coefficient, 6α. Hence one cannot fix
the α value only by the mapping of the energy surface. One should then go beyond
the basic energy-surface analysis, which is considered as a zero-frequency mode,
to take into account the rotational cranking, which on the other hand takes on a
specific non-zero frequency feature. The α value is determined with the procedure
of Ref. [110], where the cranking moment of inertia was compared between nucleon
and boson systems.

We then calculate the moment of inertia for the 2+
1 excited state by the Thouless-

Valatin (TV) formula [111],

JTV = 3/Eγ . (4.8)

Here, Eγ stands for the 2+
1 excitation energy obtained from the self-consistent

cranking method with the constraint 〈 Ĵx 〉 = √
L(L + 1), where Ĵx represents the

http://dx.doi.org/10.1007/978-4-431-54234-6_3
http://dx.doi.org/10.1007/978-4-431-54234-6_3
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x-component of the (fermion) angular momentum operator [46]. In the original work
of Ref. [110], we used the Inglis-Belyaev formula [112, 113], which is valid for the
rotational regime, but the present TV moment of inertia is more general.

For the boson system, we calculate the moment of inertia for the intrinsic state,
denoted by JIBM, using the cranking formula of Ref. [114] as a function of the
deformation parameters βB and γB . JIBM is written as

JIBM(βB, γB) = lim
ω→0

1

ω

〈Φ(βB, γB)|Lx |Φ(βB, γB)〉
〈Φ(βB, γB)|Φ(βB, γB)〉 , (4.9)

where ω and Lx stand for the cranking frequency and the x-component of the boson
angular momentum operator, respectively.

JIBM involves six parameters ε, κ , χπ , χν , Cβ and α. All these parameters but
α are already fixed by the energy-surface analysis. The α value for each nucleus is
obtained so that the JIBM value at the equilibrium point where the boson energy
surface EIBM(βB, γB) is minimal becomes identical to the JTV value at its corre-
sponding energy minimum.

The values of all derived IBM-2 parameters are summarized in Table 4.1. When
diagonalizing the Hamiltonian Eq. (4.7), the ε parameter is shifted byΔε = 6α. The
ε value listed in Table 4.1 is the one with this shift. With the parameters listed in
Table 4.1, the diagonalization of the Hamiltonian in Eq. (4.7) the collective spectra
and the E2 transition rates.

Energy Surfaces

In comparison to the original microscopic energy surfaces in Fig. 4.28 for Yb-Pt
isotopes with 112 ≤ N ≤ 120 obtained from the Gogny-D1M functional, Fig. 4.29
shows the mapped IBM-2 energy surfaces. Each energy surface is plotted up to 2 MeV
from its absolute minimum. Note that the original Gogny-D1M energy surfaces are
not shown as they are rather similar in topology to those resulting from the D1S
functional reported previously [46].

For all the isotopes but the Pt, the energy minimum shifts from the prolate (γ = 0◦)
to the oblate (γ = 60◦) sides as the number of neutrons increase, passing through
the most notable γ -soft nuclei N = 116. The derived χπ and χν values for many
N = 116 nuclei then satisfy χπ + χν ≈ 0, as summarized in Table 4.1. This choice
of the χ parameters in the IBM-2 is an origin of the almost totally flat topology
of the energy surface, as seen for example in 192Os in Fig. 4.29. The change in
the topology of the energy surface is an evidence of prolate-to-oblate shape/phase
transition, which becomes sharper for smaller Z . The Gogny-D1S energy surfaces
reported in [46, 72] were somewhat steeper in both β and γ directions than the
present Gogny-D1M calculation.

A difference is apparent between the energy surfaces of the Pt isotopes and those
of others. For the Pt, the variation of the energy surface takes place much moderately.
Such slow structural transition in Pt isotopes was also observed in the case of the
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Table 4.1 The derived parameters of the IBM-2 Hamiltonian ĤIBM of Eq. (4.7)

Nuclei ε (keV) −κ (keV) χπ × 103 χν × 103 α (keV) Cβ
180Yb 212 265 337 −991 −9.06 3.60
182Yb 169 265 300 −900 −11.4 3.70
184Yb 279 271 302 −548 −9.84 3.87
186Yb 418 268 147 −106 −9.54 4.90
188Yb 528 265 418 43 −4.68 5.13
190Yb 769 267 332 573 −0.185 5.50
192Yb 806 271 461 862 21.5 7.20

182Hf 124 280 489 −913 −5.61 3.93
184Hf 128 282 458 −938 −8.01 4.07
186Hf 109 275 400 −700 −4.85 4.40
188Hf 250 277 282 −208 −7.90 5.30
190Hf 442 280 403 −30 −5.99 5.48
192Hf 619 273 388 443 2.79 5.94
194Hf 716 277 534 805 18.4 8.20

184W 50.4 286 409 −859 −0.400 4.09
186W 36.8 285 389 −835 −2.30 4.50
188W 69.6 289 401 −662 −1.44 4.80
190W 71.3 275 572 −419 −2.72 5.60
192W 231 270 189 147 −4.15 6.30
194W 627 291 392 536 −5.74 6.87
196W 686 281 745 822 15.3 8.50

186Os 142 310 331 −689 −0.433 4.40
188Os 162 318 352 −672 −2.78 4.83
190Os 86.7 303 412 −509 −2.61 5.40
192Os 91.5 292 502 −488 −3.09 6.15
194Os 289 305 401 −77 −6.04 6.74
196Os 541 298 336 513 −5.94 7.64
198Os 683 304 573 793 8.50 9.66

188Pt 187 328 409 −487 8.16 4.81
190Pt 215 336 300 −10 5.93 5.56
192Pt 311 362 265 44 −0.117 6.44
194Pt 312 366 490 −50 0.214 6.85
196Pt 435 356 475 311 1.87 7.28
198Pt 489 319 611 565 8.80 7.90
200Pt 719 308 467 949 −4.69 8.78

These values are taken from Ref. [115]

D1S functional [50, 72]. While a certain quantitative difference occurs between the
two Gogny functionals the conclusion does not change.

It should be noted that the Gogny-HFB calculation suggests shallow triaxiality
for the transitional, N = 116 Os and W nuclei [46]. In contrast, the mapped IBM-2
energy surfaces in Fig. 4.29 are flat in γ , as the only γ -dependent term of the bosonic
surface is proportional to cos 3γ . This is the case as long as the boson Hamiltonian is
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Fig. 4.28 The Gogny-D1M energy surfaces, depicted within 0 ≤ β ≤ 0.4 and 0◦ ≤ γ ≤ 60◦ up
to 2 MeV excitation from the minimum. Contour spacing is 100 keV

composed of the one and the two-body interactions. It is only a three-body (so-called
cubic) term that creates rather stable minimum different from γ = 0 and 60◦. This
issue will be revisited.

Correlation Energies

We next discuss the signature of shape transition from a simple perspective. To do this
we consider the following quantity that will be called correlation energy hereafter,2

which was introduced also in Ref. [11]:

ECorr = EIBM(0
+
1 )− 〈ĤIBM〉min, (4.10)

where the first term EIBM(0
+
1 ) is the eigenenergy of the IBM-2 Hamiltonian, Eq. (4.7),

for the Lπ = 0+ ground state, and the second term 〈ĤIBM〉min denotes the minimum

2 The overall systematic trend of the correlation energy and its effect on the ground-state properties
will be revisited in Chap. 7 with more ample definitions and references. However, the discussion
about the correlation energy in this section does not require prior reading of Chap. 7.

http://dx.doi.org/10.1007/978-4-431-54234-6_7
http://dx.doi.org/10.1007/978-4-431-54234-6_7
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Fig. 4.29 Same as Fig. 4.28, but for the IBM-2 energy surfaces, obtained by the mapping from the
Gogny-D1M energy surface. Figure is taken from Ref. [115]

value of the IBM-2 energy surface, that is obtained by the variation with respect to
β and γ .

In the self-consistent mean-field calculation with a given EDF (e.g., Ref. [116]),
the quantum-mechanical effect similar to the one defined in Eq. (7.4) can be also
extracted by comparing the minimum value of the total energy surface of the mean
field with the Lπ = 0+ eigenenergy resulting from the restoration of the broken
symmetries and the configuration mixing.

In the present study, the boson Hamiltonian is diagonalized in a set of bases which
have the angular momentum and the particle number as good quantum numbers. Thus
the quantity defined in Eq. (7.4) appears to involve the effects relevant to the angular
momentum projection on the state with good L plus the configuration mixing, and
can be thus equivalent to the correlation energy normally considered in the studies
like the GCM.

ECorr depends rather significantly on the underlying shape transition. Figure 4.30
shows that for each considered isotopic chain the correlation energy is maximal in
its magnitude at the neutron number N ∼ 116, which corresponds to the transition
point of the prolate-oblate transition, and that decreases as the neutron shell closure
N = 126 is approached. This is correlated strongly with the systematics of the
energy surface in Fig. 4.29. For Pt isotopes, the magnitude of ECorr decreases with N ,

http://dx.doi.org/10.1007/978-4-431-54234-6_7
http://dx.doi.org/10.1007/978-4-431-54234-6_7
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Fig. 4.30 Correlation energy
in the ground state ECorr ,
defined in Eq. (7.4), for the
considered Yb, Hf, W, Os and
Pt isotopes. The figure is taken
from Ref. [115]
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indicating that a clear transition is not expected for the nuclei with 110 ≤ N ≤ 122.
These are well known results [116, 117], and also seem to be quite consistent with
the conclusion made in our previous work of Ref. [11] for Sm isotopes.

When compared with the analysis by the GCM configuration mixing using a
Skyrme functional [116] for the same mass region as considered here, the magnitude
of the present correlation energy ECorr is rather small, whereas the qualitative features
mentioned above do not contradict the GCM results.

When the total energy needs to be treated, one has to explicitly include in the
IBM-2 Hamiltonian Eq. (4.7) a global term that is constant for a nucleus. This global
term can be fixed using the minimum value of the HFB energy surface and that of
the IBM-2 energy surface. In comparison to some rare-earth nuclei such as Nd-Sm-
Gd isotopes, where a distinct first-order shape transition is observed [2], the shape
transition occurs rather moderately in the considered mass region. Thus, it can be
shown that, contrary to ECorr in Fig. 4.30, any drastic change with nucleon number is
not expected in some other quantities in the ground-state, like two-nucleon separation
energies.

Moment of Inertia in the Cranking Formula

Based on the analysis in Sect. 4.3.3, we discuss the moment of inertia to see more
about the correlation effect involved by the diagonalization of the boson Hamil-
tonian. The effect is most nicely illustrated in W isotopes, for which relatively many
experimental spectroscopic data exist.

We show in Fig. 4.31 the moments of inertia of W isotopes, calculated by the
cranking formula for the boson intrinsic state JIBM in Eq. (4.9) and those taken
from the 2+

1 excitation energies of the IBM-2 and of the experiments [12] using the
rotor formula L(L + 1). Note that the cranking moment of inertia of IBM-2 is, due

http://dx.doi.org/10.1007/978-4-431-54234-6_7
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Fig. 4.31 Moments of inertia
of W isotopes, computed
by the cranking formula
for the boson intrinsic state
(intr. state), by the the rotor
formula L(L + 1) using the
2+

1 excitation energies of the
IBM-2 and of the experimental
data [12]. The figure is taken
from Ref. [115]
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to the correction by the LL term, set identical to the Thouless-Valatin (TV) moment
of inertia. Thus the TV moment of inertia is not depicted in Fig. 4.31.

The experimental moment of inertia decreases with N and the slope of this
decrease seems to change suddenly at N = 116. This change suggests a gradual
shape transition, which is possibly of second-order type. The moment of inertia of
the intrinsic state, in contrast, decreases smoothly with the exception of the kink at
N = 114. Perhaps such a kink reflects a detailed shell structure irrelevant to the
present work. However, once the correlation effect is taken into account by the diag-
onalization, the kink disappears and theoretical moment of inertia falls on the same
systematics as the experimental data.

It appears that, from Fig. 4.31, the cranking moment of inertia still works for the
nuclei N =110 and 112, for which one cannot see any difference from the moment
of inertia taken from the energy of the 2+

1 eigenstate. In the transitional region of
114 ≤ N ≤ 118, where according to Fig. 4.30 large amount of correlation energy
should be involved, however, the moment of inertia of the intrinsic state is far from
sufficient and configuration mixing by the diagonalization of Hamiltonian becomes
significant to describe the experimental trend.

Excitation Spectra

Next we discuss in Figs. 4.32 and 4.33 the low-lying excitation spectra for the con-
sidered isotopic chains. In Fig. 4.32 the 2+

1 , 4+
1 , 6+

1 and 8+
1 excited states in the

ground-state band for the considered Pt (a), Os (b), W (c), Hf (d) and Yb (e) isotopes
are displayed, while other levels not belonging to the ground-state band, 0+

2 , 2+
2 , 3+

1 ,
4+

2 and 5+
1 , are shown in Fig. 4.33 for the Pt (a), Os (b), W (c), Hf (d) and Yb (e)

isotopes.
Experimentally [12, 100, 101], excitation energies of the ground-state band shown

in Fig. 4.32, namely the 2+
1 , 4+

1 , 6+
1 and 8+

1 yrast states, increase as the neutron shell
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Fig. 4.32 Theoretical (curves) and experimental [12, 100, 101] (symbols) low-lying spectra of Yb,
Hf, W, Os, and Pt isotopes with 110 ≤ N ≤ 122 for the 2+

1 , 4+
1 , 6+

1 and 8+
1 states. Symbols for the

experimental levels are defined in the panel c. The figures are taken from Ref. [115]
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closure N = 126 is approached. These spectra become more compressed for the
isotopic chains with smaller Z , when departing from the shell closure Z = 82.
The present results follow the experimental isotopic trend for those nuclei with
available data. The same systematics can be observed with the Gogny-D1S functional
[72, 106].

When approaching the neutron shell closure N = 126, the present energy levels
for Pt (Fig. 4.32a) and Os (Fig. 4.32b) nuclei overestimate the experiments. This
is mainly because the derived κ values are too large in magnitude as compared to
those used in phenomenological studies [57, 58]. This is a consequence of the weak
oblate deformation for the corresponding Pt nuclei [46, 50]. In Refs. [72, 106], the
D1S functional suggested the deviation of the yrast levels nearby the shell closure
N = 126 similar to the present results for Pt, Os and W isotopes in Fig. 4.32a–c,
respectively.

At the quantitative level, the LL term has a remarkable influence on the ground-
state band. Without this term, the experimental yrast spectra would not be reproduced
that precisely. This is particularly the case with lighter W (Hf) isotopes with N = 110
and 112, which follow the rotor formula L(L +1)with their respective experimental
ratios being E4+

1
/E2+

1
= 3.27(3.29) and 3.23 (3.26) [12]. For these nuclei, the present

results in Fig. 4.32c–d compare rather well with the experiments. We note that the
analysis could be applied also for much lighter and more rotational Hf and Yb nuclei
around the middle of the major shell.

We now turn to the description of the side-band energies. To begin with, the
excited 0+ (0+

2 ) state is considered in Fig. 4.33. It is well known that the intruder
configurations may play a role for Pt isotopes near the mid-shell where the oblate-
prolate shape coexistence is observed [45, 63]. The phenomenological IBM study
(see Ref. [67], for instance) considers particle-hole excitations across the Z = 82
proton shell. In this kind of work one needs to extend the boson model space as to take
into account the intruder configuration with additional proton bosons, arising from
(mainly) the 2p-2h excitation. The normal and the intruder configurations are mixed,
and the model Hamiltonian should be then diagonalized in such enlarged configu-
ration space. The validity of this mixing calculation has been discussed extensively
[68, 69], and is thus of great interest.

The mixing in general becomes more significant around the middle of the major
shell. In Fig. 4.33a, the present 0+

2 excitation energies for N ≤ 116 Pt isotopes, as
well as those with Gogny-D1S [72], agree fairly well with the data, even without
taking into account the mixing between normal and intruder states. This is the same
conclusion as in Ref. [72], which took the Gogny-D1S functional. Furthermore, the
original HFB energy surfaces for Pt isotopes do not exhibit clear coexisting minima.
Due to this the present framework cannot fix the parameters for both the normal
and the intruder configurations as well as those for the operators mixing the two
configurations. Although such a mixing calculation is a rather subtle problem, it is
very interesting to study the extent to which the intruder configuration plays a role
when applied in the present mapping method.
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It was shown experimentally [118–121] that, in the non-yrast states of lighter W,
Os and Pt nuclei, the band mixing could arise more or less from the coexistence of
different intrinsic states mentioned above, and makes it rather difficult to identify
the clear band structure by a model prediction. The band-mixing feature should be
outside of the model space of bosons with low-spin on which the IBM is built, and
may be somewhat difficult to be reproduced. It is yet not clear whether the similar
complicated band mixing is observed in the exotic Yb and Hf isotopes.

The 2+
2 level, which is normally the bandhead of the K π = 2+ (so-called quasi-γ )

band, is a good test for the evolving triaxiality in a given isotopic chain. Figure 4.33
shows that the calculated 2+

2 level of N = 116 nucleus is lowest among each of Yb,
Hf, W and Os isotopes. Experimental excitation energies keep steady (decrease) in
Pt (Os, W) isotopes as N increases from 110 to 116.

The decrease of a set of energies for 2+
2 , 3+

1 , 4+
2 and 5+

1 states occurs more rapidly
for lower Z isotopes, having larger number of active bosons. Around N = 116 a
change in this tendency occurs and the excitation energies increase in the few cases
measured. The present calculation follows this trend, particularly for the bandhead
2+

2 energy in Os isotopes in Fig. 4.33b. Every γ -band energy turns to increase at
N = 116 in all the considered isotopic chains but the Pt. This is nicely supported by
the measurement in the Os isotopes, whereas the scale of 2+

2 excitation energy in the
calculation is generally overestimated for N ≥ 118. The same holds for W isotopes.
These tendencies, when looked at both in isotopic and isotonic chains, are also quite
consistent with what can be expected from the systematics of the corresponding
energy surfaces exhibiting the most prominent γ -softness at N = 116.

A remarkable difference between the theoretical and the experimental quasi
γ -band structure observed in Pt and Os isotopes is that the 3+

1 and the 4+
2 states,

and the 5+
1 and the 6+

2 states as well, in the calculations form doublets, which are
absent in the data. As the states in Fig. 4.33a–b but the 0+

2 one, are supposed to be the
quasi-γ band states, formation of the doublets is an evidence of the γ -unstable [122]
or O(6) dynamical symmetry [93, 94], in which the spectra belonging to the same
family of the quantum number τ are nearly degenerated. Since the rigid triaxial rotor
model with γ = 30◦ [28] predicts the doublets (2+, 3+), (4+, 5+), etc., in the γ
band, the experimental data in Fig. 4.33 for (a) Pt, (b) Os, and (c) W isotopes suggest
a situation rather in between the γ -unstable rotor and the rigid-triaxial rotor pictures.
The discrepancy of the γ -band energies occurs because the IBM-2 energy surface
does not show the triaxial minimum which is, however, seen in the original HFB
energy surface.

There are several possible effects which may eliminate this staggering in the
γ -band spectra and improve the agreement with the experiments at the quantitative
level. In the present paper, however, we do not look into the details of this issue
due to the large number of additional parameters to be introduced and the lack of
experimental data for the Yb and Hf nuclei. First, a three-body (cubic) term, which
partially breaks O(6) symmetry, may correct the deviation. This has been done mainly
in the IBM-1 [15, 16]. For the present case some type of cubic term appears to be
necessary mainly for W, Os and Pt nuclei, where the Gogny HFB energy surface
exhibits a shallow, but stable triaxial minimum [46]. While the calculated excitation
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energies of the quasi-γ band for Yb and Hf in Fig. 4.33d, e look like that of pure
O(6) limit as well, the validity of this term seems to be marginal in these cases.
Indeed for the Yb and Hf isotopes the original Gogny-D1M energy surface indicates
the discrete change of the minimum point from the oblate (γ = 60◦) to the prolate
(γ = 0◦) sides, similarly to the Gogny-D1S energy surface [46].

The second possibility would be to relax the constraint on the deformation para-
meters γπ and γν so that they could take different values. As the IBM-2 can be
viewed as a two-fluid system consisting of proton and neutron bosons, the phase-
structure analysis would be exploited in the context of the coherent-state formalism
[123, 124], whereas it is not obvious to define a consistent mapping procedure for
realistic cases.

The third would be the inclusion of higher-spin bosons, like the g-boson. It is
not independent of the first possibility involving the cubic term, since the cubic term
can be derived effectively from the renormalization of the g boson into the sd-boson
sector [15]. This would, of course, make the problem more complicated.

We now address why the side-band spectra, particularly for Pt in Fig. 4.33a and Os
in Fig. 4.33b isotopes, are overestimated in the present calculation when approaching
the N = 126 shell closure. The direct reason would be that mostly the microscopic
Gogny energy-surface calculation predicts oblate deformation with small quadrupole
moment but with rather large amount of deformation energy indicated by the depth
of the potential minimum [46]. Such topology of the HFB energy surface is not well
described by the IBM-2 Hamiltonian close to the end of the major shell Z = 82.
Nearby the closed shell in general, one has relatively small number of bosons. The
deviation of the spectra seems to be due to this limited degrees of freedom. The
problem on the description of the side-band energies was observed in other cases
of the shape transitions in the different mass regions [11, 53], and is still an open
question. According to the above argument it may be expected that the predicted
levels for exotic Yb and Hf isotopes in the vicinity of the shell closure N = 126 may
be too high.

To examine the problem further, it is interesting to see the relevant energy ratios,
as they nicely trace the shape transition. Figure 4.34 depicts the energy ratios (a)
R4/2 ≡ E(4+

1 )/E(2+
1 ) and (b) R4γ ≡ E(4+

1 )/E(2+
2 ) as functions of N . The ratio

R4/2 is the most basic and well-studied measure for the collective structural evolution.
The ratio R4γ is considered in order to see the location of the bandhead of the quasi-γ
band 2+

γ (2+
2 ) relative to the 4+

1 excitation energy, as this difference can help measure
the degree of γ softness.

In Fig. 4.34a, the experimental R4/2 ratio exhibits a monotonic decrease as a
function of N from the rotor limit of R4/2 = 3.3 in the vicinity of N = 110 to the
O(6) limit of R4/2 = 2.5. This obviously reflects the transition from the rotor to
the γ -unstable shapes. Also of particular interest is the difference of the R4/2 ratio
between Pt isotopes and the other isotopes. The R4/2 ratio for all the Pt isotopes
studied remains practically constant all the way, being close to the O(6) limit of 2.5.
The present calculation compares rather well with experimental R4/2 values from
N = 110 to 116 in Os and W isotopes, while an increase is suggested for N ≥ 118,
contrary to the experimental tendency of Os isotopes. This is the consequence of the
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curves and the symbols for the experimental data appear in panel b. Both figures are taken from
Ref. [115]

unexpectedly large χπ and χν values with positive sign, as seen in Table 4.1, since
the corresponding IBM-2 energy surfaces exhibit notable oblate deformation.

The energy ratio R4γ appears in Fig. 4.34b. The experiment shows that in the
lighter Pt, Os and W isotopes with N = 110, 112 and 114, the ratio is below unity.
For Pt isotopes the ratio R4γ remains all the way with values close to unity, which
is qualitatively reproduced by the present calculations. The experimental ratios for
lighter Os-W isotopes increase with N and overpass R4γ = 1 at N = 116. This
behavior is also reproduced. From this point on there is a drastic change in the
tendency and the ratios decrease from N = 116 to 118, being in good agreement
with experiment. In the heavier isotopes with N ≥ 118 there is a new tendency that
the calculated ratio continues decreasing, being much below the unity, whereas the
experimental ratio for Os isotopes keeps increasing, being larger than unity. For Yb
and Hf, the data are not available, but similar tendencies to those for W and Os are
predicted in the present calculation. The results presented here do not differ much
from the case of D1S functional [72, 106].

B(E2) Systematics

In the last part of Sect. 4.3.3, we examine the B(E2) systematics for a few essential
cases of the shape transition. The B(E2) ratios relevant to the bandhead of quasi-γ
band, 2+

2 state, can be stringent tests.
We show in Fig. 4.35 the B(E2) ratio (a) B(E2; 2+

2 → 2+
1 )/B(E2; 2+

1 → 0+
1 )

and the branching ratio (b) B(E2; 2+
2 → 0+

1 )/B(E2; 2+
2 → 2+

1 ) for the considered
isotopes in comparison with the data [76–91].
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Fig. 4.35 The B(E2) ratio (a) B(E2; 2+
2 → 2+

1 )/B(E2; 2+
1 → 0+

1 ) and the branching ratio (b)
B(E2; 2+

2 → 0+
1 )/B(E2; 2+

2 → 2+
1 ) for relevant low-lying states of the considered Yb, Hf, W,

Os, and Pt isotopes with Gogny-D1M EDF. Experimental data for W, Os, and Pt isotopes are taken
from Ref. [76–91]. Definitions of symbols and theoretical curves appear in panel b. Both figures
are taken from Ref. [115]

The 2+
2 → 2+

1 E2 transition is useful as a signature of the structural evolution
involving the γ softness, since it in this case shows an enhanced sensitivity to the
neutron number N . The B(E2; 2+

2 → 2+
1 )/B(E2; 2+

1 → 0+
1 ) ratios for Pt isotopes

differ notably from those of other isotopes. For Yb, Hf, W, and Os isotopes, the
calculated ratio is peaked at N = 116. This confirms that the N = 116 nuclei are
soft in the γ direction for these isotopes. Particularly the relevant Os nucleus with
N = 116 is closest to the O(6) limit of 10/7. On the other hand, for Pt isotopes
the calculated B(E2; 2+

2 → 2+
1 )/B(E2; 2+

1 → 0+
1 ) value keeps increasing toward

N = 110 to be close to the O(6) limit, rather than taking a maximum at N = 116.
This tendency appears to be consistent with what are expected from the topology of
the HFB energy surface and from the predicted systematics of the quasi-γ bandhead
in Fig. 4.33a, which reflects that the γ softness persists for rather wide region in the
Pt isotopic chain.

When compared with the D1S force [106], the present D1M result suggests that
the ratio B(E2; 2+

2 → 2+
1 )/B(E2; 2+

1 → 0+
1 ) is rather sensitive to the isotopic

chains. In fact, in Fig. 4.35a, the B(E2; 2+
2 → 2+

1 )/B(E2; 2+
1 → 0+

1 ) value at
N = 116 appears to have a certain Z dependence when the D1M functional is
used. For instance, the B(E2; 2+

2 → 2+
1 )/B(E2; 2+

1 → 0+
1 ) value for Yb isotopes

is generally far from the O(6) limit for 110 ≤ N ≤ 120, being much closer to the
SU(3) limit of zero than Os isotopes. It has been noticed in Ref. [106], however, that
the calculated value of this B(E2) ratio is practically the same for Yb, Hf, Os, W
isotopes when the D1S functional is taken. It should be interesting to test whether
or not the notable Z dependence, as seen in the present D1M case, is observed
experimentally.
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The branching ratio B(E2; 2+
2 → 0+

1 )/B(E2; 2+
2 → 2+

1 ) in Fig. 4.35b also
presents a clear signature of the structural evolution involving triaxiality. For Yb,
Hf, W, and Os isotopes with 110 ≤ N ≤ 116, the branching ratio decreases from
values close to the SU(3) limit of 0.7 to the U(5)/O(6) limit of zero. This behavior
corresponds to the transition from well deformed nuclei to γ -soft as confirmed by
the experimental data. At this point, one can observe the increase from N = 116
toward the shell closure N = 126. The increase represents the deviation from the
γ softness, as the corresponding mapped energy surface in Fig. 4.29 exhibits weak
oblate deformation. The change in the branching ratio occurs slowly compared with
the D1S case [106]. This is consistent with our general finding that the D1M energy
surfaces for these nuclei suggest the quadrupole correlation less pronounced than the
D1S ones. The branching ratios for Pt isotopes remain always much closer to zero
in Fig. 4.35b, which is compatible with their γ -soft character.

Brief Summary

To summarize Sect. 4.3.3, we have analyzed the low-lying collective structure of
the neutron-rich Yb, Hf, W, Os, and Pt isotopes in terms of the IBM-2 derived from
the new parametrization Gogny D1M. The binding energy surface obtained from
the constrained HFB calculation serves as a starting point for both reproducing and
predicting the ground-state shape of the considered nuclei. The merits of the Gogny-
HFB method and the IBM-2 framework have been exploited.

It was shown that Pt isotopes differ in the rapidity of the shape transition from other
isotopes. The mapped IBM-2 energy surfaces for most of the considered Pt nuclei
are γ unstable. The transition occurs more rapidly when departing from Z = 76
(Os) through Z = 70 (Yb). The triaxial deformation helps understand the prolate-
to-oblate shape transition that occurs in the considered isotopes. The N = 116
nuclei can be commonly identified as the transition points. This is most noticeably
seen from the systematics of the bandhead of the γ band 2+

2 . These features are
confirmed through the analyses of spectra, ground-state correlation energy, and B(E2)
systematics. Predicted spectra have been presented for the neutron-rich Yb and Hf
isotopes, where a quite rapid structural evolution is suggested.

Compared to the results from the standard parametrization Gogny-D1S [72, 106],
it is likely that the D1M functional is equally valid. Further studies should be yet
needed to probe which EDF is most appropriate for more precise mapping procedure.

Last, we here point out the following problems inherent to the prolate-oblate
dynamics within IBM-2 and the possibilities to improve the current model:

• The discrepancies in the γ -band structure should not be overlooked. This is mainly
due to the use of the IBM-2 Hamiltonian not reproducing the triaxial energy
minimum. A specific three-body (cubic) term may improve the agreement. This
problem has been partly answered in Ref. [125], and will be considered in Chap. 6.

• It is still to be clearified whether a single configuration without the particle-hole
excitation holds for the considered mass region. Further studies would be needed

http://dx.doi.org/10.1007/978-4-431-54234-6_6
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to compare the single and the mixed IBM configurations in a microscopic way,
although the number of free parameters would increase drastically.

• In calculating the B(E2) values, the boson effective charges cannot be obviously
determined in a microscopic way. The most straightforward solution would be
to equate the intrinsic quadrupole moment of the mean-field calculation to the
intrinsic quadrupole moment of the IBM-2 system. Rather than this, however,
since the effective charge is used for the purpose of spectroscopy, it is likely that
one should take into account the effect beyond the mean field, namely the core
polarization. This is an interesting future work, and is one of our on-going projects.

• Also, it would be meaningful to compare the spectra and the electromagnetic
transition rates resulting from the present method in the region of A ≈ 190 directly
with those obtained from the full configuration-mixing and symmetry-conserving
calculations that includes triaxial degrees of freedom, in order to quantify the
predictive power of the employed model. Work along this direction has just started
and is in progress.

4.3.4 QPT in Exotic Nuclei

The neutron-rich nuclei in the mass number A ≈ 100 have been an ideal testing
ground for the competition between the excitation modes originated from the single-
particle and the collective degrees of freedom, and have indeed attracted considerable
attention over the past four decades both experimentally and theoretically [126–130].
For instance, sudden onset of deformation has been observed in the even-even Zr
(Z = 40) and Sr (Z = 38) isotopes when the neutron number N is changed from 58
to 60. For N ≤ 58 the shapes for both isotopes are almost spherical, whereas strongly
deformed shapes have been confirmed for N ≥ 60 [127]. The mechanism behind
these phenomena can be ascribed to the strongly interacting proton and neutron
Nilsson orbits (cf. Ref. [130] and references therein). For neutrons, on the one hand,
the downsloping of the ν1/2 − [505] and the ν3/2 − [541] orbits, which occurs due
to the splitting of the spherical νh11/2 orbital, gives rise to the deformation, whereas
the extruder ν9/2 + [404] orbital stabilizes the deformation at a saturation level
of approximately β ≈ 0.4 [130] with β being the axially symmetric deformation
in the geometrical model. For protons, on the other hand, the downsloping of the
π1/2 +[440] and the π3/2 +[431] orbits, originating from the spherical πg9/2 orbital,
are fully occupied at Z = 38 and 40 with the deformation of β ≈ 0.4. At the neutron
number N = 60, the deformed configuration becomes dominant over the spherical
one, thereby resulting in the observed strong deformation.

In this context, when descending to the Krypton isotopes with proton number
Z = 36, only the proton π1/2 + [440] orbital is fully occupied with the deformation
of β ≈ 0.4. Therefore the question arises as to whether the reduced occupation of
the deformation driving proton intruder orbitals is still strong enough to enhance
deformation as rapidly as neighbouring Sr and Zr isotopes. It should be noted that
the spectroscopic data for the Kr nuclei with N ≥ 60 have been quite sparse. Even
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the most basic measure of 2+
1 excitation energies have been known only up to 94Kr

(N = 58), and the B(E2) value for the 2+
1 → 0+

1 transition is known only for 88Kr
and 92Kr nuclei [131]. By the experimental study in 2009 [132], the γ ray with
the energy of Eγ = 241 keV was assigned to the 2+

1 → 0+
1 transition for 96Kr

(N = 60) nucleus. In the measurement reported in Ref. [132], sudden change of the
deformation from N = 58 to 60 was suggested, similar to the cases in Sr and Zr
isotopes.

The finding of [132] has been denied by the mass measurement, using the
ISOLTRAP Penning-trap spectrometer at CERN3 ISOLDE4 facility [133]. Accord-
ing to the measurement of [133], the two-neutron separation energies evolve smoothly
toward N = 60 for Kr isotopes, implying the smooth onset of deformation at this
neutron number, which is contrary to the results in Ref. [132]. It should be then
quite interesting to see whether similarly smooth evolution of nuclear structure in
Kr isotopes can be found in the spectroscopic observables. To clarify the contra-
diction between the measurements of Refs. [132] and [133], the experiments were
performed to measure the B(E2; 2+

1 → 0+
1 ) values of the neutron-rich exotic 94,96Kr

nuclei, employing the technique of sub-barrier projectile Coulomb excitation [134].
The experiment was carried out at the REX-ISOLDE5 facility at CERN. This exper-
iment supported the conclusion of the mass measurement of [133], identifying the
Eγ = 554.1(5)keV as the 2+

1 → 0+
1 transition. The observed 2+

1 excitation energies
and the B(E2) values of the neutron-rich Kr isotopes can be a first hint implying the
smooth onset of deformation. In addition, this new experimental result was supported
by the theoretical calculation employing the IBM-2 Hamiltonian determined based
on the constrained HFB approach with the microscopic Gogny-D1M energy density
functional. The D1M functional is taken because it is more oriented to the nuclear
mass model [52]. Note that there is no notable difference between the cases of the
D1M functional and the standard parametrization of D1S functional.

This section illustrates the work of Ref. [134], but focuses on the theoretical aspect
and the resultant physical interpretation presented there. The reader who is interested
in the experimental detail is referred to the original paper [134].

To begin with, the newly obtained experimental data for the 2+
1 excitation ener-

gies, E2 transition strengths, the lifetimes extracted from the B(E2) values, and the
determined quadrupole moments for the considered 94,96Kr nuclei are summarized
in Table 4.2, and the systematic trends of the experimental 2+

1 excitation energies
and the absolute B(E2; 2+

1 → 0+
1 ) values for the Kr isotopic chains from N = 50 to

60 are shown in Fig. 4.36. The energy of the excited 2+
1 state observed in Ref. [132]

for the 96Kr nucleus is shown also for comparison. Figure 4.36 obviously shows
that the experimental 2+

1 excitation energies change quite smoothly when one goes
from the neutron number N = 58 to 60, implying the modest onset of deforma-
tion as function of the neutron number. This finding is quite consistent with what
is expected from the recently published result of the mass measurement [133], as

3 Conseil Européen pour la Recherche Nucléaire.
4 Isotope Separator On Line Facility for Production of Radioactive Ion-Beams.
5 Radioactive Beam EXperiment at ISOLDE.
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Table 4.2 Obtained experimental data for the 2+
1 excitation energies, E2 transition strengths, the

lifetimes extracted from the B(E2) values, and the determined quadrupole moments

Isotopes Eγ (2
+
1 → 0+

1 ) B(E2; 2+
1 → 0+

1 ) τ (2+
1 ) Q2+

1

(keV) (W.u.) (ps) (b)
94Kr 666.1(3) 19.5+2.2

−2.1 12.5+1.5
−1.2 −0.45+0.33

−0.30
96Kr 554.1(5) 33.4+7.4

−6.7 17.9+4.5
−3.3 0.26(92)

Data are taken from Ref. [134]
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Fig. 4.36 The experimental data for the (a) 2+
1 excitation energies and (b) the absolute B(E2; 2+

1 →
0+

1 ) values for the considered Kr isotopes. The solid circles connected with each other by the solid
curves and the open circle in panel a represent the experimental data resulting from the present
work [134] and from Ref. [132], respectively

well as with the results obtained from the isotopes shift δr2
c measurement of [135].

The latter was discussed theoretically in Ref. [136], where the smooth behavior
in Kr isotopes was interpreted as a stabilization of the oblate shapes along the
isotopic chain.

The assignment of Eγ (2
+
1 → 0+

1 ) = 551 keV γ ray can be supported by the
IBM-2 calculation based on the constrained self-consistent HFB method with the
D1M functional. It is sufficient to use the IBM-2 Hamiltonian of of the most stan-
dard form introduced in Eq. (2.41), consisting of only a few essential parts of a
general two-body IBM-2 Hamiltonian, because one encounters no such situation as
the stable triaxial minimum nor the coexisting minima in the microscopic Gogny
EDF calculations for the considered Kr isotopes. Note that, for relatively light exotic
nuclei, the conventional magic numbers may become no longer valid. We do not
consider such effects and assume 78Ni core as the boson vacuum. Thus, the proton
boson number Nπ is fixed, Nπ = 4, and the neutron boson number Nν changes
from 0 to 5 for 86−96Kr nuclei, respectively. Also, since protons and neutrons occupy
different major shells under this assumption, it is likely that one does not have to
deal with the proton-neutron pairs and thus the usual IBM-2 framework suffices.

http://dx.doi.org/10.1007/978-4-431-54234-6_2
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Fig. 4.37 The self-consistent energy landscapes with quadrupole degrees of freedom calculated by
the constrained HFB method with Gogny-D1M EDF (left panels) and the mapped IBM-2 energy
surfaces (right panels) for the 92−96Kr nuclei, drawn up to 2 MeV excitation in energy from the
minima within the range of polar deformation parameter of 0◦ ≤ γ ≤ 60◦. The contour spacing is
100 keV

Figure 4.37 displays the self-consistent constrained energy surfaces with Gogny-
D1M EDF and the mapped IBM-2 energy surfaces for the selected nuclei 92,94,96Kr.
The microscopic energy surface for 92Kr appears to be totally flat and, for 94,96Kr
nuclei the oblate deformation is predicted. The potential becomes deeper from
N = 58 to 60, but quite gradually. The mapped IBM energy surfaces indicate sim-
ilar pattern. A local minimum for 96Kr around β = 0.4 would be of little impor-
tance for the low-lying state and is not taken into account in the fit of the IBM-2
Hamiltonian.
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Table 4.3 The parameters for the IBM-2 Hamiltonian obtained from the mapping of HFB to IBM-2
energy surfaces for the considered Kr nuclei with 50 ≤ N ≤ 60

Nuclei ε (MeV) κ (MeV) χπ χν

86Kr 1.3 −0.380 0.4 −0.4
88Kr 0.947 −0.428 0.631 −0.533
90Kr 1.052 −0.363 0.401 −0.438
92Kr 1.211 −0.372 0.386 −0.392
94Kr 1.208 −0.362 0.374 −0.020
96Kr 1.280 −0.351 0.555 0.060

The derived IBM-2 parameters are listed in Table 4.3. What is worth noting is
the overall systematic behaviour of the sum of the proton and neutron parameters
χπ +χν , reflecting totally flat collective potential energy surface for lighter isotopes
being close to χπ + χν ≈ 0 and oblate configuration with χπ + χν > 0 for heavier
ones.

To calculate the absolute B(E2) values, the E2 operator of the form in Eq. (2.50) is
taken. The effective proton boson charge of eπ = 0.07 eb is fixed by adjusting to the
experimental [137] B(E2; 2+

1 → 0+
1 ) value of the 86Kr nucleus. In order to reduce

the number of free parameters, the effective neutron boson charge of eν = 0.0 eb is
taken, following the idea of Refs. [138, 139].

The level schemes of all the considered Kr nuclei with 50 ≤ N ≤ 60 are shown
in Fig. 4.38, where the theoretical and the experimental 2+

1 , 4+
1 , 2+

2 and 0+
2 exci-

tation energies as well as the absolute B(E2; 2+
1 → 0+

1 ) values are compared. The
calculated 2+

1 excitation energy of 534 keV for the exotic 96Kr nucleus agrees quite
well with the new experimental value of 554.1 keV. The present calculation pre-
dicts that the energies of the 0+

2 and the 2+
2 side-band states become larger than and

7.7(8)8.7(5) 16.9(6) 19.5(22) 33.4(75)

Kr isotopes

Fig. 4.38 Experimental and theoretical 2+
1 , 4+

1 , 2+
2 and 0+

2 excitation energies and the absolute
B(E2; 2+

1 → 0+
1 ) values (in Weisskopf unit) for the considered Kr nuclei with 50 ≤ N ≤ 60. The

experimental B(E2; 2+
1 → 0+

1 ) values for 86,88,92Kr nuclei are taken from Refs. [131, 137]. Figure
is base on Ref. [134]

http://dx.doi.org/10.1007/978-4-431-54234-6_2
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deviate from the 4+
1 level from N = 56 to 58 and to 60, implying the structural

evolution to more deformed states. Good agreement is obtained also for the absolute
B(E2; 2+

1 → 0+
1 ) values, except for the transitional nucleus 92Kr. What is of partic-

ular significance should be that the present calculation seems to support the observed
gradual evolution of deformation from N = 58 to 60.

To summarize Sect. 4.3.4, new experimental results on the 2+
1 excitation energies

and the absolute B(E2; 2+
1 → 0+

1 ) values for the neutron-rich 94,96Kr have been
analyzed theoretically. These experimental findings reveal that, contrary to what was
concluded in Ref. [132], no sudden onset of deformation is observed from N = 58
to 60. The experiment supports, for the first time, the mass measurement of [133]
from the spectroscopic point of view. The physical interpretation suggested by the
new experiment has been confirmed in terms of the IBM-2 Hamiltonian determined
based on the constrained HFB approach using the microscopic Gogny-D1M energy
density functional.
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Chapter 5
Comparison with Geometrical Model

5.1 Aim

From the practical side, the methodology described so far yields spectroscopic
observables in a computationally moderate way, which can be an alternative to
the full GCM configuration-mixing approach. In another sound approximation to
the full GCM approach to five-dimensional quadrupole dynamics that restores rota-
tional symmetry and allows for fluctuations around the triaxial mean-field minima,
a collective Hamiltonian can be formulated, with deformation-dependent parame-
ters determined by constrained microscopic self-consistent mean-field calculations.
The dynamics of the five-dimensional Hamiltonian for quadrupole vibrational and
rotational degrees of freedom is governed by the seven functions of the intrinsic
quadrupole deformations: the collective potential, three vibrational mass parame-
ters, and three moments of inertia for rotations around the principal axes [4–8].

It would be, therefore, interesting to compare the collective model and the IBM,
starting from the same self-consistent mean-field solution based on a microscopic
EDF. In this chapter, spectroscopic observables calculated with the IBM Hamil-
tonian are compared to the solution of the collective quadrupole Hamiltonian, with
both calculations being based on relativistic Hartree-Bogoliubov (RHB) [9] self-
consistent mean-field energy surfaces. The framework of relativistic EDFs and the
corresponding collective Hamiltonian have successfully been employed in studies of
the evolution of ground-state shapes and spectroscopic properties of medium-heavy
and heavy nuclei [6–11]. In the present analysis we consider the even-even isotopes
192−196Pt. In the IBM framework these γ -soft nuclei can be characterized by the
O(6) dynamical symmetry [12–15].
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5.2 Bohr Hamiltonian

The map of the energy surface as a function of the quadrupole collective variables
β and γ [16] is obtained from self-consistent RHB calculations with additional con-
straints on the axial and triaxial mass quadrupole moments. The quadrupole moments
can be related to the polar deformation parametersβ and γ . The parameterβ is simply
proportional to the intrinsic quadrupole moment, and the angular variable γ specifies
the type and orientation of the shape. The limit γ = 0 corresponds to axial prolate
shapes, whereas the shape is oblate for γ = π/3. Triaxial shapes are associated with
intermediate values 0 < γ < π/3. In this work the constrained RHB calculations
have been performed using the relativistic functional DD-PC1 [18]. Starting from
microscopic nucleon self-energies in nuclear matter, and empirical global properties
of the nuclear matter equation of state, the coupling parameters of DD-PC1 have
been determined in a careful comparison of the calculated binding energies with
data, for a set of 64 axially deformed nuclei in the mass regions A ≈ 150–180
and A ≈ 230–250. DD-PC1 has been further tested in a series of calculations of
properties of spherical and deformed medium-heavy and heavy nuclei, including
binding energies, charge radii, deformation parameters, neutron skin thickness, and
excitation energies of giant multipole resonances. For the examples presented here,
pairing correlations have been taken into account by employing a pairing force that
is separable in momentum space, and is completely determined by two parameters
adjusted to reproduce the empirical bell-shaped pairing gap in symmetric nuclear
matter [19].

The entire dynamics of the collective Hamiltonian is governed by seven functions
of the intrinsic deformations β and γ : the collective potential, the three mass para-
meters: Bββ , Bβγ , Bγ γ , and the three moments of inertia Ik . These functions are
determined by the choice of a particular microscopic nuclear energy density func-
tional and a pairing functional. The quasiparticle wave functions and energies, that
correspond to constrained self-consistent solutions of the RHB model, provide the
microscopic input for the parameters of the collective Hamiltonian [6]:

Ĥcoll = T̂vib + T̂rot + Vcoll, (5.1)

with the vibrational kinetic energy:
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and rotational kinetic energy:

T̂rot = 1

2

3∑

k=1

Ĵ 2
k

Ik
. (5.3)

Vcoll is the collective potential. Ĵk denotes the components of the angular momentum
in the body-fixed frame of a nucleus, and the mass parameters Bββ , Bβγ , Bγ γ , as well
as the moments of inertia Ik , depend on the quadrupole deformation variables β and
γ : Ik = 4Bkβ

2 sin2(γ−2kπ/3). Two additional quantities that appear in the expres-
sion for the vibrational energy: r = B1 B2 B3, and w = BββBγ γ − B2

βγ , determine the
volume element in the collective space. The moments of inertia are computed using
the Inglis-Belyaev (IB) formula [20, 21], and the mass parameters associated with
the two quadrupole collective coordinates q0 = 〈Q̂20〉 and q2 = 〈Q̂22〉 are calcu-
lated in the cranking approximation. The potential Vcoll in the collective Hamiltonian
Eq. (5.1) is obtained by subtracting the zero-point energy corrections from the total
energy that corresponds to the solution of constrained RHB equations, at each point
on the triaxial deformation plane.

Vcoll(β, γ ) = ERMF(β, γ )−ΔVcoll(β, γ )−ΔVrot(β, γ ). (5.4)

The Hamiltonian Eq. (5.1) describes quadrupole vibrations, rotations, and the cou-
pling of these collective modes. The corresponding eigenvalue problem is solved
using an expansion of eigenfunctions in terms of a complete set of basis functions
that depend on the deformation variables β and γ , and the Euler angles φ, θ and
ψ [6]. The diagonalization of the Hamiltonian yields the excitation energies and
collective wave functions for each value of the total angular momentum and parity,
that are used to calculate observables. An important advantage of using the collective
model based on self-consistent mean-field single-(quasi)particle solutions is the fact
that physical observables, such as transition probabilities and spectroscopic quadru-
pole moments, are calculated in the full configuration space and there is no need for
effective charges. Using the bare value of the proton charge in the electric quadrupole
operator, the transition probabilities between eigenvectors of the collective Hamil-
tonian can be directly compared with data.

In an equivalent approach the RHB binding energy surface can be mapped onto
the IBM Hamiltonian. Starting from the energy surface ERMF(β, γ ) calculated with
the DD-PC1 plus separable-pairing functional, each point on the (β, γ ) plane is
mapped onto the corresponding point on the energy surface calculated in the IBM,
referred to hereafter as EIBM(βB, γB), using the method proposed in Ref. [2]. Here
βB and γB denote the boson images of the quadrupole deformation parameters β and
γ , respectively, that are used as constraints in the self-consistent RHB calculation
and appear as variables in the collective Hamiltonian. The boson images βB and
γB are related to β and γ through the proportionality βB ∝ β, and the equality
γB = γ , respectively [1, 2]. This mapping procedure is used to determine the strength
parameters of the IBM Hamiltonian.
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Turning now to the IBM description, we consider the most basic type of the
Hamiltonian of Eq. (2.41). The bosonic energy surface EIBM(β, γ ) corresponds to
the classical limit of the Hamiltonian, denoted by

EIBM(βB, γB) = 〈Φ(βB, γB)|ĤIBM|Φ(βB, γB)〉 (5.5)

where |Φ(βB, γB)〉 denotes the boson coherent state of Eq. (2.36). As in our previous
studies [1, 2], it is assumed that the deformation parameters for proton and neutron
bosons can take identical values: βπ = βν ≡ βB and γπ = γν ≡ γB . The analytical
form of EIBM(βB, γB) can be found in Eq. (2.46). Hereafter we denote the bosonic
energy surface as EIBM(β, γ ), omitting the indices of βB and γB .

The boson Hamiltonian ĤIBM, parametrized by the microscopically calculated
coupling constants, is diagonalized in the M = 0 boson space. Here M denotes the
z-component of the total boson angular momentum L . Reduced quadrupole transition
probabilities B(E2) are calculated for transitions between the eigenstates of the IBM
Hamiltonian.

Here we point out again that the total boson energy EIBM(β, γ ) has been related
to the microscopic EDF energy surface (total energy). However, for the IBM Hamil-
tonian ĤB one cannot make a distinction between the kinetic and potential terms, as
in the corresponding collective Hamiltonian Ĥcoll. Nevertheless, the effects relevant
to both vibrational and rotational kinetic energies are assumed to be incorporated into
the IBM approach by adjusting EIBM(β, γ ) to be as close as possible to the micro-
scopic surface ERHB(β, γ ). This prescription turned out to be valid for vibrational
and γ -soft nuclei at moderate quadrupole deformation [1, 2], similarly to the con-
ventional mapping method of Ref. [22]. For rotational nuclei with large quadrupole
deformation, however, the overall scale of the IBM rotational spectra differs from
the experimental one [1, 2]. The discrepancy partially arises because nuclear rota-
tional properties, characterized by the overlap of the intrinsic state and the rotated
one, differs from the rotational characteristics of the corresponding boson system
[3]. This problem may be cured by the recently proposed prescription [3], in which
the rotational response (i.e., cranking) of boson system is related to the rotational
response of nucleon system. This procedure goes beyond the simple analysis of the
zero-frequency energy surface. In order that the boson rotational response becomes
equal to the fermion (nucleon) response, an additional kinetic term L̂ · L̂ has to be
included in the boson Hamiltonian, with a coupling constant determined microscop-
ically [3]. The term L̂ · L̂ directly influences the moment of inertia of rotational band
with the eigenvalue L(L + 1). However, the above-mentioned problem, concerning
the IBM rotational spectra, does not occur in the considered Pt nuclei, and thus one
does not need to include the L̂ · L̂ term in the present case.

Similar problems with the overall scale of the rotational spectra are also encoun-
tered in the collective Hamiltonian model, when the IB formula is used to calculate
the moments of inertia [6–8]. The inclusion of an additional scale parameter is often
necessary because of the well known fact that the IB formula predicts effective
moments of inertia that are considerably smaller than empirical values. More real-
istic values are only obtained if one uses the Thouless-Valatin (TV) formula [23],

http://dx.doi.org/10.1007/978-4-431-54234-6_2
http://dx.doi.org/10.1007/978-4-431-54234-6_2
http://dx.doi.org/10.1007/978-4-431-54234-6_2
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but this procedure is computationally much more demanding. In the present case
we have used the IB moments of inertia in the calculation of excitation spectra of
Pt nuclei, and the agreement with experiment is such that no renormalization of the
effective moments of inertia is required. This result allows for a direct comparison
of the IBM spectra to the solutions of the collective Hamiltonian.

Most deformed nuclei display axially-symmetric prolate ground-state shapes, but
few areas of the nuclide chart are characterized by the occurrence of non-axial shapes.
One example is the A ≈ 190 mass region, where both prolate to oblate shape tran-
sitions, and even triaxial ground-state shapes have been predicted.

The left-hand side of Fig. 5.1 shows the self-consistent RHB quadrupole binding
energy maps of the 192,194,196Pt isotopes in the β − γ plane, calculated with the
DD-PC1 energy density functional. The energy surfaces are γ -soft, with shallow
minima at γ ≈ 30◦. In general the equilibrium deformation decreases with mass
number and, proceeding to even heavier isotopes, one finds that the energy map of
198Pt has also a non-axial minimum, whereas 200Pt displays a slightly oblate mini-
mum [10], signaling the shell-closure at the neutron number N = 126. On the right-
hand side of Fig. 5.1, we plot the corresponding IBM energy surfaces EIBM(β, γ ),
obtained by mapping each point of surface ERHB(β, γ ) onto the energy surface cal-
culated in the IBM, following the procedure of Ref. [2]. To be able to compare the
low-energy spectra in the two models, the IBM surfaces are mapped in such a way to
reproduce the RHB energy surfaces up to ≈2 MeV above the mean-field minimum.
This means that the maps shown in Fig. 5.1 can only be compared for values of β
not very different from the minimum βmin. For larger values of β, that is, for higher
excitation energies the topology of the RHB surfaces is determined by single-nucleon
configurations that are not included in the model space (valence space) from which
the IBM bosons are constructed. For large β-deformations, therefore, one should not
try to map the microscopic energy surfaces onto the IBM. This is the reason why the
IBM energy surfaces are by construction always rather flat in the region β 	 βmin. In
the vicinity of the minima the curvatures of the IBM energy maps are rather similar
to those of the original RHB surfaces both in β and γ directions. The derived values
for the χπ and χν parameters in Eq. (2.41) satisfy χπ + χν ∼ 0, characteristic for a
γ -soft energy surface.

One might notice that the IBM energy maps reproduce the value ofβ at the minima
predicted by the RHB calculation, whereas the mapping does not reproduce the shal-
low triaxial minima of the RHB surfaces. The minima of the IBM maps are either
oblate or prolate. This is because the IBM Hamiltonian of Eq. (2.41) is too restricted
to produce a triaxial minimum. In the analytical expression for EIBM(β, γ ) the
γ -dependent term is proportional to (χπ + χν) cos 3γ , and this places the minimum
either on the prolate or oblate side according to the sign of (χπ + χν). The Pt nuclei
considered here do not display any rapid structural change but remain γ -soft. This
feature appears to be independent of the choice of the EDF. A recent microscopic cal-
culation using the Gogny-D1S EDF [24] also yielded shallow triaxial shapes, rather
flat in the oblate region [25], but quantitatively consistent with the present analysis.
A similar trend was reported in other EDF-based studies of ground-state shapes of Pt
isotopes [11, 26, 27]. In the present calculation the RHB surfaces become softer in γ

http://dx.doi.org/10.1007/978-4-431-54234-6_2
http://dx.doi.org/10.1007/978-4-431-54234-6_2
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Fig. 5.1 Self-consistent binding-energy maps of 192,194,196Pt in the β − γ plane (0◦ ≤ γ ≤ 60◦),
calculated with the RHB model using the DD-PC1 functional (left panels), and the corresponding
mapped energy surface of the IBM, EIBM(βB , γB). The IBM total energies are depicted in terms
of β and γ , where β ∝ βB and γ = γB (see text for definition). The figures have been taken from
Ref. [17]
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with increasing neutron number, and the softest nucleus is 196Pt. The corresponding
IBM energy surfaces follow this evolution, but do not reproduce the triaxial minima
because of the reasons explained above. The recent Gogny-EDF calculation [25]
predicts 192Pt to be the softest Pt isotope in this mass region.

5.3 Geometrical and Bosonic Spectra

In Fig. 5.2 we display the corresponding low-energy collective spectra of 192,194,196Pt
obtained from the collective Hamiltonian (middle panels), and the IBM Hamiltonian
(panels on the right). The calculated ground-state and (quasi) γ -vibration bands are
compared to the corresponding sequences of experimental states [31]. The eigenstates
of the collective Hamiltonian in Eq. (5.1) are completely determined by the DD-PC1
energy density functional plus a separable pairing interaction, and the transition
probabilities are calculated in the full configuration space using the bare value of
the proton charge. Since ĤIBM in Eq. ( 2.41) acts only in the boson valence space, to
calculate the B(E2) values one needs two additional parameters: the proton-boson
and neutron-boson effective charges. For simplicity, here we take these effective
charges to be equal, and in each nucleus normalize the B(E2) values obtained in
the IBM to reproduce the transition probability B(E2; 2+

1 → 0+
1 ) calculated with

the collective Hamiltonian. Thus we can only compare the ratios of the IBM B(E2)
values, divided by B(E2; 2+

1 → 0+
1 ), to those predicted by the collective Hamiltonian

based on DD-PC1, and to available data.
For the ground-state band, both the collective Hamiltonian and the IBM predict

excitation spectra in close agreement with experiment. For 192Pt, in particular, the
calculated ground-state bands seem to indicate a somewhat larger deformation than
observed experimentally. In fact, the theoretical energy ratio R4/2 = E(4+

1 )/E(2+
1 )

is 2.59 with collective Hamiltonian, and is 2.69 with the IBM Hamiltonian, compared
to the experimental value R4/2 = 2.48. A similar trend is also found for the other two
nuclei. A more pronounced difference between the predictions of the two models is
found in the E2 decay pattern of the ground-state band, particularly in 194Pt nucleus
for which data are available up to angular momentum 10+. For the spectrum calcu-
lated with the collective model, the E2 transition rates from the state with angular
momentum L (L ≥ 2) to the one with L − 2 keep increasing as function of L , even
though the corresponding experimental B(E2) values in 192,194Pt decrease starting
from L = 6. The trend of the B(E2) values calculated with the IBM, on the other
hand, is much closer to experiment. The B(E2)’s decrease in the IBM because
the model space is built from valence nucleons only, and the wave functions of
higher angular-momentum states correspond to simple configurations of fully aligned
d-bosons [12, 13], whereas there is no limit on the angular momentum of eigenstates
of the collective Hamiltonian.

A more significant difference between the spectroscopic properties predicted by
the collective Hamiltonian and the IBM is found in the sequence of levels built on
the state 2+

2 —the (quasi) γ -band. The IBM spectra display a staggering of excitation

http://dx.doi.org/10.1007/978-4-431-54234-6_2
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Fig. 5.2 Low-lying collective spectra of 192,194,196Pt nuclei, calculated with the collective
Hamiltonian based on the DD-PC1 functional and the corresponding IBM Hamiltonian, in com-
parison with available data. For each nucleus, the B(E2) values (in Weisskopf units) obtained in
the IBM are normalized to the B(E2; 2+

1 → 0+
1 ) predicted by the collective Hamiltonian. The

experimental excitation spectra and B(E2) values are from Refs. [31] and [32–34], respectively.
The figure has been taken from Ref. [17]
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energies above 2+
γ , with the formation of doublets (3+

γ 4+
γ ), (5+

γ 6+
γ ), . . . etc, whereas

the collective Hamiltonian yields a regular excitation pattern consistent with the
experimental band. To be more precise, the IBM spectra correspond to γ -unstable
nuclei, and are close to the limit of O(6) dynamical symmetry in which eigenstates of
a boson Hamiltonian with the same τ quantum number are degenerate [14]. On the
other hand, the γ -bands predicted by the collective model, as well as the experimental
sequence, seem to be closer to rigid triaxiality [28]. The difference between the
collective Hamiltonian and the IBM arises probably because the shallow triaxial
minima of the RHB energy surfaces are not reproduced by the mapping onto the
IBM total energy (cf. Fig. 5.1). The agreement of the IBM (quasi) γ -band with
experiment could be improved by introducing additional interaction terms in the IBM
Hamiltonian, i.e., three-body terms (the so-called cubic terms) [29, 30]. Terms of this
type should be included for a more precise analysis and comparison of states above
the yrast with experimental results. The analyses along this line will be described in
detail in Chap. 6.

A nice feature of the present calculation, particularly the one with the IBM
Hamiltonian, is that the predicted B(E2) values for the transition 2+

2 → 2+
1 are

comparable to or even larger than those corresponding to 4+
1 → 2+

1 . This result
is consistent with the experimental trend, whereas in the recent Gogny-based EDF
calculation of Ref. [25], the 2+

2 → 2+
1 transitions were much weaker than 4+

1 → 2+
1 .

The corresponding Gogny energy surfaces displayed pronounced oblate minima in
Ref. [25], unlike the present deformation energy maps shown in Fig. 5.1.

Finally, in Figs. 5.3 and 5.4 we compare the absolute squares of the collective wave
functions for the yrast states 0+

1 , 2+
1 , 4+

1 , and the band-head of the γ -band of 192Pt,
calculated in the two models. These quantities are proportional to the probability
density distributions in the β − γ plane. Figure 5.3 shows the distribution, denoted
by fL(β, γ ), for 192Pt nucleus. fL(β, γ ) is written as

fL(β, γ ) =
L∑

M=−L

|〈Ψ L
M |Φ(β, γ )〉|2, (5.6)

where |Ψ L
M 〉 denotes the IBM eigenstate for the state with angular momentum L

and projection M . The way to calculate the absolute square fL(β, γ ) is described in
Appendix B.2.

In Fig. 5.3 the wave functions of the yrast states are concentrated along the oblate
axis, only for the state 4+

1 the maximum of the absolute square is located at γ ∼ 55◦,
and somewhat larger deviations from pure oblate configurations are found for higher
angular momenta. For the state 2+

2 , on the other hand, the peak appears in the triaxial
region (γ ∼ 35◦), and the distribution is extended more toward oblate quadrupole
deformations. The rather large overlap of the collective wave functions for the states
2+

1 and 2+
2 explains the particularly strong 2+

2 → 2+
1 transitions in this nucleus, and

similarly in the other two Pt isotopes considered here. The corresponding absolute
squares of the eigenstates of the collective Hamiltonian are shown in Fig. 5.4. In
this case already the wave functions of the yrast states reflect the γ -softness of the

http://dx.doi.org/10.1007/978-4-431-54234-6_6
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Fig. 5.3 Absolute squares of the IBM wave functions in the β − γ plane for the yrast states 0+
1 ,

2+
1 , 4+

1 , and the band-head of the γ -band 2+
2 of 192Pt. The positions of the maxima are denoted by

a dot. The figures have been taken from Ref. [17]

RHB energy surface, and the maxima of the absolute squares are found in the triaxial
region of the β − γ plane.

5.4 Brief Summary

To summarize this chapter, the two models have been compared here in a study of
the evolution of non-axial shapes in Pt isotopes. Starting from the binding energy
surfaces of 192,194,196Pt, calculated with the DD-PC1 energy density functional plus
a separable pairing interaction, we have analyzed the resulting low-energy collec-
tive spectra obtained from the collective Hamiltonian, and the corresponding IBM-2
Hamiltonian. The calculated ground-state and γ -vibration bands have been also com-
pared to the corresponding sequences of experimental states. Both models predict
that excitation energies and B(E2) values are in agreement with data. In particular,
we notice the excellent result for the predicted excitation energy of the band-head of
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Fig. 5.4 Same as described in the caption to Fig. 5.3 but for the eigenstates of the collective
Hamiltonian. The figures have been taken from Ref. [17]

the γ -band, as well as the good agreement with the experimental B(E2) values for
transitions between the γ -band and the yrast band.

There are also significant differences in the predictions of the two models. With the
present form of the IBM Hamiltonian, restricted to two-body boson interactions, its
expectation value in the boson coherent state does not reproduce the shallow triaxial
minima of the binding energy maps predicted by the constrained self-consistent
mean-field calculation using DD-PC1. Since the mapped IBM energy surface is
γ -soft rather than triaxial, the resulting spectra display a staggering of excitation
energies above 2+

γ , with the formation of doublets (3+
γ 4+

γ ), (5+
γ 6+

γ ), . . . etc, in
contrast to the regular excitation pattern observed in experiment and reproduced by
the collective Hamiltonian. This problem could be solved by including three-body
boson terms in the IBM Hamiltonian. When considering the calculated B(E2) values
for transitions in the ground-state band, the IBM reproduces the gradual decrease of
transition rates with angular momentum for L ≥ 6, reflecting the finiteness of the
valence space. On the other hand, even though the collective Hamiltonian predicts



142 5 Comparison with Geometrical Model

parameter-free B(E2) values in excellent agreement with experiment for transitions
between low-spin states, the calculated transition probabilities keep increasing with
angular momentum, in contrast to data.

Both models are based on binding energy surfaces calculated at zero rotational fre-
quency. In general this leads to effective rotational moments of inertia that are lower
than empirical values, that is, the calculated rotational bands are stretched in energy
compared to experimental bands. In the collective Hamiltonian the moments of iner-
tia can be improved by including the Thouless-Valatin dynamical rearrangement
contributions. For the IBM Hamiltonian one needs to include the kinetic rotational
term [3], and perform the mapping of microscopic energy surfaces calculated at finite
values of the rotational frequency. We have already started with the implementation
of these modifications in our current version of the collective Hamiltonian based
on relativistic EDF, and in the IBM Hamiltonian. The comparison of the improved
models will be the subject of a future study.
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11. Nikšić T, Ring P, Vretenar D, Tian Y, Ma Z-y (2010) 3D relativistic Hartree-Bogoliubov model
with a separable pairing interaction: triaxial ground-state shapes. Phys Rev C 81:054318

12. Arima A, Iachello F (1975) Collective nuclear states as representations of a SU(6) group. Phys
Rev Lett 35:1069

13. Iachello F, Arima A (1987) The interacting boson model. Cambridge University Press, Cam-
bridge

14. Cizewski JA, Casten RF, Smith GJ, Stelts ML, Kane WR, Borner HG, Davidson WF (1978)
Evidence for a new symmetry in nuclei: the structure of 196Pt and the O(6) limit. Phys Rev
Lett 40:167



References 143

15. Casten RF, Cizewski JA (1978) The 0(6)→rotor transition in the Pt-Os nuclei. Nucl Phys
A309:477

16. Bohr A, Mottelson BR (1969, 1975) Nuclear structure, vol I single-particle motion: vol II
nuclear deformations. Benjamin, New York
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19. Nikšić T, Ring P, Vretenar D, Tian Y, Ma ZY (2010) 3D relativistic Hartree-Bogoliubov model
with a separable pairing interaction: triaxial ground-state shapes. Phys Rev C 81:054318

20. Inglis DR (1956) Nuclear moments of inertia due to nucleon motion in a rotating well. Phys
Rev 103:1786

21. Belyaev ST (1961) Concerning the calculation of the nuclear moment of inertia. Nucl Phys
24:322

22. Otsuka T, Arima A, Iachello F (1978) Shell model description of interacting bosons. Nucl Phys
A309:1

23. Thouless DJ, Valatin JG (1962) Time-dependent Hartree-Fock equations and rotational states
of nuclei. Nucl Phys 31:211

24. Berger JF, Girod M, Gogny D (1984) Microscopic analysis of collective dynamics in low energy
fission. Nucl Phys A428:23c

25. Nomura K, Otsuka T, Rodríguez-Guzmán R, Robledo LM, Sarriguren P (2011) Structural
evolution in Pt isotopes with the interacting boson model Hamiltonian derived from the Gogny
energy density functional. Phys Rev C 83:014309

26. Robledo LM, Rodríguez-Guzmán R, Sarriguren P (2009) Role of triaxiality in the ground-state
shape of neutron-rich Yb, Hf, W, Os and Pt isotopes. J Phys G Nucl Part Phys 36:115104

27. Rodriguez-Guzman R, Sarriguren P, Robledo LM, Garcis-Ramos JE (2010) Mean field study
of structural changes in Pt isotopes with the Gogny interaction. Phys Rev C 81:024310

28. Davydov AS, Filippov GF (1958) Rotational states in even atomic nuclei. Nucl Phys 8:237
29. Heyde K, Van Isacker P, Waroquier M, Moreau J (1984) Triaxial shapes in the interacting boson

model. Phys Rev C29:1420
30. Casten RF, von Brentano P, Heyde K, Van Isacker P, Jolie J (1985) The Interplay PF γ -softness

and triaxiality in O(6)-like nuclei. Nucl Phys A439:289
31. Brookhaven National Nuclear Data Center (NNDC). http://www.nndc.bnl.gov/nudat2/index.jsp
32. Baglin CM (1998) Nuclear data sheets for A = 192. Nucl Data Sheets 84:717
33. Singh B (2006) Nuclear data sheets for A = 194. Nucl Data Sheets 107:1531
34. Xiaolong H (2007) Nuclear data sheets for A = 196. Nucl Data Sheets 108:1093

http://www.nndc.bnl.gov/nudat2/index.jsp


Chapter 6
Is Axially Asymmetric Nucleus γ Rigid
or Unstable?

6.1 Overview

Nuclear shapes reflect deformations of the nuclear surface that arise from collective
motion of many nucleons [1]. Ground states of most non-spherical nuclei are char-
acterized by axially-symmetric quadrupole deformations—prolate or oblate. There
are, however, also many nuclei in which axial symmetry, i.e., the invariance under
the rotation around the symmetry axis of the intrinsic state, is broken in the ground
state. The description of axially asymmetric shapes and the resulting triaxial quantum
many-body rotors is not restricted to nuclear physics, but has also been developed
for other finite quantum systems like polyatomic molecules [2], and hence presents
a topic of broad interest.

To analyze the variation of ground-state shapes in a sequence of nuclei as, for
instance, in an isotopic chain that extends to exotic short-lived isotopes far from
stability, it is essential to provide a quantitative microscopic description of defor-
mations characterized by both axial and triaxial mass quadrupole moments. The
quadrupole moments can be related to the polar deformation parameters β and γ .
The parameter β is proportional to the intrinsic quadrupole moment, and the angular
variable γ specifies the type and orientation of the shape. The limit γ = 0 corre-
sponds to axial prolate shapes, whereas the shape is oblate for γ = π/3. Triaxial
shapes are associated with intermediate values 0 < γ < π/3. Such shapes have been
investigated extensively using theoretical approaches that are essentially based on
the rigid-triaxial rotor model of Davydov and Filippov [3] and the γ -unstable rotor
model of Wilets and Jean [4]. The former assumes that the collective potential has
a stable minimum for a particular value of γ [1], whereas in the latter the potential
does not depend on γ and thus the collective wave functions are spread out in the
γ direction.

However, presumably all known axially-asymmetric nuclei exhibit features that
are almost exactly in between these two geometrical limits, characterized by the
energy-level pattern of quasi-γ band: relative locations of the odd-spin to the
even-spin levels. As the two models originate from different physical pictures, the
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question of whether axially-asymmetric nuclei are γ rigid or unstable has attracted
considerable theoretical interest [1, 5–8]. In this chapter we address this question
from a microscopic perspective, and identifies the appropriate Hamiltonian of the
interacting boson model (IBM) [6, 7] for γ -soft nuclei, consistent with the micro-
scopic picture. We thereby provide a solution to the problem concerning the energy-
level pattern of the odd-spin states.

The most complete and accurate microscopic description of ground-state properties
and collective excitations over the whole nuclide chart is presently provided by the
framework of Energy Density Functionals (EDFs). Both non-relativistic [9–11], and
relativistic [12, 13] EDFs have successfully been employed in numerous studies on
the rich variety of shape phenomena, and the resulting complex excitation spectra
and decay patterns across the entire chart of nuclides [14–17]. The starting point
is usually a constrained self-consistent mean-field calculation of the binding-energy
surface with the mass quadrupole moments as constrained quantities [5]. This is illus-
trated in the first row of Fig. 6.1, where we display the self-consistent quadrupole
binding-energy maps of 134Ba (a) and 190Os (b) in the β–γ plane. The binding energy
surface of 134Ba is calculated using the relativistic Hartree-Bogoliubov model [12]
with the DD-PC1 [18] functional, and that of 190Os employing the Hartree-Fock plus
BCS model [19] with the Skyrme functional SkM* [20]. These functionals are repre-
sentative of the two classes—relativistic and non-relativistic EDFs, and will be used
throughout this work to demonstrate that the principal conclusions do not depend
on the particular choice of the EDF. One notices that in both cases the potential is
very soft in the γ degree of freedom, with 134Ba displaying a nearly γ -independent
picture, whereas a more pronounced rigid triaxial shape is predicted for 190Os with
the minimum at γ ≈ 30◦.

To calculate excitation spectra and transition rates, it is necessary to project from
the mean-field solution states with good quantum numbers and take into account
fluctuations around the mean-field minimum. Symmetry restoration and fluctuations
of quadrupole deformation can be treated simultaneously by mixing projected states
that correspond to different intrinsic configurations. An effective approach for con-
figuration mixing calculations is the generator coordinate method (GCM) [5], with
multipole moments used as coordinates that generate the intrinsic wave functions.
GCM configuration mixing of axially symmetric states has routinely been employed
in structure studies, but the application of this method to triaxial shapes presents a
much more involved and technically difficult problem.

From the viewpoint of the interacting boson model [6, 7], it is well know that
the O(6) dynamical symmetry [22] embodies systems with γ -independent collective
potentials. The geometrical picture of the O(6) limit of the IBM emerges using the
coherent-state framework [23]. The coherent state represents the intrinsic wave func-
tion of the boson system, and O(6) states in the laboratory system can be generated
by angular momentum projection [23]. The triaxial-rotor features of the IBM were
emphasized already in [24, 25], leading to the “equivalence” ansatz of the γ -rigid
and the O(6) descriptions of the low-lying spectra [26].
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(a)

(c) (d)

(b)

(e)
(f)

Fig. 6.1 Self-consistent binding-energy maps of 134Ba (a) 190Os (b), calculated using the
relativistic Hartree-Bogoliubov model with the DD-PC1 [18] functional, and the Hartree-Fock
plus BCS model with the Skyrme functional SkM* [20], respectively. The corresponding mapped
energy surfaces of the IBM are plotted in the middle row (for the full IBM Hamiltonian Eq. (6.1)
that contains the three-body term), and in the lower row (for the IBM Hamiltonian without the three
body term). The figure is taken from Ref. [21]

6.2 Three-Body Boson Term

This study is performed using the proton-neutron IBM (IBM-2), which includes
proton (neutron) monopole sπ (sν) and quadrupole dπ (dν) bosons, representing
an effective collective approximation of J = 0+ and 2+ valence proton (neutron)
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pairs, respectively [27]. The number Nπ (Nν) of proton (neutron) bosons equals
the number of valence proton (neutron) pairs (particles or holes), with respect to
the nearest proton (neutron) closed shell [27]. The following IBM-2 Hamiltonian is
employed:

ĤIBM = ε(n̂dπ + n̂dν) + κ Q̂π · Q̂ν + Ĥ3B (6.1)

with the d-boson number operator n̂dρ = d†
ρ · d̃ρ , and the quadrupole operator

Q̂ρ = s†
ρ d̃ρ + d†

ρsρ + χρ[d†
ρ d̃ρ](2), (ρ = π, ν). The third term Ĥ3B represents a

three-body boson interaction:

Ĥ3B =
∑

ρ �=ρ′

∑

L

θ
ρ
L [d†

ρd†
ρd†

ρ′ ](L) · [d̃ρ′ d̃ρ d̃ρ](L). (6.2)

Three-body terms of this type have previously been employed in the IBM phenom-
enology [28], but here for the first time it is used in the microscopic IBM-2 frame-
work. Three-body terms could in general have other combinations of proton and
neutron d-boson operators. However, since the proton-neutron quadrupole interac-
tion dominates over the proton-proton and neutron-neutron ones for medium-heavy
and heavy nuclei, the present form of Eq. (6.2) provides a very good approxima-
tion for the three-body boson interaction. For each ρ and ρ′, there are five linearly
independent combinations in Eq. (6.2), determined by the value of L = 0, 2, 3, 4, 6
[29]. However, only the term with L = 3 gives rise to a stable triaxial minimum
at γ ≈ 30◦ [28], because its expectation value in the classical limit is proportional
to cos2 3γ . We thus consider only the L = 3 in Eq. (6.2) and, in addition, assume
θπ

3 = θν
3 ≡ θ3. The form of the three-body boson term is discussed in more detail in

Appendix B.1.
The parameters ε, κ , χπ , χν and θ3 are fixed, following the procedure of Ref. [17]:

the microscopic quadrupole binding energy surface, obtained from a mean-field
calculation using a given EDF, is mapped onto the corresponding boson energy
surface, i.e., expectation value of ĤIBM in the coherent state (cf. [17, 30] for details).
The deduced value of θ3 > 0 varies gradually with boson number: |θ3/κ| ≈ 1 for
1 ≤ Nπ + Nν ≤ 5 and ≈0.5 for 5 ≤ Nπ + Nν ≤ 10.

The two-body IBM Hamiltonian cannot produce deformed binding energy sur-
faces with stable triaxial minima. Its coherent-state expectation value either has a
minimum at γ = 0◦ (prolate shapes) or 60◦ (oblate shapes), or is independent of γ

in the O(6)-limit. This is nicely illustrated in Fig. 6.1 where the mapped energy sur-
faces of the IBM are plotted in the middle row (for the full IBM Hamiltonian Eq. (6.1)
that contains the three-body term), and in the lower row (for the IBM Hamiltonian
without the three body term). For the 190Os the Hartree-Fock plus BCS model with
the Skyrme functional SkM* predicts minimum at γ ≈ 30◦, that can only be repro-
duced on the mapped surface that correspond to the expectation valued of the full
IBM Hamiltonian with the three-body term (panel (d) in Fig. 6.1). The two-body
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IBM Hamiltonian yields a binding energy surface that is soft in the γ -direction, but
the minimum is on the γ = 0◦ axis (panel (f)).

A distinction between γ -soft and rigid triaxial nuclei arises when considering the
ratio of excitation energies [8]:

S(J, J − 1, J − 2) ≡ [{E(J ) − E(J − 1)} − {E(J − 1) − E(J − 2)}]
E(2+

1 )
(6.3)

for the γ (K π = 2+) band Jπ = 2+
γ , 3+

γ , 4+
γ . . . The excitation energies E(J ) are

obtained by diagonalization of the boson Hamiltonian Eq. (6.1), and the quadrupole
operators Qρ are used in the calculation of E2 transition rates, with identical proton
and neutron boson effective charges.
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For a set of typically non-axial medium-heavy and heavy nuclei, in Fig. 6.2 we plot
the energy ratios S(4, 3, 2) (a) and S(5, 4, 3) (b), as functions of the product of the
number of proton and neutron bosons Nπ Nν . The latter quantity reflects the amount of
valence proton-neutron correlation, and hence the increase of Nπ Nν corresponds to
an enhancement of collectivity [8]. In this chapter we consider non-axial nuclei in the
mass regions A ∼ 110, 130 and 190, whose spectra display signatures of γ -softness.
The set of nuclei shown in Fig. 6.2 has been selected so that the corresponding values
of Nπ Nν evenly span the widest possible range. The IBM excitation spectra have
been calculated starting from self-consistent mean-field binding energy maps that
correspond to the two functionals, Skyrme SkM* and the relativistic DD-PC1. The
two energy ratios, calculated with and without the three-body term Eq. (6.2) in the
IBM Hamiltonian, are plotted in comparison to data and the predictions of the rigid-
triaxial rotor model of Davydov and Filippov [3] and the γ -unstable rotor model
of Wilets and Jean [4]. One notices that for all considered nuclei data can only be
reproduced with the IBM Hamiltonian that includes the three-body term Eq. (6.2).
Both the empirical and calculated ratios fall almost exactly in between the limits
of the γ -unstable rotor and the rigid-triaxial rotor models: the Wilets-Jean limit is
−2.00 and the Davydov-Filippov limit is 1.67 for S(4, 3, 2); the Wilets-Jean model
predicts 2.50, and Davydov-Filippov −2.30 for S(5, 4, 3). The IBM Hamiltonian
that contains only two-body terms cannot reproduce the empirical values and, in
both cases, yields energy ratios that are close to the predictions of the γ -unstable
rotor model.
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While the energy ratios are largely independent of the product of boson num-
bers, B(E2) systematics reflects the evolution of collectivity. For instance, the
ratio B(E2; 3+

1 → 2+
2 )/B(E2; 2+

1 → 0+
1 ) plotted in the lower panel of Fig. 6.2,

gradually increases with Nπ Nν . For nuclei with typically low Nπ Nν (≤10), like
132,134Ba and 194,196Pt, the average valued of γ is close to 0◦ or 60◦. In this case the
ratio B(E2; 3+

1 → 2+
2 )/B(E2; 2+

1 → 0+
1 ) is closer to the Wilets-Jean limit (O(6) in

the IBM representation) of 1.19. As the collectivity evolves with Nπ Nν ≥ 12, this
B(E2) ratio, calculated with the full IBM Hamiltonian that includes the three-body
term, saturates between the γ -rigid limit of 1.78 and the γ -unstable limit of 1.19, in
agreement with behavior of the energy ratios S(J, J − 1, J − 2). The B(E2) ratio
calculated with only the two-body boson Hamiltonian remains close to the O(6) limit
even for large values of Nπ Nν . The feature of the B(E2) pattern naturally indicates
that, to measure the γ softness, one should not solely look at the excitation energies,
but that the wave functions should be inspected also.

As the ratios shown in Fig. 6.2 are calculated using two completely different
microscopic density functionals, it appears that the basic features of this study are
not sensitive to the particular choice of the underlying EDF. It has to be emphasized
the empirical values are only reproduced with the full IBM Hamiltonian, including
the three-body term.

In the IBM picture, the number of proton (neutron) bosons equals half the number
of the corresponding valence particle or hole pairs. Empirical systematics indicates
that γ -softness mostly emerges when Nπ and/or Nν correspond to hole pairs counted
from the nearest closed shells (e.g. [8]), that is, when the occupancy of major shells
exceeds 50 %. All nuclei considered in this work belong to this category. Nuclei
with relatively large Nπ Nν (≥12), in many of which both Nπ and Nν correspond to
hole configurations, are more likely to exhibit pronounced γ -rigidity, compared to
systems with low Nπ Nν (≤10). In most of the latter cases Nπ and Nν correspond
to particle and hole configurations, respectively, and vice versa.

The discussion so far has focused on systematic of energy ratios and transition
rates. The model, however, provides an equally accurate description of complete
low-energy excitation spectra in individual nuclei. Absolute excitation energies are
described precisely as well. This is highlighted by the level scheme of 190Os in
Fig. 6.4. Again we compare results obtained from the three-body Hamiltonians with
those from two-body one and with available data [31–47]. The full IBM Hamiltonian
nicely reproduces both the excitation energies and transition rates for the ground-
state band and the band built on 2+

2 (γ -band). We notice the marked effect of the
three-body term on the γ -band: all states are lowered in energy but, in particular,
the pronounced lowering of the odd-spin states, e.g. 3+

1 , 5+
1 . . ., breaks the quasi-

degeneracy of the doublets (3+
1 ,4+

2 ), (5+
1 ,6+

2 ), etc. The lowest 3+ level is predicted
too high in many IBM calculations for γ -soft nuclei, and the empirical lowering was
often ascribed to a possible coupling to two-quasiparticle states. It is evident that
such mechanism might play only a minor role. These doublets (τ -multiplets) are
characteristic of the γ -unstable O(6) symmetry limit of the IBM model [6, 7]. We
emphasize that there are no additional adjustable parameters for the levels, that is, the
parameters are completely determined by the choice of the microscopic functional
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and the mapping procedure. Results of similar level of agreement with experiment
are also obtained in the calculation of spectra of other nuclei considered in this study.

The feature of the B(E2) pattern naturally indicates that, to measure the γ softness,
one should not solely look at the excitation energies of the γ band, but that the
wave functions should be inspected also. We then examine the IBM wave functions,
comparing a γ -unstable system 134Ba with a more rigid one 190Os. Figure 6.5 shows
the distributions of the wave functions of the states in the γ band, 2+

2 , 3+
1 and 4+

2 , in βγ

planes. The distribution means the absolute square of the overlap defined in Eq. (5.6),
fL(β, γ ) = ∑J

M=−J |〈Φ(β, γ )|Ψ J
M 〉|2, where |Ψ J

M 〉 stands for the eigenstate of

ĤIBM (6.1) with J and Jz = M , and |Φ(β, γ )〉 the intrinsic wave function. It can be
shown that the wave function of a ground-band state more or less reflects the topology
of the energy surface. Namely, the wave function tends to have a peak at the same
location as the energy minimum. However, the γ -bandhead 2+

2 state is spread along
the oblate (γ = 60◦) axis with peak at the triaxial region different from the minimum
position of the energy surface. For 190Os nucleus the 2+

2 state looks rather similar in
topology to the 3+

1 one to a greater extent than for 134Ba. The similarity is a possible
evidence for the strong E2 transition between these states. The states in the γ band of
192Os nucleus appear to have pure K π = 2+ nature, while the configuration mixing
is much important for 134Ba. In fact the 4+

2 wave function is slightly spread out in
192Os nucleus, but is more rich in topology in 134Ba nucleus with a peak at γ ≈ 25◦.

http://dx.doi.org/10.1007/978-4-431-54234-6_5
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Fig. 6.5 Distributions of the absolute squares fL (β, γ ) (for definition, see the main text) for the
IBM wave functions in βγ surfaces for the 2+

2 , 3+
1 and 4+

2 excited states of the nuclei 134Ba with
DD-PC1 (left panels) and 192Os with SkM* ((right panels)

6.3 Brief Summary

To conclude, we have investigated the emergence of γ softness in atomic nuclei
starting from the microscopic framework of energy density functionals. For a wide
range of typically non-axial medium-heavy and heavy nuclei certain observables
allow us, in comparison to microscopic calculations, to differentiate two limiting
geometrical pictures: the rigid-triaxial and the γ -unstable rotors. The present analysis
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clearly demonstrates that neither of these pictures is realized in actual nuclei. Typical
non-axial medium-heavy and heavy nuclei lie almost exactly in the middle between
the two geometrical limits, as a robust regularity. In the IBM framework the regularity
arises naturally only when a three-body boson interaction is included. This result
points to the origin of the three-body boson interaction, suggesting the optimal IBM
description of γ -soft nuclei. The principal results presented in this chapter do not
depend on details nor choice of the EDF, and suggest us a comprehensive picture of
triaxial shapes of atomic nuclei in a fully microscopic way, including a solution to
the longstanding problem of the energy-level pattern of odd-spin states.
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Chapter 7
Ground-State Correlation

7.1 Binding and Two-Neutron Separation Energies

We start with the Hamiltonian Ĥtot of Eq. (2.37), taking into account the global
term E0. The global term has little to do with the spectroscopy and thus has been
neglected in most of the spectroscopic analysis. Here E0 is constant for an individual
nucleus and its value is determined so that the minimum of 〈Ĥtot〉 matches the total
energy of the mean-field ground state, which is denoted by EMF. Namely,

E0 = EMF − 〈ĤIBM〉min, (7.1)

where 〈ĤIBM〉min stands for the minimum of 〈ĤIBM〉 in Eq. (2.46). EMF is the energy
of the mean-field intrinsic state. By denoting the ground-state eigenvalue of ĤIBM in
Eq. (2.41) as EIBM,1 the total energy of the IBM system, denoted by Etot, is written as

Etot = E0 + EIBM. (7.2)

Namely, Etot is nothing but the energy eigenvalue of Ĥtot in Eq. (2.37) for the ground
state in the laboratory system, which should be compared with the experiment.

Figure 7.1a, b shows the evolution of E0, Etot and experimental [1] binding energy
Eexpt as functions of the neutron number N for Sm isotopes, calculated with the
Skyrme SLy4 and SkM* interactions, respectively. The boson number is taken to be
Nν = (N − 82)/2 for N > 82, while Nν = (82 − N )/2 for N < 82.

It may be of interest to see Nν-dependencies of E0 from a simple perspective. E0
can be approximated, for simplicity, by a polynomial

Ē0 = c0 + c1 Nν + c2 Nν(Nν − 1). (7.3)

1 The form of the IBM Hamiltonian used in this chapter takes the most simple one in Eq. (2.41)
because other terms do not change the qualitative feature of the ground-state observables.
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Here c0 represents the contribution from the inert core and c1 corresponds to the
energy needed to remove one neutron boson in a mean potential. The coefficients
ci ’s are common for all Sm isotopes in N = 80–96. We obtain the coefficients
in MeV as c0 = −1195.510 (−1190.781), c1 = −15.073 (−16.393) and c2 =
0.476 (0.494) for SLy4 (SkM*) case by a χ -square fit to E0. The present value
of c1/2 is approximately equal to 8 MeV, which is consistent with the empirical
value of one-nucleon separation energy. The fitted functions Ē0’s are shown also in
Fig. 7.1a, b by dotted curves.

We are back now to the original definition of E0 shown in Eq. (7.1). Figure 7.1a, b
illustrates that the experimental binding energies can be reproduced to a good extent
only by E0 in the vicinity of the closed shell N = 82, but deviations from experiments
become notable for larger N . Etot reproduces the trend of the experimental values
quite nicely, including those far away from the shell closure.

EMF is not plotted in Fig. 7.1a, b, since it cannot be distinguished from Etot in
the energy scale there. We then perform more precise analyses. In Fig. 7.1c, d, the
deviations of the calculated energies E0, EMF and Etot from the experimental data
are depicted as functions of N . The deviations of EMF and Etot are much smaller
than that of E0, particularly for open-shell nuclei, while the calculated results show
weak dependence on the parametrizations of the Skyrme functional.

What is of particular importance in Fig. 7.1c, d is that, while EMF has a kink at
the closed shell N = 82, Etot evolves smoothly as a function of N even at N = 82
and becomes closer to the experimental trend. For both SLy4 and SkM* cases, Etot
is lower in energy than EMF all the way by approximately 1 MeV, and this energy
difference is largest from nearly spherical to transitional regions, in which the quan-
tum fluctuation effect seems to be most enhanced. In the following, we refer to the
energy difference as the correlation energy Ecorr, which is written as

Ecorr ≡ Etot − EMF

= Etot − (E0 + 〈ĤIBM〉min). (7.4)

Here Ecorr is the difference between the IBM ground-state energy in the laboratory
frame and the energy expectation value in the mean field, and represents quantum-
mechanical contributions in the IBM. The quantity 〈ĤIBM〉min can be interpreted as
the deformation contribution to the ground-state energy.

We show in Fig. 7.1e, f the correlation energy Ecorr, 〈ĤIBM〉min and their sum,
which corresponds to EIBM, as functions of N . From around the closed shell N = 82
to the transitional region (N = 88 or 90), the correlation effect appears to be
enhanced in comparison to the deformation contribution 〈ĤIBM〉min, while Ecorr
becomes somewhat smaller and remains constant all the way from the transitional
region toward the middle of the major shell. 〈ĤIBM〉min increases as a function
of N , and accounts for the most part (more than 90 %) of EIBM for N ≥ 92,which is
obtained by the diagonalization of ĤIBM. In other words, for the strong deformation
the mean-field model can give, to a certain extent, a reasonable description of the
experimental binding energy.
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The two-neutron separation energy for IBM (denoted by S2n) can be calculated
as a function of Nν with Nπ being fixed:

S2n(Nν) = −Etot(Nν + 1)+ Etot(Nν). (7.5)

Note that in case the neutrons surpass a midshell, where the number of the neutron
bosons are counted as that of pairs of neutron holes from the upper end of the major
shell, one has to replace S2n of Eq. (7.5) with its minus. Similarly, the two-neutron
separation energy for the mean field (denoted by SMF

2n ) is written as a function of N
with fixed Z :

SMF
2n (N ) = −EMF(N + 2)+ EMF(N ). (7.6)

We show in Fig. 7.2 the two-neutron separation energies as functions of N cal-
culated with Skyrme SLy4 and SkM* functionals. Note that the IBM separation
energy S2n is depicted as a function of N , not that of the neutron-boson number
Nν(= (N −82)/2). Both Skyrme forces give similar systematics to the experiments,
including the shell gap at N = 82 and the plateau from N = 88 to 92 which reflects
the first-order phase transition from spherical to deformed shapes [2]. Some notable
improvement by the inclusion of the correlation effect can be found around the
shell closure N = 82. Indeed, while SMF

2n with SLy4 deviates considerably from the
experiment at N = 84, S2n appears to be much more consistent with the experiment.
This is closely associated with the finding in Fig. 7.1c, d that the kink which appears
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around the closed shell N = 82 at the mean-field level is eliminated by the inclusion
of the correlation energy.

Figure 7.3 shows the systematics of the correlation energies Ecorr for a number
of medium-heavy and heavy nuclei as functions of neutron number N . The corre-
lation energy Ecorr in this case is calculated with the IBM Hamiltonian based on
the constrained HF+BCS method with Skyrme SkM* functional. A sound result
is obtained similar to the Sm isotopes examined in Fig. 7.1. One observes that the
correlation energy Ecorr becomes maximal around transitional regions, e.g., in Sm
isotopes with N = 86–90 and the Pt isotopes with N = 90–96, corresponding to
vibrational-to-deformed shape transition, and the Pt isotopes with N = 106–114,
corresponding to prolate-to-oblate shape transition, which is compatible with the
discussion in Sect. 4.3.1.

Here we note other studies discussing systematic trend of the correlation energy
for a large number of nuclei in terms of symmetry conserving configuration-mixing
calculation of the generator coordinate method using a Skyrme [4] and RMF [5]
density functionals and in terms of the collective Hamiltonian approach using a
Gogny functional [6]. Same qualitative trend is observed in these kinds of studies,
namely that the correlation energies are most enhanced for the transitional nuclei.

7.2 Empirical Proton-Neutron Correlation

We next consider the following quantity called δVpn , which is essentially the double
difference of the binding energy with respect to both proton and neutron number:

http://dx.doi.org/10.1007/978-4-431-54234-6_4
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δVpn = 1

4
[{BE(Z , N )− BE(Z , N − 2)} − {BE(Z − 2, N )− BE(Z − 2, N − 2)}],

(7.7)

where BE(N , Z) stands for the binding energy, i.e., the minus of the total ground-state
energy −E for the nucleus with N and Z .

The δVpn measures empirical interaction between last protons and neutrons, as
investigated by Federmann and Pittel [7] and by Zhang et al. [8] in 1977. The
empirical proton-neutron interaction gives insight into a microscopic origin of the
onset of deformation [7], and hence the δVpn is a stringent test for the shape transition.
For a recent couple of years, Casten and his collaborators have extensively worked
on the overall systematic trend of this quantity in connection with the quadrupole
collectivity from an empirical point of view [9, 10]. The binding energy is supposed
to be a sum of all interactions acting among nucleons. As the difference of the bind-
ing energy is nothing but the two-nucleon separation energies, the double difference
can be used to estimate occurrence of collectivity, shell evolution and configuration
mixing of different intrinsic shapes [7]. The general feature of the δVpn is like this:
When last protons and last neutrons occupy similar orbit, e.g., particle-particle (pp),
where both protons and neutrons occupy the orbits from the beginning to the middle
of the respective major shells, and hole-hole (hh) configurations, where both pro-
tons and neutrons surpass the middle of the major shells, then the overlap of the
protons and the neutrons become large. However, in the case where the protons and
neutrons occupy particle and hole orbits, or vise versa, the δVpn then becomes rel-
atively small. This situation is well illustrated in Fig. 7.4 for W, Os and Pt isotopes
as representatives, and some general pattern is predicted in the right-lower quad-
rant of 208Pb. The δVpn is calculated in terms of the IBM Hamiltonian determined
based on the constrained HF+BCS method with Skyrme SkM* functional as in the
case of Fig. 7.3. For all the considered isotopes chains, the calculated δVpn value in
the upper panel of Fig. 7.4 looks relatively small being below 250 keV over the range
from the beginning to the middle of the major shell 82 ≤ N ≤ 126, where protons
and neutrons are in hole and particle configurations, respectively. From the mid-
shell N = 106 toward the end of the major shell N = 126, where both protons and
neutrons are in the hole configurations, the δVpn value becomes larger than 250 keV
and keeps increasing. This calculated result is quite consistent with the experimental
trend shown in the lower panel of Fig. 7.4. When going beyond the shell closure
N = 126, the δVpn value becomes much smaller as protons and neutrons occupy
hole and particle orbits, respectively.

7.3 Brief Summary

Summarizing this chapter, some ground-state properties have been considered as
an implication to the collective structural evolution of medium-heavy and heavy
nuclei. When the IBM Hamiltonian is formulated by the microscopic energy density



7.3 Brief Summary 163

0

250

500

100 120 140
0

250

500

δV
pn

 (
ke

V
)

Pt
IBM (from SkM*)

δV
pn

 (
ke

V
) Pt

Expt.

Neutron Number
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representatives. Skyrme SkM* functional is used

functional calculation and is diagonalized with good quantum numbers in the labo-
ratory frame, then the binding energy obtained from the IBM Hamiltonian contains
quantum-mechanical correlation effect which is otherwise not taken into account at
the mean-field level. The effect of the correlation energy turned out be significant in
reproducing the proper behaviour of the two-neutron separation energy of Sm iso-
topes reflecting the first-order shape-phase transition in Fig. 7.2. The robust feature
that the correlation energy becomes most significant for the transitional regions has
been examined in a systematic manner (cf. Fig. 7.3). In addition the quantity δVpn has
been introduced to provide a hint for the structural evolution concerning the relevant
shell structure and the collectivity (cf. Fig. 7.4). It should be interesting in the future
to extend the analysis shown in Fig. 7.4 over more wider range of isotopes involving
exotic ones, and further to clarify which microscopic functional as well as which
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interaction of the IBM is most appropriate for extracting the knowledge about the
nuclear structure relevant to the collectivity out of the δVpn systematics.
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Chapter 8
Summary and Concluding Remarks

A novel and robust way of deriving the Hamiltonian of the interacting boson model
(IBM) from the microscopic self-consistent mean-field theory has been introduced.
The mean-field calculation employing a universal energy density functional (EDF)
is a most reliable tool for describing the bulk properties of virtually all nuclei. The
IBM on its own has made considerable success over the decades in reproducing low-
lying collective structure of medium-heavy and heavy nuclei. In the present work
the bridge was made over the gap between the two frameworks, which have been
heretofore thought as being irrelevant to with each other. By mapping the mean-field
to the appropriate IBM systems, the IBM Hamiltonian is derived, thereby allowing to
calculate the energies and the wave functions of excited states keeping good quantum
numbers in laboratory frame. As any state-of-the-art EDF is already well calibrated
with the observed intrinsic properties of finite nuclei and is universal, one can derive
the IBM Hamiltonian basically for all situations of the quadrupole collective dynam-
ics including those far from β stability line, not yet studied experimentally. This is
a great advantage in the era of third-generation rare isotope beams producing many
new heavy exotic nuclei.

The strength parameters of the IBM Hamiltonian are determined by mapping each
point on the nucleonic energy surface, obtained from the self-consistent mean-field
calculation using a given microscopic EDF with the quadrupole constraint associ-
ated with the deformation parameters β and γ , onto an appropriate energy expec-
tation value of the boson system in the coherent state. Through this process, all
essential ingredients of the fermion many-body systems for the corresponding low-
lying quadrupole collective states, namely the anti-symmetrization, nucleon-nucleon
forces …, can be simulated by the mathematically simpler boson model. In Chap. 2
we have described the way the mapping is performed by the application of the Wavelet
analysis, as well as how well it works. By the Wavelet analysis can one determine
the parameter values of the IBM in an unambiguous manner, which would be other-
wise quite arbitrary when simply playing the parameters by hand. A problem arises
when the model is applied to the strongly-deformed nuclei: the moment of inertia
of the rotational band that is generated by the IBM Hamiltonian derived from the
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energy-surface mapping procedure turns out to be several tens per cent smaller than
the observed moment of inertia.

On top of this fact, we have formulated a new fermion-to-boson mapping idea for
the rotational motion of well-deformed axially symmetric nuclei in Chap. 3. It was
found that, for strongly-deformed rotational nuclei, the nucleon system responds to
the rotational cranking in a substantially different way from the boson system. This
is a possible origin of the discrepancy of the IBM moment of inertia from the experi-
mental data, and one should then go one step beyond to take the dynamical, non-zero
frequency mode into account. In order that the bosonic response to the rotational
cranking becomes identical to the nucleonic one, we proposed to introduce the rota-
tional kinetic-like term known as the LL term in the phenomenology. Consequently,
it turned out that the IBM is capable of describing the rotational moment of iner-
tia microscopically and precisely at the quantitative level. The finding presented in
Chap. 3 sheds light upon a criticism made in the past by Bohr and Mottelson that the
IBM is far from sufficient to account for the intrinsic state of the deformed nuclei
when formulated microscopically. The result provides one with a crucial piece of
information as to the validity of the IBM on deformed nuclei, justifying the model
for the first time in the case of the yrast states of axially-symmetric deformed nuclei.

In Chap. 4 we have studied spectroscopic properties of the medium-heavy nuclei
basically with modest deformation, where the non-axial degrees of freedom plays a
crucial role in determining the nuclear shape. The concepts of the quantum-phase
transition and the critical point symmetries were reviewed, which help understanding
the way the nuclear equilibrium shape changes as a function of the nucleon number.
Several cases of the shape transitions were presented in comparison with the avail-
able experimental data: vibrational-to-γ -unstable transition in the mass A ≈ 100–
130 region, the prolate-to-oblate shape transition in A ≈ 180–200 region. Heavy
nuclei around the mass A ≈ 190 exhibit competition between prolate and oblate
intrinsic states, resulting in a spectacular shape coexistence as observed experimen-
tally. We have studied the spectroscopic systematics of these nuclei based on the
IBM Hamiltonian derived from finite-range Gogny EDF. Particularly we discussed
the possibility of the coexistence of prolate and oblate shapes in Pt isotopes, and
suggested that a single configuration, without introducing the intruder configuration
of cross-shell excitation, is sufficiently well for Pt nuclei. We further predicted, prior
to experimental studies, the transition from prolate to oblate shapes in heavy Os and
W nuclei as a function of neutron number N and the transition points N = 116. The
collective structural evolution was examined also for the neutron-rich exotic nuclei
with which the experimental data have been so far quite sparse or completely missing.
For the W and Os nuclei with N > 126, locating in the right-lower quadrant of the
doubly-magic 208Pb nucleus, the evidence for the E(5) critical-point symmetry was
predicted in the wide rage of the nuclear chart. Along this line, we gave the first the-
oretical explanation on the γ -ray spectroscopy of neutron-rich Kr isotopes, carried
out at the REX-ISOLDE facility at CERN. Contrary to some earlier measurements,
we concluded from both theoretical and experimental viewpoints that the shape evo-
lution in the considered Kr nuclei occurs quite slowly, and that no sudden onset of
deformation is observed. This result certainly has a significant impact, because the
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neutron-rich nuclei with mass A ≈ 100, including the Kr isotopes, represent an
intersection of collective and single-particle degrees of freedom, and also should be
of common interest for the studies of shell structure, QPT, mass measurement and
astrophysical processes.

On the other hand, it should be quite curious to see whether the present model has
an equal quality of predictive power to other spectra-generating EDF-based approach.
The present model can be viewed as an alternative to the full-configuration mixing
and/or the restoration of the broken symmetries, which are still much more involved
and computationally demanding in the case where the triaxial degrees of freedom are
included. In Chap. 5, we then compare the spectroscopic properties obtained from the
IBM Hamiltonian derived by the relativistic DD-PC1 functional with those resulting
from another approximation to the projected GCM configuration mixing calculation:
the collective Hamiltonian approach based on the same DD-PC1 relativistic EDF,
taking 192,194,196Pt nuclei as examples. The ground-state band computed from both
approaches were quite consistent with the available data. A marked difference can
be seen in the ordering pattern of the quasi-γ band energies. It was shown that the
quasi-γ band energies in IBM (composed of two-body boson terms, actually) form
the couplets as (3+

γ , 4+
γ ), (5+

γ , 6+
γ ), …, which is characteristic to the O(6) limit. The

relevant excitation energies obtained from the collective Hamiltonian indicated, how-
ever, that the quasi-γ band energies are lying rather regularly, being much consistent
with the experimental evidence.

This finding further sheds light upon another intriguing, but unsolved problem
on the axially asymmetric nuclei. On top of the analysis mentioned above, a robust
feature of the γ -soft nuclei and its microscopic description were presented in Chap. 6.
It is well known empirically that many of triaxial nuclei fall in between the rigid
triaxial-rotor model of Davydov-Filippov and the γ -unstable rotor model of Wilets-
Jean. This fact was confirmed by introducing a specific form of the three-body boson
Hamiltonian, which produces a shallow triaxial minimum which is seen also in the
microscopic EDF calculation. The three-body Hamiltonian itself has been used in
the phenomenological IBM-1 somewhat a priori, but here it was introduced in the
microscopic IBM-2 framework. When describing the γ -soft nuclei, the earlier IBM
descriptions have been connected too much with the O(6) nuclei, and the most axially
asymmetric nuclei are thought as a perturbation to the O(6) dynamical symmetry.
This work suggested, for the first time, that neither of the rigid-triaxial and the
γ -unstable (or O(6) symmetry) rotor models is realized, from the perspective of
the microscopic EDF approach. To measure the γ softness, not only the excitation
energies, but the wave functions of the states in the quasi-γ band should be inspected.
Such analysis is possible only by a microscopic analysis like the present work. What
is more, the basic features present in Chap. 6 are sound and general as they do not
depend on the choice of the microscopic energy density functionals.

As a supplementary study, nuclear quadrupole dynamics was investigated Chap. 7
from a slightly different perspective, in terms of the quantum-mechanical correla-
tion effect on the ground state. In the transitional region between nearly spherical
and deformed shapes, the quantum fluctuation becomes significant, and the correla-
tion energy obtained from the diagonalization of the boson Hamiltonian was indeed
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shown to be maximal around the transitional nuclei in a given isotopic sequence. In
the mean-field approximation, the discontinuity in the two-neutron separation energy
of the first-order phase transition is rather unclear. In many cases of the mean-field
calculations, an anomalous kink shows up at around the closed shell because shell
effect is reflected too strongly. When the IBM is formulated microscopically, the
resultant separation energy in Sm isotopes describes phase transition correctly. The
present microscopic analysis can be applied even to exotic nuclei. Also the empirical
proton-neutron interaction can be evaluated by the δVpn plot, which reflects how the
collectivity correlates with the underlying shell structure. These ground-state prop-
erties can be used for quantifying another novel shape dynamics from a microscopic
picture.

Major outcomes resulting from the present work are the following:

• Bridge has been made over the gap between nuclear EDF and IBM. Their comple-
mentarity can be utilized, thereby allowing to derive the spectroscopic properties
with good quantum numbers and to take the correlation effect into account. Main
part of the two-body IBM Hamiltonian is determined by the mapping from the
microscopic EDF energy surface. This works well basically for vibrational and
γ -soft systems with relatively weak deformation.

• In the case of strongly deformed rotational nuclei, one has to go one step forward.
To describe the moment of inertia of rotational band correctly, a kinetic-like LL
term becomes necessary. As the LL term does not change the wave function, the
main part of the IBM Hamiltonian can be kept.

• If the notable triaxiality enters, Hamiltonian with up to two-body boson terms
does not suffice and three-body boson term should be introduced. With a suitably
chosen three-body Hamiltonian, empirical regularity of non-axial nuclei can be
explained naturally.

Possible future directions are as follows:

• First, the finding of this thesis naturally points to the interest to the microscopic
EDF itself and indicates that one should further investigate its validity. Since most
of the highly-reputed EDFs are constructed from the bulk properties of stable
nuclei, some spectroscopic properties for well-deformed nuclei cannot be always
described well by the present methodology. It is not completely clear whether a
conventional EDF still has an enough predictive power for exotic nuclei near the
drip line where much complex correlation should enter. In contrast to the original
density-functional approach in quantum chemistry, the EDF for nuclear many-
body system is not unique, and the modeling of universal EDF should be an open
question. Moreover, some important piece of nuclear effective interaction like the
tensor force still remains to be included in the EDF-based mean-field models. Also
it should be quite interesting to address methodological problems encountered in
the restoration of symmetries broken in the mean-field approximation.

• The second possibility which would certainly attract considerable broad interest
is to apply the methodology presented in this thesis to other fields of physics
such as molecular and atomic systems, and other mesoscopic quantum many-body
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systems. In these systems, spectacular rotational and vibrational spectra, as well
as the phase transitions, similar to those in nuclear physics are observed. Also
the similar kind of the algebraic model to the IBM for atomic nucleus exists in
the mesoscopic system (for instance, Ref. [1] and for reviews, see Refs. [2, 3] and
references therein), while the reliable ab initio description of it is provided by
density functional theory, Hartree-Fock method, etc. Both of these macroscopic
(algebraic) and microscopic (density-functional or HF) theories could be merged
as was done here, since in chemistry an energy landscape, similar to the one
for the nuclear intrinsic deformation, can be defined in terms of the geometrical
configuration of constituents. More specifically, the isovector collective motion of
two-fluid quantum system, e.g., the scissors mode in axially deformed nuclei (for
thorough review, see Ref. [4] and references are therein), is a general phenomenon,
which is not limited to the nuclear physics but can be seen in other physical
systems including the trapped Bose-Einstein condensate [5]. Then the concept
of the proton-neutron mixed-symmetry state in the IBM-2 (see, e.g., Ref. [6] and
references are therein) would be applied to these intriguing subjects. These ideas
are brand new, and will bring about an important theoretical advancement in the
understanding of general quantum many-body systems.

These issues will be under thorough investigation in the future.
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Appendix A
Details of Mean-Field Calculations

In this chapter, we shall give a brief explanation of the self-consistent mean-field
model. The following description is based on Refs. [1–3].

A.1 Hartree-Fock Method

In the self-consistent mean-field model, a single particle is assumed to be in the
average field created by all other surrounding particles, and one should start with a
trial wave function comprised of all these particles. The trial wave function normally
takes the form of single Slater determinant, which is called Hartree-Fock basis and
is composed of A single-particle wave function under the averaged field. The Slater
determinant is thus given as

|Φ〉 = a†
1a†

2 · · · a†
A|−〉. (A.1)

where |−〉 and a†
k being the (bare) vacuum and a creation operator for a single-particle

wave function φk , respectively. A Schrödinger equation for a single-particle wave
function is written as hkφk = εkφk , where hk and εk stand for the Hamiltonian for
k-th particle and its eigenvalue, respectively. In general, φk can be expanded by using
the complete and orthonormal basis set, {χl} as

φk =
∑

l

Dlkχl (A.2)

where Dlk is a unitary operator and χ ’s should correspond to some creation (annihi-
lation) operator c(†)

k . {χ} can be any basis set that is solved already, e.g., the harmonic
oscillator basis, etc. Similarly to the single-particle wave functions,
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a†
k =

∑

l

Dlkc†
l (A.3)

is fulfilled. The expectation value of the general many-body Hamiltonian Ĥ with up
to two-body interactions, 〈Φ|Ĥ |Φ〉, is minimized in terms of the Slater determinant
|Φ〉. The optimized single-particle properties and total energies of given nuclei are
obtained iteratively until a good convergence is achieved. It is the outline of the
Hartree-Fock method.

Instead of D’s, it is more convenient to introduce the density matrix as

ραβ = 〈Φ|c†
βcα|Φ〉 (A.4)

which can be written in terms of a† operator as

ραβ =
∑

γ δ

Dαγ D∗
δβ〈Φ|a†

βaα|Φ〉 =
A∑

i=1

Dαi D∗
iβ (A.5)

A single-particle density matrix is directly related to the Slater determinant. In fact, it
only has eigenvalues 0 and 1,1 corresponding to particle and hole states, respectively.
Since a small variation ρ + δρ is also a projector,

(ρ + δρ)2 = ρ + δρ (A.6)

which, up to the terms linear in δρ, leads us to

δρ = ρδρ + δρρ. (A.7)

As ρ is diagonal in the Hartree-Fock basis, the particle-particle and hole-hole matrix
elements of δρ have to vanish

ρδρρ = σδρσ = 0, (A.8)

where σ(=1−ρ) is also a projection operator2 onto the subspace spanned by particle
states.

Let us consider the many-body Hamiltonian with up to two-body interactions

Ĥ =
∑

αβ

tαβc†
αcβ + 1

4

∑

αβγ δ

v̄αβγ δc†
αc†

βcδcγ , (A.9)

1 Since ρ is a projector, ρ2 = ρ is satisfied.
2 In fact, σ 2 = σ is satisfied.
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with tαβ and v̄αβγ δ being the matrix elements for one- and two-body interactions,
respectively, where the latter is anti-symmetrized: in terms of γ and δ as

v̄αβγ δ = vαβγ δ − vαβδγ . (A.10)

The energy density functional for many-body Hamiltonian is expressed as

E[ρ] =
∑

αβ

tαβ〈Φ|c†
βcα|Φ〉 + 1

4

∑

αβγ δ

v̄αβγ δ〈Φ|c†
αc†

βcδcγ |Φ〉 (A.11)

=
∑

αβ

tαβραβ + 1

2

∑

αβγ δ

ργα v̄αβγ δρδβ.

where the Wick’s theorem is used for c(†)’s.
The variation with respective to the density matrix leads one to

δE = E[ρ + δρ] − E[ρ] =
∑

αβ

hαβδραβ =
∑

mi

(hmiδρim + himδρmi ), (A.12)

where m and i represent particle and hole occupying the orbits above and below the
Fermi surface, respectively. Hamiltonian density matrix hαβ can be defined as

hαβ = ∂ E[ρ]
∂ρβα

= tαβ + Γαβ, (A.13)

where Γαβ = ∑
γ δ v̄αδβγ ραβ is the self-consistent field. The particle-hole elements

of the Hamiltonian density matrix have to vanish. h and ρ are diagonalized simulta-
neously,

[h, ρ] = 0 (A.14)

which is nothing but the Hartree-Fock equation in terms of the density matrix. We
get the Hartree-Fock equation

hαβ = tαβ +
A∑

i=1

v̄αiβi = εαδαβ (A.15)

In principle, the Hartree-Fock equation is nonlinear with respect to ρρβ , so that it is
solved iteratively until its solution is converged to certain value. The single-particle
energy can be obtained from the eigenvalue problem. The total energy in this case
is a sum of the single-particle energy. On the other hand, it is sometimes useful
to solve the HF equation by employing the 3D Cartesian grid like in the present
study.
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A.2 Hartree-Fock Plus BCS Calculation

The effect of the pairing correlation should be often considered for nuclear system.
Among many types of pairing models, we here describe the BCS approximation
and how it is applied to the Hartree-Fock theory. A particle and the time-reversal
conjugate of the particle are coupled with angular momentum zero and stay in the
same orbit k. The following BCS state3 is introduced independently for proton and
neutron in the same way as the general theory of superconductivity [4, 5],

|BCS〉 =
∏

k>0

(uk + vkak
†ak̄

†)|−〉, (A.16)

where the single-particle state k has been determined by the preceding Hartree-Fock
calculations and the state k̄ represents the time reversal conjugate of the state k.
The real parameters uk and vk are variational parameters, related to the occupation
probabilities of particles satisfying

u2
k + v2

k = 1. (A.17)

The meanings of the parameters v2
k and u2

k are the probabilities the paired particles
occupy and do not occupy the orbit k, respectively. In the framework of Hartree-
Fock plus BCS calculation, variations are carried out over the single-particle wave
function and the factors (uk , vk) separately.4 Since the trial wave function, i.e., BCS
ground state Eq. (A.16), is not the eigenvalue of the particle number, a subsidiary
condition as to the particle number with a Lagrange multiplier should be imposed as

Ĥ ′ = Ĥ − λN̂ , (A.18)

where Ĥ and N̂ are many-body Hamiltonian and the particle-number operator,
respectively. We assume that the former is represented as

Ĥ =
∑

k

tka†
k ak − G

∑

k,k′>0

. (A.19)

On the other hand, the number operator N̂ is defined as

N̂ =
∑

k>0

(a†
k ak + a†

k̄
ak̄), (A.20)

which in fact is a desired number of proton or neutron

3 The normalization of the BCS state 〈BCS|BCS〉 = 1 is guaranteed.
4 In the Hartree-Fock-Bogoliubov (HFB) method, a generalized theory of the HF+BCS, quasi
particles are introduced and the variations over the wave functions and the occupation factors are
carried out simultaneously.
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〈BCS|N̂ |BCS〉 = 2
∑

k>0

v2
k = N . (A.21)

Although, in the HF+BCS calculations presented in this thesis, we employ the
density-dependent δ-function type of the pairing force, we here discuss the case
of a pure pairing force with a constant matrix element −G to make the discussion
as simple as possible. In such case, the expectation value of the Hamiltonian Ĥ ′ in
Eq. (A.18) can be evaluated by the variational condition with respect to uk and vk

0 = δ〈BCS|
(

Ĥ − λN̂
)
|BCS〉 (A.22)

= ∂

∂vk
〈BCS|

{∑

k

(tk − λ)a†
k ak − G

∑

kk′>0

a†
k a†

k̄
ak̄′ak′

}
|BCS〉,

where the derivative in terms of vk

∂

∂vk
= ∂

∂vk

∣∣∣
uk

− vk

uk

∂

∂uk

∣∣∣
vk

(A.23)

is satisfied through u2
k + v2

k = 1.

By using the following matrix elements of a†
k ak and a†

k a†
k̄
ak̄′ak′ ,

〈BCS|a†
k ak |BCS〉 = v2

k and (A.24)

〈BCS|a†
k a†

k̄
ak̄′ak′ |BCS〉 = ukvkuk′vk′ (for k �= k′)

= v2
k (for k = k′),

Equation (A.22) can be expressed as

2εkvkuk + Δ(v2
k − u2

k) = 0, (A.25)

where notations of Δ ≡ G
∑

k>0 ukvk and εk ≡ tk − λ − Gv2
k are introduced. From

Eqs. (A.25) and (A.17), v2
k and u2

k can be expressed by εk and Δ as

v2
k = 1

2

⎛

⎝1 − εk√
ε2

k + Δ2

⎞

⎠ , u2
k = 1

2

⎛

⎝1 + εk√
ε2

k + Δ2

⎞

⎠ (A.26)
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Substituting the Eq. (A.26) into the definition of Δ, one obtains so-called gap equation

Δ = G

2

∑

k>0

Δ√
ε2

k + Δ2
, (A.27)

which can be solved iteratively using the known value of G.

A.3 Constrained Hartree-Fock Calculation

In the Hartree-Fock (with pairing correlation being included) theory, the ground-state
energy of a given system is obtained by minimizing the energy functional with respect
to the density. Nevertheless, the HF calculation gives rise to only local minimum,
while whole energy landscape in terms of some coordinates becomes quite important
particularly for the discussion on the surface deformation, fission dynamics, etc.

One needs to know the wave function Φ(q) which optimizes the total energy
under the constraint that a certain operator on a single particle state has a fixed
expectation value q = 〈Φ|Q̂|Φ〉, where 〈Q̂〉 is multipole external field which takes
places the intrinsic deformation. A simple way is to impose the linear constraint with
a Lagrange multiplier λ to the Hamiltonian and minimizing the 〈Ĥ ′〉 = 〈Ĥ〉−λ〈Q̂〉,
which is similar to the treatment of the particle number in the BCS approximation.
Linear constraint is only applicable when the potential energy curve has a positive
second derivative. In this case, the variation with respect to q may no longer yield a
stable solution.

Hartree-Fock calculations with quadratic constraint are carried out in such a way
that the total Hamiltonian, consisting of unconstrained Hamiltonian plus the parabola
1
2 C(〈Q〉 − μ)2 at μ = q , is evaluated by the variational principle. This yields the

equation δ〈Ĥ〉 − C(μ − 〈Q̂〉)δ〈Q̂〉 = 0, which is equivalent to a linear constraint
with λ = C(μ − 〈Q̂〉). The value of λ is revised at each step of the iteration. The
energy landscape obtained by the quadratic constraint is the same as the one by linear
constraint.



Appendix B
Formulas in the IBM-2 Framework

This chapter presents some formulae in the IBM calculation. We first describe the
coherent-state framework in Sect. B.1 and explain the M-scheme diagonalization in
Sect. B.2. For further details of the coherent-state framework, the reader is referred
to Refs. [7–9].

B.1 Coherent-State Formalism

The IBM-2 Hamiltonian With up to Two-Body Terms

The expectation value of the boson Hamiltonian ĤIBM of Eq. (2.41), 〈ĤIBM〉 in the
coherent state |Φ(Nπ , Nν, βB, γB)〉 in Eq. (2.36) is calculated.

To this end the following general formula for any operators f̂ and ĝ can be used:

[ f̂ , ĝN ] = N ĝN−1[ f̂ , ĝ] + 1

2
N (N − 1)ĝN−2[[ f̂ , ĝ], ĝ] (B.1)

+ 1

6
N (N − 1)(N − 2)ĝN−3[[[ f̂ , ĝ], ĝ], ĝ] + · · · ,

where [, ] indicates as usual the commutation relation.
We recall the Hamiltonian containing all the interaction terms considered in this

thesis:
ĤIBM = επ n̂dπ + εν n̂dν + κ Q̂π · Q̂ν + α L̂ · L̂. (B.2)

The expectation value of the d-boson number operator on the RHS of Eq. (B.2):

ερ〈n̂ρ〉 = Nρ

1 + βρ

ερ

(1

2
β2

ρ sin2 γρ + β2
ρ cos2 γρ + 1

2
β2

ρ sin2 γρ

)
(B.3)

= Nρερ

β2
ρ

1 + β2
ρ

.
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For the quadrupole-quadrupole interaction between proton and neutron systems,

κ〈Q̂π · Q̂ν〉 = κ Nπ Nν

(1 + β2
π )(1 + β2

ν )

[
4βπβν cos (γπ − γν) (B.4)

− 2

√
2

7
χπβνβ

2
ν cos (γν + 2γπ) − 2

√
2

7
χνβπβ2

π cos (γπ + 2γν)

+ 2

7
χπχνβ

2
πβ2

ν cos 2(γπ − γν)
]
.

The expectation value of the LL term reads

α〈L̂ · L̂〉 = α〈L̂π · L̂π + L̂ν · L̂ν〉 (B.5)

= α
∑

ρ=π,ν

6Nρβ2
ρ

1 + β2
ρ

.

Note that 〈L̂ · L̂〉 differs from 〈n̂d〉 by the factor 6α. Then the factor 6α is renormalized
into the d-boson energy ε.

From Eqs. (B.3)–(B.5), assuming that βπ = βν = βB(=CββF ) and γπ = γν =
γB(=γF ) in Eq. (2.35), the most basic form of the IBM energy surface is calculated as

E(βB, γB) = ε(Nπ + Nν)β
2
B

1 + β2
B

+ κ Nπ Nν (B.6)

× β2
B

(1 + β2
B)2

[
4 − 2

√
2

7
(χπ + χν)βB cos 3γB + 2

7
χπχνβ

2
B

]
,

which is identical to the expression in Eq. (2.46). With the above assumption of the
deformation parameters, all Majorana terms vanish.

When Q̂ρ · Q̂ρ (ρ = π or ν) terms are included, the expectation value of them
can be calculated:

κρ〈Qρ · Qρ〉 = κρ

{
nρ

1 + β2
ρ

[5 + (1 + χ2
ρ )β2

ρ] (B.7)

+ Nρ(Nρ − 1)β2
ρ

(1 + β2
ρ)2

[
4 − 4

√
2

7
χρβρ cos 3γρ + 2

7
χ2

ρβ2
ρ

]}
,

where κρ is the intensity of the interaction. This term could be in general included,
but is not used in practice because otherwise the number of parameters would
increase.

http://dx.doi.org/10.1007/978-4-431-54234-6_2
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Three-Body (Cubic) Boson Terms

When the triaxiality should be taken into account, the three-body (so-called cubic)
boson term becomes important as it creates a stable non-axial minimum in the cor-
responding energy surface. In the case of IBM-1, such three-body term has been
considered in the context of the phenomenological study. In this thesis, we intro-
duced the three-body term in the microscopic IBM-2 framework. As this is entirely
new, we need to give a detailed explanation here.

Given the proton-neutron degrees of freedom, one has to consider the three pos-
sibilities concerning the combination of proton-neutron bosons: two of them are
obviously the term comprised of three like bosons, while the other is mixing of
proton and neutron bosons. For medium-heavy and heavy nuclei, proton-neutron
interaction dominates over the proton-proton and neutron-neutron ones. Thus, the
former type, that is, the terms consisting of either proton or neutron bosons only, is
less relevant than the latter type containing both proton and neutron bosons.

Also the cubic term can be composed of only d bosons in order to create the
triaxial minimum in the energy surface. The most general form of the three-body
term is given (cf. Eq. (6.2) in Chap. 6) as

Ĥ3B =
∑

ρ′ �=ρ

∑

L

θ
ρ
L [d†

ρd†
ρd†

ρ′ ](L) · [d̃ρ′ d̃ρ d̃ρ](L). (B.8)

Among the possibilities of L = 0, 2, 3, 4, 6, only the L = 3 component gives rise
to the stable triaxial minimum at γ = 30◦. Then, other L components could be
neglected to a first good approximation. Note that the ordering of the proton and
neutron d bosons are of less importance, as indeed they commute. Of the L = 3
terms, there are two independent combinations for the intermediate coupling of the
three bosons: Two bosons are coupled first with intermediate angular momentum
L ′ = 2 and 4. In this thesis we only consider the intermediate angular momentum of
L ′ = 2 for the sake of simplicity. Therefore, the actual three-body term used in this
thesis is written more explicitly as

Ĥ3B = θ3

∑

ρ′ �=ρ

[[d†
ρd†

ρ](2)d†
ρ′ ](3) · [d̃ρ′ [d̃ρ d̃ρ](2)](3), (B.9)

where the coefficient θ
ρ
3 is assumed to be identical between proton and neutron

bosons, again for simplicity. The proton-proton-neutron part of Eq. (B.9) is given as

Ĥ3B = [[d†
π × d†

π ](2) × d†
ν ](3) · [[d̃π × d̃π ](2) × d̃ν](3) (B.10)

=
∑

μ

[[d†
π × d†

π ](2) × d†
ν ](3)

μ [[d̃π × d̃π ](2) × d̃ν](3)
μ

http://dx.doi.org/10.1007/978-4-431-54234-6_6
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=
∑

μ,μ1,μ2,μ3,μ4

(22μ1μ − μ1|3μ)(22μ2μ1 − μ2|2μ1)(22μ3 − μ − μ3|3 − μ)

× (22μ4μ3 − μ4|2μ3)d
†
π,μ2

d†
π,μ1−μ2

dπ,−μ4 dπ,μ4−μ3 d†
ν,μ−μ1

dν,μ+μ3

The two-body neutron boson part of the coherent-state expectation value of 〈Ĥ3B〉
is then given as

1

1 + β2
ν

〈0|(λν)
Nν d†

ν,μ−μ1
dν,μ+μ3(λ

†
ν)

Nν |0〉. (B.11)

Utilizing the general formula of Eq. (B.1), one obtains

[dν,μ+μ3 , λ
†
ν] = aν,μ+μ3 and [d†

ν,μ−μ1
, λν] = −aν,μ−μ1 , (B.12)

which lead to
[dν,μ+μ3 , (λ

†
ν)

Nν ] = Nνaν,μ+μ3(λ
†
ν)

Nν−1 (B.13)

and
[d†

ν,μ−μ1
, (λν)

Nν ] = −Nνaν,μ−μ1(λν)
Nν−1, (B.14)

respectively. Then, the expectation value for the neutron part is calculated:

Nνaν,μ+μ3aν,μ−μ1

1 + β2
ν

(22μ1μ − μ1|3μ)(22μ3 − μ − μ3|3 − μ). (B.15)

Likewise, the proton part is written in the following form:

Nπ (Nπ − 1)aπ,μ2 aπ,μ4−μ3aπ,μ1−μ2 aπ,−μ4

(1 + β2
π )2 (22μ2μ1−μ2|2μ1)(22μ4μ3−μ4|2μ3).

(B.16)
The expectation value of the cubic term is obtained:

〈Ĥ3B〉 = Nπ (Nπ − 1)Nν

(1 + β2
ν )(1 + β2

π )2 (B.17)

∑

μ,μ1,μ2,μ3,μ4

aπ,μ2 aπ,μ4−μ3 aπ,μ1−μ2 aπ,−μ4 aν,μ+μ3 aν,μ−μ1(22μ1μ − μ1|3μ)

× (22μ3 − μ − μ3|3 − μ)(22μ2μ1 − μ2|2μ1)(22μ4μ3 − μ4|2μ3).

If the equalities βπ = βν and γπ = γν are assumed and if one takes into account
the Ĥ (3)

πνν term, the cubic terms that contribute to the potential energy surface are
written as

〈Ĥ (3)
ππν + Ĥ (3)

πνν〉 = −1

7
Nπ Nν(Nπ + Nν − 2)

β6

(1 + β2)3 sin2 3γ . (B.18)
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Rotation of Intrinsic State

The overlap of the intrinsic wave functions of rotated and non-rotated states can be
written as

〈Φ|e−iθ L̂ x |Φ〉 = 〈0|
∏

ρ=π,ν

b
Nρ
ρ e−iθ L̂ x (b†

ρ)Nρ |0〉 (B.19)

= 〈0|bNπ
π e−iθ L̂πx (b†

π )Nπ |0〉〈0|bNν
ν e−iθ L̂νx (b†

ν)
Nν |0〉

= 〈0|bNπ
π (e−iθ L̂πx b†

πeiθ L̂πx )Nπ |0〉〈0|bNν
ν (e−iθ L̂νx b†

νe−iθ L̂νx )Nν |0〉
= 〈0|bNπ

π (λ†
π )Nπ |0〉〈0|bNν

ν (λ†
ν)

Nν |0〉

with L̂ρx being L̂ρx = (L̂ρ−1 − L̂ρ+1)/
√

2. Since the present discussion is focused
on axial symmetry, the boson coherent state is reduced to |Φ〉 = ∏

ρ=π,ν(s
†
ρ +

βρd†
ρ0)

Nρ |0〉. Here λ†
ρ is defined as

λ†
ρ = e−iθ L̂ρx b†

ρe+iθ L̂ρx . (B.20)

Using the Baker-Hausdorff lemma

ex Â B̂e−x Â = B̂ +x[ Â, B̂]+ 1

2! x2[ Â, [ Â, B̂]]+ 1

3! x3[ Â, [ Â, [ Â, B̂]]]+· · · (B.21)

with Â and B̂ being any operators. Because λ†
ρ for proton and neutron bosons can

be calculated separately, the index ρ is omitted hereafter.

〈Φ|e−iθ L̂ x |Φ〉 = N !(1 + β2d2
00(θ))N , (B.22)

where d2
00 is the Wigner’s d-function of the rotation. Taking into account the proton

and neutron degrees of freedom, we have

〈Φ|e−iθ L̂ x |Φ〉 = Nπ !Nν !
{

1 + β2

2
(3 cos2 θ − 1)

}Nπ+Nν

. (B.23)

The overlap of Eq. (B.24) should be normalized so as to be unit at θ = 0.

〈Φ|e−iθ L̂ x |Φ〉 =
{1 + β2(3 cos2 θ − 1)/2

1 + β2

}Nπ+Nν

(B.24)
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Cranking Formula

The moment of inertia of the IBM system is obtained from the cranking formula of
Ref. [6]. Since the time-reversal invariance is broken in the cranking formalism, one
has to include the d±1 bosons in the coherent state of Eq. (2.36). Thus the energy
expectation value E = 〈ĤIBM〉 is specified not only by aρ±2 and aρ0 but also by
aρ±1 components. Around the stationary point, the amplitudes aρμ and the expec-
tation values of the IBM Hamiltonian 〈ĤIBM〉 and the x-component of the angular
momentum operator Lx = 〈L̂ x 〉 = 〈L̂πx + L̂νx 〉 are expanded as

aρμ = a(0)
ρμ + Δρμ, (B.25)

E = E (0) +
∑

ρ,ρ′

∑

μ,λ

1

2
ΔρμΔρ′λ

∂2 E (0)

∂aρμ∂aρ′λ
+ · · · , (B.26)

and

Lx =
∑

ρ,μ

Δρ,μ

∂L(0)
x

∂aρ,μ

+ · · · . (B.27)

The variation problem
δ〈Φ|ĤB − ωL̂ x |Φ〉 = 0, (B.28)

with |Φ〉 being the coherent state, provides one with the linear equations in the
infinitesimal Δρ,μ up to the leading order in the cranking frequency ω. Note that a(0)

ρμ,

E (0) and L(0)
x are the quantities in the stationary. Given that the energy expectation

value in this dynamical case depends on aρ±1 variables as aπ1aν1, a2
π1 and a2

ν1, the
system is described by the following six linear equations:

∑

ρ=π,ν;i=0,2

Δπ0 E (0)
π0,ρi + Δπ2 E (0)

π2,ρi + Δν0 E (0)
ν0,ρi + Δν2 E (0)

ν2,ρi = 0, (B.29)

and
Δπ1 E (0)

π1,ρ1 + Δν1 E (0)
ν1,ρ1 = ωL(0)

x,ρ1. (B.30)

The terms Eρi,ρ′ j (ρ �= ρ′) in Eq. (B.29) represent the second derivative of E with
respect to aρi and aρ′ j . We have only to consider the derivative at ω = 0, where the
energy has its minimum, the determinant of the coefficients Eρi,ρ′ j in the first four
equations of Eq. (B.29) do not vanish. This leads to the solutions for Δρ,2 and Δρ0
to the lowest order in ω as

Δρ2 = Δρ0 = 0 + O(ω2). (B.31)

http://dx.doi.org/10.1007/978-4-431-54234-6_2
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The Δρ1 is obtained from Eq. (B.30):

Δρ1 = L(0)
x,ρ1 E (0)

ρ′1,ρ′1 − E (0)
π1,ν1L(0)

x,ρ′1

E (0)
π1,π1 E (0)

ν1,ν1 − E (0)
π1,ν1

. (B.32)

By substituting Eqs. (B.31) and (B.32) into Eq. (B.27), the IBM moment of inertia
(denoted by JB) is obtained:

JB =
∑

ρ �=ρ′ [L(0)
x,ρ1]2 E (0)

ρ′1,ρ̄1 − 2E (0)
π1,ν1L(0)

x,π1L(0)
x,ν1

E (0)
π1,π1 E (0)

ν1,ν1 − [E (0)
π1,ν1]2

(B.33)

= 2

∑
ρ �=ρ′ A2

ρ{(Bρ′ − A2
ρ′)α + Cρ′ρ}

∑
ρ �=ρ′

{
(Bρ Bρ′ − A2

ρ A2
ρ′)α2 + Cρ′ρ(2Bρα + Cρρ′)

}

= (A2
π Bν + A2

ν Bπ − 2A2
π A2

ν)α + A2
πCνπ + A2

νCπν

(Bπ Bν − A2
π A2

ν)α
2 + (BπCνπ + BνCπν)α + CπνCνπ

,

where Lx,ρ1 presents the derivative of the expectation value 〈Lρx 〉 in terms of aρ1:

L(0)
x,ρ1 ≡ ∂〈L̂ρx 〉

∂aρ1
= 4

√
2Nρβρ

1 + β2
ρ

sin
(
γρ + π

3

)
≡ Aρ. (B.34)

The term E (0)
ρ1,ρ1 in Eq. (B.33) is given by

E (0)
ρ1,ρ1 ≡ ∂2〈ĤB〉

∂a2
ρ1

= Bρα + Cρρ̄, (B.35)

with

Bρ = 64Nρ(Nρ − 1)β2
ρ

(1 + β2
ρ)2 sin2

(
γρ + π

3

)
(B.36)

and

Cρρ′ = ∂2

∂2aρ1
〈εndρ + κ Q̂π · Q̂ν〉, (B.37)

where

∂2

∂2aρ1
〈εndρ + κ Q̂π · Q̂ν〉 (B.38)

= 4Nρε

(1 + β2
ρ)2
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− κ

[
2Nρ Nρ′

(1 + β2
ρ)2(1 + β2

ρ′)

{
2aρ′,0 + χρ′(2a2

ρ′2 − a2
ρ′0)

√
2

7

}

×
(

4aρ0 + χρ

√
2

7
(1 − a2

ρ0 + 6a2
ρ2)

)

+ 8Nρ Nρ′

(1 + β2
ρ)2(1 + β2

ρ′)
aρ′0aρ2

(
1 + χρ′aρ′,0

√
2

7

)

×
{

4 + χρ

√
1

7
(4

√
2aρ0 − (1 + β2

ρ)
√

3)

}]

= 4Nρε

(1 + β2
ρ)2

− 2Nρ Nρ′κ

(1 + β2
ρ)(1 + β2

ρ′)
×
[{

2βρ′ cos γρ′ − χρ′β2
ρ′ cos 2γρ′

√
2

7

}

× 4βρ cos γρ + χρ

√
2

7
(1 + β2

ρ(4 sin2 γρ − 1))

+ √
2β2

ρ′ sin 2γρ′

(
1 + χρ′

√
2

7
βρ′ cos γρ′

){
4 + χρ

√
1

7
(4

√
2βρ cos γρ

× − (1 + β2
ρ)

√
3)

}]
.

The term E (0)
π1,ν1 on the RHS of Eq. (B.33) is given by

E (0)
π1,ν1 ≡ ∂2〈ĤB〉

∂aπ1∂aν1
(B.39)

= α
∂2〈L̂2〉

∂aπ1∂aν1

= α
64Nπ Nνβπβν

(1 + β2
π )(1 + β2

ν )
sin

(
γπ + π

3

)
sin

(
γν + π

3

)

≡ αD.

Under the condition that the proton and the neutron have the identical values of
the deformation parameters, βπ = βν = β and γπ = γν = γ , one has

Lx,ρ1 = 4
√

2Nρβ

1 + β2 sin
(
γ + π

3

)
, (B.40)
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E (0)
ρ1,ρ1 = α

64Nρ(Nρ − 1)

(1 + β2)2 β2 sin2
(
γ + π

3

)
+ 4Nρε

(1 + β2)2 (B.41)

− 2Nρ Nρ′κ

(1 + β2)3 ×
[{

2β cos γ − χρ′β2 cos 2γ

√
2

7

}

× 4β cos γ + χρ

√
2

7
(1 + β2(4 sin2 γ − 1))

+ √
2β2 sin 2γ

(
1 + χρ′

√
2

7
β cos γ

)

×
{

4 + χρ

√
1

7
(4

√
2β cos γ − (1 + β2)

√
3)

}

and

E (0)
π1,ν1 = α

64Nπ Nν

(1 + β2)2 β2 sin2
(
γ + π

3

)
. (B.42)

Since we consider the axially symmetric case (γ = 0◦), Aρ , Bρ and Cρρ′ becomes
simpler:

Aρ = 2
√

6Nρβ

1 + β2 , (B.43)

Bρ = 48Nρ(Nρ − 1)β2

(1 + β2)2 , (B.44)

Cρρ′ =
2Nρ[2ε − Nρ′κ(2β − χρ′β2

√
2
7 ){4β + χρ

√
2
7 (1 − β2)}]

(1 + β2)3 (B.45)

and

D = 48Nπ Nνβ
2

(1 + β2)2 = 2Aπ Aν . (B.46)

By comparing the cranking moment of inertia of boson system JB with the corre-
sponding moment of inertia in the fermion system, the strength of the LL term α are
then obtained by solving the quadratic equation with respect to α. This procedure
generally gives two solutions, the physically-relevant one of which is taken.
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B.2 Diagonalization of Boson Hamiltonian

M-Scheme

The IBM Hamiltonian can be diagonalized in a set of bases conserving M (z-component
of the total angular momentum J ) rather than in a coupled form with respect to J (J
scheme). The merit of the M-scheme diagonalization is that it is much easier to com-
pute the Hamiltonian matrix elements analytically than in J -scheme. Particularly
when one calculates the overlap between the eigenvector and the corresponding
intrinsic state, the M-scheme basis is quite feasible to handle. In a large-scale shell
model diagonalization the dimension of Hamiltonian matrix inflates in the M scheme.
Also in the IBM the M-scheme dimension is larger than the J -scheme to a certain
extent, the computational cost is still moderate as compared to shell-model calcula-
tion.

The M-scheme basis for IBM considered in this thesis is given by

|ΦM 〉 = 1
∏

ρ,lm

√
Nρ,lm !

∑

ρ,lm

(b†
ρ,lm)Nρ,lm |0〉. (B.47)

Here bρ,lm (ρ = π, ν) represents the monopole (l = 0) and the quadrupole
(l = 2) bosons with m = 0 and m = ±2,±1, 0, respectively. Nρ,lm stands for
the number of bosons with l and m. The denominator on the RHS of Eq. (B.47) is the
normalization factor. The boson vacuum |0〉 is interpreted as an inert core. Thus the
boson number is counted following the general rule in the IBM and is also a good
quantum number.

For a set of the M-scheme bases, one calculates the matrix elements of the IBM
Hamiltonian with a certain value of M with |M | ≤ J . Note that the
M-scheme bases having different values of M are not mixed, as they are orthogonal to
each other. When constructing the Hamiltonian matrix elements, one has a constraint
of 2(Nρ,22−Nρ,2−2)+(Nρ,21−Nρ,2−1) = Mρ concerning the boson number, where
Mρ represents the z-component of the total proton and neutron angular momenta.
Because we use the IBM-2, one has additional constraint of Mπ + Mν = M . Also
all eigenstates considered in this thesis have the positive parity.

The Hamiltonian matrix is decomposed into sub-matrices belonging to each value
of M (cf. Eq. (B.48)).

H =

⎛

⎜⎜⎜⎜⎜⎜⎝

M = 0 0 0 0 0
0 M = 1 0 0 0
0 0 M = −1 0 0

0 0 0 M = 2 0

0 0 0 0
. . .

⎞

⎟⎟⎟⎟⎟⎟⎠
(B.48)



Appendix B: Formulas in the IBM-2 Framework 187

The eigenvector of the boson Hamiltonian is eventually written as a linear combina-
tion of M-scheme bases, and provides the excitation energies and other spectroscopic
observables, which are identical to those obtained from the J -scheme diagonalization
having good angular momentum and the particle number.

Calculation of Collective Wave Function for Boson System

Like the collective wave function in the Bohr Hamiltonian approach, the IBM wave
function of interest can be considered in the βγ plane, by taking the overlap between
the eigen state and the corresponding coherent state. In the following, only the case
either of proton or neutron is considered for the sake of simplicity, and thus index ρ

is neglected. The coherent state is transformed as

|Φ(β, γ )〉 = 1√
N !(1 + β2)N

(s† + α0d†
0 + α2d†

2 + α2d†
−2)

N (B.49)

= 1√
N !(1 + β2)N

×
∑

Ns ,Nd0 ,Nd2

Ns+Nd0 +Nd2 +Nd−2
CNs · Nd0 +Nd2 +Nd−2

CNd0
· NNd2

+Nd−2
CNd2

× (β cos γ )Nd0 (
1√
2
β sin γ )N−Ns−Nd0 (s†)Ns (d†

0 )Nd0 (d†
2 )Nd2 (d†

−2)
Nd−2 |0〉.

A set of the m-scheme basis |φ〉 is given as

|φ〉 =
dim∑

i

ci |φi 〉, (B.50)

where i stands for the state index which runs from 1 through the dimension of
the Hamiltonian matrix. Amplitude ci is generated by the diagonalization of the
Hamiltonian matrix. |φi 〉 is given as

|φi 〉 = 1√
Ns !Nd2 !Nd1 !Nd0 !Nd−1 !Nd−2 !

(B.51)

× (s†)Ns (d†
2 )Nd2 (d†

1 )Nd1 (d†
0 )Nd0 (d†

−1)
Nd−1 (d†

−2)
Nd−2 |0〉.

One may then compute the overlap of the coherent state of Eq. (B.49) and
M-scheme basis of Eq. (B.51). The non-vanishing parts in the overlap 〈Φ|φ〉 must
fulfill

Nd±1 = 0, k = Ns, l = Nd0 , m = Nd2 , N − k − l − m = Nd−2 . (B.52)
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We then obtain the overlap

〈Φ(β, γ )|φ〉 =
dim∑

i

ci 〈Φ(β, γ )|φi 〉, (B.53)

where

〈Φ(β, γ )|φi 〉 = 1√
N !(1 + β2)N

N C Ns ·N−Ns CNd0
·N−Ns−Nd0

CNd2
· δNd1 ,0 · δNd−1 ,0

(B.54)

× (β cos γ )Nd0

(
1√
2
β sin γ

)N−Ns−Nd0

.

Taking into account the proton and the neutron degrees of freedom under the assump-
tion βπ = βν = β and γπ = γν = γ (subscript B, indicating boson system, is omit-
ted), the probability density distribution ρ(β, γ ) can be calculated by the equation

ρ(β, γ ) = N −1
dim∑

i

|〈Φ(β, γ )|φi 〉|2β3| sin 3γ |, (B.55)

where the normalization factor N is determined so that

∫ ∞

0
βdβ

∫ 2π

0
dγρ(β, γ ) = 1. (B.56)
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