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1

Introduction

“If necessity is the mother of invention, then deregulation is the father, and rev-
enue management (also known as yield management) is the couple’s golden child
– at least as far as operations research is concerned.” (Horner, 2000, p. 47)

Deregulation had a significant impact on the U.S. airline industry in the late
1970s. Charter and low-cost airlines such as People Express and Southwest
were able to offer seats at a fraction of the price charged by established carriers
like Pan Am and American Airlines. Due to their different cost structure, it
seemed to be impossible for the big carriers to offer tickets at the same low
price. Yet they had to find a way to compete.

Robert L. Crandall from American Airlines is widely credited with the so-
lution to the problem: yield management – today called revenue management,
since it maximizes revenue earned on a flight rather than yield (revenue per
passenger mile).

The idea was simple: American Airlines flights were only half full on av-
erage. Offering the empty seats at a discount price would not only enable the
carriers to compete with the low-cost airlines but even create additional rev-
enue, if (1) it were possible to prevent cannibalization, i.e. the sale of discount
tickets to consumers who would otherwise be willing to pay full fare, and if
(2) it could be assured that only the seats that would otherwise fly empty
were sold at the low price.

Implementing this strategy, American Airlines matched the low-cost air-
lines’ prices with a limited number of seats that had to be booked several weeks
or months in advance. Due to this purchase restriction – the lack of flexibility
– the offer was not attractive for the late-arriving demand (typically business
travelers) willing to pay the full fare.

Note, however, that if too many seats were sold at low prices, the airline
would run the risk of filling the plane too early and losing full-fare customers
(risk of revenue dilution). On the other hand, they were taking the chance
that discount demand would be rejected, with full-fare demand not sufficing
to fill the airplane. The plane would then depart with more empty seats than
necessary (demand spoilage).

The ability of American Airlines to control the availability of discount
seats had a dramatic effect on its low-cost competitors. People Express was hit
especially hard. For details on the “battle” of American Airlines versus People
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Express, see Cross (1998, Chap. 4). Revenue management contributed not only
to the bankruptcy of People Express but to the demise of several other carriers
as well. At the same time, it generated significant additional revenue for the
airlines that applied it. According to Smith et al. (1992), American Airlines
estimates that over a three-year period at the end of the 1980s, quantifiable
benefits of over 1.4 billion dollars were attributable to the control of discount
price capacity and overbooking (i.e. selling more reservations than there are
seats on the plane). Today, revenue management is both prevalent and mature
in the airline industry. In fact, Talluri and van Ryzin (2004b, p. 10) state that
the additional revenue generated by revenue management practices accounts
for 4 to 5 percent of overall revenue, a value roughly comparable to many
airlines’ profits in a good year.

One major factor that enabled American Airlines to effectively apply rev-
enue management practices was the use of information technology, namely
central reservation systems, to manage the sale of seats. In addition to record-
ing the number of seats sold and the number left to sell, central reservation
systems also enabled better price and inventory management.

Capacity control mechanisms allow airlines to open and close the offer
of discount fares depending on the number of seats still available, the time
remaining until departure, and demand forecasts. Usually, these mechanisms
are deeply embedded in the software logic and are expensive and difficult to
change (Talluri and van Ryzin, 2004b, p. 28). According to Zhang and Cooper
(2005) nested protection levels dominate airline practice due to the fact that
many distribution channels allow only these types of controls.

A protection level y specifies the number of seats to reserve (protect) for
a particular class or set of classes. If the plane’s capacity was 100 and the
protection level for full-fare demand was 70, a maximum of 30 seats could be
sold at a discount price. Beyond this limit, the discount fare class is closed.
In this example, “nested” means that full-fare demand has access to all the
capacity reserved for lower fare demand. So if e.g. only 10 seats were sold at the
discount fare but there is a high demand for seats at the full price, the airline
could sell up to 90 seats at the full fare even if some of them had originally
been assigned to the discount fare class. In the case of partitioned (non-nested)
classes, only 70 seats would be offered at the full fare. As nested protection
levels are so common in practice, one could argue that the formulation of a
capacity control problem should require the selection of a control by protection
levels (Zhang and Cooper, 2005). Yet the question remains whether (and if,
when) this is restrictive.

These central reservation systems constitute one of the earliest examples
of e-commerce. Based on the airline industry’s success story, it is expected
that the use of revenue management will be enhanced by the emerging role of
Internet-based e-commerce, see Copeland and McKenney (1988), Smith et al.
(2001), Baker et al. (2001), Boyd and Bilegan (2003), and Klein and Loebbecke
(2003). But also apart from Internet-based e-commerce, today’s information
technology is enabling more and more industries to adopt revenue manage-
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ment practices. The hotel and hospitality sector, cruise lines, event promotion
firms, and car rental companies are all examples of traditional applications
that could be modeled in a similar way to the airline industry. Today, however,
entities as diverse as the broadcasting, hospital, casino, and utility industries
are starting to use revenue management practices. For surveys on the vari-
ety of applications, see McGill and van Ryzin (1999), Talluri and van Ryzin
(2004b, Chap. 10), Yeoman and McMahon-Beattie (2004), Kimms and Klein
(2005), and Sfodera (2006).

In the recent literature, the term “revenue management” encompasses
more general demand management decisions, covering not only the deter-
mination of the number of tickets to offer at low prices (which is then called
capacity control, seat inventory control, or discount allocation) but also over-
booking. In addition to these quantity decisions, some authors even extend the
meaning of revenue management to include the problem of product creation
to ensure that full-fare demand is not sacrificed by offering tickets at discount
prices (market segmentation) as well as the problem of finding the right prices
and adjusting them over time (dynamic pricing).

For a survey of the different subtopics, see Kimes (1989), Weatherford and
Bodily (1992), Harris and Peacock (1995), Weatherford (1998), McGill and
van Ryzin (1999), Boyd and Bilegan (2003), Talluri and van Ryzin (2004b) and
Phillips (2005). Different approaches to quantity decisions are summarized in
Zehle (1991), Daudel and Vialle (1992), Klein (2001), and Tscheulin and Lin-
denmeier (2003). Dynamic pricing surveys can be found in Chan et al. (2004),
Elmaghraby and Keskinocak (2003), and Bitran and Caldentey (2003); for le-
gal aspects, see Weiss and Mehrotra (2001). Hybrid approaches that deal with
both capacity allocation and optimal pricing of the fare classes can be found
in Weatherford (1997) and Feng and Xiao (2006b). Badinelli (2000), Walczak
(2001), Chatwin (2002), Chatwin (2003), and Maglaras and Meissner (2006)
discuss the differences and similarities between capacity control and dynamic
pricing. Note that dynamic pricing problems in revenue management do not
consider replenishment; surveys on dynamic pricing and inventory decisions
are provided by Elmaghraby and Keskinocak (2003) and Chan et al. (2004).
Issues of price discrimination in the context of revenue management are dis-
cussed e.g. in Faßnacht and Homburg (1998); Talluri and van Ryzin (2004b,
Chap. 8) furnish an overview.

To prevent misunderstanding, we will call the above-mentioned practice of
determining the number of seats to protect for full-fare demand the “capacity
control problem in revenue management”, or “capacity control” for short.
Overviews that exclusively deal with mathematical models for capacity control
can be found in Ben-Yosef (2005, Chap. 7), Pak and Piersma (2002), and
Kimms and Müller-Bungart (2004).

A variety of problems is summarized under the term revenue management,
and its techniques are applied in many different industries. This work aims
neither at an industry-specific nor at an all-embracing approach to revenue
management. Instead, the goal is to provide a deeper understanding of the
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generic single-resource capacity control problem that forms the basis of many
revenue management systems. The general terminology of capacity control
will be introduced, but for simplicity, we will stick to the terminology of the
airline industry thereafter.

1.1 The Basic Capacity Control Problem

The basic capacity control model is concerned with making efficient use of
a certain, fixed capacity C of a single resource with homogeneous units that
becomes worthless after a given time T .

The company sells its capacity as imax distinct products. Each product
i = 1, . . . , imax consists of one unit of this resource and is offered at a price
(or fare) of �i. Without loss of generality, we assume that the products are
indexed such that 0 < �imax ≤ · · · ≤ �i ≤ �1.

In the airline industry, the capacity could be the number of seats in the
economy compartment of a single-leg flight, i.e. a non-stop flight from one
origin to one destination departing at some future point in time. All products,
also called booking or fare classes, represent one (reservation for a) seat on
that flight. They might only differ in price and/or in purchase restrictions such
as a Saturday night restriction or early booking conditions. These artificial
differences, known as “fencing conditions”, ensure that the same resource can
be sold at different prices. In the above-mentioned simplified case of American
Airlines, there were imax = 2 products or booking classes: tickets at a discount
fare that were available only several weeks before departure and the full-fare
tickets. We assume the fencing conditions as well as the product prices to be
fixed and exogenously given.

The question of capacity control is which products to offer for sale at a
given point in time. Frequently, it is advantageous (and feasible) to reword
this question and decide whether one should accept or reject an incoming
request for product i given a certain amount of remaining capacity and time
until departure.

1.1.1 Assumptions

We speak of a basic capacity control problem, if the following assumptions
are made:

i) After a certain time T , the whole amount of capacity C is worthless. No
additional units of capacity can be ordered.

ii) It is assumed that the major part of the costs is already sunk and that
variable costs are negligible, so that the aim of profit maximization can be
approximated by maximizing the revenue gained from the selling process.

iii) The resource has to be allocated dynamically as demand materializes.
Rejected demand is lost and cannot be stored for the future. Once ac-
cepted, a customer cannot be rejected later without significant cost.
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iv) There is considerable uncertainty about the quantity and the type of
future demand. Future demand for the products offered can be described
in terms of a random variable with a known probability distribution.

v) Products consist of a single (homogeneous) resource. Products that are
composed of multiple resources, called network problems, are not con-
sidered.

vi) The company has monopolistic market power and customers are myopic.
vii) Demand (i.e. the number of requests) and time are discrete.
viii) Group bookings that have to be completely accepted or rejected are not

considered. If there is demand for more than one ticket at a time, this
demand may be partially accepted.

ix) Customers do not cancel (strictly) prior to the time of service. No-shows,
i.e. customers that do not show up at the time of service, are not con-
sidered.

x) Demand for the products is independent of the availability of other prod-
ucts.

xi) The decision-maker’s preferences can be approximated by a maximiza-
tion of expected revenue; he is assumed to be risk-neutral.

This basic single-resource capacity control model does not reflect the state
of the art in the revenue management literature, but it forms the basis for a
lot of more advanced models and for most models used in practice.

Assumptions i), ii), and iii) form the heart of the capacity control problem
in revenue management: a fixed amount of perishable capacity, high fixed costs
and non-storable demand. (If it were possible to store demand, one would store
all of it and sell seats right before capacity perished in decreasing price order.)
If variable costs cannot be neglected, the product’s contribution margin can
usually be considered instead of the price (Zehle, 1991).

In some recent articles, however, the development of new products is prop-
agated to allow the seller to reject some of the demand that has already been
accepted against a certain compensation or to reassign it to a different type
of capacity; see Biyalogorsky et al. (1999), Biyalogorsky and Gerstner (2004),
Gallego and Phillips (2004), and Gallego et al. (2004). The latter products are
frequently referred to as “flexible products” and are actually used in the hotel
and cruise line industries. Generally, however, concerns about public image
preclude their application (Biyalogorsky et al., 1999).

Although forecasting is considered an important ingredient for successful
implementation, it is usually omitted from capacity control models. Yet as-
sumption iv) is critical if new routes are offered or schedules are changed. The
problem is discussed in van Ryzin and McGill (2000) and solved by an adap-
tive algorithm. To the author’s knowledge, Bayesian demand learning is only
considered in the dynamic pricing context; see e.g. Farias and Van Roy (2006)
and the references given there. For a different perspective on capacity control
that can do completely without demand forecasts, see Ball and Queyranne
(2006).
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Assumption v) is even more crucial in practice. Many large carriers oper-
ate on a flight network with hubs. Due to the curse of dimensionality, network
capacity control is often tackled with approximate dynamic programming,
heuristics, or simulations. For the basics on capacity control for flight net-
works, see Phillips (2005, Chap. 8) or Talluri and van Ryzin (2004b, Chap.
3) and the references given there. When the existence of more compartments
(such as the business and economy compartments) is considered explicitly, is-
sues of upgrading are discussed e.g. in Biyalogorsky et al. (2005) and Lukasche-
witsch (2005). Although revenues are reported to improve by an additional
2.5 percent when network carriers optimize on the network level rather than
on single-legs, single-leg models are still widely used (Talluri and van Ryzin,
2004b, p. 82). In addition, they form important building blocks in many heuris-
tics for the network case (Talluri and van Ryzin, 2004b, p. 27).

Assumption vi) is standard in revenue management models. The first
model to consider a basic capacity control model in a competitive frame-
work is Netessine and Shumsky (2005). Strategic customers are considered in
Anderson and Wilson (2003) and Liu and van Ryzin (2005).

To facilitate mathematics, some models assume demand to be continuous
in contrast to the first part of assumption vii), see e.g. Curry (1990), Belobaba
(1987a), or Bodily and Weatherford (1995). However, discrete demand seems
more natural in real applications. The assumption of discrete time is not a
hard to implement, since time can be discretized e.g. by counting arbitrarily
small time intervals, by uniformization (Lippman, 1975), or by looking only at
the times when demand materializes (as Lin, 2004, did in a dynamic pricing
model). The latter approach turns the planning horizon into a random variable
representing the number of points in time when demand arrives. Although
most capacity control models use a discrete time approach, Liang (1999),
Zhao and Zheng (2001), and Feng and Xiao (2006a) use a continuous time
approach; a semi-Markov decision process is modeled in Walczak (2001) and
Brumelle and Walczak (2003).

Papastavrou et al. (1996), Kleywegt and Papastavrou (1998, 2001) and
van Slyke and Young (2000) demonstrate that the capacity control problem
can also be formulated as a (stochastic) knapsack problem. They use this
approach to handle group bookings that must be accepted or rejected as a
whole. Lee and Hersh (1993) and Brumelle and Walczak (2003) consider group
bookings within the framework of Markov decision processes. Among other
things, they show that capacity control mechanisms that are suitable under
assumption viii), such as the control by protection levels, are not optimal
for total accept/deny decisions. According to Farley (2003, p. 155), small
group bookings are usually either treated as individual bookings; airlines rely
on manual processes to price and book larger groups. Eguchi and Belobaba
(2004) give a recent overview of the literature on implemented group booking
processes in airline revenue management.

In contrast to assumption ix), a significant proportion of tickets are can-
celed (strictly) prior to departure in airline applications. In addition, some
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passengers are no-shows, i.e. they simply do not show up at the time of de-
parture. Airlines usually respond to this issue by overbooking: They sell more
tickets than they have seats. This is why in the case of cancelations and no-
shows, one is strictly speaking of selling reservations or tickets instead of seats.
Without overbooking, “about 15 percent of seats would be unused on flights
sold out at departure” (Smith et al., 1992, p. 9). While overbooking generates
additional revenue, it introduces the risk that more passengers may show up
for a flight than there are seats on the plane. Denied boardings, i.e. passengers
not boarded because seats are not available, must be compensated monetar-
ily (see e.g. EU-Regulation No 261/2004) and cause customer dissatisfaction
(Lindenmeier and Tscheulin, 2005). Talluri and van Ryzin (2004b, Chap. 4)
discuss the operational as well as legal issues of overbooking and provide a
comprehensive literature survey. For a historical perspective on overbooking,
see Rothstein (1985).

Given a single resource problem, there are basically two ways of modeling
cancelations and no-shows. On the one hand, one can disentangle the over-
booking problem from the capacity control problem, determine an adequate
number of tickets C̄ (the virtual capacity) to sell, and solve the capacity con-
trol problem by pretending that one has a capacity of C̄. Basic capacity control
models can be used after the virtual capacity has been determined. On the
other hand, one could, of course, directly model cancelations and no-shows
together with the capacity control problem. See Subramanian et al. (1999),
Walczak (2001), and Feng and Xiao (2006a) for such a combined approach.

Assumption x) is named the “independent demand assumption” and is
used in most capacity control models. It implies that fencing conditions are
chosen such that the products i = 1, . . . , imax segment the market perfectly
into imax + 1 segments 0, . . . , imax – one segment for each booking class and
one segment for people not buying any of these imax products, labeled segment
0. Customers in each segment i buy only the product corresponding to this
segment, while customers in segment 0 never buy any product i = 1, . . . , imax.
If the corresponding product is not offered at the time of a customer request,
the customer does not buy at all and is considered lost.

This approach was initially said to work well in practice. In recent years,
however, more and more evidence has been reported against it. Customers
are observed to have become increasingly price-sensitive and tend to choose
the cheapest option available. The increasing use of the Internet as a distri-
bution channel strengthens this effect, since prices can be easily compared.
Hence, an adequately high level of market segmentation is more difficult (if
not impossible) to achieve nowadays; see Boyd (2004) and Boyd and Kallesen
(2004). The potential pitfalls of ignoring the assumption of perfect market
segmentation are modeled in Cooper et al. (2006). The first capacity control
models to provide an analytical account of the effect of customer choice be-
tween fare classes in a two-class model (in which customers arrive in a strict
low-to-high fare order) are described in Pfeifer (1989), McGill (1989), and
Brumelle et al. (1990). For a a heuristic extension to more fare classes, see
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Belobaba and Weatherford (1996). Zhao and Zheng (2001) analyze a two-class
model in which customers are allowed to arrive in any order; for a multi-class
model, see Talluri and van Ryzin (2004a). Other models that incorporate sim-
ple choice models are Bodily and Weatherford (1995), Botimer and Belobaba
(1999), and Corsten and Gössinger (2005). Customer choice between parallel
flights (but not between fare classes) is analyzed in Zhang and Cooper (2005).

In this work, we put a special emphasis on assumption xi), which postulates
that only the expectation is relevant. Other factors, such as load factor (i.e.
the fraction of seats sold at departure) or passenger spill (i.e. the fraction of
full-fare requests that must be rejected), need not be considered.

These factors are frequently incorporated by means of an adequate ma-
nipulation of the fare prices; see e.g. Brumelle et al. (1990). But even in the
latest literature on capacity control expected revenue is the most widespread
optimality criterion in use, i.e. a risk-neutral decision-maker is modeled and
discounting is not considered. The reason for maximizing undiscounted values
is that the planning horizon is usually only a few months. Some authors, such
as Subramanian et al. (1999), note that the analysis with discounting is es-
sentially the same, but do not consider discounting explicitly. Risk-neutrality,
however, is a harder assumption. When it comes to risk-neutral decision-
makers, many capacity control models have been studied extensively, struc-
tural properties of the optimal control policy have been proven, heuristics have
been promoted, and various extensions and alternatives have been suggested.
Yet a basic capacity control model with a risk-averse decision-maker has only
been tackled heuristically in Weatherford (2004); a worst-case relative regret
criterion was used in Ball and Queyranne (2006).

1.1.2 The Attitude Towards Risk in Capacity Control

“For nearly two decades airlines have been implementing revenue management
systems to improve revenue results without considering the risks assumed or
the consequences” (Lancaster, 2003, p. 158).

Lancaster (2003, p. 159) complains that the core proposition of capacity
control is a speculative strategy but capacity control “to date has focused
solely on the reward side of managing seat inventory, thus creating hidden
risks.” In his paper, Lancaster (2003) does not incorporate risk-aversion into
a capacity control model; using a sensitivity analysis, however, he emphasizes
that revenue management can help to achieve more financially stable results.

Two major supporting arguments for the assumption of risk-neutrality
are quoted frequently. (1) Given both costless insurance markets to convert a
stochastic income stream to the corresponding stream of expected values and
perfect capital markets to convert a deterministic income stream to the most
preferred maintaining the same present value, maximizing expected revenue is
straightforward for a (non-risk-loving) firm (see e.g. Kennedy et al., 1994). (2)
Since the booking process is repeated over hundreds or thousands of problem
instances, the impact of a single realization is low, and the law of large numbers
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ensures that long-term average revenues are maximized by a good risk-neutral
policy.

If conditions (1) and (2) do not hold in the scenario considered, risk-averse
approaches are required. A company experiencing cash-flow struggles might
prefer the certainty of some immediate medium revenue to the mere potential
for high revenue in the future if it has only limited access to the capital market.
Small companies with fewer repetitions of the booking process, little available
capital, and relatively high fares might not tolerate as much financial risk as
recommended by an optimal, risk-neutral capacity control policy. And even if
it were optimal for the company to behave in a risk-neutral way, the product
managers in charge might have other objectives e.g. if they stand to receive a
bonus when a certain revenue target is met.

The theoretical need for a risk-averse model is supported in real-life rev-
enue management. Levin et al. (2005) report on an event promoter organizing
only a few large events per year. Owing to the infrequent problem instances,
a single poor realization can have severe financial consequences, and the first
priority might be to recover the fixed costs for rental of a stadium or concert
hall. One can imagine a similar effect in clearance sales of high-value prod-
ucts. Furthermore, Weatherford (2004) states that he was explicitly asked by
a consultant of small airlines whether the basic, risk-neutral, capacity control
approaches were suitable for a risk-averse airline. Another consultant, Tom
Shelton from TNS Consulting, reported to the author that his clients felt
uncomfortable with the protection levels of their implemented (risk-neutral)
static capacity control model. The recommended values were too aggressive.
Too many seats were reserved for high-fare demand. Thus, they manipulated
the probabilities of the forecasts in order to decrease the levels to magnitudes
they felt comfortable with.

Bitran and Caldentey (2003, p. 226) also highlight the fact that most prod-
uct managers in charge of revenue management policies present some degree
of risk-aversion. By failing to suggest mechanisms for reducing unfavorable
revenue levels, traditional risk-neutral capacity control models fall short of
meeting the needs of a risk-averse planner.

Seen from a different perspective, the investigation of risk-averse capacity
control can also be useful for a better understanding of the risks involved
with capacity control. In the literature on airline risk management, revenue
management is frequently categorized as an internally driven financial risk
factor (Zea, 2002). Lancaster (2003, p. 159) highlights that “there is a need
to develop risk awareness in airline revenue management.”

Hence, it “would be interesting to measure the impact of adding risk-
aversion to the revenue management formulation” (Bitran and Caldentey,
2003, p. 226). At this point, we see a gap in the current literature on ca-
pacity control. Although there have been some approaches to incorporate
risk-aversion into the broader context of revenue management, there is no an-
alytic solution for the basic capacity control model from the perspective of a
risk-averse, expected utility maximizing, decision-maker.
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1.2 Risk-Aversion in Revenue Management

The impact of maximizing expected utility has been examined for a vari-
ety of sequential decision problems. Among these problems are optimal stop-
ping problems (e.g. Hall et al., 1979, and Müller, 2000), inventory models
(e.g. Bouakiz and Sobel, 1992, Avila-Godoy and Fernandez-Gaucherand, 2001,
Chen et al., 2004), reservoir management (Kerr et al., 1998), and underground
construction planning (Likhitruangsilp and Ioannou, 2004). Despite the very
rich literature on revenue management, however, to the author’s knowledge
very few papers deal with risk-aversion in the broader context of revenue man-
agement, and fewer still maximize the expected utility of the decision-maker.
We will summarize the main papers in this area very briefly.

The risk-averse expected utility maximizing newsvendor has been exten-
sively studied in the literature. Eeckhoudt et al. (1995) show that the optimal
order quantity for such a newsvendor is lower than the order quantity of his
risk-neutral counterpart and decreasing with increasing risk-aversion. Other
papers that examine price and order quantity decisions for an expected utility
maximizing newsvendor are Baron (1973), Lau (1980), Agrawal and Seshadri
(2000), Schweitzer and Cachon (2000), and Ibarra-Salazar (2003).

Chen et al. (2004) and Caldentey and Wein (2005) maximize expected
utility of revenue for pricing approaches with non-perishable products and re-
plenishment. Chen et al. (2004) consider an inventory and pricing model max-
imizing total expected utility from consumption in each time period given an
additive exponential utility function. Caldentey and Wein (2005) formulate a
diffusion control problem for the case of an expected utility maximizing man-
ufacturer, who sells products over two different channels. The optimal produc-
tion level, the price for long-term contracts with deterministic demand, and
the acceptance or rejection of stochastic offers on an electronic spot market
must all be decided upon.

The papers of Feng and Xiao (1999), Levin et al. (2005), and Lim and
Shanthikumar (2007) consider pricing decisions for perishable products given
a risk-averse decision-maker. Feng and Xiao (1999) decide on the timing of
a single switch between two predetermined prices to maximize expected rev-
enue while penalizing the change in variance of the revenue stream over time.
Levin et al. (2005) introduce a dynamic pricing model that permits the control
of the loss-probability, i.e. the probability that total revenue will fall below a
minimum acceptable level. Lim and Shanthikumar (2007) examine the equiva-
lence between a robust dynamic pricing problem and a single-resource pricing
model that maximizes expected exponential utility; no structural properties
of an optimal policy are proven.

Mitra and Wang (2003, 2005) investigate network revenue management
in a specific traffic engineering model for bandwidth provisioning and route
selection. The goal is to find an appropriate volume of traffic to admit for
each customer class and route (there is no time dimension). Risk-aversion
is incorporated by a mean-risk analysis, which maximizes the weighted sum
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of the expected revenue and the standard deviation of revenue. Conditions
under which the optimization problem is an instance of convex programming
are obtained.

Ball and Queyranne (2006) consider a competitive analysis of a basic ca-
pacity control model. As a performance measure, they use the competitive
ratio, which guarantees on a certain level of performance compared to a clair-
voyant optimal policy.

The author is aware of only one other paper on risk-aversion in capacity
control, a heuristic approach suggested by Weatherford (2004). He extends
a well-known heuristic approach for the risk-neutral case, EMSR (expected
marginal seat revenue), to a concept called EMSU (expected marginal seat
utility). In this extension, the price of a ticket is replaced by the utility of its
price; see Sect. 7.2.4. By means of examples, he finds that the heuristic can
have a significant impact on the expected utility and revenue performance. In
addition, it is reported to increase the probability of hitting certain revenue
thresholds.

1.3 Chapter Organization

Our goal is (1) to introduce a new expected revenue maximizing capacity
control model that accounts for cancelations and no-shows and evolves in a
random environment and (2) to analyze the two most frequently addressed
basic single-resource capacity control models for an expected utility maximiz-
ing decision-maker. We thereby focus on the use of an exponential atemporal
utility function.

To pursue these goals step by step, the thesis consists of three parts.
The first part provides background on Markov decision processes and ex-

pected utility theory. We briefly introduce some notation before we summarize
results both on finite and infinite horizon Markov decision processes (MDPs).
In particular, we consider infinite horizon MDPs in a random environment
and with an absorbing set. Due to the relatively short planning horizon in ca-
pacity control settings, discounting is usually not considered. That is why we
focus on the total reward criterion in Chap. 2. The results are needed to exam-
ine capacity control models that aim at a maximization of expected revenue,
i.e. a risk-neutral decision-maker. In order to model a risk-averse decision-
maker, we start Chap. 3 with a brief review of expected utility theory for
static as well as sequential (finite horizon) decision making. It is assumed
that the decision-maker evaluates the outcomes of his decision with an in-
creasing utility function and acts such that expected utility is maximized. For
static decision problems with a one-dimensional outcome, we introduce the
measure of absolute risk-aversion that can also be used to compare the degree
of risk-aversion between decision-makers. Special utility functions, which are
later used in examples, are introduced. Under certain conditions, sequential
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decision problems can be reduced to a static choice of a policy. In combina-
tion with a Markov decision process, the standard approach is to then use an
additive time-separable utility function. Furthermore, we discuss the use of an
atemporal utility function and state some arguments in favor of an exponential
shape.

The second part of the thesis deals with risk-neutral, expected revenue
maximizing, single-resource capacity control models. In Chap. 4, we introduce
a capacity control model in a random environment that incorporates all eleven
assumptions mentioned above except ix). Since it allows for cancelations and
no-shows, the number of reservations one might sell is not limited by the
number of seats. We also incorporate additional external factors that may
have some impact on the request arrivals. In a capacity control model with
a given number of periods until departure, such an external factor might
simply be the time until departure. Other examples for external factors will
be given. We make assumptions that guarantee that nested protection levels
will provide a suitable control mechanism. The chapter is based on the ideas
in Barz and Waldmann (2006). The dynamic and the static capacity control
problem, the two textbook models for basic single-resource capacity control,
are summarized in Chap. 5. These two models are special cases of the capacity
control model in a random environment. Additional properties of the structure
of an optimal control policy are discussed and the well-known EMSR heuristics
are presented.

The third part introduces the concept of risk-aversion to capacity control
models. The static and the dynamic capacity control model are recapitulated
from the perspective of an expected utility maximizing decision-maker with
both an additive time-separable utility function and an atemporal utility func-
tion. Again, our focus is on structural results of optimal controls.

The case of an additive time-separable utility function is discussed in Chap.
6. Given this preference structure, nested protection levels are suitable for the
dynamic model but not for the static model. We illustrate our results with
numerical examples. In addition, we discuss the impact of increasing risk-
aversion on the preferred policy.

Similar to the investigation in Chap. 6, we examine the structure of op-
timal controls given an atemporal utility function in Chap. 7. By means of
examples, we show that most structural results known from the expected
revenue maximizing policy generally do not hold for a policy that maximizes
expected atemporal utility. In the case of an exponential utility function, how-
ever, many structures of an expected atemporal utility maximizing policy can
be proven for both the static and the dynamic capacity control problems. The
results are essentially the same as those given in Barz and Waldmann (2007).
Furthermore, we can show that if there is a policy that is optimal for all suf-
ficiently small values of γ, this policy is the optimal policy of a risk-neutral
decision-maker. For the static model, straightforward extensions of the EMSR
heuristics are introduced to account for constant absolute risk-aversion. The
results of a simulation study in a static capacity control setting with a risk-
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averse decision-maker are presented to underpin our findings. We compare our
results with those of Weatherford’s EMSU heuristic. Parts of this simulation
study were published in Barz (2006).

In Chap. 8, we examine how certain structures of an expected revenue
maximizing policy also carry over to the expected atemporal exponential util-
ity maximizing case for more advanced models, such as the capacity control
model under a general discrete choice model of consumer behavior. This model
was introduced by Talluri and van Ryzin (2004a) in the risk-neutral case. The
chapter reformulates and extends the ideas of Barz and Schön (2006).

Chapter 9 contains our summary and conclusion. In addition, directions
for future research are proposed.



Part I

Basic Principles



The next two chapters cover the foundations of sequential decision making.
In Chap. 2, we introduce finite and infinite horizon Markov decision processes
for maximizing total (undiscounted) reward. In Chap. 3, we generalize the
finite horizon case to account for an expected utility maximizing decision-
maker. In particular, we focus on the maximization of expected exponential
utility of the total reward. The main intention is to clarify notation and to
state results that will be used in the following chapters. But first we turn to
some general notation that is used throughout this work.

General Notation

We use Z (N0, N) to denote the set of all (non-negative, positive) integers. A
real-valued function g defined on an arbitrary set H is said to be increasing
if x ≤ x′ implies g(x) ≤ g(x′), it is said to be decreasing if x ≤ x′ implies
g(x) ≥ g(x′) for all x, x′ ∈ H.

In addition, the notation ‖ · ‖ will be used to denote the supremum norm,
i.e.

‖g‖ := sup
x∈H

|g(x)|

for any arbitrary set H and g : R → H.
We use

∆g(x) := g(x) − g(x − 1) , x ∈ N ,

to denote the absolute increase of g : N0 → R. In addition, for all g : N0 →
R\{0}, we use

Γg(x) :=
g(x)

g(x − 1)
, x ∈ N ,

to denote the relative increase of g.
A function g : Z → (0,∞) is called log-convex, if ln g is convex, or, equiv-

alently, if

g(x + 1)2 ≤ g(x + 2)g(x)

holds for all x ∈ Z. Rearranging this inequality provides another characteri-
zation of log-convexity, namely that Γg(x) is increasing in x.

Log-convex functions have the nice property of being closed under both
addition and multiplication (Roberts and Varberg, 1973, p. 19). The fact
that log-convex functions are closed under multiplication is an immediate
consequence of the characterization g(x+1)2 ≤ g(x+2)g(x). To verify closure
under addition, note that



(g1(x + 1) + g2(x + 1))2

= g1(x + 1)2 + g2(x + 1)2 + 2g1(x + 1)g2(x + 1)

≤ g1(x)g1(x + 2) + g2(x)g2(x + 2) + 2
√

g1(x)g1(x + 2)g2(x)g2(x + 2)
≤ (g1(x + 2) + g2(x + 2)) (g1(x) + g2(x)) ,

where the first inequality follows from the log-convexity of g1 and g2 and the
second from the binomial theorem.

Finally, we sometimes write

x+ := max{0, x} , x ∈ R ,

to simplify the notation.



2

Markov Decision Processes and the Total
Reward Criterion

In this chapter, we summarize results both on finite and infinite horizon
Markov decision processes (MDPs) in a random environment and with an
absorbing set. Finite horizon models are used in Chap. 5. In addition, they
serve as a starting point for the discussion on sequential utility maximizing
decision problems in Chap. 3. The results on infinite horizon models are ap-
plied in 4. Since discounting is generally not considered in capacity control
models, we focus on the expected total reward criterion.

A comprehensive introduction to Markov decision processes is provided
e.g. by Puterman (1994) or White (1993a). General foundations of stochastic
dynamic programming can be found in Hinderer (1970).

2.1 Finite Horizon Markov Decision Processes

A finite horizon MDP describes a stochastic system that is observed at discrete
times n = 0, . . . , N . If at time n system state xn from the state space X is
observed, a decision-maker chooses an action an among the admissible actions
An(xn). This action results in an immediate one-stage reward rn(xn, an) and a
transition to system state xn+1 at time n+1 with probability pn(xn, an, xn+1).
At time n = N a terminal reward VN (xN ) is gained and the evolution is
stopped.

Thus, a finite horizon MDP consists of a tuple (N, X, An, pn, rn, VN , α)
with

• planning horizon N ∈ N0;
• countable state space X;
• countable action spaces An, where An(x) ⊆ An is the non-empty finite

set of all admissible actions in state x ∈ X at time 0 ≤ n < N , A =⋃
n=0,...,N An; the constraint set is Kn := {(x, a) | x ∈ X, a ∈ An(x)};

• transition laws pn : Kn × X → [0, 1], which represent the probability
pn(x, a, x′) for a transition from state x ∈ X to state x′ ∈ X given
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action a ∈ An(x) at time n ∈ {0, 1, . . . , N − 1} (given x, n, and a,
(pn(x, a, x′), x′ ∈ X) is a counting density on X);

• one-stage reward functions rn : Kn → R, which represent the reward
rn(x, a) for choosing action a in state x at time n, |rn(x, a)| ≤ r̄ for some
r̄ < ∞;

• terminal reward VN : X → R, which represents the reward VN (x) for
ending in state x at time N , |VN (x)| ≤ V̄ for some V̄ < ∞;

• one-stage discount factor 0 < α ≤ 1.

A decision rule specifies the action to be taken by the decision-maker. In
general, this decision rule can be history-dependent and/or randomized. But
due to our assumptions, we can restrict ourselves to deterministic Markovian
decision rules.

Deterministic Markovian decision rules are special decision rules fn : X →
An, which specify the action fn(x) ∈ An(x) to be taken in state x at time
n. We let Fn denote the set of all deterministic Markovian decision rules at
time n. An N -stage deterministic Markovian policy π = (f0, . . . fN−1) ∈ Π =
F0 × · · · ×FN−1 then specifies the decision rule fn ∈ Fn to be used at time n.
Instead of F0 × · · · × FN−1 we write FN for short, if F = F0 = · · · = FN−1.

In this section, we assume that the decision-maker aims at a maximiza-
tion of the total reward R :=

∑N−1
n=0 rn(xn, an) + VN (xN ) (i.e. α = 1). He

can pursue this goal by choosing suitable actions a0, a1, . . . , aN−1 in states
x0, x1, . . . , xN−1, i.e. by choosing a policy π ∈ Π. Note, however, that the
system evolves stochastically. The system states x0, x1, . . . , xN−1, xN are re-
alizations of random variables X0, X1, . . . , XN−1, XN . Thus, the total reward
is random, and we may look at

Rπ :=
N−1∑

n=0

rn(Xn, fn(Xn)) + VN (XN ) ,

the total reward by applying policy π. To compare the performance of different
policies, it is common to take Eπ [Rπ], the expectation of Rπ with respect to
the product measure Pπ on XN+1,

Pπ(X0 = x0, . . . , XN = xN ) =
P (X0 = x0) · p(x0, f0(x0), x1) · . . . · p(xN−1, fN−1(xN−1), xN ) .

In the context of MDPs, the initial state is usually assumed to be fixed
and policies are evaluated by V N

π (x) = Eπ [Rπ | X0 = x], the conditional
expected total reward over the N time periods starting from state x and
following policy π ∈ Π.

We will call a policy π∗ an optimal policy if for all π ∈ Π,

V N
π∗ (x) ≥ V N

π (x), x ∈ X ,

and call
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V N∗(x) = sup
π∈Π

V N
π (x) = max

π∈Π
Eπ [Rπ | X0 = x]

the value function of the MDP.
One can show the following (see e.g. Puterman, 1994, p. 92):

Theorem 2.1. V N∗ ≡ V0 is the unique solution to the optimality equation

Vn(x) = max
a∈An(x)

{

rn(x, a) +
∑

x′∈X

pn(x, a, x′)Vn+1(x′)

}

, (2.1)

which can be obtained for n = N −1, . . . , 0 iteratively, starting with VN . Every
policy π∗ formed by actions a = f∗

n(x), each maximizing the right-hand side
of (2.1), is optimal, i.e. leads to V N∗.

The optimality equation (2.1) is the standard form for representing the
dynamic programming recursion. But consider the following special case,
sometimes called a system with observable disturbances (see e.g. Talluri and
van Ryzin, 2004b, pp. 654–655): At every time period n, n = 0, . . . , N ,
not only the system state x1,n from the state space X1 is observed, but
also some random disturbance x2,n from the countable set X2. The system
states xn = (x1,n, x2,n), n = 0, . . . , N are realizations of random variables
Xn = (X1,n, X2,n). Given the observations x1,n and x2,n, a decision-maker
chooses an action an among the admissible actions An(x1,n, x2,n) defined on
the state space X = X1 × X2. This action results in a (certain) one-stage
reward rn(x1,n, x2,n, an). Given x1,n, x2,n and an, the next system state is
uniquely determined to be x1,n+1 = bn+1(x1,n, x2,n, an) for some given func-
tion bn+1 : X × An → X1. The realization of the random disturbance x2,n+1

is a realization of X2,n+1 with P (X2,n+1 = x2,n+1) = p̂n+1(x2,n+1). At time
n = N a terminal reward VN (x1n, x1n) is gained and the evolution stops.

Applying Theorem (2.1) yields that the maximum expected total reward
V N∗ ≡ V0, is the unique solution of the optimality equation

Vn(x) = max
a∈An(x)





rn(x, a) +

∑

x′
2∈X2

p̂n+1(x′
2)Vn+1(bn+1(x, a), x′

2)





,

with x = (x1, x2), which can be obtained for n = N − 1, . . . , 0 iteratively,
starting with VN .

Introducing the operator

Anv(x1) =
∑

x2∈X2

p̂n(x2)v(x1, x2) (2.2)

for an arbitrary real-valued function v on X, the optimality equation can be
rewritten as

AnVn(x1) =
∑

x2∈X2

p̂n(x2) max
a∈An(x)

{

rn(x, a) + An+1Vn+1(bn+1(x, a))

}

,
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with terminal reward ANVN (x1).
Note that in this way, the original dynamic programming recursion with

state space X1×X2 is transformed to a recursion with state space X1 reducing
the computational complexity. The solution A0V0(x1) can be thought of as
the maximum expected total reward over N time periods starting in x1 before
x2 is observed, whereas V0(x) = V0(x1, x2) is the corresponding value after
the observation x2 was made at time 0.

2.2 Infinite Horizon Markov Decision Processes

An infinite horizon Markov decision process consists of a tuple (X,A, p, r, α)
with

• countable state space X;
• countable action space A, where A(x) ⊆ A is the non-empty finite set

of all admissible actions in state x ∈ X and the constraint set is K :=
{(x, a) | x ∈ X, a ∈ A(x)};

• transition law p : K×X → [0, 1], which represents the probability p(x, a, x′)
for a transition from state x ∈ X to state x′ ∈ X given action a ∈ A(x)
(given x and a, (p(x, a, x′), x′ ∈ X) is a counting density on X);

• one-stage reward function r : K → R, which represents the reward r(x, a)
from choosing action a in state x, |r(x, a)| ≤ r̄ for some r̄ < ∞;

• one-stage discount factor 0 < α ≤ 1.

An MDP with an infinite planning horizon evolves over “infinite time”. As
in the finite horizon version, it describes a stochastic system that is observed
at discrete times n = 0, 1, . . . . If at time n system state xn is observed, the
decision-maker chooses an action an among the admissible actions A(xn). This
action results in a one-stage reward r(xn, an) and in a transition to system
state xn+1 at time n + 1 with probability p(xn, an, xn+1).

Similar to the finite horizon case, let us define a (deterministic Markovian)
decision rule as f : X → A. The set of all decision rules is F , and a policy
π = (f0, f1, . . . ) ∈ Π = F × F × . . . specifies the decision rule fn ∈ F to be
used at each point in time n. Instead of F×F× . . . we write F∞ for short. In
infinite horizon models, stationary policies π = (f, f, . . . ) = f∞ ∈ F∞ assume
a particularly important role.

Denote by (X0, X1, . . .) the state process of the Markov decision process
and by Rπ the total reward when applying policy π. Again, the initial state
is usually assumed to be fixed and a policy π ∈ Π is usually evaluated by

Vπ(x) = Eπ [Rπ | X0 = x] = Eπ

[ ∞∑

n=0

rn(Xn, fn(Xn)) | X0 = x

]

,

the conditional expected total reward with α = 1, starting from state x fol-
lowing policy π ∈ Π with respect to the product measure Pπ on X∞,
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Pπ(X0 = x0, . . . , Xn = xn) =
P (X0 = x0) · p(x0, f0(x0), x1) · · · · · p(xn−1, f(xn−1), xn) .

It seems straightforward to call a policy π∗ an optimal policy if for all
π ∈ Π,

Vπ∗(x) ≥ Vπ(x), x ∈ X .

Yet the limit Vπ might not exist due to the infinite planning horizon.
Schäl (1975) states two rather general conditions for convergence of this

infinite sum, conditions (GA) and (C). Since these conditions are quite tech-
nical and are not considered in the sequel, we will not discuss them here. We
only point out that given these conditions, the total expected reward,

V ∗(x) = max
π∈Π

Eπ [Rπ | X0 = x] ,

exists and is the unique solution of

V ∗(x) = max
a∈An(x)

{

r(x, a) +
∑

x′∈X

p(x, a, x′)V ∗(x′)

}

, (2.3)

for all x ∈ X.
To simplify notation, we introduce operators L and U as

Lv(x, a) = r(x, a) +
∑

x′∈X

p(x, a, x′)v(x′) (2.4)

and

Uv(x) = max
a∈A(x)

Lv(x, a) . (2.5)

Using these operators, the optimality equation (2.3) can be stated as

V = UV .

2.2.1 Markov Decision Processes with an Absorbing Set

An MDP with an absorbing set is an infinite horizon MDP (X, A, p, r, α) with a
structured state space X. The state space X contains an absorbing set J0 ⊂ X,
i.e.

∑
x′∈J0

p(x, a, x′) = 1, with r(x, a) = 0 for x ∈ J0, a ∈ A(x). That means
that if the process runs into an absorbing set, it will stay there forever. Having
entered the absorbing set, the rewards are equal to zero. For a general dis-
cussion of MDPs with absorbing set, see e.g. Hinderer and Waldmann (2003,
2005), or Waldmann (2006).

Note that J0 may be empty and need not be unique. In this section,
however, we only consider J0 
= ∅ and assume J0 to be arbitrary but fixed.
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The set J := X− J0 of transient states is called the essential state space. It is
called essential, because the behavior of the process is only of interest up to
the entrance time into J0 and not within J0.

The fact that the MDP cannot leave any state within J0 can be used to
find conditions that ensure the convergence of Vπ(x) for x ∈ J. Let τ :=
inf{n ∈ N|Xn ∈ J0} ≤ ∞ denote the entrance time into the absorbing set J0,
i.e. the first time the state process (Xn) is in J0, having started in some state
in J. Note that using τ , the total reward Rπ is

Vπ(x) = E

[
τ−1∑

n=0

r(Xn, f(Xn))|X0 = x

]

.

Given a policy π ∈ F∞ and an initial state x ∈ J, the distribution of τ can be
obtained by evaluating Pπ(τ > n|X0 = x), n ∈ N0 recursively.

In order to find an upper bound for Pπ(τ > n|X0 = x), define an operator
H on B, the set of all bounded functions on J (with respect to the supremum
norm), by

Hv(x) := max
a∈A(x)

∑

x′∈J

p(x, a, x′)v(x′) ,

for x ∈ J and v ∈ B. Let Hn+1v = H(Hnv) and H0v = 1, v ∈ B, n ∈ N0.
Then,

Hn1(x) = sup
π∈F∞

Pπ(τ > n|X0 = x) ,

with 1 denoting a vector with entries 1. Obviously, ‖Hn1‖ is an upper bound
for the probability that the process has not entered the absorbing set J0 at
time n.

Hinderer and Waldmann (2005) show that the following equivalent as-
sumptions ensure the existence of the total expected reward in an infinite
horizon MDP with α = 1:

(AS) ‖Hn′
1‖ < 1 for some n′ ∈ N.

(AS’) ‖Hn1‖ → 0 as n → ∞.

They prove the following theorem.

Theorem 2.2. Given (AS) or (AS’),

(i) The expected total reward

V ∗(x) = max
π∈Π

Eπ

[ ∞∑

n=0

r(Xn, f(Xn)) | X0 = x

]

,

is the unique bounded solution of the optimality equation V = UV ,

V ∗(x) = max
a∈A(x)

{

r(x, a) +
∑

x′∈X

p(x, a, x′)V ∗(x′)

}

, x ∈ J .
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(ii) A decision rule f is optimal if and only if f is a maximizer of LV (i.e.
UV (x) = LV (x, f(x)) for all x ∈ J). Thus, there exists an optimal sta-
tionary (deterministic Markovian) policy f∞∗.

(iii) Value iteration works, i.e. for all v0 ∈ B it holds that vn := Uvn−1,
n ∈ N, converges in norm to V (i.e. ‖V − vn‖ → 0 as n → ∞).

Given the assumption that the upper bound for the probability that the
process has not entered the absorbing set J0 at time n, ‖Hn1‖, converges to
zero as n tends to infinity, value iteration can be used for finding the optimal
policy and the associated expected total reward. This is equivalent to assuming
that there is some n′ ∈ N for which it is ensured that this upper bound of
Pπ(τ > n′|X0 = x) is smaller than 1.

2.2.2 Markov Decision Processes in a Random Environment

An MDP in a random environment is another special infinite horizon MDP. It
is assumed that there is some external process (an environment) that can be
described by a Markov chain {En, n ∈ N0} with state space E and transition
probabilities p̃ee′ , e, e′ ∈ E. The state of the environment has some impact on
the system behavior. For simplicity, let us assume it only has an impact on the
transition probabilities and one-stage rewards. The evolution of the system,
however, has no influence on the environment. In particular, the environment
cannot be controlled by the decision-maker’s actions. Yet the decision-maker
can observe the state of the environment and knows its transition matrix
P̃ = (p̃ee′).

In this setting, the decision-maker observes the system state sn and en-
vironmental state en at time n. Based on this information, he chooses an
action an among the admissible actions A(sn, en). This action results in an
immediate reward r(sn, en, an) and in a transition to state sn+1 at time n+1
with probability p(sn, en, an, sn+1). Independently from this action and the
state of the system, the environmental state changes to en+1 with probability
p̃(en, en+1).

Thus, an MDP in a random environment (S×E,A, p̃, p, r, α) consists of a

• countable extended state space X = S × E, which consists of the state
space of the system S and of the environment E;

• countable action space A, where A(s, e) ⊆ A is the non-empty finite set of
all admissible actions in system state s ∈ S and environmental state e ∈ E;
the constraint set is defined as K := {(s, e, a) | (s, e) ∈ X, a ∈ A(s, e)};

• transition law of the environment p̃ : E × E → [0, 1], which represents
the probability p̃(e, e′) for a transition from environmental state e ∈ E to
e′ ∈ E (for fixed e, (p̃(e, e′), e′ ∈ E) is a counting density on E);

• transition law of the system p : K × S → [0, 1], which represents the
probability p(s, e, a, s′) for a transition from state s ∈ S to state s′ ∈ S
given environmental state e ∈ E and action a ∈ A(s, e) (given s, e and a,
(p(s, e, a, s′), s′ ∈ S) is a counting density on S);
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• bounded one-stage reward function r : K → R, which represents the reward
r(s, e, a), |r(s, e, a)| ≤ r̄ for some r̄ < ∞, from choosing action a in system
state s given the environment e;

• one-stage discount factor 0 < α ≤ 1.

For a general discussion of MDPs in a random environment, see Waldmann
(1981); for extensions and applications, see e.g. Waldmann (1983, 1984), Helm
and Waldmann (1984), or Hinderer and Waldmann (2001).

By introducing the extended state x = (s, e) ∈ X, an MDP in a random
environment can be seen as a special infinite horizon MDP with state space
X, action space A, transition law p̃(e, e′)p(s, e, a, s′) from x = (s, e) ∈ X to
x′ = (s′, e′) ∈ X, one-stage reward r(x) = r(s, e), and discount factor α.
Therefore, the total expected reward (α = 1) following policy π given state
(s, e),

Vπ(s, e) = Eπ

[ ∞∑

n=0

r(Sn, En, An) | S0 = s,E0 = e

]

,

is well defined under the same conditions as in the general infinite horizon
case, and the optimality equation (2.3) can be restated as

V ∗(s, e) = max
a∈An(s,e)

{

r(s, e, a) +
∑

e′∈E

∑

s′∈S

p̃(e, e′)p(s, e, a, s′)V ∗(s′, e′)

}

.

Of course, MDPs in a random environment can also have an absorbing
set. Let us assume that the environment E contains an absorbing set J̃0 ⊂ E,
i.e.

∑
e′∈J̃0

p̃(e, e′) = 1, with r(e, s, a) = 0 for e ∈ J̃0, s ∈ S, a ∈ A(s, e). That
means that if the environmental process runs into an absorbing set, it will
stay there forever, and the rewards that can be gained from the system are
equal to zero. We call the set J̃ := E− J̃0 of transient states the essential state
space of the environment.

Denote by P̃J̃ the substochastic matrix resulting from P̃ when the rows
and columns of all environmental states belonging to J̃0 are dropped. Then
the nth power of this matrix, P̃n

J̃
= (p̃(n)

J̃
(e, e′)), multiplied by the vector 1,

can be thought of as the probability that the environmental process has not
yet entered the absorbing set J̃0 at time n starting in J̃.

In the notation of MDPs with an absorbing set, J0 = S×J̃0 and J = S×J̃.
The assumption

(ASE) ‖P̃n
J̃

1‖ < 1 for some n ∈ N

then implies (AS), because given (ASE)
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‖Hn1‖ = ‖ max
π∈F∞

∑

(s′,e′)∈J

Pπ (Sn = s′, En = e′ | S0 = s,E0 = e) ‖

= ‖ max
π∈F∞

∑

s′∈S

∑

e′∈J̃

p̃
(n)

J̃
(e, e′)Pπ (Sn = s′ | S0 = s,E0 = e) ‖

< max
π∈F∞

∑

s′∈S

Pπ

(
Sn = s′ | S0 ∈ S, E0 ∈ J̃

)
= 1 .

Note that as a special case, a finite horizon MDP can also be seen as an
MDP in a random environment with an absorbing set, where the environ-
ment corresponds to a time counter with state space E = {0, 1, . . . , N, N + 1}
and transition probabilities p̃ee′ = 1 for e′ = e + 1, e ≤ N , p̃N+1,N+1 = 1,
p̃ee′ = 0 otherwise. The absorbing set is J̃0 = {N + 1}. The random distur-
bances mentioned in the finite horizon setting can of course also be seen as
a special random environment. Note, however, that the concept of a random
environment E is much more general than that of random disturbances.
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Expected Utility Theory for Sequential
Decision Making

This chapter deals with decision problems under risk as defined in Knight
(1921), i.e. the problem of choosing from a number of options, each of which
could give rise to more than one possible outcome with different probabili-
ties. As in Chap. 2, however, the main intention is to clarify notation and to
state results that will be used in the following chapters, not to give a complete
overview on expected utility theory. For a general introduction and further ref-
erences, see e.g. the textbooks of Kreps (1988), French (1986), Gollier (2001),
or Bamberg and Coenenberg (2006).

We will start with a brief introduction to expected utility theory in the
context of static decision problems to highlight the general idea of expected
utility and to provide a formal understanding of the term risk-aversion. We
will thereby focus on the measure of absolute risk-aversion, because it can
be easily used to compare the degree of risk-aversion for different decision-
makers. This will enable us to analyze the impact of increasing risk-aversion
in subsequent chapters. In addition, constant absolute risk-aversion – the case
of an exponential utility function – turns out to simplify the analysis of se-
quential decision problems substantially. Special types of utility functions used
in examples in Chaps. 6 to 8 are introduced.

The second part of this chapter deals with straightforward extensions of
static decision models to problems with sequential decision making (given
a finite planning horizon). Two special structures of utility functions are
discussed, an additive time-separable and an atemporal utility function. Al-
though the maximization of expected atemporal utility generally requires an
enlarged state space, we will see that this is not the case given an exponential
(or linear) utility function.

3.1 Static Decision Problems

In this section, we consider one-shot static decision problems under risk.
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The different decision options are commonly represented by simple lotter-
ies, where a lottery connects two types of information. The first is the set of all
possible consequences, called outcomes O. An outcome��m = (�1m, �2m, . . . , �km) ∈
O is a set of values for all variables that affect the well-being of a decision-
maker. For simplicity, we assume that both the number of these variables k
and the number of possible outcomes is finite, so O = {��1, . . . ,��mmax}. Given
this invariant set of potential outcomes, a lottery can be defined solely by its
second ingredient, the vector of probabilities �p = (p1, . . . , pmmax) ∈ L. This
vector can be interpreted as a probability of p1 for the outcome ��1, a proba-
bility of p2 for the outcome��2, . . ., and a probability of pmmax for the outcome
��mmax . The set of all simple lotteries is given by L = {�p = (p1, p2, . . . , pmmax) ∈
R

mmax | ∑mmax
m=1 pm = 1, pm ≥ 0 for all m = 1, . . . , mmax}.

We assume that probabilities and outcomes are all that matter to the
decision-maker, the randomizing devices (e.g. whether a die is thrown or a
coin is flipped) and their order are inconsequential to him. Every lottery �p ∈ L

can therefore be represented by a discrete random variable �O with values in
O. The probabilities P ( �O =��m) equal pm for all m = 1, . . . , mmax.

The decision-maker is assumed to have a rational preference relation 
over the set of lotteries L with an expected utility representation, i.e. there
exists a function u : O → R on the set of outcomes such that for any two
lotteries �p1 = (p1

1, . . . , p
1
mmax

) and �p2 = (p2
1, . . . , p

2
mmax

), we have

�p1  �p2
mmax∑

m=1

p1
mu(��m) = E[u

(
�O1
)
] ≥ E[u

(
�O2
)
] =

mmax∑

m=1

p2
mu(��m) . (3.1)

This assumption was first proposed in Bernoulli (1738) and forms the basis
of expected utility theory. Von Neumann and Morgenstern (1947) show that
an expected utility representation follows from two rather appealing axioms
on the decision-maker’s rational preference relation, namely the continuity
and the independence axioms. Savage (1954) provides an axiomatic basis to
address with subjective probabilities and utility values within the expected
utility framework. Generalizations to non-simple lotteries can be found e.g. in
Fishburn (1970).

Note that if u1 represents the preference relation  in the sense of (3.1),
then a function u2 : O → R also represents  in this sense if and only if there
exist real numbers β1 > 0 and β2 such that u2(·) = β1u

1(·) + β2.
Experiments frequently question the existence of an expected utility repre-

sentation of human decision making, the most prominent example of which is
probably given in Allais (1953). Therefore, the search for alternative models of
decision making has been a field of research in economics for more than twenty
years. For an overview of these alternative models, which are often referred to
as “non-expected utility theories”, see e.g. Machina (1987), Starmer (2000),
or Schmidt (2004). From a normative point of view, however, the existence of
an expected utility representation in static decision problems can be justified
(Gollier, 2001, p. 14, or Eisenführ and Weber, 2003, pp. 212–217).
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In the following subsections, we only consider lotteries with (random) one-
dimensional monetary outcome, i.e. k = 1, the decision-maker’s final wealth
W = �O ∈ O = {w1, . . . , wmmax} ⊆ R. Consequently, we assume the utility

function u : O → R to be increasing.

3.1.1 The Concept of Risk-Aversion

Decision-makers might differ in their attitude towards risk. Within the theory
of expected utility, different attitudes towards risk can be expressed by the
shape of the utility function.

A Characterization of Risk-Aversion

An expected utility maximizing decision-maker with utility function u is called
risk-averse if he prefers the expected outcome of a non-degenerate lottery to
the lottery itself. Representing the lottery by the random variable W with
expectation E[W ], this is equivalent to

u (E[W ]) ≥ E [u(W )] for all W ∈ O . (3.2)

Jensen’s inequality yields that a decision-maker with utility function u is risk-
averse if and only if the utility function u is concave. In the case of equality
in (3.2), he is called risk-neutral. This holds for linear utility functions. Given
the inverse inequality, he is a risk-lover, which corresponds to a convex utility
function.

Now suppose, the decision-maker may choose between playing the lottery
with random outcome W or receiving a certain amount of money wcer. The
certainty equivalent of a lottery is the value of wcer that makes the decision-
maker indifferent between the two options. Thus, it fulfills

E [u(W )] = u(wcer) .

Consequently, the certainty equivalent can be defined as

wcer = u−1 (E [u(W )])

if the utility function u is invertible. Choosing the lottery with the highest
expected utility corresponds to choosing the lottery with the highest certainty
equivalent.

If we assume that the decision-maker is risk-averse, he prefers the expected
outcome of a lottery to playing the lottery. In other words,

u [E(W )] ≥ E [u(W )] = u(wcer) ,

using (3.2). Consequently, wcer ≤ E[W ] owing to the assumed monotonicity
of u.
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Comparative Risk-Aversion

Given a continuous utility function u, a common measure for risk-aversion is
the Arrow-Pratt coefficient of absolute risk-aversion given wealth w,

γ(w) = −u′′(w)
u′(w)

. (3.3)

This is basically a measure of the concavity, −u′′(w), normalized by the slope
u′(w) in order to make it invariant towards (equivalent) linear transforma-
tions, which was introduced by Pratt (1964) and Arrow (1965).

When comparing the preferences of two decision-makers with utility func-
tions u1 and u2, decision-maker 1 is more risk-averse than decision-maker 2
in the sense of Pratt (1964) if for their corresponding coefficients of absolute
risk-aversion γ1(w) ≥ γ2(w) holds for all w ∈ R. This is equivalent to as-
suming that u1(w) = g(u2(w)) for all w ∈ R for some concave function g. In
this case, the certainty equivalent of decision-maker 1 is not higher than the
certainty equivalent of decision-maker 2 for all lotteries.

3.1.2 Special Utility Functions

As mentioned before, we only consider one-dimensional monetary outcomes.
From (3.1), we know that decision-makers with linear utility functions max-
imize expected value. They are risk-neutral. Many other types of monotone
increasing utility functions on wealth are discussed in the literature. In the
following, we briefly introduce a utility function with a real-valued aspiration
level as well as the logarithmic and exponential utility functions. In particu-
lar, we turn our attention to the exponential utility function and those of its
properties that will be needed in the sequel.

Utility Functions with an Aspiration Level

A rather extreme utility function assigns a utility of 1 to outcomes higher
than or equal to some aspiration level β ∈ R and 0 otherwise,

u(w) =

{
1 w ≥ β

0 w < β .

Given this structure, maximizing expected utility is equivalent to maximizing
the probability of an outcome of β or more. As an example of a decision-maker
with such a utility function, consider a product manager who gets a bonus if
the outcome is at least β. If the target is not reached, he receives nothing.

Note that this utility function is not differentiable. Therefore, the coef-
ficient of absolute risk-aversion is not defined. Yet Müller (2000) shows by
a limiting argument that the coefficient of absolute risk-aversion increases
infinitely in β. A decision-maker with such a utility function is infinitely risk-
loving for w < β and infinitely risk-averse for w ≥ β.
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The Logarithmic Utility Function

The logarithmic utility function

u(w) = log(w) , w > 0 ,

is strictly increasing and concave. A decision-maker with this utility function
has decreasing absolute risk-aversion in w. The product wγ(w), however, is
constant.

Given a decision-maker with logarithmic utility, his certainty equivalent
of the lottery is multiplied by a constant if all outcomes of a lottery are
multiplied by the same amount. Thus, a multiplication of all possible outcomes
by the same factor does not change his preferences between lotteries. Owing to
this analytical tractability, the logarithmic utility function is frequently used,
mainly in financial optimization problems.

The Exponential Utility Function

A decision-maker might be willing to accept the so-called “delta property”
which stipulates that if an amount delta is added to all outcomes of a lottery,
then he will want his certainty equivalent for the lottery to increase by the
same amount. Accepting this delta property implies that the preferences to-
wards lotteries are independent of the decision-maker’s current wealth. One
can show that the utility function of someone accepting the delta property
must be either linear or exponential (Keeney, 1982, p. 90). The linear case
implies risk-neutrality. In the case of risk-aversion, the exponential utility
function is given by

uγ(w) = − exp(−γw) , γ > 0 . (3.4)

The shape of uγ is illustrated in Fig. 3.1. A decision-maker with this utility
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Fig. 3.1. Exponential utility function for different values of γ.
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function exhibits a constant coefficient of absolute risk-aversion γ(w) = γ for
all values of w. The exponential utility function is strictly increasing with
inverse utility function

u−1
γ (w) = − 1

γ
ln(−w) .

Its special form implies

uγ(w1 + w2) = − exp(−γ(w1 + w2)) = exp(−γw2)uγ(w1) , (3.5)

i.e. if the same amount w2 is added to all outcomes of a lottery, the utilities
are multiplied by exp(−γw2).

An expected utility maximizing decision-maker with an exponential util-
ity function and small γ evaluates lotteries in terms of a trade-off be-
tween expectation and variance. Using exp(x) = 1 + x + x2 + O(x3) and
ln(1 + x) = x − x2/2 + O(x3) for sufficiently small x, a Taylor expansion for
the certainty equivalent of expected exponential utility yields

− 1
γ

ln (E[exp(−γW )]) = − 1
γ

ln
(
1 − γE[W ] + γ2

E[W 2] + O(γ3)
)

= E[W ] − γ

2
Var(W ) + O(γ2) , (3.6)

with Var(W ) denoting the variance of W . So for γ → 0, these preferences ap-
proximate the risk-neutral objective (see Coraluppi, 1997, p. 24, or Coraluppi
and Marcus, 1999). For γ → ∞, the maximization of expected exponential
utility reduces to a worst-case maximization as proven by Coraluppi (1997,
p. 43) and Coraluppi and Marcus (1999) using a modified version of the
Varadhan-Laplace lemma.

Exponential utility functions are the most widely used non-linear utility
functions (Corner and Corner, 1985). According to Howard (1988, p. 689),
they “satisfactorily treat a wide range of individual and corporate risk pref-
erences.” Furthermore, Kirkwood (2004) shows that in most cases, an appro-
priately chosen exponential utility function is a very good approximation for
general utility functions.

Another advantage of the exponential utility function is that the prefer-
ences of such a decision-maker are completely determined by the value γ.
This makes it easy to apply. For individual decision-makers simple prefer-
ence comparisons between a lottery and some sure gain can be used to find
γ; see e.g. Eisenführ and Weber (2003, p. 180). For business decision-makers
Kirkwood (2004) states that values of 0.1 times the decision-maker’s asset
available within the planning horizon, the “planning asset position”, seem to
be realistic estimates for 1/γ. A small study with only three companies in
Howard (1988) indicates that a first estimate for 1/γ might be obtained by
financial measures. According to this study, the values of 1/γ, given by the
decision-maker in charge, equal roughly 6 percent of net sales, one sixth of
equity, or 125 percent of net income.
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3.2 Sequential Decision Problems

Finite horizon sequential (or dynamic) decision problems deal with a sequence
of choices that have to be made over time. To be more precise, a stochastic
system is observed at discrete times n = N, . . . , 0. (Note that we count time
backwards.) If at time n system state xn ∈ X is observed, a decision-maker
has to opt for one of the available actions (choices) an ∈ An(xn). This action
results in an immediate one-stage reward rn(xn, an) and a transition to system
state xn−1 at time n − 1 with probability pn(xn, an, xn−1). At time n = 0 a
reward V0(x0) is gained and the evolution is stopped.

In contrast to static decision problems, dynamic problems evolve over time.
The decision-maker is faced with new information before he has to make
another choice. We introduced MDPs in Chap. 2 to describe exactly this kind
of decision process. In Chap. 2, however, we only considered the maximization
of total expected rewards. Now we turn to the more general problem of finding
the policy that is most preferred by the decision-maker. This might simplify
to the maximization of total expected rewards (if the decision-maker is risk-
neutral and does not care about when the reward is realized), but in general,
the most preferred choices might be different.

The standard manner of handling dynamic choice problems over reward
streams is to represent the decision-maker’s preferences by a utility function
on the vector of one-stage rewards�� = (�N , . . . , �1, �0) ∈ O with �n = rn(xn, an)
for n ≥ 1 and �0 = V0(x0). The sequence of choices at times N, . . . , 1 induces
a probability measure on the vector of rewards. A policy, i.e. a contingent
plan for making choices, is then evaluated by the induced expected utility.
This means that the sequential decision problem is reduced to a static choice
of a policy. This view on sequential decision problems is also used in roll-
back procedures as introduced in Eisenführ and Weber (2003, pp. 240–242)
or von Nitzsch (2002, pp. 214–216). General decision problems of this kind
are analyzed in Kreps (1977a), (1977b), (1978), Schäl (1981), and Fainberg
(1982).

There are two major objections to the above-mentioned approach (see e.g.
Zacharias, 1993). First, the timing of the resolution of uncertainty is ignored.
This aspect might be important from a normative point of view if other deci-
sions must be made prior to the latest resolution of uncertainty possible. Mod-
els that take this temporal aspect into account were first proposed by Kreps
and Porteus (1978) and Selden (1978). Kreps and Porteus (1979) discuss their
model within the context of dynamic programming. A special parametrization
was used in Epstein and Zin (1989) and Weil (1990). See Gollier (2001, Chap.
20) or Danthine and Donaldson (2002, Sect. 2.7.1) for an introduction.

A second objection arises if the decision-maker has to decide on how to con-
sume the reward stream before uncertainty is resolved and the utility function
is given in terms of the outcomes of these consumption decisions. Even if the
preferences over consumption have an expected utility representation, there
will generally be no expected utility representation capable of summarizing
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the induced preferences on the reward stream. This observation dates back
to Markowitz (1959, Chap. 11), Mossin (1969), and Spence and Zeckhauser
(1972). An introductory example is given in Kreps (1988, pp. 171–175). Smith
(1998) presents a decision analysis approach that can be applied to reward
streams directly when the decision-maker may borrow and lend to spread
consumption optimally over time.

For simplicity, we assume that within the planning horizon considered,
there are no decisions on consumption that depend on the outcome of the
reward decision problem. In other words, the decision-maker does not stand
to gain extra value from either early or late resolution of uncertainty. In par-
ticular, we assume that the decision-maker’s preferences on different reward
streams�� ∈ O = R

N+1 have an expected utility representation u : O → R.
Still, general utility functions over time streams u : O → R, as introduced

above, raise several difficulties in optimization problems. The marginal utility
of reward in period n might be any function of past and future rewards. Thus,
the use of computational procedures such as backward induction is difficult.

To make the analysis more tractable, we only consider two special struc-
tures of u, additive time-separable utility functions and atemporal utility func-
tions. The first structure corresponds to the standard assumption for dealing
with dynamic utility maximization problems over time. The second approach
ignores the time aspect when evaluating reward streams. Both structures lead
to simple representations composed of one-dimensional increasing utility func-
tions un : R → R.

To avoid technicalities, we impose the same restrictive assumptions on the
state space, action space, one-stage reward functions, transition probabilities,
and terminal reward as in the discussion on finite horizon MDPs in Sect. 2.1.

3.2.1 Additive Time-Separable Utility Functions

In his definition of Markov decision processes, Rust (1996) explicitly assumes
that the decision-maker has a utility function that is additively separable,
since other structures are “computationally intractable for solving all but the
smallest problems” (Rust, 1996, p. 630).

A utility function u is additive time-separable if there exist N +1 functions
un : O → R, n = 0, . . . , N , such that

u(��) =
N∑

n=0

un(�n) . (3.7)

(This property is sometimes also referred to as direct additivity; see e.g. Black-
orby et al., 1998.) Given an additive time-separable utility function, prefer-
ences over lotteries only depend on the marginal probability distributions
of the one-period rewards. In particular, the assumption of additive time-
separability is equivalent to the following preference structure: Given a lottery
with non-zero probabilities for the two outcomes
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��1,1 = (�01,1, . . . , �n, . . . , �N1,1); , ��1,2 = (�01,2, . . . , �N1,2) ,

and a second lottery with non-zero probabilities for the two outcomes

��2,1 = (�02,1, . . . , �n, . . . , �N2,1); , ��2,2 = (�02,2, . . . , �N2,2) ,

the preferences of the decision-maker between these lotteries are independent
of �n. In other words, whatever preference the decision-maker has between the
two lotteries, it must remain the same if the level �n in outcomes��1,1 and��2,1

is changed. For a proof, see Pollak (1967) or Keeney and Raiffa (1976, Sect.
6.5).

Because this structure is particularly simple to deal with analytically, an
additive time-separable utility function is frequently assumed; see e.g. Lipp-
man and McCall (1981, p. 242) or Varian (1992, p. 359). In this case, the
maximization of expected utility in a finite horizon sequential decision prob-
lem corresponds to the solution of a finite horizon MDP as introduced in Sect.
2.1. The system states x ∈ X determine the available choices a ∈ A(x); the
next system state x′ is given by transition probabilities pn(x, x′). The only
difference to expected total reward maximization (with rewards rn(x, a)) is
that one-stage rewards have to be transformed by the utility function to read
un(rn(x, a)). Accordingly, the terminal reward is u0(V0).

Given the notation introduced in Sect. 2.1, we can use the results of The-
orem 2.1 to determine the optimal policy and the maximum expected utility

V add∗(x) = max
π∈FN

Eπ

[
N∑

n=1

un (rn(Xn, fn(Xn))) + u0 (V0(X0)) | XN = x

]

.

In particular, V add∗ ≡ V add
N is the unique solution to the optimality equation

V add
n (x) = max

a∈An(x)

{

un(rn(x, a)) +
∑

x′∈X

pn(x, a, x′)V add
n−1(x

′)

}

, (3.8)

which can be obtained for n = 1, . . . , N iteratively, starting with the termi-
nal reward u0(V0). Every policy πadd∗ formed by actions a = fadd∗

n (x), each
maximizing the right-hand side of (3.8), is add-optimal, i.e. leads to V add∗.

Keep in mind that time is counted backwards and that un is defined on
one-stage rewards �n for n = 0, . . . , N . The latter is why we assume un(�) to
be increasing in � for all n = 0, . . . , N .

Without loss of generality, un(0) = 0 for all n. This assumption is not
restrictive, since linear transformations of the utility function have no impact
on the represented preferences. Stated differently, if all one-stage rewards are
transformed from un(rn(x, a)) to β1un(rn(x, a))+β2,n, for β1 > 0 and β2,n ∈ R

for all n, i.e. the utility function u is linearly transformed to ũ = β1u +∑N
n=0 β2,n, the optimal policy does not change.
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Varying the shape of the one-period utility functions un has an effect on the
resistance to intertemporal substitution. For example, take concave un = u0

for all n = 1, . . . , N . Then the decision-maker has a desire for a smooth reward
stream over time and he would prefer an equal reward within each period to
any other reward stream with the same total value. Thus, a reward stream of
e.g. ��1 = (50, 50) would be preferred to ��2 = (0, 100). Given a convex utility
function u, a smooth reward stream would be the worst-case scenario. This
property is discussed extensively in the literature on consumption and saving;
see e.g. Gollier (2001, Sect. 15.3).

As mentioned before, concave one-period utility functions also result in
risk-averse behavior within each period. In other words, the concavity of u
induces intertemporal preferences and risk-aversion at the same time. Any
degree of risk-aversion necessarily involves an intertemporal substitution effect
as well.

Clearly, a risk-neutral decision-maker with un(�) = � for all � ∈ R and
n = 0, . . . , N maximizes total reward as discussed in Sect. 2.1.

3.2.2 General Atemporal Utility Functions

If either the time between two decisions is negligible and the planning horizon
is short or the monetary value of the whole reward stream is paid at the end of
the planning horizon, it is straightforward to assume that the decision-maker
is indifferent between reward streams of the same sum

w =
N∑

n=0

�n .

This corresponds to an atemporal structure of the decision-maker’s utility
function,

u(��) = u0(
N∑

n=0

�n) = u0(w) , (3.9)

if the initial wealth is 0. As before, we assume u0(w) to be increasing in w.
For general utility function u0, this objective is non-separable, since the

utility of one-stage rewards depends on the rewards realized in all periods.
Müller (2000) and Hall et al. (1979) use such a utility function in an optimal
stopping problem. For a state-of-the-art review of MDPs in the context of
expected atemporal utility maximization, see Liu (2005).

Generally, sequential decision problems that aim at a maximization of
expected atemporal utility can be solved by a Markov decision process if the
state space is enlarged by another variable w, the accumulated rewards up to
the current period; see White (1987). To be more precise, let X denote the
original state space and W the countable set of all possible accumulated wealth
levels within the planning horizon,

∑n
n′=0 �n

′
, 0 ≤ n ≤ N . The maximization
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of expected atemporal utility in a finite horizon sequential decision problem
will then correspond to the solution of a finite horizon MDP as introduced in
Sect. 2.1 with state space X × W.

The system state x and the wealth state w form the state (x, w) ∈ X×W.
The available actions are a ∈ A(x). The next state (x′, w+rn(x, a)) is given by
the transition probabilities pn(x, x′); other system states cannot be reached.
There are no one-stage rewards. V0 is added to the wealth at the end of
the planning horizon. This value is then transformed by the decision-maker’s
utility function to yield the terminal reward V atmp

0 (x, w) = u0(w + V0(x)).
Again, time is counted backwards.

In line with the notation of Chap. 2, (xN , wN ), (xN−1, wN−1), . . . , (x0, w0)
denote the realizations of the random variables (XN , WN ), (XN−1,WN−1),
. . . , (X0,W0), and we write

Rπ := WN +
N∑

n=1

rn(Xn, fn(Xn,Wn)) + V0(X0) = W0 + V0(X0)

for the total reward by applying policy π.
Due to the finite planning horizon, we can use the results of Theorem

2.1 to determine the optimal policy and the maximum expected utility given
initial state (c, w),

V atmp∗(x,w) = max
π∈Π

Eπ [u0 (Rπ) | (XN ,WN ) = (x,w)] .

In particular, V atmp∗ ≡ V atmp
N is the unique solution to the optimality equa-

tion

V atmp
n (x,w) = max

a∈An(x)

{
∑

x′∈X

pn(x, a, x′)V atmp
n−1 (x′, w + rn(x, a))

}

, (3.10)

which can be obtained for n = 1, . . . , N iteratively, starting with the terminal
reward V atmp

0 (x,w) = u0(w + V0(x)). Every policy πatmp∗ formed by actions
a = fatmp∗

n (x,w), each maximizing the right-hand side of (3.10), is atmp-
optimal, i.e. leads to V atmp∗.

This approach is rarely used for general utility functions, presumably be-
cause of the enlarged state space. Exceptions are e.g. Hall et al. (1979) and
Kerr (1999). Yet for the special case of a utility function with an aspiration
level, this approach is well-known as the target-level criterion in Markov deci-
sion processes; see e.g. White (1993b), Bouakiz and Kebir (1995), Yu (1998),
Wu and Lin (1999), Ohtsubo and Toyonaga (2002), and Waldmann (2006).

Note that if the one-stage rewards are not uniquely determined by the
current state and action, the maximization of Eπ [u0(W0 + V0(X0))] for given
XN and WN can be achieved by the calculation of

V atmp
n (x,w) = max

a∈An(x)

{
∑

x′∈X

pn(x,w, a, x′, w′)V atmp
n−1 (x′, w′)

}

, (3.11)
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with terminal rewards V atmp
0 (x, w) = u0(w + V0(x)). We did not pursue this

general approach in (3.10) in order to highlight the structural difference to
the additive time-separable approach and to stick to the sequential deci-
sion problem stated above. However, we will need this flexibility in Chap.
8. Equation (3.10) forms a special case with pn(x,w, a, x′, w′) = pn(x, a, x′)
for w′ = w + rn(x, a) and pn(x,w, a, x′, w′) = 0 else.

Again, a risk-neutral decision-maker with u0(w) = w for all w ∈ R results
in the total reward criterion discussed in Sect. 2.1. In this case, the accumu-
lated wealth need not be part of the state space. This can be seen easily by
induction on n. Starting with V atmp

0 (x,w) = V0(x) + w, one can go through
(3.10) iteratively for n = 1, . . . , N and state the optimality equation as

V atmp
n (x,w) = max

a∈An(x)

{
∑

x′∈X

pn(x, a, x′)V atmp
n−1 (x′, w + rn(x, a))

}

= max
a∈An(x)

{

rn(x, a) +
∑

x′∈X

pn(x, a, x′)V atmp
n−1 (x′, w)

}

= max
a∈An(x)

{

w + rn(x, a) +
∑

x′∈X

pn(x, a, x′)Vn−1(x′)

}

.

Clearly, the added variable w is superfluous for the maximization. The optimal
actions are the same as the ones obtained by (2.1).

3.2.3 Atemporal Exponential Utility Functions

We have just seen that for a risk-neutral decision-maker with atemporal
expected utility representation and u0(w) = w for all w ∈ R, the gen-
eral optimality equation (3.10) can be reduced to a form in which the ac-
cumulated wealth can be discarded in the state space. This holds because
u0(w1 + w2) = u0(w1) + u0(w2) is trivially true for all linear utility functions
with u0(0) = 0, independent of the values w1 and w2.

As mentioned before, the only other utility function that evaluates different
alternatives independent of the decision-maker’s current wealth is the expo-
nential utility function uγ(w) = − exp(−γw) for all w ∈ R with constant ab-
solute risk-aversion of γ. Because of its multiplicative structure, given in (3.4),
we can show the following. Starting with V atmp

0 (x,w) = exp(−γw)uγ(V0(x))
and

V atmp
1 (x,w) = max

a∈An(x)

{
∑

x′∈X

p1(x, a, x′)V atmp
0 (x′, w + r1(x, a))

}

= max
a∈An(x)

{
∑

x′∈X

p1(x, a, x′) exp(−γr1(x, a))V atmp
0 (x′, w)

}

,
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one can go through (3.10) iteratively for n = 2, . . . , N and state the optimality
equation as

V atmp
n (x,w) = max

a∈An(x)

{
∑

x′∈X

pn(x, a, x′) exp(−γrn(x, a))V atmp
n−1 (x′, w)

}

.

Again, the added variable w is superfluous for finding the maximizing actions.
If we write V γ instead of V atmp in order to underline the use of the exponential
utility function, the optimality equation can be stated as

V γ
n (x) = max

a∈An(x)

{

exp(−γrn(x, a))
∑

x′∈X

pn(x, a, x′)V γ
n−1(x

′)

}

. (3.12)

Introducing

V γ∗(x) = max
π∈Π

Eπ [u (Rπ) | XN = x] ∈ [−1, 0) ,

V γ∗ ≡ V γ
N is the unique solution to the optimality equation (3.12). The values

can be obtained for n = 1, . . . , N iteratively, starting with V γ
0 . Every policy

πγ∗ formed by actions a = fγ∗
n (x), each maximizing the right-hand side of

(3.12), is γ-optimal, i.e. leads to V γ∗.
For a direct derivation of (3.12), see Howard and Matheson (1972). MDPs

with an expected atemporal exponential utility maximizing criterion are fre-
quently referred to as risk-sensitive MDPs. In this work, we only consider
(observable) finite horizon problems with this exponential (undiscounted) to-
tal cost criterion. This was introduced by Howard and Matheson (1972) and
discussed e.g. in Rothblum (1984), Coraluppi (1997), and Avila-Godoy et al.
(1997). Yet most of the literature on risk-sensitive control deals with the in-
finite horizon case; see the review article of Marcus et al. (1997) or the Liu’s
dissertation (2005) and the references given there.

In parallel to the work on risk-sensitive Markov decision processes, a body
of research on risk-sensitive control has emerged in the control community.
An overview is given by Whittle (1990). Risk-sensitive control problems have
attracted more recent attention because of the connections to robust control
and differential games; see e.g. Jacobson (1973). They are also discussed in
the context of artificial intelligence; see e.g. Mihatsch and Neuneier (2002)
and Liu (2005).



Part II

Expected Revenue Maximizing Capacity
Control



The following two chapters deal with risk-neutral single-resource capacity
control models under the independent demand assumption.

In Chap. 4, the results on infinite horizon MDPs in a random environment
and with an absorbing set are applied to derive structural properties of an
expected revenue maximizing policy for a capacity control model. This model
incorporates additional external factors that may have some impact on the
request arrivals using the concept of a random environment. In contrast to the
major part of the capacity control literature, we do not assume a deterministic
number of decision periods, but allow for an impact of the evolution of these
external factors on the planning horizon. In particular, we assume that the
state space of the random environment contains an absorbing set; the entrance
time into the absorbing set determines the planning horizon. In addition, we
relax assumption ix) and allow for both cancelations and no-shows as proposed
by Subramanian et al. (1999) and Talluri and van Ryzin (2004b, pp. 155–161).
Consequently, we do not limit the number of reservations one might sell by the
number of available seats; we allow for overbooking. In our analysis, we focus
on assumptions that guarantee an optimal policy of (generalized) protection
level type. After giving some examples of external factors to demonstrate
the great versatility, we close this chapter with two numerical examples to
illustrate our results.

The two textbook models for basic single-resource capacity control – the
dynamic and the static capacity control problem – are summarized in Chap. 5.
These two models can be seen as special cases of the capacity control model in
a random environment. We revise both models by stating the decision models,
giving a short survey on the corresponding literature, discussing structural
results, and presenting a short numerical example. In addition, the popular
EMSR heuristics for the static model are introduced.



4

Capacity Control in a Random Environment

We consider a non-stop flight of an airplane with a capacity of C that is to
depart after a certain time T . There are imax (imax ∈ N) booking classes, i =
1, . . . , imax, with associated fares �i ordered such that 0 < �imax < �imax−1 <
. . . < �1. The number of booking periods in [0;T ] is given by some external
process and might be random. In every booking period n, a customer requests
a certain number of reservations dn ∈ D := {0, 1, . . . , dmax}, dmax ∈ N0, for
seats of booking class in ∈ � := {0, 1, . . . , imax}. (in = 0 with �0 = 0 denotes
an artificial booking class corresponding to no customer request.) Thus, the
(n + 1)st customer request provides information on the number dn ∈ D of
reservations (the customer is interested in) and the booking class in ∈ � with
reward �in

that is offered for each of the dn reservations. It must be decided
how many of these requested reservations should be actually sold.

We allow for cancelations, no-shows, and overbooking. We also allow for
group arrivals, but since it is known that structural properties fail for total ac-
cept/deny decisions (see e.g. Lee and Hersh, 1993, or Brumelle and Walczak,
2003), we assume that these groups can be partially accepted. Furthermore,
we incorporate additional external factors – a concept similar to the state
of the market in the dynamic pricing context of Aviv (2005) and stimulated
by the control of queuing systems in a random environment as studied in
Helm and Waldmann (1984). The entrance time to an absorbing set of the
random environment determines the number of decision periods before depar-
ture. Consequently, this number is random, as in the semi-Markov decision
processes studied by Brumelle and Walczak (2003) and Walczak (2001).

After a rigorous presentation of the decision model in the first section, we
go on to analyze structural results of an optimal policy. The next section cov-
ers possible applications demonstrating the efficacy and scope of our results.
Finally, we illustrate our results in two numerical examples.
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4.1 The Decision Model

We describe the following steps in more detail:

(1) The next state of the external process is determined. This external state
establishes the booking class and the number of requested reservations as
well as flight departure;

(2) The controller decides on the number of requests to accept, i.e. tickets to
sell;

(3) Some customers cancel their reservations; expected overbooking costs are
incurred.

We end this section with a formulation of the underlying Markov decision
process in order to analyze structural results of an optimal policy.

4.1.1 The Environmental Process and the Arrival of Requests

Customer requests (for reservations) are assumed to depend on the realization
of an external process (Zn) with countable state space Z. In particular, let
stage n of the external process (Zn) correspond to the (n + 1)st request for
dn reservations in booking class in. The values dn and in are realizations of
random variables Dn and In, respectively, with joint distribution

ηzn
(dn, in) := P (Dn = dn, In = in | Zn = zn) ,

which may depend on the current external state zn. On the other hand, the
distribution of the future external state Zn+1 may depend on the realized
number dn and the realized booking class in (in addition to zn). The distri-
bution is given by

κzn,dn,in
(zn+1) := P (Zn+1 = zn+1 | Zn = zn, Dn = dn, In = in) .

Note that the random variables Dn, In, and Zn do not depend on the con-
trol of the process (which is in line with the independent demand assumption).
Therefore, we may summarize all information about Dn, In, and Zn in an en-
vironmental process (En) with countable state space E = D×�×Z. (En) can
easily be verified to be a Markov chain with transition matrix P̃ = (p̃(e, e′)),
where, for each environmental state e ∈ E and e′ = (d′, i′, z′) ∈ E, we have
p̃(e, e′) = κe(z′)ηz′(d′, i′).

To realize a finite number of requests (almost surely), we suppose that
there is a non-empty absorbing set J̃0 ⊆ E and that the environmental process
finally runs into an absorbing state e ∈ J̃0. This event indicates the end of
the booking process. Having entered such an absorbing state, neither more
requests, nor cancelations occur; no additional costs or rewards may be gained.
This assumption is in line with our definition of an absorbing set in Sect. 2.2.2.
In the airline setting, absorbing states indicate that the next observable event
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is flight departure. As before, we denote the complement of J̃0 in E by J̃, the
essential state space of the environmental process.

We postulate that there is some time period n0 for which the probability
of having entered J̃0 is positive no matter where the process started.

(A1) There is some n0 ∈ N such that ‖P̃n0

J̃
1‖ < 1.

Remember that P̃J̃ denotes the substochastic matrix resulting from P̃

by dropping the rows and columns of all external states belonging to J̃0 as
introduced in Sect. 2.2.2. P̃n0

J̃
1 can be thought of as the probability that the

external process has not yet entered the absorbing set J̃0 at time n0 starting
in J̃.

Assumption (A1) does not seem to be a problem in capacity control, since
the capacity is assumed to perish after some fixed time T . (A1) holds e.g. if
there is only a finite number of requests (including the artificial requests with
i = 0) within the planning horizon [0, T ].

4.1.2 Accepting Requests

Next, we turn to the booking process in more detail. Fix n ∈ N0. Let cn ∈
C := {x ∈ Z | x ≤ C} denote the number of non-reserved, or remaining, seats
at stage n. Then, given the (n+1)st request of size dn and class in, a decision
has to be made about the number an ∈ A(dn) := {0, . . . , dn} of requests to be
accepted, leading to a reward �inan and a decrease in the number of remaining
seats from cn to cn − an.

To make up for the loss of reservations due to cancelations and no-shows,
cn − an is not bounded below by 0. In this way, we allow for overbooking,
which, however, is qualified by both a one-stage penalty cost ψP(cn, en) ≥ 0,
(cn, en) ∈ J = C × J̃, and a terminal cost ψT(c0, e0) ≥ 0 depending on the
extended state (c0, e0) ∈ J0 = C × J̃0 upon departure.

4.1.3 Cancelations, No-Shows, and Overbooking

As mentioned earlier, we also consider no-shows and cancelations of reser-
vations. Cancelations result in an increase of the remaining capacity. In
particular, the remaining capacity is assumed to increase from cn − an to
cn+1 ≥ cn − an between stages n and n + 1 with a probability of qen

cn−an,cn+1
,

say, which may depend on the external state en. Note that for the arrival
process, we allowed in to be equal to 0. This represents a pure canceling event
without any requests. We make the following technical assumption about the
cancelation probabilities:
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(A2) For all e ∈ J̃ and all increasing and concave functions g : C → R, it
holds that

c →
C∑

c′=c

qe
c,c′g(c′)

is increasing and concave.

Assumption (A2) is based on the well-known increasing concave order
of random variables. It holds if the transition matrices (qe

c,c′), e ∈ J̃, are
stochastically increasing and concave in the sense of Shaked and Shanthikumar
(1988). This needs to be checked in concrete applications. It is known to hold
e.g. if the increase in capacity can be modeled by a binomial distribution; see
Appendix C.

We assume that a customer who has not canceled in advance will not show
up at departure with a probability of qe0

NS, independent of the booking class
but dependent on the environmental state e0 ∈ J̃0 at the time of departure.
These no-shows can be considered within the terminal costs ψT by setting

ψT(c0, e0) = E
c0,qe0

NS
[ψDB

e0 (−c0 − B)] ,

where B represents the number of no-shows. ψDB
e0 (x) ≥ 0 are the costs that

stem from denying boarding to x passengers with reservations at environmen-
tal state e0 ∈ J̃0. These costs are typically 0 for x ≤ 0 and increasing and
convex in x. Since C − c0 denotes the number of reservations at hand at the
time of departure, the random variable B is assumed to follow a binomial
distribution with parameters C − c0 and qe0

NS. This approach is the standard
way of incorporating no-shows and was also applied e.g. in Subramanian et al.
(1999) and Brumelle and Walczak (2003).

To incorporate these terminal costs into our model, we consider at each
stage not only the above-mentioned rewards for accepting requests reduced
by the penalty costs for ignoring the capacity restrictions of the airplane, but
also the expected costs of overbooking weighted by the probability that there
will be no more request events until departure. For c ∈ C, e ∈ J̃ define these
aggregated costs as

ψe(c) := ψP(c, e) +
C∑

c′=c

qe
c,c′

∑

e′∈J̃0

p̃(e, e′)ψT(c′, e′) .

We make the following reasonable assumption on these penalty and over-
booking costs.

(A3) For all e = (d, i, z) ∈ J̃
(i) ψe(·) ≥ 0 is decreasing and convex,
(ii) limc→−∞ −∆ψe(c) > �i.
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Part (i) of (A3) is satisfied by the common assumption on the penalty
costs and terminal costs for overbooking to be increasing and convex in the
number of reservations at hand, i.e. in C − c, for every e ∈ J̃. In the case of
no-shows as defined above, this is true if ψDB

e0 (·) is decreasing and convex for
each environmental state e0 ∈ J̃ at departure (see Subramanian et al., 1999).
Part (ii) is satisfied e.g. if an overbooking pad is introduced and the penalty
costs of overbooking by more than this threshold are at least as high as the
reward earned by accepting the highest-class customer (another very common
assumption in the literature; see e.g. Subramanian et al., 1999).

Our modeling approach implies the usual assumptions that cancelation
and no-show probabilities are the same for all customers and are independent
of the time the reservations on hand were accepted. If these probabilities are
mutually independent across customers, the equivalent charging scheme (as
used in Subramanian et al., 1999) can be applied for modeling class depen-
dent cancelation and no-show refunds. For simplicity, we do not consider any
refunds in the following.

4.1.4 The Underlying Markov Decision Process

Our decision problem can be treated as a Markov decision process in a random
environment with an absorbing set as indicated in Sect. 2.2.2. The infinite
horizon MDP has countable state space X = C × E, countable action space
A = {0, . . . , dmax}, finite subsets A(d) = {0, . . . , d} of admissible actions in
state (c, e) ∈ X, constraint set K = {((c, e), a) | (c, e) ∈ X, a ∈ A(d)}, transition
law p from K into X, where p((c, e), a, (c′, e′)) := qe

c−a,c′ p̃(e, e′), and reward
function r : K → R, given by

r((c, e), a) = a�i − ψe(c − a) for (c, e) ∈ C × J̃, a ∈ A(d) ,

and r((c, e), a) = 0 otherwise. Total expected revenue should be maximized,
so the discount factor is α = 1.

As discussed in Sect. 2.2.2, assumption (A1) implies (AS). Combined with
Theorem 2.2, it shows that there is a stationary policy f∞ ∈ F∞ that is
optimal. Moreover, V (c, e), the maximum expected total reward starting in
state (c, e),

V (c, e) = max
π∈Π

Vπ(c, e), (c, e) ∈ X ,

is well-defined.
Note that on J0, V ≡ 0. After having entered the absorbing set, neither

additional revenues nor costs incur. For all f ∈ F, (c, e) ∈ J, e = (d, i, z), all
a ∈ A(d), and all v : J → R, we set

Lv(c, e, a) = a�i − ψe(c − a) +
C∑

c′=c−a

qe
c−a,c′

∑

e′∈J̃

p̃(e, e′)v(c′, e′) ,

Uv(c, e) = max{Lv(c, e, a) | a ∈ A(d)} .
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Theorem 2.2 goes on to say that V is the solution to the optimality equation
V = UV and may be obtained by value iteration. In addition, every policy
consisting of decision rules f∗ ∈ F that maximize UV is optimal.

Our objective is to establish the optimality of a decision rule of a (gen-
eralized) protection level type. A decision rule fy ∈ F is called a generalized
protection level rule (or of generalized protection level type) if there exists a
function y : J̃ → A such that for all c ∈ C and e = (d, i, z) ∈ J̃

fy(c, e) =

{
min{d, c − y(e)} c > y(e)
0 c ≤ y(e) .

Decision rules of the generalized protection level type accept additional re-
quests as long as the remaining capacity is higher than y(e), a number that
may depend on the current state of the environmental process. We consider
a decision rule to be of protection level type if its protection levels depend
solely on the fare class i. If they depend on some additional time parameter,
we speak of time-dependent protection levels.

4.2 Structural Results

Theorem 4.1.
Assume (A1) to (A3). There then exists an optimal generalized protection
level rule f∗

y ∈ F with protection levels

y∗(e) ≥ ŷ(e) := sup{c ∈ Z | − ∆ψe(c) > �i} , e ∈ J̃ .

Proof. First, we prove prove the existence of an optimal generalized protection
level rule. Note that we can conclude from assumptions (A2) and (A3)(ii)
that an optimal policy overbooks only a finite number of customer requests.
In addition, it was shown in Sect. 2.2.2 that (A1) implies (AS). Hence, we can
apply Theorem 2.2, which ensures that value iteration works. So let v0 ≡ 0,
vn+1 = Uvn(c, e).

We show by induction that the following assertions (i) and (ii) are true for
all n ∈ N0.

(i) hn(c − a, e) = −ψe(c − a) +
∑C

c′=c−a qe
c−a,c′

∑
e′∈J̃ p̃(e, e′)vn(c′, e′) is in-

creasing and concave in c.
(ii) vn+1(c, e) is increasing and concave in c.

At the start of the induction for n = 0, (i) is clearly true because of v0 ≡ 0
together with assumptions (A2) and (A3). Thus, h0(c − a, e) is increasing
and concave in c. Using Lemma 1 from Stidham (1978) (see Appendix B), it
follows that

v1(c, e) = max
a=0,...,d

{a�i + h0(c − a, e)}
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is increasing and concave in c, i.e. (ii) is true.
Now suppose that (i) and (ii) are true for an integer n ≥ 0. From (ii), we

know that vn+1 is increasing and concave. Combining this with assumptions
(A2) and (A3) yields (i). Knowing that hn+1(c− a, e) is concave, (ii) is again
a simple consequence of Stidham’s Lemma 1.

Hence, the induction is complete. It follows that V (c, e) is increasing and
concave in c.

Let

h(c, e) := −ψe(c) +
C∑

c′=c

qe
c,c′

∑

e′∈J̃

p̃(e, e′)V (c′, e′)

in order to write

V (c, e) = max
a=0,...,d

{a�i + h(c − a, e)} .

Action a is optimal in state (c, e) if

LV (c, e, a) = a�i + h(c − a, e) > a′�i + h(c − a′, e) = LV (c, e, a′)

holds for a < a′ ≤ d, and

LV (c, e, a) = a�i + h(c − a, e) ≥ a′�i + h(c − a′, e) = LV (c, e, a′)

for 0 ≤ a′ < a. Since h(·, e) is increasing and concave, this is equivalent to

a�i + h(c − a, e) > (a + 1)�i + h(c − (a + 1), e)
a�i + h(c − a, e) ≥ (a − 1)�i + h(c − (a − 1), e) .

These inequalities reduce to only the first (second) of the two inequations in
the case of a = 0 (a = d) and are equivalent to

�i < h(c − a, e) − h(c − a − 1, e)
�i ≥ h(c − a + 1, e) − h(c − a, e) .

If we define sup{∅} = ∞, we can conclude that there is an optimal gener-
alized protection level

y∗(e) = sup{c ∈ Z | h(c, e) − h(c − 1, e) > �i} .

Action a = 0 is optimal for all c < y∗(e), action a = d for all c > y(e)∗ + d.
For all y(e)∗ ≤ c ≤ y(e)∗ + d, a = c − y(e) is optimal.

Now let us turn to the lower bounds ŷ(e). Due to assumption (A2),

h(c, e) − h(c − 1, e)
= −ψe(c) + ψe(c − 1)

+
C∑

c′=c

qe
c,c′

∑

e′∈J̃

p̃(e, e′)V (c′, e′) −
C∑

c′=c−1

qe
c−1,c′

∑

e∈J̃

p̃(e, e′)V (c′, e′)

≥ −ψe(c) + ψe(c − 1) = −∆ψe(c) .
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So for the value ŷ(e) = sup{c ∈ Z | − ∆ψe(c) > �i}, it holds that

ŷ(e) = sup{c ∈ Z | − ∆ψe(c) > �i}
≤ sup{c ∈ Z | h(c, e) − h(c − 1, e) > �i} = y∗(e) ,

and we have a lower bound for y∗(e) (which might be infinity, e.g. if the set
is empty). ��

It is a direct consequence of Theorem 4.1 that given that there are no costs
of unsold capacity, ψe(c) = 0 for all c ≥ 0, y∗(d, 0, z) ≥ ŷ(d, 0, z) = ∞. Seats
should not be discarded.

Under the following assumption, it can be shown that the protection levels
are independent of the observed demands and that they are increasing in the
observed booking class (for any external state).

(A4)κe(.) ≡ κz(.), ψe(.) ≡ ψz(.), and qe
cc′ = qz

cc′ , c, c′ ∈ C, depend on e =
(d, i, z) only through z.

Theorem 4.2. Assume (A1) to (A4). Then y∗(e) = y∗(i, z) depends on e =
(d, i, z) only through i and z and for all booking classes i ≤ i′, i 
= 0, we have
y∗(i, z) ≤ y∗(i′, z).

Proof. Fix e = (d, i, z) and e′ = (d′, i′, z′) with i ≤ i′, i 
= 0, and z = z′. For
c ∈ C set

h(c, z) := − ψz(c)

+
C∑

c′′=c

qz
c,c′′

∑

z′′∈E

κz(z′′)
∑

(d′′,i′′)∈D×�
ηz′′(d′′, i′′)V (c′′, (d′′, i′′, z′′)) ,

so that

V (c, e) = max
a=0,...,d

{a�i + h(c − a, z)} .

We know from the proof of Theorem 4.1 that h(c, z) is concave. Therefore,
y∗(e) can be characterized as an action a0 = max{0, c− y∗(e)}, say, such that
both

a�i + h(c − a, z) ≤ (a + 1)�i + h(c − a − 1, z) , a < a0 ,

and

a�i + h(c − a, z) ≥ (a + 1)�i + h(c − a − 1, z) , a ≥ a0 ,

hold, from which we infer that y∗(e) is independent of d.
If y∗(i′, z) = ∞, then y∗(i, z) ≤ y∗(i′, z) trivially holds. Therefore, let

y∗(i′, z) < ∞. Given c > y∗(i′, z),
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h(c, z) − h(c − 1, z) ≤ �i′ .

As �i ≥ �i′ for i 
= 0 by assumption, it follows that for c > y∗(i′, z),

h(c, z) − h(c − 1, z) ≤ �i

also holds, which ultimately yields y∗(i, z) ≤ y∗(i′, z) for all i 
= 0. ��

4.3 Examples for the Random Environment

We have still not answered what the external process (Zn) could stand for.
Thus, in this section, our objective is to demonstrate the great versatility
of the environmental process. To avoid technical difficulties and cumbersome
notation, we will often restrict our attention to simple situations dealing with
only one specific topic. Clearly, most of these features can also be realized
simultaneously.

4.3.1 Exogenous Effects Based on the Evolution of a Markov
Chain

Assume (Zn) to be an exogenous Markov chain with state space Z and transi-
tion matrix P̃Z, which is independent of the arrival process of the customers.

This Markov chain might represent the overall economic cycle or the
change in currency exchange rates. Such factors might influence the book-
ing behavior of customers with respect to the number of requests at a certain
point in time, the booking classes requested, the cancelation probabilities,
and, finally, the terminal costs.

Other uncertain effects, like the recovery in tourism in regions that have
suffered from natural catastrophes or terrorist attacks, might also be modeled
by such an external Markov chain. As a very simple case, one could also
consider a Markov chain representing a pure time parameter that counts the
number of periods until departure.

We give a numerical example of capacity control with exogenous effects
based on the evolution of a Markov chain in the next subsection.

4.3.2 Capacity Control Under Uncertainty

For new routes or flight time changes, there is often some uncertainty about
the transition matrix P̃ of the environmental process (En). For example, one
of the following objects (or combinations thereof) might be only partially
known:

(1) the transition matrix P̃Z of the exogenous Markov chain considered above,
(2) the distribution of the demands Dn, provided that they are i.i.d. random

variables,
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(3) the distribution of the fare classes In, provided that they are i.i.d. random
variables.

To illustrate the idea of an adaptive control of such a system under uncer-
tainty, let the fare classes I0, I1, . . . be i.i.d. random variables with distribution
P (In = i) = φϑ(i), i ∈ �, which is known up to some unknown parameter
ϑ ∈ T.

Handling the uncertainty about ϑ from the Bayesian point of view, some
probability measure ν on (the Borel σ-algebra of) T is supposed to be given.
Based on the prior information νn−1 and the observed class in−1, the update
(posterior information) νn then gives the actual information about ϑ at stage
n.

To avoid technical difficulties, we assume that the set of probability distri-
butions can be approximated by a finite set. This is not very restrictive if e.g.
the set of parameters is compact. Then the set of probability distributions is
also compact, and it can thus be approximated arbitrarily well by finite sets.

Finally, by considering the external states zn = νn, there is an (approxi-
mated Bayes) optimal decision rule, which is of a generalized protection level
type with protection levels y∗(dn, in, νn) explicitly depending on νn. Note,
however, that in order to fulfill (A1), the environmental process has to be
augmented e.g. by a time parameter.

4.3.3 General Demand Patterns

The construction of the external process enables us to consider dependencies
between the actual demand and the demand observed at earlier stages.

For example, let zn = (z1,n, . . . , zimax,n) denote the vector of the total
demands z1,n, . . . , zimax,n of the tickets for the fare classes 1, . . . , imax up to
stage n − 1. Then, by updating zn to

zn+1 = (z1,n + dnδ1,in
, . . . , zimax,n + dnδimax,in

)

(with δii′ = 1 for i = i′ and 0, otherwise), general demand patterns can be
modeled easily. Again, this environment has to be augmented by a time param-
eter in order to fulfill (A1). In this case, there is an optimal decision rule that
is of a generalized protection level type with protection levels y∗(dn, in, zn).
Another example of capacity control with dependencies between the actual
demand and the demand observed at earlier stages will be given in the next
subsection.

Note that this is not inconsistent with Chatwin’s finding (1998) that poli-
cies of protection level type need not be optimal in the presence of stochasti-
cally dependent requests. In contrast to our definition of generalized protection
levels, Chatwin forbids protection levels to depend on d or z.
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4.4 Numerical Examples

We will now present two simple examples of capacity control in a random
environment in order to illustrate our results. In the first example, external
effects based on the evolution of a Markov chain are included; the second
example uses an environment to model dependencies between future demand
and demand observed at earlier stages.

4.4.1 Example 1: Capacity Control with Exogenous Effects

Let (Zn) be an exogenous Markov chain with state space Z and transition
matrix P̃Z, which is independent of the customer arrival process.

This Markov chain might represent e.g. the general popularity of a certain
flight destination, which influences customer booking behavior to some degree
with respect to the number of requests at a certain point in time and the
booking classes requested. In order to fulfill (A1), we also incorporate a time
parameter t to count the periods until departure.

We assume that the plane is to depart after N = 10 time periods. In every
period, a popularity Markov chain with two states Z� = {1, 2} determines
the demand for this flight. Customers consider the destination to be more
attractive in state � = 2 ∈ Z� than in � = 1 ∈ Z�.

There are imax = 5 fare classes with �5 = 100 < �4 = 200 < �3 = 300 <
�2 = 400 < �1 = 500. In state � = 2, there is a probability of only 0.1 for
a period without any demand for reservations. With a probability of 9/200
each, there are requests for 1, 2, 3, or 4 reservations in classes 1 to 5 within one
period. In state � = 1, the probability of no demand arrival within a period
is 0.2. There is only demand for 1 or 2 reservations in classes 3, 4, or 5 with
equal probability. Consequently,

η(�n,tn)(dn, in) =






1/5 for �n = 1, tn 
= 0, dn = 1, in = 0,
2/15 for �n = 1, tn 
= 0, dn ∈ {1, 2}, in ∈ {3, 4, 5},
1/10 for �n = 2, tn 
= 0, dn = 1, in = 0,
9/200 for �n = 2, tn 
= 0, dn ∈ {1, 2, 3, 4},

in ∈ {1, 2, 3, 4, 5},
1 for tn = 0, dn = 1, in = 0,
0 otherwise.

The external Markov chain has the state space Z = Z�×{0, 1, . . . , 10} with
each state z = (l, t) describing both the popularity � and the periods until
departure t. The popularity state changes from one period to the next with a
probability of 0.3; it remains the same otherwise. Before departure, the time
parameter t always reduces by one, i.e.
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Fig. 4.1. Transition graph of the external Markov chain from Example 1.

κ′
(�n,tn),dn,in

((�n+1, tn+1)) =






7/10 for �n = �n+1, tn+1 = tn − 1,
3/10 for �n 
= �n+1, tn+1 = tn − 1,
1 for tn+1 = tn = 0,
0 otherwise.

At time t = 0, the plane departs and no more demand arrives. Therefore,
the absorbing set is J̃0 = {(d, i, (�, t)) ∈ Z | t = 0}. The transition graph of
the external Markov chain is given in Fig. 4.1. Absorbing states are shaded in
gray.

We assume that there are a total of C = 5 seats to sell and do not allow
for no-shows. The number of cancelations is assumed to follow a binomial
distribution with a cancelation probability of 0.1. In addition, we discuss the
case in which there are no cancelations (qe

c,c′ = 1 for c′ = c, e ∈ J̃, and 0
otherwise). In both settings, (A2) is fulfilled. Penalty costs of 750 per seat
if we have less than −C remaining seats and terminal costs of 750 per seat
in the case of denied boardings, i.e. ψDB

ζ (x) = 750x, ensure (A3). Hence, we
know from Theorem 4.1 that the optimal policy is of the generalized protec-
tion level type with protection levels y∗(e) that depend on the state e of the
environmental process. In addition, y∗(d, 0, (�, t)) = ∞.

Now let us turn to the values of ŷ(e). For all e = (d, i, (�, t)) where t > 1, it
is an immediate consequence of the definition of the penalty costs that ŷ(e) =
−C. Therefore, let us consider t = 1. Given no cancelations, ŷ(d, i, (�, 1)) = 0
for i ≥ 1 due to the high costs of denied boardings. In the case of cancelations,
the expected costs associated with one person overbooked at t = 1 are (1 −
0.96)750 ≈ 351, and the expected costs for two persons overbooked are (1 −
0.96)1500+(1−6 ·0.1 ·0.95)750 ≈ 1187. Therefore, ŷ(d, i, (�, 1)) = 0 for i > 2,
and ŷ(d, i, (�, 1)) = −1 for i ∈ {1, 2}.
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Table 4.1. Protection levels y∗(d, i, (w, t)) of an optimal policy without (and in-
cluding) cancelations.

� = 1 � = 2

i = 5 i = 4 i = 3 i = 5 i = 4 i = 3 i = 2 i = 1

t = 1 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (-1) 0 (-1)
t = 2 1 (0) 0 (0) 0 (-1) 3 (0) 1 (0) 0 (-1) 0 (-1) 0 (-2)
t = 3 2 (0) 1 (0) 0 (-1) 4 (2) 3 (0) 1 (-1) 0 (-2) 0 (-4)
t = 4 4 (1) 2 (0) 0 (-2) 5 (3) 4 (0) 1 (-2) 0 (-4) 0 (-4)
t = 5 5 (3) 3 (0) 0 (-2) 5 (5) 5 (0) 2 (-3) 0 (-3) 0 (-3)
t = 6 5 (4) 4 (0) 1 (-3) 5 (5) 5 (0) 3 (-4) 0 (-4) 0 (-4)
t = 7 5 (5) 5 (-1) 2 (-1) 5 (5) 5 (0) 3 (0) 0 (0) 0 (0)
t = 8 5 (5) 5 (-1) 3 (-1) 5 (5) 5 (-1) 4 (-1) 0 (-1) 0 (-1)
t = 9 5 (5) 5 (-2) 3 (-2) 5 (5) 5 (-1) 5 (-1) 0 (-1) 0 (-1)
t = 10 5 (5) 5 (-2) 4 (-2) 5 (5) 5 (-2) 5 (-2) 1 (-2) 0 (-2)

Since (A4) holds in this example, we can conclude from Theorem 4.2
that the protection levels only depend on the environment z = (�, t) and
the booking class i. Protection levels of an optimal policy are given in Table
4.1. Assuming that the initial distribution of the popularity Markov chain is
(0.5, 0.5), the total expected revenue from the selling process is about 3081 in
the case of cancelations and 1797 without. (The revenue figure with cancela-
tions is so much higher because there are no refunds.) Since class 1 customers
offer the highest possible revenue per seat, protection levels are 0 for i = 1
if there are no cancelations. In accordance with Theorem 4.2, the protection
levels are increasing in i, i.e. the values of the protection levels are higher for
low-fare demand. If no cancelations are considered, protection levels decrease
for decreasing values of t. As expected, protection levels are lower in the case
of cancelations and may even be negative. Note that in the case of cance-
lations, protection levels are not monotone in t. In addition, the protection
levels of classes i = 4 and 5 given a popularity of � = 2 are higher than given
� = 1 for all t = 1, . . . , 10. The optimal policy is more discriminating in � = 2
than in � = 1, since the probability of future high-value demand is greater.

4.4.2 Example 2: Capacity Control with Dependent Demand

As another example, one could imagine the following: Let us consider an
aircraft with a capacity of C = 10 seats. Demand arrives in one of imax = 3
fare classes with associated revenues of �3 = 100 < �2 = 200 < �1 = 300.

Suppose the external process (Zn) is a Markov chain with Z = {0, 1},
where state 1 represents (additional) arriving customer demand, and state 0
represents the end of the arrival process.

In state 1, there is demand for 1 or 2 reservations for classes 1, 2, and 3
with a probability of 1/6 each, i.e.
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Fig. 4.2. Transition graph of the external Markov chain from Example 2.

ηzn
(dn, in) =






1/6 for zn = 1, dn ∈ {1, 2}, in ∈ {1, 2, 3},
1 for zn = 0, dn = 1, in = 0,
0 otherwise.

The probability of more demand arriving before departure depends on the
quality and quantity of the current demand. The more demand observed and
the higher the associated fare, the more probable the arrival of additional
demand before departure is. The probability of more demand arriving before
departure given a demand of d from class i ∈ {1, 2, 3} is 1 − 1/(5d(4 − i)).
Therefore, the probability of no additional demand before departure, a tran-
sition to state 0, is 1/(5d(4 − i)).

To sum this up, the transition probabilities of the Markov chain can be
stated as

κzn,dn,in(zn+1) =






1/ (5dn(4 − in)) for zn = 1, zn+1 = 0, dn ∈ {1, 2},
in ∈ {1, 2, 3},

1 − 1/ (5dn(4 − in)) for zn = 1, zn+1 = 1, dn ∈ {1, 2},
in ∈ {1, 2, 3},

1 for zn = 0, zn+1 = 0, dn = 1,
in = 0,

0 otherwise.

The corresponding transition graph is given in Fig. 4.2. The absorbing
state is shaded in gray.

For simplicity, we assume that there are neither cancelations nor no-shows.
There are no penalty costs, i.e. ψP(c, e) = 0. Terminal costs are 0 if c ≥ 0
and increase linearly by 120 for every passenger overbooked, i.e. ψT(c, e) =
max{0,−120c}.

First, let us check for the assumptions (A1) to (A4). Since J̃0 = {e =
(d, i, z) ∈ E | z = 0}, it follows that

‖P̃J̃1‖ = 1 − 1
5d(4 − i)

< 1 .

Thus, assumption (A1) holds for m = 1. (A2) is trivially true. Since

ψe(c) =
C∑

c′=c

qe
c,c′

1
5d(4 − i)

max{0,−120c′} ≥
C∑

c′=c

qe
c,c′ max{0,−4c′} ,
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Table 4.2. Protection levels y∗(d, i, 1) of an optimal policy.

i = 3 i = 2 i = 1

d = 1 7 1 0
d = 2 9 2 0

assumption (A3) can easily be seen to hold.
We can therefore conclude from Theorem 4.1 that the optimal policy is of

generalized protection level type with protection levels y∗(e) that depend on
the state e of the environmental process. Since in this example κe depends on
i and d, however, assumption (A4) is not fulfilled, and the protection levels
need not be independent of d.

Protection levels of an optimal policy are given in Table 4.2. Since class 1
customers offer the highest revenue possible per reservation, it is obvious that
protection levels are 0 for i = 1. Since low demand increases the probability
for the end of the booking horizon, protection levels are increasing in d.

In this simple example, the protection levels of an optimal policy are in-
creasing in i, too. But this does not need to be true in general. Emphasizing
the effect of low value demand as an indicator for the end of the booking
horizon by setting e.g.

κ′
zn,dn,in

(zn+1) =






6/10 for zn = 1, zn+1 = 0, in = 3,
dn ∈ {1, 2},

4/10 for zn = 1, zn+1 = 1, in = 3,
dn ∈ {1, 2},

1/ (5dn(4 − in)) for zn = 1, zn+1 = 0, in ∈ {1, 2},
dn ∈ {1, 2},

1 − 1/ (5dn(4 − in)) for zn = 1, zn+1 = 1, in ∈ {1, 2},
dn ∈ {1, 2},

1 for zn = 0, zn+1 = 0, in = 0,
dn = 1,

0 otherwise

and decreasing the probability of low-value demand e.g. to

η′
zn

(dn, in) =






1/100 for zn = 1, in = 3, dn ∈ {1, 2},
245/1000 for zn = 1, in ∈ {1, 2}, dn ∈ {1, 2},
1 for zn = 0, in = 0, dn = 1,
0 otherwise

leads to the protection levels of an optimal policy as given in Table 4.3. Al-
though the general structure discussed above remains intact, the low proba-
bility of additional customer arrivals given the low-value demand causes ex-
tremely low protection levels given that i = 3.
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Table 4.3. Protection levels y∗(d, i, 1) of an optimal policy assuming an emphasized
effect of low-value demand.

i = 3 i = 2 i = 1

d = 1 2 3 0
d = 2 2 4 0



5

Basic Single Resource Capacity Control
Models in Revenue Management

The two main textbook models of single-resource capacity control are the dy-
namic and the static capacity control model. Both models fulfill assumptions
i) to xi) mentioned in Sect. 1.1.1; they differ only in the assumptions concern-
ing the arrival process. Static capacity control models assume that demand
for the different booking classes arrives in non-overlapping periods. Dynamic
capacity control models allow passengers to arrive in any order. In turn, they
assume demand to be Markovian.

Most capacity control models can be assigned to one of these two cate-
gories. One exception is the so-called omnibus model, which generalizes the
two models by allowing more than one customer of a certain booking class to
arrive in the framework of a dynamic model. It was proposed by Lautenbacher
and Stidham (1999) and Mayer (1976). Another exception is a semi-Markov
decision model described in Walczak (2001) and Brumelle and Walczak (2003).

5.1 The Dynamic Model

In the basic dynamic model, the booking horizon [0, T ] is divided into N time
periods so that the probability of two or more requests arriving within one
period can be neglected. These periods are indexed by n and the indices run
backwards in time. Consequently, smaller values of n indicate later points in
time. Period N corresponds to the first period within the booking horizon,
while period 1 denotes the last period with positive arrival probability. Thus,
period 0 can be interpreted as the scheduled departure time. For every period
n = 1, . . . , N , the probability of a class i customer request is given by p̂n(i).
As before, fare classes are ordered such that 0 < �imax < �imax−1 < . . . < �1.
Furthermore, p̂n(0) = 1−∑imax

i=1 p̂n(i) denotes the probability of no customer
request in period n. Neither cancelations nor no-shows are allowed. Demand
is independent of the controls used.
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In this setting, dynamic models answer the question of whether or not to
accept a particular reservation request for booking class i in period n given a
remaining capacity of c seats.

A dynamic capacity control model with only two fare classes was intro-
duced by Gerchak et al. (1985). Lee and Hersh (1993) extended their model to
allow for multiple fare classes. Lautenbacher and Stidham (1999) stressed the
structure of the underlying Markov decision process of the dynamic model.
Liang (1999) considers the continuous time case.

Extensions of this model include a two-class model with customer choice
(i.e. without assumption x)) described in Weatherford et al. (1993). In another
two-class model with customer choice, Zhao and Zheng (2001) assume that
the discount fare cannot be reopened. Similarly, Feng and Xiao (2000) decide
on when to stop offering the low-fare class when a certain number of capacity
units is reserved for high-fare customers in order to ensure a minimum service
level for that price segment. Lee and Hersh (1993) allow for group arrivals.
No-shows, cancelations, overbooking, and refunding are considered in Subra-
manian et al. (1999), Talluri and van Ryzin (2004b, pp. 155–160), and Feng
and Xiao (2006a).

5.1.1 The Decision Model

The objective of finding a policy that maximizes expected revenue in the basic
dynamic model is usually reduced to solving the optimality equation of a finite-
stage Markov decision model (N, X, An, pn, rn, V0) with planning horizon N .
The state space is X = C ×� = {(c, i) ∈ Z × N0 | c ≤ C, i ≤ imax}, in which
we refer to c as the remaining capacity and to i as the requested booking
class; i = 0 denotes the artificial class 0 with fare �0 = 0. The action space,
A = An = {0, 1} ≡ {reject, accept} for all n, specifies the sets of admissible
actions in state (c, i) ∈ X, A(c, i) = A for i = 1, . . . , imax and A(c, 0) = {0}.
The transition laws pn from Kn = {(c, i, a) | (c, i) ∈ X, a ∈ A(c, i)} into X,
for n = N,N − 1, . . . , 1 are defined by pn((c, i), a, (c− a, i′)) = p̂n−1(i′) and 0
otherwise. The one-stage reward functions rn on Kn are given by rn((c, i), a) =
a�i, and the terminal reward function V0 on X by V0(c, i) = 0 for c ≥ 0 and
V0(c, i) = c�̄ for c < 0 with �̄ > �1.

By (XN , XN−1, . . . , X0), we denote the state process of the MDP, and by
FN the set of all policies. We write Rπ =

∑N
n=1 rn(Xn, fn(Xn))+V0(X0)) for

the total reward gained when applying policy π. From Theorem 2.1, we know
that for (c, i) ∈ X,

V ∗(c, i) = max
π∈FN

Eπ

[
N∑

n=1

rn(Xn, fn(Xn)) + V0(X0)) | XN = (c, i)

]

= max
π∈FN

Eπ [Rπ | XN = (c, i)] ,

the maximum expected revenue starting with capacity c given a request from
class i, is the unique solution VN ≡ V ∗ to the optimality equation
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Vn(c, i) = max
a∈A(c,i)

{

a�i +
imax∑

i′=0

p̂n−1(i′)Vn−1(c − a, i′)

}

, (5.1)

which can be obtained for n = 1, . . . , N iteratively, starting with V0. Moreover,
every policy π∗ ∈ FN formed by actions a = f∗

n(c, i), each maximizing the
right-hand side of (5.1) is optimal, i.e. leads to V ∗.

Using �0 = 0 and the fact that the value function is increasing in c (see
Lemma 5.1), one can conclude that

Vn(c, 0) = An−1Vn−1(c) ≥ An−1Vn−1(c − 1), n = 1, . . . , N, c ∈ C ,

where AnVn(c) is written in place of
∑imax

i=0 p̂n(i)Vn(c, i). This allows us to
extend A(c, 0) to A without loss of generality and write

Vn(c, i) = max
a∈{0,1}

{

a�i +
imax∑

i′=0

p̂n−1(i′)Vn−1(c − a, i′)

}

= max
a∈{0,1}

{

a�i + An−1Vn−1(c − a)

}

(5.2)

instead of (5.1).
In order to reduce the complexity of computation, the optimality equation

is frequently also stated as

AnVn(c) =
imax∑

i=0

p̂n(i) max
a∈{0,1}

{

a�i + An−1Vn−1(c − a)

}

, (5.3)

with A0V0(c) =
∑imax

i=0 p̂n(i)V0(c, i); see Sect. 2.1. This reduction of the state
space is crucial in applications. But since we are interested in an analysis of
the structure of an optimal policy, the two forms (5.2) and (5.3) are equivalent
to us.

5.1.2 Structural Results

For the dynamic model, Lee and Hersh (1993) and Lautenbacher and Stidham
(1999) prove structural results of an optimal policy; an overview of the results
is given in Talluri and van Ryzin (2004b, pp. 76–79).

Using Lemma 1 from Stidham (1978) (see Appendix B), one can show by
induction on n that the value function is increasing and concave in c; see e.g.
Lautenbacher and Stidham (1999).

Lemma 5.1. For n = 1, . . . , N , i = 0, . . . , imax the value function Vn(c, i) is
increasing and concave in c.

In addition, it is easy to see the optimality of accepting an arbitrary request
if the number of remaining seats is larger than the maximum number of future
requests. A request is rejected in cases where c ≤ 0.
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Lemma 5.2. For all n ∈ {1, . . . , N}, and i ∈ {1, . . . , imax} we have

(i) Vn(c, i) = �i + An−1Vn−1(c − 1) = �i +
∑n−1

n′=1

∑imax

i′=0 p̂n′(i′)�i′ , c ≥ n.
(ii) Vn(c, i) = An−1Vn−1(c) = �̄c, c ≤ 0.

Proof. (i) and (ii) follow by induction on n. Consider n = 1. For c ≥ 1, the
terminal reward is V0(c, 0) = 0 by assumption. Therefore, (i) directly follows
from

V1(c, i) = max {�i, 0} = �i .

For c ≤ 0, the terminal reward is V0(c, 0) = c�̄. Making use of �̄ > �1 we
obtain

V1(c, i) = max {c�̄ + (�i − �̄), c�̄} = c�̄ ,

showing (ii) for n = 1.
Now assume (i) and (ii) are true for some 1 ≤ n ≤ N − 1. It then follows

for c ≥ n + 1 that

Vn+1(c, i) = max

{

�i +
n∑

n′=1

imax∑

i′=0

p̂n′(i′)�i′ ,

n∑

n′=1

imax∑

i′=0

p̂n′(i′)�i′

}

= �i +
n∑

n′=1

imax∑

i′=0

p̂n′(i′)�i′ .

The optimality equation for c ≤ 0 at stage n + 1 reduces to

Vn+1(c, i) = max {�̄c + (�i − �̄), �̄c} = �̄c ,

which completes the proof. ��
Combining these lemmas yields that there is an optimal policy of time-

dependent protection level type.

Theorem 5.1. For the dynamic problem, there exists an optimal policy π∗ =
(f∗

N , f∗
N−1, . . . , f

∗
1 ) such that

f∗
n(c, i) =

{
1 c > y∗

i−1(n)
0 c ≤ y∗

i−1(n) ,

with time-dependent protection levels

y∗
i−1(n) = max {c ∈ {0, . . . , n − 1} : �i < ∆An−1Vn−1(c)} .

The theorem implies that, given a request from customer class i, i =
1, . . . , imax, a number of y∗

i−1(n) seats (the so-called time-dependent protec-
tion level) is reserved for demand in periods n−1, . . . , 1. An incoming request
is accepted if and only if at least one seat is not reserved for future demand.
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A proof of this theorem can be found e.g. in Lautenbacher and Stidham
(1999) or in Lee and Hersh (1993) if their results are combined with Lemma
5.2. Since the dynamic model constitutes a special case of the capacity control
model in a random environment, the fact that the decision rules are of time-
dependent protection level type (and that the protection levels are increasing
in i) follows immediately from Theorems 4.1 and 4.2.

To show that this model is equivalent to a special case of the capacity
control model in a random environment introduced in Chap. 4, choose the
external state to be a pure time parameter Z = {0, 1, . . . , N}, counting the
number of periods until flight departure at z = 0. Accordingly, let κe(z′) =
κz(z′) = 1 for z′ = max{0, z − 1} and 0 otherwise. The demand Dn, i.e.
the number of reservations requested at time n, is equal to 1 almost surely.
The probability of a request from booking class i is ηz(1, i) = p̂z(i), and 0
otherwise. The absorbing set is J̃0 = {(d, i, z) ∈ E | z = 0}. Since cancelations
are not allowed, we have qe

c,c′ = 1 for c′ = c and 0 otherwise for all c ∈ C,
e ∈ E. Choosing ψP(c, e) = �̄ max{0, − c}, (c, e) ∈ J0, ensures that there is
no overbooking. There are no terminal costs.

It easily follows that ‖P̃N
J̃

1‖ = 0. Therefore, assumption (A1) holds. (A2)
holds trivially, since qe

c,c′ = 1 for c = c′ by assumption. Since ψz(c) =
ψP(c, e) = �̄ max{0, − c} is decreasing and convex, assumption (A3) is ful-
filled. (A4) is fulfilled, since all transition probabilities are independent of the
current booking class requested, and d = 1. Note that in the notation of the
dynamic model, y∗(i, n) = y∗

i−1(n).
From Theorem 4.2 (and directly from the formula for the protection level in

Theorem 5.1), we can conclude that the protection levels increase in booking
class i. The non-negativity of the protection levels is a direct consequence of
choosing �̄ > �1.

Proposition 5.1. Given a fixed period n before departure, y∗
i−1(n) is increas-

ing in i for i > 0, i.e.

y∗
imax−1(n) > y∗

imax−2(n) > · · · > y∗
0(n) = 0 .

Another well-known property of the protection levels is that given a fixed
booking class, the values of y∗

i−1(n) are increasing in n. For a proof, see Lee and
Hersh (1993). However, the behavior of y∗

i−1(n) over time can be characterized
more precisely, as the following proposition shows.

Proposition 5.2. For n = 2, . . . , N , and i = 0, . . . , imax

y∗
i−1(n − 1) ≤ y∗

i−1(n) ≤ y∗
i−1(n − 1) + 1 .



68 5 Basic Single Resource Capacity Control Models in Revenue Management

Proof. Introduce

∆AnVn(c) = AnVn(c) − AnVn(c − 1)

=
imax∑

i=0

p̂n(i) [max{An−1Vn−1(c), �i + An−1Vn−1(c − 1)}

− max{An−1Vn−1(c − 1), �i + An−1Vn−1(c − 2)} ] .

We know from Lemma 5.1 that ∆AnVn(c) is decreasing in c. Rearranging
terms yields on the one hand

∆AnVn(c) =
imax∑

i=0

p̂n(i) [max{∆An−1Vn−1(c), �i} + An−1Vn−1(c − 1)

− max{∆An−1Vn−1(c − 1), �i} − An−1Vn−1(c − 2) ]

= ∆An−1Vn−1(c − 1) +
imax∑

i=0

p̂n(i) [max{∆An−1Vn−1(c), �i}

−max{∆An−1Vn−1(c − 1), �i}]
≤ ∆An−1Vn−1(c − 1) ,

since ∆An−1Vn−1(c) ≤ ∆An−1Vn−1(c−1). On the other hand, one can obtain

∆AnVn(c) =
imax∑

i=0

p̂n(i) [max{0, �i − ∆An−1Vn−1(c)} + An−1Vn−1(c)

− max{0, �i − ∆An−1Vn−1(c − 1)} − An−1Vn−1(c − 1) ]

= ∆An−1Vn−1(c) +
imax∑

i=0

p̂n(i) [max{0, �i − ∆An−1Vn−1(c)}

−max{0, �i − ∆An−1Vn−1(c − 1)}]
≥ ∆An−1Vn−1(c) .

From these two inequalities, we can conclude that

∆An−1Vn−1(c) ≤ ∆AnVn(c) ≤ ∆An−1Vn−1(c − 1) . (5.4)

Now, by definition of the protection levels y∗
i−1(n), it holds that

�i < ∆AnVn(y∗
i−1(n)) .

We can therefore conclude from 5.4 for c = y∗
i−1(n) that

�i < ∆AnVn(y∗
i−1(n)) ≤ ∆An−1Vn−1(y∗

i−1(n) − 1) ,

which implies y∗
i−1(n − 1) ≥ y∗

i−1(n) − 1. For c = y∗
i−1(n − 1) we get

�i < ∆An−1Vn−1(y∗
i−1(n − 1)) ≤ ∆AnVn(y∗

i−1(n − 1)) ,

which implies y∗
i−1(n) ≥ y∗

i−1(n − 1) and completes the proof. ��
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In summary, the structure of an optimal policy is as follows: Given a
request from customer class i = 1, . . . , imax, a non-negative number of y∗

i−1(n)
seats (the so-called time-dependent protection level of class i − 1) is reserved
for demand in periods n − 1, . . . , 1. The protection levels are lower for higher
value demand and decrease, by not more than 1 per period, as departure
approaches.

5.1.3 A Numerical Example

To illustrate the structural results, we take up an example given by Lee and
Hersh (1993): They consider four booking classes with fares �1 = 200, �2 =
150, �3 = 120, and �4 = 80. The capacity of the airplane is C = 10, and there
are N = 30 booking periods; the request probabilities are listed in Table 5.1.

Figure 5.1 shows the time-dependent protection levels y∗
i−1(n) of an opti-

mal policy, y∗
0(n) = 0. Recall that n = 0 corresponds to the flight departure.

Table 5.1. Request probabilities p̂n(i).

n

i 1 ≤ n ≤ 4 5 ≤ n ≤ 11 12 ≤ n ≤ 18 19 ≤ n ≤ 25 26 ≤ n ≤ 30

1 0.15 0.14 0.10 0.06 0.08
2 0.15 0.14 0.10 0.06 0.08
3 0 0.16 0.10 0.14 0.14
4 0 0.16 0.10 0.14 0.14

0

2

4

6

8

10

1 5 9 13 17 21 25 29 n

y1
*(n) y2

*(n) y3
*(n)

Fig. 5.1. Protection levels of an optimal policy in the case of a risk-neutral decision-
maker.
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As an example, consider the situation 17 periods before departure. If a
class 4 request arrives, it is only accepted given a remaining capacity of 8 or
more, since y∗

3(17) = 7 seats are protected. If a class 3 request arrives in this
period, its acceptance is contingent upon a remaining capacity of 5 or more,
since y∗

2(17) = 4. Class 2 requests are only rejected if there are y∗
1(17) = 2

or fewer seats unsold in this period. Since class 1 customers yield the highest
possible revenue per seat, they are always accepted as y∗

0(17) = 0.
In accord with Theorem 5.1 and Propositions 5.1 and 5.2, the protection

levels are increasing in i and n by increments that do not exceed a height of
1. The expected revenue that is gained from these protection levels is 1403.2.

5.2 The Static Model

In static capacity control models, the demand of each booking class i ∈
{1, . . . , imax} is supposed to arrive during a single contiguous time segment.
In this case, the booking period can be divided into periods with booking
requests belonging to the same fare class. At the time the total number of re-
quests, i.e. the demand, d of a booking class i is known, one has to determine
the number a ∈ {0, . . . , d} of requests to be accepted in order to maximize
the expected revenue of that flight.

The total demands D1, . . . , Dimax of the booking classes i = 1, . . . , imax

are assumed to be independent random variables on D = {0, . . . , dmax} with
counting densities P (Di = d) = p̂i(d), d ∈ N0, say. Additionally, it is often
assumed that customer requests for tickets arrive in increasing fare order, i.e.
the class willing to pay fare �imax before �imax−1, etc. . We stick to this assump-
tion in the following. Since in this case there is a one-to-one correspondence
between periods and classes, we index both by i.

This model is called the “static model”, even though requests arrive se-
quentially over time in stages ordered by booking class and decisions have
to be made at every stage. Talluri and van Ryzin (2004b, p. 33) point out
that “static” can therefore be seen as a misnomer. Nevertheless, we will use
the term in order to adhere to standard terminology and to distinguish our
model from the dynamic version (in which the order of incoming requests is
arbitrary).

In the common version of the static model, overbooking is not allowed, and
cancelations as well as no-shows are not considered. Demand is independent
of the controls used.

The static revenue management model was first introduced and solved by
Littlewood (1972) for two fare classes. Bhatia and Parekh (1973) and Richter
(1982) provide a derivation of the solution, which is extended heuristically
to more fare classes by Belobaba (1987a), (1987b), (1989), and Belobaba
and Weatherford (1996). Curry (1990), Wollmer (1992), Brumelle and McGill
(1993), and Robinson (1995) provide an exact solution to the case of imax ≥ 2
fare classes. Li and Oum (2002) unify the optimality conditions given by Curry
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(1990), Wollmer (1992), and Brumelle and McGill (1993). Lautenbacher and
Stidham (1999) stress the structure of the underlying Markov decision pro-
cess of the static capacity control model and show structural similarities to
the dynamic model.

Extensions of this basic model include a two-class model with dependent
demands by Pfeifer (1989), McGill (1989), and Brumelle et al. (1990). Sen
and Zhang (1999) determine the optimal initial capacity in this case. Bodily
and Weatherford (1995) extend the two-class solution to a heuristic for more
than two fare classes. Robinson (1995) relaxes the increasing fare assumption.
Bitran and Gilbert (1996) introduce a variant of a three-class model with
no-shows for the hotel business. Van Ryzin and McGill (2000) introduce pro-
tection levels that adapt their values according to past booking data. Cooper
and Gupta (2006) apply stochastic order relations to compare expected rev-
enue gained from optimal protection levels in two markets with the same fare
classes but different demand distributions.

Note that although the simplification that customers arrive in increasing
fare order seems very restrictive at first sight, it is the model most widely
implemented in practice. First, it is argued that discount fares are frequently
offered in combination with an advance purchase restriction of several weeks.
Customers arriving late have to pay the full price. Second, if customers arrived
in a high-to-low fare order, there would never be any reason for rejecting
a customer request because no better alternative would become available.
From that perspective, the low-to-high fare assumption is similar to a worst-
case scenario that must be controlled. Third, due to the aggregated view on
booking classes, static models are relatively simple and demand less data than
dynamic models. In addition, simulation studies with more realistic passenger
behavior by Mayer (1976) and Titze and Griesshaber (1983) show that the
results of the static model are still close to optimal in the two-class case.

For a comprehensive introduction to static capacity control models, see
Talluri and van Ryzin (2004b, pp. 33–50) or Phillips (2005, pp. 149–174).

5.2.1 The Decision Model

The objective of finding a policy maximizing expected revenue in the static
capacity control model is generally reduced to solving the optimality equation
of a finite-stage Markov decision model (imax, X, Ai, pi, ri, V0) with planning
horizon imax. The state space is X = {(c, d) ∈ Z × D | c ≤ C}, where we
refer to c as the remaining capacity and to d as the number of requests, i.e.
demand, observed for the current booking class. The action space is A =
Ai = {0, . . . , dmax} for all i. Action a denotes the number of requests to be
accepted. The number of requests that can be accepted is only limited by the
observed demand; therefore, the sets of admissible actions in state (c, d) ∈ X
is A(c, d) = {0, . . . , d}. The transition laws pi from Ki = {(c, d, a) | (c, d) ∈
X, a ∈ A(c, d)} into X are defined by pi((c, d), a, (c − a, d′)) = p̂i−1(d′) and
0 otherwise (with p̂0(d) arbitrary). The one-stage reward functions ri on Ki,
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ri((c, d), a) = a�i (with �0 arbitrary), and terminal reward function V0 on X,
V0((c, d)) = 0 for c ≥ 0 and V0((c, d)) = �̄c for c < 0 with �̄ > �1.

Thus, for booking classes i = imax, imax − 1, . . . , 1, given the residual ca-
pacity ci and demand di, the number ai = fi(ci, di) ∈ {0, . . . , di} of seats to
be accepted must be determined.

By (Ximax , Ximax−1, . . . , X0), we denote the state process of the MDP, by
Fimax the set of all policies, and we write Rπ =

∑imax
i=1 ri(Xi, fi(Xi)) + V0(X0)

for the total reward gained when applying policy π. From Theorem 2.1, we
know that for (c, d) ∈ X,

V ∗(c, d) = max
π∈Fimax

Eπ

[
imax∑

i=1

ri(Xi, fi(Xi)) + V0(X0) | Ximax = (c, d)

]

= max
π∈Fimax

Eπ [Rπ | Ximax = (c, d)] ,

the maximum expected revenue starting with capacity c given d requests from
class imax, is the unique solution Vimax ≡ V ∗ to the optimality equation

Vi(c, d) = max
a∈{0,...,d}

{

a�i +
dmax∑

d′=0

p̂i−1(d′)Vi−1(c − a, d′)

}

= max
a∈{0,...,d}

{

a�i + Ai−1Vi−1(c − a)

}

, (5.5)

with AiVi(c) =
∑dmax

d=0 p̂i(d)Vi(c, d). The solution can be obtained for i =
1, . . . , imax by backward induction starting with V0. Every policy π∗ ∈ Fimax

formed by actions a∗ = f∗
i (c, d), each maximizing the right-hand side of (5.5),

is optimal.
Again, the optimality equation is frequently referred to as

AiVi(c) =
dmax∑

d=0

pi(d) max
a∈{0,...,d}

{

a�i + Ai−1Vi−1(c − a)

}

, (5.6)

with initial value A0V0(c) =
∑dmax

d=0 p̂i(d)V0(c, d); see e.g. Lautenbacher and
Stidham (1999). Due to the reduction of the state space, the complexity of
computation is lessened. But since we are mainly interested in structural re-
sults of an optimal policy, (5.5) and (5.6) can be used interchangeably.

5.2.2 Structural Results

As in the dynamic model, one can show by induction on n that the value
function is increasing and concave in c; see e.g. Lautenbacher and Stidham
(1999).

Lemma 5.3. For n = 1, . . . , N , d = 0, . . . , dmax the value function Vi(c, d) is
increasing and concave in c.
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Furthermore, we can show that the counterpart of Lemma 5.2 is the following.

Lemma 5.4. For i ∈ {1, . . . , imax}, and d ∈ {0, . . . , dmax} we have

(i) Vi(c, d) = �id + Ai−1Vi−1(c − 1) = �id +
∑i−1

i′=1

∑dmax

d′=0 p̂i′(d′)�i′d
′,

c ≥ idmax.
(ii) Vi(c, d) = An−iVi−1(c) = �̄c, c ≤ 0.

Proof. Both assertions follow by induction on i. For n = 1, the value function
is

V1(c, d) = max
a=0,...,d

{�1a + V0(c − a, 0)} .

Using V0(c − a, 0) = (c − a)�̄ for c ≤ 0, it follows that

�1a + V0(c − a, 0) = �̄c + a(�1 − �̄) ,

where the last term decreases in a, since �̄ > �1. Hence, action a = 0 maximizes
the value function fulfilling (ii). For c ≥ dmax, every action results in a non-
negative capacity at i = 0 with a terminal reward of 0. Consequently, the only
term of interest is �1a, which is increasing in a. The maximum is attained for
a = d and (i) is shown.

Now assume that (i) and (ii) are true for some i. Using the induction
hypothesis for c ≤ 0, Vi+1(c, d) reduces again to

Vi+1(c, d) = max
a=0,...,d

{�̄c + a(�i+1 − �̄)} ,

where the maximum is attained for a = 0 showing (ii). For c ≥ (i + 1)dmax,
every action causes a transition to a state c− a ≥ idmax. Using the induction
hypothesis, Vi+1(c, d) turns to

Vi+1(c, d) = max
a=0,...,d

{

�i+1a +
i∑

i′=1

dmax∑

d′=0

p̂i′(d′)�i′d
′
}

.

Again, a = d maximizes the right-hand side, showing (i). ��
From these lemmas, we can conclude that there is an optimal policy of

protection level type.

Theorem 5.2. For the static problem there exists an optimal policy π∗ =
(f∗

imax
, f∗

imax−1, . . . , f
∗
1 ) such that

f∗
i (c, d) =

{
min{d, c − y∗

i−1} c > y∗
i−1

0 c ≤ y∗
i−1 ,

with protection levels

y∗
i−1 = max {c ∈ {0, . . . , (i − 1)dmax} : �i < ∆Ai−1Vi−1(c)} .
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Hence, y∗
i−1 seats are reserved (protected) for future demand that pays a

higher fare. Incoming requests are accepted as long as there are non-protected
seats.

Given arrivals in increasing fare order, these protection levels are increasing
in i.

Proposition 5.3. Optimal protection levels are increasing in i, i.e. y∗
imax−1 ≥

y∗
imax−2 ≥ . . . ≥ y∗

1 ≥ y∗
0 = 0.

For a complete proof of the structure of an optimal policy, see e.g. Wollmer
(1992), Lautenbacher and Stidham (1999), or Talluri and van Ryzin (2004b,
pp. 58–62) in combination with Lemma 5.4. Since the static model is a special
case of the capacity control model in a random environment, however, the fact
that the decision rules are of protection level type and independent of d follows
immediately from Theorems 4.1 and 4.2.

To see that this is true, choose the external state to be a pure time param-
eter Z = {0, 1, . . . , imax} and let κe(z′) = κz(z′) = 1 for z′ = max{0, z − 1}
and 0 otherwise. The booking class In is almost surely equal to z. Hence,
ηz(d, i) = p̂z(d), and the absorbing set is J̃0 = {(d, i, z) ∈ E | z = 0}. Since
cancelations are not allowed, we have qe

c,c′ = 1 for c′ = c and 0 otherwise
(c ∈ C, e ∈ E). Let ψP(c, e) = �̄ max{0, − c}, (c, e) ∈ J0. There are no
terminal costs.

Again, ‖P̃ imax

J̃
1‖ = 0 and assumption (A1) is fulfilled. Since there are no

cancelations, qe
c,c′ = 1 for c = c′ and (A2) holds. Again, ψz(c) = ψP(c, e) =

�̄ max{0, −c} is decreasing and convex by assumption. Thus, (A3) is fulfilled.
Since the transition probabilities do not depend on the realization of d, (A4)
holds. Note that in the notation of the static model y∗(i, i) = y∗

i−1.
In summary, the structure of an optimal policy is as follows: Given d

requests from customer class i = 1, . . . , imax, a non-negative number of y∗
i−1

seats (the so-called protection level of class i−1) is reserved for future demand
of classes i−1, . . . , 1. The protection levels are lower for higher value demand.

5.2.3 A Numerical Example

As an illustration, consider the following data taken from van Ryzin and
McGill (2000): There are 4 fare classes with fare prices of �1 = 1050 ≥
�2 = 567 ≥ �3 = 527 ≥ �4 = 350. The total capacity is C = 100. The
demand is normally distributed (rounded to non-negative integer values with
dmax = 500). Table 5.2 shows the associated expectations E[Di] and standard
deviations σ[Di].

The protection levels of the optimal policy in the risk-neutral setting (ob-
tained by solving (5.5)) read: y∗

3 = 133, y∗
2 = 44, and y∗

1 = 17. This means
that e.g. no seats are sold to class 4 customers because C < 133. For classes 1
and 2, 44 seats are protected. So at most 100− 44 = 56 seats could be sold to
class 3 customers. Accordingly, 17 seats are protected for late-arriving class 1
requests. The expected revenue is about 60038.
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Table 5.2. Expectations and standard deviations of the number of requests.

fare class i E[Di] σ[Di]

1 17.3 5.8
2 45.1 15.0
3 73.6 17.4
4 19.8 6.6

5.2.4 The EMSR Heuristics

Although the computation of optimal controls for the static (single-resource)
capacity control model is not particularly difficult, exact optimization models
are not widely used in practice. According to Talluri and van Ryzin (2004b, p.
45), most (single-resource) airline revenue management systems use heuristics
to compute protection levels, “because they are simpler to code, quicker to
run, and generate revenues that in many cases are close to optimal.”

The two most popular heuristics for finding near-optimal protection lev-
els y1, . . . , yimax−1 are Belobaba’s expected marginal seat revenue (EMSR)
heuristics in versions a (EMSR-a) and b (EMSR-b). For EMSR-a, see Belob-
aba (1987a), (1987b), and (1989); for EMSR-b, see Belobaba and Weatherford
(1996). Both heuristics approximate the imax class static single-resource rev-
enue management model given a risk-neutral, i.e. expected revenue maximiz-
ing, decision-maker by extending Littlewood’s (1972) two-class solution to the
imax class model. They differ only in how they extend the solution method.

Littlewood’s Two-Class Model

For only imax = 2 fare classes, the static capacity control problem is very
similar to the newsvendor problem that dates back to Edgeworth (1888); see
Petruzzi and Dada (1999) for a review. Pfeifer (1989) emphasizes the similarity
between the newsvendor problem and the basic static model.

The observed class 2 demand d2, which can be interpreted as d2 requests
for one of the C seats in the airplane, the probability distribution of class 1
demand, and the fares �1 > �2 are given. The question is how much class
2 demand to accept before seeing the realization of class 1 demand. Stated
differently, it must be decided how many seats to protect from class 2 demand
for future class 1 demand.

A simple marginal analysis motivates the optimal solution: Suppose there
are c units of capacity remaining and there is an additional class 2 request.
If the request is accepted, the airline collects a revenue of �2 for this unit of
capacity. If it is not accepted, the unit can be sold at �1 if and only if class
1 demand is c or higher, i.e. if D1 ≥ c. Therefore, the expected marginal seat
revenue from reserving the cth unit for class 1, EMSR1(c), is �1P (D1 ≥ c).
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One should accept more class 2 demand as long as its price exceeds this
marginal value.

If the expected marginal seat revenue of seat y and class i is defined as

EMSRi(y) =P (Di ≥ y)�i ,

the optimal protection level, i.e. number of protected seats, y∗
1 satisfies

EMSR1(y∗
1) > �2 and EMSR1(y∗

1 + 1) ≤ �2 . (5.7)

In the case of two booking classes, the expected marginal seat revenue of seat
y and class 1 expresses the expected revenue gain by offering seat y to class 1.
The optimal protection level y∗

1 is the largest value of y for which the expected
marginal seat revenue of class 1 is higher than the class 2 fare.

The EMSR-a Heuristic

In his thesis, Belobaba (1987a, pp. 126–131) proposes a straightforward exten-
sion of the two-class solution to the imax class model, which is known as the
EMSR-a heuristic. The protection level for the current class i with revenue �i

is determined by summing up all the protection levels relative to each of the
higher classes.

Assume one is interested in yi−1, i.e. the number of seats to protect from
class i or, stated differently, to reserve for future classes i − 1, . . . , 1. In order
to determine yi−1, pick a single class j among the future classes i − 1, . . . , 1
and compare i and j in isolation first. Considering only these two classes, (5.7)
is used and yj

i−1 seats are reserved for class j, where

EMSRj(y
j
i−1) > �i and EMSRj(y

j
i−1 + 1) ≤ �i . (5.8)

Repeating this for each future class j = i− 1, . . . , 1 yields how much capacity
to protect from class i for each class j in isolation. The idea of EMSR-a is to
add up these individual protection levels to approximate the total protection
level yi−1 as

ya
i−1 =

i−1∑

j=1

yj
i−1 . (5.9)

According to Talluri and van Ryzin (2004b, p. 46), EMSR-a was believed
to be optimal for a short time because of its intuitive appeal, but this was
disproved by the published work on optimal controls. In general, EMSR-a
can over- and underestimate optimal protection levels (see e.g. Brumelle and
McGill (1993)). It performs extremely badly when there is a large number
of classes with similar fare prices; for an example, see Talluri and van Ryzin
(2004b, pp. 46–47) or Robinson (1995). Yet it requires less computational ef-
fort and is often only marginally worse than the optimal policy (see Robinson,
1995).
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In the numerical example from Sect. 5.2.3, EMSR-a yields protection levels
of ya

3 = 106, ya
2 = 40, and ya

1 = 17. Unsurprisingly, ya
1 = y∗

1 , since the heuristic
is exact given only two booking classes. The expected revenue generated by
these protection levels (rounded to an integer value) is 60010, or 0.05% lower
than optimal.

The EMSR-b Heuristic

Expected marginal seat revenue in version b is an alternative heuristic for the
static imax class model that reduces the problem for each period to the two-
class model. In contrast to EMSR-a, the idea is to aggregate demand rather
than protection levels.

EMSR-b aggregates demand from future classes and treats them as one
artificial class in which demand is equal to the sum of the demands and
revenue is equal to the weighted-average revenue of these classes. In so doing,
it assumes that a passenger displaced by an additional booking would request
a seat equal in revenue to this weighted average.

Let us again consider the calculation of the number of seats to protect
from class i, yi−1. EMSR-b considers only two classes, class i with associated
revenue �i and the artificial class (i − 1)◦. We define the demand of class
(i − 1)◦ as the aggregated future demand for classes i − 1, . . . , 1,

D(i−1)◦ =
i−1∑

j=1

Dj , (5.10)

and the revenue �(i−1)◦ associated with class (i− 1)◦ as the weighted average
revenue from classes 1, . . . , i − 1,

�(i−1)◦ =

∑i−1
j=1 �jE [Dj ]
∑i−1

j=1 E [Dj ]
. (5.11)

For these two classes, i and (i − 1)◦, formula (5.7) can be used to determine
y(i−1)◦ , the number of seats reserved for class (i − 1)◦:

EMSR(i−1)◦(y(i−1)◦) > �i and EMSR(i−1)◦(y(i−1)◦ + 1) ≤ �i . (5.12)

EMSR-b then sets the recommended protection level yb
i−1 equal to y(i−1)◦ .

Similar to EMSR-a, the EMSR-b heuristic has strong intuitive appeal.
However, it assumes that the expected revenue of a future accepted request is
equal to the expected revenue of all future requests. This is an approximation,
because protection levels will also be set for higher booking classes, so the
expected demand accepted in classes j = i − 1, . . . , 1 will not be equal to
E[Dj ] in general.

According to Talluri and van Ryzin (2004b, p. 48), EMSR-b is more fre-
quently implemented in practice and generally performs better than EMSR-a,
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although simulation studies comparing the two are ambiguous. Talluri and van
Ryzin (2004b) cite studies of Belobaba (1992) showing that EMSR-b consis-
tently performs within 0.5 percent of the optimal revenue, whereas in certain
cases EMSR-a deviated by nearly 1.5 percent from the optimal revenue. A
study by Pölt (1999) showed a more mixed performance, with neither heuris-
tic dominating the other.

In the numerical example from Sect. 5.2.3, EMSR-b yields protection levels
of yb

3 = 131, yb
2 = 51, and yb

1 = 17. Unsurprisingly, yb
1 = y∗

1 , since the heuristic
is exact given only two booking classes. The expected revenue generated by
these protection levels is about 59902, or 0.24% lower than optimal.

The results from solving the optimality equation, EMSR-a, and EMSR-b
for the numerical example are listed in Table 5.3.

Table 5.3. Protection levels and expected revenue from solving the exact model,
EMSR-a, and EMSR-b.

y3 y2 y1 E[R]

exact 133 44 17 60038
EMSR-a 127 40 17 60010
EMSR-b 131 51 17 59902



Part III

Expected Utility Maximizing Capacity Control



The following chapters introduce the concept of risk-aversion to capac-
ity control models. The static and the dynamic (capacity control) model are
recapitulated from the perspective of an expected utility maximizing decision-
maker. As indicated in Chap. 3, we restrict ourselves to the case of a decision-
maker with either an additive time-separable utility function or an atemporal
utility function.

Chapter 6 deals with the case of a decision-maker with an additive time-
separable utility function. Given this preference structure, we show that nested
protection levels are suitable for the dynamic model but not for the static
model. In the dynamic model, we analyze the monotonicity of these protection
levels in time and booking class as well as in the degree of risk-aversion. In
the static model, optimal controls are monotone in the remaining capacity,
yet they are not of protection level type. We also examine structures of an
optimal policy with respect to the booking class or degree of risk-aversion.
Our findings are illustrated by numerical examples.

After a critical discussion of the assumption of an additive time-separable
utility function for capacity control problems, the structure of an optimal pol-
icy given an atemporal utility function is analyzed in Chap. 7. By means of
examples, we show that many structural results known from the risk-neutral
setting do not hold for a general shape of the utility function. Given constant
absolute risk-aversion γ, i.e. an exponential utility function, however, all struc-
tural results of the expected revenue maximizing policy can be shown to hold
for the expected utility maximizing policy in both the static and the dynamic
problem. Under certain circumstances, the risk-neutral case can be shown to
emerge as a special case for γ → 0. The EMSR heuristics for the static model
can be extended straightforwardly to account for this type of risk-aversion.
In a small simulation study, we examine the impact of an expected atempo-
ral exponential utility maximizing policy in a static model when the exact
approach is applied or the heuristic counterparts are used. We compare our
approach to the one proposed by Weatherford (2004). This chapter contains
and extends the results of Barz and Waldmann (2007) and Barz (2006).

In Chap. 8, we examine how structures known from the risk-neutral setting
also carry over to the case of a decision-maker maximizing expected atemporal
exponential utility for more advanced, non-basic models, such as the capacity
control model under a general discrete choice model of consumer behavior.
We recapitulate this model as introduced by Talluri and van Ryzin (2004a) in
the risk-neutral case. In a second step, we take the perspective of an expected
utility maximizing decision-maker. By doing so, we concentrate on the case of
an atemporal exponential utility function. This part reformulates and extends
the ideas of Barz and Schön (2006).

In our analysis, we always assume the decision-maker’s utility function to
be known. For details on how to assess a decision-maker’s utility function, see
e.g. Keeney and Raiffa (1976, Sect. 4.9) or Eisenführ and Weber (2003, Sect.
9.4).
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Capacity Control Maximizing Additive
Time-Separable Utility

As mentioned before, the assumption of an additive time-separable utility
function ũ(��) =

∑N
n=0 un(�n), un(0) = 0 for all time periods n = 0, . . . , N , is

the one most frequently used in combination with Markov decision processes.
Yet, as indicated in Chap. 3, it imposes a special structure of temporal and
risk preferences.

In this section, we analyze the impact of additive time-separable prefer-
ences on the structure of an optimal control policy for the dynamic as well as
the static capacity control problem. We assume the one-stage utility functions
un to be increasing and concave to model a risk-averse decision-maker.

In both the dynamic and the static model, the terminal reward is chosen
such that overbooking is not advisable in the absence of cancelations or no-
shows. Every reasonable, non-overbooking policy has a terminal reward of
zero. That is why we assume throughout that u0(�0) = 0 for �0 > 0 and
u0(�0) = �0�̄u/�̄ else with �̄u > maxn=1,...,N un(�1). Of course, other shapes of
u0 can be imagined. But since the only purpose of the terminal reward is to
ensure that at most C requests are accepted in total, all increasing functions
u0 with u0(�0) = 0 for �0 ≥ 0 that prevent overbooking result in the same
add-optimal policy. So the only restriction imposed by this choice is that we
do not account for scenarios in which negative capacity at flight departure,
n = 0, is desirable.

6.1 The Dynamic Model

Applying the definition of V add∗ and the optimality equation (3.8) to the
dynamic capacity control problem yields that the maximum expected (addi-
tive time-separable) utility starting with capacity c given a class i request N
periods before departure,

V add∗(c, i) = max
π∈FN

Eπ

[
N∑

n=1

un (rn(Xn, fn(Xn))) + u0 (V0(X0)) | XN = (c, i)

]
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for (c, i) ∈ X, is the unique solution V add∗ ≡ V add
N to the optimality equation

V add
n (c, i) = max

a∈A(c,i)

{

un (a�i) +
imax∑

i′=0

p̂n−1(i′)V add
n−1(c − a, i′)

}

. (6.1)

It can be obtained for n = 1, . . . , N iteratively, starting with the terminal
reward u0(V0(c, i)) and u0 as defined above. Every policy πadd∗ formed by
actions a = fadd∗

n (x), each maximizing the right-hand side of (6.1), is add-
optimal, i.e. leads to V add∗.

Using Anv(c) =
∑imax

i=0 p̂n(i)v(c, i), the optimality equation (6.1) can also
be stated as

AnV add
n (c) =

imax∑

i=0

p̂n−1(i) max
a∈A(c,i)

{
un (a�i) + An−1V

add
n−1(c − a)

}
,

with initial value A0V
add
0 (c).

6.1.1 Structural Results

Since we are dealing with monetary outcomes, we assume un(�) to be increas-
ing in � with un(0) = 0 for all n = 0, . . . , N . The set of admissible actions
A(c, i) only contains the numbers 0 and 1 in this model. Thus, the utility
functions simply rescale the fares �i to un(�i). This rescaling of fares leaves
many structural properties unchanged.

Substituting the fares �i by their utilities un(�i), the following lemma
follows directly from Lemma 5.1.

Lemma 6.1. For n = 1, . . . , N , i = 0, . . . , imax the value function V add
n (c, i)

is increasing and concave in c.

From this lemma and �0 = 0,

Vn(c, 0) = An−1Vn−1(c) ≥ An−1Vn−1(c − 1) , n = 1, . . . , N, c ∈ C

follows. Thus, the set of feasible actions can be extended to A for all (c, i) ∈ X
without loss of generality.

Similar to the expected revenue maximizing case, one can show that there
is an add-optimal policy of the following structure.

Theorem 6.1. Assume a decision-maker with additive time-separable utility
function as defined above. There then exists an add-optimal policy πadd∗ =
(f∗

N , f∗
N−1, . . . , f

∗
1 ) for the dynamic capacity control problem such that

f∗
n(c, i) =

{
1 c > yadd∗

i−1 (n)
0 c ≤ yadd∗

i−1 (n) ,
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with time-dependent protection levels

yadd∗
i−1 (n) = max

{
c ∈ {0, . . . , n − 1} : un (�i) < ∆An−1V

add
n−1(c)

}
.

For fixed n,

yadd∗
imax−1(n) > yadd∗

imax−2(n) > · · · > yadd∗
0 (n) = 0 .

The proof is the same as in the dynamic model in Sect. 5.1.
For the risk-neutral setting, we were able to show that add-optimal protec-

tion levels are increasing in the number of periods until departure and never
increase by more than one from period to period. This is certainly also true
in the additive time-separable case if un(�) = u1(�) for all n = 1, . . . , N . Given
different utility functions for different periods, however, the protection levels
need not be increasing in n, and if they increase, it might well be by more
than one. An example is given in the next subsection (Example 1).

Of course, a linear transformation of the utility function (with positive
slope) leaves the add-optimal policy unchanged. Non-linear transformations
of one-stage utility functions, however, can change the protection levels. If the
decision-maker becomes more risk-averse within every period in the sense that
all one-stage utility-functions are transformed by the same concave function
g, protection levels do not increase.

Proposition 6.1. Let g : R → R be a concave, increasing, and invert-
ible function with g(0) = 0. The protection levels of a decision-maker with
preferences represented by the utility function u1(�) =

∑N
n=0 un(�) are never

lower than those of a decision-maker with preferences represented by u2(�) =∑N
n=0 g(un(�)).

Proof. Let V add1
n (c, i) and V add2

n (c, i) denote the value functions of decision-
makers with utility functions u1 and u2. From Theorems 6.1 and 5.1, we know
that for both decision-makers an add-optimal policy can be described in terms
of time-dependent protection levels

yadd1∗
i−1 (n) = max

{
c ∈ N0 : un (�i) < ∆An−1V

add1
n−1 (c)

}
,

yadd2∗
i−1 (n) = max

{
c ∈ N0 : g(un (�i)) < ∆An−1V

add2
n−1 (c)

}
.

It must now be proven that yadd1∗
i−1 (n) ≥ yadd2∗

i−1 (n) for all i = 1, . . . , imax and
n = 1, . . . , N . As a first step, we establish the following two assertions:

(i) For all i = 1, . . . , imax, n = 0, . . . , N − 1 and c ≥ 0,

V add2
n (c, i) − V add2

n (c − 1, i) ≤ g
(
V add1

n (c, i) − V add1
n (c − 1, i)

)
;

(ii) For all n = 0, . . . , N − 1 and c ≥ 0,

∆AnV add2
n (c) ≤ g

(
∆AnV add1

n (c)
)

.
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We show (i) and (ii) by induction on n. For n = 0, (i) is a direct conse-
quence of the definition of u0, because g is concave and g(0) = 0. Given (i) is
true for some n, assertion (ii) follows from

∆AnV add2
n (c) =

imax∑

i=0

p̂n(i)(V add2
n (c, i) − V add2

n (c − 1, i))

≤
imax∑

i=0

p̂n(i)g(V add1
n (c, i) − V add1

n (c − 1, i))

≤ g

(
imax∑

i=0

p̂n(i)(V add1
n (c, i) − V add1

n (c − 1, i))

)

= g
(
∆AnV add1

n (c)
)

.

Now assume that (i) and (ii) hold for some n ≥ 0. For n + 1, we then obtain

V add2
n+1 (c, i) − V add2

n+1 (c − 1, i)

= max{g(un+1(�i)),∆AnV add2
n (c)}

− max{g(un+1(�i)), ∆AnV add2
n (c − 1)} + ∆AnV add2

n (c − 1)

=






∆AnV add2
n (c) , g(un+1(�i)) ≤ ∆AnV add2

n (c)
∆AnV add2

n (c − 1) ,∆AnV add2
n (c − 1) ≤ g(un+1(�i))

g(un+1(�i)) , otherwise

≤





g
(
∆AnV add1

n (c)
)

, un+1(�i) ≤ ∆AnV add1
n (c)

g
(
∆AnV add1

n (c − 1)
)

, ∆AnV add1
n (c − 1) ≤ un+1(�i)

g(un+1(�i)) , otherwise

= g
(
V add1

n+1 (c, i) − V add1
n+1 (c − 1, i)

)
,

where we used the inequality ∆AnV add1
n (c− 1) ≥ ∆AnV add1

n (c) from Lemma
6.1 and the fact that assertion (ii) holds for n.

An argument similar to the one used for n = 0 shows assertion (ii) given
assertion (i). Hence, the induction is complete.

Applying (i) and (ii) to the protection levels given in Theorem 6.1 yields
that for all i = 1, . . . , imax and n = 1, . . . , N

yadd2∗
i−1 (n) = max

{
c ∈ N0 : g (un (�i)) < An−1V

add2
n−1 (c)

}

= max
{
c ∈ N0 : un (�i) < g−1

(
An−1V

add2
n−1 (c)

)}

≤ max
{
c ∈ N0 : un (�i) < An−1V

add1
n−1 (c)

}
= yadd1∗

i−1 (n) .

Thus, yadd2∗
i−1 (n) ≤ yadd1∗

i−1 (n) for all i = 1, . . . , imax and n = 0, . . . , N − 1. ��

6.1.2 Numerical Examples

We give two numerical examples to illustrate our results. The first one is
to underline that protection levels need not be monotone in time given a
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Fig. 6.1. Protection levels yadd∗
i (n) of an add-optimal policy given exponential

one-stage utility functions with γ = 0.002.

decision-maker with a general, additive time-separable utility function. The
second example reconsiders the numerical example given in the discussion
of a risk-neutral, expected revenue maximizing decision-maker. The effect of
introducing risk-aversion on the structure of an add-optimal policy is demon-
strated.

Example 1: Non-Monotonicity in time

Consider a dynamic capacity control problem with imax = 2 fare classes n = 4
periods before departure. The fares are �1 = 16 and �2 = 4. The decision-
maker maximizes expected utility and has an additive time-separable utility
function with u1(�) = u2(�) = u4(�) = �1/2, u3(�) = �. The number of seats that
should be protected for class 1 customers over time can then be calculated
as yadd∗

1 (4) = 2, yadd∗
1 (3) = 0, yadd∗

1 (2) = 1, yadd∗
1 (1) = 0. Clearly, these

protection levels are non-monotone in time and vary by more than 1 from
period to period (in contrast to the optimal protection levels in the case of a
risk-neutral decision-maker).

Example 2: The Example Given by Lee and Hersh (1993)
(Continued)

We continue the example from Sect. 5.1.3. Seats are sold in four booking
classes with fares �1 = 200, �2 = 150, �3 = 120, and �4 = 80. There is a
capacity of C = 10 seats N = 30 booking periods before departure. The
request probabilities are listed in Table 5.1.

Assume now that the preferences of the decision-maker can be expressed
by an additive time-separable utility function with exponential one-period
utility functions un(�) = 1 − exp(−γ�), n = 1, . . . , N . Note that 1 is added to
the exponential utility formulation given in (3.4) to assure un(0) = 0 for all
n.
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Figures 6.1 and 6.2 show the time-dependent protection levels yadd∗
i−1 (n) for

γ = 0.002 and γ = 0.01. yadd∗
1 (n) corresponds to the black columns, yadd∗

2 (n)
to the gray, and yadd∗

3 (n) to the white. Recall that n = 0 represents flight
departure. As shown in Theorem 6.1, the protection levels are increasing in i.
In accordance with the result of Proposition 6.1, the protection levels decrease
for higher single period risk-aversion. Therefore, the protection levels when
γ = 0.002 are slightly lower than in the risk-neutral case considered in Sect.
5.1.3 and higher than those when γ = 0.01.

6.2 The Static Model

Assume that in static capacity control problem, the decision-maker is inter-
ested in finding

V add∗(c, d) = max
π∈Π

Eπ

[
imax∑

i=1

ui (ri(Xi, fi(Xi))) + u0 (V0(X0)) | Ximax = (c, d)

]

,

the maximum expected (additive time-separable) utility starting with capacity
c given d requests from class imax over all policies Π = Fimax .

Using Aiv(c) =
∑dmax

d=0 p̂i(d)v(c, d), the optimality equations of the additive
utility maximization problem can be stated as

V add
i (c, d) = max

a=0,...,d
{ui(a�i) +

dmax∑

d′=0

pi−1(d′)V add
i−1 (c − a, d)

= max
a=0,...,d

{ui(a�i) + Ai−1V
add
i−1 (c − a)}

with terminal reward V add
0 (c, d) = u0(V0(c, d)) = 0 for c ≥ 0, d ∈ D and

V add
0 (c, d) = u0(V0(c, d)) = c�̄u for c < 0, d ∈ D where �̄u is sufficiently large

to prevent overbooking, i.e. �̄u > maxi=1,...,imax ui(�1).
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Fig. 6.2. Protection levels yadd∗
i (n) of an optimal policy given exponential one-stage

utility functions with γ = 0.01.
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Rearranging the optimality equation yields

V add
i (c, d) = max

a=0,...,d
{ui(a�i) + Ai−1V

add
i−1 (c − a) − Ai−1V

add
i−1 (c)}

+ Ai−1V
add
i−1 (c)

= max
a=0,...,d

{ a∑

a′=1

[
ui

(
a′�i

)− ui

(
(a′ − 1)�i

)

− ∆Ai−1V
add
i−1 (c − a′ + 1)

]}
+ Ai−1V

add
i−1 (c) . (6.2)

The recursion given in (6.2) turns out to be advantageous for proving struc-
tural results.

Again, the equivalent form is

AiV
add
i (c) =

dmax∑

d′=0

p̂i(d′) max
a=0,...,d

{ui(a�i) + Ai−1V
add
i−1 (c − a)} .

6.2.1 Structural Results

The following lemma yields that all summands in (6.2) are increasing in c.

Lemma 6.2. For fixed i = 1, . . . , imax and d ∈ N0, the value function
V add

i (c, d) is increasing and concave in c.

Proof. The proof is by induction on i. V add
0 (c, d) is increasing and concave in

c. The values for i > 0 can be obtained by

V add
i (c, d) = max

a=0,1,...,d
{ui(a�i) + Ai−1V

add
i−1 (c − a)} .

Given V add
i (c, d) is increasing and concave for some i, the linear combination

g(c) = Ai−1V
add
i−1 (c − a) is also increasing and concave. Thus, the maximum

V add
i+1 (c, d) is increasing. Concavity follows from the induction hypothesis and

the concavity of ui using Lemma B.2 (given Appendix B), which is a straight-
forward extension of Lemma 1 in Stidham (1978). ��

Again, the following lemma is obvious.

Lemma 6.3. For i ∈ {1, . . . , imax} and d ∈ {0, . . . , dmax}, we have

(i) V add
i (c, d) = ui(�id) + Ai−1V

add
i−1 (c − 1),

= ui(�id) +
∑i−1

i′=1

∑dmax
d′=0 p̂i′(d′)ui′(�i′d

′), c ≥ idmax.
(ii) V add

i (c, d) = An−iV
add
i−1 (c) = �̄uc, c ≤ 0.

Proof. Both assertions follow by induction on i. The value function at stage
n = 1 is
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V add
1 (c, d) = max

a=0,...,d

{
u1(�1a) + V add

0 (c − a, 0)
}

.

Using V add
0 (c − a, 0) = (c − a)�̄u for c ≤ 0, it follows that

u1(�1a) + V add
0 (c − a, 0) = �̄uc + u1(�1a) − �̄ua .

This term is decreasing in a, because u1 is concave. As �̄u > u1(�1), action
a = 0 maximizes the value function fulfilling (ii). For c ≥ dmax, every action
results in a non-negative capacity at i = 0 with a terminal reward of 0.
Consequently, the only term of interest is u1(�1a), which is increasing in a by
assumption. Hence, the maximum is attained for a = d and (i) is shown.

Assume that (i) and (ii) are true for some 1 ≤ i < imax. For c ≤ 0,
V add

i+1 (c, d) can be rearranged to read

V add
i+1 (c, d) = max

a=0,...,d
{�̄uc + ui+1(�i+1a) − �̄ua.} = �̄uc ,

where the maximum is attained for a = 0, showing (ii). For c ≥ (i + 1)dmax,
every action causes a transition to a state c − a ≥ idmax. V add

i+1 (c, d) can be
written as

V add
i+1 (c, d) = max

a=0,...,d

{

ui+1(�i+1a) +
i∑

i′=1

dmax∑

d′=0

p̂i′(d′)ui′(�i′d
′)

}

.

Again, a = d maximizes the right-hand side, showing (i). ��
We are now in a position to state the following property of an add-optimal

policy:

Theorem 6.2. Assume a decision-maker who maximizes expected additive
time-separable utility with increasing and concave one-stage utility functions
ui. There then exists an add-optimal policy πadd∗ = (f∗

N , f∗
N−1, . . . , f

∗
1 ) for the

static capacity control problem such that

fadd∗
i (c, d) =

{
min{d, c − yadd∗

i−1 (c)} c > yadd∗
i−1 (c)

0 c ≤ yadd∗
i−1 (c) ,

with capacity dependent controls

yadd∗
i−1 (c) = max {y ∈ {0, . . . , dmax} : ui ((c − y + 1)�i) − ui ((c − y)�i)

< ∆Ai−1V
add
i−1 (y)

}

and yadd∗
0 (c) = 0. In addition, for all i and c,

0 ≤ yadd∗
i−1 (c + 1) − yadd∗

i−1 (c) ≤ 1 .
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Proof. From Lemma 6.2, we can conclude that ∆Ai−1V
add
i−1 (c−α + 1) is non-

negative and decreasing in c, and that u is concave by assumption. Thus, the
summands in (6.2) are decreasing in a′. It follows directly from (6.2) that one
sells more and more seats, i.e. increases a, as long as there is demand and

ui(a�i) − ui((a − 1)�i) − ∆Ai−1V
add
i−1 (c − a + 1) > 0

holds. Combined with Lemma 6.3, this yields the controls yadd∗
i−1 (c) stated

above. yadd∗
0 (c) = 0 holds because u1(�1) > 0, A0V

add
0 (y) = 0 for all y > 0,

and A0V
add
0 (0) = �̄u > u1(�1) by definition of �̄u.

Another immediate consequence of Lemma 6.2 and equation (6.2) is that
the add-optimal action is increasing in c. Consequently, c+1− yadd∗

i−1 (c+1) ≥
c − yadd∗

i−1 (c) or

yadd∗
i−1 (c + 1) ≤ yadd∗

i−1 (c) + 1 .

Since all utility functions ui are assumed to be concave, it holds that

ui (((c + 1) − y + 1)�i) − ui (((c + 1))�i)
≤ ui ((c − y + 1)�i) − ui ((c − y)�i) .

Applying this to the definition of the control yadd∗
i−1 (c) yields

yadd∗
i−1 (c + 1) ≥ yadd∗

i−1 (c) ,

completing the proof. ��
Note that given a decision-maker with additive time-separable utility function,
there need not be an add-optimal policy that can be described in terms of pro-
tection levels (which are capacity-independent) for the static capacity control
model. One can think of this as a consequence of the additive time-separable
utility function that is composed of concave one-stage utility functions. The
concave utility functions impose a preference for a smooth income stream over
time and destroy the structure known from the risk-neutral setting.

In general, the add-optimal controls yadd∗
i (c) need not be increasing in the

fare class i. Yet one can show the following sufficient condition.

Proposition 6.2. If ui (a�i) − ui ((a − 1)�i) is decreasing in i for all a, the
controls yadd∗

i (c) are decreasing in i.

The proposition is a direct consequence of the definition of yadd∗
i (c) and the

following lemma.

Lemma 6.4. ∆AiV
add
i (c) is increasing in i for all c = 0, . . . , C.

Proof. From Theorem 6.2, we know that the add-optimal action in stage i
given c seats and facing a demand d is
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fadd∗
i (c, d) = min{d, (c − yadd∗

i−1 (c))+} .

Thus, using

0 ≤ yadd∗
i−1 (c + 1) − yadd∗

i−1 (c) ≤ 1

and introducing

h(c, i) = ui

(
(c − yadd∗

i−1 (c))�i

)− ui

(
(c − 1 − yadd∗

i−1 (c − 1))�i

)

+ Ai−1V
add
i−1

(
yadd∗

i−1 (c)
)− Ai−1V

add
i−1

(
yadd∗

i−1 (c − 1)
)

gives

∆AiV
add
i (c) =

dmax∑

d=0

p̂i(d)
[
V add

i (c, d) − V add
i (c − 1, d)

]

=
dmax∑

d=0

p̂i(d)
[
ui

(
min

{
d, (c − yadd∗

i−1 (c))+
}
�i

)

+ Ai−1V
add
i−1

(
c − min

{
d, (c − yadd∗

i−1 (c))+
})

− ui

(
min

{
d, (c − 1 − yadd∗

i−1 (c − 1))+
}
�i

)

− Ai−1V
add
i−1

(
c − 1 − min

{
d, (c − 1 − yadd∗

i−1 (c − 1))+
})
]

=






∆Ai−1V
add
i−1 (c) , c ≤ yadd∗

i−1 (c)
∑c−1−yadd∗

i−1 (c)

d=0 p̂i(d)∆Ai−1V
add
i−1 (c − d)

+
∑dmax

d=c−yadd∗
i−1 (c) p̂i(d)h(c, i) , c > yadd∗

i−1 (c) .

Our aim is to show that in both cases, ∆AiV
add
i (c) is smaller than or equal to

∆Ai−1V
add
i−1 (c). This is clearly true for the case c ≤ yadd∗

i−1 (c). For c > yadd∗
i−1 (c),

we need to consider that ∆Ai−1V
add
i−1 (c−d) ≥ ∆Ai−1V

add
i−1 (c) (cf. Lemma 6.2)

and that either yadd∗
i−1 (c + 1) = yadd∗

i−1 (c) or yadd∗
i−1 (c + 1) = yadd∗

i−1 (c) + 1 (cf.
Theorem 6.2). If yadd∗

i−1 (c + 1) = yadd∗
i−1 (c), we obtain

h(c, i) = ui

(
(c − yadd∗

i−1 (c))�i

)− ui

(
(c − 1 − yadd∗

i−1 (c))�i

)

≥ ∆Ai−1V
add
i−1

(
yadd∗

i−1 (c) + 1
)

≥ ∆Ai−1V
add
i−1 (c) ,

where the first inequality follows from the definition of the protection levels
and the second from Lemma 6.2 and c > yadd∗

i−1 (c). Given yadd∗
i−1 (c + 1) =

yadd∗
i−1 (c) + 1

h(c, i) = ∆Ai−1V
add
i−1

(
yadd∗

i−1 (c)
)

≥ ∆Ai−1V
add
i−1 (c) ,

where the inequality follows again from Lemma 6.2 and c > yadd∗
i−1 (c).

Putting everything together yields ∆AiV
add
i (c) ≤ ∆Ai−1V

add
i−1 (c). ��
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In contrast to the dynamic model, for the static model there need not
exist an optimal policy that is monotone in the degree of risk-aversion. The
reason for this is that given an expected utility maximizing decision-maker
with additive time-separable preferences, the preference for a smooth income
stream and the degree of risk-aversion increase at the same time. These two
forces have an opposite influence on the preferred control.

As the add-optimal controls explicitly depend on the number of remaining
seats, the EMSR-a and EMSR-b heuristics discussed in the risk-neutral setting
cannot be transformed straightforwardly. Yet should an extension be required,
an expected marginal additive time-separable seat utility (EMATU) of seat y
and class j could be defined as

EMATUj(y) =P (Dj ≥ y) [uj(y�j) − uj((y − 1)�j)] .

In (5.8) and (5.12), the values of EMATU must be compared to ui((c − y +
1)�i) − ui((c − y)�i), a term that depends on c, in addition to the fare �i.

6.2.2 Numerical Examples

Two numerical examples are discussed to illustrate the structure of an add-
optimal policy for the static capacity control problem. The first serves as a
counterexample for monotonicity of the controls in the booking class. The
data given in Sect. 5.2.3 is used in the second example. For a decision-maker
with an exponential one-stage utility function, the results demonstrate the
dependence of the add-optimal controls on the remaining capacity as well as
the non-monotonicity in the coefficient of absolute risk-aversion.

Example 1: Non-Monotonicity in Booking Class

Given a total capacity of C = 50, tickets are sold in imax = 4 booking classes
at fares �1 = 1000, �2 = 101, �3 = 100, and �4 = 10. The demands at each
stage are assumed to be independent identically distributed with p̂i(d) = 0.2
for d = 0, 1, 2; p̂i(d) = 0.1 for d = 3, 4; p̂i(d) = 0.05 for d = 5; and p̂i(d) = 0.01
for d = 6, . . . , 20. Given a risk-neutral decision-maker, the optimal protection
levels are y∗

1 = y∗
2 = 0 and y∗

3 = 18. In line with the results of Theorem
5.2, these controls are independent of c and increasing in the booking class
i. For an expected utility maximizing decision-maker with exponential one-
stage utility function un(�) = 1− exp(−γ�) for all n = 1, . . . , N and γ = 0.05,
controls of yadd∗

1 (c) = 0 for all c are still preferred. The number of seats that
should be protected for classes 2 and 3, however, depends on the number of
seats available at the corresponding stage.

Figure 6.3 shows a plot of the add-optimal controls yadd∗
2 (c) and yadd∗

3 (c).
The controls of booking class 2 are plotted in gray, the controls of class 3
are white, and dotted columns indicate that both are equal. Although it is
obvious that the add-optimal controls depend on c, it can be seen that they
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Fig. 6.3. Capacity dependent controls for classes 2 and 3 of an add-optimal policy
given exponential one-stage utility functions with γ = 0.05.

never increase by more than 1. In addition, they need not be monotone in
the booking class. In this example, yadd∗

2 (c) is larger than yadd∗
3 (c) for small

values of c. They are equal for values of 38 ≤ c ≤ 41. For higher values of c,
the control yadd∗

3 (c) is larger than yadd∗
2 (c).

Example 2: The Example Given by van Ryzin and McGill (2000)
(Continued)

We continue the example of Sect. 5.2.3 and concentrate on the case of c = 85
remaining seats. Consider a decision-maker with an additive time-separable
utility function with identical exponential utility functions for every stage
n = 1, . . . , N . Figure 6.4 shows the add-optimal controls yadd∗

1 (85), yadd∗
2 (85),

and yadd∗
3 (85) for different values of the parameter γ = 0.0001, 0.0002, 0.0005,

and 0.001. The black columns represent yadd∗
1 (85), the gray ones yadd∗

2 (85)
and the white ones yadd∗

3 (85). For increasing risk-aversion, the values of the
add-optimal controls change in different directions. The controls yadd∗

1 (85)
increase, while the values of yadd∗

2 (85) and yadd∗
3 (85) decrease.

 

Fig. 6.4. Controls of an add-optimal policy for classes 1, 2 and 3 given 85 remaining
seats and one-stage exponential utility functions with γ = 0.0001, 0.0002, 0.0005 and
0.001.
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Capacity Control Maximizing Atemporal
Utility

In the examples given in Sect. 6.2.2, the add-optimal policies had some rather
counter-intuitive properties. Indeed, one might question the assumptions un-
derlying the maximization of expected additive time-separable utility when
incorporating risk-aversion into an MDP formulation.

In the dynamic capacity control model, the booking horizon is divided into
time periods such that the probability of more than one arrival within one pe-
riod is negligible. Consequently, the time periods considered are rather small.
Given e.g. an airline setting, the time unit might even be hours or minutes.
A desire for a certain shape of the income stream over these small time peri-
ods might be difficult to justify. Yet a risk-averse decision-maker maximizing
expected additive time-separable utility has preferences concerning this shape.

At first sight, this argument is not valid for the static capacity control
model, since the time periods considered are longer. Yet in most applications,
the periods might be of very different length and are still so short that such
temporal preferences seem unlikely. Indeed, very often some of the booking
classes might even be open at the same time, and the protection levels deter-
mined by the static model are used simultaneously as a worst-case heuristic.
(It is called worst-case because the order of arrival is the least preferred.) In
this case, additive time-separable utility functions are inappropriate.

In the risk-neutral model, future revenues are usually not even discounted,
so there is no hint at any type of temporal preference. This is justified by the
fact that in typical applications, the booking horizon is relatively small, so
the timing of the revenue gain is unimportant.

In this spirit, it seems more natural to assume a decision-maker with a
utility function that evaluates the total revenue gained independent of the
timing within the booking horizon. In this chapter, we analyze the dynamic
as well as the static capacity control problem, with the aim of maximizing the
expected utility of a decision-maker with an atemporal utility function.
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7.1 The Dynamic Model

In the dynamic model, the maximum expected utility of total revenue observ-
ing a demand of class i and given c remaining seats as well as a current wealth
of w is

V atmp∗(c, i, w) = max
π∈Π

Eπ [u (Rπ) | (XN ,WN ) = (c, i, w)] ,

where u is the increasing utility function, and Wn ∈ W is the additional
wealth state as defined in Sect. 3.2.2. The total reward (added on the current
wealth) is Rπ = WN +

∑N
n=1 rn(Xn, fn(Xn,Wn)) + V0(XN ). Note that the

decision rule fn(Xn,Wn) might depend on the current wealth Wn as well as
on the system state Xn.

According to the results stated in Sect. 3.2.2, V atmp∗ is the unique solution
to the optimality equation

V atmp
n (c, i, w) = max

a∈A(c,i)

{
imax∑

i′=0

p̂n−1(i′)V
atmp
n−1 (c − a, i′, w + a�i)

}

= max
a∈A(c,i)

{
Ãn−1V

atmp
n−1 (c − a,w + a�i)

}
(7.1)

with

V atmp
0 (c, i, w) = u(V0(c, i) + w)

and ÃnV atmp
n (c, w) =

∑imax
i=0 p̂n(i)V atmp

n (c, i, w). Every policy πatmp∗ formed
by actions a = fatmp∗

n (c, i, w), each maximizing the right-hand side of the
optimality equation, is atmp-optimal, i.e. leads to V atmp∗.

In an implementation, this should be again be reformulated to

ÃnV atmp
n (c, w) =

imax∑

i=0

p̂n(i) max
A(c,i)

{
Ãn−1V

atmp
n−1 (c − a,w + a�i)

}
,

starting from Ã0V
atmp
0 (c, w), in order to reduce the computational complexity.

7.1.1 Structural Results

The following lemma is straightforward to show.

Lemma 7.1. V atmp
n (c, i, w) is increasing in c for all i ∈ �, w ∈ W, and

n = 0, . . . , N .

Proof. The proof is by induction on n. First, the statement is true for n = 0
because u and V0(·, i) are increasing. Assume it is true for some n. That
would mean that ÃnV atmp

n (c − 1, w + �i) and ÃnV atmp
n (c, w) are increasing

in c. Therefore, the maximum, V atmp
n+1 (c, i, w), is also increasing in c and the

induction is complete. ��
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With �0 = 0 it follows that

V atmp
n (c, 0, w) = Ãn−1V

atmp
n−1 (c, w) ≥ Ãn−1V

atmp
n−1 (c − 1, w) .

Thus, the set of feasible actions can be augmented without loss to A = {0, 1}
for all (c, i) ∈ X.

In order to show that there is an atmp-optimal policy that is monotone in
the booking class i, we need the following lemma.

Lemma 7.2. V atmp
n (c, i, w) is increasing in w for all i ∈ �, c ∈ C, and n =

0, . . . , N .

Proof. Again, the proof is by induction on n. The statement is true for n = 0
because u is increasing in w. Given it is true for some n, both ÃnV atmp

n (c −
1, w + �i) and ÃnV atmp

n (c, w), and thus their maximum, are increasing in w.
��

As a consequence of ÃnV atmp
n (c, w + �i) ≥ ÃnV atmp

n (c, w), the inequality
ÃnV atmp

n (c, w + �i′) ≥ ÃnV atmp
n (c, w) holds for all 1 ≤ i′ < i. Stated differ-

ently, if a class i customer is accepted n periods before departure, then given
a remaining capacity of c seats and a wealth of w, all higher-fare customers
(classes i′ = 1, . . . , i) are also accepted.

The third lemma is obvious.

Lemma 7.3. ÃnV atmp
n (c, w) is increasing in n for all c ∈ C, and w ∈ W.

Proof. The assertion follows directly from the optimality equation due to

ÃnV atmp
n (c, w) =

imax∑

i=0

p̂n(i) max
a∈A(c,i)

{
Ãn−1V

atmp
n−1 (c − a,w + a�i)

}

≤ Ãn−1V
atmp
n−1 (c, w) . ��

7.1.2 Numerical Examples

In the special case of C = 1, the dynamic capacity control problem is an
optimal stopping problem as discussed in Müller (2000) and Hall et al. (1979).
Yet in general the total capacity is higher. We consider two examples in which
C > 1. The first example is a toy example that shows that the atmp-optimal
policy is in general neither monotone in c nor in w given an arbitrary increasing
utility function u. The second is a continuation of the running example with
the data given by Lee and Hersh (1993).

Example 1: Non-Monotonicity in c and w

Consider a decision-maker with a capacity of C = 5 seats several periods
before departure. Customers request seats in imax = 3 booking classes with
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fares of �1 = 5, �2 = 2, and �3 = 1. The probability for a class 1 request n
periods before departure is p̂n(1) = 0.15, for a class 2 request the probability is
p̂n(2) = 0.3, and for a class 3 request it is p̂n(3) = 0.3. Hence, the probability
of no customer request in period n is p̂n(0) = 0.25. Now assume that the
decision-maker has a utility function with an aspiration level of β = 6.

Let us concentrate on atmp-optimal actions n = 5 periods before depar-
ture. Given a current wealth of w = 0, it is atmp-optimal to accept every
incoming request with only one exception. If five periods before departure the
remaining capacity is three, class 3 requests should be rejected. In particular,
given a class 3 request five periods before departure, the atmp-optimal action
is to sell one seat given c = 2, to sell zero seats given c = 3, and again to sell
one given c = 4.

This can be explained as follows: If there are only two seats left, the only
way of earning a total revenue of 6 or more is to sell one seat to a class 1
customer and one seat to any other class. An incoming class 3 request should
therefore be accepted. If there are three seats left, there are more ways of
earning at least 6 units of revenue within the next five periods. The question
of whether to accept a class 3 request or not ends in a comparison of a “there
will be three class 2 requests and one class 3 or no request within the next four
time periods” scenario with “there will be one class 1 request and no other”;
otherwise, the decision on this request has no impact on the probability of
reaching the aspiration level. Since the first scenario is the more probable
one, it is better to deny a class 3 request at n = 5. With four seats remaining,
the comparison is between a “two class 2 and two class 3 requests” and a “two
class 2, one class 3, and any other request”, which turns out to favor accepting
a class 3 customer.

Hence, there is no atmp-optimal policy that can be described by time-
dependent protection levels; the atmp-optimal action is not even monotone in
the remaining capacity.

If we consider the same decision-maker with a current wealth of w = 1,
the combinatorial effects mentioned above cause the decision-maker to accept
every request if the remaining capacity is two or more. Given one remaining
seat, only the revenue from a class 1 customer will enable the decision-maker
to reach his target. Consequently, an atmp-optimal policy is to reject requests
from classes 2 and 3 for c = 1 and to accept them for c > 1.

Comparing this to the policy in which w = 0 illustrates that an atmp-
optimal policy does not generally need to be monotone in w, because some
atmp-optimal actions increase and others decrease.

Example 2: The Example Given by Lee and Hersh (1993)
(Continued)

Let us again consider the example of Lee and Hersh (1993) as stated in Sect.
5.1.3. This time, however, we assume that the decision-maker maximizes ex-
pected utility given an atemporal utility function. If the utility function has an
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Fig. 7.1. Protection levels of an atmp-optimal policy given a decision-maker with
logarithmic utility function and current wealth w = 0.

0

2

4

6

8

10

1 5 9 13 17 21 25 29 n

y1
atmp*(n) y2

atmp*(n) y3
atmp*(n)

Fig. 7.2. Protection levels of an atmp-optimal policy given a decision-maker with
logarithmic utility function and current wealth w = 500.

aspiration level of e.g. 1000, the decision problem turns into a combinatorial
problem as in the first example.

Given the more well-behaved logarithmic utility function, however, there
is an atmp-optimal policy for this example that can be described in terms of
time-dependent protection levels. Atmp-optimal policies given a wealth of 0
and 500 are depicted in Figs. 7.1 and 7.2. yatmp∗

1 (n), yatmp∗
2 (n), and yatmp∗

3 (n)
are indicated in black, gray, and white, respectively. Monotonicity in time
and capacity holds in addition to the proven monotonicity in fare class. It
is also not surprising that these protection levels are increasing in w. Higher
protection levels increase the risk of having empty seats and a relatively small
total revenue at departure. As the degree of risk-aversion decreases in the
wealth level, higher protection levels are tolerated in return for higher expected
revenue for increasing w.
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7.1.3 Structural Results in the Case of an Exponential Utility
Function

The exponential utility function is the most widely used non-linear utility
function and is said to approximate many types of risk-preferences satisfacto-
rily (see Sect. 3.1.2). In addition, for an exponential utility function, the state
space of the MDP can be reduced to X, which simplifies the analysis. This
is why we concentrate on the special case of an exponential utility function
in the following. Again, we write Anv(c) in place of

∑imax
i=0 pn(i)v(c, i) for an

arbitrary real-valued function v on X.
Let V γ∗(c, i), (c, i) ∈ X, denote the maximum expected atemporal expo-

nential utility, i.e.

V γ∗(c, i) = max
π∈Π

Eπ [− exp (−γRπ) | XN = (c, i)] . (7.2)

The objective of finding a policy πγ∗ = (fγ∗
N , fγ∗

N−1, . . . , f
γ∗
1 ), called γ-optimal,

reduces to the solution of a risk-sensitive MDP. It follows that V γ∗ ≡ V γ
N is

the unique solution of

V γ
n (c, i) = max

a∈A(c,i)

{

exp(−γa�i)
imax∑

i′=0

p̂n−1(i′)V
γ
n−1(c − a, i′)

}

= max
a∈A(c,i)

{
exp(−γa�i)An−1V

γ
n−1(c − a)

}
(7.3)

for all (c, i) ∈ X, which can be obtained for n = 1, . . . , N by backward induc-
tion, starting with V γ

0 (c, i) = − exp(−γV0(c, i)) for (c, i) ∈ X. Moreover, every
policy πγ∗ formed by actions aγ∗ = fγ∗

n (c, i), each maximizing the right-hand
side of (7.3), is γ-optimal, i.e. leads to V γ∗.

To prove structural results, it is more convenient to work with Gγ
n := −V γ

n ,
which is the unique solution of

Gγ
n(c, i) = min

a∈{0,1}
{
exp(−γa�i)An−1G

γ
n−1(c − a)

}
(7.4)

=An−1G
γ
n−1(c − 1)

· min
{

exp(−γ�i),
An−1G

γ
n−1(c)

An−1G
γ
n−1(c − 1)

}
(7.5)

=An−1G
γ
n−1(c)

· min
{

1, exp(−γ�i)
An−1G

γ
n−1(c − 1)

An−1G
γ
n−1(c)

}
(7.6)

with initial value Gγ
0 = −V γ

0 . Note that (7.4) immediately follows from (7.3)
by multiplication with (−1). The γ-optimality of a policy is preserved.

It is plausible that a γ-optimal policy accepts an arbitrary request if there
is a remaining capacity c and merely n ≤ c periods remain. Furthermore, an
arbitrary request is rejected in the case where c ≤ 0. This is the result of the
following lemma.
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Lemma 7.4. For γ > 0, n ∈ {1, . . . , N}, and i ∈ {1, . . . , imax}, we have

(i) Gγ
n(c, i) = exp(−γ�i)An−1G

γ
n−1(c − 1)

= exp(−γ�i)
∏n−1

n′=1

∑imax

i′=0 p̂n′(i′) exp(−γ�i′), c ≥ n.
(ii) Gγ

n(c, i) = An−1G
γ
n−1(c) = exp(−γ�̄c), c ≤ 0.

Proof. Using the inequalities exp(−γ�i) ≤ 1 ≤ exp(γ(�̄ − �i)), (i) and (ii)
follow by induction on n.

Both are certainly true for n = 1, since

Gγ
1(c, i) = min {exp(−γ�i) exp(−γV0(c − 1, 0)), exp(−γV0(c, 0))} .

For c ≥ 1, the terminal reward is V0(c, 0) = 0. Thus, (i) directly follows from
exp(−γ�i) < 1. For c ≤ 0, the terminal reward is V0(c, 0) = c�̄, which results
in

Gγ
1(c, i) = min {exp(−γc�̄) exp(γ(�̄ − �i)), exp(−γc�̄)} = exp(−γc�̄)

because �̄ > �1. This ensures (ii) for n = 1.
Now assume both statements are true for some n. For c ≥ n + 1, it is

straightforward to show that

Gγ
n+1(c, i) = min

{

exp(−γ�i)
n∏

n′=1

imax∑

i′=0

p̂n′(i′) exp(−γ�i′),

n∏

n′=1

imax∑

i′=0

p̂n′(i′) exp(−γ�i′)

}

=exp(−γ�i)
n∏

n′=1

imax∑

i′=0

p̂n′(i′) exp(−γ�i′) .

The optimality equation for c ≤ 0 at stage n + 1 reduces to

Gγ
n+1(c, i) = min {exp(−γ(�i − �̄)) exp(−γ�̄c), exp(−γ�̄c)}

=exp(−γ�̄c)

using the same argument as at stage n = 1. ��
In the risk-neutral case, the value function is increasing and concave. The

analogous result when maximizing expected atemporal exponential utility is
the following.

Lemma 7.5. For γ > 0, n ∈ {1, . . . , N}, and i ∈ {0, . . . , imax} it holds that

(i) An−1G
γ
n−1(c) is log-convex and decreasing in c.

(ii) Gγ
n(c, i) is log-convex and decreasing in c.
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Proof. The assertion follows by induction on n. Fix γ > 0. For all 1 ≤ n ≤ N
set

gn−1(c) = An−1G
γ
n−1(c), c ∈ Z .

Let n = 1. Since −γV0(·, j) is convex, and using the closure of log-convex
functions with respect to convex combinations, we have log-convexity of g0,

g0(c) =
imax∑

i′=0

p̂0(i′) exp(−γV0(c, i′)) .

As V0(·, j) is increasing by assumption, g0 is decreasing.
Next, we use g0 to rewrite the optimality equation (7.4) as

lnGγ
1(c, i) = min

a∈{0,1}
{−aγ�i + ln g0(c − a)} . (7.7)

Finally, by applying Lemma 1 in Stidham (1978) (see Appendix B) to
(7.7), we obtain convexity of lnGγ

1(·, i), i = 0, . . . , imax. Hence, Gγ
1(·, i) is not

only decreasing (as lnGγ
1(·, i) is the minimum of decreasing functions) but

also log-convex.
Now suppose Gγ

n(·, i) is log-convex for some 1 ≤ n < N . Then

gn(c) =
imax∑

i′=0

p̂n(i′)Gγ
n(c, i′)

is decreasing and log-convex as a convex combination of decreasing and log-
convex functions. By applying Stidham’s lemma (1978) to

lnGγ
n+1(c, i) = min

a∈{0,1}
{−aγ�i + ln gn(c − a)} ,

we finally obtain the desired log-convexity of Gγ
n+1(·, i), i = 0, . . . , imax. Mono-

tonicity of Gγ
n+1(·, i) is a direct consequence of the monotonicity of gn. ��

From these lemmas, we immediately obtain the following theorem.

Theorem 7.1. For the dynamic problem there exists a γ-optimal policy πγ∗ =
(fγ∗

N , fγ∗
N−1, . . . , f

γ∗
1 ) such that

fγ∗
n (c, i) =

{
1 c > yγ∗

i−1(n)
0 c ≤ yγ∗

i−1(n) ,

with time-dependent protection levels

yγ∗
i−1(n) = max

{
c ∈ {0, . . . , n − 1} : exp(−γ�i) > ΓAn−1G

γ
n−1(c)

}
.



7.1 The Dynamic Model 103

Proof. By Lemma 7.5 (i), An−1G
γ
n−1(c) is log-convex in c. Therefore,

An−1G
γ
n−1(c) is a positive function, and

ΓAn−1G
γ
n−1(c) =

An−1G
γ
n−1(c)

An−1G
γ
n−1(c − 1)

is increasing in c. Together with Lemma 7.4, we may then define constants
yγ∗

i−1(n) as defined above for i = 1, . . . , imax. These constants determine γ-
optimal controls according to (7.4). ��

From Lemma 7.2, we know that the protection levels of an atmp-optimal
policy are increasing in the booking class for an increasing utility function u.
Hence, this is also true in case of an exponential utility function. Additionally,
we are now in a position to show monotonicity in the remaining number of
time periods.

Proposition 7.1. The protection levels yγ∗
i−1(n) of a γ-optimal policy satisfy

(i) yγ∗
i−1(n) is increasing in i = 1, . . . , imax with yγ∗

0 (n) = 0 for all n =
1, . . . , N and γ > 0,

(ii) yγ∗
i−1(n − 1) ≤ yγ∗

i−1(n) ≤ yγ∗
i−1(n − 1) + 1 for all n = 2, . . . , N , i ∈ � and

γ > 0.

Proof. We prove the assertions in reverse order. To prove (ii), use (7.5) and
Lemma 7.5 (i) in order to obtain

ΓAnV γ
n (c) =ΓAn−1V

γ
n−1(c − 1)

·
∑imax

i=0 p̂n(i)min{e−γ�i , ΓAn−1V
γ
n−1(c)}∑imax

i=0 p̂n(i)min{e−γ�i , ΓAn−1V
γ
n−1(c − 1)}

≥ ΓAn−1V
γ
n−1(c − 1) .

Similarly,

ΓAnV γ
n (c) =ΓAn−1V

γ
n−1(c)

·
∑imax

i=0 p̂n(i)min{1, e−γ�i(1/ΓAn−1V
γ
n−1(c))}∑imax

i=0 p̂n(i)min{1, e−γ�i(1/ΓAn−1V
γ
n−1(c − 1))}

≤ ΓAn−1V
γ
n−1(c)

results from using (7.6) and Lemma 7.5 (i) again. Hence,

ΓAn−1V
γ
n−1(c − 1) ≤ ΓAnV γ

n (c) ≤ ΓAn−1V
γ
n−1(c) .

By definition of the protection levels, for c = yγ∗
i−1(n),

exp(−γ�i) > ΓAnV γ
n (yγ∗

i−1(n)) ≥ ΓAn−1V
γ
n−1(y

γ∗
i−1(n) − 1) ,
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which implies yγ∗
i−1(n − 1) ≥ yγ∗

i−1(n) − 1. Analogously, for c = yγ∗
i−1(n − 1),

exp(−γ�i) > ΓAn−1V
γ
n−1(y

γ∗
i−1(n − 1)) ≥ ΓAnV γ

n (yγ∗
i−1(n − 1)) ,

which implies yγ∗
i−1(n) ≥ yγ∗

i−1(n − 1).
Let us now turn to assertion (i). That yγ∗

i−1(n) is increasing in i follows
from Lemma 7.2 or directly from the definition of yγ∗

i−1(n) in Theorem 7.1
together with Lemma 7.5 (i) and �i ≥ �i+1.

The protection level yγ∗
0 (n) equals 0 because

ΓAnGγ
n(c) ≥ exp(−γ�1)

for all c > 0. The latter inequality follows by induction. For n = 0 and c > 0,
the left-hand side is 1 and therefore larger than exp(−γ�1). Now assume that
this is true for some n. Replacing �i for �1 in the calculation of Gγ

n+1(c) and
substituting Gγ

n+1(c− 1) by Gγ
n(c− 1) (making the divisor in ΓAn+1G

γ
n+1(c)

larger by Lemma 7.3) yields

ΓAn+1G
γ
n+1(c) ≥ min {exp(−γ�1), ΓAnGγ

n(c)} = exp(−γ�1) ,

where the last equality follows from the induction hypothesis. Consequently,
the left-hand side is larger than exp(−γ�1) for c ≥ 1. From Lemma 7.4, we
know that ΓAn+1G

γ
n(0) = exp(−γ�̄) < exp(−γ�1) for all n = 1, . . . , N . Thus,

(i) also holds, completing the proof. ��
Finally, we can conclude that in the dynamic model, all structural prop-

erties of the optimal policy that are well-known in the risk-neutral case also
hold for a policy maximizing exponential atemporal utility with γ > 0.

Indeed, exponential utility maximization can be seen as an extension of
the risk-neutral objective in the following sense: For γ → 0, the certainty
equivalent of V γ

n (c) converges to Vn(c). If there is a policy that is optimal
for all sufficiently small values of γ, this policy is the optimal policy for a
risk-neutral decision-maker.

Proposition 7.2. Protection levels yγ∗
i−1(n) that are γ-optimal for all γ ∈

(0, γ0) are expected revenue maximizing protection levels y∗
i−1(n).

Proof. First, note that for finite random variables Wi and values p̂i with∑
i p̂(i) = 1, p̂(i) ≥ 0 for all i, a Taylor expansion around γ = 0 yields

− 1
γ

ln

(
∑

i

p̂(i)E[exp(−γWi)]

)

= − 1
γ

ln

(

1 − γ
∑

i

p̂(i)E[Wi] + O(γ2)

)

=
∑

i

p̂(i)E[Wi] + O(γ) , (7.8)

similar to (3.6).
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We can therefore conclude that for a fixed policy π, the certainty equiva-
lent of the maximum expected exponential utility of total reward before the
request type is known converges to the maximum expected total reward be-
fore the request type is known. Since this holds for all policies, it also holds
for the maximum of the finite set of all policies consisting of decision rules of
protection level type and protection levels in {0, . . . , n− 1}, which we denote
by FN

y , i.e.

− 1
γ

ln(−AnV γ
n (c)) = max

π∈FN
y

− 1
γ

ln

(
imax∑

i=0

p̂n(i)Eπ[exp(−γRπ)|Xn = (c, i)]

)

→ max
π∈FN

y

imax∑

i=0

p̂n(i)Eπ[Rπ|Xn = (c, i)] = AnVn(c) ,

cf. Theorems 7.1 and 5.1.
Now rearrange the γ-optimal protection levels to read

yγ∗
i−1(n) = max

{
c ∈ {0, . . . , n − 1} : �i < − 1

γ
ln
(

An−1V
γ
n−1(c)

An−1V
γ
n−1(c − 1)

)}
.

After another rearrangement of the right-hand side of the inequality and using
− 1

γ ln(−AnV γ
n (c)) → AnVn(c), it is clear that for γ → 0,

− 1
γ

ln
(−An−1V

γ
n−1(c)

)
+

1
γ

ln
(−An−1V

γ
n−1(c − 1)

) → ∆An−1Vn−1(c) .

Thus, the right side converges to ∆An−1Vn−1(c). We obtain the protection
levels of the optimal, expected revenue maximizing model. ��

7.1.4 Numerical Example in the Case of an Exponential Utility
Function

To illustrate our structural results, we take up the four-class example by Lee
and Hersh (1993) again. The parameters are given in Sect. 5.1.3.

Figures 7.3 and 7.4 show the time-dependent values yγ∗
i−1(n) of the γ-

optimal protection levels for γ = 0.001 and γ = 0.005. The values of yγ∗
1 , yγ∗

2 ,
and yγ∗

3 are indicated in black, gray, and white, respectively. In accord with
Theorem 7.1, the protection levels are increasing in i and n by increments of
a height of 1.

The fact that γ-optimal protection levels are decreasing in the coefficient
of risk-aversion and are smaller than under risk-neutrality is not surprising.
A more risk-averse decision-maker values the chance of making revenue from
reserving a seat less than a risk-neutral decision-maker. Thus, protection levels
are smaller.
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Fig. 7.3. Protection levels of a γ-optimal policy with γ = 0.001.
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Fig. 7.4. Protection levels of a γ-optimal policy with γ = 0.005.

7.2 The Static Model

The maximum expected utility of total revenue observing a demand of d in
class i and given c seats as well as a current wealth of w in the static model is

V atmp∗(c, d, w) = max
π∈Π

Eπ [u (Rπ) | (XN ,WN ) = (c, d, w)] ,

where u is the increasing utility function, and Wn ∈ W is the additional wealth
state as defined in Sect. 3.2.2. The total reward (added on the current wealth)
is Rπ = WN +

∑N
n=1 rn(Xn, fn(Xn,Wn)) + V0(XN ). Again, the decision rule

might depend on the wealth as well as the system state.
According to the results stated in Sect. 3.2.2, this is the unique solution

to the optimality equation

V atmp
i (c, d, w) = max

a∈{0,...,d}

{
dmax∑

d′=0

p̂i−1(d′)V
atmp
i−1 (c − a, d′, w + a�i)

}

(7.9)
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with V atmp
0 (c, d, w) = u(V0(c, d) + w). Every policy πatmp∗ formed by actions

a = fatmp∗
n (c, d, w), each maximizing the right-hand side of the optimality

equation, is atmp-optimal, i.e. leads to V atmp∗.
Using ÃiV

atmp
i (c, w) =

∑dmax
d′=0 p̂i(d′)V

atmp
i (c, d′, w), this should again be

reformulated to

ÃiV
atmp
i (c, w) =

dmax∑

d=0

p̂i(d) max
a=0,...,d

{
Ãi−1V

atmp
i−1 (c − a,w + a�i)

}
,

with initial value Ã0V
atmp
0 (c, w), in order to reduce the state space and com-

putational complexity when applied in practice.
Given only two fare classes, we mentioned before that the static capac-

ity control model reduces to the classic newsvendor problem. Maximization
of expected utility in this special case is discussed e.g. in Eeckhoudt et al.
(1995), who show that the protection level for class 1 customers decreases for
increasing risk-aversion.

7.2.1 Numerical Examples

Again, one can see that given a general increasing utility function, many
structural properties known from the risk-neutral model might fail. The first
example is another toy example to show that monotonicity of an atmp-optimal
policy in c and w is generally not true for all increasing utility functions u.
The second is a continuation of the running example based on van Ryzin and
McGill (2000). In the case of a logarithmic utility function, the atmp-optimal
action is monotone in the remaining capacity in this example. But in contrast
to the risk-neutral case, capacity-independent protection levels need not exist.
Monotonicity in i holds for both examples.

Example 1: Non-Monotonicity in c and w

Imagine a imax = 3 class model with associated prices of �1 = 5, �2 = 2, and
�3 = 1. We consider independent customer arrival probabilities of p̂i(0) = 0.8,
p̂i(1) = p̂i(2) = 0.05, and p̂i(3) = 0.1 for booking classes i = 1, 2.

First let us assume that the decision-maker’s preferences can be repre-
sented by a utility function with an aspiration level of β = 6. Now consider
the following scenario: There are d = 6 requests from class i = 3 customers,
and the current wealth is w = 0.

Given only one piece of capacity, c = 1, the aspiration level is not reachable,
so the atmp-optimal decision is arbitrary. Given c = 2, the decision-maker
should accept one of the requests. Given c = 3, rejecting all requests is atmp-
optimal. Given c = 4, the decision-maker should accept two of the requests,
and for c = 5, four of them should be accepted. For values of c ≥ 6, the
aspiration level can be met directly by accepting all six requests, which is the
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optimal action to take. Clearly, the actions are not monotone in the remaining
capacity c. The reason for the strange behavior at c = 3 is the following:

With a capacity of c = 2, the only way of earning 6 or more is to sell one
seat to a class 1 and one to any other fare class customer. If there is class 3
demand, the decision-maker should consequently accept one request and hope
for a future class 1 customer.

With a capacity of c = 3, there are more ways of earning 6 or more.
The decision of whether to accept one class 3 request can be reduced to a
comparison of a “there will be three or more class 2 requests and no class 1
request” scenario with “there will be exactly one class 1 request”. Since the
first scenario is the more probable one, it is better to deny all customer class
3 requests. With c = 4, the scenario comparisons again favor accepting up to
two customer requests.

Given an initial wealth of w = 1 (which is the same as reducing the aspi-
ration level to β = 5), the decision-maker prefers to reject all requests given
c = 1 and c = 2. For c = 3, he should accept one request. Thus, the atmp-
optimal action is also not monotone in w. The reason is again attributable to
combinatorial effects.

Example 2: The Example given in van Ryzin and McGill (2000)
(Continued)

Let us turn to the example based on the parameters given in van Ryzin and
McGill (2000) as stated in Sect. 5.2.3. This time we assume that the decision-
maker maximizes expected atemporal utility from selling C = 100 seats. If
the utility function has an aspiration level of e.g. 60000, the decision problem
again turns into a pure combinatorial problem. Given the more well-behaved
logarithmic utility function u(w) = ln(w+1), there is an atmp-optimal policy
for this example that can be described in terms of atmp-optimal controls
yatmp∗
1 (c, w) ≤ yatmp∗

2 (c, w) ≤ yatmp∗
3 (c, w), so that the atmp-optimal action

is ai(c, d, w) = max{0, c − yatmp∗
i (c, w)}. Note that these controls depend on

the remaining capacity c and current wealth w in addition to the booking
class i. Given a wealth of w = 0 and w = 50000, the controls yatmp∗

1 (c, w) and
yatmp∗
2 (c, w) are depicted in Figs. 7.5 and 7.6. As usual, the controls of classes

1 and 2 are shaded black and gray, respectively. y3(c, 0) and y3(c, 50000) are
greater than 100 and are therefore not shown.

Using the same reasoning as in Example 2 of Sect. 7.1.2 concerning atmp-
optimal policies for the dynamic model, it is not surprising that the protection
levels are increasing in wealth w. The controls are increasing in c, yet they
never increase by more than 1, so that the atmp-optimal action is increasing
in the remaining capacity.
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Fig. 7.5. Atmp-optimal controls given a decision-maker with logarithmic utility
function at current wealth w = 0.
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Fig. 7.6. Atmp-optimal controls given a decision-maker with logarithmic utility
function at current wealth w = 50000.

7.2.2 Structural Results in the Case of an Exponential Utility
Function

In the following, we concentrate on a risk-averse decision-maker who seeks to
maximize the expected atemporal exponential utility of the total reward. Our
aim is therefore to determine a policy πγ∗ = (fγ∗

imax
, fγ∗

imax−1, . . . , f
γ∗
1 ), called

γ-optimal, which realizes

V γ∗(c, d) = max
π∈Π

Eπ [− exp (−γRπ) | Ximax = (c, d)] .

The corresponding optimality equation reads

V γ
i (c, d) = max

a∈{0,...,d}

{

exp(−γa�i)
dmax∑

d′=0

p̂i−1(d′)V γ
i−1(c − a, d′)

}

, (7.10)

where V γ
0 (c, d) = − exp(−γV0(c, d)). Again, V γ∗ ≡ V γ

imax
, and every policy πγ∗

formed by actions fγ∗
i (c, d), each maximizing the right-hand side of (7.10), is

γ-optimal.
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As in the dynamic model, it turns out to be be more convenient to work
with Gγ

i = −V γ
i , which is the unique solution of

Gγ
i (c, d) = min

a∈{0,...,d}
{
exp(−γa�i)Ai−1G

γ
i−1(c − a)

}
(7.11)

= Ai−1G
γ
i−1(c)

· min
a=0,...,d

a∏

a′=1

exp(−γ�i)
Ai−1G

γ
i−1(c − a′)

Ai−1G
γ
i−1(c − a′ + 1)

(7.12)

with an initial value Gγ
0 = −V γ

0 . This transformation preserves the γ-
optimality of a policy.

Of course, a γ-optimal policy accepts all requests if the number of remain-
ing seats is higher than the maximum number of current and future requests
possible. We choose �̄ to ensure that overbooking is never advisable.

Lemma 7.6. For γ > 0, i ∈ {1, . . . , imax}, and d ∈ {0, . . . , dmax} we have

(i) Gγ
i (c, d) = exp(−γ�id)Ai−1G

γ
i−1(c − 1)

= exp(−γ�id)
∏i−1

i′=1

∑dmax

d′=0 p̂i′(d′) exp(−γ�i′d
′), c ≥ idmax.

(ii) Gγ
i (c, d) = An−iG

γ
i−1(c) = exp(−γ�̄c), c ≤ 0.

Proof. (i) and (ii) follow by induction on i using the inequalities exp(−γ�i) ≤
1 ≤ exp(γ(�̄ − �i)).

Both assertions are certainly true for n = 1, since

Gγ
1(c, d) = min

a=0,...,d
{exp(−γ�1a) exp(−γV0(c − a, 0))} .

For c ≤ 0, the terminal reward is V0(c − a, 0) = (c − a)�̄. It follows that

exp(−γ�1a) exp(−γV0(c − a, 0)) = exp(−γ�̄c) exp(γa(�̄ − �1)) ,

where the last term increases in a, since �̄ > �1. Thus, the term is minimal
for a = 0 satisfying (i). For c ≥ dmax, every action results in a non-negative
capacity at i = 0 with a terminal reward of 0. Consequently, the only term of
interest is exp(−γ�1a), which is decreasing in a. Therefore, the minimum is
attained for a = d in accordance with (ii).

Now assume that (i) and (ii) are true for some i.

Gγ
i+1(c, d) = min

a=0,...,d

{

exp(−γ�i+1a)
dmax∑

d′=0

p̂i(d′)Gγ
i (c − a, d′)

}

.

Using the induction hypothesis for c ≤ 0, this again reduces to

Gγ
i+1(c, d) = min

a=0,...,d
{exp(−γ�̄c) exp(γa(�̄ − �i+1))} ,
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where the minimum is attained for a = 0, resulting in (i). For c ≥ (i+1)dmax,
every action causes a transition to a state c− a ≥ idmax. Using the induction
hypothesis, this yields

Gγ
i+1(c, d) = min

a=0,...,d

{

exp(−γ�i+1a)
i∏

i′=1

dmax∑

d′=0

p̂i′(d′) exp(−γ�i′d
′)

}

.

Again, this is minimal for a = d, proving (ii). ��
In addition, the following lemma is needed to show that there is a γ-optimal

policy of protection level type.

Lemma 7.7. For γ > 0, d ∈ N0, and i ∈ {1, . . . , imax}, it holds that

(i) Ai−1G
γ
i−1(c) is log-convex and decreasing in c.

(ii) Gγ
i (c, d) is log-convex and decreasing in c.

Proof. The assertions follow essentially from the same arguments as given in
the proof of Lemma 7.5 for fixed γ > 0. Setting

gi−1(c) = Ai−1G
γ
i−1(c) c ∈ Z

for i = 1, . . . , imax, we can restate the optimality equation (7.11) to read

lnGγ
i (c, d) = min

a∈{0,...,d}
{−γ�ia + ln gi−1(c − a)} . (7.13)

Let i = 1. Then since −γV0(·, d) is decreasing and convex, and using the
closure of log-convex functions with respect to convex combinations, we have
log-convexity of g0. In addition, we know that g0 is decreasing.

Since the minimum of decreasing functions is decreasing, lnGγ
1(·, d), and

thus Gγ
1(·, d) is decreasing. By applying Lemma 1 in Stidham (1978) (see

Appendix B) to (7.11), we can additionally conclude that lnGγ
1(·, d) is convex,

d = 0, . . . , dmax. Consequently, Gγ
1(·, d) is log-convex.

Now suppose Gγ
i−1(·, d) is decreasing and log-convex for some 1 ≤ i < imax.

Then gi−1(c) is a convex combination of decreasing and log-convex functions.
Hence, gi−1(c) is decreasing and log-convex. By applying Stidham’s lemma
(1978) to (7.11), we finally get the desired log-convexity of Gγ

i (·, d), d =
0, . . . , dmax. In addition, we can conclude that Gγ

i (·, d) is decreasing. ��
We are now in a position to prove the main result of this model.

Theorem 7.2. For γ > 0, there exists a γ-optimal policy πγ∗ = (fγ∗
imax

,
fγ∗

imax−1, . . . , f
γ∗
1 ) such that

fγ∗
i (c, d) =

{
min{d, c − yγ∗

i−1} c > yγ∗
i−1

0 c ≤ yγ∗
i−1 ,

with

yγ∗
i−1 = max

{
c ∈ {0, . . . , (i − 1)dmax} : exp(−γ�i) > ΓAi−1G

γ
i−1(c)

}
.
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Proof. Fix γ > 0. According to Lemma 7.7 (i), Ai−1G
γ
i−1(c) is log-convex and

decreasing in c. Hence, Ai−1G
γ
i−1(c) is a positive function and the ratio

ΓAi−1G
γ
i−1(c) =

Ai−1G
γ
i−1(c)

Ai−1G
γ
i−1(c − 1)

≤ 1

is increasing in c.
From (7.12), it follows that the largest action a with

exp(−γ�i) ≤ ΓAi−1G
γ
i−1(c − a + 1)

is γ-optimal. Together with Lemma 7.6, we can conclude that the γ-optimal
policy is of protection level type and that the constants yγ∗

i−1 as defined above
are γ-optimal protection levels for i = 0, 1, . . . , imax − 1. ��
Proposition 7.3. γ-optimal protection levels are increasing in i, i.e.

0 = yγ∗
0 ≤ yγ∗

1 ≤ . . . ≤ yγ∗
imax−1 .

Proof. Fix γ > 0. yγ∗
0 = 0 follows directly from the definition of V0(c, d) and

the choice of �̄ > �1.
Now, let us turn to the monotonicity in i. As a first step, we show that

ΓAi−1G
γ
i−1(c) is decreasing in i, i.e.

ΓAi−1G
γ
i−1(c) ≥

∑dmax
d=0 p̂i(d)mina=0,...,d{exp(−γ�ia)Ai−1G

γ
i−1(c − a)}

∑dmax
d=0 p̂i(d)mina=0,...,d{exp(−γ�ia)Ai−1G

γ
i−1(c − 1 − a)}

for all i = 1, . . . , imax. This condition is equivalent to

dmax∑

d=0

p̂i(d) min
a=0,...,d

{
exp(−γ�ia)

Ai−1G
γ
i−1(c − 1 − a)

Ai−1G
γ
i−1(c − 1)

}

≤
dmax∑

d=0

p̂i(d) min
a=0,...,d

{
exp(−γ�ia)

Ai−1G
γ
i−1(c − a)

Ai−1G
γ
i−1(c)

}
,

which is true, since

Ai−1G
γ
i−1(c − a)

Ai−1G
γ
i−1(c)

=
a∏

a′=1

Ai−1G
γ
i−1(c − a′)

Ai−1G
γ
i−1(c − a′ + 1)

is decreasing in c for all i = 1, . . . , imax, owing to the log-convexity of
Ai−1G

γ
i−1(c) cf. Lemma 7.7.

Since the booking classes are ordered by fare �i with �i+1 < �i for all
i = 1, . . . , imax − 1, the term exp(−γ�i) is increasing in i. Hence, for all
i = 1, . . . , imax − 1,
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yγ∗
i−1 = max

{
c ∈ {0, . . . , (i − 1)dmax} : exp(−γ�i) > ΓAi−1G

γ
i−1(c)

}

≤ max {c ∈ {0, . . . , idmax} : exp(−γ�i+1) > ΓAiG
γ
i (c)}

= yγ∗
i

holds, completing the proof. ��
Thus, we can conclude that in the static model, there is a γ-optimal policy
with structural properties well-known from the risk-neutral case.

As in the dynamic model, we can show that in fact, the risk-sensitive case
can be seen as a generalization of the risk-neutral case in the following sense:

Proposition 7.4. Protection levels yγ∗
i−1 that are γ-optimal for all γ ∈ (0, γ0)

are expected revenue maximizing protection levels y∗
i−1.

Proof. From (7.8), we know that for a fixed policy π, the certainty equivalent
of the maximum expected exponential utility of total reward before the num-
ber of requests is known converges to the maximum expected total reward
before the number of requests is known as γ approaches 0. Since this holds
for all policies, it also holds for the maximum

− 1
γ

ln(−AiV
γ
i (c)) = max

π∈Fimax
y

− 1
γ

ln

(
dmax∑

d=0

p̂i(d)Eπ[exp(−γRπ)|Xi = (c, d)]

)

→ max
π∈Fimax

y

dmax∑

d=0

p̂i(d)Eπ[Rπ|Xi = (c, d)] = AiVi(c) ,

where Fy denotes the finite set of all decision rules of protection level type
and protection levels in {0, . . . , idmax} (cf. Theorems 7.2 and 5.2).

If we solve the inequality in the definition of the γ-optimal protection levels
for �i and use V γ

i (c) = −Gγ
i (c), we obtain

yγ∗
i−1 = max

{
c ∈ {0, . . . , idmax} : �i < − 1

γ
ln
(

Ai−1V
γ
i−1(c)

Ai−1V
γ
i−1(c − 1)

)}
.

Rearranging the right-hand side of the inequality and using − 1
γ ln(−AiV

γ
i (c))

→ AiVi(c) gives

− 1
γ

ln
(−Ai−1V

γ
i−1(c)

)
+

1
γ

ln
(−Ai−1V

γ
i−1(c − 1)

)→∆An−1Vi−1(c)

for γ → 0. Thus, the right side converges to ∆Ai−1Vi−1(c), which yields the
protection levels of the optimal, expected revenue maximizing policy. ��
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7.2.3 Numerical Example in the Case of an Exponential Utility
Function

Let us again consider the example data from van Ryzin and McGill (2000) as
given in Sect. 5.2.3; this time, however, we assume a decision-maker maximiz-
ing expected atemporal exponential utility. Remember that there are 4 fare
classes with fare prices of �1 = 1050 ≥ �2 = 567 ≥ �3 = 527 ≥ �4 = 350. The
optimal expected revenue maximizing protection levels are y∗

3 = 133, y∗
2 = 44,

and y∗
1 = 17, with expected revenue of about 60038.

Now consider e.g. a decision-maker maximizing expected atemporal expo-
nential utility with γ = 0.0001. The γ-optimal protection levels are y0.0001∗

3 =
118, y0.0001∗

2 = 39, and y0.0001∗
1 = 15, which result in an expected revenue of

59906. Of course, these protection levels are increasing in i in accordance with
Proposition 7.3.

To analyze the impact of γ-optimal protection levels in more detail, the
programming language Java was used to code the optimization as well as a
simulation of the resulting request arrival and booking process given various
γ-optimal protection levels. In addition to the expected revenue maximizing
case, 150 γ-optimal policies were considered in total. 50 γ-optimal policies
were generated by increasing γ in steps of 0.00001 starting from 0; the step
size was then increased to 0.0001 for another 50 policies. Finally, the step size
was set at 0.0005. For every γ-optimal policy, 500000 trials of the booking
process were run to ensure statistically significant results. The results are
based on a simulation study in Barz (2006).

Let us consider the effect of γ in this example in more detail. Intuitively,
increasing risk-aversion causes the decision-maker to increasingly prefer the
sure revenue of low-fare classes to the chance of making more revenue from
future fare classes. Thus, protection levels decrease for increasingly risk-averse
decision-makers as depicted in Fig. 7.7. In this figure, the values of the pro-

 
 

Fig. 7.7. Protection levels of a γ-optimal policy.



7.2 The Static Model 115

 
 

0.965

0.975

0.985

0.995

0.000 0.002 0.004 0.006 0.008 γ

Load

Fig. 7.8. Simulated average load factor given a γ-optimal policy.

tection levels yγ∗
1 , yγ∗

2 , and yγ∗
3 are shaded black, dark gray, and light gray,

respectively.
For small values of γ, the protection levels approach (and finally equal)

the levels of the expected revenue maximizing policy, which is in line with
Proposition 7.4. For higher values of γ, the focus is increasingly on the worst-
case scenario. Thus, protection levels converge to 0, which results in a simple
first-come-first-served policy. As a result, the expected load factor increases
in γ, which can be seen in Fig. 7.8.

What is the effect of γ on the distribution of Rπ, the total revenue gained?
It is clear that the largest expected revenue is gained by applying the risk-
neutral approach. The expected revenue from applying a γ-optimal policy
decreases in γ as can be seen in Fig. 7.9. This makes sense, since the higher the
risk-aversion, the more one is willing to forego possible future gains in return
for certain revenue. On the other hand, the variance of the revenue gained
under the γ-optimal strategy decreases for small values of γ even faster, as
can be seen in Fig. 7.10. For γ = 0.0001, a nearly 18% reduction of standard
deviation is dispensed with a revenue loss of only 0.2% compared to the risk-
neutral case. (This decrease for small values of γ is in line with the results of

 
Fig. 7.9. Expected total revenue when applying a γ-optimal policy.
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Fig. 7.10. Simulated standard deviation when applying a γ-optimal policy.

the Taylor expansion around γ = 0; cf. (3.6).) Given these values, it seems
plausible that some companies might prefer a non-maximum expected revenue
with lower variance to the standard expected revenue maximizing solution
gained by traditional revenue management systems.

The zigzag of the standard deviation in the area of γ = 0.0004 is at-
tributable to the structure of the example data and to effects that arise from
jumps in the protection levels. In this region, the demand from classes 2 and
3 suffices to fill their protected seats with a probability of almost 1 and gen-
erates a revenue of roughly 550 per seat. Protecting one seat less for those
customers (and leaving yγ∗

1 constant) thus turns an almost certain revenue of
roughly 550 into a lottery over this value, if less than C−yγ∗

3 class 4 customers
arrive, and �4 = 350, else. Hence, the variance may increase. On the other
hand, owing to the high class 1 fare price, yγ∗

1 is relatively high. Since the
probability that class 1 customers fill all their protected seats is only about
11%, lowering the protection level yγ∗

1 reduces the variance. Consequently,
decreasing protection levels (caused by increasing γ) can lead to both higher
and lower revenue variance in this area.
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Fig. 7.11. Expected total revenue vs. standard deviation of total revenue when
applying different γ-optimal policies.
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For high values of γ, a decision-maker maximizing expected atemporal
exponential utility focuses on the control of the worst case. Therefore, protec-
tion levels tend to 0, and the system behavior converges to the behavior of
the uncontrolled process.
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Fig. 7.12. Relative frequencies of total revenue for 500000 simulation runs when
applying an optimal (risk-neutral) policy and applying a γ-optimal policy with γ =
0.0001, 0.0004, and 0.01 (from upper left to lower right).

Figure 7.11, a plot of the expected revenue vs. the standard deviation
for different levels of γ, illustrates this effect from a different perspective.
Increasing risk-aversion results in a reduction of the standard deviation at
first. For higher values of γ and fixed yγ∗

1 , the variance can even increase, but
it decreases as soon as yγ∗

1 decreases. Finally, for high risk-aversion, when yγ∗
1

is extremely low, the variance increases even if yγ∗
1 decreases.

Figure 7.12 depicts simulated relative frequencies of total revenue apply-
ing an optimal expected revenue maximizing policy and γ-optimal policies
with γ = 0.0001, 0.0004, and 0.01. A comparison between the upper two
histograms, the risk-neutral case vs. γ = 0.0001, illustrates the trade-off be-
tween the variance and expectation mentioned above. For a low coefficient
of absolute risk-aversion, the modal class shifts to a smaller level, and the
relative frequency of total revenue within this class increases. The frequencies
of extremely low and high total revenue values decrease. For higher values of
γ it can be seen that the probability of reaching low revenue levels further
decreases in γ at the cost of reaching extremely high revenue levels.
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7.2.4 Possible Extensions of the EMSR Heuristics

We have shown that there is a γ-optimal policy that can be described in
terms of protection levels. In particular, these protection levels are indepen-
dent of the current wealth. Due to this parallel to the risk-neutral case and the
popularity of the EMSR heuristics in practice, one might consider a heuris-
tic approach similar to the EMSR heuristics for solving the static model. To
tackle this task in more detail, we first revise the two-class model given a
risk-averse decision-maker maximizing atemporal exponential utility before
we come to the EMSR extensions.

The Two-Class Model

The decision of how many of seats y to protect for class 1 demand is equivalent
to choosing one of several lotteries, where a lottery represents the total revenue
earned given y.

In the two-class model, the expected exponential utility of revenue given
y protected seats (for d2 ≥ C − y + 1) is

y−1∑

d=0

p̂1(d)uγ (�2(C − y) + d�1)

+ P (D1 ≥ y)uγ (�2(C − y) + y�1) .

If only y − 1 are protected, the expected exponential utility of revenue is

y−1∑

d=0

p̂1(d)uγ (�2(C − y + 1) + d�1)

+ P (D1 ≥ y)uγ (�2(C − y + 1) + (y − 1)�1) .

Solving for uγ(�2), we obtain that given a demand d2 ≥ C−y+1, the decision-
maker would strictly prefer the lottery protecting more seats if and only if

−
∑y−1

d=0 p̂1(d)uγ (d�1) + P (D1 ≥ y)uγ (y�1)
∑y−1

d=0 p̂1(d)uγ (d�1) + P (D1 ≥ y)uγ ((y − 1)�1)
> uγ(�2) .

The equivalent condition in terms of the fare �2 is

− 1
γ

ln

[

−
y−1∑

d=0

p̂1(d)uγ (d�1) − P (D1 ≥ y)uγ (y�1)

]

+
1
γ

ln

[

−
y−1∑

d=0

p̂1(d)uγ (d�1) − P (D1 ≥ y)uγ ((y − 1)�1)

]

> �2 . (7.14)

The left-hand side of inequality (7.14) is decreasing in y and can take values
in (0, �1). A decision-maker with constant absolute risk-aversion of γ prefers
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the lottery with the highest y that fulfills (7.14). If the random revenue gained
from class 1 given y remaining seats is seen as a lottery, the two summands on
the left-hand side of (7.14) are the certainty equivalents of this lottery given
y and y − 1 seats. The difference is the increase in the certainty equivalent
attributable to the yth seat.

Now we can introduce the marginal seat certainty equivalent of seat y (and
class i) to be

MSCEi(y) = − 1
γ

ln

[

−
y−1∑

d=0

p̂i(d)uγ (d�i) − P (Di ≥ y)uγ (y�i)

]

+
1
γ

ln

[

−
y−1∑

d=0

p̂i(d)uγ (d�i) − P (Di ≥ y)uγ ((y − 1)�1)

]

.

Then we know from (7.14) that the γ-optimal protection level, i.e. number of
protected seats, yγ∗

1 satisfies

MSCE1(y
γ∗
1 ) > �2 and MSCE1(y

γ∗
1 + 1) ≤ �2 .

The γ-optimal protection level is the largest value of y for which the marginal
seat certainty equivalent of class 1 is higher than the class 2 fare.

As mentioned before, we can conclude from the properties of the corre-
sponding newsvendor problem analyzed in Eeckhoudt et al. (1995) that the
γ-optimal protection level decreases in γ. The more risk-averse a decision-
maker is, the fewer seats he protects for high-fare customers.

The MSCE Heuristics

Following the idea of EMSR-a, the MSCE-a heuristic can be obtained by
replacing the expected marginal seat revenue EMSRi(y) in (5.8) by the
marginal seat certainty equivalent MSCEi(y). The number of seats to be
protected from class i for class j customers then becomes the highest value of
yj

i−1 with

MSCEj(y
j
i−1) > �i and MSCEj(y

j
i−1 + 1) ≤ �i .

This calculation is repeated for each future class j = i−1, . . . , 1, and individual
protection levels are summed up according to (5.9).

The “b” version of the marginal seat certainty equivalent heuristic (MSCE-
b) aggregates demands in the same way as EMSR-b. When considering stage
i, an artificial class (i − 1)◦ replaces future demands 1, . . . , i − 1 as described
in (5.10).

As for the revenue �(i−1)◦ of this artificial class, two approximations seem
straightforward. As suggested in Barz (2006), one could use the same formula
as for EMSR-b given in (5.11), since it is a crude approximation of the future
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seat value anyway. But one could also adhere more closely to the notion of
choosing a value that approximates the expected value of a future request.
Following the latter approach, �(i−1)◦ should equal the certainty equivalent of
a lottery over the future request’s revenue. If we set the probability for a class
j request with fare �j , j = 1, . . . , i − 1, to E[Dj ]/

∑i−1
j=1 E[Dj ], this yields

�(i−1)◦ = − 1
γ

ln

[

−
∑i−1

j=1 E[Dj ]uγ(�j)
∑i−1

j=1 E[Dj ]

]

. (7.15)

The protection levels of MSCE-b are then the highest value of y(i−1)◦ , with

MSCE(i−1)◦(y(i−1)◦) > �i and MSCE(i−1)◦(y(i−1)◦ + 1) ≤ �i .

From the results of Eeckhoudt et al. (1995), we know that these protection
levels decrease for increasing coefficient of risk-aversion γ. This follows directly
for MSCE-a and MSCE-b, with fares determined by (5.11). When the high-
class fare of MSCE-b is determined by (7.15), the effect is even stronger,
because the certainty equivalent decreases in γ. Together with Proposition 7.4,
we can conclude that the protection levels obtained by the MSCE heuristics
converge to their EMSR counterparts for γ → 0.

A Numerical Example

Returning to our numerical example, protection levels generated by MSCE-a
and MSCE-b for different values of γ are given in Tables 7.1 and 7.2. γ =
0 represents the risk-neutral case. πa (πb) denotes the policy consisting of
decision rules with protection levels yγa

i (yγb
i ) determined by MCSE-a (MSCE-

b). For the values stated, there is no difference in the protection levels resulting
from the two MSCE-b variants. For given 0 < γ < 0.031, the differences
between the values of yγa

i and yγb
i are never greater than 1. If differences

arise, (7.15) is superior to the average fare approach in terms of achieved
certainty equivalent, although the difference is almost negligible.

Unsurprisingly, the protection levels are decreasing in γ. A simulation
study with the above-mentioned parameters using the MSCE heuristics in-
stead of the exact approach yields very similar graphs for the expected rev-
enues, standard deviations, load factors etc. . Of course, certainty equivalents

Table 7.1. Protection levels yγa
1 , yγa

2 and yγa
3 determined by MSCE-a.

γ yγa
1 yγa

2 yγa
3 E[Rπa ] −1/γ ln(−E[uγ(Rπa)])

0 17 40 127 60010 60010
0.0001 15 36 113 59852 59118
0.0002 13 31 99 59244 57593
0.0004 10 24 73 54845 51447
0.01 1 2 4 50288 3033



7.2 The Static Model 121

Table 7.2. Protection levels yγb
1 , yγb

2 and yγb
3 determined by MSCE-b.

γ yγb
1 yγb

2 yγb
3 E[Rπb ] −1/γ ln(−E[uγ(Rπb)])

0 17 51 131 59895 59895
0.0001 15 45 116 59952 59037
0.0002 13 38 100 59569 57638
0.0004 10 26 69 54855 51441
0.01 1 1 3 50272 3033

are smaller, but for γ ≥ 0.001, the relative difference (compared to the exact
solution) is less than 10−4. For smaller values of γ, the average relative differ-
ence with EMSR-a is about 0.07%, with a maximum of 0.46% at γ ≈ 0.0003.
Using EMSR-b, this average is about 0.1% and the maximum relative devia-
tion is about 0.49% in the same region of γ.

Figure 7.13 shows expected total revenue and the standard deviation of to-
tal revenue for different γ-optimal policies and policies resulting from MSCE-
a and MSCE-b. In the figure, MSCE-b stands for MSCE-b combined with
(7.15), whereas MSCE-b’ stands for MSCE-b with the average price approach.
To highlight γ-optimal policies, they are connected by straight lines. Figure
7.13 shows that in terms of a comparison of expected revenue and standard
deviation, the heuristics also perform well at first sight, although they are
dominated by the exact solution. For given expected revenue, however, in-
creases in standard deviation of up to 36% can be observed compared to the
exact approach.
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Fig. 7.13. Expected total revenue and standard deviation of total revenue given
policies obtained by MSCE-a and MSCE-b for different values of γ.
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The EMSU Heuristic

Weatherford (2004) was the first to introduce a risk-averse variant of the
EMSR-b heuristic, the so-called expected marginal seat utility (or EMSU)
heuristic. Given a risk-averse decision-maker with concave utility function u,
he defines the expected marginal seat utility of seat y (at stage i) to be

EMSUi(y) = P (Di > y)u(�i) . (7.16)

Using the demand aggregation idea of EMSR-b (see formulas (5.12) and
(5.11)1), the protection level y(i−1)◦ for the artificial class (i − 1)◦ from class
i is determined by

EMSU(i−1)◦(y(i−1)◦) > u (�i) and EMSU(i−1)◦(y(i−1)◦ + 1) ≤ u (�i) .

Weatherford (2004) introduces EMSU with a general increasing utility
function u. In his examples, however, he always makes use of the exponential
utility function, u(x) = 1 − exp(−γx).

The decision-maker’s preferences over certain revenue streams are not an
explicit issue in Weatherford (2004). Yet even if an exponential utility function
is assumed, the preferences implicitly assumed by using EMSU are different
from those represented by a maximization of atemporal exponential utility. He
motivates and interprets his utility approach for the static model, however, as
if it maximized the utility of total revenue. This motivation ends with a state-
ment that the expected marginal utility of making the yth seat available to
class i was defined by (7.16). But note that for atemporal (non-linear) utility
functions, the utility of selling another seat at fare �i depends on the cur-
rent wealth of the decision-maker. (Even in the case of the exponential utility
function, the marginal utility depends on the current wealth.) Moreover, we
have shown by examples that in the atemporal utility case, there generally
need not exist optimal controls of protection level type. If the formulas are
analyzed in isolation from the text, it seems as if an expected utility maximiz-
ing decision-maker with time-additive utility function is assumed. This would
lead to an EMSU-like approach, if the utility function u satisfied u(0) = 0 (an
assumption that is not explicitly stated in his article) and demand arrived se-
quentially and independently over time (with at most one arrival within each
time period in order of increasing fares). In this case, however, the resulting
time periods are rather small and make such time-additive preferences very
unlikely. In fact, EMSU seems to be a simple ad-hoc extension of EMSR-b
with a utility function.

The Numerical Example (Continued)

The numerical example with the simulation study mentioned above is used to
compare the expected atemporal exponential utility maximizing approaches
1 The fact that Weatherford (2004) uses (5.11) cannot be directly concluded from

his article, but from a presentation given in (2003).
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to EMSU with exponential utility function for different values of γ. Since the
objective function of our approach differs from Weatherford’s (2004) EMSU
approach, a comparison of utility values or certainty equivalents does not seem
appropriate. We therefore stick to the plot of expected revenue vs. standard
deviation that is depicted in Fig. 7.14. Of course, the exact expected atempo-
ral exponential utility maximizing policy need not dominate EMSU in terms
of expected revenue and standard deviation due to the difference in the objec-
tive functions. Yet EMSU has an effect that is similar to the maximization of
expected atemporal exponential utility. This can be explained by the trans-
formation of the fares by a concave utility function u with u(0) = 0. The
transformation moves the fraction u(�i)/u(�(i−1)◦) closer to 1 and thus de-
creases the protection levels for increasing risk-aversion. γ-optimal protection
levels decrease for increasing γ, too.

A decision-maker might only be willing to forgo a little revenue for a re-
duction in variance. Hence, extremely low values of γ, with the corresponding
trade-off between expectation and variance, are of special interest for imple-
mentations. Figure 7.15 shows a comparison of the MSCE heuristics with
EMSU for policies achieving an expected revenue of more than 59000. In this
region, EMSU results in policies with a standard deviation of revenue up to
one third higher than those generated by MSCE policies with the same or sim-
ilar expected revenue. MSCE-b outperforms EMSU for standard deviations
above 2800 and expected revenues above 59500, respectively. For given lower
values of variance, the performance is more mixed due to the difference in the
underlying preferences.
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Fig. 7.14. Expected total revenue and standard deviation of total revenue given
policies obtained by EMSU and γ-optimal policies.
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Fig. 7.15. Expected total revenue and standard deviation of total revenue given a
γ-optimal policy and policies obtained by MSCE-a, MSCE-b, MSCE-b’, and EMSU.
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An Extension: Capacity Control Under a
General Discrete Choice Model of Consumer
Behavior

In this chapter, we use an example to show that structural properties known
from the risk-neutral setting carry over to the setting of a decision-maker
with a concave exponential atemporal utility function even for more general
capacity control models.

In particular, we analyze an extension of the dynamic revenue management
model under a general discrete choice model of consumer behavior by Talluri
and van Ryzin (2004a) that was initially stated in terms of expected revenue
maximization.

After a short revision of the model, we summarize the main results from
the perspective of a risk-neutral decision-maker before we turn to the perspec-
tive of an expected utility maximizing decision-maker. We concentrate on the
maximization of expected atemporal exponential utility.1

8.1 The Capacity Control Model

As in the dynamic model, time is discrete and time periods are indexed by n.
Smaller values of n represent later points in time, i.e. the indices run back-
wards, and n equals the number of remaining periods. Accordingly, period
n = 0 represents the end of the booking horizon; the beginning corresponds
to index N . In each period, a maximum of one customer request arrives. There
are imax products, with � = {1, . . . , imax} denoting the entire set of products.
Every product i ∈ � has an associated fare �i, and without loss of generality,
the products are indexed so that �1 ≥ �2 ≥ · · · ≥ �imax ≥ 0.

At the beginning of each period n, the firm must choose a subset M ⊆ �
of products to offer. When the set of products M is offered, p̂i(M) denotes the

1 Parallel to this research, but independently, Feng and Gallego (2005) analyze ex-
pected utility maximizing capacity control policies for this model in a continuous
time setting. Using a different line of argumentation, they obtain the same results
as presented here.
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probability that a customer arrives and chooses product i ∈ M. We assume
p̂i(M) = 0 if i /∈ M. The artificial class i = 0 represents the no-purchase
choice, i.e. the event that no customer arrives or the customer does not pur-
chase any of the fares offered in M within the period considered. The proba-
bility p̂0(M) = 1−∑i∈M p̂i(M) is the corresponding no-purchase probability.
It is possible to allow the choice probabilities to be a function of the remaining
time periods n, but to keep the notation simple, we assume time-independent
probabilities.

In the dynamic model as introduced in Sect. 5.1, demand for a product
is independent of the availability of other products cf. assumption x). Thus,
the dynamic model arises as a special case, with p̂i(M) = p̂i if i ∈ M and 0
else. In this case, we can think about the problem in terms of simple accept
or deny decisions.

Here, the only condition we impose on the choice probabilities p̂i(M) is
that they define a proper probability function. That is, for every set M ⊆ �,
the probabilities satisfy p̂i(M) ≥ 0 for all i ∈ M and

∑
i∈M p̂i(M)+p̂0(M) = 1.

This includes most choice models of interest, among others the multinomial
logit model; see Talluri and van Ryzin (2004b).

Again, we let C denote the total capacity and c the number of remaining
units in a given period.

8.2 Maximizing Expected Revenue

Talluri and van Ryzin (2004a) reduce the objective of finding a policy that
maximizes the expected revenue to solving the optimality equation of a finite-
stage Markov decision model (N, X, An, pn, re

n, V0) with planning horizon N .
The state space is X = {c ∈ Z | c ≤ C} and represents the remaining capacity.
The action space is the power set of �, i.e. A = An = P(�) for all n. Action
a denotes the set of products offered, with A(c) = A for all c ≥ 0, A(c) = ∅
for c < 0. The transition laws pn from Kn = {(c, a) | c ∈ X, a ∈ A} into X are
defined by pn(c, a, c − 1) =

∑
i∈M p̂i(M), pn(c, a, c) = 1 − pn(c, a, c − 1), and

0 otherwise (with p̂0(M) arbitrary). The one-stage reward functions rn on Kn

are bounded by �1, and have expected values of re
n(c, a) =

∑
i∈M p̂i(M)�i.

The terminal reward function V0 on X can again be chosen as V0(c) = 0 for
c ≥ 0 and V0(c) = �̄c for c < 0 with �̄ > �1.

For each period n, the decision-maker must decide which set of products
an to offer given the residual capacity cn.

Let (XN , XN−1, . . . , X0) denote the state process of the MDP and FN the
set of all policies. The maximum expected revenue starting N periods before
departure with capacity c,

V ∗(c) = max
π∈FN

Eπ

[
N∑

n=1

re
n(Xn, fn(Xn)) + V0(X0) | XN = c

]

,
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can be obtained by backward induction on n for all c ∈ X from the optimality
equation

Vn(c) = max
M∈A(c)

{
∑

i∈M

p̂i(M) [�i − ∆Vn−1(c)]

}

+ Vn−1(c) (8.1)

starting with V0.
An easy induction on n using �1 < �̄ shows that Vn(0) = 0 and that M = ∅

in the case of c ≤ 0. The proof is basically the same as the one stated in Lemma
5.2 (ii). We can thus enlarge the set of feasible actions to A(c) = A = P(�)
for all c.

If we let

λ(M) =
∑

i∈M

p̂i(M) = 1 − p̂0(M)

denote the total probability of purchase and

ω(M) =
∑

i∈M

p̂i(M)�i

the expected one-stage revenue from offering set M, (8.1) can be written in a
more compact form as

Vn(c) = max
M⊆�

{ω(M) − λ(M)∆Vn−1(c)} + Vn−1(c) . (8.2)

The sequence of sets achieving the maximum in (8.2) forms an optimal
Markovian policy. Because the action space, i.e. the number of subsets, is
finite, there is always one set M that maximizes ω(M) − λ(M)∆Vn−1(c),
so randomizing among the sets provides no additional benefit to the seller.
Yet Talluri and van Ryzin (2004a) allow this flexibility in policies, since it is
advantageous in the following analysis.

Basically, Talluri and van Ryzin (2004a) show that an ordered family of
“efficient” subsets M1, . . . ,Mµ can be identified. An optimal policy of this
decision problem opens one of these efficient sets in each period. The more
capacity available (or the less time), the further the optimal set is along this
sequence. We revise their argumentation briefly.

8.2.1 Efficient Sets

Talluri and van Ryzin (2004a) define efficient sets as follows.

Definition 8.1. A set N is inefficient if there exist probabilities α(M) for all
M ⊆ � (including the empty set M = ∅) with

∑
M⊆� α(M) = 1 such that

λ(N) ≥
∑

M⊆�
α(M)λ(M) and ω(N) <

∑

M⊆�
α(M)ω(M) .

Otherwise, the set N is efficient.
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In addition, they introduce the notion of an efficient frontier, which is fre-
quently used in parametric linear programming. The following lemma is a
standard result; see e.g. Theorem 5.1 in Bertsimas and Tsitsiklis (1997, p.
213).

Lemma 8.1. The efficient frontier F : [0, 1] → R, defined by

F (b) = max






∑

M⊆�
α(M)ω(M) :

∑

M⊆�
α(M)λ(M) ≤ b,

∑

M⊆�
α(M) = 1, α(M) ≥ 0 for all M ⊆ �





,

is increasing and concave in b.

In addition, Talluri and van Ryzin (2004a) prove the subsequent results.

Lemma 8.2. A set N is efficient if and only if for some value ξ ≥ 0, N is an
optimal solution to

max
M⊆�

{ω(M) − ξλ(M)} .

Proposition 8.1. An inefficient set is never an optimal solution to (8.2).

8.2.2 Structure of an Optimal Policy

Let µ denote the number of efficient sets. From now on, we assume the effi-
cient sets, M1, . . . ,Mµ, are indexed in increasing order of expected one-stage
utility and total probability of purchase. This indexing is possible because the
efficient frontier is increasing. Let ωj = ω(Mj) and λj = λ(Mj). Using this
notational simplification, the Bellman equation reads

Vn(c) = max
j=1,...,µ

{ωj − λj∆Vn−1(c)} + Vn−1(c) . (8.3)

Talluri and van Ryzin (2004a) show the following relationship between the
optimal efficient set and ∆Vn−1(c).

Lemma 8.3. The index of the efficient set that maximizes (8.3) (or greatest
such index if more than one efficient set maximizes (8.3)) is decreasing in
∆Vn−1(c).

In addition, they show that ∆Vn(c) is monotone in n and c.

Lemma 8.4. For all c ∈ C and n = 1, . . . , N ,

(i) ∆Vn(c) ≤ ∆Vn(c − 1),
(ii) ∆Vn−1(c) ≤ ∆Vn(c).
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These lemmas can be used to show the following theorem:

Theorem 8.1. An optimal policy for (8.1) can be found by selecting a set Mj∗

from among the µ efficient, ordered sets {Mj , j = 1, . . . µ} that maximizes
(8.3). Moreover, for fixed n, the largest optimal index j∗ is increasing in the
remaining capacity c, and for any fixed c, j∗ is decreasing in the remaining
periods n.

Consequently, the search for an optimal set can be reduced to efficient sets,
which in many cases significantly decreases the number of sets that need to be
considered. This limited number of sets can be sequenced in a natural way so
that the more capacity one has (or the fewer periods remaining), the higher
the index of the set one should use.

In general, the task of identifying the efficient sets is still computationally
complex. The naive approach is to enumerate all 2imax − 1 subsets of � and
test each for efficiency. Talluri and van Ryzin (2004a) propose a more efficient
alternative, which they call the largest marginal revenue procedure. This idea
exploits the fact that the efficient frontier is known to be concave.

First, let M0 = ∅. Given the first j efficient sets, the j + 1st efficient
set can be found by checking among the sets M with λ(M) ≥ λ(Mj) and
ω(M) ≥ ω(Mj) for the one that maximizes the marginal revenue ratio

ω(M) − ω(Mj)
λ(M) − λ(Mj)

.

The procedure starts with j = 0 and stops when no sets with λ(M) ≥ λ(Mj)
and ω(M) ≥ ω(Mj) exist. Since there are O(2imax) subsets to check at each
step, the recursion has a complexity of O(µ2imax). For other heuristic and
analytic methods to reduce the complexity, see Talluri and van Ryzin (2004a).

8.2.3 A Numerical Example

The following example is adapted from Talluri and van Ryzin (2004a). We
consider an airline that offers three products, 1, 2, and 3 with associated
revenues of 800, 500, and 450, respectively. These products differ not only
in revenue but also in conditions and restrictions imposed. Due to these re-
strictions, customer groups are segmented, but not perfectly. (This is where
the model differs from the dynamic model in Sect. 5.1.) The resulting choice
probabilities from offering set M are given in Table 8.1.

In the scatter plot, Fig. 8.1, one can clearly see that the only efficient sets
are M0 = ∅ ⊂ M1 = {1} ⊂ M2 = {1, 3} ⊂ M3 = {1, 2, 3}. These sets are
marked with an asterisk in Table 8.1. In general, a policy with M0 ⊆ M1 ⊆
· · · ⊆ Mµ is called a nested policy. Given such a nested optimal policy, the
optimal protection levels for higher indexed sets j = 1, . . . , µ are

y∗
j−1(n) = max {c ∈ N0 : ωj−1 − λj−1∆Vn−1(c) > ωj − λj∆Vn−1(c)} .
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Table 8.1. Choice probabilities p̂i(M), total probability of purchase λ(M), and
expected one-stage revenues ω(M).

M p̂1(M) p̂2(M) p̂3(M) p̂0(M) λ(M) ω(M)

{∅} 0 0 0 1.0 0 0*
{1} 0.3 0 0 0.7 0.3 240*
{2} 0 0.4 0 0.6 0.4 200
{3} 0 0 0.5 0.5 0.5 225
{1, 2} 0.1 0.6 0 0.3 0.7 380
{1, 3} 0.3 0 0.5 0.2 0.8 465*
{2, 3} 0 0.4 0.5 0.1 0.9 425
{1, 2, 3} 0.1 0.4 0.5 0 1.0 505*

 
Fig. 8.1. Scatter plot of λ and ω as well as the efficient sets.

But note that in contrast to the basic dynamic model, the nesting need not
be by fare class, as can be seen in this example.
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Fig. 8.2. Optimal policy in the case of a risk-neutral decision-maker given the
example data for N = 40 and C = 20.
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Figure 8.2 illustrates an optimal policy for N = 40 and C = 20. In partic-
ular, the protection levels of the optimal policy can be read from this chart.
Consider e.g. the situation n = 11 periods before departure. If the remaining
capacity is 11 or more, all products, set {1, 2, 3}, should be offered. If the
capacity is 6 or less, the set {1}, consisting of only product 1, is the optimal
action. For 7 to 10 remaining seats, the set {1, 3} should be offered.

In line with the results mentioned above, the optimal actions comprise
efficient sets only. In addition, the index of the set offered is monotone in the
remaining number of periods and the remaining capacity.

8.3 Maximizing Expected Utility

As in the chapters before, we revise the capacity control model under a general
discrete choice model of consumer behavior from the perspective of a risk-
averse decision-maker.

Note that an additive time-separable utility function results in a pure
rescaling of the product fares. Since the time periods of the dynamic model are
assumed to be small, however, we concentrate on atemporal utility functions
in the following.

In Sect. 3.2.2, we said that using MDPs, the standard approach for maxi-
mizing expected utility with an atemporal utility function u0 is to introduce an
additional wealth variable w and use the optimality equation given in (3.11).

When the set M is offered, one unit of capacity is sold with probability
p̂i(M) at a price �i. Hence, the probability of a transition from state (c, w)
to (c − 1, w + �i) when set M is offered is p̂i(M), and the probability for
a transition to (c, w) is 1 − ∑

i∈M p̂i(M); all other transition probabilities
are 0. Using these transition probabilities pn(c, w, a, c′, w′) in the optimality
equation (3.11), we obtain that

V atmp∗(c, w) = max
π∈FN

Eπ [u0(W0 + V0(X0)) | XN = c,WN = w]

is the unique solution of

V atmp
n (c, w) = max

M∈A(c)

{
∑

i∈M

p̂i(M)
[
V atmp

n−1 (c − 1, w + �i) − V atmp
n−1 (c, w)

]
}

+ V atmp
n−1 (c, w) , (8.4)

with V atmp
0 (c, w) = u0(V0(c) + w). Every policy πatmp∗ formed by actions

maximizing the right-hand side of (8.4), is atmp-optimal, i.e. leads to V atmp∗.
As in the basic dynamic model of Sect. 5.1, monotonicity of the value

function in c and w follows by induction, and the same counterexamples for
monotonicity of an optimal policy in c and w given general increasing utility
functions can be used. For an exponential utility function
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uγ(w) = − exp(−γw), w ∈ R ,

with γ > 0, however, a γ-optimal policy for the dynamic model has the same
structure as an expected revenue maximizing policy in the model of Sect. 5.1.
Now we examine if this is also true for the capacity control model under a
general discrete choice model of consumer behavior.

To simplify (8.4), the delta-property of the exponential utility function and
the same line of argumentation as in Sect. 3.2.3 can be used. This yields that
the policy that achieves the maximum expected utility given c seats remaining
n periods before departure can be obtained by backward induction from

V γ
n (c) = max

M∈A(c)

{
∑

i∈M

p̂i(M)
[
exp(−γ�i)V

γ
n−1(c − 1) − V γ

n−1(c)
]
}

+ V γ
n−1(c) , (8.5)

with initial value V γ
0 (c) = uγ(V0(c)). As in the risk-neutral setting, it follows

by induction on n that V γ
n (0) = −1 and that in the case of c ≤ 0, the γ-optimal

action to offer is the empty set ∅.
Lemma 8.5. For c ≤ 0, V γ

n (c) = − exp(−γ�̄c) for all n = 0, . . . , N .

Proof. By definition, V γ
0 (c) = − exp(−γ�̄c), so the assertion is true for n = 0.

Assume it is true for some n; then

V γ
n+1(c) = max

M⊆�

{

− exp(−γ�̄c)
∑

i∈M

p̂i(M) [exp(γ(�̄ − �i)) − 1]

}

− exp(−γ�̄c) .

Since �̄ > �1, the maximum is attained when the action M = ∅ is chosen with
V γ

n+1(c) = − exp(−γ�̄c). ��
Consequently, we can enlarge the set of feasible actions in state c again to
A(c) = A = P(�) for all c. As before, we let

λ(M) =
∑

i∈M

p̂i(M) = 1 − p̂0(M)

denote the total probability of purchase and

ωγ(M) =
∑

i∈M

p̂i(M)uγ(�i) + p̂0(M)uγ(0)

the expected one-stage utility from offering set M. (8.5) can then be rear-
ranged to

V γ
n (c) = ∆V γ

n−1(c) − V γ
n−1(c − 1)

· max
M⊆�

{
ωγ(M) − λ(M)

(
1 − ΓV γ

n−1(c)
)}

, (8.6)
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as −V γ
n−1(c − 1) > 0. An argument similar to the one used in the discussion

on the MSCE heuristics shows that the term −1/γ lnΓV γ
n−1(c) can be inter-

preted as the marginal certainty equivalent of the cth seat in period n. Then,
−ΓV γ

n−1(c) is the utility of this marginal certainty equivalent.
A sequence of sets achieving the maximum in (8.6) forms a γ-optimal

Markovian policy. Randomizing among the sets provides no additional benefit
to the seller, but is again theoretically useful.

8.3.1 Efficient Sets

Efficient sets and the efficient frontier can be defined as before, with ωγ written
in place of ω. Given a fixed γ, the γ-efficient frontier F γ : [0, 1] → R is
increasing and concave. Furthermore, a set N is γ-efficient if and only if for
some value ξ ≥ 0, the set N is a γ-optimal solution to

max
M⊆�

{ωγ(M) − ξλ(M)} .

Since, by definition of the exponential utility function, 1 − ΓV γ
n−1(c) is non-

negative, it follows that a γ-inefficient set is never a γ-optimal solution to
(8.6).

8.3.2 Characterization of the Optimal Policy

We assume again that for a fixed γ, the γ-efficient sets are denoted by
M1, . . . ,Mµ and are indexed in increasing order of expected one-stage utility
and total probability of purchase. Note, however, that in general the number
of γ-efficient sets, µ, generally depends on γ.

As before, let ωγ
j = ωγ(Mj) and λj = λ(Mj). This yields

V γ
n (c) = ∆V γ

n−1(c) − V γ
n−1(c − 1) max

j=1,...,µ

{
ωγ

j − λj

(
1 − ΓV γ

n−1(c)
)}

. (8.7)

In order to show that the γ-efficient sets are used in the order of increasing
selling probability, we need the following properties of −ΓV γ

n (c). The first
one is that the utility of the marginal certainty equivalent of the cth seat is
decreasing in the remaining capacity c, which is intuitive. The second property
is that −ΓV γ

n (c) is monotone in the number of remaining periods as well.

Lemma 8.6. ΓV γ
n (c) ≥ ΓV γ

n (c − 1), n = 1, . . . , N, c = 1, . . . , C.

Proof. The proof is by induction on n. First, the statement is trivially true
for n = 0 by the definition of the terminal reward. Assume it is true for period
n − 1, i.e. V γ

n−1(c)V
γ
n−1(c − 2) − V γ

n−1(c − 1)2 ≥ 0 for all c = 2, 3 . . . , C. Let
M∗

n(c − 1) denote the optimal solution to (8.6) in period n given a capacity
of c − 1 and write ω̂ = ωγ(M∗

n(c − 1)) and λ̂ = λ(M∗
n(c − 1)) for short.

Now, using ω̂ and λ̂, one can rearrange (8.6) and obtain
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V γ
n (c)V γ

n (c − 2) − V γ
n (c − 1)2

≥
[
(1 − λ̂)V γ

n−1(c) − (1 + ω̂ − λ̂)V γ
n−1(c − 1)

]

·
[
(1 − λ̂)V γ

n−1(c − 2) − (1 + ω̂ − λ̂)V γ
n−1(c − 3)

]

−
[
(1 − λ̂)V γ

n−1(c − 1) − (1 + ω̂ − λ̂)V γ
n−1(c − 2)

]2
,

where the inequality follows from the fact that λ̂ and ω̂ are maximizing for a
remaining capacity of c − 1 and not necessarily for c and c − 2.

Rearranging and canceling terms yields

V γ
n (c)V γ

n (c − 2) − V γ
n (c − 1)2

≥ (1 − λ̂)(λ̂ − 1 − ω̂)
[
V γ

n−1(c)V
γ
n−1(c − 3) − V γ

n−1(c − 2)V γ
n−1(c − 1)

]

+ (1 + ω̂ − λ̂)2
[
V γ

n−1(c − 1)V γ
n−1(c − 3) − V γ

n−1(c − 2)2
]

+ (1 − λ̂)2
[
V γ

n−1(c)V
γ
n−1(c − 2) − V γ

n−1(c − 1)2
]

.

Since total probabilities of purchase are smaller than 1, it holds that 1 −
λ(M) = p̂0(M) ≥ 0 for all M ⊆ �. Furthermore,

λ(M) − 1 − ωγ(M) = −
∑

i∈M

p̂i(M)uγ(�i) =
∑

i∈M

p̂i(M) exp(−γ�i) ≥ 0

for all M ⊆ �. All other factors are non-negative due to the induction hy-
pothesis. Hence,

V γ
n (c)V γ

n (c − 2) − V γ
n (c − 1)2 ≥ 0 ,

which is equivalent to ΓV γ
n (c) ≥ ΓV γ

n (c − 1). ��
Lemma 8.7. ΓV γ

n−1(c) ≤ ΓV γ
n (c), n = 2, . . . , N, c = 1, . . . , C.

Proof. Rearranging the hypothesis yields the equivalent statement

V γ
n (c)

V γ
n−1(c)

≤ V γ
n (c − 1)

V γ
n−1(c − 1)

.

Substituting (8.5) for V γ
n (c) gives

V γ
n (c)

V γ
n−1(c)

= max
M⊆�

{
∑

i∈M

p̂i(M)
[
exp(−γ�i)
ΓV γ

n−1(c)
− 1

]}

+ 1

≤ max
M⊆�

{
∑

i∈M

p̂i(M)
[

exp(−γ�i)
ΓV γ

n−1(c − 1)
− 1

]}

+ 1

=
V γ

n (c − 1)
V γ

n−1(c − 1)

for the right-hand side, with the inequality following from Lemma 8.6. ��
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By combining Lemma 8.3 with Lemmas 8.6 and 8.7, we obtain the follow-
ing theorem.

Theorem 8.2. Given a fixed γ, a γ-optimal policy for (8.5) can be found
by selecting a set Mj∗ from among the γ-efficient, ordered sets {Mj : j =
1, . . . , µ} that maximizes (8.7). Moreover, for fixed n, the largest optimal in-
dex j∗ is increasing in the remaining capacity c, and for any fixed c, j∗ is
decreasing in the number of remaining periods n.

In order to spot these γ-efficient sets, one could substitute expected rev-
enues for expected one-stage utilities in the “largest marginal revenue” proce-
dure to yield a “largest marginal expected utility” procedure using the ratio

ωγ(M) − ωγ(Mj)
λ(M) − λ(Mj)

.

instead of the marginal revenue ratio.
We can show the following relationship between the risk-sensitive and the

risk-neutral case.

Proposition 8.2. A policy that is γ-optimal for all γ ∈ (0, γ0) is an expected
revenue maximizing policy.

Proof. First, note that from the optimality equation (8.5), we can directly see
that an efficient set M∗ is an optimal action (there might be more than one)
if

∑

i∈M∗
p̂i(M∗)

[
exp(−γ�i)V

γ
n−1(c − 1) − V γ

n−1(c)
]

≥
∑

i∈M

p̂i(M)
[
exp(−γ�i)V

γ
n−1(c − 1) − V γ

n−1(c)
]

for all M ∈ P(�).
Solving for ΓV γ

n (c), taking logarithms, and multiplying by (−1/γ) yields
that an efficient set M∗ is an optimal action if for all sets M ⊆ � with
λ(M∗) − λ(M) > 0,

− 1
γ

ln
(∑

i∈M∗ p̂i(M∗) exp(−γ�i) −
∑

i∈M p̂i(M) exp(−γ�i)∑
i∈M∗ p̂i(M∗) −∑

i∈M p̂i(M)

)

≥ − 1
γ

ln (ΓV γ
n (c)) , (8.8)

and for all sets M ⊆ � with λ(M∗) − λ(M) < 0,

− 1
γ

ln
(∑

i∈M∗ p̂i(M∗) exp(−γ�i) −
∑

i∈M p̂i(M) exp(−γ�i)∑
i∈M∗ p̂i(M∗) −∑

i∈M p̂i(M)

)

≤ − 1
γ

ln (ΓV γ
n (c)) . (8.9)
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If there is an efficient set M with λ(M∗) = λ(M), their expected utilities must
be equal, and both actions, M and M∗, are optimal.

Denote by F∅ the finite set of all decision rules with fn(c) = ∅ for c ≤ 0.
As mentioned before, the expected revenue maximizing optimal policy is in
FN
∅ . The γ-optimal policy is in FN

∅ as well according to Lemma 8.5.
Now apply the Taylor approximation (3.6) to the expected utility from

applying a policy π ∈ FN
0 . It follows that for γ → 0,

− 1
γ

ln(−V γ
n (c)) = max

π∈FN
∅
− 1

γ
ln (Eπ [− exp(−γ (W0 + V0(X0))) | XN = c])

→ max
π∈FN

∅
Eπ [W0 + V0(X0) | XN = c] = Vn(c) .

In addition, note that another application of exp(x) = 1 + x + O(x2) and
ln(1 + x) = x + O(x2/2) for x → 0 yields

− 1
γ

ln
(∑

i∈M∗ p̂i(M∗) exp(−γ�i) −
∑

i∈M p̂i(M) exp(−γ�i)∑
i∈M∗ p̂i(M∗) −∑

i∈M p̂i(M)

)

= − 1
γ

ln
(∑

i∈M∗ p̂i(M∗)(1 − γ�i + O(γ2))
∑

i∈M∗ p̂i(M∗) −∑
i∈M p̂i(M)

−
∑

i∈M p̂i(M)(1 − γ�i + O(γ2))
∑

i∈M∗ p̂i(M∗) −∑
i∈M p̂i(M)

)

= − 1
γ

ln
(

1 − γ

∑
i∈M∗ p̂i(M∗)�i −

∑
i∈M p̂i(M)�i + O(γ2)

∑
i∈M∗ p̂i(M∗) −∑

i∈M p̂i(M)

)

=
ω(M∗) − ω(M)
λ(M∗) − λ(M)

+ O(γ) .

Thus, for γ → 0, the inequalities (8.8) and (8.9) converge to

ω(M∗) − ω(M)
λ(M∗) − λ(M)

≥ ∆Vn(c)

for all sets M ⊆ � with λ(M∗) − λ(M) > 0 and to

ω(M∗) − ω(M)
λ(M∗) − λ(M)

≤ ∆Vn(c)

for all sets M ⊆ � with λ(M∗) − λ(M) < 0. These inequalities determine
optimal actions in the expected revenue maximizing case according to the
(risk-neutral) optimality equation (8.2). ��

8.3.3 A Numerical Example

For the example stated in the risk-neutral case above, the data as well as the
values of ωγ(M) in the case of γ = 0.001 and 0.01 are summarized in Table
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Table 8.2. Choice probabilities p̂i(M), total probability of purchase λ(M), and
expected one-stage utilities ωγ(M) with γ = 0.001 and γ = 0.01.

M p̂1(M) p̂2(M) p̂3(M) p̂0(M) λ(M) ω0.001(M) ω0.01(M)

{∅} 0 0 0 1.0 0 -1* -1*
{1} 0.3 0 0 0.7 0.3 -0.8348* -0.7001*
{2} 0 0.4 0 0.6 0.4 -0.8426 -0.6027
{3} 0 0 0.5 0.5 0.5 -0.8188 -0.5056
{1, 2} 0.1 0.6 0 0.3 0.7 -0.7089 -0.3041*
{1, 3} 0.3 0 0.5 0.2 0.8 -0.6536* -0.2057
{2, 3} 0 0.4 0.5 0.1 0.9 -0.6614 -0.1082
{1, 2, 3} 0.1 0.4 0.5 0 1.0 -0.6064* -0.0083*

8.2. Figure 8.3 shows a scatter plot of λ(M), ω0.001(M), and ω0.01(M). In
addition, the γ-efficient frontiers are indicated.

From the scatter plot, one can conclude that for γ = 0.001 the γ-efficient
sets are the same as in the expected revenue maximizing case. For a more
risk-averse decision-maker with γ = 0.01, however, the γ-efficient sets change
to M0 = ∅ ⊂ M1 = {1} ⊂ M2 = {1, 2} ⊂ M3 = {1, 2, 3}. The γ-efficient
sets for γ = 0.01 are difficult to spot in the scatter plot but can be obtained
by minor calculations. In this setting, the sets are nested by fare class. The
fact that for increasing absolute risk-aversion, i.e. values of γ, the set {1, 2}
becomes more and more attractive over {1, 3} is plausible, since the variability
in outcomes for {1, 2} is smaller than for {1, 3}.

 

Fig. 8.3. Scatter plot of λ, ω0.001, and ω0.01 as well as the efficient frontiers.
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For the case of N = 40 and C = 20, the γ-optimal actions, i.e. sets to offer,
are depicted in Fig. 8.4 for γ = 0.001 and in Fig. 8.5 for γ = 0.01. As proven in
Theorem 8.2, the γ-optimal actions comprise γ-efficient sets only. The index of
the offered set is monotone in the remaining periods and remaining capacity.
For a relatively low level of risk-aversion with the same γ-efficient sets as in
the expected revenue maximizing case, the optimal and the γ-optimal policy
are very similar. But note that in this example, the γ-optimal policy with
γ = 0.001 tends to offer sets with a higher index.
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Fig. 8.4. γ-optimal policy with γ = 0.001.
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Fig. 8.5. γ-optimal policy with γ = 0.01.



9

Conclusion

We have presented (1) an expected revenue maximizing capacity control model
that evolves in a random environment and (2) basic single-resource capacity
control problems from the perspective of a risk-averse decision-maker.

The first model is an extension of existing capacity control and overbooking
models. It is suitable for companies with many independent repetitions of the
booking process if the occurrence of demand is known to depend on a random
environment and if there is sufficient booking data to estimate the additional
parameters.

The second approach is advisable for companies that apply capacity con-
trol but have only a few repetitions of the booking process, so that one sin-
gle realization could potentially severely impact company revenues. For the
two textbook models of capacity control, we have proven that in practice, a
decision-maker with constant absolute risk-aversion (and no preferences to-
wards the timing of revenue within the booking horizon) can adhere to the
control by protection levels, which are well-known from the risk-neutral set-
ting; their calculation simply has to be adapted.

9.1 Summary

After a review of Markov decision processes with the total reward criterion and
expected utility theory for sequential decision making, we presented a capacity
control model in a random environment with cancelations and no-shows. This
model generalizes the omnibus model of Lautenbacher and Stidham (1999)
as well as the previous combined capacity control and overbooking models of
Subramanian et al. (1999) and Talluri and van Ryzin (2004b, pp. 155–161)
by incorporating additional external factors that may have some impact on
the distribution of the number and type of request arrivals. In contrast to the
major part of the capacity control literature, the number of decision periods
is not fixed, but may also depend on these external factors. We presented
assumptions that ensure that the expected revenue maximizing policy can be
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described by protection levels. This means that given the current realization
of demand and the external factor, the optimal action is to protect a certain
number of seats for future requests and to sell as many remaining seats as
possible.

This structure of an expected revenue maximizing policy is well-known in
the dynamic and the static model, the two textbook models of single-resource
capacity control. Indeed, we were able to show that these two models are
special cases of the capacity control model in a random environment. But due
to the more restrictive assumptions, monotonicity in the remaining time until
departure and booking class could also be shown. We presented structures
that are well-known in the literature and proved additional properties.

Traditionally, the aim of capacity control is to maximize expected revenue.
We recapitulated the dynamic and the static model from the perspective of a
risk-averse, expected utility maximizing decision-maker.

The standard approach to incorporating the notion of utility into Markov
decision processes is to assume an additive time-separable utility function.
Using this approach, we find that protection levels are suitable controls for
the dynamic model but not for the static model. In the dynamic model, the
protection levels can be seen to be monotone in time and booking class. In
addition, they are monotone in the degree of risk-aversion. In the static model,
optimal controls are still monotone in the remaining capacity, yet they are
not of protection level type. In general, the controls need not be monotone in
booking class or degree of risk-aversion.

These findings on an expected utility maximizing policy are counterintu-
itive at first glance, but we argued that they stem from the rather unrealistic
preferences induced by an additive time-separable utility function. We sug-
gested an atemporal utility function as a more realistic alternative. In general,
optimal controls of an expected atemporal utility maximizing policy need not
even be monotone in the remaining capacity. In the case of an exponential
utility function with a positive coefficient of absolute risk-aversion, however,
the expected utility maximizing policy is of protection level type and mono-
tone in the booking class. In the dynamic model, it is also monotone in the
remaining time. Furthermore, we were able to show that if there is a policy
that is optimal for all sufficiently small values of γ, this policy is the optimal
policy for a risk-neutral decision-maker.

Due to the high popularity of the EMSR heuristics for the static model,
we suggested straightforward extensions to account for constant absolute risk-
aversion and compared them to Weatherford’s EMSU heuristic (Weatherford,
2004) in a small simulation study.

Finally, we showed that even in the more general capacity control model
under a general discrete choice model of consumer behavior, the structural
results known from the expected revenue maximizing setting carry over to
the case of a decision-maker maximizing expected atemporal utility with an
exponential utility function.
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9.2 Directions for Future Work

Several directions for future work are straightforward; we highlight four of
them in the following.

First, we did not show that protection levels of a γ-optimal policy are
monotone in the coefficient of absolute risk-aversion γ for both the dynamic
and the static model. Yet all of our numerical testing supports this hypothesis.
For the dynamic model with only one item to sell, the monotonicity follows
directly from the definition of increasing absolute risk-aversion. For the static
model with only two booking classes, the result is shown in Eeckhoudt et al.
(1995).

A second direction for future research might be a closer investigation of
the dynamic and the static model for the maximization of expected atemporal
utility with a general utility function on total revenue. By means of examples,
we showed that structural properties of an expected utility maximizing policy
depend heavily on the shape of the utility function. Judging from the rele-
vance of these findings, it would be interesting to find necessary conditions
that guarantee the existence of an atmp-optimal policy that is increasing in
capacity and time.

Third, factors other than revenue might have an impact on the decision-
maker’s preferences. Lost customer goodwill, e.g. due to high spill rates, might
lower demand for future flights (see e.g. Lindenmeier and Tscheulin, 2005, and
Wirtz et al., 2003). Disappointed investors, e.g. due to a reduction of market
share (determined by load factors) or volatile revenues earned, might increase
the costs of outside capital in the long run or even cause venture capitalists to
leave the company. In certain business scenarios, the impact of these factors
on future revenue could be crucial and should be considered in the capacity
allocation process. A first step in this direction is made in Barz et al. (2006).

Last, and probably most important with respect to real applications, we
mainly considered basic capacity control models. These models account nei-
ther for cancelations nor for no-shows, which are very common phenomena
in practice. In addition, we only discussed the single-resource setting. The
transfer to network problems presents another challenge for future research.
Finally, the impact of risk-sensitivity on dynamic pricing strategies could be
investigated.
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An Extension of Stidham’s Lemma

According to Lemma 1 in Stidham (1978), the following holds

Lemma B.1.
Let g : Z → R be a concave function and define f : Z → R as

f(c) = max
a=0,...,m

{ar + g(c − a)} ,

with r ≥ 0 and m ∈ N0. Then, f is concave.

A direct proof can be found in Stidham (1978) and Lautenbacher and Stidham
(1999, Lemma 1).

Since Lemma B.1 is a special case of the following extension, the proof of
Lemma B.2 also proves Lemma B.1.

Lemma B.2 (An extension of Lemma 1 in Stidham, 1978).
Let g : Z → R and u : R → R be concave functions. Define f : Z → R as

f(c) = max
a=0,...,m

{u(a · r) + g(c − a)} ,

with r ≥ 0 and m ∈ N0. Then f is concave.

Proof. Since u(a · r) is evaluated at a finite number of points a · r only, we can
write ǔ(c − a) · r instead of u(a · r) with concave ǔ : Z → R.

Setting t = c − a yields

f(c) = max
c−m≤t≤c

{ǔ(t)r + g(t)} .

Let
t∗ = arg max {ǔ(t)r + g(t)} .

From the concavity of g and ǔ, it follows that

f(c) =






ǔ(c − m)r + g(c − m) t∗ ≤ c − m,
ǔ(t∗)r + g(t∗) c − m < t∗ < c,

ǔ(c)r + g(c) t∗ ≥ c .
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Given that g(c)−g(c−1) ≥ g(c+1)−g(c) and ǔ(c)− ǔ(c−1) ≥ ǔ(c+1)− ǔ(c)
hold due to the assumed concavity, we obtain for c < t∗

f(c) − f(c − 1) = ǔ(c)r + g(c) − ǔ(c − 1)r − g(c − 1)
= [ǔ(c) − ǔ(c − 1)]r + g(c) − g(c − 1)
≥ [ǔ(c + 1) − ǔ(c)]r + g(c + 1) − g(c)
= f(c + 1) − f(c) .

For t∗ ≤ c ≤ t∗ + m, it follows from the definition of t∗ that

f(c) = ǔ(t∗)r + g(t∗) ≥ f(c − 1)

and
f(c) = ǔ(t∗)r + g(t∗) ≥ f(c + 1) .

Therefore,
f(c + 1) − f(c) ≤ 0 ≤ f(c) − f(c − 1) .

Owing to the assumed concavity of g and ǔ, this can be rearranged for c >
t∗ + m to read

f(c) − f(c − 1) = ǔ(c − m)r + g(c − m) − ǔ(c − 1 − m)r − g(c − 1 − m)
= [ǔ(c − m) − ǔ(c − 1 − m)]r + g(c − m) − g(c − 1 − m)
≥ [ǔ(c + 1 − m) − ǔ(c − m)]r + g(c + 1 − m) − g(c − m)
= f(c + 1) − f(c) .

Summing things up, f(c) − f(c − 1) is decreasing, i.e. f(c) is concave.
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Stochastic Concavity and the Binomial
Distribution

We show that (A2) holds if the increase in capacity can be modeled by a
binomial distribution with parameter C − c and (environment dependent)
cancelation probability qe.

Lemma C.1. Let g : C → R be an increasing and concave function and
B(n, qe) a binomial random variable with non-negative parameter n and 0 ≤
qe ≤ 1. Then, given C ≥ 0, the function

c →
C∑

c′=c

qe
c,c′g(c′) = E [g(c + B(C − c, qe))]

is increasing and concave for all e ∈ J̃.

The proof is in the spirit of Example 4.1 and Proposition 3.7 in Shaked and
Shanthikumar (1988). We write X̂1 =st X̂2 if the random variable X̂1 equals
X̂2 in distribution.

Proof. Choose c1, c2, c3, and c4 such that

c1 ≤ c2 ≤ c3 ≤ c4 (C.1)

and

c1 + c4 = c2 + c3 . (C.2)

Now define Ŷ1, Ŷ2, and Ŷ3 as independent random variables

Ŷ1 = B(C − c4, q
e)

Ŷ2 = B(c4 − c3, q
e)

Ŷ3 = B(2c3 − c1 − c4, q
e) .

If we set



150 C Stochastic Concavity

X̂1 = c1 + Ŷ1 + 2Ŷ2 + Ŷ3

X̂2 = c1 + c4 − c3 + Ŷ1 + Ŷ2 + Ŷ3

X̂3 = c3 + Ŷ1 + Ŷ2

X̂4 = c4 + Ŷ1 ,

we can conclude that

(1) X̂j =st cj + B(C − cj , q
e). This is obvious for j = 4. For j = 1, 2, 3, it is

a consequence of the convolution property of binomial random variables
with same probability parameter qe and (C.2).

(2) X̂1 + X̂4 = X̂2 + X̂3 almost surely because both sides of the equality can
be reduced to c1 + c4 + 2Ŷ1 + 2Ŷ2 + Ŷ3.

(3) [X̂1, X̂2, X̂3] ≤ X̂4, i.e. X̂1, X̂2, and X̂3 are smaller than or equal to X̂4,
almost surely. This follows from Ŷ1 ≤ C − c4, Ŷ2 ≤ c4 − c3, and Ŷ3 ≤
2c3 − c1 − c4 and the definition of X̂j .

From properties (1), (2), and (3) and the concavity of g

g(X̂1) + g(X̂4) ≤ g(X̂2) + g(X̂3)

holds almost surely. Taking expectations yields

E

[
g(X̂1)

]
+ E

[
g(X̂4)

]
≤ E

[
g(X̂2)

]
+ E

[
g(X̂3)

]
.

Now as X̂j =st cj + B(C − cj , q
e), it follows that

E [g(c1 + B(C − c1, q
e))] + E [g(c4 + B(C − c4, q

e))]
≤ E [g(c2 + B(C − c2, q

e))] + E [g(c3 + B(C − c3, q
e))] .

Consequently, E [g(c + B(C − c, qe))] is concave in c. It follows directly from
(3) that E [g(c + B(C − c, qe))] is increasing in c.
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